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ABSTRACT 
 

 

 

IMPROVING PERFORMANCE AND MITIGATING TEMPERATURE RISE WITH 

RECONFIGURABLE STT-NV LOGIC BASED FUNCTIONAL UNIT 

 

Adarsh Reddy Ashammagari, M.S. 

 

George Mason University, 2013 

 

Thesis Director: Dr. Homayoun Houman 

 

 

 

Unavailability of functional units and their unequal activity makes them performance 

bottleneck and thermal hot spots units in general-purpose processors. This thesis proposes 

to use reconfigurable functional units to overcome these challenges. A selected set of 

complex functional units that might be under-utilized (i.e. have low temperature), such as 

a multiplier, divider, etc. are realized in a time multiplexed fashion using a shared 

programmable Look Up Table (LUT) based fabric. This allows for run-time 

reconfiguration and migration of the activity from functional units that are responsible for 

thermal hot spots (i.e. high temperature functional units) to the units that are less active. 

LUT based implementation also allows under-utilized functional units to be dynamically 

reconfigured to the functional units that are performance bottleneck (i.e. heavily utilized 

functional units) and hence improving performance. The programmable LUTs are 

realized using Spin Transfer Torque (STT) Magnetic technology (also called STT-NV) 

due to its zero leakage and CMOS compatibility. This thesis presents, the several 
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developed power-thermal and performance-aware algorithms to most effectively 

reconfigure functional units at run-time. The results show significant performance 

improvement of 16% on average across standard benchmark. Also, reconfiguration 

reduces maximum temperature of functional units by up to 27
o
 C and almost eliminates 

the thermal variation across functional units. This comes with almost 16% increase in 

functional units total power dissipation across SPECint benchmarks and almost 18% 

reduction in their power across SPECfp benchmarks. 
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1 Introduction 
 

 

With the current shrinking trend in CMOS technology, larger processing capabilities can 

be incorporated within the same die footprint. At the same time, the number of functions 

that are now computationally realizable has also increased in leaps and bounds. 

Therefore, an efficient allocation of functional resources becomes crucial to the overall 

performance of any processing unit. Under limited functional resources available to the 

processors, major performance bottlenecks arise from functional resource unavailability. 

With mobile devices being battery powered, energy efficiency of the processing units and 

the thermal stability of the design become major concerns. These concerns become 

serious with the growth rate in battery power falling short of the growth rate in consumer 

demands for higher data rates. 

One promising way to address this energy-efficiency challenge is to exploit 

reconfiguration in designs, whereby the same hardware component can be “reconfigured” 

to execute different functionality at different point in time. The way to provide re-

configurability in designs today is primarily through the use of FPGA or Coarse Grain 

Reconfigurable Arrays (CGRA). For FPGAs, However, not only there are challenges in 

their integration on the processor die, but they also exhibit quite poor power-efficiency.  

Unlike FPGAs, CGRAs are extremely power-efficient and quite general-purpose 

accelerators (wherein most mobile applications can be accelerated). However CGRAs 
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pose immense challenges to compiler technology [27-28], while at the same time their 

performance and power-efficiency is so critically dependent on the compiler optimization 

techniques.  

This thesis presents an alternative way to enable re-configurability in embedded 

processor architecture.  The solution is to enable re-configurability in the general-purpose 

core by using Spin Transfer Torque non-volatile (STT-NV) fabric. STT-NV is a new 

fabrication technology that is compatible with CMOS. It adds only a few metal layers 

between the layers 3 and 4 of the chip, and has been touted as one of the most promising 

“post-CMOS technology.” The advantages of using STT-NV technology are its zero 

standby power, non-volatility, scalability, and thermally robust behavior. The most 

popular use of STT-NV is to implement low-power, high-density on-chip memories. As a 

thumb rule, it is possible to design 4 times denser memories, with almost the same read 

power and read times with STT-NV technology. Since caches (made up of RAM circuits) 

are the major contributors to the leakage power of the processor (which in turn is a 

significant chunk of the total processor power), using STT-NV based RAM result in a 

good amount of power savings [12]. This thesis takes the next step – attempt to 

aggressively exploit STT-NV technology, by using it to design the reconfigurable logic 

needed to support dynamic reconfiguration of functional units. This thesis explores ways 

to use reconfiguration to maximally improve power, performance and robustness of 

processor architecture. 

1st first step, this thesis investigates the design of a reconfigurable functional unit in 

embedded processors. General-purpose embedded processor such as arm, atom, xscale, 
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mips or tenscilica based cores typically have a certain number of functional units for each 

type of adder, divider, and multiplier, for instance. In these embedded cores a functional 

unit is a critical unit that is not only a performance bottleneck of the design, but also a 

temperature hotspot [7, 8]. Due to its high activity and small size, the functional unit’s 

power density is large, and therefore is a thermal hotspot. Dynamic reconfigurable units 

to address these power, performance, and thermal challenges using STT-NV logic are 

being attempted in this thesis. 

This thesis presents analysis, demonstrating the benefits of a reconfigurable STT-NV 

logic when deployed in the functional unit of the general-purpose processor in MPSoC 

architecture.  The novel contributions of this work are as follows: 

• Utilizing STT-NV technology for dynamic reconfiguration of functional units that 

results in lower power, higher performance, and more thermally balanced design 

• Proposing performance aware reconfiguration algorithms to reconfigure 

functional units with the objective of performance enhancement.   

• Proposing a thermal aware reconfiguration algorithm based on regional migration 

of computation from hot spots to cooler spots to achieve more thermal balancing. 

• Comparative analysis of power, performance, and temperature of STT-NV design 

style versus custom CMOS that is augmented with state-of-the-art leakage reduction 

techniques such as power grating. This analysis is performed for various functional units 

to identify the best design style for each unit.  
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2 Related work 
 

 

 

This section points out and discuss briefly the important papers / journals which, in past, 

have worked on improving the performance, reducing power and temperature of a 

general purpose processor. 

 

2.1 Improving performance of functional unit 

 

Previously, several dependencies have been targeted and were improved using micro-

architecture techniques like pipelining, superscalar architecture, simultaneous multi-

threading etc. Another take on performance gain is to improve the number of resources; 

multi core architectures have been implemented. Both homogeneous and heterogeneous 

multi-core architectures have been popular implementations.  

In [4] they have implemented coupling of compile-time analysis routines and hardware 

synthesis tools, by configuring a given set of the hardware-programmable functional units 

(PFUs) i.e. augment the base instruction set architecture so that it better meets the 

instruction set needs of each application; Programmable Instruction Set Computers 

(PRISC), and defined a new primitive datapath operation. 

In paper [30] architecture called as PipeRench is proposed, which uses a configured 

connections between programmable logic elements and registers using look up tables. 

They named this interconnected network of processing elements as a reconfigurable 
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functional units (RFU), and the data set used to program interconnects and processing 

elements as configuration. Paper [31] used the reconfiguration technique mentioned in 

[30] and developed a prototype system; CHIMERA, which has the ability to support 

application specific operations; i.e. In [30,31] they have modified the control logic and 

are issuing the instructions to CMOS functional units depending on the behavior of the 

application. But, direct conversion of one functional unit to another has not been 

proposed yet. 

 

2.2 Reducing power and temperature in Functional units 

 

In order to reduce power consumption, leakage power has been targeted from several 

years. Other papers have been discussed which helped in reduction of functional units 

temperature.  

In [3] they have proposed a time based approach, where the functional units are put to 

sleep mode when they are idle for longer times and are woken when an instruction 

requires a particular functional unit. A performance loss of 5% has been listed in this 

paper by implementing power-gating technique. 

Paper [32] presents a hardware technique, where they substitute some of the power-

hungry adders of a 64-bit superscalar processor, by others with lower power-

consumption, and modify the slot protocol to issue many possible instructions to low 

power consumption units and states the loss in performance by implementing this 

technique. 
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Paper [33] concentrates on the sensitivity of leakage on temperature i.e. leakage increases 

with rise in temperature.  This paper points to the variation of functional unit power 

consumption and thermal hotspot occurrence in the functional units. They introduce 

extremely small, accurate leakage sensors to reduce power consumption and variation. 

They proposed leakage-aware operation-to-FU binding mechanism (LAOFBM) and 

leakage-aware power gating (LA-PG) mechanisms to reduce the mean and standard 

deviation i.e. variation and in-turn reduce power consumption. 

In [12] they presented resistive computation, which aims at avoiding the power wall by 

migrating most of the functionality of a modern microprocessor from CMOS to spin-

torque transfer magneto-resistive RAM (STT-MRAM), a CMOS-compatible, leakage-

resistant, non-volatile resistive memory technology. They implemented much of on-chip 

storage and combinational logic using leakage-resistant, scalable RAM blocks and 

lookup tables.  

Paper [8] points to a thermal aware floor-plan. They have taken adjacent block 

temperature effect and designed a new modified floor-plan which can prevent occurrence 

of thermal hotspots.  

Paper [20] proposed an infrared measurement setup to capture run-time power 

consumption and thermal characteristics of modern chips. They used infrared cameras 

with high spatial resolution and high frame rate to capture thermal maps. To generate a 

detailed power breakdown (leakage and dynamic) for each processor floor-plan unit, and 

employed genetic algorithms; which finds a power equation for each floor-plan block that 

produces the measured temperature for a given thermal package.  
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3 Motivation 
 

 

 

This section motivates the work by providing insight on why functional units in general-

purpose processor are performance, power and temperature bottleneck unit. 

 

3.1 Performance 

 

Unavailability of functional unit is one of the major performance bottlenecks in general 

purpose embedded and high performance processors [1, 2, 3, 4, 5]. The functional unit 

conflicts occur when the processor pipeline has ready instructions, but there are no 

available functional units to execute them. Note that in spite of high functional unit 

conflicts, it is not design efficient to increase the number of functional units in processor 

pipeline, as the complexity of additional functional unit will be significant [16, 17, 18, 

19]. As studied in several works, increasing the number of functional units in general 

purpose processors not only increases the power consumption of the processor but also it 

will significantly affect the complexity of several back-end pipeline stages including 

instruction queue, write-back buffers, bypass stage, register file design and could severely 

affect the processor performance, as the number of write-back ports increases 

significantly [16, 17]. Only increasing the total number of functional units (which is 

equivalent to the maximum issue width) from 4 to 6, increases the critical path delay and 
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the total power of the processor by 21% and 18%, respectively[16, 17]. The major 

increase is due to the impact on the wake-up and bypass logic of the processor. 

The utilization of each functional unit in a processor is significantly different. Figure 1 

shows the utilization of each of the functional units for SPECK2K benchmarks. Figure 1 

(a) shows the percentage of program execution time that each functional unit is idle. 

Across all benchmarks most functional units are significantly idle, except for IntAlu. 

Figure 1 (b) reports percentage of program execution time when a functional unit was 

requested but was not available. In most benchmarks a significant conflict is being 

observed in only one functional unit, which is not the same unit for all benchmark. 

Results from Figure 1 (a) and (b) suggest that if we could transform the idle units to the 

unit with high conflict we could reduce the conflict rate and potentially improve 

performance. 

Note that for most of the benchmarks, the functional unit with high conflict was also idle 

for more than 80% of program execution time. This implies that, most of the times units 

are accessed in a burst and remain idle for most of the time. Note that there is no single 

unit which has high unavailability across all benchmarks. Therefore, there is a need for 

reconfiguration algorithms to manage the idle resources during a resource conflict (or 

unavailability) to reduce the conflict rate. This reconfiguration can be achieved by using a 

look up table (LUT) based functional units. This thesis uses STT-NV fabric to realize this 

(more on this in section 4). 
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Figure 1 (a) Percentage of execution time that functional unit is idle. (b) Percentage 

of times functional unit requested but was not available (functional unit conflict). 

 

 

3.1.1 Potential for improving performance by increasing number of functional 

units 

 

In spite of large idle time for the functional units, increasing the number of functional 

unit improve performance significantly. Figure 2 reports the performance improvement in 

terms of IPC (average number of instruction committed per processor cycle) as the 

number of functional units increase to 2X, 3X and 4X times. 

Figure 2(a) shows that increasing the number of int ADD improve performance 

significantly across many benchmarks. Interestingly, in spite of a very high idle time of 

integer mul/div, floating point add and floating point multiply and divide, increasing the 

number of these units, improve performance significantly for many benchmarks, as well. 

For instance in apsi and gap while intmul/div is idle for more than 96% of the time, 

doubling the number of this unit increase the performance by 13% and 23% respectively. 

To better understand this let’s take a look at the conflict results in Figure 1(b). 
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Interestingly in these two benchmarks the intmul/div unit is the main source of conflict 

with 11% and 22%, respectively. In fact in these benchmarks the intmul/divide is 

requested in burst. While the average idle time is almost 95%, there are some intervals 

that the unit is being accessed very frequently and therefore additional intmul/divide unit 

during those intervals could reduce the conflict and potentially improve performance. 

Also Figure 2(e) reports the speed up when increasing the number of all functional units 

at the same time. Doubling the number of functional units improve performance 

significantly by as much as 50%. The average speedup is 19%. While there are some 

benchmarks that tripling and quadrupling the number of functional units improve their 

performance substantially (applu, art, facerec, lucas, mesa, mgrid), the largest speed up is 

achieved when doubling the resources. Further gains are seen with increased number of 

functional unit, but the marginal gains drop off. 

 

3.2 Power & Temperature 

 

Power density of processors is increasing as technology is scaling down. High power 

density is known to create local hot spots, which results in excessive regional temperature 

and reduced reliability of the units and increases leakage current exponentially [8]. 

Increased cooling cost, higher probability of timing errors, physical damages, and 

lifetime reduction are just few of many consequences caused by higher power density. 

High active regions in a processor such as functional units and register file have shown to 

have more than 20-degree Celsius higher temperature compare to less active regions like 
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on-chip caches [7]. In particular, functional units have shown to be a thermal hotspot 

component in many embedded and high performance processors [8, 20, 21]. 

 

 

 

Figure 2 Relative performance improvement when the number of (a) IntADD (b) 

IntMUL/DIV (c) FPAdd (d) FPMUL/DIV, and (e) all units increase by 2X, 3X and 

4X {vertical bar shows the % of performance improvement} 
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(a) 
 

 
 

(b) 
 

Figure 3 (a) Floor Plan (b) Processor Thermal Map 
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Figure 4 Power and Temperature variation in functional units 

 

 

Figure 3 shows the thermal map of our studied architecture (more in section 5.1), 

verifying the functional units to be the thermal hotspot. Figure 4 shows the average 

power and average steady-state temperatures of various functional units in our studied 

architecture for SPEC2K benchmark. In general, temperature of a block rises because of 

its high activity i.e. high power density. IntAlu being highly active unit has the maximum 

temperature among other functional units, creating thermal hot spot. The temperature of a 

block not only depends on its power dissipation but also the adjacent block power 

1dissipation. Due to adjacency to integer register file (shown in Figure 3) which is also a 

thermal hotspot, IntAlu unit temperature rises compare to other functional units. 

This thesis describes the Reconfiguration and Migration (RC+M) technique to mitigate 

the activity of a hot functional unit to a cold functional unit and therefore reducing the 

maximum temperature of the functional units. 
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4 LUT based reconfigurable functional unit 
 

 

 

4.1 Overview of STT-Based LUT Circuit 

  

STT-NV technology utilizes Magnetic Tunnel Junctions (MTJ) to realize nonvolatile 

resistive storage. There have been several attempts to use MTJs for building logic circuits 

with the hope of exploiting the leakage benefit of MTJs in order to reduce the circuit 

power [12, 22-24]. However, due to the significant energy involved in changing the state 

of an MTJ, circuit styles that rely on changing the state of MTJs in response to input 

changes do not show any power and performance benefit [15]. An alternative to this 

approach has been to realize logic in memory by using LUTs that are built based on 

MTJs [12]. Resistive Computation [12] replaces conventional CMOS logic with 

Magnetic Tunnel Junction (MTJ) based Look-Up Tables (LUTs). It has been proposed 

for tackling the power wall. Figure 5 shows the schematic of a 3-input MTJ-based LUT 

that was used in [12]. An MTJ is selected by using the pull-down NMOS selection tree, 

and the current of the dynamic current source is divided between the selected MTJ and 

the reference resistor, resulting in a low swing differential voltage on nodes DEC and 

REF during the evaluation phase when clock (CLK) is high. This low swing voltage is 

then amplified using a sense amplifier stage to achieve full voltage swing outputs (Z and 

Z’). Figure 6 shows the plots of power, delay, and energy for LUT sizes ranging from 2 
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inputs to 8 inputs. This data is obtained for the cases where 50% of the MTJs are at the 

high state and remaining 50% at the low state. Simulations are performed in a 32nm  

predictive technology [11], where the expected RH and RL values are at 6.25K and 2.5K, 

respectively [12]. 
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Figure 5 3-input MTJ-based look-up table [5] [9]. 
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Figure 6 Power, leakage, performance, and area results of LUTs with high and low 

state MTJs (RH, RL). 
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a commercial FPGA synthesis tool in order to get a count of LUTs needed for each 
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65 such LUTs. Hence, we assume reconfiguring the multiplier unit to the adder or vice 

versa involve writing to at most 65 LUTs. Therefore, the total number of STT-Non-

Volatile (STT-NV) bits to be written is 65 * 16 = 1040 bits or roughly 1 Kbits. The write 

access time to a single bit STT-NV is estimated to be 25ns [10], which is 25 cycles for 

1GHz system clock. If LUTS are written in parallel using a 128-bit wide data bus, the 

reconfiguration is estimated to take about 8 write operations (i.e. 200 cycles).  

 

Table 1 Comparison of adder and multiplier results in alternative styles 

 

Metric Unit STT-NV LUT 

style 

Static CMOS style 

Delay adder 2.89 1 

multiplier 2 1 

Active mode power adder 6.46 1 

multiplier 0.74 1 

Standby mode (leakage) power adder 0.17 1 

multiplier 0.23 1 

Area adder 3.89 1 

multiplier 0.90 1 
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The configuration bits for the LUTs that are different between the adder and multiplier 

configuration need to be stored in a ROM. A controller will read the configuration bits 

from ROM and write to the STT-NV LUTs. For configuration energy estimate, we have 

ignored the energy of reading the configuration bits from the ROM, since the 

configuration energy is expected to be dominated by the energy of writing to the STT-NV 

cells. Using the NVSIM tool, the write energy per bit cell is estimated to be 7.9 pJ [10]. 

Hence, the total energy estimated for the reconfiguration is 1040 * 7.9 pJ = 8.2 nJ. The 

above estimates are conservative because we assume all the bits of those 65 LUTS need 

to be re-written; whereas, in reality some of the bits could be same between the two 

configurations.  

 

4.3 Estimate of Area, Power, and Performance 

  

A case study is performed to obtain an estimate of area, power, and performance of an 

LUT based adder as compared to a static CMOS counterpart, on a 3-bit ripple carry adder 

implemented in both the static CMOS and the STT-NV LUT based styles in a 32nm 

predictive technology node [11]. Table 1 shows the results of the 3-bit adder 

implemented in both styles. The results indicate that except for the leakage power, the 

STT-NV based LUT has overhead in other metrics (especially for the adder). 

This data is used to extrapolate the results for the 64-bit reconfigurable adder/multiplier 

unit. That means the performance of the reconfigurable adder will be 2.89X lower than 

that of the static CMOS adder counterpart. Its standby mode power is 0.17X lower, but its 
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active mode power is 6.46X higher. For comparing the area, power, and performance, of 

an LUT based multiplier with a static CMOS counterpart, we use the results reported in 

[12]. Due to larger delay of reconfigurable STT-NV multiplier compare to the baseline 

CMOS style, the STT-NV multiplier implementation is pipelined two times deeper than 

the original CMOS based implementation. However this has shown to impact 

performance minimally [12]. Also in spite of advantage of a CMOS based multiplier over 

the STT-NV based design in terms of dynamic power, it still makes a lot of sense to 

replace it with the STT-NV design due to significant leakage advantage of the STT-NV 

design. Due to low utilization and high operating temperature of multiplier, the standby 

power becomes the major component of the total power. 
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5 Reconfiguration Techniques 
 

 

 

This section describes the proposed techniques for reconfiguring the functional units. 

This section compares the proposed architecture with CMOS based functional units 

(baseline architecture). In baseline architecture leakage power is assumed to be 

suppressed using power-gating techniques reported in [6]. For the purpose of 

performance, power and thermal comparison this section study the following four 

architectures: 

-CMOS+PG (baseline): A design with a CMOS based functional units and power gating 

technique. 

-STT-NV+NR: A design with a STT-NV based functional units and no reconfiguration 

capability. 

-RC: A design with a STT-NV based functional unit and reconfigurable capability. 

Note that for all the design described above, we assumed a CMOS implementation for 

IntAlu, since we cannot benefit much from making this a reconfigurable STT-NV unit, as 

it is the most utilized unit.  

 

 

5.1 Static Technique (RC+ST) 
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In this algorithm, the application is being profiled for an initial phase (learning phase) 

and based on the profiling information, the reconfiguration decision is being made for the 

rest of program execution. During the learning period active and idle functional units are 

being identified. At the end of the learning period all idle units are reconfigured to active 

units in the order of their activity. The reconfiguration pseudo-code is shown in Figure 7.  

 

 

Figure 7 RC+ST Pseudo code 

 

 

In this technique when a unit that has been reconfigured is requested and therefore is not 

available it needs to be reconfigured back to its original function. This re-reconfiguration 

is referred as adjustment process. The adjustment process is asynchronous - For example 

if a multiplier is reconfigured to an adder and later in the program execution a multiply 

 

For the first 100M cycles: 

- Monitor the functional units 

- Identify the idle units: idle [1, 2, 3, … i] 

 (i is the total number of idle units) 

- Identify the active units: active [1, 2, 3, … j] 

 (j is the total number of active units) 

- Order active units based on their activity: active_order [i] 

At the end of 100M cycles: 

Loop: for all idle units (i) 

- Reconfigure idle units to active units:  

idle [i]  active_order [i%j] 

 



23 

 

operation request a multiply unit, then the reconfigured adder need to be adjusted back to 

a multiplier, immediately. 

Note that the reconfiguration decision is made only once and after an initial learning 

period (after the first 100M cycles). Since only one reconfiguration is allowed at the end 

of the learning phase, at most one adjustment process is performed during program 

execution time. This technique suits better for the application which does not change their 

behavior in terms of functional unit utilization very frequently at runtime. This is a low 

power overhead technique, since we reconfigure the units only once and hence the power 

overhead would be small.  

 

5.2 Static Adaptive Technique (RC+SAT) 

 

This algorithm is very similar to static technique except that the monitoring is done 

periodically. In this technique the functional units are monitored for every 100k cycles 

and hence have a better chance to predict and adapt to the behavior of the application. In 

this technique, similar to the static technique, adjustment process is used to reconfigure 

back a reconfigured functional unit to its initial unit. The static adaptive algorithm is 

shown in Figure 8. 
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Figure 8 RC+SAT Pseudo code 

 

 

This technique suits well for the application for which the functional unit requirements 

change significantly at run-time. 

 

5.3 Reconfiguration and Migration Technique (RC+M) 

 

This technique main concern is with the temperature of the functional unit. The 

functional units are frequently monitored to get a temperature feedback. According to the 

temperature information obtained, the activity of the hottest unit is migrated to the coldest 

unit, 2nd hottest unit’s activity to the 2nd coldest unit and so on. For activity migration, 

the hottest unit is reconfigured to the coldest unit and vice-versa. This technique is shown 

in Figure 9. 

 

 

Loop: 

For every 100k cycles: 

- Monitor the functional units 

- Identify the idle units: idle [1, 2, 3, … i] 

 (i is the total number of idle units) 

- Identify the active units: active [1, 2, 3, … j] 

 (j is the total number of active units) 

- Order active units based on their activity: active_order [i] 

At the end of 100M cycles: 

Loop: for all idle units (i) 

- Reconfigure idle units to active units:  

idle [i]  active_order [i%j] 
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Figure 9 RC+M Pseudo code 

 

 

For better comparison of the result and to set motivation for this technique, an ideal case 

has been considered, which sets the upper bound i.e. the maximum gain this technique 

can achieve. The ideal case is when all the functional units have same power throughout 

the entire application run time. This model strives to equate the power between all the 

units using a perfect Activity Migration. 

Note that in this technique we do not increase the number of any type of functional units, 

as in RC+ST and RC+SAT reconfiguration technique, instead just transferring the 

activity of one functional unit to another. By doing so, we migrate power from a hot unit 

to a cold one and hence try equating temperature between all functional units. 

 

 

Loop: (for every 100k cycles) 

- Monitor the functional units 

- Get the temperature feedback 

- Order the units from hottest to coldest based on the 

feedback:  

- units [1, 2, 3, ….i] 

(i is the total number of functional units) 

At the end of 100k cycles: 

Loop: for all units (j), j  [0,i] 

- Reconfigure hottest unit to coldest unit:  

for ( i ≠ j) : units [j]  units [i-j] 
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6 Results 
 

 

 

This section presents our simulation methodology and the results demonstrating the 

performance, power and temperature benefits of the reconfiguration techniques, using 

reconfigurable STT-NV- logic deployed in the functional units of the processor. 

 

6.1 Methodology  

 

For the performance estimation, MASE simulator [26] is used. A dual issue processor is 

modeled, which is similar in functionality to IBM PowerPC 750 FX architecture. The 

baseline architecture parameter is shown in table 2. SPEC2K benchmarks suite is used for 

evaluation. All the benchmarks were simulated for 500M instructions after fast 

forwarding for 500M instructions. For thermal models Hotspot 5.02 is used [7]. In Table 

2 Hotspot configuration is shown. This thesis uses a modified version of ev6 floor-plan 

for the 32nm technology node; floor-plan is shown in Figure 3(a). Power values required 

for Hotspot simulation were obtained from McPAT power simulation tool [25]. 

 

6.2 Performance Results 

 

Figure 10 reports the performance improvement of the static (RC+ST) and Static 

Adaptive (RC+SAT) techniques normalized to the baseline architecture (CMOS design 

and without reconfiguration) for SPEC2K benchmarks. For RC+SAT the performance 
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improvement is 16% over the baseline. For RC+ST the improvement is lower, an 

improvement of 13%, on average. In most benchmarks the RC+ST and RC+SAT 

technique are able to capture functional unit requirement at run-time and therefore a large 

performance improvement is observed. 

 

Table 2 Baseline Processor Configuration and Hotspot configuration 

Number of cores 4 Register file 64 entry 

L1 I-cache 8KB, ,4 way, 2 cycles Memory 50 cycles 

L1 D-cache 8KB, 4 way, 2 cycles Instruction fetch 

queue 

8 

L2-cache 256KB, 15 cycles Load/store queue 16 entry 

Pipeline 12 stages Complex unit 2 INT 

Processor speed and 

Voltage 

1 GHz, 1.0 V Issue dual, out-of-order 

Fetch, dispatch  2 wide Arithmetic units 3 integer 

Thermal Parameter Chip thickness (m) 

Ambient temperature 

Convection capacitance 

Convection resistance 

Heat sink side 

Heat spreader side 

0.00015 

318.15 K 

40 J/K 

50 K/W 

0.06 m 

0.03 m 

 

 

In all benchmarks the adaptive reconfigurable technique, RC+SAT provides larger 

performance benefit compare to the static RC+ST technique. Exceptions are in wupwise, 

art, ammp benchmarks that are highlighted with circle in the figure. In these benchmarks 
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functional units requirement changes significantly at run-time. Therefore using RC+SAT 

algorithm a large number of functional unit reconfiguration is performed. The 200 cycles 

cost of reconfiguration overhead, thus diminishes the performance gain of RC+SAT 

technique in these benchmarks. Unlike RC+SAT, in RC+ST technique a very small 

number of reconfiguration is performed which makes the overhead very low. 

 

 

Figure 10 Performance improvement of Static (RC+ST) and Static Adaptive 

(RC+SAT) techniques 
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6.3 Power Analysis 

 

Figure 11 presents the power dissipation of functional units in each studied design. To 

have a better understanding of the power dissipation among several benchmarks, Integer 

benchmarks (top) are separated from Floating point benchmarks (bottom). The results are 

averaged across SPEC2K benchmarks. For each functional unit, the power dissipation is 

shown for baseline design (CMOS+PG), STT-NV+NRC (without reconfiguration), 

RC+ST and RC+SAT. The overall power for floating point benchmarks is less than the 

integer benchmarks.  Among all the units, IntAlu has the highest power dissipation, 

mainly in forms of dynamic power. The remaining functional units have significant 

leakage power, as they are idle most of the execution time (Figure 1). 

Figure 11 reports the power breakdown of CMOS based and various STT-NV based 

designs presented in this work. Note that, for CMOS based design a state-of-the-art 

power gating technique has been applied to suppress the leakage power by up to 90% in 

floating points units and up to 45% in integer units. [6]. 

In both integer and floating point benchmarks, for IntMUL, IntDIV units the leakage 

power reduces in STT-NV based design compare to a CMOS based design. In integer 

benchmarks, for IntALU, the leakage power is lower in STT-NV designs compare to 

CMOS based design. Note that in CMOS based design there is small opportunity to 

suppress leakage using power-gating techniques, as integer unit is busy most of the times. 

Overall in integer benchmarks the total leakage power of all functional units increase 

slightly in STT-NV designs compare to CMOS based design. In floating point 

benchmarks the total leakage power of all functional units reduces substantially by up to 
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32% compare to CMOS based design (in RC+ST design). The dynamic power increases 

in both integer and floating point benchmarks in STT-NV designs. This is somewhat 

expected as STT-NV designs attempts to put more functional units into work and 

therefore they have higher dynamic power dissipation compare to CMOS design. Among 

all STT-NV designs, RC+ST in floating point benchmarks has lower total power 

dissipation compare to a CMOS+PG design, by 2%, on average. In integer benchmark all 

STT-NV designs has higher total power dissipation compare to CMOS+PG design. This 

is mainly due to significant rise in dynamic power for STT-NV designs compare to 

CMOS+PG designs. Overall, an STT-NV design (RC+ST) is more power efficient 

compare to a CMOS+PG design when running floating-point benchmarks. For integer 

benchmarks a CMOS+PG design is always more power efficient. 

 

 

Figure 11 Power variations across functional units 
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6.4 Thermal Analysis 

 

Figure 12 shows the thermal analysis of CMOS based and various STT-NV based 

designs studied in this thesis. The maximum temperature of each of functional units 

during program execution time is reported in this section. For STT-NV+NRC, RC+ST 

and RC+SAT the temperatures of all units increased compare to CMOS+PG. For RC+M 

unit a significant thermal reduction is observed. RC+M technique migrate the activity of 

a high temperature unit to a low temperature unit after each monitoring cycle. Hence the 

temperature across all units is reduced substantially. 
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Figure 12 Thermal Analysis of functional units before and after RC+M 

 

The largest reduction is in IntALU benchmark, by 27
o 

C on average compare to 

CMOS+PG design.  RC+M technique reduces the temperature across all 6 functional 

units by more than 12
o 

C compare to CMOS+PG. Compare to a STT-NV design with no 

reconfiguration (STT-NV+NC), RC+ST technique reduces temperature by up to 30
o
 C 

(in IntALU).  

 

300

310

320

330

340

350

360

IntALU IntMuL IntDiv FpAdd FpMul FpDiv

CMOS+PG STTNV+NRC RC+ST RC+SAT RC+M
TE

M
P

ER
A

TU
R

E 
(K

) 



33 

 

 

Figure 13 Coefficient of variation (Cv) among different techniques 

 

This section also reports, how the temperature variation is affected for the proposed 

design compared to a CMOS based design. Temperature variation can be best measured 

using the coefficient of variation (Cv). The higher the Cv the larger the temperature 

variation is expected i.e. more thermal hot spots and vice versa. Figure 13 shows the 

Coefficient of variation across all 6 functional units for CMOS+PG, STT-NV+NRC, 

RC+ST, RC+SAT and RC+M. In our baseline CMOS+PG technique there is large 14% 

thermal variation across functional units. The thermal variation is also significant for 

reconfigurable design; for RC+SAT the thermal variation is even larger and it reaches to 

16%. RC+M technique reduces the temperature variation across all functional units 
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substantially to only 2% by distributing the concentrated power and hence reducing the 

coefficient of variation of temperature (i.e. reducing the power density of hot spot). 

 

 

Figure 14 Difference of maximum and minimum temperatures among functional 

units. 

 

 

Apart from the Coefficient of variation (Cv), in-order to understand the temperature 

variation, a fairly simple method is to compare the differences of maximum and 

minimum temperatures of the functional units. Figure 14 shows the percentage difference 

between maximum and minimum temperatures of the functional units. RC+M techniques 

have the temperature difference close to zero. This technique pulls the architecture close 
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to the ideal case i.e. architecture with no temperature variation. RC+ST and RC+SAT 

techniques have a greater temperature difference, but the difference is not more than 1% 

over the CMOS+PG baseline. Figure 14 looks similar to Figure 13, suggesting that the 

variation in temperature across all the functional units is mainly due to the variation 

between maximum and minimum temperatures and other intermediate variations impact 

less.  

 

 

6.5 Energy-Delay Product (EDP) 

 

 

Reducing the energy consumption without having a loss of performance is the best 

possible architecture. Energy-delay product (EDP) [29] is the product of Energy and 

Latency, comparing Energy-Delay Product across the discussed techniques gives the 

efficient way to execute an application. Low EDP indicates high performance with less 

energy comparison. This section presents the comparison of EDP across all SPEC2k 

benchmarks for the proposed techniques.  
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Figure 15 Energy-Delay Product Comparison (a) Low EDP benchmarks (b) High 

EDP benchmarks 

0

1E+17

2E+17

3E+17

4E+17

5E+17

6E+17

ap
si

ar
t

b
zi

p
2

cr
af

ty

eo
n

eq
u

ak
e

fa
ce

re
c

fm
a3

d

ga
lg

e
l

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

p
ar

se
r

p
er

lb
m

k

tw
o

lf

vo
rt

ex vp
r

w
u

p
w

is
e

CMOS+PG STTNV+NRC RC+ST RC+SAT

(a) Low EDP benchmarks 

En
eg

y-
D

el
ay

 P
ro

d
u

ct
 

0

1E+19

2E+19

3E+19

4E+19

5E+19

6E+19

ammp applu mgrid swim

CMOS+PG STTNV+NRC RC+ST RC+SAT

En
er

gy
-D

el
ay

 P
ro

d
u

ct
 

(b) High EDP benchmarks 



37 

 

Figure 15 shows the comparison of EDP for CMOS+PG, STTNV+NRC, RC+ST and 

RC+SAT techniques individually for all the benchmarks. For the low EDP benchmarks 

as shown in Figure 15 (a), CMOS+PG have less EDP than RC+ST and RC+SAT in most 

of the cases. RC+ST and RC+SAT in most of the cases have EDP close to EDP of 

CMOS+PG. In Lucas, Art, Gap, Fma3d benchmarks RC+ST technique prove efficient. 

For the high EDP benchmarks as shown in Figure 15 (b), both RC+ST and RC+SAT 

have a less EDP than the EDP of CMOS+PG, proving efficient.  
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7 Conclusion 
 

 

 

In embedded general-purpose processors a functional unit is a critical unit that is not only 

a performance bottleneck for the design, but also a temperature hotspot. Due to its high 

activity and small size, the functional unit’s power density is large, and therefore is a 

thermal hotspot. In addition, due to unequal activity of functional units on chip, power 

dissipation happen unevenly and hence a large thermal variation exists among various 

types of functional units. This thesis has proposed the novel concept of functional unit 

reconfiguration to address the performance, power, and thermal efficiency challenges. 

This thesis attends to these performance and thermal issues separately, by proposing 

techniques which improve performance or reduce on-chip temperature. 

 A selected set of complex functional units that might be under-utilized such as 

multiplier, divider etc., are realized using a shared programmable STT-NV based look up 

table fabric in time multiplexed fashion. This allows for run-time reconfiguration of such 

functional units to the functional units that might be creating performance bottleneck, and 

hence improving performance. The results show significant performance improvement of 

16% on average across standard benchmark.  

Functional units that are heavily utilized also dissipate huge power and under-utilized 

units dissipate less power, this cause the differences in temperature on-chip i.e. hotspots.  
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This thesis uses the said novel idea of functional unit reconfiguration to equate the power 

dissipation by reconfiguring the hottest functional unit to the coldest functional unit and 

vice-versa i.e. reducing the temperature differences and hence minimizing the occurrence 

of a hotspot. This reconfiguration reduces maximum temperature of functional units by 

up to 27
o 
C and almost eliminates the thermal variation across functional units. 
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