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Traditional TCP/IP networks provide a best effort delivery service which places the 

complexity of congestion control in the end hosts, leaving the network relatively simple. 

It is well-known that the performance of the TCP congestion control scheme degrades 

severely under conditions of large bandwidth-delay products and/or high loss rates.  As 

the traffic load on the Internet increases, overall network performance and the quality-of-

service (QoS) experienced by individual users will degrade. To address this problem, a 

rate-based congestion control system operating as an overlay network is studied.  The 

nodes in the overlay network provide congestion control for the overlay links, which 

correspond to physical network paths.  By implementing congestion control as an overlay, 

network congestion can be alleviated without significantly increasing the complexity of 

the network.   

In this thesis, a bandwidth probe control (BPC) system is designed for an overlay link, 

which estimates the delay and loss characteristics of the overlay link by probing and then 



 

uses this information dynamically to determine an appropriate transmission rate for the 

link.  A rate control algorithm is proposed for this purpose, based on a simplified fuzzy 

logic controller.  In contrast, the legacy TCP/IP congestion control is based on an 

additive-increase, multiplicative-decrease (AIMD) control scheme triggered by packet 

loss timeouts.  The proposed rate control scheme can achieve much higher utilization and 

more stable performance than TCP/IP congestion control, which is especially crucial for 

the rate-based congestion control overlay. The BPC system also provides reasonable 

fairness to cross-traffic which may traverse a portion of the overlay link, thus sharing the 

link capacity. 

The BPC system was originally developed as an overlay version of the Software 

Adaptive Flow-Intelligent RoutEr (SAFIRE) which was developed as part of the Control 

for High-throughput Adaptive Resilient Transport (CHART) project, led by Hewlett-

Packard (HP) Laboratories and sponsored by the DARPA Internet Control Plane program. 
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Chapter 1: Introduction 
 

 

1.1 Background 
 

The TCP/IP network protocol suite, which is the foundation of current Internet, was 

originally designed to provide a single level of service (i.e., best-effort). However, as the 

Internet continues to thrive, the TCP/IP protocol suite is facing the challenge of quality-

of-service (QoS) and performance problems. Since the intermediate nodes merely 

provide “best effort” service to transfer packets from one node to another independently, 

they are blind to any traffic control information. The current protocols are sufficient for 

most applications which transfer simple files or messages. However, more and more 

applications for which “best-effort” service is simply insufficient are emerging. For such 

applications, quality-of-service is necessary to guarantee a certain level of performance to 

data flow.  

To address this problem, the Control for High-throughput Adaptive Resilient 

Transport (CHART) [1] project, which was a 42-month effort of the team led by HP Labs, 

designed an intelligent control plane to the current Internet. The CHART system 

achieved performance improvements by redesign the part of Internet Layer 3 and Layer 4 

protocols. The Software Adaptive Flow-Intelligent RoutEr (SAFIRE) [2] is a flow-aware 

software router designed at George Mason University within the Network Architecture 
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and Performance Laboratory as part of CHART system. The focus of SAFIRE is on 

dynamic flow routing of traffic in conjunction with a QoS signaling protocol. SAFIRE 

supports TCP explicit rate feedback (TCP-ER) defined in TIA 1039 [3], a QoS signaling 

protocol proposed by Dr. Lawrence G. Roberts of Anagran. SAFIRE can store the traffic 

information in terms of flows rather than packets and adaptively forward packets based 

on the stored flow information. This type of traffic is called flow routing. 

 

1.2 Problem statement and main contributions 
 

In order to realize a fully operational CHART system, SAFIRE or the hardware flow 

routers designed by Anagran need to be deployed on each node of the network, which is 

costly and time-consuming. An alternative approach to avoid this huge expense is to 

deploy SAFIRE as an overlay application for which the system only need to be installed 

on several major intermediate nodes to establish an overlay network on top of the legacy 

IP network. Nevertheless, the QoS signaling protocol needs to be aware of the link 

characteristics in order to allocate network resource to provide the desired QoS, which is 

a difficult task for current network overlay systems. Moreover, the actual available link 

capacity varies when part of the overlay link is traversed by cross-traffic. Also, a certain 

level of fairness should be provided to non-QoS traffic such as legacy TCP and UDP 

flows.  

To address those problems, this thesis proposes a new overlay system based on the 

SAFIRE implementation. The major functions of the new overlay system are to estimate 
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the link characteristics such as available bandwidth, delay and loss rate and to control the 

congestion of the traffic traveling through the overlay link at an optimal level. The goal 

of this work is to develop a rate-based congestion control algorithm for a network overlay 

system that can provide satisfactory and stable link utilization, robustness to random bit 

corruption, convergence to optimal efficiency and backward compatibility without 

introducing huge upgrading expense. 

In this thesis, we developed the Bandwidth Probe Control (BPC) system to achieve 

this goal. The BPC system is a rate-based congestion control overlay system which 

estimates the delay and loss characteristics of the overlay link by a bandwidth probing 

technique and then determines an appropriate rate using the information collected. Unlike 

the additive-increase, multiplicative-decrease (AIMD) congestion control algorithm of 

TCP/IP, the BPC system uses single-trip delay measurements instead of packet loss 

timeouts to evaluate the congestion level. A simplified fuzzy logic controller is developed 

to compute a proper sending rate. Hence, the BPC system is able to achieve a higher 

utilization of link capacity and much better stability than current TCP/IP protocols. By 

using delay information as a multi-bit feedback, the system can avoid drops in utilization 

by random bit errors.  

Although the BPC system was originally designed as an overlay extension of 

SAFIRE for the CHART system, it turns out that the BPC system can be applied 

independently of SAFIRE and/or CHART. Since it does not distinguish the nature of 

incoming traffic, the BPC system can improve the performance of all types of traffic. 
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1.3 Organization  
 

The remainder of this thesis is organized as follow. Chapter 2 provides a survey of 

current mainstream congestion control algorithms. Chapter 3 discusses the 

implementation issues and experimental setup of the BPC system. In Chapter 4, we 

explore the feasibility of using single trip delay as the indication of network congestion. 

Chapter 5 discusses the rationale behind BPC system in details and analyses the 

experimental results. The thesis is concluded in Chapter 6. 
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Chapter 2: Review of Congestion Control Techniques 
 

 

The first network congestion collapse of the Internet occurred in 1986 when the 

throughput of a communication link between Lawrence Livermore Laboratory and 

University of California, Berkeley dropped from 32 kbps to 40bps. Since then, the 

network congestion problem has been studied extensively. Network congestion occurs 

when a link or node carries so much data traffic that the quality-of-service deteriorates. 

Congestion may result in queueing delay, packet loss or even network collapse. Although 

the capacity of today’s Internet is continuously increasing, network congestion is still one 

of the major concerns because of the faster increasing demand from newer network 

applications such as real-time media streaming and voice over IP.  

The world’s first congestion control algorithm, TCP Tahoe, was proposed in 1988 by 

Van Jacobson and quickly evolved into TCP Reno in 1990s, which was later extended to 

TCP New Reno. Since then, a great number of congestion control/avoidance algorithms 

have been proposed and evaluated by researchers. 

In this Chapter, we investigate different classification of congestion 

control/avoidance algorithms. We also discuss the advantages and disadvantages of 

certain algorithms and the motivation of BPC system proposed in this thesis. 
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2.1 Goals of Congestion Control/Avoidance Algorithm 
 

The goals of congestion control algorithm are not only to avoid congestion in network but 

also to take full advantage of limited network resources, as listed below.  

 to achieve a high bandwidth utilization, 

 to provide fairness to other data flows, 

 to minimize oscillations in throughput and delay,  

 to response quickly to the network dynamics.  

The four items are the basic goals of a congestion control/avoidance algorithm. In [4], 

several performance metrics are also proposed to evaluate a given congestion 

control/avoidance algorithm. They are: 

 throughput, delay and packet loss rates, 

 response time to sudden changes or to transient events, 

 oscillations in throughput or in delay, 

 fairness and convergence times, 

 robustness to challenging, dynamic environments, 

 robustness to network equipment failures and to misbehaving users. 

Analysis of a congestion control/avoidance algorithm should be evaluated by the 

metrics above. 

2.2 Classification of Congestion Control/Avoidance Algorithms 
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Congestion control and congestion avoidance are two different approaches to handle 

network congestion. Congestion control is usually reactive after the link is overloaded 

while congestion avoidance prevents proactively the link from being overwhelmed by 

network traffic. In this thesis, we only discuss congestion control. 

There are many different criteria to classify congestion control algorithms. 

 type of different control strategies: 

Examples include AIMD-based algorithms, equation-base algorithms, controller-

based algorithms and so forth. 

 type of control variable: 

Congestion control algorithms can be divided into window-base algorithm and rate-

base algorithm. 

 type of feedback: 

Examples include binary feedback algorithms and multi-bit feedback algorithms. 

 type of deployment 

Congestion control algorithms can be deployed on end systems or intermediate nodes. 

In the remainder of this Chapter, we will discuss typical examples of congestion 

control algorithms. 

 

2.3 TCP Tahoe 
 

The first congestion control algorithm, TCP Tahoe, and its enhancements, such as TCP 

Reno, TCP SACK and TCP New Reno dominate the current computer networks. These 
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algorithms are AIMD-based. The control strategy of AIMD-base algorithms is simple. 

Basically, if the feedback does not indicate the onset of congestion, the congestion 

window size, cwnd, is increase by one packet. If congestion occurs, the cwnd is halved.  

 

                   

                          
 

In this case,             ⁄   Advantages of AIMD algorithm are obvious: it can 

be easily implemented and it is very robust. However, there are also several drawbacks. 

Firstly, increasing the congestion window size by one packet is conservative, while 

decreasing it by a half is too aggressive, particularly for large bandwidth-delay networks.  

It may take a long time for cwnd to achieve the maximum bandwidth in large bandwidth-

delay, which results in low utilization. Secondly, AIMD algorithm does not converge to a 

stable state. The throughput fluctuates roughly between 50% to 100% of the maximum 

throughput.  

TCP Tahoe and its enhancements rely on packet loss timeouts, which are a typical 

binary feedback to indicate network congestion. More specifically, if the sender receives 

triple duplicate ACKs or timeouts, the network is considered to be experiencing 

congestion. However, random bit errors could be the cause of the packet loss and this 

may occur even when sufficient bandwidth is available. Cross-traffic on the reverse path 

is one of the possible reasons as well. Hence, packet loss is not a very reliable indication 

of network congestion. In addition, binary feedback can only provide “true” or “false” of 

congestion occurrence. It is not able to indicate the level of congestion. On the contrary, 
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multi-bit feedback can help the sender to understand the network situation much better 

and make congestion control decisions that are more appropriate. 

 

2.4 FAST TCP and TFRC 
 

Two examples of equation-based algorithms are TFRC [5] and FAST TCP [6]. The 

former is also rate-based, while the latter is window-based. Rate-based and window-

based algorithms are mutually convertible according to specific network information. 

However, the main difference between these two algorithms is that most of the window-

base algorithms use stop-and-wait ARQ (Automatic Repeat reQuest) sliding window 

protocol. The sender does not transmit the next window of packets until the 

acknowledgements (ACKs) of previously sent packets are received. However, rate-based 

algorithms usually send packets continuously. Generally, rate-based algorithms can 

achieve better utilization, but window-based algorithms tend to provide better reliability. 

FAST TCP and TFRC share the same empirical TCP model from [7] based on 

round-trip time (RTT) and loss rate. The equation derived for rate-based TFRC is  

 

   
 

 √  
        √

  
           

  

 

This equation gives an upper bound on the sending rate T in bytes/sec, as a function 

of packet size s, round-trip time R, steady state loss event rate p and the TCP retransmit 

timeout value     . 

The equation used by FAST TCP to update congestion window size is 
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      {            
       

   
    }  

 

where       ], baseRTT is the minimum RTT observed and   is a positive 

protocol parameter. 

Equation-based algorithms can reach equilibrium state and stability with a stationary 

window size or rate leading to high utilization and minimal oscillations in throughput 

even for high-speed long-latency networks. Both FAST TCP and TFRC adopt RTT and 

loss rate as multi-bit feedback indication. Therefore, they are capable of detecting a much 

more precise congestion level of the network based on which they can make more 

reasonable decisions than the one uses binary feedback.  

However, the performance of an equation-based algorithm largely depends on the 

accuracy of the model. The TCP model provided by [7] is just an empirical model and 

was verified in few real-world scenarios. The assumptions made during the formula 

derivation may not be satisfied in a real-world network environment. Examples include 

the assumption that packet losses are correlated within a round, which means if a packet 

is lost, so are all packets that follow, till the end of the round. If the packet loss is caused 

by random bit errors, which may happen, then this assumption is false. On the other hand, 

the equations in FAST TCP and TFRC can only compute an upper bound of the next 

congestion window size. In our experiments, the upper bound computed by TFRC is 

actually too large to be of practical use. Furthermore, the accurate loss event rate p in the 

equation is also difficult to estimate.  
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2.5 XCP and Other Controller-based Algorithms 
 

From the viewpoint of control theory, the congestion control issue can be seen as a 

complex nonlinear control system. As a result, a potential solution to the issue is to use a 

control theory framework to analyze and control the network congestion. However, 

classic controllers such as proportional-integral-derivative controller (PID controller) 

require an accurate model of the process to be controlled, which is almost impossible for 

today’s Internet. Network traffic is simply too complicated to be modeled precisely. 

However, this is the case if we treat the entire intermediate networks as a black box and 

attempt to control it. If we can control the intermediate nodes and collect link 

characteristics from each of them, the congestion control issue would be much simpler.  

Several algorithms using a PID controller or other controllers have been proposed. 

The eXplicit Control Protocol (XCP) is one such algorithm which has received much 

attention [8]. XCP involves a joint design of end-systems and routers. The XCP sender 

uses a field called H_feedback to update the congestion window size. Whenever a new 

acknowledgement arrives, the cwnd is updated as follow: 

 

        (                )  

 

where s is the packet size and H_feedback could be positive or negative. The XCP router 

is responsible to compute the feedback value to cause the system to converge to optimal 

efficiency and min-max fairness. Two controllers, the efficiency controller and the 

fairness controller, are used to compute H_feedback.  
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Another controller-based congestion control algorithm is proposed in [9] which 

adopts a modified Smith Predictor to mitigate the effect of feedback delay. This rate 

controller is shown in Fig. 2.1. 

 

 

 

Figure 2.1 A modified rate controller with Smith predictor 

 

 

With the modified Smith Predictor, this rate controller is able to cope with feedback 

delay and to provide better performance in convergence time and overshoot magnitude.  

Most of the proposed controller-based congestion algorithms involve both end-

system and the intermediate node system. The drawbacks are just like the SAFIRE 

system we discussed in Chapter 1. Other congestion control algorithms such as TCP 

Tahoe, FAST TCP and TFRC discussed earlier are end-to-end systems, which leave the 

network relatively simple in terms of congestion control functionality. The dilemma is 

that an end-to-end system is easier to upgrade but harder to gather accurate link 
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characteristics, while joint system is costly to upgrade but may be able to acquire more 

useful link information. 

The solution we proposed to solve this issue is to design a network overlay system to 

provide congestion control. The BPC system proposed in this thesis only needs to be 

installed on some selected intermediate nodes to create an additional overlay network. 

Thus, the expense of upgrading the network can be kept to a minimum. Meanwhile, 

overlay nodes can acquire link information directly from their underlying legacy routers.  

 

2.7 Conclusion 
 

In this Chapter we presented an discussion of current congestion control algorithms. The 

advantages and limitations of various algorithms were considered. Based on the 

discussion given, none of those algorithms perfectly fits our requirements, as presented in 

Chapter 1. This motivates us to develop the BPC system to be discussed in Chapter 4 and 

5. 
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Chapter 3: Implementation Issues and Experimental 

Setup 
 

 

The BPC system was implemented as part of the CHART system described in Chapter 1, 

as a set of modules within the SAFIRE software flow router.  SAFIRE in turn is based on 

the Click modular software router [10].  The BPC system was developed and tested using 

the Emulab network emulation testbed.  This Chapter describes the building blocks of the 

BPC system based on the CHART/SAFIRE framework.  Implementation issues and the 

experimental setup for investigating and developing the BPC system are also discussed. 

 

3.1 Click modular router 
 

Both SAFIRE and the BPC system use the basic data forwarding plane of Click modular 

router, an open source software project. The Click modular router, which was developed 

by MIT and maintained by University of California, Los Angeles and other organizations, 

is a scalable software architecture for building new configurable software routers. A 

software router is an application that runs on a general-purpose computer, which 

performs the functions of a router in software.  The chief advantage of a software router 

is that it can be reconfigured easily and new functionality can be added readily to the 

router.  This makes a software router ideal for experimenting with new networking 
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protocols in a realistic network environment.  On the other hand, software routers are 

much slower than specialized hardware routers. 

The Click software router consists of different modules which are called elements. As 

Click elements are programmed in C++, they can be easily inherited and modified by 

users to implement various functionalities. Each element is designed as a C++ class and 

connected to other elements through one or more inputs and outputs. A single element is 

a software component representing a unit of router processing, such as queueing, packet 

classification and so forth. 

The BPC system is based on SAFIRE, which was also developed using Click 

modular router. Several universal packet processing elements from the original Click 

library were adopted to implement the BPC system. The Click elements are integrated 

into a functioning router using Click configuration files.  

A simple example of a Click configuration file is shown below. 

 

// R3.conf: 

//      Click configuration file for "R3" router in "Simple-Topology" 

//      with IP tunneling. 

// 

 

AddressInfo ( 

        source1      10.1.3.2 10.1.3.0/24, 

        sink1        10.1.1.3 10.1.1.0/24, 

        R1           10.1.5.2, 

        R2           10.1.4.3, 

); 

 

// Routing table lookup 

rt_flow :: LinearIPLookup ( 

        source1                 1, 

        sink1                   2, 

        255.255.255.255/32      0.0.0.0         0, 

        0.0.0.0/0               0, 

        0.0.0.0/32              0); 

 

rt_flow[0] -> EtherEncap(0x0800, 1:1:1:1:1:1, 2:2:2:2:2:2) -> Discard; 
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rt_flow[1] -> IPPrint("to R1", TTL true) 

           -> Queue 

           -> Socket(UDP,R1,10002); 

 

rt_flow[2] -> Queue 

           -> Socket(UDP,R2,10002); 

 

// Inbound from Click overlay 

Socket(UDP, 0.0.0.0, 10002) 

        -> CheckIPHeader 

        -> rt_flow; 

 

 

Fig. 3.1 shows the connection of different elements and packet processing 

procedures of this Click configuration file. In this example, packets arrive at the router 

from a socket tunnel. Then the IP header of incoming packets is checked by 

CheckIPHeader element. The LinearIPLookup element routes packets passing from 

the preceding element to the corresponding output. Output port 1 of LinearIPLookup is 

connected to the element EtherEncap which encapsulates packets in an Ethernet header 

and then the packets are dropped. Packets routed to output port 2 and 3 are enqueued by 

the Queue element and then sent to another socket. 

 

3.2 Features of SAFIRE and implementation 
 

SAFIRE integrates a control plane and a forwarding plane. The function of the control 

plane is to adaptively select the routing path based on a flow routing table. The 

forwarding plane simply forwards the packets according to the flow routing table. The 

two fundamental features of SAFIRE we are about to discuss are flow routing and in-

band explicit rate-based signaling. 
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Figure 3.1: Simple example of Click configuration file 

 

 

 

3.2.1 Flow routing 
 

One of the main contributions of SAFIRE is that data traffic is processed in terms of 

flows rather than packets. A flow router is defined as a router can that recognizes IP 

flows, stores flow information, and makes forwarding decisions based on flow 

information. Benefits of flow routing include QoS guarantees, improved throughout 

performance and fast failure recovery. The FR-1000 flow router developed by Anagran 
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as part of the CHART project is a hardware flow router, in contrast to SAFIRE, which is 

a software flow router. 

 

 

 

Figure 3.2 Flowchart of FlowLookup element 

 

 

To realize the flow routing feature, SAFIRE includes a Click element called 

FlowLookup. Fig. 3.2 shows the flowchart of FlowLookup.  
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When the first packet arrives at SAFIRE, a unique flow ID is computed by hashing a 

5-tuple (source IP address, destination IP address, source port number, destination port 

number, and protocol number) to identify a data flow. SAFIRE keeps track of the data 

flows traversing it and records the total number of flows. Whenever a packet arrives, the 

flow table where the flow information is stored is searched first. If the flow ID computed 

from the packet header is found in flow table and being active, the packet will be 

forwarded accordingly. If not, the packet will be forwarded based on a longest prefix 

match search and a new flow entry will be created and stored.  

 

3.2.2 In-band rate-base signaling 
 

TIA 1039 is an in-band QoS signaling protocol, designed by Anagran and standardized 

by TIA. The protocol can allocate network resource for flows via in-band signaling as 

they traverse the network. SAFIRE and BPC system were originally designed to support 

the TIA 1039 protocol.  

TIA 1039 supports the following QoS parameters: 

GR- Guaranteed Rate 

MR- Maximum Rate 

VR- Variable Rate 

AR- Available Rate 

PP- Preemption Priority 

BT- Burst Tolerance 

DP- Delay Priority 

CH- Charge Direction 

 

The GR parameter specifies a reserved bandwidth for a flow, which should be 

guaranteed by intermediate routers. Once the GR is confirmed for a flow, the allocated 
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bandwidth resource will not be shared with other flows. The AR parameter is the 

available rate for the flow based on the current loading of the network. The AR value 

changes from time to time according to the current network load. Detailed explanations 

of all of the TIA 1039 parameters can be found in [3]. 

A QoS header is inserted to the first packet and subsequently, a QoS header is 

inserted into once every 128 packets. The interval between QoS headers is by default 128 

packets, but the sender may choose a different value. When QoS packet arrives at routers 

supporting TIA 1039 protocol, the resource is reserved and specific fields of  the QoS 

header is updated by the routers. After the first packet arrives at the destination, a 

feedback QoS packet is sent to the source. Then the actual QoS flow is established. Fig. 

3.3 shows the structure of TIA 1039 QoS header.  

Fig. 3.4 gives an example showing how the AR value is computed and how a QoS 

flow is established. The flow source sends the first packet with AR = 100. When the first 

packet reaches the first router, its AR value will be reset to 35, because there are only 35 

bandwidth units available at this router. When the packet is processed by the third router, 

its AR value reset to 30. So when the first packet arrive the receiver, its AR value is 30. 

Then the receiver sends a QoS feedback packet to the sender, informing it of the final AR 

setting of this flow. The sender then adjusts its sending speed to 30. Once a QoS flow is 

established, not all packets belonging to this flow need to carry the QoS header. Only 

after a certain, i.e. 128 packets mentioned earlier, interval of packet transmissions, a QoS 

structure needs to be resent by the sender to update the QoS information. 
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Figure 3.3 TIA 1039 QoS header structure [3] 

 

 

A Click element called RateUpdate to implement the AR and MR provisions of 

TIA 1039. The AR parameter is the most important parameter for improving the current 

TCP performance. It can be used by end-system to figure out the maximum sending rate 

without causing severe network congestion along the path. A data flow, which follows 

the TIA 1039 QoS protocol and which is aware of the explicit sending rate is referred to 



22 

 

as TCP-ER flow. In overlay scenario, the BPC system provides the AR value of the 

overlay link to end-systems. 

 

 

 

Figure 3.4 A simple example of QoS flow establishment [3] 

 

 

3.3 The BPC system implementation 
 

The routers with the BPC system are divided into three types according its functionality: 

BPC-IN, BPC-OUT or a combination of both. A BPC-IN router encapsulates the 

incoming packets of an overlay link in a new header shown in Fig. 3.5. Then the packet is 
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delivered to the underlying legacy router and then transmitted to the BPC-OUT router 

that is on the other end of the overlay link. The BPC-OUT router reads the inserted 

header and updates the related fields. A feedback packet is then generated and sent back 

to BPC-IN router in which the sending rate is computed and updated based on the link 

characteristics stored in the feedback packet. An AR value is also sent to the end-systems 

via the TIA 1039 signaling protocol. 

 

 

 

Figure 3.5 The new header inserted by BPC-IN 

 

 

If two overlay links share a common BPC router, this router performs the 

functionalities of both BPC-IN and BPC-OUT. Fig. 3.6 shows an example of a network 

with multiple BPC routers. The blue line and red line represent two different overlay 

links respectively. Green line represents the cross-traffic which traverses a portion of red 

overlay link but is not observed by any BPC overlay router.  
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Figure 3.6 An example of a network with BPC routers 

 

 

We developed three Click elements to realize this process. They are: 

 IPTimesender  

The IPTimesender element is located in the BPC-IN router. It inserts a 20-byte 

header between the transport layer and data section of a packet. This header consists 

of a time stamp, a serial number, delay information and loss information. Then the 

encapsulated packet is sent to the underlying IP networks. 

 IPTimereceiver  

IPTimereceiver element operates within the BPC-OUT router. This element 

analyses the header inserted by IPTimesender. It calculates the single-trip delay and 

the number of packet loss, if any. Then it creates a feedback packet which will be 

sent back to BPC-IN router to carry this information.  

 FeedbackControl 
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FeedbackControl in the BPC-OUT router is the element that collects the link 

characteristics of the overlay link from feedback and computes the appropriate 

sending rate to control the congestion on the overlay link. Details about the 

implementation of the congestion control algorithm will be discussed in Chapter 5.  

 

3.4 Emulab 
 

Emulab [11] is a network testbed built by University of Utah, giving researchers a wide 

range of environments in which to develop, debug, and evaluate their systems. On 

Emulab, users are allowed to create their own network topologies with real network 

equipment and to configure the network nodes to test new protocols. Users can also 

modify the bandwidth, loss rate and latency of a given link dynamically. 

To create an experiment, users need to submit a topology file written in the scripting 

language Tcl. The topology file specifies the network structure, link characteristics, 

hardware of the nodes and operating systems.  

To evaluate BPC system, we created a network topology on Emulab. The topology 

file in Tcl is as follows. We chose pc850 as the node hardware and Fedora Core 4.0 

Linux as the operating system. The delay of each link is set to 5 ms. Link capacity is set 

to 100 Mbps except that the link between clicks and clickn is set 1Mbps. 

The network topology is shown in Fig. 3.7. 

#Bandwidth Probe Control 

#Create a simulator object 

set ns [new Simulator] 

source tb_compat.tcl 
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#Enable linux router 

$ns rtproto Session 

 

######################BUILD_TOPOLOGY############################ 

 

#Create east and west coast CONUS nodes 

set westc [$ns node] 

set eastc [$ns node] 

set westc0 [$ns node] 

set eastc0 [$ns node] 

set crossn [$ns node] 

set crosss [$ns node] 

 

set clickw [$ns node] 

set clicke [$ns node] 

set clickn [$ns node] 

set clicks [$ns node] 

 

#Set special node hardware for QoS driver 

tb-set-hardware $eastc pc850 

tb-set-hardware $westc pc850 

tb-set-hardware $clickw pc850 

tb-set-hardware $clicke pc850 

tb-set-hardware $clickn pc850 

tb-set-hardware $clicks pc850 

tb-set-hardware $crossn pc850 

tb-set-hardware $crosss pc850 

 

#Set of the node OS for sources and destination FC4-UPDATE 

tb-set-node-os $eastc QOS19-850 

tb-set-node-os $westc QOS19-850 

tb-set-node-os $clickw FC4-UPDATE 

tb-set-node-os $clicke FC4-UPDATE 

tb-set-node-os $clickn FC4-UPDATE 

tb-set-node-os $clicks FC4-UPDATE 

tb-set-node-os $crossn FC4-UPDATE 

tb-set-node-os $crosss FC4-UPDATE 

 

############################Enable CSI################################  

tb-set-node-startcmd clicke 

"/proj/chart/groups/csi/csi/common/utils/initialize" 

tb-set-node-startcmd clickw 

"/proj/chart/groups/csi/csi/common/utils/initialize" 

tb-set-node-startcmd clickn 

"/proj/chart/groups/csi/csi/common/utils/initialize" 

tb-set-node-startcmd clicks 

"/proj/chart/groups/csi/csi/common/utils/initialize" 

 

#Create initial link between east and west 

set link1 [$ns duplex-link $clickw $clickn 100Mb 5ms DropTail] 

set link2 [$ns duplex-link $clickn $clicks 1Mb 5ms DropTail] 

set link3 [$ns duplex-link $clicks $clicke 100Mb 5ms DropTail] 

set link4 [$ns duplex-link $crossn $clickn 100Mb 5ms DropTail] 
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set link5 [$ns duplex-link $clicks $crosss 100Mb 5ms DropTail] 

 

#Set LAN 

set lan0 [$ns make-lan "$westc $westc0 $clickw" 100Mb 5ms] 

set lan1 [$ns make-lan "$eastc $eastc0 $clicke" 100Mb 5ms] 

 

######################LINK_LOSS############################ 

 

tb-set-link-loss $link1 0.01 

tb-set-link-loss $link2 0.01 

tb-set-link-loss $link3 0.01 

tb-set-link-loss $link4 0.01 

tb-set-link-loss $link5 0.01 

 

#Run the simulation 

$ns run 

 

3.5 iperf 
 

Iperf [17] is a network testing tools written in C++ that can generate TCP and UDP data 

flows and measure the throughput, transmitted data size and loss rate of a network. It is 

an open source cross-platform software project supported by the National Laboratory for 

Applied Network Research. In the experiments in the remainder of this thesis, we invoke 

iperf to generate UDP and TCP data flows as main-traffic or cross-traffic.  

Iperf includes two functionalities, which are client and server. The information of the 

data flow created is displayed on the server for users to monitor the network situation. 

Iperf allows the user to set various parameters for different types of data flows. For 

example, the sending rate, datagram size and duration time can be configured for UDP 

data flows. 

In addition, another new implementation called iperf3 [18] is being developed to provide 

a smaller, simpler code base, and library version of the iperf. However, it is not 

backwards compatible with iperf. 
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Figure 3.7: Experiment topology on Emulab 
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Chapter 4: Delay-based Congestion Control 
 

 

In this Chapter, the use of delay measurements for controlling congestion on an overlay 

link is investigated.  First, related work on delay-based congestion control algorithms is 

reviewed.  Then, congestion control based on single-trip delay measurements through 

experiments on Emulab.  Finally, the results of the experimental study are analyzed and 

conclusions are given. 

 

4.1 Related work 
 

Using delay as congestion signal can overcome two main drawbacks of packet loss 

timeouts. First, delay can provide much more accurate and reliable estimation of network 

congestion than packet loss timeouts. Indeed, the delay information is noisy, just as of the 

packet loss rate. The triple ACK timeouts used for congestion detection can only suggest 

if congestion occurs or not, due to the binary nature of the packet loss signal. Further, the 

oscillation of congestion window size is unavoidable when using packet loss timeouts as 

congestion signal, especially in a network with large bandwidth-delay product. A multi-

bit congestion signal has to be employed to eliminate the two drawbacks.  
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A delay-based congestion avoidance algorithm (DCA) was proposed by Jain [12] in 1989 

for the first time. He discussed the feasibility of using changes of RTT as an implicit 

feedback signal and derived an expression of optimal congestion window size as a 

function of RTT. A practical implementation of DCA is best exemplified by TCP Vegas 

[13] which was developed at the University of Arizona in 1994. The main strategy of 

TCP Vegas is to keep a small number of packets buffered in the routers along the path by 

adjusting the congestion window based on RTT. However, the performance of TCP 

Vegas largely depends on the accuracy of the estimation of the baseRTT, which may be 

affected by rerouting or other network dynamics. Another problem is the fairness to 

legacy TCP flows. It was reported in [14] that TCP Vegas flows receive a smaller fair 

share of the available link capacity when competing with other types of TCP flows, i.e., 

TCP Reno.  

Further, [15] suggested that the correlation between RTT and packet loss is not 

strong enough to help the TCP sender to improve throughput reliably. This conclusion 

was established both by real-world experiments on seven high-speed Internet paths and 

by simulation experiments. However, a weak correlation between RTT and packet loss 

does not mean that the fluctuation of delay cannot reflect the level of network congestion. 

It is probably a wrong approach to enhance the AIMD algorithm by using the correlation 

between RTT and packet loss in TCP protocols. However, delay can be combined with 

other non-AIMD congestion control algorithms to improve the performance of 

congestion control. In the BPC system to be discussed in Chapter 5, single-trip delay is 

used by a simplified fuzzy logic controller and the binary search method to control the 
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network congestion. Other congestion algorithms, such as FAST TCP and TFRC, which 

are discussed in Chapter 2, also achieve better performance with RTT as feedback signal.  

Therefore, the key issue in the design of delay-based congestion control algorithms is 

how to take advantage of delay information. 

 

4.2 Study on single-trip delay behavior 
 

The single-trip delay can be on an overlay link represented as 

 

                               , 

 

where         is the transmission delay,        is the propagation delay,        is the 

packets processing delay and    is the queueing delay. 

Generally,        ,        and        are almost invariable, if the path is fixed. Hence, 

the variation in the single-trip delay is usually caused by queueing delay. According to 

Little’s law, which is given by 

 

          
 

the long-term average number of packets    is equal to the product of the long-term 

arrival rate    and the waiting time    which is queueing delay. The arrival rate is also 

related to the sending rate. For example, in an overlay network system, if we treat an 

overlay link as a single virtual hop, then the arrival rate is the sending rate of one end of 

the overlay link and all packets traveling on the overlay link are packets waiting in a 

virtual queue.  
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4.2.1 Experimental setup 
 

Several experiments corresponding to different network situations were set up to 

investigate the feasibility of using single-trip delay as network congestion measurement. 

Instead of conducting experiments in the real Internet environment, we chose Emulab as 

experimental environment. The reason behind this is that Emulab provides a purer 

environment without other noise traffic compared to the live Internet, which is better for 

analyzing the behavior of delay under different congestion control strategies.  

The experiments used the same network topology described in Chapter 3.The links 

between clicke and clickw constitute an overlay link. The bottleneck of this overlay link 

lies on the link between clicks and clickn, which is set to 1 Mbps. We use a network tool 

called iperf to generate UDP and TCP traffic from westc to eastc and to measure the 

throughput. The BPC system computes the forwarding delay between the BPC-IN in 

clickw and the BPC-OUT in clicke. Traffic traveling through the entire overlay link is 

called main-traffic in the remainder of this thesis. Main-traffic is a mixture of different 

types of traffics, i.e., UDP and TCP Reno. Cross-traffic traverses the link between clicks 

and clickn. For simplicity, we used UDP flow as the main-traffic in our experiments. Two 

types of cross-traffic, TCP and UDP, are introduced into the experiments separately. 

 

4.2.2 Experimental results 
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4.2.2.1 Main-traffic without cross-traffic  
 

In this experiment, the main-traffic represented by UDP flow is the only traffic in the 

entire network. The sending rate of the main-traffic is increased from 150 Kbps to 1 

Mbps in increments of around 500 Kbps. Each of the sending rate is kept for at least 10 

seconds to capture the dynamics of the delay.  

Fig. 4.1 shows the results of the experiment. The real-time single-trip delay does not 

change much before the sending rate reaches 950 Kbps which is 95% of the bottleneck 

capacity. At 950 Kbps of the sending rate, the delay starts to fluctuate up to 50% more 

than the value before. This is caused by the packets being queued in the buffer of the 

bottleneck link. However, after the sending rate climbs up to 1 Mbps which is exactly the 

bottleneck capacity, the delay starts to increase linearly, from a average of 37 ms to 

around 450 ms and is finally stabilized around 400 ms. The remarkable increment of 

delay from 26 to 35 seconds is due to packets piling up quickly at the buffer of the 

bottleneck link. After the buffer is filled up, the delay remains roughly stable. In addition, 

the throughput computed by iperf drops soon after the sending rate is set to 1 Mbps, since 

more packet are lost at this stage. 
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Figure 4.1: Delay and throughput behavior without cross-traffic 

 

 

4.2.2.2 Main-traffic with TCP cross-traffic 
 

A TCP flow is introduced as cross-traffic in this experiment. The sending rate of main-

traffic is set to a constant of 500 Kbps, which is half of the bottleneck capacity. Since 

TCP uses the AIMD congestion control algorithm (see Section 2.3), it keeps trying to 

find the maximum available bandwidth along the path.  

Fig. 4.2 presents the experiment results. Delay fluctuates drastically up to 200 ms 

after the TCP cross-traffic is introduced. The reason why delay cannot maintained at a 

stable value is that the AIMD adjusts the congestion window size all the time and never 

0 5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

150

200

250

300

350

400

450

500

Time (second)

S
in

g
le

-t
ri
p
 d

e
la

y
 (

m
ill

is
e
c
o
n
d
)

 

 

Real-time delay

Average delay per

second

Sending rate

Main-traffic throughput

0 10 20 30 40 50 60
0

200

400

600

800

1000

S
e
n
d
in

g
 r

a
te

 &
 t

h
ro

u
g
h
p
u
t 

(K
b
p
s
)

Delay behavior analysis without cross-traffic



35 

 

converges to a steady-state value. On the other hand, the throughputs of both main-traffic 

and TCP cross-traffic are around 500 Kbps. 

 

 

 

Figure 4.2 Delay and throughput behavior with TCP cross-traffic 

 

 

4.2.2.3 Main-traffic with UDP cross-traffic 
 

A UDP flow at the rate of 400 Kbps replaces TCP flow served as the cross-traffic in this 

experiment, while the main-traffic keeps the rate of 500 Kbps. The rate 400 Kbps is 
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chosen to be the rate of the cross-traffic because a higher rate would overwhelm the 

bottleneck link and causes severe congestion, just as seen in the first experiment.  

From the results shown in Fig. 4.3, we see that after introducing UDP cross-traffic at 

10 seconds, the delay of the main-traffic does become less stable than before. However, 

the magnitude of the fluctuations is much more moderate than in the scenario with TCP 

cross-traffic. Since UDP does not include any congestion control scheme, the sending 

rate of the cross-traffic is basically a constant, which could be treated as a steady-state 

value. 

 

 

 

Figure 4.3 Delay and throughput behavior with UDP cross-traffic 
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4.3 Analysis and conclusions 
 

According to our experiment results shown in Fig. 4.1, the buffer of the bottleneck link 

starts to enqueue packets when the sending rate is increased to around 95% of the 

bottleneck capacity. The higher the rate is, the faster and more severe the network 

becomes congested. Our experiments also indicate that if the sending rate is twice that of 

the bottleneck capacity, the buffer of the bottleneck link can be filled up within 1 second. 

Therefore, an indication of the sending rate reaching the maximum value is a moderate 

fluctuation of delay. In this case, the range of sending rate in which this indication 

emerges is around 940 Kbps to 980 Kbps. This is the range in which the BPC system, to 

be discussed in the next chapter, attempts to control the sending rate.  

In [14], it was claimed that when a TCP Vegas flow is competing with a TCP Reno flow, 

the TCP Vegas flow continuously backs off, losing buffer space to TCP Reno. This 

problem can be explained by the results shown in Fig. 4.2. Since the AIMD algorithm of 

TCP Reno keeps being greedy for more bandwidth, the bottleneck link repeatedly 

experiences a process of being overloaded and then being relieved. As a result, the delay 

experienced by the main-traffic changes continuously. If TCP Reno detects a packet loss 

when the buffer of bottleneck link is almost full, the delay of the main-traffic is very 

likely to be a large value. In the second experiment, we see a maximum of 200 ms delay, 

which is almost 10 times the normal value. Since the delay is greater than baseRTT most 

of the time, TCP Vegas will continuously decide to back off its transmission rate , which 

results in its unfair treatment compared to TCP Reno. To avoid this situation, the BPC 
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system chooses a minimum value between the rate of incoming main-traffic and half of 

the detected bottleneck capacity to be the sending rate. In the worst case, the main-traffic 

is guaranteed for at least half of the bottleneck capacity, if needed. 

In this Chapter, we analyzed the delay behavior in various scenarios. It was established 

that changes in the single-trip delay are able to reflect the network congestion level. If 

delay information can be used in a proper way, it can be a very good measurement signal 

for congestion control. The experimental results discussed in this Chapter for the basis for 

the BPC system developed in the next Chapter. 
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Chapter 5: Bandwidth Probe Control Algorithm 
 

 

In this Chapter, we discuss the details of the congestion control algorithm of the BPC 

system. Based on the experimental results discussed in Chapter 4, the BPC system uses 

the single-trip delay between the BPC-IN node and the BPC-OUT node to evaluate the 

congestion level of the overlay link. Unlike other delay-based congestion control 

algorithms, which use round-trip time, single-trip delay is able to provide more accurate 

congestion information without being disturbed by the network state on the reverse path.  

The BPC system collects single-trip delay for each packet delivered successfully and 

then computes an average delay by applying the exponentially weighted moving average 

(EWMA) method for every sample period. The EWMA delays are stored in a C++ vector 

until the next adjustment period arrives. The mean value and two types of standard 

deviation of the EWMA delay values in the vector are computed and evaluated by a 

function called delay_analysis at the beginning of the next adjustment period. The BPC 

system computes a new sending rate based on the value returned by delay_analysis.   

 

5.1 Fuzzy logic algorithm 
 

The BPC system applies a fuzzy logic algorithm to define the network state based on the 

parameters described above. The concept of fuzzy logic was proposed by Lotfi Zadeh in 
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1965 [19]. At first, the fuzzy logic was designed to deal with data-implicit states, 

different binary values 0 and 1. The fuzzy set theory in [19] provides a robust 

mathematical framework to process the uncertainty and  imprecision  in the real-world. 

Although the concept of fuzzy logic is now well-known in the form of fuzzy logic 

controllers, it was not applied to control system until the 1970s. The fuzzy logic was 

introduced to control congestion in ATM networks by [20]. A number of protocols and 

algorithms that apply fuzzy logic in telecommunication networks were discussed in [21]. 

In the delay_analysis function, we define a set of fuzzy rules for the statistical parameters 

of the single-trip delay to determine the network state. 

There are two types of periods in the BPC system: the sample period and the 

adjustment period. The adjustment period is longer than sample period, because the 

system needs to wait until the new sending rate takes effect on the system. A sufficient 

number of delay samples is also required to evaluate the effect of the new sending rate.  

At the beginning of a new adjustment period, the delay_analysis function is triggered 

to evaluate the effect of the previous sending rate on the overlay link to the network. This 

function computes four parameter values: 

 the average delay of a adjustment period (         ), 

 the normal standard deviation of delay collected during a adjustment period 

(         ), 

 the standard deviation based on baseDelay (              ), 

 the slope of delay variation (           ). 



41 

 

The baseDelay is the standard single-trip delay measured during the system startup 

time when the network is not fully utilized. 

From the experiments performed in Chapter 4, we found that there are three possible 

states of the network. 

 network is underutilized: 

In this case, the network capacity is not fully utilized. Sender can increase the 

sending rate, if more bandwidth is required. 

 network is on the “edge” : 

When the network is on the edge, it means that the sending rate is already in the 

range that packets start to be enqueued in the bottleneck buffer along the path. The 

sending rate should not increase any further in this state. 

 network is congested: 

In this state, the delay is much larger than normal and it fluctuates in a certain range. 

The sending rate needs to decrease in this state. 

 

 

Network situation                                                

Underutilization (1) < 1.5×baseDelay < 1.325 N/A N/A 

On the edge (2) > baseDelay 1.325~13.25 < baseDelay  

Severe congestion (3) >5× baseDelay ≥1.325  > −2 

To be observed (0) else else else else 

Table 5.1 Criteria to distinguish different network states 
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The delay_analysis function uses the four parameters to determine in which of these 

three states the network lies in. We choose two basic criteria to distinguish the three 

states. They are based on the values                and             . The values 

of           and                are computed based on the two criteria and 

baseDelay using the relationship    [      ]   [  ]     . Table 5.1 shows the 

combination of the four measurements for different network states. 

The parameters used in this table are based on the two rules of                and 

             and the specific experimental situation. 

The evaluation result of the delay_analysis function is returned to the controller to 

determine the appropriate course of action in next step of the congestion control 

algorithm.. 

 

5.2 Congestion control algorithm 
 

The congestion control algorithm of the BPC system is divided into three exclusive 

phases: the increasing phase, the searching phase and the controlling phase. Only one of 

the three phases can be active at any given time. The increasing phase and the searching 

phase are used to probe for the maximum available bandwidth (i.e., the bottleneck link 

capacity), during which we assume there is no cross-traffic throughout the network, i.e., 

in the system startup phase. After the bottleneck capacity is acquired by the BPC system, 

it steps into the controlling phase to cope with cross-traffic and maintain the congestion 

level of the overlay link. If the function delay_analysis determines that the network is 
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underutilized, the corresponding sending rate is called a “safe” value. If the network is 

overloaded, it is called an “aggressive” value.  

In the remainder of the thesis, we use      to represent the new sending rate, B to 

represent the bottleneck capacity,    to represent the most recent safe value,      to 

represent the most recent aggressive value and         to represent the incoming rate. 

 

5.2.1 Increasing phase 
 

In the increasing phase, the sending rate of BPC-IN node is initialized to a relatively 

small value. This initialization value can be customized by users based on their 

experience and this value may affect the convergence time of the BPC system. During the 

initializing phase, the control strategies for different network states are as follow: 

 network is underutilized: 

If the incoming rate is greater than preceding sending rate, increase the sending rate 

exponentially, according to              . Otherwise, switch to the controlling 

phase. 

 network is on the “edge”:  

Switch to the controlling phase. The sending rate is recorded as the bottleneck 

capacity,         . 

 network is congested: 

Switch to searching phase. 



44 

 

The worst possible scenario when exiting the increasing phase is that the sending rate 

is twice the bottleneck capacity, while the best scenario is that the sending rate just falls 

into the edge region. 

 

5.2.2 Searching phase 
 

The BPC system jumps into the searching phase because the bottleneck link is 

overloaded during the increasing phase. In the searching phase, a binary search method is 

performed to adjust the sending rate and finally reach the bottleneck capacity.  

The different control strategies employed in this phase are shown below. 

 network is underutilized: 

This means that the sending rate was decreased too much in the previous period. The 

new sending rate will be                     . 

 network is on the “edge”:  

Switch to controlling phase. The sending rate is recorded as the bottleneck capacity, 

        . 

 network is congested: 

In this case, the sending rate should be increased to                   . 

Another possible scenario of the searching phase is that the BPC system may never 

reach the edge region. This may happen especially when the increasing phase ends up in 

the worst-case scenario. It may require more than one adjustment period for the BPC 

system to reduce the queue size along the path. As a result, the sending rate may still be 
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considered too large even it is already below the bottleneck link capacity and none of the 

three states above is met. The BPC system can tolerate this problem by putting the system 

into the “to be observed” state in Table 5.1.  In this state, the controller does not change 

the sending rate until any of the conditions for the other three states is satisfied. The BPC 

system enters controlling phase, if the difference between      and        is smaller than 

3% of       . 

 

5.2.3 Controlling phase 
 

The controlling phase has multiple entrances from different states of the increasing phase 

and searching phase. The goal of the controlling phase is to control the sending rate 

around the bottleneck capacity and cope with possible cross-traffic. 
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Figure 5.1 Transition among different network states 

The noise introduced by cross-traffic as discussed in Chapter 4 may cause a different 

level of delay fluctuation depending on the nature and the rate of the cross-traffic. If the 

delay starts to fluctuate in the controlling phase, the controller adjusts the sending rate 

based an AIMD algorithm. However, different from the AIMD algorithm in TCP Reno, 

the BPC-AIMD algorithm uses        and      . This parameter setting is 

recommended in [15], which reports better performance and fairness to TCP Reno with 

this setting. The upper and lower bounds of the sending rate during the controlling phase 

are the bottleneck capacity   and the minimum value between     and the incoming rate. 

This strategy is applied after the bottleneck capacity   is acquired in the searching phase.  

However, an issue may occur if the BPC system enters the controlling phase from 

the underutilization state of the increasing phase when the incoming rate is small. Thus, 
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the system is unaware of the bottleneck capacity (i.e.,    ), because the incoming rate 

is smaller than the bottleneck link capacity and the network was never overloaded. As a 

result, the strategy will be different from BPC-AIMD algorithm. The sending rate 

remains the same as the incoming rate, no matter whether the delay fluctuates or not. This 

is not completely fair to cross-traffic, since the sending rate may be higher than     and 

cross-traffic shares less bottleneck link capacity than main-traffic. However, there is a 

compromise that has to be made. In the BPC system, the main-traffic has a higher priority 

when the bottleneck capacity is unkown. On the other hand, if the incoming rate changes, 

either by increasing or by decreasing, the sending rate is set directly to match the 

incoming rate. Then, in the next adjustment period, the network either remains in the 

same underutilization state (i.e., incoming rate is still smaller than the bottleneck capacity) 

or enters the other two states. If it is in the congestion state, it means the incoming rate 

now exceeds the actual bottleneck link capacity. The BPC system also switches from the 

controlling phase to the searching phase to figure out the bottleneck link capacity and 

finally returns to controlling phase. 

 

 



48 

 

 

Figure 5.2 Experiments for the BPC system 

Figure 5.1 shows the transitions among the different network states. The numbers 

from 0 to 3 indicate the different network states as listed in Table 5.1. 

 

5.3 Experiments and results 
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The BPC system was tested under the same experimental environment on Emulab as 

described in Chapter 4. The main-traffic and the cross traffic are annotated in Figure 5.2. 

The network parameters also remain the same. The single-trip delay of the overlay link 

from clickw to clicke is set to 25 ms and the loss rate is set to 5% (without any network 

congestion and cross-traffic) in Emulab. We chose 160 Kbps as the initial value for the 

sending rate in the increasing phase. 

To validate the ability of the BPC system to handle different network scenarios, 

seven experiments, which are representative of the range of possible network situations, 

are presented in this section.  

 

5.3.1 Experiment 1: Single flow of main-traffic without cross-traffic 
 

In the first experiment, the simplest scenario is that the main-traffic contains one flow 

with rate greater than the bottleneck capacity. The result of this experiment is shown in 

Fig. 5.3. 

The sending rate starts to increase from 160 Kbps and exits the increasing phase at 

the value of 1280 Kbps. After this, the BPC system enters the searching phase to find out 

the bottleneck link capacity, and then switches to the controlling phase. Finally, the 

sending rate remains stable at 940 Kbps and recorded as the detected bottleneck link 

capacity   which is 94% of the real bottleneck link capacity. The single-trip delay in this 

experiment changes from around 30 ms to 400 ms and back to 30ms in the controlling 

phase. The average throughput of main-traffic computed by iperf in the controlling phase 

is around 900 Kbps. 
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Figure 5.3 Result of experiment 1 with one flow main-traffic, none cross-traffic 

5.3.2 Experiment 2: Multiple flows as main-traffic without cross traffic 
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Figure 5.4 Result of experiment 2 with multiple flows of main-traffic, none cross-traffic 

 

 

Another two flows are introduced as main-traffic in this experiment. Flow 1 is a UDP 

flow with sending rate 500 Kbps and starts at 0. Flow 2 is a UDP flow with rate 200 Kbps, 

which starts at time 30 seconds. Finally, flow 3 is another UDP flow with rate 600 kbps, 

starting at time 50 seconds.  Results are shown in Figure 5.4. 
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unaware of the bottleneck capacity, which means    . From 12 to 20 seconds, the 

sending rate of the BPC-IN router is set to            . At the 20 second mark, flow 2, 

of rate 200 Kbps, is introduced. The introduction of this flow does not affect the system 

much, since the incoming rate of the two flows is still smaller than the bottleneck 

capacity. The delay monitored by the BPC system starts to fluctuate within a small range.  

Finally, the third flow of 600 Kbps comes in at the 50 second mark. We can see that the 

delay fluctuates much more drastically after the third flow is introduced. This indicates 

that the bottleneck is overloaded. Then the BPC system enters the searching phase from 

the controlling phase to determine what the bottleneck link capacity is.  

After adjusting the sending rate for several adjust periods, at 78.5 seconds, the BPC 

system finally determines that the bottleneck link capacity is 913 Kbps. Then it enters the 

controlling phase again to maintain this value as the sending rate. As shown in Fig. 5.4, 

the throughputs of main-traffic during the two controlling periods are both very close to 

the theoretical values. 

 

5.3.3 Experiment 3: Decreasing main-traffic without cross-traffic 
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Figure 5.5 Result of experiment 3 of main-traffic with decreasing rate, none cross-traffic 
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5.5 shows the result of this experiment.  
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Before 50 seconds, the behavior of the system is basically the same as that in the first 

experiment. The bottleneck is detected to be 940 Kbps at around 36.1 seconds. After 50 

seconds when one flow stops, the sending is reduced to match the current incoming rate. 

In addition, the throughput and delay follow their theoretical values. 

 

5.3.4 Experiment 4: 1 Mbps main-traffic with 300 Kbps UDP cross-

traffic 
 

Cross-traffic is included in all of the next four experiments. In this experiment, cross-

traffic of a 300 Kbps UDP flow is introduced at 50 second.  

As shown in Fig. 5.6, bottleneck is detected as 940 Kbps at 30.1 seconds. The 

throughput stays around 900 Kbps until the cross-traffic starts at 50 seconds. At 50 

seconds, because of the 300 Kbps cross-traffic, the single-trip delay is increased from 30 

ms to 500 ms within 5 seconds and the throughput also drops to 300 Kbps. After the BPC 

system detects the significant increase of delay, the controller starts to decrease the 

sending rate based on the BPC-AIMD algorithm. Four periods later, the BPC system 

finds that the delay is back to baseDelay when the sending rate is reduced to 550 Kbps. 

The controller actually attempts to increase the sending rate later on to achieve better 

throughput performance without causing severe network congestion. The cross-traffic 

lasts for 30 second with a very stable throughput around 270 Kbps. After the cross-traffic 

disappears, the controller increases the sending rate gradually to the detected bottleneck 

link capacity. The throughput of main-traffic also comes back to 900 Kbps.  
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Figure 5.6 Result of experiment 4 with UDP cross-traffic 
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From the result shown in Fig. 5.7, we can see that the BPC system acquires the 

bottleneck link capacity of 940 Kbps as usual at 20 seconds. After 50 seconds, the TCP 

cross-traffic enters the network. Although the delay does start to fluctuate 4 seconds later, 

the TCP flow does not obtain much network bandwidth until 60 seconds when the 

sending rate of the BPC system is reduced by more than 200 Kbps. This is because the 

window-based mechanism makes the TCP flow less aggressive than other rate-base data 

flows. However, the main-traffic controlled by the BPC system and the legacy TCP flow 

share the overlay link capacity equally. 

 

5.3.6 Experiment 6: 500 Kbps main-traffic with 300 Kbps UDP/TCP 

cross-traffic 
 

In the next two experiments, we explore the performance of BPC system with cross-

traffic when the network is not overload by main-traffic. In this experiment, the rate of 

main-traffic is set to 500 Kbps throughout the experiment, while UDP cross-traffic is set 

to 300 Kbps. 
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Figure 5.7 Result of experiment 5 with TCP cross-traffic 
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new flows. This does not affect the throughput of the main-traffic, which is 500 Kbps or 

above.  The UDP cross-traffic is introduced at 30 seconds. Nothing is done by the BPC 

system at this point, although it indeed detects the fluctuation of delay. As we discussed  

 

 

 

Figure 5.8 Result of experiment 6 with UDP cross-traffic 
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before, when the BPC system is not aware of the bottleneck capacity, it will maintain the 

incoming rate as its sending rate regardless of whether there is cross-traffic or not. The 

same result is observed in Fig. 5.9, where the UDP flow is replace by TCP flow. 

 

 

 

Figure 5.9 Result of experiment 6 withTCP cross-traffic 
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To provide a comparison with the performance of the legacy TCP flows, we conducted 

another experiment with only one TCP flow as main-traffic without any cross-traffic. Fig. 

5.10 shows the results of this experiment. We note that the throughput of the TCP flow 

oscillates drastically from 220 Kbps to 1000 Kbps during the transmission. Therefore, the 

BPC system is able to provide a much better performance than legacy TCP in terms of 

both average and instantaneous throughput. 

 

 

 

Figure 5.10 Throughput of TCP flow as main-traffic 
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5.4 Conclusions 
 

Network utilization rate and fairness to legacy TCP flows are the two key issues for our 

new rate-based overlay congestion control algorithm. In this chapter, we explained in 

details how these two issues are addressed by the BPC system.  

As shown in the results of the experiments above, the BPC system can achieve up to 

94% of the network utilization rate. This value varies depending on the network 

environment and the setting of the parameters. 

The BPC system basically divides data flows on the overlay link into two types. One 

is the data flows travels throughout the entire overlay link from the BPC-IN node to the 

BPC-OUT node. The other one is any data flows traverse a portion of the overlay link. 

The BPC system does not distinguish the constitution of these two types of traffic. The 

fairness the BPC system can achieve is that of main-traffic and cross-traffic. Thus, it is 

possible that different types of data flows within main-traffic or cross-traffic are not fair 

to each other. However, this is not the responsibility of the BPC system. 
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Chapter 6: Conclusions 
 

 

 

Using delay information as a congestion signal can improve the ability of congestion 

control/avoidance algorithms to understand the network congestion significantly. Many 

approaches have been proposed to explore the possibility to take advantage of delay 

information. TCP Vegas simply compares the real-time RTT samples with the baseRTT 

to detect network congestion. FAST TCP and TFRC established a model of the network 

with loss event rate and RTT to compute a proper congestion window size or sending rate. 

Our approach includes several features that can utilize the delay information to improve 

the network performance. 

The first feature is that we choose single-trip delay instead of round-trip time as the 

congestion signal. The delay on the reverse path, which contributes to the RTT, is not 

useful for evaluating the network congestion of forward path. Worse still, the reverse 

path delay may introduce destructive noise, if the reverse path is congested. This noise 

can lead to an inaccurate perception of the network status, which may guide the 

congestion control/avoidance algorithm to make incorrect decisions. In contrast, the 

single-trip delay excludes this possibility.  



63 

 

The second feature is we introduce a new approach evaluating delay information.  

We assess the correlation among delay samples over a certain period by average value, 

standard deviation and variation slope. Those parameters can reveal not only the absolute 

value but also the fluctuation level and the variation trend of the delay measurements. 

More effective information can be extracted from the delay by measurements using this 

feature. 

The next feature is the introduction of the principle behind fuzzy logic controller. 

The fuzzy logic controller is widely used in many control scenarios, especially when it is 

difficult to create an accurate model. This is also the situation of today’s Internet. The 

complexity of the Internet makes it too challenging to create an appropriate model. Our 

approach applies several fuzzy rules to determine the status of current network and make 

proper decisions.  

The proposed BPC system is still not developed enough to be applied to a complex 

real-world network. Firstly, the accuracy of the single-trip delay relies on the resolution 

of the network synchronization protocols such as Network Time Protocol (NTP) and 

Simple Network Time Protocol (SNTP), particularly in a network with large physical 

distances. Secondly, parameter tuning is another concern. The parameters we choose to 

determine the network states are not universal to all other networks. A basic threshold has 

to be defined to derive the other parameters. However, this threshold currently relies on 

human experience. When applying our approach to a different network, a learning 

process is necessary to help the system operates effectively. Thirdly, when the bottleneck 

link capacity is unknown, the fairness our system provides to legacy TCP flows is not 
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perfect. The main-traffic always has priority to pass through the overlay link. An adaptive 

learning method can be developed to address those issues. This learning method should 

be able to study a new network without human interaction by monitoring the delay and 

throughput performance under different network loads.  
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