

Comparison of Different Kalman Filters for Application
to Mobile Robotics

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Suraj Ravichandran
Bachelor of Engineering
Mumbai University, 2011

Director: Dr. Gerald Cook, Professor
Department of Electrical & Computer Engineering

Spring Semester 2014
George Mason University

Fairfax, VA

Acknowledgments

I am forever in debt of Dr. Cook, without whose support neither would I have come up
with this topic, let alone have known about its existence in the first place. Thank you for
bearing with me, and for believing that I would FINALLY finish my thesis. Without you
to guide me, I would be just another masters student who would have ended up regretting
taking up this endeavor of Graduate School. . .

A special thanks to Dr. Janos Gertler, who empathised with my situation and took the
time to painstakingly find even the minute mistakes/typos in my thesis, even during the
holidays. Your comments and suggestions rendered have given my thesis a professional and
technical edge.

It was Dr Jill Nelson’s ingenious idea of taking up special registration, which allowed me to
defend my thesis an entire semester earlier. I owe you the time I saved as well as the peace
of mind that I could only afford because of the special registration option. I also appreciate
you agreeing to be on my committee on such short notice and bailing me out of trouble
once more.

And finally, any research without proper documentation and administrative protocol is
meaningless. Without the help of Patricia Sahs and Jammie Chang I would have been
running from pillar to post clueless trying to comprehend what paperwork is needed and
what are the deadlines. They have been most helpful and co-operative in my time of need.
I am in debt of both of you for all the assistance and guidance that you provided, like the
foundation of a building providing constant support whilst staying out of the limelight.

iii

Table of Contents

Page

List of Tables . vi

List of Figures . vii

List of Abbreviations . viii

Abstract . ix

1 Introduction . 1

1.1 Limitations of the Linear Kalman Filter . 1

1.1.1 An Initial yet robust fix – The Extended Kalman Filter 2

1.2 The Ultimate Solution – Particle Filter . 4

1.2.1 Trouble in Paradise – Computationally Prohibitive 5

1.3 Why stick to the Kalman Filter? . 5

1.3.1 Kalman Filter Derivatives . 6

2 Mobile Robot Dynamics . 7

2.1 Mobile Robot Setup . 7

2.1.1 Robot Kinematics in Local Coordinates 8

2.1.2 Rotation to Earth Coordinates . 10

2.2 Steering Control Law . 10

2.3 Choice of Method for Numerical Integration 11

2.3.1 Euler’s Method . 11

2.3.2 Runge Kutta . 13

2.4 Sensors . 14

3 State Estimation using the EKF . 15

3.1 EKF Derivation for Mobile Robot . 15

3.1.1 The Final State Space Representation 18

3.1.2 Final Flow Algorithm for the EKF 20

3.2 EKF Derivatives . 21

3.2.1 The Iterated Extended Kalman Filter 21

3.3 A look on Statistical Linearization Methods for the Non-Linear Kalman Filter 23

3.3.1 The Achilles heel of this Approach! 24

3.3.2 Monte-Carlo Kalman Filter . 24

iv

4 State Estimation using the UKF . 28

4.1 Introduction to the Sigma Point Approach 28

4.2 The Unscented Transform . 30

4.3 The Scaled Unscented Transform . 31

4.4 Tuning the Weights . 33

4.5 The UKF Algorithm . 34

4.5.1 Augmented UKF . 34

4.5.2 Non-augmented UKF . 38

4.6 The Square Root UKF . 38

4.6.1 The SR-UKF Filter Algorithm . 40

4.7 An Illustrative comparison of the UKF with the EKF 43

5 Results: Simulation and Analysis . 45

5.1 Matlab Simulation . 45

5.1.1 Environment Variables . 46

5.2 Graphs . 48

5.2.1 EKF Path 1 . 49

5.2.2 EKF Path 2 . 50

5.2.3 IEKF Path 1 . 51

5.2.4 IEKF Path 2 . 52

5.2.5 UKF Path 1 . 53

5.2.6 UKF Path 2 . 54

5.2.7 Accuracy and Computational Costs (Time) 55

5.3 Verification of the UKF Implementation . 56

5.3.1 Testing the Unscented Transform . 56

5.4 Averaging over multiple runs . 62

5.5 Inference . 63

5.6 Future Scope . 63

Bibliography . 65

v

List of Tables

Table Page

5.1 Comparison Table for Path 1 . 55

5.2 Comparison Table for Path 2 . 56

5.3 EKF v/s UKF MSE averaged over 1000 runs 63

vi

List of Figures

Figure Page

2.1 Front-Wheel steered robot schematic diagram[5] 8

3.1 EKF Process Flow Diagram . 20

4.1 The transformation of sigma points through a nonlinear function[8] 29

4.2 Comparison of mean and covariance sampling by Monte-Carlo Sampling,

EKF and UKF[11] . 44

5.1 EKF Plot for True v/s Estimated Robot Trajectory 49

5.2 EKF Plot for True v/s Estimated Heading Angle 49

5.3 EKF Plot for True v/s Estimated Robot Trajectory 50

5.4 EKF Plot for True v/s Estimated heading Angle 50

5.5 IEKF Plot for True v/s Estimated Robot Trajectory 51

5.6 IEKF Plot for True v/s Estimated Heading Angle 51

5.7 IEKF Plot for True v/s Estimated Robot Trajectory 52

5.8 IEKF Plot for True v/s Estimated heading Angle 52

5.9 UKF Plot for True v/s Estimated Robot Trajectory 53

5.10 UKF Plot for True v/s Estimated Heading Angle 53

5.11 UKF Plot for True v/s Estimated Robot Trajectory 54

5.12 UKF Plot for True v/s Estimated heading Angle 54

5.13 Error Covariance Ellipsoid: Sigma points around the mean with α = 0.5 . . 60

5.14 Error Covariance Ellipsoid: Sigma points around the mean with α = 0.9 . . 61

vii

List of Abbreviations

EKF Extended Kalman Filter
IEKF Iterated Extended Kalman Filter
UKF Unscented Kalman Filter
PDF Probability Density Function
MSE Mean Squared Error
MCKF Monte-Carlo Kalman Filter
SR-UKF Square-Root Unscented Kalman Filter
RK Runge Kutta

viii

Abstract

COMPARISON OF DIFFERENT KALMAN FILTERS FOR APPLICATION
TO MOBILE ROBOTICS

Suraj Ravichandran, MS

George Mason University, 2014

Thesis Director: Dr. Gerald Cook

The problem of state estimation of the mobile robot’s trajectory being a nonlinear one, the

intent of this thesis is to go beyond the realm of the basic Extended Kalman Filter(EKF)

and study the more recent nonlinear Kalman Filters for their application to the problem at

hand. The various filters that I employ in this study are:

• Extended Kalman Filter(EKF)

• Iterated Extended Kalman Filter (IEKF)

• Unscented Kalman Filter(UKF) and its various forms and alternate editions

The Robot is given different trajectories to run on and the performance of the filters on

each of these trajectories is observed. The intensity of process noise and measurement noise

are also varied and the effect they have on the estimates studied.

The study also provides a comparison of the computational costs involved in each of the

filters above. Pre-established numerically efficient and stable techniques to lower the com-

putational costs of the UKF are employed and their performance in accuracy and compu-

tational time is observed and noted.

The UKF is proven to be a better filter in terms of accuracy for the non-linear cases such as

inertial navigation systems, but this thesis tests specifically for the system dynamics of the

Mobile Robot. The results that are obtained are quite contrasting to the otherwise belief

that the UKF should give better accuracy.

Chapter 1: Introduction

In 1960, Rudolf Kalman proposed the Kalman Filter[1] and completely revolutionized linear

filtering. Before I deliver the central idea of my thesis here is a little background into the

Klaman Filter.

The Kalman filter is a set of mathematical equations that provides an efficient computational

(recursive) means to estimate the state of a process, in a way that minimizes the mean of

the squared error. The filter is very powerful in several aspects: it supports estimations of

past, present, and even future states, and it can do so even when the precise nature of the

modeled system is unknown.[2]

The premise of my thesis centers around the fact that the original Kalman Filter while truly

optimal for use with Linear Systems is incapable of dealing with non-linear systems. This

is tolerated in the realm of linear dynamics, but, when we analyze most of the real world

practical problems, for which we want control and tracking solutions, we realize that most

of these cases (if not all) are non-linear in nature. Thus, Electrical Engineering delved into

major research and study to tackle these issues.

I propose the application of some of the existing non-linear Kalman Filters to the field of

Mobile Robotics, and study their results. This thesis presents an accurate comparison of

the various methods that are employed for Mobile Robot State Estimation and an analysis

of the same. The aim is to contribute to the ongoing field of Mobile Robotics by sharing

my findings.

1.1 Limitations of the Linear Kalman Filter

The Linear Kalman Filter has two main problems:

1

• Linear assumption of system

• Gaussian assumption of Random Variable Probability Distribution

The first limitation is because of the following line of reasoning: The non-linear function

of the expectation of a Random Variable is generally not the same as the expectation

of the non-linear function of the Random Variable. The equation below delineates it in

mathematical form.

E {f(x)} 6= f(E {x}) (1.1.1)

where f(·) is a non-linear function.

This non-equality is not present for linear functions as the following is true for a linear

function.

E {g(x)} = g(E {x})

where g(·) is a linear function.

The second limitation is more inherent in the nature of the Kalman Filter. The reason

for this is that it assumes all of its distributions i.e, the measurement noise, the process

disturbance and the main state variable being estimated to be Gaussian. This has its

benefits since it allows the Kalman Filter to be broken down to linear algebraic steps;

thus making it mathematically elegant and computationally efficient. However, it places an

important limitation on its uses in the practical world of problems.

1.1.1 An Initial yet robust fix – The Extended Kalman Filter

With the increasing need to apply Kalman Filters to the non-linear domain, the engineering

community came up with an ingenious solution. The Extended Kalman Filter overcomes

the problem faced by the linearity limitation (1.1.1), by just linearizing the non-linear

function about its first order Taylor series expansion. It can be summarized in the following

explanation.[3]

2

Consider the following non-linear state dynamic equations . . .

ẋ(t) = f(x(t), t) + w(t) (1.1.2a)

z(t) = h(x(t), t) + v(t) (1.1.2b)

where w(t) is the process disturbance and v(t) is the measurement noise. Both are assumed

to be zero-mean Gaussian process i.e.

E {v(t)} = E {w(t)} = 0

If the non-linear function f(x(t)) is differentiable, then it can be linearized about the esti-

mated trajectory x̂(t) as follows:

f(x(t), t) = f(x̂(t), t) +

(
∂f(x(t), t)

∂x(t)

∣∣∣∣
x(t)=x̂(t)

)
(x(t)− x̂(t))

+
1

2

(
∂2f(x(t), t)

∂2x(t)

∣∣∣∣
x(t)=x̂(t)

)
(x(t)− x̂(t))2

+higher order terms . . .

(1.1.3)

The key fact that enables the working of the Extended Kalman filter is that, since we

deal with non-linear yet almost linear dynamics the quadratic and higher order terms of

(1.1.3) can be neglected. This would yield the following perturbation about the estimated

trajectory δx̂:

δẋ(t) = f(x̂(t), t) +

(
∂f(x(t), t)

∂x(t)

∣∣∣∣
x(t)=x̂(t)

)
δx(t) (1.1.4)

We can now replace the ’F(t)’ matrix of the fundamental equation with the following Jaco-

bian Fj :

Fj =
∂f(x(t), t)

∂x(t)

∣∣∣∣
x(t)=x̂(t)

3

Fj =



∂f1

∂x1

∂f1

∂x2

∂f1

∂x3
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3
· · · ∂f2

∂xn

...
...

...
. . .

...

∂fn

∂x1

∂fn

∂x2

∂fn

∂x3
· · · ∂fn

∂xn



∣∣∣∣∣∣∣∣∣∣∣∣∣
x(t)=x̂(t)

(1.1.5)

Similarly the Jacobian for the Observer Matrix H can be given as Hj

Hj =



∂h1

∂x1

∂h1

∂x2

∂h1

∂x3
· · · ∂h1

∂xn

∂h2

∂x1

∂h2

∂x2

∂h2

∂x3
· · · ∂h2

∂xn

...
...

...
. . .

...

∂hn

∂x1

∂hn

∂x2

∂hn

∂x3
· · · ∂hn

∂xn



∣∣∣∣∣∣∣∣∣∣∣∣∣
x(t)=x̂(t)

(1.1.6)

With the exception of the state forward propagation step, we replace the matrices of F

and H in the equations of the Original Kalman Filter[1] with the Jacobians Fj and Hj

respectively. The state propagation step remains the same complete nonlinear function

f(x).

1.2 The Ultimate Solution – Particle Filter

The Particle filter overcomes both limitations that are faced by the Kalman Filter i.e As-

sumption of Linearity as well as the Gaussian Nature of the Probability Distribution Func-

tion. Particle filters or Sequential Monte Carlo (SMC) methods are a set of on-line posterior

density estimation algorithms that estimate the posterior density of the state-space by di-

rectly implementing the Bayesian recursion equations. SMC methods use a grid-based

approach, and use a set of particles to represent the posterior density. These filtering meth-

ods make no restrictive assumption about the dynamics of the state-space or the density

function. SMC methods provide a well-established methodology for generating samples

4

from the required distribution without requiring assumptions about the state-space model

or the state distributions. The state-space model can be non-linear and the initial state and

noise distributions can take any form required.[4]

1.2.1 Trouble in Paradise – Computationally Prohibitive

The accuracy of the particle filter relies on the number of samples (particle) it uses. It

requires a very large number of particles to produce a decent estimate and an even larger

set to overcome the EKF in results. While it does overcome the EKF and by a good amount,

the simultaneous propagation of all these particles in real-time puts a heavy load on the

computation part of the scheme. Thus, it levies a time constraint in a practical scenario

where extraordinary computational power is not available for filtering and tracking. Thus,

it renders itself to be very slow and cannot keep up in real time with estimation process.

This problem only scales up with higher dimensionality of the system dynamics. Thus,

unless one has a super computer to spare for this, the Particle Filter becomes somewhat a

lesser desired alternative.

1.3 Why stick to the Kalman Filter?

Most of the Control problems that are currently being faced are non-linear, but the extent

of their non-linearity is not high. They are only non-linear within reasonable boundaries.

This type of problems can be efficiently tackled by the derivatives of the Kalman Filter.

Plus, although its prime Gaussian Assumption is not always correct, it does render its

equations to be represented in state space matrix form, which reduces the math to being

elegant. One can now rely on matrix math to simplify the equations and also make them

computationally efficient. In addition, most of the Mobile Robot States can be accurately

modeled via a Gaussian distribution with little to negligible error in performance. Thus,

the Kalman Filter is a good choice not only in theory but also in practice as it does the job

just a couple of notches below the optimal solution and is computationally super efficient.

5

1.3.1 Kalman Filter Derivatives

Following our current discussion on why to stick with the Kalman Filter, there are a lot of

developments in the non-linear Kalman Filtering field. These were made with a sole objec-

tive in mind: To Augment the Performance of the Extended Kalman Filter and improve

the scope for non-linear tracking and filtering.

I explore some of these derivatives in this thesis. These derivatives stick to the Gaussian

assumption of the Kalman Filter, but modify some of the steps of the algorithm to be more

non-linear application specific. Thus, these derivatives help us to remain with the Kalman

Filter and enjoy its computational efficiency while trying to improve its performance and

accuracy for non-linear systems.

The various Non-Linear Kalman Filters (Derivatives) that I employ are:

1. Extended Kalman Filter (EKF)

2. Iterated Extended Kalman Filter (IEKF)

3. Unscented Kalman Filter (UKF)

6

Chapter 2: Mobile Robot Dynamics

2.1 Mobile Robot Setup

For my thesis, I employ a front-wheel steered robot to perform all the filtering and tracking

experiments on. The reason for this is that, even though the differential drive mobile

robot has some distinct maneuverability advantages, it faces some serious practical terrain

constraints. For example, on a carpet or a surface similar to a carpet, the differential drive

robot will not be able to make turns effectively due to the surface characteristics. Plus even

in the real life scenario of driving a car, most of us drive a 2 wheel drive vehicle, which in

essence is a front-wheel steered mechanism. Thus, I choose this type of robot instead of

anything else.

In the front-wheel steered robot, only the rear wheels are powered and the front wheels

provide the robot direction. One can steer the robot in the desired direction by means of

an actuator.

7

2.1.1 Robot Kinematics in Local Coordinates

The diagram below will help us get a better sense of the underlying mechanism behind the

front-wheel steered robot.

Figure 2.1: Front-Wheel steered robot schematic diagram[5]

Keeping this figure as our reference we go ahead and start deriving the kinematic equations

of motion for our mobile robot.1

In reality when the two front wheels of the robot make a different angle each with respect to

the longitudinal axis of the robot, yrobot to avoid slippage and attain stability. However, to

simplify things a bit for our simulation (since our major objective is comparison of filters and

not precision modelling of the mobile robot), we consider the angle that the midpoint of the

1This figure 2.1 and the consequent equations derived are taken from the book – Mobile Robotics:Nav,
Control and Rem. Sensing[5] if the reader wants an in-depth review of the same he can refer chapter 1 in
the mentioned book.

8

front wheels (midpoint of the line that joins the two front wheels together) w.r.t yrobot to be

defined as α, measured in the counter-clockwise direction. The angle that the longitudinal

axis, yrobot, makes with respect to the yground axis is defined as ψ, also measured in the

counter-clockwise direction. The instantaneous center about which the robot is turning is

the point of intersection of the two lines passing through the wheel axes. The velocity of

the rear wheels is termed as vrearwheel
2.

From the geometry we have,

L

R
= tanα

which may be solved to yield the instantaneous radius of curvature for the path of the

midpoint of the rear axle of the robot.

R =
L

tanα
(2.1.1)

From the geometry we also have

vrearwheel = R
d

dt
(ψ) = Rψ̇

re-arranging, we get,

ψ̇ =
vrearwheel

R

Now if substitute equation (2.1.1) in this, we get,

ψ̇ =
vrearwheel
L/tanα

=
vrearwheel

L
tanα (2.1.2)

The final set of kinematic equations of motion in the robot (local) coordinate frame are as

2Even vrearwheel is different for each of the two rear wheels of the robot as they each turn with the same
center of curvature but a diffrent radius of curvature. Again for the sake of simplicity we take the avearge
velocity of the midpoint of these two rear wheels and carry on with our simulation

9

follows:

vx = 0 (2.1.3a)

vy = vrearwheel (2.1.3b)

ψ̇ =
vrearwheel

L
tanα (2.1.3c)

2.1.2 Rotation to Earth Coordinates

The equations described in (2.1.3) are in local coordinate space of the mobile robot. How-

ever, for state estimation and other purposes, like reaching a target or rendezvous with

another vehicle, we require the knowledge of the kinematic equations of motion in the

global earth coordinate frame. For this, we need to rotate the equations through the re-

quired rotation matrices, given the orientation angles and position of the robot itself with

respect to the earth frame. After doing these transformations, we get the final equations of

motion as follows:-

˙x(t) = −vrearwheel sinψ(t) (2.1.4a)

˙y(t) = vrearwheel cosψ(t) (2.1.4b)

˙ψ(t) =
vrearwheel

L
tanα(t) (2.1.4c)

2.2 Steering Control Law

We use the following proportional control law for our front-wheel steering.

α(t) =


Gain ∗ (ψdes(t)− ψ(t)) if abs(Gain ∗ (ψdes(t)− ψ(t))) ≤ π/4

π
4 sgn(ψdes(t)− ψ(t)) if abs(Gain ∗ (ψdes(t)− ψ(t))) > π/4

(2.2.1)

10

In the above equation ψdes stands for heading desired i.e. the desired heading that we want

the robot to undertake and ψ is the current heading of the robot. We calculate desired

heading at each point in time, by using the final destination coordinates (xdes, ydes) and the

current time instant robot coordinates in earth frame(x,y). The equation for the desired

heading is given as follows:

ψdes(t) = − tan−1
(
xdes(t)− x(t)

ydes(t)− y(t)

)
(2.2.2)

Note that while the desired destination coordinates are written as time dependent vari-

ables (xdes(t), ydes(t)), they can also be constant thoughout i.e we also have just a single

destination to go to.

The Gain affects the rate at which the robot can turn. It can only be modulated within a

specific range after which the robot steering enters saturation, as from equation (2.2.1), it

is evident that |π/4| is the maximum allowable steering angle that α can take. Extending

this value would result in a very impractical design of the front wheel steering.

2.3 Choice of Method for Numerical Integration

The equations described in (2.1.4) are in continuous time and we need to be expressed in

discrete time in order for our Kalman Filters to run on any computing devices. There are

several methods of numerical integration that one could employ for the non-linear equations

at hand, but I have employed only two of the significant ones: Euler’s Method and the Runge

Kutta method.

2.3.1 Euler’s Method

The Euler’s Method for Numerical Integration is a first-order Taylor series approximation to

integration. The gist of it is that the derivative may be approximated by a finite difference.

11

Employing this to our existing ẋ equation, we get,

ẋ(t) =
x(t+ ∆t)− x(t)

∆t

Where ∆t is just a small increment in time, thus re-arranging this we get,

x(t+ ∆t) ≈ x(t) + ẋ(t)∆t

(2.3.1)

Setting the discrete time sampling interval as ∆t = δt and the time t = kδt, where k is the

iteration number i.e the kth iteration. Then we preoceed to apply the discretization scheme

form the above equation (2.3.1) to our robot kinematic equations of motion mentioned in

(2.1.4), we get the following results,

x((k + 1)δt) = x(kδt)− δt ∗ vrearwheeland(kδt) sinψ(kδt)

y((k + 1)δt) = y(kδt) + δt ∗ vrearwheel(kδt) cosψ(kδt)

ψ((k + 1)δt) = ψ(kδt) + δt ∗ vrearwheel(kδt)
L

tanα(kδt)

The above equations can be a bit cumbersome, thus from now on we will make use of

the following style of expressing dicrete time equations in general, let alone the kinematic

equations,

xk+1 = xk − δt ∗ vrearwheel sinψk (2.3.2a)

yk+1 = yk + δt ∗ vrearwheel cosψk (2.3.2b)

ψk+1 = ψk + δt ∗
vrearwheel

L
tanαk (2.3.2c)

12

I removed the time dependence of vrearwheel on kδt, as for our simulations and analysis we

keep vrearwheel constant throughout the trajectory of the mobile robot.

2.3.2 Runge Kutta

There are a family of Runge Kutta methods for numerical integration, however the one we

will be discussing here is called as the Runge Kutta 4 a.k.a RK4. This method is sometimes

referred to as the classical RK Method. The RK method is generally more accurate than

the Euler’s Method.

The concept of it is as follows . . . Consider the initial value problem:

ẋ = f(t, x(t))

x(t0) = x0

Here, x is an unknown function (scalar or vector) of time t which we would like to approx-

imate; we are told that ẋ, the rate at which x changes, is a function of t and of x itself. At

the initial time t0 the corresponding x-value is x0. The function f and the data t0, x0 are

given.

Now we choose a sampling interval, which is greater than 0 to be as δt = h.

xn+1 = xn + 1
6h (k1 + 2k2 + 2k3 + k4) (2.3.3a)

tn+1 = tn + h (2.3.3b)

13

for n = 0, 1, 2, 3, . . . , using

k1 = f(tn, xn), (2.3.3c)

k2 = f(tn + 1
2h, xn + h

2k1), (2.3.3d)

k3 = f(tn + 1
2h, xn + h

2k2), (2.3.3e)

k4 = f(tn + h, xn + hk3). (2.3.3f)

Here xn+1 is the RK4 approximation of x(tn+1), and the next value (xn+1) is determined

by the present value (xn) plus the weighted average of four increments; each increment is

the product of the size of the interval, h, and an estimated slope specified by function f on

the right-hand side of the differential equation.

2.4 Sensors

For Mobile Robot State Estimation and Tracking one can choose from a multitude of sensors

such as GPS or Quadrature Encoded Odometry. Here I remain agnostic to the choice and

assume that I have two sensors available at my disposal which give direct measurements

of the robot’s x and y coordinates in the earth frame. I take the liberty to assume that

all frame rotation and other offset calculations are done at a higher abstraction layer and

provided to me. There are no measurements for the heading i.e ψk this makes the Kalman

Filter do some extra work, as well as exhibit its potential in cases where one does not have

all the measurements available.

Thus my observer function h(·) is linear and direct in form.

14

Chapter 3: State Estimation using the EKF

3.1 EKF Derivation for Mobile Robot

The first step in any filter would be to forward propagate the state. This is also called as

the a priori prediction. A point to note, all linear filters would have the following equations

as a sum of the products of different matrices. One cannot do so in the non-linear case as

no linear matrix product can be found for a non-linear function. That being said, we still

use the exact non-linear function to propagate the state estimate forward.

X̂k+1 = f(X̂k, Uk, wk)

Where:

X̂ ∼ Entire Estimated State Vector, which in our case is X̂k =


x̂k

ŷk

ψ̂k


U ∼ Control Input Matrix/Vector, which in our case is just a single scalar α

w ∼ This is the process disturbance

Now as discussed in section 1.1.1 on page 4, we need to first find the jacobians for the F

and H matrices to carry on with the Extend Kalman Filter Algorithm.

First, lets derive the Jacobian for the F matrix i.e. Fj . For this we need to substitute

equation (2.3.2) in the equation (1.1.5). The steps involved for taking the partial differentials

and forming the Jacobian are given as follows:

15

Velocity of the rear wheel is denoted as just v instead of vrearwheel
1.

Fj =
∂f(Xk)

∂x(t)

∣∣∣∣
X=X̂k

=


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂fn
∂x1

∂fn
∂x2

∂fn
∂x3


∣∣∣∣∣∣∣∣∣∣
X=X̂k

=


∂
∂x (xk − δt · v sinψk)

∂
∂y (xk − δt · v sinψk)

∂
∂ψ (xk − δt · v sinψk)

∂
∂x (yk + δt · v cosψk)

∂
∂y (yk + δt · v cosψk)

∂
∂ψ (yk + δt · v cosψk)

∂
∂x

(
ψk + δt · vL tanαk

)
∂
∂y

(
ψk + δt · vL tanαk

)
∂
∂ψ

(
ψk + δt · vL tanαk

)


=


1 0 −δt · v cosψk

0 1 −δt · v sinψk

0 0 1



=


1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

I3x3

+δt


0 0 −v cosψk

0 0 −v sinψk

0 0 0



(3.1.1)

In the case on the linear Kalman Filter, we would have a co-efficient matrix that multiplies

with the control input (this is usually denoted by the matrix ’G’).In the non-linear case

the control input is integrated into the state propagation equation within the non-linear

function and cannot be separated and written as the product of the co-efficient matrix and

the raw control input. However, we do still need the Jacobian of the G matrix for other

EKF equations. Thus, we derive it in the same manner as we did the for Fj . Except this

time instead of differentiating it with respect to the state vector Xk we differentiate it with

1I do this in the derivation to save space and make the Jacobians appear much more compact

16

respect to the control input α.

Gj =
∂f(Xk)

∂α

∣∣∣∣
αk

=


∂f1
∂α

∂f2
∂α

∂f3
∂α


∣∣∣∣∣∣∣∣∣∣
αk

=


∂
∂α (xk − δt · v sinψk)

∂
∂α (yk + δt · v cosψk)

∂
∂α

(
ψk + δt · vL tanαk

)


= δt


0

0

v

L

(
1

cos2 α

)


Now, as already discussed I have direct measurements for the first two elements of the state

vector, the observation matrix H is linear and we do not to derive the Jacobian. Therefore,

this is the form of our H-Matrix:

H =

1 0 0

0 1 0


Now, before we move on to the State Space Representations of the EKF, I would like to

state the various initial conditions that are used for the purpose of my simulations. The

17

initial error propagation P0 is given by the following formula:

P0 = E[(X0 − X̂0)(X0 − X̂0)
T]

Since we usually have neither the initial State of the Robot nor information about its

Probability Distribution Function(PDF), we resort to trial and error methods, and this is

what is specifically used

P0 =


0.22 0 0

0 0.22 0

0 0
(
π
4.0

)2


(3.1.2)

The rest of the initial conditions and constants are specified in detail in the Simulation and

Analysis Chapter.

3.1.1 The Final State Space Representation

The exact equation for forward propagation of the main state vector X̂ is given by

X̂(−)k+1 = X̂(+)k + δt


0 0 −v cosψk

0 0 −v sinψk

0 0 0

 (3.1.3a)

This is also called as the a priori estimate of state or just as ’prediction’, this is why we

denote it with a (−) symbol.2

18

The next step would be to generate the a priori version of the Error Covariance Matrix. It

is denoted as P (−)

P (−)k+1 = FjP (+)kF
T
j +GjQkG

T
j (3.1.3b)

This step is also referred to as the Error Covariance Propagation Step, and if k=1 then we

replace the P (+)k with P0. The Q matrix mentioned here is the covariance of the process

disturbance wk and is given by

Q = E[wkw
T
k]

Now calculating the Kalman Gain K,

K = P (−)k+1H
T [HP (−)k+1H

T +Rk]
−1 (3.1.3c)

Where R is the Covariance of the measurement noise vk and is given by

Rk = E[vkv
T
k]

At this point in our algorithm we receive the measurement update from the sensors for the

(k + 1)th iteration i.e. Yk+1 and so we can now update our beliefs accordingly. So first, we

add the ’Innovation’ to the State Prediction X̂(−)k+1

X̂(+)k+1 = X̂(−)k+1 +Kk[Yk+1 −HX̂(−)k+1] (3.1.3d)

This is also called as the posteriori estimate, hence the (+) sign.

Finally, we are left with updating the Error Covariance to include the data from the recent

measurement update, we call this P (+), the plus sign is for the a posteriori belief update.

P (+)k+1 = [Inxn −KH]P (−)k+1[Inxn −KH]T +KRKT (3.1.3e)

19

The above equation is called the ”Joseph’s Form” of the covariance update equation and is

used in cases when there might exist computational round-off errors or the Kalman Gain K

is sub-optimal. The ’n’ represents the dimensionality of the state vector X̂ and in our case

n=3.

Once we are done with all the above steps we go back to the first step, increment k and

start the entire cycle again.

3.1.2 Final Flow Algorithm for the EKF

The above derivation can be summed up as a flow diagram which can capture the entire

essence of the EKF.

αk and if k=1 then add X̂0

X̂k+1 = f(X̂k, αk, wk)

P (−)k+1 = FjP (+)kF
T
j +GjQkG

T
j

K = P (−)k+1H
T [HP (−)k+1H

T +Rk]
−1

X̂(+)k+1 = X̂(−)k+1 +Kk[Yk+1 −HX̂(−)k+1]

P (+)k+1 =[Inxn −KH]P (−)k+1[Inxn −KH]T

+KRKT

Obtaining Yk+1

k=k+1 and repeat

Figure 3.1: EKF Process Flow Diagram

20

3.2 EKF Derivatives

There have been a number of derivatives that have evolved out of the EKF. Some employed

Square Root Filtering techniques for the error covariance matrix P , while others resorted to

techniques like using Neural Networks and Fuzzy Logic to train the EKF to perform better

over the available data. There also have been some very simple yet effective derivatives

which relied on exploiting the higher order terms of the Taylor Series Expansion (1.1.3)

to improve the accuracy of the EKF. They did so by including more than just the 1st

term of the taylor series expansion for approximating the non-linear state functions. Such

filters are termed as Higher Order EKFs. The one that I employ for the Mobile Robot

State Estimation is the Iterated Extended Kalman Filter. We discuss its concept and the

algorithmic modifications that it makes to the EKF below.

3.2.1 The Iterated Extended Kalman Filter

There are many ways of approaching the Taylor series expansion scheme to increase the

accuracy of the EKF. One method of accomplishing this, is to write the estimate X̂(+)k

in a higher-order power series in Yk. Another more commonly used approach is to include

more terms in the expansions for f(X̂k) and h(X̂k). The method that is used in this

thesis improves the post measurement (a posteriori) State Estimate X̂(+)k+1 by repeatedly

calculating X̂(+)k+1,Kk+1 and P (+)k+1, each time linearizing about the recent estimate.[6]

The EKF linearizes the observer function by partial differentiation (1.1.6), evaluated at the

a priori estimate

Hk =
∂h

∂x

∣∣∣∣
X=X̂(−)k

The IEKF uses successive evaluations of the partial derivatives at better estimates of X̂,

21

starting with the a posteriori estimate from the EKF[3]3, which is the zeroth iteration.

X̂
[0]
k = X̂(+)k (3.2.1)

The final a posteriori covariance of estimation uncertainty is calculated only after the last

iteration, using the final iterated value of H.

The iteration succession is as follows for i = 1,2,3,. . . :

H
[i]
k =

∂h

∂x

∣∣∣∣
X=X̂

[i−1]
k

(3.2.2a)

K
[i]
k = P (−)kH

T [i]
k [H [i]P (−)kH

T [i]
k +Rk]

−1 (3.2.2b)

Ỹ
[i]
k = Yk − h(X̂

[i−1]
k) (3.2.2c)

X̂
[i]
k = X̂(−)k +K

[i]
k Ỹ

[i]
k −H

[i]
k [X̂(−)k − X̂

[i−1]
k] (3.2.2d)

We continue the above algorithm repeatedly until some stopping criteria is met. There are

a lot of different criteria that one can use, but the one I employ for my simulations is as

follows:

|[X̂ [i]
k − X̂

[i−1]
k]T [X̂

[i]
k − X̂

[i−1]
k]| < εlimit (3.2.3)

Where the threshold εlimit has been chosen manually and is application specific.

The final estimate now is X̂
[i]
k and the associated a posteriori covariance matrix P (+)k is

obtained by substituting the Kalman Gain K
[i]
k and H

[i]
k obtained above into the covariance

update formula (3.1.3e) to get the following result:

P (+)k = [Inxn −K [i]
k H

[i]
k]P (−)k[Inxn −K

[i]
k H

[i]]T +K
[i]
k RK

T [i]
k (3.2.4)

Note: The IEKF Algorithm that I demonstrate above improves the estimate X̂(+)k+1 by

3The equations for the IEKF have been taken from the following book[3]

22

linearizing it repeatedly over the function h(·). However, earlier I have assumed that my

Observation Matrix H is linear and that I make direct linear measurements, this clashes with

the fact that we even need linearization about the h(·) function. Thus, I wanted to clarify

by explaining my reasons for choosing the IEKF in my thesis. In many real life scenarios

the sensors for mobile robots are non-linear in nature and we do not have the privileges

of the linear H matrix. Hence, I purposefully give an arbitrary non-linear h(·) function to

my filter, just to gauge the effectiveness of the IEKF in such cases. It must be noted that

ONLY for the IEKF analysis and simulations do i change the h(·) to be non-linear and for

the rest of the topics of my thesis it remains as previously discussed, linear.

3.3 A look on Statistical Linearization Methods for the Non-

Linear Kalman Filter

We have discussed the applications of Taylor Series expansion for the design of the sub-

optimal EKF. An alternate approach and one that is generally more accurate is referred to

as statistical approximation. The basic principle of this technique is conveniently illustrated

for a scalar function, s(x), of a RV x.[6]4

Consider that s(x) is to be approximated by a series expansion of the form

s(x) ' n0 + n1x+ n2x
2 + . . .+ nmx

m (3.3.1)

The problem of determining appropriate coefficients nk is similar to the estimation problem

where an estimate of a RV is sought from given measurement data. Analogous to the

concept of estimation error, we define a function representation error,e, of the form

e = s(x)− n0 − . . .− nmxm

4The example of the statistical linearization method(the analysis and the equations) is taken from the

following source[6]

23

It is desirable that nk’s be chosen so that e is small in some ”average” sense; any procedure

that is used to accomplish this goal, which is based upon the statistical properties of x, can

be thought of as a statistical approximation technique.

The most frequently used method for choosing the coefficients in (3.3.1) is to minimize the

mean square error value of e. This is achieved by forming

E
[
(s(x)− n0 − n1x− . . .− nmxm)2

]

and setting the partial derivatives of this quantity with respect to each nk equal to zero.

The result is a set of algebraic equations, linear in the nk’s, that can be solved in terms of

the moments and cross-moments of x and s(x). We can now abstractly gauge that statistical

approximation has a distinct advantage over the Taylor Series expansion; it does not require

the existence of derivatives of s(·).

3.3.1 The Achilles heel of this Approach!

With all that being said, there is a major drawback that we face in statistical linearization

techniques, and that is the expectation operation. This would require knowledge of the

probability density function of x in order to compute the coefficients nk. This requirement

does not exist for the Taylor Series expansion employed in the EKF.

One may argue that approximations can often be made for the pdf used to calculate the

coefficients nk, such that the resulting expansion for s(x) is considerably more accurate

than the Taylor series, from a statistical point of view. While, this being true, I do not

delve into this topic because the nature of approximate pdfs is complex, and which pdf best

suits the approximation purposes is beyond the scope of this thesis.

3.3.2 Monte-Carlo Kalman Filter

One such example of a filter that uses statistical linearization techniques is the Monte-Carlo

Kalman Filter(MCKF). It draws samples from the prior distribution of Xk and passes them

24

through the non-linear state propagation function f(X). Now, with these transformed

samples, we can draw the a priori mean and covariance as follows[7] 5:

X̂(−)k+1 =
1

N

N∑
i=1

f(Xi
k) (3.3.2)

This gives us the mean of the distribution that is propagated forward through the non-

linear function f . Here Xi
k denotes the samples taken from the prior distribution of X.

These points are taken about the principal axis of the pdf. Now, for the covariance,

P (−)k+1 = Q+
1

N

∑
i=1

[
(f(Xi

k)− X̂(−)k+1)(f(Xi
k)− X̂(−)k+1)

T
]

(3.3.3)

This gives us the covariance of the distribution (in our case it is the error covariance) that

is propagated forward through the non-linear function f .

Note: Here we first draw samples from the prior distribution, pass it through the non-linear

function and then approximate their mean by averaging methods (with the assumption of

the law of large numbers in our favour). We could also choose to have propagated the

mean of the prior distribution of X i.e. X̂(+)k through the function, instead of what we

are currently doing. This would require that the function f be linear and the samples

perfectly Gaussian. I explained the primary difficulty encountered in the later approach for

non-linear functions in equation (1.1.1).

We can continue in a similar fashion and pass the samples through the observer function

h and obtain the mean and covariance of Ŷk+1 as well as the cross covariance of X̂ and Ŷ

(which is needed to calculate the Kalman Gain K).

Y i
k+1 = h(f(Xi

k))

5The information for the Monte-Carlo Kalman Filter equations was obtained in the following source [7]

25

Ŷk+1 =
1

N

N∑
i=1

h(f(Xi
k))

The error covariance in the estimated observed output Ŷk+1 is,

Ycov = R+
1

N

N∑
i=1

[
(h(f(Xi

k))− Ŷk+1)(h(f(Xi
k))− Ŷk+1)

T
]

The cross-covariance between X and Y is,

XYcov =
1

N

N∑
i=1

[
(f(Xi

k)− X̂(−)k+1)(h(f(Xi
k))− Ŷk+1)

T
]

The Kalman Gain K, is given by,

Kk+1 =
XYcov
Ycov

Once we obtain the actual measurement for the (k + 1)th step denoted by Yk+1, we can

write the update equations as follows:

The post-measurement a posteriori mean is given by,

X̂(+)k+1 = X̂(−)k+1 +Kk+1[Yk+1 − Ŷk+1]

And, the a posteriori error covariance by,

P (+)k+1 = P (−)k+1 −Kk+1YcovK
T
k+1

The Monte-Carlo Kalman Filter is an intuitive example to grasp the concept of the Statisti-

cal Linearized Kalman Filter, as well as understand our transition to Sigma Point Kalman

Filters (which is explained in the following chapter). However, it is not a very practical

26

filter and is rarely (if at all) used in real world scenarios. This is due to fact that it requires

knowledge of the prior pdf of X, the number of samples it demands for proper functioning

is very high and the fact that if one uses these many samples one may as well go with the

Particle Filter which is multi-modal compared to the unimodal of the MCFK.

27

Chapter 4: State Estimation using the UKF

4.1 Introduction to the Sigma Point Approach

The Unscented Kalman Filter introduced by Julier, Simon J. and Uhlmann, Jeffrey K.[8] led

the way for the family of Sigma Point Kalman Filters (which now include the UKF, scaled

UKF, iterated UKF, Central-Difference Kalman Filter(CDKF) and some more). Thus, we

introduce the concept of the sigma point approach with the Unscented Transform in mind.

Every invention/discovery is based off an early intuition or gut feeling so to speak. The

primal intuition that led to the discovery of the unscented transform is as follows: it is easier

to approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear

function or transformation[9]. To further illustrate the unscented transform we consider an

example below.

Let our main state vector be described by a random variable x having a distinct pdf. Assume

a set of sigma points chosen from this distribution of x, whose mean is denoted by x̂ and

the covariance by Pxx. These sigma points are in concept similar to the samples that are

drawn from the prior distribution of x, as shown in the Monte-Carlo Kalman Filter (here is

a link to that page 24). However, while they look extremely similar there is a key difference

separating these samples form that in the MCKF, which will be subsequently discovered.

If we apply a nonlinear transformation to these sigma points the resulting new distribution

will not retain the same properties as that of x, which is a well established fact. Let the

nonlinear function transform our RV x into another RV y.

y = f(x)

28

The prime objective here is to obtain the statistics of the RV y, its mean ŷ and covariance

Pyy. We do this by transforming each of our sigma points drawn deterministically from x,

through the nonlinear function f. This results in a set of transformed sigma points whose

mean and covariance are now ŷ and Pyy. The calculation to find the mean and covariance

is the similar1 as that for the MCKF, described in equations are (3.3.2) for the mean and

(3.3.3) for the covariance. The figure below delineates the process just conveyed.

Figure 4.1: The transformation of sigma points through a nonlinear function[8]

I mentioned earlier that while the Sigma Point approach might seem to appear almost

identical to the Monte-Carlo method, but it differs. The major differentiating fact is that

in Monte-Carlo methods the samples are chosen from the distribution of the RV x and

that too in a random manner. This would as require to have a distribution of x and a

very large number of samples to successfully capture the properties of the distribution.

However, the Sigma Point Filters select these points(samples) in a deterministic algorithm

with weights attached to each sigma points. The different versions of the sigma point filters

differ on how these weights are selected. All versions choose weights so that the method

1it is not exactly the same as we now have weights attached to each sigma point, thus it becomes a
weighted average instead of a simple average

29

behaves perfectly for a Gaussian model (linear dynamics) and then optimize the weights

for different criteria[7]. The plus point of any of these algorithms is that they can generate

sigma points from just the first and second order moments of the distribution of x, i.e. its

mean x̂ and covariance Pxx and do not require knowledge of the probability density function

of x.Thus, one can see why this kind of a black box approach would be preferred in real life

scenarios where knowledge about the state vector x in closed form solutions is not available

to us.

4.2 The Unscented Transform

Coming to the selection scheme of the Unscented Transform, which is technically the entirety

of the Unscented Transform. I use the original scheme outlined in Uhlmann’s and Julier’s

first paper on the UKF[8].

The n-dimensional RV x with mean x̂ and covariance Pxx is approximated by 2n +1 weighted

points given by:

(note: There are a total of 2 ∗ n+ 1 weights one for each sigma point)

Xsigma0 = x̂ W0 =
κ

n+ κ
(4.2.1a)

Xsigmai = x̂+
(√

(n+ κ)Pxx

)
i

Wi =
1

2(n+ κ)
(4.2.1b)

Xsigmai+n = x̂−
(√

(n+ κ)Pxx

)
i

Wi+n =
1

2(n+ κ)
(4.2.1c)

where
(√

(n+ κ)Pxx

)
i

is the ith row/column of the matrix square root of (n+ k)Pxx and

Wi is the weight which is associated with the ith sigma point and κ is the tuning factor

which gives us extra room to fine tune the UKF to be application specific. Also, here n

denotes the dimensionality of the state vector x. There also exist several articles on auto-

tuning methods to tune these parameters of the UKF while performing on-line filtering and

estimation, but we do not delve into these methods for the scope of my thesis.

30

A brief summary of the unscented transform is as follows:

1. Generate sigma points from the mean and covariance of the given RV using the

weighted selection scheme mention in (4.2.1)

2. Pass each of these sigma points through the nonlinear function f, to obtain the point

cloud of the transformed Sigma Points,

Ysigmai = f [Xsigmai]

3. The mean of the transformed sigma points is given by the weighted averages of these

points

Ŷ =
2n∑
i=0

WiYsigmai

4. The covariance is given by

Pyy =
2n∑
i=0

Wi[Ysigmai − Ŷ][Ysigmai − Ŷ]T

4.3 The Scaled Unscented Transform

Simon Julier suggested a modified selection scheme for the selection of the sigma points in

his papers on The Scaled Unscented Transformation[10]. This modification to the unscented

transformation, helps increase the robustness of the sampling method against higher order

nonlinearites beyond the second order[3].

This method uses adjustable scaling parameters (α, β, κ) to allow for some fine tuning of

the transform for specific applications. For notational ease we declare two more auxiliary

parameters λ and γ. The structure of the scalar weights used in the unscented transform

are as follows:

31

λ = α2(n+ κ)− n Where n is the dimension of the RV x (4.3.1a)

γ =
√
n+ λ (4.3.1b)

Wm
0 =

λ

n+ λ
(4.3.1c)

W c
0 =

λ

n+ λ
+ (1− α2 + β) (4.3.1d)

W c
i = Wm

i =
1

2(n+ λ)
for i = 1, 2, . . . , 2n+ 1 (4.3.1e)

As one can see we have two different sets of weights. The Wm
i ’s are the weights used

to calculate the mean of the transformed distribution and the W c
i ’s are the weights used

to calculate the covariance of the transformed distribution. The selection scheme can be

outlined as follows:

1. Generate sigma points from the mean and covariance of the given RV using the fol-

lowing weighted selection scheme:

Xsigma0 = x̂ (4.3.2a)

Xsigmai = x̂+
(
γ
√
Pxx

)
i

(4.3.2b)

Xsigmai+n = x̂−
(
γ
√
Pxx

)
i

(4.3.2c)

2. Pass each of these sigma points through the nonlinear function f, to obtain the point

cloud of the transformed Sigma Points,

Ysigmai = f [Xsigmai]

3. The mean of the transformed sigma points is given by the weighted averages of these

32

points. The weight set used for this is Wm
i .

Ŷ =

2n∑
i=0

Wm
i Ysigmai (4.3.3)

4. The covariance is given by the following equation below. We use a different weight

set, of W c
i for this operation.

Pyy =

2n∑
i=0

W c
i [Ysigmai − Ŷ][Ysigmai − Ŷ]T

Essentially only the W c
0 is different and W c

i = Wm
i are the same for all i 6= 0, thus

the above equation can also be simplified to be,

Pyy = W c
0 [Ysigma0 − Ŷ][Ysigma0 − Ŷ]T +

2n∑
i=1

Wm
i [Ysigmai − Ŷ][Ysigmai − Ŷ]T (4.3.4)

4.4 Tuning the Weights

Here we discuss importance of the tuning factors (sometimes also refereed to as the ”twiddle

factors”) associated with the different weights of the Scaled Unscented Transform selection

scheme. As the scaled version is much more elaborate, an overview on the selection of its

weights will provide an insight into the non-scaled version too.

Referring to (4.3.1), we have the tuning parameters: α, β, κ. The role they play in the

transform and the probable range of values that they take on is explained as follows:

Alpha (α) is the main scaling factor. It is used to limit/increase the accetable region

from which samples can be drawn about the mean. A smaller value of α moves the

sigma points towards the mean and vice-versa. The acceptable range is 10−4 to 1.

As α → 0, the influence of nonlinearities beyond the second order in the f(·) on

33

the approximated mean and covariance is theoretically reduced[3]. When α = 1, the

scaled unscented transform is the same as the normal unscented transform.

Beta (β) is used to incorporate prior knowledge of the distribution of x. For Gaussian

distributions we usually set it to 2 (optimal)[11].

Kappa (κ) is just a secondary scaling parameter. We usually set it to 0 for state estimation

[11]. When κ = 0 the Xsigma0 point is effectively omitted from the calculations of

the mean and covariance calculations. Putting a negative value in κ might affect the

positive semi-definiteness of the transformed covariance[3].

4.5 The UKF Algorithm

There are two versions of the Unscented Kalman Filter, the augmented and the non-

augmented. I illustrate the use of the non-scaled unscented transform in each of the filters

below for reasons of simplicity and ease of understanding the algorithm. Once, the cen-

tral theme of the UKF is grasped, one can use either the scaled or the unscaled transform

depending on what the application demands.

4.5.1 Augmented UKF

Its name is augmented because we need to augment the state vector to include the process

disturbance. Thus, the dimensionality of the augmented state vector xa becomes na = n+q

where q is dimension of the process disturbance variance Q. Thus,

x̂ak =

 x̂k

0qx1



34

we also include the process disturbance variance in our main error covariance matrix Pxx

augmenting it to,

P axxk =

Pxxk 0nxq

0qxn Q


Now, we begin the UKF:

1. The set of 2na + 1 Sigma Points are created by employing the selection scheme men-

tioned in (4.2.1) to the augmented state mean x̂akand covariance P axx

Xa
k0 = x̂ak W0 =

κ

na + κ
(4.5.1a)

Xa
ki

= x̂ak +
(√

(na + κ)P axxk

)
i

Wi =
1

2(na + κ)
(4.5.1b)

Xa
ki+na = x̂ak −

(√
(na + κ)P axxk

)
i

Wi+n =
1

2(na + κ)
(4.5.1c)

Here the Xa
ki

denotation is used for the sigma points, as writing ’sigma’ in each of

them would make it very cumbersome to read.

2. Pass each point through the nonlinear function f, to obtain the transformed sigma

points X(−)ak+1i

X(−)ak+1i
= fa(Xa

ki
, uk) (4.5.2)

3. The a priori, indicated by the minus(-) sign, mean x̂(−)ak+1 is given by

x̂(−)ak+1 =

2na∑
i=0

WiX(−)ak+1i
(4.5.3)

35

4. And the a priori covariance P (−)axxk+1
is computed as,

P (−)axxk+1
=

2na∑
i=0

Wi[X(−)ak+1i
− x̂(−)ak+1][X(−)ak+1i

− x̂(−)ak+1]
T (4.5.4)

5. Pass all these transformed sigma points through the observer function h, to obtain

the Y sigma points Yk+1i

Yk+1i = h(X(−)ak+1i
, uk) (4.5.5)

6. Compute the mean ŷk+1 and covariance Pyyk+1
of these observer sigma points,

ŷk+1 =
2na∑
i=0

WiYk+1i (4.5.6a)

And since the observation noise is additive(especially in our case it is truly additive),

we can just add the measurement noise variance R to Pyyk+1
to get the following,

Pyyk+1
= R+

2na∑
i=0

Wi[Yk+1i − ŷk+1][Yk+1i − ŷk+1]
T (4.5.6b)

7. Calculate the Cross-Covariance between the X and Y sigma points

Pxy =

2na∑
i=0

Wi[X(−)ak+1i
− x̂(−)ak+1][Yk+1i − ŷk+1]

T (4.5.7)

8. The measurement update part of the UKF is the same as that for the MCKF (see the

equations on page 25)

36

The Kalman Gain is given as,

Kk+1 =
Pxy
Pyyk+1

(4.5.8a)

The a posteriori mean is given as,

x̂(+)ak+1 = x̂a(−)k+1 +Kk+1[yk+1 − ŷk+1] (4.5.8b)

where yk+1 is the true measurement obtained at the k+ 1th step. Also, this is the end

of the filtering process block so need to extract the non-augmented state vector back

again, thus

x̂(+)k+1 = x̂(+)ak+1[1 : n]

And, Finally the a posteriori covariance is given as,

P (+)xxk+1
= P (−)xxk+1

−Kk+1Pyyk+1
KT
k+1 (4.5.8c)

Note: The reason why we augment the state vector, is to incorporate the effects of the

process disturbance on the mean and covariance of the sigma points. This does mean

that we have more sigma points to propagate, but it also means that the effect of the

process disturbance are introduced with the same order of accuracy as the uncertainty in

the state. Such an augmented scheme also implies that correlated noise sources can be

implemented easily[8]. Also, one can extend this model in a similar fashion to incorporate

the measurement noise inn the mean and covariance, if it is non-additive or incorporated

in a nonlinear fashion in the observer (we do not do this since in our case for the mobile

robots, we assume additive white Gaussian measurement noise). Thus, the augmented

implementation is favoured when our process disturbance and/or measurement noise is

introduced into the system in a nonlinear and/or non-additive way. Plus, unlike the EKF

the UKF does not place any restrictions on the noise sources to be Gaussian RVs.

37

4.5.2 Non-augmented UKF

If we know that the process disturbance(and/or measurement noise) is additive in the state

propagation then we do not need to augment the state vector and thus can reduce the

dimensionality and number of our sigma points and save on some computational costs.

Since, not a lot is changed in the implementation, I will only outline the differences in the

non-augmented UKF algorithm instead of rewriting it.

1. The Selection scheme remains the same as described in (4.2.1), as we do not tamper

with x̂k, Pxxk or n.

2. Generate the sigma points and instantiate them through the nonlinear function f and

obtain the mean of the transformed sigma points. However, when we are calculat-

ing the covariance of the transformed sigma points we add the process disturbance

variance Q to it, altering (4.5.4) as follows,

P (−)xxk+1
= Q+

2n∑
i=0

Wi[X(−)k+1i − x̂(−)k+1][X(−)k+1i − x̂(−)k+1]
T (4.5.9)

but because we just included the effects of the process disturbance in the error co-

variance, we need to redraw the sigma points again, to incorporate this effect in the

sigma points. We do this by using the recently obtained mean X̂(−)k+1 and covariance

P (−)xxk+1
in the selection scheme given by (4.2.1).

3. The rest of the procedure remains the same as in (4.5.1)

4.6 The Square Root UKF

The drawback of the UKF is its computational complexity and comparatively slow speed

of operation (as to that of the EKF), thus despite its superior performance over the EKF

it still is not used in applications that are constrained by low computational capabilities.

38

Thus, if we could find a way to increase the computational efficiency of the UKF while still

maintaining its efficient filtering index, we will have on our hands an efficient and fast state

estimator and online filtering tool. The Square Root UKF does just this.

Rudolph Van der Merwe and Eric Wan introduced the Square-Root Unscented Kalman

Filter. The following reasoning and algorithm are taken from their paper on the same[11].

The most computationally expensive operation in the UKF corresponds to calculating the

new set of sigma points at each time update. While
√
Pxx is an integral part of the UKF, it is

still the full covariance Pxx which is recursively updated. In the SR-UKF implementation, S,

which is the square root of Pxx will be propagated directly, avoiding the need to refactorize

at each time step.

The Square Root form of the UKF use the following linear algebraic techniques:

Qr Decomposition The OR decomposition or factorization of a matrix Al∗n is given by

AT = QR, where Qn∗n is an orthogonal matrix and Rn∗l and n ≥ l. The upper right

triangular part of R, R̃, is the transpose of the Cholesky factor of P = AAT . This

culminates into R̃ = ST . The notation used for the QR decomposition operation of a

matrix that just returns R̃ is: ’qr{·}’2.

Cholesky Factor Updating If S is the original Cholesky factor of P = AAT , then the

Cholesky factor of the rank 1 update or downdate, P ±
√
vuuT is denoted as S =

cholupdate{S, u,±v}. If u is a matrix and not a vector, then we simply perform the

cholupdate{S, coli,±v} consecutively, for i = 1 : M where M is the number of columns

of the matrix u and coli denotes the ith column of u.

Efficient Least Squares The solution to the equation (AAT)x = AT b also corresponds

to the solution of the overdetermined least squares problem Ax = b. This can be

solved efficiently using a QR decomposition with pivoting (implemented in Matlab’s

’/’ operator).

2For further inquiry as to what is the exact computational complexity of the operations described in the
square root UKF refer to the source[11]

39

Before we start the algorithm, a note on why we are using the Cholesky factorization /

decomposition method for the initial matrix square root:

If we have a positive semi-definite matrix P , then it can have many square roots. In addition

to this for any real valued matrix S that satisfies the following equation,

P = SST

is a valid square root of P . Now, one of the forms of the Cholesky Decomposition of a

matrix is,

A = RTR

where R is an upper triangular matrix. Thus, we can use the Cholesky Decomposition of

the covariance matrix as an alternative to its usual matrix square root. The advantage of

this being added numerical efficiency and stability as the Cholesky factors of P are generally

much better conditioned for matrix operations than P itself. The idea of using a Cholesky

factor for covariance matrix was first implemented by James E. Potter in his efforts to

improve the numerical stability of the measurement update equations. His implementation

came to be called as square-root filtering. 3.

4.6.1 The SR-UKF Filter Algorithm

1. Initialize with the initial estimate of the state vector to be X̂0 and the initial error

covariance to be P0. Thus, forming the Cholesky factor of P0,

S0 = cholP0

Also, the weight values need to assigned at this point.For this algorithm I employ the

scaled unscented transform scheme mentioned in 4.3.

3More details on this can be found in the chapter ”Implementation Methods” in the book ”Kalman
Filtering: Theory and Practice using Matlab”[3]

40

2. We start with the cyclic process that is repeated at each iteration. The iteration being

marked by k and the sigma points being denoted by the lowercase i.

Generate the sigma points using the Cholesky factor of the error covariance S(+)k,

Xk0 = x̂(+)k (4.6.1a)

Xki = x̂(+)k + γSk for i = 1, 2, . . . , n (4.6.1b)

Xki+n
= x̂(+)k + γSk for i = n+ 1, . . . , 2n (4.6.1c)

(4.6.1d)

3. Instantiate each sigma point through the nonlinear function f,

X(−)k+1i = f(Xki , uk) for i = 0, 1, . . . , 2n

4. Now forming the new mean and covariance of the transformed sigma points,

x̂(−)k+1 =
2n∑
i=0

Wm
i X(−)k+1i (4.6.2a)

The a priori time-update of the Cholesky factory of the error covariance if formed

using the QR decomposition of the compound matrix containing the weighted sigma

points from i = 1 to i = 2n

S(−)k+1 = qr{[
√
W c
i (X(−)k+1|i=1:2n − x̂(−)k+1)

√
Q]} (4.6.2b)

Where the operation (X(−)k+1|i=1:2n−x̂(−)k+1) implies subtraction of the mean from

each of the sigma points.

41

A separate subsequent Cholesky update/downdate is necessary since the weight of the

0th sigma point W c
0 maybe negative

S(−)k+1 = cholupdate{S(−)k+1, X(−)k+10 − x̂(−)k+1,W
c
0} (4.6.2c)

5. Redraw the sigma points to incorporate the effect of the process disturnce in them,

since we are using the non-augmented version of the UKF.

6. Instantiate each point through the observer function h,

Yk+1i = h (X(−)k+1i , uk) for i = 0, 1, . . . , 2n

7. Find the mean and covariance of the now transformed Yk+ii sigma points in a similar

fashion

ŷk+1 =
2n∑
i=0

Wm
i Yk+1i (4.6.3a)

SY :k+1 = qr{[
√
W c
i (Yk+1|i=1:2n − ŷk+1)

√
R]} (4.6.3b)

SY :k+1 = cholupdate{SY :k+1, Yk+10 − ŷk+1,W
c
0} (4.6.3c)

8. Finding the Cross-Covariance of X and Y sigma points and the Kalman Gain,

Pxy =

2n∑
i=0

W c
i [X(−)k+1i − x̂(−)k+1][Yk+1i − ŷk+1]

T (4.6.4a)

Since the SY :k+1 is a square and triangular matrix, efficient ”back-substitutions” can

be used to solve for the Kalman gain Kk+1 directly without the need for a matrix

inversion,

Kk + 1 = (Pxy/S
T
Y :k+1)/SY :k+1 (4.6.4b)

42

9. Finally, after getting the actual sensor measurements for the k + 1th step, yk+1, we

make the a posteriori updates to the mean and the Cholesky factor of the error

covariance,

x̂(+)k+1 = x̂(−)k+1 +Kk+1(yk+1 − ŷk+1) (4.6.5a)

The a posterior measurement update of the Cholesky factor of the state covariance

is calculated by applying m sequential Cholesky downdates to S(−)k+1, where m is

the number of columns of the matrix Kk+1SY :k+1, and the downdate vectors are the

columns of this matrix.

S(+)k+1 = cholupdate{S(−)k+1,Kk+1SY :k+1,−1} (4.6.5b)

Out of all the UKF implementation versions, the square-root UKF has better numeri-

cal properties and guarantees positive semi-definiteness of the underlying state covariance

Pxx[11].

4.7 An Illustrative comparison of the UKF with the EKF

Now, that we learnt about the various flavours of the UKF, let us examine an illustration

comparing estimation accuracy of the EKF and the UKF for the mean and error covariance

of the state vector x, after it is transformed through a nonlinear function. To better gauge

the performance of either of these filters, we juxtapose them with a Monte-Carlo Sampling

Method(with a large number of samples), which can be taken as the ground value for the

’true’ mean and error covariance of the state.

43

Figure 4.2: Comparison of mean and covariance sampling by Monte-Carlo Sampling, EKF
and UKF[11]

44

Chapter 5: Results: Simulation and Analysis

5.1 Matlab Simulation

Matlab is used for simulating my system and filter design. The reasons for choosing Matlab

are:

1. Controls and Electrical engineering community favours it. Hence, many will find it

easy to read and analyze my code, thereby relating to it.

2. Prototyping is very easy on Matlab. Thus one can concentrate more on the filter

design rather than worry about its implementation.

3. It provides in-built support for Matrix Operations. The Kalman Filter relies heavily

on Matrix Math, thus, it makes Matlab a convenient environment.

4. Excellent Plotting and Graphing support.

Matlab does have certain inefficiencies which makes it very slow when compared to other

programming languages like C,C++,etc. However, all the filters are written in Matlab,

thus evaluating them is still based on a fair comparison. One can switch to a C/C++

implementation when dealing with a real-time implementation of the Filter for a truly

efficient and fast operation.

The codes used for the simulations and other verification schemes can be used to recreate

any of the results and plots documented in the sections below. These are available upon

request. If you intend to obtain them please drop a mail to surajravi@gmail.com regarding

the same.

45

5.1.1 Environment Variables

The various system parameters and constants that are used are as follows:

Length l is the length of the robot specified in meters. For all simulations it is set this to

2 meters. The length of the robot would in turn affect the radius of curvature, this is

shown by the equation in (2.1.1).

l = 2m

Gain dictates the proportionality of the control law. Depending on the value set to gain

we will make sharper turns (for a high value set to gain) or more gradual smoother

turns (for a low value set to gain). One can try out different values of gain and set the

one that gives the best results for the particular application at hand. For the entirety

of the simulations, gain is set to 2.

Gain = 2

Velocity v is the velocity of the rear wheels of the robot. It is set to 1 meter per second

for all the simulations.

v = 1 m/s

Discretization Time Interval δt is the time step we use for our numerical integration

method in seconds. It is set as follows:

δt = 0.1 s

Process Disturbance Q is the variance of the process disturbance. As previously dis-

cussed, we have process disturbance only in our heading (ψ) and not for any other

state variable. Thus it is a scalar and it takes on the following value:

Q = 0.052;

46

Measurement Noise R is the variance of the measurement noise. For all the filters, I

include measurement noise only in the x and y coordinate. It is absent from the ψ

variable as ψ is not measured at all. The value of the R matrix is given below:

R =

0.22 0

0 0.22



Initial Error Covariance P0 is the value given by E[(X̂0 −X0)(X̂0 −X0)
T]. Here X̂0 is

the initial best guess of the state vector before beginning with the filtering operation.

X0 is the true state vector (used for our simulations). Since we neither have knowledge

of the PDF of the state vector X nor access to the true state vector X0, we set this

value arbitrarily. Trial and error methods are used to fine tune this value to increase

the accuracy of the filter. The value used in all the simulations is given as:

P0 =


0.22 0 0

0 0.22 0

0 0 (π
4.0)2



A note about the Initial Estimate of the state vector X̂0: This can be set to a completely

random value and allow the filter catch up to the true state at the expense of a certain

number of iterations of the simulation. Some approaches even assume that they have exact

knowledge of the initial conditions of the state, and set X̂0 = X0 and thus making P0 = 0nxn.

The approach used in this thesis sets X̂0 to a value near the true state (by including some

random noise over the value of the true state vector).

47

5.2 Graphs

Each of the filters are tested out on two different paths.

Path 1 The first path is more straightforward and has a single destination in its entire

course. However I make the observer function (h(·)) non-linear in the simulation for

this path. This is done on purpose to facilitate a comparison of the all the filters with

the IEKF, as the IEKF is only advantageous in the case of non-linearity in h(·).

The h(·) I employ is specifically this:

Y =

(x̂co−ord + noise)3

(ŷco−ord + noise)3



Since there are high non-linearities in this simulation, please consider the resultant

path plots and accuracy measures accordingly. There is a lot of noise present in them,

hence the skewed plots.

Path 2 The second path has a linear h(·), but, it has multiple destination (analogous to

checkpoints) fed to it in a sequential manner. It first completes the entire path to the

first checkpoint in the list and then once it has reached that destination (with a small

room for error) it removes that checkpoint from the list and moves on to the next set

of destination coordinates. The list of the destination coordinates is provided in the

following manner:

Xdes =

xdes1 xdes2 . . . xdesp

ydes1 ydes2 . . . ydesp


Here, p is the total number checkpoints in the list.

Note: The flavour of UKF used in the simulations and comparisons that are documented

below is the Scaled Unscented Kalman Filter (non-augmented).

48

5.2.1 EKF Path 1

−8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

4

6

8

10
Robot Trajectory in X−Y Space

X−Axis

Y
−

A
xi

s

True State
Estimated State

Figure 5.1: EKF Plot for True v/s Estimated Robot Trajectory

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3
Plot of Robot Heading Angle(psi)

Time (Iteration Number)

H
ea

di
ng

 A
ng

le
 (

ps
i)

True State
Estimated State

Figure 5.2: EKF Plot for True v/s Estimated Heading Angle

49

5.2.2 EKF Path 2

−4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14
Robot Trajectory in X−Y Space

X−Axis

Y
−

A
xi

s

True State
Estimated State

Figure 5.3: EKF Plot for True v/s Estimated Robot Trajectory

0 50 100 150 200 250 300 350 400 450
−4

−3

−2

−1

0

1

2

3

4
Plot of Robot Heading Angle(psi)

Time (Iteration Number)

H
ea

di
ng

 A
ng

le
 (

ps
i)

True State
Estimated State

Figure 5.4: EKF Plot for True v/s Estimated heading Angle

50

5.2.3 IEKF Path 1

−6 −4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

X−Axis

Y
−

A
xi

s

True State
Estimated State

Figure 5.5: IEKF Plot for True v/s Estimated Robot Trajectory

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

4
Plot of Robot Heading Angle(psi)

Time (Iteration Number)

H
ea

di
ng

 A
ng

le
 (

ps
i)

True State
Estimated State

Figure 5.6: IEKF Plot for True v/s Estimated Heading Angle

51

5.2.4 IEKF Path 2

−4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

X−Axis

Y
−

A
xi

s

True State
Estimated State

Figure 5.7: IEKF Plot for True v/s Estimated Robot Trajectory

0 50 100 150 200 250 300 350 400 450
−4

−3

−2

−1

0

1

2

3

4
Plot of Robot Heading Angle(psi)

Time (Iteration Number)

H
ea

di
ng

 A
ng

le
 (

ps
i)

True State
Estimated State

Figure 5.8: IEKF Plot for True v/s Estimated heading Angle

52

5.2.5 UKF Path 1

−6 −4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12
Robot Trajectory in X−Y Space

X−Axis

Y
−

A
xi

s

True State
Estimated State

Figure 5.9: UKF Plot for True v/s Estimated Robot Trajectory

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4
Plot of Robot Heading Angle(psi)

Time (Iteration Number)

H
ea

di
ng

 A
ng

le
 (

ps
i)

True State
Estimated State

Figure 5.10: UKF Plot for True v/s Estimated Heading Angle

53

5.2.6 UKF Path 2

−4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14
Robot Trajectory in X−Y Space

X−Axis

Y
−

A
xi

s

True State
Estimated State

Figure 5.11: UKF Plot for True v/s Estimated Robot Trajectory

0 50 100 150 200 250 300 350 400 450
−4

−3

−2

−1

0

1

2

3

4
Plot of Robot Heading Angle(psi)

Time (Iteration Number)

H
ea

di
ng

 A
ng

le
 (

ps
i)

True State
Estimated State

Figure 5.12: UKF Plot for True v/s Estimated heading Angle

54

5.2.7 Accuracy and Computational Costs (Time)

The accuracy of the filters is measured by calculating their Mean Squared Error (MSE)

over the entire length of the simulation. Note that the MSE for x and y coordinates is

calculated separately and that of the ψ is calculated separately as they have different units

of measurement (meters and radians respectively).

Functions are made to carry out specific subroutines. This approach makes it possible to

measure the time spent in each function and compare it for the various different filters.

Matlab’s ’Run and Time’ feature enables this and gives the necessary numbers to facilitate

a comparison between filters.

A list of the various functions used and their descriptions:

stateprop this is where the system dynamics of the mobile robot are coded. The only

function of stateprop is to propagate the state forward by 1 time step as per the

specified dynamics.

anglenormalization serves the function of keeping the angle values in the range of 0 to

π. If this is not done regularly at every iteration and major alteration to the angles

it might lead to a very unsrtable performance of the filter.

The tables below gives us a comparison of the filters with respect to accuracy and speed. The

stateprop and anglenorm represent the time spent those functions respectively in seconds.

All time is in seconds.

Table 5.1: Comparison Table for Path 1

Filters MSE (x and y) MSE ψ Total Time stateprop anglenorm

EKF 0.5188 0.8391 0.183 0.008 0.017

IEKF 0.4206 0.8726 0.560 0.026 0.009

UKF 0.5001 0.7616 1.527 0.157 0.039

55

Table 5.2: Comparison Table for Path 2

Filters MSE (x and y) MSE ψ Total Time stateprop anglenorm

EKF 0.0069 0.0063 0.225 0.009 0.009

IEKF 0.0069 0.0063 1.786 0.083 0.093

UKF 0.0063 0.0064 2.657 0.255 0.036

5.3 Verification of the UKF Implementation

Such below average performance of the UKF leads to the question that weather its imple-

mentation scheme is correct or not. This combined with the fact that every one in the

controls industry believes that the UKF is superior to the EKF, led to the developments of

verification schemes for the UKF.

5.3.1 Testing the Unscented Transform

The Unscented Transform is at the heart of the UKF. The rest is just the filtering algorithm,

where the possibility of error is thin. Thus, if we check the functioning of the Unscented

Transform to be correct and as desired, we can actually state with authority that indeed for

this specific case of Mobile Robot State Estimation it is better to stick to the EKF. There

are basically two aspects that need to be verified with the Unscented Transform:

Proper Selection of the Sigma Points

The Sigma points chosen in the UKF (or any filter from the family of Sigma Point Kalman

Filters) are chosen deterministically. This poses the question that on a meta-level what is the

underlying scheme for selecting the sigma points in the Unscented Transform. Investigating

this would also provide a much better understanding of the transform.

The sigma points are chosen along the principal axis of the ellipse of the uncertainty covari-

ance. Since in our case the system dynamics are 3-dimensional the uncertainty covariance

i.e. Pxx translates to an ellipsoid. So to really confirm if our sigma points are truly being

mapped along the principal axis of this ellipsoid we need to first draw this ellipsoid.

56

Now, to grasp the concept of this ellipsoid we need to consider another fact. There is a

confidence region boundary that we need to stick inside. This is because our we assume

our State vector Random Variable to be Gaussian in nature, and as such Gaussian Region

of convergence spread till infinity. Thus as a practical measure we restrict this boundary

to include ’almost all’ area under the ellipsoid but not all, since as we progress further and

further away from the mean the probability of the state vector residing in that space reduces

drastically. For the particular verification scheme being implemented, the confidence region

is set to 65%1.

The following steps are based of the knowledge I accumulated after reading a the following

articles[12] [13].

1. Scale covariance matrix (Pxx) with the Mahalanobis Distance. The Mahalanobis

distance is given by the following Matlab command:

mahalanobis distance = chi2inv(conf, dim);

where ’conf’ is the confidence region as mentioned above and ’dim’ is the dimension

of the state vector (which in our case is 3).

2. Obtain the Eigen Values and Eigen Vectors of the Covariance Matrix

[V,D] = eig(P);

% Make sure that all our eigen values and vectors are real & non−negative

V = real(V);

D= real(D);

D = abs(D);

% Sorting the Eigen vectors by their eignevalues in a decending order

[D order] = sort(diag(D), 'descend');

D = diag(D);

V = V(:, order);

1This value was attained empirically

57

3. Generate the points for a generic sphere

[X,Y,Z] = sphere(num);

4. Now we conform these generated sphere points to the surface of our Ellipsoid

L= sqrt(diag(D));

w = (V*sqrt(D))* [X(:)'; Y(:)'; Z(:)'];

z = repmat(Mu(:), [1 (num + 1)ˆ2]) + w;

here ’Mu’ is the mean of our State Vector (X) around which the ellipsoid is centered.

5. Now just plot these generated points

holding = ishold;

axis equal

rotate3d on;

shading flat

s = mesh(reshape(z(1, :), [(num + 1) (num + 1)]), ...

reshape(z(2, :), [(num + 1) (num + 1)]), ...

reshape(z(3, :), [(num + 1) (num + 1)]));

set(s,'EdgeColor',[0,0,0],'EdgeAlpha',0.05,'FaceColor','none');

% The line below allows me to exclude the sphere itself from the legend

set(get(get(s,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');

6. Plotting the Principal Axis of the Ellipsoid

% First the x−axis

h = plot3([Mu(1); Mu(1) + L(1) * V(1, 1); Mu(1) − L(1) * V(1, 1)], ...

[Mu(2); Mu(2) + L(1) * V(2, 1); Mu(2) − L(1) * V(2, 1)], ...

[Mu(3); Mu(3) + L(1) * V(3, 1); Mu(3) − L(1) * V(3, 1)], ...

'Color','blue');

58

% Now the y−axis

h=[h;plot3([Mu(1); Mu(1) + L(2) * V(1, 2); Mu(1) − L(2) * V(1, 2)], ...

[Mu(2); Mu(2) + L(2) * V(2, 2); Mu(2) − L(2) * V(2, 2)], ...

[Mu(3); Mu(3) + L(2) * V(3, 2); Mu(3) − L(2) * V(3, 2)], ...

'Color','black')];

% And finally the si−axis (this is the z−axis)

h = [h; plot3([Mu(1); Mu(1) + L(3) * V(1, 3); Mu(1) − L(3) * V(1, 3)], ...

[Mu(2); Mu(2) + L(3) * V(2, 3); Mu(2) − L(3) * V(2, 3)], ...

[Mu(3); Mu(3) + L(3) * V(3, 3); Mu(3) − L(3) * V(3, 3)], ...

'Color','red')];

With this done we can now plot an instance of the generated sigma points to check if they

truly lie on the Principal Axes.

The first plot is done with the value of α = 0.5, as discussed in (4.3.1) α is the spread of

the sigma points about the mean.

As we can infer from the above figure 5.13, the spread of the sigma points about the mean

is symmetric. There are two equidistant sigma points on either side of the mean on each

of the principal axes of the ellipsoid. The distance of these sigma points from the mean is

the same for all the 2 ∗ n+ 1 points (where n is the dimension of the state vector). As for

verifying the proper functioning of alpha, we can tweak it around a bit and plot the spread

again. The figure below shows the sigma points on the error ellipsoid when α = 0.92.

Thus, we can now conclude without a doubt that the sigma point selection scheme is working

as intended.

Testing the Convergence of the Unscented Transform

The Unscented Transform (or Scaled Unscented Transform) should be convergent for our

filter to maintain stability and not loose track of the state being estimated. There exists a

very simple scheme to perform this verification. It is as follows:

2The larger the vallue of α the farther away from the mean the sigma points will spread.

59

Figure 5.13: Error Covariance Ellipsoid: Sigma points around the mean with α = 0.5

1. With the initial Data given (i.e. Pxx, α, β, γ,W
m&W c and the mean X̂) generate set

of sigma points as per the equations in (4.3.2).

2. We then pass these points through an identity transform, which basically means we

do not touch these points at all.

3. Next we generate the mean and covariance of the transformed sigma points as de-

scribed in (4.3.3) and (4.3.4) respectively.

4. Since we passed our sigma points through an identity transform, the state of the

system should remain the same. Thus, the mean and covariance generated in the step

above should match with the ones we started off with in the first place. If this does

not hold then the Unscented Transform will be divergent and all will fail.

60

Figure 5.14: Error Covariance Ellipsoid: Sigma points around the mean with α = 0.9

A code snippet was written in Matlab for executing this verification scheme. Before the

identity transform the mean and covariance were:

Pplus =

0.0400 0 0

0 0.0400 0

0 0 0.6169

Xest =

0.1212

0.1081

61

1.2818

And after the identity transform the calculated statistics were:

Xest ident =

0.1212

0.1081

1.2818

Pminus ident =

0.0400 0.0000 −0.0000

0.0000 0.0400 −0.0000

−0.0000 −0.0000 0.6169

As one can see the mean remains unaltered. AS for the covariance, the misplaced − signs

arise due to round-off errors and other computational errors. But these too are after the

fourth decimal place, thus it is safe to conclude that are transform is actually convergent

and working properly.

5.4 Averaging over multiple runs

One possible explanation to the current scenario of results would be the random noise

induced into the system via process disturbance and measurement noise. Since these vary

from run to run3 it is always considered a good practice to average any Meas Square

Error(MSE) over a good number of runs so that we eliminate the dependence of the results

on randomness.

For our case at hand, we will compare just the EKF and the scaled UKF (non-augmented)

over a thousand runs as this would allows us a more in-depth analysis of what the true MSE

of each of them in the long run might be. To play it safe, the MSEs of each of the filters

were averaged out over 1000 different runs (which means thousand different sets of random

noise values).Path 2, as mentioned in the Graphs section above (Sec. 5.2), was used for

3They were still the same sets used to compare the filters in the sections above

62

these runs. The results obtained are shown in the table below.

Table 5.3: EKF v/s UKF MSE averaged over 1000 runs

Filter MSE (x and y) MSE ψ

EKF 0.0038 0.0412

UKF 0.0039 0.0400

5.5 Inference

The current claim in the Controls Community is that the UKF outperforms the EKF for

non-linear applications and does just as well for linear applications. While this is true for

the various non-linear systems that the UKF has been applied to, the results specific just

to the case of Mobile Robot State Estimation are quite the contrary. This might be a case

of the peculiar system dynamics of the Mobile Robot which causes this.

Thus, by far the best method for Mobile Robot State Estimation still remains to be the

Extended Kalman Filter. In cases, when the noise level is too high the Iterated Extended

Kalman Filter should be employed if the computational costs can be entertained.

The final conclusive finding of my comparison would be that the Extended Kalman Filter,

is by far the best method for Mobile Robot State Estimation, within the realm of Gaussian

Filters. Even outside the field of Gaussian Filters it is still the alternative with the highest

accuracy to computational cost ratio.

5.6 Future Scope

The following are some extensions that could be built upon the work and analysis done in

this thesis:

• Theoretical Investigation of why the UKF performs below par for the Mobile Robot

problem.

63

• A mathematical proof of concept as to why the UKF does not give higher accuracy

than the EKF for the Mobile Robot State Estimation.

• A possible change in the UKF particularly tailored for the current system dynamics

fitlering.

64

Bibliography

[1] Rudolf Kalman. A new approach to linear filtering and prediction problems. Transac-

tions of the ASME, Journal of Basic Engineering, 82:35–45, 1960.

[2] Greg Welch and Gary Bishop. An introduction to the kalman filte.

[3] Mohinder S. Grewal and Angus P. Andrews. Kalman Filtering Theory and Practice

Using Matlab. 3rd edition, September 2008. ISBN 9780470173664. URL http://www.

wiley.com/WileyCDA/WileyTitle/productCd-0470173661.html.

[4] Particle filter wikipedia page. URL http://en.wikipedia.org/wiki/Particle_

filter.

[5] Gerald Cook. MOBILE ROBOTS: Navigation, Control and Remote Sensing. Wiley-

IEEE Press, June 2011. ISBN 9780470630211. URL http://www.wiley.com/

WileyCDA/WileyTitle/productCd-0470630213.html.

[6] Arthur Gelb, Joseph F. Kasper, Raymond A. Nash, Charles F. Price, and Arthur A.

Sutherland. Applied Optimal Estimation. MIT Press, Cambridge, MA, 1974. ISBN

9780262570480.

[7] Drew Bagnell and Keheng Zhang. Statistical techniques in robotics: Lecture on kalman

filtering(part 2). CS lecture series in Carnegie Mellon University.

[8] S.J. Julier and J.K. Uhlmann. A new extension of the kalman filter to nonlinear

systems. In 11th International Symposium on Aerospace/Defense Sensing (AeroSense),

Simulations and Controls, 1997.

65

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470173661.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470173661.html
http://en.wikipedia.org/wiki/Particle_filter
http://en.wikipedia.org/wiki/Particle_filter
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470630213.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470630213.html

[9] Simultaneous map building and localization for real time applications.

[10] Simon J. Julier and Idak Industries. The scaled unscented transformation. In in Proc.

IEEE Amer. Control Conf, pages 4555–4559, 2002.

[11] Rudolph van der Merwe and Eric A. Wan. The square-root unscented kalman filter

for state and parameter-estimation. URL http://ece.ut.ac.ir/Classpages/S87/

ECE150/Papers/Kalman-Filter/merwe01a.pdf. Oregon Graduate Institute of Science

and Technology.

[12] Ellipse around the data in matlab – stackoverflow, . URL http://stackoverflow.

com/questions/3417028/ellipse-around-the-data-in-matlab.

[13] Error ellipse plit matlab code, . URL http://openslam.informatik.uni-freiburg.

de/data/svn/tjtf/trunk/matlab/plotcov2.m.

66

http://ece.ut.ac.ir/Classpages/S87/ECE150/Papers/Kalman-Filter/merwe01a.pdf
http://ece.ut.ac.ir/Classpages/S87/ECE150/Papers/Kalman-Filter/merwe01a.pdf
http://stackoverflow.com/questions/3417028/ellipse-around-the-data-in-matlab
http://stackoverflow.com/questions/3417028/ellipse-around-the-data-in-matlab
http://openslam.informatik.uni-freiburg.de/data/svn/tjtf/trunk/matlab/plotcov2.m
http://openslam.informatik.uni-freiburg.de/data/svn/tjtf/trunk/matlab/plotcov2.m

Curriculum Vitae

Suraj Ravichandran was born in the city of Mumbai, India. He completed his Bachelor of
Engineering in Electronics and Telecommunication from the Thadomal Shahahni College
of Engineering (Mumbai University). His research interests are Controls, Robotics and
Artificial Intelligence. He is currently pursuing his Masters in Electrical Engineering in
George Mason University.

67

	List of Tables
	List of Figures
	List of Abbreviations
	Abstract
	 Introduction
	Limitations of the Linear Kalman Filter
	An Initial yet robust fix – The Extended Kalman Filter

	The Ultimate Solution – Particle Filter
	Trouble in Paradise – Computationally Prohibitive

	Why stick to the Kalman Filter?
	Kalman Filter Derivatives

	 Mobile Robot Dynamics
	Mobile Robot Setup
	Robot Kinematics in Local Coordinates
	Rotation to Earth Coordinates

	Steering Control Law
	Choice of Method for Numerical Integration
	Euler's Method
	Runge Kutta

	Sensors

	 State Estimation using the EKF
	EKF Derivation for Mobile Robot
	The Final State Space Representation
	Final Flow Algorithm for the EKF

	EKF Derivatives
	The Iterated Extended Kalman Filter

	A look on Statistical Linearization Methods for the Non-Linear Kalman Filter
	The Achilles heel of this Approach!
	Monte-Carlo Kalman Filter

	 State Estimation using the UKF
	Introduction to the Sigma Point Approach
	The Unscented Transform
	The Scaled Unscented Transform
	Tuning the Weights
	The UKF Algorithm
	Augmented UKF
	Non-augmented UKF

	The Square Root UKF
	The SR-UKF Filter Algorithm

	An Illustrative comparison of the UKF with the EKF

	 Results: Simulation and Analysis
	Matlab Simulation
	Environment Variables

	Graphs
	EKF Path 1
	EKF Path 2
	IEKF Path 1
	IEKF Path 2
	UKF Path 1
	UKF Path 2
	Accuracy and Computational Costs (Time)

	Verification of the UKF Implementation
	Testing the Unscented Transform

	Averaging over multiple runs
	Inference
	Future Scope

	Bibliography

