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Abstract

JOINT SPATIAL-TEMPORAL SPECTRUM SENSING AND COOPERATIVE RELAY-
ING FOR COGNITIVE RADIO NETWORKS

Tuan T. Do, PhD
George Mason University, Spring, 2011
Dissertation Director: Dr. Brian L. Mark

The number of wireless systems and services has grown tremendously over the last two

decades. As a result, the availability of wireless spectrum has become extremely limited.

Cognitive radio is a new technique to overcome the issue of spectrum scarcity. In cognitive

radio networks, the licensed users of the spectrum are called primary users. Secondary

users equipped with cognitive radios can opportunistically transmit via so-called “spectrum

holes” which can be categorized as spatial or temporal spectrum holes.

In this dissertation, we propose a joint spatial-temporal spectrum sensing scheme for

cognitive radios. We show that our joint spatial-temporal spectrum sensing scheme outper-

forms pure temporal sensing schemes. In addition, joint spatial-temporal sensing increases

the point-to-point transmission capacity of cognitive radio link compared to pure tempo-

ral or spatial sensing. We also propose a temporal spectrum sensing scheme that exploits

multiuser diversity in wireless networks. In wireless networks with fading, multiuser di-

versity exists because different users experience peak channel quality at different times.

By exploiting multiuser diversity, our spectrum sensing method can outperform the spec-

trum sensing schemes that do not exploit multiuser diversity. We develop and analyze

a joint spatial-temporal sensing scheme that incorporates cooperative relaying to further

increase the capacity of a cognitive radio network. We consider both amplify-and-forward



and decode-and-forward cooperative transmission strategies. Finally, we study joint spatial-

temporal spectrum sensing in a multichannel cognitive radio scenario and present random-

ized and maximized signal-to-noise ratio algorithms that improve performance in term of

symbol error probability.



Chapter 1: Introduction

During the past two decades, the world has witnessed a tremendous growth of the wireless

communication industry with over four billion subscribers worldwide. Wireless communica-

tions have moved from first-generation (1G) systems that supported voice communication

with limited roaming to third-generation (3G) systems that provide Internet connectivity

and multi-media applications. The fourth-generation systems will be designed to intercon-

nect different wireless networks such as wireless personal area networks (WPANs), wireless

local area networks (WLANs) and wireless wide-area networks (WWANs).

In wireless communications, all users coexisting in the same frequency band interfere

with each other due to the broadcast nature of the wireless channel. As the number of

wireless systems and services has grown, the availability of wireless spectrum has become

severely limited as shown in the National Telecommunications and Information Adminis-

tration’s (NTIA) frequency allocation chart [1]. A number of other studies, e.g., [2], [3],

[4], have also shown that the wireless spectrum is highly under-utilized. This has prompted

the FCC to propose opening the licensed band to unlicensed users, which has resulted in

renewed interest in the concept of cognitive radios [5].

A cognitive radio (CR) transceiver is able to adapt to the dynamic environment and the

network parameters to maximize the utilization of the limited radio sources while providing

flexibility in wireless access. A cognitive radio must collect and process information about

the licensed users within its spectrum, which requires advanced spectrum sensing and signal

processing techniques. Cognitive radio enables opportunistic spectrum access which allows

unlicensed users to access licensed spectrum as long as they do not cause harmful interference

to the licensed users. The IEEE has formed a working group (IEEE 802.22) to develop an

air interface for opportunistic spectrum access to the TV spectrum via the cognitive radio

1



technology [6]. This dissertation is motivated by potential capabilities of cognitive radios

which hold tremendous promise for increasing spectral efficiency in wireless systems.

1.1 Dissertation Overview

A cognitive radio can intelligently utilizes any available side information such as activity,

channel conditions, codebooks or messages of licensed users. Depending on the type of

available network side information and regulatory constraints, there are three main cogni-

tive radio network paradigms: underlay, overlay, and interweave. The underlay paradigm

allows cognitive users to operate if the interference caused to licensed or primary users is

maintained below a given threshold. In overlay systems, cognitive radios attempt to ob-

tain some bandwidth for their own communication without interfering with communication

of primary users. In interweave systems, the cognitive radio opportunistically exploits the

so-called “spectrum holes” to communicate without causing interference to primary systems.

In this dissertation, we develop a framework for cognitive radio systems based on the

interweave network paradigm. In this paradigm, cognitive radios seek transmission opportu-

nities through spectrum holes which can be classified as spatial [7] or temporal [8]. We first

develop a spectrum sensing technique called joint spatial-temporal spectrum sensing which

detects both spatial and temporal spectrum holes. By exploiting the spatial information

of primary user, the performance of temporal sensing is significantly improved relative to

pure temporal sensing which does not use knowledge of primary user’s spatial information.

We also propose a new spectrum sensing scheme that exploits multiuser diversity in

wireless networks. Multiuser diversity is a phenomenon inherent in wireless networks pro-

vided by independent, time-varying channels across different users. In traditional cellular

networks, multiuser diversity can be exploited by scheduling at any one time only the user

with the best channel to transmit to the base station. Diversity gain arises from the fact

that in a system with many users, whose channels vary independently, there is likely to be

a user whose channel is near its peak capacity at any given time. Our multiuser diversity

spectrum sensing scheme exploits the independent channel fading among secondary nodes

2



to improve the performance of spectrum sensing. Our scheme significantly outperforms

other schemes that do not exploit multiuser diversity.

We then propose a cooperative transmission scheme for cognitive radio networks based

on spectrum holes determined through joint spatial-temporal sensing. In our scheme, a

secondary transmitter communicates with a secondary receiver through relay nodes when

the primary transmitter is ON and the maximum interference-free transmit power (MIFTP)

is not sufficient for a direct transmission to reach the secondary receiver. When the primary

transmitter is OFF, the secondary transmitter can communicate directly with the secondary

receiver by transmitting at a higher power. The secondary receiver then combines the signal

from the relay node and the direct signal from secondary transmitter to achieve a better

signal-to-noise ratio. Our cooperative transmission scheme significantly outperforms the

traditional cooperative transmission schemes that employ only spatial or temporal sensing

knowledge.

1.2 Summary of chapters

• In Chapter 2, we introduce the basic concepts and terminology of opportunistic spec-

trum access and cognitive radios. We also discuss the research literature relevant to

the contributions of this dissertation. The relevant literature includes papers related

to cooperative spectrum sensing, multiuser diversity and cooperative communication.

• In Chapter 2.6, we propose a joint spatial-temporal sensing scheme for opportunistic

spectrum sharing in cognitive radio networks. The system model consists of a primary

transmitter with unknown location and transmit power, which alternates between ON

and OFF states, with respect to a given frequency channel. Spatial spectrum sensing is

employed to estimate the maximum interference-free transmit power for a secondary

node, during an ON period. Estimates of the primary transmitter’s location and

transmit power obtained in the course of spatial sensing are used by a fusion center

to select a subset of the secondary nodes to make a temporal sensing decision, i.e., a
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decision as to whether the primary is ON or OFF. Three distributed temporal sensing

algorithms are considered: the counting rule detector, linear quadratic detector and

multi-level quantization. By incorporating spatial information, we obtain joint spatial-

temporal versions of these two detectors. We derived the Additive While Gaussian

Noise (AWGN) capacity for pure temporal, pure spatial and joint spatial-temporal

sensing. Our simulation results show that joint spatial-temporal sensing approach

significantly outperforms pure temporal sensing, in terms of probability of spectrum

hole detection and capacity gain.

• In Chapter 4, we develop a cooperative multiuser diversity spectrum sensing scheme

that exploits the multiuser diversity inherent in the secondary network to improve

the sensing capability of cognitive radio systems. We use a distributed approach

wherein each secondary user only has local knowledge about its observed energy. Our

simulation results show that the proposed scheme significantly outperforms sensing

schemes that do not exploit multiuser diversity.

• In Chapter 5, we propose cognitive amplify-and-forward cooperative relaying schemes

with fixed decoding delay and variable decoding delay that exploit the presence of

spectrum holes both in time and in space. In the fixed decoding delay protocol,

the secondary receiver always decodes the received signal after fixed number of time

frames. In the variable decoding delay protocol, the number of time frames the sec-

ondary receiver has to wait before it can decode the signal depends on the state of

the primary transmitter. The variable decoding delay scheme, which always has a

diversity order of two, has lower symbol error probability than the fixed decoding

delay scheme. Our simulation and analytical results show that our proposed schemes,

employing joint spatial-temporal sensing, significantly reduce the average symbol er-

ror probability compared to schemes based on pure temporal or spatial sensing. We

also propose an incremental relaying protocol which further improves the spectral

efficiency of our protocols.
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• In Chapter 6, we propose a cognitive decode-and-forward cooperative transmission

strategy that exploits the presence of spectrum holes both in time and in space. Similar

to the amplify-and-forward scheme developed in Chapter 5, we consider two variations

of the decode-and-forward scheme: fixed decoding delay and variable decoding delay.

Our results show that the proposed decode-and-forward schemes, employing joint

spatial-temporal sensing, significantly reduce the average symbol error probability

compared to schemes based on pure temporal or pure spatial sensing.

• In Chapter 7, we consider a multichannel cognitive radio network scenario in which

a secondary transmitter can switch to different channels for opportunistic communi-

cations. Multichannel diversity can be achieved by dynamically switching to differ-

ent channels during transmission. We show that even a simple randomized channel

switching scheme can significantly reduce the average symbol error probability. We

also propose a scheduling algorithm based on maximizing the signal-to-noise ratio to

further improve the performance of cognitive transmission. We study the performance

of our multichannel switching schemes combined with capacity achieving turbo codes.

Our numerical results show that combination of randomized multichannel switching

with turbo codes significantly improves the performance of the system.
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Chapter 2: Background

In this chapter, we discuss some basic aspects of opportunistic spectrum access (OSA) using

cognitive radios (CRs). We provide a brief survey of the research literature with a focus on

spectrum sensing techniques for cognitive radios and cooperative relaying.

2.1 Fundamentals of Cognitive radio

Software-defined radio and cognitive radio were first introduced by Mitola [5] and [9]. A

software-defined radio or “software radio” is a multiband radio that supports multiple air

interfaces and protocols and is reconfigurable through software. A cognitive radio built on

a software radio platform is a wireless communication system that intelligently utilizes any

available side information about the activity, channel conditions, codebooks or messages

of other nodes with which it shares the spectrum [10]. Cognitive radios enable dynamic

spectrum access (DSA), also called opportunistic spectrum access (OSA), (see [11] and

references therein).

Based on the type of network side information along with the regulatory constraints,

there are three types of cognitive radio system: underlay, overlay, and interweave [10]

2.1.1 Underlay Paradigm

The underlay paradigm allows communication by the cognitive radio assuming that it has

knowledge of the interference caused by its transmitter to the receiver of all non-cognitive

users. In this paradigm, concurrent non-cognitive and and cognitive transmission may

occur only if the interference caused by the cognitive users to the noncognitive receivers is

below some threshold. To meet the interference constraint, multiple antennas can be used

to guide the cognitive signals away from the noncognitive receivers. Other techniques use
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spread spectrum or ultra-wide-band to spread the cognitive signal below the noise floor; the

signal is then de-spread at the cognitive receiver.

2.1.2 Overlay Paradigm

The overlay paradigm is based on the assumption that the cognitive transmitter has knowl-

edge of the noncognitive user’s codebooks and its transmitted messages as well. The code-

book could be obtained if the noncognitive users follow a publicized standard or if they

broadcast their codebooks periodically. The latter condition can be obtained by decoding

the message at the cognitive receiver. With the knowledge of noncognitive user’s message

and/or codebook, the cognitive transmitter can use different techniques such as dirty paper

coding (DPC) to mitigate or cancel the interference seen at the cognitive and noncognitive

receivers.

The capacity of a cognitive channel in which the cognitive transmitter learns only a part

of the noncognitive user’s message is analyzed in [12]. The capacity of overlay cognitive

channels with the assumption that all codebooks and channel gains are known to the two

encoders is analyzed in [13, 14]. Knowledge of the noncognitive user’s messages allows

the cognitive transmitter to apply several encoding techniques that will improve both its

own transmission rates and the noncognitive user’s rate. In [15], encoding can achieve a

nonzero rate for a noncogntive user such that the cognitive users’s transmission causes no

interference to the noncognitive receiver.

2.1.3 Interweave Paradigm

The interweave paradigm is based on the idea of opportunistic communication over temporal

space-time frequency voids or spectrum holes. This technique requires knowledge of activity

information of noncognitive users in the spectrum such as when they are active or idle. By

monitoring the spectral activities of noncognitive users, cognitive radios can intelligently

detect spectrum holes and opportunistically communicate over spectrum holes with minimal

interference to the noncognitive users.
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2.2 Spectrum holes

The term “spectrum hole” refers to those bands of radio spectrum that are under-utilized

(in part or in full) at a particular instant of time and at a specific geographic location [16].

In terms of occupancy, spectrum holes may be categorized as: white spaces (frequency

bands which are free of RF interferers except for ambient noise made up of natural and

man-made sources) or grey spaces (frequency bands which are partially occupied by low-

powered interferers). In other words, a spectrum hole is a region of space-time-frequency

in which a particular secondary use is possible.

A spectrum hole can be characterized as spatial or temporal. A spatial spectrum hole can

be specified in terms of the maximum transmission power that a secondary user can employ

without causing harmful interference to primary users that are receiving transmissions from

another primary user that is transmitting on the given channel [17, 18]. Spectrum reuse in

this context is similar to frequency reuse among cochannel cells in a cellular network. A

temporal spectrum hole is a period of time for which the primary transmitter is idle. During

such idle periods, a secondary user may opportunistically transmit on the given channel

without causing harmful interference.

In temporal spectrum holes, secondary transmissions are allowed during the idle times of

the primary users. The exploitation of temporal spectrum opportunities has been studied in

[8,16,19–24] and references therein. The success of this kind of scheme depends crucially on

the accurate prediction of the silent periods of the primary user [19–21]. Temporal spectrum

holes are studied in terms of probability of missed detection, probability of false alarm

and sensing time together with receiver operating characteristics to evaluate a scheme’s

performance, reliability and complexity. These approaches are vulnerable to deviations

from the assumed model of the primary’s transmissions, due to real-world uncertainties.

In the absence of noise uncertainty, detection at low SNR directly translates to longer

observation times at the detector. In scenarios with noise uncertainty, detection may not

be possible, even with infinite sensing time [25].
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In [22], by modeling the primary user’s spectrum occupancy as a Markov chain, a

decision-theoretic framework for optimal PHY-MAC joint design of OSA based on the theory

of partially observable Markov decision processes (POMDPs) is presented. The design

objective is to maximize the secondary user’s throughput under the constraint that the

probability of collision perceived by any primary user is below a predetermined threshold.

Besides temporal and spatial aspects, the primary’s signal waveform can be viewed as

another dimension of a spectrum hole [26]. For example, a direct sequence spread spectrum

(DSSS) signal with a spreading code of four chips can accommodate four different users

using conventional signal processing techniques. If at any given time and space only one such

signal is identified in the primary network, then a spectrum hole consisting of the other three

signals exists, which can be used by the secondary network. In [26], the time and frequency

domain behaviors of existing signals are characterized by signal detection followed by feature

extraction, clustering, signal classification, machine learning and prediction. Then some

decision metrics or policies are used to transmit new signals such that those signals do not

interfere with the existing ones.

2.3 Spectrum Sensing

Spectrum sensing is defined as the task of finding spectrum holes by sensing the radio

spectrum of noncognitive users [27], [28]. Thus, spectrum sensing is a critical component

of the interweave network paradigm. There are three main spectrum sensing techniques:

matched filter, energy detector, and cyclostationary feature detection. In the context of

spectrum sensing, the cognitive and noncognitive users are normally referred to as secondary

and primary users, respectively.

2.3.1 Matched Filter

The matched filter [29] is the optimum means for signal detection since it maximizes the

received signal to noise ratio. However, the matched filter requires a priori knowledge of the

primary signal at both the PHY and MAC layers to demodulate the primary user’s signal.
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In addition, the secondary user has to perform timing and synchronization or even channel

equalization with respect to the primary user. The main advantage of the matched filter

is that it requires less time to achieve high processing gain, since only O(1/SNR) samples

are required to meet a given detection probability constraint [30]. However, a significant

drawback of the matched filter is that a dedicated spectrum sensing detector is needed for

every primary user class.

2.3.2 Energy Detector

Simple, noncoherent detection can be achieved through an energy detector. The implemen-

tation of an energy detector is similar to a spectrum analyzer involving averaging frequency

bins of a Fast Fourier Transform (FFT) with processing gain proportional to the size of the

FFT. Due to noncoherent detection, O(1/SNR2) samples are required to meet the detection

probability constraint [30]. The main drawback of an energy detector is that the threshold

used for primary user detection is highly susceptible to unknown or changing noise levels.

The energy detector does not work for spread spectrum signals.

2.3.3 Cyclostationary feature detection

Modulated signals are generally in the form of sine wave carriers, pulse trains, repeat-

ing spreading, hopping sequences or cyclic prefixes, which results in periodicity. These

modulated signals have cyclostationary characteristics since their mean and autocorrela-

tion functions exhibit periodicity. Such periodicity is generally incorporated in the signal

format so that a receiver can exploit it for parameter estimation, e.g., for carrier phase or

pulse timing. This periodicity can be used for detection of random signals with a particular

modulation type in a background of noise and other modulated signals.

2.3.4 Sequential Detection

In spectrum sensing, detection delay is an important performance metric. If a primary user

stops transmission, then a secondary user should detect this event quickly, in order to be
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able to start its own transmission quickly. A small detection delay will allow secondary

users to take short transmission opportunities. On the other hand, if the primary user

starts transmission, the cognitive user should detect this event as quickly as possible, in

order to vacate the band for the primary user

Sequential detection schemes exploit the fact that the number of samples required to

achieve a given reliability level may well be dependent on the actual realization of the

observed samples. For example, in a simple binary hypothesis testing context, Walds se-

quential probability ratio test (SPRT) compares the likelihood ratio with two thresholds,

and the decision is made as soon as the test statistic exceeds either one of the thresholds. It

is known that SPRT minimizes the average sample number (ASN) among all tests with the

same false alarm and misdetection probabilities. In [31], sequential sensing is proposed for

orthogonal frequency division multiplexing (OFDM) cognitive radios. In other research [32],

Lai et al. develops a sequential sensing strategy based on a quickest detection framework.

2.3.5 Cooperative spectrum sensing

The received signal strength at the input of spectrum sensing detector may be severely

degraded due to multipath fading and shadowing. Added to these issues of low SNR is the

hidden-terminal problem [8]. Secondary users may be shadowed away from the primary

user’s transmitter but there may be primary receivers close to the secondary users that

are not shadowed from the primary transmitter. Hence, if a secondary user transmits, it

may cause interference to the primary receivers. One approach to overcome the low SNR

problem is to average over longer durations of time while performing the detection. This

scheme results in an increased effective SNR and hence in improved performance but at the

expense of increased delay.

An alternative approach is for secondary users to cooperate with each other to detect

the primary signal. Better performance at low SNR can be achieved since user cooperation

increases diversity by providing multiple measurements of the signal. Additionally, having

users cooperating over a wide area also provides a possible solution to the hidden-terminal
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problem, since this problem would arise only if all the secondary users were shadowed away

from the primary. Cooperative sensing has been studied extensively in [8], [23], [33], [34]

and [24].

2.3.6 Multichannel Cognitive Radio Networks

In multichannel cognitive radio networks, the licensed wireless spectrum consists of a set

of N non-overlapping channels. Secondary users can access all the available channels by

switching to their frequencies. Multichannel cognitive radio networks have been studied

in [35–38]. In [36, 37], the optimal problem of multichannel cognitive medium access con-

trol with opportunistic transmissions is considered. A dynamic programming approach is

proposed to search for an optimal sensing order among the channels.

In [35], a channel-aware switching algorithm is developed to decide where and when to

switch among the candidate channels. Also in [35], a candidate channel selection algorithm

is developed to maximize the spectrum accessibility and then derived the channel-switching

decision rule to determine the best channel to switch to is derived. The proposed scheme

outperforms the forced-switching due mainly to its ability to analyze the channel charac-

teristics and exploit the dynamic nature of the wireless environment. In [38], sequential

sensing algorithms for OFDM-based wideband multichannel cognitive radio systems are

developed. The tradeoff between the sensing time and the chance of identifying more un-

occupied subchannels is captured in the effective rate achieved by the CR system. Optimal

stopping problems are formulated, which maximize the effective rate given the past and

current observations.

2.4 Basic components of OSA

Basic components of an OSA model are [11]:

• spectrum opportunity identification,

• spectrum opportunity exploitation,
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• regulatory policy

The opportunity identification module is responsible for accurate identifying and intelli-

gently tracking idle frequency bands that are dynamic in both time and space. The main

task of spectrum identification is spectrum sensing which detects the spectrum holes in both

time and space. Chapter 2.6 and 4 of this thesis focus on developing spectrum identification

schemes.

Once spectrum opportunities are detected, secondary users need to determine how to

exploit them. The spectrum opportunity exploitation module takes input from the oppor-

tunity identification modules and decides whether transmission should take place. Issues

with this module include what modulation and transmission power to use and how to share

opportunities among secondary users to achieve a network layer objective. We develop a

spectrum opportunity exploitation scheme in Chapter 5 wherein a cooperative communica-

tion strategy is developed using spatial-temporal spectrum holes.

Policy is also an important piece of OSA. It creates rules of cooperation and joint usage

between primary and secondary users. Policy compliance can be executed using specific

parameters available in a node, e.g., power spectral estimates, traffic type, priorities, loca-

tion, delay constraints and other observable of the environment. The range of policies may

vary from non-aggressive (“do no harm” policy, e.g., maintain complete orthogonality at

all times) to aggressive (e.g., operate without restrictions in times of national emergency).

Some major challenges include software implementation of policy, device testing and veri-

fication for policy compliance, and resolution of multiple conflicting policies. To determine

policy compliance, it may be highly desirable to consider a policy reasoner (PR) that is ca-

pable of interacting with the sensor/radio and respond to requests by providing constraints

(e.g., transmit power limit, transmission duration, etc.) [39].
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2.5 Multiuser Diversity

A fundamental characteristic of the wireless channel is the fading of the channel strength due

to the multipath effect. An important means to combat channel fading is the use of diversity.

Diversity improves performance by creating several independent signal paths between the

transmitter and the receiver. Diversity can be obtained over time (interleaving), frequency

(combining multiple paths in spread-spectrum or frequency- hopping systems) and space

(multiple antennas). These diversity modes pertain to a point-to-point link. Recent results

in [40] point to another form of diversity which is inherent in wireless networks with multiple

users. Multiuser diversity exists in wireless networks since in a multiuser fading channel,

different users experience peaks in their channel quality at different times.

We consider a multiple access model where a group of users communicates with a central

base station or access point, i.e., the uplink channel of cellular networks. In this model,

multiuser diversity can be exploited based on centralized and distributed approaches. In

centralized approaches, multiuser diversity can be exploited by scheduling users so that they

transmit when their channel conditions are favorable which results in a total throughput

that increases with the number of users. In order to do this, the base station needs to

know all the users’ channel state information (CSI). This could be gained by having each

user transmits a pilot signal to the base station; each user’s channel gain would then be

estimated and the base station would signal the user with the best channel to transmit.

The main drawback of the centralized approach is that it creates too much overhead when

the number of users is large.

To overcome the overhead issue, a distributed approach is introduced in [41]. In this

approach, each user has knowledge of its own fading channel level, but no knowledge of

the fading levels of the other users in the cell. This distributed CSI can be obtained by

measuring the pilot signals periodically broadcast from the base station. Reciprocity is

required between the downlink and uplink channels, i.e., in a time-division duplex (TDD)

system, the channel variation is due to multipath fading and not to other cell interference.
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The overhead for this approach does not increase as the number of users increases. However,

each user must decide when to transmit without global knowledge of channel gains. In [41], a

simple slotted ALOHA protocol is proposed to exploit the multiuser diversity. To implement

a real multiuser diversity system, one has to consider two issues: fairness and delay. When

the user’s fading statistics are the same, the multiuser diversity strategy maximizes not

only total capacity of the system but also the throughput of the individual users. However,

channel statistics are usually not symmetrical; users close to the base station will have

better SNR. Moreover, the multiuser diversity strategy only aims at maximizing the long-

term average throughputs and ignores latency requirements.

2.6 Cooperative communications

In wireless networks, multipath fading can be mitigated through the use of diversity trans-

mission of redundant signals over independent channel realizations in conjunction with

suitable receiver combining to average the channel effects. Space or multiple-antenna diver-

sity techniques are particularly attractive as they can be readily combined with other forms

of diversity, e.g., time and frequency diversity, and still offer dramatic performance gains

when other forms of diversity are unavailable. However, the application of multiple antenna

technology to mobile networks often faces the practical implementation problem of pack-

ing many antennas in a small-sized mobile terminal. To achieve multiple antennas gain,

one must guarantee antenna element separation several times the wavelength, a require-

ment difficult to meet with small sized terminal. In an effort to overcome these limitations,

cooperative diversity or cooperative communication was introduced in [42], [43] and [44].

The basic idea of cooperative communication is that the source terminal cooperates with

the relay terminals to form a virtual or distributed multi-antenna system to communicate

with the destination. The performance of a cooperative communication system depends

on the combining mechanism at the relay and at destination nodes. Cooperative protocols

studied in the literature include:
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• The non-regenerative amplify and forward (AF) strategy which achieve available di-

versity with maximal ratio combining. The outage behavior and performance of this

protocol can be found at [43] and [45]. This strategy is less practical since it requires

storage of analog waveforms at relay nodes.

• The regenerative decode and forward (DF) strategy is simple and practical but cannot

achieve full diversity unless sophisticated combining is employed at destination to

account for the reliability of the source → relay → destination path. The outage

probability of this strategy is analyzed in [43]. In [46], a smart decode-and-forward

strategy is proposed to achieve diversity.

• The selective decode-and-forward (SDF) strategy which relies on a cyclic redundancy

code (CRC) to detect errors at the relay and selectively forwards to the destination

only bits without errors. This strategy achieves available diversity at the expense of

decoding delay and spectral efficiency loss due to the use of CRC codes.

• The space-time coded diversity strategy [42], wherein the source and relay uses space-

time codes to communicate with the destination, also achieves available diversity.

• The incremental relaying strategy [43] exploits limited feedback, i.e., a single bit feed-

back from the secondary transmitter to indicate the success or failure of the transmis-

sion. This protocol increases the spectral efficiency of cooperative relaying protocols

since cooperative relaying protocols are spectral inefficiency because the relay repeats

transmission all the time.

Coded cooperative transmission is proposed in [47] wherein each user’s codewords are sent

via independent fading paths. The basic idea behind coded cooperation is that each user

tries to transmit incremental redundancy for other users. Whenever that is not possible,

the users automatically revert back to a noncooperative mode. Recently, high performance

cooperative transmission strategies based on multiuser detection and network coding were

proposed in [48].
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Chapter 3: Joint Spatial-Temporal Sensing for Cognitive

Radio Networks

3.1 Introduction

In this chapter1, we discuss the joint spatial-temporal sensing strategy. To recapture the

so-called “spectrum holes,” various schemes for allowing unlicensed or secondary users to

opportunistically access unused spectrum have been proposed. Opportunistic or dynamic

spectrum access is achieved by cognitive radios that are capable of sensing the radio en-

vironment for spectrum holes and dynamically tuning to different frequency channels to

access them. Such radios are often called frequency-agile or spectrum-agile.

On a given frequency channel, a spectrum hole can be characterized as spatial or tem-

poral. A spatial spectrum hole can be specified in terms of the maximum transmission

power that a secondary user can employ without causing harmful interference to primary

users that are receiving transmissions from another primary user that is transmitting on the

given channel. Spectrum reuse in this context is similar to frequency reuse among cochannel

cells in a cellular network. A temporal spectrum hole is a period of time for which the pri-

mary transmitter is idle. During such idle periods, a secondary user may opportunistically

transmit on the given channel without causing harmful interference.

Spatial spectrum sensing is investigated [17,18], wherein the maximum interference-free

transmit power (MIFTP) of a given secondary user is estimated based on signal strengths

received by a group of secondary nodes. To calculate the MIFTP for a secondary node,

estimates of both the location and transmit power of the primary transmitter are estimated

collaboratively by a group of secondary nodes. Using these estimates, each secondary node

determines its approximate MIFTP, which bounds the size of its spatial spectrum hole. In

1The contents of this chapter appeared in [49,50].

17



[17, 18], the primary transmitters are assumed to transmit at constant powers. However,

this assumption does not allow secondary users to take advantage of temporal spectrum

holes. In practice, the primary transmitter may alternate between being active (ON) and

idle (OFF).

The problem of detecting when the primary is ON or OFF is called temporal spectrum

sensing. Cooperative temporal sensing has been studied in [8, 23, 24]. The decision on the

ON/OFF status of the primary transmitter can be made either at individual secondary

nodes or collaboratively by a group of secondary nodes. Cooperation among secondary

nodes for temporal sensing can overcome problems posed by low signal-to-noise ratio (SNR),

shadowing, and hidden terminals [8]. A practical solution for cooperative temporal sensing

is proposed in [8], whereby individual secondary nodes make decisions about the ON/OFF

status of the primary transmitter independently. A fusion center or centralized controller

collects the individual hard decisions made by all secondary nodes and then makes a final

decision on whether the primary is idle or active. The fusion center is assumed to know

the geographic locations of all cooperating secondary nodes and hence can estimate the

correlations between their observations. However, the fusion center does not generally have

knowledge of the primary’s location or transmit power. A suboptimal temporal detector

is proposed in [51] based on a linear quadratic (LQ) detector that uses partial statistical

knowledge to improve detection performance. As discussed in [8], the LQ detector out-

performs a simpler detector based on a counting rule in the regime of moderate to high

correlation among the secondary nodes.

In this chapter, we propose a joint spatial-temporal sensing scheme for wireless networks

with opportunistic spectrum sharing. We consider the case of a single primary transmitter

that alternates between ON and OFF states. During the ON state, secondary nodes perform

collaborative spatial spectrum sensing. When the primary transmitter is in the ON state,

the secondary nodes employ spatial spectrum sensing to estimate the MIFTP (cf. [17]).

Estimation of the MIFTP involves localization of the primary transmitter and estimation

of its transmit power. When the primary transmitter is in the OFF state, a given secondary
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user can transmit at maximum power. Here, spatial spectrum sensing relies on temporal

spectrum sensing in order to determine the ON/OFF state of the primary transmitter.

In a pure spatial sensing scheme, the primary transmitter is assumed to be ON at all

times. Thus, when the primary is actually OFF for some portion of time, pure spatial

sensing will tend to underestimate the transmit power of the primary. Temporal sensing

information can be used to trigger spatial sensing activity only during the ON periods of the

primary transmitter. This will result in a more accurate estimate of the primary transmitter

parameters and hence improve the accuracy of spatial sensing.

Conversely, localization information for the primary transmitter obtained from spatial

spectrum sensing are used to improve the performance of temporal sensing. Approximate

knowledge of the primary transmitter’s location are used to intelligently select a subset of

the observations from secondary nodes for temporal sensing. Temporal sensing performance

can be improved in this way because the observation set can be selected from the secondary

nodes so as to minimize the correlations among the observations. Our simulation results

show that the proposed spatial-temporal sensing scheme outperforms pure temporal sensing

based on either a counting rule or LQ detector.

We also investigate a multi-level quantization detection strategy for temporal sensing

based on the counting rule in which each secondary node sends an m-bit decision to the

fusion center. Thus, the observations received from the secondary nodes are quantized to

2m levels. Previous works on temporal spectrum sensing (cf. [8, 23, 24]) assume that each

secondary node sends only a one-bit decision to the fusion center where the final decision is

made on whether the primary is ON or OFF. This approach can be useful when there is very

limited communication bandwidth between secondary nodes and fusion center, but it leads

to significantly poorer performance compared to a centralized approach. A centralized fusion

center computes the joint likelihood of all soft observations to obtain the final detection

decision. However, the centralized approach is difficult to implement in practice because it

requires a relatively large communication bandwidth between the secondary users and the

fusion center. Therefore, the proposed multi-level feedback scheme represents a compromise
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between the distributed one-bit feedback scheme and the centralized detector.

The remainder of the chapter is organized as follows. Section 3.2 describes the system

model for spatial spectrum and temporal spectrum sensing. Section 3.3 develops that

joint spatial-temporal sensing scheme and compares its achievable capacity relative to pure

spatial and pure temporal sensing schemes. Section 3.4 investigates the performance of

temporal sensing based on the counting rule with multi-level feedback. Section 3.5 presents

simulation results. Finally, the chapter is concluded in Section 3.6.

3.2 System Model

We consider a discrete-time system model with a single primary transmitter and M sec-

ondary users equipped with frequency-agile cognitive radios. The primary transmitter can

be in one of two states: an ON state in which it transmits with constant power sp, and an

OFF state in which it does not transmit.

3.2.1 Spatial Spectrum Sensing

All transmissions are assumed to be omnidirectional and the signal propagation follows a

lognormal shadowing model. We assume the following path loss model (cf. [52]):

L = 10n log10(d/d0) + L0 [dB], (3.1)

where d is the distance between transmitting and receiving antennas in meters, L is the

path loss in dB, L0 is the attenuation at a reference distance d0, L0 = 20 log10(
4π
λ ) and λ

is the wavelength in meters. Accounting for the effect of shadowing and noise, the received

power at node v due to node p can be represented as a lognormal random variable:

Rv = sp − 10n log10(dp,v/d0) +W [dBm], (3.2)
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where n is the path loss factor, sp (dBm) is the transmit power of node p at d0, and

di,j denotes the distance between node i and node j in meters. Here, we approximate

the sum of the shadowing and noise powers as a lognormally distributed random variable

W ∼ N (0, σ2W ), where σ2W is the shadowing noise variance. We define the path loss function

g(d) , 10n log10(d/d0). Then the path loss from node i to node j is given by

Li,j , g(di,j , n) +W [dBm].

We shall make use of some concepts related to spatial spectrum sensing from [17]. The

maximum interference-free transmit power (MIFTP) of a secondary node is defined as the

maximum transmit power on a given channel such that the probability of interference to

any potential victim node (i.e., a primary receiver) is less than a prescribed threshold. The

outage probability of a victim node v with respect to the transmitter p, is the probability that

the received power Rv from node p falls below a predetermined detection threshold rmin:

Pout(p, v) , P (Rv < Rmin). The coverage distance is the maximum distance between node

p and any potential victim node v such that Pout does not exceed a predefined threshold

ǫcov > 0: dcov(p) , max{dp,v : Pout(p, v) ≤ ǫcov}. The coverage area of the transmitter p is

the disk centered at node p with radius dcov(p).

The received power at node v from node a is given by Iv = sa − g(da,v) +W , where

sa is the transmit power of a. The interference probability in the spatial domain with

respect to a given victim node v is the probability that Iv exceeds a predefined interference

tolerance threshold imax: Ps(a, v) , P (Iv ≥ imax). For a single fixed primary transmitter p

and FAR node a, the MIFTP is the maximum transmit power of the FAR node such that

the interference probability with respect to any potential victim node within the coverage

distance from node p does not exceed a threshold ǫint > 0:

s∗a , max{sa : Ps(a, v) ≤ ǫint, ∀v : dp,v ≤ dcov(p)}.
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The worst-case interference probability is given by

Ps(a) , max
v
Ps(a, v) = Q

(

imax − sa + g(d∗a)
σW

)

. (3.3)

where d∗a , dp,a − dcov(p). An approximation for the MIFTP based on received signal

strength measurements is developed for the case of a single primary transmitter in [17] and

the case of multiple cochannel primary transmitters in [53], respectively.

To mitigate the effect of shadowing and low SNR, cooperation among the secondary

nodes is necessary to perform both spatial and temporal spectrum sensing. We assume

that all secondary nodes have the same detection distance, i.e., they are equipped with

detectors having the same receiver sensitivity. The set of secondary nodes that performs

temporal sensing may be different from the set of nodes that performs spatial sensing. Let

S and T denote the sets of nodes that are involved in spatial sensing and temporal sensing,

respectively. The nodes in S are assumed to be located within a circle centered at primary

transmitter location (xp, yp) with radius equal to the detection distance ddet(a).

3.2.2 Temporal Sensing Model

We adopt a model of temporal spectrum sensing similar to the one described in [8]. Each

node in T makes an independent decision about the ON/OFF state of the primary trans-

mitter. The fusion center randomly selects a subset T̃ ⊂ T of nodes and requests the

ON/OFF decisions from the set of nodes in T̃ . The main task of the fusion center is to

decide whether the primary transmitter is in the ON or OFF state. We assume that all

secondary nodes use identical energy detectors. Since the nodes in T are expected to be

located relatively close to each other, the distributions of received power at these nodes are

assumed to be identical and correlated.

Temporal spectrum sensing can be formulated as a binary hypothesis testing problem

in which the fusion center determines whether or not the current mean received power is

higher than the received power when the primary transmitter is in the OFF state [8]. We
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define two hypotheses: H0 is the hypothesis that the primary is ON and located close to the

secondary nodes, i.e., no spectrum hole exists, and H1 is the hypothesis that the primary

is OFF or far away, i.e., a spectrum hole exists. Thus, under H1, a secondary node could

reuse the frequency channel without causing interference to the primary system. Node

i ∈ T performs temporal sensing by computing an observation Yi, obtained by subtracting

an estimate of the sum of the noise and interference power from the received power.

Let Y = (Yi : i ∈ T̃ ) denote the vector of observations at a given observation epoch.

The hypothesis testing problem can then be formulated as follows:

H0 : Y ∼ N (α1,Σ), (3.4)

H1 : Y ∼ N (0, σ20I), (3.5)

with α ≥ µ, where µ , E[10 log10(1+SNR)] [dB], and SNR is the signal-to-noise ratio at the

secondary nodes at the largest distance from the primary user or, equivalently, the smallest

mean received signal-to-noise ratio when the primary is ON. In (3.4) and (3.5), N (v,Σ)

denotes the multivariate Gaussian distribution with mean vector v and covariance matrix

Σ and σ20 is the variance of the noise power under H1. The symbols 0 and 1 denote vectors

of all zeros and ones, respectively, and I is the identity matrix of appropriate dimension.

The (i, j) element of the covariance matrix Σ is given by Σij = σ21ρ
dij/Dc where dij is

the distance between nodes i and j in meters, σ21 is the variance of the noise power under

H0, and ρ is the correlation coefficient between secondary nodes separated by a reference

correlation distance Dc in meters. The parameter α represents the mean power observed

under H0.

The probability of temporal interference with the primary transmitter is equivalent to

the false alarm probability pf = P0(δ = H1), where δ is the decision rule used by the fusion

center and P0(·) is the probability measure under H0. In general, the temporal interference

probability P0(δ = H1) does not necessarily equal the spatial sensing interference probability
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Ps(a) given in (3.3). The temporal sensing system is designed such that the probability of

temporal interference is less than or equal to a pre-specified value κ:

pf = P0(δ = H1) ≤ κ. (3.6)

The constraint (3.6) must be satisfied for all values of α ≥ µ in (3.5). Since the prior

information about the distribution of the mean power α is unknown, the composite binary

hypothesis testing problem given by (3.4) and (3.5) is designed under a robust and univer-

sally most powerful detection framework [54]. In other words, the system is designed such

that (3.6) is satisfied for the least favorable value of α, i.e., α = µ [8]. This results in a

simple Neyman-Pearson hypothesis testing problem:

H0 : Y ∼ N (µ1,Σ),

H1 : Y ∼ N (0, σ20I).

The final decision δ is made at the fusion center, which has access to only binary-value

decisions made individually by the secondary nodes based on the observation vector Y. We

denote by Ui the individual decision made by the ith temporal sensing secondary node,

based on the observation Yi. Correspondingly, U = (Ui : i ∈ T̃ ) denotes the vector of 0-1

hard decisions made by the secondary nodes in T̃ .

Let

L(Yi) ,
p1(Yi)

p0(Yi)
,

denote the likelihood ratio of the observation at node i ∈ T̃ , where p0(·) and p1(·) denote,

respectively, the posterior distributions under hypotheses H0 and H1, respectively. Then

the optimal decision at node i can be represented as Ui = I{lnL(Yi)>τ}, where IA denotes
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the indicator function of the set A. A secondary node decides H1 if Ui = 1 and otherwise

decides H0. The threshold τ is chosen to ensure that (3.6) is satisfied. The fusion center

makes a final decision based on the decision bit vector U.

Under the so-called counting rule, the final decision is made by comparing the sum

∑

i∈T̃ Ui to a decision threshold. If the sum
∑

i∈T̃ Ui is greater than the threshold, the

fusion center decides H1 and otherwise decides H0. The value of this threshold is obtained

through simulation [8]. When the observations across all of the nodes are independent and

identically distributed under both hypotheses, the counting rule detector is optimal, since

the joint likelihood ratio of the bits is a function only type of the number of ones in the

received bit vector U. The counting rule detector is also efficient when the correlations

between the individual observations Yi are relatively small.

When the observations at the secondary nodes are correlated, the Linear Quadratic

(LQ) detector yields a significant performance gain over the counting rule detector, while

still using only partial statistical knowledge about the correlated decision variables [8]. The

LQ detector is based on the generalized signal-to-noise ratio or deflection criterion, and

makes use of fourth-order statistics under H1 and second order statistics under H0. We

consider a fusion rule based on a class of LQ detectors that compare a linear quadratic

function of decision vector to a threshold. The optimal LQ detector is derived in [51]

for an arbitrary noise probability distribution with finite fourth order moments. When the

observations at the secondary nodes are correlated, the LQ detector provides a simple fusion

rule that yields significant performance gain over the Counting Rule while still using only

partial statistical knowledge about the correlated decision variables [8].

3.3 Joint Spatial-Temporal Spectrum Sensing

The basic idea of joint spatial-temporal sensing as follows. A group of secondary nodes co-

operatively localizes the primary transmitter, e.g., using signal strength observations [17].

Concurrently, a (possibly different) set of secondary nodes performs temporal spectrum
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sensing using knowledge of the estimated location and transmit power of the primary trans-

mitter from the spatial sensing process. By performing both spatial and temporal sensing,

a group of secondary nodes acquires sufficient knowledge to exploit the presence of both

spatial and temporal spectrum holes. In the remainder of this section, we discuss a model

for joint spatial-temporal sensing, a heuristic for intelligently node selection for tempo-

ral sensing, and capacity expressions for the temporal sensing, spatial sensing, and joint

spatial-temporal sensing schemes.

3.3.1 Model

When the primary transmitter is ON, transmitter i transmits with power equal to its

estimated maximum interference-free transmit power MIFTPi. Otherwise, when it is OFF,

a given secondary user can transmit with power up to a maximum level Pm. We assume that

the secondary users can coordinate among themselves by means of a suitable medium access

control (MAC) protocol. Secondary receivers are affected by both large-scale and small-

scale fading. The small-scale fading is modeled as Rayleigh block fading where the fading

coefficient Hii is constant over Nu time slots, with Nu being the number of transmitter-

receiver pairs involved in communications. The shadow fading is modeled by a lognormally

distributed random variable [55].

When a temporal spectrum hole occurs, i.e., when the primary transmitter is OFF, a

given secondary node can transmit with power up to a maximum level Pm. On the other

hand, when the primary transmitter is ON, the secondary node can still transmit, but in

this case, its transmit power will be limited to its MIFTP with respect to the primary

transmitter. The MIFTP estimated by the secondary node depends on the locations of

the secondary node and the primary transmitter, as well as the power of the primary

transmitter. The spatial information associated with the primary transmitter must be

estimated during the ON state of the primary transmitter. At the same time, the spatial

information concerning the primary transmitter can be used to improve the performance

of temporal sensing. The availability of more accurate spatial information can improve the
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accuracy of temporal sensing, which in turn can improve the accuracy of the estimated

spatial information. The simulation results presented in Section 3.5 demonstrate that a

significant performance gain can be achieved by joint spatial-temporal sensing relative to

pure spatial sensing and pure temporal sensing.

3.3.2 Node Selection for Temporal Sensing

In joint spatial-temporal sensing, the secondary nodes collaboratively perform both spatial

and temporal sensing. The primary transmitter parameters estimated via spatial sensing are

used to improve the accuracy of temporal sensing. Using the estimated location of the pri-

mary transmitter, the fusion center for detecting temporal spectrum holes can intelligently

choose a subset of the observation data from the secondary nodes so as to optimize detec-

tion performance. We propose two criteria for node selection: (1) minimum distance from

the primary transmitter; (2) minimum correlation values between pairs of signal strength

observations.

Let T denote the set of secondary nodes involved in temporal sensing. Then the fusion

center fuses the individual decisions from the “best” subset T̃ of T̃ nodes from the T = |T |

nodes in the set T based on one of the two criteria. We assume that the fusion center

has knowledge of the approximate locations of the nodes in T . In practice, the nodes in

T could send location updates to the fusion center at regular intervals. We remark that

the time-scale for location updates would be much larger than that of decision-making for

temporal spectrum holes. With knowledge of the locations of the nodes in T , the fusion

center can achieve the first criterion straightforwardly: Simply let T̃ be a subset consisting

of the T̃ secondary nodes in T that are closest to the primary transmitter p.

The second criterion is generally more difficult to achieve. Algorithm 1 is a heuristic

that attempts to choose a subset of nodes such that pairs of observations from these nodes

have small correlations (cf. [49]). The heuristic initializes T̃ to be the entire set T and

then successively removes nodes from T̃ until |T̃ | = T̃ . At each step, the node chosen for
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removal from T̃ is chosen by first finding the pair (a, b) of nodes in T̃ that are closest to

each other. Then a or b is removed from T̃ according as a or b is farther from the primary

transmitter p, respectively. The heuristic of Algorithm 1 is applied in the simulation results

discussed in Section 3.5.2.

Algorithm 1 Node selection heuristic for Criterion 2.

1: Input: T , T̃ , di,j , (i, j) ∈ T ∪ {p}; Output: T̃
2: T̃ ← T
3: while |T̃ | > T̃ do

4: (a, b)← argmin(i,j)∈T̃ di,j
5: if da,p < db,p then

6: T̃ ← T̃ − {b}
7: else

8: T̃ ← T̃ − {a}
9: end if

10: end while

3.3.3 Achievable capacity

Next, we consider the achievable capacity of the proposed joint spatial-temporal sensing

scheme relative to that of pure temporal sensing and pure spatial sensing. We adopt the

narrowband spatial capacity model in [56] with the addition of shadow fading. Assume that

Nu pairs of secondary transmitters and receivers are placed within a circular region centered

at the primary transmitter with radius equal to R. The location of receiver i is assumed

to be uniformly distributed over a circular strip bounded by two concentric circles centered

at transmitter i, of radius dmin and radius dmax, respectively. Under this assumption, the

distance Dii has the following pdf (cf. [56]):

fDii
(d) =

2d

d2max − d2min

, d ∈ [dmin, dmax],

i = 1, . . . , Nu. In [56], the number of transmitter-receiver pairs, Nu, is assumed to be a

Poisson random variable, but for the purposes of this discussion we will assume that Nu is

constant. We further assume a time division multiple access (TDMA) model wherein each
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frame contains Nu time slots that are scheduled for user transmissions.

Under pure spatial sensing, transmitter i can transmit to receiver i with power level

MIFTPi. Hence, the achievable capacity for the ith transmitter-receiver pair is given by

CS,i = B · E
[

log2

(

1 +
MIFTPi(Dii/d0)

−nW

N0B
|Hii|2

)]

, (3.7)

where the expectation E[·] is taken with respect to the transmitter-receiver distance Dii,

the shadowing noise W and fading coefficients Hii. As in [56], we assume that the channel

gain between transmitter i and receiver j is normalized, i.e., E{|H2
ij |} = 1. Therefore, the

average capacity under pure spatial sensing is given by CS = 1
Nu

∑Nu

i=1CS,i.

Let pon and poff denote the probability that the primary transmitter is ON and the

probability that it is OFF, respectively. Let pd = P1(δ = H1) denote the probability of

correct detection of a temporal spectrum hole, i.e., the probability that the fusion center

correctly decides that the primary transmitter is OFF given that it is in fact in the OFF

state. If the primary transmitter is OFF and the fusion center makes a correct detection

decision, then secondary node i can transmit with power up to a maximum level Pm. Hence,

the achievable capacity under pure temporal sensing for the ith transmitter-receiver pair is

given by

CT,i = poffpd ·B · E
[

log2

(

1 +
Pm(Dii/d0)

−nW

N0B
|Hii|2

)]

. (3.8)

Hence, the average capacity of pure temporal sensing scheme can be expressed as CT =

1
Nu

∑Nu

i=1CT,i.

In joint spatial-temporal sensing, a given secondary node i achieves the temporal sensing

capacity CT,i plus additional capacity due to spatial sensing when the primary transmitter

is in the ON state. By combining (3.7) and (3.8), we can obtain the achievable capacity of
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joint spatial-temporal sensing as follows:

CST,i = CT,i + [poff(1− pd) + pon(1− κ)]CS,i, (3.9)

where κ is the probability of temporal interference with the primary transmitter (cf. (3.6)).

Here, we note that there is no spatial capacity gain when the secondary node collides tem-

porally with the primary transmitter, i.e., when the secondary node decides that a temporal

hole is present even though the primary transmitter is actually in the ON state. The average

capacity under joint spatial-temporal sensing is then given by CST = 1
Nu

∑Nu

i=1CST,i.

3.3.4 Overhead

The overhead of joint spatial-temporal sensing compared to pure temporal sensing consists of

the additional computation carried out by the fusion center to select the subset of temporal

sensing nodes. After the subset of temporal sensing nodes is determined by the fusion center,

this set will remain unchanged until the fusion center selects a new subset. In general, the

fusion center selects a new subset of temporal sensing nodes when the location of the primary

transmitter changes. We assume that the time scale over which the primary transmitter

changes its location is much larger than the time scale of its ON/OFF durations. Under

this assumption, the extra overhead of joint spatial-temporal sensing compared to temporal

sensing is not significant in practice. Compared to pure spatial sensing, the overhead of

joint spatial-temporal sensing consists of the overhead of the temporal sensing process.

The optimal design of the temporal sensing duration and the associated throughput of a

cognitive radio has been studied in [57].

3.4 Temporal sensing with multi-bit feedback

In the counting rule and LQ detectors, all the temporal sensing nodes send only a one-bit

decision to the fusion center which fuses all the local hard decisions to arrive at a final

decision. We propose an m-bit feedback approach for counting rule detector, whereby each
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node divides its observation region into 2m quantization levels and sends an m-bit decision

to fusion center.

3.4.1 Centralized Detector

In centralized detection, a subset T̃ of secondary nodes sends a set of soft observations Yi,

i = 1, 2, ..., |T̃ | to the fusion center, where a joint likelihood ratio test on the entire vector

Y is performed. The posterior pdfs are given by

fY(y|H0) =
1

(2π)n/2 det(Σ1/2)
exp

(

−1

2
(y − α)∗Σ−1(y − α)

)

, (3.10)

fY(y|H1) =
1

(2π)n/2
exp





|T̃ |
∑

i=1

−y2i
2σ20



 . (3.11)

Combining (3.10) and (3.11) we obtain the joint log likelihood of the received vector at the

fusion center as follows:

ln
fY(y|H1)

fY(y|H0)
= ln(detΣ1/2)−

|T̃ |
∑

i=1

y2i
2σ20

+
1

2
(y − α)∗Σ−1(y − α). (3.12)

where x∗ represents the complex conjugate transpose of vector x. The fusion center com-

pares the received log likelihood ratio with a threshold. The threshold is determined such

that the false alarm probability is below a predetermined constant κ.
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3.4.2 Multi-level quantization

At node i, the log-likelihood ratio lnL(Yi) of the observation Yi is computed. The decision

rule at each node is specified as follows:

Ui =























0, if lnL(Yi) ≤ tl,

θi, if tl < lnL(Yi) < tu,

1, if lnL(Yi) ≥ tu,

(3.13)

where 0 < θi < 1 and the region (tl, tu) is called the region of no confidence. If the log-

likelihood ratio of node i falls into this region, it transmits a soft decision θi to the fusion

center. The other two complementary regions to (tl, tu) are called confidence regions. For a

given node i the value of θi is quantized using a scalar quantizer Qi, which maps the input

variable θi belonging to the interval [0, 1] into the output variable θij , j = 1, 2, . . . , q where

θi1 = 0 if lnL(Yi) ≤ tl and θiq = 1 if lnL(Yi) ≥ tu. The number of quantization levels, q,

is constrained by the communication rate of the channel, Ri, i ∈ T̃ . If mi is the number of

assigned bits, the communication rate satisfies 0 ≤ 2mi ≤ Ri, i ∈ T̃ .

We consider a uniform quantizer [58] that divides the closed interval [0, 1] into q quan-

tization levels, where 0 and 1 are two of the levels. Hence, the open interval (0, 1) is

divided into q − 2 quantization levels with uniform step size ψ = 1/(q − 2). If the value

of the log-likelihood function falls within the jth quantization interval (j = 2, 3, . . . , q − 1)

the quantized value is taken to be the middle of that interval. The transfer characteristic

function of the quantizer can be specified as

θi =























θi1 = 0, if lnL(Yi) ≤ t1,

θij , if tj−1 < lnL(Yi) < tj , j = 2, . . . , q − 1,

θiq = 1, if lnL(Yi) ≥ tq−1,

(3.14)
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where

θij ,
(2j − 1

2

)

ψ, i = 1, 2, . . . T̃ , j = 2, 3, . . . , q, (3.15)

t1 = tl and tq−1 = tu. At the fusion center, the decision is made by comparing the sum of

all received observations to a threshold τ :

δ =











H0, if
∑T̃

i=1 θi < τ,

H1, if
∑T̃

i=1 θi > τ.
(3.16)

Since the detection metric is discrete-valued, randomization may be required to achieve

equality in the interference probability constraint [54]. Randomization for the counting rule

detector can be implemented by finding two thresholds

τ1 = max{ν : P0(δ = H1|τ = ν) < κ}, (3.17)

τ2 = min{ν : P0(δ = H1|τ = ν) > κ}, (3.18)

where κ is a threshold that limits the probability of interference for temporal sensing (cf.

(3.6)). Let Pt1 and Pt2 denote the interference probabilities obtained when using thresholds

τ1 and τ2, respectively. The thresholds τ1 and τ2 are chosen with probabilities 1− p and p,

respectively, where

p =
κ− Pt1

Pt2 − Pt1
. (3.19)

The average interference probability is then given by

κ = pPt2 + (1− p)Pt1. (3.20)

When the observations are independent or the correlations between observations are small,

the counting rule in (3.16) is optimum or near-optimum[58]. However, when the correlations
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among the observations are high, the counting rule detector (3.16) performs poorly.

3.5 Numerical results

In this section, we compare the performance gain of the joint spatial-temporal sensing

scheme with a pure temporal and spatial sensing schemes via simulation in various scenar-

ios. In all scenarios, we assume that the transmit power, sp, of the primary transmitter is

unknown. Under joint spatial-temporal sensing, the secondary nodes collaboratively esti-

mate both sp and the location of the primary transmitter. The following parameter settings

are used in our simulation experiments:

• rmin = −30 dBm, imax = −80 dBm, ǫint = 0.01 and ǫcov = 0.05;

• σW = 4 dB , sp = 80 dBm, path loss factor n = 3, σ0 = 1 dB;

• σ1 = 2.1 dB, µ = 3.4 dB .

In the simulation experiments for achievable capacity, additional parameter settings are

given as follows:

• d0 = 1 m, rmin = 10 m, rmax = 100 m, Nu = 50;

• Pm = 90 dBm, poff = pon = 0.5 and B = 1 Hz.

The primary transmitter is located at Lp = (5, 5) km. All secondary nodes are located in

a disk of radius R = 100 km. The MIFTP values of the secondary nodes range from zero

to 60 dBm. The reference distance for temporal sensing nodes may be different from the

reference distance in the disk centered at Lp with radius R because the temporal sensing

nodes are located very far from the primary transmitter, i.e., where the received SNR =

0 dB. As shown in Fig. 3.1, the locations of |S| = 20 secondary nodes for spatial spectrum

sensing are generated randomly with uniform distribution inside the circle centered at Lp

with radius equal to ddet(a). All temporal sensing nodes are placed inside a square with the

smallest possible mean received SNR = 0 dB. For the simulation results shown in Figs. 2-12,
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Figure 3.1: Generation of secondary node locations.
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Figure 3.2: Average correlation between the signal strength observations of two nodes over
a subset of nodes selected by Algorithm 1 to minimize pairwise correlations.
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95% confidence intervals were computed, but they are omitted from the figures to maintain

visual clarity of the plots.

3.5.1 High correlation scenario

In the first scenario, we assume the suburban environment correlation model in [59] with

d0 = 1 m, correlation coefficient ρ = 0.6, and correlation distance Dc = 250 m. We place

18 temporal sensing nodes inside the square area indicated in Fig. 3.1 with edge length

equal to Dc/2 = 125 m. Out of the 18 nodes, nine are placed in fixed locations along the

edges of the square, with even spacing. In particular, assume that the bottom left corner

of the square has coordinates (0, 0) and the length of an edge is 2. Then the coordinates

of the nine fixed locations are: (0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (1, 1), (1, 2), (2, 1), and

(2, 2). This placement of the nine nodes is the same as that used in [8]. The remaining 9

nodes are placed inside the square randomly according to a uniform distribution, i.e., the x

and y coordinates for each of these nodes are drawn randomly from a uniform distribution

on [0, 2]. Because the nodes inside the square have different SNRs and the correlation ρ is

relatively large, the fusion center chooses the decisions from the nine nodes closest to the

primary transmitter based on its estimated location.

Fig. 3.3 compares the detection performance of several temporal spectrum sensing

schemes in this scenario. In both figures, the horizontal axis shows the probability of

interference, P0(δ = H1). In Fig. 3.3, the performance of a single sensor is shown as the

solid line. The performance of pure temporal sensing under the counting rule and the LQ

detectors are shown with circles and diamonds, respectively. The LQ detector is seen to

clearly outperform the counting rule, which confirms the results in [8]. Performance curves

for joint spatial-temporal sensing using the counting rule and LQ detectors are shown with

triangles and squares, respectively. The spatial-temporal sensing scheme is carried out using

criterion 1 (see Section 3.3). We see that the spatial-temporal LQ detector has the best per-

formance over all values of P0(δ = H1). We also observe that the spatial-temporal counting

rule detector performs worse than the temporal LQ detectors when P0(δ = H1) is small and

36



better when P0(δ = H1) is larger; the crossover point is approximately 0.005. Fig. 3.3 clearly

shows the benefit of incorporating spatial information into temporal spectrum sensing.

Fig. 3.4 compares the average capacity of joint spatial-temporal sensing vs. pure tem-

poral and pure spatial sensing. Clearly, the capacity achieved by the joint spatial-temporal

scheme is significantly higher then that of the other schemes. In this figure, two performance

curves associated with pure spatial sensing are shown. The curve labelled “spatial sensing”

corresponds to the performance of a pure spatial sensing scheme when the primary trans-

mitter is ON at all times. In this case, the secondary cannot benefit from the time intervals

during which the primary transmitter may be OFF. The curve labelled “spatial sensing

2” shows the performance of a pure spatial sensing scheme operating in the presence of a

primary transmitter that follows an ON-OFF pattern, but no additional temporal sensing

information is employed. In this case, the MIFTP calculated by the secondary node varies

over time due to the ON-OFF pattern of the primary transmitter, but the MIFTP cannot

be determined accurately because signal strength measurements are taken by the secondary

node regardless of whether the primary transmitter is ON or OFF. As a result, the MIFTP

computed by a pure spatial sensing scheme at a given time may underestimate or overes-

timate the permissible transmit power. The latter case may result in harmful interference

to primary users, while the former case may result in inefficient spectrum use. We observe

from Fig. 3.4 that the capacity performance of “spatial sensing 2” is significantly poorer

than that of the joint temporal-spatial schemes, though slightly better than that of “spatial

sensing.”

Note that the LQ-based detectors perform better than the counting rule based detectors,

which one would expect, due to the relatively high correlation in this scenario.

3.5.2 Moderate correlation scenario

In the second simulation scenario, we set d0 = 100 m, ρ = 0.3, correlation distance Dc =

300 m. All nodes in T have almost the same received SNR. In this scenario, we have

|T | = 18 total nodes for temporal sensing, which are located randomly in the square shown
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Figure 3.3: Spatial-temporal sensing vs. temporal sensing with ρ = 0.6.
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Figure 3.4: Achievable capacity gain of joint spatial-temporal sensing, spatial sensing, and
temporal sensing with ρ = 0.6.
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in Fig. 3.1 according to a uniform distribution. A subset, T̃ of T̃ = 9 nodes is chosen from

the original set T according to one of the two criteria discussed in Section 3.3. Fig. 3.5

compares the performance of the following four joint spatial-temporal detectors: (1) LQ

detector under criterion 1; (2) Counting rule detector under criterion 1; (3) LQ detector

under criterion 2; (4) Counting rule detector under criterion 2.

In this scenario, the heuristic given as Algorithm 1 in Section 3.3 is used to implement

criterion 2 approximately. Fig. 3.2 shows that the heuristic succeeds in reducing the average

correlation between two nodes. As expected, the reduction in average correlation improves

as the total number of secondary nodes increases. From Fig. 3.5, we observe that when the

correlation is small and the received SNRs are similar, better performance is achieved with

criterion 2, i.e., the nodes are selected using Algorithm 1. Under criterion 2, the count-

ing rule detector outperforms the LQ detector because criterion 2 achieves low correlation

among the observations, and when the correlation is small the counting rule detector out-

performs the LQ detector according to [8]. However, under criterion 1, the LQ detector

still outperforms the counting rule detector because the correlation remains relatively high.

In Fig. 3.6, capacity gains of the proposed scheme under both criteria are compared with

that of a pure spatial sensing scheme. It can be seen that the use of criterion 2 achieves the

largest capacity gain over spatial sensing.

In Fig. 3.7, we compare the performance of Algorithm 1 relative to an optimal selection

of nodes. The optimal node set is found through simulation by searching over all possible

node combinations. There are
(|T |
|T̃ |
)

possible combinations, where T is the set of all nodes

in the square area and T̃ is the selected subset. In our simulations, we set |T | = 9 and

|T̃ | = 5. It can be seen that the performance of achieved by Algorithm 1 is quite close to

that of an optimum node selection strategy. We remark that finding the optimum node

subset is impractical when the number of combinations
(|T |
|T̃ |
)

is large.
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Figure 3.5: Joint spatial-temporal sensing with different node selection criteria and ρ = 0.3.
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Figure 3.6: Achievable capacity gain of joint spatial-temporal sensing with ρ = 0.3
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Figure 3.7: Performance of optimum node selection vs. node selection based on Algorithm 1
with correlation parameter ρ = 0.3.

3.5.3 Multi-bit feedback scheme

In Fig. 3.8, we compare the performance of multi-bit counting rule temporal sensing in terms

of detection probability and capacity vs. single-bit temporal sensing in a low correlation

scenario with ρ = 0.2. In this scenario, 9 nodes are uniformly distributed over the coverage

area. In a region where the correlation is low, the multi-bit scheme significantly outperforms

the counting rule detector. However, when the correlation parameter is high, the multi-bit

scheme does not perform well, as shown in Fig. 3.9. This is because the detection rule at the

fusion center is based on the counting rule, which performs well only when the correlation

is small. The results of Fig. 3.9 also confirm that in a region with high correlation, the

performance of the LQ detector is higher than that of counting rule based detection schemes.

In Fig. 3.10, we compare the performance of the pure temporal LQ detector, the pure

temporal counting rule detector, and pure temporal and joint spatial-temporal sensing with

multi-level quantization (m = 2). The correlation parameters are set as follows: ρ = 0.3,
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Figure 3.8: Performance of multi-level quantization vs. other hard decision detection rules,
ρ = 0.2.

d0 = 100 m, Dc = 300 m. A total of |T | = 18 nodes perform temporal sensing and are

located randomly in the square shown in Fig. 3.1 according to a uniform distribution. A

subset, T̃ , of 9 nodes is chosen from the original set T using Algorithm 1, which seeks to

minimize the correlation between nodes. In Fig. 3.11, we compare the capacity of the joint

spatial-temporal sensing scheme with 2-bit feedback vs. pure temporal and spatial sensing.

We see that the capacity achieved by joint spatial-temporal sensing is significant higher than

that of the pure temporal and spatial sensing schemes. Fig. 3.12, shows the performance

of the LQ detector, counting rule detector, and multi-bit counting rule detector with m = 2

and m = 4 as a function of the correlation parameter ρ and the interference probability

constraint P0(δ = H1) = 0.003. Again, the LQ detector has the best performance when

ρ is large while the counting rule detector and multi-level counting rule detector perform

well when ρ is small. When the correlation is high, increasing the number of bits m for

multi-level feedback system does not improve the system performance appreciably. Note

that the performance curves for the counting rule based detectors decrease monotonically

as functions of the correlation parameter ρ. On the other hand the performance curves for
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Figure 3.9: Performance of multi-level quantization vs. other hard decision detection rules,
ρ = 0.6.
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Figure 3.10: Performance of multi-bit feedback detector vs. LQ and counting rule detectors,
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Figure 3.11: Capacity gain of joint spatial-temporal sensing with 2-bit feedback.

the LQ detector and the centralized detector are non-monotonic: they first decrease and

then increase as functions of ρ. This can be explained in terms of two different features

that can be exploited in the hypothesis testing problem given by (3.4) and (3.5). When

the correlation parameter ρ is small, the two hypotheses are distinguishable mainly by

the mean values of the observations. In this case, the counting rule based detectors are

expected to perform well. On the other hand, when ρ is larger, the two hypotheses are

more distinguishable in terms of second-order statistics, which the counting rule fails to

capture. On the other hand, the LQ and centralized detectors exploit both features; hence,

as we observe in the results, the performance curves first decrease and then increase as ρ

increases.

3.6 Conclusion

We proposed a joint spatial-temporal sensing scheme for opportunistic spectrum sharing in

cognitive radio networks. The system model consists of a primary transmitter with unknown

location and transmit power, which alternates between ON and OFF states, with respect to
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Figure 3.12: Comparison of performance of LQ, Counting Rule and multi-bit feedback
detectors as functions of correlation parameter ρ with P0(δ = H1) = 0.003.

a given frequency channel. Spatial spectrum sensing is employed to estimate the maximum

interference-free transmit power for a secondary node during an ON period. Estimates of the

primary transmitter’s location and transmit power obtained in the course of spatial sensing

are used by a fusion center to select a subset of the secondary nodes to make a temporal

sensing decision, i.e., a decision as to whether the primary is ON or OFF. Three distributed

temporal sensing algorithms were considered: the counting rule detector, linear quadratic

detector and counting rule with multi-bit feedback. By incorporating spatial information,

we obtained joint spatial-temporal versions of these detectors. We derived the achievable

capacity for pure temporal sensing, pure spatial sensing, and joint spatial-temporal sensing.

Our simulation results show that joint spatial-temporal sensing significantly outperform

pure temporal sensing in terms of probability of spectrum hole detection and capacity gain.

In this chapter, we assumed only a single primary transmitter on a given frequency channel.
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Chapter 4: Spectrum Sensing with Multiuser Diversity

4.1 Introduction

In this chapter1, we focus on the cooperative spectrum sensing with multiuser diversity.

In general, spectrum sensing can be performed either at individual secondary node or by a

group of cooperative secondary nodes. Cooperative sensing has been studied in a number of

papers[8,23,24]. Cooperation between secondary nodes can mitigate the effects of low signal

to noise ratio (SNR), shadowing, and hidden terminals [8]. In cooperative sensing, secondary

users at different locations sense the channel independently and send their observation to

a fusion center. They can communicate either the soft information about the channel or a

one-bit hard decision to the fusion center [61]. The optimum soft combination is derived

in [61] wherein the optimal weight coefficients are identical to maximal ratio combining

(MRC).

In a wireless network with fading, different users experience different channel fading

conditions during the same observation period. Multiuser diversity can be exploited by

scheduling users to transmit when their channel conditions are favorable [40]. Multiuser

diversity systems can be centralized or distributed. In centralized systems, a central pro-

cessor maintains channel state information for all users and always schedules the user with

the best channel for transmission. In distributed multiuser diversity systems, each user has

knowledge of its own channel state, but has knowledge of the fading levels of other users.

In [41], Qin and Berry proposed a distributed approach for exploiting multiuser diversity

based on a protocol called channel-aware slotted ALOHA wherein each user decides, based

on the channel state, in which slot to transmit and how much power to use.

1The contents of this chapter appeared in [60].
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The design of a multiuser diversity system should consider two important issues: fairness

and delay [62]. In the ideal situation when users fading statistics are the same, the multiuser

diversity maximizes not only the total capacity of the system but also the throughput of

individual users. However, in reality, users that are closer to the base station have a better

average SNR. Some users are stationary, while others are moving. A pure multiuser diversity

strategy maximizes long-term average throughput, without regard to delay requirement.

In this chapter, we propose a distributed approach to spectrum sensing that exploits

multiuser diversity among secondary users to improve sensing capability in cognitive radio

networks. We adopt a cooperative sensing framework is to overcome low SNR and shadow-

ing. Unlike traditional multiuser diversity schemes for wireless networks, fairness and delay

issues can be ignored in spectrum sensing scenario because the only performance metric

of interest is the detection probability. We consider two cases: when secondary users are

equipped with single antenna and multiple antennas. We also propose a MAC protocol bases

on carrier sense multiple access (CSMA) protocol to facilitate the transmission of observa-

tion from secondary users to fusion center. The opportunistic MAC protocols which exploit

multiuser diversity have been investigated in literature. In [63], Zhao and Tong investigated

the opportunistic CSMA for energy-efficient information retrieval in sensor networks. The

key idea in [63] is to exploit the channel state information (CSI) in the backoff strategy

of carrier sensing in which the backoff time is a decreasing function of CSI. This scheme

ensures that only sensor with the best channel transmit. In [64], authors incorporate mul-

tiuser diversity into p-persistent CSMA. In [64], each user will send a packet if the CSI

is above threshold which is determined such that the probability of accessing the medium

is p. The proposed opportunistic p-persistent CSMA has a significant capacity increasing

compare to traditional p-persitent CSMA. Also in [65], Hwang and Cioffi investigated the

opportunitic CSMA/CA to achieve multi-user diversity in wireless LAN. In this chapter,

our MAC protocol uses different backoff window to exploit the multiuser diversity inherent

in secondary networks. We name our MAC protocol as cognitive CSMA MAC protocol
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which controls the communication between secondary users and fusion center. Our nu-

merical results show that the proposed spectrum sensing scheme significantly outperforms

schemes that do not exploit multiuser diversity. Furthermore, we show by simulation the

benefit of using multiple antennas for spectrum sensing.

The remainder of the chapter is organized as follows. Section 4.2 describes the system

model. Section 4.3 proposes the distributed scheme for exploiting multiuser diversity to

improve the sensing capability. Section 4.4 proposes a practical MAC protocol for coor-

dination of transmission between secondary users and fusion center. Section 4.5 presents

simulation results. Finally, the chapter is concluded in Section 4.6.

4.2 System Model

We consider a discrete-time system model with a single primary transmitter and S secondary

users equipped with frequency-agile cognitive radios. Each user make a local decisions

about the presence of the primary user and communicate a one-bit hard decision to the

fusion center, which makes the final decision. Alternatively, the system can operate in a

distributed manner wherein secondary users exchange their local decisions with each user.

Without loss of generality, we shall assume a fusion center in this chapter.

Due to communication constraints between secondary users and the fusion center, not

all the secondary users are able to communicate their decisions to fusion center. We assume

that N out of S secondary users are able to communicate with the fusion center. Because

of multiuser diversity, each of the S secondary users has different fading channel parameters

during a given observation time period.

We adopt a spectrum sensing model similar to that in [61]. Each secondary user uses

M samples for energy detection. We define two hypotheses: H1 is the hypothesis that the

primary is ON and located close to the secondary nodes and H0 is the hypothesis that the

primary is OFF or far away. In other words, H0 is the hypothesis that the spectrum hole

exists and the frequency channel is available for reuse by secondary users. The observed
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energy value at the jth user is given by

Yj =











∑M
i=1 n

2
ji, under H0,

∑M
i=1(sji + nji)

2, under H1,
(4.1)

where nji is the white noise signal in the ith sample of the jth user and sji denotes the

received primary signal at each secondary user, 1 ≤ j ≤ N , 1 ≤ i ≤M . The noise samples

nji are assumed to be independently and identically distributed (i.i.d.) Gaussian random

variables with zero mean and unit variance.

The instantaneous SNR of the jth secondary user is defined as

γj ,
1

M

M
∑

i=1

s2ji.

Following [61], we assume that the total energy of the transmitted primary signal is constant

within each observation block. Thus, the γj ’s represent the power of the instantaneous

channel gain and can be modeled by a Rayleigh or Nakagami distribution [66] and are i.i.d.

over different secondary users j and observation block. Within a given observation block,

multiuser diversity exists because of the differences in γj across users.

If the primary user is absent or in the OFF state, Yj can be modeled as a central chi-

square random variable with M degree of freedom. Otherwise, if the primary user is in the

ON state, Yj follows a non-central chi-square distribution with M degree of freedom and a

non-centrality parameter λj =Mγj [61]:

H0 : Yj = χ2
M ,

H1 : Yj = χ2
M (λj).
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For large M , Yj can be approximated by a Gaussian distribution [61]:

H0 : Yj ∼ N (M, 2M),

H1 : Yj ∼ N (M(1 + γj), 2M(1 + γj)). (4.2)

In [61], a Gaussian approximation of the received energy distribution is used to derived

the optimal soft combination weights. The weighted summation at fusion center is given by

Y =
N
∑

j=1

ωjYj . (4.3)

The distribution of Y can be approximated by a Gaussian distribution as follows: Under

H0,

H0 : Y ∼ N



M

N
∑

j=1

ωj , 2M

N
∑

j=1

ω2
j





H1 : Y ∼ N



M
N
∑

j=1

(1 + µj), 2M
N
∑

j=1

ω2
j (1 + µj)



 . (4.4)

The fusion center chooses hypothesis H1 if Y > τf and H0 otherwise, where τf is the

decision threshold at the fusion center. The performance metrics of interest are the false

probability and the detection probability:

PF , Pr{Y > τf |H0}, PD , Pr{Y > τf |H1}.

For a given false alarm probability, the objective is to maximize the probability of (correct)

detection. The performance of different sensing schemes can be evaluated by comparing PD

at a predetermined PF value.
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4.3 Multiuser Diversity Spectrum Sensing

In this section, we develop a multiuser diversity spectrum sensing scheme for cognitive radio

networks. There are S total number of secondary nodes equipped with identical energy

detector. The energy distribution between secondary nodes are i.i.d. with some distribution

i.e., Rayleigh or Nakagami fading distribution. We consider the case of secondary users

equipped with a single antenna and with multiple antennas.

4.3.1 Soft combination

Let τl and τu be predefined lower and upper thresholds, respectively, where τl < τu. In the

proposed scheme, a node j (j = 1, . . . , S) with received energy level satisfying

Yj > τu or Yj < τl (4.5)

sends its observation to the fusion center. As stated earlier, we assume that communication

capacity of the channel between the secondary nodes and the fusion center is limited such

that only N out of S nodes can communicate with the fusion center. If the number of

nodes with received energy level satisfying (4.5) is Ñ < N , then N − Ñ nodes are randomly

chosen to communicate theirs observations to the fusion center. This guarantees that the

total number of observation sent to fusion center is always equal to N . There is a dedicated

control channel for enabling the communication between secondary users and fusion center.

We also assume that there exists a perfect MAC protocol that coordinates transmissions

between secondary nodes and fusion center. A practical MAC protocol based on CSMA is

proposed in section 4.4.

To understand the benefit of exploiting multiuser diversity, we consider a simple soft

information equal gain combining (EGC) strategy at the fusion center:

Y =
N
∑

j=1

Yj .

51



The distribution of Y can be approximated by a Gaussian distribution as given in (4.4)

with ωj = 1, j = 1, 2 . . . , N for EGC. For S ≫ N , the thresholds τl and τu can be chosen

such that

Pr(Yj < τl|H1) ≈ 0, Pr(Yj > τu|H0) ≈ 0, j = 1, 2, . . . S.

Suppose that Ñ > 0 nodes satisfy (4.5) and denote their received energy levels by

Ỹj , j = 1, . . . Ñ .

Under hypothesis H1, the following inequality holds with probability one:

Ñ
∑

j=1

Ỹj ≥
Ñ
∑

j=1

Yj ,

where {Yj}Nj=1 denotes a set of observations that does not exploit multiuser diversity; i.e.,

a set of N out of S nodes is randomly selected to send their observations to fusion center.

Hence,

Ỹ =
Ñ
∑

j=1

Ỹj +
N
∑

j=Ñ+1

Yj ≥ Y =
N
∑

j=1

Yj , (4.6)

where the inequality is understood to hold almost surely. Thus,

Pmud , Pr{Ỹ > τf} ≥ Pr{Y > τf} , Pc (4.7)

where Pmud and Pc denote the detection probability of the multiuser diversity spectrum

sensing scheme and a conventional scheme, respectively. Therefore, multiuser diversity

spectrum sensing results in a superior detection probability compared to conventional spec-

trum sensing. A similar approach can be applied for hypothesis H0. In this case, the

false alarm probability of the multiuser diversity spectrum sensing scheme can be shown to
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be smaller than that of conventional scheme. Simulation results presented in Section 4.5

validate the benefit of exploiting multiuser diversity for spectrum sensing.

The optimal soft combination is derived in [61], where the optimal weight coefficient is

ωj =
γj

√

∑N
k=1 γ

2
k

, (4.8)

γj is the instantaneous SNR, and the soft combination rule is given by (4.3). Since ωj

derived in (4.8) is similar to maximal ratio combining (MRC), we refer to this approach as

the MRC scheme. In this case, the fusion center compares the obtained soft combination

metric Y in (4.3) with a predetermined threshold τf and decides on hypothesis H1 if Y > τf

and H0 otherwise. The value of τf is determined by simulation [61] such that the probability

of interference is smaller than or equal to a threshold on the probability of false alarm, PF .

4.3.2 Hard combination

The soft combination scheme may be impractical due to the overhead in sending the ob-

servation data to the fusion center. As an alternative, a hard combination scheme could

be adopted at fusion center. In this scheme, each node compares its observation Yj with a

given threshold τn. If Yj satisfies (4.5), the node will send a hard decision Ui = 1 to the

fusion center if Yj > τn and Ui = 0 otherwise:

Ui , I{Yi>τn},

where IA denotes the indicator function on the event A. At the fusion center two fusion

rules that could be applied are:

1. 1 out of N (OR) rule [67]: The primary signal will be declared present if any one of

the cooperative users decides locally that the primary signal exists.

2. Counting rule: The final decision is made by comparing the sum
∑N

i=1 Ui to a decision
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threshold. The value of this threshold is obtained through simulation [8].

The threshold at each node τn for the OR rule is also determined by simulation such that

the constraint on the probability of false alarm is satisfied at the fusion center. However,

the 1 out N rule tends to have a high probability of false alarm [67]. Moreover, this rule

may not be used in case communication is not available between the secondary nodes and

the fusion center. The counting rule ensures that the constraint on the probability of false

alarm is met both at individual nodes and at the fusion center. However, randomization

between two fusion thresholds may be required at the fusion center in order for the counting

rule to achieve the false alarm probability constraint [8].

4.3.3 Multiple antenna case

We now extend the preceding discussion for the case when each secondary user has Nt

antennas. As before, we assume that the primary transmitter has a single antenna as

before. An energy detector is used at each antenna of the secondary user. We assume that

the distance between the antennas is sufficiently far that the fadings for the attennas may

be considered i.i.d. Assume that M samples are collected at each detector. The observed

energy from the kth antenna at a node j is given by

Zj,k =











∑M
i=1 n

2
ji, under H0,

∑M
i=1(sji + nji)

2, under H1,
(4.9)

For a multiple receive antenna system, equal gain combination (EGC) is used [61]:

Yj =

Nt
∑

k=1

Zj,k, j = 1, . . . , S, (4.10)
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where Yj is the combined total received energy at the output of secondary user j. We then

compare Yj with two thresholds τ̃u and τ̃l. If Yj satisfies

Yj > τ̃u or Yj < τ̃l (4.11)

then node j will communicate its observation to the fusion center.

Similar to the single antenna scenario, if the number of nodes with energy level satisfying

(4.11) is smaller than N , say Ñ , then N − Ñ nodes are randomly chosen to communicate

their observations to the fusion center. This guarantees that the number of observations

sent to fusion center is always equal to N . As before, we assume that there exists a MAC

protocol that coordinates transmissions between the secondary nodes and fusion center. In

the multiple antenna case, we assume that the each user sends only a one-bit hard decision

to the fusion center for hard combination. If the observation Yj satisfies Yj > τ̃n, then node

sends the value 1 to the fusion center and 0 otherwise. The 1 out of N or the counting rules

can be used at fusion center as the detection rule. The threshold τ̃f at the fusion center and

the thresholds τ̃n and τ̃n are determined by simulation to meet the false alarm probability

requirement.

4.4 Cognitive CSMA MAC protocol

In this section, we develop a cognitive CSMA MAC protocol for secondary users transmit

their observation to fusion center. The proposed cognitive MAC is used for the communi-

cation between secondary user and fusion center during spectrum sensing period. Clearly,

a different MAC protocol may be used for communication between secondary users during

spectrum hole period. We assume there exists a control channel for secondary users to

exchange information with fusion center. Also, the physical layer between fusion center and

user is assumed to be perfect, i.e., the fusion center receive what the users send without

error. Our proposed opportunistic MAC protocol based on CSMA 802.11 standard protocol

[68]. In our scenario, the MAC protocol is used to communicate secondary users to fusion
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center. Therefore, there is no hidden terminal issue and Request to Send/Clear to Send

(RTS/CTS) packets can be ignored.

The time scale is divided in to time slots and user is allowed to transmit only at the

beginning of each time slot. If a secondary user want to communicate its observation to

fusion center, it monitors the channel activity. If the channel is idle for a specified time

period i.e., distributed interframe space (DIFS) in 802.11 standard, the secondary user

transmits. Otherwise, if the channel is busy, the user continue to monitor the channel until

it is idle for a DIFS. If the channel is sensed idle for DIFS, user generate a random backoff

interval before transmitting (802.11 collision avoidance feature). We accept the exponential

backoff scheme in 802.11 standard with modification to exploit multiuser diversity. Each

user i will generate random backoff time which is randomly chosen in the range (0, wi− 1).

The value wi is called contention window of user i. At first transmission attempt or after a

successful transmission, wi = CW1 if the observation Yi satisfies condition in (4.5) otherwise

wi = CW2. After each failed transmission, i.e., when there is more than one user transmit

at the beginning of a time slot, wi is doubled until it reach CWmax where CWmax = 2mCW1

if Yi satisfies condition in (4.5) otherwise CWmax = 2mCW2.

The backoff time counter is decremented as long as the channel is sensed idle, frozen

when the channel is busy. When the backoff time counter reaches zero, user transmit its

observation to fusion center. We choose CW1 ≪ CW2. Hence, users satisfying condition

in (4.5), will likely have a smaller random backoff timer and have channel access with

higher probability. The fusion center will make the final decision whenever it receives the

observations of N users.

4.5 Numerical Results

In this section, we compare the performance of the proposed multiuser diversity spectrum

sensing scheme with a conventional scheme that does not exploit multiuser diversity. The

following parameters are used for all simulations
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• False alarm probability requirement τFA = 0.01;

• Number of samples M = 6;

• Number of secondary nodes N = 4.

• CW1 = 8 , CW2 = 64, m = 3

In all simulations, we use the dotted line for the performance with cognitive MAC protocol.

In Fig. 4.1, we compare the performance of multiuser diversity spectrum sensing with con-

ventional spectrum sensing when soft optimal combination and the 1 out N rule are used at

the fusion center. Here, the total number of users is S = 12. We reproduce the results for

conventional 1 out of N rule and optimal soft combination considered in [61] and compare

with the corresponding results from the multiuser diversity scheme. The thresholds τu and

τl are chosen to satisfy

P (Yi < τl|H0) =
N

S
and P (Yi > τu|H1) =

N

S
. (4.12)

These thresholds can easily be calculated using (4.2). The threshold τn is set by simula-

tion to meet the false alarm probability requirement. We can see that the performance

in term of detection probability of our scheme is much better than that of conventional

scheme especially when the signal-to-noise ratio is relatively small. For S = 12 and N = 4,

the hard combination (OR rule) with multiuser diversity can outperform the optimal soft

combination scheme. In Fig. 4.2, we compare the performance of cognitive MAC protocol

over different value of CW2. The performance of OR rule with cognitive MAC approaches

the performance of OR rule with perfect MAC protocol at CW2 = 64. However, there is a

MAC delay trade-off when increasing the CW2. In Fig. 4.3, we compare the performance

of the multiuser diversity scheme with conventional optimum soft combination and the OR

rule with different values of S at SNR= 0 dB. The thresholds τu and τl are similar to those

used in the simulation of Fig. 4.1 at SNR= 0 dB. When the total number of users S in-

creases, the detection probability of multiuser diversity spectrum sensing increases. When
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Figure 4.1: Performance of 1 out N rule (OR) rule and soft combination scheme with
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20 40 60 80 100 120
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

CW2 →

P
ro

ba
bi

lit
y 

of
 d

et
ec

tin
g 

sp
ec

tr
al

 h
ol

es
 (

P
0(δ

 =
 H

0) 
→

OR rule without MUD

OR Rule with MUD (perfect MAC)

OR Rule with MUD (CSMA)

Figure 4.2: Performance of OR Rule with perfect MAC and CSMA MAC vs. the contention
window CW2.

58



4 5 6 7 8 9 10 11 12 13 14
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Total number of user S

P
ro

ba
bi

lit
y 

of
 (

co
rr

ec
t)

 d
et

ec
tio

n 
P

D
 →

OR rule without MUD

Soft combination without MUD

OR Rule with MUD (perfect MAC)

OR Rule with MUD (CSMA)

Figure 4.3: Performance of conventional OR rule and soft combination scheme and OR rule
with multiuser diversity vs. total number of users S.

S ≥ 8, the multiuser diversity hard combination based OR rule outperforms the conven-

tional soft optimal combination studied in [61]. In Fig. 4.4, we compare the performance

of the conventional and multiuser diversity spectrum sensing schemes with the counting

rule at the fusion center. All of the schemes meet the requirement of τFA at the fusion

center, but only the counting rule satisfies the τFA requirement at both the nodes and the

fusion center. The performance of the 1 out N rule (OR) rule is better than that of the

conventional counting rule because the OR rule increase the false alarm probability at each

node [67]. At low SNR, single user detection can outperform the counting rule because

of the effect of fading. At low SNR, nodes which have severe fading can create a wrong

decision about the presence of primary detection. When combining at the fusion center,

these may lead to wrong decision at the fusion. In Fig. 4.5, we compare the performance

gain of secondary users equipped with multiple antennas over those equipped with only a

single antenna. Hard combination with 1 out of N rule is used. Each multi-antenna user

is equipped with Nt = 2 antennas. We consider S = 12 nodes and set the thresholds as

τ̃u=2τu and τ̃l=2τl, where τu and τl are obtained from the simulation in Fig. 4.1. Fig. 4.5
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Figure 4.4: Performance of Counting Rule (CR) with multiuser and conventional spectrum
sensing.

clearly shows the benefit of multiple antennas over single antennas and also the benefit of

multiuser diversity in multi-antennas systems.

4.6 Conclusion

We proposed a cooperative multiuser diversity spectrum sensing scheme that exploits the

multiuser diversity inherent in the secondary network to improve the sensing capability of

cognitive radio systems. We use a distributed approach in the sense that each secondary

user only has local knowledge about its observed energy. We studied two detection rules

for the fusion center, counting rule and the OR rule and also considered the case of users

equipped with multiple antennas. We also propose a cognitive MAC protocol for secondary

users to communicate their observation to fusion center. The simulation results show that

our proposed scheme significantly outperforms conventional cooperative sensing schemes

that do not take advantage of multiuser diversity. In this chapter, we assumed that the

fadings between secondary user antennas were independent. In the ongoing work we are

investigating the case of correlated fading between antennas.
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Chapter 5: Amplify-and-Forward Cooperative Transmission

in Cognitive Radio Networks

5.1 Introduction

In this chapter1, we consider a scenario in which a secondary transmitter can communicate

with a secondary receiver via a direct communication link or a relay channel, depending

on the state of a primary transmitter. We propose cognitive amplify-and-forward with

fixed decoding delay and cognitive amplify-and-forward with variable decoding delay that

exploit the presence of spectrum holes both in time. In fixed decoding delay protocol, the

secondary receiver always decodes the received signal after fixed number of time frames.

However, in variable decoding delay, the number of time frames the secondary receiver has

to wait before it can decode the signal depends on the state of the primary transmitter. The

variable decoding delay scheme, which always has a diversity order of two, has lower symbol

error probability than fixed decoding delay scheme. Our simulation and analytical results

show that our proposed schemes, employing joint spatial-temporal sensing, significantly

reduces the average symbol error probability compared to schemes based on pure temporal

or spatial sensing. We also propose an incremental relaying protocol which improves the

spectral efficiency of our protocols.

Spectrum holes exist both in time and in space. A temporal spectrum hole may arise,

for example, when a licensed or primary user of the spectrum is idle, i.e., not transmitting.

In this case, a temporal spectrum hole is characterized by the duration in which the primary

transmitter is in the idle or OFF state. A spatial spectrum hole with respect to a given

frequency channel may occur if a given secondary user is sufficiently far from a primary user

that is actively transmitting. In this case, the secondary user may transmit up to a certain

1The preliminary contents of this chapter appeared in [69].
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level, which we called the maximum interference-free transmit power (MIFTP), without

causing harmful interference to primary users who are receiving the transmissions.

Spatial spectrum sensing is investigated [17, 18], wherein the maximum MIFTP of a

given secondary user is estimated based on signal strengths received by a group of secondary

nodes. To calculate the MIFTP for a secondary node, estimates of both the location and

transmit power of the primary transmitter are estimated collaboratively by a group of

secondary nodes. Using these estimates, each secondary node determines its approximate

MIFTP, which bounds the size of its spatial spectrum hole.

The problem of detecting when the primary is ON or OFF is called temporal spectrum

sensing. The decision on the ON/OFF state of the primary transmitter can be made

either at individual secondary nodes or collaboratively by a group of secondary nodes.

Cooperative temporal sensing has been studied in [8,23,24]. Cooperation among secondary

nodes for temporal sensing can overcome problems posed by low signal-to-noise ratio (SNR),

shadowing, and hidden terminals [8].

In earlier work [49, 50], a joint spatial-temporal sensing was proposed whereby a sec-

ondary node performs spatial sensing to determine its MIFTP when the primary transmitter

is ON and uses localization information obtained in the process of spatial sensing to perform

the temporal sensing.

In this chapter, we propose a cooperative communication strategy that employs joint

spatial-temporal sensing to maximize the transmission capacity of secondary users in a

cognitive radio network. In Fig. 5.1(a), the secondary transmitter (ST), labeled as node a

can communicate directly with the secondary receiver (SR), labeled as node b, due to the

existence of a spatial spectrum hole with respect to the primary transmitter (PT). However,

in the scenario depicted in Figs. 5.1(b), ST can communicate directly with SR only when

PT is in the OFF state. In these scenarios, when PT is ON, ST transmits to SR via a

relay (R), labeled as node r. By enabling the use of both the direct and relay channels,

joint spatial-temporal sensing can significantly improve the transmission performance of the

secondary system.
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(a) Direct communication.

(b) Single relay cooperative communication.

Figure 5.1: Cooperative communication with joint spatial-temporal sensing.

Figure 5.2: Two stage Markov chain model for PT’s ON/OFF process
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Cooperative relay communications or cooperative diversity has received much attention

in recent years (cf. [42, 43, 45, 70]). The basic idea of cooperative communication is that

the source terminal cooperates with relay terminals to form a virtual or distributed multi-

antenna system to communicate with the destination. The performance of a cooperative

communication system depends on the combining mechanism at the relay and the desti-

nation nodes. Two well-known cooperative strategies are amplify-and-forward (AF) and

decode-and-forward (DF)

• The non-regenerative amplify and forward (AF) strategy which achieves the available

diversity using maximal ratio combining. The outage behavior and performance of

this protocol are studied in [43] and [45]. This strategy achieves the available diversity

of the channel [43].

• The regenerative decode and forward (DF) strategy is simple and practical but cannot

achieve full diversity unless sophisticated combining is employed at the destination to

account for the reliability of the links between the source and relay and between the

relay and the destinatin. The outage probability of this strategy is analyze in [43].

In [46], a smart decode-and-forward strategy is proposed that achieve the available

diversity.

In this chapter, we focus on the AF protocol. In [69], an AF strategy is proposed for cog-

nitive radio network scenario wherein the status of primary transmitter is in the ON state

for a greater proportion of time than OFF, on average. It is assumed that the secondary

receiver has to wait until it receives signals from both the relay and the secondary transmit-

ter to decode the received signals. This may result in excessive delay on the communication

link. In this chapter, we propose a practical AF cooperative communication protocol. Our

protocol decodes the received signals after a fixed number of time frames. No constraints

are placed on the ON/OFF activity of the primary transmitter, i.e., the proportion of time

spent in the ON state may be greater or less than that in the OFF state. We focus on the

case of a single relay channel.
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The remainder of the chapter is organized as follows. Section 5.2 describes the system

model. Section 5.3 present cognitive amplify-and-forward with fixed decoding delay. Sec-

tion 5.4 present cognitive amplify-and-forward with variable decoding delay. Section 5.5

presents simulation results. Finally, the chapter is concluded in Section 5.6.

5.2 System Model

5.2.1 Transmission frames and PT behavior

We assume the basic system configuration shown in Fig. 5.1. For convenience, we label ST

as a, SR as b, and R as r. Time on the wireless channel is divided into frames consisting

of Ns symbols each. We shall assume perfect symbol-level timing synchronization between

the nodes of the secondary system. Imperfect synchronization can be accommodated using

approach of [70]. The PT alternates between the ON and OFF states on a per-frame basis

according to the on-off Markov model of Fig. 5.2. The ON and OFF durations of the PT

are modeled as geometric random variables with parameters q and p, respectively (cf. [71]).

The steady-state probability that PT is ON is given by pon = q/(p+q), while the probability

that PT is OFF is poff = p/(p+ q). In [69], we considered the scenario in which on average,

PT in the ON state a greater proportion of time than in the OFF state, i.e., q > p. In this

chapter, this restriction is removed.

5.2.2 Channel modeling

The received signal of a simple wireless channel model with flat (frequency non-selective)

fading without shadowing is given by [72]

y =
√

P (d, ǫ)hs+ n, (5.1)

where

P (d, ǫ) , δ2
(

d0
d

)α

ǫ
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denotes the equivalent transmitted power after taking into account the effect of path loss.

Here, δ2 is the free space signal-power attenuation factor between the source and a reference

distance d0, d is the distance between the source and destination, α is the propagation

exponent, h ∼ CN (0, 1) is a complex Gaussian random variable with zero mean and unit

variance, n ∼ CN (0, N0), and s is the transmitted signal.

When PT is ON, ST and R are limited in the amount of power they can use in order to

avoid causing harmful interference to the primary users who receive the transmissions from

the PT. The maximum power that can be used by a given secondary node while avoiding

harmful interference to primary users is called themaximum interference-free transmit power

(MIFTP) (cf. [17,73]). A method for a secondary node to estimate its MIFTP is presented

in [17] for the case of a single primary transmitter; the multiple transmitter case is addressed

in [53]. Let ǫa and ǫr denote the MIFTPs of ST and R, respectively, when PT is ON. We

also define

Par = P (dar, ǫa), Prb = P (drb, ǫr),

as the equivalent transmitted powers when PT is ON from ST to R and from R to SR,

respectively. Here, dar and drb denote the distances between the node pairs (ST, R) and

(R, SR), respectively. When PT is ON, the received signal at R and SR consists of the

transmitted signal, the noise at the receiver and the co-channel interference from PT. We

treat the co-channel interference as noise. The total noise at the receiver has zero mean and

variance N0 +Np where Np is the variance of the co-channel noise. The co-channel noise is

assume to be very small compare to the receiver noise, thus, we can approximate the noise

component at receiver when PT is ON by N (0, N0 +Np).

For the case when PT is OFF, we define

P̃ab = P (dab, ǫm), P̃ar = P (dar, ǫm), P̃rb = P (drb, ǫm),

as the equivalent transmitted powers from ST to SR, ST to R, and R to SR, respectively.

Here, dab denotes the distance between ST and SR and ǫm denotes the maximum transmit
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power that secondary nodes can use when PT is OFF. In a cognitive radio network where

ǫa ≪ ǫm, ST may not be able to communicate directly with ST when PT is ON because

Par could be below the required threshold for SR to detect the received signal. In this case,

ST can communicate with SR through the relay node R, since dar < dab.

5.2.3 Spatial Sensing

When only spatial sensing is available, i.e., ST and R have only knowledge of their MIFTPs,

the ST has to transmit the signal through the relay R. Consider the relay channel ST →

R → SR. We wish to transmit a frame of Ns symbols using the relay channel over K

time frames. The channel resource allocation for link ST → R and R → SR is Ku and Kv

time frames, respectively. When only spatial sensing is available, the transmitted power is

limited to MIFTP. Hence, the receiver may operate in a low SNR regime. For this reason,

repetition codes [74] are used to transmit signal from ST to R over Ku and from R to SR

over Kv time frames to increase the SNR at receiver. We remark that repetition codes have

been shown to be nearly optimal in low SNR regime [74]. The received signal at the relay

R is the maximal ratio combination (MRC) of the repetition codes from Ku time frames:

yu =

Ku
∑

i=1

g∗i (gi
√

Pars+ ni) = g̃
√

Pars+ ñ (5.2)

where g̃ =
∑Ku

i=1 |gi|2, ñ =
∑Ku

i=1 g
∗
i ni. gi is the channel gain between ST and R, ni is the

noise at R when PT is ON with zero mean and variance N0 + Np. The received signal at

SR is

yv =

Kv
∑

i=1

h∗i (
√

PrbhiA(g̃
√

Pars+ ñ) + ni)

=
√

ParPrbh̃Ag̃s+ nv, (5.3)
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where h̃ =
∑Kv

i=1 |hi|2, nv =
∑Kv

i=1(|hi|2A
√
Prbñ+h

∗
ini). Here, hi is the channel gain between

R and SR during time frame i and A is the amplification factor, which is chosen to maintain

average constant power output at R: A2 = 1/(Parg̃
2 +N0g̃). The resulting SNR is

γb = |Ag̃h̃|2
ParPrb

σ2v
(5.4)

where σv is the variance of the noise nv.

γb = |Ag̃h̃|2
ParPrb

σ2v
=

γuγv
γu + γv + 1

, (5.5)

with γu = g̃ Par

N0+Np
and γv = h̃ Prb

N0+Np
.

Proposition 1. The average SEP of the relay channel is minimized when Ku = Kv if K

is even and Ku = Kv + 1 or Kv = Ku + 1 if K is odd where Ku +Kv = K.

The proof of Proposition 1 can be found in the appendix. Our analysis of proposition 1

is confirmed by the simulation results presented in Section 5.5.

5.3 Cognitive Amplify-and-Forward Protocol with Fixed De-

coding Delay (CAF-FD)

We develop a cognitive amplify-and-forward with fixed decoding delay (CAF-FD) cooper-

ative transmission protocol for cognitive radio networks. We assume that both ST and R

employ omnidirectional antennas. The secondary receiver (SR) decodes received signals

once every three time frames. In general, the SR can decode the signal after any number

of time frames. However, as the number of transmission time frames increases the spectral

efficiency of the system decreases and decoding delay is increased. Therefore, in this chap-

ter we consider the use of three frames for transmission and compare the performance of
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our scheme for for different spectrum sensing strategies. In Section 5.4, we show that by

intelligently allocating the number of frame depending on the state of PT, the proposed

scheme in Section 5.4 can outperform the CAF-FD in term of both probability of error and

spectral efficiency.

Suppose the secondary transmitter (ST) desires to transmit Ns symbols to ST; i.e., it

requires one full frame in which PT is OFF. We assume that a time division multiple access

(TDMA) protocol is used to coordinate the transmissions of ST and R. During a given time

frame, only ST or R is allowed to transmit to SR. Our proposed CAF-FD works as follows:

• In the first two time frames, if PT is OFF, ST transmits to SR. Otherwise, ST

transmits to R.

• In the third time frame, R transmits to SR.

In order to achieve this, the secondary nodes perform joint spatial-temporal sensing, as

discussed in [49]. In particular, all secondary users estimate their MIFTPs based on signal

strength measurements, which they exchange with one another. They also decide whether

the PT is ON or OFF, by transmitting their local decisions to a fusion center, which then

makes the final decision. Maximal ratio combining (MRC) is used at both R and SR to

combine the received signals.

The state of PT over three consecutive time frames can be characterized by a three-bit

state sequence c1c2c3 where ci = 1 if PT is ON during the ith frame and ci = 0, otherwise.

Therefore, there are 23 = 8 possible state sequences. During a frame in which PT is OFF,

ST communicates directly with SR using the maximum transmission power ǫm. Since an

omnidirectional antenna is used at ST, the relay node R receives the signal transmitted by

ST.

Let c denote a sequence of frame states and let |c| denote the length of the sequence.

For a given state sequence c, let wc, uc and vc denote the signals received at SR for link

(ST, SR), R for link (ST, R) and at SR for link (R, SR), respectively, at the end of the

|c|-th frame. For example, u10 denotes the received signal at R due to source ST after two

70



time frames, where PT is ON in the first frame and OFF in the second. Let yc1c2c3 denote

the final MRC-received signal (i.e., the signal obtained after applying MRC) at SR after

three time frames. For example y000 is the MRC-received signal at SR after a sequence of

three time frames in which PT is OFF during all three frames.

Let fi, gi and hi denote the fading channel coefficient during time frame i, i = 1, 2, 3

from ST to SR, ST to R and R to SR, respectively. We assume that fi, gi and hi are

constant and independently identically distributed from one frame to another. Further, the

channel states fi and hi are available at SR, i.e., via training sequences, but they are not

available at ST and R. Also, the gi are available at R, but not at ST. Hence, maximum

likelihood detection can be used at R and SR. Let s be the transmitted signal at ST. Let

ni be the noise variable during time frame i, i = 1, 2, 3. For example, y000 denotes the

MRC received signal at SR after three OFF time frames sequence. We denote the complex

conjugate of x by x∗. The noise component during time frame i is ni ∼ CN (0, N0) when

PT is OFF and ni ∼ CN (0, N0 +Np) when PT is ON.

In the amplify-and-forward protocol, the received signal at the relay node R is multiplied

by an amplification factor Ac1c2 to guarantee that the transmitted power at R is limited to

Prb or P̃rb depending on the state of PT. The subscript c1c2 in Ac1c2 denotes the ON/OFF

state of the first two time frames. For state sequence 000, in the first two time frames, by

using a repetition code [74], i.e., ST transmits the same signal to SR, the received signal at

SR from ST is

w00 =

√

P̃ab

2
∑

i=1

|fi|2s+
2
∑

i=1

f∗i ni (5.6)

and the received signal at relay R is

u00 =

√

P̃ar

2
∑

i=1

|gi|2s+
2
∑

i=1

g∗i ni (5.7)

In the third time frame, R amplifies the received signal and forwards it to SR. The received

71



signal at SR from R is v000 =
√

P̃rbh3A00u00 + n3 where

A00 = 1/

√

P̃ar(|g1|2 + |g2|2)2 + (|g1|2 + |g2|2)N0. (5.8)

The final received signal at SR with MRC is

y000 = w00 + h∗3v000. (5.9)

For state sequence 001, the received signal at SR from ST after the first two OFF-state

time frames is w00 in (5.6). By using a repetition code, the received signal at relay R

with MRC over first two time frames is u00 in (5.7). The relay amplifies and forwards u00

to SR during the third time frame when PT is ON. The received signal at SR from R is

v001 = h3
√
PrbA00u00 + n3 where A00 is presented in (5.8). The final received signal at SR

with MRC is

y001 = h3 ∗ v001 + w00. (5.10)

For state sequence 010, In the first time frame, ST transmits to SR,

w0 =

√

P̃abf1s+ n1 (5.11)

In the second time frame ST transmit to R. The received signal at R after two time frame

is

u01 = (

√

P̃ar|g1|2 +
√

Par|g2|2)s+ g∗1n1 + g∗2n2 (5.12)

the R amplifies and forwards u01 to SR. We have, v010 =
√

P̃rbh3A01u01 + n3 where

A01 = 1/

√

(

√

P̃ar|g1|2 +
√

Par|g2|2)2 + |g1|2N0 + |g2|2(N0 +Np). (5.13)
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The final received signal at SR is given by,

y010 = f∗1w0 + h∗3v010 (5.14)

For state sequence 011, the received signal at SR after first time frame is t0 in (5.11). The

received signal at R after two time frames u01 in (5.12). In the third frame, R amplifies and

forwards the u01 to SR, v011 =
√
Prbh3A01u01 + n3 where A01 is in (5.13). The final MRC

received signal of t0 and v011 is

y011 = f∗1w0 + h∗3v011. (5.15)

For state sequence, 100, in the first time frame when PT is ON, ST forwards signal to R. In

the second time frame which PT is OFF, ST can transmit signal to SR directly. We have

w10 =

√

P̃abf2s+ n2 (5.16)

and the received signal at the relay R

u10 = (|g1|2
√

Par + |g2|2
√

P̃ar)s+ g∗1n1 + g∗2n2 (5.17)

The relay R amplifies and forwards u10 to SR, v100 =
√

P̃rbh3A10u10 + n3 where

A10 = 1/

√

(
√

Par|g1|2 +
√

P̃ar|g2|2)2 + |g1|2(N0 +Np) + |g2|2N0 (5.18)

The final received signal at SR with MRC is

y100 = f∗2w10 + h∗3v100. (5.19)

For state sequence 101, the received signal at R after first two time frame is u10 in (5.17)
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and v101 =
√
Prbh3A10u10 + n3, where A10 is in (5.18). The final MRC received signal

combining w10 in (5.16) and v101 is

y101 = h∗3v101 + f∗2w10. (5.20)

For state sequence 110, we have

u11 = (|g1|2 + |g2|2)
√

Pars+ g∗1n1 + g∗2n2 (5.21)

and v110 = h3
√

P̃rbA11u11 + n3, where

A11 = 1/
√

(Par(|g1|2 + |g2|2)2 + (|g1|2 + |g2|2)(N0 +Np). (5.22)

The final received signal at SR is

y110 = h∗3v110 (5.23)

Similarly, for state sequence 111, we have v111 = h3
√
PrbA11u11 + n3 where A11 is in (5.22)

and u11 is in (5.21) and the final received signal at SR is

y111 = h∗3v111. (5.24)

Pure spatial sensing : The transmission strategy is similar to state sequence 111 in (5.24)

scenario ys = y111 = h∗3v111 where ys denotes the received signal at SR for spatial sensing

only.

Pure temporal sensing : Except for the state sequence 000, transmission strategy is a simple

repetition code over time frames in which PT is OFF. We denote ytc1c2c3 as the received
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signal at SR for state sequence Sc1c2c3 . We have

yt000 = y000

yt010 = (|f1|2 + |f3|2)
√

P̃abs+ f∗1n1 + f∗3n3

yt011 = |f1|2
√

P̃abs+ f∗1n1

yt100 = (|f2|2 + |f3|2)
√

P̃abs+ f∗2n2 + f∗3n3

yt101 = |f2|2
√

P̃abs+ f∗2n2

yt110 = |f3|2
√

P̃abs+ f∗3n3

where y000 is in (5.9). There is no transmission for state sequence 111.

The spectral efficiency for joint spatial temporal sensing and spatial sensing are equal.

The spectral efficiency of temporal sensing is smaller than that of joint spatial-temporal

sensing because there is no transmission during state sequence 111. If the joint spatial-

temporal sensing has spectral efficiency of 1 then temporal sensing has an efficiency of

1 −
( q
p+q

)3
where q

p+q is the steady-state probability of PT being in the ON state for a

given frame.

5.3.1 Performance Analysis

In the literature, the performance of a cooperative transmission strategy is measured based

on one of two criteria: the outage probability [42,43] and the average symbol error paroba-

bility (SEP) [45,75,76]. In this chapter, we have analyzed the performance of the proposed

cognitive cooperative transmission protocol in term of SEP. Derivations of the exact SEP

for cooperative communication is quite involved even for one relay and Rayleigh fading [75].
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In [45], SEP is derived for general cooperative links and general fading models as long as

the probability density function (pdf) p(t) of the SNR of the first hop, second hop and

direct link are non zero at t = 0. However, this approach cannot use in the present chapter

because the pdf of the first hop which is a chi-square distribution is equal to zero at t = 0.

For state sequences 110 and 111, the SEP at SR is the SEP of the relay channel with the

first hop SNR has a chi-square distribution and the second hop SNR has a Rayleigh dis-

tribution. In [77], both the outage probability and the SEP for two hop relay channels are

derived for Nakagami’s fading channels and thus the results can be used in this chapter for

calculating the SEP for frame sequences 110 and 111. However, the derivation of SEP is

quite complicated because it involves the calculation of the harmonic mean of two gamma

distributions.

We propose a simple approach to analyze the SEP lower bound of our propose scheme.

The numerical results in Section 5.5 show that the lower bound match closely with the

numerical results at high and moderate SNR. For the state sequence 111, the amplification

factor A11 at high SNR, i.e., Par ≫ (N0 +Np), can be approximated by

A11 = 1/
√

(|g1|2 + |g2|2)2Par + (|g1|2 + |g2|2)(N0 +Np) ≈ 1/(
√

Par(|g1|2 + |g2|2)). (5.25)

The relay multiplies the received signal by A11 in (5.25) and forwards to SR

u11A11 = s+ (g∗1n1 + g∗2n2)/(
√

Par(|g1|2 + |g2|2).

At high SNR the noise component of u11A11 can be negligible, and the received signal at

SR can be approximated by, z111 =
√
Prbh3s+ n3 where zc1c2c3 denotes the lower bound of
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the received signal at SR for state sequence Sc1c2c3 . Similarly,

z000 =

√

P̃ab

2
∑

i=1

|fi|2s+
√

P̃rb|h3|2s+
2
∑

i=1

f∗i ni + h∗3n3,

z001 =

√

P̃ab

2
∑

i=1

|fi|2s+
√

Prb|h3|2s+
2
∑

i=1

f∗i ni + h∗3n3,

z010 =

√

P̃ab|f1|2s+
√

P̃rb|h3|2s+ f∗1n1 + h∗3n3,

z011 =

√

P̃ab|f1|2s+
√

Prb|h3|2s+ f∗1n1 + h∗3n3,

z100 =

√

P̃ab|f2|2s+
√

P̃rb|h3|2s+ f∗2n2 + h∗3n3,

z101 =

√

P̃ab|f2|2s+
√

Prb|f3|2s+ f∗2n2 + h∗3n3,

z110 =

√

P̃rbh3s+ n3.

Let SEPc1c2c3 denote the average lower bound SEP of state sequence Sc1c2c3 and SEPj denote

the average lower bound SEP over all state sequence for joint spatial temporal sensing. We

have

SEPj =
[

p3offSEP000 + p2offpon(SEP001 + SEP010 + SEP100)

+ poffp
2
on(SEP011 + SEP101 + SEP110) + p3onSEP111

]

(5.26)

We shall assume that M-PSK modulation is used. Using the moment generating function

approach in [78, 79], the SEP of M-PSK signals with MRC of L independent fading paths

can be expressed as

1

π

∫
(M−1)π

M

0

L
∏

k=1

Mγk

(

− gPSK
sin2 φ

)

dφ, (5.27)
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where gPSK = sin2(π/M) and Mγl(u) = (1 − uγl)−1 is the moment generating function of

Rayleigh fading with average SNR γl. Let Γ = (γ1, γ2, . . . , γL) denote a vector of L average

SNR values corresponding to L independent fading paths. Then the SEP can be expressed

as

ψ(Γ) =
1

π

∫
(M−1)π

M

0

L
∏

k=1

(

1 +
gPSK

sin2 φ
γk

)−1

dφ. (5.28)

SEP000 = ψ(γ̃ab, γ̃ab, γ̃rb) (5.29)

SEP001 = ψ(γ̃ab, γrb) (5.30)

SEP010 = ψ(γ̃ab, γ̃rb) (5.31)

SEP011 = ψ(γ̃ab, γrb) (5.32)

SEP100 = SEP010 (5.33)

SEP101 = SEP011 (5.34)

SEP110 = ψ(γ̃rb) (5.35)

SEP111 = ψ(γrb) (5.36)

(5.37)

where γ̃ab = E
[

|fi|2 P̃ab

N0

]

= P̃ab

N0
is the average SNR at SR when the transmitter is ST and

γrb = E
[

|hi|2 Prb

N0+Np

]

= Prb

N0+Np
and γ̃rb = E

[

|hi|2 P̃rb

N0

]

= P̃rb

N0
, are the average SNRs at SR

when the transmitter is the relay R when PT is ON and OFF, respectively. Substituting

the right hand sides of equations (5.29)-(5.35) into (5.26) we obtain the average SEP lower

bound.
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5.3.2 Performance of pure spatial and temporal sensing

The performance of spatial sensing is given by SEP111. The performance of temporal sensing

is given by

SEPt =
1

(1− p3on)

[

p3offSEP000 + p2offpon(SEP
t
001 + SEPt

010 + SEPt
100)

+ poffp
2
on(SEP

t
011 + SEPt

101 + SEPt
110)

]

where SEPt
001 = SEPt

010 = SEPt
100, SEP

t
001 = ψ(γ̃ab, γ̃ab)

SEPt
101 = SEPt

110 = SEPt
011, SEP

t
101 = ψ(γ̃ab)

5.4 Cognitive Amplify-and-Forward with Variable Decoding

Delay (CAF-VD)

In this section, we propose a modified CAF protocol which guarantees that the final received

signals after maximal ratio combining at secondary receiver always have a diversity order

of 2. In order to achieve this, the decoding delay will be variable. We call this scheme a

Cognitive Amplify-and-Forward with variable delay (CAF-VD)

5.4.1 Diversity analysis

We analyze the diversity order of our general cooperative transmission protocol. For state

sequences 000 and 001, the final received signals at SR y000 and y001 is the MRC of three

independent signals with independent fading coefficients f1, f2 and h3. Therefore, y000 and

y001 have a diversity order of 3. Similarly, the diversity order state sequence 011 is 2. The

received signal y011 is the MRC of w0 and v011. The received signal y011 is the combination

of two independent signals with channel fading coefficients f1 and h3. The signal y100 has

diversity order of 2 with independent fading coefficients f2 and h3. The signal y101 has a

diversity order of 2 with independent fading f2 and h3 coefficients. The signal y110 and
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y111 has a diversity order of only 1. The average symbol error probability (SEP) decreases

exponentially with the order of diversity. For example, for M-PSK signal, Rayleigh fading,

same average SNR, the average SEP are upper and lower bounded by [78]

S(L)

(1 + κSNR)L
≤ SEP ≤ S(L)

(κSNR)L
,

where S(L) and κ are constant and L is the diversity order.

We propose a CAF-VD protocol in which the MRC received signals at SR always have

a diversity order of 2. If PT is OFF in the first time frame, the SR will decode the received

signals at the end of the second time frame. The MRC received signal at SR for state

sequence 00 is

y00 =

√

P̃ab

2
∑

i=1

|fi|2s+
2
∑

i=1

f∗i ni. (5.38)

For state sequence 01, the received signal at SR at the end of the first time frame w0 =

√

P̃abf1s+n1 and the received signal at R is u0 =
√

P̃arg1s+n1. In the second time frame,

when PT is ON, R amplifies and forwards its received signal u0 to SR. The received signal

at SR from R is v01 = h2
√
PrbA0s+n2 where A0 = 1/

√

P̃rb|g1|2 +N0. Finally, the received

signal at SR with MRC is

y01 = h∗2v01 + f∗1w0. (5.39)

If PT is ON during the first time frame and OFF during the second time frame, we have

two possible state sequence 100 and 101. The transmission strategy and the received signals

at SR for these two frame sequences is similar to (5.19) and (5.20). When PT is ON for

the first and second time frames, the possible state sequences for the CAF-FD is 110 and

111. If SR decodes the received signal after 3 time frames, the received signals have the
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diversity orders of 1 (5.23) and (5.24). To make the protocol more efficient, SR decodes

the received signal after 4 frames. We have the following possible state sequences: 1100,

1101, 1110 and 1111. In the first and second time frames when PT is ON, ST forward the

signals to R using repetition code. The relay R then combines the signals using MRC and

forwards the received signals to SR in the third and fourth time frames. SR combines the

received signal during the third and fourth time frames. Hence, the final received signal

at SR with MRC has a diversity order of 2. For state sequence 1100, the received signal

at R is u11 =
√
Par

∑2
i=1 |gi|2s +

∑2
i=1 g

∗
i ni. R amplifies u11 and forwards it to SR. After

combining two signals, the received signals at SR is

y1100 = (|h3|2 + |h4|2)
√

P̃rbA11u11 + h∗3n3 + h∗4n4, (5.40)

where A11 is in (5.22). Similarly, the received signals for 1101, 1110 and 1111 can be

expressed as:

y1101 = (|h3|2
√

P̃rb + |h4|2
√

Prb)A11u11 + h∗3n3 + h∗4n4, (5.41)

y1110 = (|h3|2
√

Prb + |h4|2
√

P̃rb)A11u11 + h∗3n3 + h∗4n4, (5.42)

y1111 = (|h3|2 + |h4|2)
√

PrbA11u11 + h∗3n3 + h∗4n4. (5.43)

5.4.2 Performance Analysis

The CAF-VD has following state sequences 00, 01, 100, 101, 1100, 1101, 1110 and 1111.

The SEP lower bound for state sequence 100 and 101 can be obtained from (5.32) and
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(5.33). We also have,

SEP00 = ψ(γ̃ab, γ̃ab) (5.44)

SEP01 = ψ(γ̃ab, γrb) (5.45)

SEP1100 = ψ(γ̃rb, γ̃rb) (5.46)

SEP1101 = ψ(γ̃rb, γrb) (5.47)

SEP1110 = SEP1101 (5.48)

SEP1111 = ψ(γrb, γrb) (5.49)

The average SEP lower bound for CAF-VD SEPd is

SEPd = p2offSEP00 + poffponSEP01 + p2offponSEP100

+ poffp
2
onSEP101 + p2offp

2
onSEP1100 + poffp

3
onSEP1101 (5.50)

+ poffp
3
onSEP1110 + p4onSEP1111

5.4.3 Spectral efficiency

We normalize the spectral efficiency of CAF-FD with spatial sensing and joint spatial-

temporal sensing to 1 and denote them by SEs and SEj, respectively, SEj = SEs = 1. In

both the spatial sensing and joint spatial-temporal sensing schemes, one frame of signal (Ns

symbols) is decoded after 3 time frames. In CAF-FD with temporal sensing, there is no

transmission for the state sequence 111. Hence, the spectral efficiency of temporal sensing

is SEt = 1 − p3on. In the CAF-VD with joint spatial-temporal sensing, for state sequence

00, one signal frame is decoded after two time frame. Thus, the spectral efficiency of state

sequence 00 is 3/2. Similarly, the spectral efficiency of state sequence 01, 100, 101, 1100,

1101, 1110 and 1111 are 3/2, 3/3, 3/3, 3/4, 3/4, 3/4 and 3/4, respectively. The spectral
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efficiency of CAF-VD is given by

SEv = 1.5(p2off + poffpon) + ponp
2
off + p2onpoff + 0.75(p2onp

2
off + 2p3onpoff + p4on)

5.4.4 Incremental Relaying Protocol

Both CAF-FD and CAF-VD are inefficient in terms of spectral efficiency because the relay

and ST repeat their transmissions at all time. In this section, the incremental relaying pro-

tocol, proposed in [43] is investigated for our cognitive scenarios. The incremental protocol

that exploit the limited feedback, i.e., a single bit feedback from secondary transmitter to

indicate the sucess or failure of the transmission. The incremental relaying (IR) protocol

can be viewed as a hybrid automatic-repeat-request (ARQ)scheme wherein the secondary

transmitter or the relay retransmits if the secondary receiver provides a negative feedback.

Every time the SR receives a signal from ST or R, it decodes the received signal and send a

feedback bit to both ST and R indicating the success or failure of the transmission. If the

transmission is successful, ST continues to transmit the next frame. Otherwise, ST or R

continues to transmit signal according to the operation of protocol. We show by simulation

in Section 5.5 that incremental relaying significantly improves the spectral efficiency of the

system.

5.5 Numerical Results

In this section, we investigate the performance of our proposed cooperative communica-

tion scheme in terms of the average SEP. We assume that BPSK modulation is used and

fi, gi, hj ∼ CN (0, 1). The frame length is 100 symbols. The co-channel noise is assumed to

be very small, i.e., Np = 0. We use P̃ab = Par = Prb and P̃ar = P̃rb = P̃ab + 10 (dB) and

SNR = P̃ab/N0.
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Figure 5.3: Transmission with different resource allocations of Ku and Kv

5.5.1 Spatial Sensing

In Fig. 5.3, we compare the performance of spatial sensing with K = 3, K = 4 and K = 5.

When K = 3, transmission strategy with Ku = 2,Kv = 1 and Ku = 1,Kv = 2 show the

same performance. When K = 4, the transmission strategy with Ku = Kv = 2 outperforms

the strategy with Ku = 3,Kv = 1 and Ku = 1,Kv = 3. For K = 5, the performance with

Ku = 3,Kv = 2 and Ku = 2,Kv = 3 are optimal. All of our numerical results confirm the

results stated in the Proposion 1.

5.5.2 CAF-FD

In Fig 5.4, we show that our analytical lower bound is matched closely with simulation

result for relay channel with Ku = 2,Kv = 1. As the SNR increases, the simulation and

analytical are matched closely. This also confirms our analysis in Section 5.3.1 that the lower

bound will close to the true performance as the SNR increases. In Fig. 5.5, we compare the

performance of different strategy for the scenario in which the PT is equally in the ON or

OFF states, poff = pon = 0.5. For temporal sensing, both simulation and analytical results
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Figure 5.4: Comparision of simulation and analytical results

are matched closely even for small SNR. For spatial sensing, simulation and analytical

results are matched closely even for moderate and large SNR. The numerical and analytical

results for CAF-FD are plotted using plus sign and a solid line, respectively. At almost

any BER of interest, CAF-FD is 10 dB better than spatial sensing and 5 dB better than

temporal sensing. Also CAF-FD has a spectral efficiency of 1/(1− p3on) = 1.1429 compare

to temporal sensing. The CAF-VD is 5 dB and 10 dB better than cognitive amplify-and-

forward strategy at BER = 10−3 and BER = 10−4, respectively. The performance of

CAF-VD is much better compare to CAF-FD because it guarantees that the received signal

at SR always has a diversity order of 2. The performance of CAF-FD is adversely affected

by frame sequence 110 and 111 in which the diversity order at SR is of order 1. However,

the decoding delay at SR in CAF-VD is varied with 2, 3 or 4 time frames compare to fixed

3 time frames of CAF-FD. In Fig. 5.6, we study a scenario in which the state of PT is OFF

more than ON, i.e., poff = 2pon = 0.666667. The CAF-FD is 15 dB and 7 dB better than

spatial sensing and temporal sensing, respectively. The SEP of CAF-FD decreases as the

probability of PT is OFF increases because the probability of the state sequences 110 and

111 decreases. These two state sequences which have a diversity order of 1, are the main
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Figure 5.5: Comparision of SEP for all transmission schemes poff = pon = 0.5

sources of decoding errors at SR. The CAF-VD is 1 dB, 5 dB and 10 dB better than CAF-

FD at BER = 10−3, BER = 10−4 and BER = 10−5, respectively. When the probability

that PT is OFF increases, the performance of CAF-FD approaches that of CAF-VD.

In Fig. 5.7, we study the a scenario that the state of PT is ON more than OFF, i.e.,

2poff = pon = 0.666667. The CAF-FD is 6 dB and 3 dB better than spatial sensing and

temporal sensing, respectively. The SEP of the CAF-FD increases as pon increases because

the probability of state sequence 110 and 111 increases. The CAF-VD is 7 dB and 12 dB

better than cognitive amplify-and-forward strategy at BER = 10−3 and BER = 10−4,

respectively. As pon increases, the difference in performance of CAF-FD and CAF-VD

increases. Fig. 5.8 shows the performance of different strategies for different value of poff .

In Fig. 5.8, two special cases are shown, i.e., poff = 0, the CAF-FD become spatial sensing

because the PT is always ON. poff = 1, CAF-FD become temporal sensing because the PT is

always OFF. In Fig. 5.8, SNR = 20 dB. The performance of spatial sensing does not depend

on the state of the PT because spatial sensing assumes that PT is always ON and secondary

nodes communicate with each other using their maximum interference free transmit power
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Figure 5.6: Comparision of SEP for all transmission schemes poff = 2pon = 0.66667
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Figure 5.7: Comparision of SEP for all transmission schemes 2poff = pon = 0.6667

87



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

p
off

 = p/(p+q) →

S
ym

bo
l e

rr
or

 p
ro

ba
bi

lit
y 

(S
E

P
)

Temporal sensing (simulation)

Temporal sensing (analytical)

Spatial sensing (simulation)

Spatial sensing (analytical)

CAF−FD (simulation)

CAF−FD (analytical)

CAF−VD (simulation)

CAF−VD (analytical)

Figure 5.8: Performance of cooperative communication schemes over poff

(MIFTP). The SEP of temporal sensing and CAF-FD decreases when poff increases. For

temporal sensing when poff increases, the probability of state sequences 011, 110 and 101,

which have a diversity order of 1, are the main sources of decoding error at SR decreases.

Hence, the average SEP decreases. For CAF-FD, the probability of state sequences 110, and

111 which have a diversity order of 1 decreases and thus the average SEP decreases. When

poff = 1, the performances of temporal sensing and CAF-FD are equal. The average SEP

of CAF-VD is almost unchanged because the diversity order is always equal to 2 for any

frame sequences. For poff < 0.81, the CAF-VD always outperforms the CAF-FD. Fig. 5.9

show the spectral efficiency of all various schemes as a function of poff . The spatial sensing

and CAF-FD have the same spectral efficiency. We also normalize the spectral efficiency of

spatial sensing and CAF-FD 1. The spectral efficiency of temporal sensing and CAF-VD

increases as poff increases. The CAF-VD is more spectrally efficient than CAF-FD when

poff > 0.3. In addition, the CAF-VD outperforms CAF-FD when poff < 0.81. Therefore, for

0.3 < poff < 0.81, CAF-VD has better performance and spectral efficiency than CAF-FD.
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Figure 5.9: Spectral efficiency of different transmission schemes

5.5.3 Incremental Relaying Protocol

In Fig. 5.10, we compare the average SEP of temporal sensing, CAF-FD and CAF-VD

with incremental relaying protocol over poff . In term of SEP, both protocols have the

same performance. However, in Fig. 5.11, the spectral efficiency of incremental protocol

is significantly improved over the protocol without incremental relaying. In Fig. 5.12, the

spectral efficiency of the incremental protocol increases when SNR increases.

5.6 Conclusion

We proposed a two cooperative transmission strategies CAF-FD and CAF-VD that exploit

spatial and temporal spectrum holes in a cognitive radio network. We used a moment

generating function approach to analyze the average symbol error rate of all strategies.

Our analytical and simulation results show that our cooperative communication strategies,

which exploit both spatial and temporal spectrum holes, significantly reduce the average

symbol error probability compared to that of pure spatial and temporal sensing. Of the

two cooperative schemes, the CAF-VD results in a lower symbol error probability because

the diversity order of the received signal at secondary receiver has the order of two.
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Chapter 6: Decode-and-Forward Cooperative Transmission

in Cognitive Radio Networks

6.1 Introduction

In this chapter1. we propose a decode-and-forward transmission strategy that exploits the

presence of spectrum holes both in time and in space. Two cooperative communication

strategies based on decode-and-forward that exploit the presence of spectrum holes both

in time and in space are consider: cognitive decode-and-forward with fixed decoding delay

and cognitive decode-and-forward with variable decoding delay. Our results show that the

proposed scheme, employing joint spatial-temporal sensing, significantly reduces the average

symbol error probability compared to schemes based on pure temporal or pure spatial

sensing. We also propose incremental relaying protocol and soft-bit detection scheme which

further improves the spectral efficiency of the proposed schemes.

In other paper [69] and in Chapter 5, we studied cooperative communication in a cog-

nitive radio network based on amplify-and-forward strategy. In this chapter, we consider

decode-and-forward cooperative communications.

On a given frequency channel, a spectrum hole can be characterized as spatial or tem-

poral. A spatial spectrum hole can be specified in terms of the maximum transmission

power that a secondary user can employ without causing harmful interference to primary

users that are receiving transmissions from another primary user that is transmitting on

the given channel. Spatial spectrum sensing is investigated [17], wherein the maximum

interference-free transmit power (MIFTP) of a given secondary user is estimated based on

signal strengths received by a group of secondary nodes. To calculate the MIFTP for a sec-

ondary node, estimates of both the location and transmit power of the primary transmitter

1The preliminary contents of this chapter appeared in [80].
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are estimated collaboratively by a group of secondary nodes. Using these estimates, each

secondary node determines its approximate MIFTP, which bounds the size of its spatial

spectrum hole.

A temporal spectrum hole is a period of time for which the primary transmitter is idle.

During such idle periods, a secondary user may opportunistically transmit on the given

channel without causing harmful interference. The problem of detecting when the primary

is ON or OFF is called temporal spectrum sensing. Cooperative temporal sensing has been

studied in [8, 23]. The decision on the ON/OFF status of the primary transmitter can be

made either at individual secondary nodes or collaboratively by a group of secondary nodes.

In [60], a temporal spectrum sensing strategy that exploits multiuser diversity among sec-

ondary nodes is proposed. joint spatial-temporal sensing was proposed in [49,50] wherein a

secondary node performs spatial sensing to determine its MIFTP when the primary trans-

mitter is ON and uses localization information obtained in the process of spatial sensing to

improve the performance of temporal sensing, which estimates the ON/OFF state of the

primary transmitter.

In a previous chapter 5, we developed a cooperative communication strategy with

amplify-and-forward relay that employ joint spatial-temporal sensing to improve the trans-

mission capacity of secondary users in a cognitive radio network. In this chapter, we consider

the case of decode-and-forward cooperative communications. In Fig. 5.1(a), the secondary

transmitter (ST), labeled as node a, can communicate directly with the secondary receiver

(SR), labeled as node b, due to the existence of a spatial spectrum hole with respect to

the primary transmitter (PT). However, in the scenario depicted in Figs. 5.1(b), ST can

communicate directly with SR only when PT is in the OFF state. In this scenario, when

PT is ON, ST transmits to SR via a relay (R), labeled as node r. By enabling the use of

both the direct and relay channels, joint spatial-temporal sensing can significantly improve

the transmission performance of the secondary systems.

Cooperative relay communications or cooperative diversity has received a lot of attention
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in recent years (cf. [42,43,46,70]). Two well-known cooperative strategies are amplify-and-

forward (AF) and decode-and-forward (DF). The non-regenerative AF strategy achieves

diversity via maximal ratio combining [43] and requires storage of analog waveforms at

relay nodes. The regenerative DF strategy is simple and more practical but cannot achieve

full diversity unless sophisticated combining is employed at the destination to account for

the unreliability of the link from the source to the relay and the link from the relay to the

destination [43]. In [46], a smart DF strategy is proposed to achieve available diversity.

In this chapter, we propose a cooperative communication protocol for cognitive radio

networks based on the DF strategy. Our protocol decodes the received signals after three

time frames. No constraints are placed on the ON/OFF activity of the primary transmitter,

i.e., the proportion of time spent in the ON state may be greater or less than that in the

OFF state. We focus on the case of a single relay channel.

The remainder of the chapter is organized as follows. Section 6.2 describes the sys-

tem model. Section 6.3.3 discusses the performance of the system. Section 6.7 presents

simulation results. Finally, the chapter is concluded in Section 6.8.

6.2 System Model

We assume the basic system configuration shown in Fig. 5.1. For convenience, we label ST

as a, SR as b, and R as r.

6.2.1 Transmission frames and PT behavior

We assume that time on the wireless channel is divided into frames consisting of Ns symbols

each. We shall assume perfect symbol-level timing synchronization between the nodes of

the secondary system. The case of imperfect synchronization has been studied in [70].

The PT alternates between the ON and OFF states on a per-frame basis according to the

on-off Markov model of Fig. 5.2. The ON and OFF durations of the PT are modeled as

94



geometric random variables with parameters q and p, respectively (cf. [71]). The steady-

state probability that PT is ON is given by pon = q/(p+q), while the probability that PT is

OFF is poff = p/(p+ q). In [69], we considered the scenario in which on average, PT in the

ON state a greater proportion of time than in the OFF state, i.e., q > p. In this chapter,

this restriction is removed.

6.2.2 Channel modeling

The received signal according to simple wireless channel model with flat (frequency non-

selective) fading without shadowing is given by [72]

y =
√

P (d, ǫ)hs+ n, (6.1)

where

P (d, ǫ) , δ2
(

d0
d

)α

ǫ

denotes the equivalent transmitted power after taking into account the effect of path loss.

Here, δ2 is the free space signal-power attenuation factor between the source and a reference

distance d0, d is the distance between the source and destination, α is the propagation

exponent, h ∼ CN (0, 1) is a complex Gaussian random variable with variance σ2h, n ∼

CN (0, N0), and s is the transmitted signal.

When PT is ON, ST and R are limited in the amount of power they can use in order to

avoid causing harmful interference to the primary users who receive the transmissions from

the PT. The maximum power that can be used by a given secondary node while avoiding

harmful interference to primary users is called themaximum interference-free transmit power

(MIFTP) (cf. [17,73]). A method for a secondary node to estimate its MIFTP is presented

in [17] for the case of a single primary transmitter; the multiple transmitter case is addressed

in [53]. Let ǫa and ǫr denote the MIFTPs of ST and R, respectively, when PT is ON. We
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also define

Par = P (dar, ǫa), Prb = P (drb, ǫr),

as the equivalent transmitted powers when PT is ON from ST to R and from R to SR,

respectively. Here, dar and drb denote the distances between the node pairs (ST, R) and

(R, SR), respectively. When PT is ON, the received signal at R and SR consist of the

transmitted signal, the noise at the receiver and the co-channel interference from PT. We

treat the co-channel interference as noise and the total noise at receiver is zero mean and

variance of N0 +Np where Np is the variance of co-channel noise. The co-channel noise is

assume to be very small compare to the receiver noise, thus, we can approximate the noise

component at the receiver when PT is ON by N (0, N0 + Np). For the case when PT is

OFF, we define

P̃ab = P (dab, ǫm), P̃ar = P (dar, ǫm), P̃rb = P (drb, ǫm),

as the equivalent transmitted powers from ST to SR, ST to R, and R to SR, respectively.

Here, dab denotes the distance between ST and SR and ǫm denotes the maximum transmit

power that secondary nodes can use when PT is OFF.

In a cognitive radio network where ǫa ≪ ǫm, ST may not be able to communicate

directly with ST when PT is ON because Par could be below the required threshold for SR

to detect the received signal. In this case, ST can communicate with SR through the relay

node R, since dar < dab.

6.3 Cognitive Decode-and-Forward with Fixed Decoding De-

lay (CDF-FD)

6.3.1 CDF-FD protocol

We follow the approach of [80] to develop a general decode-and-forward (DF) cooperative

transmission protocol for cognitive radio networks. We assume that both ST and R employ
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omnidirectional antennas. The secondary receiver (SR) decodes received signals once every

three time frames. In general, SR can decodes a signal after any number of time frames.

However, increasing the number of transmission time frames results in the low spectral

efficiency of the system and higher decoding delay. Therefore, we first consider a fixed

number of frames, i.e., three, for transmission and compare the performance of our scheme

with various spectrum sensing strategies. In Section 6.4, we also show that by adaptively

allocating the number of frames depending on the state of PT, the performance of the

scheme can be improved both in terms of probalility of error and spectral efficiency.

Suppose the secondary transmitter (ST) desires to transmit Ns symbols to SR; i.e., it

requires one full frame in which PT is OFF. We assume that a time division multiple access

(TDMA) protocol is used to coordinate the transmissions of ST and R. During a given time

frame, only ST or R is allowed to transmit to SR. Our proposed CAF-DF protocol works

as follows:

• In the first two time frames, if PT is OFF, ST transmits to SR. Otherwise, ST

transmits signal to R.

• In the third time frame, R transmits to SR.

In order to achieve this, the secondary nodes perform joint spatial-temporal sensing, as

discussed in [49, 50]. In particular, all secondary users estimate their MIFTPs based on

signal strength measurements, which they exchange with one another. They also decide

whether the PT is ON or OFF, by transmitting their local decisions to a fusion center,

which then makes the final decision. Maximal ratio combining (MRC) is used at both R

and SR to combine the received signals.

The state of PT over three consecutive time frames can be characterized by a three-bit

state sequence c1c2c3 where ci = 1 if PT is ON during the ith frame and ci = 0, otherwise.

Therefore, there are 23 = 8 possible state sequences. During a frame in which PT is OFF,

the ST communicates directly with SR using the maximum transmission power ǫm. Since

an omnidirectional antenna is used at ST, the relay node R receives the signal transmitted
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by ST. Let c denote a sequence of frame states and let |c| denote the length of the sequence.

For a given state sequence c, let wc, uc and vc denote the signals received at SR for

link (ST, SR), R for link (ST, R) and at SR for link (R, SR), respectively, at the end of the

|c|-th frame. For example, u10 denotes the received signal at R due to source ST after two

time frames, where PT is ON in the first frame and OFF in the second. Let yc1c2c3 denote

the final MRC-received signal (i.e., the signal obtained using MRC) at SR after three time

frames. For example y000 is the MRC-received signal at SR after a sequence of three time

frames in which PT is OFF during all three frames.

Let fi, gi and hi denote the channel fading coefficients during time frame i, i = 1, 2, 3

from ST to SR, ST to R and R to SR, respectively. We assume that fi, gi and hi are

constant, independently and identically distributed from one frame to another. Further,

the channel states fi and hi are available at SR, i.e., via training sequences, but they are

not available at ST and R. Also, the gi are available at R, but not at ST. Hence, maximum

likelihood detection can be used at R and SR. Let s be the transmitted signal at ST and

let sd be the decoded signal at R. We model the noise component during time frame i by

ni ∼ CN (0, N0), i = 1, 2, 3, when PT is OFF and ni ∼ CN (0, N0+Np), i = 1, 2, 3, when PT

is ON.

Consider the state sequence 000. During the first two time frames, ST transmits the

same signal to SR, i.e., a repetition code [74] is used. After the second frame, the received

signal at SR from ST is

w00 =

√

P̃ab

2
∑

i=1

|fi|2s+
2
∑

i=1

f∗i ni,

where x∗ denotes the complex conjugate of x. In traditional cooperative transmission

scenarios, one advantage of decode-and-forward over amplify-and-forward is that it does

not require the storage of an analog signal at the relay thus reducing receiver complexity.

However, the MRC at the relay requires the storage of analog signal at the relay which may

eliminate advantage of conventional decode-and-forward compared to amplify-and-forward.
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For this reason, we propose a practical schems for decoding and combining the received

signal at both the relay and SR based on log-likelihood detection in section 6.6. However,

we will use the MRC approach because it is easier to analyze and the performance of MRC

approach can be used as the upper bound on performance of our system. The numerical

results presented in Section 6.7 show that the performance of soft detection approach is

closed to MRC approach.

In the MRC approach, the received signal at R is

u00 =

√

P̃ar

2
∑

i=1

|gi|2s+
2
∑

i=1

g∗i ni.

In the third time frame, R decodes u00 to obtain sd and then forwards sd to SR. The received

signal at SR from R is

v000 =

√

P̃rbh3sd + n3.

The final received signal at SR after MRC is

y000 = w00 + h∗3v000. (6.2)

For state sequence 001, the received signal at SR from ST after the first two time frames

is

w00 =

√

P̃ab

2
∑

i=1

|fi|2s+
2
∑

i=1

f∗i ni.

By using a repetition code, the received signal at the relay R after MRC over the first two

time frames is u00. The relay decodes u00 and forwards sd to SR during the third time

frame when PT is ON. The received signal at SR from R after the third frame is

v001 = h3
√

Prbsd + n3.
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The final received signal at SR after MRC is

y001 = w00 + h∗3v001. (6.3)

Consider state sequence 010. During the first time frame, ST transmits the signal

w0 =

√

P̃abf1s+ n1.

to SR. In the second time frame, ST transmits this signal to R. The received signal at R

after two time frames is

u01 =

(
√

P̃ar|g1|2 +
√

Par|g2|2
)

s+ g∗1n1 + g∗2n2.

The relay R then decodes and forwards the decoded signal sd to SR, so that

v010 =

√

P̃rbh3sd + n3.

The final received signal at SR is given by

y010 = f∗1w0 + h∗3v010. (6.4)

For the remaining state sequences, the final signal received at SR can be derived similarly.
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The results are given as follows:

y011 = f∗1w0 + h∗3v011, v011 =
√

Prbh3sd + n3, (6.5)

y100 = f∗2w10 + h∗3v100, v100 =

√

P̃rbh3sd + n3, (6.6)

y101 = h∗3v101 + f∗2w10, v101 = h3
√

Prbsd + n3, (6.7)

y110 = h∗3v110, v110 = h3

√

P̃rbsd + n3, (6.8)

y111 = h∗3v111, v111 = h3
√

Prbsd + n3. (6.9)

6.3.2 Pure spatial and pure temporal sensing models

The pure spatial sensing model is equivalent to the case when PT is ON during all three

frame, i.e., the state sequence is 111. Therefore, the received signal at SR in the case of

pure spatial sensing is given by

ys = y111 = h∗3v111. (6.10)

In pure temporal sensing, except for state sequence 000, the transmission strategy is

simple repetition code over the time frames during which PT is OFF. The received signal

at SR under pure temporal sensing for the eight possible state sequences can be derived as
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follows:

yt000 = y000 (6.11)

yt001 =

√

P̃ab

2
∑

i=1

|fi|2s+
2
∑

i=0

f∗i ni (6.12)

yt010 = (|f1|2 + |f3|2)
√

P̃abs+ f∗1n1 + f∗3n3 (6.13)

yt011 = |f1|2
√

P̃abs+ f∗1n1 (6.14)

yt100 = (|f2|2 + |f3|2)
√

P̃abs+ f∗2n2 + f∗3n3 (6.15)

yt101 = |f2|2
√

P̃abs+ f∗2n2 (6.16)

yt110 = |f3|2
√

P̃abs+ f∗3n3 (6.17)

Note that there is no transmission for the state sequence 111, in which PT is ON during all

three frames.

The spectral efficiencies for joint-spatial temporal sensing and spatial sensing are equal.

The spectral efficiency of temporal sensing is smaller than that of joint spatial-temporal

sensing because there is no transmission during state sequence 111. If the joint spatial-

temporal sensing scheme has spectral efficiency of 1 then pure temporal sensing has a

spectral efficiency of 1−p3on where pon is the steady-state probability that PT is ON during

a given frame.

6.3.3 Performance analysis

We analyze the performance of decode-and-forward strategy in terms of symbol error prob-

ability (SEP). Let denote SEPc denote the SEP under state e sequence c = c1c2c3 and let

SEP denote the SEP averaged over all possible state sequences for joint spatial-temporal

sensing. Under the system model discussed in Section 6.2, the average SEP can be obtained
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as

SEP = [p3offSEP000 + p2offpon(SEP001 + SEP010 + SEP100)

+poffp
2
on(SEP011+SEP101+SEP110)+p

3
onSEP111]. (6.18)

We shall assume that M-PSK modulation is used. Using the moment generating function

approach in [78, 79], the SEP of M-PSK signals with MRC of L independent fading paths

can be expressed as

1

π

∫
(M−1)π

M

0

L
∏

k=1

Mγk

(

− gPSK
sin2 φ

)

dφ, (6.19)

where gPSK = sin2(π/M) and Mγl(u) = (1 − uγ̄l)−1 is the moment generating function of

Rayleigh fading with average SNR γl. Let Γ = (γ1, γ2, . . . , γL) denote a vector of L average

SNR values corresponding to L independent fading paths. Then the SEP can be expressed

as

ψ(P ) =
1

π

∫
(M−1)π

M

0

L
∏

k=1

(

1 +
gPSK

sin2 φ
γk

)−1

dφ. (6.20)

Let Ŝd denote the signal decoded at relay SR. Let γ̃ab = E
[

|fi|2 P̃ab

N0

]

= P̃ab

N0
be the average

SNR at SR when the transmitter is ST. The average SNR at SR when the transmitter is the

relay R is γrb = E
[

|hi|2 Prb

(N0+Np)

]

= Prb

(N0+Np)
when PT is ON and γ̃rb = E

[

|hi|2 P̃rb

N0

]

= P̃rb

N0

when PT is OFF. Let sk denote the kth signal in the M-PSK signal constellation, k =

1, . . . ,M . For state sequence 000, the received signal is given by (6.2) and the SEP can be

expressed as

SEP000=Pr[Ŝd=sk]·SEP000|Ŝd=sk
+Pr[Ŝd 6=sk]·SEP000|Ŝd6=sk , (6.21)
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where sk is the transmitted signal k = 1, 2, . . .M , and

Pr[Ŝd = sk] = 1− ψ(γ̃ar, γ̃ar), Pr[Ŝd 6= sk] = ψ(γ̃ar, γ̃ar),

are the probabilities of successful and unsuccessful decoding at the relay, respectively. Here,

SEP000|Ŝd=sk
= ψ(γ̃ab, γ̃ab, γ̃rb)

is the SEP under state sequence 000 given that Ŝd = sk, and SEP000|Ŝd 6=sk
is the SEP given

that Ŝd 6= sk. The SEP for state sequence 000 can then be written as

SEP000 = [1− ψ(γ̃ar, γ̃ar)]ψ(γ̃ab, γ̃ab, γ̃rb)

+ ψ(γ̃ar, γ̃ar) · SEP000|Ŝd 6=sk
. (6.22)

Since γ̃ar ≫ γ̃ab, we have ψ(γ̃ar, γ̃ar)→ 0 as γ̃ab →∞. Therefore, for sufficiently large γ̃ab,

the right hand side of (6.22) is dominated by the first term. Thus, in this case we have

SEP000 ≈ [1− ψ(γ̃ar, γ̃ar)]ψ(γ̃ab, γ̃ab, γ̃rb).

The validity of this approximation is confirmed in Section 6.7, wherein the simulation results

match well with the results from the analytical approximation.
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Using similar approach as for the sequence 000, the following expressions for SEP cor-

responding to the sequences 001 to 101 can be obtained as follows:

SEP001 ≈ [1− ψ(γ̃ar, γ̃ar)]ψ(γ̃ab, γ̃ab, γrb), (6.23)

SEP010 ≈ [(1− ψ(γ̃ar, γar)]ψ(γ̃ab, γ̃rb), (6.24)

SEP011 ≈ [1− ψ(γ̃ar, γar)]ψ(γ̃ab, γrb), (6.25)

SEP100 ≈ [(1− ψ(γar, γ̃ar)]ψ(γ̃ab, γ̃rb), (6.26)

SEP101 ≈ [1− ψ(γar, γ̃ar)]ψ(γ̃ab, γrb). (6.27)

Let Ŝ denote the decoded signal at SR. For state sequence 110, we have

SEP110=Pr[Ŝ=sk]·SEP110|Ŝd=sk
+Pr[Ŝd 6=sk] Pr[Ŝ 6=sk].

Given that Sd 6= sk, we have Pr[Ŝ 6= sk] = Pr[Ŝ = sd] for BPSK signals. For M-PSK signals

with M ≥ 4,

Pr[Ŝ 6= sk] = Pr[Ŝ = sd] +
∑

i 6=d,i 6=k

Pr[Ŝ = si]. (6.28)

The second term on the right hand side of (6.28) is the probability that ST erroneously

decodes the signal given that the transmitted signal from R is sd. In practice, the probability

is on the order of 10−κ, where κ ≥ 3 is a constant. The probability of correct detection at

SR given that sd is transmitted from the relay, is Pr[Ŝ = sd] and is on the order of 1− 10−κ

where κ ≥ 3. Thus, Pr[Ŝ 6= sk] ≈ Pr[Ŝ = sd]. Hence, we find that

SEP110=[1−ψ(γar, γar)]ψ(γ̃rb)+ψ(γar, γar)[1−ψ(γ̃rb)], (6.29)

SEP111=[1−ψ(γar, γar)]ψ(γrb)+ψ(γar, γar)[1−ψ(γrb)] (6.30)
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.

6.3.4 Pure spatial and pure sensing

Pure spatial sensing is equivalent to the scenario given by state sequence 111. Hence, the

SEP under pure spatial sensing is SEPs = SEP111. The SEP under pure temporal sensing

is

SEPt =
1

1− p3on
[p3offSEP000 + 3p2offponSEP100 + 3poffp

2
onSEP101]

where SEPt
000 = SEP000, SEPt

001 = SEPt
010 = SEPt

100 = ψ(γ̃ab, γ̃ab) and SEPt
101 =

SEPt
110 = SEPt

011 = ψ(γ̃ab).

6.4 Cognitive Decode-and-Forward with Variable Decoding

Delay -(CDF-VD)

In this section, we propose a modified joint spatial-temporal sensing cooperative transmis-

sion scheme for cognitive radio networks. Our modified scheme guarantees that the final

received signals after maximal ratio combining at secondary receiver always have a diversity

order of 2.

6.4.1 CDF-VD Protocol

We propose a cognitive decode-and-forward with variable decoding delay (CDF-VD) co-

operative communication protocol in which the MRC received signals at SR always have

diversity order of 2. If PT is OFF in the first time frame, the SR will decode the received

signals at the end of the second time frame. For state sequence 00, the received signal at

SR after MRC is

y00 =

√

P̃ab

2
∑

i=1

|fi|2s+
2
∑

i=1

f∗i ni, (6.31)

106



For state sequence 01, the received signal at SR at the end of the first time frame w0 =

√

P̃abf1s + n1 and the received signal at the relay R is u0 =
√

P̃arg1s + n1. In the second

time frame, when PT is ON, R decodes the signal u0 and forwards the decoded signal sd to

SR. The received signal at SR from R is v01 = h2
√
Prbsd + n2. Finally, the received signal

at SR with MRC is

y01 = h∗2v01 + f∗1w0 (6.32)

If PT is ON during the first time frame and OFF during the second time frame, we have

two possible state sequence 100 and 101. The transmission strategy and the received signals

at SR for these two frame sequences are similar to those presented by CDF-FD protocol

(see (6.6) and (6.7)). When PT is ON during the first and second time frames, the possible

state sequences for CDF-FD protocol is 110 and 111. If SR decodes the received signal after

3 time frames, the received signals have a diversity order of 1 (see (6.8)) and (6.30). To

make the protocol more efficient, SR decodes the received signal after 4 frames. We then

have the following possible state sequences 1100, 1101, 1110 and 1111. During the first and

second time frames when PT is ON, ST forward the signals to R using a repetition code.

The relay R then combines the signals using MRC and decodes and forwards the received

signals to SR in the third and fourth time frames. SR combines the received signal during

the third and fourth time frames. Hence, the final received signal at SR with MRC has a

diversity order of 2.

For state sequence 1100, the received signal at R is u11 =
√
Par

∑2
i=1 |gi|2s+

∑2
i=1 g

∗
i ni.

The relay R decodes and forwards signal sd to SR. After combining the two signals, the

received signals at SR is

y1100 = (|h3|2 + |h4|2)
√

P̃rbsd + h∗3n3 + h∗4n4. (6.33)
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Similarly, the received signals for 1101, 1110 and 1111 can be expressed, respectively, as

y1101 = (|h3|2
√

P̃rb + |h4|2
√

Prb)sd + h∗3n3 + h∗4n4, (6.34)

y1110 = (|h3|2
√

Prb + |h4|2
√

P̃rb)sd + h∗3n3 + h∗4n4, (6.35)

y1111 = (|h3|2 + |h4|2)
√

Prbsd + h∗3n3 + h∗4n4. (6.36)

6.4.2 Performance Analysis

The CDF-VD protocol has following state sequences: 00, 01, 100, 101, 1100, 1101, 1110 and

1111. The SEP lower bound for state sequences 100 and 101 can be obtained from (6.26)

and (6.27). We also have,

SEP00 = ψ(γ̃ab, γ̃ab) and SEP01 ≈ [1− ψ(γ̃ar)]ψ(γ̃ab, γab).

SEP1100 = ψ(γ̃rb, γ̃rb) , SEP1101 = ψ(γ̃rb, γrb)

SEP1110 = SEP1101 , SEP1111 = ψ(γrb, γrb) (6.37)

The average SEP lower bound for diversity-efficient protocol SEPd is given vy

SEPd = p2offSEP00 + poffponSEP01 + p2offponSEP100

+ poffp
2
onSEP101 + p2offp

2
onSEP1100 + poffp

3
onSEP1101 (6.38)

+ poffp
3
onSEP1110 + p4onSEP1111
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6.4.3 Spectral efficiency

We normalize the spectral efficiencies of spatial sensing and joint spatial-temporal sensing

cognitive cooperative transmission to 1 and denote them as SEs and SEj, respectively, i.e.,

SEj = SEs = 1. In both the spatial sensing and joint spatial-temporal sensing schemes, one

frame of the signal (Ns symbols) is decoded after 3 time frames. In the temporal sensing

scheme, there is no transmission for the state sequence 111. Hence, the spectral efficiency

of temporal sensing is SEt = 1− pon
3. In the CDF-VD protocol, for state sequence 00, one

signal frame is decoded after two time frames. Thus, the spectral efficiency of state sequence

00 is 3/2 compared to joint spatial-temporal sensing. Similarly, the spectral efficiency of

state sequence 01, 100, 101, 1100, 1101, 1110 and 1111 are 3/2, 3/3, 3/3, 3/4, 3/4, 3/4 and

3/4, respectively. The spectral efficiency of CDF-VD protocol is then given by

SEd = 1.5(p2off + poffpon) + ponp
2
off + p2onpoff + 0.75(p2onpoff

2 + 2p3onpoff + p4on)

6.5 Incremental Relaying

Both the CDF-FD and CDF-VD protocols make inefficient use of spectral efficiency because

the relay and ST repeat their transmissions all the time. The incremental relaying protocol,

proposed in [43] can be applied to our cognitive radio scenarios. The incremental protocol

exploits limited feedback, i.e., a single bit feedback, from the secondary transmitter to

indicate the success or failure of the transmission. The incremental protocol can be viewed

as a hybrid automatic-repeat-request (ARQ) wherein the secondary transmitter or the relay

retransmits if the secondary receiver provides negative feedback. Every time the ST receives

a signal from ST or R, it decodes the received signal and sends a feedback signal to both

ST and R indicate the success/failure of the transmission. If the transmission is successful,

ST continues to transmit the next frame. Otherwise, ST or R continues to transmit the

signal according to the operation of protocol. We show by simulation in Section 6.7 that

incremental relaying significantly improves the spectral efficiency of the system.
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6.6 Soft detection

In this section, we propose a more practical decoding approach for relay and secondary

receiver. In Section 6.3 and 6.4, the received signals at the relay R and SR are combined

using the MRC technique and then decoded. This approach requires the ability to store

the analog signal at both R and SR. The advantage of decode-and-forward compare to

amplify-and-forward cooperative strategy is that the decode-and-forward does not require

the storage of analog signal at the relay. However, the decoding approach proposed in

Sections 6.3 and 6.4 still requires the storage of an analog signal. In this section, we propose

a soft detection decoding approach which requires only the storage of soft bit information

of the received signal. The soft bit information can be quantized and stored in digital form.

The soft detection approach is similar to that proposed in [81] and [82]. We follow [81]

to compute the log-likelihood of the transmitted bits for simple wireless channel in (6.1),

assuming M-PSK modulation. Notice that the received signal y corresponds to M bits.

Thus, we need to compute the log-likelihood of M bit using y. We denote the vector of M

bit by

b = (b1, . . . , bM ).

The log-likelihood of kth element of b, bk is given by

Λ(bk) = log
Pr[bk = 1|y]
Pr[bk = 0|y] = log

Pr[bk = 1, y]

Pr[bk = 0, y]

which can be written as

Λ(bk) = log

∑

s:s=f(b),bk=1 Pr[bk = 1, y]
∑

s:s=f(b),bk=0 Pr[bk = 0, y]
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By knowing b we can also obtain knowledge of s; thus,

Λ(bk) = log

∑

s:s=f(b),bk=1 Pr[y, s]
∑

s:s=f(b),bk=0 Pr[y, s]

where f(·) is the mapping from b to the transmitted signal s. Because all the constellations

points of s are equally likely, we have

Λ(bk) = log

∑

s:s=f(b),bk=1 Pr[y|s]
∑

s:s=f(b),bk=0 Pr[y|s]
.

By substituting in the noise statistics, we obtain

Λ(bk) = log

∑

s:s=f(b),bk=1 exp

(

− |y−
√
Phs|2

N0

)

∑

s:s=f(b),bk=0 exp

(

− |y−
√
Phs|2

N0

) .

Combining the log-likelihoods overK time frames is equivalent to summing the log-likelihoods

of the individual frames. For example, for state sequence 001, the log-likelihood of the re-

ceived bit after first two time frames is obtained by taking the sum of the log-likelihood of

the received signal of the first and second time frame. In the third time frame, the relay

decodes the log-likelihood and convert the bits to M-PSK symbols and forwards them to

SR. The log-likelihood of the received signal at SR is the sum of the log-likelihood values

of the received signals from ST and from the relay. In this chapter, we assume an uncoded

system. However, for coded systems, the log-likelihood values of bits can be directly fed in

to the input of a channel decoder using a convolutional code or a turbo code. The perfor-

mance of the soft detection scheme is compared with MRC detection scheme is evaluated

in Section6.7.
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6.7 Numerical Results

In this section, we investigate the performance of the proposed decode-and-forward co-

operative communication scheme in terms of SEP. The simulation is implemented using

MATLAB. We assume that the channel fading coefficients fi, gi, hi ∼ CN (0, 1) (i = 1, 2, 3)

andthe frame length Ns = 100 symbols. The co-channel noise is assumed to be very small,

i.e., Np = 0. We assume P̃ab = Par = Prb and P̃ar = P̃rb = P̃ab+10 (dB) and SNR = P̃ab/N0.

In Fig. 6.1, we compare the performance of pure temporal sensing and spatial sensing

with that of joint spatial temporal-sensing and diversity-efficient protocol when poff = pon =

0.5 and BPSK modulation is used. We observe that the simulation and analytical results

match well with each other. From Fig. 6.1, we see that the performance of the proposed

DF cooperative transmission strategy with joint spatial-temporal sensing is about 10 dB

and 6 dB better than that of pure spatial sensing and temporal sensing, respectively. Also

joint spatial-temporal sensing has better spectral efficiency than pure temporal sensing by

a factor of 1/(1 − p3on) = 1.142. At BER = 10−4, the performance of CDF-VD is about

10 dB better than that of CDF-FD. In Fig 6.2, we compare the performance of all schemes

when poff = 2pon = 0.66667, i.e., the PT is OFF a greater portion of time than PT is

ON. The analytical and simulation results agree closely with each other. At the BER of

interest, the SNR of CDF-FD is 17 dB and 10 dB better than the spatial sensing and

temporal sensing, respectively. At BER = 10−4, the performance of CDF-VD is about

5 dB better than CDF-FD. When PT is OFF a greater portion of time than PT is ON, the

performance of joint spatial-temporal sensing increases as poff increases. This is due to the

fact that the portion of time ST can transmit with maximum power increases. However,

the performance of CDF-VD is almost unchanged as poff increases. In Fig 6.3, we compare

the performance of all scheme with pon = 2poff = 0.66667, i.e., the PT is ON a greater

portion of time than PT is OFF. Both analytical and simulation results are well matched.

At the BER of interest, the CDF-FD is 17 dB and 10 dB better than the spatial sensing

and temporal sensing, respectively. At BER = 10−4, the performance of CDF-VD is about
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Figure 6.1: Performance of cooperative communication with BPSK modulation poff = pon =
0.5
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Figure 6.2: Performance of cooperative communication with BPSK modulation poff =
2pon = 0.66667
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Figure 6.3: Performance of cooperative communication with BPSK modulation 2poff =
pon = 0.66667

5 dB better than CDF-FD. Fig. 6.4 shows the performance of the different schemes with

QPSK modulation and poff = pon = 0.5. The simulation and analytical results show close

agreement. Note that the performance of our CDF-FD is about 10 dB and 6 dB better

than that of pure spatial sensing and temporal sensing, respectively when SEP = 10−3. The

performance of CDF-VD protocol is about 12 dB better than the performance of CDF-FD

at SEP = 10−4. In Fig. 6.5, we compare the performance of spatial sensing, temporal

sensing, CDF-FD and CDF-VD with cognitive amplify-and-forward with fixed decoding

delay (CAF-FD) and variable decoding delay (CAF-VD) discussed in Chapter 5, for different

values of poff = p/(p + q) and SNR = 16 dB. CDF-FD outperforms both spatial sensing

and temporal sensing for all values of poff . The CDF-VD outperforms CDF-FD for most

of value of poff . Note that when poff = 1, the joint spatial-temporal scheme is equivalent

to pure temporal sensing, whereas when poff = 0, joint spatial-temporal is equivalent to

pure spatial sensing. The CAF-VD outperforms the performance of CDF-VD. Fig. 6.6

compares the spectral efficiencies of the different strategies with and without incremental
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relaying. The spectral efficiencies of spatial sensing and CDF-FD are the same and are

normalized as 1. As we can see, the spectral efficiency of temporal sensing is smaller than

that of CDF-FD. When poff = 0, there is no transmission for temporal sensing, implying

that the spectral efficiency is zero in this case. For all scheme, the spectral efficiency with

incremental relaying is much higher than that without incremental relaying. In Fig. 6.7

and Fig. 6.8, we compare the performance of the log-likelihood detection scheme with the

schemes discussed in Section 6.3 and section 6.4 for BPSK and QPSK modulation. For

both BPSK and QPSK modulation, the performance of log-likelihood scheme is close to the

performance of schemes of Sections 6.3 and 6.4.

6.8 Conclusion

We proposed a cooperative communication protocol with decode-and-forward relays for

opportunistic spectrum access in cognitive radio networks. Our protocols combine joint

spatial-temporal spectrum sensing and relaying to increase the transmission capacity of
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Figure 6.7: Performance of log-likelihoood detection with BPSK.
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cognitive radio networks. Both simulation and analytical results confirm that the proposed

scheme outperforms schemes based on pure spatial sensing or pure temporal sensing alone.
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Chapter 7: Exploiting Multichannel Diversity in Cognitive

Radio Networks

7.1 Introduction

In this chapter1, we consider a multichannel cognitive radio network scenario in which a

secondary transmitter can switch to different channels for opportunistic communications.

Multichannel diversity can be achieved by dynamically switching to different channels during

transmission. Our numerical results show that even a simple randomized channel switching

scheme can significantly reduce the average symbol error probability. We also propose a

scheduling algorithm based on maximizing the signal-to-noise ratio to further improve the

performance of cognitive transmission. Finally, we study the performance of our multichan-

nel switching schemes combined with capacity achieving turbo codes. Our numerical results

show that combination of randomized multichannel switching with turbo codes significantly

improves the performance of the system.

On a given frequency channel, a spectrum hole can be characterized as spatial or tem-

poral. A spatial spectrum hole can be specified in terms of the maximum transmission

power that a secondary user can employ without causing harmful interference to primary

users that are receiving transmissions from another primary user that is transmitting on

the given channel. Spatial spectrum sensing is investigated [17], wherein the maximum

interference-free transmit power (MIFTP) of a given secondary user is estimated based on

signal strengths received by a group of secondary nodes. To calculate the MIFTP for a sec-

ondary node, estimates of both the location and transmit power of the primary transmitter

are estimated collaboratively by a group of secondary nodes. Using these estimates, each

1The preliminary contents of this chapter appeared in [83,84].
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secondary node determines its approximate MIFTP, which bounds the size of its spatial

spectrum hole.

A temporal spectrum hole is a period of time for which the primary transmitter is idle.

During such idle periods, a secondary user may opportunistically transmit on the given

channel without causing harmful interference. The problem of detecting when the primary

is ON or OFF is called temporal spectrum sensing. Cooperative temporal sensing has been

studied in [8, 23]. The decision on the ON/OFF status of the primary transmitter can

be made either at individual secondary nodes or collaboratively by a group of secondary

nodes. In [60], a temporal spectrum sensing strategy that exploits multiuser diversity among

secondary nodes is proposed.

In earlier work [49, 50], we proposed a joint spatial-temporal sensing for cognitive ra-

dio networks. In this scheme, a secondary node performs spatial sensing to determine its

MIFTP when the primary transmitter is ON and uses localization information obtained in

the process of spatial sensing to improve the performance of temporal sensing, which esti-

mates the ON/OFF state of the primary transmitter. Joint spatial-temporal sensing has

higher achievable capacity compared to pure spatial or temporal sensing [50]. In [69], a com-

bined joint spatial-temporal sensing and amplify-and-forward cooperative relaying scheme

is proposed to improve the performance of cognitive transmission. A decode-and-forward

cooperative communication scheme is investigated in [80].

In this chapter, we consider a multichannel cognitive radio network in which N pri-

mary transmitters (PTs) operate on N different channels with frequencies fi, i = 1, . . . , N .

Multichannel cognitive radio networks have been studied in [35–38]. In [36, 37], a dynamic

programming approach is proposed to search for an optimal sensing order among the chan-

nels. In [35], a channel-aware switching algorithm is developed to decide where and when to

switch among the candidate channels. Sequential temporal sensing algorithms are developed

for OFDM-based hierarchical cognitive radio systems in [38]. In all of the aforementioned

works, only pure temporal spectrum sensing is considered.
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In this chapter, we investigate channel switching in multichannel cognitive radio net-

works employing joint spatial-temporal sensing with repetition codes [74] and also turbo

codes [85]. In our scheme, secondary users can switch to a new channel even when the

primary user on that channel is ON and continue to transmit using MIFTP. We show that

even for a simple randomized channel switching scheme, our scheme outperforms the con-

ventional scheme in which secondary users stay on the same channel during transmission.

We propose a maximized signal-to-noise ratio scheduling scheme that can further improve

the performance of secondary user transmissions. This scheme requires the knowledge of

channel state information (CSI) and the ON/OFF states of each PT before scheduling

transmission. The CSI can be estimted at secondary reciever and feedback to the central-

ized scheduler. We assume that perfect estimated CSI at both secondary receiver and the

scheduler, i.e, the CSI feed back channel is error free.

We also study the performance of our multichannel switching scheme in combination

with capacity achieving turbo codes instead of repetition codes. Turbo codes are a class of

high performance forward error correction (FEC) codes developed in 1993 [85], which were

the first practical codes to closely approach the channel capacity. Turbo codes are used

extensively in 3G [86] and 4G mobile standards, e.g., in High Speed Packet Access (HSPA),

Long Term Evolution (LTE) and IEEE 802.16 (WIMAX) [87,88]. We first consider a system

model for randomized channel switching wherein the secondary transmitter is switched to

only one channel during frame transmission. We then consider scenarios in which secondary

transmitter can switch to multiple channels during signal transmission. We show that the

performance of repetition codes does not improve as the secondary transmitter switches to

multiple channels, but that of turbo codes does improve.

The remainder of the chapter is organized as follows. Section 7.2 describes the system

model. Section 7.3 discusses the randomized channel switching algorithm and its perfor-

mance. The maximizing SNR scheduling algorithm is proposed in Section 7.4. Section 7.5

presents the combined turbo codes with multichannel switching algorithms. Section 7.6

presents numerical results. Finally, the chapter is concluded in Section 7.7.
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7.2 System Model

7.2.1 Transmission frames and PT behavior

We assume that the licensed wireless spectrum consists of N non-overlapping channels with

frequencies fi, i = 1, 2, . . . , N . There is one PT on each channel. Secondary users are

equipped with a single half-duplex transceiver capable of switching to different channels.

Time on the wireless channel is divided into frames consisting of Ns symbol transmission

times. Each PT alternates between the ON and OFF states on a per-frame basis according

to the on-off Markov model of Fig. 5.2. The ON/OFF states of PTs are independent from

one PT to another. The ON and OFF durations of PT i are modeled by geometric random

variables with parameters qi and pi, respectively (cf. [71]). The steady-state probability

that PT i is ON is given by poni = qi/(pi + qi), while the probability that PT is OFF is

poffi = pi/(pi + qi).

7.2.2 Channel modeling

When a PT is ON, a secondary transmitter (ST) is limited in the amount of power it

can use in order to avoid causing harmful interference to the primary users who receive the

transmissions from the PT. The maximum power that can be used by a given secondary node

while avoiding harmful interference to primary users is called the maximum interference-

free transmit power (MIFTP) (cf. [17, 73]). A method for a secondary node to estimate

its MIFTP is presented in [17] for the case of a single primary transmitter; the multiple

transmitter case is addressed in [53].

In [49,50], a joint spatial-temporal sensing scheme is proposed for one PT with a single

channel at frequency f . This scheme can easily be extended to the multichannel scenario.

In particular, at the beginning of each transmission frame, a set of secondary nodes collab-

oratively estimates the ON/OFF state of PT i by switching to channel fi using temporal

sensing algorithms proposed in [49, 50]. Spatial spectrum holes on channel i in terms of

MIFTP can be estimated by a group of secondary users switching to frequency fi. We
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assume that the MIFTP of a secondary user on channel fi remains unchanged until the

location of PT i changes.

Both spatial sensing and temporal sensing over N cognitive channels can be performed

simultaneously by using N sets of temporal or spatial sensing nodes or sequentially by one

set of temporal or spatial sensing nodes which sequentially switches among the set of N

channels. In practice, the time scale over which the PT changes its location is much larger

than the time scale of its ON/OFF durations. Under this assumption, the extra overhead

of joint spatial-temporal sensing compared to pure temporal sensing is not significant.

For a given PT i with frequency fi, the wireless channel is modeled by Rayleigh fading

with time correlation [89]. We assume that the channel remains constant for a duration of

Ns/2 symbols. For the first half of the transmission frame, the received signal of a simple

wireless channel model with flat (frequency non-selective) fading without shadowing is given

by [72]

y1 =
√

P (d, ǫ)his1 + n1, (7.1)

where

P (d, ǫ) , δ2
(

d0
d

)α

ǫ

denotes the equivalent transmitted power after taking into account the effect of path loss.

Here, δ2 is the free space signal power attenuation factor between the source and a reference

distance d0, d is the distance between the source and destination, α is the propagation

exponent, hi ∼ CN (0, 1) is a complex Gaussian random variable with variance 1, n1 ∼

CN (0, N0), and s1 is the transmitted signal.

For the second half of the frame, we have

y2 =
√

P (d, ǫ)gis2 + n2, (7.2)
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where

gi = ρihi +
√

1− ρ2iαi, (7.3)

where αi ∼ CN (0, 1) and ρi is the channel autocorrelation at delay time τ [89]

ρi = J0(2πDiτ)

with Di is the Doppler shift of the channel i and τ is the time to transmit Ns/2 symbols

Let ǫi and ǫ̃i denote the MIFTP of a given ST when PT i is ON and the maximum

transmission power that can be used when PT i is OFF, respectively. We also define

Pi = P (d, ǫi), P̃i = P (d, ǫ̃i),

as the equivalent transmitted powers when PT i is ON from ST to a given secondary receiver

(SR) at a distance d from ST when PT i is ON and OFF, respectively. To combat the low

SNR at the secondary receiver (SR) due to limited transmit power at ST, a repetition

code [74] is used at ST to transmit signals to SR. We note that the repetition code is close

to optimal in the low SNR regime [74]. By using a repetition code, ST transmits the same

signal s1 = s2 = s during both halves of the transmission frame. We also assume that the

channel fading coefficients hi and gi can be estimated at SR, i.e., via training sequences.

We further assume that maximal ratio combining (MRC) is used to combine the received

signal at SR. Hence, the final received signal at SR is

y =
√
P (|hi|2 + |gi|2)s+ h∗in1 + g∗i n2, (7.4)

where P = Pi when PT i is ON and P = P̃i when PT i is OFF.
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7.3 Exploiting multichannel diversity

Consider a simple scenario in which we have two communicating pairs (ST 1, SR 1) and

(ST 2, SR 2) over two cognitive radio channels with frequencies f1 and f2, respectively.

When there is no channel switching, i.e., ST i uses the same channel fi to communicate

with SR i, the received signal at SR (cf. (7.4)) cannot achieve a diversity order of two

because hi and gi are correlated. To exploit multichannel diversity, during the first half

of the frame, ST 1 uses channel f1 to communicate with SR 1 and switches to channel f2

during the second half of the frame. Thus, the received signal at SR 1 is

y = (
√
µ1|h1|2 +

√
µ2|g2|2)s+ h∗1n1 + g∗2n2, (7.5)

where µ1 = P1 or µ1 = P̃1 if PT 1 is ON or OFF, respectively and µ2 = P2 or µ2 = P̃2 if

PT 2 is ON or OFF, respectively. Since h1 and g2 are independent, the received signal at

SR 1 has a diversity order of two. Similarly, the received signal at SR 2 also has a diversity

order of two.

We expect that the average symbol error probability (SEP) will decrease compared to

the case when there is no channel switching. In the general scenario, we may have N

channels with frequencies fi and N pairs (ST i, SR i), i = 1, 2, . . . , N . In this case, pair

(ST i, SR i) can switch to channel j 6= i during the second half of the transmission frame

as long as there is no transmission on channel j. We assume that there is a centralized

scheduler or a medium access control protocol to oversee the process of channel switching

for the secondary users.

7.3.1 Performance Analysis

Randomized channel switching one channel

Next, we analyze the performance in terms of the average symbol error probability (SEP)

of our scheme. Let poni and poffi , respectively, denote the ON and OFF probabilities of PT i,
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i = 1, 2. We shall assume that M-PSK modulation is used. Using the moment generating

function (MGF) approach in [78,79], the SEP of M-PSK signals with MRC of L independent

fading paths can be expressed as

1

π

∫
(M−1)π

M

0

L
∏

k=1

Mγk

(

− gPSK
sin2 φ

)

dφ, (7.6)

where gPSK = sin2(π/M) and Mγl(u) = (1 − uγ̄l)−1 is the moment generating function of

Rayleigh fading with average SNR γl.

Let Γ = (γ1, γ2, . . . , γL) denote a vector of L average signal-to-noise ratio values corre-

sponding to L independent fading paths. Then the SEP can be expressed as

ψ(Γ) =
1

π

∫
(M−1)π

M

0

L
∏

k=1

(

1 +
gPSK

sin2 φ
γk

)−1

dφ. (7.7)

The received signal in (7.5) is obtained via maximal ratio combining of two independent

Rayleigh fading channel. Using the MGF approach, the SEP values for different states of

PT 1 and PT 2 are given by

SEPon,on = ψ(γ1, γ2), SEPon,off = ψ(γ1, γ̃2),

SEPoff,on = ψ(γ̃1, γ2), SEPoff,off = ψ(γ̃1, γ̃2), (7.8)

respectively. The average SEP over all possible states of PT 1 and PT 2 is given by

SEPrand = pon1 p
on
2 SEPon,on + pon1 poff2 SEPon,off (7.9)

+ poff1 pon2 SEPoff,on + poff1 poff2 SEPoff,off .

In the case of pure spatial sensing, PT 1 and PT 2 always transmit with their MIFTP

values, so the average SEP in this case is simply SEPon,on.
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No channel switching

When there is no channel switching, the received signal at a secondary receiver is given

by (7.4). Since hi ∼ CN (0, 1), we can write hi = ai + jbi, where ai, bi ∼ N (0, 0.5). In (7.3),

let αi = ci+ jdi where ci, di ∼ N (0, 0.5). The term |hi|2+ |gi|2 in (7.4) can be rewritten as

|hi|2 + |gi|2 = (1 + ρ2)(a2i + b2i ) + (1− ρ2)(c2i + d2i )

+ 2ρ
√

1− ρ2(aici + bidi).

We have E[(aici + bidi)] = 0 where E[·] denotes the expectation operator. Hence, we can

approximate

|hi|2+|gi|2≈(1+ρ2−δ)(a2i +b2i ) + (1− ρ2)(c2i +d2i ), (7.10)

where the constant δ accounts for the fact that when the term aici+ bidi is negative, the re-

ceived SNR is effectively reduced, resulting in erroneous symbol detection. An approximate

value for δ can be determined by computer simulation. We obtain

δ =











ρ2(1− ρ), if ρ < 0.7,

ρ(1− ρ), if ρ ≥ 0.7.
(7.11)

Combining (7.10) and (7.4), we have

ya ≈
√
P
[

(1 + ρ2 − δ)|hi|2 + (1− ρ2)|αi|2]s+ z, (7.12)

where z = h∗in1 + g∗i n2. The received signal ya in (7.12) can be approximated by the

maximal ratio combination of two independent channels with Rayleigh fading coefficients

hi and αi and average SNRs γ1 = P (1 + ρ2 − δ)/N0 and γ2 = P (1 − ρ2)/N0. Finally, the
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average SEP at the secondary receiver in the absence channel switching is

SEPconv = ψ(γ1, γ2). (7.13)

Our analysis is confirmed by simulation results presented in Section 7.6.

7.4 Maximized SNR scheduling algorithm

In this section, we propose a scheduling algorithm for exploiting multichannel diversity

in cognitive radio networks. Our scheduling algorithm maximizes the signal-to-noise ratio

of the received signal at SR. We assume that N cognitive channels with frequencies fi,

i = 1, 2, . . . , N , allow the simultaneously transmission of up to N pairs of (ST, SR). Let

K ≤ N be the number of concurrent secondary transmissions. We also assume that the

scheduler knows the ON/OFF state of PT i. The scheduler maintains a state vector p

whose ith component p(i) = 1 when PT i is OFF and p(i) = 0 when PT i is ON.

Through spatial sensing, scheduler can obtain an estimate of the distance between ST i

and SR i and therefore an estimate of the equivalent transmitted powers Pi and P̃i. The

scheduler is assumed to have knowledge of the channel state information (CSI) matrix H

at the beginning of each transmission frame. The CSI matrix G is also available during

the second half of the transmission frame. These CSI matrices can be estimated at the SR

via training and then forwarded to scheduler. The elements of the channel matrix H are

denoted by H(i, j) = hij , where 1 ≤ i ≤ N and 1 ≤ j ≤ K and hij is the channel gain

between ST j and SR j on channel i for the first half of the transmission frame. The (i, j)

element of the channel matrix G, G(i, j) = gij , is the channel gain between ST j and SR j

on channel i for the second half of the transmission frame. We have

gij = ρijhij +
√

1− ρ2ijαij ,

where ρij is the channel autocorrelation between ST j and SR j on channel i at time τ and
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αij ∼ CN (0, 1).

The scheduler also maintains an idle/reserved channel status matrix S of dimension

N × 2, where S(i, 1) = 0 if the first half of transmission frame of channel i is idle; otherwise

S(i, 1) = 1, i.e., the first half of transmission frame of channel i is reserved for transmission.

We also have S(i, 2) = 0 if the second half of transmission frame of channel i is idle,

otherwise S(i, 2) = 1, i.e., second half of transmission frame of channel i is reserved for

transmission.

Algorithm 2 Maximized SNR channel scheduling algorithm

1: Input: ON/OFF state vector p, CSI matrices H and G, idle/reserved matrix S

2: for j = 1 to K do
3: t← 0
4: while t < K do
5: k ← j + t mod K
6: S← 0
7: if (First half of transmission frame) then

8: S1(k)← argmaxi,S(i,1)=0{(γi + p(i)(γ̃i − γi))|hij |2}
9: S(S1(k), 1)← 1

10: end if
11: ST i transmits on channel S1(i) for i = 1, 2, . . . ,K during the first half of the

transmission frame
12: if (Second half of transmission frame) then

13: S2(k)← argmaxi,S(i,2)=0{(γi + p(i)(γ̃i − γi))|hij |2}
14: S(S2(k), 2)← 1
15: end if
16: t← t+ 1
17: end while
18: ST i transmits in channel S2(i) for i = 1, 2, . . . ,K during the second half of the

transmission frame
19: end for

At the beginning of transmission frame, Algorithm 2 starts with user 1. It finds the

channel k in the list of N available channels such that the received SNR γk is maximized

where γk = Pk|hk1|2/N0 if PT is ON and γk = P̃k|hk1|2/N0 if PT is OFF. After channel k

is reserved for user 1, it is removed from the list of available channels. The algorithm the

proceeds to user 2 and repeats with the list of N − 1 remaining channels. The algorithm

continues until all the users have been scheduled.

Thus, the number of idle channels for user K is N −K+1 because K− 1 channels have

been reserved for the K − 1 previous users. Because of the multichannel fading diversity,
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the larger the number of idle channels, a larger value of γk can be obtained. Clearly, in this

algorithm, the first user has the greatest advantage. Therefore, to ensure fairness among

users, in the next transmission frame, Algorithm 2 starts with user 2 and ends with user

1. After completing the scheduling task, i.e., the vector S1 = (S1(k), k = 1, . . . ,K) is

obtained, which indicates that ST k uses channel S1(k) to transmit to SR k, k = 1, . . . ,K

in the first half of the transimission frame. The same algorithm is used to obtain S2 =

(S2(k), k = 1, . . . ,K), the scheduling vector for the second half of the transmission frame.

The performance of the proposed maximized SNR scheme is expected to outperform that of

the simple randomized channel switching scheme discussed in Section 7.3. This is confirmed

by our numerical results presented in Section 7.6.

7.5 Channel switching combined with turbo codes

In this section, we study the performance of a coded multichannel cognitive radio system.

In particular, we combine capacity achieving turbo codes with our proposed multichannel

switching algorithms. Turbo codes, proposed in [85], can achieve a performance close to the

Shannon limit if the code length is sufficiently long.

7.5.1 System modeling with turbo codes

In Section 7.2, we proposed a system model for exploiting multichannel diversity in which

the repetition code is used. Although, repetition codes are close to optimal in the low SNR

regime [74], they have been shown to be bandwidth inefficient in moderate and high SNR

regimes. If we use turbo codes, repetition codes are not needed. We follow the system

model described in [81]. At the transmitter side, the data is divided in to the block of

Nb bits and encoded by a binary turbo code. The turbo code consists of two systematic

recursive convolutional codes concatenated in parallel via a pseudorandom interleaver [85].

The output turbo-encoded bits are then interleaved by an interleaver and mapped to a

particular signal constellation by the modulator. The additional interleaver is used to
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remove the correlation between the consecutive bits being transmitted. The size of the

interleaver is chosen based on the delay requirement of the application. Since the coded

modulation is obtained by concatenating a binary encoder to a modulator through a bit

interleaver, it has the form of bit-interleaved coded modulation [90].

At the receiver, when there is no channel switching, the received signal is

y1 = µihis+ n1

for the first half of the transmission frame and

y2 = µigis+ n2,

for the second half, where s is the transmitted signal, hi and gi are the channel gains during

the first and second half of the time frame of channel i (7.3) and µi = Pi or µi = P̃i if PT i

is ON or OFF, respectively. Using a similar approach, the received signals with randomized

channel switching for the first and second halves of the transmission frame are given by

y1 = µihis+ n1 and y2 = µjgjs+ n2,

respectively, where hi and gj are, respectively, the channel gains during the first half of the

transmission frame of channel i and the second half of the transmission frame of channel

j. Here, µj = Pj or µj = P̃j if PT j is ON or OFF, respectively. Since hi and gj are

independent, we can achieve diversity using an interleaver for decoding the turbo code. The

decoded bit is mostly erroneous only if both hi and gj are in deep fade. The probability of

both hi and gj being in deep fade is much smaller than that of hi or gi being in deep fade

individually.

The received signal is fed to a log-likelihood computation [81], which computes the

log-likelihoods of the transmitted bits, and uses them as if they were the likelihoods of the

observations of BPSK transmission over an additive white Gaussian noise (AWGN) channel.
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The log-likelihood bits are then de-interleaved and fed into the turbo decoder which decodes

the received bits. The log-likelihood computation algorithm is presented in [81] for general

multi-antenna systems. Here we consider a simple single antenna system and assume M-

PSK modulation. Since the received signal y1 corresponds to M bits, we need to compute

the log-likelihood of M bit using y1. We use the same approach for the received signal y2.

We denote the M received bits by a vector

b = (b1, . . . , bM ).

The log-likelihood of the kth element of b, bk, is given by

Λ(bk) = log
Pr[bk = 1|y]
Pr[bk = 0|y] = log

Pr[bk = 1, y]

Pr[bk = 0, y]
,

which can be written as

Λ(bk) = log

∑

s:s=f(b),bk=1 Pr[bk = 1, y]
∑

s:s=f(b),bk=0 Pr[bk = 0, y]
.

Since knowledge of b provides knowledge of s, we have

Λ(bk) = log

∑

s:s=f(b),bk=1 Pr[y, s]
∑

s:s=f(b),bk=1 Pr[y, s]
,

where f(·) is the mapping from b to the transmitted signal s. Because all the constellations

points s are equally likely, we have

Λ(bk) = log

∑

s:s=f(b),bk=1 Pr[y|s]
∑

s:s=f(b),bk=1 Pr[y|s]
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Substituting in the noise statistics, we obtain

Λ(bk) = log

∑

s:s=f(b),bk=1 exp

(

− |y−√
µihs|2
N0

)

∑

s:s=f(b),bk=1 exp

(

− |y−√
µihs|2
N0

) .

The soft-output bits of the log-likelihood computation are fed into an iterative turbo

decoder. The iterative process requires the decoding algorithms to make use of a priori infor-

mation as well as deliver reliability information for each decoded information bit in addition

to the hard decision. The symbol-by-symbol maximum a posteriori (MAP) algorithm [91],

is an optimal decoding algorithm for minimizing the bit error rate of convolutional codes. It

can be applied straightforwardly for turbo decoding [92–94]. However, the MAP algorithm

requires a large number of computations as well as large memory size, which complicates

its hardware implementation.

The Soft Output Viterbi Algorithm (SOVA) [95] based on the soft-input soft-output

(SISO) Viterbi algorithm, can make use of a priori information after suitable modifica-

tion [94, 96]. The SOVA algorithm can be implemented for turbo decoding with moderate

complexity and hence is preferable in practice. However, the coding gain of SOVA is gen-

erally about 0.7 dB less than that of MAP for turbo decoding [97]. In Section 7.6, we use

SOVA as our decoding algorithm.

7.5.2 Randomized switching to multiple channels

In the channel switching algorithm described in the previous section, the secondary trans-

mitter switches to only one channel during the transmission frame. The received signal

always has a diversity order of 2. In general, the secondary transmitter can jump to more

than one channel during a frame transmission time. Since turbo codes can exploit time

diversity of the channels, jumping to more than one channel may increase the decoding

diversity and hence improve the performance of the scheme. For example, the secondary
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transmitter could switch to 2 channels during the transmission frame. During the transmis-

sion of the first Ns/3 symbols, it stays with channel i and switches to channel j during the

second Ns/3 symbols. Finally, in the last Ns/3 symbol, the secondary transmitter switches

to channel k. The secondary receiver decodes the received signal with three different fading

values hence decoding diversity is increased.

In the case of repetition codes, when switching to 2 channels, the transmitted signal

is repeated 3 times, which reduces the spectral efficiency. For a fair comparision, if the

primary transmitter switches to one channel during transmission with QPSK modulation,

8-PSK modulation is used for switching to two channels during the frame transmission.

The performance analysis for randomized switching to multiple channels follows the same

approach as in Section 7.3.1. In Section 7.6, we will show that the performance of random-

ized switching with turbo codes is improved when the secondary transmitter switches to

more than one channel but the performance of randomized switching with repetition codes

is not improved under multichannel switching.

7.6 Numerical Results

7.6.1 Repetition code

In this section, we evaluate the performance in terms of SEP for the proposed switching

schemes. For all simulations, we use BPSK modulation and a transmission frame length

Ns = 640 symbols. All channels have the same Pi and P̃i. The average SNR γi = Pi/N0

and γ̃i = P̃i/N0. We assume that γ̃i = γi + 10 dB and in all figures SNR = γi. Except for

Fig. 7.3, the ON/OFF probabilities of a PT are assumed to be the same across all channels,

i.e., poni = poffi = 0.5.

In Fig. 7.1, we compare the performance of our randomized channel switching scheme

vs. a conventional scheme with no channel switching. We assume all channels have the

same correlation ρ = 0.8. As seen in Fig. 7.1, the randomized channel switching scheme

effectively reduces the average SEP. For spatial sensing, the randomized channel switching
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Figure 7.1: Performance of randomized channel switching.

scheme is about 3 dB better in the SEP range of interest, i.e., SEP ≤ 10−3, than the

conventional scheme. For joint spatial-temporal sensing, the random switching scheme

is about 4 dB better than the conventional scheme. For joint spatial-temporal sensing,

randomized channel switching exploits both fading diversity and diversity of the ON/OFF

state of the PT. Clearly, joint spatial-temporal sensing always outperforms spatial sensing

for a given switching scheme. In Fig. 7.1, the simulation and analytical results derived

in Section 7.3.1 are seen to be closely matched. In Fig. 7.2, we compare the SEP of the

conventional scheme with randomized channel switching over different values of the channel

correlation ρ1 = ρ2 = ρ. We use γi = 12 dB and γ̃i = 22 dB with i = 1, 2. As in Fig. 7.2,

the performance of randomized channel switching is not affected by the channel correlation

because the ST switches to a new channel with independent channel fading. The SEP of

the conventional scheme increases as ρ increases. At ρ = 0, i.e., there is no correlation,

under pure spatial sensing, the SEP of conventional scheme equals that of the randomized
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Figure 7.2: Performance of different switching schemes vs. ρ.

channel switching scheme. However, at ρ = 0, the randomized channel switching scheme

still outperforms the conventional scheme when joint spatial-temporal sensing is used. The

reason is that even when ρ = 0, random switching can exploit multichannel diversity in

terms of the ON/OFF diversity of the PT. In particular, low received SNR normally occurs

when both PTs are ON for joint spatial-temporal sensing, i.e., with probability pon1 p
on
2 , and

when PT 1 or PT 2 is ON, i.e., with probabilities pon1 or pon2 , respectively. We investigate

scenarios in which two channels have different poff probabilities in Fig. 7.3: poff1 = 0.8 and

poff1 = 0.4, respectively. Clearly, if user 1 always uses channel 1 and user 2 always uses

channel 2, the performance experienced by user 1 will always be better than that of user 2.

As poff increases, the probability that ST can transmit with maximum power increases, and

thus the performance improves. This may create fairness issues in multichannel cognitive

radio networks. However, by employing randomized switching, both users will have the

same performance. Also, in the SEP range of interest, i.e., SEP ≤ 10−3, the performance
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Figure 7.3: Randomized channel switching and user’s fairness.

of randomized channel switching is equal or even better compared to the performance

of user 1 when there is no channel switching. Randomized channel switching not only

improves performance but also guarantees fairness among the secondary users. In Fig. 7.4,

we compare the performance of the randomized channel switching scheme in conjunction

with the maximized SNR scheduling scheme of Algorithm 2. In maximized SNR scheduling,

a total of N = 4 channels is used. When SEP =10−5, our maximized SNR scheduling

scheme with K = 4 concurrent (ST,SR) transmissions performs about 10 dB better than

randomized channel switching. As the number of concurrent transmissions, K, decreases,

the average SEP decreases. When K = 1, the maximized SNR scheduling scheme is about

13 dB better than randomized channel switching and about 3 dB better than maximized

SNR scheduling with K = 4. In Fig. 7.5, we investigate the performance of maximized

SNR scheduling algorithm as the number of channels N increases. We assume K = 1 and

all channels have ρ = 0.8. We also assume that γi = 4 dB and γ̃i = 14 dB. The simulation
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Figure 7.4: Performance of maximized SNR scheduling.

results show that the SEP of our proposed scheduling scheme decreases significantly as the

total number of users N increases. When more channels are available, the maximized SNR

of all channels increases and hence, the performance of the maximized SNR scheduling

algorithm improves.

7.6.2 Turbo codes

In this section, we present the performance of our multichannel switching scheme with turbo

code. We assume that BPSK modulation is used. The component codes of the turbo code

are two recursive systematic convolutional codes with generator matrices G1 = [1 1 1] and

G2 = [1 0 1]. The turbo code employs a random interleaver and has a rate of R = 1/2

obtained by periodically puncturing the parity bits. The interleaver that scrambles the

turbo coded bit consists of one pseudorandom interleaver with length equal to the frame

length Ns = 1920. The SOVA decoding algorithm with 5 iterations is used. All channels

have the same Pi and P̃i. The average SNR γi = Pi/N0 and γ̃i = P̃i/N0. We assume that
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Figure 7.5: Performance of maximized SNR scheduling vs. number of channels N .

γ̃i = γi + 10 dB and in all figures SNR = γi. The ON/OFF probabilities of a PT are

assumed to be the same across all channels, i.e., poni = poffi = 0.5. The channel correlation

is also the same for all channels: ρi = 0.8. In Fig. 7.6(a), we compare the frame error

rate (FER) of the randomized channel switching scheme with no channel switching for both

spatial and temporal sensing. At FER values of interest, the randomized channel switching

scheme is about 8 dB better than no channel switching scheme. The joint spatial-temporal

sensing scheme is about 4 dB better than spatial sensing. In Fig. 7.6(b), we compare the

bit error rate (BER) of randomized channel switching scheme with no channel switching for

both spatial and temporal sensing. Similar to FER performance, the randomized channel

switching scheme is about 8 dB better than no channel switching. In terms of BER, the joint

spatial-temporal sensing scheme is about 4 dB better than spatial sensing. In Fig. 7.7(a)

and Fig. 7.7(b), we compare the FER and BER of maximized SNR channel switching

scheme with the randomized channel switching scheme and no channel switching. Here,

the total number of channels N = 4 and the number of concurent user transmission is

K = 4. As we can see, the performance of maximized SNR scheduling is significantly
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better than that of randomized channel switching. At an FER of 10−2 and a BER of 10−3,

maximized SNR scheduling is about 11 dB better than randomized switching. In Fig. 7.8(a)

and Fig. 7.8(b), we compare the performance of randomized switching on two channels to

channel switching schemes on more than two channels. We use the QPSK, 8-PSK and

16-PSK modulation schemes on 1, 2 and 3 channels with joint spatial-temporal sensing and

QPSK with no channel switching. The spectral efficiencies of the three channel switching

schemes and no channel switching are equal. As we can see from the numerical results,

the performance of randomized switching with repetition codes does not increase when the

secondary transmitter switches to multiple channels. However, in Fig. 7.9(a) and Fig. 7.9(b),

with spatial sensing, the performance of randomized switching on multiple channels with

turbo codes improves as the number of switched channels increases. At an FER of 10−3

and a BER of 10−4, randomized switching on two channels performs about 8 dB better

than randomized switching on one channel. Asymptotically, for a frame transmssion of Ns

symbols, if we have Ns available channels, the secondary transmitter can switch to Ns − 1

channels during the frame transmission time. The performance of this “asymptotic channel

switching scheme” is shown in Fig. 7.10(a) and Fig. 7.10(b). At an FER of 10−2 and a

BER of 10−3, the asymptotic channel switching is about 8 dB better than the multichannel

switching scheme on 3 channels. Fig. 7.11, we compare the performance in term of BER of

repetition code with turbo code for spatial sensing. In the single channel case, the simple

repetition code outpeforms turbo codes with no channel switching and randomized channel

switching. However, as the number of switching channels is increased, the performance of

turbo codes becomes better than that of the repetition code. For example, at a BER of

10−5 with three channels, the performance of turbo codes is about 5 dB better than of the

repetition code.
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7.7 Conclusion

We considered a multichannel cognitive radio network with joint spatial-temporal spectrum

sensing. In a multichannel cognitive radio network, fading diversity exists among different

channels at a given time. We showed that by using a simple randomized switching among

different channels during transmission, the performance of cognitive transmission signif-

icantly increases. We proposed a maximized signal-to-noise ratio (SNR) algorithm that

further improves the performance of the cognitive radio tranmission link when the channel

fading coefficients and the ON/OFF states of all primary transmitters are available. We

also studied the performance of our switching schemes combined with turbo codes. We

showed that our combined scheme with turbo codes outperformed a conventional scheme

with no channel switching. In addition, the performance gain achieved using turbo codes

with randomized switching increases as the number of channels increases.
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Figure 7.6: Performance of randomized channel switching with turbo codes.
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Figure 7.7: Performance of maximized SNR scheduling channel switching with turbo codes.

143



0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB) →

F
ra

m
e 

E
rr

or
 R

at
e 

(F
E

R
)

No channel switching

Randomized − 1 channel

Randomized − 2 channels

Randomized − 3 channels

(a) Frame Error Rate (FER).

over

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB) →

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

No channel switching

Randomized − 1 channel

Randomized − 2 channels

Randomized − 3 channels

(b) Bit Error Rate (BER).

Figure 7.8: Performance of randomized channel switching with repetition codes and multiple
channels.
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Figure 7.9: Performance of randomized channel switching with turbo codes and multiple
channels.
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Figure 7.10: Asymptotic performance of randomized channel switching with turbo codes.
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Chapter 8: Conclusions

8.1 Summary

In this dissertation, we investigated a joint spatial-temporal spectrum sensing strategy,

spectrum sensing with multiuser diversity, cooperative relaying schemes that exploits the

spatial-temporal spectrum holes and multichannel switching algorithms.

In Chapter 2.6, we developed a model for joint spatial-temporal spectrum sensing in

cognitive radio networks. Our approach combines the spatial information of primary trans-

mitters obtained through spatial sensing to improve the performance of temporal sensing.

Depending on the amount of correlation between nodes, we propose two strategies for

temporal sensing node selection. When the correlation is high, we choose nodes that are

closest to the primary transmitter. When the correlation is small and all the temporal

sensing nodes have similar average SNR, we choose nodes that minimize correlation. Our

numerical results show that by incorporating spatial information into temporal sensing, the

performance of temporal sensing can be significantly improved. We also quantify the per-

formance benefit of the joint spatial-temporal scheme over pure temporal or spatial sensing

in term of achievable capacity. The achievable capacity of joint spatial-temporal sensing is

significantly higher compared to that of temporal or spatial sensing only. We also analyzed

a multi-level quantization feedback scheme that can improve temporal sensing performance.

We showed that by using multi-feedback quantization, the performance of temporal sensing

can be improved when the correlation between nodes is small.

In Chapter 4, we proposed a distributed approach to spectrum sensing that exploits

multiuser diversity among secondary users to improve sensing capability in cognitive radio

networks. Our approach is based on a cooperative sensing framework which has advan-

tages in low SNR and shadowed environments. Independent, identically distributed fading
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is used to model the fading between secondary nodes. We investigated the performance of

soft combination, 1-out-N rule and counting rule, and compared with traditional spectrum

sensing without multiuser diversity. We also proposed a medium access control protocol

based on carrier sensing multiple access (CSMA) protocol to coordinate transmissions be-

tween secondary nodes and the fusion center. Our numerical result show that our scheme

significantly outperforms the traditional scheme that does not exploit multiuser diversity.

We also show that when the number of secondary user is large enough, a hard decision

1-out-N rule outperforms the soft combination scheme.

In Chapter 5, we proposed two cooperative transmission strategies, CAF-FD and CAF-

VD which exploit spatial and temporal spectrum holes in a cognitive radio network. We

analyze the average symbol error rate of all strategies. We using moment generating func-

tions to analyze the symbol error probability. Our analytical and simulation results show

that our cooperative communication strategies, which exploit both spatial and temporal

spectrum holes, significantly reduce the average symbol error probability compared to that

of pure spatial and temporal sensing. Of the two cooperative schemes, CAF-VD results

in a lower symbol error probability because the diversity order of the received signal at

secondary receiver has the order of two. We also propose an incremental relaying protocol

which further improves the spectral efficiencies of our schemes.

In Chapter 6, we proposed two cooperative communication protocols with decode-and-

forward relays: cognitive decode-and-forward with fixed decoding delay (CDF-FD) and

with variable decoding delay (CDF-VD) for opportunistic spectrum access in cognitive ra-

dio networks. The CDF-VD has better performance than CDF-FD because the diversity

order of the received signal at secondary receiver has the order of two. Both simulation

and analytical results confirm that the proposed scheme outperform schemes based on pure

spatial sensing or pure temporal sensing alone. We proposed an incremental relaying proto-

col for CDF-FD and CDF-VD to further increase their spectral efficiencies. The simulation

results show that by employing one bit feedback from the secondary receiver to indicate
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the success/failure of transmission, our incremental relaying protocol can dramatically im-

prove the spectral efficiency of our schemes. Finally, a practical decoding scheme based on

computation of a log-likelihood was proposed.

In Chapter 7, we studied a multichannel cognitive radio network with joint spatial-

temporal spectrum sensing. In a multichannel cognitive radio network, fading diversity

exists among different channels at a given time. We showed that simple randomized switch-

ing among different channels during transmission significantly improve the performance of

cognitive transmission. We also proposed a maximized signal-to-noise algorithm to further

improve the performance of the cognitive radio transmission link. We analyzed the per-

formance of our schemes in terms of average symbol error probability. We also studied

the performance of our schemes in combination with turbo codes. We showed that our

combined scheme with turbo codes has outperformed a scheme with no channel switching

scheme. In addition, turbo codes improve the performance of the randomized scheme when

secondary switching to multiple channels during the frame transmission. In randomized

switching, the performance of repetition codes is better than turbo codes when switching

to only one channel. However, turbo codes outperforms repetition codes when switching to

multiple channels.

8.2 Directions of future research

The joint spatial-temporal sensing scheme developed inChapter 2.6 can be extended to a

scenario that has multiple cochannel primary transmitters. In order to work effectively

with multiple primary transmitters, the strategy needs to track the ON/OFF status of all

primary transmitters. Depending on which primary transmitter is ON or OFF, we can

obtained a different MIFTP for each secondary user. For our proposed spectrum sensing

scheme exploiting multiuser diversity, it would be worthwhile to investigate a fading model

of secondary nodes in which the assumption are independent but not identically distributed

fading is removed, i.e., they have different average SNRs. It would also be of interest to

investigate the case when a secondary node is equipped multiple antenna but the fading
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between antennas are correlated. Further work could examine a practical implementation

of our multiuser diversity scheme in a more realistic setting, i.e., the IEEE 802.22 standard.

In Chapters 5 and 6, we considered coherent detection at the secondary receiver. In

order to perform coherent detection, channel state information must be obtained. However,

in fast fading channel, channel state information may be too difficult to estimate. Future

research along those lines could investigate a differential modulation scheme for fast fading

channel wherein no channel state information is needed at the secondary receiver.

In Chapter 7, we analyzed the performance of our schemes using average symbol error

probability. In the ongoing work, we are investigating the achievable capacity of our pro-

posed multichannel schemes and the effect imperfect channel state information feedback to

the performance of maximized SNR scheduling. Imperfect channel state information can

significantly degrade the decoding performance of coherent detection scheme which requires

estimation of channel state information. However, our maximized SNR scheduling may be

robust against the imperfect channel estimation.
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Appendix A:

[Proof of proposition 1] We have,

γb ≤
γarγrb
γar + γrb

≤
√
γarγrb
2

=

√
ParPrb

2N0

√

g̃h̃ (.1)

Taking expectations on both sides, we have

E[γb] ≤
√
ParPrb

2N0
E[

√

g̃h̃]. (.2)

Note that gi, hj ∼ CN (0, 1) then 2g̃ and 2h̃ are independent χ2-distributed random variables

with 2Ku and 2Kv degrees of freedom, respectively. Applying Jensen’s inequality,

E

[
√

g̃h̃

]

≤
√

E[g̃h̃] =
1

2

√

E[2g̃]E[2h̃] =
√

KuKv. (.3)

From (.2) and (.3), we have

E[γb] ≤
√
ParPrb

2N0

√

KuKv. (.4)

Assuming M-PSK modulation, the average SEP can be expressed as follows [78]:

SEP =
1

π

∫
(M−1)π

M

0
Mγb(−ω) dθ, (.5)

whereMγb(u) , E[euγb ] is the moment generating functions γb and ω , k
sin2 θ

≥ 0. Applying

Jensen’s inequality and (.4), we have

Mγb(−ω) = E[e−ωγb ] ≥ e−ωE[γb] ≥ e−β
√
KuKv , (.6)
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where β , ω
√
ParPrb/(2N0 + 2Np) ≥ 0. The lower bound for the SEP is then obtained by

substituting the right hand side of (.6) into (.5).

If K is even, i.e., K = 2m where m is an integer, 2
√
KuKv ≤ Ku + Kv = 2m, with

equality holding when Ku = Kv = m. In this case, (.6) implies that the choice of Ku = Kv

maximizes the performance of our proposed scheme. If K is odd, i.e., K = 2m + 1, let

Ku = Kv + n, where n ≥ 1 is an integer. We have 2Kv = 2m+ 1− n,

4KuKv = 4m2 + 4m+ 1− n2 ≤ 4m2 + 4m. (.7)

The equality in (.7) holds for n = 1 or n = −1 or equivalent Ku = Kv + 1 or Kv = Ku + 1

will minimizes Mγb(−ω) and hence the SEP. In the cooperative relaying scenario wherein

SR combines the received signals from both relay and direct channel, information-theoretic

results in [98] suggest the choice Ku > Kv, in order to maximize the SNR at the first hop

or Ku = Kv + 1. This analysis is confirmed by simulation in [69].
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