
AN INSTANCE-BASED CLASSIFICATION APPROACH TO AUTOMATIC
TRANSCRIPTION OF MONOPHONIC MELODIES

by

Fatemeh Pishdadian
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Master of Science
Electrical Engineering

1
~tt.v~

~ .. c·<v-·· 7

~-M·a=
~

Date: ----------------------------

Dr. Jill K. Nelson, Thesis Director

Dr. Kathleen E. Wage, Committee Member

Dr. Bernd-Peter Paris, Committee Member

Dr. Andre Manitius, Chairman, Department
of Electrical and Computer Engineering

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Fall 2013
George Mason University
Fairfax, VA

An Instance-Based Classification Approach to Automatic Transcription of Monophonic
Melodies

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Fatemeh Pishdadian
Bachelor of Science

Ferdowsi University of Mashhad, 2005

Director: Dr. Jill K. Nelson, Associate Professor
Department of Electrical and Computer Engineering

Spring Semester 2014
George Mason University

Fairfax, VA

Copyright c© 2014 by Fatemeh Pishdadian
All Rights Reserved

ii

Dedication

To Maman, Baba, and Hamid

iii

Acknowledgments

I would like to give special thanks to my advisor, Dr. Jill Nelson, for her help and guidance
throughout writing this thesis. I would also like to express my gratitude to the members of
my thesis committee, Dr. Kathleen Wage and Dr. Bernd-Peter Paris, for their invaluable
comments and their constant support.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . ix

Abstract . xii

1 Introduction . 1

2 Background and Prior Work . 6

3 Monophonic Transcription Algorithm . 10

3.1 Algorithm overview . 10

3.2 Time-domain feature extraction . 11

3.2.1 Piano sound signal in time domain 11

3.2.2 Onset and sustain instances . 11

3.3 Frequency-domain feature extraction . 12

3.3.1 Spectrogram - Time/Frequency parameter setting 12

3.3.2 Dominant-octave detection . 13

3.3.3 Feature vector extraction . 17

3.4 Pitch detection . 17

3.4.1 K-Nearest Neighbor algorithm . 17

3.4.2 Semi-classification-based approach 20

3.4.3 Alternative distance measures . 20

3.4.4 Spectrum normalization . 22

3.4.5 Training database . 24

3.4.6 Testing database . 24

3.5 Note sequence detection . 25

3.5.1 Viterbi algorithm . 27

3.5.2 Stack-based tree search . 28

3.5.3 Path metric derivation . 30

4 Results and Discussion . 38

4.1 Performance evaluation . 38

4.1.1 Conventional KNN algorithm . 38

4.1.2 Two step algorithm (semi-KNN plus sequence tracking) 41

v

4.2 Computational complexity . 49

4.2.1 K-Nearest Neighbor algorithm . 49

4.2.2 Note sequence tracking . 49

4.2.3 The one-step algorithm versus the two-step algorithm 51

5 Conclusion . 53

Bibliography . 55

vi

List of Tables

Table Page

3.1 Fundamental frequency range of piano octaves - the frequency components

above 4186 Hz are assigned to the 9th region. 14

3.2 Numerical values of the spectrogram parameters. The window length is ad-

justed so that the fundamental frequencies of the two lowest notes of the

dominant octave can be resolved. 17

3.3 Updated stacks in the example of stack-based tree search. 29

4.1 Note classification performance accuracy for the conventional K-Nearest Neigh-

bor algorithm over two different datasets, and with different number of neigh-

bors included in the voting procedure. Euclidean distance measure is used

in all the experiments. 39

4.2 Note classification performance accuracy for the conventional K-Nearest Neigh-

bor algorithm over two different datasets, and with different number of neigh-

bors included in the voting procedure. City block distance measure is used

in all the experiments. 40

4.3 Note classification performance accuracy for the conventional K-Nearest Neigh-

bor algorithm over two different datasets, and with different number of neigh-

bors included in the voting procedure. Correlation distance measure is used

in all the experiments. 41

4.4 Note classification performance accuracy for the validation and testing sets,

both separately and combined. The Viterbi algorithm and stack-based tree

search (with and without a naive bias term (α = 1
88)) are employed at the

note sequence tracking stage. 42

4.5 Computational complexity of the Viterbi algorithm and the stack-based tree

search in terms of average number of trellis or tree transitions (or metric

computations) per testing sample (theme). Testing samples are 22 notes

long on average. 51

vii

4.6 Computational complexity of the two-step algorithm combining distance cal-

culations in the candidate selection stage and metric calculations in the se-

quence tracking stage. 52

viii

List of Figures

Figure Page

1.1 Block-diagram of a full bottom-up AMT system. In the bottom-up approach

properties of individual notes are extracted prior to piece-related information

such as tempo, key signature, and expression marks. 3

3.1 Block diagram of two different melody transcription methods. The conven-

tional KNN algorithm is employed provided that the training database is

sufficiently large. If the database is of minimum size, a note sequence tracker

is combined with a semi-KNN-based pitch candidate selector to compensate

for the shortage of data by incorporating musicological information in the

transcription process. 10

3.2 ADSR Model for piano sound signal. 12

3.3 Spectrogram divided into frequency range of piano octaves. The frequency

axis is logarithmically scaled. 16

3.4 The 4-Nearest Neighbor classifier labels a query sample according to the

majority vote among its four nearest neighbors in the training database.

In this example, three out of four nearest neighbors have positive labels,

therefore, Sq is classified as positive. 19

3.5 The 1-Nearest Neighbor classifier assigns to a query sample the label of its

nearest neighbor among training samples. In this example, the nearest neigh-

bor to the query sample has a negative label, therefore, Sq is classified as

negative. 19

3.6 Illustration of the unit circle in 1-norm (city block distance measure). . . . 21

3.7 Illustration of the unit circle in 2-norm (Euclidean distance measure). . . . 21

3.8 Recorded piano tone A4 (with fundamental frequency equal to 440 Hz) in

time domain. 25

3.9 Training feature vector from pitch class 69 (normalized to the maximum value). 25

3.10 Spectrum of the note D2 (MIDI number 18), F0 =73.4 Hz. 26

3.11 Spectrum of the note D3 (MIDI number 30), F0 =146.8 Hz. 26

ix

3.12 (1) Trellis structure for a state sequence of length four, and two states at

each time step. sk̃l denotes the k̃th state at time step l, and the numbers

next to arrows are transition lengths. (2) Output of the Viterbi algorithm -

the sequence of states with minimum length. 28

3.13 Progress of stack-based tree search in a simple case. 29

3.14 Deviation of the observed spectrum from pitch candidate spectra, modeled

with Gaussian distributions. 33

3.15 Gaussian weights assigned to training feature vectors according to their dis-

tance from the observed feature vector. 34

3.16 Note transition probability distribution (bigram). The values on the x-axis

indicate the transition distance in semitones (half notes) and on the y-axis

the corresponding probabilities. For example, the probability of moving up

one half step between two consecutive notes is roughly 0.1. In our algorithm

the bigram is computed empirically from J. S. Bachs Inventions No. 1, 2,

and 3. 36

4.1 Error rate distribution over piano notes for the two-step algorithm with one

candidate (technically the 1NN algorithm with the minimum-size database

and Euclidean distance measure). 44

4.2 Error rate distribution over piano notes for the two-step algorithm with two

candidates. Note sequence tracking is carried out via the Viterbi algorithm. 44

4.3 Output of the conventional KNN algorithm for a theme of length 26 notes.

Correlation distance measure along with the large database (10 samples per

class) are employed. With K = 3, three notes are misclassified, while setting

K = 5 increases the number of misclassifications to five. 45

4.4 Output of the two-step algorithm with one and two candidates for a theme

of length 23 notes. In this example adding the second candidate corrects all

the three classification errors made using only one candidate. 46

4.5 Output of the two-step algorithm with one and two candidates for a theme

of length 23 notes. In this example adding the second candidate corrects the

majority of misclassifications (7 out of 8) but not all of them. 47

4.6 Output of the two-step algorithm with one and two candidates for a theme

of length 23 notes. Adding the second candidate degrades the performance

of the system from three misclassifications to five. 48

x

4.7 Output of the two-step algorithm for the same example as in Figure 4.6.

Adding the third candidate fixed three of five misclassifications resulting in

21 correctly classified notes out of 23. 48

xi

Abstract

AN INSTANCE-BASED CLASSIFICATION APPROACH TO AUTOMATIC TRANSCRIP-
TION OF MONOPHONIC MELODIES

Fatemeh Pishdadian, M.S.

George Mason University, 2014

Thesis Director: Dr. Jill K. Nelson

Automatic music transcription (AMT) is a relatively new application in the field of

music signal processing. The purpose of an AMT algorithm is to transform a raw acoustic

musical signal into a written version, namely a score. The most basic pieces of information

an AMT system aims to extract from a raw acoustic musical signal are the properties of

individual note events, such as the starting time (onset), duration, and pitch. Because of its

overwhelming complexity, the transcription problem has been broken down into sub-tasks,

and separate algorithms have been developed over the years to address different operations

in the overall system. Pitch detection is an important part of any transcription system, and

has been the subject of a vast volume of research over the past two decades.

Estimation of a single pitch at each time step is known as monophonic pitch detec-

tion. In this work, we present an instance-based classification approach to transcription

of monophonic melodies. Depending on the size of training database, two different pitch

classification methods are proposed. The conventional K-Nearest Neighbor algorithm is

trained on a large database of piano notes and employed for pitch detection.

A two-step algorithm, combining semi-KNN pitch candidate selection and note sequence

tracking is suggested to deal with cases in which the training database is of minimum size,

containing one sample per class. It is demonstrated that in the abundance of training

data, the KNN algorithm along with a proper choice of the distance measure and K, yields

high performance accuracy. Furthermore, while maintaining low computational complexity,

the proposed two-step algorithm is capable of compensating for the shortage of data by

incorporating prior musicological information in the transcription process.

We note that monophonic pitch detection is a mature problem compared to polyphonic

pitch detection, which is the main focus of current studies. Nevertheless, monophonic pitch

detection can still be of interest since a considerable portion of music corpora is composed

of single line melodies. One of the shortcomings of the available monophonic algorithms,

which are mostly based on signal processing techniques such as autocorrelation function

(ACF) or spectral peak picking, is that they are under-evaluated in terms of frequency

range and melodic structure.

Classification-based pitch detection algorithms have been proposed later on and partic-

ularly developed for polyphony. Despite their promising performance accuracy, the classifi-

cation methods that have been employed to solve the multi-pitch detection problem, namely

Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs), are computation-

ally too demanding to be utilized for the monophonic case which is a simpler scenario. The

work presented in this thesis was motivated by a need for monophonic transcription tech-

niques with significantly reduced training time, low run-time complexity, and the capability

to explore melodic contours.

Chapter 1: Introduction

Music transcription refers to the process of transforming a raw acoustic musical signal into

a written symbolic representation, namely a score. Such a task, if performed by a computer

rather than by a human, would naturally be called automatic music transcription. The

need for Automatic Music Transcription (AMT) systems has been increasing during the

past decade. What has primarily given rise to this need is the rapid growth of digital music

databases, implying the necessity for novel archiving and searching methods.

For designing musical search engines with efficient performance on large databases, the

same principle employed in full-text search engines has been proposed and applied in previ-

ous work. Full-text search engines work based on excerpts of text specified by a user, which

distinguishes them from searching methods based only on bibliographical information such

as title, author, etc. A musical search engine can similarly examine the available songs or

whole pieces of instrumental music in the database to find a match for a provided excerpt

of music, be it a hummed melody, tapped rhythmic pattern, or a short recording from a live

performance. Nevertheless, a raw musical excerpt, whatever the content, does not provide

the search engine with appropriate tools. Useful information for initializing a search needs

to be extracted from the input signal. In effect, a transcription method can be exploited to

retrieve required information from the input data.

Conventional music transcription (by musicians), although still superior in terms of

accuracy to currently available automatic methods, is a specialized task requiring many

hours of training. The way a human transcriber approaches the task can be regarded as

a top-down or rule-based mechanism, since the human brain tends to analyze music in

the context of prior information including form, genre, tonality, etc. On the other hand,

computer algorithms are capable of extracting low-level information, e.g. instantaneous

frequency, directly from an acoustic signal. Initializing the transcription task by low-level

1

information, a so called bottom-up mechanism, is a skill humans normally do not possess.

In addition, automatic approaches offer a considerable amount of speed and computational

power, which makes them better suited to real-time applications. If provided with struc-

tured musicological information, automatic methods can also combine the top-down and

bottom-up mechanisms in order to achieve better overall performance. Because of the

mentioned promising characteristics, the development of AMT systems has attracted much

attention in the field of music signal processing.

Musipedia (http://www.musipedia.org) and Muma [1] are examples of music search

engines working based on extracted score elements from an input musical signal. Other

applications of AMT systems include automatic instrument tutoring, where a student’s

performance is evaluated by making a comparison between the transcribed version of the

performance and the original score [2] [3], as well as musicological analysis, where the subject

of study is either artistic (expressive) deviation of a performance from the tempo, dynamics,

and articulation specified in the score, or undocumented (e.g. improvised or ethnic) music.

The block-diagram of a full bottom-up AMT system is depicted in Figure 1.1. Ideally,

the input to the system is a raw acoustic musical signal and the output a fully annotated

score. The system extracts information from the musical signal in a hierarchical manner.

In the lowest stage, the most basic information, i.e., the properties of individual notes such

as the onset, duration, and pitch are extracted. Higher level information – namely the

key, rhythm, melodic structure, etc. – forms the output of the following stage. In the

highest level, the system adds to the score the expression marks which altogether serve as

a performance guide in terms of articulation, sound level dynamics, tempo variations, etc.

Due to the nonstationarity of musical signals in general, automatic transcription has

proved to be a challenging task. To gain some perspective on the temporal dynamics of

music, consider a piece with a fairly moderate tempo, e.g. 80 bpm (beats per minute),

and 4/4 time signature. The beat reference in this simple case is a quarter note, which

according to the tempo measure lasts only 0.75 seconds. The eighth and sixteenth notes,

two subsequent note divisions, have a duration of 0.375 and 0.1875 seconds respectively.

2

http://www.musipedia.org

	
	
	
	
	

Expression	
Marks:	 	

	
Volume	
Tempo	
Style	
	 .	 .	 .	
	
	
	
	
	

Onset	 	 	 	 	 	
&	 Offset	
Detec=on	

Pitch	
Detec=on	

Key	 Signature	
Extrac=on	

Time	 Signature	
Extrac=on	

Tempo	
Es=ma=on	

Sound	 Source	
Detec=on	

Note	 Sequence	
Detec=on	

Musical
Signal Score

Figure 1.1: Block-diagram of a full bottom-up AMT system. In the bottom-up approach properties
of individual notes are extracted prior to piece-related information such as tempo, key signature,
and expression marks.

Thus, a change in the properties of the signal, for instance a shift in the pitch of an

ongoing sound or arrival of a single or group of notes, would be expected every half a second

on average. A good transcription algorithm should therefore be robust enough to make high

accuracy estimates based on limited observation.

Harmonicity, an inherent property of musical sound, is another factor rendering auto-

matic transcription challenging. What the human brain perceives as a single tone, called

single pitch in music terminology, is in fact a combination of a fundamental frequency (f0)

and its related harmonics or overtones (2f0, 3f0, ...). The fundamental frequency of a typ-

ical musical sound is most often its strongest component, in other words, the power content

of the signal is mainly concentrated around the fundamental frequency. Making this general

assumption, magnitude thresholding could be suggested as the most intuitive method for

(single) pitch estimation. However, noise or acoustical properties of an instrument might

attenuate the first harmonic more than higher harmonics, resulting in selection of incorrect

peaks in the thresholding procedure. Power spectra of tones in the lowest register of the

3

piano are examples of such a case. Octave error, where the second harmonic (2f0) is re-

turned as the fundamental frequency, is the most common pitch detection error caused by

weakened first harmonic.

Pitch detection can also be challenging because of overlapping harmonics of notes in

different registers. Assuming the well-known twelve-tone system, frequencies of the second

and third harmonics of a note in a given octave are equal to the fundamental frequencies

of the first and eighth notes in the next octave. For instance, note C3 has a fundamental

frequency of around 130.8 Hz, and its second and third harmonic frequencies are around

261.6 Hz and 392 Hz, which happen to be the fundamental frequencies of notes C4 and G4

respectively. In an even more complicated scenario, multiple notes could be played at the

same time (polyphony). Two phenomena might occur in the signal spectrum: magnitudes

of perfectly overlapping harmonics would sum giving rise to a distinct stronger harmonic,

or intermodulation between harmonics at slightly deviated frequencies would generate a

spectral component with a wider lobe, and thus, lower frequency resolution. In either case,

detection of single pitches given the superimposed spectra is a nontrivial task.

Time-domain characteristics of a musical signal are yet another factor to be taken into

account in the transcription process. For instance, based upon the sound producing mech-

anism, the shape of the time-domain envelope and its power content at the start-time of

a note, known as onset, differ from one instrument to another. The sound produced by

hammered string (piano) or plucked string (guitar) instruments features an impulsive on-

set, while the onset of notes generated by bowed string (violin) or wind (flute) instruments

displays a smoother behavior. Naturally, a transcription algorithm must be capable of

detecting onsets of notes played by either group of instruments, individually and combined.

Because of above mentioned characteristics of musical data, a purely bottom-up tran-

scription method, which solely relies on acoustical information would be likely to yield

erroneous results. Besides, such an approach treats music from different epochs, forms, and

genres exactly the same and merely at the physical level. As mentioned earlier, the per-

formance of an AMT system could be improved by taking advantage of prior information

4

about the type of music under study, which is analogous to the approach taken by a human

transcriber. A large portion of music corpora (almost the entire collection of western music

dated prior to the 20th century) is composed based on well-established musicological rules.

These rules can be incorporated in the transcription procedure in the form of probabilistic

models for melodic and harmonic structures.

Although all transcription subtasks depicted in Figure 1.1 are equally important, because

of the complexity of the problem, in this work we mainly focus on pitch detection and note

sequence tracking stages. Moreover, we limit our database to monophonic melody lines

played by piano. A modern pianoforte covers fundamental frequency range of 27.5 Hz -

4186 Hz, or equivalently 88 note pitches in seven full and two incomplete octaves. Since

this is a broad frequency (pitch) range compared to that of most musical instruments, we

anticipate that a pitch-detection algorithm developed for piano could be generalized to other

instruments with slight modification.

The thesis is organized as follows: A review of the existing monophonic transcription

algorithms is presented in Chapter 2. In Chapter 3, we present our approach to transcription

of monophonic melody lines and describe each part of our algorithm in detail. Experimental

results are provided and discussed in Chapter 4. The work is concluded and some of the

open questions are laid out in Chapter 5.

5

Chapter 2: Background and Prior Work

Monophonic transcription is a relatively mature problem within music signal processing

and has been studied by the research community for nearly four decades. Although the

current research is primarily focused on the polyphonic transcription problem, monophonic

transcription is still of interest. As a matter of fact, single melody lines form a portion of

music corpora which is by no means negligible. Single voice chants and ethnic instrumental

performances are two examples of monophonic melodies. Moreover, current online query by

humming systems initiate their search based on a short recording of a hummed single line

melody [4].

One of the earliest monophonic transcription methods, proposed by Piszczalski and

Galler [5], tracks note pitches through amplitude thresholding in the frequency domain.

Such an approach yields meaningful results as long as the fundamental frequency remains

the strongest component of the musical sound. For this reason, the method was restrictively

tested on the sound produced by recorder and symphonic flute.

Conventional single pitch tracking algorithms were originally developed for speech pro-

cessing purposes, e.g. for speaker identification and voice classification [6]. These early

methods can be categorized according to their analysis domain [7]. Time-domain pitch

tracking approaches include the use of Zero-crossing rate (ZCR), autocorrelation function

(ACF) [8] [9] [10], the YIN algorithm [11] (a modified time-domain autocorrelation method),

average magnitude distance function (ADMF), cross-correlation function (CCF), etc., for

estimating the fundamental frequency, given the time envelope of an acoustic signal. Some

of the frequency-domain methods include cepstrum analysis, spectrum autocorrelation, har-

monic matching [12], and cross-correlation with the ideal timbral pattern (matched filter-

based approach) [13].

6

One of the primary shortcomings of the existing work on monophonic transcription,

which motivates the revision of the problem, is that most of the algorithms are insufficiently

evaluated. They are tested either over the sequential order of notes within a scale [14] [13]

[15] or on a very limited range of frequencies [16]. Scales and narrow frequency ranges are

hardly representative of actual melodic structures, and hence more sophisticated structures

must be considered for meaningful algorithm evaluation.

In [17] pitch tracking methods are divided into two groups called spectral place models

and spectral interval models. Spectral place models attempt to estimate the fundamental

frequency from the location of harmonics, whereas spectral interval models take the interval

between spectral peaks into account in order to find the pitch. All of the aforementioned

methods fall into a broader category, which is usually referred to as signal processing-based

pitch tracking (as opposed to classification-based pitch tracking). The interested reader

may refer to [18] and [19] for a rather detailed summary of signal processing-based pitch

detection methods.

Classification-based pitch detection methods have been proposed later than signal proce-

ssing-based methods and to our knowledge never applied to single voice melodies. These

approaches, mainly proposed for polyphonic music, have demonstrated promising results.

One example is the partial (harmonic) tracking technique based on the combination of adap-

tive oscillators and artificial neural networks (ANNs) proposed by Marolt in [20]. Adaptive

oscillators are systems with frequency and phase as internal parameters. Given a periodic

signal as the input, the oscillator can adjust its phase and frequency to match that of the

signal. Thus, a network of oscillators can be used to detect the partials contained in a

musical signal. In [20], 76 neural networks are trained on piano tones A1 to C8 (all the

keys except the lowest octave). The input to each NN is a collection of partials detected

by the network of oscillators, and the output a single value. If the output value passes a

certain threshold, it indicates the presence of the target note.

Another example of classification-based pitch detection methods is the use of Support

Vector Machines (SVMs) for modeling piano tones suggested by Poliner and Ellis in [21] and

7

[22]. SVM is a supervised binary classification algorithm that represents training samples

as points in a high-dimensional feature space. The name one-versus-all (OVA) has also been

used to indicate the binary classification procedure, that is, deciding whether or not a new

sample belongs to a certain training class. In particular, hyperplanes separating different

classes are found in an optimization scenario such that the gap between training classes is

maximized. Query samples are mapped into the same space and classified depending on

their location with respect to the hyperplane (class 1 if it lies on one side, and −1 if on the

other side) [23]. In [22], Poliner et al. trained 87 OVA support vector machines to detect

each piano tone in a short piece of polyphonic piano music.

It should, however, be noted that polyphonic pitch detection is a more complicated

problem than monophonic pitch detection. In order to address the challenges of the multi-

pitch estimation task, therefore, classification methods with a high level of complexity,

such as the two examples mentioned earlier, have been proposed in the literature. Even

though the performance of the selected pitch classifiers has proven to be satisfactory in the

polyphonic scenario, they require a long and computationally demanding training stage.

Consequently, solving the monophonic transcription problem via these complex methods

would be computationally inefficient.

The motivation for this work is to develop a classification-based monophonic transcrip-

tion technique with significantly reduced training time, low run-time complexity, and the

capability to explore melodic contours. The pitch detection in our approach is performed

via the K-Nearest Neighbor (KNN) algorithm trained on piano tones. K-Nearest Neighbor

is a low complexity method with a very simple training stage. To our knowledge, KNN has

not been applied to pitch detection in the literature. Our experiments show that, when

provided with sufficient training data, KNN can yield high performance accuracy. In the

case of a very small training set, KNN can be combined with a sequential detection step

to improve pitch sequence transcription. The combination of two steps still imposes a low

computational burden compared to the aforementioned classification-based methods, which

8

are quite popular in polyphonic transcription. In the design of our sequence tracking algo-

rithm, we have been inspired by the probabilistic approach taken in [24], which employs an

empirical note transition probability distribution for note sequence estimation.

9

Chapter 3: Monophonic Transcription Algorithm

3.1 Algorithm overview

Audio Signal

Melody line
(Note sequence)

Melody line
(Note sequence)

Dominant Octave
Detection

Feature Vector
Extraction

KNN Pitch Classifier
(Large Training Set)

Pitch Candidate Selection
(Minimum-size Training Set)

Sequence
 Tracking

Figure 3.1: Block diagram of two different melody transcription methods. The conventional KNN
algorithm is employed provided that the training database is sufficiently large. If the database
is of minimum size, a note sequence tracker is combined with a semi-KNN-based pitch candidate
selector to compensate for the shortage of data by incorporating musicological information in the
transcription process.

A block diagram of the two proposed transcription algorithms is provided in Figure 3.1.

Both methods share a feature extraction stage. In the feature extraction stage, the dominant

octave, where the majority of the notes in a melody line are played, is determined. Moreover,

frequency-domain features of note events are extracted from the input audio signal according

to time-domain labels (see Section 3.2). If a sufficiently large training database is available,

the conventional KNN algorithm (upper path) utilizes the extracted feature vectors to

identify the target pitch class for each note event. In the case of a minimum size database

containing only one sample from each class, the transcription is performed via a two-step

algorithm in order to improve the transcription accuracy. In the first sub-block of the lower

path, a semi-KNN approach is employed to identify pitch candidates for a given note event.

10

In the second sub-block, the sequential relationship between the pitch candidates is explored

and the most likely note sequence or melody line is returned as the system output. Different

parts of the system are described in more detail in the following sections of this chapter.

3.2 Time-domain feature extraction

3.2.1 Piano sound signal in time domain

The time-domain envelope of a piano note event can be divided into four distinct sections:

attack, decay, sustain, and release (ADSR model [25] illustrated in Figure 3.2). A note event

physically starts when the hammer hits the string and ends when the string stops vibrating.

During the first few milliseconds of a piano tone, a sudden burst of energy that contains

a broad range of frequencies is observed. This section, which shows an almost impulsive

behavior, is called the attack part and is modeled as a rising exponential function with a

very small time constant. The decay part, during which the signal level drops rapidly, could

also be modeled by an exponential function, though with a larger time constant compared

to the attack part. The decay section is followed by the sustain section, lasting tens of

milliseconds, during which the signal maintains a stable energy level as well as a fairly

stable pitch. Our definition of a stable pitch is a combination of the note fundamental

frequency and its related harmonics which are the prominent components in the signal

spectrum for a sufficiently long period. In the release part, all frequency components fade

out and the signal level gradually falls to zero.

3.2.2 Onset and sustain instances

As mentioned in the previous section, the staring time of a piano note event is best char-

acterized by the impulsive behavior of the envelope during the attack time and is more

specifically called a hard onset (as opposed to the term soft onset used in the case of instru-

ments like violin, where the arrival of a new note takes place more gently and such outburst

of energy is not observed).

11

Figure 3.2: ADSR Model for piano sound signal.

The sustain part of a note is another important time-domain feature to be extracted.

Since the note pitch is more stable during the sustain part, it is preferred over other parts to

be employed in the pitch detection stage. We note however that automatic detection of onset

and sustain instances are outside the scope of this work. In order to prevent the erroneous

results of any sustain detection method from having an impact on the performance of our

algorithm, we label the sustain instances manually.

3.3 Frequency-domain feature extraction

3.3.1 Spectrogram - Time/Frequency parameter setting

The spectrogram provides a powerful tool for joint time-frequency analysis of an audio

signal. It is generated by windowing the time-domain signal and computing the Short-

Time Fourier Transform (STFT) at each time frame. The window type, window length and

hop size between successive frames are among adjustable parameters controlling temporal

and spectral features such as time resolution, frequency resolution and spectral leakage.

In our system, a Hamming window is employed, whose length and hop size is determined

based on the output of the dominant octave detection stage. A detailed explanation of the

12

dominant octave detection method will be presented in Section 3.3.2.

Let us assume that the I × J matrix P is the spectrogram of a given musical signal,

x[n] (n = 0, ..., N − 1). Then the column vector number j in P contains the power spectral

density of the jth windowed segment of x[n], denoted by xwj [n],

xwj [n] = x[n]w[n− r(j − 1)] j = 1, ..., J, (3.1)

where r denotes the hop size. That is,

Pj =
2

fs||w[n]||22
|Xwj [k]|2 j = 1, ..., J, (3.2)

where ||.||2 indicates the 2-norm of a vector, Xwj [k] is the κ-point discrete Fourier transform

of xwj [n], and κ is taken to be sufficiently large to prevent time-domain aliasing. The power

spectral density is normalized inversely by the window norm to yield a constant level of

power per frequency bin independent of the window length [26].

3.3.2 Dominant-octave detection

Fundamental frequencies of musical notes in western music (equal temperament) are dis-

tributed on a logarithmic scale. That is, lower fundamental frequencies are more closely

spaced than higher ones. Therefore, higher frequency resolution is required for resolving

two adjacent notes in lower registers. In the frequency range of piano notes, the smallest

and largest spacing between note fundamental frequencies are around 1.64 Hz (between A0

and A#
0), and 234.94 Hz (between B7 and C8) respectively.

The frequency resolution of the spectrogram is basically determined by the main lobe

width of the window. Although, the half main-lobe width could still be a meaningful metric

for measuring the frequency resolution. The approximate main-lobe width of the Hamming

window used in our algorithm can be calculated as 8π
M , where M + 1 is the window length

in number of samples. The window length that results in a frequency resolution equal or

13

higher than 1.64 Hz would be at least 53780 samples with sampling rate of 44.1 kHz, or

equivalently 1.2195 seconds. Given the non stationary nature of the musical signal, this

window is too long to capture the time-domain characteristics efficiently.

In order to deal with the inherent trade-off between time and frequency resolutions, we

suggest an adaptive resolution setup (multi-resolution approach) based on the dominant

frequency range of the notes in a given piece of music. In this method, first we obtain a

preliminary version of the spectrogram with high time resolution (window length of around

20 ms and 50% overlap between successive frames) for the given piece. The spectrogram

is divided into 9 regions, each roughly corresponding to the fundamental frequency range

of one piano octave (7 full and two incomplete octaves, see Table. 3.1). At each frame, the

octave frequency band containing the highest amount of power is found and recorded as

the short-term dominant octave. The dominant octave for the whole length of a piece is

determined based on the majority vote among all the short-term dominant octaves.

Table 3.1: Fundamental frequency range of piano octaves - the frequency components above 4186

Hz are assigned to the 9th region.

Octave Number Fundamental Frequency Range (Hz)

0 27.5 - 30.9

1 32.7 - 61.7

2 65.4 - 123.5

3 130.8 - 246.9

4 261.6 - 493.9

5 523.3 - 987.8

6 1046.5 - 1975.5

7 2093 - 3951.1

8 > 4186

14

Let em denote the range of elements in the jth column of the spectrogram given by (3.2),

whose corresponding frequency components lie within the frequency range of the mth piano

octave (m = 0, ..., 8). The spectral power content in the frequency range of the mth octave

in the jth window frame can thus be obtained from

Pmj =
∑
i∈em

Pij j = 1, ..., J m = 0, ..., 8. (3.3)

The following expressions describe the computation of the dominant octave

m∗j = argmax
m

Pmj , (3.4)

M∗ = MV
j
{m∗j}, (3.5)

where m∗j and M∗ indicate the short-term dominant octave and the total dominant octave

respectively, and MV
j
{.} (j = 1, ..., J) is the majority vote operation over all the spectrogram

columns.

With this adaptive approach, the time resolution is only compromised when it is abso-

lutely necessary to have a certain level of frequency resolution to resolve the fundamental

frequency of the majority of notes in a piece of music. Furthermore, better results are

expected when we are dealing with pieces whose notes mostly reside in lower octaves. Fig-

ure 3.3 depicts the octave-wise segmented spectrogram for an excerpt of music of around

11 seconds.

It should be noted that the dominant octave cannot be estimated by merely considering

the frequency-domain representation of the whole piece. As explained in Section 3.2.1, the

total power of a piano note event is not evenly distributed over time. For instance, the

attack part is distinguished by its impulsive behavior carrying a large amount of energy in

a very short time, while the sustain part maintains a moderate energy level though for a

15

longer time.

On the other hand, the power content of the attack part is spread over a broad range

of frequency components as opposed to the sustain part whose power content tends to be

mainly concentrated around the fundamental frequency and therefore within the frequency

range of a particular octave. Since the power content of the sustain part provides more

useful information for estimating the dominant octave, it must be given more weight in

our computations. The frequency-domain representation of the signal combines the power

content of the whole sound signal. Thus, it is impossible to determine to which part of the

envelope the power content belongs. By employing a high time-resolution spectrogram not

only the power content of the envelope parts can be easily separated, but also weighting

becomes a natural part of the process. That is, the sustain section which is longer than

attack section falls within the range of many more time frames and hence its vote for

the dominant octave is counted many more times. Numerical details of the spectrogram

parameter setting in a multi-resolution scenario are presented in Table 3.2.

Figure 3.3: Spectrogram divided into frequency range of piano octaves. The frequency axis is
logarithmically scaled.

16

Table 3.2: Numerical values of the spectrogram parameters. The window length is adjusted so that
the fundamental frequencies of the two lowest notes of the dominant octave can be resolved.

Dominant Oct. Oct.0 Oct.1 Oct.2 Oct.3 Oct.4 Oct.5 Oct.6 Oct.7 Oct.8

Win. Length (s) 1.25 1.16 0.56 0.28 0.16 0.14 0.07 0.05 0.02

Hop Size (ms) 29.39 27.21 13.06 6.53 3.81 3.26 1.63 1.09 0.54

∆F (Hz) 1.59 1.72 3.59 7.18 12.3 14.36 28.71 43.07 86.13

3.3.3 Feature vector extraction

While non-stationary in general, the musical signal could be regarded as stationary if only a

very short segment of it is under study. Columns of the spectrogram are in effect frequency-

domain representations (periodograms) of such short segments. In particular, columns

extracted from the sustain part of a note carry significant information about main spectral

components required for pitch detection. In our system, these columns serve as frequency-

domain feature vectors forming the pitch classification dataset. In order to reduce the

spectrum estimation variance, the Welch method [27] (windowing the signal and averaging

the periodograms) is applied by simply extracting several consecutive columns from the

sustain part of each note event and taking their average. The number of extracted columns

depends on the duration of a note, as well as the time resolution. It has to be large enough

to reasonably reduce the spectrum estimation variance, but not too large to include columns

from any part of the note other than the sustain part.

3.4 Pitch detection

3.4.1 K-Nearest Neighbor algorithm

K-Nearest Neighbor (KNN) is a well known instance-based classification algorithm whose

training stage consists only of collecting training samples [28]. In this regard, the algorithm

17

offers a high level of simplicity compared to other adopted pitch classification methods such

as using Support Vector Machines (SVMs) to model the piano tones.

The KNN algorithm works based on the assumption that each training or testing sample

corresponds to a point in the n-dimensional Euclidean space, Rn. Thus, an arbitrary sample

could be described by a feature vector of length n, i.e,

S = [S(1), S(2), ..., S(n)]T , (3.6)

with S and S(n) denoting a column vector and the value of its nth attribute respectively.

The Euclidean distance between two samples, S(i) and S(j), is then defined as

dEuc(S
(i), S(j)) ≡

√√√√ n∑
h=1

(S(i)(h)− S(j)(h))2, (3.7)

which can alternatively be stated in terms of the 2-norm of the difference between feature

vectors:

dEuc(S
(i), S(j)) ≡ ||S(i) − S(j)||2. (3.8)

Using (3.7) or (3.8), the algorithm computes the distance of a given query (testing)

sample from all or a subset of training instances. The algorithm which takes all the training

instances into account is called the global method; as opposed to the local method, where

only the nearest training instances are considered. In the following step, the query (testing)

sample is assigned to the most common training label among K nearest neighboring points.

For instance, the 4-Nearest Neighbor classifier shown in Figure 3.4 classifies the testing

sample as positive, since three out of four nearest neighboring points have positive labels.

It should be clear that when K = 1, the testing sample will be labeled with the same target

value as its closest neighbor. This case is illustrated in Figure 3.5.

18

Sq

Figure 3.4: The 4-Nearest Neighbor classifier labels a query sample according to the majority vote
among its four nearest neighbors in the training database. In this example, three out of four nearest
neighbors have positive labels, therefore, Sq is classified as positive.

Sq

Figure 3.5: The 1-Nearest Neighbor classifier assigns to a query sample the label of its nearest
neighbor among training samples. In this example, the nearest neighbor to the query sample has a
negative label, therefore, Sq is classified as negative.

19

3.4.2 Semi-classification-based approach

In the design of our two-step algorithm, we use the term K nearest neighbors in a slightly

different sense. While the core concept of prioritizing the training instances based on their

distance from the query sample remains the same as in the original algorithm, there is no

voting process involved, even in the case where K is more than one. Instead, the K closest

points to the query sample are stored in a list and are treated as K candidate classes. To

distinguish between these two concepts, hereafter we denote the number of candidates by

K̃ instead of K.

The main reason for this modification is that sometimes only one training sample from

each class is present in the database, hence with the conventional method we would have to

classify the testing sample under the closest label and reject all the other labels. In cases

where there is some degree of overlap between attributes of different training instances,

this method could give rise to significant classification error. In such cases, the distance

between instances, while still being a meaningful classification criterion, is no longer the

only factor that differentiates between classes. The classification error can be reduced by

considering more than one neighboring point, not as target classes, but as a ranked list of

class candidates. Indeed, the generated list has to undergo further processing if the target

class is to be determined. This post-processing stage forms the subject of Section 3.5.

3.4.3 Alternative distance measures

While the most common, Euclidean (2-norm-based) distance is not the only distance mea-

sure that has been used in the K-Nearest Neighbor classification method. A variety of

distance measures including the city block (1-norm-based) distance and the correlation dis-

tance have also been suggested in the literature, based on specific properties of feature

vectors and relative spacial distribution of classes.

The city block distance is defined as the 1-norm of the difference between two feature

vectors:

dCB(S(i), S(j)) ≡ ||S(i) − S(j)||1, (3.9)

20

which can be computed from

dCB(S(i), S(j)) =

n∑
h=1

|S(i)(h)− S(j)(h)|. (3.10)

The fundamental difference between the Euclidean and city block distance measures is in

the way they partition the space. With the Euclidean distance measure, training samples

that are equidistant from a query sample are located on a circle centered around the query

sample, whereas with the city block distance measure, instead of a circle, equidistant train-

ing samples are located on a square diamond. Unit circles associated with the two distance

measures in the two-dimensional Euclidean space are illustrated in Figures 3.6 and 3.7.

Figure 3.6: Illustration of the unit circle in 1-norm
(city block distance measure).

Figure 3.7: Illustration of the unit circle in 2-norm
(Euclidean distance measure).

Since the feature vectors in our problem are basically composed of spectral components

of musical signals, the use of correlation distance offers quite intuitive interpretation as well

as interesting results. The correlation distance between two samples is defined as

dCorr(S
(i), S(j)) ≡ 1− 〈S(i), S(j)〉, (3.11)

21

where 〈.〉 indicates the inner product operator between two feature vectors

〈S(i), S(j)〉 = (S(i))TS(j). (3.12)

It is important to note that feature vectors in (3.11) are normalized such that their inner

product takes on a value in the interval [0, 1]. Consequently, the farthest distance value

between two samples would be equal to one, which corresponds to the case where the

feature vectors are orthogonal.

The correlation distance measure has a three-fold interpretation when applied to spectral

feature vectors: (1) Geometric point of view - interprets the distance as the length of

orthogonal projection of the testing feature vector on the training feature vector. The

best match (zero distance) happens when the vectors are in the same direction, that is

when the angle between them is equal to zero. (2) Statistical point of view - interprets the

distance as the correlation between random vectors at zero lag. The closer the values of

the corresponding attributes, the more alike the spectral patterns, and hence the lower the

distance value. (3) Signal processing point of view - interprets the distance as the output

of matched filters. Each of the training feature vectors is considered as a matched filter

which passes the frequency components related to a certain pitch and blocks the rest of

the components. If the spectral peaks in a testing feature vector are located at the same

frequencies as those of a training feature vector, the matched filter outputs a value close

to one, pointing to a high level of similarity between the received signal and the replica, or

equivalently a short distance between samples.

3.4.4 Spectrum normalization

Training and testing samples are usually recorded with different sound levels, which results

in scaling issues in distance computation. To solve this problem, we use some form of feature

vector normalization prior to computation of each distance measure.

In calculation of the Euclidean and city block distance measures given by (3.7) and

22

(3.10) respectively, minimum distance value is anticipated when spectral peaks at the same

frequencies cancel each other at the subtraction stage. If both training and testing feature

vectors are normalized to their maximum value, which is usually assumed to be the power

content at the fundamental frequency, then only the place of harmonics on the frequency

axis and their relative strengths contribute to the value of the distance between two samples,

and the effect of the scaling factor would be minimized. The normalized feature vectors

with Euclidean distance measure, SEucN , and city block distance measure, SCBN , are given by

SEucN =
S

||S||∞
, (3.13)

SCBN =
S

||S||∞
, (3.14)

where ||.||∞ returns the element with maximum absolute value in a vector.

As explained in Section 3.4.3, the inner product of feature vectors in (3.12) is assumed

to yield a maximum value of one. The normalization method for the correlation distance

measure can be more conveniently set up from an alternative definition of inner product

given below:

〈S(i), S(j)〉 = ||S(i)||2 ||S(j)||2 cos(θ), (3.15)

where θ indicates the angle between feature vectors. (3.15) can be rearranged as

〈 S(i)

||S(i)||2
,

S(j)

||S(j)||2
〉 = cos(θ). (3.16)

As it can be seen, when the feature vectors are normalized to their 2-norms, the value of

the inner product will be equal to the cosine of the angle between them, whose maximum

value is equal to one. Moreover, all the feature vectors contain only nonnegative attributes.

When divided by the 2-norm, a positive value, the sign of the attributes remains unchanged,

23

which guarantees the minimum value of the inner product being zero. Therefore, the nor-

malized feature vector for correlation distance measure, SCorrN , is obtained from

SCorrN =
S

||S||2
. (3.17)

3.4.5 Training database

As explained in Section 3.3.3, feature vectors used in the pitch classification stage are

essentially certain columns of the spectrogram. Our training dataset is composed of two

separate subsets, both containing recorded tones from every piano key (88 recorded tones

per piano). The first subset includes tones from only one piano (Steinway grand piano - 88

samples in total). The second subset includes tones from ten different pianos (eight Steinway

grand and two Steinway upright pianos - 880 samples in total). All of the recordings are

sampled at 44.1 kHz. Training feature vectors are generated by computing the spectrogram

of each recorded tone, extracting several columns from the sustain part of the note event and

averaging over columns. Note classes are labeled by MIDI numbers, thus the recordings from

one piano represent 88 different classes with labels ranging from 21 to 108. As an example,

the recorded piano tone and the feature vector corresponding to the pitch class 69 (A4 with

fundamental frequency equal to 440 Hz) are depicted in Figures 3.8 and 3.9 respectively.

3.4.6 Testing database

Our testing database includes 75 monophonic themes (either right or left hand) from J. S.

Bach’s Inventions (number 1, 2, 4, and 8). The length of the recorded themes are adjusted

such that they contain 22 note events on average. Each note event is represented by a

testing feature vector produced in the same way as the training feature vectors (see Section

3.4.5).

24

Figure 3.8: Recorded piano tone A4 (with funda-
mental frequency equal to 440 Hz) in time domain.

Figure 3.9: Training feature vector from pitch
class 69 (normalized to the maximum value).

It should be kept in mind that both training and testing feature vectors contain esti-

mated spectra of musical tones. As a matter of fact, high degrees of overlap among feature

vectors’ attributes are observed due to harmonicity inherent to this group of signals. For

instance, consider two notes that are one octave apart, in which case the spectral compo-

nents of the higher note are nothing but the even spectral components of the lower one. An

illustrative example of this case can be found in Figures 3.10 and 3.11. This characteristic

of the musical data justifies the modified approach we have taken towards the original KNN

algorithm in Section 3.4.2. In short, the pitch classification task comprises two main steps:

first, calculation of the distance between a given testing feature vector and all the training

instances retrieved from the memory (global method), and second, producing a list of K̃

pitch class candidates in terms of MIDI labels.

3.5 Note sequence detection

In the pitch classification stage, pitch candidates were identified based on the assumption

that note events are independent. However, this assumption is not valid in reality. In fact,

there exists a strong correlation, governed by musicological rules, between successive notes

25

in a melodic structure. This can be regarded as another argument in favor of the modified

approach toward the KNN algorithm taken in this work. By considering more than one

pitch class at each time step (for each note event) rather than deciding upon one target

pitch class, (K̃ > 1), we provide the algorithm with the capability to explore the sequential

relationship between note pitches, as well.

Figure 3.10: Spectrum of the note D2 (MIDI num-
ber 18), F0 =73.4 Hz.

Figure 3.11: Spectrum of the note D3 (MIDI num-
ber 30), F0 =146.8 Hz.

In order to find the melody line composed of pitch candidates in a maximum likelihood

scenario, two different sequence estimation methods are considered in our algorithm. The

Viterbi algorithm and stack-based tree search are introduced in Sections 3.5.1 and 3.5.2

respectively. In Section 3.5.3, we derive a path metric, a likelihood measure that can be used

in either sequence tracking algorithms. We also propose some method-specific modifications

to the original version of the path metric to improve sequence tracking results.

26

3.5.1 Viterbi algorithm

The Viterbi algorithm (VA), first proposed in 1967 for decoding convolutional codes [29], is

a recursive method for estimating the state of a stochastic process. The underlying process

is assumed to be finite-state, first-order Markov, i.e., the state sl at discrete time l belongs

to a finite collection of K̃ states; in other words, the state space is the set {s1, s2, ..., sK̃}.

Furthermore, due to the rank of the Morkov process, the probability of being in a certain

state at time l given all the previous states depends only on the state at time l − 1,

P (sl|s1...sl−1) = P (sl|sl−1). (3.18)

The problem we are trying to solve via the Viterbi algorithm can be stated as finding

a sequence of states, s, that maximizes the a posteriori probability (likelihood measure)

P (s|y), or equivalently maximizes P (s,y) = P (s|y)P (y), where y is a series of observations

of a discrete-time, finite-state Markov process. An alternative interpretation of this proce-

dure is finding the shortest path on a trellis structure whose nodes correspond to distinct

states at given time steps. In this context, the sequence length, λ, should obviously have an

inverse relationship to the likelihood measure. It can be defined as a negative log likelihood:

λ = − ln P (s,y) = − ln P (s|y)− ln P (y) (3.19)

Figure 3.12 depicts a simple example of a trellis structure for a state sequence of length

four, with two district states at each time step, along with the output of the Viterbi al-

gorithm, i.e., the shortest path. The Viterbi algorithm is well known and commonly used

in the signal processing literature, thus we will leave out the implementation details from

this thesis and refer the interested reader to the tutorial paper by G. D. Forney [30] for a

comprehensive discussion.

27

1

1

2

1

0

1

0

1

2

1

0

0

(1)

(2)

s11
0 2 2

s12

s21

s22

s31

s32

s41

s42

s11

s12

s21

s22

s31

s32

s41

s42
Figure 3.12: (1) Trellis structure for a state sequence of length four, and two states at each time

step. sk̃l denotes the k̃th state at time step l, and the numbers next to arrows are transition lengths.

(2) Output of the Viterbi algorithm - the sequence of states with minimum length.

3.5.2 Stack-based tree search

The stack-based algorithm for tree search can be employed as an alternative to the Viterbi

algorithm and often provides complexity reduction when the trellis becomes large. This

sequential trial-and error search method, first proposed in the coding literature [31], dif-

fers from the basic tree search and the Viterbi algorithm in that instead of the whole tree

(or trellis) structure, it only navigates through the most promising paths [32]. A likeli-

hood measure (metric) based on a priori information about certain characteristics of the

sequence and observations is assigned to every tree branch. In each iteration, only the path

corresponding to the largest likelihood value is extended. Since the algorithm deals with

a subset of all possible sequences, it would be necessary to keep a list (stack) of extended

branches along with their metrics and update it iteratively. In the updated list, the most

likely branch in the preceding step is replaced by its children paths.

Let us explain the method with a simple example. The extended tree for a 3-step

sequence, starting from a single initial node and exploring only 2 states at each step, is

demonstrated in Figure. 3.13 and its corresponding stack in Table. 3.3. By si,j we denote

28

the jth state at the ith step, and mj,j′

i,i′ indicates the metric assigned to the transition from

the situation (i, j), (jth state at the ith step), to (i′, j′).

s0

s11

s12

s21

s22

s31

s32

m01
01

m01
02 m12

21

m12
22

m23
11

m23
12

Figure 3.13: Progress of stack-based tree search in a simple case.

Table 3.3: Updated stacks in the example of stack-based tree search.

Stack No.1 Stack No.2 Stack No.3

s0s11 m01
01 s0s11 m01

01 s0s11 m01
01

s0s12 m02
01 s0s12s21 m21

12 s0s12s21s31 m11
23

s0s12s22 m22
12 s0s12s21s32 m12

23

s0s12s22 m22
12

In the first step, two paths are extended from the single initial state, s0, to both states,

s11 and s12. These paths along with their corresponding metrics m01
01 and m02

01 are entered

in the stack number one, the first column in Table 3.3. Then a comparison is made between

the two metric entries which returns the second metric as the larger value. Therefore, in

the second step we will extend the tree from the node s12. In the updated stack the second

29

entry is replaced by the two grown paths composed of three nodes and their associated

metric values. The comparison is now made between three metric values which returns m21
12

as the largest. Thus, in the third step, two paths are extended from s21 and the stack is

updated accordingly. One can see that with the stack-based approach in this simple case,

instead of eight possible sequences we ended up exploring only four (half of the full tree

size). As the sequence becomes longer and the number of states increases, the tree grows

exponentially in size, so the dimensionality reduction offered by this approach seems even

more crucial.

In our model, there are K̃ states at each step where each state is in fact a pitch candidate

obtained from the classification stage. The length of the sequence, or the number of steps, is

equal to the number of detected onsets which would often be much longer than the example

we provided here. Considering a total of L steps in a given sequence, the number of all

possible sequences, N , can be calculated from

N = K̃L, (3.20)

where all the branches are developed independently and no directional preference has been

assumed. In order to set up a stack-based search, an appropriate path metric based on

characteristics of our database must be derived.

3.5.3 Path metric derivation

The path metric expresses the likelihood of a note sequence of length L given a series of

L observations. The observations in our method are simply testing feature vectors (see

Section 3.3.3). Let S1:L and Sobs1:L denote the note sequence and observations, respectively.

The path metric should then be proportional to the a posterior probability P (S1:L|Sobs1:L),

which according to the Bayes rule can be stated as the product of a likelihood measure and

30

a priori information about the note sequence:

P (S1:L|Sobs1:L) =
P (Sobs1:L|S1:L)P (S1:L)

P (Sobs1:L)
. (3.21)

We assume P (Sobs1:L) to be a uniform distribution over all possible observations. There-

fore, it can be treated as a scaling factor and disregarded in computations. The resulting

path metric takes the form of

γ(S1:L) = P (Sobs1:L|S1:L)P (S1:L). (3.22)

We model the first component in (3.22), P (Sobs1:L|S1:L), based on spectral information, and

the second component, P (S1:L), using note transition probabilities obtained from musical

data. Details of path metric derivation are presented in Sections 3.5.3 a-c.

(a) Spectral information (Gaussian weights)

The first metric component is derived in a maximum likelihood scenario. In this setup,

the observed data consists basically of the spectral information in a testing feature

vector at time l. It is referred to as the observed spectrum and denoted by Sobsl in

this context. If noise is absent in an acoustic environment, only one of the 88 available

spectral vectors in the database is expected to match the observation. However, a

completely noise-free recorded piece of music does not exist, and a certain amount of

spectrum mismatch is always expected. Let us model the deviation of the observed

spectrum from the ith pitch candidate spectrum as

Sobsl = S(i) + η i = 1, 2, ..., 88, (3.23)

31

where S(i) and η are n×1 vectors containing the ith pitch candidate spectrum, and zero-

mean uncorrelated Gaussian noise values respectively. The noise probability density

function is given by

fη(η) =
1

(2πσ2)n/2
e−

ηT η

2σ2 . (3.24)

With this noise model, the observed feature vector, Sobsl , is assumed to be drawn from

a Gaussian distribution with mean equal to the training feature vector, S(i), and the

same variance as in (3.24),

fSobsl
(Sobsl) =

1

(2πσ2)n/2
e−

(Sobsl −S(i))T (Sobsl −S(i))
2σ2 . (3.25)

It should be noted that the choice of Gaussian distribution for modeling spectral devi-

ation is made for convenience. Additionally, multivariate Gaussian distribution has a

direct relationship with the Euclidean distance which facilitates its use. The use of dis-

tributions matching the properties of the city block and correlation distance measures

requires further study. The maximum likelihood scenario can now be described as

SML = argmax
i

L(S(i)|Sobsl), (3.26)

where SML is the training feature vector maximizing the likelihood function L defined

below

L(S(i)|Sobsl) = fSobsl |S(i)(Sobsl |S(i)). (3.27)

As a simple case, three scalar Gaussian distributions with means S(1), S(2), and S(3)

along with the observation, Sobs, are shown in Figure. 3.14 . Obviously, the distribution

that results in the maximum likelihood value given the observation is the second one,

in other words SML = S(2).

32

It should be noted that although we set up the likelihood problem for all the available

feature vectors in the database (S(i) for i = 1, ..., 88), it will technically apply to only

the K̃ pitch candidates returned by the semi-KNN classifier. This can be considered as

somewhat pruning the tree and keeping the most promising states at each time step.

Moreover, our primary purpose for this setup, as discussed before, would be to derive

some metric that distinguishes more likely paths from less likely. For this reason, instead

of selecting the maximizing distribution, we assign to each state or pitch candidate,

S(i) (i = 1, ..., K̃), the value of the ith distribution for the given observation which can

be calculated from (3.25). In the simple case displayed in Figure. 3.14, the red numbers

indicate the states (pitch candidates), and the assigned metrics are determined by the

distribution values shown by the red dots. Then S(2) and S(3) have the largest and

the smallest likelihood measures respectively while S(1) is assigned to a metric between

these two values.

Figure 3.14: Deviation of the observed spectrum from pitch candidate spectra, modeled with Gaus-
sian distributions.

33

Figure 3.15: Gaussian weights assigned to training feature vectors according to their distance from
the observed feature vector.

We could alternatively derive this metric as a refinement to the KNN algorithm. The

relationship between (3.8) and (3.25) suggests that the multivariate Gaussian distribu-

tion in (3.25) can be mapped into a scalar distribution whose random variable is the

Euclidean distance between n-dimensional observed and pitch candidate feature vec-

tors. An equivalent statement is that the candidate feature vectors are given Gaussian

weights according to their distance from the observation. Since the Euclidean distance

is always a positive value, this new interpretation can be formulated as a half-normal

distribution:

fD(d(i)) =

√
2√
πσ2d

e
− (d(i))2

2σ2
d , (3.28)

where

d(i) =
√

(Sobs − S(i))T (Sobs − S(i)) = ||Sobs − S(i)||2. (3.29)

Figure 3.15 illustrates the half-normal distribution associated with the simple example

provided in Figure 3.14. The Gaussian weights therefore can be directly obtained from

34

(3.28) in the classification stage, where the distance values are in any case computed

for the purpose of identifying the K̃ nearest neighbors to the observed feature vector.

(b) Note transition probability distribution

In the previous section we developed a metric which assigns Gaussian weights to the

K̃ pitch candidates based on the observed spectral information. There is yet another

important parameter that must be accounted for in the context of music transcription.

As a matter of fact, any melody line can be modeled as a realization of an underlying

probability distribution of different note transitions. The probability of a transition

from one note to another depends mainly on the distance between the two notes, which

in the western music is measured in terms of semitones.

The probability distribution of note transitions has been termed bigram in the transcrip-

tion literature [24]. Prior to its use in music transcription, the term bigram appeared

in the context of pattern recognition for text applications [33]. The bigram is typically

calculated empirically from a chosen dataset of music samples and provided as a priori

information. In our case, it is calculated from J. S. Bach’s first three Inventions (see

Figure 3.16).

(c) Total metric formulation

The total path metric for a note sequence S1:L of length L is computed according to

γ(S1:L) = P (Sobs1 |S1)
L∏
l=2

P (Sobsl |Sl)P (Sl|Sl−1). (3.30)

The derived path metric can be employed in both of the note sequence tracking methods

explained in Section 3.5. The sequence of pitch classes S∗1:L that maximizes γ(S1:L), de-

termined via either the Viterbi algorithm or the stack-based tree search, is the resulting

35

estimate of the note sequence, or melody line.

Unlike the Viterbi algorithm, the stack algorithm does not have a fixed convergence

rate. The reason is because when some of the tree branches grow long, their associated

path metric values grow very small compared to those of shorter branches. In particular,

the algorithm tends to jump back to shorter paths more frequently in the case of very

long note sequences, which slows down the convergence rate dramatically.

Figure 3.16: Note transition probability distribution (bigram). The values on the x-axis indicate the
transition distance in semitones (half notes) and on the y-axis the corresponding probabilities. For
example, the probability of moving up one half step between two consecutive notes is roughly 0.1.
In our algorithm the bigram is computed empirically from J. S. Bachs Inventions No. 1, 2, and 3.

In order to deal with the convergence issue, the metric values need to be kept in a close

range. Thus, we introduce a bias term to the total formulation of the path metric.

In general, the bias term attempts to predict the probability of future transitions in

each particular direction and combine this information at each step with the current

metric values in the stack. In this work, we employ the simplest form of a bias term,

36

also called a naive bias, which assumes that all of the states (pitch classes) are equally

likely to occur at each step in the future.

Let α denote the probability of occurrence of any of the 88 pitch classes (α = 1
88). The

path metric value at step L1 (L1 ≤ L), including the constant bias term can then be

stated as

γ(S1:L1) = P (Sobs1 |S1)[
L1∏
l=2

P (Sobsl |Sl)P (Sl|Sl−1)]αL−L1 . (3.31)

37

Chapter 4: Results and Discussion

We evaluate the performance of our proposed method with several system configurations

in Section 4.1. The performance accuracies of pitch detection via the conventional KNN

algorithm, for different choices of the distance measures and the number of neighboring

points, are presented in Section 4.1.1. In Section 4.1.2, we report the performance accuracy

of the two step algorithm, composed of a semi-KNN-based pitch candidate classifier and a

note sequence tracker. The results are reported separately for the Viterbi and the stack-

based tree search algorithms. Finally, we define computational complexity measures for

the pitch classification and note sequence tracking algorithms. Computational complexity

results are presented, and a comparison between the complexity of proposed algorithms is

made in Section 4.2.

4.1 Performance evaluation

4.1.1 Conventional KNN algorithm

The conventionall KNN algorithm, which determines the target pitch class for each testing

feature vector based on majority vote, is trained over both subsets of the training database

(see Section 3.4.5). The first subsets (minimum size) contains only one training sample from

each pitch class (88 samples in total), thus with the conventional approach each testing

sample is classified according to the label of its closest neighbor in the training dataset

(1NN). The second subset contains ten training samples per pitch class (880 samples in

total). In this case, more than one neighboring point can be included in the classification

process.

The choice of K is somewhat critical to the performance of the KNN algorithm. A small

value of K makes the classification results too sensitive to noisy training samples. On the

38

other hand, a too large value of K undermines the principle based on which the algorithm

performs. That is, it blurs the boundary between classes defined in terms of distance. In

order to reduce the likelihood of ties in the voting procedure, it would be preferable to

consider odd numbers of neighboring points. We set up the algorithm with odd numbers

between 1 and 9 (1NN – 9NN). The classification results for both subsets of the training

database, and for different numbers of neighboring points included in voting are provided

in Table 4.1. We note that the results presented here are obtained using the Euclidean

distance measure.

Table 4.1: Note classification performance accuracy for the conventional K-Nearest Neighbor algo-
rithm over two different datasets, and with different number of neighbors included in the voting
procedure. Euclidean distance measure is used in all the experiments.

Training dataset Method (KNN) Performance accuracy (%)

One sample per class 1NN 75.72

Ten samples per class

1NN 87.52

3NN 88.87

5NN 84.57

7NN 85.92

9NN 84.69

It can be inferred from the table entries that a larger training database yields a higher

performance accuracy in general. This result could be easily predicted, since adding more

samples to the training database is equivalent to forming clusters of training points in

the Euclidean space, and hence, increasing the likelihood of a given query sample being

surrounded by more neighboring points from the target class. Naturally, if the data is not

too noisy and the classes are well separated, the vote of the correct target class is more

likely to win by including more samples.

39

In the simplest case, 1NN, the larger dataset results in a roughly 12% performance gain

over the smaller dataset. The performance accuracy improves even more (by around 1.3%),

if the majority vote is taken among the three closest neighbors. However, extending the

proximity area to include 5, 7, or 9 samples has a negative impact on the results. Such

behavior could be explained by taking the nature of our data into account. As explained

in Section 3.4.6 because of the harmoniciy of the musical sound, and hence, the overlap-

ping attributes of the feature vectors, clusters of training points would not be quite well

separated. Subsequently, the extended proximity boundary tends to includes points from

neighboring clusters, as well as neighboring points form the target cluster, which in part

gives rise to misclassification.

Table 4.2: Note classification performance accuracy for the conventional K-Nearest Neighbor algo-
rithm over two different datasets, and with different number of neighbors included in the voting
procedure. City block distance measure is used in all the experiments.

Training dataset Method (KNN) Performance accuracy (%)

One sample per class 1NN 77.504

Ten samples per class

1NN 91.45

3NN 88.07

5NN 85.18

7NN 86.04

9NN 85.67

Similar results for the city block (1-norm-based), and correlation distance measures are

presented in Tables 4.2 and 4.3. Using the correlation distance measure, the performance

accuracy shows similar behavior over increasing values of K to the case where the Euclidean

distance measure is used. For K = 1, the larger training database results in a roughly 11%

performance gain over the smaller training database. The best performance accuracy is

observed for K = 3, and the accuracy starts decreasing for K > 3. The general behavior

40

of the results with the city block distance measure, however, is different from the previous

two cases. The best performance accuracy over the larger training database is achieved for

K = 1, which is around 14% higher than the performance accuracy of the 1NN method

over the smaller database. Furthermore, the city block measure outperforms the Euclidean

distance measure by 1.1%, and the correlation distance measure by 0.66% on average.

Table 4.3: Note classification performance accuracy for the conventional K-Nearest Neighbor algo-
rithm over two different datasets, and with different number of neighbors included in the voting
procedure. Correlation distance measure is used in all the experiments.

Training dataset Method (KNN) Performance accuracy (%)

One sample per class 1NN 76.15

Ten samples per class

1NN 87.40

3NN 89.36

5NN 85.12

7NN 85.92

9NN 85.98

As discussed in Section 3.4.3, the difference in the results obtained from these three

distance measures can be explained considering boundary patterns they create in a high-

dimensional space, in other words, the way they separate nearest neighbors to a query

sample from the rest of the training samples in the database. In any case, the city block

distance measure seems to be the best choice among the three in terms of both performance

accuracy and computational complexity, as it yields the best results for the minimum value

of K.

4.1.2 Two step algorithm (semi-KNN plus sequence tracking)

In this section we provide the results of our experiments with the two step algorithm, con-

sisting of a semi-classification-based pitch identification stage and a note sequence tracking

41

stage. We note that all the results of the two-step algorithm are based only on the Euclidean

distance measure. Because the bigram in our method is computed from Bach’s Inventions

number 1–3 (see Section 3.5.3 (b)), we treat testing samples selected from Inventions num-

ber 1 and 2 (40 in total) as the validation set, while the remaining testing samples (35 in

total), selected from Inventions 4 and 8, are considered as the true testing set.

Table 4.4: Note classification performance accuracy for the validation and testing sets, both sepa-
rately and combined. The Viterbi algorithm and stack-based tree search (with and without a naive

bias term (α = 1
88)) are employed at the note sequence tracking stage.

Dataset Sequence tracking method

Performance accuracy (%)

vs. Number of candidates

2 3 4

Validation

Viterbi algorithm 93.77 92.76 93.77

SB tree search (no bias) 93.77 92.76 94.61*

SB tree search (naive bias) 93.55 92.19 93.43

Testing

Viterbi algorithm 90.71 91.11 90.57

SB tree search (no bias) 90.71 91.25 91.96*

SB tree search (naive bias) 88.82 88.96 89.90

Total

Viterbi algorithm 92.37 92.00 92.31

SB tree search (no bias) 92.37 92.07 93.45*

SB tree search (naive bias) 91.39 90.71 91.82

Table 4.4 presents the performance accuracy for systems employing either the Viterbi

algorithm, or the stack-based tree search at the note sequence tracking stage. The results

are reported for the validation and testing sets, both separately and combined. Moreover,

the performance of the stack-based tree search is evaluated with and without a naive bias

term. The asterisk (*) in the third column of the table indicates removal of some of the

sample themes (4 themes out of 75) from the testing database. The sequence tracking

42

problem seems to be ill-conditioned for these samples, and hence, the hardest to converge.

The algorithm was evaluated on the remaining 71 testing samples only. The performance

accuracy of the stack algorithm with four candidates, therefore, cannot be compared to

that of the other two methods. Nevertheless, the fact that the algorithm is not guaranteed

to converge (at least with a reasonable speed) shows the disadvantage of using the stack

algorithm without a bias term.

It can be observed from the data in the first column that regardless of the note se-

quence tracking method used, the two-step algorithm with two candidates yields a total

performance accuracy gain of roughly 16% over the 1NN method when given the small

training database (See Table 4.1). Increasing the number of candidates seems to have the

same impact on both the Validation and the Testing datasets. Adding the third and the

fourth candidates does not greatly improve the results, although it does increase the size of

the trellis in the Viterbi search or the tree in the stack algorithm, and hence adds to the

computational complexity. We will elaborate more on the computational complexity of the

proposed algorithms in Section 4.2.

Another interesting observation is the effect of adding a naive bias term to the path

metric on the results of the stack-based tree search. The bias term tends to keep the search

more focused on longer paths and prevent it from frequently jumping back to shorter ones.

As a result, the bias term helps the algorithm converge faster, with a rate comparable to

that of the Viterbi algorithm. At the same time, it increases the chance of the search getting

stuck in local optima, and hence, deteriorates the total performance accuracy by roughly

1% in each case.

Figures 4.1 and 4.2 present the error rate distribution over piano notes for the two step

algorithm with one and two candidates respectively. As can be seen, adding the second

candidate not only improves the performance in general, but also alters the behavior of the

error distribution, making it more evenly spread. With one candidate, around 42.4% of

misclassifications happen above C4 (Middle C) and 57.6% below C4. With two candidates

this portions of the total error change to 46.77% above C4 and 53.2% below C4. Moreover,

43

octave error (a note pitch misestimated by 12 semitones) in both cases accounts for over

60% of the total error rate (68.2% in the one candidate case and 64.5% in the two candidate

case).

Figure 4.1: Error rate distribution over piano notes for the two-step algorithm with one candidate
(technically the 1NN algorithm with the minimum-size database and Euclidean distance measure).

Figure 4.2: Error rate distribution over piano notes for the two-step algorithm with two candidates.
Note sequence tracking is carried out via the Viterbi algorithm.

44

Four illustrative examples are provided in Figures 4.3 - 4.7, demonstrating the impact

of different parameter settings on the system output. The effect of the value of K on the

classification accuracy is shown in Figure 4.3. The correlation distance measure is used in

this example, which confirms the results presented in Table 4.3. With K = 3, three out of

26 note pitches are misclassified. Setting K = 5 increases the number of misclassifications

to five. Interestingly, both of the added misclassifications are octave errors, increasing the

total number of octave errors to four. Pitch classes that are one octave apart have common

harmonics at even multiples of the fundamental frequency of the lower note, and hence

they are very closely spaced. It seems that by extending the search region around the query

sample, the immediate neighboring points included would have octave relationship with the

target pitch class.

Figure 4.3: Output of the conventional KNN algorithm for a theme of length 26 notes. Correlation
distance measure along with the large database (10 samples per class) are employed. With K = 3,
three notes are misclassified, while setting K = 5 increases the number of misclassifications to five.

45

Figure 4.4: Output of the two-step algorithm with one and two candidates for a theme of length 23
notes. In this example adding the second candidate corrects all the three classification errors made
using only one candidate.

Figure 4.4 displays the output of the two-step algorithm for a theme of length 23 with one

and two candidates. In this example four notes are misclassified when only one candidate is

considered. Adding the second candidates, however, results in perfect performance accuracy.

Again, all of the four missed note pitches are initially classified under the same note name

in one lower octave. For instance, the first note in the sequence is classified as G3 (MIDI

number 55), while the target pitch class is G4 (MIDI number 67). In the case of the example

presented in Figure 4.5, adding the second candidate fixes the majority of misclassifications

(7 out of 8) but not all of them. In fact, neither of two candidates is the same as the target

class in the case of the fourth missed note, thus the note sequence tracker never finds the

chance to correct this error.

Figures 4.6 and 4.7 present an example where considering two candidates yields worse

performance than only one candidate. With only one candidate 20 out of 23 notes are

correctly classified, but adding the second candidate reduces this number to 18.

46

Figure 4.5: Output of the two-step algorithm with one and two candidates for a theme of length
23 notes. In this example adding the second candidate corrects the majority of misclassifications (7
out of 8) but not all of them.

The reason why the note sequence tracker selects the wrong path in between the fourth

and the tenth notes is a downward transition of length eleven semitones between notes

number 6 and 7 in the actual melody line. The probability of such a transitions is zero

in the bigram, making the correct path impossible to detect. It should be noted that

the melody line in this example is selected from Invention number 4, while the bigram is

computed based on the first three Inventions.

Nevertheless, by increasing the number of candidates to three the performance of the

algorithm shows an improvement, correctly classifying 21 note events. Although a transition

of length -11 is still considered impossible based on the bigram, the third candidate for the

note number 6 provides the possibility of making an upward transition of length 8 semitones

toward the correct note number seven. Therefore, another impossible transition (upward

of length 13 semitones, between the second candidate for note number 6 and the first

candidate for note number 7) is replaced by a more likely transition choice (between the

47

Figure 4.6: Output of the two-step algorithm with one and two candidates for a theme of length 23
notes. Adding the second candidate degrades the performance of the system from three misclassifi-
cations to five.

Figure 4.7: Output of the two-step algorithm for the same example as in Figure 4.6. Adding the
third candidate fixed three of five misclassifications resulting in 21 correctly classified notes out of
23.

48

third candidate for note number 6 and the first candidate for the note number 7). This is

an interesting example of the case where the note sequence tracker fails to detect correct

pitch classes due to limited prior information.

4.2 Computational complexity

4.2.1 K-Nearest Neighbor algorithm

The computational complexity of the KNN algorithm, classifying a single query sample,

can be measured in terms of the number of distance calculations, which for the global

method presented here is equal to the total number of training samples, D. Thus, total

computational complexity for a note sequence of length L is simply LD. For instance, the

computational complexity over the minimums-size (1 sample per class) database would be

88L, while over the largest database we employed (10 samples per class), the complexity

increases to 880L. There is a total number of 1627 note events in the testing database. The

total computational complexity over the whole testing set can thus be computed by taking

L = 1627.

4.2.2 Note sequence tracking

We measure the computational complexity of the note sequence tracking algorithm in terms

of the number of state transitions, or equivalently the number of metric calculations. The

total number of transitions varies with the type of structure used for implementing the note

sequence tracking algorithm. Given the number of observed feature vectors, the number of

pitch candidates, and the bigram, the Viterbi algorithm estimates the note sequence from

a fixed trellis structure, while the stack-based tree search assumes a pruned tree structure,

evolving over iterations. In Sections 4.2.2 (a) and (b), we calculate the computational

complexity of both methods for our testing database.

49

(a) The Viterbi algorithm

The computational complexity of the Viterbi algorithm is governed by the number of

pitch candidates and the length of the sequence. The total number of transitions, T ,

in the trellis structure for a given sequence of length L, and with K̃ pitch candidates

assigned to each observation can be stated as

T = K̃2(L− 1). (4.1)

According to (4.1), the number of transitions increases linearly with the length of the

note sequence, while this increase is quadratic with the number of pitch candidates.

The quadratic growth follows from the fact that K̃2 branches are explored in each

transition from one note event to the next. We also define the average number of

transitions per testing sample as

Tavg =

∑T
t=1 Tt
T

, (4.2)

where T denotes the total number of themes in the database (T = 75 for our database).

(b) Stack-based tree search

The total number of transitions in the full tree structure corresponding to a note se-

quence of length L with K̃ pitch candidates at each step is given by equation (3.20).

It should be obvious that the conventional tree search is computationally more bur-

densome than the Viterbi algorithm, as the tree size grows exponentially by both the

sequence length and the number of pitch candidates. The stack algorithm manages

to reduce the computational burden by adopting a trial and error strategy. However,

because of uncertainties involved in the process of extending the branches, it is not

possible to state the total number of transitions by a closed form equation. Instead, we

50

calculate the number of extended branches for each testing sample and average over all

samples in the testing database.

Table 4.5 presents the average number of transitions over the testing database for

different numbers of pitch candidates. While the complexity of all the three algorithms

increases by the number of candidates, the complexity of the stack algorithm is much

higher than the Viterbi algorithm in each case; it also grows in much faster rate.

Including a naive bias term in the stack algorithm reduces the complexity significantly,

down to one tenth in the 2-candidate case, one twentieth in the 3-candidate case, and

one thirtieth in the 4-candidate case. In spite of a slight reduction in performance

accuracy (1%) caused by the bias term, the level of efficiency it introduces to the

algorithm justifies its use.

Table 4.5: Computational complexity of the Viterbi algorithm and the stack-based tree search in
terms of average number of trellis or tree transitions (or metric computations) per testing sample
(theme). Testing samples are 22 notes long on average.

Sequence tracking method
Tavg vs. Number of candidates

2 3 4

Viterbi algorithm 84 189 336

SB tree search (naive bias) 304 866 5961

SB tree search (no bias) 3190 19606 > 2× 105

4.2.3 The one-step algorithm versus the two-step algorithm

As discussed in Section 4.2.1, we measure the computational complexity of the one-step

algorithm (the conventional KNN algorithm) in terms of the total number of distance cal-

culations. For a note sequence of length L and a training database of size D, the total

number of distance calculations would be LD. The average length of the themes in our

51

testing database, Lavg, is equal to 22. The average complexity over the large database

(D = 880) can therefore be computed as LavgD = 19360.

In order to have an idea about the complexity of the two-step algorithm, we combine

the number of distance calculations in the candidate selection stage and the number of

metric calculations in the sequence tracking stage. For the Viterbi algorithm the average

complexity can be computed from LavgD+ K̃2(Lavg− 1) and for the stack-based algorithm

one can use the entries of Table 4.5. The average complexity of the two-step algorithm over

the minimum-size database and for the three sequence tracking methods used are presented

in Table 4.6. According to the table both the Viterbi algorithm and the stack-based tree

search including a bias term are less complex than the one-step algorithm.

Table 4.6: Computational complexity of the two-step algorithm combining distance calculations in
the candidate selection stage and metric calculations in the sequence tracking stage.

Sequence tracking method
Avg. Comp. vs. Number of candidates

2 3 4

Viterbi algorithm 2020 2125 2272

SB tree search (naive bias) 2240 2802 7897

SB tree search (no bias) 5126 21542 > 2× 105

52

Chapter 5: Conclusion

In this work, we presented an instance-based classification approach towards estimating

note pitches in monophonic melody lines. The conventional K-Nearest Neighbor algorithm,

one of the best known and commonly used instance-based classification methods, was used

in order to identify the pitch class of a given note event, based on the distance between the

observed frequency-domain feature vector and training feature vectors.

We studied the impact of different distance measures, as well as the value of K, on the

performance accuracy. Moreover, it was demonstrated that the performance of the conven-

tional KNN algorithm depends to a great extent on the size of the training database. While

in the abundance of training samples the algorithm is capable of yielding high performance

accuracies, in cases where the training database is small, due to heightened effect of noisy

training data, classification results tend to degrade dramatically.

For scenarios where only a small number of training samples are available, we developed

a two stage algorithm in order to improve the pitch classification results. Instead of a target

pitch class, the first step of the algorithm outputs a list of pitch class candidates, selected in

a semi-KNN-based approach, according to the distance between the observed and training

feature vectors. In the second step, a sequence tracking algorithm explores the sequential

relationship of the pitch candidates incorporating genre-specific prior information about

note transition probabilities.

The two-step algorithm was implemented using two different sequence tracking methods:

the Viterbi algorithm, and the stack based tree search. We derived a path metric combining

spectral information and note transition probability distribution used in both methods. The

Viterbi algorithm takes into account all the possible transitions between pitch candidates,

whereas the stack algorithm only extends the most promising path at each step. As such,

the Viterbi algorithm has fixed computational complexity and always generates the most

53

likely note sequence. On the other hand, the stack algorithm is not guaranteed to converge

as it tries to maximize the path likelihood on a local basis. Nevertheless, when the stack

algorithm does converge, its results match those of the Viterbi algorithm.

According to the experimental results presented in Chapter 4, the two-step algorithm,

only tested over the minimum-size training database (1 sample per class), outperforms the

conventional KNN algorithm over the largest database we had in our disposition (10 samples

per class) in terms of accuracy. Additionally, the average computational complexity of the

two-step algorithm, employing the Viterbi algorithm or the stack-based tree search with a

bias term in the second step, is still lower than the complexity of the KNN algorithm over

a large database. A small training database requires less memory than a large database,

which is another advantage of the two-step algorithm over the conventional KNN.

The proposed melody line transcription method in this work was only evaluated on

the piano sound and genre-specific melodies. Thus, the first open question in developing

this algorithm is how well it would performs on a broader range of instrumental and vocal

timbres. Melodic structures from other music genres, and generalization of the bigram to

higher-order note dependencies would make another subject of study. Furthermore, the

potential of measures other than Euclidean distance to improve the result of the two-step

algorithm could be explored in future work.

54

Bibliography

55

Bibliography

[1] Arthur Lenoir, Rémi Landais, and Julien Law-To, “Muma: A scalable music search
engine based on content analysis,” in 10th International Workshop on Content-Based
Multimedia Indexing (CBMI), June 2012.

[2] Emmanouil Benetos, Anssi Klapuri, and Simon Dixon, “Score informed transcrip-
tion for automatic piano tutoring,” in 20th European Signal Processing Conference
(EUSIPCO 2012), August 2012.

[3] Ye Wang and Bingjun Zhang, “Application-specific music transcription for tutoring,”
IEEE MultiMedia, vol. 15, no. 3, pp. 70–74, July-September 2008.

[4] Matti P. Ryynänen and Anssi Klapuri, “Query by humming of midi and audio using
locality sensitive hashing,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), April 2008.

[5] Martin Piszczalski and Bernard A. Galler, “Automatic music transcription,” Computer
Music Journal, vol. 1, no. 4, November 1977.

[6] Aaron E. Rosenberg Garol A. McGonegal Lawrence R. Rabiner, Michael J. cheng, “A
comparative performance study of several pitch detection algorithms,” IEEE Transac-
tions on Acoustics Speech and Signal Processing, vol. 24, no. 5, pp. 399–418, 1976.

[7] Emilia Gómez, Anssi Klapuri, and Benôıt Meudic, “Melody description and extraction
in the context of music content processing,” Journal of New Music Research, vol. 32,
no. 1, pp. 23–40, 2003.

[8] Myron J. Ross, Harry L. Shaffer, Andrew Cohen, Richard Freudberg, and Harold J
Manley, “Average magnitude difference function pitch extractor,” IEEE Transactions
on Acoustics Speech and Signal Processing, vol. 22, no. 5, October 1974.

[9] “On the use of autocorrelation analysis for pitch detection,” IEEE Transactions on
Acoustics Speech and Signal Processing, vol. 25, no. 1, February 1977.

[10] Giuliano Monti and Mark Sandler, “Monophonic transcription with autocorrelation,”
in COST G-6 Conference on Digital Audio Effects (DAFX-00), Dec. 2000.

[11] Alain de Cheveigné and Hideki Kawahara, “YIN, a fundamental frequency estimator
for speech and music,” The Journal of the Acoustical Society of America, vol. 111, no.
4, pp. 1917–1930, 2002.

56

[12] Martin Piszczalski and Bernard A. Galler, “Predicting musical pitch from component
frequency ratios,” Journal of the Acoustical Society of America, vol. 66, no. 3, pp.
710–720, 1979.

[13] Judith C. Brown, “Musical fundamental frequency tracking using a pattern recognition
method,” The Journal of the Acoustical Society of America, vol. 92, no. 3, pp. 1394–
1402, 1992.

[14] Judith C. Brown and Bin Zhang, “Musical frequency tracking using the methods of
conventional and ”narrowed” autocorrelation,” The Journal of the Acoustical Society
of America, vol. 89, no. 5, pp. 2346–2354, 1991.

[15] Mürsel Önder, Aydn Akan, and Semih Bingöl, “Pitch detection for monophonic musical
notes,” in Third International Conference on Electrical and Electronic Engineering -
ELECO, December 2003, vol. 1.

[16] Juan Pablo Bello, Giuliano Monti, and Mark Sandler, “An implementation of auto-
matic transcription of monophonic music with a blackboard system,” in Irish Signals
and Systems Conference (ISSC 2000), June 2000.

[17] Anssi Klapuri, “Qualitative and quantitative aspects in the design of periodicity es-
timation algorithms,” in Proceedings of the European Signal Processing Conference,
September 2000.

[18] Anssi Klapuri and Manuel Davy, Signal Processing Methods for Music Transcription,
Springer Science+Business Media LLC, 2006.

[19] Matti Ryynänen, Probabilistic modelling of note events in the transcription of mono-
phonic melodies, Ph.D. thesis, Tampere University of Technology, 2004.

[20] Matija Marolt, “A connectionist approach to automatic transcription of polyphonic
piano music,” IEEE Trans. on Multimedia, vol. 6, no. 3, pp. 439–449, June 2004.

[21] Graham E. Poliner and Daniel P.W. Ellis, “A classification approach to melody tran-
scription,” in Proceedings of the 6th International Conference of Music Information
Retrieval, University of London, September 2005.

[22] Graham E. Poliner and Daniel P.W. Ellis, “A discriminative model for polyphonic
piano transcription,” EURASIP Journal on Advances in Signal Processing, June 2006.

[23] Simon Rogers and Mark Girolami, A first course in Machine Learning, CRC Press,
2012.

[24] Timo Viitaniemi, Anssi Klapuri, and Antti Eronen, “A probabilistic model for the
transcription of single-voice melodies,” in Proceedings of the Finnish Signal Processing
Symposium, 2003.

[25] Jim Heckroth, A Tutorial on MIDI and Wavetable Music Synthesis, Application Note,
CRYSTAL a division of CIRRUS LOGIC, 1998.

57

[26] G. Heinzel, A. Ru diger, and R. Schilling, Spectrum and spectral density estimation
by the Discrete Fourier transform (DFT), including a comprehensive list of window
functions and some new flat-top windows, Max-Planck-Institut fu r Gravitationsphysik,
February 2002.

[27] P. Welch, “The use of fast fourier transform for the estimation of power spectra: A
method based on time averaging over short, modified periodograms,” IEEE Transac-
tions on Audio and Electroacoustics, vol. 15, no. 2, pp. 70–73, June 1967.

[28] Tom M. Mitchell, MACHINE LEARNING, The McGraw-Hill Companies, Inc., 1997.

[29] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2, pp.
260–269, April 1967.

[30] G. David Forney, “The Viterbi algorithm,” in Proceedings of the IEEE, March 1973,
vol. 61.

[31] F. Jelinek, “Fast sequential decoding algorithm using a stack,” IBM Journal of Re-
search and Developement, vol. 13, no. 6, pp. 675–685, November 1969.

[32] Jill K. Nelson and Hossein Roufarshbaf, “A tree search approach to target tracking in
clutter,” in 12th International Conference on Information Fusion, 2009.

[33] J. Raviv, “Decision making in Markov chains applied to the problem of pattern recogni-
tion,” IEEE Transactions on Information Theory, vol. 13, no. 4, pp. 536–551, October
1967.

58

BIOGRAPHY

Fatemeh Pishdadian received her B.Sc. in Electrical Engineering from Ferdowsi Univer-

sity of Mashhad, Mashhad, Iran, in 2005. She has always been in pursuit of an interdis-

ciplinary research area, which combines her two main interests, music and technology. In

addition to receiving music theory and piano lessons since adolescence, she spent four active

years on her musical training after graduation in order to prepare further for her research

field of interest. She has been a PhD student in the Department of Electrical and Computer

Engineering at George Mason University since 2010. Her current research is focused on the

application of signal processing methods to the analysis of audio/music. She received her

M.Sc. in Electrical and Computer Engineering as a secondary degree in 2014.

59

	List of Tables
	List of Figures
	Abstract
	 Introduction
	 Background and Prior Work
	 Monophonic Transcription Algorithm
	Algorithm overview
	Time-domain feature extraction
	Piano sound signal in time domain
	Onset and sustain instances

	Frequency-domain feature extraction
	Spectrogram - Time/Frequency parameter setting
	Dominant-octave detection
	Feature vector extraction

	Pitch detection
	K-Nearest Neighbor algorithm
	Semi-classification-based approach
	Alternative distance measures
	Spectrum normalization
	Training database
	Testing database

	Note sequence detection
	Viterbi algorithm
	Stack-based tree search
	Path metric derivation

	 Results and Discussion
	Performance evaluation
	Conventional KNN algorithm
	Two step algorithm (semi-KNN plus sequence tracking)

	Computational complexity
	K-Nearest Neighbor algorithm
	Note sequence tracking
	The one-step algorithm versus the two-step algorithm

	 Conclusion

	Bibliography

