
Multi-channel Hardware/Software Codesign on a Software Radio Platform

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Jason M. Bales
Bachelor of Science

George Mason University, 2004

Director: Dr. David D. Hwang, Professor
Department of Electrical and Computer Engineering

Fall Semester 2008
George Mason University

Fairfax, VA

Copyright c© 2008 by Jason M. Bales
All Rights Reserved

ii

Dedication

I dedicate this thesis to my lovely Rheanna who has stood by waiting patiently while raising
our three children.

iii

Acknowledgments

I would first like to thank the faculty in the Electrical and Engineering department at
George Mason University. Notably, Dr. Hwang for guiding me through the refinement
of this research, helping my mind solidify the concepts and innovation behind it all. Dr.
Gaj for giving me opportunities to share with other students the experiences I have gained
throughout my time at George Mason University and in industry. Also, Dr. Hintz for
providing examples and teaching me what it means to be a true engineer.

I would also like to thank my family for being supportive of the time investment required
to complete this work, and all their encouragement along the way. Finally, my God for re-
plenishing the spiritual and mental strength that drained daily from me while accomplishing
this feat, and the understanding that science and faith can coexist.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . ix

1 Introduction . 1

1.1 The Maximum channel Optimal Latency Approach 1

1.2 The Method . 2

1.3 Outline of Thesis . 3

2 Related Work . 4

2.1 Brief History of Codesign Methods . 4

2.1.1 Past and Current Methodology . 4

2.1.2 Past and Current Ideology . 6

2.1.3 Some Existing Codesign Frameworks 8

2.2 Ideas Behind Our Research . 12

3 Background . 16

3.1 The Communications Channel . 16

3.2 Software Defined Radio . 19

3.2.1 A General SDR . 19

3.2.2 Past work on SDR . 20

3.2.3 SDR Codesign . 20

3.3 Target Platform Used in this Research . 21

3.4 Target Wireless Specification . 24

4 Software Analysis . 26

4.1 Resources . 26

4.1.1 Memory . 26

4.1.2 Cycles / Time . 27

4.2 Target Software Architecture . 28

4.2.1 Multi-threaded Execution environment 28

4.2.2 Modeling the Target environment . 29

4.3 Single Modulator Channel . 31

v

4.3.1 Periodicity of the DUC HWI . 31

4.3.2 Periodic Time constraint . 33

4.4 Multiple Modulator Channels . 36

4.4.1 Note on Overhead Increase . 38

5 Hardware Analysis . 39

5.1 Resources . 39

5.1.1 Onchip Resources . 40

5.1.2 Device Utilization Threshold . 40

5.2 Target Hardware Architecture . 41

5.2.1 The Digital Up Converter (DUC) . 41

5.3 Single & Multiple DUC Channels, Resource Prediction 41

5.3.1 Linearly Summed Device Utilization Increase 42

5.3.2 Linearly Scaled Device Utilization Increase 45

6 Codesign Engine Implementation(CDE) . 48

6.1 MATLAB Implementation . 48

6.1.1 Inputs to the CDE . 48

6.1.2 Outputs from the CDE . 52

6.2 Case Study, Specific Example: Polyphase Resampler 54

6.2.1 Baseline Implementation . 54

6.2.2 Improved Implementation . 66

6.3 Generalized Case-Study . 74

6.3.1 Generalizing the CDE . 74

6.3.2 Difference from Resampler Case-study 76

6.3.3 Baseline Implementation . 76

6.3.4 Improved Implementation . 77

7 Conclusion . 82

Bibliography . 84

vi

List of Tables

Table Page

3.1 GMR-1, BCCH Specification . 25

5.1 Key HW Onchip Resources, in the Xilinx Virtex4 SX55 FPGA 40

5.2 DUC Device Utilization . 42

5.3 FPGA Base Build Utilization . 42

5.4 FPGA Device Utilization (1 DUC) . 43

5.5 Predicted Device Utilization (2,4,8 & 12 DUCs) 43

5.6 Actual Device Utilization (2,4,8 & 12 DUCs) 43

5.7 Predicted Utilization Error . 44

5.8 Predicted Utilization Error: Linearly Scaled Model 46

6.1 CDE Software Constraints File . 49

6.2 CDE Hardware Constraints File . 50

6.3 CDE Software Utilization File . 51

6.4 CDE Hardware Utilization File . 52

6.5 Software Cycle Requirements . 55

6.6 Modulator Frame Cycle Requirements . 56

6.7 CDE Software Constraint File Values . 57

6.8 Software Utilization File Values . 58

6.9 CDE Hardware Constraint File Values . 63

6.10 CDE Hardware Utilization File Values . 63

6.11 Actual Utilization Error: Baseline Configuration 65

6.12 Predicted Utilization Error: Improved Configuration 73

6.13 Results, Baseline and Improved Implementations 74

6.14 Results, Generic Baseline and Improved Implementations 81

vii

List of Figures

Figure Page

2.1 A generic codesign method . 5

2.2 The Delft Workbench . 10

2.3 A modified codesign methodology . 13

3.1 Transmission Communications Channel . 17

3.2 Receiver Communications Channel . 18

3.3 Generic Software Defined Radio (SDR) . 19

3.4 Codesgin HW/SW Interface Adjustments 21

3.5 ArgonST Gen5 Intelligent Transmitter Card (ITC). 22

3.6 Block Diagram of Interconnections of ArgonST ITC. 23

3.7 A Digital Upconverter (DUC) block diagram 24

4.1 Modulator frame timing diagram . 33

5.1 DUC utilization error . 44

5.2 Duc utilization error, revised . 47

6.1 CDE Software Results Message Box. 53

6.2 CDE Hardware Results Message Box. 54

6.3 Modulator frame cycle requirements . 56

6.4 Cycle constraints versus DUC HWI period, baseline 61

6.5 HW utilization, baseline configuration . 64

6.6 Improved modulator frame stages . 68

6.7 Cycle constraints versus DUC HWI period, improved 70

6.8 Utilization requirements of basic blocks in FPGA. 71

6.9 HW utilization, improved configuration . 72

6.10 Block under test baseline cycle requirements 77

6.11 Cycle constraints versus HWI period, baseline 78

6.12 Cycle constraints versus HWI period, baseline 78

viii

Abstract

MULTI-CHANNEL HARDWARE/SOFTWARE CODESIGN ON A SOFTWARE RADIO
PLATFORM

Jason M. Bales, MS

George Mason University, 2008

Thesis Director: Dr. David D. Hwang

Software Defined Radios (SDRs) are growing in popularity in our increasingly multi-

standard wireless world. As a result, platforms have been developed to provide powerful

and flexible SDR implementations. These platforms tend towards a heterogeneous mix

of software (SW) and hardware (HW) components, requiring HW/SW codesign to be an

integral part of SDR development. Previous work in the area of SDR codesign has focused

on finding optimal HW/SW partitions of a physical layer design that minimize the latency

of a single channel. The purpose of this research is to provide a new focus for SDR codesign,

that of multi-channel HW/SW codesign. These codesign efforts focus on maximizing the

number of simultaneous transmission channels that can run on a codesign SDR platform.

A method for deriving models that represent the HW/SW components and the interface

between them is presented. The results of this method are general equations describing

the HW/SW timing constraints for a multi-channel implementation. An application of the

method and models is provided in a Codesign Decision Engine (CDE) that takes as inputs

characteristics of a case-study platform, and outputs a predicted number for transmission

channel capacity for both a baseline and improved impelmenation. The method and models

are verified by actual application performance on the platform under test.

Chapter 1: Introduction

1.1 The Maximum channel Optimal Latency Approach

Past and current research on hardware-software codesign has focused design criteria on

minimizing channel latency, design time for codesign implementation, proper tool simulation

environments, and software based partitioning strategies. While decreasing the required

processing time for generating a channel stream (i.e. minimizing latency) is one approach

at a codesign solution, it is not the only optimal solution. A channel stream for a radio

specification will have a predetermined maximum symbol rate. Once the channel processing

latency required to meet this symbol rate has been obtained, further speed optimizations

increase the complexity of the codesign approach while providing little added benefit to the

solution.

An optimal solution is one that meets specified criteria. In the case of a transmis-

sion communications channel, the optimal channel implementation is one that provides an

output stream that satisfies the stated symbol rate. The processing that occurs in the im-

plementation must only have a small enough latency to achieve the output specified rate

under a set of operating conditions, given by the operators of the system. It is the role

of the codesigner to determine a hardware and software partitioning solution that achieves

this optimal solution.

Some metrics that may be used to determine codesign partitioning are flexibility and

maintainability of design, and also cost and schedule required for implementation. While

a specific design will be affected by the use of these metrics, this work focuses on key

resource utilization in the hardware and software components that make up the codesign

environment.

This work is novel because we developed a codesign approach with an emphasis on a

1

new criterion: maximum number of simultaneous channels. The focus for this multi-channel

codesign is to provide an analysis method that derives resource estimating models for both

software and hardware components on a codesigned platform that correctly predicts the

channel capacity in a given configuration.

1.2 The Method

While the models that will be arrived upon in this research are tailored to a specific target

platform, the method used in the codesign analysis can be generally applied to many differ-

ent codesign platforms and architectures. The goal of this research is to propose a method,

and show by application the accuracy and benefits, in terms of capacity awareness, of im-

plementing this method on a codesign platform. A very general overview of the method

is

1. Define pertinent resources of both the software and hardware components on the

target platform.

2. Model usage of the resources in the software target execution environment

3. Model usage of the resources in the interface between software and hardware

4. Model usage of the resources in the hardware component

5. Use the models to predict existing channel capacity

6. Identify candidate stages of the platform that can be shifted from software to hardware

Once candidate stages have been identified, work can begin to move them from software

to hardware, and the prediction can be repeated to show forth any changes in capacity

achieved.

2

1.3 Outline of Thesis

After the introduction we present Chapter 2 on related work in the area of codesign describ-

ing methods, ideology, and examples of existing research. Chapter 3 covers background on

the communications channel, software defined radio (SDR), and the target platform used

in this work. Chapters 4 and 5 provide an analysis of both the software, hardware and

interface portions of the codesign environment. Chapter 6 describes the codesign engine,

or the application software that implements the models of this work, followed by a specific

and generic case study used to prove the analysis method. Finally, a conclusion is provided

in Chapter 7 with ideas for future work.

3

Chapter 2: Related Work in the Area of HW/SW Codesign

Hardware Software codesign is not a new approach in industry. Many engineers have recog-

nized the need for designing for a platform that contains both hardware and software com-

ponents for some time [3][18]. As industry platforms become more flexible, allowing for field

upgradable components (i.e. firmware updates) these platforms are mixing hardware com-

ponents such as application specific integrated circuits (ASICs) and/or field programmable

gate arrays (FPGAs) with control software components such as digital signal processors

(DSPs) and Microcontrollers. Therefore the need for an optimized design approach that

takes both of these components into account becomes stronger.

2.1 Brief History of Codesign Methods

To begin the study of hardware software codesign, we first take a brief look at some past and

current methodologies for codesign, then describe some ideologies that have been followed

while following the codesign approach, and then describe several existing codesign frame-

works that have been used in academia for implementing codesign methods and ideologies.

The following section describes some of our thoughts on potential for improvement upon

the material described in this section.

2.1.1 Past and Current Methodology

A Generic Codesign Methodology

In 1993 Asawaree Kalavade and Edward Lee presented a paper titled “A Hardware-Software

Codesign Methodology for DSP Applications.” This paper presented a generic codesign

methodology, reproduced here briefly in Figure 2.1. It defines codesign as a task “to produce

4

��������� 	
�
����
��������
��������
�����������������
 ����
��� �������
 ����
�����
����
 ����
�������
� ���������	
��� �
��� ����������
� ���������
Figure 2.1: A generic codesign methodology, presented in [3]

an optimal hardware-software design that meets the given specifications, within a set of

design constraints” [3]. It begins with the algorithm development being designed at a high

(i.e. abstracted) level of simulation, done without a focus for the implementation on the

platform. Once the algorithm has been established, it is then partitioned into stages that are

distributed among the hardware and software components. The stages are then synthesized,

or compiled, for the respective component that it will be executed on. Afterwards the

synthesized blocks are brought back together for simulation to verify the original design

constraints are met, and then the entire design is evaluated for performance. The entire

process is iterative, with the number of iterations based on the results after evaluation. If

a design’s performance is lacking, the engineers would start over at the partitioning stage,

re-evaluating the algorithm’s stage distribution, or even the algorithm itself [3].

5

Simulation Enviornment

In order to perform the codesign simulation block shown in 2.1, an environment must exist

that can interpret the results from the synthesis stage, bringing them together from both

components into a single solution that can be properly simulated for a target platform. A

codesign simulation environment is just that: simulation. It is strongly dependent on the

models used to represent the component being simulated. Codesign platforms have been

known to have strict physical constraints on their embedded components, so some effort

has been made to develop the models of the components working together on a codesign

platform [10][15][16][17]. As industry matures, models become stronger and simulations

become more accurate in revealing the true behavior of the target platforms. However,

issues still exist with simulation results not matching true behavior. Because of this, a

simulation can only provide so much verification that a design truly performs according to

provided design criteria.

With the flexible programmablility of todays codesign platforms that utilize processors

and FPGAs, testing can occur on the actual platform itself [22]. Therefore, a different

approach would be to have the codesign analysis occur before the algorithm partitioning

is accomplished. In this way, the codesign analysis can actually provide information about

where to partition the stages of the algorithm before synthesis.

2.1.2 Past and Current Ideology

Reconfigurable Hardware

Many codesign platforms involve one or more FPGAs. These FPGAs have an advantage

over ASICs by allowing one to reconfigure them (i.e. load a different build into the FPGA)

in real-time. Efforts have been directed towards using this reconfigurable property to create

custom datapaths in heterogeneous codesign systems [20], embedded tools to assist in the

profiling of designs on target platforms [22], and custom reconfigurable coprocessors [25].

While most FPGAs must be reconfigured as a whole, some research has progressed with

6

devices that allow portions of their architecture to be reconfigured independently of each

other, providing essentially many small hardware components available for executing tasks

[12][21]. These works typically focus on homogeneous systems rather than heterogeneous1

ones that involve both software and hardware components. As embedded systems continues

to grow in industry, more heterogeneous systems are coming into play, requiring codesign

efforts to focus on both hardware and software design.

Parallelism versus Sequentialism

One approach that is common across hardware-software codesign methods is that of treating

the hardware component as a collection of smaller execution devices, or reconfigurable

coprocesssors [1][8][23][25]. The hardware can be reconfigured to run specific tasks, and

then driven and scheduled by the main software component (i.e. a DSP or microcontroller)

[19][1]. While the parallel nature of the hardware can still be kept in the implementation

of the task execution, the tasks still require instigation by sequential code running on the

software component.

Interfaces between HW/SW

As platforms have begun to incorporate more of a heterogeneous component mix, the com-

munication that occurs between these components becomes an area of concern [24][10]. To

ensure that all the components can “play-well” together, they must be able to exchange in-

formation in a timely fashion. This brings to light the idea of a new type of design approach

discussed in [9], which emphasises that both the software and hardware designers should

work together throughout their respective design flows to ensure that the interface between

the software and hardware components is modeled and designed against appropriately.

1Heterogeneous when used in terms of a codesign platform refers to a platform that incorporates different
types of components, such as a software based CPU and a hardware based FPGA.

7

2.1.3 Some Existing Codesign Frameworks

Ptolemy

Ptolemy[4] provides a framework where all the models of a codesign platform can be brought

together for complete system analysis. A major emphasis of Ptolemy is on the method used

for designing the codesign solution using these models. Therefore, Ptolemy stresses that the

models should appropriately portray the behavior of the hardware-software components, in

order to correctly describe them during the design phase. If a model does not properly

represent a component, the accuracy of the codesign method will be penalized [4]. Ptolemy

relies heavily on the models of the components being provided as inputs into the framework.

In other words, before utilizing the Ptolemy framework completely, one must have already

obtained models that appropriately represent the components in the codesign platform.

POLIS

POLIS is another framework for hardware-software codesign that centers around modeling

the codesign platform as a finite-state-machine FSM with each element of the FSM being a

component of the codesign system [5]. POLIS requires tools to synthesize the hardware and

software portions of the design based on the target software and hardware components. It

also requires formulas and benchmarks for the target component in order to properly feed

a timing estimator which aids in the codesign analysis. This estimator obtains estimates of

software procedure execution time by appending C code intrusively inside each procedure

modeled in the POLIS FSM. This requires the POLIS framework to have an understanding

of the target component software environment (i.e. C programming semantics). While

most embedded software components utilize an ANSI C language variant, this stipulates a

limitation that software components utilized in the POLIS framework support the C code

language that will be inserted by the POLIS framework.

Also, each procedure, or task, of the software component is also mapped to a simple real-

time Operating System (OS) that the POLIS framework uses for modeling system interface

8

interaction as well [5]. This provides a challenge for codesign platforms that utilize industry

components that already provide a real-time OS2.

The Delft Workbench: A quantitative prediction model

An approach to moving basic blocks of software into hardware, and the estimation of area

resource requirements that will be required for these blocks is described in [6]. In this work,

a linear regression model is used that takes as input a collection of software functions,

with associated software complexity metrics (SCM) for each function. The SCMs quantify

complexity of the software function, or basic block, with a score. The model then uses the

score for each SCM describing a single function to determine area resource requirements for

implementing that function in hardware (see Figure 2.2). All of the input code is written in

C, which is then complied with the DWARV C-to-VHDL compiler to produce VHDL source

for the hardware portion. The VHDL is then compiled and synthesized using industry tools.

The research deals with the reconfigurable MOLEN platform described in [7], based on the

Xilinx Virtex-II Pro, as the target platform to perform the statistical experiments.

The results from [6] show as high as 92% prediction accuracy for Flip-Flops required,

about 63% accuracy for LUTs required, and a low prediction accuracy of around 5% for

multipliers, by using the linear regression SCM model. While not perfect, these results do

show that software SCMs can be used to correlate to hardware area requirements for moving

functions from software to hardware. The focus of [6] is not on multiple instantiations of the

functional basic blocks, but instead on the estimation of each functional block’s hardware

requirements individually.

PeaCE: A hardware-software codesign approach

The PeaCE codesign environment described in [8] takes the approach of specifying a het-

erogeneous system’s behavior from a top level, such as with dataflow and FSM tools, an

2Such as the case with Texas Instruments’ line of TMS320 DSP processors which contain a multi-threaded
OS called DSP/BIOS.

9

���� !"# $%&'!$() *+$, � %- "%(./# 0"# $% 12342*"+# # $% %-56"%# #"# 7)8$()�4&890)#+ !/:
Figure 2.2: Simplified Delft Workbench approach. For a more thorough flow diagram see
[6].

approach that has been taken in previous work as well [18]. This top level system specifi-

cation is provided as input to a design space exploration (DSE) stage. The DSE takes as

inputs the top level system specification, a provided library of processing elements (PE)3,

and a profile table of the PEs (such as cycle requirements, memory access count, etc.).

The research assumes all the provided PEs are connected through a bus interface with the

protocol of the bus unspecified until a later stage of the design process. It then makes deci-

sions about PE allocation of specific tasks, or portions, of the system behavior. Once these

PEs are chosen, a HW/SW cosimulation is performed to provide a memory trace depicting

the exchange of data among the PEs required to implement the system behavior provided.

Once the memory trace has been recorded, candidate communication interfaces are chosen

and the DSE iterates again with this interface included4. Then cosimulation occurs again,

providing a final hardware/software partitioned solution.

While this is a thorough approach, it currently focuses on minimizing the schedule length

provided in the system behavior, rather than maximizing the capacity of the system5. The

technique also assumes that once a system task has been assigned to a PE, all the resources

from the PE will be consumed. The research recognizes that not all of the PE is consumed

in reality, such that a chosen PE could actually run multiple portions, or instantiations, of

the system specification.

3PE is a physical processing component, such as CPU, FPGA, etc.
4The interface implementation will also require PEs.
5How many instances of a channel versus how fast the channel runs.

10

Dynamically Constrained HW/SW Partitioning

The work in [11] uses a hybrid genetic algorithm (GA) with a dynamically-weighted fitness

function to determine what portions of a software program should be moved to hardware.

It focuses on a hardware implementation of the transport triggered architecture (TTA)

processor which implements a single Move instruction to transport data between functional

units (FU) that are instantiated in hardware. The FUs perform the work, and a separate FU

is needed for each unique operation that will be carried out in hardware (e.g. multipliers,

adders, register files, etc.) [11]. A fitness function is used to pick out interesting functions

of the software, and determine if those blocks should be implemented in hardware as a new

FU.

This work requires the software program to be profiled before being input into the

GA. It also relies on basic blocks that will be implemented in the hardware as FUs to be

profiled as well, providing area constraint information by use of synthesis tools on sample

FU implementations for the target hardware component (in this case a Xilinx Virtex II).

Once the software has been profiled to provide time constraints on the various functions, and

sample hardware FU area requirements have been generated, a weighted fitness function

can be applied on each software block individually, along with the hardware block that

would implement it. The fitness functions is described as such:

k =
hwLimit − s

hwLimit
(2.1)

f(s, t) =

α

t
∗

(

k ∗
β

s
− k + 1

)

if s ≤ hwLimit

(log(s − hwLimit) + 1)−1 otherwise

(2.2)

where α is the time to execute the given software program on a processor, t is the required

time for a functional block to execute, β is the size of the hardware available, s is the

hardware size of a block (i.e. the area required to generate that functional software block

11

in hardware), k is the dynamic factor, and hwLimit is the maximum hardware size allowed

to implement the software block as an FU in hardware.

The first ratio (fractional portion containing the α) corresponds to speedup obtained

with this block, while the second ratio corresponds to the hardware size increase. The

general idea behind the fitness function is that if the speedup obtained from reducing the

time required to execute a functional block (i.e. by moving it to a hardware FU) is relatively

larger than the size increase, the fitness score will be high, designating this functional block

as a candidate for moving into a hardware FU [11].

While this work makes great strides, in its current state it requires the input program

to be provided in a restrictive version of the C language that does not lean well towards

true applications, and also focuses on the speedup of an individual block rather than an

increase in the maximal capacity of the system (as will be discussed later).

Hardware/Software Interface Modeling

Because a heterogeneous system involves an interface that touches both software and hard-

ware components, designing a codesign platform requires proper models of this interface.

[10] addresses this by describing an executable model of the hardware software interface

using SystemC. The result is a model that can be used in both the software simulation and

hardware simulation design scope. While the focus of [10] is not on the partitioning of the

system, it brings out a key focus on the communications interface between the heteroge-

neous components of the codesign platform, and emphasizes the need for a more accurate

model of this interface.

2.2 Ideas Behind Our Research

While reviewing the related works, a few points began to stick out that drove the initial

idea behind this research. We feel these points are places where further research can occur

beyond the described related efforts, and represent a starting point for what will follow in

this work. They are listed below.

12

;<=>?@ABCDDE?

FGHIJKLMN OPQPGIRNPSLTUJVWUJPXYIZLWUJP[UJLKLKISKSHTUJVWUJP Y\SLMP]K] YIZLWUJP Y\SLMP]K]TUJVWUJP RIJLKIS IZ^SLPJZU_PY\SLMP]K]TUJVWUJP YKN`GULKIS
OP]KHS aPJKZK_ULKISY\]LPN bQUG`ULKIS

YIZLWUJP RIJLKIS IZ^SLPJZU_PY\SLMP]K]YIZLWUJP YKN`GULKIScINdKSPV LI SUL`JUGeUJHPL bSQKJISNPSL
Figure 2.3: A Modified codesign methodology

Codesign analysis should occur before partitioned synthesis.

By performing a thorough codesign analysis before partitioning, the synthesis and sim-

ulation can be performed in the hardware and software components’ respective natural

environments, as portrayed in Figure 2.3. In other words, if we can trust the results of a

codesign analysis before partitioning and synthesizing, then we can treat the separate parts

of the codesign individually during synthesis and simulation.

For example, after a hardware-software codesign platform has been analyzed using a pre-

partitioned algorithm, the software developer can use his current industry tools to develop

and simulate their portion, while the hardware developer can develop their portion using

industry tools as well. These standard tools will have outputs in industry expected formats

that can be used across multiple simulation environments. The requirement for a new

environment that takes both hardware and software designs and merges them together for

simulation analysis is unnecessary. Since these types of environments are still developing

13

[5][4], and struggle with target platform specific details, it is easier on development time to

use standard tools both developers will be accustomed to.

Codesign Analysis can also Benefit Existing Codesign Implementations

While most related works deal with creating new designs, in some situations system de-

signers would like to utilize existing platforms to achieve new capability. In the example of

a Software Defined Radio (SDR) platform, a new communications channel may exist that

could leverage existing software algorithms and hardware implementations on the SDR, with

minimal new design required. In this scenario, with the proper models that characterize the

existing SDR, a developer can utilize a codesign method to determine what capacity (i.e.

how many simultaneous channels) the existing SDR can provide of the new communications

channel with minimal design modifications6.

Hardware: Maintaining the power of parallelism

Treating the hardware component as a series of coprocessors can increase processing quan-

tities, however, at a possible expense of loss of the parallelism capability of the hardware7

Creating coprocesssors that perform separate tasks in an FPGA, for example, essentially

turns the FPGA into a software component that executes sequentially. The parallelism

provided by hardware, mixed with flexible sequential execution provided by software, together

provide the true power in a codesigned platform.

Interface Inclusion in Codesign

A key block in the generic codesign methodology that is often overlooked is that of the

interface (see Figure 2.1). The interface becomes a critical part of the analysis when design-

ing a codesign environment where data is exchanged back and forth between the hardware

6This approach is inline with the case study presented in this research. Models of the existing SDR are
made, and an analysis is performed giving insight into what design modifications are necessary to achieve a
given capacity.

7The degree of parallelism capability that is traded using the hardware-becomes-coprocessor approach
depends on individual implementations. Not all approaches will lose all parallel capability.

14

and software components. The difficulties in designing both the software and hardware

portions of a heterogeneous codesign platform are emphasized in [9] which describes the

evolution of multiprocessor platforms. Interface consideration is a part of codesign that

while discussed and given credit for being a key factor [1][2][24][10] has not been addressed

fully in most related works. This research includes the interface directly in the derivation

of the hardware-software codesign analysis models.

Multichannel Approach: Capacity Increase versus Latency Reduction

One focus in codesign research has been obtaining a hardware-software partition solution

that creates the fastest signal path through the platform [1][8]. While this approach has

produced designs that can accommodate existing heterogeneous platforms, it can over com-

plicate system designs that have a focus on maximizing the capacity of the system (i.e.

multiple signal paths) instead of speeding up a single path. In the case of the SDR, which is

addressed in this work, increasing the maximum number of simultaneous channels provides

greater benefit to the system than a single faster communications channels. This relies on

the fact that once the optimal8 speed of a channel has been met, there is no need to further

reduce the latency of the channel. Specifications call for specific baud rates that once met

require no further speedup of the channel. Therefore, the approach taken in this research

is an increase in capacity versus reduction in latency.

8Optimal does not imply most efficient, but instead that a provided specification has been met, and not
necessarily exceeded.

15

Chapter 3: Background

3.1 The Communications Channel

A radio transmission channel, when viewed as a block box, has a single input/output pair,

a bit stream and a sample stream, respectively. The implementation of a single channel

can be approached as a series of stages that perform processing on the input bit-stream to

produce an encoded and modulated output sample stream. As the HW and SW components

that make up these radio platforms increases in complexity, the decision about where to

implement the channel stages becomes more complex as well.

The transmission channel implements the physical layer (and sometimes more) of a given

specification. Information flows through the channel first as a user provided bitstream which

is then conditioned and modulated. Some common modulation schemes for wireless commu-

nications are BPSK, QPSK, and π/4 QPSK. The modulation sequence is then filtered and

mixed to an Intermediate Frequency (IF) for distribution to a Digital to Analog Converter

(DAC). Once the sequence has been converted to a stream (continuous or burst depending

on the specification), it is typically sent through analog stages of upconversion to Radio

Frequency (RF) and amplification for transmission across a medium.

The algorithm used in this research to generate the communications channel stream can

be broken up into intermediate stages that handle portions of the implementation. Figure

3.1 depicts the arrangement of these stages and a description of each follows.

1. Bitstream: This stage is preliminary to the data path. It acquires the desired

bitstream of interest that will be modulated, and pushed through the channel. This

is where the system user specifies the information to be sent. This stage is associated

with architecture overhead on the SW platform for interacting with the input/output

16

fgh ijklghgjkgkmnop qrstjuvwkwxyhgjknzp {guhwxgkm |}u~wq�y�gkmn�p �w~ys�ugkmn�p �{ iyxxgwx�jl}uyhgjkn�pfgh~hxwysn�p �j�gmghyu hj�kyujmijk�wxhwx
���ug�yhgjk �yrwxgk�}h

Figure 3.1: Stages of a Transmission Communications Channel

control interface for the user. Its detail will not be addressed in this research, but

instead will be represented as a given overhead.

2. Bit Conditioning: Any necessary bit manipulation of the input stream is done

in this stage. Depending on the specification the channel implements, the input

bitstream may need to be encoded and scrambled, producing a conditioned bitstream

which will continue through the remaining stages of the channel.

3. Symbol Generation: When the bitstream is in its final form (i.e. all necessary

specified conditioning is completed), the individual bits are mapped to symbols. The

number of bits per symbol is again a function of the specification the channel imple-

ments. For example, a QPSK symbol set contains four unique symbol locations in the

IQ constellation mapping. The number of bits that can be represented per symbol in

this case is

Bits = log2(n) (3.1)

= log2(4)

= 2 bits

where n is the number of uniquely defined symbols, in this case 4.

4. Filtering / Pulse Shaping: This stage provides any pulse shaping required by

the specification (i.e. root raised cosine filtering to avoid inter-symbol-interference).

17

�������� ����������� ����������������� ������������ ���������¡�¢��£����� ¤ �� ¥�¢�¦�����§����¨��¢���¥��¢����� ��� ©������� ����������¨�����
©££�������� ª�«����£��

Figure 3.2: Stages of a Receiver Communications Channel

The input to this stage is the symbol set while the output is generally viewed as a

sample set (i.e. a sampled set of the modulation symbols). In some cases, this stage is

combined with the Resampling stage to utilize a single filter to perform both stages,

thereby minimizing processing.

5. Resampling: Any necessary rate conversion to bring the sample set up to a rate

commensurate with the carrier wave mixing that will occur in the next step is done

in this stage. This stage could very well be split into multiple substages depending

on how the resampling process is broken up between the HW/SW in the codesign.

6. IF Carrier Modulation: This stage mixes the sample sequence generated from

the previous stages with a generated carrier wave sequence. The result is to mix the

information containing samples up to a carrier wave frequency for transmission. Many

wireless protocols exist in the VHF (30 to 300 MHz) and UHF (300 to 3000 MHz)

bands. Because it would require extreme processing power to mix directly to these

bands, many implementations first mix to an Intermediate Frequency (IF) while still

in the digital domain. The resulting sample sequence is sent to the platform Digital to

Analog Converter (DAC) for discrete to continuous time conversion. This IF analog

signal is then mixed through analog hardware up to the final Radio Frequency (RF)

carrier destination in the VHF/UHF bands.

Like the transmission side of the communications channel, the receiver side performs

the reverse order of stages. In actuality the receiver is typically more complicated than

18

¬®¯°±²³ ´³®µ¶³· ¸±·µ ¹º±¯®²»
¼½¾¿À½¾ÁÂ¾ÃÄÅÁÄ¿ÆÇÈÉÊÇÉËÌÍÎÏÇÉÐÏÑÒÌÍÏÉÓÔÕÏÉ ¼½¾¿À½¾ÁÖ½×ØÁÄ¿ÔÕÏÉÐÏÑÒÌÍÏÉÓÙÚÊÇÉËÌÍÎÏÇÉ

ÛÄ½ÜÃÝ Â¾ÃÄÅÁÄ¿ÞßÕÉÉÌÑ ÏÎÇÑÕÒÏÇÉàÉÕÑÇÓ ÑÌËÌÑ ÊÇÉÒÍÇÑàÉÕÑÇÓ ÒÇ ÆÏÓÏÒÕÑ ÞÇÉËÌÍÎÏÇÉ ÛÄ½ÜÃÝ Ö½×ØÁÄ¿ÆÏÓÏÒÕÑ ÒÇ àÉÕÑÇÓ ÞÇÉËÌÍÎÏÇÉàÉÕÑÇÓ ÑÌËÌÑ ÊÇÉÒÍÇ ÑÞßÕÉÉÌÑ ÏÎÇÑÕÒÏÇÉáÃâÅÀ½¾Á ãÃäåÃÄÁÄÅÆÌæÇçèÑÕÒÏÇÉÆÌÊÇçÏÉÓéÍÇÒÇÊÇÑ éÕÍÎÏÉÓ éÍÇÒÇÊÇÑ éÕÍÎÏÉÓêÉÊÇçÏÉÓëÇçèÑÕÒÏÇÉ
ìíÚÏÊÕÑ éÇÏÉÒ ÇîàÚÚÑÏÊÕÒÏÇÉ ïÕíÌÍ ðÉÒÌÍîÕÊÌ

Figure 3.3: An example of a generic software defined radio platform.

the transmitter, since it must perform symbol timing and frequency estimation, as well as

equalization depending on the environment of the communications medium used. However,

Figure 3.2 shows a high-level view of a receiver based off of the reverse of Figure 3.1.

3.2 Software Defined Radio

3.2.1 A General SDR

Due to the increasing number of utilized wireless specifications, having the capability to

move from one specification to another becomes a key factor for flexible radios. Flexible

communications platforms must interact with multiple protocols. Working in these multi-

ple protocols requires many signal processing tasks to be performed by the radio[13]. As

the number of supported protocols increases, historically, additional hardware was required

to implement the different signal processing tasks between the protocols. This resulted in

increases to cost, system design complexity, size, and power consumption. The concept

behind Software Defined Radio is to move these differing tasks to a generalized software en-

vironment, where they can all be implemented with the same resources, leaving the common

task (e.g., mixing, gain adjustments, etc.) in hardware components. Put simply by Mitola

in [35], “The software radio delivers dynamically defined services through programmable

processing capacity...”

19

Having a programmable software environment on a Software Radio platform allows the

radio to switch protocol implementations on the fly. This is a defining characteristic of a

Software Radio: the ability to implement new protocols without requiring additional hard-

ware components. Current Software Radio platforms usually follow this hybrid approach,

including both software and hardware as depicted in Figure 3.3. A common analog and

hardware front-end and/or back-end can be put in place for the processing components

that are implemented in every radio (e.g., IF to RF upconversion), while the application

specific portions (e.g. demodulation, decoding, protocol bitstream parsing) can be placed

in a software component for easier control and switching[1][36].

3.2.2 Past work on SDR

As the flexibility of software processors increases, efforts are being taken to implement

more of the physical layer of the communications channel in software to provide as much

flexibility as possible for changing specifications [26][30][31][35]. So much so, that some

processor architecture designs are carried out with SDRs in mind as a primary application

[27][28][29].

However, implementing the physical layer on a sequential based execution component,

such as a Digital Signal Processor chip, has begun to show the intensive cycle requirements

for some of industry’s increasing wireless standards sets [32]. Therefore, SDR platforms have

begun to come forward that employ both software and hardware components, utilizing the

hardware for the parallel power to increase capacity, while maintaining flexibility in the

system through the software [33][34][36][37]. Because of these heterogeneous platforms,

codesign becomes a critical part of SDR design.

3.2.3 SDR Codesign

Radio platforms are evolving towards an approach involving a mixture of hardware (HW)

and software (SW) components interfaced together to provide programmable radio chan-

nels. Due to this mixture of HW/SW on a single platform, studies have been made on

20

ñòóôõö÷ø õöùòú ûòüýþÿ��÷ �÷��óþü÷���� ��	
����	�	��� ��������	������	��� �������	� ����������	���� �������	��!� "� �������#�
������	�$�����������%� &�'������ ��(������)�����
(����*����	 +�����	���

,-./-01234567389
:;<2;1=>

#�)�	� "	���?�*�
@ABCADEFGHIJKGLM
HNONPGQR

Figure 3.4: Codesign HW/SW interface adjustments.

design approaches focusing on dividing the overall signal processing algorithms between the

HW/SW components. In some cases, the programmable portions of the communications

channel that the Software Radio implements can be moved to a configurable HW component

(e.g. Field Programmable Gate Array) to ease the processing load of the SW component

(usually a Digital Signal Processing chip), freeing up cycles that can then be directed to-

wards other tasks. One such example used as a case study in this research, depicted in

Figure 3.4, is the implementation of a polyphase resampler in hardware to fulfill the pulse

shaping and sample rate conversion stages previously performed in software.

3.3 Target Platform Used in this Research

The target platform used in this research is the ArgonST Gen5 Intelligent Terminator Card

(ITC), as shown in Figure 3.5. The ITC is the transmission card that sits at the bottom of a

ArgonST Gen5 stack. At its core, these Gen-5 systems are Digital Signal Processing (DSP)

and Field Programmable Gate Array (FPGA) based software radios that can digitize up to

six simultaneous IF inputs, each with up to 80MHz of contiguous bandwidth. This is done

with an Analog to Digital (A/D) card. Once digitized, the data is passed down a stack of

up to ten digital receiver cards. These digital receiver cards are designed with powerful and

flexible digital signal processor components. Each digital receiver card contains two 1 GHz

DSPs (TI C6416) and three Xilinx FPGAs (two Virtex-4 SX55 and one Virtex-4 FX60).

21

Figure 3.5: ArgonST Gen5 Intelligent Transmitter Card (ITC).

Terminating this stack of cards is the Intelligent Terminator Card (ITC), which contains

one 1GHz DSP (TI C6416), one Virtex-4 FPGA (SX55), one Virtex-4 FPGA (FX60), two

Digital-to-Analog (D/A) converters (AD9779), two digitally controlled analog attenuators

(provides two TX paths), a stand-alone ethernet interface, and RS422/232 interfaces. The

ITC can also accept information directly from any of the receiver cards in the stack above

for pertinent information regarding transmissions (e.g., transmission information based off

of received information). Each receiver card also provides stand-alone gigabit ethernet

interface and serial options (RS232) for communicating with the controlling Application.

The ArgonST Gen5 cards are actively used in complete SDR systems in industry.

Both the receiver card and ITC are separate complex codesign platforms, involving a

mix of both software, hardware, and analog components as well as the interfaces between

them. To limit the scope of the research, and to design against an existing application

which can provide real-time bench marking of any improvements provided, the ITC was

chosen as the target platform for the case study.

ITC: Software Component

A basic block diagram of the ITC is shown in Figure 3.6. The software component is the TI

C6416 DSP, configured to run at 1 GHz. This CPU has access to 32 MB of SDRAM that has

been populated on the ITC and connected to the CPU through it’s EMIF-A interface. While

22

STUV SWXY
YZ[\]^Y__`Za[_]bcdê e_[\ _]YZ[\]^f]Zg`b_`b YZ[\]^Y__`Za[_]bcdê e_[\ _]YZ[\]^f]Zg`b_`b

hTii SWXYdjfdjfdjfkkk h` \̀ l_[m\̀hanneZ^fo[eZpqrS
qYf jYst

h`be[\rZ_`bu[l`p_o`bZ`_rZ_`bu[l`

hdsYqvVqwx_`c
tryzUy dhWh{ W]b_e]Z]uf]nnc fo[ZZ`\ pqrS

jc`bY||\el[_e]Z rZ_`bu[l`}e~̀ ~ f]Z_b]\ Xjr�

YZ[\]^ rS�a_|a_
Ylb]cc dhW _] hTii�SWXY rZ_`bu[l`U�� q�� s[_`� Uy�me_ �[_[f]n|\̀ � m[c`m[Z� r�� c[n|\` c_b`[nYlb]cc hTii�SWXY _] dYf rZ_`bu[l`V�� q�� s[_`� Uy�me_ �[_[s`[\ rS c[n|\` c_b`[n

Figure 3.6: Block Diagram of Interconnections of ArgonST ITC.

the ITC has many functions in the Gen5 stack, we will consider mainly the transmission

capability it is responsible for. With this in mind, the ITC’s main objective is to implement

stages 1 through 5 of Figure 3.1. The output of the CPU is a sample stream at baseband

that can be sent to the hardware component for further processing through the External

Memory Interface (EMIF) that connects the DSP to the FPGA. This interface runs at 100

MHZ and is a 16-bit data bus, with a 32-bit address bus. Any data that moves between

the software and hardware components of the ITC must travel through this interface, and

therefore it becomes an integral part in the derivation of models pertaining to the platform.

ITC: Harware Component

The main ITC hardware component is a Virtex-4 SX55 FPGA, whose primary responsi-

bility is to complete the communications channel. It does this by providing any remaining

upsampling to convert the sample stream from baseband to intermediate frequency (IF)

23

������� ����������� �������������������� ������ ¡ ������������������ ���¢������ ��������� £����¤¥ ¤¥ ¤¥ ¦§¨©ª¤«¬ ®¯°®¯±²³´ µ³¶·²́¸ ³¹º»¹²¼¶²½¾³¹²¿¼²ÀÁ²»ÂÃÄÅ°®¯ÆÇ¶·²È µ³¶·´²¸³¹ É³¸²Ê³»½
Figure 3.7: A Digital Upconverter (DUC) block diagram

before being sent to backend hardware components for conversion from a digital to analog

signal, and from IF to RF. The critical instantiated block inside the FPGA that meets this

requirement is the Digital Up Converter (DUC).

Figure 3.7 shows a simplified block diagram of a DUC implementation utilizing a Cas-

caded Integrator Comb (CiC) method. In this implementation, the complex baseband

samples are first sent through a FIR filter that performs initial upsampling to bring the

sample stream to an acceptable input rate for the CiC. The CiC then performs additional

upsampling and gain scaling to bring the sample stream the rest of the way up from Base-

band to IF. The digital complex IF sample stream is then pushed through a mixer that

produces a real-valued signal. This real-valued signal can then be forwarded out of the

FPGA to a separate onboard DAC in prep for analog conversion to RF.

3.4 Target Wireless Specification

The target wireless specification that will be implemented in the communications channel

is Geostationary Earth Orbit Mobile Radio Interface (GMR-1), which is a Mobile Satellite

based specification derived from the ground based GSM standard [39]. The details of

the layers above the bitstream (i.e. Data Link Layer and above) are unimportant to this

research. The Physical Layer (e.g., modulation scheme, symbol rate) however, is important.

GMR-1 is a TDMA based specification. Therefore, many burst types are defined, some

of which are periodic and require re-transmission according to a schedule, and some of

24

Table 3.1: GMR-1, BCCH Specification [40]

Characteristic Value

Burst Category Normal Burst

Burst Type BCCH

Symbol Rate 23.4 ksymb / sec

Modulation π/4 QPSK

Pulse Shaping RRC 35% Rolloff

Burst Length 10 msec, 6 slots

Repetition Cycle 320 msec

Symbol Accuracy 1/4 Symbol1

which are asynchronous. For this research, we focus on creating a single BCCH channel

implementation, which is concerned with the generation of a frequency Sync burst (FCCH)

and a broadcast control burst (BCCH). The specific burst of interest is the BCCH. It’s

characteristics are described in Table 3.1.

The actual implementation of the burst is unimportant to this research. As will be

shown hereafter, the codesign method that this research focuses on, takes as input the

required cycles to implement a communications channel, and is not as concerned with how

the implementation was done. This falls on the designer ensuring they receive the desired

levels of optimization and efficiency for their development costs. What is important is that

the communications channel must continually repeat a BCCH transmission every 320 msec,

with a time based accuracy of 1/4 symbol period, or 10.6 usec. This dictates the rate

that the DUC must run in order to achieve the desired time resolution. It also dictates

the number of samples that are generated by the software component of the channel, as it

must keep up with a 320 msec periodic signal set. In order to reach this specifications, the

DUC will run at 195.312 Ksamples/sec. This provides a time resolution of 5.12 µsec. For

more information on the details of the GMR-1 specification, including channel coding and

interleaving requirements, see http://www.etsi.org.

25

Chapter 4: Software Analysis

To perform a thorough analysis of the software side of our codesign platform, we need to

understand the resources used by the software component and the architecture1 implemen-

tation on the target platform.

4.1 Resources

4.1.1 Memory

Resources for a software component are usually viewed as less restrictive than hardware

counterparts. Memory is one of the key resources of a software component. From a macro

perspective, memory can be seen to host two types of information in an embedded system:

data and program space. While these spaces are both critical to the function of an embedded

system, memory is typically considered fairly inexpensive. Most microprocessors or digital

signal processor chips have memory management capability supported out of the box to

allow external memory (e.g., RAM) to be mapped into the address space of the chip. This

allows boards to be manufactured with external memory interfaced directly to the software

component. Therefore, external memory on the software component is not considered as a

key resource in this work.

However, there is a hierarchy of memory. External memory is not the only form used

in an embedded system. One form of memory that is very important to monitor is internal

memory (i.e. IRAM). Most processors contain a limited amount of internal memory that

is fixed at fabrication. This memory is important because it is usually fabricated closer

to the core of the processor, allowing for faster access times than external memory which

1Architecture here refers to the software execution environment that runs on the software component.
This includes an understanding of the multi-threaded nature of the OS running on the component, and any
interfaces to external components.

26

must move information through an interface to access. Internal memory is a common place

to find CACHE storage, and critical data or program elements that must run at increased

speeds. Since this memory is physically located on the processor chip, increasing its capacity

increases the size of the processor, resulting in lower yields per wafer, and increased price.

Therefore, the amount of internal memory available to a processor plays a key role in

balancing cost versus performance when designing an embedded system [14]. This internal

memory is also arranged in several levels. Because the utilization of this memory can affect

performance, this research includes it, labeled as IRAM, as a monitored resource. Its use in

the codesign analysis is simplified to how much is required when increasing channel capacity.

4.1.2 Cycles / Time

When talking of resource utilization in context of Software, the words time and cycles are

used interchangeably. This is because time can refer to the amount of relative CPU cycles

that pass by during an operation, instead of time in units of seconds. When tasks are

waiting for CPU context, they must wait a number of cycles for the existing task to finish

its execution. Therefore it naturally flows when analyzing the software component to think

of a lapse-in-time as a lapse-in-cycles. However, to relate this delay to real-world time, we

still need to achieve time in terms we are most familiar with, seconds. To acheive time in

units of seconds from CPU cycles we use the equation,

time[sec] =
cycles

fcpu

(4.1)

Where fcpu is the frequency of the software component’s CPU clock, which translates

to units of
cycles

sec
, or Hz. For the target platform this frequency is 1 GHz.

With time established as the latency required to execute a task, the more time a task

takes, the less time in a given period is available for other tasks to execute. Therefore,

time (or cycles) required by a task for complete execution becomes a critical resource in our

27

analysis.

4.2 Target Software Architecture

4.2.1 Multi-threaded Execution environment

The target platform’s software environment, TI’s DSP/BIOS, all tasks (or threads) have

equal priority and the execution is run-to-completion. This means that once a task gets

CPU context, it will hold onto the CPU until it finishes, or intentionally yields to other

tasks. Likewise, if a task yields its execution, it must wait until all other tasks in the

execution loop have also executed before it receives CPU context again. Tasks of higher

priority can interrupt if they become ready to execute2, and interrupts always have priority

to steal the CPU from any task3.

The task of interest to this research is the Modulator Task. This task runs sequentially

through a number of modulator frames, each of which implements a single communications

channel. The Modulator Task is responsible for controlling the execution of all the available

modulator frames, only allowing those who are currently active to execute, thus saving cycles

by not calling inactive framing functions. Since all other tasks are important to this research

only by the time they consume to execute, they will be collectively referred to as overhead

tasks.

However, we will make the distinction between overhead tasks and interrupts, as the

interrupts play an important role. Specifically, the DMA transfer interrupt that transfers

the samples generated by the modulator frame across the HW/SW interface to the FPGA

hardware.

2An example would be if a higher priority task intentionally put itself to sleep for a period of time, and
then woke back up during the execution of a lower priority task. This can be done in TI’s DSP/BIOS with

TSK Sleep().
3Unless a foreground task has explicitly disabled interrupts (e.g. critical code blocks).

28

4.2.2 Modeling the Target environment

A proper set of equations to model the resource requirements (e.g. cycles required to ex-

ecute) for the target environment will be derived in this section. By starting with only a

single modulator active, we can build an appropriate model of the software execution envi-

ronment. Then we will add multiple modulators, modifying the equations where necessary.

Overhead

When a task yields the CPU, it must wait until all other tasks in the execution loop have

also executed before it receives CPU context again. Our modulator framing function, which

implements the communications channel by generating the samples (in a single frame or

burst) at baseband, executes in the Modulator task. By denoting this modulator framing

function with mf, we define the time duration between subsequent calls to the modulator

frame as

Tmf = tmf + tov (4.2)

where tmf is the time it takes to execute the modulator frame, and tov is the time it takes

to execute all the other tasks collectively grouped into the overhead of the environment.

Note that this number reflects the time required to execute normal foreground tasks on

the software component. It does not take into account added time that may be spent in

interrupt service routines for interrupts that may trigger during the normal execution loop.

This time will be handled by a separate variable.

Interface to Hardware (FPGA)

The software component on the target platform is the Texas Instruments TMS320C6416

Digital Signal Processor (hereafter referred to as the DSP). It is connected to the hardware

component, a Virtex4 SX55 FPGA, through an External Memory Interface (EMIF)[38].

The EMIF is configured to act as a programmable synchronous interface with a 16-bit data

29

and 32-bit address bus. If n 16-bit words are transferred across the interface then the time

it takes to complete the transfer is

temif [sec] = (n[words])
(

n cyc
word

[cycles/word]
)

(

1

femif

[sec/cycle]

)

(4.3)

Where n cyc
word

is how many CPU cycles are spent on average for every word written to the

EMIF4.

Note that this value is dependent only on the number of words being transferred, and

the frequency of the clock driving the EMIF. Therefore, changing the sample rate of the

DUC has no effect on the time it takes to transfer a block of words across the SW / HW

interface. It will, however, effect how often the block transfer is requested.

The DSP uses the EMIF to interface with the Digital Upconverter (DUC) inside the

FPGA. When the DUC’s data FIFO reaches a 1/2 empty state, it sends a signal to a wire

that is directly connected to one of the External Hardware Interrupt (HWI) lines on the

DSP. The DSP is configured to interrupt its current task execution and service the DUC

1/2 empty HWI Interrupt Service Routine (ISR). The time it takes to execute the ISR will

be referred to as thwi
isr

.

Direct Memory Access (DMA)

This DSP has a DMA onboard that is used to transfer data from the DSP to the hardware

component (i.e. the FPGA). Using this DMA engine requires some cycles to configure it

for a transfer. However, because the DMA engine is a separate component from the DSP

(i.e. it runs independent of the DSP), the cycles that would have been spent transferring

the data from the DSP to the FPGA are now returned to the DSP as free cycles that more

work can be performed with. We can model the DMA cycle time by

4This is technically a function of the clock driving the EMIF, and is solved as a constant to simplify the
equation for this platform. Other target platforms will most likely have their SW / HW interfaces configured
differently, and must account for it as such.

30

tdma = tdma
fore

+ tdma
back

(4.4)

Where tdma
fore

is the time required to configure the DMA for a transfer that is spent in

the foreground, while tdma
back

is the time the DMA spends in the background transferring the

data. When modeling the DMA in the target platform, for the purposes of cycle analysis,

tdma
back

will be treated as free time and ignored. Therefore, every time a DUC 1/2 empty HWI

is triggered from the FPGA to the DSP, the DSP will incur a penalty of tdma
fore

to utilize the

DMA engine. To simplify things, we can absorb this value into the DSP HWI ISR which is

where the DMA is configured.

t̂hwi
isr

= thwi
isr

+ tdma
fore

(4.5)

4.3 Single Modulator Channel

4.3.1 Periodicity of the DUC HWI

We start by defining n mf
samp

as the number of samples generated by a single call of a modulator

framing function, which are stored in a transmit buffer for retrieval at a later time by the

DMA engine. We then define n dma
samp

as the number of samples the DMA engine pulls from

that transmit buffer every time the DUC 1/2 empty HWI triggers, which samples are then

transferred by the DMA to the FPGA. We can then calculate how many times the DUC

1/2 empty HWI will trigger before all the samples generated by the modulator framing

function are drained out of the transmit buffer as

Nhwi =

n mf
samp

n dma
samp

(4.6)

31

Once the DUC 1/2 empty HWI triggers Nhwi times, the transmit buffer will have run

dry, and the modulator framing function will need to be called and finish executing to place

new samples in the transmit buffer before the next DUC 1/2 empty HWI triggers again.

Otherwise, when the next HWI occurs, the DMA will not have samples to transfer, and the

DUC will run dry (i.e. underflow condition).

It therefore becomes important to know how often the DUC 1/2 empty HWI will trigger,

or how many cycles are available for work between subsequent HWIs. As previously defined,

if n dma
samp

are transferred on every HWI, then the DUC’s data FIFO will be filled with n dma
samp

above its 1/2 empty point. If the DUC is configured for a sample rate of f duc
rate

, then it will

have to drain all n dma
samp

samples before the next HWI is triggered. The time that this takes

can be calculated as

Tnext
hwi

[sec] = n dma
samp

1

f duc
rate

 (4.7)

This seems like the logical answer. However, one must remember that while samples are

being transferred over the EMIF to the DUC’s data FIFO, the DUC is still running and

draining samples. The number of samples that are drained by the DUC during the DMA

transfer can be found as

n samp
drained

= (t̂hwi
isr

+ temif)f duc
rate

(4.8)

Since these samples drained while the DMA was transferring new samples across the EMIF,

we have effectively decreased the number of samples that are now sitting above the 1/2

empty line in the DUC’s data FIFO. This gives an effective time between subsequent DUC

1/2 empty HWI triggers of

32

Tasks
Tnext_hwi Tnext_hwi Tnext_hwi

Deadline for modulator frame
to start executing again

Deadline for modulator
frame to finish executing

tmf

tov

thwi

Tmf {

^ ^ ^

Drained
1*a / b

samples

Drained
2*a / b

samples

Drained
3*a / b

samples

Need
more

samples

b = samples added by modulator frame
a = samples drained by DUC HWI

In this example b = 3 * a, so it takes 3
DUC HWIs to drain all the samples added
by the modulator frame

Figure 4.1: Timing Diagram showing the deadline for the modulator frame task, denoted by
tmf , to ensure that the transmit buffer does not run dry between subsequent DUC HWIs.

T̂next
hwi

[sec] = (n dma
samp

− n samp
drained

)

1

f duc
rate

 (4.9)

Figure 4.1 provides a timing diagram portraying the relationship between the variables

derived up to this point. This diagram assumes that the modulator frame was just finished

being called, and has added its samples to the transmit buffer before the first DUC HWI

occurs. In this example, after three DUC HWIs, the transmit buffer has been emptied of

all the samples that the modulator frame added. Therefore, before the third T̂next
hwi

occurs,

the modulator frame must finish executing to add the next block of samples to the transmit

buffer, so that the DUC HWI ISR has samples to transfer.

4.3.2 Periodic Time constraint

We are now ready to derive the periodic constraint to prevent the underflow condition.

Tmf + Nhwit̂hwi
isr

< NhwiT̂ next
HWI

(4.10)

33

We can simplify this in terms of important system parameters. First, pluging 4.8 into 4.9

provides

T̂next
hwi

= (n dma
samp

− n samp
drained

)

1

f duc
rate

T̂next
hwi

= (n dma
samp

− (t̂hwi
isr

+ temif)f duc
rate

)

1

f duc
rate

T̂next
hwi

=

n dma
samp

f duc
rate

− (t̂hwi
isr

+ temif)

T̂next
hwi

=

n dma
samp

f duc
rate

− t̂hwi
isr

− temif

 [sec] (4.11)

Next we plug 4.6 and 4.11 into 4.10 to obtain

Tmf + Nhwi

(

t̂hwi
isr

)

< Nhwi

n dma
samp

f duc
rate

− t̂hwi
isr

− temif

Tmf +

n mf
samp

n dma
samp

(

t̂hwi
isr

)

<

n mf
samp

n dma
samp

n dma
samp

f duc
rate

− t̂hwi
isr

− temif

Tmf

n mf
samp

 +

t̂hwi
isr

n dma
samp

 <
1

n dma
samp

n dma
samp

f duc
rate

− t̂hwi
isr

− temif

Tmf

n mf
samp

 +

t̂hwi
isr

n dma
samp

 <
1

f duc
rate

−
t̂hwi

isr
+ temif

n dma
samp

Tmf

n mf
samp

 +

2t̂hwi
isr

+ temif

n dma
samp

 <
1

f duc
rate

(4.12)

34

Now, rearranging and expressing in terms of the DUC sampling period, we obtain

T duc
period

>

Tmf

n mf
samp

 +

2t̂hwi
isr

+ temif

n dma
samp

 [sec/sample] (4.13)

where T duc
period

=
1

f duc
rate

. To better analyze the value that 4.13 provides to the codesign

effort, we will rewrite it in general descriptive terms, while maintaining the mathematical

relationship.

HW
Period >

(

Time Generating Samples

Samples Generated

)

+

(

Time Transfering Samples

Samples Transfered

)

(4.14)

The resulting 4.14 has some key points. The main software execution loop that con-

tributes to the periodic constraint, consisting of the modulator frame, and other overhead

routines, is normalized by the samples they generate. Likewise, the architecture portion

of the software that contributes to the periodic constraint, consisting of the HWI ISR and

EMIF transfer, is normalized by the number of samples it is responsible for transferring.

Both of these add together to provide a normalized time it takes to generate samples to be

sent out the DUC into the spectrum, and must occur in less time than one full period of

the DUC, the HW block under test, to avoid the underflow condition.

Interestingly, this concept of normalizing the work performed by the output of the work

for the different portions of the components on the platform is also apparent in Equation

2.2 from [11] described in Section 2.1.3. This also took the form of normalizing portions of

work by the requirements to implement them, creating the fitness function score. However,

the relationship between the components of Equation 2.2 is a multiplicative one versus an

additive one expressed here in Equation 4.14.

With 4.13 defined, all the system designer needs to do to ensure they meet this criteria is

35

define time requirements for the software components of their system. This can be done by

borrowing from previous designs, profiling existing implementations, or using computation

equations for the basic signal processing algorithms that will be implemented on the target

platform. Many chip developers provide cycle benchmarks for their products for common

algorithm implementations.5

4.4 Multiple Modulator Channels

To determine how many modulators can run on the software component of the codesign

platform, we take two key software constraints and evaluate them independently: cycle

and internal memory requirements of the software modulator function. Both of these are

addressed independently, and their results are compared together to determine the true

upper limit of the maximum number of modulators that can run on the software portion of

the platform.

Cycle Requirement Viewpoint

When the system developer has enough information to try 4.13, and verify that the con-

straint is met in the design, the next question this research focuses on follows: How many

instances of the modulator frame can run simultaneously?6

The answer to this question can be approached by first looking back at the result from

4.13. Assuming that the right hand side of 4.13 has been solved for, we define

β =

Tmf

n mf
samp

 +

2t̂hwi
isr

+ temif

n dma
samp

 (4.15)

which is in [sec/sample]. This β can be seen as the total time7 required to implement a

5For example, Texas Instruments provides specific equations involving clock frequency for FIR filter
implementations. Refer to www.ti.com.

6In this work, separate instances refer to additional instantiations of the software side of a communications
channel, i.e. the modulator frame.

7Technically the units of β are [sec/samp], but the general idea is a unit of time required to do work

36

single modulator instance, or a single communications channel. By dividing β by T duc
period

,

we obtain the percentage of time used during a single period of the DUC HWI by the

modulator. All modulators that are currently active must complete their work within a

single period of the DUC to ensure none of them underflow. Therefore, a good rule of

thumb for the total number of modulators that can run simultaneously is the inverse of this

number, or

N max
active
mods

= floor

T duc
period

β

 (4.16)

Memory Requirement Viewpoint

Notice that the result from 4.16 does not depend on memory requirements. We know that

memory is limited, and that with each increase in number of active modulators, there is

an increase in memory usage. This is due to each modulator requiring usage of portions of

the STACK or internal ram (IRAM) for saving state information. Since each modulator’s

transmit buffer resides in IRAM to give un-obstructed access to the DMA engine for trans-

ferring the modulated samples to the FPGA, and IRAM is seen as the most costly, and

finite, memory portion of the CPU on the platform, our memory constraint deals specifically

with IRAM. Therefore, we define an upper limit dictated by memory available to use for

modulators as

Nmods
mem
limit

= floor

[

MEMiram − MEMunavail

MEMmod

]

(4.17)

where MEMiram is how much IRAM is available on the system, MEMunavail is the amount

of IRAM that is used for other things, such as overhead, that run on the CPU and is

unavailable for use by new modulator functions, and MEMmod is how much IRAM is used

relating to sample generation and transmission.

37

by each modulator. As described earlier, we are only interested in IRAM, as external

memory is considered inexpensive, and available in large quantities in this analysis.

With 4.16 and 4.17 established, the total number of modulators that can be active as

viewed from the software component is

N SW
mods

= min

[

N max
active
mods

, Nmods
mem
limit

]

(4.18)

4.4.1 Note on Overhead Increase

Equation 4.16 takes some liberties. Specifically, it assumes that the overhead required to

run multiple instances of the modulator frame scales linearly with the number of active

modulators. Overhead does increase with multiple active modulators, but the rate at which

it increases depends on the software architecture implementation of the platform. One

approach would be to model the overhead increase as

T ov
total

= tov + (M − 1)∆ov (4.19)

where M is the number of modulators, and ∆ov is a specified amount of overhead increase

that is incurred by the software architecture for each additional activated modulator beyond

the first. However, even this is an approximation, as the overhead increase is most likely

not a linear function. Many architecture factors may be effected by more modulators. For

example, cache misses may increase with more modulators, requiring a greater load on the

DMA engine since it will have to service execution loop tasks as well as the sample transfer

across the SW/HW interface. The complexity of modeling overhead increase is dependent

on the target platform software architecture implementation. This research does not focus

on closely modeling the overhead increase, but instead found that 4.16 was a valid rule of

thumb approach.

38

Chapter 5: Hardware Analysis

The previous chapter discussed how we derived a set of equations used to estimate software

requirements on the codesign platform in terms of cycle and execution constraints. Like-

wise, this chapter will perform the same analysis on the hardware portion of the codesign

platform. The approach will be centered around key resources inside the FPGA device, and

develop constraints around these resources. The first approach was to estimate total hard-

ware requirements by examining the hardware requirements of each sub-block and linearly

summing these together. However, this chapter will show, by using the implementation of

a Digital Upconverter (DUC) inside a Xilinx Virtex4 SX55 FPGA, that the estimation of

total resources must take into account not only the resource requirements of the individual

blocks that make up the FPGA build, but also the total device utilization percentage of the

FPGA. A modified version of linearly summing the sub-blocks together is presented that

is shown to minimize the error in predicted versus actual resource utilization. This new

modified approach is then used further in the codesign analysis of the research.

5.1 Resources

In a software component, the most costly resource is usually cycles available for processing.

The design implementation on the software component affects this resource directly, and

not many others.1 In contrast, hardware components have many resources to manage, all

of which are typically directly affected by design implementation. This section lists the

resources under consideration for the target platform.

39

Table 5.1: Key HW Onchip Resources, in the Xilinx Virtex4 SX55 FPGA

Resource Available in SX55

CLB Slices 24576

Flip Flop Slices 49152

Look Up Tables 49152

Block RAM 320

DSP48 512

5.1.1 Onchip Resources

Table 5.1 shows the key resources that are considered in this research, as well as the quantity

available in the SX55 FPGA (FPGA) component. These resources are seen as critical. As

the design implementation changes, the quantity of each resource changes as well. When

designing a block, it becomes important to watch the utilization of the block throughout

the design phase.

Many synthesis tools are available to take an FPGA design written in a hardware de-

scription language, such as VHDL or Verilog2, and given a specific hardware component

(e.g. Xilinx V4 SX55 FPGA), provide utilization statistics. If a specific design block be-

comes too large (e.g. requires too many BRAMs), the designer risks not being able to fit

their block into the physical component. Designs then have to be scaled back and possibly

re-engineered.

5.1.2 Device Utilization Threshold

When designing logic blocks independently inside an FPGA, to be later dropped into the

overall FPGA build, one can monitor the resources the block synthesizes to when built

alone. However, this resource utilization can change when the block is eventually dropped

into the final build with surrounding FPGA logic. This can be due to availability of key

resources changing as other blocks that synthesize might require them as well.

When the overall FPGA design becomes close to full capacity, the industry tools begin

1Memory usage by the code is typically another resource considered limited in many embedded applica-
tions. However, in this research, memory is readily available on the SDR.

2All the FPGA code for this research is in VHDL

40

to struggle with routing the various components together to complete the logical circuit

inside the FPGA. As an FPGA reaches higher utilization, there are fewer paths for the

tools to route the signals through. This can result in very long FPGA builds, sometimes

failing to meet timing after hours of iterations (i.e. the tool just gives up). Because of this,

another key resource is Device Utilization Threshold. When a device (i.e. FPGA) begins to

reach a certain level of utilization, this becomes a warning sign that designs may need to

be re-scaled, or routing issues can occur. This threshold can be used as an early warning

in the codesign analysis.

5.2 Target Hardware Architecture

5.2.1 The Digital Up Converter (DUC)

As mentioned previously in Section 3.3, the main portion of hardware on the target platform

is the Digital Up Converter (DUC), which provides any remaining upsampling to convert the

sample stream from baseband to intermediate frequency (IF) before being sent to backend

hardware components for conversion from a digital to analog signal, and from IF to RF.

5.3 Single & Multiple DUC Channels, Resource Prediction

Since the codesign method involves possibly moving stages of the communications channel

between the software and hardware components, it becomes necessary to properly predict

the resources required by the key components inside the hardware device. This section uses

the DUC as a case study to attempt a prediction of hardware device utilization percentage

by a linear summation of the critical components. It will be shown that this approach may

not provide enough accuracy in the prediction. A modification to the approach will be

presented that brings the error between predicted and actual device utilization percentage

into acceptable levels.

41

Table 5.2: DUC Device Utilization
Resource DucUtil Available in SX55 % of Chip

CLB Slices 1165 24576 4.8 %

Flip Flop Slices 1881 49152 3.9 %

Look Up Tables 812 49152 1.7 %

Block RAM 6 320 1.9 %

DSP48 21 512 4.1 %

Table 5.3: FPGA Base Build Utilization
Resource FPGA Base Build Available in SX55 % of Chip

CLB Slices 1974 24576 8.0 %

Flip Flop Slices 2597 49152 5.3 %

Look Up Tables 3212 49152 6.5 %

Block RAM 11 320 3.4 %

DSP48 16 512 3.1 %

5.3.1 Linearly Summed Device Utilization Increase

Table 5.2 shows the device utilization for instantiating a single DUC inside the FPGA. The

synthesis tool used in this research is included in the Xilinx ISE toolkit.

To have a starting point to attempt the linear summation prediction method, we built

the entire FPGA with no DUCs instantiated, and recorded the device utilization. This is

referred to as the FPGA Base-Build and the device resource utilization is shown in Table

5.3.

For the linear summation approach, ideally the device utilization should increase by

DevUtiln−blocks = DevUtilfpga−bb + n ∗ BlockUtil (5.1)

where DevUtiln−blocks is the total FPGA device utilization when instantiating n blocks, in

this case n DUCs, DevUtilfpga−bb is the device utilization of the FPGA Base-Build (i.e.

from Table 5.3), and BlockUtil is the device utilization provided by synthesizing that block

alone, or outside of the full FPGA build (i.e. DucUtil, Table 5.2). Table 5.4 shows the

device utilization for building the full FPGA build with one DUC instantiation.

Using 5.1 we can come up with a prediction of the FPGA device utilization for 2, 4, 8,

42

Table 5.4: FPGA Device Utilization (1 DUC)

1 DUC Instant

Resource DucUtil DevUtil % of Chip

CLB Slices 1165 3292 13.4

Flip Flop Slices 1881 4725 9.7

Look Up Tables 812 4169 8.5

Block RAM 6 17 5.4

DSP48 21 37 7.3

Table 5.5: Predicted Device Utilization (2,4,8 & 12 DUCs)
2 DUCs 4 DUCs 8 DUCs 12 DUCs

Resource DevUtil % of Chip DevUtil % of Chip DevUtil % of Chip DevUtil % of Chip

CLB Slices 4304 17.5 6634 27.0 11294 46.0 15954 64.9

Flip Flop Slices 6359 12.9 10121 20.6 17645 35.9 25169 51.2

Look Up Tables 4836 9.8 6460 13.1 9708 19.8 12956 26.4

Block RAM 23 7.2 35 10.9 59 18.4 83 26.0

DSP48 58 11.3 100 19.5 184 35.9 268 52.3

and 12 DUC instantiations. Table 5.5 shows these predicted values. To verify this result,

the full FPGA was built (with DUC instantiations) to provide an actual utilization for

2, 4, 8, and 12 DUC instantiations. These actual utilization values are shown in Table

5.6. Comparing these two tables shows a discrepancy between predicted and actual device

utilization. To determine if this discrepancy is of importance to our codesign analysis (i.e.

is large enough to matter) we compute the error between predicted and actual, shown in

Table 5.7, and plot this error for each device resource in Figure 5.1.

The error appears to exhibit different behavior for different resources. The BRAM

exhibits no error, thereby showing that equation 5.1 is sufficient to determine utilization

for a specified number of DUCs. However, LUT resources show close to a linear increase in

error as the number of DUCs increases, while Slices, SliceFF, and DSP48s show exponential

Table 5.6: Actual Device Utilization (2,4,8 & 12 DUCs)
2 DUCs 4 DUCs 8 DUCs 12 DUCs

Resource DevUtil % of Chip DevUtil % of Chip DevUtil % of Chip DevUtil % of Chip

CLB Slices 4592 18.7 7210 29.3 12473 50.8 17882 72.8

Flip Flop Slices 6765 13.8 10974 22.3 19389 39.4 28066 57.1

Look Up Tables 5089 10.4 6965 14.2 10555 21.5 14201 28.9

Block RAM 23 7.2 35 10.9 59 18.4 83 26.0

DSP48 60 11.7 106 20.7 198 38.7 298 58.2

43

Table 5.7: Predicted Utilization Error
Resource 1 DUC 2 DUCs 4 DUCs 8 DUCs 12 DUCs

CLB Slices 0.6% 1.2% 2.3% 4.8% 7.8%

Flip Flop Slices 0.5% 0.8% 1.7% 3.5% 5.9%

Look Up Tables 0.3% 0.5% 1.0% 1.7% 2.5%

Block RAM 0.0% 0.0% 0.0% 0.0% 0.0%

DSP48 0.0% 0.4% 1.2% 2.7% 5.9%

DUC Device Utilization Error

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

1 2 4 8 12

Number of DUCS

%
 E

rr
o

r,
 P

re
d

ic
ed

 v
s

A
ct

u
al

Slice
SliceFF
LUT
BRAM
DSP48

Figure 5.1: Error in DUC predicted versus actual device utilization using equation 5.1.

44

increase in error. This error occurs due to the stress put on the synthesis and routing tool

when the device utilization reaches high levels. It becomes harder for the tool to connect

all of the circuitry inside the FPGA, while still meeting timing requirements specified by

the tool’s constraints file.

The error for all of these resources is still under 10%, which may be acceptable for a

particular codesign analysis. If the particular analysis is close to 100% utilization, or if

greater accuracy is preferred in utilization prediction, then one could consider modifying

equation 5.1. While the focus of the research is not entirely on increasing accuracy in

prediction of device utilization on the HW side, an alternative model is described next that

provides greater accuracy. Future work might focus on greater accuracy of device utilization

prediction on the HW side of a codesign platform.

5.3.2 Linearly Scaled Device Utilization Increase

As the number of required DUCs increases, the device utilization increases providing greater

complexity in the routing process of the FPGA. Considering the case of the LUT resource

error shown in Figure 5.1, the error appears to scale upward linearly with the utilization

increase. Therefore, adding a linear multiplicative factor on the number of DUCs might

provide a closer predicted utilization, as shown in 5.2.

DevUtiln−blocks = DevUtilfpga−bb + (n ∗ α)BlockUtil (5.2)

where α is a multiplicative factor to account for routing conditions. A procedure for using

5.2 in place of 5.1 is,

1. Run required number of devices through 5.1 to obtain a DevUtiln−blocks.

2. Check if

DevUtiln−blocks > DeviceUtilizationThreshold

where Device Utilization Threshold3 is a predetermined utilization level, then...

3This threshold value is considered an input, and will change depending on the platform, and the concerns

45

Table 5.8: Predicted Utilization Error: Linearly Scaled Model

Resource 1 DUC 2 DUCs 4 DUCs 8 DUCs 12 DUCs

CLB Slices 0.0% 0.0% 0.0% 0.0% 0.7%

Flip Flop Slices 0.0% -0.1% -0.2% -0.3% 0.1%

Look Up Tables 0.1% 0.1% 0.2% 0.1% 0.0%

Block RAM 0.0% 0.0% 0.0% 0.0% 0.0%

DSP48 -0.5% -0.6% -0.9% -1.4% -0.3%

3. Rerun required number of devices through 5.2 to obtain a refined DevUtiln−blocks.

To prove this iterative process provides increased prediction accuracy, Equation 5.2 was

used for all resources in Table 5.1 except for Block Ram4 which had 0% error after the first

iteration. The results, shown in Table 5.8 and Figure 5.2, show that using Equation 5.2 for

the second iteration with an α = 1.1253 provides a predicted error with a magnitude of less

than 1.5%. The α value was chosen based on a value that minimized the LUT error. After

that value was chosen, it was used for the other resources, and accepted when it showed

the small level of error between predicted and actual device utilization. Therefore, for this

research, 5.2 will be used since the goal of maximizing number of communications channels

will require high levels of utilization in the target platform FPGA.

While 5.2 provides greater accuracy in prediction, it does require more offline work as

one must use a case example on their platform to first determine the value of α that will

be used to scale the hardware requirements. Once found, while not perfect, this value will

provide greater accuracy than a straight summation as presented previously in Equation

5.1.

of the FPGA design engineers.
4Block Ram is physical RAM chips dropped into the FPGA at fabrication, and are not created when

synthesizing an FPGA. They still need to be routed, but there is a finite number of them. If one properly
infers X BRAMs then X BRAMs will be used.

46

DUC Device Utilization Error
Linearly Scaled Device Utilization Model

-1.5%

-0.5%

0.5%

1.5%

2.5%

3.5%

4.5%

5.5%

6.5%

7.5%

1 2 4 8 12

Number of DUCS

%
 E

rr
o

r,
 P

re
d

ic
ed

 v
s

A
ct

u
al

Slice
SliceFF
LUT
BRAM
DSP48

Ë = 1.1253

Figure 5.2: Error in DUC predicted versus actual device utilization using equation 5.2 with
an α of 1.1253.

47

Chapter 6: Codesign Engine Implementation(CDE)

This section describes the CDE implementation. The CDE basically takes the equations and

implements the method resulting from the analysis of the previous chapters, and realizes

them into an application that can be executed by a developer, allowing flexible control of

the inputs.

The first version of the CDE came in the form of Chapters 4 and 5, derived equations

on paper formed from the study of an existing architecture on a codesign platform. Once

these base equations were obtained, they were then implemented in MATLAB to allow the

input parameters to be tweaked and analysis re-run with ease.

6.1 MATLAB Implementation

The SW and HW analysis were implemented as two independent .m files, each with its own

utilization and constraints file. The two sets of files can be manipulated by the developer

for their baseline implementation of the stages of the communications channel by editing

the values directly in the file, and then re-running the .m files. The output of the .m files

are graphs of the baseline implementation, before any movement of resources across the

HW/SW interface, and then graphs of the improved implementation, with a dialog box

that informs the developer how many SW and HW portions of the channel can fit into the

target platform.

6.1.1 Inputs to the CDE

As CDE matures, and builds a database, it should be able to increase its prediction and

suggestive capacity, thereby decreasing the number of application specific inputs required.

48

Table 6.1: CDE Software Constraints File
Parameter Description

SYS SW NumRequestedModulators Number of desired modulators, or channels
SYS SW OverheadIncrPerMod Additional overhead cycles incurred for each addi-

tional modulator
SYS SW IRAMUsagePerMod IRAM Memory usage per modulator
SYS SW TotalIRAM Total IRAM available on the target platform’s

CPU
SYS SW IRAMUnavailable Total IRAM unavailable for use by new modula-

tors
SYS SW SamplesPerHWI Number of samples transferred across the

HW/SW interface every DUC HWI
SYS SW SamplesPerMFrame Number of samples generated by a single call to

the modulator frame
SYS SW SymbolsPerMFrame Number of symbols generated by the modulator

frame
SYS SW CPURate Number of cycles / sec of the clock running the

CPU software component
SYS SW EmifClockRate Number of cycles / sec of the clock running the

EMIF interface
SYS SW EmifCPUCyclesPerWord CPU cycles that pass to transfer one 16-bit word

across the EMIF
SYS SW SymbolRate Symbol rate of the protocol the communications

channel is implementing
SYS SW DucRate Number of samples / sec the DUC inside the

FPGA drains from its FIFOs

In its current form, it requires all the information to solve for the equations in Chapters 4

and 5. There are two files that provide this information for both the SW and HW portions.

Constraints File

The constraints file provides information to the CDE describing the SW component’s ex-

isting architecture characteristics. For example, the clock rate of the CPU, or the device

utilization threshold. However, these do not describe the resources available explicitly, such

as number of cycles of existing overhead, or number of Slices available in the FPGA. Table

6.1 lists the SW constraints, and Table 6.2 lists the HW constraints used in the MAT-

LAB CDE. Each constraints variable is prefaced with a “SYS SW ” to distinguish it in the

analysis from other derived variables.

The information from these tables can be used to calculate key parameters that are

necessary for the analysis of a component. For example, Source 1 shows how constraints

49

Table 6.2: CDE Hardware Constraints File
Parameter Description

SYS HW DevUtilThresholdPerc A device utilization threshold that once breached
will stop the CDE

SYS HW MultiFactorIncrease The α value used in the linear scaled device uti-
lization increase

SYS HW useLinearScaledModel Boolean, 1 to use the linear scaled device utiliza-
tion increase, 0 to not

from the SW constraints file are used to calculate the time it takes to transfer a specified

number of samples across the EMIF, which is Equation 4.3 in Chapter 4.

% --
% Get EMIF Cycles Spent Transfering in terms of sec

% --
% We need to calculate how much time it takes to transfer the cycles

% for HWI across the EMIF. We are transfering complex sample IQ pairs
% so we multiply by 2 to get total words transfered (16-bit I,16-bit Q)

% Assumes 16-bit EMIF data bus.
SW_EmifTransferTime =

2*SYS_SW_SamplesPerHWI*SYS_SW_EmifCPUCyclesPerWord/SYS_SW_EmifClockRate;

Source 1: Calculating time spent transfering cycles across the EMIF.

And the Source 2 shows that after we have arrived at the EMIF transfer time, we can

use this results to calculate the n samp
drained

from Equation 4.8, which can be used to give an

effective samples transferred, which in turn provides the time between DUC HWIs, T̂next
hwi

from Equation 4.9. Notice how all derived values used inside the CDE are prefaced with

only a “SW ” instead of “SYS SW ” as are inputs from the constraints file.

Just as has been presented in these two examples, all the remaining equations derived

in Chapter 4 and 5 are solved for. However, in order to do so, the developer must provide

information concerning the cycle requirements and device utilization of the current and

proposed implementations. These inputs are provided in the software cycle requirements

file and hardware device utilization files, collectively referred to as the utilization files.

50

% --
% Get Effective Sample Per HWI

% --
% Now that we have the EMIF transfer time we can calculate how many samples

% drain from the DUC FIFO during the HWI ISR overhead to get an effective

% sample count added to the DUC FIFO on each HWI call. We convert all
% variables to [sec] to ensure matching units during the calculation.

% This is important because some parts run at different clock rates, e.g,

% the EMIF runs at a different rate than the HWI ISR code.
SW_TimePerDucHwiIsr = CycReq_DucHwiIsr/SYS_SW_CPURate;
SW_NumSamplesDrained = (SW_TimePerDucHwiIsr + SW_EmifTransferTime)*SYS_SW_DucRate;
SW_NumEffectiveSamplesPerHWI = SYS_SW_SamplesPerHWI - SW_NumSamplesDrained;

% --
% Get Time between HWI’s, T_next_hwi
% --
% Now that the effecgive sample per HWI has been calculated, since we know

% the Rate at which the DUC drains its DATA FIFO, we can then calculate
% how often the DUC Data FIFO 1/2 empty HWI will trigger the Software DSP

% chip.

SW_TimeNextHWI = SW_NumEffectiveSamplesPerHWI / SYS_SW_DucRate;

Source 2: Calculating the time between DUC HWIs.

Table 6.3: CDE Software Utilization File
Parameter Description

CycReq MFStageNames Array of names for each stage of the modulator
frame

CycReq MFUsed Array of cycles consumed by the stages of the mod-
ulator frame

CycReq Overhead Cycles consumed by the overhead of the SW com-
ponent

CycReq DucHwiIsr Cycles consumed by the Duc HWI ISR

Utilization File

The utilization files provide numbers for how many resources are consumed by the various

stages of the communications channel in the SW and HW components. Table 6.3 and 6.4

show the utilization file contents for the case-study, with a description of each entry.

Note that the software cycle requirements are prefaced with “CycReq ” while a “DevU-

til ” prefaces the parameters for the hardware file. These are the main numbers that are

manipulated by the developer when working with the codesign platform. By changing the

values in these files, the developer can determine where the most effort in design needs to

51

Table 6.4: CDE Hardware Utilization File
Parameter Description

DevUtil ResourceNames Array of names for each key resource in the FPGA
DevUtil ResourcesAvailable Total amount available of those key resources
DevUtil FPGABaseBuild Resources consumed by the FPGA base build
DevUtil SingleDUC Resources consumed by a single DUC instantia-

tion
DevUtil SingleResampler Resources consumed by a single Resampler instan-

tiation

be spent in order to obtain the desired channel capacity in the system.

6.1.2 Outputs from the CDE

With the constraints and utilization files provided as inputs, the CDE can calculate the

channel capacity of the codesign platform for both the existing configuration, and an im-

proved configuration. The existing configuration follows from the values provided in these

two files. To obtain the improved version for the software side, the CDE removes the stage

closest to the interface, which in our case-study is the Resampler, and re-runs the analysis.

The hardware side adds in the new component (i.e. the polyphase resampler implementa-

tion), and iteratively increases the number of instantiated DUCs and Resamplers using the

equations for increase derived in Chapter 5. At the end of each iteration, the total device

utilization is compared to the provided Device Utilization Threshold. Once the obtained

device utilization just breaches the threshold, the CDE breaks out of the iteration and

finishes the analysis.

For both existing and improved configuration, pie charts (for the software side) and bar

charts (for the hardware side) are produced that visually display to the developer cycles

used and device utilization consumed, respectively. Examples of these charts will be shown

in Section 6.2 which deals with the specific example case-study of the research.

The CDE also outputs the results that are used to generate the pie and bar charts

to a single file, cde output.txt. This file contains ascii tables showing the SW and HW

component resource requirements to implement the number of modulators for the baseline

and improved implementation. An example portion of this file is shown in Source 3. Note

52

Figure 6.1: CDE Software Results Message Box.

that while the total number of DUCs has gone down from 16 to 12 from the baseline to

improved implementation, the improved implementation has the addition of Resamplers

attached to the 12 DUCs, which will be shown in Section 6.2 to provide an increase in total

platform capacity of 20%.

...
**
Baseline Implementation (HW side)
**
The Baseline Implementation can fit 16 DUCs.
The required utilization for the Baseline Implementation is listed below

Slices,SliceFF,LUT,BRAM,DSP48
FPGABaseBuild(%) 8.0,5.3,6.5,3.4,3.1
DUC (%) 85.3,68.9,29.7,30.0,73.8

Total Usage (%) 93.4,74.2,36.3,33.4,77.0

**
Improved Implementation (HW Side)
**
The Improved Implementation can fit 12 DUCs with Resamplers.
The required utilization for the Improved Implementation is listed below

Slices,SliceFF,LUT,BRAM,DSP48
FPGABaseBuild(%) 8.0,5.3,6.5,3.4,3.1
DUC (%) 64.0,51.7,22.3,22.5,55.4
Resampler (%) 23.2,14.1,13.4,30.0,2.6

Total Usage (%) 95.3,71.1,42.2,55.9,61.1
...

Source 3: Example portion of cde output.txt file.

At the end of each SW/HW portion, a message box appears telling the developer the

new number of communications channel portion that can fit in either section, as shown in

53

Figure 6.2: CDE Hardware Results Message Box.

Figures 6.1 and 6.2. As in the example provided by these Figures, the total number of

communications channels that can exist on the entire platform is the minimum of these two

results, or 12 in this case. As the case-study will show, this resulted in a prediction of 2

additional channels if the Resampler is moved to hardware, given the resource utilizations

for the stages in the input utilization files. This gives an increase of 2/10 = 20%.

6.2 Case Study, Specific Example: Polyphase Resampler

This section describes the case study on the target platform that was used to prove the CDE

method. It follows a step by step analysis using the equations derived from the Software and

Hardware Analysis chapters discussed previously. The results of this analysis are verified

with true profiling on the target platform running the communications application in real-

time, thus proving the validity of the method discussed in this paper for this platform. The

general method can then be applied to other platforms, with the inputs changing slightly

for different architectures and their models.

6.2.1 Baseline Implementation

One of the first pieces of information a hardware software platform codesigner looks for

when trying to add capacity to the system is what the current capability is. This section

describes an analysis that predicts the maximum number of communications channels that

can be instantiated on the target platform. Using the method and equations from previous

chapters, and verifying the results with true profiles made directly on the platform running

54

Table 6.5: Software Cycle Requirements

Task Cycles

Overhead 50000

Duc Hwi Isr 12669

Modulator Frame 648325

in real-time, the results show a correct prediction of platform channel capacity in the baseline

implementation.

Software: Max capacity

The first thing that was needed to begin using the CDE described previously was to profile

the baseline implementation. For this case study the profile was done on the actual platform,

providing cycle benchmarks by recording the CPU internal clock counter values before

and after a function was called, accounting for any clock counter overflows that may have

occurred during the function execution. The TI 6416 DSP provides easy access to these

counters and the ability to monitor overflow counts as well. The results for profiling the

software cycle requirements of the target platform architecture are shown in Table 6.5.

Recall that Overhead is really treated as a lump-sum that contains typical architecture

overhead (i.e. context switching requirements) and also other tasks running on the CPU on

this platform that are not related to the communications channel. They are seen as necessary

tasks that will always be running, and unavailable for adjustment by the codesigner.

Since the modulator frame is the portion of the design that is under consideration, we

profiled the individual stages in the modulator frame’s implementation. These cycle profiles

are shown in Table 6.6. They are graphically represented in Figure 6.3, where 100% of the

pie chart is the entire modulator frame cycle usage, or the total cycles from Table 6.6.

From Figure 6.3 it becomes obvious that the Resampler portion of the modulator frame

is very unbalanced from the other stages in terms of cycle requirements. This portion

therefore becomes the first choice candidate for the CDE to attempt to move out of the

software portion and into the hardware portion of the target platform.

However, the goal for this portion of the CDE is to predict current capacity. In order

55

Table 6.6: Modulator Frame Cycle Requirements

Task Cycles

Bookkeeping 2100

CRC Computation 12000

Encoding 28000

Interleaving 55000

Scrambling 23225

Symbol Modulation 19000

Resampling 509000

Total 648325

< 1%

2%
4%

8%

4%

3%

79%

Stages of a Modulator Frame
Percent each stage requires

Bookkeeping
Crc
Encode
Interleave
Scramble
Modulate
Resample

Figure 6.3: Cycle requirements of the individual stages of a modulator frame.

56

Table 6.7: CDE Software Constraint File Values
Parameter Value

SYS SW NumRequestedModulators 11
SYS SW OverheadIncrPerMod 50000
SYS SW IRAMUsagePerMod 32768
SYS SW TotalIRAM 1048576
SYS SW IRAMUnavailable 512000
SYS SW SamplesPerHWI 512
SYS SW SamplesPerMFrame 1953
SYS SW SymbolsPerMFrame 234
SYS SW CPURate 1000000000
SYS SW EmifClockRate 100000000
SYS SW EmifCPUCyclesPerWord 3
SYS SW SymbolRate 23400
SYS SW DucRate 195312.5

to do so, we need to gather necessary variables to solve Equation 4.13. We gather a list

of software input constraints that will be used for the computation, listed in Table 6.7.

These parameters are inputs to the CDE in the software constraint file described in Section

6.1 and will change for different platform architectures, but the CDE method remains the

same. We also take the values from Tables 6.5 and 6.6 to generate the software utilization

file shown in Table 6.8. With these parameters established, the CDE can now begin to

solve for the various components needed in Equation 4.16, repeated here to help the reader

follow the text.

N max
active
mods

= floor

T duc
period

β

β =

Tmf

n mf
samp

 +

2t̂hwi
isr

+ temif

n dma
samp

Focusing first on β, the first variable we solve for is Tmf , the time duration between sub-

sequent calls to the modulator frame. From 4.2, and that our CPU clock is SYS SW CPURate

1.0GHz we obtain

57

Table 6.8: Software Utilization File Values
Parameter Value

CycReq MFStageNames {‘Bookkeeping’,‘Crc’,‘Encode’,‘Interleave’,‘Scramble’,‘Modulate’,‘Resample’}
CycReq MFUsed [2100,12000,28000,55000,23225,19000,509000]
CycReq Overhead 50000
CycReq DucHwiIsr 12669

Tmf = tmf + tov

= 648.325 + 50.000 µsec

= 698.325 µsec (6.1)

Refering to Table 6.5 we see that profiling the target platform provided 12669 cycles to

execute the DUC HWI ISR. This number, when profiled reflects both the cycle requirements

of the ISR and the penalty incurred for setting up the DMA transfer, as this is done inside

the ISR. Therefore we can use this number as an input and set

t̂hwi
isr

=
12669

1.0 GHz

= 12.669 µsec (6.2)

Next we solve for temif , the time spent transfering samples across the EMIF that in-

terfaces the software and hardware components on the target platform. From Table 6.7,

SYS SW SamplesPerHWI = 512 tells us that we have 512 complex samples that will be

transfered across the EMIF for every DUC HWI. Since a complex sample is made up of a

16-bit I and 16-bit Q1, and the EMIF is a 16-bit data bus, transfering one complex sample

requires two transfers. On the target platform SYS SW EmifClockRate = 100 MHz and

SYS SW EmifCPUCyclesPerWord = 3, corresponding to femif and n cyc
word

in 4.3. So for n

1I,Q sample pair stands for the Inphase and Quadrature components of the complex sample pair.

58

= 1024 words (i.e. 512x2 I,Q complex samples) to be transfered, we have

temif = (n[words])
(

n cyc
word

)

(

1

femif

)

temif = (1024)(3)

(

1

100e6

)

= 30.72 µsec (6.3)

The remaining variables can be obtained from Table 6.7: n mf
samp

= 1953, and n dma
samp

=

512. Likewise for the DUC period we have

T duc
period

=
1

SYS SW DucRate

=
1

195312.5

= 5.12 µsec (6.4)

Everything needed has been obtained to solve for the number of active modulators that

the existing configuration can support without choking the software side of the platform.

First we solve for the β value, and then N max
active
mods

.

β =

Tmf

n mf
samp

 +

2t̂hwi
isr

+ temif

n dma
samp

=

(

698.325e-6

1953

)

+

(

2 ∗ 12.669e-6 + 30.72e-6

512

)

= 0.467 [µsec/samp] (6.5)

59

N max
active
mods

= floor

T duc
period

β

= floor

[

5.12e-6

0.467e-6

]

= floor [10.96]

= 10 (6.6)

We now have a predicted maximum number of modulators that can be active simulta-

neously in the software component, from a cycle requirement perspective. Now we must

calculate how many modulators will be allowed from a memory standpoint to ensure that

we have enough memory resources to run all of these modulators at the same time. Using

SYS SW TotalIRAM, SYS SW IRAMUnavailable, and SYS SW IRAMUsagePerMod from

Table 6.7 with 4.17 we obtain

Nmods
mem
limit

= floor

[

MEMiram − MEMunavail

MEMmod

]

= floor

[

1048576 − 512000

32768

]

= floor [16.38]

= 16 (6.7)

From these results we see that the Cycle requirements allows 10 modulators, while there

is enough room in software memory to host 16. The minimum of these two, as dictated

by Equation 4.18, states that the baseline implementation allows for 10 modulators in

the software component. In other words, 10 software portions of the full communications

60

< 1%
2%7%

91%

SW Cycle Constraints
Utilization of Cycles in one Period of DUC HWI

HWI ISR
Overhead
MFrame
Free

5%

19%

66%

10%

SW Cycle Constraints, 10 modulators
Utilization of Cycles in one Period of DUC HWI

HWI ISR
Overhead
MFrame
Free

Figure 6.4: Cycle Constraints for both one modulator and multiple modulators during one
period of DUC HWI. The modulator frame has been normalized to the amount of the
function that needs to complete before the next DUC HWI.

channel can be instantiated on the target platform.

N SW
mods

= min

[

N max
active
mods

, Nmods
mem
limit

]

= min [10, 16]

= 10 SW modulators (6.8)

Figure 6.4 visually represents this maximum. In both of the charts in the figure, 100%

of the pie chart is one full period of the DUC HWI, or T̂next
hwi

as described previously. To

clarify, every time one full cycle of the pie chart has been executed (the total number of

cycles of the piechart has passed), the DUC will send an interrupt trigger to the software

CPU requesting more samples to be transferred across the EMIF (refer to Figure 4.1). Since

61

the modulator frame generates 1953 samples every time it executes, and the DUC HWI ISR

only transfers 512, the modulator frame does not need to execute every time the DUC HWI

triggers. However, to visual inspect things, we can normalize the modulator frame by one

cycle of T̂next
hwi

, visually spreading its execution over multiple DUC HWIs. Then we can take

up portions of the pie chart in Figure 6.4 with the portion of the modulator frame that

needs to execute every T̂next
hwi

period. The left chart in the figure shows the portion of T̂next
hwi

taken up by a single modulator, while the right chart in the figure shows the portion taken

by 10 modulators.

One can see that 10 modulators consumes almost all the free time available in the T̂next
hwi

period. Although there is 10% left, the magnitude of this additional 10% is most likely

affected by the precision of the models used for overhead increase, as discussed at the end

of the Software Analysis chapter. Therefore, as the results before flooring showed that we

could fit 10.96, or almost 11, this free time appears almost large enough to fit one more

modulator in, when in actuality it would be a poor design decision to attempt to squeeze

in one more modulator at the cost of using almost 100% of the cycles available from the

CPU. Doing so would most likely cause unknown behavior from the CPU, as it would be

choked for cycles, with no room for flexibility for asynchronous event handling that may

arise unexpectedly. The flooring step in Equation 6.6 is used to take into account not only

the fact that you can only have an integer number of modulators running, but also plays a

conservative roll in the overhead calculation control2.

SW Verification

Verifying these predicted CDE results was as easy as running the application on the target

platform, and increasing the number of active communications channels until the platform

reported underflows and CPU stalls. After running this test we did indeed verify that after

10 active modulators, the software CPU began to report CPU stalls and buffer underflows

2Or other model assumptions that may have been made during profiling.

62

Table 6.9: CDE Hardware Constraint File Values
Parameter Value

SYS HW DevUtilThresholdPerc 90
SYS HW MultiFactorIncrease 1.1253
SYS HW useLinearScaledModel 1

Table 6.10: CDE Hardware Utilization File Values
Parameter Value

DevUtil ResourceNames {‘Slices’,‘SliceFF’,‘LUT’,‘BRAM’,‘DSP48’}
DevUtil ResourcesAvailable [24576,49152,49152,320,512]
DevUtil FPGABaseBuild [1974,2597,3212,11,16]
DevUtil SingleDUC [1165,1881,812,6,21]
DevUtil SingleResampler [423,513,488,8,1]

as it could not keep the transmit buffer full enough to keep the DUC FIFO from running

dry.

Hardware: Max capacity

Now that the maximum number of software portions of the communications channel is

known, the designer needs to find out how many hardware portions fit in the baseline

implementation of the hardware component of the target platform, an FPGA. The results

of this section will not only show how many are currently in the baseline implementation,

but also what level of chip utilization the FPGA is currently at, giving the designer the first

glimpse at whether or not there is room for more.

Just like in the software portion, we define a table of parameters that are provided as

inputs to the CDE. There values are listed in Table 6.9 and make up the hardware constraints

file described in Section 6.1. Likewise Table 6.10 is used for the hardware utilization file.

Using these files and Equation 5.2, repeated here to help the reader follow the text, the

CDE iteratively increases n in 5.2 until one of the key resources listed in Table 5.1 breaches

the provided device utilization threshold. The threshold we used can be seen from Table

6.9 to be 90%.

DevUtiln−blocks = DevUtilfpga−bb + (n ∗ α)BlockUtil

63

Slices SliceFF LUT BRAM DSP48
0

10

20

30

40

50

60

70

80

90

100
HW Resource Usage of 16 DUCs

%
 o

f c
hi

p

FPGA Base Build
DUCs

Figure 6.5: HW utilization, baseline configuration

Figure 6.5 shows that the CDE was able to fit 16 DUCs into the original configuration

after just breaching the 90% threshold. The figure is a stacked bar for each of the key

parameters from Table 5.1. As the implementation requires more of a resource, the bar

chart grows upwards increasing device utilization. The FPGA Base Build provided as

input to the CDE takes up less than 10% of the FPGA. With 16 instantiations of the DUC,

using the linear scaled method with the given α, utilization is at about 93% for slices.

This tells us that with no changes to the current implementation (i.e. no movement of

blocks from software to hardware), there is an upper limit on the system of 16 DUCs that

could ever be instantiated in the FPGA. Also note that the FPGA Utilization is already at

a high level when instantiating 16 DUCs, not leaving much room for moving anything from

software to hardware. This might tell the design engineer that if they revisit their DUC

implementation, they may be able to free up some space on the FPGA for codesign work.

64

Table 6.11: Actual Utilization Error: Baseline Configuration, α=1.1253.

12 DUCs

Resource Error

CLB Slices -0.1%

Flip Flop Slices -0.8%

Look Up Tables -0.2%

Block RAM 0.0%

DSP48 -2.4%

HW Verification

To verify that the predicted utilization results, a configuration with 16 DUCs was built

with Xilinx ISE for the Virtex4 SX55 FPGA. The resulting error between the predicted

and actual utilization is shown in Table 6.11. This error is small enough to show adequate

accuracy verification in the device utilization prediction using the linearly scaled increase

model shown in Equation 5.2. Note that this is for an FPGA configuration built with DUCs,

which was the same block in the FPGA that was used to solve for the value of α = 1.1253

used. It will be seen that for the improved configuration, this α value is not as accurate,

but still useful.

Results from SW and HW (Number of channels)

With a software upper limit of 10 modulators, and a hardware upper limit of 16 DUCs, and

the fact that a communications channel requires a single software modulator and hardware

DUC per channel, the capacity of the baseline implementation is 10 communications chan-

nels. The next section describes the CDE improved analysis and solution, and then verifies

the results.

Nchan = min
[

N sw
mods

, N hw
ducs

]

= min [10, 16]

= 10 channels (6.9)

65

6.2.2 Improved Implementation

The baseline software analysis led the designer to view the resampler as an unbalanced

stage in the modulator frame, making it a likely candidate for movement out of the software

component and into the hardware side. Likewise, the baseline hardware analysis showed

the designer that the FPGA had enough room to instantiate much more than the 10 the

software was limited to. Therefore, a middle ground could be met somewhere between 10

and 16 by shifting the Resampler stage from software to hardware.

The approach here is to follow the same path as in the baseline implementation, changing

pertinent inputs to the CDE along the way. The parameters that need to be adjusted will

be highlighted. To recompute β we note that only the first part of the β equation has

changed, the portion involving the modulator frame work. The second portion which deals

with the transfer of data across the interface does not change, as the number of samples

transferred per HWI does not change in this configuration3.

Software: Improved max capacity

Since the resampler has been moved into the hardware portion of the platform, the software

component no longer has to provide a sample stream for transfer across the EMIF. Now the

modulator provides a symbol stream because the input rate of the resampler is the symbol

rate, in this case 23400 symbols/sec, and so the DUC’s input FIFO will drain much slower.

Therefore the time between DUC HWI’s will increase, providing more cycles for the CPU

in the software component to do work. Therefore we compute a new DUC period as

3Although the design engineer could definitely adjust the number of samples that are transferred to
achieve a balance of work generating data versus transferring it.

66

T duc
period

=
1

SYS SW SymbolRate

=
1

23400

= 42.735 µsec (6.10)

The only difference to Tmf is that the resampler now no longer exists as part of the

software chain of stages. Therefore the time required for the Resampler is backed out of the

total time for the modulator from Table 6.6. The new modulator frame with its existing

stages is shown in Figure 6.6. It becomes apparent that the modulator frame’s stages are

now well balanced, meaning there is not one stage that far outweighs any of the other stages

in terms of cycle requirements.

Tmf = tmf + tov − tresamp

= 648.325 + 50.000 − 509.000

= 189.325 µsec (6.11)

We can now recompute the β value using the number of symbols generated each modu-

lator frame for the modulator work portion, and then a new N max
active
mods

.

β =

Tmf

n mf
samp

 +

2t̂hwi
isr

+ temif

n dma
samp

=

(

189.325e-6

234

)

+

(

2 ∗ 12.669e-6 + 30.72e-6

512

)

= 0.919 [µsec/samp] (6.12)

67

2%
9%

20%

39%

17%

14%

Stages of a Modulator Frame
Percent each stage requires

Bookkeeping
Crc
Encode
Interleave
Scramble
Modulate

Figure 6.6: Improved modulator frame stages. 100% of the pie is the entire modulator
frame cycle usage.

N max
active
mods

= floor

T duc
period

β

= floor

[

42.735e-6

0.919e-6

]

= floor [46.50]

= 46 (6.13)

These results show us that by moving the resampler into hardware, we increased the

time between DUC HWIs and also decreased the time required to generate data to feed

the DUC. This provided a 36/10 = 360% increase over the baseline version in terms of

available cycles for active software modulators. However, the memory of the system has

not changed from the baseline to improved version, therefore the result from the previous

section regarding the number of modulators that can simultaneously fit into the memory

68

available to the software component is still 16. Therefore, the minimum of these two still

dictates how many software modulators can run.

N SW
mods

= min

[

N max
active
mods

, Nmods
mem
limit

]

= min [46, 16]

= 16 SW modulators (6.14)

With this in mind, the CDE predicts a 6/10 = 60% increase in capacity in terms of the

software component portion of the communications channel. Figure 6.7 shows the increase

visually over Figure 6.4. All the required software tasks take just a small sliver of the time

provided in one period of the DUC HWI. This is due not only to the modulator frame taking

less samples, but that the DUC front end has been replaced by the resampler, dropping

the input rate to the DUC to the symbol rate instead of the sample rate. The plot on the

right side of Figure 6.7 tells the designer that the upper limit is not restricted by cycle

requirements anymore, but instead by the memory capacity of the software portion of the

codesign platform.

SW Verification

By removing the resampler cycles from the modulator frame, cycles were were shown to

not be a limiting factor anymore through use of a TI cycle accurate simulator. At compile

time, the number of modulators that would fit in memory was limited to 16. This is

because the compiler references the memory map and linker file which describes the memory

available to the system. The number of modulator transmit buffers had to be limited to

16 for compilation to proceed without resource errors being generated. Therefore the CDE

correctly predicted a huge increase in modulators based off of cycles, and a true upper limit

of 16 based off of memory resources available.

69

< 1%< 1%
1%

98%

SW Cycle Constraints
Utilization of Cycles in one Period of DUC HWI

HWI ISR
Overhead
MFrame
Free

< 1%4%

23%

73%

SW Cycle Constraints, 16 modulators
Utilization of Cycles in one Period of DUC HWI

HWI ISR
Overhead
MFrame
Free

Figure 6.7: Cycle Constraints for both one modulator and multiple modulators during one
period of DUC HWI. The modulator frame has been normalized to the amount of the
function that needs to complete before the next DUC HWI.

Hardware: Improved max capacity

Following the same order as in the baseline implementation analysis, the next step is to

determine how many hardware portions of the communications channel can fit in the FPGA.

One of the inputs to the CDE is the utilization requirements of a Resampler block. This is

provided in the hardware utilization file and the value for this case-study is shown in Table

6.10. Note that different implementations will provide different utilization numbers. For

the purpose of this research, these numbers are seen as inputs to the CDE4. For comparison,

Figure 6.8 shows the utilization requirements for the components of interest in the FPGA.

Once the utilization requirements of the additional block are provided, the same iterative

process is employed as the baseline implementation, just with a larger requirement per each

iteration to make room for the resampler as well. The results, shown in Figure 6.9, depict

that with the addition of the resampler block, the CDE could only fit 12 full communications

4After running through a few iterations of using the CDE tool, the designer may choose to revisit their
design to change these numbers, if the desire to manipulate the results of the codesign analysis.

70

Slices SliceFF LUT BRAM DSP48
0

10

20

30

40

50

60

70

80

90

100

HW Resource Usage of Basic Blocks
FPGA Base Build (includes HW overhead), DUC, Resampler

%
 o

f c
hi

p

FPGA Base Build
DUC
Resampler

Figure 6.8: Utilization requirements of basic blocks in FPGA.

71

Slices SliceFF LUT BRAM DSP48
0

10

20

30

40

50

60

70

80

90

100

HW Resource Usage of 12 DUCs
and Resamplers to make a full Comms Channel

FPGA Base Build
DUCs
Resamplers

Figure 6.9: HW utilization, improved configuration. The FPGA is getting very close to
100% utilization.

paths in the FPGA versus 16 without the resampler.

HW Verification

The results concerning the number of DUCs and Resamplers that can fit in the FPGA

were verified by building a configuration with the 12 instantiations. It was verified that the

FPGA did in fact fit 12 DUCs and Resamplers inside it, at a high utilization. However,

the accuracy of the utilization was not perfect, bringing the error in prediction back to the

order of 10% more than actually used, shown in Table 6.12, questioning the benefit of the

scaled value. Therefore, the CDE, using the linearly scaled utilization model, with an α of

1.1253, provided a stricter utilization requirement than what the Xilinx ISE tool-set was

able to produce for the DUC/Resampler instantiation pair. This is mainly due to the limits

in accuracy of using an α solved for a configuration with only DUCs instantiated, for a

72

Table 6.12: Predicted Utilization Error: Improved Configuration, α=1.1253.

12 DUCs and Resamplers

Resource Error

CLB Slices -11.4%

Flip Flop Slices -7.7%

Look Up Tables -4.8%

Block RAM 0.0%

DSP48 -0.6%

prediction with DUCs and a new block (i.e. the Resampler). Also, the Xilinx toolset takes

an iterative approach in the FPGA, using circuit reuse to optimize portions of the FPGA

design. The creation of a finer resolution utilization prediction model is left for follow on

efforts to this work.

Improved Results from SW and HW (Number of channels)

Moving the resampler into the hardware component allowed for 6 additional channels to be

placed inside the software, while decreasing the total channels in the hardware component by

4. This tradeoff, however, allows the system to include two additional channels total, since

previously the software component was limited to 10 simultaneous channels. Therefore, the

designer would move forward with an implementation on the codesign platform for a channel

capacity of 12, providing a 2/10 = 20% increase from the baseline design, as summarized

in Table 6.13.

Nchan = min
[

N sw
mods

, N hw
ducs

]

= min [16, 12]

= 12 channels (6.15)

73

Table 6.13: Results, Baseline and Improved Implementations

SW Limit MEM Limit HW Limit Num Channels
Baseline 10 16 16 10
Improved 46 16 12 12

Channel capacity increased by 20%

6.3 Generalized Case-Study

Since the previous case-study was application specific to a pre-existing SDR configuration,

we decided to employ a generalized set of inputs to the CDE and observe the analysis. We

created some general constraints and utilization files, and modified the CDE to work with

the more general case. Since we are not working with a modulator specifically, we call our

equivalent modulator frame a block under test. This section describes our findings.

6.3.1 Generalizing the CDE

To generalize the CDE so that it can work with a the general case-study, we had to modify

the software utilization file by adding two additional arrays. The first array holds the

number of data that are generated by each stage of the block under test, while the second

array provides the data-rate at the output of each stage. It is useful to have this information

because as the CDE moves portions of the software block into hardware, it can adjust

automatically for the different data rates that are now moving across the HW/SW interface5.

CycReq_BlockStageNames = {‘STG1’,‘STG2’,‘STG3’,‘STG4’};
CycReq_BlockStagesUsed = [2100,30000,28000,30000];
CycReq_BlockStageDataOut= [100,100,100,650];
CycReq_BlockStageRateOut= [80000,80000,100000,800000];
CycReq_Overhead = 50000;
CycReq_HwiIsr = 12669;

Source 4: A generalized software utilization file.

An example change to the source code is shown in Source 6, which shows how the output

5Note that a different output data-rate of a stage does not effect the EMIF transfer rate, just the rate
between the last SW stage and the first HW stage draining its input FIFO.

74

data rate is now a function of which stage of the block under test is the last one before the

HW/SW interface. Source 4 shows our modified utilization file with the new arrays. The

stages of the generic block are labeled ‘STG1’ through ‘STG4.’ The number of data and

the data-rate values were then deleted from the software constraints file, provided in Source

5.

SYS_SW_OverheadIncrPerBlock = 50000;
SYS_SW_IRAMUsagePerBlock = 32768;
SYS_SW_TotalIRAM = 1048576;
SYS_SW_IRAMUnavailable = 512000;
SYS_SW_SamplesPerHWI = 512;
SYS_SW_CPURate = 1000000000;
SYS_SW_EmifClockRate = 100000000;
SYS_SW_EmifCPUCyclesPerWord = 3;

Source 5: A generalized software constraints file.

% --
% Get Effective Sample Per HWI

% --
% Now that we have the EMIF transfer time we can calculate how many samples

% drain from the Block FIFO during the HWI ISR overhead to get an effective
% sample count added to the DUC FIFO on each HWI call. We convert all

% variables to [sec] to ensure matching units during the calculation.

% This is important because some parts run at different clock rates, e.g,
% the EMIF runs at a different rate than the HWI ISR code.
SW_TimePerHwiIsr = CycReq_HwiIsr/SYS_SW_CPURate;
SW_NumSamplesDrained =

(SW_TimePerHwiIsr+SW_EmifTransferTime)*CycReq_BlockStageRateOut(idx_outputStage);
SW_NumEffectiveSamplesPerHWI = SYS_SW_SamplesPerHWI - SW_NumSamplesDrained;

% --
% Get Time between HWI’s, T_next_hwi
% --
% Now that the effecgive sample per HWI has been calculated, since we know

% the Rate at which the DUC drains its DATA FIFO, we can then calculate
% how often the DUC Data FIFO 1/2 empty HWI will trigger the Software DSP

% chip.
SW_TimeNextHWI =
SW_NumEffectiveSamplesPerHWI / CycReq_BlockStageRateOut(idx_outputStage);

Source 6: Portion of CDE source code modified for general case output data-rates.

75

6.3.2 Difference from Resampler Case-study

The same equations and procedure outlined in Section 6.2 for the Resampler case-study are

followed in the general case. In order to produce a distinction between the two case-studies

that makes this analysis worth while, a difference was introduced in the proposed system

for the general study. After ‘STG4’ is moved from software to hardware, the number of

data generated by ‘STG3’ will be half as many than the number of data transferred across

the EMIF each HWI as in the previous case-study (i.e. 100 versus 234). Therefore, the

block under test will need to be called multiple times between each HWI to ensure there

are enough samples in the transmit buffers, so that the hardware blocks do not run dry.

Something to keep in mind is that the overhead must execute between each call to the block

under test as that is how the model described it.

Also, as can be seen from Figure 6.10, there is a much better balance of stages in

the block under test than in the previous case-study, where the Resampler stuck out as a

backend heavy stage to the software modulator.

Since at this time the hardware portion of the CDE is just a prediction of utilization,

no changes besides variable names where made to the hardware portion of the CDE code.

Because of this, an analysis of the hardware portion of a generic example is not included here,

since it would just be a repeat of analysis presented in Section 6.2 with different numbers, but

no substantially different scenario. Therefore, the baseline and improved implementation

for the software portion of the generic case-study are discussed in the remaining portion of

this section, and the hardware is assumed as a non-limiting factor in this example.

6.3.3 Baseline Implementation

With the software component requiring all for stages to execute (i.e. STG1 to STG4), the

cycle portions for each stage of the block under test are shown in Figure 6.10. With this

configuration, Figure 6.11 shows that CDE predicts a capacity of 3 simultaneous blocks.

Note that the right plot appears to show that there is room for 4 blocks. This is due to

the floor operator in Equation 4.16. Using the floor operator provides safety in prediction

76

2%

33%

31%

33%

Stages of a Block
Percent each stage requires

STG1
STG2
STG3
STG4

Figure 6.10: Cycle requirements of the individual stages of general block under test.

of cycle requirements. A possible solution would be to use a rounding operator instead.

However, at this point the designer could infer a closer estimate by human reasoning.

6.3.4 Improved Implementation

Just as in the previous case-study, the CDE moves the last stage of the software block,

the one assumed to be on the HW/SW interface boundary, out of the computation by

assuming its implementation in hardware. Once again the same methods are followed that

were discussed fully in Section 6.2, and the results are shown in Figure 6.12. After moving

‘STG4’ into hardware, the CDE predicts a capacity of 8 simultaneous blocks.

Verification and Results

Since this is a generic example, without a hardware platform to verify on, we show a

verification by a logical intuitive method. First, we can calculate how much time is required

to execute the block under test without ‘STG4’ using the provided clock frequency of 1

GHz as

77

2%
8%

12%

78%

SW Cycle Constraints
Utilization of Cycles in one Period of HWI

HWI ISR
Overhead
Block
Free

6%

25%

36%

33%

SW Cycle Constraints, 3 blocks
Utilization of Cycles in one Period of HWI

HWI ISR
Overhead
Blocks
Free

Figure 6.11: Cycle Constraints for both one block and multiple blocks under test during
one period of HWI, Baseline Implementation.

< 1%5%
6%

89%

SW Cycle Constraints
Utilization of Cycles in one Period of HWI

HWI ISR
Overhead
Block
Free

2%

40%

48%

9%

SW Cycle Constraints, 8 blocks
Utilization of Cycles in one Period of HWI

HWI ISR
Overhead
Blocks
Free

Figure 6.12: Cycle Constraints for both one block and multiple blocks under test during
one period of HWI, Improved Implementation.

78

tblock =
STG1 + STG2 + STG3

fclk

=
2100 + 30000 + 28000

1GHz

= 60.10 µsec (6.16)

Next, realizing that STG3 will generate 100 data out, we can determine how many times

the block under test must execute between HWIs as

Nblock
calls

= ceil

ndata
hwi

ndata
block

= ceil

[

512

100

]

= ceil[5.12]

= 6 times (6.17)

Recall that the overhead is all the other cycles that must be spent inbetween subsequent

calls to the block under test. Therefore we can add the overhead in to get essential a total

time between block calls6 for our block as

Tblock = tblock + tov

= 60.10 + 50.00 µsec

= 110.10 µsec (6.18)

6This is the equivalent to Tmf .

79

Multiplying this number by the times it must execute gives

T̂block = Tblock ∗ Nblock
calls

= (110.10 µsec) ∗ 6

= 660.60 µsec (6.19)

Which is how much time is required for each simultaneous block under test instantiation

to execute to ensure that the hardware does not run dry on data. Now we compute a rough

time between the HWI that will pull new data from the software component to be transferred

across the EMIF to the hardware side.

thwi = ndata
hwi

∗ f stg3

data−rate

= 512 ∗ 100000

= 5.12 msec (6.20)

Now we can do an approximation of how many blocks under test can fit in one period

of the HWI.

Nblocks =
thwi

T̂block

=
5.12 e−3

660.60 e−6

= 7.75 ≈ 8 blocks (6.21)

By using this rough logical approach we were able to arrive at approximately the same

figure as the CDE, using some of the same method, but not worrying about all of the

80

Table 6.14: Results, Generic Baseline and Improved Implementations

SW Limit MEM Limit HW Limit Num Channels
Baseline 3 16 - 3
Improved 8 16 - 8

Block capacity increased by 167%

specifics, such as the HW/SW interface transfer portion. Because of this, the result we

have achieved by our calculations here is even more coarse grained than the CDE results,

but has shown a close enough solution to the CDE to provide sufficient verification of the

CDE solution.

Results (Number of Blocks)

Table 6.14 summarizes the CDE output for the generic case study. Recall that the hardware

was assumed to be a non-limiting factor for this case-study. Also, the memory requirements

will change as well depending on the platform. The values used here were chosen to be the

same as the polyphase resampler case study. An increase from 3 to 8 blocks provided a

block capacity increase of 5/3 = 167%. The main focus of this section was to show the

small level of effort required to generalize the CDE method presented in this work to other

applications.

81

Chapter 7: Conclusion

The purpose of this research was to apply a new focus to SDR HW/SW codesign, that of

increasing the channel capacity of a codesign SDR platform versus minimizing the latency

of a single channel. In other words, maximizing the number of channels simultaneously

active on an SDR board. By following the method outlined in Section 1.2, we arrived at

models that predicted constraint requirements and resource utilization for the SW and HW

components, respectively. These models were used to create a CDE that ran in MATLAB

which predicted the channel capacity of the ArgonST ITC platform for a baseline configu-

ration, and then an improved configuration which involved moving portions of the physical

layer implementation from SW into HW. The CDE results were verified by observing ac-

tual performance of the platform, proving the reliability of the method, and general derived

equations.

Future Work

This work focused on predicting and increasing channel capacity based on key resource

utilization on the codesign platform. Future work could include additional factors such as

power requirements, flexibility and maintainability of design, and also cost and schedule

required for design implementation as inputs into the codesign process. This would allow

the optimization techniques to be spread across multiple criteria.

Additional follow on research could include investigating models that provide greater

prediction accuracy in hardware device resource utilization, building tables of general re-

source requirements for basic components that are used in communications applications

to provide a database that the CDE can access for suggestions, and testing the general-

ized equations derived in the analysis chapters against a matrix of different platforms and

82

applications including more than just SDRs. Future versions of the CDE tool should au-

tonomously be able to determine where to place the HW/SW interface barrier based off of

a chosen algorithm and platform, while still focusing on maximizing the channel capacity.

83

Bibliography

84

Bibliography

[1] Theerayod Wiangton, Peter Y.K. Cheung, and Wayne Luk, Hardware/Software code-
sign: A systematic approach targeting data-intensive applications. IEEE Signal Process-
ing Magazine, May 2005, pp.14-22.

[2] T. Wiangton, P.Y.K. Cheung, W. Luk Multitasking in hardware-software codesign for
reconfigurable computer. Proceedings of the 2003 International Symposium on Circuits
and Systems, ISCAS ’03, Volume 5, May 2003, pp.V621-V624.

[3] Asawaree Kalavade, Edward A. Lee, A hardware-software codesign methodology for DSP
applications. IEEE Design and Test of Computers, September 1993, pp.16-28.

[4] Christopher Hylands, et al., Overview of the Ptolemy project. Department of Electrical
and Computer Science, University of California, Berkeley, California, July 2003.

[5] U.C. Regents, POLIS: A framework for hardware/software co-design of embedded sys-
tems. Center for Electronic Systems Design, Department of Electrical and Computer
Science, University of California, Berkeley, California, 2000.

[6] Roel Meeuws, Y. Yankova, K. Bertels, G. Gaydadjiev, S. Vassiliadis, A quantitative
prediction model for hardware/software partitioning. IEEE Field Programmable Logic
and Applications Conference August 2007, pp.735-739.

[7] Stamatis Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, E.M. Panainte
The MOLEN polymorphic processor. IEEE Transactions on Computers, Volume 53-11,
November 2004, pp.1363-1375.

[8] Soonhoi Ha, C. Lee, Y. Yi, S. Kwon, Y.P. Joo, Hardware-software codesign of multime-
dia embedded systems: The PeaCE approach. 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, 2006, pp.207-214.

[9] Ahmed Jerraya, W. Wolf, Hardware/Software interface codesign for embedded systems.
IEEE Computer Society, Computer, Volume 38-2 February 2005 pp.63-69.

[10] Patrice Gerin, H. Shen, A. Chureau, A. Bouchhima, A. Jerraya, Flexible and exe-
cutable hardware/software interface modeling for multiprocessor SoC design using Sys-
temC. IEEE Computer Society, ASP-DAC ’07: Proceedings of the 2007 conference on
Asia South Pacific design automation, 2007, pp.390-395.

[11] Pierre-Andre Mudry, G. Zufferey, G. Tempesti, A dynamically constrained genetic al-
gorithm for hardware-software partitioning. ACM, GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, 2006, pp.769-776.

85

[12] Jurgen Helmschmidt, E. Schuler, P. Rao, S. Rossi, S. di Matteo, R. Bonitz, Reconfig-
urable signal processing in wireless terminals. Proceedings of The Conference on Design,
Automation and Test in Europe, Designer’s Forum Volume 2, 2003, pp.20244-20249.

[13] Tim Hentschel and Gerhard Fettweis, Sample rate conversion for software radio. IEEE
Communications Magazine, August 2000, pp.142-150.

[14] John L. Hennessy and David A. Patterson, Computer architecture: A quantitative
approach. Morgan Kaufmann, California, 4th Edition, 2007, pp.19-25.

[15] Fei Xie, X. Song, H. Chung, R. Nandi, Translation-based co-verification. Proceedings
of the 2nd ACM/IEEE International Conference on Formal Methods and Models for
Co-Design, 2005, pp.111-120.

[16] Fei Xie, G. Yang, X. Song, Component-based hardware/software co-verification. Pro-
ceedings of the Fourth ACM and IEEE International Conference on Formal Methods
and Models for Co-Design, 2006, pp.27-36.

[17] Gabriela Nicolescu, S. Yoo, A. Bouchhima, A. A. Jerraya, Validation in a component-
based design flow for multicore SoCs. Proceedings of the 15th international ACM sym-
posium on System Synthesis, 2002, pp.162-167.

[18] Massimiliano Chiodo, P. Giusto, A. Jurecska, A. Hsieh, A. S. Vincentelli, Hardware-
software codesign of embedded systems. IEEE Micro, Volume 14, Issue 4, 1994, pp.26-36.

[19] Hyunok Oh, S. Ha, Hardware-software cosynthesis of multi-mode multi-task embedded
systems with real-time constraints. Proceedings of the 10th international ACM sympo-
sium on Hardware/software codesign, 2002, pp.133-138.

[20] Yanbing Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, J. Stockwood, Hardware-
software co-design of embedded reconfigurable architectures. Proceedings of the 37th
ACM conference on Design automation, 2000, pp.507-512.

[21] Mateusz Majer, J. Teich, A. Ahmadinia, C. Bobda, The Erlangen slot machine: A dy-
namically reconfigurable FPGA-based computer. The Journal of VLSI Signal Processing,
Volume 47, Number 1, April 2007, pp.15-31.

[22] Lesley Shannon, P. Chow, Using reconfigurability to achieve real-time profiling for hard-
ware/software codesign. Proceedings of the 2004 ACM/SIGDA 12th international sym-
posium on Field programmable gate arrays, 2004, pp.190-199.

[23] Benot Miramond, J.M. Delosme, Design space exploration for dynamically reconfig-
urable architectures. Proceedings of the Design, Automation and Test in Europe, 2005,
pp.366-371.

[24] Jiang Xu, W. Wolf, J. Henkel, S. Chakradhar, A design methodology for application-
specific networks-on-chip. ACM Transactions on Embedded Computing Systems, Vol-
ume 5, Issue 2, May 2006, pp.263-280.

[25] C.Y. Jung, M.H. Sunwoo, S.K. Oh, Design of reconfigurable coprocessor for communica-
tion systems. IEEE Workshop on Signal Processing Systems, October 2004, pp.142-147.

86

[26] John Glossner, D. Iancu, J. Lu, E. Hokenek, M. Moudgill, A software defined com-
munications baseband design. IEEE Communications Magazine, Volume 41, Number 1,
January 2003, pp.120-128.

[27] Michael Schulte, J. Glossner, S. Jinturkar, M. Moudgill, S. Mamidi, S. Vassiliadis, A
low-power multithreaded processor for software defined radio. The Journal of VLSI Signal
Processing, Volume 43, Numbers 2-3, June 2006, pp.143-159.

[28] S. Rajagopal, S. Rixner, J. R. Cavallaro, A programmable baseband processor design
for software defined radios. The 45th Midwest Symposium on Circuits and Systems,
Volume 3, August 2002, pp.413-416.

[29] Yuan Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, K. Flaut-
ner, SODA: A low-power architecture for software radio. IEEE Proceedings of the 33rd
annual international symposium on Computer Architecture, 2006, pp.89-101.

[30] Hans-Martin Bluethgen, C. Grassmann, W. Raab, U. Ramacher, J. Hausner, A pro-
grammable baseband platform for software-defined radio. Proceedings of the SDR 2004
Techincal Conference and Product Exposition, SDR Forum, 2004.

[31] Joseph Mitola III, G. Q. Maguire Jr., Cognitive radio: making software radios more
personal. IEEE Personal Communications, Volume 6, Issue 4, August 1999, pp.13-18.

[32] Hyunseok Lee, Y. Lin, Y. Harel, M. Woh, S. Mahlke, T. Mudge, K. Flautner, Software
defined radio - A high performance embedded challenge. High Performance Embedded
Arhcitectures and Compilers: Lecture Notes in Computer Science, Volume 3793 2005,
pp.6-26.

[33] J. P. Delahaye, H. Gogniat, C. roland, P. Bomel, Software radio and dynamic recon-
figuration on a DSP/FPGA platform. Proceedings of the 3rd Karlsruhe Workshop on
Software Radios, March 2004, pp.143-151.

[34] M. Cummings, S. Haruyama, FPGA in the software radio. IEEE Communications
Magazine, Volume 37, Issue 2, February 1999, pp.108-112.

[35] J. Mitola III, Software radio architecture: a mathematical perspective. IEEE Journal
on Selected Areas in Communications, Volume 17, Issue 4, April 1999, pp.514-538.

[36] T. Hentschel, M. Henker, G. Fettweis, The digital front-end of software radio terminals.
IEEE Personal Communications, Volume 6, Issue 4, August 1999, pp.40-46.

[37] F. J. Harris, M. Rice, Multirate digital filters for symbol timing synchronization in
software defined radios. IEEE Journal on Selected Areas in Communications, Volume
19, Issue 12, December 2001, pp.2346-2357.

[38] Texas Instruments, TMS320C6000 DSP external memory interface (EMIF) : Reference
guide. TI SPRU266E, April 2008.

[39] GMR-1 01.202, GMR-1: Part1: General specifications; Sub-part 3: General system
description. European Telecommunications Standards Institute, 2005.

87

[40] GMR-1 05.001, GMR-1: Part5: Radio interface physical layer specifications; Sub-part
1: General description. European Telecommunications Standards Institute, 2005.

88

Curriculum Vitae

Jason M. Bales graduated from West Springfield High School, Springfield, Virginia, in
1997. He received his Bachelor of Science in Electrical Engineering from George Mason
University in 2004. After graduating, he was employed with the US Army Night Vision and
Electronic Sensors Directorate at Fort Belvoir, Virginia for two years as a Research engineer
working on small, wireless disposable embedded sensor systems. During those two years he
also lectured an undergraduate course on microcontroller programming and applications at
George Mason University. In 2006 he accepted a position with ArgonST, Inc. in Newington,
Virginia where he works as a Digital Signal Processing engineer. His work includes design
and testing of satellite and terrestrial based software radios.

89

