
ROBUST REALTIME POLYPHONIC PITCH DETECTION

by

John M. Thomas

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

In Partial fulfillment of

The Requirements for the Degree

of

Master of Science

Electrical Engineering

Committee:

Dr. Jill Nelson, Thesis Director

~ I' " ~u:-c ~ ~. ii,' :.-;;#~/ Dr. Kathleen Wage, Committee Member

Dr. Yariv Ephraim, Committee Member
i j~ "/1 -.
'l~!\1\ '

\. j ~ ,
\ ii,' Dr. Andre Manitius, Department Chair

Dr. Lloyd J. Griffiths, Dean,
Volgenau School of Engineering ~
Spring Semester 2012
George Mason University
Fairfax, VA

Robust Realtime Polyphonic Pitch Detection

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

John M. Thomas
Bachelor of Science

LeTourneau University, 2006

Director: Dr. Jill Nelson, Professor
Department of Electrical and Computer Engineering

Spring Semester 2012
George Mason University

Fairfax, VA

Copyright c© 2012 by John M. Thomas
All Rights Reserved

ii

Dedication

This paper is dedicated to my dear, lovely wife, without whom I would be lost. Thank you
for your endless support and understanding during the completion of this project.

iii

Acknowledgments

I would like to acknowledge the brilliant authors – particularly T. Tolonen, M. Karjalainen,
A. Klapuri, and Dessein et. al. – whose prior work provided the foundation for my own
pitch detection algorithms. I would especially like to thank Klapuri for his wonderful book
that provided so much useful background information.

I would also like to thank my advisor, Dr. Jill Nelson, for her support and direction
throughout this process.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . ix

1 Background . 1

1.1 Introduction . 1

1.2 Musical Terminology and Concepts . 1

1.2.1 Low-Level Perception . 1

1.2.2 High-Level Concepts . 2

1.2.3 Sound Structure . 5

1.3 Technical Concepts . 7

1.3.1 Cepstrum . 7

1.3.2 Spectral Whitening . 8

1.3.3 Non-Negative Matrix Factorization 9

1.3.4 Hidden Markov Models . 10

1.3.5 Auditory Model . 13

1.4 Foundational Research . 17

1.4.1 System of Tolonen and Karjalainen 17

1.4.2 System of Klapuri . 19

1.4.3 System of Dessein, Cont, and Lemaitre 21

1.5 Conclusion . 23

2 A New Analysis Tool . 24

2.1 Introduction . 24

2.2 Error Measurement . 24

2.3 FFT Analysis . 25

2.4 ACF Analysis . 26

2.5 The Optimal Blend . 28

2.6 Direct Realization . 29

2.6.1 Computation . 29

v

2.6.2 Interpretation . 31

2.6.3 Application . 33

2.6.4 Efficiency . 34

2.7 Conceptual Application . 37

2.7.1 Parallel Algorithms . 37

2.7.2 Conditional Refinement . 38

3 New Algorithms . 39

3.1 Introduction . 39

3.2 Dessein with CAFR . 39

3.3 Hybrid Tolonen/Klapuri . 41

3.4 Conditional Klapuri . 43

4 Experimental Results . 46

4.1 Introduction . 46

4.2 Testing Environment . 46

4.3 System Parameters . 46

4.4 Objective Evaluation . 47

4.5 Results . 49

5 Conclusion . 52

5.1 New Development . 52

5.2 Significance . 53

5.3 Future Work . 53

A Code Listings . 55

A.1 General Support Functions . 55

A.2 Tolonen’s Reference System . 57

A.3 Klapuri’s Reference System . 59

A.4 Dessein’s Reference System . 64

A.5 CAFR Realization . 67

A.6 Dessein with CAFR . 68

A.7 Hybrid Tolonen/Klapuri . 69

A.8 Conditional Klapuri . 73

Bibliography . 78

vi

List of Tables

Table Page

4.1 Error Rates at Onset . 50

4.2 Error Rates at Onset (Discounting Octave Errors) 50

4.3 Error Rates 100 ms after Onset . 51

4.4 Error Rates 100 ms after Onset (Discounting Octave Errors) 51

vii

List of Figures

Figure Page

1.1 Frequency-to-Pitch Mapping . 4

1.2 Temporal and Harmonic Structures . 6

1.3 MFCC Computation Process . 8

1.4 Hidden Markov Model . 11

1.5 Effects of Half-Wave Rectification . 15

1.6 Block Diagram of Tolonen and Karjalainen’s System 17

2.1 Measurement Error Analysis of ACF and FFT 27

2.2 ACF “Leading Hill” . 30

2.3 Direct CAFR Computation Process . 32

2.4 Sample CAFR Output . 32

2.5 FFT Performance vs. Frame Length . 37

3.1 Block Diagram of the “Dessein with CAFR” System 40

3.2 Block Diagram of the “Hybrid Tolonen/Klapuri” System 42

3.3 Block Diagram of the “Conditional Klapuri” System 45

4.1 Summary of Results . 49

viii

Abstract

ROBUST REALTIME POLYPHONIC PITCH DETECTION

John M. Thomas, MS

George Mason University, 2012

Thesis Director: Dr. Jill Nelson

Pitch detection is a subset of automatic music transcription, which is the application of

various signal processing algorithms with the specific intent of automatically gathering

musical information from audio signals. This field, in various forms, has been the subject of

much research over the years, as it has virtually endless possibilities for application. Much

work has been done on monophonic signals, however, much less has been done to tackle the

problem of polyphonic music.

One major issue for polyphonic pitch detection systems is efficiency. Most existing algo-

rithms sacrifice efficiency for accuracy and robustness, while some others take the opposite

tradeoff. The purpose of this paper is to work toward new systems that are both robust

and efficient enough to run in realtime.

First, the relevant background information necessary to explore this topic is presented.

Musical terminology and concepts are explained, and some common analytical tools and

algorithms used in existing systems are described.

Three relatively efficient reference systems are then presented. The first is a multiple

fundamental frequency (F0) estimator based on the Auto-Correlation Function (ACF) that

utilizes a unique enhancement algorithm to easily identify individual pitch components.

The second is a multiple F0 estimator based on the Fast Fourier Transform (FFT) that

exploits the harmonic nature of musical sounds.

The third reference system outputs directly to pitch numbers by using a modified form

of an unsupervised learning algorithm called Non-Negative Matrix Factorization (NMF).

It is clear from investigation of the first two reference systems that the two opposing

camps on fundamental frequency estimation (FFT vs. ACF) are actually quite complemen-

tary. Therefore, the remainder of the paper explores the inherent high-frequency versus

low-frequency accuracy tradeoffs and proposes potential solutions. A novel analysis tool

called the Combined ACF/FFT Representation (CAFR) is developed and three new pitch

detection algorithms are devised from it. These algorithms are then evaluated for both

robustness and efficiency and compared against results for the three reference systems.

Chapter 1: Background

1.1 Introduction

Pitch detection is a task from the field of automatic music transcription, which has been

the subject of much research over the years, as it has virtually endless possibilities for ap-

plication. Klapuri and Davy [1] have compiled an excellent overview of the topic, gathering

past research and demonstrating the state of the art as of 2006. It is evident from this

volume, that in the realm of pitched music transcription, much work has been done on

monophonic signals. However, much less has been done to tackle the problem of polyphonic

music. While there have been some more recent advances in the area of polyphonic pitch

detection, there is still plenty of room for improvement, particularly in the realm of realtime

detection systems. This chapter presents the relevant background information necessary to

explore this topic and expand on previous research.

1.2 Musical Terminology and Concepts

Before delving into the problem at hand, it will be beneficial to define the relevant musical

terminology and concepts. Music is, first and foremost, a phenomenon of human perception

and can therefore be quite subjective in nature. However, there are certain over-arching

principles commonly recognized by human listeners.

1.2.1 Low-Level Perception

There are two major categories of musical sounds – pitched sounds (notes) and un-pitched

(or percussive) sounds. In the context of this paper, the discussion will be limited to pitched

sounds, such as those created by typical musical instruments (piano, violin, flute, guitar,

1

etc.).1 Sounds created by inherently un-pitched instruments (drums, cymbals, etc.) will

not be considered.

A note is a single, atomic sound event primarily described by four important perceptual

qualities: pitch, loudness, duration, and timbre [2].

Pitch is analogous to frequency, perceived on a logarithmic scale, and provides for a

natural ordering from “low” to “high.” Physically, pitch is determined by the fundamental

frequency (F0) of a periodic (or nearly periodic) sound [3].

The perceived loudness of a sound is related to its physical energy. Although there are

more complicated psychoacoustic2 factors involved, it is generally represented computation-

ally as the mean-square power on a logarithmic (decibel) scale [3].

A note’s perceived duration is almost perfectly related to the physical duration of the

sound. There may be some ambiguity in the case of slowly decaying sounds with no abrupt

ending, but it can be assumed that a note is considered “live” as long as its loudness is

above some threshold.

Timbre is the most subjective and least definable feature of a sound. It is often described

as “color” and aids greatly in the recognition of different musical instruments. For instance,

even if a piano and trumpet were to play with exactly the same frequency, loudness, and

duration, a human listener could still easily determine the source instrument of each note.

Timbre can also vary between instances of the same type of instrument or even between

playing styles on a single instrument. Mathematically, timbre is largely related to spectral

energy distribution and is multi-dimensional in nature [3].

1.2.2 High-Level Concepts

Beyond these low-level qualities, music also carries high-level information. This information

is encoded in the relationships between individual sounds, which carry far more weight than

1These instruments also contain percussive elements – the piano is even grouped with the percussion
section of an orchestra – but they are distinguished from regular percussion instruments by their production
of a clear, sustained fundamental frequency (pitch).

2Psychoacoustics is the science of sound perception. It involves experimental study of how various physical
stimuli relate to subjective human sensations [2].

2

the exact nature of the individual sounds themselves. Chords and melodies are comprised

of pitch relationships, and timing relationships – particularly inter-onset intervals (IOIs)3

– define rhythm. While sound durations may also convey rhythmic information, the IOIs

play a much larger role. Duration serves more to control articulation, which varies between

two extremes: “legato” notes, which seemingly flow from one to the next with no gap, and

“staccato” notes, which are abruptly cut short. Loudness and timbre relationships also

combine to help define musical structure and mood [3,4].

A chord is a combination of simultaneously sounding notes (though not necessarily with

simultaneous onsets) that are perceived as a single musical entity. Depending on the rela-

tionships between the individual notes comprising a chord, it may be subjectively described

as either “harmonious” (pleasing) or “dissonant” (displeasing). A melody is comprised of

the pitch and IOI relationships within a succession of individual notes and is generally the

most defining and recognizable part of a musical composition [3].

In western music, notes are quantized on a logarithmic scale. There are 12 notes in each

octave, with the frequency range of each successive octave being a factor of 2 greater than

the previous octave. Conventionally, the notes within each octave are denoted as C, C#,

D, D#, E, F, F#, G, G#, A, A#, and B.4 The octave is then indicated with a number,

such as A4 or F#5 [3].

To allow multiple instruments to play together (or “in concert”), it is necessary to

define a reference pitch to which all instruments are tuned. This standard concert pitch

is defined such that A4 (the A above “middle C”) has a frequency of 440 Hz. Then the

“equal-tempered” tuning of any note can be calculated as

f = 440 Hz× 2
p−69
12 , (1.1)

where p is the “pitch number,” which generally ranges from 0 to 127. The constant 69

3An inter-onset interval is the amount of time between the start of one sound event and another.
4Alternatively, the “sharp” (#) of the previous note in the series may be replaced by the “flat” (b) of

the next note in the series: C, Db, D, E, F, Gb, G, Ab, A, Bb, B. These two notations are often used in
combination according to certain patterns that depend on the “key” of a composition.

3

Figure 1.1: Frequency-to-Pitch Mapping. Derived from [6] (Public Domain).

is the pitch number of A4 in the MIDI5 standard [5]. Likewise, a given frequency can be

converted to its corresponding pitch by

p = 69 + 12 log2

f

440 Hz
. (1.2)

This simple mapping provides a convenient way of working with pitch algorithmically.

Pitch numbers may either be quantized to integer values (which is generally done for final

5MIDI, the Musical Instrument Digital Interface, is a standard encoding for the exchange of musical
performance data for electronic instruments and other digital applications [5].

4

output) or treated as continuous variables (as is often the case for intermediate representa-

tions). It is also common practice to round pitch values to the nearest hundredth and refer

to the fractional part as “cents.” For instance, if a singer is slightly off pitch, singing at

444.1 Hz (instead of 440 Hz), one might say she is “16 cents sharp” of A4.6 The full pitch

scale may also be represented in cents, such that pitch 69 (A4) would be “6900 cents,” or

half way between C3 and C#3 (48 and 49) would be “4850 cents.”

Humans perceive corresponding notes from different octaves as all belonging to the

same “class.” While they are not perfectly interchangeable, the notes E3, E4, and E5, for

example, serve much the same purpose. So all notes can be distilled into a set of 12 pitch

classes, represented by note letter independent of octave number. In any given composition,

only a certain subset of pitch classes – defined by the musical key – are used to create the

melody, harmony, and other parts.7 For instance, the key of “C major” would usually

employ C, D, E, F, G, A, and B. Meanwhile, “B major” tends to use B, C#, D#, E, F#,

G#, and A# [3].

1.2.3 Sound Structure

From a more technical perspective, it is important to understand the general structure of

musical sounds. Notes have a clear structure in both the time and frequency domains.

The temporal structure of a note is defined by its amplitude envelope. Most notes begin

with an attack period, optionally followed by a section of sustain, and are concluded with

a release period [7]. As can be seen at the top of Figure 1.2, attack is the relatively short

initial rise in amplitude, sustain is a period of roughly even near-maximum amplitude, and

release is the final falloff to silence. For instruments that produce a clear sustain section

(violin, trumpet, flute, etc.), that sustain provides the “meat” of the note. For non-sustained

instruments (piano, guitar, harp, etc.), it is instead the release that defines the majority of

the note.

6The term “sharp” is applied when the frequency is higher than some reference. The term “flat” refers
to lower frequencies. If the singer had performed A4 as 436.7 Hz, she would be “13 cents flat.”

7This is obviously not a hard requirement, but the use of pitch classes that are not within the key is
relatively infrequent.

5

Figure 1.2: Temporal and Harmonic Structures. A single note of A5 played by a piano (left)
and violin (right). Waveforms with simplified amplitude envelopes are shown in the top two
panels, while the bottom two panels show spectrograms with clear harmonic structures.

In the frequency domain, notes have a clear harmonic structure. Most instruments

produce sounds with strong frequency components at the note’s fundamental frequency

(F0) as well as integer multiples of F0. These harmonic frequency components generally

have lower amplitudes than the F0 component and gradually decrease for higher multiples.

This structure can be seen clearly in the bottom two panels of Figure 1.2, where F0 is 880

Hz. Some instruments, such as the piano, exhibit a certain degree of inharmonicity, in

which the harmonic components are not exact integer multiples of F0, but these variations

are generally quite small and may often be ignored computationally [7–9].

6

1.3 Technical Concepts

Beyond the purely musical concepts described above, there are some technical concepts and

mathematical techniques that are particularly applicable to the task of music transcription.

Many of the tools used are common, such as the Fast Fourier Transform (FFT), Short-Time

Fourier Transform (STFT), and Auto-Correlation Function (ACF), and it is assumed that

the reader has a basic knowledge of these. However, some are less common and will be

introduced here.

1.3.1 Cepstrum

A cepstrum8 is defined as the Fourier transform of the logarithm of a power spectrum.

While it was originally developed as a way of turning filtering into an additive9 operation,

it is often used as a signal analysis tool in the form of cepstral coefficients. Specifically,

in the context of music processing, analysis may employ mel frequency cepstral coefficients

(MFCCs) [10].

To compute the MFCCs of a signal x(n), it is first windowed into frames swn0
(n) centered

at time n0. The magnitude spectrum |Swn0
(k)| of each frame is then processed by a bank

of Kmel (usually 40) mel frequency filters. Each filter, with center frequency kn, has a

triangular magnitude response extending from kn−1 to kn+1. The center frequencies are

evenly distributed along the mel frequency scale, which relates to the standard frequency

scale as [10]

kmel = 2595 log10

[
k

700
+ 1

]
. (1.3)

For each filter, the frequency components are weighted by the filter response, squared,

and summed to produce χn0(kmel), the full set of which are placed into a vector of length

8Pronounced as “kepstrum,” this term derives its name from the reversal of the first four letters of
“spectrum.”

9Filtering, which can be performed as convolution in the time domain (x(n)∗h(n)) or as multiplication in

the frequency domain (X(k)H(k)), can ultimately become addition when the logarithm is taken (log[X(k)]+

log[H(k)]).

7

x(n)
sliding window

w(n− n0)
|DFT| mel filter

bank

Cepn0
(i) DCT logarithm

∑

k

| · |2

swn0
(n) |Sw

n0
(k)|

χn0(kmel)log(χn0(kmel))

Figure 1.3: MFCC Computation Process

Kmel. The logarithm is then taken, and the vector is transformed back into the time lag

domain with a discrete cosine transform (DCT), defined for a signal x of length T as [10]

DCTx(i) =

T∑

n=1

x(n) cos

[
π

T
i

(
n− 1

2

)]
. (1.4)

An overview of the MFCC computation process is shown in Figure 1.3. The final output

is a set of Kmel individual time-domain signals whose amplitudes are proportional to their

corresponding frequency components. In this way, MFCC could be considered a type of

principal component analysis [10,11].

The cepstrum can be a very useful tool for music processing, but it is not very robust

against additive noise due to the logarithm, so there is often some form of normalization

applied to the output. Some researchers have also proposed changing the basic algorithm to

include raising the log-mel-amplitudes to some suitable power, such as 2 or 3, before taking

the DCT [12].

1.3.2 Spectral Whitening

One difficulty in music transcription processing is dealing with different sound sources. A

way of mitigating this problem is by attempting to suppress the sound’s timbre, through a

process called spectral whitening. Spectral whitening makes a rough estimate of the spectral

energy distribution and uses inverse filtering to flatten it, either completely or partially.

8

There are several ways of achieving this, but one frequency-domain technique [13] that is

easy to implement and generally produces good results is presented here.

To begin, the analysis frame is Hanning-windowed and zero-padded to twice its length,

and its discrete Fourier transform X(k) is calculated. To estimate the spectral distribution,

a simulated bandpass filter bank is applied to the frequency bins. The filters are evenly

distributed on the critical-band scale such that each filter has a center frequency,

cb = 229 Hz× (10(b+1)/21.4 − 1), b = 1, ..., 30, (1.5)

and the triangular power response Hb(k) of each sub-band extends from cb−1 to cb+1. The

standard deviation of each sub-band is then calculated as

σb =

√
1

K

∑

k

Hb(k)|X(k)|2, (1.6)

where K is the padded analysis window length. A compression coefficient per sub-band

is then calculated as γb = σν−1
b , where ν controls the amount of whitening to be applied.

Klapuri [13] proposed ν = 0.33 as a good value. These are then linearly interpolated to

produce the final compression coefficients γ(k) at each frequency bin k. The whitened

spectrum Y (k) is finally calculated Y (k) = γ(k)X(k).

1.3.3 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) is an unsupervised multivariate data analysis

model that revolves around the factorization of an n × m non-negative matrix V into

constituent non-negative matrices W and H of rank n × r and r × m (r < min(n,m)),

respectively, such that

V ≈WH. (1.7)

9

Each row in the source matrix V represents a single variable from the multivariate data set,

while each column represents an observation. The factorized matrices W and H redefine

V in terms of a decomposition into a basis set. The columns of W define the basis, while

the columns of H are the decompositions for each observation [14].

To apply the NMF model, one must find the factorization that minimizes some given

cost function. The standard implementation utilizes the Euclidean distance, requiring min-

imization of [14]

1

2
||V −WH||2F =

1

2

∑

j

||vj −Whj ||22. (1.8)

A popular method of computation in this case is the multiplicative updates procedure. At

each step until convergence, the values of H and W are calculated as [14]

H← H⊗ WTV

WTWH
and W←W ⊗ VHT

WHHT
. (1.9)

In the context of music transcription, the data matrix V is generally some time-frequency

representation of the audio signal. The rows represent frequency bins, and the columns

represent analysis frames. The basis matrix W would then hold various spectral templates,

while the H matrix holds decomposition coefficients indicating the relative presence of each

template in each frame [14].

By nature, NMF can be quite computationally expensive and has traditionally been

applied in off-line systems. However, it has also been used in on-line formulations to support

real-time applications [14].

1.3.4 Hidden Markov Models

A Hidden Markov Model (HMM) is a statistical model in which the system is assumed to

follow a Markov process with unobserved (hidden) states. In audio processing, HMMs are

usually finite, discrete state-space dynamic models. A discrete random variable vector θn

10

... θn−1 θn θn+1 ...

xn−1 xn xn+1

Figure 1.4: Progression of a Hidden Markov Model

lives in a finite state space Θ with E possible values (Θ = {e1, ..., eE}). The system’s time

evolution (Fig. 1.4) follows a Markov process, such that the pdf of θn is only dependent

on the pdf of the previous state, θn−1. Only the output xn is available at each step, as the

state is hidden and cannot be observed directly. The model is then defined by the following

properties [10].

1. State transition probabilities: P(θn = ei|θn−1 = ej) for (i, j) = 1, ..., E

2. Observation likelihoods: p(xn|θn = ei), i = 1, ..., E

3. Initial state probabilities: P(θ1)

As a classic example [15], consider the following situation. A room contains N large

urns, each containing a large number of colored balls, of which there are M distinct colors.

A genie in the room chooses an initial urn by some random process. The genie then takes a

ball at random from the selected urn, records the color as an observation, and returns the

ball to its urn. Then a new urn is selected based on a random process that depends only on

the current urn. The genie takes a ball from this new earn, records its color, and returns

it to the urn. The process continues in this fashion, producing a finite set of observations

such as {red, blue, green, blue, red, red, green}.

This system can be modeled as an HMM in which the urns make up the state space

(Θ = {u1, u2, ..., uN}), the initial urn choice is P(θ1), the likelihood of a given color being

drawn from the current urn is p(xn|θn = ui), and the process of selecting a new urn is

P(θn = ui|θn−1 = uj).

11

The HMM is a powerful tool10 that is often employed in temporal pattern recognition and

other machine-learning applications. Transition probabilities and observation likelihoods

may be learned from a set of training data, then the completed model is applied to new

observations [10].

Once a model has been built, the task is to estimate a sequence of states θ1:T given a set

of observations x1:T . The Viterbi algorithm performs a maximum a posteriori estimation

to find this sequence such that [10]

θ̂1:T = argmax
θ1:T

P(θ1:T |x1:T), (1.10)

where the posterior probability of state sequence θ1:T is

P(θ1:T |x1:T) ∝ P(θ1:T)
T∏

n=2

p(xn|θn)P(θn|θn−1). (1.11)

The estimation process, which is also called sequence decoding in this context, is carried

out via exhaustive search along all possible paths, but the Viterbi algorithm is quite efficient,

having a complexity of O(E2T). The complete process is listed below [10].

1. Initialization: for i = 1, ..., E, set

w1(ei) = p(x1|θ1 = ei)P(θ1 = ei). (1.12)

2. Iterations: for n = 2, ..., T ,

• For i = 1, ..., E, compute

wn(ei) = p(xn|θn = ei)

[
max

j=1,...,E
wn−1(ej)P(θn = ei|θn−1 = ej)

]
. (1.13)

10The interested reader should refer to [15] for an excellent tutorial on HMMs and example applications
in the field of speech recognition.

12

• For i = 1, ..., E, set

ψn(ei) = argmax
ej ,j=1,...,E

wn−1(ej)P(θn = ei|θn−1 = ej). (1.14)

3. Termination: compute

θ̂T = max
ei,i=1,...,E

wT (ei). (1.15)

4. State Sequence Backtracking: for n = T −1, ..., 2, 1, extract the estimate at time n by

θ̂n = ψn(θ̂n+1). (1.16)

1.3.5 Auditory Model

The best music transcription system available today is the ears and brain of a trained mu-

sician. No artificial system has been able to match the human auditory system in its ability

to handle complex acoustic signals and perceive the properties of multiple simultaneous

sounds, including their individual pitches. This fact has led many researchers to approach

the problem of music transcription from the perspective of an auditory model, particularly

toward the development of pitch perception models [8].

The human auditory system can be split into two major sections. The first is the

peripheral hearing, which consists of the outer, middle, and inner ear. The important part

for pitch perception is contained in the inner ear in an organ called the cochlea [8].

The cochlea is a tapered, spiraling, tubular structure, filled with liquid, that is divided

along its entire length by the basilar membrane. As sound waves reach the cochlea, the

basilar membrane begins to vibrate. These vibrations propagate along the membrane in such

a way that higher frequencies resonate near the beginning and lower frequencies resonate

toward the end. The basilar membrane is covered in a forest of tiny hairs of varying lengths

which aid in its varied frequency tuning. Special cells at the base of each hair, called inner

hair cells (IHCs), convert the vibrations into neural impulses which are then carried to the

13

brain [8].

Computational models of the cochlea first pass the audio signal through a bank of

special bandpass filters called auditory filters. This auditory filter bank typically consists of

about 100 filters with center frequencies distributed evenly on the critical band scale. This

process models the frequency selectivity of different regions along the basilar membrane.

The auditory filters belong to a special class of filters called gammatone filters, which are

defined by their time-domain impulse response as [8]

gc(t) = atn−1e−2πbt × cos(2πfct+ θ), (1.17)

where a = (2πb)n/Γ(n) is a normalization factor ensuring a unity response at the center

frequency fc, Γ(n) is the gamma11 function, n = 4 is a parameter value that best matches

the power response empirically with real auditory filters, and b = 0.11fc+ 27.39 Hz controls

the bandwidth [8].

The output of each band, or auditory channel, is then processed to model the conversion

into neural impulses. Although more exact physical models have been developed, most

practical systems perform the conversion via a three-stage process of compression, half-

wave rectification, and lowpass filtering, which captures the major characteristics of the

IHCs [8].

The compression step has been implemented in various ways, but a common approach

is to scale the sub-band signals xc(n) by the inverse of their variances. This scaling has

either been done to unity [16] or more generally [8] by a factor σν−1
c (0 ≤ ν ≤ 1), where σc

is the standard deviation of xc(n). This process resembles and produces results similar to

spectral whitening, which has also been used in place of the compression step [17].

Half-wave rectification (HWR) is a clearly non-linear operation that plays an important

11The gamma function is similar in concept to the factorial function for integers, but it has been extended
to also support real and complex numbers. For a positive integer, it reduces simply to Γ(n) = (n− 1)!, but

it is formally defined by the integral Γ(z) =
∫∞
0
tz−1e−tdt, which converges for all complex numbers that

have a positive real part.

14

0 5 10
−1

0

1

Time (ms)

A
m
p
li
tu
d
e

0 2000 4000 6000
0

0.5

1

Frequency (Hz)

M
a
g
n
it
u
d
e

0 5 10
−1

0

1

Time (ms)

A
m
p
li
tu
d
e

0 2000 4000 6000
0

0.5

Frequency (Hz)

M
a
g
n
it
u
d
e

0 5 10

−0.2

0

0.2

Time (ms)

A
m
p
li
tu
d
e

0 2000 4000 6000
0

0.5

Frequency (Hz)

M
a
g
n
it
u
d
e

Figure 1.5: Effects of Half-Wave Rectification. The upper panels show a signal created with
the harmonic partials 13-17 of a sound with F0 = 200 Hz. The middle panels show the
result of half-wave rectification, and the lower panels show the rectified signal after lowpass
filtering with a 1 kHz cut-off. Adapted from [8].

role in the conversion process. It is defined as

HWR(x) =





x, x ≥ 0,

0, x < 0.

(1.18)

This step is vital to pitch perception because it facilitates a synthesis of time-domain and

frequency-domain periodicity analysis [8].

Figure 1.5 illustrates the effects of HWR on a narrow-band signal comprised of five

harmonic overtone partials. The most important aspect of this process is that the rectifica-

tion generates new spectral components corresponding to the intervals between the original

partials. As shown in the lower panels, the components generated below 1 kHz form an

15

amplitude envelope of the input signal. The amplitude envelope of any signal containing

multiple tones exhibits periodic fluctuations, called beating, due to alternating constructive

and destructive interference. The rate of this beating depends on the frequency difference

between each pair of components. For harmonic sounds, the interval corresponding to F0

will dominate. This makes it possible to determine the F0 even when the input signal has

no clear F0 component [8].

The lowpass filtering stage balances the amplitude envelope versus the original input

partials. In practice, most systems use a low-order filter on each channel with a cutoff

around 1 kHz. The final output signal of each auditory channel after these three stages is

denoted by zc(n) [8].

The second major section of the human auditory system is the auditory cortex of the

brain. The exact pitch perception mechanisms of the auditory cortex are difficult to study

and are not accurately known. However, experimentation has shown that some form of

periodicity analysis is performed on each channel, then this information is combined across

channels to provide the final perception [8, 18].

Various techniques of periodicity analysis have been proposed [19–21] such as a bank of

comb filters, but most models use the ACF. In one approach [18], the ACF for each auditory

channel is computed as

rc(n, τ) =
n∑

i=0

zc(n− i)zc(n− i− τ)w(i), (1.19)

where w(i) = (1/Ω)e−i/Ω is an exponentially decaying window function that emphasizes

more recent samples. This information is then integrated across channels by simple sum-

mation, creating a summary ACF

s(n, τ) =
∑

c

rc(n, τ). (1.20)

16

Input
Highpass
at 1 kHz

Half-Wave Rectify
Lowpass at 1 kHz

Periodicity
Detection

Pre-Whitening + Summary ACF
Enhancer

Lowpass
at 1 kHz

Periodicity
Detection

ESACF

Figure 1.6: Block Diagram of Tolonen and Karjalainen’s System

The pitch at time n is then found as the maximum of s(n, τ) within some range of τ .

1.4 Foundational Research

Polyphonic transcription is an area of active research, and many approaches have been de-

veloped. As this paper is primarily focused on realtime transcription, three computationally

efficient systems of particular interest are described below. The first two are multiple F0

estimators, which form the core of many polyphonic transcription systems. These would

require a quantization stage to complete the pitch detection process. The third uses NMF

to perform pitch detection in a single step. Some other types of approaches, such as the

statistical model-driven system of Yeh and Röbel [22], have also shown promise but are not

discussed here due to their complexity and computational inefficiency.

1.4.1 System of Tolonen and Karjalainen

Tolonen and Karjalainen proposed in [17] a more computationally efficient variation of the

auditory model system introduced in Section 1.3.5. The primary difference between their

system (Fig. 1.6) and the traditional auditory model is that it divides the input signal into

just two channels – high and low, split at 1 kHz. This greatly reduces the computational

load while still retaining many of the important auditory model characteristics.

To make the system more robust in handling different musical instruments, the input

signal is subjected to inverse warped-linear-prediction filtering [23] – a form of spectral

17

whitening, or pre-whitening in this case – to flatten the overall spectral energy distribution

without altering its structural details.

For periodicity analysis, the system employs a generalized ACF, which is defined as

r̂(τ) = IDFT(|DFT(x)|α), (1.21)

where α is a parameter that controls frequency domain compression. This yields the stan-

dard ACF for a value of α = 2. It should be noted that this bears similarity to the cepstrum,

which substitutes a logarithm for the power of α. In practice the ACF, with its power of

2, limits the influence of noise, but may also enhance spectral abberations. The cepstral

analysis, with its logarithm, minimizes these abberations, but at the expense of increased

noise sensitivity. The purpose of the generalized ACF is to introduce a compromise between

the two extremes. For this system, the authors chose α = 0.67 to bridge the gap.

Tolonen and Karjalainen achieved multiple F0 estimation by creating an enhanced sum-

mary ACF (ESACF). Subharmonics are canceled from the SACF by clipping it to positive

values, scaling it by an integral factor m, and subtracting this scaled version from the

clipped version. The cancelation is performed for scaling factors 2 ≤ m ≤ 5. The final

F0 selection is then accomplished by simple peak selection from the resultant ESACF. The

complete enhancement process is detailed below.

1. Initialize the ESACF s̃(τ) to the SACF s(τ) and the scaling factor to m = 2.

2. Scale the original SACF by the factor m using linear interpolation.

sm(τ) = s(d) +
τ −md
m

(s(d+ 1)− s(d)), d =
⌊ τ
m

⌋
(1.22)

3. Update the ESACF.

s̃(τ)← max(0, s̃(τ)−max(0, sm(τ))) (1.23)

18

4. Increment m. If m < 6, return to Step 2.

This process is relatively simple and elegant, yet it is strikingly effective in removing

distracting information to reveal the F0 peaks. Overall, it is quite accurate for lower-

frequency signals, but it does not perform well above about 600 Hz. This derives from

the relative inaccuracy of ACF measurements at high frequencies as well as a technical

limitation of the ESACF in that components are effectively driven to zero12 in the range

τ ∈ [0, fs/1000 Hz], where fs is the sampling frequency.

1.4.2 System of Klapuri

Klapuri presented a computationally efficient and conceptually tractable multiple F0 esti-

mation system in [13]. First, timbral information is suppressed via the spectral whitening

method presented in Section 1.3.2. Then the salience, or strength, of a fundamental period

candidate τ is calculated as

s(τ) =

M∑

m=1

g(τ,m)|Y (fτ,m)|, (1.24)

where fτ,m = mfs/τ is the frequency of the mth harmonic of candidate F0 = fs/τ , fs is the

sampling frequency, g(τ,m) is a weighting function, and Y (f) is the STFT of the whitened

input signal.

An optimal weighting function g(τ,m) was learned from a large set of training data. A

parameterized version of the result was found to be of the form

g(τ,m) =

fs
τ

+ α

mfs
τ

+ β

, (1.25)

12The ACF’s ”leading hill” (Fig. 2.2) is to blame here. The iterative scaling and cancelation process of the
ESACF causes the leading hill to wipe out high frequency information. This could be corrected by simply
removing the leading hill prior to ESACF processing, but the ACF bins being disrupted here are not very
accurate anyway (as explored in the next chapter), so it is unlikely that this would result in any significant
improvement.

19

with values optimized to α = 27 Hz and β = 320 Hz.

Direct computation of the salience using Equation 1.26 is inefficient due its evaluation of

Y (f) for arbitrary frequencies. So Klapuri approximated the calculation by using an FFT

of length K and replacing Y (f) with its discrete form Y (k), such that

ŝ(τ) =
M∑

m=1

g(τ,m) max
k∈κτ,m

|Y (k)|, (1.26)

where κτ,m is a set of frequency bins around the mth harmonic of fs/τ , defined as

κτ,m =

[〈
mK

τ + ∆τ
2

〉
, ...,

〈
mK

τ − ∆τ
2

〉]
, (1.27)

where 〈·〉 denotes rounding to the nearest integer and ∆τ = 0.5.

Multiple F0 estimation is then performed by way of an iterative estimation and cance-

lation process. First, the global maximum τ̂ of ŝ(τ) is found using a fast algorithm (see

[13] for details), then the weighted harmonic spectrum of τ̂ is subtracted from Y (k) to form

a residual spectrum YR(k). The process is then repeated, starting from YR(k), until the

the estimated polyphony has been reached. This polyphony estimation is judged at each

iteration j until the detected fundamental τ̂j no longer increases the value of

S(j) =
1

jγ

j∑

i=1

ŝ(τ̂i), (1.28)

where γ was found empirically to be 0.70. Then the value of j that maximizes Equation

1.28 is the estimated polyphony.

This system was found to perform quite well, though it did suffer from accuracy problems

with low-frequency fundamentals. The polyphony estimation accurately detected lower

polyphonies, but seemed to struggle for higher numbers of concurrent sounds.

20

1.4.3 System of Dessein, Cont, and Lemaitre

Presented in [14], the real-time system of Dessein, Cont, and Lemaitre directly estimates

the constituent notes of polyphonic music signals via NMF and a β-divergence cost func-

tion. Off-line, NMF is first used to learn a set of spectral templates, one for each possible

note. Specifically, the templates are learned from simple short-time magnitude spectra,

each with a frame size of 50 ms (630 samples) at a sampling rate of 12 600 Hz, zero-padded

and computed with a 1024-bin FFT. These templates are then used in an on-line setup to

decompose the input signal into this basis set. Finally, note selection is performed by a

simple thresholding operation on the decomposition output followed by minimum-duration

pruning.

Briefly, the β-divergences are a family of parametric distortion functions defined such

that, for any β ∈ R and any points x, y ∈ R++ (strictly-positive real numbers),

dβ(x|y) =
1

β(β − 1)
(xβ + (β − 1)yβ − βxyβ−1). (1.29)

These functions are all non-negative and become zero if and only if x = y. An interesting

property within the context of this work is that for any factor λ ∈ R++,

dβ(λx|λy) = λβdβ(x|y). (1.30)

This fact led the authors to an intuitive understanding of the effect that different β values

have on a musical NMF formulation. When β = 0, high-energy and low-energy frequency

components are given the same importance. As β increases from 0, the higher-energy com-

ponents are given more importance. The lower-energy components become more important

as β decreases from 0. The value β = 0.5 was chosen as a compromise to reduce common

harmonic and octave errors.

A reformulation of the standard NMF problem with β-divergence yields a minimization

21

(subject to non-negativity of W and H) of the cost function

Dβ(V|WH) =
∑

i,j

dβ(vij |[WH]ij), (1.31)

which is equivalent to the standard formulation (Eq. 1.8) when β = 2. For the on-line

decomposition process, W is a fixed set of note templates, and the incoming signal v is a

single observation vector. This allows a slight simplification of the problem to

Dβ(v|Wh) =
∑

i

dβ(vi|[Wh]i). (1.32)

A modified form of the multiplicative updates procedure (Eq. 1.9) is used to perform the

calculation. At each iteration until convergence, h is updated as

h← h⊗ (W ⊗ (veT))T(Wh).(β−2)

WT(Wh).(β−1)
, (1.33)

where e is a vector of ones. Note that the matrix W⊗ (veT))T only needs to be calculated

once per analysis frame, allowing for a more efficient implementation.

Under an objective evaluation, this real-time system demonstrated accuracy comparable

to that of two state-of-the-art off-line systems. Subjectively, the system tends to spuriously

report extra notes at transients. It also often shortens the duration of detected notes. The

latter error is likely due to the inherent assumption of a stationary signal. This is obviously

incorrect, as the spectral components within a single note instance evolve over time. The

authors speculated that this difficulty could potentially be overcome by expanding the

spectral template dictionary to include multiple templates per note, each representing a

different phase of the note’s life-cycle.

22

1.5 Conclusion

Much progress has been made on the problem of polyphonic music transcription, but it is far

from solved. There are still many difficult issues to overcome, especially as the polyphony

increases. It appears particularly difficult to devise a robust system that is also capable of

realtime performance. From the evaluation of existing work on the subject, it is clear that

each approach has its advantages and disadvantages, and there are always compromises to

be made.

Of particular interest are the high-frequency versus low-frequency accuracy tradeoffs

inherent to the two major categories of periodicity analysis. Time-lag-domain analysis via

the ACF has excellent accuracy at lower frequencies but relatively low resolution for higher

frequencies. Frequency-domain analysis via the FFT has exactly the opposite problem.

This observation leads to the simple conclusion that some marriage of the two should be

pursued in attempt to achieve high accuracy in all cases.

The remainder of this paper explores these compromises and tradeoffs and proposes po-

tential solutions to these problems. A novel analysis tool called the Combined ACF/FFT

Representation (CAFR) is developed and three new pitch detection algorithms are devised

from it. These algorithms are then evaluated for both robustness and efficiency and com-

pared against results for the three reference systems.

23

Chapter 2: A New Analysis Tool

2.1 Introduction

A great many – perhaps most – music transcription algorithms rely to some extent on picking

peaks from the output of an analysis tool such as the FFT or ACF. This process is inherently

error prone due to the discrete nature of these tools and their accompanying quantization

effects. It is thus useful to study the error incurred by the peak-picking process.

2.2 Error Measurement

For the purposes of pitch detection, the most import metric to consider is the relative

difference of an estimated frequency as compared to its true value. For a given frequency

estimate, f̂ , the relative estimation error can be measured as

ε =
|f − f̂ |
f

. (2.1)

In order to resolve pitch at the semitone level, the estimate must have at least quarter-

tone accuracy. This places an upper bound on the acceptable error. Generalizing Equation

1.1, pitch frequencies are of the form

f(p) = fr · 2
p−r
N , (2.2)

where fr is the tuning reference frequency, p is the pitch number, r is the reference pitch

number, and N is the number of divisions per octave. So the relative difference between a

24

given pitch and its next lower neighbor can be found by

α− =
fr · 2

p−r
N − fr · 2

p−1−r
N

fr · 2
p−r
N

=
(

2
p−r
N − 2

p−1−r
N

)
· 2 r−pN

= 2
p−r+r−p

N − 2
p−1−r+r−p

N

= 1− 2−
1
N .

(2.3)

Similarly, the relative error between a pitch and its next higher neighbor is found by

α+ =
fr · 2

p+1−r
N − fr · 2

p−r
N

fr · 2
p−r
N

=
(

2
p+1−r
N − 2

p−r
N

)
· 2 r−pN

= 2
p+1−r+r−p

N − 2
p−r+r−p

N

= 2
1
N − 1.

(2.4)

It is easily shown that α+ > α− for all N , which is a logical finding considering the

exponential nature of pitch frequencies. Substituting N = 24 into α− then yields the upper

bound on error for quarter-tone accuracy:

αq = 1− 2−
1
24 ≈ 0.0285. (2.5)

2.3 FFT Analysis

The bins of an FFT are linearly spaced in frequency. For a given frequency, the FFT

peak-picked estimate is determined by the nearest bin into which it will fall, which can be

expressed as

f̂ =

〈
fK

fs

〉
· fs
K
. (2.6)

25

Substituting this into Equation 2.2, it is then possible to calculate the relative error over

the full frequency range given the sampling frequency, fs, and FFT length, K, as

εFFT (f) =

∣∣∣f −
〈
fK
fs

〉
· fsK
∣∣∣

f
. (2.7)

This exact error measurement can be generalized into a bounding curve defined by the

maximum difference between the estimated and true frequencies:

ε̃FFT (f) =
∆max

f
. (2.8)

The maximum difference occurs at the half-way point between two successive frequency

bins, ∆max = fs
2K , thus the FFT’s error bound is found to be

ε̃FFT (f) =
fs

2Kf
. (2.9)

2.4 ACF Analysis

A parallel analysis can be performed on the ACF, whose bins are linearly spaced in time-lag.

The relative error in terms of time-lag is defined as

εACF (τ) =
|τ − τ̂ |
τ

(2.10)

The ACF estimate for an arbitrary time-lag value is simply 〈τ〉. This can then be

converted into frequency space by the relation τ = fs
f , yielding

εACF (f) =
f

fs
·
∣∣∣∣
fs
f
−
〈
fs
f

〉∣∣∣∣ . (2.11)

26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Normalized Frequency

R
el
a
ti
v
e
E
rr
o
r

FFT

ACF

Figure 2.1: Measurement Error Analysis of ACF and FFT. Bounding curves are shown
along with exact error for each analysis tool. The ACF’s error increases linearly, while the
FFT’s error is inversely-related to frequency. For this illustration, the analysis frame length
is set to K = 1024.

To find a bounding curve, note that the maximum error occurs at the half-way point

between two time-lag bins, such that ∆max = 1
2 . So in terms of τ , the error is bound by

ε̃ACF (τ) =
1

2τ
, (2.12)

and substituting back into frequency space, the counterpart to Equation 2.9 is found to be

ε̃ACF (f) =
f

2fs
. (2.13)

27

2.5 The Optimal Blend

Intuitively, it is clear that the FFT should produce relatively accurate estimates for higher

frequencies and conversely inaccurate estimates for lower frequencies, while the ACF has

the opposite problem. This intuitive understanding is confirmed and further clarified by

the analyses above and illustrated in Figure 2.1.

Using the error bounding curves found in Equations 2.9 and 2.13, it is possible to

calculate an optimal crossover frequency to minimize the estimation error:

ε̃FFT (fc) = ε̃ACF (fc)

⇒ fs
2Kfc

=
fc
2fs

⇒ fc =
fs√
K
. (2.14)

The maximum relative error of this new optimally-blended analysis tool, which will

henceforth be referred to as the Combined ACF/FFT Representation (CAFR), is then

found as follows:

εCAFR(f) ≤ ε̃ACF (fc) =
fs√
K
· 1

2fs

⇒ εCAFR(f) ≤ 1

2
√
K
. (2.15)

An intriguing – and initially surprising – property of this error bound is that it does not

depend on sampling frequency, but only FFT length. As such, it is possible to fix the size

of the analysis frame, K, at some value that satisfies maximum error requirements while

the sampling rate is chosen based on other factors. The lower bound on K is calculated as

εCAFR(f) ≤ α

28

⇒ 1

2
√
K
≤ α

⇒ K ≥ 1

4α2
, (2.16)

which for quarter-tone accuracy implies

Kq ≥
1

4(1− 2−
1
24)2

≈ 309. (2.17)

The obvious choice for FFT length would then be the next power of 2, i.e. K = 512, which

should yield more than enough accuracy. For well-crafted FFT implementations, the most

efficient choice would instead be K = 22 × 34 = 324.

2.6 Direct Realization

Now that the guiding principles have been derived, the problem lies in the direct realization

and actual implementation of the CAFR.

2.6.1 Computation

Efficient computation of the CAFR can be achieved by exploiting the process of generalized

ACF calculation, which produces an FFT magnitude spectrum as an intermediate value.

First the magnitude spectrum, X = |FFT(x)|, is computed, followed by the generalized

ACF (with power α = 1), R = IFFT(X).

These spectra are then trimmed to their positive-sided versions, i.e., only keeping the

unique, non-symmetric values. For an FFT of length K, this yields FFT and ACF spectra

of length

Kp =

〈
K + 1

2

〉
. (2.18)

29

0 50 100 150 200 250
0

1

2

3

4

5

6

7

Time-lag, τ

M
a
g
n
it
u
d
e

Figure 2.2: ACF “Leading Hill.” The set of values on the left are an artifact of the self-
similarity measurement. This leading hill artificially dominates the rest of the spectrum
and is thus eliminated from processing by the CAFR.

The ACF spectrum is first half-wave rectified, and its leading hill1 (Fig. 2.2) is zeroed

out. From a frequency-analysis perspective, the first few bins of the ACF form an artificial

peak, which is a side-effect of the ACF’s nature as a self-similarity measure. This region

is zeroed out here in order to eliminate its relatively large influence on the normalization

process. The remaining ACF spectrum, Rp, is then scaled to match the total energy of the

FFT spectrum, Xp, such that

Rp(norm)
= Rp ·

∑
Xp

∑
Rp

. (2.19)

The two spectra are then stitched together by applying the optimal crossover frequency

1The “leading hill” is the initial set of monotonically decreasing values beginning at τ = 0.

30

found in Equation 2.14. For the FFT, the optimal crossover bin is

kc =

〈
fc ·K
fs

〉

=

〈
fs√
K
· K
fs

〉

=

〈
K√
K

〉

=
〈√

K
〉
.

(2.20)

And similarly, the ACF’s optimal crossover bin is

kc =

〈
fs
fc

〉

=

〈
fs ·
√
K

fs

〉

=
〈√

K
〉
.

(2.21)

To stitch the spectra together, both the FFT and ACF are first trimmed to only include

bins in the set [kc,Kp − 1], i.e., discarding the first kc bins. The remaining ACF spectrum

is then mirrored2 and prepended to the remaining FFT spectrum.

2.6.2 Interpretation

The CAFR is now realized, but some work is still required to understand its structure and

interpret measurements. Specifically, a simple translation from CAFR bin to frequency is

2Since the ACF is defined in terms of time-lag, flowing from high to low frequency, it must be mirrored
to logically match the FFT’s flow from low to high frequency.

31

x |FFT| Crossover C

IFFT HWR Scaling

Figure 2.3: Direct CAFR Computation Process

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

CAFR bin, k

M
a
g
n
it
u
d
e

Figure 2.4: Sample CAFR Output. This CAFR was calculated with a frame length K =
512, resulting in 468 CAFR bins. The input signal is a hamming-windowed 512-sample
frame of a C-major chord in the 5th octave.

needed.

The ACF bins reside in the region [0, (Kp − 1)− kc], mirrored and truncated. Since the

truncation occurs at the end of the region, it does not affect the translation, and a simple

de-mirroring operation can be performed. For a given CAFR bin, k, within the region of

the ACF, the original time-lag can be recovered as

τ(k) = (Kp − 1)− k. (2.22)

32

And translating into the frequency domain, the mapping becomes

f(k) =
fs

(Kp − 1)− k . (2.23)

The FFT bins reside in the region [Kp− kc, 2(Kp− kc)− 1], truncated at the beginning.

In this case, the CAFR bin must first be translated to compensate for the FFT region’s

starting bin then translated again to account for the truncation. So for a given CAFR bin,

k, within the region of the FFT, the frequency can be found by

f(k) = (k − (Kp − kc) + kc) ·
fs
K

= (k −Kp + 2kc) ·
fs
K
.

(2.24)

Finally, combining these two results produces the general equation to translate from any

given CAFR bin to its respective frequency

f(k) =





fs
(Kp − 1)− k , 0 ≤ k < Kp − kc,

(k −Kp + 2kc) ·
fs
K
, Kp − kc ≤ k < 2(Kp − kc).

(2.25)

2.6.3 Application

Direct application of the CAFR is a difficult task. This hybrid analysis tool performs

its job well, bounding the measurement error to within a given tolerance across its entire

spectrum. However, in spite of its developmental motivations, it does not appear to be

well-suited for use in peak-picking algorithms. Specifically, due to the differing natures of

the distribution of energy across FFT and ACF bins, global peak-picking across the CAFR

spectrum is unreliable. This difficulty is partially mitigated by the scaling applied to the

ACF components, but it cannot be removed entirely.

This issue is particularly evident when the fundamental frequencies are close to – but

33

below – the cross over frequency. In such cases, the FFT portion of the CAFR incorrectly

dominates the spectrum, leading to erroneous results such as picking the lowest FFT bin,

which is generally not even harmonically related to the fundamental in question. Some

empirical investigation has been done in an attempt to identify an additional scaling factor to

be applied to the ACF values to correct this problem, but the actual frequency distribution

was found to affect the relative scaling far more than any other property. In fact, in the

case of random white noise, the ACF values dominate. In the end, it was decided that no

additional scaling should be applied, as it does not robustly improve the results.

Even though it can’t reliably be used for peak-picking algorithms, direct realization of

the CAFR still has some great potential in other applications. For instance, consider the

NMF-based algorithm presented in Section 1.4.3, which is a learning algorithm that relies

more on frame-wise comparisons of each bin than on bin-wise comparisons of each frame.

The CAFR could easily be applied to this algorithm by replacing the FFT measurements

with CAFR measurements. The same – or quite likely greater – accuracy could be achieved

using a smaller number of CAFR bins. This reduction in frame length would increase the

system’s overall efficiency, while the CAFR’s error-bounding properties may also lead to

improved pitch detection. Such a system is developed in Section 3.2, and its results are

shown in Section 4.5.

2.6.4 Efficiency

An import aspect to consider when choosing an analysis tool is its relative efficiency. The

CAFR, with its FFT, IFFT, half-wave rectification, and normalization procedures, requires

roughly three times as much computation as a simple FFT magnitude spectrum. So is it

really better to use the CAFR?

As seen in the preceding derivations, the CAFR’s minimum length is primarily driven by

the minimum required accuracy, α. However, there is another important factor to consider,

specifically the lowest frequency of interest. The CAFR’s lower-bound on frequency is

defined by the number of unique ACF bins, Kp, such that the lowest measurable frequency

34

is

f` =
fs

Kp − 1
. (2.26)

For even values of K, Equation 2.18 simplifies to Kp = K/2 + 1. So substituting into

Equation 2.26, the lower bound on length, K`, for a given low frequency of interest is found

by

f` =
fs

K`

2
+ 1− 1

⇒ f` =
2fs
K`

⇒ K` =
2fs
f`
. (2.27)

The FFT’s lower bound on frequency is always zero, so the driving factor here is simply

minimum accuracy. The minimum length of an FFT that is capable of meeting accuracy

requirements for a given low frequency of interest is found by

ε̃FFT (f`) = α

⇒ fs
2K`f`

= α

⇒ K` =
fs

2αf`
. (2.28)

Extending that thought, the lowest possible FFT length needed to attain quarter-tone

35

accuracy at the lowest frequency of interest matching a given CAFR length is

K` =
fs

2αqf`

=
fs

2αq

(
fs

Kp − 1

)

=
Kp − 1

2αq
.

(2.29)

From here, it is possible to perform an efficiency analysis to determine if the shorter-

length CAFR can be computed more quickly than its respective longer-length FFT magni-

tude spectrum.

For example, consider a system that utilizes a CAFR with frame length K = 512

(Kp = 257) and sampling rate fs = 22 050 Hz. Substituting into Equation 2.29, the shortest

possible FFT to match the CAFR is of length K` ≈ 4497 bins.

A typical response would be to jump to the next power of 2, but that would be overkill

at nearly double the required length. Instead, it is best to investigate the performance of

shorter lengths as shown in Figure 2.5. For the test system,3 the best length was found to

be 22 · 32 · 53 = 4500 bins, with a performance of about 1935 frames per second. A similar

performance test can then be carried out for the full CAFR calculation of length 512. On

the test system, this CAFR could be calculated at a rate of about 6360 frames per second

– about 3.3 times faster than the matching FFT magnitude spectrum.

Beyond the initial calculation cost, which is already heavily in favor of the CAFR, one

must also consider the cost of additional post-processing – inevitably present in most any

algorithm – which may be greatly affected by frame length. In this case, the FFT frame

has almost 5 times the number of unique bins as the CAFR frame. Even for very basic

post-processing, that is a significant factor.

3Speed tests were run on an Intel-based PC clocked at 2.4 GHz with 3.5 GB of RAM.

36

4500 5000 5500 6000 6500 7000 7500 8000
800

1000

1200

1400

1600

1800

2000

Frame Length, K

F
ra
m
es

/
S
ec
o
n
d

Figure 2.5: FFT Performance vs. Frame Length. This graph shows the performance of
FFT magnitude spectrum calculations, as measured on a particular test system, for various
frame lengths between 212 = 4096 and 213 = 8192. Only the lengths with small prime
factors (2, 3, 5, and 7) are considered here, as those are the most likely to perform well.

2.7 Conceptual Application

Aside from directly realizing the CAFR, it may also be useful to apply its guiding principles

and underlying concepts in other ways.

2.7.1 Parallel Algorithms

The first such approach is to run two complementary algorithms in parallel, one with an

FFT basis, and the other with an ACF basis. The results could then be combined using the

optimal crossover frequency calculated above, giving preference to the ACF-based algorithm

below the cutoff and to the FFT-based algorithm above the cutoff. For instance, the

two reference systems presented in Sections 1.4.1 and 1.4.2 could possibly be combined to

produce better overall results. The difficulty for such a hybrid algorithm would lie in the

37

combination process, as normalization issues (similar to those encountered in the direct

realization) are likely to come into play.

Upon first glance, the use of two complete algorithms in parallel seems counter-productive

from the perspective of efficiency. However, if application of the optimal crossover results in

sufficiently reduced frame size, the combination may actually outperform a single algorithm

using a frame size large enough to meet the minimum accuracy requirements. This idea

is explored further in Section 3.3, where such a system is developed to run Klapuri’s and

Tolonen’s algorithms in parallel and combine their results. The results for this approach

are then presented in Section 4.5.

2.7.2 Conditional Refinement

Another more flexible approach to applying these principles is the idea of conditional refine-

ment. The FFT magnitude spectrum is well-suited for peak-picking algorithms but suffers

from a lack of accuracy at lower frequencies. To overcome this deficiency, the ACF could

be used to refine the FFT’s measurements when needed.

The FFT is first used to select peaks across the entire spectrum. Any peaks found below

the cutoff frequency are then fed to a refinement process. The two FFT bins on either side

of the peak are translated into the time-lag domain and used to define a search range. The

ACF’s local maximum within this range is then found and its frequency is used as the final

measurement. It may also be necessary to choose multiple peaks from within the search

range, as the single FFT bin could map to more than one note, especially at the lowest

parts of the spectrum.

This approach would be significantly more efficient than running two full algorithms in

parallel, since the ACF-based refinement is only necessary in certain cases and is a relatively

simple and efficient process. It would also be more likely to easily produce reasonable results,

as it would not suffer from the normalization problems found in the parallel algorithms and

direct realization approaches. A new algorithm based on this approach is designed in Section

3.4, with results shown in Section 4.5.

38

Chapter 3: New Algorithms

3.1 Introduction

All of the preceding research and analysis has set the stage for the development of three new

polyphonic pitch detection algorithms. These algorithms have been designed specifically to

be as robust as possible while still performing efficiently.

The first algorithm is a direct extension of Dessein’s NMF-based system (1.4.3), which

has been modified to utilize the newly-developed CAFR analysis tool. The second algorithm

is a direct hybridization of Tolonen’s (1.4.1) and Klapuri’s (1.4.2) reference systems. The

two algorithms are run in parallel then combined in a novel way via the CAFR’s optimal

crossover. The final new algorithm is a form of Klapuri’s reference system, which has been

converted to employ the “conditional refinement” approach described in Section 2.7.2.

3.2 Dessein with CAFR

The first new algorithm is a logical extension of the NMF-based system of Dessein, Cont,

and Lemaitre, which was described in Section 1.4.3. The reference system uses 1024-bin

FFT magnitude spectra (which can be trimmed to 513 unique bins) as its measurement

basis. At its chosen sampling rate of 12 600 Hz, these magnitude spectra are only capable

of achieving quarter tone accuracy down to

ε̃FFT (f`) = αq

⇒ fs
2Kf`

= αq

39

x CAFR NMF Thresholding P

Spectral
Templates

Figure 3.1: Block Diagram of the “Dessein with CAFR” System. The input signal, x, is a
hamming-windowed audio frame of length K. The output, P , is the set of detected pitch
numbers.

⇒ f` =
fs

2αqK

⇒ f` =
12 600 Hz

2 · (1− 2−
1
24) · 1024

≈ 216.1 Hz,

which means the lowest note for which the system can accurately resolve its fundamental

frequency is A3.

By applying the CAFR, it is possible to accurately resolve much lower notes while also

increasing the system’s overall efficiency. It was shown in Section 2.5 that the minimum

frame length required for the CAFR to achieve quarter-tone accuracy is approximately 309

bins. Choosing the next power of 2, a frame length of 512 is used for this new system,

which yields a CAFR output with 468 bins. This results in a 9% reduction in the number

of unique spectrum bins, which is the driving factor of efficiency of this system.

On top of the gains in efficiency, the new system is also able to achieve quarter-tone

accuracy all the way down to

f` =
2fs
K

=
2 · 12 600 Hz

512
≈ 49 Hz.

This allows for accurate resolution of notes down to G#1 – an improvement of more than

2 octaves over the FFT-based reference system.

Happily, the trained NMF system outputs directly to pitch numbers. So a simple thresh-

olding operation is all that is needed to gather the final results.

40

3.3 Hybrid Tolonen/Klapuri

The second new algorithm is a combination of Tolonen’s ACF-based system and Klapuri’s

FFT-based system, which were described in Sections 1.4.1 and 1.4.2, respectively.

Tolonen’s system produces good results within its range of operation, especially con-

sidering its conceptual simplicity and ability to run faster than realtime in the testing

environment described in Chapter 4. However, this system only performs well in a rather

limited range of frequencies comprising the three octaves from C2 to C5. This deficiency

stems directly from its sole reliance on ACF measurements.

Klapuri’s system, on the other hand, produces good results for a much broader range,

consisting of the five octaves from C2 to C7. But this system is much less efficient than

Tolonen’s and is clearly slower than realtime in the testing environment.

The relative inefficiency of Klapuri’s system stems primarily from its search method.

Briefly, the salience of a given fundamental period candidate, ŝ(τ), is computed by a

weighted sum of the local maxima of FFT values within the few bins surrounding each

of the M harmonics of the fundamental frequency in question. This salience measure is

then used in a binary search algorithm to find the global maximum over all τ down to a

certain tolerance of accuracy.

While it is a sound idea that produces good results, the harmonic summation process

can be very taxing, especially for low fundamental frequencies (which have a large number of

harmonics to consider). This can be partially mitigated by capping the number of considered

harmonics to a relatively small value, but the detection results are significantly degraded.

For the reference implementation, the number of harmonics was capped at 20, based on the

shape of the weighting function as well as empirical results.

A new hybrid algorithm has thus been developed as a compromise between the two,

taking advantage of the larger range of Klapuri’s system while overcoming some of its

inefficiency by incorporating results from Tolonen’s system.

The complete computation process of Tolonen’s system is performed exactly as described

in Section 1.4.1. Briefly, the input signal is first pre-whitened with inverse warped linear

41

Pre-whitening HPF HWR LPF

x |FFT| + |FFT|

|FFT| Peak
Selection

ESACF IFFT

Spectral
Whitening

Salience
Calculation

Iterative
E & C

Pitch
Quantization

P

Figure 3.2: Block Diagram of the “Hybrid Tolonen/Klapuri” System. The input signal, x,
is a hamming-windowed audio frame of length K. The output, P , is the set of detected
pitch numbers.

predictive filtering. It is then fed into a simple two-channel auditory filter bank, where the

high channel is half-wave rectified and low-pass filtered to convert high-order harmonics

into fundamental beat frequencies. The generalized ACF is then computed from the sum

of the two channels’ magnitude spectra and fed into Tolonen’s summary ACF enhancement

process (ESACF).

Separately, Klapuri’s system is set up by taking the input signal’s magnitude spectrum

and whitening it according to the process described in Section 1.3.2. It would be possible

to reduce the computation required here by simply reusing the pre-whitened signal from

Tolonen’s system, but it was found to produce inferior results in this case.

The results of Tolonen’s system are then used to inform Klapuri’s salience-based iterative

estimation and cancelation process. A set of candidate peaks is first selected from the

ESACF within the range τ ∈ [kc,Kp − 1] as defined by the CAFR’s optimal crossover.

Klapuri’s salience measure is then computed for each of the candidate periods, and they

are sorted in order of descending salience.

Klapuri’s iterative estimation and cancelation process is then used. At each step, the

standard search process is performed to find the period candidate, τ ∈ [fs/2100, kc], with

maximum salience. Any higher-salience candidates found from Tolonen’s system are used

first. The result is recorded, weighted harmonic cancelation is performed as described in

42

Section 1.4.2, then it is removed from the candidate list, and the salience is recomputed for

each of the remaining candidates. The process is then continued until the desired polyphony

has been reached.

By only comparing results based on their salience measures, this particular method of

combination completely side-steps the normalization issues inherent in comparing results

from parallel ACF-based and FFT-based systems. Also, by using the results from Tolonen’s

system, the general search range is greatly reduced, leading to improved efficiency. It should

be noted, however, that execution time is heavily dependent on the actual input signal –

as is also the case with Klapuri’s algorithm. For instance, if all constituent notes have

fundamental frequencies above the crossover frequency, much less gain in efficiency will be

achieved as compared to Klapuri’s original system.

Once the set of fundamental frequencies has been determined, a final pitch quantization

stage is required to translate the the results into a set of pitch numbers. This translation

is performed quite simply by plugging each measured frequency into Equation 1.2 and

rounding to the nearest integer.

3.4 Conditional Klapuri

The final new algorithm is a modified form of Klapuri’s system, which was presented in

Section 1.4.2. Specifically, it has been modified to take advantage of the “conditional

refinement” approach to the CAFR as described in Section 2.7.2.

Klapuri’s original system revolves around a salience calculation and associated binary

search of the salience space to find the best fundamental frequency candidate. This is

done inside an iterative estimation and cancelation process, leading to a large number of

expensive salience calculations, particularly for higher polyphonies. The global salience

search is quite effective, but the efficiency of the system suffers from its repeated use. To

solve this problem, global peak-picking with conditional refinement can be applied to limit

the salience search to specific regions of interest.

The new system begins just as Klapuri’s by calculating an FFT magnitude spectrum,

43

which is then whitened with the process of Section 1.3.2. Additionally now, the generalized

ACF is computed and half-wave rectified.

Peaks are then globally selected from the FFT spectrum to identify potential funda-

mental frequencies. The selection process uses a simple thresholding to keep all peaks with

a magnitude of at least half that of the maximum. Any peaks that fall outside the FFT’s

range of accuracy are then refined with the ACF using a similar peak selection process

limited to the range of ACF bins corresponding to the selected FFT bin.

It was found during development that the peak selection process is slightly more reliable

for the FFT (within its range of accuracy) than for the refined ACF measurements. As such,

the crossover bin was set to the lowest FFT bin for which the required accuracy can be

achieved, found by

ε̃FFT (f`) < α

⇒ fs
2Kf`

< α

⇒ fs

2K

(
k`fs
K

) < α

⇒ 1

2k`
< α

⇒ k` >
1

2α

⇒ kc =

⌈
1

2α

⌉
. (3.1)

It is worth noting that this result depends only on the required accuracy and not on the

FFT length or sampling rate. This system requires quarter-tone accuracy, which yields a

constant crossover bin of 18 as opposed to the standard CAFR crossover of 32 for an FFT

of length 1024.

44

x |FFT| Spectral
Whitening

IFFT

Pitch
Quantization

Peak
Selection

HWR

Salience
Calculation

Iterative
E & C

P

Figure 3.3: Block Diagram of the “Conditional Klapuri” System. The input signal, x, is a
hamming-windowed audio frame of length K. The output, P , is the set of detected pitch
numbers.

All of the selected FFT and ACF peaks are then converted to frequencies and quantized

to a set of unique1 pitch numbers. The salience of each pitch candidate is then calculated

by converting to frequency and time-lag values and applying Equation 1.26. The pitch

with the greatest salience is chosen at this point, and Klapuri’s iterative estimation and

cancelation process is applied until the desired polyphony has been reached.

1The pitch quantization is applied at this early stage in order to avoid redundant salience computation
for multiple frequencies which would eventually map to the same pitch.

45

Chapter 4: Experimental Results

4.1 Introduction

Three new pitch detection systems have been developed to prove the concept of the Com-

bined ACF/FFT Representation. This novel analysis tool and these new algorithms appear

quite promising from a theoretical standpoint. But now some empirical evidence is needed

to back up the theory.

The three new algorithms presented in the previous chapter were put to the test along

with the three reference systems described in Sections 1.4.1 - 1.4.3. They were evaluated

on objective pitch detection results as well as computational efficiency.

4.2 Testing Environment

Each of the pitch detection systems was been developed in MATLAB (see Appendix ?? for

code listings), and all evaluations were performed via a MATLAB test harness. All tests

were run on a 4-year-old consumer-grade PC, which had an Intel Core 2 Quad processor

clocked at 2.4 GHz with 3.5 GB of RAM. The system was kept in isolation, and special care

was taken to ensure the accuracy of efficiency measurements.

4.3 System Parameters

The three reference systems were implemented as described in their respective sections

(1.4.1 - 1.4.3) and associated publications ([17], [13], and [14]).

Tolonen’s system was run at a sampling rate of 22 050 Hz with 1024-sample (46 ms)

hamming-windowed frames, which were zero-padded to 2048 samples for processing. The

generalized ACF values were calculated with power α = 0.67.

46

Similarly, Klapuri’s system was run at a 22 050 Hz sampling rate with 1024-sample

(46 ms) hanning-windowed frames, which were zero-padded to 2048 samples for process-

ing. The harmonic weighting parameters α, β, and d were set to 27 Hz, 320 Hz, and 1.0,

respectively. The number of harmonic multiples was capped at Mmax = 20.

The system of Dessein, et. al., was run at a sampling rate of 12 600 Hz with 630-sample

(50 ms) hamming-windowed frames, which were zero-padded to 1024 samples for processing.

The β-divergence parameter was set to 0.5 for decomposition. Template learning was done

with standard NMF using a 25 ms hop size.

The first new system (Dessein with CAFR) was also run at a 12 600 Hz sampling rate,

but with 504-sample (40 ms) hamming-windowed frames, which were zero-padded to 512

samples for processing. The CAFR’s generalized ACF components were calculated with

power α = 0.67. All other aspects of the system were exactly the same as the original

Dessein reference system.

The second new system (Hybrid Tolonen/Klapuri) was run at a sampling rate of 14 700 Hz

with 735-sample (50 ms) hamming-windowed frames, which were zero-padded to 1024 sam-

ples for processing. All other parameters were the same as those of the Tolonen and Klapuri

reference systems.

The final system (Conditional Klapuri) was also run at a sampling rate of 14 700 Hz with

735-sample (50 ms) hamming-windowed frames, which were zero-padded to 1024 samples

for processing. The generalized ACF components were calculated with power α = 0.67, and

all other system parameters were the same as those of the Klapuri reference system.

4.4 Objective Evaluation

Objective evaluation was performed in a similar fashion to the method of Klapuri in [13].

Individual note samples for MIDI pitch numbers 36 through 96 (the five octaves from C2-

C7) were mixed together with equal mean-square levels in random combinations to form

composite signals for polyphonies 2, 4, and 6, with 1000 combinations each. The source

47

samples were taken from isolated recordings of four different types of pianos (providing 244

single-note samples in addition to the 3000 composites). The piano was chosen for its large

range as well as the unique difficulties it presents, such as hammer noise and heavy octave

errors at onset. For the two NMF-based systems, isolated samples from a fifth different

type of piano were used for the training set. Another set of random combinations within

the range C2-C5 was also generated for use with Tolonen’s reference system, since it is not

intended to work outside of that range.

The pitch detection systems were given sample frames positioned at the point of onset.1

They were also given the polyphony of each frame as prior knowledge. While this informa-

tion would not be available in most practical applications, it was provided here in order to

facilitate objective comparisons between the various algorithms independent of polyphony

estimation (which is a difficult problem in its own right). A second run was also performed

with sample frames positioned 100 ms after onset.

The systems were then evaluated on their error rates for each polyphony, and their

performance was measured in terms of processed frames per second (FPS). The three new

systems as well as the Dessein reference system already report their findings in terms of

pitch numbers. The Tolonen and Klapuri reference systems were given a pitch quantization

stage to convert from detected F0 into pitch numbers.

Two different error rates were measured. The first is total error, which is the proportion

of notes that were not correctly identified. The second is non-octave error, in which octave

substitutions are considered acceptable. This second (discounted) error rate provides a

truer sense of the overall accuracy, as octave substitutions are a very common side effect of

transients and can generally be fixed with some simple post-processing.

48

0

100

200

300

400

500

S
p

ee
d

(F
P

S
)

1 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Polyphony
E

rr
or

R
at

e Tolonen
Klapuri
Dessein
Dessein with CAFR

Hybrid Tolonen/Klapuri
Conditional Klapuri

Figure 4.1: Summary of Results. The average speed in frames per second for each algorithm
and the average error rates for each algorithm and polyphony.

4.5 Results

The two primary goals of the newly developed pitch detection systems were to improve

on the reference systems in both overall accuracy as well as realtime performance. In this

context realtime performance is defined as the ability to process at least 100 frames per

second, allowing a hop size of 10 ms.

In terms of efficiency, all three developed algorithms performed quite well as compared

to their respective reference systems. The Dessein with CAFR system executed about 35%

faster on average than the standard Dessein reference implementation, running up to 5 times

faster than realtime. The Hybrid Tolonen/Klapuri algorithm was able to process almost

275% faster than the original Klapuri reference implementation, running slightly faster than

realtime. And the Conditional Klapuri algorithm processed as much as 750% faster than

the standard Klapuri, running almost 2.5 times faster than realtime.

The three new systems also did well in terms of accuracy. The first two algorithms

performed extremely well in the monophonic case, having 4-5% total error and less than

1% non-octave error. The third also performed reasonably well in the monophonic case,

achieving around 9.5% error and 3.5% non-octave error.

For the sample set taken 100 ms after onset, the Dessein with CAFR system produced

1Onset was defined as the point at which the waveform’s amplitude reaches one third of its maximum
within the first 200 ms [1].

49

Table 4.1: Error Rates at Onset. The error rates are shown for each algorithm at poly-
phonies of 1, 2, 4, and 6, along with each algorithm’s processing speed in average frames
per second (FPS). In this case, sample frames were positioned directly at the point of onset.

Algorithm ε1 ε2 ε4 ε6 FPS

Tolonen 0.0878 0.2505 0.5165 0.5913 151
Klapuri 0.0205 0.1890 0.3845 0.4998 26
Dessein 0.2172 0.3330 0.4133 0.4433 326

Dessein with CAFR 0.0410 0.2585 0.4385 0.4895 507
Hybrid Tolonen/Klapuri 0.0451 0.2790 0.4492 0.5592 103
Conditional Klapuri 0.0984 0.2295 0.3550 0.4317 223

Table 4.2: Error Rates at Onset (Discounting Octave Errors). This table shows the error
rates corresponding to those of Table 4.5 when octave substitutions are allowed.

Algorithm ε1 ε2 ε4 ε6
Tolonen 0.0878 0.2035 0.3678 0.3978
Klapuri 0.0082 0.1235 0.2575 0.3133
Dessein 0.0984 0.2320 0.3080 0.3152

Dessein with CAFR 0.0082 0.1980 0.3395 0.3800
Hybrid Tolonen/Klapuri 0.0082 0.2065 0.3180 0.3687
Conditional Klapuri 0.0328 0.1320 0.2120 0.2615

significantly less error than its counterpart for all polyphonies except 6, which had slightly

more error. For the sample set positioned directly at onset, it also had slightly more error for

polyphony 4. It was also able to outperform the most complex reference system – Klapuri

– for all but the monophonic case in the delayed sample set.

It was found during initial testing that error rates at higher polyphonies were largely

dependent on the NMF convergence criteria. Strict convergence limits on the NMF decom-

position process produced better results for high polyphonies. However, excessively strict

limits degraded the results at lower polyphonies, especially the monophonic case. These

strict limits also greatly decreased the efficiency of the system. In the end, a compro-

mise was chosen to achieve generally good results while maintaining the system’s overall

efficiency.

50

Table 4.3: Error Rates 100 ms after Onset. The error rates are shown for each algorithm
at polyphonies of 1, 2, 4, and 6, along with each algorithm’s processing speed in average
frames per second (FPS). In this case, sample frames were positioned 100 ms after the point
of onset.

Algorithm ε1 ε2 ε4 ε6 FPS

Tolonen 0.1216 0.1970 0.4595 0.5558 152
Klapuri 0.0164 0.1740 0.3035 0.4325 30
Dessein 0.1803 0.2725 0.3418 0.3767 349

Dessein with CAFR 0.0410 0.1155 0.3045 0.3915 405
Hybrid Tolonen/Klapuri 0.0533 0.2340 0.3930 0.5063 106
Conditional Klapuri 0.0943 0.2255 0.3302 0.3997 241

Table 4.4: Error Rates 100 ms after Onset (Discounting Octave Errors). This table shows
the error rates corresponding to those of Table 4.5 when octave substitutions are allowed.

Algorithm ε1 ε2 ε4 ε6
Tolonen 0.1149 0.1535 0.3317 0.3718
Klapuri 0.0041 0.1300 0.2040 0.2667
Dessein 0.0738 0.1765 0.2453 0.2627

Dessein with CAFR 0.0041 0.0750 0.2325 0.2865
Hybrid Tolonen/Klapuri 0.0041 0.1665 0.2682 0.3288
Conditional Klapuri 0.0369 0.1410 0.1918 0.2343

The Hybrid Tolonen/Klapuri system performed as expected, roughly splitting the dif-

ference in error rates between the Tolonen and Klapuri reference systems in most cases.

It is truly a compromise between the two, gaining significant efficiency over Klapuri and

accuracy over Tolonen. However, the Dessein with CAFR system produced less total error

in every case while also running 5 times faster.

The Conditional Klapuri system performed quite respectably at higher polyphonies –

even beating the original Klapuri system in several cases – but was less accurate for lower

polyphonies. Overall, its results were very good considering the improvement in efficiency.

51

Chapter 5: Conclusion

The FFT and ACF have complementary error properties. While the FFT is quite accurate

for high frequencies, it suffers at lower frequencies. The ACF, on the other hand, is very

accurate for low frequencies but quickly loses accuracy further up the spectrum.

5.1 New Development

These complementary properties led to the development of the optimal blend between the

two – the Combined ACF/FFT Representation (CAFR). This new analysis tool comes in

several flavors.

First, there is the direct realization, which constructs a new data structure representing

the optimally blended spectrum. This structure is complex and somewhat intractable, but it

is easily applied to certain algorithms, such as Dessein’s NMF-based pitch detection system.

The second means of applying the CAFR is to use it as a method of blending results.

To different algorithms – one FFT-based and one ACF-based – can be run in parallel, then

their results can be blended using the CAFR’s optimal crossover.

And the third application of the CAFR is the concept of conditional refinement. The

FFT is well-suited to peak-picking and can easily be used to find areas of interest across the

complete spectrum. Then, based on the CAFR’s optimal crossover, these measurements

can conditionally be refined using the ACF.

All of these approaches were developed into new pitch detection systems to test the

CAFR’s usefulness. The first was a version of Dessein’s NMF-based system that replaced

the FFT measurements with direct CAFR measurements. The second was a hybridization

of Tolonen’s ACF-based system with Klapuri’s FFT-based system, where both algorithms

were run in parallel with results blended together. And the third was a modification of

52

Klapuri’s system to employ conditional refinement as a means of narrowing the search for

fundamental frequencies.

5.2 Significance

The three new systems were put to the test along with the three reference systems, and

the results clearly demonstrated the usefulness of the CAFR as an analysis tool for pitch

detection systems. By applying the CAFR – both directly and conceptually – it was possible

to achieve the accuracy needed for pitch detection over a larger range of frequencies while

using a smaller number of analysis bins.

The pitch detection results showed that a smaller CAFR was able to match or exceed the

performance of a larger FFT or ACF in almost of the tested cases. Meanwhile, the decrease

in size resulted in vast improvements in efficiency, ranging from 35% to 750% increases in

speed as compared to the original reference systems.

5.3 Future Work

The three new CAFR-based pitch detection systems performed quite well, but there is still

plenty of room for future research and development.

The application of the CAFR to Dessein’s NMF system is of particular interest. The

computational headroom available with this system allows for the addition of much more

complexity to further improve its results. For instance, additional spectral templates could

be added to represent the attack, sustain, and release components of each note’s life-cycle.

This may help to reduce errors at onset and offset and in the case of improperly shortened

notes. Higher-level post-processing could also be added to take musical expectations into

account, allowing for the exclusion or adjustment of detected notes that don’t fit within the

current musical scene.

Another area of interest is the conditionally-refined version of Klapuri’s system. This

53

system achieved the greatest percentage-wise increase in efficiency. It also boasted impres-

sive gains in robustness of pitch detection for high polyphonies. However, it did not perform

as well for lower polyphonies, especially the monophonic case. It had particularly high pro-

portions of octave error in monophonic detection, likely stemming from the peak selection

process. More work should be done to improve these results.

Finally, while the CAFR has proven its usefulness, it can be difficult to apply due to

the inherent differences in scale and energy distribution between the FFT and ACF. It is

conceivable that other means of improving both robustness and analytical speed could be

developed that would not suffer from such difficulties. One such possibility is multi-rate

FFT processing, in which the high frequency information would be captured from analysis

at one sampling rate, then the low frequency information would be analyzed using the same

FFT length but with a zero-padded decimated signal. It may also be possible to develop a

non-linear scaling procedure to match the ACF to the FFT more appropriately.

54

Appendix A: Code Listings

A.1 General Support Functions

The following are various support and convenience functions, which were defined to simplify

common tasks.

function [p] = p i t ch (f)
%PITCH Ca l cu l a t e s the p i t c h number o f the g iven f requency
% f − f r equency o f i n t e r e s t
% p − (out) p i t c h number

p = 69+12∗ log2 (f /440) ;

end

function [f] = p f r eq (p)
%PFREQ Ca l cu l a t e s the f requency o f a g iven p i t c h number
% p − p i t c h number o f i n t e r e s t
% f − (out) f requency

f = 440∗2ˆ((p−69) /12) ;

end

function [f] = b in2 f r eq (k ,K, Fs)
%BIN2FREQ Ca l cu l a t e s the f requency o f the g iven FFT bin
% k − FFT bin o f i n t e r e s t
% K − FFT l en g t h
% Fs − sampling f requency
% f − (out) f requency

f = (k−1)∗Fs/K;

end

function [k] = f r eq2b in (f , Fs ,K)
%FREQ2BIN Ca l cu l a t e s the FFT bin index o f the g iven f requency
% f − f r equency o f i n t e r e s t

55

% Fs − sampling f requency
% K − FFT l en g t h
% k − (out) FFT bin index

k = 1+(f . ∗ (K/Fs)) ;

end

function [X, f] = p f f t (x , Fs)
%PFFT Ca l cu l a t e s a p o s i t i v e−s i d ed FFT
% x − inpu t s i g n a l
% Fs − sampling f requency (i f f r equency mapping i s d e s i r ed)
% X − (out) p o s i t i v e−s i d ed FFT
% f − (out) f requency to b in mapping (i f Fs i s s p e c i f i e d)

% S igna l l e n g t h
K = length (x) ;

% Number o f unique (non−symmetric) FFT va lu e s
pK = round ((K+1)/2) ;

% Pos i t i v e−f r equency FFT b ins
X = f f t (x) ;
X = X(1 :pK) ;

% Frequency va l u e s o f b in s
i f nargin > 1

f = (0 :pK−1)/(K/Fs) ;
end

end

function [Y] = i p f f t (X)
%IPFFT Ca l cu l a t e s the IFFT of a p o s i t i v e−s i d ed FFT
% X − po s i t i v e−s i d ed FFT
% Y − (out) IFFT

% Pos i t i v e−s i d ed l en g t h
pK = length (X) ;

% Fu l l l e n g t h
i f mod(pK, 2) == 0

K = (2∗pK)−1;
else

K = 2∗(pK−1) ;
end

% Re−genera te the symmetric nega t i v e f requency va l u e s
X(pK+1:K) = conj (X(pK−mod(pK, 2) :−1:2)) ;

% And perform the IFFT
Y = i f f t (X) ;

56

end

function [pks , l o c s] = f indpeaks1d (x)
%FINDPEAKS1D A simpler , much f a s t e r ve r s i on o f f i ndpeak s f o r 1−D data
% x − inpu t v ec t o r
% pks − (out) so r t ed peak va l u e s
% l o c s − (out) so r t ed peak l o c a t i o n s

i f i s row (x)
x1 = [x (2 : length (x)) , 0] ;
x2 = [0 , x (1 : length (x)−1)] ;

else
x1 = [x (2 : length (x)) ; 0] ;
x2 = [0 ; x (1 : length (x)−1)] ;

end
x (x1 > x | x2 > x) = 0 ;
[pks , l o c s] = sort (x , ’ descend ’) ;

end

A.2 Tolonen’s Reference System

The following code implements Tolonen’s reference system. This code makes use of several

functions (barkwarp, wlpc, and wfilter) from the freely-available “WarpTB” warped signal

processing toolbox [24].

function [e s] = e s a c f (s)
%ESACF Enhances a summary ACF to r e v e a l fundamental f r e q u en c i e s
% s − summary ACF
% es − (out) enhanced summary ACF

% I n i t i a l i z e the ESACF to p o s i t i v e va l u e s o f SACF
es = max(0 , s) ;

% Loop through s c a l i n g f a c t o r s
for m=2:5

% I n i t i a l i z e the s ca l e d SACF to zeros
sm = zeros (s ize (s)) ;

% Sca le the SACF by f a c t o r m us ing l i n e a r i n t e r p o l a t i o n
for t =1: length (s)

d = 1+f loor ((t−1)/m) ;
sm(t) = s (d) + ((t−m∗d) /m) ∗(s (d+1)−s (d)) ;

end

% Update the ESACF
es = max(es−max(sm , 0) ,0) ;

57

end

end

function [P,V] = to lonen f rame (x ,w,K,Kp, Fs , lambda , b1 , a1 , b2 , a2 , pmin , pmax ,Np)
%TOLONENFRAME Tolonen ’ s p i t c h d e t e c t i on system fo r a s i n g l e frame
% x − inpu t frame
% w − window func t i on
% K − FFT l en g t h
% Kp − po s i t i v e−s i d ed l en g t h
% Fs − sampling f requency
% lambda − bark s c a l e wlpc f i l t e r i n g cons tant
% b1 , a1 − low−pass f i l t e r c o e f f i c i e n t s
% b2 , a2 − high−pass f i l t e r c o e f f i c i e n t s
% pmin − minimum p i t c h to cons ider
% pmax − maximum p i t c h to cons ider
% Np − number o f p i t c h e s (−1 to auto−e s t imate)
%
% P − (out) d e t e c t e d p i t c h numbers
% V − (out) a s s o c i a t e d peak va l u e s

% Window and pad to f u l l l e n g t h
x = x .∗ w;
x (length (w) +1:K) = 0 ;

% Apply whi ten ing
y = w f i l t e r (wlpc (x , 1 2 , lambda) ,1 , x , lambda) ;

% Apply the f i l t e r bank
low = f i l t e r (b1 , a1 , y) ;
high = f i l t e r (b1 , a1 ,max(0 , f i l t e r (b2 , a2 , y))) ;

% Ca l cu l a t e the ESACF
s = i f f t (abs (f f t (low)) . ˆ 0 . 6 7 + abs (f f t (high)) . ˆ 0 . 6 7) ;
e s = e s a c f (s (1 :Kp)) ;

% Find the peaks and record r e s u l t s
P = [] ; V = [] ;
[pks , l o c] = f indpeaks1d (es) ;
i f Np == −1

% Borrowing Klapuri ’ s polyphony es t ima t ion method
S = zeros (1 , length (pks) +1) ;
S (1) = 0 ;
s t = 0 ;
n = 1 ;
for j =1: length (pks)

p = round(p i t ch (Fs /(l o c (j)−1))) ;
i f p >= pmin && p <= pmax

s t = s t + pks (j) ;
S (j +1) = s t /(j ˆ 0 . 7) ;
i f S(j +1) <= S(j)

break ;
end
P(n) = p ;
V(n) = pks (j) ;

58

n = n+1;
else

S(j +1) = S(j) ;
end

end
else

% Just use the f i r s t Np d e t e c t i o n s
for j =1:Np

P(j) = round(p i t ch (Fs /(l o c (j)−1))) ;
V(j) = pks (j) ;

end
end

end

And this listing shows the pre-calculated system parameters.

% Decimated sampling f requency
Fs = 22050 ;

% Window s i z e (46ms)
Kw = 1024 ;

% Hamming window
w = hamming(Kw) ’ ;

% Fu l l padded frame FFT s i z e
K = 2∗Kw;

% Pos i t i v e−s i d ed l en g t h
Kp = round ((K+1)/2) ;

% Warping parameter
lambda = barkwarp (Fs) ;

% Create the f i l t e r bank
[b1 , a1] = butte r (2 , [2∗70/ Fs ,2∗1000/ Fs] , ’ bandpass ’) ;
[b2 , a2] = butte r (2 , [2∗1000/ Fs ,2∗10000/ Fs] , ’ bandpass ’) ;

% Pitch range
pmin = 36 ; % C2
pmax = 72 ; % C5

A.3 Klapuri’s Reference System

The following code implements Klapuri’s reference system.

function [H, c] = s w f i l t e r s (B,K, Fs)
%SWFILTERS Generates t r i a n g u l a r power responses f o r s p e c t r a l wh i ten ing

59

% B − number o f c r i t i c a l bands
% K − FFT l en g t h
% Fs − sampling f requency in Hz
% H − (out) s e t o f f i l t e r power responses
% c − (out) c r i t i c a l band cen ter b in s

% Ca l cu l a t e the c r i t i c a l band cen ter f requency b in s
c (1 :B) = 0 ;
for b=1:B

c (b) = round(f r eq2b in (229∗ (10ˆ((b+1) /21 . 4)−1) , Fs ,K)) ;
end

% Generate the t r i a n g u l a r power responses
H(1 :B, 1 : round ((K+1)/2)) = 0 ;
for b=1:B

% Get the lower b in
i f b > 1

k1 = c (b−1) ;
else

% For f i r s t band , c a l c u l a t e the 0 th band f requency b in
k1 = round(f r eq2b in (229∗ (10ˆ (1/21 .4)−1) , Fs ,K)) ;

end

% The cen te r b in
kc = c (b) ;

% And upper f requency
i f b < B

k2 = c (b+1) ;
else

% For l a s t band , c a l c u l a t e the (B+1) th band f requency b in
k2 = round(f r eq2b in (229∗ (10ˆ((b+2) /21 . 4)−1) , Fs ,K)) ;

end

% Line parameters f o r the r i s i n g and f a l l i n g edges
m1 = 1/(kc−k1) ;
m2 = 1/(kc−k2) ;
b1 = −m1∗k1 ;
b2 = −m2∗k2 ;

% Use l i n e equa t i ons to genera te the t r i a n g l e
for k=k1 : k2

i f k <= kc
H(b , k) = max(0 , m1∗k+b1) ;

else
H(b , k) = max(0 , m2∗k+b2) ;

end
end

end

end

function [Y,G] = whiten (X,H, c)
%WHITEN App l i e s the Klapuri s p e c t r a l wh i t en ing a l gor i thm
% X − po s i t i v e−s i d ed magnitude spectrum

60

% H − f i l t e r power responses (from s w f i l t e r s)
% c − c r i t i c a l band cen ter b in s (from s w f i l t e r s)
% Y − (out) whitened po s i t i v e−s i d ed magnitude spectrum
% G − (out) bin−wise compression c o e f f i c i e n t s

% Pos i t i v e−s i d ed FFT s i z e
Kp = length (X) ;

% Number o f c r i t i c a l bands
B = s ize (H, 1) ;

% Ca l cu l a t e band−wise compression c o e f f i c i e n t s
s = sum((H .∗ repmat (X. ˆ 2 ,B, 1)) , 2) ’ ;
g = (s . / Kp) .ˆ(−0 .33) ;

% In t e r p o l a t e to bin−wise c o e f f i c i e n t s
G = interp1 ([1 , c ,Kp] , [g (1) , g , g (B)] , 1 :Kp) ;

% And app ly the whi ten ing
Y = G .∗ X;

end

function [t , s] = s a l i e n c e (X,K, Fs , tmin , tmax ,Mmax)
%SALIENCE Finds the h i g h e s t s a l i e n c e per iod over the g iven range
% X − po s i t i v e−s i d ed magnitude spectrum
% K − FFT l en g t h
% Fs − sampling f requency
% tmin − minimum per iod (tau)
% tmax − maximum per iod (tau)
% Mmax − maximum number o f harmonics to proces s
%
% t − (out) per iod (tau) where the h i g h e s t s a l i e n c e was found
% s − (out) s a l i e n c e va lue

% I n i t i a l number o f b l o c k s
Q = 1 ;

% I n i t i a l b e s t b l o c k
qbest = 1 ;

% I n i t i a l i z e the per iod range
t low = zeros (1 ,100) ;
tup = zeros (1 ,100) ;
t low (1) = tmin ;
tup (1) = tmax ;

% I n i t i a l i z e max s a l i e n c e
smax = zeros (1 ,100) ;

% Perform the search
while tup (qbest)−t low (qbest) > 0 .01∗ tup (qbest)

% Sp l i t the b e s t b l o c k and compute new l im i t s
Q = Q + 1 ;
tlow (Q) = (tlow (qbest) + tup (qbest)) /2 ;

61

tup (Q) = tup (qbest) ;
tup (qbest) = tlow (Q) ;

% Compute new s a l i e n c e s f o r the two b lock−ha l v e s
for q = [qbest , Q]

% Determine the number o f harmonics to proces s
M = min(f loor (t low (q) /2) ,Mmax) ;

% And proces s them
mK = (1 :M) ∗K;
kmin = 1+round(mK. / tup (q)) ;
kmax = 1+round(mK. / tlow (q)) ;
Xmax = zeros (1 ,M) ;
fup = Fs/tup (q) ;
for m=1:M

Xmax(m) = max(X(kmin (m) : kmax(m))) /(m∗ fup + 320) ;
end
smax(q) = (Fs/ tlow (q) + 27) ∗ sum(Xmax) ;

end

% Find the b e s t b l o c k so f a r
[˜ , qbest] = max(smax (1 :Q)) ;

end

% Return the b e s t per iod and i t s s a l i e n c e
t = (tlow (qbest) + tup (qbest)) /2 ;
s = smax(qbest) ;

end

function [P,V] = k lapur i f r ame (x ,w,K,Kp, Fs ,H, c , tmin , tmax ,Mmax,Np)
%KLAPURI FRAME Klapuri ’ s p i t c h d e t e c t i on system fo r a s i n g l e frame
% x − inpu t frame
% w − window func t i on
% K − FFT l en g t h
% Kp − po s i t i v e−s i d ed l en g t h
% Fs − sampling f requency
% H − s p e c t r a l wh i ten ing f i l t e r s
% c − s p e c t r a l wh i ten ing cen te r f r e q u en c i e s
% tmin − minimum tau to search
% tmax − maximum tau to search
% Mmax − maximum number o f harmonics to cons ider
% Np − number o f p i t c h e s (−1 to auto−e s t imate)
%
% P − (out) d e t e c t e d p i t c h numbers
% V − (out) a s s o c i a t e d peak va l u e s

% Window and pad to f u l l l e n g t h
x = x .∗ w;
x (length (w) +1:K) = 0 ;

% Ca l cu l a t e the p o s i t i v e−s i d ed FFT magnitude spectrum
X = abs (p f f t (x)) ;

% Apply s p e c t r a l wh i ten ing

62

Y = whiten (X,H, c) ;

% I n i t i a l i z e r e s i d u a l and de t e c t e d spectrums
YR = Y;
YD = zeros (1 ,Kp) ;

P = [] ; V = [] ;
j = 1 ;
s t = zeros (1 , 10) ;
S = zeros (1 , 10) ;
while t rue

% Find the per iod wi th the b e s t s a l i e n c e
[t , s] = s a l i e n c e (YR,K, Fs , tmin , tmax ,Mmax) ;

% Remove the per iod and i t s p a r t i a l s from the r e s i d u a l
M = min(f loor (t /2) ,Mmax) ;
g3 f = Fs/ t ;
g1 = (g3 f + 27) ;
for m=1:M

g = g1 / (m∗ g3 f + 320) ;
kt = 1+round(m∗K/ t) ;
k = max(1 , kt−2) :min(Kp, kt+2) ;
YD(k) = YD(k) + g∗YR(k) ;
YR(k) = max(0 , Y(k)−YD(k)) ;

end

% Determine whether to cont inue (polyphony es t ima t ion)
i f Np == −1

s t (j) = s ;
S(j) = sum(s t) / j ˆ 0 . 7 ;
i f (j > 1 && S(j) <= S(j−1))

break ;
end

end

% Record the f i n d i n g
P(j) = round(p i t ch (Fs/ t)) ;
V(j) = s ;
i f j == Np

break ;
end
j = j +1;

end

end

And this listing shows the pre-calculated system parameters.

% Decimated sampling f requency
Fs = 22050 ;

% Window s i z e (46ms)
Kw = 1024 ;

63

% Hanning window
w = hanning (Kw) ’ ;

% Fu l l padded frame FFT s i z e
K = 2∗Kw;

% Pos i t i v e−s i d ed FFT s i z e
Kp = round ((K+1)/2) ;

% Hop s i z e (10ms)
hop = f loor (Fs /100) ;

% Period search bounds ˜(C2−C7)
tmin = Fs /2100 ;
tmax = Fs /64 ;

% Maximum number o f harmonics to proces s
Mmax = 20 ;

% Number o f c r i t i c a l bands
B = 30 ;

% Generate the whi ten ing f i l t e r s
[H c] = s w f i l t e r s (B,K, Fs) ;

A.4 Dessein’s Reference System

The following code implements Dessein’s reference system.

function [w] = l ea rn t emp la t e (V)
%LEARNTEMPLATE Learns an NMF s p e c t r a l t emp la te
% V − ob s e r va t i on matrix f o r a s i n g l e note o f i n t e r e s t
% w − (out) the l earned s p e c t r a l t emp la te

% I n i t i a l i z e the w and h v e c t o r s
w = ones (s ize (V, 1) ,1) ;
h = ones (1 , s ize (V, 2)) ;

% Perform the mu l t i p l i c a t i v e updates procedure u n t i l convergence
i = 0 ;
d = 0 ;
dp = 0 ;
while (dp == 0 | | abs (d−dp) > 0 .01∗dp) && i < 100

wp = w;
h = h . ∗ ((w’∗V) . / (w’∗w∗h)) ;
w = w. ∗ ((V∗h ’) . / (w∗(h∗h ’))) ;
i = i +1;
i f i > 1

dp = d ;
d = sum(abs (w−wp)) ;

end

64

end

end

function [h] = nmf decomp (v ,W, b)
%NMFDECOMP Performs NMF decomposi t ion wi th beta−d i ve rgence
% v − s i n g l e−frame ob s e r va t i on
% W − s p e c t r a l t emp la t e s
% b − beta−d i ve rgence cons tant
% h − (out) temp la te a c t i v a t i o n s

% Pre−c a l c u l a t e cons tan t s
Wv = (W. ∗ (v∗ ones (1 , s ize (W, 2)))) ’ ;
WT = W’ ;
b1 = b−1;
b2 = b−2;

% I n i t i a l i z e the output v e c t o r
h = ones (s ize (W, 2) ,1) ;

% And perform the mu l t i p l i c a t i v e updates procedure u n t i l convergence
i = 0 ;
d = 0 ;
dp = 0 ;
while (dp == 0 | | abs (d−dp) > 0 .2∗dp) && i < 15

hp = h ;
Wh = W∗h ;
h = h .∗ ((Wv∗(Wh. ˆ b2)) . / (WT∗(Wh. ˆ b1))) ;
i = i +1;
i f i > 1

dp = d ;
d = sum(abs (h−hp)) ;

end
end

end

function [P,V] = d e s s e i n f f t f r a m e (x ,w,K,W, b , pmin ,Np)
%DESSEIN FFT FRAME Dessein (FFT) f o r a s i n g l e frame
% x − inpu t frame
% w − window func t i on
% K − FFT l en g t h
% W − s p e c t r a l t emp la t e s
% b − beta−d i ve rgence cons tant
% pmin − minimum p i t c h
% Np − number o f p i t c h e s (−1 to auto−e s t imate)
%
% P − (out) d e t e c t e d p i t c h numbers
% V − (out) a s s o c i a t e d peak va l u e s

% Window and pad to f u l l l e n g t h
x = x .∗ w;
x (length (w) +1:K) = 0 ;

65

% Ca l cu l a t e the p o s i t i v e−s i d ed FFT magini tude spectrum
v = abs (p f f t (x)) ;

% Run the NMF decomposi t ion
PN = nmf decomp (v ,W, b) ;

% Record the f i n d i n g s
P = [] ; V = [] ;
[pks , l o c s] = sort (PN, ’ descend ’) ;
i f Np == −1

% Borrowing Klapuri ’ s polyphony es t ima t ion method
S = zeros (1 , length (pks) +1) ;
S (1) = 0 ;
s t = 0 ;
n = 1 ;
for j =1: length (pks)

i f Np == −1
s t = s t + pks (j) ;
S (j +1) = s t /(j ˆ 0 . 7) ;
i f S(j +1) <= S(j) | | n > 6

break ;
end

e l s e i f n > Np
break ;

end
P(n) = l o c s (j)+pmin−1;
V(n) = pks (j) ;
n = n+1;

end
else

% Just use the f i r s t Np d e t e c t i o n s
P = l o c s (1 :Np)+pmin−1;
V = pks (1 :Np) ;

end

end

And this listing shows the pre-calculated system parameters.

% The beta−d i ve rgence cons tant
b = 0 . 5 ;

% Decimated sampling f requency
Fs = 12600 ;

% Window s i z e (50ms)
Kw = 630 ;

% Hamming window
w = hamming(Kw) ;

% FFT l eng t h
K = 1024 ;

66

% Minimum p i t c h
pmin = 36 ;

A.5 CAFR Realization

The following code implements the direct realization of the CAFR and defines a helper

function to interpret its results.

function [C] = c a f r (x)
%CAFR Computes the Combined ACF/FFT Representa t ion
% x − inpu t s i g n a l
% C − (out) computed CAFR

% Get the FFT leng th , p o s i t i v e−s i d ed spectrum leng th , and cro s sove r b in
K = length (x) ;
Kp = round ((K+1)/2) ;
kc = 1+round(sqrt (K)) ;

% Compute the magnitude spectrum and g en e r a l i z e d ACF
X = abs (f f t (x)) ;
R = i f f t (X. ˆ 0 . 6 7) ;

% Trim to p o s s i t i v e−s i d ed spectrums
Xp = X(1 :Kp) ;
Rp = R(1 :Kp) ;

% Half−wave r e c t i f y the ACF
Rp = max(Rp,10ˆ(−6)) ;

% Zero out i t s l e ad in g h i l l
i = 1 ;
while Rp(i) > Rp(i +1)

i = i +1;
end
Rp(1 : i) = 0 ;

% Trim based on cro s sove r b in and f l i p the ACF
Xc = Xp(kc :Kp) ;
Rc = Rp(Kp:−1: kc) ;

% Sca le the ACF based on the FFT
Rc = Rc .∗ sum(Xp) /sum(Rp) ;

% And assemble in t o the f i n a l CAFR
C = [Rc Xc] ;

end

67

function [f] = c a f r b i n 2 f r e q (k ,K, Fs)
%CAFR BIN2FREQ Ca l cu l a t e s the f requency o f a CAFR bin
% k − the CAFR bin o f i n t e r e s t
% K − the FFT l en g t h
% Fs − the sampling f requency
% f − (out) the c a l c u l a t e d f requency

% Ca l cu l a t e the p o s i t i v e−s i d ed spectrum l en g t h and cro s sove r b in
Kp = round ((K+1)/2) ;
kc = round(sqrt (K)) +1;

% And ge t the f requency accord ing to the type o f b in
i f k <= Kp−(kc−1)

% Mirrored ACF
f = Fs /(Kp−k) ;

else
% Of f s e t FFT
f = ((k−1)−Kp+2∗(kc−1)) ∗(Fs/K) ;

end

end

A.6 Dessein with CAFR

The following code implements the Dessein with CAFR system.

function [P,V] = d e s s e i n c a f r f r a m e (x ,w,K,W, b , pmin ,Np)
%DESSEIN CAFR FRAME Dessein (CAFR) fo r a s i n g l e frame
% x − inpu t frame
% w − window func t i on
% K − FFT l en g t h
% W − s p e c t r a l t emp la t e s
% b − beta−d i ve rgence cons tant
% pmin − minimum p i t c h
% Np − number o f p i t c h e s (−1 to auto−e s t imate)
%
% P − (out) d e t e c t e d p i t c h numbers
% V − (out) a s s o c i a t e d peak va l u e s

% Window and pad to f u l l l e n g t h
x = x .∗ w;
x (length (w) +1:K) = 0 ;

% Ca l cu l a t e the CAFR spectrum
v = c a f r (x ’) ’ ;

% Run the NMF decomposi t ion
PN = nmf decomp (v ,W, b) ;

% Record the f i n d i n g s
P = [] ; V = [] ;

68

[pks , l o c s] = sort (PN, ’ descend ’) ;
i f Np == −1

% Borrowing Klapuri ’ s polyphony es i tma t ion
S = zeros (1 , length (pks) +1) ;
S (1) = 0 ;
s t = 0 ;
n = 1 ;
for j =1: length (pks)

s t = s t + pks (j) ;
S (j +1) = s t /(j ˆ 0 . 7) ;
i f S(j +1) <= S(j) | | n > 6

break ;
end
P(n) = l o c s (j)+pmin−1;
V(n) = pks (j) ;
n = n+1;

end
else

% Just use the f i r s t Np d e t e c t i o n s
P = l o c s (1 :Np)+pmin−1;
V = pks (1 :Np) ;

end

end

And this listing shows the pre-calculated system parameters.

% The beta−d i ve rgence cons tant
b = 0 . 5 ;

% Decimated sampling f requency
Fs = 12600 ;

% Window s i z e (40ms)
Kw = 504 ;

% Hamming window
w = hamming(Kw) ;

% FFT l eng t h
K = 512 ;

% Minimum p i t c h
pmin = 36 ;

A.7 Hybrid Tolonen/Klapuri

The following code implements the Hybrid Tolonen/Klapuri system. This code makes use of

several functions (barkwarp, wlpc, and wfilter) from the freely-available “WarpTB” warped

69

signal processing toolbox [24].

function [P,V] = hybr idtk f rame (x ,w,K,Kp, Fs , kc , pmin , lambda , b1 , a1 , b2 , a2 , tmin ,
tmax ,Mmax,H, c ,Np)

%HYBRIDTK FRAME Hybrid Tolonen/Klapuri p i t c h d e t e c t i on f o r a s i n g l e frame
% x − inpu t frame
% w − window func t i on
% K − FFT l en g t h
% Kp − po s i t i v e−s i d ed l en g t h
% Fs − sampling f requency
% kc − c ro s sove r b in
% pmin − minimum p i t c h
% lambda − warping parameter
% b1 , a1 − low−pass f i l t e r c o e f f i c i e n t s
% b2 , a2 − high−pass f i l t e r c o e f f i c i e n t s
% tmin − minimum k l a pu r i search range
% tmax − maximum k l a pu r i search range
% Mmax − maximum number o f harmonic mu l t i p l e s
% Np − number o f p i t c h e s (−1 to auto−e s t imate)
%
% P − (out) d e t e c t e d p i t c h numbers
% V − (out) a s s o c i a t e d peak va l u e s

% Window and pad to f u l l l e n g t h
x = x .∗ w;
x (length (w) +1:K) = 0 ;

% Ca l cu l a t e the whitened ESACF fo r Tolonen
y = w f i l t e r (wlpc (x , 1 2 , lambda) ,1 , x , lambda) ;
R = i f f t (abs (f f t (y)) . ˆ 0 . 6 7 + abs (f f t (f i l t e r (b1 , a1 ,max(0 , f i l t e r (b2 , a2 , y)))))

. ˆ 0 . 6 7) ;
R = e s a c f (R(1 :Kp)) ;

% Ca l cu l a t e the whitened FFT fo r Klapuri
Y = whiten (abs (p f f t (x)) ,H, c) ;

% Find the cand ida t e s from the ESACF
[˜ , l o c s] = f indpeaks1d (R(kc :Kp)) ;
N = 6 ;
r t = zeros (1 ,N) ; r s = zeros (1 ,N) ;
n = 1 ;
for i =1: length (l o c s)

t = l o c s (i)+(kc−1)−1;
i f round(p i t ch (Fs/ t)) >= pmin

% Apply Klapuri ’ s s a l i e n c e c a l c u l a t i o n
r t (n) = t ;
f = Fs/ t ;

M = min(f loor ((t−0.5) /2) ,Mmax) ;
mK = (1 :M) ∗K;
kmin = 1+round(mK. / (t +0.5)) ;
kmax = 1+round(mK. / (t −0.5)) ;
Ymax = zeros (1 ,M) ;
for m=1:M

Ymax(m) = max(Y(kmin (m) : kmax(m))) /(f ∗m+320) ;
end

70

r s (n) = (f +27)∗sum(Ymax) ;
n = n+1;
i f n > N

break ;
end

end
end
[rs , i x] = sort (rs , ’ descend ’) ;
r t = r t (i x) ;

% I n i t i a l i z e r e s i d u a l and de t e c t e d spectrums
YR = Y;
YD = zeros (1 ,Kp) ;

P = [] ; V = [] ;
j = 1 ; n = 1 ;
s t = zeros (1 , 10) ;
S = zeros (1 , 10) ;
while t rue

% Find the per iod wi th the b e s t s a l i e n c e
[t s] = s a l i e n c e (YR,K, Fs , tmin , tmax ,Mmax) ;

% Check the ESACF cand ida t e s
t2 = t ;
e x i t = 0 ;
while n <= N && rs (n) >= s

% Determine whether to cont inue (polyphony es t ima t ion)
i f Np == −1

s t (j) = r s (n) ;
S (j) = sum(s t) / j ˆ 0 . 7 ;
i f (j > 1 && S(j) <= S(j−1)) | | j > 6

e x i t = 1 ;
break ;

end
end

% Record the p i t c h
t = r t (n) ;
f = Fs/ t ;
P(j) = round(p i t ch (f)) ;
V(j) = r s (n) ;
i f j == Np

e x i t = 1 ;
break ;

end
j = j +1;
n = n+1;

% Remove the per iod and i t s p a r t i a l s from the r e s i d u a l
M = min(f loor (t /2) ,Mmax) ;
for m=1:M

kt = 1+round(m∗K/ t) ;
k = max(1 , kt−2) :min(Kp, kt+2) ;
YD(k) = YD(k) + YR(k) ∗(f +27) /(f ∗m+320) ;
YR(k) = max(0 , Y(k)−YD(k)) ;

end

71

% Reca l cu l a t e the remaining s a l i e n c e s
for i=n :N

t = r t (i) ;
f = Fs/ t ;

M = min(f loor ((t−0.5) /2) ,Mmax) ;
mK = (1 :M) ∗K;
kmin = 1+round(mK. / (t +0.5)) ;
kmax = 1+round(mK. / (t −0.5)) ;
ymax = zeros (1 ,M) ;
for m=1:M

ymax(m) = max(Y(kmin (m) : kmax(m))) /(f ∗m+320) ;
end
r s (i) = (f +27)∗sum(ymax) ;

end
[rs , i x] = sort (rs , ’ descend ’) ;
r t = r t (i x) ;

end
i f e x i t == 1

break ;
end
t = t2 ;

% Determine whether to cont inue (polyphony es t ima t ion)
i f Np == −1

s t (j) = s ;
S(j) = sum(s t) / j ˆ 0 . 7 ;
i f (j > 1 && S(j) <= S(j−1)) | | j > 6

break ;
end

end

% Record the f i n d i n g
P(j) = round(p i t ch (Fs/ t)) ;
V(j) = s ;
i f j == Np

break ;
end
j = j +1;

% Remove the per iod and i t s p a r t i a l s from the r e s i d u a l
M = min(f loor (t /2) ,Mmax) ;
for m=1:M

kt = 1+round(m∗K/ t) ;
k = max(1 , kt−2) :min(Kp, kt+2) ;
YD(k) = YD(k) + YR(k) ∗(f +27) /(f ∗m+320) ;
YR(k) = max(0 , Y(k)−YD(k)) ;

end
end

end

And this listing shows the pre-calculated system parameters.

72

% Decimated sampling f requency
Fs = 14700 ;

% Window s i z e (50ms)
Kw = 735 ;

% Hanning window
w = hamming(Kw) ’ ;

% FFT l eng t h
K = 1024 ;

% Pos i t i v e−s i d ed spectrum l en g t h
Kp = round ((K+1)/2) ;

% Crossover b in
kc = round(sqrt (K)) +1;

% Hop s i z e (10ms)
hop = f loor (Fs /100) ;

% Warping parameter
lambda = barkwarp (Fs) ;

% Create the f i l t e r bank
[b1 , a1] = butte r (2 , [2∗70/ Fs ,2∗1000/ Fs] , ’ bandpass ’) ;
[b2 , a2] = butte r (2 ,2∗1000/ Fs , ’ high ’) ;

% Klapuri search range
tmin = Fs /2100 ;
tmax = kc ;

% Maximum number o f harmonic mu l t i p l e s
Mmax = 20 ;

% Number o f c r i t i c a l bands
B = 30 ;

% Generate the whi ten ing f i l t e r s
[H c] = s w f i l t e r s (B,K, Fs) ;

% Pitch range
pmin = 36 ;
pmax = 96 ;

A.8 Conditional Klapuri

The following code implements the Conditional Klapuri system.

function [p , s] = c o n d s a l i e n c e (X,R,K,Kp, Fs , kc , thresh , pmin , pmax ,Mmax)
%COND SALIENCE Finds the b e s t p i t c h us ing c ond i t i ona l s a l i e n c e c a l c u l a t i o n

73

% X − po s i t i v e−s i d ed magnitude spectrum
% R − po s i t i v e−s i d ed g en e r a l i z e d ACF spectrum
% K − FFT l en g t h
% Kp − po s i t i v e−s i d ed FFT l en g t h
% Fs − sampling f requency
% kc − c ro s sove r b in
% thre sh − peak s e l e c t i o n t h r e s h o l d
% pmin − minimum p i t c h to cons ider
% pmax − maximum p i t c h to cons ider
% Mmax − maximum number o f harmonics to proces s
%
% p − (out) p i t c h the h i g h e s t s a l i e n c e
% s − (out) s a l i e n c e va lue

% Get the FFT peaks
[Xpks , Xlocs] = f indpeaks1d (X) ;
Xlocs = Xlocs (Xpks>thresh ∗Xpks (1)) ;

% Se l e c t the cand ida te p i t c h e s
n = 1 ;
P = zeros (s ize (Xlocs)) ;
for k=Xlocs

i f k >= kc
% Use the FFT va lue d i r e c t l y
f = b in2 f r eq (k ,K, Fs) ;
p = round(p i t ch (f)) ;
i f (p >= pmin) && (p <= pmax) && ˜any(P == p)

P(n) = p ;
n = n+1;

end
e l s e i f k > 2

% Refine us ing the ACF
t1 = min(1+round(K/(k−0.5)) ,Kp) ;
t2 = min(1+round(K/(k−1.5)) ,Kp) ;
[Rpks , Rlocs] = f indpeaks1d (R(t1 : t2)) ;
Rlocs = Rlocs (Rpks>thresh ∗Rpks (1)) ;
for t=Rlocs

f = Fs /(t+t1−2) ;
p = round(p i t ch (f)) ;
i f (p >= pmin) && (p <= pmax) && ˜any(P == p)

P(n) = p ;
n = n+1;

end
end

end
end
P = P(P>0) ;

% Ca l cu l a t e the s a l i e n c e o f each p i t c h cand ida te
i f ˜isempty (P)

s = zeros (s ize (P)) ;
for n=1: length (P)

f = pf r eq (P(n)) ;
t = Fs/ f ;
M = min(f loor ((t−0.5) /2) ,Mmax) ;
mK = (1 :M) ∗K;

74

kmin = 1+round(mK. / (t +0.5)) ;
kmax = 1+round(mK. / (t −0.5)) ;
Xmax = zeros (1 ,M) ;
for m=1:M

Xmax(m) = max(X(kmin (m) : kmax(m))) /(f ∗m+320) ;
end
s (n) = (f +27)∗sum(Xmax) ;

end
% And re turn the p i t c h wi th the h i g h e s t s a l i e n c e
[s , i] = max(s) ;
p = P(i) ;

else
p = 0 ;
s = 0 ;

end

end

function [P,V] = cond k lapur i f r ame (x ,w,K,Kp, Fs , kc , thresh , pmin , pmax ,Mmax,H, c ,
Np)

%COND KLAPURI FRAME Condi t iona l Klapuri p i t c h d e t e c t i on f o r a s i n g l e frame
% x − inpu t frame
% w − window func t i on
% K − FFT l en g t h
% Kp − po s i t i v e−s i d ed l en g t h
% Fs − sampling f requency
% kc − c ro s sove r b in
% thre sh − peak s e l e c t i o n t h r e s h o l d
% pmin − minimum p i t c h to cons ider
% pmax − maximum p i t c h to cons ider
% Mmax − maximum number o f harmonics to proces s
% H − s p e c t r a l wh i ten ing f i l t e r s
% c − s p e c t r a l wh i ten ing cen te r f r e q u en c i e s
% Np − number o f p i t c h e s (−1 to auto−e s t imate)
%
% P − (out) d e t e c t e d p i t c h numbers
% V − (out) a s s o c i a t e d peak va l u e s

% Window and pad to f u l l l e n g t h
x = x .∗ w;
x (length (w) +1:K) = 0 ;

% Ca l cu l a t e the whitened FFT and ACF
Y = whiten (abs (p f f t (x)) ,H, c) ;
R = max(i p f f t (Y. ˆ 0 . 6 7) ,0) ;
R = R(1 :Kp) ;

% I n i t i a l i z e r e s i d u a l and de t e c t e d spectrums
Yr = Y;
Yd = zeros (1 ,Kp) ;

P = [] ; V = [] ;
j = 1 ;
s t = zeros (1 , 6) ;
S = zeros (1 , 6) ;

75

while t rue
% Find the per iod wi th the b e s t s a l i e n c e
[p , s] = c o n d s a l i e n c e (Yr ,R,K,Kp, Fs , kc , thresh , pmin , pmax ,Mmax) ;
i f p == 0

break ;
end

% Remove the per iod and i t s p a r t i a l s from the r e s i d u a l
f = p f r eq (p) ;

M = min(f loor (2∗Fs/ f) ,Mmax) ;
g1 = (f + 27) ;
for m=1:M

g = g1 / (m∗ f + 320) ;
km = round(f r eq2b in (m∗ f , Fs ,K)) ;
k = max(1 ,km−2) :min(Kp,km+2) ;
Yd(k) = Yd(k) + g∗Yr(k) ;
Yr(k) = max(0 , Y(k)−Yd(k)) ;

end

% Determine whether to cont inue (polyphony es t ima t ion)
i f Np == −1

s t (j) = s ;
S(j) = sum(s t) / j ˆ 0 . 7 ;
i f (j > 1 && S(j) <= S(j−1)) | | j > 5

break ;
end

end

% Record the f i n d i n g
P(j) = p ;
V(j) = s ;
i f j == Np

break ;
end
j = j +1;

end

i f length (P) < Np
P = [P, zeros (1 ,Np−length (P))] ;
V = [V, zeros (1 ,Np−length (P))] ;

end

end

And this listing shows the pre-calculated system parameters.

% Decimated sampling f requency
Fs = 14700 ;

% Window s i z e (50ms)
Kw = 735 ;

% Hanning window
w = hamming(Kw) ’ ;

76

% FFT l eng t h
K = 1024 ;

% Pos i t i v e−s i d ed spectrum l en g t h
Kp = round ((K+1)/2) ;

% Crossover b in
kc = 1+ce i l (1/(2∗(1−2ˆ(−1/24)))) ;

% Peak−p i c k i n g t h r e s h o l d
thresh = 1/2 ;

% Maximum number o f harmonic mu l t i p l e s
Mmax = 20 ;

% Number o f c r i t i c a l bands
B = 30 ;

% Generate the whi ten ing f i l t e r s
[H c] = s w f i l t e r s (B,K, Fs) ;

% Pitch range
pmin = 36 ;
pmax = 96 ;

77

Bibliography

78

Bibliography

[1] A. Klapuri and M. Davy, Eds., Signal Processing Methods for Music Transcription,
1st ed. Springer, 2006.

[2] T. D. Rossing, The Science of Sound, 2nd ed. Addison Wesley, 1990.

[3] A. Klapuri, Signal Processing Methods for Music Transcription. Springer, 2006, ch.
Introduction to Music Transcription, pp. 3–20.

[4] D. Deutsch, Ed., The Psychology of Music, 2nd ed. Academic Press, 1999.

[5] The Complete MIDI 1.0 Detailed Specification, The MIDI Manufacturers Assocation
Std., 2001. [Online]. Available: http://www.midi.org

[6] Music frequency diatonic scale. Public Domain. [Online]. Available:
http://en.wikipedia.org/wiki/File:Music frequency diatonic scale-3.svg

[7] P. Herrera-Boyer, A. Klapuri, and M. Davy, Signal Processing Methods for Music Tran-
scription. Springer, 2006, ch. Automatic Classification of Pitched Musical Instrument
Sounds, pp. 163–200.

[8] A. Klapuri, Signal Processing Methods for Music Transcription. Springer, 2006, ch.
Auditory Model-Based Methods for Multiple F0 Estimation, pp. 229–265.

[9] M. Davy, Signal Processing Methods for Music Transcription. Springer, 2006, ch.
Multiple Fundamental Frequency Estimation Based on Generative Models, pp. 203–
227.

[10] ——, Signal Processing Methods for Music Transcription. Springer, 2006, ch. An
Introduction to Statistical Signal Processing and Spectrum Estimation, pp. 21–64.

[11] B. Logan and S. Chu, “Music summarization using key phrases,” in IEEE Internation
Conference on Acoustics, Speech, and Signal Processing, vol. 2, 2000, pp. 749–752.

[12] V. Tyagi and C. Wellekens, “On desensitizing the mel-cepstrum to spurious spec-
tral components for robust speech recognition,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 1, 2005, pp. 529–532.

[13] A. Klapuri, “Multiple fundamental frequency estimation by summing harmonic am-
plitudes,” in International Conference of Music Information Retrieval (ISMIR), 2006,
pp. 216–221.

79

[14] A. Dessein, A. Cont, and G. Lemaitre, “Real-time polyphonic music transcription with
non-negative matrix factorization and beta-divergence,” in International Society for
Music Information Retrieval (ISMIR), 2010, pp. 489–494.

[15] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” in Proceedings of the IEEE, vol. 77, no. 2, 1989, pp. 257–286.

[16] D. P. W. Ellis, “Prediction-driven computational auditory scene analysis,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, 1996.

[17] T. Tolonen and M. Karjalainen, “A computationally efficient multipitch analysis
model,” IEEE Transactions on Speech and Audio Processing, vol. 8, no. 6, pp. 708–716,
2000.

[18] R. Meddis and M. J. Hewitt, “Virtual pitch and phase sensistivity of a computer model
of the auditory periphery,” Journal of the Aco, vol. 89, no. 6, pp. 2866–2894, 1991.

[19] R. D. Patterson, “How complex sounds are represented in the auditory system,” Jour-
nal of the Acoustical Society of Japan (E), vol. 21, no. 4, pp. 183–190, 2000.

[20] R. P. Carylon, “Temporal pitch mechanisms in acoustic and electric hearing,” Journal
of the Acoustical Society of America, vol. 112, no. 2, pp. 621–633, 2002.

[21] P. Cariani, “Recurrent timing nets for auditory scene analysis,” in International Joint
Conference of Neural Networks, Portland, Oregon, July 2003.

[22] C. Yeh and A. Röbel, “A new score function for joint evaluation of multiple f0 hypothe-
ses,” in International Conference on Digital Audio Effects, Naples, Italy, October 2004.

[23] M. K. U.K. Laine and T. Altosaar, “Warped linear prediction (wlp) in speech and
audio processing,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing,
1994, pp. III.349–III.352.

[24] A. Härmä and M. Karjalainen. Warptb - matlab toolbox for warped dsp. [Online].
Available: http://www.acoustics.hut.fi/software/warp

80

Curriculum Vitae

John M. Thomas received his Bachelor of Science in Computer Science and Engineering from
LeTourneau University in 2006. He is now a Senior Consultant with Booz Allen Hamilton
in McLean, VA, as a software engineer. Prior to joining Booz Allen, Mr. Thomas was a
software engineer for Lockheed Martin in Manassas, VA

81

