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Abstract

ATHENA - AUTOMATED TOOL FOR HARDWARE EVALUATION:
SOFTWARE ENVIRONMENT FOR FAIR AND COMPREHENSIVE PERFORMANCE
EVALUATION OF CRYPTOGRAPHIC HARDWARE USING FPGAS

Venkata Amirineni, MS

George Mason University, 2010

Thesis Director: Dr. Kris Gaj

Fair comparison of the hardware efficiency of cryptographic algorithms, modeled in

Hardware Description Languages and implemented using FPGAs, is a complex task. The

results of the comparison depend on the inherent properties of competing algorithms, as

well as on selected hardware architectures, implementation techniques, FPGA families,

languages and tools.

The development of new cryptographic standards through contests, such as AES, eS-

TREAM, and SHA-3 competitions, requires fair comparison of multiple cryptographic al-

gorithms in terms of their hardware efficiency. To address this issue and to provide a

comprehensive environment for an efficient evaluation of multiple algorithms, ATHENa,

Automated Tool for Hardware EvaluatioN, has been developed.

ATHENa facilitates fair, comprehensive, reliable, and automated comparison of cryp-

tographic algorithms, hardware architectures, FPGA families, as well as FPGA tools and

HDL languages. In this seminar, we present the common pitfalls and difficulties involved

with the fair comparisons and demonstrate the capabilities of ATHENa through several

case studies.



Chapter 1: Introduction

1.1 Statement of the Problem

Fair comparison of hardware implementations of cryptography is at the basis of progress in

cryptographic engineering. New hardware architectures and optimization techniques have

to be compared to the current state of the art. The development of new cryptographic

standards through contests, such as AES [1], eSTREAM [2], and SHA-3 competitions [3],

requires fair comparison of multiple cryptographic algorithms in terms of their hardware

efficiency.

Revealing source codes is often not an option because of the authors’ concerns regarding

their intellectual property rights, export restrictions, and/or possible loss of profits from

licensing hardware cores.

This thesis reports on a comprehensive environment, Automated Tool for Hardware

EvaluatioN (ATHENa) [4] that facilitates the fair comparison of cryptographic implemen-

tations, modeled in Hardware Description Languages (HDLs), without revealing the source

codes.

The project was inspired by a similar environment for comparing software implemen-

tations of cryptography, developed by Daniel Bernstein and Tanja Lange, called eBACS

(ECRYPT Benchmarking of Cryptographic Systems) [5].

ATHENa allows the characterization of cryptographic algorithms using the FPGAs from

multiple vendors, especially Xilinx and Altera. The system also provides different features

such as the choice of an FPGA device within a given family, choice of optimum synthesis

and implementation options, scanning through multiple placement starting points, and post

processing of implementation reports.
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The obtained results can be submitted for publication at the project website, together

with the exact synthesis and implementation options necessary to reproduce the results. An

effort is made to fully characterize the designs using their timing parameters and resource

utilization.

Using ATHENa, the designs developed independently by various groups can be com-

pared in a fair, transparent, and uniform fashion, using controlled environment, for multiple

families of FPGA devices from various vendors.

1.2 Difficulties and Issues

The difficulties and issues associated with the fair comparison of digital systems designed

and modeled using hardware description languages, and implemented using FPGAs, can be

divided into two categories: evaluation pitfalls and objective difficulties.

1.2.1 Common Evaluation Pitfalls

Evaluation pitfalls are the mistakes that can be quite easily avoided if the person performing

comparison is aware of potential dangers, and exercises appropriate caution and fairness.

The evaluation pitfalls are listed below.

• Taking credit for the improvements in technology: FPGA manufacturers support mul-

tiple classes of FPGA families that evolve over time. One of the main improvements

is the process technology used to manufacture FPGAs. The improvement in technol-

ogy provides a performance gain for implementations on the newer FPGAs over their

predecessors.

• Choosing a convenient but not a fair performance measure: FPGAs consist of dedi-

cated processing units that could be used to implement logic more efficiently. Using

a performance measure such as throughput / CLB slices while implementing logic in

dedicated processing units does not constitute a fair comparison.
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• Comparing designs with different functionality: Similarly comparison of designs with

different functionality is not a fair comparison. For example, comparing designs that

support both encryption and decryption with a design that performs only encryption.

• Comparing designs optimized using a different optimization target: This involves

comparing designs that are optimized for different optimization targets, such as speed,

area, cost, power, balanced, etc. Each of the criteria might generate results that are

substantially different from each other. Such comparisons need to be avoided.

• Comparing results from the different stages of design flow: An example of this

comparison is comparing the clock frequency after synthesis to the clock frequency

after implementation. Synthesis frequency is an estimate of the clock frequency that

can be achieved, while implementation frequency is the actual clock frequency that is

achieved.

1.2.2 Objective Difficulties

Objective difficulties are more challenging to overcome. The difficulties include

• Lack of standard interfaces: The interfaces used by the cryptographic algorithms to

communicate with the outside systems might affect the performance.

• Influence of tools and their options: The tools used for the FPGA design implemen-

tation have a major effect on the generated results. The results depend upon several

features and parameters of the tools including tool options. FPGA tools provide sets

of options that could be used to control different aspects of the automated synthe-

sis and implementation. The effects of the tool options are design specific. Designs

implemented using different sets of options should be compared carefully.

• Differences in standalone vs. large system performance: Cryptographic algorithms

are usually implemented as a part of a larger design, rather than standalone systems.

If a design is implemented as a standalone unit, the tools have the freedom to route

3



through the shortest paths available. However, if a design is implemented as a part

of a larger system, the routing resources will be scarce, thus making it difficult to

achieve similar performance.

• Dependence of results on the time spent for optimization: The time spent on opti-

mization may have a very large impact on the final results. Unfortunately, this time

is rarely reported in scientific literature.

• Design constraints: The design specific constraints such as timing constraints or area

constraints can force the FPGA tools to achieve a better performance. At the same

time, the use of constraint files is rarely mentioned in any conference or journal papers.

1.3 Benchmarking Cryptographic Software Vs. Hardware

There exist multiple similarities and differences between benchmarking cryptographic algo-

rithms in software and using FPGAs. The general idea behind ATHENa is acquired from

the benchmarking of software algorithms. Some of the properties hold true for both software

and hardware environments.

Only a few major vendors are available for both software and hardware platforms. They

are Intel and AMD, and Xilinx and Altera respectively. Good quality tools are available

for software, while vendors provide most of the tools required for hardware implementation.

Complete toolkits or slightly reduced versions are available for free in both cases.

Software can be written to target the specific microprocessor while HDL designs can be

targeted to a specific FPGA platform. Similarly, low level optimizations, using assembly

language, can be used to achieve better performance in case of software. Hardware designs

can make use of low level macros for the same purpose. However, in this case both hardware

and software designs might not be portable.

However major differences do exist between the two platforms. Though ATHENa is

based on the software environment for benchmarking of cryptographic algorithms many of

the ideas cannot be ported in to hardware realm.
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The major differences are the performance metrics and optimization targets used for

the comparison of the designs. In software, speed is the major parameter. As majority of

microprocessors have a fixed clock frequency, software is optimized for minimum number

of instructions that result in the fastest execution time. However, in hardware, both speed

and area are considered during optimizations and are often traded one for the other. Tools

used for the implementation of hardware designs try to optimize the critical path of the

circuit resulting in a minimum clock period. In addition, the designs are also optimized for

minimum area.

Other differences include the lack of open source designs in hardware. Software imple-

mentations of cryptographic libraries are widely available.

1.4 Our Approach

The most important aspects of our methodology are the definition of clear performance

metrics and optimization targets for the benchmarking process as well as the collection of

specific environment details regarding the design implementation, development of a uniform

and practical interface, and generation of results for several FPGA families and converting

the results into a single ranking.

Performance of a cryptographic design in hardware is measured in the amount of data

processed per a unit of time (throughput) as well as the amount of area occupied and

the latency. The throughput is measured in megabits per second. Area is measured in

the basic FPGA component units. Latency is measured in seconds. Taking the area into

consideration, more meaningful metric is the throughput to area ratio. This metric takes

into the account the two main optimization goals of hardware design.
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Chapter 2: Motivation and Goals

2.1 Why Cryptographic Algorithms?

One of the main goals of this thesis is to assist with the fair and comprehensive comparison

of algorithms that belong to a certain class of digital systems especially where reconfigurable

hardware is a feasible and an advantageous means of implementation.

In this thesis, the primary focus is on cryptographic algorithms due to several reasons.

• Well documented speed ups: Cryptographic algorithms exhibit well documented speed

ups and security gains for FPGA implementations as compared to software implemen-

tations.

• Evolving standards: Algorithm designers and cryptanalysts are engaged in an ever-

lasting battle to design and crack the cryptographic algorithms. With the algorithms

becoming obsolete due to the security issues, designers develop new algorithms to

replace the current standards. These algorithms can be implemented and deployed

faster when implemented in FPGAs, compared to Application Specific Integrated

Circuits (ASICs).

• Need for fairer evaluation: With the development of new standards through open

competitions, a need for the fair evaluation increases due to the multiple competing

algorithms designed by cryptographers around the world.

Starting from the Advanced Encryption Standard (AES) contest organized by NIST in

1997-2000 [1], open contests have become a method of choice for selecting cryptographic

standards in the U.S. and over the world. The AES contest in the U.S. was followed by the

NESSIE competition in Europe [6], CRYPTREC in Japan, and eSTREAM in Europe [2].
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The evaluation of the candidates in the contests is based on security, performance in

software, performance in hardware and flexibility of the algorithm. While security is the

most important criterion, it is the most difficult to evaluate and quantify especially due to

the short period of time reserved for the contests. Typically after eliminating a fraction of

candidates based on security flaws, the rest of the algorithms are evaluated based on their

performance in software and hardware.

For example, during the AES contest, held to replace the aging Data Encryption Stan-

dard (DES) standard, only five of the original fifteen candidates remained in the competition

after their security has been evaluated. Performance in hardware and software has become

a decisive criterion of evaluation for the remaining candidates.

Interestingly, the differences among the cryptographic algorithms in terms of the hard-

ware performance seem to be particularly large, and often serve as a tiebreaker when other

criteria fail to identify a clear winner [7].

At this moment, the focus of the cryptographic community is on the SHA-3 contest,

organized by NIST [3], for the development of a new hash function standard. With the

contest in its second round, performance in hardware and software become important factors

of evaluation. The development of our benchmarking environment is aimed at facilitating

the fair and comprehensive comparison among the competing algorithms.

2.2 Goals

As mentioned earlier, the primary goal of this thesis is to facilitate the fair and comprehen-

sive comparison of cryptographic algorithms that are implemented on FPGAs. However,

comparison of cryptographic algorithms is not the only important goal of this thesis.

Cryptographic algorithms can be implemented using multiple hardware architectures

such as basic iterative, unrolled, pipelined, quasi-pipelined, etc. In addition, different op-

timization tricks and styles of coding in Hardware Description Languages (HDLs) exist.

Different implementation-level optimizations are also presented at conferences and work-

shops, and it is common for their authors to compare their results with previous work.
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Unfortunately, the quality and fairness of these comparisons is often seriously flawed. Thus,

the goal is to provide the fair and comprehensive method for comparison of functionally

equivalent architectures and implementations.

Another goal of the project is the identification of an implementation platform which

is most suitable for a specific design of a given algorithm. With the presence of different

families of FPGAs in the market, it is not an intuitive task to choose a best device, in

terms of performance, cost and other factors, for a certain algorithm. A solution is to have

comprehensive results available for all the families available in the market.

The results of an FPGA implementation may be a strong function of hardware descrip-

tion languages, tools, and tool versions. Benchmarking such tools and languages is a fourth

important goal of the thesis. A comprehensive evaluation of equivalent results obtained

using different tools and languages for a wide class of algorithms, such as cryptographic

algorithms, will be of great help for both hardware designers and tool developers.

In summary, the goal of the thesis is to facilitate the fair, comprehensive, reliable, and

practical comparison of cryptographic algorithms, hardware architectures, FPGA families,

as well as the FPGA tools and HDL languages.

8



Chapter 3: Background

Field Programmable Gate Array (FPGA) is an integrated circuit designed to be configured

by the user in the field. It is a combination of programmable elements and interconnects

that could be used to realize digital logic.

In this chapter, we look at the details of FPGA architectures from Altera and Xilinx

along with the basic design flow that is used in academia and industry.

3.1 FPGA Devices

3.1.1 Major FPGA Vendors and Families

While there are many FPGA manufacturers, only a few manufacturers dominate the FPGA

market. Xilinx and Altera take up approximately 90% of the market share, while Actel,

Quick Logic, Lattice Semiconductor and other manufacturers occupy the rest. These man-

ufacturers use different technologies to develop the FPGAs. Altera, Lattice Semiconductor,

and Xilinx develop FPGAs based on SRAM technology, while QuickLogic and others use

anti-fuse technology. Some manufacturers also support multiple technologies. Actel man-

ufactures anti-fuse or flash based FPGAs. However, despite the differences in technology

the FPGAs provide similar functionality. While the FPGAs share the basic building blocks

their detailed architectures vary depending on the class of applications they are targeting.

manufacturers support multiple classes of FPGA families that are optimized for per-

formance, cost, power consumption, or performance to cost ratio. Families belonging to

these classes evolve over time. Along with the process technology used to manufacture

the FPGAs, the underlying architecture of the family is also enhanced over time. Families

belonging to Altera and Xilinx and the respective process technologies are summarized in

the following Tables 3.1 and 3.2.
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Table 3.1: Major Xilinx Families

Technology Low-cost High-performance

120/150 nm Virtex 2, 2 Pro

90 nm Spartan 3 Virtex 4

65 nm Virtex 5

45 nm Spartan 6

40 nm Virtex 6

Table 3.2: Major Altera Families

Technology Low-cost Mid-range High-performance

130 nm Cyclone Stratix

90 nm Cyclone II Stratix II

65 nm Cyclone III Arria I Stratix III

60 nm Cyclone IV

40 nm Arria II Stratix IV

28 nm Stratix V

In addition, each family consists of several sub-families that target more specific needs

of the users. For example, Xilinx low cost FPGA family Spartan 3 has various sub-families

that include Spartan-3E, Spartan-3A and Spartan-3A DSP which are logic, I/O, and DSP

optimized respectively. The sub-families vary in the amount of resources available on the

device.

FPGAs also come in different packages and speed grades. The package defines the

physical appearance, size, and the number of pins. The speed grade influences a variety of

timing parameters on the FPGA and ultimately defines the performance of the FPGA chip.

The speed grade is determined by the fabrication variations that affect the propagation

delay of the gates fabricated at any given time.

3.1.2 FPGA Architecture

FPGA architecture varies from vendor to vendor and from family to family. However,

the building blocks remain the same. A Look-Up Table (LUT), a basic building block in

the FPGAs, can be used to realize combinational logic. A set of LUTs are grouped into

logic blocks along with other components like multiplexers and flip-flops on an FPGA. A
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combination of storage elements and LUTs can be used to realize an almost arbitrary digital

circuit.

Along with programmable logic blocks/resources, FPGAs also consist of dedicated struc-

tures/blocks that are used to implement logic more efficiently. These structures form logic

components that are frequently used in digital systems. These dedicated blocks can be

used in place of components implemented through programmable logic blocks to enhance

the performance of certain designs. Examples of dedicated blocks are multipliers, adders,

accumulators, and other arithmetic and logic components.

Configuration of these different blocks of components varies among vendors. We will

look at Altera and Xilinx architecture as they are the major players in the FPGA market.

3.1.3 Xilinx Configurable Logic and Dedicated Resources

Logic

Configurable Logic Blocks (CLBs) are the basic building blocks of Xilinx FPGAs. These

blocks can be configured to implement sequential as well as combinational circuits. A CLB

is a combination of slices. A slice is a combination of LUTs, multiplexers, registers and fast

carry logic. The amount of resources in a CLB varies over different Xilinx families.

In the families prior to Virtex 5, including Spartan 3 and Virtex 4, CLBs consist of

four interconnected slices grouped into pairs. Pairs of slices are arranged into two columns,

SLICEL and SLICEM respectively. Both of the slices contain two 4-input LUTs, two storage

elements, wide-function multiplexers, carry logic, and arithmetic gates. These components

are used to provide logic, arithmetic, and ROM functions. In addition, SLICEM also

provides functionality to store and shift 16 bits of data [8] [9] [10] [11].

In the newer generation families, including Spartan 6, Virtex 5, Virtex 6, a CLB only

consists of two slices. However, each slice consists of four 6-input LUTs. While the newer

families have the same number of LUTs the size of the LUT has been increased from 4-

input to 6-input. While the architecture remained similar, the sizes of components have

been increased.
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Table 3.3: Logic Resources in One CLB

Arithmetic
and Carry Distributed Shift

Family # of slices LUTs Flip-Flops Chains RAM Registers

Spartan 3 4 8 8 2 64 bits 64 bits

Spartan 6 2 8 16 1 256 bits 128 bits

Virtex 4 4 8 8 2 64 bits 64 bits

Virtex 5 2 8 8 2 256 bits 128 bits

Virtex 6 2 8 16 2 256 bits 128 bits

Spartan 6 introduces a SLICEX[8], which inherits the same functionality as SLICEL

with the exception that it is missing the arithmetic and carry logic. Table 3.3 presents

details of some of the resources available in a CLB.

Dedicated Resources

Along with logic resources Xilinx FPGAs also consist of dedicated resources that are used

to enhance performance. Primarily, these structures are faster, smaller and consume less

power than if the logic were implemented separately on the FPGA fabric. The dedicated

blocks also eliminate the delay that is associated with interconnects, improving overall

performance of the designs.

With the exception of certain Spartan 3 families, all the Xilinx families onward are

equipped with high performance DSP blocks. These blocks perform various operations in-

cluding multiplier, multiplier-accumulator (MACC), multiplier followed by an adder, three-

input adder, barrel shifter, wide bus multiplexer, magnitude comparator, or wide counter.

The DSP blocks can also be cascaded to form a chain without using any CLB resources.

The DSP blocks vary among different families. Spartan 3 DSP block, DSP48A, accepts

two 18 bit inputs and produces a 48 bit output. It consists of 18 x 18 bit multiplier, 2 input

48 bit adder among other functions. On the other hand, Virtex 5 DSP block, DSP48E,

supports 25 x 18 bit multiplier with 3 input 48-bit adders.
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Memory

In Xilinx FPGAs, memory is implemented in two different ways. One method is distributive,

while the other is block based.

In a Distributed memory configuration, the individual LUTs are programmed to store

data, thus occupying logic resources of an FPGA. This memory configuration is fast, local-

ized, and ideal for small data buffers, FIFOs, or register files. However, this configuration

also uses the routing resources that may lead to non-optimal performance of the designs.

FPGAs also provide memory blocks along with other resources. Through the various

configuration options, the memory blocks can be configured into RAM, ROM, FIFOs, large

look-up tables, data width converters, circular buffers, and shift registers, each supporting

various data widths and depths. Similar to the high performance dedicated structures,

using the memory blocks instead of distributed memory reduces the congestion on the

FPGA ultimately leading to performance improvement.

3.1.4 Altera Configurable Logic and Dedicated Resources

Logic

Logic, in Altera FPGAs, is implemented differently in low cost and high performance FP-

GAs. The low cost Cyclone families employ a Logic Element (LE) that is built of a 4-input

LUT, while the high performance Stratix FPGAs employ an Adaptive Logic Module (ALM)

that contains 2 highly configurable Adaptive Look Up Tables (ALUTs).

The primary difference is seen in the configuration of LUTs. The LE consists of one

4-input LUT, along with one programmable register, variety of multiplexers, etc. The LE

also provides support to be cascaded in a chain. The LEs can be configured to implement

sequential as well as combinatorial circuits. A combination of 16 LEs forms a Logic Array

Block (LAB). The architecture is consistent through all the Cyclone families (Cyclone to

Cyclone IV).

In case of the high performance FPGAs, logic is implemented through ALMs. An ALM
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consists of 2 Adaptive LUTs (ALUTs) along with 2 programmable registers, 2 full adders,

etc. The ALUTs, with 8 inputs, can be split into combinations of LUT implementations

(two 4-input LUTs, a set of 5-input and 3-input LUTs, etc). The ALM architecture is

backward compatible for the designs that use 4-input LUTs. With the exception of Stratix

II, in all Stratix families (Stratix III through Stratix V), LABs are made-up of 10 ALMs.

The Stratix II family LAB consists of 8 ALMs [12] [13] [14] [15].

The area/utilization, in Altera FPGAs, in terms of logic, is measured in either LEs or

ALUTs. A conversion factor can be used to convert the amount of LEs to ALUTs.

Dedicated Resources

Similar to the Xilinx FPGAs, Altera FPGAs also consist of dedicated resources that enhance

performance of designs. These dedicated resources are implemented in different ways in low

cost and high performance FPGAs. Low cost FPGAs consist of multiplier blocks that can

be configured into a two 9-bit x 9-bit or one 18-bit x 18-bit configuration. On the other

hand, the high performance FPGAs are equipped with DSP blocks.

The DSP block is a combination of multipliers, adders, multiplexers and registers ar-

ranged to implement different sizes and combinations of multiplier, multiplier-accumulator

functions. The functionality of each new generation of the DSP block is a superset of

previous generation.

Memory

Memories can be implemented two different ways. One method is distributive while the

other is block based. In a Distributed memory configuration, the storage is achieved using

the individual logic blocks. In a block based approach, the memory is packed into blocks.

Altera FPGAs provide different sizes of memory blocks depending on the FPGA family.

In the new Stratix V devices the memory block sizes range from 320 bits to 20K bits. These

memory blocks can be configured into FIFO buffers, RAM, ROM, etc. Altera memory blocks

are designed to interface with the DSP blocks and LABs to provide a high performance.
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Memory blocks can be used in place of logic resources to achieve high performance.

Also, the use of memory blocks, may lead to better performance by reducing the routing

congestion caused by the distributed resources.

3.2 FPGA Design Flow

The design flow outlines different steps involved in the process of generation of FPGA con-

figuration bit-stream from the design specification. The design specification is a collection

of information that specifies the requirements of a design. The FPGA configuration bit-

stream is used to program an FPGA. Though several FPGA manufacturers exist, the design

flow stays consistent across the industry.

3.2.1 General Design Flow

The FPGA design flow is broken down into several steps. These steps include HDL coding,

synthesis, implementation and bit-stream generation. Every step of the design flow process

can be optimized to a specific target such as minimum power, area, or delay.

Other steps can be included in between these stages to analyze the output from the pre-

vious stage of the design flow process. Usually functional verification is performed between

each stage to ensure the validity of the output from the previous stage. Additional steps

such as static timing analysis and power analysis are performed at different stages of the

design flow to provide detailed information about design.

HDL Coding

HDL coding involves the conversion of the design specification into a behavioral HDL de-

scription. The two major languages used for circuit description are VHDL and Verilog.

The languages provide different capabilities to the user. They could be used to describe the

behavior of individual components of the circuits, or could be used to describe a general

behavior of a large system through state machines. HDL is a high level language, thus

requiring the synthesis and implementation processes to be implemented onto an FPGA.
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Synthesis

Synthesis is a process of converting the behavioral HDL descriptions into a netlist. The

synthesis process takes as input the HDL design files and a library of primitives that range

from simple logic gates to complex FPGA structures. Synthesis process is usually hardware

independent and it provides an abstraction layer to the developer to enable the creation of

portable HDL sources.

The use of FPGA specific primitives and other information about the size and resources

available on FPGA, during synthesis will enable the synthesis process to produce netlist

that is optimized for a specific architecture. The output netlist is a complete digital circuit

with logic gates and primitives that could be implemented into an FPGA.

Implementation

The next step in the design flow process is the implementation. Implementation process

takes the synthesized netlist and generates the programmable netlist that is completely

placed and routed. This process is a combination of multiple steps including mapping,

placing and routing the design.

• Mapping

The map process breaks the logic functions from the synthesis netlist into smaller

blocks such that they fit into the FPGA blocks. The map process fits these sub blocks

into targeted FPGA elements such as LUTs, Input Output Blocks and generates a

netlist which physically represents the design mapped to the components of FPGA.

• Placing And Routing (PAR)

During the place and route process, the resources assigned during the mapping process

are placed into specific locations on the FPGA and the connections between the

resources are routed through the routing channels on the FPGA.

PAR places components into specific locations based on factors such as design con-

straints (Ex: requested clock frequency), the length of connections, and the available
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routing resources. The router uses a converging approach to generate a viable solu-

tion that routes the design to completion while meeting timing constraints. Both the

placer and router algorithms are executed in multiple phases.

The delays associated with interconnects on a large FPGA can be quite significant, so

the place and route process has a large impact on the speed of the design. The place

and route process attempts to honor timing constraints that have been added to the

design. However, if the constraints are too tight, the PAR process will give up and

generate a functional implementation that is not capable of operating at the desired

speed.

3.2.2 FPGA Tools

Functionally, the FPGA software can be split into two categories: the user interface soft-

ware responsible for providing an interface for the configuration, starting, stopping, and

monitoring the core utilities, and the core utilities, used to perform major computational

tasks 1.

Vendors usually distribute software packages that support both functionalities. They are

categorized under Electronic Design Automation (EDA) tools. Third-party software is also

available to support the individual tasks. For example, Aldec publishes ActiveHDL software

that supports multiple vendor platforms, and is used for FPGA design flow configuration

and execution. However it does not contain the core technology required to synthesize and

implement the designs onto the FPGAs. Majority of the tools are available for free with

the slightly reduced functionality compared to the full versions of the tools.

In a way, ATHENa, the software platform being developed as a part of this thesis, can

be described as a tool for the configuration and execution of the FPGA design flow using

multiple vendor tools. However, it is not the primary goal and much more functionality

and features are available as a part of ATHENa.

1All the components, in this chapter, are defined in relation to ATHENa point of view. The performance
evaluation process involves the study of effects different options have in case of synthesis and implementation.
This chapter discusses a small set of the functionalities out of the vast number of features available through
the EDA tools.
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Each step of the design flow is controlled by a specific tool in the EDA tool package.

HDL sources can be synthesized by third-party tools while the implementation specific tasks

are performed by vendor specific tools.

All the tools involved in the design flow process, provide a set of options that allow a

fine-grain control of the different aspect of the individual process they are involved in. For

example, these options could control the effort levels of the different algorithms used to

manipulate the circuits. Similarly the options also control more complex operations that

affect the results generated by the tools.

3.2.3 Xilinx Design Flow

Xilinx provides a set of Electronic Design Automation (EDA) tools used for implementation

of designs on to their FPGAs. The Xilinx ISE toolkit [16] is a set of tools responsible for

this process. The ISE itself is the user interface that configures and executes the core

utilities. The core utilities include Xilinx Synthesis Technology (XST) that synthesizes the

behavioral HDL into a netlist, as well as mapping and place and route tools. In addition,

the toolkit also includes numerous other tools for different purposes. Figure 3.1 summarizes

the detailed design flow used by the Xilinx FPGA tools.

The list of tools used in the process is specified below. While there are several executables

available in the ISE package [17], only the main tools used in the design flow process are

covered . (Note: The current description only includes the tools in Microsoft windows

operating system.)

• xst.exe - Performs the synthesis of the HDL code and outputs a circuit netlist.

• ngdbuild.exe - Converts the netlist into components according to the format specified

in the Xilinx native generic database. The output NGD file is ready to be mapped.

• map.exe - performs the mapping process and outputs a Native Circuit Description

(NCD) file.
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Figure 3.1: Xilinx Design Flow

19



• par.exe - performs the place and route on the mapped circuit and outputs the NDC

file.

• trce.exe - it is a timing analysis tool used on the NCD file to generate detailed reports

about the timing.

Execution of Tools

The tools provide several methods of execution control. First method, used by ATHENa,

is to configure them through detailed command line options. With the exception of XST

all the tools in the Xilinx library accept the options available as command line parameters.

XST requires the information to be provided as a separate file. The other method is to

provide a project file that contains all the information required for the tool execution.

Xilinx ISE GUI creates the necessary project file and passes it on to the tools. The project

file container approach is partially used in ATHENa through the use of RUN object (Section

7.3).

Operation in Batch Mode

ATHENa directly interfaces with the tools for their configuration and execution. The generic

method of executing each of the tools is given below along with all the parameter description.

• xst.exe [-ifn input file] [-ofn output file]

• ngdbuild.exe [design name] [ngd file.ngd] [-option: flag]

• map.exe [input file.ngd] [-o output file.ncd] [-option: flag]

• par.exe [input file.ncd] [output file.ncd] [constraints.pcf] [-option: flag]

Only the required parameters are specified, while other parameters are specified using

[-option flag] format. In addition to the report files, the tools output an error number to

identify the error information. Detailed information about all the tools and their options is

published in the ISE command line guide.
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Figure 3.2: Altera Design Flow

3.2.4 Altera Design Flow

Altera EDA tool set designed for the implementation of designs on Altera FPGAs is called

Quartus [18]. Quartus also has similar set of capabilities as the Xilinx ISE. It provides a

user interface for the configuration and execution of the core tools. Reflecting the general

design flow, Altera design flow is broken down into synthesis and implementation. Designs

are analyzed and synthesized by quartus map while the implementation is handled by quar-

tus fit. Quartus tan is the timing analyzer, quartus asm is the assembler and quartus eda

is the netlist writer. Figure 3.2 summarizes Altera design flow.

Circuit data between the different stages is passed using a proprietary file format. The

files are converted into simulation compatible files by the quartus netlist writer.
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Execution of Tools

Quartus command line executables are designed to be effectively integrated into the batch

flow. Quartus tool framework is designed such that the command line executables can be

interchangeably executed with the GUI. Thus, the tools use the concept of a container

object during the execution. The quartus flow is based on the project file that is used both

by the tools and the GUI. The manipulation of the project file is done by the tools and GUI

through the different stages of the design flow. However, the quartus tools also allow the

specification of command line options. These options are restricted to the major options of

the tools.

Operation in Batch Mode

All Quartus tools follow the similar format of command line parameter specification that is

shown below.

Quartus tool [–option = flag] [project name]
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Chapter 4: Previous Work

The main goal of this thesis is to provide support for the performance evaluation of crypto-

graphic algorithms in a fair and comprehensive manner. Different environments exist that

address the need for performance evaluation. ECRYPT Benchmarking of Cryptographic

Systems (eBACS) [5] is the environment that allows the performance comparison of the

cryptographic algorithms implemented in software. Similarly, FPGA vendors have devel-

oped tools for the exploration of implementation options. In this chapter, we look at the

previous work that has enabled the performance evaluation of cryptographic algorithms.

4.1 eBACS: ECRYPT Benchmarking of Cryptographic Sys-

tems

eBACS project was started by Daniel J. Bernstein and Tanja Lange in 2006 [5]. Within

the project an open source tool, SUPERCOP, was developed to facilitate comparison of

software implementations of cryptographic algorithms.

The general idea is to measure the performance of the software implementations of

cryptographic algorithms on different microprocessors. The performance is measured as

the number of clock cycles taken to process a unit of data. The basic measurement is the

cycles per byte.

As software compilers provide several different options for the code compilation, the

option space exploration becomes a problem. The tool supports the choice of best options

from among 1200 different combinations of compiler options used to compile the source

code of the cryptographic algorithm.

The project supports multiple classes of cryptographic algorithms such as secret key

block ciphers, stream ciphers, hash functions, etc and for each of them defines a standardized
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Application Programming Interface (API).

In spite of clear differences among the software and hardware benchmarking, such as

performance metrics and optimization targets, the major ideas can be applied in the FPGA

domain.

4.2 Option Space Exploration Tools

FPGA vendors have recently started the development of tools for the exploration of imple-

mentation options. The major FPGA vendors Xilinx and Altera publish their version of

exploration tools named ExploreAhead [19] [20] and Design Space Explorer [21] respectively.

ExploreAhead is part of a high level optimization tool called PlanAhead.

Similarly to ATHENa, these software tools allow the exploration of different implemen-

tation options based on user defined strategies or predefined strategies that are shipped

with the tools. Each strategy corresponds to a set of options for each of the tools involved

in the FPGA implementation.

Compared to the exploration tools that target a specific vendor, ATHENa provides

the capabilities to explore FPGA devices of multiple vendors. In terms of optimization,

ATHENa is aimed at achieving the best possible performance, rather than a target perfor-

mance, defined by any actual system specification. Additionally, the optimization strategies

developed within ATHENa will be more closely related to a particular class of digital sys-

tems, starting from (but certainly not limited to) the cryptographic hash functions.
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Chapter 5: ATHENa: Overview and Features

To address the issues and difficulties specified in Section 1.2, and to achieve our goals

ATHENa (Automated Tool for Hardware EvaluatioN) [4] has been developed. The sys-

tem facilitates the fair comprehensive, reliable, and automated comparison of algorithms,

architectures, hardware platforms, HDL languages and FPGA tools.

5.1 ATHENa Overview

ATHENa provides a platform to conduct comprehensive experiments and compare the re-

sults of different cryptographic algorithms through a reliable methodology. The general

idea of ATHENa is shown in Figure 5.1 with the data flow direction marked in the order

of occurrence.

ATHENa server is the focal point of the environment. The server hosts the ATHENa

website and the repository of scripts and configuration files available for download. The

server also hosts the database of results submitted by the developers. ATHENa website

provides a communication interface between the server and all the other entities in the

environment.

As one of the goals of ATHENa is to support the SHA-3 competition [3], ATHENa web-

site provides information about all cryptographic algorithms competing in this contest. This

information includes the algorithm specification, reference implementation, and test vectors

used for verification of the design. In addition, the website also provides the interfaces and

test benches required for the performance evaluation process.

Hardware developers can download these specifications, interfaces and test benches to

develop an implementation of a certain algorithm in HDL. The designers can also develop

their own interfaces and test benches by themselves following the guidelines in ATHENa
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Figure 5.1: Athena environment overview

developers manual [22]. In that case, the prior download of interfaces is not required. Once

the HDL code is ready and its functionally tested through simulation, the performance

evaluation process can begin.

Performance evaluation process starts with the developer/user downloading the ATHENa

scripts and configuration files from ATHENa website to a local machine. The software re-

quired for running ATHENa is a Perl interpreter and the Electronic Design Automation

(EDA) tools provided by the FPGA vendors.

The Perl scripts automate the FPGA design flow (Section 3.2). The configuration

files contain information about the location of HDL source files, location of tools, target

hardware platforms, optimization strategies and other parameters required by the scripts.

The user modifies the configuration files such that they contain all the information necessary

to configure the scripts. The scripts will execute the EDA tools based on the information

provided in the configuration files.

After the execution, a report summary will be generated by ATHENa scripts in the
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format that is human readable and suitable for database storage. The report contains a

summary of results, extracted from the EDA tool reports, in terms of performance, and

utilization of the FPGA device. The designer can review the reports and can upload the

corresponding database entries to the ATHENa database.

The ATHENa server hosts database of results for various algorithms submitted by mul-

tiple developers. These results will be available to the cryptographic community to be

reviewed. A reviewer can submit a request to the ATHENa server through the website

to acquire ranking or other information related to the designs being reviewed. ATHENa

environment does not require the source codes to be published for the reviewers. All the

required computations are performed on the user’s local machine, thus eliminating the need

to reveal the source codes to third parties. The reviewers have the necessary information,

such as detailed report of the build environment, to conduct a fair comparison.

5.2 Features

The main features of ATHENa are outlined here.

5.2.1 Multi-vendor and Family Support

ATHENa currently supports Altera and Xilinx FPGAs. Together these vendors account

for about 90 percent of the FPGA market. A substantial variability exits between these

vendors FPGA architectures. As a result, the ranking of cryptographic algorithms or archi-

tectures obtained using devices of one FPGA vendor may not carry over to the devices of

another vendor. FPGA vendors also support multiple classes of families that are optimized

for performance, cost and power consumption, and performance to cost ratio. Families

belonging to different classes differ significantly, and therefore may produce substantially

different results and rankings. ATHENa allows us to investigate the dependence of results

and rankings of algorithms on these FPGA families.
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5.2.2 Automatic Choice of FPGA Device

Performance degradation occurs on FPGAs when the device utilization of a certain design

nears 100%. This effect is caused mostly by the difficulties associated with routing in

congested circuits. The utilization threshold at which the performance degradation begins is

a function of an FPGA family and the implemented circuit. Thus, the ranking of algorithms

is dependent on the FPGA device being used.

ATHENa allows a best match option that chooses a specific device for a cryptographic

design based on the device utilization factors set by the user. At first, the design is im-

plemented on an arbitrary device of a given family. ATHENa then retrieves the utilization

results of the implemented design and calculates the best device based on a device library.

This feature also allows the user to specify the utilization factors for not only the logic

resources, but as well the dedicated resources such as memory and DSPs.

ATHENa maintains a library with information about all the devices of a given FPGA

family and the available resources. These libraries are constantly updated with the emer-

gence of newer versions of vendor tools.

Given the variety of FPGA devices available in the market, ATHENa could determine

the best choice of a device for a particular implementation style of an algorithm.

5.2.3 Option Space Exploration

The results generated by the FPGA tools are highly dependent on the choice of options,

and design constraints. A large variation in the results can be noticed with different sets of

options. ATHENa provides the capabilities to investigate the effects of different options on

various families and devices.

Currently ATHENa tackles this task with the use of applications. Applications are

extension modules to the Perl scripts that are used to study the effects of different sets of

options. A detailed explanation of all the applications is given in the Section 6.2.
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5.2.4 Design Verification

Another capability provided in ATHENa is the automated design verification. Currently

only functional verification is performed before the execution of FPGA tools. The verifica-

tion is a necessary step to conclude the correctness of the implemented design. However,

the verification step is not required. The verification is implemented in such a way that it

is performed automatically for all the designs if the appropriate conditions are set.

Functional verification is based on the testbenches that return a binary answer conclud-

ing the passing or failure of a specific design. Sample testbenches are published for the

cryptographic algorithms that are competing in the SHA-3 competition.

Designers are responsible for developing testbenches for new algorithms following the

generic templates provided through ATHENa website.

5.2.5 Automated Result Generation

ATHENa is capable of executing the FPGA design flow in an automated manner. Due to

the comprehensive and time-consuming nature of the executions ATHENa can run for long

periods of time without any user supervision.
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Chapter 6: ATHENa: User Interface and Core Components

At the core of ATHENa environment is a set of Perl scripts that carry out the performance

evaluation process. The configuration of the scripts is done through a text based interface.

All information required by the scripts is provided through text files. In addition to the

configuration files, the scripts accept as inputs HDL sources, constraint files, and device

library files. They produces report files with the results of evaluation. This chapter describes

the user interface as well as some of the core components of ATHENa.

6.1 Primary Configuration File

The configuration of ATHENa is achieved through configuration text files. The main con-

figuration file is referred to as design configuration and contains basic information required

for the execution.

The design configuration file is split into different sections, which are used to control

different features and the process flow of ATHENa. They are global settings, verification

settings, and design and implementation settings.

The global settings specify the information about the location of sources, and the

workspace directory used to store results. The verification settings specify the informa-

tion necessary to perform verification of the design. This information includes testvectors,

number of clock cycles required to perform the correct verification, etc.

The design and the implementation settings are the crucial part of the configuration.

They include settings pertaining to the design such as the top level design entity, clock net

name, optimization target, the type of application (Section 6.2), and the different families

and devices the design is to be implemented on.

The design configuration file guides the execution of the ATHENa environment.
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6.2 Applications

Applications are extension modules to the core Perl scripts that are used to study the effects

of different sets of tool options. Given a set of options, an application implements the design

using different combinations of these options, while trying to achieve an optimization goal.

Applications can be targeted towards achieving different optimization goals.

Each of the applications is executed individually for every FPGA family specified in the

design configuration. Additionally, each application is assigned a separate configuration file

that specifies all the required information for its successful execution. The details about

application configuration files are given in the ATHENa developer guide [22]. ATHENa

comes with a set of default applications that are described below.

• Single run: A single run is the execution of the FPGA design flow using just one set

of options. This is similar to executing the FPGA tools in batch mode, as described

in Section 3.2. The options used for the execution of the tools specified by the user

in the text based options file are loaded and passed to the tools.

The single run application acts as a base for all the other applications designed for

ATHENa. Applications break down multiple combinations of options into numerous

single runs each with a unique set of options.

• Placement search: Placement search permits the exploration of the result depen-

dencies on a starting point of placement during the place and route process. The

starting point is determined by the place and route tool options. These options are

referred to as COST TABLE in Xilinx FPGAs and SEED in Altera FPGAs. The

COST TABLE is an integer value between 1 and 100, while SEED is an integer be-

tween 1 and 232. Exploration of the full range of values is computationally prohibitive,

especially in case of Altera, so a representative subset of the full range needs to be

selected. The COST TABLE and SEED values are specified in the placement search

configuration file.

• Exhaustive search: Exhaustive search extends the option exploration to include
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all the possible tool options along with the investigation of multiple target clock fre-

quencies. Since it becomes computationally prohibitive to explore all possible options,

exhaustive search allows the exploration of options in two levels to reduce the execu-

tion time. The option sets explored at these levels are specified through the exhaustive

search configuration file.

Level 1 options are explored while level 2 options remain at their default values. A

subset of level 1 options is then chosen according to the optimization criteria, such as

speed, area or speed to area ratio. At this point, the level 1 options are kept constant

at their best possible values, while the level 2 options are explored.

6.3 Tool Options

Tool option files specify all the information necessary to execute the FPGA tools through

ATHENa. The options files follow a hierarchical approach that is focused on the ease of

modification by the users. The hierarchy is shown in the sample option description below,

thus allowing multiple vendors, tools, options and flags to be described in a single option file.

VENDOR TOOL OPT

#comment

Option 1 = value 1

Option 2 = value 2

END OPT

ATHENa applications use a unified option file format. Development of new applications

only requires the use of abstract functions defined in ATHENa. The data structure of the

options files is defined in Section 7.3.
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6.4 Library Files

Device libraries have been developed to support different features of ATHENa. The library

is a collection of information about the devices of a given FPGA family. ATHENa library

files support all major families from Xilinx and Altera and they are organized according

to FPGA tool versions currently supported by ATHENa. These libraries are constantly

updated with the emergence of newer versions of vendor tools and families. To reduce the

size of library files only FPGA devices with the largest packages and highest speed grades

are represented in the device library.

For Xilinx FPGAs, the parameters stored in the library files include the number of CLB

slices, BRAMs, DSP units, multipliers, and I/O pins per every device. For Altera devices,

the library files include the number of Logic Elements or Adaptive Look-Up Tables, total

amount of memory bits, DSP units, multipliers and I/O pins.

6.5 Result Files

ATHENa generates a complete report summary at the end of execution. The report is

generated both in human readable and machine friendly formats. The human readable files

are formatted in ASCII such that the user can easily review them after the execution. The

database entries are stored as a comma separated file that can be uploaded to the ATHENa

database. Both files share the same information.

The report summary includes the details of families and devices used in the evaluation

process, tool options, performance and utilization reports, and an execution time report for

each of the runs.

The utilization report provides information about device resources used by the design.

These resources are similar to the ones kept in the library; CLB slices, BRAMs, DSPs,

multipliers, and I/O pins for Xilinx and Logic Elements, total amount of memory bits, DSPs,

multipliers and I/O pins for Altera. The performance/timing report includes information

about the requested and achieved clock frequencies per each run on a device. ATHENa also
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provides the capabilities to calculate throughput and latency from the performance reports

by using user provided formulas. These formulas are provided in the design configuration

file.

The option report contains the command line options and flags that are used during the

execution. Similarly, the synthesis, implementation and total execution time is reported for

each run.

In addition, ATHENa also allows the partial results to be viewed during the course of

the execution, using a script called report generator. The instruction and details about the

report generator are present in the user manual.

6.6 ATHENa Database

ATHENa database provides an interface to store and view the results of all the algorithms

submitted by designers.

It stores the information regarding the exact conditions in which the design was evalu-

ated. This information includes the tool options, constraints, tool execution times, etc. The

database also stores the performance and utilization results. The lack of information about

the conditions of evaluation, while comparing the results, may lead to an unfair compari-

son. In addition, the database also stores other information about the designs that is not

captured by ATHENa. This includes information about algorithm authors/developers, ar-

chitecture and optimization target, internal details of the architecture, such as the Datapath

width, formulas for the throughput and latency calculation, etc.
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Chapter 7: ATHENa: Framework and Internal Structure

Chapter 6 gave details of ATHENa user interface and core components. This Section

describes the framework that ATHENa is built upon and gives details about how the core

components are implemented internally. The process flow of ATHENa is also described in

this chapter.

7.1 Choice of the Programming Language

ATHENa software environment requires automation as well as the capabilities for large

volume data processing. The automation requirement is necessary due to the need to execute

the FPGA design flow without user interaction. In addition, the report files generated by

the FPGA tools need to be parsed for the efficient storage and processing of results by the

ATHENa database.

Regular expressions are used to identify patterns in the text based report files generated

by the FPGA tools. These patterns represent results or other information related to the

FPGA design implementation. Along with the regular expressions, other features such as

data types provided by Perl make it an ideal language for the ATHENa development.

Other programming languages provide similar functionality, sometimes in more efficient

manner. However, in our case, the ease of development is a much more important factor than

the computational efficiency of the language. For example, while implementing medium to

large designs, the ATHENa executes for a long time. Majority of the time spent in execution

is taken by the FPGA tools, while the Perl script that initiated the execution only accounts

for a very small fraction of the total execution time. Thus, the computational efficiency

of the scripts has not been an important factor in the decision regarding the choice of the

programming language.
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7.2 ATHENa Framework

ATHENa framework is designed based on two key concepts. They are flexibility and modular

design. Flexibility in ATHENa framework will allow the seamless integration of new versions

of tools, new vendors, and new families for the currently supported vendors.

To accompany the addition of new tools and vendors, ATHENa follows the concept

of a ’run’. A run is an abstract data structure object that facilitates the collection of all

the information required to execute the FPGA design flow once. The information includes

the tool names, versions, and options, directory structure, optimization target, and other

details about the design being implemented.

A run also provides the ability to store the results after the execution. With all the

information packed into a single object, a run can be shared through the different stages of

ATHENa process flow. The run data structure has also the ability to be expanded with the

addition of new information categories, thus minimizing the number of changes performed

in the ATHENa core while supporting new vendors and tools. The run data structure is

described in detail in Section 7.3.

Another concept the ATHENa framework follows is the modular design principle. The

two areas where this principle is visible are the applications and tool option files. ATHENa

allows the development of applications by a third party. ATHENa developers guide [22]

provides a set of procedures to adhere to, that would allow the third-party applications to

be integrated into the system. Designers can use this feature to test their strategies on the

designs during the performance evaluation process. Similarly, the tool option files follow a

modular format that is shared by all the applications. Parsing of these option files is done

by a plug-in module that could be easily replaced.

ATHENa execution framework is based on hierarchical execution. The execution of an

application against the run object is called the run. Applications have the ability to generate

and execute child runs as required. A run object is associated with each of the child runs

and contains the necessary information for their execution. This allows the possibility

of building an application stack. In this methodology, applications can be executed in a
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hierarchical manner rather than as standalone functions. Applications can set the child

runs to execute a different application, thus creating an application stack. The run object,

with the collection of all the information can be passed down with the collection of best

settings from the parent application in the hierarchy. Currently ATHENa only supports

standalone application execution, with a one level of hierarchy, where all the child runs are

executing single run application.

7.3 Internal Data Structures

ATHENa consists of several internal data structures that are required for efficient infor-

mation collection and processing. The main object shared among the different stages of

ATHENa process flow is the ’run’ object.

The run object is the base on which all the ATHENa applications are built. It contains

the detailed information required to execute the FPGA design flow. Figure 7.1 lists all the

attributes of the run object.

Majority of the data is represented as strings, integers or other primitive objects. How-

ever, some of the information requires the use of a hash data structure. Hashes are asso-

ciative arrays used to represent data with an associated key. For example, representation

of configurable elements in Xilinx device library has two parts associated with it. The CLB

slice is the key and the number of slices is the value in the library hash. The advantage of

this approach is that, the library hash is flexible to accept different types of configurable

elements from multiple vendors; slices for Xilinx or logic elements for Altera.

Information regarding the utilization factors, device information, utilization results and

performance results are represented in the run object using hashes. A key difference in the

handling of tool options is that they are represented as a hash tree. The run object also

provides a set of operators to access and manipulate the specific attributes. The details

about these functions are available in the developers’ manual.

Tables 7.1 and 7.2 shows the details of the hashes.
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Figure 7.1: Data structure of the RUN object.

Table 7.1: Hash data structure of Utilization factors, Device specifications, Utilization
results is shown here

Object name: **Utilization factors, Device specifications, Utilization results

KEY : data type VALUE: data type

*device hardware item 1 : string # : double

*device hardware item 2 : string # : double

*device hardware item N-1 : string # : double

*device hardware item N : string # : double

* Device hardware item for Xilinx: SLICE, BRAM, DSP, MULT, IO
* Device hardware item for Altera: LE/ALUT, MEMORY, DSP, MULT, IO

** Utilization factors, Device specifications, Utilization results share the same data
structure

Table 7.2: Hash data structure of performance results is shown here

Object name: Object name: performance results

KEY : data type VALUE: data type

ACHIEVED FREQ : string # : double

ACHIEVED PERIOD : string # : double
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7.4 Major Program Flow

ATHENa process flow consists of 3 main stages: initial setup, execution, and report gen-

eration. The main stages are then subdivided into smaller stages. The following figures

illustrate the ATHENa process flow.

Figure 7.2: Athena process flow breakdown.

The initial setup is required for the configuration and selection of tools, libraries, and

workspace as they are the necessary components used for the execution of ATHENa. The

configuration and the option files are loaded into the data structures specified in Section

7.3.

ATHENa core execution happens in multiple stages as well. With the required infor-

mation gathered from the configuration files, ATHENa goes through several steps during

execution. First, a functional verification is executed based on the options set in the design
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Figure 7.3: Functional verification flow

configuration file. The Figure 7.3 shows the control flow of functional verification.

ATHENa then generates the list of runs based on the device and family information

provided in the design configuration. The runs are dispatched to the appropriate directories

and then executed. The steps in this process are repeated throughout the execution flow.

Each of the runs can generate and execute child runs that form a hierarchy model. This

process is labeled execution flow generation. Figure 7.4 shows the steps involved in this

process.

The execution of individual runs breaks down to several steps. ATHENa supports

the choice of best device for a given design. Before ATHENa executes the application,

a device check is performed. If the device is not present, ATHENa performs temporary

implementation of the design to make a correct choice of a device. A new child run is

created and executed with the appropriate device. Similarly applications can create and

execute numerous child runs.

The general idea of the execution is presented in Figure 7.5. In this case, the exe-

cution stretches four levels. However, an ATHENa process flow can cover anywhere from
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Figure 7.4: Flow generation process of ATHENa

two or many levels. (The maximum number of levels is restricted by the availability of

computational resources on which ATHENa is being executed). For example, if the user

has specified a single run application with the exact device information, rather than best

match, the execution will end at level 2. In the same case, if the user specified the device

to be a best match, the process flow would end at level 3. During level 2 ATHENa would

find the best choice of the device and generate and execute a new run with the appropriate

device.

Detailed explanations of run configuration are given in the ATHENa developer guide

[22].
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Figure 7.5: Sample execution of ATHENa environment.
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Chapter 8: Case Studies

Two case studies are presented in this chapter that are aimed at demonstrating the capa-

bilities of ATHENa. The first case study demonstrates the techniques and methodologies

that could be used to compare cryptographic algorithms using ATHENa. An optimization

strategy will be developed to achieve the best throughput to area ratio. The second case

study is aimed at the comparison of fourteen round 2 candidates in the SHA3 competition.

8.1 Case Study 1: Demonstration of Meeting Comparison

Goals

8.1.1 Designs Evaluated

Two algorithms have been selected to be evaluated in the case study. First algorithm is

SHA256, a current cryptographic standard. The second algorithm is Fugue256, currently

competing in the contest for the new hash function standard SHA3. Two implementations of

SHA256 and one implementation of Fugue256 have been chosen. SHA256 was developed by

NSA and was standardized by NIST in 2002. Fugue algorithm specification was developed

by IBM in 2008-2009, in response to the NIST call for SHA-3 candidates. Fugue256 can be

developed in HDL from the specification.

Out of the several hardware architectures of SHA256 two architectures referred to as the

basic loop and architecture with rescheduling are chosen. Basic loop is a straightforward

sequential implementation of the algorithm, while the architecture with rescheduling is more

optimized. The architecture with rescheduling was developed by Chaves et al. [23] which

is optimized for the maximum throughput to area ratio.

Efficient implementations of all three designs have been developed in VHDL by the

CERG group at GMU. These implementations follow a generic interface suitable for the
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majority of modern cryptographic hash functions, including SHA-1, SHA-2, and SHA-3

candidates. The implementations were verified using a generic testbench, in which only an

external test vector file is specific to a given hash function algorithm.

8.1.2 Methodologies

The case study is aimed at developing a heuristic optimization strategy that offers an

acceptable tradeoff between time spent on optimization and the quality of obtained results.

First, a set of experiments will be performed on each of the designs mentioned above. Then

an optimization strategy is developed to reduce the time spent on optimization while still

achieving acceptable results. First the experiments are conducted on Xilinx FPGAs for the

rescheduling architecture of SHA256 algorithm. Then similar experiments are repeated for

the other architectures with both Xilinx and Altera FPGAs.

In order to optimize the choice of an FPGA device within a given family, the dependence

of maximum clock frequency on the CLB slice utilization needs to be determined. In

order to determine the dependence, a parameterized circuit is built that is comprised of

a cascade of N SHA256 units, separated by registers. Figure 8.1 shows the idea of the

parameterized circuit. A Spartan 3 device for which one unit of SHA256 takes about 3.33%

of CLB slices has been chosen. This way, by changing the parameter N, the maximum clock

frequency of a circuit could be determined for the CLB utilization that ranges from 3.33%

to 96.67%. Figure 8.2 shows the dependency of maximum clock frequency on the CLB slice

utilization for the Spartan 3 family. To compensate for the effect of tool options in this

experiment all the clock frequencies have been obtained using exhaustive search with 48 sets

of options, described below. Based on the dependence shown in Figure 8.2, a threshold of

80% of resource utilization is chosen as a value beyond which the maximum clock frequency

deteriorates by a factor larger than 10%.

Using ATHENa in the best match single run mode with the MAX SLICE UTILIZATION

set to 80%, the smallest Spartan 3 device, for which the CLB slice utilization does not exceed

80%, was determined to be xc3s200ft256-5. From this point, all the experiments conducted
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Figure 8.1: A parameterized circuit with N SHA256 units cascaded while separated by
registers.

Figure 8.2: Dependence of the maximum clock frequency on the CLB slice utilization for
Spartan 3 FPGA.
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on SHA256 designs will use this specific FPGA device.

In order to optimize the circuit for the maximum throughput to area ratio, the Exhaus-

tive Search function of ATHENa was employed. Due to the computationally prohibitive

nature of exploring all options, a set of options with the major impact on the frequency are

chosen. These options are specified below.

• optimization target for synthesis: area, speed

• maximum fan-out: 50, 100, 500

• optimization target for mapping: area, speed

• optimization effort level for mapping: medium, high

• optimization effort level for placing and routing: medium, high

The total number of parameter sets tested was 24 * 3 = 48. The results of this parameter

space exploration are shown in Figure 8.3. The data represented in the figure is spread out

into three columns. This is due to the synthesis tool options, the first process in design flow,

affecting the output significantly. The effect of the rest of tool options is not as significast

as the synthesis options. It should also be noted that during this experiment a target clock

frequency is not requested. (When the target clock frequency is requested/specified, the

PAR tool optimizes the design such that the requested frequency is achieved).

Out of 48 sets of parameters, a set with best ratio of maximum clock frequency to the

CLB utilization is chosen. This set corresponds to the options:

• optimization target for synthesis: speed

• maximum fan-out: 100

• optimization target for mapping: area

• optimization effort level for mapping: medium

• optimization effort level for placing and routing: medium
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Figure 8.3: Results of the Exhaustive Search for 48 sets of Level 1 parameters.

The total execution time of this phase was equal to about 1.5 hr on the 2.66 GHz Intel

Core 2 Duo processor.

The next step is to investigate the effect of 100 different values of Cost Table on the

maximum clock frequency. Cost table is the starting point of placer during the place and

route process. Depending upon the starting point, the design exhibits performance gain or

degradation. Figure 8.4 shows the distribution of the maximum clock frequencies obtained

using these 100 values of Cost Table. Each bar in the diagram represents the number of

Cost Table values, for which the maximum clock frequency falls within a given 1 MHz range.

A black mark on the bar represents the results from default Cost Table value equal to 1.

The grey marks on the bars represent the number of results from Cost Table values from

the reduced set of Cost Tables 21, 41, 61, and 81. Together with the black bar, these bars

represent a reduced-time exhaustive search taking only 5% of time used for the full-time

exhaustive search.

Another experiment performed is to study the effect of target clock frequency on the

obtained clock frequency. Figures 8.5, 8.6, 8.7, and 8.8 demonstrate that the obtained

clock frequencies are strong function of target clock frequencies. Target clock frequency

represents a frequency that is provided as a requirement for the FPGA tools. In particular,

47



Figure 8.4: Distribution of the actual clock frequencies for the default target clock frequency
with 100 values of the Cost Table.

Figure 8.5: Distribution of the actual clock frequencies for the target clock frequency equal
to 80 MHz.
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Figure 8.6: Distribution of the actual clock frequencies for the target clock frequency equal
to 85 MHz.

Figure 8.7: Distribution of the actual clock frequencies for the target clock frequency equal
to 90 MHz.
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Figure 8.8: Distribution of the actual clock frequencies for the target clock frequency equal
to 95 MHz.

when the target clock frequency is either set to default, the spread of the clock frequencies

achieved with the different Cost Table values is quite large. A similar behavior appears

when the target clock frequency is set higher than the achievable clock frequency. (In this

case, the achievable clock frequency is defined such that it is lies with in 20% of the highest

clock frequency achieved through the experiments). The results of default clock frequency

and high clock frequency settings are demonstrated in Figure 8.4 and 8.8 respectively.

Requesting a target clock frequency that is realistic causes the spread becomes narrower

as shown in Figure 8.6. When the target clock frequency is smaller than the frequency that

can be easily achieved by the tools, the distribution becomes very narrow, and the actual

clock frequency only marginally exceeds the target value. This is demonstrated in Figure

8.5 . In all the aforementioned diagrams, brown bars denote the achieved clock frequencies

in case of target clock frequency set to default, green bars denote achieved clock frequencies

that are higher than the target clock frequency, and red bars denote frequencies that are

lower than the target clock frequency. For example, in Figure 8.6 the target clock frequency

is set to 85 MHz. All the clock frequencies under 85MHz are denoted by red, while clock

frequencies that are 85MHz and higher are denoted in green.
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Table 8.1: Tradeoff between performance improvements and time spent on optimization for
the different exhaustive search settings

Full-time Reduced-time
Single Run exhaustive search exhaustive search

Frequency MHz 80 MHz 88 90

% improvement over single run 0% 10% 12.50%

Time Few minutes 2 hours 5 hours

The highest actual clock frequencies were achieved for the case of the target clock fre-

quency equal to 90 MHz, as shown in Figure 8.7. In this case, the maximum clock frequen-

cies found using full-time exhaustive search, reduced-time exhaustive search and single run

are 90 MHz, 88MHz and 83MHz respectively. Thus, the reduced-time exhaustive search

gives results falling within approximately 2% from the highest value obtained using full-time

search, and it outperforms the single run by 5 MHz (approximately 6%).

Overall, the obtained improvement of maximum clock frequency compared to single run

with default values to all parameters, was equal to 12.5% (from 80MHz to 90MHz) for

full-time exhaustive search, and 10% (from 80MHz to 88MHz) for reduced-time exhaustive

search. The full-time exhaustive search took about 5 hours, while the reduced-time exhaus-

tive search took about 2 hours. However, the improvement is a strong function of FPGA

family and the particular circuit. The data is summarized in table 8.1.

In general, the experiments demonstrated that the exhaustive search of ATHENa is a

viable option for improving the implementation results at least for medium size circuits.

The execution time of this search can be substantially reduced, using heuristic algorithms,

at the cost of only minor degradation in the values of optimized results.

The next step is to repeat similar experiments on the Altera FPGAs with the Cyclone

II family. Similar to Xilinx, the dependency of the maximum clock frequency on the Logic

Element utilization needs to be determined.

From the Figure 8.9, a threshold of 80% is chosen as a value beyond which the maximum

clock frequency deteriorates by a factor larger than 10%. The best match device chosen by

ATHENa is ep2c5f256c6.
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Figure 8.9: Dependence of the maximum clock frequency on the CLB slice utilization for
Cyclone II FPGA.

Then the exhaustive search is performed with the option set described below, while

setting the target frequency to default.

• optimization target for synthesis: speed, area, balanced

• timing-driven synthesis : yes, no

• optimization effort level for synthesis: std, auto

• optimization effort level for placing and routing: std, auto

The total number of combinations is 24. The results of this parameter space exploration

are shown in Figure 8.10. Out of 24 sets of parameters, a set with best ratio of maximum

clock frequency to the CLB utilization is chosen. This set corresponds to the options:

• optimization target for synthesis: speed

• timing-driven synthesis : yes

• optimization effort level for synthesis: std

• optimization effort level for placing and routing: auto
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Figure 8.10: Results of the Exhaustive Search for 48 sets of Level 1 parameters.

Next, the analysis on the starting point of placement for the PAR tools is performed.

The placement position is referred to as SEED in Altera FPGAs. The values of SEED range

from one to 232-1. A representative subset of 100 values is chosen to perform the analysis.

The distributions of the maximum clock frequencies using 100 SEEDs is shown in Figure

8.11. The graphs follow the same format outlined above.

Finally, a target clock frequency analysis is performed on the design. The results of this

experiment are shown in Figures 8.12, 8.13, and 8.14. The results from SEED values

represented in grey, along with the first results from SEED values shown in black, represent

a reduced set of the total 100 values. An interesting observation, unlike in Xilinx FPGAs, is

that the maximum achieved clock frequency is a week function of the target clock frequency.

All the figures show that the spread of achieved frequencies remains similar regardless of

the targeted frequency.

The highest actual clock frequencies were achieved for the case of the target clock fre-

quency equal to 110 MHz, as shown in Figure 8.13. However, the spread of frequencies, in

this case, is very similar to the spread where the target clock frequency is set to default.

This property remained consistent for all other target clock frequencies. In addition, for

all the target clock frequencies reduced SEED set never achieved the clock frequencies that
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Figure 8.11: Distribution of the actual clock frequencies for the default target clock fre-
quency with 100 SEED values.

Figure 8.12: Distribution of the actual clock frequencies for the target clock frequency equal
to 100 MHz.
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Figure 8.13: Distribution of the actual clock frequencies for the target clock frequency equal
to 110 MHz.

Figure 8.14: Distribution of the actual clock frequencies for the target clock frequency equal
to 120 MHz.
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were better than the case with the default target frequency. However it is possible that this

behavior is very design and tool dependent.

Through the different experiments it is determined that, in case of Altera, the results

after place and route were a very weak function of the target implementation frequency.

On the other hand, in case of Xilinx, the achieved clock frequencies are a strong function of

the target implementation frequency. As a result, different heuristic optimization strategies

are created for FPGA devices from Xilinx and Altera.

Xilinx Optimizations

For Xilinx FPGAs, a search for the highest target clock frequency is performed at the

beginning. This search involves several single runs of tools, with the target clock frequency

first set to the default value, and then gradually increased using a binary search algorithm,

based on the corresponding actual clock frequency obtained from a given run. For the

highest target clock frequency obtained the exhaustive search is conducted with the number

of option sets reduced from 48 to 8 compared to the original experiment. A reduced set

of options are chosen such that the different settings of the options have significant effect

on the results. The options with lesser effect on the results are eliminated to reduce the

execution time. The reduced set of options is specified below.

• optimization target for synthesis: speed, area

• optimization target for mapping: speed, area

• optimization effort level for placing and routing: medium, high

Finally, for the best set of options returned by exhaustive search, placement search is

conducted with the number of initial Cost Table values reduced from 100 to 5 compared to

the initial experiment. The total number of runs required by this strategy is in the range of

15 to 20. The total number of runs are calculated by adding the number of runs required

for the highest achievable frequency search, the number of exhaustive search runs, and the

number of Cost Table runs. (Total number of runs = 2 to 7 runs + 8 runs + 5 runs)
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Altera Optimizations

For Altera FPGAs, the exhaustive search is applied directly without the search for highest

target clock frequency. Similar to Xilinx optimizations, the number of exhaustive search

options has been reduced to 12. These options are specified below.

• optimization target for synthesis: speed, area, balanced

• optimization effort level for synthesis: std, auto

• optimization effort level for placing and routing: std, auto

8.1.3 Results and Analysis

The heuristics developed in Section 8.1.2 are applied to the different types of evaluations

described in the Section 2.2. The comparisons are between:

• Algorithms: SHA256 vs. Fugue-256

• Architectures: Basic loop vs. Rescheduling

• FPGA platforms: Xilinx Spartan 3 vs. Altera Cyclone II

• FPGA tools: Xilinx ISE v. 9.1 vs. v. 11.1

The results of all the comparisons are summarized in the following table 8.2, 8.3, 8.4,

8.5. In each table, the results are presented in the following order of single run results,

optimized results, and the ratio of results respectively. Single run is the basic approach

where all the options to the tools are set to default.

All the tables report information regarding frequency, area, throughput, throughput to

area ratio, and the execution time. Frequency is expressed in MHz, while area is expressed

in CLB slices for Xilinx and Logic Elements for Altera. However, when comparing across

platforms, an equivalent measurement for area is required. Thus, the area of Xilinx FPGAs

is expressed in terms of logic cells which are approximately half the size of the CLB slices.
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Table 8.2: Comparison of two cryptographic hash function algorithms: SHA256 and Fugue-
256 using Xilinx Spartan 3

SHA 256 Fugue 256

Single Optimized Ratio Single Optimized Ratio

Frequency [MHz] 79.46 88.22 1.11 34.38 40.1 1.17

Area [CLB slices] 1020 883 0.87 3987 3873 0.97

Throughput [Mbit/s] 625.9 694.9 1.11 1100.2 1283.2 1.17

Throughput/Area 0.61 0.79 1.3 0.28 0.33 1.18

Execution Time [min] 2.15 42.3 18.89 5.16 105.23 20.08

Table 8.3: Comparison of two different hardware architectures of SHA256 using Altera
Cyclone II

Basic Loop Rescheduling

Single Optimized Ratio Single Optimized Ratio

Frequency [MHz] 106.47 108.49 1.02 105.5 110.69 1.05

Area [LE] 2291 2216 0.97 2019 2015 1

Throughput [Mbit/s] 838.7 854.6 1.02 831 871.8 1.05

Throughput/Area 0.366 0.386 0.386 0.412 0.433 1.05

Execution Time [min] 0.42 13.02 18.61 0.41 12.58 19.07

The logic cells are approximately equivalent to Logic Elements in Altera. In addition,

Throughput is expressed in megabits per second and the ratio of throughput to area is

expressed in megabits per second per area unit. Finally, the execution time is expressed in

minutes.

The data reveals that Fugue256 outperforms SHA256 in terms of throughput. However,

it is inferior in terms of area and the throughput to area ratio. In addition, the optimization

of SHA256 improves area and throughput almost equally, while in Fugue, it affects practi-

cally only throughput. Though the execution time is relative large for Fugue256, compared

to SHA256, the optimization ratio of the execution time is comparable for both designs.

The results of comparison between basic loop architecture and the architecture with

rescheduling are shows in table 8.3. These architectures are implemented on Altera Cyclone

II device.

In terms of frequency, the basic loop performs better than the architecture with reschedul-

ing in single run. It is surprising that the architecture that is not optimized outperforms the

optimized architecture. However, the rescheduling architecture has better performance after
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Table 8.4: Comparison of two different target hardware platforms: Xilinx Spartan 3 and
Altera Cyclone II for SHA256 (architecture with rescheduling). Area for Xilinx Spartan 3 is
given in Logic Cells (LC), which are a half of a CLB slice, in order to make this parameter
comparable to area for Altera expressed in Logic Elements (LE).

Xilinx Spartan 3 Altera Cyclone II

Single Optimized Ratio Single Optimized Ratio

Frequency [MHz] 79.46 88.22 1.11 105.5 110.64 1.05

Area [LC or LE] 2040 1776 0.87 2019 2015 1

Throughput [Mbit/s] 625.9 694.9 1.11 831 871.8 1.05

Throughput/Area 0.312 0.391 1.28 0.412 0.433 1.05

Execution Time [min] 2.15 42.3 18.89 0.51 14.2 17.27

Table 8.5: Comparison of two different versions of tools: Xilinx ISE Design Suite v.11.1 vs.
v. 9.1 for SHA256 (architecture with rescheduling)

Xilinx ISE v. 9.1 Xilinx ISE v. 11.1

Single Optimized Ratio Single Optimized Ratio

Frequency [MHz] 77.87 92.58 1.19 79.46 88.22 1.11

Area [CLB slices] 1020 873 0.87 1020 883 0.87

Throughput [Mbit/s] 613.4 729.2 1.19 625.9 694.9 1.11

Throughput/Area 0.601 0.835 1.39 0.614 0.787 1.28

Execution Time [min] 2.17 42.2 18.24 2.15 42.3 18.89

the optimizations. This demonstrates that the application of option exploration on designs

could lead to better performance. The area of both architectures are quite comparable.

Table 8.4 summarizes the data of the comparison of SHA256 algorithm on two different

FPGA architectures, Xilinx Spartan 3 and Altera Cyclone II. The two architectures belong

to the same generation and class. Both families are optimized for low cost and are man-

ufactured using 90 nm technology. In this comparison, Cyclone II outperforms Spartan 3

in terms of frequency, throughput and throughput to area ratio. The difference between

the families decreases with the optimization. The ratio of improvement in throughput for

Spartan 3 is higher than of Cyclone II. However, this it is possible that the results are

design dependent. Therefore the conclusions might not hold true for other architectures of

the SHA256.

The last comparison is between two different versions of Xilinx ISE tool, Xilinx ISE 9.1

and Xilinx ISE 11.1. The comparison is made by implementing the SHA256 architecture
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with rescheduling. For a single run, the newer version of tool performed better. However,

with the optimizations, the older versions of ISE outperformed the new version. This is

an unexpected behavior since never version of tools should be optimized to perform better

than their predecessors. However, it is possible that the tools are optimized to target newer

generations of FPGA families and the optimizations may not carry over to the previous

generations of FPGAs. The area and the execution time remain consistent with the different

versions.

In summary, all four tables demonstrate a potential for generating interesting, non-

trivial, and sometimes unexpected results regarding the properties of various algorithms,

architectures, FPGA families, and FPGA tools.

8.2 Case Study 2: Comparison of 14 Round 2 SHA-3 Can-

didates

Case study 2 presents the performance evaluation of 256 architectures of the 14 round 2

candidates participating in the SHA3 competition along with the current standard, the

SHA2 algorithm. The case study is aimed at improving the results of the implemented

designs using just the optimization techniques available in ATHENa. All the designs are

implemented and optimized on Xilinx Virtex 5 FPGAs using ATHENa.

Initially, the designs are implemented using the default options (single run application

in ATHENa). Subsequently, the designs are implemented using the different optimization

techniques available in ATHENa (exhaustive search, placement search, frequency search).

The algorithms are evaluated in terms of their area, throughput, and throughput to area

ratio. The relative improvement in the results by using ATHENa optimizations over the

default options is shown in the figures 8.16 and 8.15.

The algorithms are listed on X-axis, while their relative improvement is shown on Y-

axis. Area is represented in blue, throughput in orange, while throughput to area ratio is

represented in yellow.
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Figure 8.15: Relative improvement of throughput to area ratio of SHA3 candidates using
ATHENa optimizations over the implementations without optimizations

Figure 8.16: Relative improvement of throughput to area ratio of SHA3 candidates using
ATHENa optimizations over the implementations without optimizations
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Table 8.6: Relative improvement of throughput to area ratio of SHA3 candidates using
ATHENa optimizations over the implementations without optimizations

Relative improvement range
of throughput to area ratio Algorithm

1.8 - 2.1 Groestl, Hamsi, Keccak, Luffa, Shavite-3

1.6 - 1.8 Skein

1.4 - 1.6 BMW, ECHO, Fugue, SHA-2

1.25 - 1.4 Blake, CubeHash, JH, Shabal, SIMD

The figures show a significant improvement of results for certain algorithms. Luffa,

Shavite-3, Skein, BMW, Fugue and Hamsi achieved a considerable area improvement while

Keccak, Luffa, Shavite-3, Groestl, and Hamsi achieved considerable improvement in through-

put.

However, in some cases, a decline in the quality of results is also seen. CubeHash and

SIMD implementations resulted in the area increase without significant improvement in

throughput or throughput to area ratio. The designs can be categorized based on their

improvement in terms of throughput to area ratio. The different categories are shown in

the table 8.6.

Out of the fifteen algorithms evaluated, five algorithms showed a significant improvement

in the throughput to area ratio. Similarly, the algorithms toward the lower end of the

spectrum also achieved a performance gain over the FPGA implementations with default

options. However, it should be noted that these improvements are specific to the devices of

a given family and may not carry over to the devices of other families.

The improvement in results shows that the exploration of tool options is an impor-

tant aspect of performance evaluation process. ATHENa presents a viable solution for the

performance improvement in the evaluation process.
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Chapter 9: Conclusions and Future Work

ATHENa, open-source environment, is presented as a solution that overcomes the difficulties

involved with, and facilitates a fair, comprehensive, reliable, and practical benchmarking of

digital systems using FPGAs from various vendors. The case studies demonstrate the viabil-

ity of ATHENa as a tool for performance evaluation in a situation where a fair comparison

of algorithms, implemented on FPGAs, is necessary.

However, the environment is still in the early stages of development. Addition of new

features will make ATHENa a more reliable and user friendly environment that contributes

to the cryptographic community. The major new features would include the support for:

• Additional FPGA vendors: Designers may be discouraged, from the use of ATHENa

environment, if their target FPGA vendor is not available for the comprehensive

evaluation. To avoid this, additional vendors like Actel and Lattice Semiconductor

need to be supported.

• Additional EDA tools: Third-party FPGA tools are available that target the FPGAs

of different vendors. The comprehensive analysis of algorithms would require the

addition of tools other than those provided by the FPGA vendors.

• Heuristic algorithms: With the large sets of options available for each of the FPGA

tools, the exploration of all the combinations of options becomes computationally

prohibitive. Thus, a set of heuristic algorithms targeted at minimizing the execution

time by eliminating sets of options could help the performance evaluation process.

• Different operating systems: The majority of FPGA design environments (including

those from Xilinx and Altera) operate under both Windows and Linux. After the

63



initial development of our tool under Windows, its operation will be extended into

Linux.

• Graphical User Interface (GUI): In the current version of the ATHENa environment,

the preparation of each evaluation run is done by editing sample configuration files

using an arbitrary text editor. A GUI to assist with preparation of configuration files

would be beneficial.

On the other hand, major features already available in the ATHENa environment will

assist with the comparison of cryptographic algorithms. These features are:

• Comprehensive: The environment supports evaluation using multiple FPGA devices

from several vendors.

• Automated: All tools run in batch mode, without the need for any user supervision.

• Collaborative: The environment allows and facilitates benchmarking by hundreds of

designers from all over the world. As a result the effort on development, debugging,

and optimization of codes is shared by a large number of designers, each of which can

specialize in a single type of implementation platform and a single set of tools.

• Practical: ATHENa does not require the designers to reveal the source codes. As

a result it can be safely used by a wide range of designers from academia, industry,

and government unable to place their codes in public domain because of intellectual

property or export restrictions issues.

• Single point of contact: ATHENa project server will work as a single point of contact,

and will contain all information necessary to perform benchmarking, and to share,

look up, and compare the results.

At this point, the biggest test for ATHENa is the evaluation of all the candidates sub-

mitted to the SHA3 contest organized by NIST. After the contest, ATHENa will still serve
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the cryptographic community by providing the comprehensive results for cryptographic al-

gorithms. Researchers will benefit from the capabilities of ATHENa, to compare algorithms

in a fair, comprehensive and reliable manner. Similarly, Designers will benefit from the ca-

pability of comparing results of algorithms on variety of FPGA families and will be able to

make an informed decision about the choice of the implementation platform most suitable

for their particular application. Finally, the developers and users of the FPGA tools will

benefit from the comprehensive comparison done across tools from various vendors, and

from the optimization methodologies developed and comprehensively tested as a part of

ATHENa. In addition, ATHENa could also be ported to support algorithms of different

classes of digital systems such as DSP or digital communications.
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