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Abstract

TINY TRUE RANDOM NUMBER GENERATOR

Shashi Prashanth Karanam,

George Mason University, 2009

Thesis Director: Dr. Jens-Peter Kaps

Random Number Generators (RNGs) play a crucial role in the security of modern-day

cryptographic modules. In cryptography they are used to generate initialization vectors for

cryptographic primitives and protocols, keys for secret and public-key algorithms, seeds for

pseudo-random number generators, challenges, nonces, padding bits, and system parame-

ters in security protocols. A True Random Number Generator (TRNG) is a physical device

that generates statistically independent and unbiased bits. A TRNG harvests randomness

present in the underlying physical source and the generator will have no internal state kept.

Increased research interest in the field of reconfigurable computing is making Field Pro-

grammable Gate Arrays (FPGAs) a preferred platform for cryptographic implementations.

Hence, a pure digital implementation of a TRNG is highly demanded by modern-day ap-

plications. This thesis describes a simple TRNG design based on a single ring oscillator

implemented using pure logic gates focusing on low power, and low area cryptographic

applications. The randomization technique is based on sampling phase jitter contained in

the oscillator ring. The TRNG has a very low area consumption, high throughput/area

ratio and generates output bits at an acceptable bit rate. The security of the cryptographic



primitives relies on the quality of the generated random bits, hence a TRNG for crypto-

graphic applications must meet stringent requirements and should generate bits that can

not be reproduced and are unpredictable in nature. The generator can be tested for its

good statistical properties using a statistical test suite, ideally adjusted to a perfect RNG.

Our TRNG design have been verified against statistical test suites from Diehard, NIST and

BSI.



Chapter 1: Introduction

1.1 The need for Random Bits in Cryptography

Random Number Generators (RNGs) find numerous applications in a wide range of areas

from art to statistics and cryptography. The degree of randomness required is determined

by the type of application. Weaker forms of randomness can be associated with simpler ap-

plications (like randomly selecting a music track from the list) whereas many cryptographic

applications demand a very high degree of apparent randomness. A large set of crypto-

graphic applications [1] depend on generation of random numbers. Few of such consumers

of random bits in a cryptographic module include

1. keys (Secret keys in symmetric-key cryptosystems, user private keys in public key

cryptosystems, message private keys in randomized public key schemes)

2. Initialization vectors for cryptographic primitives and protocols

3. Nonces, Challenges, padding bits, and system parameters in security protocols

4. Seed for Pseudo-Random number generators

5. Cryptographic accelerators and Smart cards.

A few non cryptographic applications include

1. Games, Gambling, Lotteries and Draws

2. Simulations

3. Software testing

1



4. Random sampling (e.g: drug screening) and many more .

A RNG is a computational or physical device that generates sequences which are unpre-

dictable and are random. A RNG for cryptographic applications must meet stringent re-

quirements since the security of cryptographic modules primarily rely on the unpredictabil-

ity of the keys or initialization vectors used. Thus, an adversary having complete knowledge

of the design and access to previously produced bits must not be able to predict the future

bits.

Bruce Schneier, in his book Handbook of Applied Cryptography [1] states a RNG may

possess one or more of the following properties

1. Output is random : All the elements of the sequence are generated independently.

This means it should pass all the statistical tests of randomness.

2. Output is unpredictable : Provided complete knowledge of the algorithm or the se-

quence generating mechanism, and all of previously generated bits, it should be com-

putationally infeasible to determine the next random bit.

3. Output cannot be reproduced : If the sequence generating mechanism is always started

from a known state and ran for multiple times it should not reproduce any of the previ-

ous sequences or everytime it should produce completely unrelated random sequences.

1.2 RNGs using Pure Digital Elements

Due to recent advances and increased research interest in the field of reconfigurable comput-

ing using very flexible high speed computing fabrics like Field Programmable Gate Arrays

(FPGAs), RNGs using pure digital elements are drawing much attention. Research in this

field is of primary focus today since substantial changes can be made to data path and

control logic if required once designed and it is possible to adapt a new hardware structure

during runtime by loading a new circuit. Also it offers huge performance advantages over

traditional software based methods.

2



1.3 Tiny True Random Number Generators

A Tiny True Random Number Generator is important to have because

1. Of small area for area constraint applications such as RFID tags, smart nodes.

2. Of Low power for power constraint applications such as battery powered devices,and

for ultra low power cryptographic applications such as sensor nodes.

3. To have high throughput per area and energy spent.

1.4 Thesis Goals

The Primary goal of the Thesis was to:

1. Design and Build a simple True Random Number generator (TRNG) in an FPGA

using logic gates only.

2. Build a compact and efficient design with a very low area, high area per throughput

ratio and low power.

3. Build a design with an acceptable output bit rate suitable for cryptographic applica-

tions.

4. Validate the TRNG design using statistical test suites for randomness.

The Secondary goal of the project was to:

1. Analyze the mathematical framework of a provable secure true random number gen-

erator [2] proposed by Sunar, Martin and Stinson through implementation.

This Thesis will show that we were successful in achieving the goals.

3



1.5 Thesis Organization

Chapter 2 of this thesis discusses the classification and explanation of different types of

RNGs. Chapter 3 describes the sources of randomness for a TRNG. Chapter 4 presents

the generic architecture of a TRNG. Chapter 5 describes how a RNG can be tested and

presents the details of Diehard [3], NIST [4] and BSI [5] statistical test suites. Chapter 6

covers the background of TRNG designs appeared in literature targeting FPGA platforms.

Chapter 7 details our TRNG design. In Chapter 8, we present the conclusion and discuss

some future work on our TRNG design.

4



Chapter 2: Classification

This chapter discusses different categories of RNGs and classifies their randomization gen-

eration techniques.

2.1 Types of RNGs

RNGs can be classified as:

2.1.1 Pseudo Random Number Generators (PRNGs)

A PRNG is a deterministic algorithm which generates sequence of bits with little or no

discernible pattern in the bits. It is a function which once initialized by a seed (random

value) generates a sequence of numbers which only approximates the properties of a TRNG.

Given the same seed the PRNG will always produce the same sequence of bits. These are

also called as deterministic RNGs.

2.1.2 True Random Number Generators (TRNGs)

A TRNG is one which generates statistically independent and unbiased bits. These are also

called as non-deterministic RNGs.

A short comparison of characteristics of PRNGs and TRNGs is presented in table 2.1.

Since TRNGs take longer time to produce the same number of bits they are less efficient

Table 2.1: Comparison between PRNGs and TRNGs
Characteristic PRNG TRNG
Efficiency Excellent Poor
Determinism Deterministic Nondeterministic
Periodicity Periodic Aperiodic

5



in terms of throughput when compared to PRNGs. However bits produced by TRNGs are

non-deterministic making them more suitable for cryptographic applications. TRNGs have

no period i.e., they produce a sequence which never repeats. The security of a PRNG de-

pends on the computational complexity of possible attacks i.e., it should be computationally

infeasible to compute the next output even if all previous outputs generated from a PRNG

and algorithm used are known. Hence PRNGs suitable for cryptographic applications are

also known as Cryptographically Secure Pseudo Random Number Generators (CSPRNGs)

and must be resistant to known attacks. PRNGs satisfy only first of the Schneier require-

ments of a RNG where as TRNGs possess all the three properties that are stated in section

1.1. The major difference between a PRNG and a TRNG is how its internal state is kept,

in a TRNG there is no internal state kept in the generator and the bits produced are

independent of previously generated bits.

There is a third type of RNGs called hybrid RNGs which can have design elements from

both PRNGs and TRNGs [6], [7].

2.2 Classification of Generation Methods of TRNGs

The focus in this section will narrow down to only TRNGs. TRNGs can be further classified

as

1. Software (SW) based Generators or non-physical TRNGs and

2. Hardware (HW) based Generators or physical TRNGs

The fundamental component of a TRNG is the entropy source it relies on. Entropy is

defined as ”the measure of uncertainty associated with a random variable”.

The entropy source for a SW-TRNG [1] are random events in a computer system that

can be captured using software procedures such as the

1. mouse movements and clicks

2. keystrokes

6



Table 2.2: Comparison between SW-TRNGs and HW-TRNGs
Characteristic SW-TRNG HW-TRNG

Expensive Less More
SW-Integration Easy Tough

Statistical properties Weak Good
Entropy Less High

Subject to observation and Manipulation Yes Yes

3. the system clock

4. content of input/output buffers, RAM content

5. operating system values such as system load and network statistics.

HW-TRNGs exploit randomness which occurs in physical phenomenon where sources

are faster, higher in quality and more protected by themselves.

A comparison between two approaches is presented in the table 2.2. When compared

to HW-TRNGs, SW-TRNGs have low entropy and are less robust w.r.t. observation and

manipulation. Hence, SW-TRNGs usually have more than one entropy source and a strong

post processing unit which can execute a drastic compression.

2.3 Classification of HW-TRNGs

The focus in this section and throughout the thesis document are HW-TRNGs which from

now on we refer to as TRNGs. True Random numbers can be generated electronically using

either

1. Analog components,

2. Pure digital elements, or

3. A mix of Analog and digital elements

In modern day security applications TRNGs using pure digital elements are highly

preferred over analog components because they
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(physical)

MixAnalogDigital

(non−physical)
Software
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(deterministic)
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Figure 2.1: RNG Classification.

1. are cumbersome and can’t be easily integrated into ASIC or FPGAs,

2. have low throughput,

3. are highly sensitive to environmental changes,

4. are less flexible and

5. operate at lesser speeds

On the contrary, digital components offer greater speeds and more robustness, high

flexibility, are less subjective to environmental changes and can easily fit into ASIC and

FPGA platforms. A summary of classifications discussed in this chapter is presented in

figure 2.1.
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Chapter 3: Sources of Randomness

In this chapter we discuss the available sources of randomness for a physical TRNG or a

HW-RNG. The Entropy source for a TRNG is a physical source. Such sources of randomness

include

1. Electronic Noises: Electronic noises can be primarily categorized into

Thermal Noise: It is also called as Johnson noise and is generated by thermal

agitation of electrons in a conductor [8]. Thermal noise is approximately white and

its amplitude is random and gaussian. This kind of noise can be observed in resistors.

Shot Noise: Shot noise normally occurs when there is a voltage differential or po-

tential barrier. When the electrons and holes cross the barrier, shot noise is produced.

Shot noise is also white and gaussian in nature. A diode, a transistor or a vacuum tube

will all produce shot noise [8]. An avalanche noise is produced by an avalanche diode

at a specified reverse bias voltage where an avalanche breakdown occurs, a similar

effect can be observed by zener diode at zener breakdown.

1/f Noise It is also called as Flicker noise or Pink noise [9]. It results from a

variety of effects, such as generation and recombination noise in a transistor due to

base current, impurities in the conductive channel. It is always related to the direct

current flow. Flicker noise is more prominent in FETs and resistors.

TRNGs using electronic noise as a source of randomness typically contains an amplifier

to bring the output of the physical process into the macroscopic realm, and a sampler

to convert the output into a digital signal [10].

2. Quantum mechanical properties of a photon or a nuclear decay from a radioactive

substance are believed to be random in nature. They can also be used as a entropy

9



source for a HW-RNG.

3. Metastability: By violating the setup and hold conditions of a flip flop, the pair

of gates internal to the flip flop which are usually cross connected will behave unpre-

dictably or oscillate about some intermediate voltage which is neither a logical high

or logical low. These oscillations die after sometime and the flip flop finally settles

down into a unpredictable logical high or low.[10], [11], [12].

4. Jitter: Jitter is defined as the short-term variations of a digital signal’s significant

instants from their ideal positions in time. In general, jitter can be defined as the

deviation of the timing edges from their ideal locations. It can also be seen in char-

acteristics such as amplitude, frequency or phase of successive cycles. In frequency

domain representation it is termed as phase noise which is a representation of rapid,

short-term, random fluctuations in the phase of a wave caused by time domain insta-

bilities.

Jitter consists of two components viz., deterministic jitter and non deterministic jit-

ter. Deterministic jitter is predictable and reproducible. The peak-to-peak value

of this jitter is bounded and the bounds can easily be predicted. Few examples of

this kind include data dependent jitter, sinusoidal jitter, uncorrelated jitter and duty

cycle distortion. Random jitter is also called Gaussian jitter as its standard devi-

ation grows with time and is considered to be unbounded and unpredictable. The

thermal and shot noise in electrical circuits are white and have Gaussian distribu-

tion and can be considered as the source of random jitter. Edge deviations, which

occur in electronic signals contain a level of randomness and are primary source of

randomness for our TRNG implementation and many other TRNG implementations

[13],[14],[15],[16],[17],[18],[11],[14]

There are several ways to characterize jitter [19],[20] such as

Phase jitter : It is the difference between the measured phase advance of the clock

from an ideal clock.
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Figure 3.1: Phase Jitter

Period jitter : The measure of a deviation in a clock’s period from its average

period is defined as Period jitter.

Cycle-to-cycle jitter : The deviation in clock period between any two adjacent

cycles is termed as cycle-to-cycle jitter.

n-cycle jitter : n-cycle is jitter is similar to cycle-to-cycle jitter but measures the

deviation of clock period over n cycles.

In other words phase jitter can be defined as a measure of the relative distance at

which the actual phase as shifted from the ideal clock phase and period jitter can be

defined as a measure of the relative speed at which the actual period as shifted from

the ideal clock period.

If a TRNG is targeted for a FPGA or is seeking a pure digital implementation then it

is impossible to use first two sources of randomness.
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Chapter 4: Generic Architecture

In this chapter we present the generic design of a TRNG. Quality of a good TRNG design

relies on three basic components viz.,

1. a randomness source,

2. a sampler, and

3. a post processing unit. A TRNG usually follows the generic architecture [21], [13]

depicted in figure 4.1.

4.1 Randomness Source

Any TRNG is necessarily based on some kind of non-determinstic physical phenomenon.

The noise source is the most critical component as it determines the available entropy.

The noise source generates an analog noise signal and this analog noise signal is fed into

a sampler to get the digitized analog signal (das). Furthermore, some noise sources can

bits
signal

Noise
Source

Sampler

analog noise

Raw Random Bit Generator alarm
noise

random
external

random bits
internal

signal (das)
digitized analog

Tests
Statistical

Interface
Output

(Entropy Distiller)
Post−Processing

Analog Digital

Figure 4.1: Generic Architecture.

12



exhibit biases in their output which should be eliminated by suitable postprocessing. The

available noise sources for a TRNG are from physical process such as electronic noise,

chaotic circuits, nuclear decay, metastability, jitter amongst others as discussed earlier.

The most widely used technique to generate a random bit stream using digital elements is

either by sampling the jittered oscillations or by harvesting the metastabilities in flip flops.

Quantification of entropy, estimation of statistical properties of the available entropy, active

monitoring techniques for detection of entropy source failure and long term external effects

on the entropy source are the significant design tasks that are usually associated with a

randomness source.

4.2 Harvesting Mechanism

The entropy source is sampled using a harvesting mechanism which does not disturb the

physical process but yet collects the maximum entropy. A digitizer/sampler extracts the

digitized analog signal (das) from an analog noise signal. For example a comparator or a

VCO or a D flip flop can serve as the sampling unit depending on the type of the noise

source used. Noise source followed by a sampler together is considered as the raw random

bit generator.

4.3 Post-processor

Post processing increases the randomness of a TRNG by applying a compression function on

the ’das’ resulting in a lower speed output stream. For this reason it is also called as entropy

distiller as it distills the entropy in the outgoing sequence. The amount of compression

required depends both on the effective entropy of the source and on the efficiency of the

post processing algorithm used. The probability distribution of the random bit words after

post processing is much closer to a uniform distribution than that of the raw random bits

words. A Post-processor also masks the imperfections in an entropy source and improves the

robustness of the design. Furthermore it provides tolerance in the presence of environmental
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changes or tampering. A few examples of Post- processing units are Von Neumann corrector,

XOR corrector, extractor function [22], Hash function (eg: SHA-1[23]), resilient functions

[2], [13], etc. This component might not be needed in all designs but should be employed

to strengthen the design if the sources exhibit a bias.

4.4 Statistical tests

In order to confirm the quality of the RNG it should pass a battery of statistical tests.

The most common are NIST randomness tests from National Institute of Standards and

Technology [4],BSI [5] from German government, and Diehard [3]. Additionally for a TRNG

the question arises which random numbers should be tested? The available random numbers

in a TRNG are ’das’ bits and internal random numbers. External random numbers are not

under the designer’s control. Consider a situation where the noise source totally beaks down

or a weaker noise source is used with a strong post processing unit, then testing of internal

random numbers will pass any statistical test suite but these internal random numbers are

deterministic, having either zero entropy or low entropy respectively. The TRNG behaves

as a PRNG. Hence it is always a good practice to test the ’das’ bits if the RNG permits

access. Failure of the noise source the failure can then be easily detected as the output

becomes deterministic.
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Chapter 5: TESTING OF TRNGs

In chapter 2 we discussed the two major categories of RNGs viz., TRNGs and PRNGs. This

chapter discusses the testing of those devices to validate that the source of randomness is

functioning as expected. Various statistical tests can be applied to a bitstream to analyze

the properties of randomness associated with the sequence and indeed the quality of a RNG

that produced the bitstream can be estimated. In this Chapter we discuss hypothesis testing

followed by basic statistical tests, and then tests from NIST[4], Diehard[3] and BSI[5] test

suites. At the end of the chapter we also talk about Chi-square and Normal distributions.

Unbiased ”fair” coin toss with sides labeled as ”0” and ”1” is a perfect example of a

TRNG since each outcome have a 0.5 probability of being ”0” or ”1” . Furthermore, because

the flips are independent of each other, the results of previous coin flips do not influence

future coin flips. Therefore knowing the previous outcome will not help in predicting future

output of the sequence. Consider an example of a 10 bit sequence generated using the above

procedure which has first the 8 outcomes as ”1” and the last two outcomes as ”0”. Even

though each outcome of a RNG is equally likely there are good chances that a sequence of

outputs might repeat. This sequence will fail any statistical tests we might subject to. So,

if it is impossible to prove randomness, the realistic approach we can employ is to collect

many bitstreams from a RNG and expose them to statistical tests. Although there are an

infinite number of possible statistical tests there is no specific finite set of tests that can

prove whether a bitstream is random or not. Any test/procedure that is applied determines

whether the tested bitstream possess a certain attribute that a truly random sequence would

likely exhibit too and detects any deviations of the tested binary sequence from randomness.

The conclusion of any test is not definite but rather probabilistic.
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Table 5.1: Hypothesis Testing
Situation Accept H0 Accept Ha

Data is random (H0 is true) No error Type 1 error
Data is not random (Ha is true) Type 2 error No error

5.1 Hypothesis Testing

A statistical test can be formulated to test a specific

1. null hypothesis (H0) or

2. alternative hypothesis (Ha)

Using the null hypothesis, a RNG is tested to see if it is producing random values where

as under the alternative hypothesis a RNG is tested for its non randomness property [1],[4].

For each test, a relevant randomness statistic is chosen to determine the acceptance or

rejection of the null hypothesis (H0) or the alternative hypothesis (Ha). Each calculated

test statistic value is a function of the data and is assumed to have distribution of all possible

values. A critical value is determined by mathematical methods under theoretical reference

distribution. Typically the test statistic value is compared against the critical value and a

probabilistic conclusion is drawn depending on the hypothesis used.

Statistical hypothesis testing is a conclusion generation procedure that has two possible

outcomes viz., the data is random (accept H0) or the data is non-random (accept Ha).

If the data tested, exhibits the property that it is being tested for then a conclusion to

reject H0 will only occur a small percentage of time. This is called Type I error. Instead

if the data tested, in truth is non random then a conclusion to reject Ha will only occur a

small percentage of time. This is called Type II error. If ’S’ is the test statistic value and

’t’ is critical value then the Type I error probability is

1. P(S>t //H0 is true) = P(reject H0//H0 is true)

2. P(S≤ t//H0 is true) = P(accept H0//H0 is true)
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and the Type II error probability is

1. P(S ≤ t//H0 is false) = P(accept H0//H0 is false)

2. P(S>t//H0 is false) = P(reject H0//H0 is false)

The probability of a Type I error is often called as level of significance of the test and

is denoted by α and the probability of a Type II error is denoted by β. α denotes the

probability that the test will indicate the sequence is not random when it really is random

and β denotes the probability that the test will indicate the sequence is random when it

really is not random.

A P value is defined as the probability that a perfect random generator would have

produced a sequence less random than the sequence that was tested, given the kind of

non-randomness assessed by the test. Usually test codes are written under null hypothesis,

ideally if

1. P-value =1, tested sequence is perfectly random and

2. P-value =0,then the sequence appears to be completely non-random or if

3. P-value ≥α, H0 is accepted and the tested sequence appears to be random and

4. P-value < α, H0 is rejected and the tested sequence is completely non-random

5.2 Basic Statistical Tests

In [1] Menezes et.al. describes and proposes to run the five basic tests to determine whether

the tested bitstream possess some specific characteristics that a truly random sequence

would likely to exhibit. These tests usually require bitstreams containing more than 10,000

consecutive bits from the RNG. The tests include

1. Frequency test (Monobit test)

2. Serial test (two-bit test)

17



3. Poker test

4. Runs test

5. Autocorrelation test

There are several Statistical test suites commercially available for testing random outputs

but only test suites from NIST [4], Diehard [3] and BSI [5] are considered . RNGmeter

from the ComScire (see www.comscire.com), Crypt-X from the Queensland University of

Technology in Australia (see www.isi.qut.edu.au/resources/cryptx/) are few other statistical

tests amongst others. The five basic tests above are also part of either NIST or Diehard

or BSI test suites, hence are explained in the respective sections when discussing the test

suites.

5.3 NIST Statistical Test Suite

National Institute of Standards and Technology (NIST) founded in 1901 is a non-regulatory

agency of the United States Department of Commerce. NIST Computer Security Devision

specifies the security requirements that are to be satisfied by a cryptographic module. NIST

released FIPS(Federal Information Processing Standard) 140-1 in January 1994 and it was

revised in May 2001 as FIPS 140-2. Both FIPS 140-1 and FIPS 140-2 are certification

standards containing a section covering RNGs. The current statistical test suite from NIST

is 800-22 (a special publication with revisions) [4]. The Test suite is officially known as ”A

statistical Test Suite for Random and Psuedorandom Number Generators for Cryptographic

Applications” and comprises of 15 statistical tests. NIST advises to disregard the Fast

Fourier Transform test as of February 9, 2009 since they discovered a error in the test code.

An overview of each test is presented below.

5.3.1 Frequency (Monobits) Test

The purpose of the test is to determine whether the number of ones and zeros in the tested

bitstream are approximately the same. This would be expected for a truly random sequence.
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The test estimates the closeness of the fraction of ones and zeros to 1/2. It is recommended

that each tested bitstream consists a minimum of 100 bits.

5.3.2 Frequency Test within a Block

The purpose of the test is to determine whether the number of ones and zeros in the tested

bitstream are approximately the same as would be expected for a truly random sequence in

an M -bit block. The test estimates the closeness of the fraction of ones and zeros to M/2.

For block size equal to 1 the test is identical to Frequency (Monobit) test. It is recommended

that each tested bitstream consists of a minimum of 100 bits. The test requires an additional

input which is block size M . M should be selected such that M ≥ 20, M > 0.01n, and

n ≥ MN where n is the number of bits in the bitstream and N < 100.

5.3.3 Runs Test

The purpose of the test is to determine the total number of runs in the tested bitstream,

where a run is an uninterrupted sequence of identical bits. A run length of k means a

sequence of k identical bits. Every run is bounded by a bit of the opposite value before and

after. The test estimates whether that number of runs of ones and zeros of various lengths

of the tested bitstream is as expected for a truly random sequence. In other words the test

estimates the speed of oscillations between ones and zeros within the tested bitstream. It

is recommended that each tested bitstream consists of a minimum of 100 bits.

5.3.4 Test for the Longest Run of ones in a Block

The purpose of the test is to determine the longest run of ones in the tested bitstream in

an M-bit block. The test estimates whether the length of the longest run of ones within

the tested bitstream is consistent with the length of the longest run of ones that would

be expected for a truly random sequence. Only the test for ones is conducted since an

irregularity in the expected length of the longest runs of ones implies an irregularity in the

expected length of the longest runs of zeros. The size of the M is selected depending on the
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Table 5.2: Minimum number of bits and block size
Minimum n M

128 8
6272 128

750000 10000

number of bits (n) tested and it is recommended that each tested bitstream consists of a

minimum of bits as shown in the table 5.2.

5.3.5 Binary Matrix Rank Test

The purpose of the test is to determine the rank of disjoint sub-matrices of the entire

sequence. The test sequentially divides the input bit stream into n/M*Q blocks where M

and N are number of rows and columns in a matrix and are equal to 32. The number of

bits within the tested bitstream is n. The test discards the unused bits. Each row of the

matrix is filled with successive Q-bit blocks. Ranks for 32x32 matrix are determined over

the field 0,1. Other values of M and Q can be considered but new approximations need to be

computed for the reference distribution. The test verifies for linear dependence among fixed

length substrings of the tested bitstream. It is recommended that each tested bitstream

consists of a minimum of 38 matrices i.e., n≥ 38 ∗M ∗Q.ForM = Q = 32, n ≥ 38, 912.

5.3.6 Discrete Fourier Transform (Spectral) Test

The purpose of the test is to detect repetitive patterns (periodic features) in the tested

bitstream that are close to each other. Test determines if the peak heights in the Discrete

Fourier Transform of the tested bitstream exceeds the 95% threshold is different than 5%.

It is recommended that each tested bitstream consists of a minimum of 1000 bits.

5.3.7 Non-overlapping Template Matching Test

The purpose of the test is to determine the number of occurrences of pre-defined target

substrings. The test rejects the bitstreams that exhibits too many occurrences of a given
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non-periodic (aperiodic) pattern. m-bit window is used to search for a specific m-bit pattern

and these aperiodic patterns are pre-defined in a template library within the test code. If

the pattern is not found, the window slides one bit position and if the pattern is found

the window slides m-bit positions. It is recommended that each tested bitstream consists a

minimum of 106 bits. The test requires an additional input which is the m-bit window size.

The test code is written for templates of m equal to 2 through 10 and recommends to use

m equal to either 9 or 10.

5.3.8 Overlapping Template Matching Test

The purpose of the test is to determine the number of occurrences of pre-defined target

substrings. m-bit window is used to search for a specific m-bit pattern, The main difference

between this test and the Non-Overlapping Template Matching Test the m-bit window

slides only one bit position even if a match is found with the pattern. It is recommended

that each tested bitstream consists a minimum of 106 bits. The test requires an additional

input which is the m-bit window size and NIST recommends to use m=9 or m=10 although

different values can be selected for m.

5.3.9 Maurer’s Universal Statistical Test

The purpose of the test is to determine the number of bits between matching patterns.

The test detects if the test can be significantly compressed without loss of information. A

random sequence will have a characteristic number of distinct patterns, hence a significantly

compressible sequence is considered to be non-random. The input bit sequence is divided

into two segments viz., an initialization segment consisting of Q L-bit non-overlapping

blocks, and a test segment consisting of K L-bit non-overlapping blocks and the final bits

that do not form L-bit blocks are discarded. L should be chosen between 6 and 16 and Q

and K should be chosen such that Q = 10*2L and K = [n/L] - Q == 1000*2L, n should be

greater than or equal to ((Q+K)*L) table 5.3 shows the size of Q and n for different values

of L.
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Table 5.3: Values of L, Q and n
L Q n
6 640 ≥ 387, 840
7 1280 ≥ 904, 960
8 2560 ≥ 2, 068, 480
9 5120 ≥ 4, 654, 080
10 10240 ≥ 10, 342, 400
11 20480 ≥ 22, 753, 280
12 40960 ≥ 49, 643, 520
13 81920 ≥ 107, 560, 960
14 163840 ≥ 231, 669, 760
15 327680 ≥ 496, 435, 200
16 655360 ≥ 1, 059, 061, 760

5.3.10 Linear Complexity

The purpose of the test is to determine the length of a linear feedback shift register (LFSR)

to assess the randomness of the tested bitstream. A longer feedback register implies a

random sequence. The input sequence n is partitioned into M-bit N independent blocks,

where n = MN. The values of M and N must be chosen in the range 500 ≤ M ≤ 5000andN ≥
200 respectively, hence a minimum of 106 input bits are recommended. The test requires

an additional user input for value M which should be in the above range.

5.3.11 Serial Test

The purpose of the test is to determine the frequency of all possible overlapping m-bit

patterns within the tested bitstream. The test estimates the occurrences of the 2m m-bit

overlapping patterns and compares if they are approximately the same as would be expected

for a random sequence. For a truly random sequence, every m-bit pattern has the same

chance of appearing as every other m-bit pattern in 2m combinations. If m is set to one the

test becomes identical to Frequency (Monobits) test. The test requires input values of m

and n, and they should be chosen such that m < [log2n]− 2 holds good. The default value

of m is 16 in the test code.

22



5.3.12 Approximate Entropy Test

The purpose of the test is to determine the frequency of all possible overlapping m-bit and

(m+1)-bit within the tested bitstream. The test estimates the occurrences of the 2m 2(m+1)

m-bit (m+1)-bit overlapping patterns respectively and compares if they are approximately

the same as would be expected for a random sequence. The test requires input values of m

and n, and they should be chosen such that m < [log2n]− 2 holds good. The default value

of m is 10 in the test code.

5.3.13 Cumulative Sum (Cumsum) Test

The purpose of the test is to determine the maximal excursion from zero of the cumulative

sum of adjusted digits in the tested bitstream. Zero is adjusted to -1 and one is one.

Cumulative sum is considered as the random walk. The test estimates whether the random

walk of the tested bitstream is too large or too small relative to the expected behavior of the

random walk of a truly random sequence. For a truly random sequence the random walk

should be near zero. It is recommended that each tested bitstream consists a minimum of

100 bits.

5.3.14 5.3.14 Random Excursions Test

The purpose of the test is to determine the number of cycles having exactly K visits in a

random walk. Random walk is derived from partial sums after being transferring 0 and 1

to -1 and 1. A random walk consists of a sequence of steps of unit length taken at random

that begin at and return to the origin and the test estimates if the number of visits to a

particular state within a cycle deviates from as what would be expected for a truly random

sequence. The test is a series of eight tests for each of the states -4,-3,-2,-1 and 1,2,3,4.

Hence the test outputs eight conclusions. It is recommended that each tested bitstream

consists a minimum of 106 bits.
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5.3.15 Random Excursions Variant Test

The purpose of the test is to determine the number of cycles having exactly K visits in

a random walk. The test estimates if the number of visits to a particular state within a

cycle deviates from as what would be expected for a truly random sequence. The test is a

series of eighteen tests for each of the states -9,-8,...,-1 and 1,2,....,9. Hence the test outputs

eighteen conclusions. It is recommended that each tested bitstream consists a minimum of

106 bits.

For all the above tests, typically level of significance α can be chosen in the range

[0.001, 0.01] and the default α value in the test code is 0.01 . An α of 0.001 indicates an

approximation of one sequence in 1000 sequences tested to be rejected and an α of 0.01

indicates that one would expect one sequence in 100 sequences to be rejected. For a tested

sequence with a defined α equal to 0.001 or 0.01, if a P-value is greater than or equal to

0.001 then the sequence is considered to be random with a confidence of 99.9

5.4 Diehard Tests

The Diehard tests [3] were developed by Prof. Georges Marsaglia from the Florida state

University and were first released on a CD-ROM in 1995. This statistical test suite is

usually considered to be ”the most powerful general test of randomness”. The test suite

consists of 15 different independent statistical tests and requires atleast 80 million bits(10-12

MegaBytes) in binary format.

5.4.1 Birthday Spacings

The name is based on Birthday Paradox [1]. Chooses random points on a large interval and

lists the spacings between the points. The number of values that appear more than once

in the list should be asymptotically Poisson distributed.Test is repeated for 9 times using

bits 1-24, 2-25, ..., 9-32(counting from the left) from a random integer in the bitstream to

set the parameter values for the test. Test returns 9 P-values, their associated mean and
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Chi-Square values, and degrees of freedom [1].

5.4.2 Overlapping Permutations

This is the overlapping 5-Permutation (OPERM5) test . Analyzes sequences of five con-

secutive 32 bit random integers. It looks at a sequence of 1 million such 32 bit random

integers. Each set of five consecutive integers can be in one of 120 states for the 5! possible

orderings of five numbers.The 120 possible orderings should occur with statistically equal

probability. Test is repeated twice for 1 million integers. Test returns 2 P-values and their

associated chi-square values, and degrees of freedom.

5.4.3 Ranks of 31x31 and 32x32 Matrices Test

This test has two sub tests which performs Binary Rank test for 31x31 and 32x32 Matrices.

The leftmost 31 bits of 31 random integers are selected from the bitstream to form a 31x31

Matrix and 32 random integers are selected to form a 32x32 Matrix and the ranks are

determined over the field (0,1).Test returns a P-value, its associated chi-square value, and

degrees of freedom .

5.4.4 Ranks of 6x8 Matrices Test

This is a Binary Rank Test for 6x8 Matrices. Six random 32 bit integers are chosen from

the testing bitstream and a single byte from those random integers are chosen to form 6x8

Matrices. Ranks over the field (0,1) are determined for 100,000 such matrices. Test is

repeated for 25 times for bits 1-8, 2-9, ..., 25-32 from integers in the bitstream. Test returns

25 P-values, their associated Chi-Square values, and degrees of freedom.

5.4.5 Monkey Tests on 20-bit words

The name is based on the infinite Monkey Theorem. Treat sequences of 20 bits as words

and the test counts the number of missing 20-bit words in a string of 221 overlapping 20 bit

words. The number of missing words should be normally distributed. Test is repeated for
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20 times and returns the number of the missing words, Z-score (standard normal variate)

values and associated P-values for all the runs.

5.4.6 Monkey Tests OPSO, OQSO, DNA

This test consists of 3 sub tests.

Monkey test OPSO (Overlapping-Pairs-Sparse-Occupancy)

The OPSO test is similar to the Monkey tests on 20-bit words except it considers 2 letter

words from an alphabet of 1024 letters. Each letter is determined by a specified ten bits

from a 32 bit integer in the bitstream. OPSO generates 221 overlapping 2-letter words from

((221)+1) keystrokes and counts the number of missing 2-letter words.

Monkey test OQSO (Overlapping-Quadraples-Sparse-Occupancy)

The OQSO test is similar to the Monkey tests on 20-bit words except it considers 4 letter

words from an alphabet of 32 letters. Each letter is determined by a specified five bits

from a 32 bit integer in the bitstream. OQSO generates 221 overlapping 4-letter words from

((221)+3) keystrokes and counts the number of missing 4-letter words.

Monkey test DNA

The OQSO test is similar to the Monkey tests on 20-bit words except it considers an alphabet

of 4 letters C,G,A,T determined by two designated bits in the bitstream. It considers 10

letter words. DNA generates 221 overlapping 10-letter words from ((221)+9) keystrokes and

counts the number of missing 10-letter words.

5.4.7 Count the 1’s in a stream of bytes

Consider the bitstream under test as a stream of bytes. Hence, each byte can contain 0 to

8 1’s with different probabilities. Test converts the count to five letter words Viz. A, B,

C, D and E. Letters are determined by the number of 1’s in a byte. There are 55 possible
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5-letter words and the counts are made on the frequencies for each word from a string of

256,000 overlapping 5 letter words. Test returns a P-value, its associated chi-square and

Z-score values, and degrees of freedom .

5.4.8 Count the 1’s in specific bytes

Count the 1’s in specific bytes test is similar to the count the 1’s in a stream of bytes test

except for a specific byte say the leftmost byte is chosen from each integer. Test is repeated

for 25 times for bits 1-8, 2-9, ..., 25-32 from integers in the bitstream. Test returns 25

P-values, their associated Chi-Square, and Z-score values, and degrees of freedom .

5.4.9 Parking Lot Test

Randomly park a car of a circle radius in a square of side 100. Then try to park the 2nd,

3rd and so on, if the car overlaps an existing one then try again. After 12,000 attempts

the number of successfully parked cars should follow a certain normal distribution. Test is

repeated for 10 times. Test returns the number of successfully parked cars, Z-score values

and their associated P-values.

5.4.10 Minimum distance Test

Place randomly chosen 8000 points in a square of side 1000. Find the minimum distance

between the pairs. The square of this distance should be exponentially distributed. Test

is repeated for 100 times. Test returns square distance, mean and P-values from these 100

runs but only results from test numbers = 0 mod 5 are reported.

5.4.11 Random spheres Test

Choose 4000 random points in a cube of edge 1000. Centre a sphere at each point such

that large enough to reach the next closest point. The smallest sphere’s volume should

be exponentially distributed. Test is repeated 20 times. Test returns volume, mean and

P-values.
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5.4.12 The Squeeze Test

Multiply 231 by random floats on [0,1) until you reach 1. The random floats are provided by

floating random integers from the bitstream to get a sequence of uniform variables on [0,1).

The number of iterations needed to reach 1 should follow a certain distribution. Test is

repeated for 100,000 times. Test returns a P-values, its associated Chi-Square, and Z-score

values, and degrees of freedom [1].

5.4.13 Overlapping Sums Test

Random integers are floated to get a sequence of uniform variables on [0,1). Add sequences

of 100 consecutive floats. The sum should be normally distributed. Test is repeated for 10

times. Test returns a P-value.

5.4.14 Runs Test

Test counts runs up, and runs down in a sequence of random floats uniform on [0,1) obtained

by floating 32-bit integers in the testing bitstream. Ascending(runs up) and descending(runs

down) runs are counted for sequences of length 10,000. Test is repeated for 10 times. Test

returns P-values for runs up and runs down.

5.4.15 The Craps Test

Test plays 200,000 games of craps, counts the number of wins and number of throws neces-

sary to end each game. The number of wins should follow a normal distribution with mean

200000*p and variance 200000*p*(1-p) where p is 244/495. Throws necessary to complete

the game can be any value between 1 and infinity but all the values above 21 are grouped

under 21. Test returns chi-square value, observed and expected wins for all throws from 1

through 21 and also returns a cumulative chi-score value and a P-value. Test also returns

degree of freedom [1].

Most of these tests run KS (Kolmogorov-Smirnov) test on the obtained P-values. KS test

determines if two data sets differ significantly, it is a form of minimum distance estimation
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between two data sets. This test takes the advantage of making no assumption about the

distribution of the data (non-parametric and distribution free). The KS test also return a

P-value.

When the bitstream really fails big test returns P-values of 0’s or 1’s to six or more

places. If the bitstream contains truly independent random bits then P-values uniform on

[0,1) are returned.

5.5 BSI Tests

The German office for IT security (Bundesamt für Sicherheit in der Informationstechnik)

(BSI) has published evaluation methodologies AIS 20 for PRNGs and AIS 31 [5] for TRNGs.

One of the important features of AIS 31 is it focusses on the verification of the minimum

entropy requirement of the random source under evaluation. Target applications usually

have requirements on the properties of internal and external random numbers on the basis

of different possible attack scenarios. In consideration with these circumstances AIS 31

defines two functionality classes viz., P1 and P2 that describes the strengths of the TRNG.

A P1 class TRNG is required to produce an output that is statistically inconspicuous. A P2

class TRNG requirements guarantee that it is practically impossible to determine random

numbers even if the predecessors or successors are known i.e, as stated in [5] ”The prospects

of success for systematic guessing of the external random numbers(realized through system-

atic exhaustion attacks)-even if external random number sub-sequences are known-should

at best be negligibly higher than would be the case if the external random numbers had

been generated by an ideal random number generator”.

The standard further describes a number of sub-classes for the two functionality classes

P1 and P2 that identifies the class specific requirements. One of the sub-requirement

suggests a mechanism for detecting the total failure of the physical noise source and is

referred to as ”tot(total failure) test”. To verify the specific properties of functionality

classes P1 and P2 BSI includes the following statistical tests.
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1. T0 : A disjointness test

2. T1 : A monobit test

3. T2 : A poker test

4. T3 : A run test

5. T4 : A long run test

6. T5 : A autocorrelation test

7. T6 : A uniform distribution test

8. T7 : A comparative test for multinomial distributions

9. T8 : A entropy test

The first six tests (T0-T5) are run on the internal random numbers and the tests(T6-T8)

are run on the ’das’ bits. Tests T1-T4 are directly taken from [24] along with the rejection

limits. Brief mathematical description of the tests can be found in [5]. The test codes are

written in Java. A GUI of test suite is available in German language.

5.6 Chi-square and Normal Distributions

Chi-Sqaure and Normal distributions are most widely used theoretical probability distri-

butions in statistics.Most of statistical tests from Test suites [4],[5],[3] use Chi-square and

normal distributions as reference distributions.

5.6.1 Chi-Sqaure Distribution

The Chi-Sqaure distribution is used to compare the goodness-of-fit of the observed distri-

bution to the expected distribution under a hypothesized distribution. If squares of ’v’

independent standard normal distributed random variables i.e., normal distributed vari-

ables with mean 0 and variance 1 are summed then the random variable X is distributed

according to the Chi-Sqaure distribution with ’v’ degrees of freedom.
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Definition 5.6.1: Let v ≥ 1 be an integer. A (continuous) random variable X has a χ2

distribution with v degrees of freedom if its probability density function is defined by

f(x) =





1
γ(v/2)2v/2 x(v/2)−1e−x/2 : 0 ≤ x < ∞,

0 : x < 0,

where Γ is the gamma function. The mean and variance of this distribution are µ = v and

σ2= 2v-01

The gamma function is defined by: Γ(t) =
∫∞
0 xt−1e−xdx, fort > 0.

For example the set of parameter values with v =5, α (level of significance) = 0.01 and

x = 11.0705 means that if random Variable X has Chi-Sqaure distribution with 5 degrees

of freedom then X exceeds 11.0705 about 1% of time.

5.6.2 Normal Distribution

Normal distribution also known as Gaussian distribution is a continuous probability dis-

tribution that describes events around a mean. If large number of independent random

variables having same mean and variance are summed then the random variable X attains

the normal distribution.

Definition 5.6.2: A (continuous) random variable X has a normal distribution with mean

µ and variance σ2 if its probability density function is defined by

f(x) =
1

σ
√

2π
exp

−(x− µ)2

2σ2
,−∞ < x < ∞(5.1)

Notation: X is said to be N(µ, σ2). If X ix N(0,1) then X is said to have a standard

normal distribution.

The graph of the associated probability density function is a bell shape curve, with a

peak at the mean and symmetric about the vertical axis i.e., P (X > x) = P (X < −x) for
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any x. For example the set of parameter values with α (level of significance) = 0.01 and x =

11.0705 means that if random Variable X has standard normal distribution then X exceeds

11.0705 about 1% of time.

32



Chapter 6: TRNG Background

Randomization techniques find applications in many modern day applications and are es-

pecially critical for cryptographic modules. Electronically generating random bits has been

attempted for many years. Thus far a large number of designs appeared in patents, indus-

try and academia. The designs vary significantly depending on when they were invented,

the type of entropy sources and harvesting techniques they employ, and the destination

application. In this chapter we discuss the TRNG designs suitable for FPGA platforms and

a few ASIC implementation designs which can also be targeted onto an FPGA platforms

easily. Design principles are based either on jitter or metasatbility or both.

6.1 The Fischer-Drutarovsky Design

The design [14] was the first TRNG proposal targeting FPGAs and highlights the signifi-

cance of TRNGs for reconfigurable platforms. The design samples the on-chip jitter in an

analog Phase-Locked loop (PLL) implemented in the digital Altera Field Programmable

Logice Device (FPLD) APEX EP20K200-2X.

This architecture consists of an on-chip PLL, multiple D flip flops, a xor gate and a

decimator. In analog PLLs, various noise sources cause fluctuations in frequency of the

Voltage controlled oscillator giving rise to intrinsic jitter. This jitter of the clock signal

generated by the on-chip PLL is sampled via delay cascaded samplers. The multiple samples

are obtained by delayed sampling at regular intervals. The samples are then XOR-ed and

downsampled using decimator to extract the random bits. The key point behind multiple

sampling is to not miss the sampling near the transition zone that is influenced by the jitter

which according to [14] is of the order of only several tens of picoseconds. Hence the output

obtained after the XOR will be uncertain. The reported implementation has a throughput
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close to 70 Kbits/sec and is verified using the NIST[4]tests for statistical behavior.

6.2 The Tkacik Design

The entropy source in this design [25] is the jitter in the ring oscillators. A ring oscillator

consists of an odd number of inverters connected in a feedback loop to form a ring. This

TRNG is based on a linear feedback shift register (LFSR), and a cellular automata shift

register (CASR). Each shift register is clocked by a free running independent ring oscillator.

The LFSR has 43 bits, and a characteristic primitive polynomial of x43 + x41 + x20 + x + 1

which gives a cycle length of 243 − 1. The design uses 37-bit CASR which has a maximal

length of 237 − 1. Since the cycle lengths of the two deterministic circuits are relatively

prime, the cycle length of the combined generator is close to 280. To generate a random

number, selected 32 bits of the LFSR and CASR are permuted and XORed together. The

output is sampled only when a new number is requested and the TRNG outputs 32 bits at

a time. The entire RNG design is written in Verilog RTL except the RO’s which are netlists

of odd number of inverters manufactured in certain process technology. However the whole

design can be easily targeted onto on an FPGA.

The design has very poor performance and failed the Diehard [3] , NIST 140-1[4] and

the Crypt-X tests miserably when it used only LFSR or CASR. The TRNG has far better

statistical behavior when used combined LFSR and CASR design. Slight bias is observed

in the output bits because of the missing all zero pattern, on the order of 2−43 and 2−37

when used LFSR and CASR alone respectively, but this bias drops close to 2−80 when used

a combined generator .

This TRNG has an internal state, and hence it can not be assured that the sequences of

numbers it generates are not repeatable although it has a high cycle length. The sources that

contribute to the random behavior of the design along with the jitter in the ring oscillators

are the frequency variations of the two ring oscillators with variations in temperature and

voltage, and the uninitialized LFSR and CASR at power up. The author in [25] states that
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this TRNG has been used with minor variations at Motorola for a number of years.

In [26] Dichtl attacked this design based on two weaknesses

1. The design uses a combination of TRNG and PRNG elements where PRNG elements

are seeded with two low entropy oscillators.

2. The design uses linear components, and assuming that the adversary having access to

earlier bits one can build a linear model to attack it.

Schindler further analyzes this TRNG under a formulated stochastical model. He de-

velops lower and upper entropy bounds on the random output bits and suggests to sample

60,000 times more slowly because the amount of state information the TRNG elements

outputs at top sampling rates exceeds the amount of entropy.

6.3 The Epstein et al. Design

This design [18] focuses on digital circuits that exhibit the properties of metastability and

jitter. The basic element (BE) of the design consists of two inverters and two multiplexers.

Using multiplexers the inverters can be configured such that they form two independent

free running ring oscillators in meta-stable mode or they can be cross connected to form

a bi-stable memory device. The multiplexers serve as the switching element as well as

the delay element. The randomness is derived from the condition created when switched

from meta-stable mode to bi-stable mode. At this point the logical state of the circuit is

determined by the relative and absolute values of the instantaneous output voltages and

internal noise.

The implemented prototype chip was manufactured using a 0.18um CMOS technology

and consisted of 8 zones. Each zone had 9 different styles. Each style had 15-31 different

varieties with a total of 247 distinct BEs. Each BE differs from the others in terms of

propagation delay of the inverters and the delay elements used. The output of the varities

is fed into a style multiplexer along with the XOR-ed output of the varieties. The outputs

of all the style multiplexers are further fed into a Zone multiplexer along with the XOR-ed
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output of the style multiplexers. Selection of various BEs is designated through multiple

levels of multiplexers giving a choice of selection from

1. A specic variety of a specic style of the RNG.

2. The XOR values of all the varieties of a specic style.

3. The XOR value of specic variety combining all styles.

4. The XOR value of all varieties of all styles can be selected.

The output of the zone multiplexer is further fed into a synchronizer. A synchronizer

is a series of three flip flops which is used to capture the random bit. Three flip flops in

series compensate for any of the metastable behaviors from the previous flip flops. So many

different varieties are laid out to conrm the randomness of the output against environmental

conditions and variations in manufacturing technology. The design is verified using Diehard

[3] tests after being postprocessed by the Von Neumann corrector.

6.4 The Kohlbrenner-Gaj Design

This technique uses the intrinsic jitter contained in digital circuits as the entropy source.

The design [15] uses only the configurable logic blocks (CLBs) common to all FPGAs and is

designed to perfectly match the CLB architecture of a Xilinx Virtex-II FPGA. The proposed

design consists of two independent and identically configured ring oscillators, a sampler unit,

and a controller.

Each of the ring oscillators consists of a buffer between two transparent latches, and an

inverter in a feedback loop. The ring oscillator is built into a CLB. The oscillator frequency

is determined by the delay elements on the path i.e., two lookup tables, four multiplexers

and two memory cells. The oscillator signal passes twice through the CLB and is inverted

in only one of the passes. The output of the ring oscillator is taken from the buffer and is

a stream of regular pulses running at frequency of 130 MHZ.
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The two ring oscillators each supply a stream of pulses to the sampler unit. The sampler

unit uses one such clock signal to sample the other clock signal. The frequency of the two

clock signals is chosen to be close but not identical. For this reason the authors found that

it is important to place the two ring oscillators close to each other to compensate for the

temperature differences on the chip.

The stream of samples consists of a run of ones and a gap of zeros. The output random

bit is counted modulo 2 of the length of this run and gap. To eliminate any biases in the

produced output, the TRNG output is also postprocessed with a simple XOR corrector.

The design has on-chip self testing capability to halt bit output on failure of the source of

randomness. Design can produce speeds of up to 0.5 Mbits/second. 1 Gbits of random data

was verified using the NIST statistical test suite [4].

6.5 The Bucci-Luzzi Design

This approach [16] introduces the concept of stateless generator and focuses on the verifi-

cation of a minimum entropy requirement for the noise source. The authors propose the

designs with reset circuits to clear the state of the TRNG. The TRNG is restarted before

the collection of each output bit in order to avoid any dependencies between the collected

bits. If the TRNG generates truly independent bits then no post processing is required or

if the generator is stuck in a fixed bit then any biases in the output can be eliminated by

using a stateless post processor. Hence fast noise sources with a low entropy per bit can be

adopted if sufficient compression factor is chosen in the post processing.

The authors propose two examples of stateless RNGs, one based on two free running

oscillators and the other based on a chaotic circuit as a noise source [16]. The former is

more adaptable to reconfigurable platforms, hence we present only the details of the first

design. It has two free running oscillators and a D flip flop serving as the sampler. The two

oscillators are chosen to oscillate at different frequencies where a slow running oscillator

samples a fast running oscillator. Both oscillators are stopped after each bit generation to

avoid any phase shift between the ring oscillator frequencies. Every time the oscillators
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are stopped the D flip flop is also reset to eliminate any dependencies from the flip flop’s

current state.

The relevant figure of merit in this approach becomes entropy/second instead of the

entropy/bit as the output quickly diverges from the start state into an unpredictable state.

6.6 The Dichtl and Golic Design

This design [27], [28] introduces a new concept of ring oscillators based on Linear feedback

shift registers (LFSRs). The authors describe two new structures of ROs viz., Fibonacci

Ring oscillator (FIRO) and Galois Ring oscillator (GARO). Random delays and transition

times of the logic gates in the circuit are the primary sources of randomness.

A FIRO consists of a number of inverters connected in cascade in such a way that the

output of each inverter with the exception of the last inverter is used as the input to the

next inverter and the output of the last inverter is used as feedback to the first inverter.

The feedback path consists of XOR gates and switches. The output of the previous inverter

is XOR-ed with the feedback signal before it is given as input to the next inverter. Switch

is closed and XOR gate is present only if the output of a previous inverter is ’1’ else the

feedback signal propagates. Basically, the structure is identical to an LFSR except the delay

elements are replaced by the inverters.

A GARO consists of a number of inverters connected in cascade in such a way that

the output of each inverter, except the last inverter is XOR-ed with the feedback signal

which forms input to the next inverter. The output of the last inverter directly defines the

feedback signal. The feedback path consists of switches. Switch is closed and the XOR gate

is only present when the feedback signal is ’1’.

The feedback coefficients can be conveniently represented by a binary polynomial for

both the oscillators.

f(x) =
∑r

i=0 fix
i wheref0 = fr = 1 and r is an odd number of inverters.
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It is important that the FIRO and GARO are not stuck in a single fixed state. The neces-

sary and sufficient conditions for the oscillators not to be stuck in a single fixed state are

given in theorems 6.6.1 and 6.6.2.

Theorem 6.6.1 : A FIRO does not have a fixed point if and only if

f(x) = (1+x)h(x) and h(1)=1

Theorem 6.6.2 : A GARO does not have a fixed point if and only if

f(1) = 1 and r is odd

From above, for GARO ’r’ should be an odd number and for FIRO ’r’ can be even or

odd, but it is necessary that r 6= 2.

To increase the randomness and robustness of the design the authors propose a Fibonacci-

Galois Ring Oscillator (FIGARO) which simply XORs the output of FIRO and GARO and

samples the XOR output. The length of the two oscillators have to be chosen mutually

prime to each other in order to maximize the period of the random sequence, and to mini-

mize the interlocking and coupling effect between two oscillators. The design also uses two

level sampling to reduce any bias introduced by the sampling flip flop. The authors propose

to use a self controlled LFSR [27] as postprocessing unit to eliminate biases in the output.

The authors say that they are able to generate statistically independent bits at a speed

of 6.25 Mbits/s with a slight bias of zeros of about 0.0056 by restart method for a FIRO

implementation. In restart method, oscillators are always restarted from the same initial

conditions. To extract a random bit they wait the time it takes to observe a bit change

in the otherwise pseudo-random bitstream. However it is not known from [27], [28] if the

design was verified using any statistical test suites.
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6.7 The Vasyltsov et al. Design

The proposed design [11] uses the metastability phenomenon in digital circuits and applies

it to a traditional ring oscillator. The design consists of an odd number of inverters that

can either be configured as a traditional ring oscillator while in generation mode or a single

inverter in a feedback loop while in metastable mode. It has the same number of multiplexers

as that of inverters, and a control clock generator to switch between the generation and

metastable modes. D flip flop functions as a sampling unit, and a delay component is

used to synchronize the sampling process with generating random data process that has a

pre-defined delay.

Initially the design is chosen to operate in metastable mode where each inverter forms

an independent noise source. The output voltage converges to metastability level and stays

there as long as required. when in this mode the output voltage stochastically fluctuates

around the metastable level due to inherent thermal noise. After a while, the system is

switched to operate in generation mode where the inverters are now connected to form a

traditional RO. Now the momentary voltages inside the RO are random because the value

of each inverter output was defined by random noise in the previous metastable mode. After

sampling a random bit in the generation mode the TRNG is switched back to meta stable

mode again.

The new entropy accumulation technique uses the metastability phenomenon in the ring

oscillator, compared to the traditional methods of sampling the jitter in the ring oscillators.

The design has been verified using AIS.31 [5] and FIPS 140-1/2 [4] statistical tests.

6.8 The O’Donnell-Suh-Devadas Design

This design [29] uses the metastability properties of digital elements as a source of ran-

domness. The RNG is build around physically unclonable functions (PUFs). A PUF is a

function that maps a set of challenges to a set of responses based on a complex physical
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system. The physical system contains many random components that are introduced dur-

ing the manufacturing process and cannot be controlled. This design uses Silicon PUFs

(SPUFs) which generate their responses based on the hidden timing and delay information

of the integrated circuits along with the challenge value supplied.

The design consists of a PRNG, a register, a SPUF delay circuit which consists of

multiplexers and a Gated D-Latch, and a Von Neumann corrector. The SPUF delay circuit

accepts an n bit challenge and forms two delay paths in 2n different configurations. It

computes 1-bit output by measuring the relative delay difference between two paths that

are of same lay-out length. The delay paths or the switch components are implemented

using a pair of 2x1 multiplexers. To generate a response bit, two delay paths are excited

simultaneously to allow the transitions to race against each other. The gated latch at the

end measures which rising edge arrives first and sets its output to ’0’ or ’1’ accordingly.

The PUF-RNG design searches for meta-stable challenges by repeatedly applying a

challenge and checking if an unstable output is obtained. For certain challenges, the setup

and hold conditions of the sampling circuit are violated causing the gated D-latch to enter

a meta-stable state. Hence, the response from these challenges are used to generate the

random bit. The response to the challenge is not only dependent on the physical system,

but is also dependent on other characteristics such as temperature and voltage. Therefore

every time a random number request is made, it is confirmed that the challenge being used is

still unpredictable if not the current challenge is fed into a PRNG to create a new challenge

to be tested. The local register is used to save the unpredictable input challenge.

The above design methodology was implemented using AEGIS secure processor [12]

which contains a PUF. The PUF is used to generate a 32-bit random number. A 64 stage

PUF delay circuit has been fabricated and tested in TSMC’s 0.18um, single-poly, 6-level

metal process. The design needs post-processing due to bias and uses the Von Neumann

corrector. The PRNG, Von Neumann corrector, and the the meta-stable challenge searching

technique is implemented in the software. The PUF RNG has been verified using the NIST

test suite [4].
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6.9 The Schaumont et al. Design

This design [30] implements both a delay-based PUF and a jitter-based TRNG using ring

oscillators by sharing and reusing a significant amount of hardware resources. The PUF

design is based on a ring-oscillaor PUF proposed by Suh et al.[31] and the TRNG design

is based on jitter obtained from ring oscillators as proposed by Sunar et al [2]. It has the

same implementation structure as the design implemented in [17].

The design is targeted for a Xilinx Spartan3S500E FPGA device. Each ring oscillator

of the TRNG implementation has 3 inverters. Designs consisting of 32 rings, 64 rings and

128 rings were implemented. Each output from the ring oscillators is sampled by an extra

flip flop and is then fed into a binary XOR tree. The output of the XOR tree is then

sampled to extract a random bit. The PUF output is created by pair-wise comparison of

the ring oscillator frequencies. The challenge is the choice of a ring oscillator pair and the

response is the comparison result of both ROs. The choice of RO is done using an n-bit

wide memory-mapped decode register. A random bit is extracted by feeding the signal from

RO directly to a PUF counter. The design uses only one counter, the frequency comparison

operation to evaluate response of a PUF is handled in software. The selection between

TRNG mode/PUF mode is made by using 2x1 multiplexers. The design can generate a

random output stream at 3.2 Mbps. It has a 31-bit unique device signature (authors in

[30] define uniqueness as a measure of how clearly a PUF can distinguish one FPGA from

another). The TRNG outputs have been verified using Diehard[3] and NIST[4] test suites.

6.10 The Sunar et. al Design

A simple design shown in figure 6.1 is proposed by Sunar et al.[2]. The source of randomness

is the phase jitter. The design aims at sampling the jittered oscillations. A ring oscillator

consists of an odd number of inverters connected in a feedback loop to form a ring. The

design consists of ’r’ ring oscillators and ’i’ inverters in each ring oscillator. The outputs

from ’r’ ring oscillators are XOR-ed and sampled at an independent clock frequency using
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Figure 6.1: Ring Oscillator Design.

a D-type ip op to produce ’das’ bits.

Ideally, the period of the wave depends on the number of inverters and the delay of a

single inverter. Due to the feedback path in the oscillator ring, the output of the inverters

will oscillate from a logical one to a logic zero and back. The key idea is to populate

the spectrum (output waveform) with jitter events (transition zones) and then sample.

Populating the whole spectrum with jitter events requires too many ring oscillators. The

authors built an urn model[2], and calculate the numbers of oscillator rings (r) required to

achieve a certain fill rate in the spectrum, at a certain confidence level. Fill rate is defined

as the portion of the spectrum that is filled with random events. A compromise with the ll

rate is to allow a fraction of the spectrum to be deterministic and a compensation for this

is done through postprocessing. Occasionally transition zones from different ring oscillators

overlap. As the number of oscillator rings increase, chances of having multiple oscillators

with identical phase increase which in turn decreases the available entropy. Because of

the compromise the output from the XOR will have transition zones and deterministic

regions. To filter out the deterministic bits obtained by sampling the unfilled portions

of the spectrum the authors in [2] recommend to use a resilient function of appropriate

strength for post-processing of the TRNG output. They show a simple technique to obtain

a resilient function from linear cyclic codes.

The authors in [2] provide the mathematical background for the generation of true

random numbers in their design and analyze the quality of the output of the TRNG based

on a set of assumptions at the input.
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Schillekens et al. [13] implemented three TRNGs based on the above methodology on

an Xilinx Virtex-II FPGA. In [13] authors chose designs consisting of 110 ring oscillators

with 13 inverters in each ring oscillator, 110 ring oscillators with 3 inverters in each ring

oscillator, and 210 ring oscillators with 3 inverters in each ring oscillator respectively. The

reference design implementation was able to produce a throughput of 2.5 Mbits at a sampling

frequency of 40 MHZ after post-processing. A Resilient function based on linear cyclic code

[256,16,113] as suggested by [2] was used for the post-processing. The output sequence is

verified using the Diehard and NIST tests.

The design in [2] received criticism from Dichtl and Golic [28] in terms of assumptions

used. Among the criticisms are the unrealistic probabilistic modeling of the jitter, indepen-

dence among the ring oscillators, unrealistic speed of the XOR gate, high sampling rate,

and violation of set-up and hold times for sampling flip flop. Most of these criticisms will

be addressed chapter 7.

In [17] Knut Wold and Chik How Tan proposed an improvement to the Sunar’s design

that does not require post-processing. Ditchl and Golic pointed out in [28] that 114 ring

oscillators each running at a frequency of 40 MHZ would lead to an input frequency of 4.6

GHZ which is too fast for the XOR gate. To cope with the problem the authors in [17]

introduce an extra flip flop after each ring oscillator as can be seen in the figure 6.2. The

output’s from these flip flops are then XOR-ed and then finally sampled using a D flip flop

to extract a random bit. All the extra flip flops and the sampling flip flop are run at same

sampling frequency. The implementation produced a output stream at a rate of 100Mbps

with a sampling frequency of 100MHZ using 50 ring oscillators with 3 inverters in each

ring oscillator and without any post-processing. The above design was implemented on an

Altera Cyclone II FPGA and the output is verified using Diehard and NIST tests.
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Chapter 7: Tiny True Random Number Generator

Our Tiny True Random Number Generator is based on the design presented by Sunar et al.

in [2]. The design can be seen as an sequential approach to the design proposed in [2] with

the introduction of the flip flop after the ring oscillator. We wanted to design and build a

tiny and simple TRNG for area and power constraint applications such as RFIDs, sensor

nodes, smart cards. Therefore we started from the hypothesis that Sunar et al. design can

be serialized.

7.1 TTRNG Design

Our design shown in figure 7.1 consists of a single ring oscillator, a two input XOR gate,

two D flip flops and a interface unit. The output of the ring oscillator is sampled by the

D flip flop (DFF1). The advantage of this flip flop is that the signals on the input of the

XOR gate are synchronous with the sampling clock and are updated only once in the every

sampling period. The sampled bit from DFF1 is XORed with the over sampling bit and

stored in another D flip flop (DFF2). After n-times overlapping, the resulting raw random

bit also called das is stored in DFF3 of the interface unit.

random

s
f

f
ss

f

unit
control

output

over sampling bit

0

1

interface unit

sel bit

Sampler

DFF2

DFF3

DFF1

das dasD
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Q’

Q

Q’
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Figure 7.1: Our Design.
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The interface unit consists of a control circuit, a 2x1 multiplexer and a D flip flop.

Control unit is a counter that generates an active high enable signal after every ’n’ iterations

indicating that a random bit is ready. This enable signal drives the select line of the

Multiplexer. Multiplexer helps to keep the current random bit in the register (DFF3)

until the next random bit is generated. Size of the register (Dff3) depends on the output

interface. collection mechanism employed and the control unit is modified accordingly to

generate all the required control signals if need be. The whole design is clocked at the

sampling frequency ’fs’. Choice of parameters for the implementation such as number of

inverters in a ring oscillator, ’n’ (loop number), and sampling frequency ’fs’ is presented in

section 7.4.

The Sampling frequency of our design is always chosen to be slower than to the ring

oscillator frequency such that we do not over sample from the same period. Also, the

sampling frequency is chosen such that ring oscillator frequency is not a multiple of sampling

frequency in order to avoid sampling only at the edges.

7.2 Tools

We described TRNG designs in VHDL and used Xilinx ISE 9.1 and Xilinx EDK 9.1 for

their implementation.

7.2.1 Implementation platform

The design and testing of TRNGs was done on Virtex-II system board from Memec Design

[32] provided by CERG (Cryptographic Engineering Research Group). The Virtex-II system

board consists of one XC2V1000-4FG456C FPGA, one 16Mx16(32MB) DDR memory, one

XC18V04 ISP PROM (flash memory), two On-board oscillators, RS-232 port, JTAG port,

user push button switches, LVDS transmit and receive ports, and additional user support

circuits.

The Virtex-II [33] architecture is optimized for high-density and high performance logic
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Figure 7.2: Virtex II.

designs. The programmable device consists of input/output blocks(IOBs) and internal

configurable logic blocks (CLBs). CLB resources include four slices and two thistate buffers,

and provide functional elements for combinatorial and sequential logic. Each slice has two

function generators (FG) that can be configured as 4-input look up tables, or as 16-bit

shift register, or as 16-bit distributed select RAM memory, and two storage elements which

are either edge triggered D flip flops or level sensitive latches. Every CLB is connected

to a switch matrix to access routing resources. The FPGA has 18-bit x 18-bit dedicated

multipliers, 18 Kbit dual port RAM and Digital Clock Manager (DCM). DCM provides

clock multiplication, division, phase shifting and delay compensation.

The two Oscillators of the system board run at 100 MHZ and 24 MHZ. Virtex-II FPGA

has active low reset, and two user push button switch inputs that can be used to generate

an active low signal. Programming the design into PROM allows for quick download of

revisions of the design eliminating the requirement to download the bit file every time the

FPGA is restarted. The XC18V04 PROM can store designs upto 4MB or 222 bits.

7.2.2 Random Number Collection

In order to verify out TRNG design we ran several suits of statistical viz., Diehard, NIST and

BSI. Some of those tests requires atleast 80 million bits. Therefore, we created a hardware

system with a MicroBlaze 32-bit soft core processor to store generated random bits into 32

MB DDR external memory using the Embedded Development Kit(EDK). MicroBlaze is a

virtual microprocessor that is built by combining blocks of code called cores inside a Xilinx
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FPGA. It has a 32-bit Harvard Reduced Instruction Set Computer (RISC) architecture

with a 32x32 bit LUT RAM based register file.

Base System Builder in XPS is used to create an embedded processor project by using

selected Xilinx Intellectual Property cores for the processor, UART and SDRAM interface.

We added our TRNG design as a user-defined custom peripheral (TRNG design) to that

processor system as can be seen in figure 7.3. The On-chip Peripheral Bus (OPB) connects

on-chip and off-chip peripherals and memory, and our TRNG to the Microblaze proces-

sor.The proceesor interacts with our TRNG peripheral through software. The random bits

our TRNG generates are stored in one 32-bit register. The control circuit of the TRNG

generates a control signal whenever the register is full and the random bits in the register

are copied into the external memory through software program.

The Xilinx EDK generates the bit file and allows for programming the FPGA. A cable

adhering to the IEEE 1149.1 or Joint Test Action Group (JTAG) is used to download the

bit file generated from the Hardware Description Language (HDL) onto FPGA device. We

use an RS-232 interface to transmit the random bits stored in DDR memory to a Personal

Computer. we forward internal signals of our TRNG to ports on the Virtex II in order to

verify required intermediate signals on an oscilloscope.

49



Reset

Figure 7.4: Ring Oscillator with a reset.

7.2.3 Ring oscillator implementation issue

Xilinx tools can not synthesize/implement a ring oscillator consisting of only an odd number

of inverters. Hence, a ’latch’ or a ’nand’ gate, or a ’and’ gate needs to be added in the loop.

We chose to use a ’and’ gate so that we can reset the TRNG externally with the same

polarity as the microbalze desired. The implemented ring oscillator is shown in the figure

7.4. Introducing an ’and’ gate does not alter the behavior of the ring oscillator but it adds

some extra delay and thus increase the period a bit. With the addition of an ’and’ gate and

by using ISE advanced synthesis options it was possible to get the ring oscillator synthesized.

However during mapping stage of the implementation all logic has been removed due to

optimization. Therefore, we used UNISIM libraries, with ’keep’ and ’INIT’ attributes,

’synthesis translate-on’ and ’synthesis translate-off’ directives in the design to prevent logic

optimization on the ring oscillator. UNISIM libraries contains descriptions for all the device

primitives, or lowest-level building blocks.

7.3 TRNG implementation results

7.3.1 Sunar et al. Design

we implemented the Sunar et al. design with 114 ring oscillators and 13 inverters in each

ring oscillators as presented in [2] as sample design. The authors in [2] aim at obtaining a fill

rate of 0.60 at a confidence level 0.99. A resilient function based on cyclic code [256,16,113]

was implemented to filter out the deterministic bits. A resilient function can be easily

obtained from linear codes. The p bit internal random numbers (say r[i]) are calculated

from q ’das’ bits (say s[i]) using (r[i]....r[i + p − 1]) = (s[i]....s[i + q − 1]) ∗ (GT ) where G
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Table 7.1: Sunar et al. design without post-processing
# # of fs Area Through- Through- Test
of inverters in in put in put to area Suite

ROs in a RO MHZ Slices Mbps ratio Results
114 13 24 1608 24 14925 NIST (Fail)
114 13 8 1608 8 4975 NIST (Fail)

is a generator matrix for an [p,q,d] linear code and p > q. For cyclic codes, the generator

matrix will have the form




g0 0 · · · 0

g1 g0 · · · 0
...

...
. . .

gp−q−1 gp−q−2 · · · g0

0 gp−q−1 · · · g0

...
...

. . .
...

0 0 gp−q−1




T

(7.1)

In hardware, the resilient function was implemented as a LFSR where the position of the

taps is determined by the generator matrix. The above post-processing has a compression

factor of 256/16 =16 and can filter out 112 corrupted bits i.e., for every 256 ’das’ bits

generated we get 16 bit internal random numbers.

The experimental evidence shows that the period of the ring oscillator is roughly 15 ns

( 66 MHZ) for 13 inverters on a Virtex II FPGA. We used sampling frequencies of 24 MHZ

and 8 MHZ. The results in terms of area in slices, throughput in Mbps, throughput to area

ratio and the statistical test suite results, without and with post-processing are presented

in tables 7.1 and 7.2. Bitstreams of 1.5 million bits were generated and verified using the

NIST statistical test suite [4]. Unfortunately the design failed to pass the NIST tests.
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Table 7.2: Sunar et al. design with post-processing
# # of fs Area Through- Through- Test
of inverters in in put in put to area Suite

ROs in a RO MHZ Slices Mbps ratio Results
114 13 24 1781 1.5 842 NIST (Fail)
114 13 8 1781 0.5 280 NIST (Fail)

Table 7.3: Sunar et al. design with a flip flop after each ring oscillator
# # of fs Area Through- Through- Test
of inverters in in put in put to area Suites

ROs in a RO MHZ Slices Mbps ratio Result
114 13 24 1608 24 14925 Diehard (Pass),

NIST (Pass)
50 11 24 612 24 39215 Diehard (Pass),

NIST (Pass)

7.3.2 Sunar et al. Design with a flip flop after each ring oscillator

We implemented the design with same design parameters as above (114 ring oscillators and

13 inverters in each ring oscillator) and with a flip flop after each ring oscillator as shown

in figure 6.2 in section 6.10. Bitstreams of 86.4 million bits were generated. The output

bits passed the Diehard [3] and NIST [4] statistical test suites without any post-processing.

The same design was also implemented with 50 ring oscillators and 11 inverters in each ring

oscillator which is similar to the number of ring oscillators as implemented in [17]. The

experimental evidence shows that the period of a ring oscillator is around 13ns ( 76 MHZ)

for 11 inverters on a Virtex II FPGA. The output bits passed the NIST Diehard tests

without any post-processing. The results are tabulated in table 7.3.

7.3.3 Our design

Our TRNG design as shown in figure 7.1 in section 7.1 was implemented with a single

ring oscillator consisting of 13 inverters or 11 inverters for different choices of ’n’ (loop

number). Bitstreams of roughly 10 MB (86.4 million bits) have been captured from the
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Table 7.4: Our Design
# of ’n’ fs Area Through- Through- Test

inverters loop in in put in put to area Suites
in a RO number MHZ Slices Mbps ratio Result

13 114 24 21 210 10000 Diehard (Pass),
NIST (Pass),
BSI (Pass)

13 110 24 21 218 10380 Diehard (Pass),
NIST (Pass),
BSI (Pass)

13 105 24 21 228 10857 Diehard (Fail),
NIST (Fail)

11 110 24 18 218 12111 Diehard (Pass),
NIST (Pass)
BSI (Pass)

TRNG. The data is tested using statistical test suites from Diehard [3], NIST [4] and BSI

[5]. The TRNG passed the tests from Diehard and BSI without any post-processing for

loop numbers 114 and 110, but very few NIST tests reported a p-value less than the alpha

(significance level). The design also passed all the NIST tests after being post-processed

by Von Neumann corrector. For every pair of bits examined, the Von Neumann corrector

outputs the first bit if the bits are different and discards both bits and output nothing

if they are same. Hence, a Von Neumann corrector reduces bias in the output bits. We

implemented the Von-Neumann corrector in software. The design started to fail slowly for

loop numbers less than or equal to 105. The results are tabulated in table 7.4. Note that

the Von Neumann corrector reduces the throughput approximately by four.

The choice of design parameters ”13 inverters” and ”114 times oversampling” are with

reference to the model in [2] such that we build an identical sequential TRNG of the one

proposed in [2]. Additional practical reasons for choosing 13 inverters or 11 inverters in a

ring oscillator is to have the oscillator output period slightly above 10ns i.e., less than 100

MHZ in order to ease analog measurements on the oscilloscopes. The experimental evidence

shows that the period of the ring oscillator is roughly 13ns ( 76 MHZ) for 11 inverters and
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15 ns ( 66 MHZ) for 13 inverters on a Virtex II FPGA. As mentioned in section 7.2 sampling

frequency is always chosen less than or equal to ring oscillator frequency and 24 MHZ is

chosen such that one of the on-board clock oscillators can be used to generate the sampling

clock. Throughput of the TRNG is a dependent on sampling frequency and can be increased

by sampling at higher frequencies.

The results from Diehard and NIST statistical test suites are presented in Appendix

from one of the bitstreams of our design with 11 inverters in a ring oscillator and 110 loop

number.

7.4 Analysis

7.4.1 Evidence of Random Jitter

An ideal clock or a periodic wave would be operating at a particular frequency defined by a

perfect rising and falling edges with a definite period. A real clock or a periodic signal will

never have definite rising and falling edges but will always be associated with short term

variations from their ideal positions in time. We define this behavior as jitter. Jitter in the

ring oscillator occurs because of the internal noise within the gates of the ring oscillator. For

experimental evaluation of the jitter in the ring oscillators we measured the frequency of a

ring oscillator over a period of 1 ms. The analog output of the ring oscillator is monitored

and captured with Agilent DSO6054A 500MHZ oscilloscope. Measurements are made on a

ring oscillator with 51 inverters in a Virtex 2 FPGA chip, and the histogram plot between

the number of samples in a cycle and number of occurrences of samples over 4 millions.

Because of the limitation of the oscilloscope we were able to collect a maximum of 4 million

samples is shown in figure 7.5. The samples are gaussian distributed with mean = 218.57

and standard deviation = 2.54.
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Figure 7.5: Histogram of ring oscillator frequency distribution.

7.4.2 Dependency among ring oscillators

In order to analyze if there is a dependency between ring oscillators we placed identical

ring oscillators consisting of 13 inverters each manually at different locations in FPGA.

we observed if the inverters of one ring are placed into LUTs of the same slice as the

inverters of the other ring oscillator then both rings are interlocked as can be seen in figure

7.6. They are phase shifted by 90 degrees and operate at almost identical frequencies.

Other configurations such as two ring oscillators whose inverters we placed into different

slices of the same CLB in consecutive locations are not interlocked and operate at closer

frequencies, and ring oscillators that are placed far to each other behave independently at

different frequencies as can be seen in figures 7.7 and 7.8. respectively.

7.4.3 Reasons for failure of Sunar et al. design

Therefore the design shown in figure 6.1 with 114 ring oscillators in parallel of 13 inverters

as suggested in [2] would cause the output of the XOR tree to switch at a maximum of

7.26 GHZ (0.13 ns) (114 * 66 MHZ). On a Virtex II FPGA our experiments show that a

ring oscillator with 13 inverters in a oscillator ring operates at an average frequency of 66

MHZ. The XOR gate on Virtex II FPGA can not compute at that speed. Even if the XOR
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Figure 7.6: Very closely placed ring oscillators.

Figure 7.7: Closely placed ring oscillators.

Figure 7.8: Far placed ring oscillators.
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gate could be computed the sampling flip flop would not be able to latch the result due to

set-up and hold times violation. Though for the Virtex II FPGA, a signal to be sampled

must be available on the input of the flip flop from 0.37 ns before the clock pulse to 0.09

ns after. Indeed violating the set up and hold conditions will give rise to metastability and

metastability by itself can be the source of randomness. However, whether metastability

can really be achieved depends on the small manufacturing variations. Our interest is to

explore the randomness caused by jitter.

Experimental evidence shows that inverters of ring oscillators placed in the same LUTs

of the same slice in consecutive locations interlock. Hence for a design with large number of

oscillator rings, the possibility of having multiple oscillators with identical phase increases

which in turn decreases the available entropy. It becomes more difficult to verify the in-

dependence among the ring oscillators when a large number of rings are used. However,

manual place and routing may isolate the rings from interacting with each other. But this

approach will not be convenient for a design with larger number of rings.

The Introduction of flip flop after ring oscillator helps to cope with the problem with

many transitions in the sampling period.

7.4.4 Performance of our design

In this section we compare the previous FPGA targeted TRNG designs with our design in

terms of post-processing, resource usage and output bit rate. The evaluation criteria is

Post-Processing Score:

1. 0: complex post-processing is needed (e.g. resilient function)

2. 1: simple post-processing is sufficient (e.g. XOR corrector)

3. 2: post-processing is not necessary

Resource usage Score:

1. 0: huge resources
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Table 7.5: Comparison of our design with others
Design Post Resource Bit Result

Processing usage rate
Sunar 0 0 0 1

Sunar with flip flop 2 0 2 4
Gaj 1 1 1 3
Golic 0 1 1 2
Tkacik 2 1 1 4
Fischer 1 0 1 2

our 1 1 0 2

2. 1: negligible resources

Output bit-rate Score:

1. 0: output bit-rate up to 1 M bits

2. 1: output bit-rate 1 to 10 M bit/s

3. 2: output bit-rate more than 10 M bits

and the results are tabulated in table 7.5.
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Chapter 8: Conclusion and Future Work

8.1 Conclusion

We believe that we were successful in constructing a simple and small TRNG targeted for

FPGA using logic gates only. Our design is simple, straightforward, and uses a very small

amount of FPGA resources generally fewer than 20 CLB slices.

It is shown that our TRNG design passes the tests from Diehard, NIST and BSI. we

were successful in analyzing the reasons for the failure of the design in [2]. We also verified

the design in [2] with a flip flop after each ring oscillator passes the tests from Diehard and

NIST.

Our design can be seen as an sequential approach to the design proposed in [2] with

the introduction of the flip flop after the ring oscillator. We showed that by over sampling

technique, jitter in one ring oscillator is able to generate sufficient randomness.

Because of very low area of the TRNG, our design is suitable for area constraint and

low power applications such as RFID tags, Sensor nodes and it is secure as the design is

verified for randomness properties using statistical tests.

8.2 Future Work

Build a supporting mathematical justification for our design addressing the minimum over

sampling required to extract enough randomness from a single ring oscillator. A closer

look into the mathematical framework of the design provided in [2]. Since the Sunar et al.

design passes the statistical tests suites with less number of ring oscillators, and without

any post-processing when introduced a flip flop after each ring oscillator than suggested in

[2].
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We would like to carry out experiments using restart approach on our design as intro-

duced in [16]. In this approach the TRNG is brought into same initial state after collection

of each random bit by restarting the generator and by allowing a sufficient wait time before

sampling the next random bit.

We would like to explore the scaleability of our design in terms of area vs. throughput,

and energy vs. throughput.
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Appendix A: An Appendix

A.1 Diehard Statistical Test Suite Results:

Number of bits tested : 86400000

Number of one’s : 43167550

Number of zero’s : 43232450

A.1.1 Birthday Spacings Test:

Bits used mean chisqr p-value

1 to 24 16.05 16.6995 0.474897

2 to 25 15.86 16.5168 0.487536

3 to 26 15.68 12.2491 0.784826

4 to 27 16.00 16.6859 0.475835

5 to 28 15.84 11.4079 0.834590

6 to 29 15.83 21.9554 0.186441

7 to 30 15.67 18.2235 0.374877

8 to 31 16.04 9.7831 0.912458

9 to 32 15.73 20.6559 0.242062

no. of bdays=1024, no. of days/yr=224, lambda=16.00, sample size=500

degree of freedoms is: 17

p-value for KStest on those 9 p-values: 0.812132
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A.1.2 Overlapping Permutations Test:

For samples of 1,000,000 consecutive 5-tuples

Sample 1

chisqr p-value

76.794046 0.952153

degrees of freedom : 99

chisqr p-value

82.131408 0.889988

degrees of freedom : 99

A.1.3 Ranks of 31x31 and 32x32 Matrices Test

Ranks of 31x31 matrices:

Rank Observed Expected (O − E)2/E Sum

r¡=28 195 211.4 1.275 1.275

r=29 5228 5134.0 1.721 2.996

r=30 22977 23103.0 0.688 3.683

r=31 11600 11551.5 0.203 3.887

chi-square = 3.887 with df = 3; p-value = 0.274

Ranks of 32x32 matrices:

Rank Observed Expected (O − E)2/E Sum

r¡=29 236 211.4 2.858 2.858

r=30 5130 5134.0 0.003 2.861

r=31 23065 23103.0 0.063 2.924

r=32 11569 11551.5 0.026 2.950

chi-square = 2.950 with df = 3; p-value = 0.399
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A.1.4 Ranks of 6x8 Matrices Test

Bits 1 to 8

Rank Observed Expected (O − E)2/E Sum

r¡=4 905 944.3 1.636 1.636

r=5 21715 21743.9 0.038 1.674

r=6 77380 77311.8 0.060 1.734

chi-square = 1.734 with df = 2; p-value = 0.420

Bits 2 to 9

Rank Observed Expected (O − E)2/E Sum

r¡=4 937 944.3 0.056 0.056

r=5 21652 21743.9 0.388 0.445

r=6 77411 77311.8 0.127 0.572

chi-square = 0.572 with df = 2; p-value = 0.751

Bits 3 to 10

Rank Observed Expected (O − E)2/E Sum

r¡=4 936 944.3 0.073 0.073

r=5 21508 21743.9 2.559 2.632

r=6 77556 77311.8 0.771 3.404

chi-square = 3.404 with df = 2; p-value = 0.182

Bits 4 to 11

Rank Observed Expected (O − E)2/E Sum

r¡=4 955 944.3 0.121 0.121

r=5 21790 21743.9 0.098 0.219

r=6 77255 77311.8 0.042 0.261

chi-square = 0.261 with df = 2; p-value = 0.878
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Bits 5 to 12

Rank Observed Expected (O − E)2/E Sum

r¡=4 938 944.3 0.042 0.042

r=5 21786 21743.9 0.082 0.124

r=6 77276 77311.8 0.017 0.140

chi-square = 0.140 with df = 2; p-value = 0.932

Bits 6 to 13

Rank Observed Expected (O − E)2/E Sum

r¡=4 919 944.3 0.678 0.678

r=5 21777 21743.9 0.050 0.728

r=6 77304 77311.8 0.001 0.729

chi-square = 0.729 with df = 2; p-value = 0.695

Bits 7 to 14

Rank Observed Expected (O − E)2/E Sum

r¡=4 843 944.3 10.867 10.867

r=5 21716 21743.9 0.036 10.903

r=6 77441 77311.8 0.216 11.119

chi-square = 11.119 with df = 2; p-value = 0.004

Bits 8 to 15

Rank Observed Expected (O − E)2/E Sum

r¡=4 907 944.3 1.473 1.473

r=5 21610 21743.9 0.825 2.298

r=6 77483 77311.8 0.379 2.677

chi-square = 2.677 with df = 2; p-value = 0.262
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Bits 9 to 16

Rank Observed Expected (O − E)2/E Sum

r¡=4 954 944.3 0.100 0.100

r=5 21533 21743.9 2.046 2.145

r=6 77513 77311.8 0.524 2.669

chi-square = 2.669 with df = 2; p-value = 0.263

Bits 10 to 17

Rank Observed Expected (O − E)2/E Sum

r¡=4 929 944.3 0.248 0.248

r=5 21570 21743.9 1.391 1.639

r=6 77501 77311.8 0.463 2.102

chi-square = 2.102 with df = 2; p-value = 0.350

Bits 11 to 18

Rank Observed Expected (O − E)2/E Sum

r¡=4 919 944.3 0.678 0.678

r=5 21679 21743.9 0.194 0.872

r=6 77402 77311.8 0.105 0.977

chi-square = 0.977 with df = 2; p-value = 0.614

Bits 12 to 19

Rank Observed Expected (O − E)2/E Sum

r¡=4 857 944.3 8.071 8.071

r=5 21734 21743.9 0.005 8.075

r=6 77409 77311.8 0.122 8.198

chi-square = 8.198 with df = 2; p-value = 0.017
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Bits 13 to 20

Rank Observed Expected (O − E)2/E Sum

r¡=4 907 944.3 1.473 1.473

r=5 21694 21743.9 0.115 1.588

r=6 77399 77311.8 0.098 1.686

chi-square = 1.686 with df = 2; p-value = 0.430

Bits 14 to 21

Rank Observed Expected (O − E)2/E Sum

r¡=4 998 944.3 3.054 3.054

r=5 21651 21743.9 0.397 3.451

r=6 77351 77311.8 0.020 3.471

chi-square = 3.471 with df = 2; p-value = 0.176

Bits 15 to 22

Rank Observed Expected (O − E)2/E Sum

r¡=4 975 944.3 0.998 0.998

r=5 21507 21743.9 2.581 3.579

r=6 77518 77311.8 0.550 4.129

chi-square = 4.129 with df = 2; p-value = 0.127

Bits 16 to 23

Rank Observed Expected (O − E)2/E Sum

r¡=4 937 944.3 0.056 0.056

r=5 21540 21743.9 1.912 1.968

r=6 77523 77311.8 0.577 2.545

chi-square = 2.545 with df = 2; p-value = 0.280
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Bits 17 to 24

Rank Observed Expected (O − E)2/E Sum

r¡=4 936 944.3 0.073 0.073

r=5 21770 21743.9 0.031 0.104

r=6 77294 77311.8 0.004 0.108

chi-square = 0.108 with df = 2; p-value = 0.947

Bits 18 to 25

Rank Observed Expected (O − E)2/E Sum

r¡=4 987 944.3 1.931 1.931

r=5 21733 21743.9 0.005 1.936

r=6 77280 77311.8 0.013 1.949

chi-square = 1.949 with df = 2; p-value = 0.377

Bits 19 to 26

Rank Observed Expected (O − E)2/E Sum

r¡=4 916 944.3 0.848 0.848

r=5 21596 21743.9 1.006 1.854

r=6 77488 77311.8 0.402 2.256

chi-square = 2.256 with df = 2; p-value = 0.324

Bits 20 to 27

Rank Observed Expected (O − E)2/E Sum

r¡=4 942 944.3 0.006 0.006

r=5 21733 21743.9 0.005 0.011

r=6 77325 77311.8 0.002 0.013

chi-square = 0.013 with df = 2; p-value = 0.993
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Bits 21 to 28

Rank Observed Expected (O − E)2/E Sum

r¡=4 981 944.3 1.426 1.426

r=5 21534 21743.9 2.026 3.453

r=6 77485 77311.8 0.388 3.841

chi-square = 3.841 with df = 2; p-value = 0.147

Bits 22 to 29

Rank Observed Expected (O − E)2/E Sum

r¡=4 951 944.3 0.048 0.048

r=5 21759 21743.9 0.010 0.058

r=6 77290 77311.8 0.006 0.064

chi-square = 0.064 with df = 2; p-value = 0.968

Bits 23 to 30

Rank Observed Expected (O − E)2/E Sum

r¡=4 954 944.3 0.100 0.100

r=5 21718 21743.9 0.031 0.130

r=6 77328 77311.8 0.003 0.134

chi-square = 0.134 with df = 2; p-value = 0.935

Bits 24 to 31

Rank Observed Expected (O − E)2/E Sum

r¡=4 934 944.3 0.112 0.112

r=5 21798 21743.9 0.135 0.247

r=6 77268 77311.8 0.025 0.272

chi-square = 0.272 with df = 2; p-value = 0.873
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Bits 25 to 32

Rank Observed Expected (O − E)2/E Sum

r¡=4 924 944.3 0.436 0.436

r=5 21668 21743.9 0.265 0.701

r=6 77408 77311.8 0.120 0.821

chi-square = 0.821 with df = 2; p-value = 0.663

TEST SUMMARY, 25 tests on 100,000 random 6x8 matrices

0.420175 0.751213 0.182357 0.877783 0.932337

0.694537 0.003851 0.262235 0.263312 0.349640

0.613610 0.016593 0.430369 0.176350 0.126877

0.280070 0.947252 0.377309 0.323727 0.993362

0.146565 0.968424 0.935249 0.872945 0.663305

p-value for KStest on those 9 p-values: 0.812132 = 0.452876
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A.1.5 Monkey Tests on 20-bit words

20 bits/word, 2097152 words 20 bitstreams. # of missing words should average 141909.33

with sigma=428.00.

Bitstream # missing words z-score p-value

1 141580 -0.77 0.779191

2 141768 -0.33 0.629379

3 141299 -1.43 0.923066

4 141898 -0.03 0.510560

5 142692 1.83 0.033725

6 142192 0.66 0.254484

7 142758 1.98 0.023691

8 142295 0.90 0.183768

9 142680 1.80 0.035881

10 143187 2.99 0.001417

11 142846 2.19 0.014317

12 143108 2.80 0.002550

13 142556 1.51 0.065406

14 142510 1.40 0.080244

15 141534 -0.88 0.809740

16 142783 2.04 0.020611

17 141786 -0.29 0.613386

18 142159 0.58 0.279832

19 142218 0.72 0.235396

20 141891 -0.04 0.517080
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A.1.6 Monkey Tests OPSO, OQSO, DNA

Monkey test OPSO (Overlapping-Pairs-Sparse-Occupancy):

Bits used # missing z-score p-value

43 to 32 141983 0.2540 0.399734

42 to 31 141738 -0.5908 0.722670

41 to 30 141543 -1.2632 0.896743

40 to 29 141927 0.0609 0.475707

39 to 28 142289 1.3092 0.095232

38 to 27 141992 0.2851 0.387796

37 to 26 141774 -0.4667 0.679627

36 to 25 142185 0.9506 0.170907

35 to 24 141965 0.1920 0.423885

34 to 23 141551 -1.2356 0.891700

33 to 22 141689 -0.7598 0.776301

32 to 21 142093 0.6333 0.263254

31 to 20 141511 -1.3736 0.915210

30 to 19 141736 -0.5977 0.724976

29 to 18 141832 -0.2667 0.605133

28 to 17 141709 -0.6908 0.755152

27 to 16 142024 0.3954 0.346269

26 to 15 141554 -1.2253 0.889764

25 to 14 142079 0.5851 0.279251

24 to 13 142178 0.9264 0.177106

23 to 12 141648 -0.9011 0.816242

22 to 11 141394 -1.7770 0.962216

21 to 10 142286 1.2989 0.096996
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Monkey test OQSO (Overlapping-Quadraples-Sparse-Occupancy):

Bits used # missing z-score p-value

38 to 32 142093 0.6226 0.266770

37 to 31 141936 0.0904 0.463982

36 to 30 141732 -0.6011 0.726119

35 to 29 142118 0.7074 0.239673

34 to 28 141929 0.0667 0.473419

33 to 27 142308 1.3514 0.088280

32 to 26 142124 0.7277 0.233400

31 to 25 142383 1.6057 0.054174

30 to 24 142233 1.0972 0.136280

29 to 23 141350 -1.8960 0.971022

28 to 22 142011 0.3446 0.365181

27 to 21 141795 -0.3876 0.650829

26 to 20 141852 -0.1943 0.577045

25 to 19 141418 -1.6655 0.952096

24 to 18 141905 -0.0147 0.505855

23 to 17 142116 0.7006 0.241784

22 to 16 142301 1.3277 0.092139

21 to 15 141969 0.2023 0.419852

20 to 14 141950 0.1379 0.445174

19 to 13 141675 -0.7943 0.786501

18 to 12 142248 1.1480 0.125477

17 to 11 142173 0.8938 0.185715

16 to 10 141919 0.0328 0.486925

15 to 9 142245 1.1379 0.127589
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Bits used # missing z-score p-value

14 to 8 141819 -0.3062 0.620275

13 to 7 141592 -1.0757 0.858968

12 to 6 141729 -0.6113 0.729496

11 to 5 142035 0.4260 0.335054

Monkey test DNA:

Bits used # missing z-score p-value

35 to 32 141738 -0.5054 0.693360

34 to 31 142095 0.5477 0.291949

33 to 30 141569 -1.0039 0.842292

32 to 29 142112 0.5978 0.274971

31 to 28 141735 -0.5142 0.696461

30 to 27 141825 -0.2488 0.598227

29 to 26 141991 0.2409 0.404811

28 to 25 142041 0.3884 0.348857

27 to 24 142119 0.6185 0.268124

26 to 23 141814 -0.2812 0.610725

25 to 22 142206 0.8751 0.190751

24 to 21 142253 1.0138 0.155345

23 to 20 142397 1.4386 0.075138

22 to 19 141433 -1.4051 0.920005

21 to 18 141740 -0.4995 0.691286

20 to 17 141975 0.1937 0.423199

19 to 16 142181 0.8014 0.211454

18 to 15 142372 1.3648 0.086157

17 to 14 141436 -1.3963 0.918681
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Bits used # missing z-score p-value

16 to 13 141406 -1.4847 0.931195

15 to 12 141747 -0.4788 0.683977

14 to 11 141731 -0.5260 0.700572

13 to 10 141619 -0.8564 0.804120

12 to 9 141670 -0.7060 0.759902

11 to 8 141884 -0.0747 0.529781

10 to 7 142320 1.2114 0.112868

9 to 6 141700 -0.6175 0.731545

8 to 5 141673 -0.6971 0.757142

7 to 4 142151 0.7129 0.237957

6 to 3 142031 0.3589 0.359832

A.1.7 Count the 1’s in a stream of bytes

Degrees of freedom: 54 − 53=2500; sample size: 2560000

chisquare z-score p-value

2592.85 1.313 0.094567

A.1.8 Count the 1’s in specific bytes

Degrees of freedom: 54 − 53=2500; sample size: 256000
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bits used chisquare z-score p-value

1 to 8 2529.50 0.417 0.338276

2 to 9 2598.29 1.390 0.082264

3 to 10 2402.47 -1.379 0.916092

4 to 11 2430.40 -0.984 0.837531

5 to 12 2428.02 -1.018 0.845644

6 to 13 2389.24 -1.566 0.941378

7 to 14 2498.03 -0.028 0.511140

8 to 15 2471.84 -0.398 0.654770

9 to 16 2528.57 0.404 0.343102

10 to 17 2431.20 -0.973 0.834708

11 to 18 2498.70 -0.018 0.507353

12 to 19 2470.35 -0.419 0.662509

13 to 20 2481.21 -0.266 0.604795

14 to 21 2495.14 -0.069 0.527380

15 to 22 2425.35 -1.056 0.854436

16 to 23 2492.25 -0.110 0.543664

17 to 24 2649.69 2.117 0.017133

18 to 25 2538.18 0.540 0.294595

19 to 26 2426.08 -1.045 0.852093

20 to 27 2529.78 0.421 0.336838

21 to 28 2541.71 0.590 0.277657

22 to 29 2379.15 -1.709 0.956281

23 to 30 2601.59 1.437 0.075400

24 to 31 2478.24 -0.308 0.620860

25 to 32 2504.62 0.065 0.473945
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A.1.9 Parking Lot Test

Of 12000 tries, the average no. of successes should be 3523.0 with sigma=21.9

succeses z-score p-value

3504 -0.8676 0.807188

3523 0.0000 0.500000

3509 -0.6393 0.738676

3568 2.0548 0.019949

3518 -0.2283 0.590298

3524 0.0457 0.481790

3525 0.0913 0.463617

3565 1.9178 0.027568

3498 -1.1416 0.873180

3549 1.1872 0.117571

Square side=100, avg. no. parked=3528.30 sample std.=23.23 p-value of the KSTEST

for those 10 p-values: 0.571916
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A.1.10 Minimum distance Test

Sample no. d2 mean equiv uni

5 2.2746 0.7721 0.898332

10 0.0212 1.0565 0.021073

15 0.1247 0.8049 0.117820

20 0.6823 0.8466 0.496294

25 1.3105 0.8876 0.732090

30 1.1743 0.8427 0.692781

35 0.2208 0.8208 0.199013

40 0.3868 0.7984 0.322109

45 0.6093 0.7534 0.457921

50 0.5128 0.7339 0.402754

55 0.9941 0.7217 0.631780

60 1.0146 0.7716 0.639284

65 1.9596 0.7711 0.860471

70 0.6528 0.7524 0.481129

75 1.5258 0.7617 0.784220

80 0.8336 0.7405 0.567320

85 1.8212 0.7372 0.839642

90 0.0311 0.7213 0.030746

95 1.3012 0.7628 0.729577

100 2.1656 0.8081 0.886557

p-value of KS test on 100 transformed mindist2′s : 0.131523
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A.1.11 Random spheres Test

sample r3 equiv. uni.

1 33.128 0.668542

2 38.877 0.726345

3 34.480 0.683155

4 31.616 0.651411

5 2.079 0.066954

6 1.191 0.038914

7 8.909 0.256933

8 56.611 0.848482

9 0.612 0.020190

10 24.153 0.552952

11 41.298 0.747568

12 41.606 0.750144

13 0.414 0.013711

14 13.461 0.361552

15 5.454 0.166236

16 70.329 0.904086

17 10.003 0.283532

18 10.361 0.292031

19 103.360 0.968106

20 11.807 0.325359

p-value for KS test on those 20 p-values: 0.601500
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A.1.12 The Squeeze Test

Chi-sqr z-score p-value

37.297458 -0.513089 0.677269

degrees of freedom: 37.297458

A.1.13 Overlapping Sums Test

p-value for 10 kstests on 100 kstests: 0.325282

Test no p-value

1 0.185391

2 0.069114

3 0.005341

4 0.888086

5 0.062559

6 0.828611

7 0.266054

8 0.554125

9 0.895794

10 0.537858

A.1.14 Runs Test

Up and down runs in a sequence of 10000 numbers

Set 1

runs up; ks test for 10 p’s: 0.892419

runs down; ks test for 10 p’s: 0.679890
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Set 2

runs up; ks test for 10 p’s: 0.878139

runs down; ks test for 10 p’s: 0.438401

A.1.15 The Craps Test

No. of wins: Observed = 98662 Expected = 98585.86

z-score= 0.341, pvalue=0.36672

Analysis of Throws-per-Game:

Throws Observed Expected Chisq Sum of (O −E)2/E

1 66571 66666.7 0.137 0.137

2 37576 37654.3 0.163 0.300

3 27398 26954.7 7.289 7.590

4 19242 19313.5 0.264 7.854

5 13998 13851.4 1.551 9.405

6 9736 9943.5 4.332 13.737

7 7103 7145.0 0.247 13.984

8 5166 5139.1 0.141 14.125

9 3645 3699.9 0.814 14.939

10 2616 2666.3 0.949 15.888

11 1892 1923.3 0.510 16.398

12 1385 1388.7 0.010 16.408

13 1005 1003.7 0.002 16.410

14 751 726.1 0.851 17.261

15 532 525.8 0.072 17.333
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Throws Observed Expected Chisq Sum of (O −E)2/E

16 374 381.2 0.134 17.467

17 273 276.5 0.045 17.513

18 185 200.8 1.248 18.760

19 143 146.0 0.061 18.821

20 109 106.2 0.073 18.894

21 300 287.1 0.578 19.473

Chisq= 19.47 for 20 degrees of freedom, p= 0.49132

SUMMARY of craptest:

p-value for no. of wins: 0.366722

p-value for throws/game: 0.491317

A.2 NIST Test Suite Results:

Number of bits tested : 21562705

Number of one’s : 10779206

Number of zero’s : 10783499

P-value less than alpha (alpha = 0.01 in our case) is flagged with an ”*”. It is acceptable

for a few individual tests to fail. In our case none of the the tests indicated a failure except

two runs of Non-Overlapping Template matching test.
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Table A.1: NIST Test Suite Results
Statistical Test P-value

Frequency 0.355223
Block Frequency 0.643119
Cumulative Sums 0.573675
Cumulative Sums 0.481221

Runs 0.030844
Longest Run 0.518476

Rank 0.971692
NonOverlapping Template 0.573369
NonOverlapping Template 0.087844
NonOverlapping Template 0.626749
NonOver lapping Template 0.725479
NonOverlapping Template 0.335733
NonOverlapping Template 0.771810
NonOverlapping Template 0.212443
NonOverlapping Template 0.958261
NonOverlapping Template 0.359128
NonOverlapping Template 0.637296
NonOverlapping Template 0.917773
NonOverlapping Template 0.680270
NonOverlapping Template 0.858704
NonOverlapping Template 0.578545
NonOverlapping Template 0.392710
NonOverlapping Template 0.963932
NonOverlapping Template 0.190981
NonOverlapping Template 0.136642
NonOverlapping Template 0.779652
NonOverlapping Template 0.357220
NonOverlapping Template 0.629798
NonOverlapping Template 0.309260
NonOverlapping Template 0.497389
NonOverlapping Template 0.156441
NonOverlapping Template 0.360448
NonOverlapping Template 0.244008
NonOverlapping Template 0.193580
NonOverlapping Template 0.688256
NonOverlapping Template 0.029765
NonOverlapping Template 0.987582
NonOverlapping Template 0.191661
NonOverlapping Template 0.561238
NonOverlapping Template 0.872209
NonOverlapping Template 0.575510
NonOverlapping Template 0.953775
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Table A.2: NIST Test Suite Results
Statistical Test P-value

NonOverlapping Template 0.708769
NonOverlapping Template 0.160443
NonOverlapping Template 0.627757
NonOverlapping Template 0.662570
NonOverlapping Template 0.696194
NonOverlapping Template 0.486535
NonOverlapping Template 0.660200
NonOverlapping Template 0.594223
NonOverlapping Template 0.383421
NonOverlapping Template 0.008744*
NonOverlapping Template 0.248890
NonOverlapping Template 0.268825
NonOverlapping Template 0.180182
NonOverlapping Template 0.150626
NonOverlapping Template 0.861009
NonOverlapping Template 0.093526
NonOverlapping Template 0.563616
NonOverlapping Template 0.183459
NonOverlapping Template 0.014657
NonOverlapping Template 0.955495
NonOverlapping Template 0.876902
NonOverlapping Template 0.579401
NonOverlapping Template 0.423808
NonOverlapping Template 0.321044
NonOverlapping Template 0.826774
NonOverlapping Template 0.262060
NonOverlapping Template 0.735979
NonOverlapping Template 0.542398
NonOverlapping Template 0.294489
NonOverlapping Template 0.587817
NonOverlapping Template 0.284985
NonOverlapping Template 0.868695
NonOverlapping Template 0.887104
NonOverlapping Template 0.785219
NonOverlapping Template 0.626408
NonOverlapping Template 0.075814
NonOverlapping Template 0.431580
NonOverlapping Template 0.094638
NonOverlapping Template 0.961000
NonOverlapping Template 0.571690
NonOverlapping Template 0.470367
NonOverlapping Template 0.243620
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Table A.3: NIST Test Suite Results
Statistical Test P-value

NonOverlapping Template 0.174577
NonOverlapping Template 0.943736
NonOverlapping Template 0.963180
NonOverlapping Template 0.311020
NonOverlapping Template 0.600872
NonOverlapping Template 0.479501
NonOverlapping Template 0.851769
NonOverlapping Template 0.539260
NonOverlapping Template 0.701412
NonOverlapping Template 0.015498
NonOverlapping Template 0.772386
NonOverlapping Template 0.972908
NonOverlapping Template 0.845218
NonOverlapping Template 0.475838
NonOverlapping Template 0.804597
NonOverlapping Template 0.635523
NonOverlapping Template 0.783382
NonOverlapping Template 0.519413
NonOverlapping Template 0.466569
NonOverlapping Template 0.571032
NonOverlapping Template 0.061094
NonOverlapping Template 0.695386
NonOverlapping Template 0.553744
NonOverlapping Template 0.974115
NonOverlapping Template 0.689949
NonOverlapping Template 0.250371
NonOverlapping Template 0.323625
NonOverlapping Template 0.786354
NonOverlapping Template 0.192136
NonOverlapping Template 0.384204
NonOverlapping Template 0.942551
NonOverlapping Template 0.480066
NonOverlapping Template 0.309686
NonOverlapping Template 0.521923
NonOverlapping Template 0.199240
NonOverlapping Template 0.580081
NonOverlapping Template 0.968343
NonOverlapping Template 0.798613
NonOverlapping Template 0.543091
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Table A.4: NIST Test Suite Results
Statistical Test P-value

NonOverlapping Template 0.443366
NonOverlapping Template 0.017349
NonOverlapping Template 0.268378
NonOverlapping Template 0.856264
NonOverlapping Template 0.803348
NonOverlapping Template 0.698083
NonOverlapping Template 0.674379
NonOverlapping Template 0.397060
NonOverlapping Template 0.332263
NonOverlapping Template 0.201704
NonOverlapping Template 0.941130
NonOverlapping Template 0.180375
NonOverlapping Template 0.259884
NonOverlapping Template 0.205776
NonOverlapping Template 0.738439
NonOverlapping Template 0.690577
NonOverlapping Template 0.411947
NonOverlapping Template 0.983478
NonOverlapping Template 0.345341
NonOverlapping Template 0.594742
NonOverlapping Template 0.208972
NonOverlapping Template 0.007743*
NonOverlapping Template 0.197983
NonOverlapping Template 0.467691
NonOverlapping Template 0.855341
NonOverlapping Template 0.484397
NonOverlapping Template 0.749982
NonOverlapping Template 0.655636
NonOverlapping Template 0.721982
NonOverlapping Template 0.256416
NonOverlapping Template 0.732759
NonOverlapping Template 0.961000
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Table A.5: NIST Test Suite Results
Statistical Test P-value

OverlappingTemplate 0.075511
Universal 0.748333

ApproximateEntropy 0.984421
RandomExcursions 0.322547
RandomExcursions 0.559239
RandomExcursions 0.512914
RandomExcursions 0.934510
RandomExcursions 0.625945
RandomExcursions 0.888139
RandomExcursions 0.584231
RandomExcursions 0.130241

RandomExcursionsVariant 0.343258
RandomExcursionsVariant 0.344102
RandomExcursionsVariant 0.219082
RandomExcursionsVariant 0.155476
RandomExcursionsVariant 0.521436
RandomExcursionsVariant 0.638845
RandomExcursionsVariant 0.285951
RandomExcursionsVariant 0.387322
RandomExcursionsVariant 0.643658
RandomExcursionsVariant 0.534702
RandomExcursionsVariant 0.910464
RandomExcursionsVariant 0.510064
RandomExcursionsVariant 0.534500
RandomExcursionsVariant 0.754698
RandomExcursionsVariant 0.730080
RandomExcursionsVariant 0.761229
RandomExcursionsVariant 0.770046
RandomExcursionsVariant 0.582894

Serial 0.201195
Serial 0.126447

LinearComplexity 0.306065
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Walter, Çetin Kaya Koç, and C. Paar, Eds., vol. 2779. Springer, 2003, pp. 181–188.
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