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ABSTRACT OF DISSERTATION 
 

 
 
 
 
 
 

BIOLOGICAL CONTROL OF MANGANESE IN WATER SUPPLIES  
IN THE PRESENCE OF HUMIC ACIDS 

 
 
 
 
The main objective of this study was to improve our understanding of biological filtration 
(biofilm type) treatment for manganese (Mn) removal in drinking water. Biological filtration 
treatment involves biofilms of Mn(II)-oxidizing microorganisms attached to solid filter 
material that remove and immobilize dissolved Mn(II) in raw water by conversion to black 
MnO2(s) precipitates.  Mn-biological filtration is an emerging green technology that can serve 
as an alternative to conventional physicochemical treatments, but its full potential is 
hindered by various factors. These include lack of understanding the (1) optimal removal 
conditions for Mn, (2) mechanisms for biofilter Mn releases, and (3) effects of recalcitrant 
natural organic matter (NOM) on biofiltration. Confounding these issues is the unknown 
identity of the diverse microbial communities which occupy the biofilms attached to the 
filter media.  

To investigate these issues, biological Mn removal was studied in laboratory bench scale 
reactors using a new Mn(II)-oxidizing bacterium isolate, Pseudomonas Putida EC112. The 
main research hypothesis formulated that the transition metal catalyst, MnO2(s), can increase 
the bioavailable carbon and energy from recalcitrant NOM (e.g., humic acids (HA)) in 
biological filters.  Mn and HA can be found in most natural waters, including groundwaters, 
lakes and streams.  To test the hypothesis, the potential for strain EC112 growth and Mn(II) 
oxidation utilizing the organic substrate products from the oxidation reaction between HA 
and MnO2(s) was assessed.  

Biological Mn(II)-oxidation kinetics were investigated in batch (suspended cell) and 
continuous flow (biofilm) bioreactors at optimal pH and temperature conditions for strain 
EC112. Batch kinetics was successfully characterized with the Monod model. Continuous 
flow steady-state kinetics was modeled with a single, first-order kinetic parameter.   

 



Enhanced Mn(II) removal capacity was observed for strain EC112 in batch and  continuous 
flow reactors in the presence of HA and MnO2(s). The effect of MnO2(s) on HA 
biodegradability was studied and optimal conditions for biodegradation were identified. 

Biofilter Mn(II) releases were observed during the continuous flow bioreactor experiments. 
Release conditions were identified and releases modeled using pseudo first-order kinetics.  

Changes in HA structure induced by MnO2(s) oxidation were studied with Fourier transform 
infrared (FT-IR) and proton nuclear magnetic spectroscopy (1H-NMR).  

 

KETWORDS: Biological filtration, drinking water, humic acids, manganese, Pseudomonas 
Putida. 
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Chapter 1: Introduction 

1.1 Background  

Manganese (Mn) is the third most abundant (9.5 x102 ppm or 0.1 %) redox-active transition 
metal in the earth’s crust and a common contaminant in drinking water supplies (Cox, 1995; 
Kohl and Medlar, 2006; Kohl and Dixon, 2012). Mn is not regulated in drinking water due 
to potential health concerns, but for consumer complaints related to water fouling at 
concentrations above 0.05 mg·L-1, the US Environmental Protection Agency’s (USEPA) 
Secondary Maximum Contaminant Level (SMCL) (Kohl and Medlar, 2006). Mn can impair 
water quality with metallic taste as dissolved Mn(II) and can induce black discoloration and 
staining as oxidized Mn(IV) precipitates (Mn oxides). Mn concentrations above USEPA’s 
SMCL are more common in anoxic water supplies, including groundwater, and below the 
thermocline in stratified lakes and reservoirs, where its kinetic stability is attributed to the 
pH and oxidation/reduction (Eh) conditions of these environments (Hem, 1985; Ehrlich and 
Newman, 2008; Gantzer et al., 2009). Dissolution of Mn-mineral assemblages in host 
sediments, soils, and rocks in contact with aquatic environments represent the primary 
pathways for Mn entry (Hem, 1985). Anthropogenic sources may account for some Mn in 
water supplies and include industrial and commercial releases, pesticides, and impurities in 
drinking water treatment chemicals (Kohl and Medlar, 2006; Gabelich et al., 2006).  

Drinking water utilities commonly use either chemical oxidation followed by solid filtration 
or rely on Mn(II) adsorption to Mn-oxide coated filter material (induced oxide-coated media 
effect (IOCME)) for Mn removal (Kohl and Medlar, 2006). Both processes require the 
addition of a strong oxidizer such as chlorine.  Water industry’s concerns for chemical costs 
and the associated environmental impact are adding to the incentive to develop and 
implement green engineering treatment technologies (Ghernaout et al., 2011).  Foremost are 
biological filtration or biofiltration water treatment, which is increasingly being considered 
to supplement or replace existing physicochemical water treatment processes, due in part to 
promulgation of stricter drinking water regulation on the use of chemical oxidants, such as 
USEPA’s Stage I and II Disinfectants and Disinfection Byproduct Rules (USEPA, 1998; 
Kohl and Dixon, 2012). 

Biological filtration has been successfully applied for a number of years, first by European, 
and more recently, North American water utilities, to provide finished drinking water quality 
Mn levels below the SMCL (Beger, 1937; Czekalla et al., 1985;  Korth et al., 2002; Kohl and 
Dixon, 2012). The biological process consists of filtering aerated, untreated water over thin 
biofilms hosting Mn(II)-oxidizing microbes that are surface-attached to packed beds of 
granular filter material. Anthracite, gravel, sand or granular activated carbon (GAC) are 
common filter material and the beds can be constructed as gravity filters or, for smaller 
installations, pressurized filters. Biofiltration occurs as Mn(II) in the bulk water diffuses into 
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the biofilms and is converted to Mn oxides (e.g., MnO2) by the mechanism of direct 
microbial enzymatic oxidation. The black-brown, solid Mn oxides accumulate on the biofilm 
surfaces and the biofilters are periodically backwashed to maintain biofilter performance. At 
pH conditions typical of water supplies, the bacteriogenic, dark colored oxides have a net 
negative surface charge and are considered to autocatalytically participate in Mn(II) cation 
removal through electrostatic adsorption processes.  

Communities of diverse bacteria species having heterotrophic metabolism are considered to 
be the dominant microbes responsible for Mn(II) oxidation in biological filters. 
Heterotrophic bacteria, unlike plants and algae, generally are unable to utilize inorganic 
compounds for carbon or energy and require sources of biodegradable organic carbon 
(BDOC). A minimum threshold concentration, Smin, of BDOC flux from the bulk water to 
the biofilm is considered necessary for biofilm growth and maintenance requirements to 
sustain biofilter performance (Rittmann and McCarty, 2001).  

The largest fractions of natural organic matter (NOM) in freshwater environments are 
humic substances (HS), which are heterogeneous macromolecules having an aromatic core 
structure (Moran and Hodson, 1990; Basu and Huck, 2004). HS - which can be separated 
into humic and fulvic acids - represent the chemical and biochemical decay products of plant 
and microbial material. HS are chemically reactive though oxygen containing functional 
groups attached to the aromatic core, but are largely biodegradation resistant due to their 
structural heterogeneity and are not considered a viable carbon and energy source for 
heterotrophic bacteria.  Drinking water sources often represent oligotrophic environments 
that contain low concentrations of BDOC electron donor substrates such as amino acids and 
carbohydrates, challenging the sustainability of biological filtration in terms of Smin. It has 
been previously demonstrated that the solid oxidizing agent Mn-oxide can degrade refractory 
humic material to more polar, oxygenated, lower molecular weight products that may 
possibly serve as bacteria carbon substrate (Sunda and Kieber, 1994, Tebo et al., 1995).  

Biofiltration offers several advantages over conventional physicochemical treatment methods, 
which include lower operating costs, reduced chlorine demand, reduction of disinfection by-
products (DBPs) and DBP precursors, higher filtration rates and potential role as a pre-filter 
to reduce water biological instability in the water distribution system (Mouchet, 1992; Kohl 
and Dixon, 2012). Physicochemical methods, which remove manganese by chemical 
oxidation of soluble Mn(II) to insoluble Mn(IV), can fail to provide consistent effluent 
quality which meets the SMCL for manganese in the presence of NOM due to organic 
ligand complexation and chemical oxidant consumption. High oxidant doses or pre-
oxidation with chemicals such as chlorine, ozone or permanganate are needed to remove 
humic substances for effective manganese control by conventional processes (Gregory and 
Carlson, 2000). These oxidants can react with NOM in the raw water to produce 
carcinogenic compounds such as DBPs, or other smaller molecular weight organics that can 
lead to heterotrophic and opportunistic bacteria regrowth problems downstream of the 
treatment processes (Chowdhury, 2012). In addition, biofiltration is actively being 
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investigated as a potential treatment technology for emerging drinking water contaminants, 
including pesticides, endocrine disrupters, personal care products, and pharmaceuticals 
(Zearley and Summers, 2012).   

 

1.2 Problem Statement 

Biofiltration has demonstrated great potential for water treatment, but to achieve its full 
potential for Mn removal requires improving our understanding of the fundamental 
processes involved and optimal conditions for sustainability (Kohl and Dixon, 2012). 
Sustainability requires the availability of growth substrate in the source waters and flux into 
the biofilms (fixed films). The fate of NOM fractions that are considered recalcitrant to 
biodegradation, specifically HS which comprise up to 50% of NOM in natural aquatic 
environments, as a potential growth substrate for Mn(II)-oxidizing bacteria has not been 
well-studied. Particularly interesting is the potential of HS as a growth substrate in the 
presence of Mn oxide, the product of biological Mn(II) oxidation. Mn oxide is one of the 
most potent, naturally occurring catalysts in nature and has been shown to oxidatively 
degrade HS.  Furthermore, Mn biofiltration is hindered by lack of understanding of the fate 
of Mn in the biofilter, including unpredictable releases of Mn (Cerrato et al., 2010; Kohl 
and Dixon, 2012). Desorption of Mn from biofilters has been observed following the 
conversion from physicochemical (chlorine) treatment to pre-ozonation and biologically 
active filtration (Gabelich et al., 2006). The source of the Mn was concluded to be from 
buildup of Mn impurities originating from ferric chloride, a chemical coagulant. The 
observed releases of Mn raises the issue of whether Mn(IV)-reducing microbes are active in 
biofilters and represent a potential release mechanism/pathway for Mn via reduction of 
accumulated Mn(IV) oxide (Cerrato et al., 2010). 

Finally, steady-state and transient biofiltration models for Mn(II) removal have not been 
developed for fully defined water media and Mn(II)-oxidizing microorganisms. Mn 
biofiltration involves complex reaction kinetics and mechanisms that govern electron transfer 
between dissolved and solid Mn speciation that are microbially mediated. Several studies 
have provided valuable insight into removal of Mn during biological filtration (Burger at al., 
2008; Kohl and Dixon, 2012). However, many of these studies involved undefined 
conditions for bench, pilot- and full-scale water treatment biofilters. Important conditions 
that can affect biofilter performance include water chemistry, pH, oxygen concentration, 
temperature, oxidation-potential (ORP), filter bed material/construction and microorganism 
species. If these conditions are not controlled or defined, fundamental process information 
may be difficult to obtain.  
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1.3 Research Hypothesis 

The research hypothesis formulates that the transition metal oxide, Mn Oxide, can increase 
the biodegradability of HS and sustainability of biological control for Mn removal. More 
formally, for controlled bioreactor systems containing appropriate amounts of Mn(II), 
MnO2, HA, and Mn(II)-oxidizing bacteria,  MnO2 under certain conditions will oxidize HA 
to more biodegradable products that can serve as the primary electron donor and carbon 
source for bacteria growth.   The Mn(II)-oxidizing bacteria, upon utilization of the oxidized 
organic substrate products, will regenerate (oxidize) Mn(II) to particulate MnO2, thus 
controlling/removing Mn(II) from solution.  Subsequent reduction and dissolution of MnO2 

will release Mn(II) into the bulk solution and undergo bacteria oxidation or autocatalytic 
adsorption by MnO2 in the bioreactors. For this study, humic acids (HA) will be the 
surrogate for HS. Mn oxide, which is considered to occur more commonly as the mixed 
oxide Mn(III,IV)Ox (where 1< x < 2 )  when biotically produced, will be represented as  
manganese dioxide or MnO2 in the following discussion and equations. The reaction 
sequence in Eqns. (1-1)-(1-4), a conceptual representation of the hypothesis, may describe 
the biological and chemical oxidation of Mn(II) and HA, respectively, and reduction of 
MnO2  in bioreactor systems: 
 
HA from the bulk solution diffuse to MnO2 surface reaction sites and initially form a   HA– 
MnO2 precursor complex: 

             MnO2  +  HA     ↔    HA– MnO2                                     (1-1) 

 
Electron transfer from HA in the HA- MnO2 complex  to MnO2 will form oxidation product 
HA(ox) and reduced Mn(II): 

                                                                                          

                                   HA– MnO2          ↔     Mn(II) + HA(ox)                               (1-2) 

 
Biological oxidation of Mn(II) formed  from Mn oxide reduction and dissolution  and 
Mn(II) originally present in source water, as Mn(II)(in), to form MnO2, utilizing HA(ox) as the 
substrate (electron donor) for growth and O2 as the final electron acceptor:     
      
    Mn(II) + Mn(II) (in) + O2 + HA(ox) + bacteria cells   →  MnO2+ CO2 + H2O +            (1-3) 
                                                                                             new bacteria cells                                                         

Overall reaction:      
 

     Mn(II)(in) + MnO2 + HA + O2 + bacteria cells → MnO2+ CO2 + H2O +                    (1-4)                     
                                                                                     new bacteria cells                                                                                                                                        
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The term ‘new bacteria cells’ in Eqns. 1-3 and 1-4 represents the net growth of cells utilizing 
HA(ox)  or MnO2-oxidized HA as the sole carbon source. The net bacteria growth and 
quantity of CO2 (in Eqns. 1-3 and 1-4) produced represent indicators of HA 
biodegradability. Carbon and energy demands for cell maintenance, motility and biofilm 
formation require separate considerations. Nutrients (N, P, S) and trace metals required for 
normal cell growth and function, except for compounds that may serve as energy or carbon 
sources, are assumed present in the bioreactors.  

The specific reaction mechanism between HA and MnO2 may involve weak and strong 
chemical bond formation which incorporate electrostatic, adsorptive, and surface 
complexation-ligand exchange reactions prior to electron transfer.  HA oxidation rates, 
provided available metal reaction sites are not limiting, will likely be determined by HA 
adsorption and electron transfer rates to oxidizing Mn metal centers. Adsorption rates will 
likely be controlled by the dominant exchange mechanism and electrostatic HA and MnO2 

charge. Electron transfer rates will depend on the reduction and oxidation potential of HA 
and MnO2. HA charge will be largely determined by oxygen functional groups attached to 
the aromatic core (carboxylic (COOH) and phenolic (OH)), which deprotonate and become 
negative at pH above their pKa values. Typical HA carboxylic and phenolic groups have a 
pKa < 5.0 and > 8.0, respectively. By definition, metal oxides have a net electrostatic surface 
charge of zero at the point of zero charge (PZC).   Mn-oxides commonly have a PZC of 4 to 
5. Therefore, for pH in the neutral range, both MnO2 and HA will have a net negative 
charge which can minimize catalyst-substrate interaction.  However, the presence of divalent 
cations Ca+2 and Mg+2 can bridge or shield negative repulsive charge effects and facilitate the 
HA and MnO2 redox reaction. 
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1.4 Research Objectives 

 

The overall research objective is to obtain a better understanding of suspended and fixed-film 
biological processes for Mn(II) control/removal in water supplies provided  humic acids as 
the sole carbon source.  At present there is no reported information available on this subject.  
The specific objectives for this research: 

  

1. Isolate a Mn(II)-oxidizing bacteria and identify the species  using 16s-rDNA gene 
sequencing. Determine optimal Mn(II)-oxidizing conditions (pH and 
temperature) and evaluate capacity of isolate to grow on selected substrates. 
 

2. Test the hypothesis that Mn oxide (as MnO2) can increase the biodegradability 
of   humic acids.  

 

3. Obtain the optimal ratio of humic acids / MnO2 concentrations and reaction 
(contact) time to maximize humic acids’ biodegradability.  

 

4. Investigate Mn(II)-oxidation rates using the isolate in bench scale batch and 
continuous flow biological reactors (fixed-film) using MnO2  treated humic acids 
as the sole carbon source.   

 

5. Kinetically characterize biological Mn(II) oxidation and removal in the bioreactor 
systems. 

 
6. Investigate Mn fate in bench scale fixed-film biological reactors. 

 
 
 
 
 
 
 
 

Copyright © Michael Snyder 2013 
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Chapter 2: Literature Review and Background 

 

2.1 Overview 

The goal of drinking water treatment utilities is to provide water that is safe to drink (void of 
harmful levels of pathogens and chemicals), aesthetically pleasing (free of odor, taste and 
color) and cost-effective (Edzwald, 2010). In this viewpoint, manganese (Mn), a naturally 
occurring metal, represents a common source of aesthetic water quality issues.  Mn is 
particularly problematic for communities that rely on water supplies under suboxic 
conditions, including groundwaters, stratified lakes and reservoirs, where soluble Mn(II) is 
often coupled with reduced iron (Fe). The presence of Mn in drinking water can result in 
metallic taste, turbidity and discoloration as oxidized precipitates that stain water pipes, 
laundry and plumbing fixtures (Kohl and Medlar, 2006). Reduced divalent Mn(II) is a 
required micronutrient for living organisms, and serves as a cofactor in enzymes and enzyme 
complexes, and is not considered a health concern in the levels frequently encountered in 
drinking water (Kohl and Medlar, 2006). The United States Environmental Protection 
Agency (USEPA), World Health Organization (WHO), and the European Commission 
recognize a non-enforceable secondary maximum contaminant level (SMCL) for Mn in 
drinking water at 0.05 mg·L-1 for most community water supplies, set to control taste and 
nuisance issues (USEPA, 1979; WHO, 1971; 98/83/1998).  
 
The removal of manganese from raw water supplies relies on the mechanism of oxidation of 
soluble Mn(II) to oxidized Mn(IV) precipitates,  which can be achieved with conventional 
physicochemical or biological treatment (Kohl and Dixon, 2012). Unlike conventional 
treatment, which involves the addition of chemical oxidants, biofiltration technology relies 
on microbial oxidation of Mn(II) in biofilms attached to granular filter media for removal. 
Bacteria are considered to be the primary microbes responsible for Mn(II) oxidation in the 
biofilters. Biofiltration offers several advantages over physicochemical treatment, including 
not requiring addition of a chemical oxidant to the raw water, reduction of disinfection by-
products (DBPs) and DBP precursors, and it’s role as a pre-filter to produce highly stable 
biological water  in the distribution system (Mouchet, 1992; Carraro et al., 1999; Zhu et al., 
2010; Dixon and Kohl, 2012).   
 
With drinking water utilities traditionally striving to remove organisms during water 
treatment, the view of employing microbes (e.g., bacteria) for water treatment has been long 
discouraged in the US due to their potential as pathogens, despite widespread biological 
filtration application for water treatment in Europe.  Their increasing use in water treatment 
in  the US has come about because of their ability to produce highly stable biological water, 
and because of the establishment of more stringent regulation of disinfection by-products 
(DBPs) according to the Stage I and II Microbial/Disinfection By-Product rules (USEPA, 
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1998). Biofilters have the potential to remove Mn to levels below the SMCL for Mn. 
However, optimal use is limited by several factors, including: sufficient biodegradable 
dissolved organic carbon (BDOC) in the raw waters to support heterotrophic biofilm 
microbes, identification of the optimal conditions of Mn removal, and the fate of Mn in the 
biofilter, including understanding and management of unpredictable releases of Mn.  
  

The largest portion of DOC in natural waters, humic substances, are present virtually in all 
surface waters and many groundwater environments in varying concentrations. Their 
presence is drinking water is undesirable due to their color and taste issues and reaction with 
chemical oxidants during conventional water treatment to produce trihalomethanes and 
other potential carcinogenic by-products. Humics represent a potential carbon source for 
microorganisms in biofilters, but their recalcitrant structures tend to make them largely 
unavailable to microbial carbon metabolism. Previous experimental work has shown that 
humic substances can be oxidized to more biodegradable products by Mn Oxides, possibly 
serving as a mechanism for Mn(II)-oxidizing bacteria to obtain bioavailable carbon. (Sunda 
and Kieber, 1994)  
 

2.2 Manganese Chemistry 

2.2.1 Oxidation States 

Manganese (Mn) (atomic number 25 and standard atomic weight of 54.938) is the third 
most abundant (9.5 x 102 ppm or 0.1% of earth’s crust) transition metal in the lithosphere, 
from which it attributes many oxidation states and darkly colored catalytic oxides (Cox, 
1995; Kohl and Medlar, 2006; Kohl and Dixon, 2012). The brown-black color of Mn-
oxides and their impact on drinking water aesthetics is the primary motivation to 
control/remove Mn from water supplies. 
 
Mn charge or oxidation state can exist as -3 to +7, with Mn(II), Mn(IV) and Mn(VII) of 
importance in drinking water treatment processes (Kohl and Medlar, 2006).   In terms of 
Mn electronic configuration, [Ar] 4s23d5, the redox chemistry involves the 4s and 3d orbitals.  
Mn(II), complexed Mn(III) and Mn(VII) are soluble manganese forms, while Mn(IV) is the 
most common state and typically forms various oxide polymorphs as MnO2 (Kohl and 
Dixon, 2012). Mn(II) is similar to Group 2 elements, such as Ca2+ and Mg2+, in terms of 
aquatic stability due to a half-filled 3d5 electronic shell. Mn(II) has the capacity to undergo 
ligand exchange reactions with natural organic compounds, including humic substances.  
Mn(III) and Mn(IV) prefer complexation with oxygen, forming compounds with higher 
oxidation potential. Mn Oxides promote the oxidation and degrdation of natural organic 
matter and xenobiotic pollutants while serving as sinks for trace metals. One of many 
manganese dioxide polymorphs, pyrolusite (β-MnO2), is a naturally occurring manganese 
mineral formed in weathered, oxidizing environments and represents the most common 
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mining ore for manganese. Mixed oxyhydroxides containing Mn(II,III)Ox and Mn(III,IV)Ox 
are common as manganite (MnOOH) and hausmannite (Mn3O4). Mn oxides and 
oxyhydroxides, the most thermodynamically stable form of Mn at high pH and in the 
presence of O2, are ubiquitous in soil and aqueous environments and microbial activity is 
considered to have a major role in their formation and cycling at low temperatures (Tebo et 
al., 2005; Saratovsky et al., 2006).  Important properties of Mn-oxides that control their 
reactivity include surface area, Mn oxidation state and point of zero charge (PZC). High 
oxide specific surface areas are due to small particle sizes which relate to an unordered Mn – 
O structural arrangement.  Biotic Mn oxides offer considerably different redox chemistries 
than synthetically or chemically generated forms, owing to their much higher surface areas, 
higher adsorption energies and an unorganized atomic structure (Saratovsky et al., 2006). 
Mn oxidation states, mineral forms, and specific surface areas of biogenic oxides have been 
characterized (Nelson et al., 2002).   

 
2.2.2 Redox Considerations  

Redox Mn chemistry is fundamental to the design and optimization of biological drinking 
water treatment processes for Mn. Biological Mn removal/control requires managing 
complex oxidation-reduction or electron exchange reactions between the II, III and IV 
oxidation states that are largely mediated by microorganisms, whose identity and 
characteristics are unknown outside of a few, well studied microorganisms (Tebo et al., 2005; 
Kohl and Dixon, 2012). Other than in relatively simple terms, the reaction pathways and 
kinetics of conversion between Mn oxidation states in complex systems such as biofilters are 
poorly understood (Kohl and Medlar, 2006).  

Thermodynamic quantities such as the overall standard potential (E0), or its related 
quantity, electron activity (pE), establish the tendency of a Mn redox reaction to proceed 
spontaneously. When in consideration with pH, the redox equilibrium and stability between 
Mn species in simplified aqueous systems can be accurately predicted only for simple systems 
(Figure 2.1). Rates of conversion between Mn oxidation states are dependent on the kinetics 
for the particular type of reaction, usually represented by experimental rate expressions, 
which are controlled by the thermodynamic constraints established by E0 and ΔG0, the 
Gibbs Free energy (Stone and Morgan, 1984; Morgan, 2005). 

The standard Gibbs Free Energy is related to the standard cell potential by Faraday’s 
constant (F) and the number of electrons exchanged in the redox reaction (n):  
  

         ΔG0 = -nFE0                (2-1) 

Reactions with a positive E0 or negative ΔG0 are reaction product favored and proceed as 
written.   
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Figure 2.1. Mn Stability Diagram at 25°C and 1 atm. (Martin, 2005). 
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The overall standard potential is equal to the standard potentials of the half-cell reactions 
(Eqn. 2-2): 

     E0 = Ered0 + Eox0                                                                  (2-2) 

 

For example, the stoichiometry of Mn(II) oxidation to insoluble MnO2 may be represented 
as (Eqn. 2-2) followed by the corresponding reduction and oxidation half reactions (Eqns. 2-
4 and 2-5) :    

         ½ Mn(II)  + ½ H2O + ¼ O2    →    ½ MnO2 (s) + H+  E0=0.03, volts     (2-3) 

                       ¼ O2    + H+ + e+ →    ½ H2O          Ered0 =1.23, volts    (2-4) 

     ½ Mn(II)  +  H2O →   ½ MnO2 (s) + 2H+ + e+         Eox0 =-1.21,volts    (2-5) 

A relatively low E0 potential indicates the reaction has a small tendency to proceed as written 
and favor Mn(II) reduction. Increasing the value of  Ered0

 , the oxidizing agent, will more 
likely result in Mn(II) reduction.  In water treatment practice, this is achieved by replacing 
molecular O2 with an agent of higher oxidizing potential. The activation energy, or 
minimum input energy required for Mn(II) oxidation, is relatively high and the implications 
are that Mn(II) can persist in oxidizing aqueous environments (Stumm and Morgan, 1996). 
The half-life for homogenous Mn(II) oxidation with O2 has been estimated to range from 1 
to 350 days from pH 9.3 to pH 8.0 at 25°C and P02 = 0.21 atm. (Morgan, 2005). Given the 
high half-life, the oxidation of Mn(II) can be catalyzed by increasing the pH or by microbial 
mediation. 

The pathways describing redox Mn reactions include (1) homogenous oxidation, (2) 
heterogeneous oxidation (e.g. adsorption to mineral surface and autocatalysis), (3) reduction, 
and (4) microbial oxidation or reduction (Morgan, 2005).  Each of these pathways are 
represented in Table 2.1. Both homogenous and microbial oxidation can be represented by 
Eqn. 2-3. In this work, each of these pathways (2-4) are studied except for (1). Significant 
homogenous oxidation is not observed in the Mn control studies (Chapter 3).  The relative 
rates of homogenous, heterogeneous, and bacteria Mn(II) oxidation have been estimated to 
be 1:10:1000 (Morgan, 2005; Spiro et al., 2010). 

2.3 Manganese in Water Supplies 

The bivalent cation Mn(II) – the most common soluble form of Mn at low pH in suboxic or 
anoxic (absence of O2) conditions – will persist in most natural waters as bicarbonate and 
hydroxyl (e.g., MnOH+, Mn(OH)2) complexes. Such reducing environments commonly 
exist in water supply sources including groundwaters, stratified lakes, and reservoirs, where 
Mn is a frequent contaminant in elevated concentrations. In oxygenated natural waters, 
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Table 2.1.  Mn Oxidation and Reduction Pathways 

 

 

Homogeneous Mn(II) Oxidation (Morgan, 2005): 

   Mn(OH)2 + O2 →    Mn(OH)2
+ +  O2

-     log k= 1.32 

Heterogeneous Autocatalytic Mn(II) Oxidation (Martin, 2005): 

   
−𝒅[𝑴𝒏𝟐+]

𝒅𝒕
  = k [MnOx(s)] [Mn2+] 

 

Mn( III, IV) Oxide Reduction (Martin, 2005): 

    MnOOH + e- + 3 H+ → Mn(II) (aq) + 2 H2O 

    MnO2 + 2 e- + 3 H+ → Mn(II) (aq) + 2 H2O 

Examples:  e-  = fulvic acids, humic acids, hydroquinone 
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particularly after a period time and subject to biological catalysis, manganese likely will 
transform to Mn(IV) or Mn(III), which may bond to organic materials or  other ions. Mn 
stability diagrams predict Mn participation in a number pH-dependent speciation and redox 
reactions affecting its fate in water supplies. With increasing pH conditions, Mn(II) can 
complex and precipitate, causing objectionable water turbidity and color (Stumm and 
Morgan, 1996; Morgan, 2005). 

In the presence of natural organic matter, higher pH deprotonate acidic functional groups of 
humic substances and facilitate manganese binding and precipitation (Brigante et al., 2007).  
Oxidation of Mn(II) forms brown-black precipitates as Mn(III,IV)  or Mn(IV) oxides which 
results in darkening of the water and subsequent  black deposits and clogging or narrowing 
of pipes  in water distribution systems. 

Mn(II) is the targeted species for removal in drinking water treatment operations. Oxidation 
of Mn(II)  typically produces 3+ and 4+ species and can exist as black, brown and purple solid 
oxides, MnOx, and oxyhroxides, and represent the primary source of discolored water and 
staining (Figure 2.1). Stoichiometric manganese dioxide, MnO2, is used as a water treatment 
filter material, - commonly as pyrulosite or manganese greensand, for iron, manganese, and 
hydrogen sulfide removal. Mn(VII), or permanganate (MnO4

-), can be produced by stronger 
oxidants of Mn(II), such as ozone, and is the common form of the highest Mn oxidation 
state and can persist  in water distribution systems, having a long half-life. MnO4 itself is a 
potent oxidizer used in water treatment. 

The primary source of Mn in aquatic environments is considered to be due to the dissolution 
of manganese minerals in rocks, sediments and soils (Hem, 1985; Kohl and Medlar, 2006). 
Mn(II) will persist due to the kinetic stability of Mn at the pH and oxidation/reduction (Eh) 
conditions of these environments (Bowen, 1979; Ehrlich, 2002).    Although manganese is 
primarily an issue for water utilities treating groundwater, detections are common in most 
Public Water Systems (PWSs).  One study found that more than 3,660 groundwater PWSs 
have Mn exceeding three times the SMCL of 0.05 mg∙L-1 (USEPA, 2004).   A survey of 242  
U.S. water utilities that primarily treat groundwater revealed that almost 50% acknowledged 
a manganese problem and implement a specific unit treatment for manganese  control and 
its attendant turbidity and discoloration issues (Kohl and Medlar, 2006).  
 
Although largely considered to be an aesthetic issue, the USEPA released a health advisory 
for potential neurological effects (USEPA, 2004). It has been suggested that 0.02 mg∙L-1 is a 
more appropriate standard to minimize consumer concerns in drinking water (Kohl and 
Medlar, 2006).   
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2.4 Manganese Drinking Water Treatment 

In the US, Mn drinking water treatment traditionally has relied on physicochemical 
technology, primarily chemical oxidation of soluble Mn to insoluble forms in the untreated 
water. Biological processes, more common in Europe, employ biological filters which consist 
of fixed films, primarily of bacteria attached to granular filter material. Biological filter design 
and operating conditions at full-scale water treatment plants are largely based on engineering 
and plant operator experience and not fundamental studies (Mouchet, 1992; Burger et al., 
2008). 

2.4.1 Conventional Mn Water Treatment 

The presence of manganese in source water requires treatment by water treatment utilities 
because manganese is not oxidized by air to insoluble oxides at neutral pH during 
conventional water treatment processes unless a chemical oxidation step is included. In the 
U.S., Mn is removed from drinking water primarily by conventional physicochemical 
processes which convert soluble Mn(II) to insoluble Mn(IV) oxides through intense aeration 
or chemical oxidation followed by sand filtration of the oxidized,  low-solubility products 
(Singer and Reckhow, 1999; Kohl and Medlar, 2006).   In such treatment process, high pH 
and dissolved oxygen levels are needed to effectively convert Mn(II) to Mn(IV).  At pH 
conditions below 9.0, aeration for Mn(II) removal is slow or may not occur at all (Singer and 
Reckhow, 1999).  Thus lime or soda ash is often added to raise the pH to increase the rate of 
Mn(II) oxidation. The most common chemical agents used for Mn(II) oxidation are chlorine 
(Cl2) and potassium permanganate (KMnO4) (Kohl and Medlar, 2006).   However, chlorine 
can react with natural organic matter to produce undesirable disinfection-by-products 
(DBPs) or smaller molecular weight organics that can lead to bacterial regrowth problems in 
distribution systems. The effectiveness of the chemical oxidant(s) to remove Mn is dependent 
on a variety of raw water conditions, including pH, alkalinity, temperature, Mn 
concentration and the presence of oxidizing compounds (e.g., iron, ammonia, natural 
organic matter (NOM) and sulfide) which can undergo competitive reactions with Mn, 
increasing the required oxidant dosage per mg of Mn(II) and overall treatment costs 
(Wilczak et al., 1993; Kohl and Medlar, 2006). For example, excessive dosages of ozone (O3) 
in the presence of elevated levels of NOM in the raw water can react with Mn(II) to form 
permanganate, resulting in the pink discoloration of the effluent stream, eventually reducing 
to black deposits in the distribution system  (Wilczak et al., 1993). Additionally, chemical 
oxidants can react with NOM and form potentially toxic disinfection by-products (DBPs), 
for which water utilities are facing increasingly stringent regulations.  

Manganese greensand or GreensandPlus, which are particulate nodules coated with MnO2, 
are widely used filter materials for Mn control in drinking water. The coated MnO2 acts as a 
catalyst in the adsorption and oxidation of Mn(II) (Kohl and Dixon, 2012).  However, 
MnO2 must be regenerated, as its oxidizing power is depleted by the addition of a chemical 
oxidant such as KMnO4 and/or chlorine upstream of the filter (Kohl and Medlar, 2006).    
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In the presence of naturally occurring humic substances, the physicochemical processes often 
fail to provide consistent effluent quality which meets the drinking water standard for 
manganese due to metal complexation, consumption of the oxidant by the organics, or 
membrane fouling (Mouchet, 1992; Routt, 2004; Basu and Huck, 2005).  Thus, controlling 
Mn with the conventional processes can be cost prohibitive due to the requirement of 
preoxidation with chemicals or higher doses of permanganate in the presence of naturally 
occurring organic matter (e.g., humic substances) (Paillard et al., 1988).  

 

2.4.2 Biological Water Treatment 

Biological water and wastewater treatment methods are primarily aerobic processes that 
involve mechanisms including biodegradation, metal reduction (As, Cr, Se), adsorption, and 
suspended solid reduction (Rittmann and McCarty, 2001). Biological treatment is 
incorporated in technologies such as fluidized beds, biological towers, biologically active 
granular activated carbon, rotating biological contactors, trickling filters, and activated sludge 
(Rittmann and McCarty, 2001). Biological water treatment processes have been largely 
discouraged by the water industry, particularly in the U.S., because of the use of 
microorganisms to purify the water. However, their gain in acceptance is in part due to their 
effectiveness to achieving biological water stability, and in the US, is driven by more 
stringent regulations on disinfectants and disinfection by-products, which in some cases 
discourage the use of the addition of chemical oxidants for treatment. For example, the Stage 
1 Disinfectants and Disinfection By-products Rules (USEPA, 1998) require the use of 
biological filtration for water utilities that use ozone. Furthermore, water utilities that use 
conventional filtration must remove specific percentages of the raw water organic matter (as 
TOC), favoring the consideration of biological filters.  

 

2.5 Biofiltration 

Biofiltration has primarily been a pre-filter unit of the treatment train of many water 
treatment facilities, primarily to remove biodegradable organic material (BOM), reducing 
organic precursors prior to disinfection and biological activity in the distribution system. 
Biological filtration has long been recognized by Europeans as an important unit operation 
for producing biologically stable water and prevent bacterial regrowth in distributions 
systems and thus reduce the amount of residual chlorine required.  As previously stated, 
interest is increasing in alternatives to the physicochemical processes in the U.S.  due to their 
potential for reducing organic carbon as required by the Stage 1 and 2 
Disinfectant/Disinfection By-product Regulations set by the U.S.EPA (USEPA, 1998). The 
rule mandates utilities using disinfectants to remove predetermined levels of total organic 
carbon (TOC) as a means of reducing disinfection by products.   In addition, biological 
filtration offers the advantages such as higher Mn(II) oxidation rates, reduction in 



16 
 

disinfection by-products, and elimination/reduction of chemicals (Mouchet, 1992; Kohl and 
Medlar, 2006). 

Biological filtration has been successfully applied for a number of years, first by European 
and more recently, North American water utilities, to provide finished drinking water quality 
Mn levels below the SMCL (Beger, 1937; Czekalla et al., 1985;  Korth et al., 2002; Kohl and 
Dixon, 2012). The biological process consists of filtering aerated, untreated water over thin 
biofilms a few millimeters thick that host Mn(II)-oxidizing microbes that are attached to 
packed beds of granular filter material. Anthracite, gravel, sand or granular activated carbon 
(GAC) are common filter material and the beds can be constructed as gravity filters or for 
smaller installations, pressurized filters. Biofiltration occurs as Mn(II) in the bulk water 
diffuses into the biofilms and is oxidized to Mn(III,IV)Ox by microbial enzymatic oxidation. 
The black-brown, solid Mn oxides accumulate on the biofilm surfaces and the biofilters are 
periodically backwashed to maintain biofilter performance. At pH conditions typical of 
water supplies, the bacteriogenic, dark-colored-oxides have a net negative surface charge and 
are considered to autocatalytically participate in Mn(II) cation removal through electrostatic 
adsorption processes.  

Biological filtration has been reported to successfully lower Mn concentrations from >0.50 
mg/L to <0.02 mg/L (Hope and Bott, 2003).  Manganese removal by biofilters has been 
studied using bench-scale reactors (Sly et al., 1993; Katsoyiannis and Zouboulis, 2004; Hope 
and Bott, 2004) and pilot as well as full-scale biological treatment plants (Pacini et al., 2005; 
Yang et al., 2004; Li et al., 2005).  Biological removal of manganese has been modeled with 
pure cultures using a continuous fluidized bed reactor (Sly et al., 1993) and bench scale 
biofilters (Hope and Bott, 2004).  The removal of biodegradable organic matter in a 
biological filter has been modeled using a steady-state-biofilm model (Saez and Rittman, 
1992; Zhang and Huck, 1996) with results showing a linear relationship between substrate 
removal and influent concentration.  However, no information regarding biological filtration 
performance and biofilm Mn(II) oxidation in the presence of humic substances is available. 

Bioreactor performance is hindered by lack of understanding of the fate of Mn in the 
biofilter, including unpredictable releases of Mn (Cerrato et al., 2010; Kohl and Dixon, 
2012). Desorption of Mn from biofilters has been observed following the conversion from 
physicochemical (chlorine) treatment to pre-ozonation and biologically active filtration 
(Gabelich et al., 2006). The source of the Mn was concluded to be from buildup of Mn 
impurities originating from ferric chloride, a chemical coagulation. This raises the issue of 
whether Mn(IV)-reducing microbes are active in  biofilters and have the potential to release 
Mn via reduction of accumulated Mn(IV) oxide (Cerrato et al., 2010).  
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2.6 Biological Mn(II) oxidation 

The formation of Mn (III/IV) oxides from soluble Mn(II) is believed to be a biologically 
controlled process in most natural waters since abiotic oxidation of Mn(II) proceeds only at a 
limited rate (Tebo et al., 2004). Numerous microorganisms, including bacteria and fungi, 
can oxidize Mn(II) to insoluble manganese oxides (Tebo et al., 2005). Either direct 
(enzymatic or specific binding) or indirect (modification of the pH and/or redox conditions) 
processes may be involved in bacterial oxidation of Mn(II) (Nealson, 2006). 

The formation of Mn(IV), primarily as MnO2,  occurs as two one-electron transfer steps 
from Mn(II) through the transient intermediate Mn(III) (Tebo et al., 2005). For direct 
Mn(II) oxidation, the enzymes responsible for bacterial Mn(II) oxidation are of two types (1) 
calcium binding haem peroxides (MopA), and (2) multicopper oxidase (MCO). MCO 
enzymes catalyse the one-electron transfer from substrates that include Fe(II) and lignin to 
reduce O2 to H2O (Geszvain et al., 2012). MCOs incorporate multiple copper ligands, 
including a copper-binding site and a trinuclear center. One electron is removed from the 
substrate at the copper site then transferred to the trinuclear centre where it is added to O2. 

Oxidation-reduction potential (ORP) is a water quality indicator and a measure of the 
tendency for electron exchange reactions to occur between ‘donors’ and ‘acceptors’ species. 
Measurement of ORP is considered important condition for biological Mn(II) oxidation 
during biological filtration. ORP conditions for biological filtration Mn(II) oxidation at 
treatment plants exhibit a wide Eh(mV) variation (Kohl and Dixon, 2012). It is often 
assumed that optimal ORP conditions coincide with the thermodynamic stability fields for 
homogeneous oxidation/reduction of Mn(II) and Mn(III,IV) oxides (Mouchet, 1992; 
Burger et al., 2008).  For example, the conditions (pH ≤ 8 and Eh ≥ +200 mV) of most 
natural freshwater environments are assumed to favor microbial oxidation of Mn(II) as 
shown by the thermodynamic stability fields in Figure 2.1 and 2.2 (Mouchet, 1992). In 
addition, optimal bacteria enzymatic Mn(II)-oxidation rates are pH dependent and can vary 
considerably between bacteria species. In natural aquatic environments, biological Mn(II) 
oxidation often occurs in the transition zone between oxygen-rich and suboxic water and 
sediments, with the oxidized manganese deposited as Mn(III,IV)Ox coatings on filamentous 
sheaths or external cell membranes surfaces (Mouchet, 1992; Tebo and He, 1999).   
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Figure 2.2. Field of biological Mn activity (Mouchet, 1992).  
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Mn(II) oxidation is an autocatalytic reaction whereby the Mn oxides catalyze the oxidation 
(Stumm and Morgan, 1996). In general, the rate of redox reactions between Mn oxide and 
Mn(II) increases as pH increases. Bacteria Mn(II) oxidation rates are dependent on the 
environmental conditions including pH, temperature, cell concentration and dissolved 
oxygen (Zhang et al., 2001).   

Mn(II)-oxidizing bacteria constitute a broad lineage among  the bacterial domain and 
include the Firmicutes, Actinobacteria and Proteobacteria (Tebo et al., 2005), however, only a 
few species are well investigated.  Mn(II) oxidation has been studied with pure bacterial 
cultures of  Pedomicrobium ACM 3067 (Larsen et al., 1999),  Pseudomonas Putida MnB1 
and GB-1 (Brouwers et al., 2000; Villalobos et al., 2003), and Leptothrix discophora strains 
SS-1 and SP-6 (Adams and Ghiorse, 1985; Boogerd and de Vrind, 1987; Brouwers et al., 
1999).  The Mn oxides formed extracellularly by L. discophora were shown to be mixed 
Mn(III, IV) oxides and oxyhydroxides with an average oxidation state of 3.6. The biogenic 
Mn oxide produced by P. putida has an average Mn oxidation number of 3.9 and a form 
most similar to birnessite δ–MnO2 (Villalobos et al., 2003). The decrease in the average 
oxidation number from 4 is due to the presence of Mn(II)/Mn(III) sorbed at Mn(IV) 
vacancy sites. Mn(II) oxidation has also been reported with chemolithoautotrophs including 
Sphaerotilus discophorus  (Johnson and Stokes, 1966; Ali and Stokes, 1971), Pseudomonas S-
36 (Kepkay and Nelson, 1987), and Pseudomonas siderocapsa sp. (Falamin and Pinevich, 
2006).  However, the correlation between Mn(II) oxidation and CO2 fixation has yet to be 
established (Tebo et al., 2004). 

Optimal bacteria enzymatic Mn(II)-oxidation rates are pH dependent and can vary 
considerably between bacteria species. This would imply that the pH optima for Mn removal 
by biofiltration may be primarily controlled by the Mn(II)-oxidizing bacteria species 
representing the largest populations in the biofilms. This simplification may be complicated 
if autocatalytic removal mechanism by Mn oxide has a significant role in Mn removal 
capacity. Mn oxide net surface charge, which controls the oxide electrostatic adsorption 
capacity, is strongly pH dependent. 

2.7 Biofilms  

 
Most biological water treatment processes are biofilm based reactors in which 
microorganisms are attached to granular filter media and form aggregates of microorganisms 
encapsulated in thin, slimy layers of extracellular polymeric substances (EPS) (Rittmann and 
McCarty, 2001). EPS is the ‘glue’ for the biofilm and provides biomass retention and serves 
as the host structure for microorganisms that provide removal mechanisms for inorganic and 
organic substrates in raw water (Donlan and Costerton, 2002). The EPS consists of 
polysaccharides, proteins, glycoproteins, glycolipids and extracellular DNA (Flemming et al., 
2007). Biofilms are considered to create a protected environment for the microorganisms by 
providing a more controlled environment than the bulk liquid, protecting them from severe 
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changes in bulk water pH, toxic substances and predatory organisms (Watnick and Kolter, 
2000; Rittmann and McCarty, 2001; Flemming and Wingender, 2002). 
 
Single species bacteria biofilms form in multiple steps with the initial step typically 
considered to be colonization of a solid surface in response to food which eventually leads to 
the formation of a three-dimensional biofilm matrix (Watnick and Kolter, 2000; Rittmann 
and McCarty, 2001). Biofilm formation by P. Putida species has been shown to be 
uninhibited by temperature (5 to 30° C) or under nutrient rich or poor conditions 
(Morimatsu et al., 2012). However, in this same study, biofilm detachment occurred more 
readily in rich nutrient condition under high temperatures whereas detachment was 
prevalent under all temperature conditions at low nutrient conditions. 
 
Diverse microbial communities have been identified in biofilters, but Mn-oxidizing bacteria 
are considered to predominant.  They catalyze Mn(II) to Mn(III,IV) oxides as aerated, raw 
water passes over the biofilms attached to the filter bed, depositing the brown/black oxidized 
precipitates on their extracellular surfaces. The immobilized coatings of Mn(III,IV) oxides 
are considered to provide an autocatalytic Mn removal mechanism, acting as  adsorption 
sites for Mn(II) in the bulk liquid, accelerating the removal of Mn at rates dependent on pH 
and the number of sites available.  
 
With heterotrophic microbes being the dominant biofilter hosts, steady-state biofilm kinetic 
models predict that a minimum substrate concentration, Smin, is required to provide a 
constant, diffusive flux of supporting nutrients and BOM to the biofilm (Rittmann and 
McCarty, 2001). Maintaining steady-state biofilms in typical surface waters that contain 2- 
10 mg∙L-1 DOC is more achievable than in carbon-limited natural waters,  such as 
oligotrophic lakes (2 mg∙L-1 DOC) and groundwater aquifers (<1 mg∙L-1 DOC), where 
Mn(II) concentrations are higher. Should the bulk liquid substrate concentration decrease 
below Smin, the threshold level that supports zero net growth, substrate flux from the 
surrounding bulk liquid into the biomass will diminish and impair biofilter maintenance, as 
cell death and biofilm-detachment and sloughing losses gradually erode the biofilm.  
 
DOC in most natural environments, including freshwater lakes and organic rich 
groundwaters, consist of measurable amounts of biologically labile and higher concentrations 
of refractory organic constituents, primarily derived from the decomposing remains of 
terrestrial vegetable matter and microorganisms (Moran and Hodson, 1990; Alborzfar et al., 
2001). The biologically labile fraction can include aldehydes, ketones, simple carbohydrates 
and amino acids, all substrates that are more susceptible to direct utilization by heterotrophic 
microbes, resulting in a shorter persistence in natural environments (Rittmann and McCarty, 
2001). Gagnon and Huck (2001) showed that that easily biodegradable organic compounds 
suffer negligible mass transfer limitations and readily diffuse into drinking water biofilms, 
obeying first-order kinetic modeling under steady-state conditions, balancing substrate flux 
and utilization. However, the bulk of DOC in most freshwater environments is considered 
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to be comprised of largely refractory humic and fulvic acids. These are anionic polymers of 
varying molecular weight (1000 to 100,000 Daltons) with a substituted aromatic core and 
lacking specific chemical structure (Aiken and Cotsaris, 1995). Oxygen functional groups 
play key roles in their chemical reactivity. Humic acids are resistant to utilization as growth 
substrates due to their size and molecular heterogeneity, which elude the specificity of 
microbial metabolic enzyme systems (MacCarthy, 2001; Krull et al., 2003). To a lesser 
extent,  complexation of humic functional groups with inorganic ions  (e.g.,  ionized 
carboxylic groups binding divalent calcium) reduces intramolecular negative repulsion 
between anionic functional groups  while altering the broad humate conformation to a 
tighter aggregated arrangement, with the effect of ultimately decreasing substrate availability 
(Tipping, 1981; Guggenberger and Kaiser, 2003). 
 
Humic organics are reported to have lower molecular diffusion coefficients (D, Df), in the 
bulk liquid and within biofilms and higher Smin values, by factors of 10 or higher, in 
comparison to smaller, biodegradable substrates (Rittmann, 1990; Woolschlager and 
Rittmann, 1995).  This unfavorable physical and kinetic characterization of humic material 
further exacerbates the utilization of refractory organic matter by biofilms, either directly or 
through biosorption mechanisms involving slow, catabolic biodegradation kinetics 
(Rittmann and McCarty, 2001).       
 

2.8 Reaction of Mn oxides with Humic Substances 

While biodegradable carbon in the source water is considered necessary for biofiltration 
sustainability, the fate of recalcitrant NOM and potential for utilization as a carbon and 
energy source by biofilm microbes is unknown. This is particularly true if the biofilter 
contains a buildup of Mn oxide produced by biological Mn(II) oxidation. Mn oxide is one of 
the most potent naturally occurring catalysts in nature and has been shown to oxidatively 
degrade HS (Suna and Kieber, 1994). Further, HS, via oxygenated substituents, is a 
potential binding agent for metal-ions, including Mn.  

Mn oxides are among the strongest oxidizing agents in natural environments and are 
implicated in a variety of metal and natural organic matter (NOM) sorption and redox 
reactions (Tebo et al., 2005). Their catalytic power can be largely attributed to variations in 
their layered structures and cation vacancies within these structures (Saratovsky et al., 2006). 
Mn oxides are highly stable in oxygenated environments but can be reduced through the 
interaction with organic matter, with the release of Mn(II) and oxidized organic products. 
Estimates of biodegradability of humic substances range from 1 to 27% for individual species 
of bacteria and mixed cultures from various aquatic ecosystems (Volk et al., 1997).   Increase 
of biodegradability of HS by various chemical oxidation techniques has been previously 
observed and has been quantified utilizing BOD5, TOC, UV280, UV254 and Color400 
(Bekbolet, et al., 1996).  However, no studies have been done to investigate the increase in 
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biodegradability of HS due to the reactions with Mn oxides. Generally, humic and fulvic 
acids are unreactive with molecular oxygen (O2, E0=1.23 V).   

The interactions between Mn oxides and humic substances involve complex surface reactions 
and depend on the types of functional groups present.  An earlier study suggests that rapid 
adsorption of the humic substances to the oxides is followed by slower electron transfer at the 
surface to produce Mn(II) and organic oxidation products (Sunda and Kieber, 1994).  

MnOx, which catalyzes reactions due to their high redox potential (MnO2, E0
 = +1.29 V), are 

potent oxidizing and adsorptive agents for various metallic and anthropogenic organic 
pollutants, as well as recalcitrant NOM. In drinking water treatment, as previously stated 
MnOx is used as a coated filter material (e.g., manganese greensand or pyrolusite) in packed 
beds to adsorb Mn(II) from solution.  For a solution pH above the oxide point of zero 
charge (pH), the net oxide surface charge is negative and Mn(II) removal occurs by 
electrostatic adsorption. Mn(II) oxide-adsorption capacity decreases with lower pH and as 
available adsorption sites are lost, free chlorine can be intermittently or continuously added 
to the filter to oxidize adsorbed Mn(II) to MnOx, regenerating new adsorption sites.      

Despite MnOx being the most thermodynamically stable Mn form in oxidizing 
environments, it has been demonstrated that natural organics, structurally related phenolics 
and organic acid compounds are reactive with MnOx, releasing mobile Mn ions into solution 
(Stone and Morgan, 1984, Stone, 1987, Waite et al., 1988).  Reductive dissolution rates 
have been shown to be dependent on pH, reactant concentration and class of the organic. 
Furthermore, the degree of humic adsorption increases with lower pH and higher Ca+2 
concentrations (Tipping and Heaton, 1983). Natural organic matter adsorption to metal 
oxides has been proposed to occur by ligand exchange and surface complexation, via acidic 
humate groups and OH- or H2O oxide groups (Sposito, 1984; Gu et al., 1994), while FTIR 
and NMR spectroscopy indicates that hydroxyl and carboxyl functional groups may be the 
dominant NOM reactive groups involved (Gu et al., 1995). 

A wide variety of aromatic compounds containing functional groups, including humic and 
fulvic acids,  have been shown to be oxidized by Mn oxides with rate laws for the dissolution 
of the oxides established (Stone and Morgan, 1984; Waite et al., 1988). Sunda and Kieber 
(1994) have shown that synthetically prepared Mn(III,IV)-oxides can oxidize humic 
substances to lower-molecular-weight products including pyruvate, acetone, acetaldehyde 
and formalydehyde, products that can serve as growth substrate for microorganisms. In their 
study it was proposed that Mn(II)-oxidizing bacteria may use the biotic Mn-oxides as an 
oxidative agent to access the refractory organic carbon in natural environments, such as 
humic substances. Humic reaction with Mn(III,IV)-oxides under illumination has been 
shown  to produce pyruvate and could provide a mechanism for a more rapid-breakdown of 
refractory NOM (Waite et al., 1988; Kieber et al., 1989).  

 
Copyright © Michael Snyder 2013 
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Chapter 3: Batch Reactor Studies 

3.1 Abstract  

A new bacterium, Pseudomonas Putida strain EC112, was isolated from a soil sample and 
found capable of oxidizing dissolved Mn(II) in the stationary growth phase as a carbon-
stressed, enzymatic constitutive feature, not requiring added Mn for induction. Optimal 
Mn(II)-oxidation conditions for cultures of strain EC112, under aerobic conditions,  were 
determined to be at pH 6.5 and 30°C. Strain EC112 can utilize a variety of growth 
substrates as a carbon and energy source, a trait common for the metabolically diverse P. 
Putida species. Among the trial substrates, robust growth appeared for D-glucose and 
benzoate.  

In order to assess the effect of catalyst MnO2 on humic acid biodegradability, reactors with 
solutions of Aldrich Humic Acids (HA) (a model humic acid) and MnO2 were continuously 
stirred prior to inoculation with strain EC112. HA biodegradability was evaluated for the 
oxidized HA solutions utilizing viable cell counts (preliminary experiments only) and a 
modified 48-hr. Biochemical Oxygen Demand (BOD).  The effect of HA-MnO2 contact 
(stirring) time, solution pH, MnO2 concentration and Ca2+ addition on HA biodegradability 
were studied. Preliminary results indicated that MnO2 increased HA biodegradability and is 
dependent on MnO2 concentration and HA-MnO2 contact time. Subsequent experiments 
using 48-hr. BOD (mg·L-1) for 50 mg·L-1 HA solutions determined optimal HA-MnO2 
contact time and MnO2 concentration to be 45 minutes and 4.6 g·L-1, respectively. The role 
of solution pH and addition of Ca2+ were significant. For reactions at pH 3.0, 7.0 and 9.0, 
48-hr. BOD increased ca. 3, 5, and 0.5-fold, respectively, compared to controls. At pH 7.0, 
30 mg·L-1 of added Ca2+ significantly increased the 48-hr. BOD compared to no addition.   
 

Stationary phase batch Mn(II)-oxidation kinetics were studied for strain EC112. 
Experimental Mn(II) data sets were fitted to the no-growth Monod Model using nonlinear 
least-squares regression and the Marquardt-Levenberg algorithm (MLA). Kinetic parameter 
model calibration and validation was performed using separate carbon sources for growth of 
strain EC112, D-glucose and the HA-MnO2 products, respectively.  Best fit model 
parameters for half-saturation coefficient, Ks, was 1.086 ± 0.029 mg·L-1, and for maximum 
specific substrate utilization rate, kmc, 0.180 ± 0.003 Mn(II)/mg dry cell mass/hour.  
Autocatalytic Mn(II) removal from bulk solution by sorption to MnO2 was negligible in 
control studies and Mn(II) kinetic data sets were modeled without such consideration. 

To identify changes in HA structure induced by MnO2 oxidation, Fourier transform infrared 
(FT-IR) and proton nuclear magnetic spectroscopy (1H-NMR) of HA and HA-MnO2 were 
obtained and interpreted.  

http://en.wikipedia.org/wiki/Fourier_transform
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3.2 Introduction 

Mn(II)-oxidation has been studied with and without biocatalysts in laboratory batch reactors 
(Morgan and Stumm, 1964; Jung and Schweisfurth, 1976; Adams and Ghiorse, 1984; 
Boogerd and Vrind, 1987; Zhang et al., 2002; Jiang et al., 2010). The general observations, 
supplemented with other reactor and in-situ studies in aquatic natural environments, have 
supported the hypothesis that biological catalysts accelerate Mn oxidation rates several orders 
higher than homogeneous abiotic rates (e.g., direct reaction by O2) (Spiro et al., 2010). 
Homogenous Mn oxidation at pH < 9 becomes increasingly kinetically inhibited in the 
absence of catalysis, implicating microorganisms as the dominant Mn(II)-oxidizers in 
freshwater and marine environments (Emerson et al., 1982; Hastings and Emerson, 1986; 
Stumm and Morgan, 1996; Tebo et al., 2005; Geszvain et al., 2012). Given the higher rates 
of Mn(II) oxidation mediated by bacteria, it is recognized that biological drinking water 
treatment processes are viable alternatives to conventional treatment for Mn in water 
supplies. However, even though the potential for biological Mn(II) oxidation control has 
been realized, little information regarding kinetics of such oxidation for pure cultures is 
available. 
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This chapter reports the isolation, growth, and Mn(II)-oxidation of a new isolate, 
Pseudomonas Putida strain EC112, in batch reactors. The specific research objectives are: 

 

1. Isolate a Mn(II)-oxidizing bacterium and identify the species  using 16s-rDNA 
gene sequencing.  

 

2. Determine optimal conditions (pH and temperature) for biological oxidation of 
Mn(II) for isolate.  

 
3. Evaluate isolate growth on selected carbon substrates. 
 

4. Determine model kinetic parameters for Mn(II) oxidation utilizing a single carbon 
source. 

 
5. Test the hypothesis that MnO2 can enhance the biodegradability of a model humic 

acid and thus promote the growth of Mn(II)-oxidizing organisms.  
 
6. Obtain the optimal concentration ratio of humic acid/MnO2 and contact time for 

enhancing humic acid biodegradability.  
 
7. Investigate isolate Mn(II)-oxidation kinetics in batch reactors with MnO2 oxidized 

humic acid as the sole carbon source. 
 
8. Identify changes in humic acid structure introduced by oxidation with MnO2 using 

FT-IR and 1H-NMR spectroscopy. 
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3.3 Materials and Methods 

All experiments described below were prepared using Millipore Super-Q Plus (SQ) water 
(18-MΩ cm-1). Spectrophotometric sample readings were made with a GENESYS 5 
Spectrophotometer (Thermo Electron Corporation, Madison, Wisconsin). Constant stiring 
conditions were maintained by rotary shaking using an Innova 2100 table (New Brunswick 
Scientific, Edison, New Jersey). Batch experiments, when cited as conducted at 30°C, were 
placed in an incubator room controlled at 30.2±0.2 °C. For experiments conducted below 
25°C, a G-24 Environmental Incubator was employed (New Brunswick Scientific, Edison, 
New Jersey). When required pH adjustment was performed using 0.1 N NaOH and 0.1 N 
H2SO4 in most instances. 

3.3.1 Bacteria Strain Isolation and Identification 

Organisms that can oxidize reduced Mn(II) to insoluble, dark colored Mn(III,IV)-oxide 
deposits comprise a broad, phylogenetic collection, and include algae, fungi, bacteria, and 
protozoa  (Tebo et al., 2005; Geszvain et al., 2012) Among these, bacteria, and more 
recently recognizing  fungi, are considered to possess the most robust Mn(II)-oxidation rates 
(Greene and Madgwick, 1991; Tebo et al., 2005).  Clear explanation for a physiological 
function for the  widespread ability among organisms to oxidize Mn is lacking, however, 
with bacteria considered to be the first organisms to evolve on earth, they may have been the 
first Mn(II)-oxidizing organisms, preceding the eukaryotes (Spiro et al., 2010; Geszvain et 
al., 2012).   

Mn(II)-oxidizing bacteria, which normally reside in pH environments in the range 6 – 8, can 
be readily isolated from virtually any aquatic or terrestrial habitat, and favor aerobic 
environments containing several micromoles of Mn (Depalma, 1994; Tebo et al., 2005; 
Nealson, 2006). A diverse array of Mn(II)-oxidizing bacteria and fungi have been isolated 
from man-made biofilters, rapid sand filters, water distribution systems, and passive water 
treatment systems (Czekalla et al., 1985; Murdoch and Smith, 2000; Santelli et al., 2010; 
Cerrato et al., 2010).  Three model manganese oxidizing bacteria and their cultivation have 
been described in detail: Bacillus sp. Strain SG-1, a marine, spore-forming organism isolated 
from a near-shore sediment (Nealson et al., 1980); the freshwater, sheath-forming Leptothrix 
discophora strain SS-1, isolated from a metallic surface film collected from a swamp-pond 
(Ghiorse and Hirsch, 1979); and Pseudomonas Putida MnB1, which represents one of the 
first well-studied Mn(II)-oxidizing bacteria in batch reactors. Strain MnB1 oxidizes Mn(II) 
during the stationary growth phase and was cultivated from a Mn-oxide deposit sample 
collected from a drinking water pipeline (Schweisfurth, 1973). 

Generally, Mn(II)-oxidizing bacteria are not discriminating with respect to carbon source 
and pure cultures have been isolated in liquid or solid media using simple organic sources 
(e.g., acetate, glucose, glycerol) or undefined  media, containing yeast extract and peptone 
(Nealson, 2006).  Enrichment culture techniques, though frequently used, have shown 
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minimal advantages and elevated levels of Mn(II) can be inhibitory to successful cultivation 
(Nealson, 2006).   

Using the following procedures, a Mn(II)-oxidizing bacterium Pseudomonas Putida strain 
EC112 was isolated from a surface soil sample,  collected near the main sidewalk bisecting  
University of Kentucky’s Main Field in June 2007 (also known as the Great Lawn) in 
Lexington, KY. Using an iPhone 4S, the A-GPS coordinates were measured to be 
38.03926°N and 85.50555°W in March 2013. During collection, the sample was field tested 
for oxidized Mn with addition of a few drops of the redox colorimetric reagent 
LeucoBerbelin Blue I (LBB, Sigma-Aldrich), prepared as described below. Formation of a 
deep blue color confirmed the presence of oxidized Mn.  

Laboratory isolation procedures for strain EC112 began by adding 1 to 2 grams of soil 
particle sample to 400-ml Kimax glass beakers, each containing 200-ml of isolation media. 
The isolation media consisted of SQ water supplemented with (mg·L-1): α-D-glucose, 10 
(Sigma-Aldrich); BactoTM Yeast Extract, 5 (BDTM Difco); and Mn(II), 2 from stock solution 
(MnSO4·H2O, Fischer Scientific). Following 3 days of incubation at 30°C, a brown, metallic 
film developed on the water’s surface in one of the glass beakers. Addition of LBB to a 
sample of the brown film confirmed the presence of oxidized Mn.  A loopful of the crusty, 
surface film was transferred to a 500-ml Erlenmeyer flask containing 300-ml of autocalved 
isolation media. The flask was capped with a sterile cotton plug and wrapped with aluminum 
foil prior to incubation at 30°C on a rotary shaker set at 130 rpm. Within 24 hours, 
suspended brown particles were observed in the liquid media and Mn(II) oxidation was again 
confirmed using LBB. This was followed by collection and transfer of 1-ml sample of the 
liquid media to a 500-ml Erlenmeyer flask containing 300-ml of the isolation media. After 3 
transfers, 5 to 10 mg·L-1 of Aldrich Humic Acid (HA) (unpurified as sodium salt) was added 
to the culture media. Enrichment of the isolation media was added to favor isolation of a 
Mn(II)-oxidizing bacteria strain(s) capable of utilizing humic acids as a carbon source. 
Mn(II)-oxidation was observed within 24 hours, and a loopful of the brown, suspended 
precipitates were streaked on  PYG agar plates containing 5 mg·L-1  of Mn(II). Flat, brown 
colonies were observed growing on the surface of the agar within 24 hours. Spot tests with 
LBB directly on several brown colonies confirmed the presence of Mn oxide.   

A pair of agar plates containing the brown colonies was shipped to Laragen, Inc. (Los 
Angeles, CA) for organism identification. Using the 16S rDNA partial sequencing 
technique, universal primers amplified a ~1200 bp 16S rDNA fragment (Appendix A). The 
consensus sequence had a 100% match with Pseudomonas Putida using GenBank, referenced 
in this study as P. Putida strain EC112. 
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3.3.2 Bacteria Strain Maintenance 

For short term preservation, strain EC112 was maintained on agar plates stored in a 4°C 
(4°C±1°C) walk-in incubator. In 2 to 3 week intervals, fresh cultures were grown and a 
loopful of fresh culture was used for agar plate streaking.  A sterile inoculation loop was used 
to transfer isolate culture (i.e., a colony) from a PYG agar plate to a sterile 1-L Erlenmeyer 
flask containing 250 to 500-ml of autoclaved PYG media.  Following overnight growth at 
30°C on a rotary shaker (set at 130 rpm), cells grew to the middle stationary growth phase 
based, according to optical (cell) density (OD) measurements using a spectrophotometer at 
600 nm  (OD600=0.350 to 0.600). A loopful of growing culture was streaked on a PYG agar 
plate under a germ-free hood and kept at 30°C incubation for 24 to 48 hours. Strain EC112 
typically forms flat, brown colonies within 24 hours on the surface of the agar plates and 
were transferred for storage at 4°C. Streak plates were sealed using Parafilm® M. 

The agar medium was prepared by adding 15 g∙L-1 DifcoTM Nutrient Agar (Becton, 
Dickinson and Company) to the PYG media. Solutions were autoclaved for 15 minutes at 
121°C prior to addition of 1-2 mg∙L-1 of Mn(II) (stock solution) to the hot solution.  
Approximately 15 to 20-ml aliquots of the hot solution were poured into 100 mm x 15 mm 
petri dishes (Fischer Scientific) under the germ-free hood. Plates were allowed to cool at 
room temperature prior to storage at 4°C. 

For long term (6 months – 2 years) preservation, strain EC112 cells were stored in a -80°C 
freezer (Thermo Scientific Revco Upright Freezer, Model ULT 1386-3-A36). For storage 
preparation, cells were grown in PYG media or NB media to middle exponential growth 
phase at 30°C on a rotary shaker (set at 130 rpm). A 1-ml of culture was pipetted to a 2.0- 
ml microcentrifuge tube (with snap caps) and 1-ml of 20%(v/v) glycerol (C3H8O3, 92.09 
g∙mol-1) was added. Tubes were capped and hand agitated a few seconds prior to placement 
in the freezer. 

 

3.3.3 Bacteria Strain Harvesting 

Isolate cultures for all experiments were grown for harvesting using either PYG Media or 
NB. Cultures for experiments utilizing glucose as the primary carbon substrate were 
harvested from PYG Media, while all others (primarily those utilizing HA) were harvested in 
NB Media, with pH adjusted to 6.5 to 7.0. A colony of strain EC112 from a PYG agar plate 
stored at 4°C were added to autoclaved, 500-ml of harvest media in a 1-L Erlenmeyer Flask 
and placed on a rotary shaker (set at 130 rpm) in the 30°C temperature controlled walk-in 
incubator. Cells were harvested following 10-12 hours when the middle to late exponential 
phase of growth was reached. 
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Harvested cells were washed three times with 20-ml of 7.5% NaCl solution followed by 
centrifugation at 4000g for 10 minutes. The cell pellet was resuspended in 20-ml of trace 
metal solution prior to use. 

 

3.3.4 Media and Stock Solution 

Harvested isolate cultures for all experiments were grown using either the PYG Media or NB 
Media. Mn(II) stock solutions  were prepared as described in section 3.3.4.6 below. All 
experiments were conducted in low-light conditions.   

 

3.3.4.1 Peptone-Yeast-Glucose (PYG) Media 

PYG media consisted of ATCC Medium 1503 Leptothrix 2X PYG with minor 

modifications. The media was prepared by adding 2 mg∙L-1 MnSO4· H20, 0.5 g of α-D-
glucose (Aldrich Chemical Company), 0.5 g BactoTM Peptone (BDTM Difco), 0.5 g BactoTM 
Peptone Yeast Extract (BDTM Difco), 2.57 g of HEPES acid (Sigma-Aldrich), 0.6 g of 

MgSO4 .7 H20 and 0.07 g of CaCl2.2 H20 to 1-L of SQ water in a screw cap Pyrex bottle.  

MnSO4.H20 was added first to minimize chemical precipitation of Mn(II) ions. PYG media 
solutions were filter sterilized using 0.22µm Stericup® GV Filters. 

3.3.4.2 Nutrient Broth (NB) Media 

NB media was prepared in sterile 1-L Erlenmeyer flasks by adding 2 g∙l-1 Difco Nutrient 
Broth medium supplemented with 0.6 MgSO4 ·7 H20 and 0.07 g CaCl2.2H2O to 500-ml of 
SQ water.  The NB media was autoclaved for 15 minutes at 121°C prior to the addition of 1 
mg·L-1 of Mn(II) from stock solution.  

3.3.4.3 Substrate Screening Media 

The basal media for the substrate screening experiments was prepared by adding 50 mg·L-1  
(or equivalent in µM) of each carbon substrate to the following basal media (mg∙L-1): 
(NH4)SO4, 5; H2KPO4, 10; K2HPO4, 10; CaCl2∙2H2O, 10;  MgSO4·7 H2O, 20; Mn(II), 1; 
trace metal solution, 1-ml.  
 
The trace element solution was prepared by adding 6.5 mL of HCl (25%), 1.5 g of FeCl2·4 
H2O, 60 mg of H3BO3, 120 mg of CoCl2·6 H2O, 70 mg of ZnCl2, 25 mg of NiCl2·6 H2O, 
15 mg of CuCl2·2H2O and 25 mg of Na2MoO4·2 H2O to 1-L of SQ water. 
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3.3.4.4 Glucose Media 

Glucose media was prepared by aseptically adding 0.5 g of α-D-glucose (Aldrich Chemical 

Company), 0.05 g of MgSO4 · 7 H20, 0.05 g (NH4)SO4, 0.05 g H2KPO4, 0. 07 g of CaCl2 . 
2 H20 to 1-L of SQ water in a screw cap Pyrex bottle.  The concentration of Mn(II) added 
from stock solution, depended on the experiment, and was added first to minimize chemical 
precipitation of Mn(II) ions. Final solutions were filter sterilized using 0.22µm Stericup® GV 
Filters. 

 

3.3.4.5 Humic Acid Stock Solution 

Aldrich Humic Acid (HA) 

Humic acid was purchased from Sigma-Aldrich (technical grade, Germany) as sodium salt 
(Batch #: 07726DD). For purification of stock solution, 1 g of HA was added to 1-L SQ 
water containing 0.5% (v/v) concentrated HF/HCL solution. The solution was stirred for 12 
hrs. with a magnetic stirrer prior to a 30 min. centrifugation at 4500 rpm for insoluble 
residue removal. The residue was then washed with SQ water prior to being added to a 
NaOH solution at pH 9 and placed on a rotary shaker table overnight. The solution was 
then filtered using a 0.22µm Stericup® GV Filters. 

HA characterization was not performed in this study but obtained from literature. Published 
elemental analysis of purified Aldrich Humic Acid (PAHA) consists of (wt %) C, 60.0 %; O, 
34.5%; H, 4.5%; and N, 1.0%, and is comparable to other commercial humic acids. The 
degree of ionization for AHA is reported to be >90% at pH above 7, determined by direct 
titration (using NaClO4 at 20°C) (Kim et al., (1990)).  AHA molecules have a broad 
molecular weight range (1000 kDa to > 300kDa) and an average molecular weight (Mw) of 
4,500 - 23,000 (Beckett et al., 1987; Chin and Gschwend, 1991; Vermeer et al., 1998).  

  

3.3.4.6 Mn(II) Stock Solution 

Mn(II) stock solution was prepared by adding 3.076 g of MnSO4∙H20 to 1-L of SQ water to 
make a 1000 mg∙L-1 solution of Mn(II). The solution was standardized according to 
Standard Methods 3500-Mn B (APHA, 1998) and stored at 4°C in subdued light 
conditions. 

3.3.4.7 Pseudomonas Putida MnB1 

Pseudomonas Putida MnB1 (ATCC 23483) was purchased from American Type Culture 
Collection (ATCC). Growth and Mn(II)-oxidation was investigated for strain MnB1 and 
strain EC112 in parallel experiments. Upon receipt of the culture from ATCC, strain MnB1 
was immediately revived following ATCC procedures for bacteria. This involved aseptically 
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adding 0.5-ml of PYG liquid medium to the freeze-dried culture and mixing. A small aliquot 
of this solution was then pipetted to a sterile 500-ml Erlenmeyer flask containing 200-ml of 
autoclaved PYG media. The flask containing the MnB1 culture was placed on a rotary 
shaker (set at 130 rpm) at 30°C for overnight growth.  Streak plates were made from this 
growing liquid culture and stored at 4°C. 

3.3.4.8 MnO2 

Manganese dioxide (MnO2) was obtained from Inversand Co. (Clayton, H.J.) as 
GreensandPlus (GSP), a product replacement for manganese greensand. GSP, a catalytic 
filter media widely used in drinking water treatment primarily for Mn and Fe 
sorption/oxidation, consists of 0.30 to 0.35 mm sized silica (SiO2) sand nodules (≥96% of 
the bulk mass), with a thermally fused exterior coating of MnO2. GSP was pre-treated prior 
to use, as recommended by the manufacturer by soaking in 4.0 g∙L-1 KMnO4 solutions then 
rinsed thoroughly in flowing SQ water.  

Powder X-ray diffraction patterns of GSP  were recorded on a Bruker-AXS D8 Discover 
diffractometer using Cu Kα1 radiation (λ = 1.5406 Å) with a step size of 0.02° and 2Ө range 
of 20-70°.  The sand nodules were ground to a fine powder prior to analysis using a mortar 
and pestle. Sharp, narrow diffraction XRD patterns indicated the powder consisted of 
crystalline matter, primarily δ-MnO2 (birnessite) mixed with smaller amounts of α-Mn3O4 

(hausmannite) and Mn2O3 (bixbyite). The strongest peak identified was the quartz (SiO2 

sand nodules) core. 

The Mn oxidation state was determined by iodometric titration using duplicate flasks 
(Murray et al, 1984).  

The average pore width and Barrett−Emmett−Teller (BET) surface area of the GSP nodules 
were determined using a Micromeritics TriStar 3000 analyzer and the N2 adsorption and 
desorption isotherms. The Barrett−Joyner−Halanda (BJH) method was used to derive the 
average pore width from the isotherm adsorption branches The pH at the point of zero 
charge (PZC), pHpzc, of GSP was determined by potentiometric titration (Raij and Peech, 
1972).   

3.3.5 Analytical Methods  

3.3.5.1 Mn(II) 

Mn(II) was determined using the persulfate method (3500-Mn B in  Standard Methods 
(APHA, 1998)).  In this method, persulfate (S2O8

-2) is added to the sample, oxidizing soluble 
Mn(II) to permanganate (Mn(VII)). The violet color is subsequently measured 
colorimetrically using a spectrophotometer at 525 nm. Prior to the addition of persulfate, 
samples were centrifuged for 10 minutes and/or filtered using a 0.22 µm filter to remove 
particulate Mn.  
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3.3.5.2 Mn(IV) 

Mn(IV) concentration was measured colorimetrically with the LeucoBerbelin blue assay 
(LBB) (Krumbein and Almann, 1973; Boogerd and de Vrind, 1987). LBB is a reduced 
triphenyl compound dye that reacts with oxidized Mn(III,IV)Ox. The deep blue color froms 
in seconds and is measured at 620 nm using a spectrophotometer. Raw samples (0.1 ml) 
containing Mn were added to 0.5 ml of 0.04% LeucoBerbelin I blue in 45 mM acetic acid. 
The calibration curve for Mn(IV) measurement were prepared with KMnO4. 

3.3.5.3 Dissolved Organic Carbon (DOC) 

Humic acid concentration was characterized as Dissolved Organic Carbon (DOC) using a 
Total Organic Carbon (TOC) analyzer (Shimadzu, TOC-VCSH).  Samples were 
centrifuged for 10 minutes at 10,000 rpm (Eppendorf 5415C centrifuge) and/or filtered 
with 0.22 µm membrane filters (PVDF, Millipore) then preserved with 2 drops of 2 N 
HCL. Samples were stored at 4°C prior to analysis.  

 

3.3.5.4 UV254 

In addition to DOC, UV absorbance at 254 nm (UV254) was measured to characterize HA 
concentration. Samples were centrifuged at 10,000 rpm for 10 minutes and/or filtered using 
a 0.22 µm membrane filter (PVDF, Millipore) prior to the spectrophotometer reading.  

3.3.5.5 Glucose Assay 

Glucose was determined using the Nelson’s colorimetric modification of Somogyi’s 
procedure (Hodge and Hofreiter, 1962). Briefly, 2 ml of arsenomolybdate solution was 
added to an equal mixture of boiling copper reagent and sample. Development of a green-
orange color was read using a spectrophotometer at 500 nm (Chirwa, 2000). 

3.3.5.6 Strain EC112 Growth 

The following methods were used to enumerate batch bacteria growth:  (1) 
spectrophotometric, (2) standard plate count, (3) volatile suspended solids (VSS), and (4) a 
modified Biochemical Oxygen Demand (BOD). 

3.3.5.7 Spectrophotometric 

Cell density was measured by optical density at 600 nm using a spectrophotometer 
(Spectronic Genesys 5) as an indirect measure of cell growth. 
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3.3.5.8 Standard Plate Count 

The suspended cell count was determined following the spread plate method in Section 
9215-C of Standard Methods (1998, APHA). The agar medium for the spread plate method 
was prepared as described in section 3.3.2 without the addition of stock Mn(II).  

 

3.3.5.9 Volatile Suspended Solids (VSS) 

Total biomass dry weight was measured as volatile suspended solids (VSS) following Section 
2540-E of the Standard Method (APHA, 1998). 

3.3.5.10 Biochemical Oxygen Demand (BOD) 

Biochemical oxygen demand (BOD) was used as a measure of HA biodegradability. 
Standard Methods 5210-B 5-Day BOD Test was followed (1998, APHA) with two minor 
modifications: (1) strain EC112 served as the seed and the incubation temperature was 30°C 
instead of 20°C, and (2) the incubation period was 48-hrs., shortened from the standard 5-
day. Samples were filled in standard 300-ml capacity glass bottles and capped with ground-
glass stoppers.  Samples were analyzed promptly on conclusion of the 48-hr. incubation 
period. 

3.3.6 Substrate Screening Evaluation  

Substrate screening tests were performed to evaluate strain EC112 growth on single carbon 
sources under aerobic conditions at 30°C and pH 7.0±0.25. Approximaely 50 mg∙L-1 of 
carbon source at 50 mg∙L-1 was added to 50-ml of basal media then inoculated with 0.5-ml 
aliquot of harvested culture in 200-ml flasks. The flasks (duplicates) were placed on a rotary 
shaker (set at 130 rpm) for 5 days and observed for changes in optical density.  

3.3.7 Optimal pH and Temperature for Mn(II)-Oxidation 

The effect of pH (5.5, 6.0, 6.5, 7.0, 7.5, 8.0) and temperature (5-35°C) on Mn(II)-oxidation 
by strain EC211 were evaluated separately for glucose, HA, and without added carbon. The 
carbon source was added to basal media as prepared as in section 3.3.4.3 with 50 mg∙L-1 of 
carbon substrate. Three of the Good’s buffer’s were selected for pH control: 5.0 – 6.0 [MES 
(2-(N-morpholino)ethanesulfonic acid), pKa=6.10 at 25°C]; 6.5-7.0 [PIPES (piperazine-
N,N′-bis(2-ethanesulfonic acid), pKa=6.76 at 25°C], and 7.5-8.0 [HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid), pKa=7.48 at 25°C] (Larsen et al., 1999). 

Experiments were initiated by adding 5 % (v/v) of harvested culture obtained according to 
Section 3.3.3 to 250 ml of media in sterile 500-ml Erlenmeyer flasks adjusted to the 
appropriate pH.  Samples were collected for Mn(II) analysis at appropriate intervals.  



34 
 

3.3.8 Chemical and Biological Controls 

Experimental controls were conducted to differentiate between biologically catalyzed Mn(II)-
oxidation (direct oxidation by strain EC112) and other potential oxidation/removal 
processes, including passive biosorption (e.g., sorption by  the negative surface charges on 
bacterial surfaces, exopolysaccharides (EPS) or biogenic Mn(III,IV) oxides)  and chemical 
oxidation or precipitation by components of the experimental media.  The general approach 
involves adding known amounts of Mn(II) to flasks containing inactivated cells (for 
biological controls) and the various chemical media (for chemical controls) and monitoring 
Mn(II) over time.  For biological controls, the use of poisons or metallo-enzyme inhibitors, 
e.g., redox enzyme inhibition by sodium azide (NaN3) or cyanide (CN-1), is a common 
technique to inactivate redox enzymes in laboratory cultures, but was avoided in this study 
due to the robust metabolism characteristic of strains of P. Putida.  As an alternative, strain 
EC211 was autoclaved at 121°C for 15 minutes to ‘kill’ or inactivate  biologic Mn(II)-
oxidizing ability (Dastidar and Wang, 2010). 

Chemical controls were prepared in 100-ml solutions of 250 mg∙L-1 PYG media in 500-ml 
Erlenmeyer flasks spiked with 11 mg∙L-1 Mn(II). Biological controls were prepared by adding 
20 mg of inactivated cells to 100-ml of SQ water in 500-ml flasks. The cells were first grown 
separately in 500-ml of PYG media containing 5 mg∙L-1 Mn(II) and harvested following 
Mn(II) oxidation in stationary phase by centrifugation.  

To evaluate the effect of cell sorption as a Mn(II) removal mechanism from solution, both 
Mn(II) and Mn(IV) were monitored in an additional Mn(II)-oxidation experiment.  

3.3.9 FT-IR-Spectroscopy of Aldrich Humic Acids 

Samples for FT-IR-Spectroscopy analysis were prepared by freeze-drying solutions of MnO2 
oxidized HA and HA prepared as described in Section 3.3.11. The freeze dried samples were 
ground and mixed with infrared grade KBr pellets at a concentration of approximately 2%. 
Spectra were recorded in absorbance mode on a Nicolet FT-IR 6700 Spectrometer. Spectral 
resolution was 4 cm-1 and 16 scans were run. Spectra were normalized to a maximum of 1.0 
for comparison (He et al., 2009).  

3.3.10 1H-NMR of Aldrich Humic Acids 

Samples for 1H-NMR -Spectroscopy analysis were prepared by freeze-drying solutions of Ha-
MnO2 and HA. 

1H-NMR spectra of the freeze dried samples in 5 mm diameter probes were acquired with a 
Varian INOVA 400 Mhz. Approximately 25 mg of HA was dissolved in 0.5 ml of D20.  
Methanol was the internal reference standard (3.3 ppm). Spectra were obtained using 1024 
scans, 8400 Hz spectrum width, acquisition time of 1s and a 1.5s pulse delay (Weng et al., 
2006). 
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3.4 Mn(II) Oxidation Kinetic Analysis 

The kinetics of Mn(II) oxidation in batch cultures of strain EC112  was analyzed using the 
Monod kinetic expressions which are frequently used to model the relationship between 
microbial growth and substrate depletion. Various modifications to these equations have 
been applied, including zero-, first-order and no growth kinetics (Simkins and Alexander, 
1984). These nonlinear, ordinary differential equations can be integrated and estimation of 
the model kinetic parameters can be obtained by fitting the single substrate (S) consumption 
data to t (time) using the integrated forms and nonlinear regression. The consumption rate 
of the substrate is represented by the kinetic parameters kmc and Ks (Eqns. 3-1 and 3-2). 

 

(3-1) 

 

(3-2) 

 

Where X=bacteria biomass (mg), S=Mn(II) concentration (mg/L), kmc=maximum specific 
Mn(II) oxidation rate, Ks=half-velocity saturation rate, Y= yield coefficient. The Lenvenberg- 
Marquardt nonlinear least-squared algorithm is used to optimize the Monod model 
parameters using SigmaPlot 11.0 (Systat Software Inc.). The optimized model parameters 
will be obtained by minimizing the residual sum of squares (SSE) between experimental data 
and model calculated values as given by Eqn. 3-3: 

  

    SSE = � �Siobs − 𝑆𝑖
pred�

2𝑛

𝑛=1
    (3-3) 

          
  

where Si
obs is the measured Mn (II) concentration in the  ith experimental sample, and Si

pred is 
the corresponding model prediction of Mn (II) for the same sample point. 

 

3.5 Sensitivity Analysis 

Evaluation of whether the kinetic model parameters representing Mn(II) oxidation may be 
optimally estimated using nonlinear regression relies on the use of sensitivity coefficients.  
Sensitivity coefficients measure the sensitivity of the dependent variable, S, to changes in 
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each model parameter and are used to predict the uniqueness and relative precision of the 
estimated parameters (Robinson and Tiedje, 1983). Derivation of the sensitivity equations 

are obtained by determining first derivatives   
dS
dKS

  and dS
 dkmc

 of the model with respect to 

each model parameter. The sensitivity equations for the batch kinetic model parameters, Ks 
and kmc, are obtained by taking the first derivative of the integrated no growth Monod model 
with respect to each parameter, using implicit differentiation (Simkins and Alexander, 1984) 
(Eqns. 3-4 and 3-5). 

 
                                                   

                          dS
    dkmc

= − t
Ks
S +1

                                           (3-4) 

 

            
dS

 dKs
= −

lnS0
S

Ks
S +1

                                         (3-5) 

 

 

The sensitivity equations are plotted against the independent variable, t, allowing a curve 
comparison and evaluate where the model is most sensitive to changes in parameters 
(Robinson and Tiedje, 1983).  
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3.6 Results and Discussion 

3.6.1 MnO2 Characterization 

The Mn oxidation state of the surface coating of Mn oxide on the GSP nodules was 
determinedto be 3.95±0.03, by iodometric titration (Murray et al., 1984). For comparision, 
the Mn oxidation state of δ-MnO2 has been measured at 4.02 (Villalabos, 2003).  

The average pore width and Barrett−Emmett−Teller (BET) surface area of the GSP nodules 

were 6.28 nm and 2.637 m2.g-1, respectively. Lie et al., (2001) report a specific surface area 

of 2.53 m2.g-1 for birnessite (δ-MnO2), which is comparable to the result obtained for GSP. 
In addition, the mineral pyrolusite (β-MnO2), a filter material also used in water treatment 

for Mn/Fe removal, has reported IEP and specific surface areas of 4.3 to 4.4 and 2.2 m2.g-1, 
respectively  (O’Reilley and Hochella, 2003; Cristiano et al., 2011). 

The pH at the point of zero charge (PZC), pHpzc, of GSP is 4.5, determined by 
potentiometric titration, and shown on Figure 3.1 where the MnO2 surface begins to have a 
net negative surface charge (Raij and Peech, 1972).  The net surface charge increases sharply 
above pH 8.  

The Mn oxide surface coating for GSP may be best compared to birnessite, δ-MnO2, in 
terms of oxidation state and dominant XRD diffraction patterns, but will be referenced as 
MnO2. Discrepancies in oxidation state between the mixed phases determined by XRD (+3 
and +4) and the oxidation state from titration may be that transition metal oxides, such as 
MnO2, are characteristically non-stoichiometric.  
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       Figure 3.1: Surface charge (H+) of MnO2 (GreensandPlus) determined from           
potentiometric titration (duplicate averages). 

 

 

 

 

 

 

 

pH
3 4 5 6 7 8 9

S
ur

fa
ce

 C
ha

rg
e 

[m
ol

/g
]

-1.0

-0.5

0.0

0.5

1.0



39 
 

3.6.2 Substrate Screening Experiment 

As shown in Table 1, strain EC112 demonstrated the ability to grow on six-carbon sugars, 
organic acids, and recalcitrant organic substrates, representative of the diverse metabolism 
similar to other Pseudomonads and P. Putida strains.  P. Putida strains have been 
demonstrated to have the most versatile number of enzymes capable of cleaving aromatic and 
aliphatic hydrocarbon bonds. For example, P. Putida CSV86 utilizes aromatics such as 
benzaldehyde, benzyl alcohol, naphthalene, and benzoate prior to glucose (Basu et al., 2009).  

Growth was particularly strong for glucose and sodium benzoate, a monoaromatic, 
bacteriostatic acid. Without the addition of organic carbon, or with the addition of inorganic 
carbon (as sodium bicarbonate), no growth is observed, indicating the isolate is an aerobic 
heterotrophic.   

The apparent utilization by strain EC112 of acetone, acetaldehyde, formaldehyde, and 
pyruvate as substrate is particularly of interest.  These aldehydes and keto acids have been all 
have been identified as products of the reaction between humic substances and Mn Oxide 

(Sunda and Kieber, 1994). This result suggests that strain EC112 may have the ability to 
grow on humic substance oxidation products as microbial growth substrates.  

 

3.6.3 Biological and Chemical Controls for Mn(II)-Oxidation 

The time-course Mn(II) data shown in Figure 3.2 for chemical and biological controls 
indicate negligible Mn(II) removal from solution. This observation is supported by 
computation of the relative standard deviation (RSD) and test for slope significance 
(determined by the P-value) of a regression line for each data (n=4) set. The RSD computed 
for the chemical and biological control data set are 6.29% and 6.67% respectively, within 
the analytical error of 26.3% for a synthetic sample containing Mn and analyzed by several 
laboratories, according to Standard Methods for the Mn assay using the persulfate method 
(3500-Mn B). P-values for the slope significance of the regression line fitted to each data sets 
are p=0.115 and p=0.853, which exceed the 0.05 significance level, supporting that the slope 
is equal to zero (i.e., no significant change in Mn(II) concentration with time).  It can be 
concluded that neither the PYG chemical media nor inactivated strain EC112 cells encrusted 
with Mn(III,IV) act as oxidizing/removal mechanism for Mn(II).  
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Figure 3.2: Mn(II) concentration in chemical and biological controls. 
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To investigate the oxidation of Mn(II) and the concurrent production of Mn(IV) by strain 
EC112, both Mn(II) and Mn(IV) were monitored in batch experiments (Figure 3.3). The 
initial and final Mn(II) concentration were 0.72 mg∙L-1 and 0.70 mg∙L-1, exceeding 95% 
recovery,  indicating cell sorption is not a significant Mn(II) removal mechanism.  
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Figure 3.3: Mass Balance of Mn(II) and Mn(IV) for Mn(II) oxidation  by strain EC112. 
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3.6.4 Strain EC112 Comparison to Pseudomonas Putida MnB1 

Mn(II) oxidation and growth of strain EC112 and MnB1 (ATCC 23483), a model Mn(II)-
oxidizer, were investigated in parallel experiments, provided glucose as the sole carbon 
source. Growth, Mn(II)-oxidation (shown as Mn(IV) production), and glucose consumption 
for each strain under identical conditions are  shown in Figure 3.4. The results show 
comparable growth and Mn(II) oxidation rates for both strains. Stationary growth phase is 
reached 3 to 4 hrs. after cell innoculation onset of Mn(II) oxidation and concomitant 
production of Mn-oxides. 
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Figure 3.4: P. Putida strain EC112 and MnB1 comparison, (a) growth, (b) Mn(II)  
oxidation (measured as Mn(IV)), and (c) substrate (glucose) consumption. 
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3.6.5 Effect of Mn(II) and Glucose Spikes on strain EC112 Mn(II)-oxidation 

Drinking water utilities report that treatment of Mn in raw source waters with variable 
amounts of Mn presents more significant challenges to conventional treatment than those 
with constant, high levels of manganese. Specifically, untreated waters with maximum Mn to 
average concentration ratios greater than 10:1 have been frequently observed to be the most 
problematic (Kohl and Medlar, 2006). To evaluate the effects of sudden variations in Mn(II) 
concentration on recoverability and sustainability of Mn(II)-oxidation, Strain EC112 
cultures were repeatedly spiked  with  Mn(II) or glucose, respectively. 
  
The results of Mn(II) spikes are shown in Figure 3.5, where the liquid medium initially 
contains 250 mg∙L-1 glucose and 1 mg∙L-1 Mn(II). The time course shows glucose 
consumption is complete by 3 hours, shown in Figure 3.5a, and no further amounts are 
added, followed by oxidation of the initial 1 mg∙L-1 of Mn(II) within 4 hours. Subsequent 
Mn(II) spikes of 21, 30 and 14 mg∙L-1 at 7, 12, and 23 hours respectively, shown in Figure 
3.5b, were all subsequently oxidized below 0.05 mg∙L-1. These results demonstrate the 
robustness of strain EC112 to oxidize relatively high concentrations of Mn under repeated 
Mn(II) spikes without the growth substrate glucose.  
  
The results of Mn(II) and glucose spikes are shown in Figure 3.6, where the liquid medium 
initially contains 175 mg∙L-1 glucose and 6.3 mg∙L-1 Mn(II). Glucose consumption is near 
complete by 2 hours (Figure 3.6a), followed by oxidation of the initial 6.3 mg∙L-1 of Mn(II) 
within 6.5 hours (Figure 3.6b). At 11.5 hours, spikes of Mn(II) (6.5 mg∙L-1) and glucose 
(170 mg∙L-1) were added to the batch cultures. Subsequent oxidation of both substrates 
demonstrate that strain EC112 can oxidize Mn(II) in the presence of significant glucose 
concentration.    
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          Figure 3.5: Mn(II) spikes and subsequent Mn(II) oxidation, (a) glucose      
           consumption for strain EC112, (b) Mn(II) spikes (indicated with arrow). 
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Figure 3.6: Mn(II) (a) and glucose (b) spikes following initial Mn(II) oxidation 
and glucose consumption for strain EC112. 
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3.6.6 Effect of Mn(II) concentration on Strain EC112 Growth 

The effect of Mn(II) concentration on strain EC112 growth was studied. Glucose was 
provided as the sole carbon source. Batch reactors were spiked with Mn(II) concentration of 
1.0, 4.0 10.0, 16.0, and 26.0 mg·L-1.  The results, shown in Figure 3.7, reveal that early 
stationary growth phase is reached 3 to 3.5 hrs. following cell inoculation, as measured by 
optical density at 600 nm (OD600). Growth was enhanced for experiments spiked with 
Mn(II) concentrations of 1.0 to 26.0 mg·L-1, compared to the experiment without added 
Mn(II).  This is indicated by the higher optical density measurements, taken at 0.5 hr. 
intervals, for the experiments containing added Mn(II). The decrease in OD600 observed after 
3.5 hrs. is coupled with the onset of Mn(II)-oxidation (Section 3.6.7).    
 
Reports for the effect of Mn(II) on growth on Mn-oxidizing bacteria generally show growth  
inhibition for both  in-situ and laboratory studies  at  high enrichment levels (10 to 55 µM 
Mn(II)) (Adams and Ghiorse, 1985; Chapnick et al., 1982). Here, Mn(II) concentrations at 
26 mg·L-1 (468 µM) did not show growth inhibition. Lack of cell inhibition may be that 
strain EC112 has a preference for enriched levels of Mn(II) or the apparent effect observed 
for other strains is masked by Mn(II) chelation or complexation with components of the test 
media, lowering Mn(II) stress on the cells (Nealson, 2006). 
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              Figure 3.7: Effect of Mn(II) concentration on strain EC112 growth. 
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3.6.7 Effect of Mn(II) Concentration on Strain EC112 Mn(II)-Oxidation 

The corresponding Mn(II) depletion curves for the experiments first reported in Section 
3.6.6 are described here. The results are shown in Figure 3.8 (the corresponding growth 
curves are in Figure 3.7). For strain EC112, Mn(II)-oxidation begins 1 to 1.5 hrs. after the 
onset of stationary growth phase for Mn(II) concentrations to 5 mg·L-1. For Mn(II) 
concentrations of 6 and 9 mg·L-1, Mn(II)-oxidation begins at approx. 6 and 9 hrs. into the 
stationary growth  phase.  Mn(II) oxidation was inhibited and no significant Mn(II) removal 
was observed for 26 mg·L-1 . 

Increased lag phases for higher Mn(II) concentrations is a characteristic shared with other 
metal-oxidizing bacteria, including arsenite oxidizing species (Sehlin and Lindstrom, 1992; 
Suttigarn and Wang, 2005), and may indicate toxic metal concentration levels. These results 
are comparable to Jung and Schweisfurth (1979) and Depalma (1992), studying cell-free 
extracts of P. Putida strain MnB1 (formerly Pseudomonas manganoxidans), where Mn(II) 
oxidation occurred during stationary phase or under nutrient or carbon starvation. 
Particularly, Mn(II) oxidation was observed after approx. 2 hrs. of starvation.  

A mechanism of growth inhibition has been proposed describing that biologic Mn(II)-
oxidation may serve as a detoxification mechanism, reducing dissolved, ambient 
environmental Mn(II) concentrations from toxic levels. Mn toxicity may be due to various 
factors, including adverse effects on DNA replication, whereby the presence of excess Mn(II) 
may cause it to substitute for Mg(II), a critical cofactor for normal function of DNA 
polymerase (Goodman et al., 1983). 

For P. Putida, and several other Mn(II)-oxidizing bacteria (Bromfield, 1956; Zhdanov, 
1976), Mn(II)-oxidation is a starvation induced response. However, the physiological 
function of Mn(II)-oxidation  has not been unequivocally defined (Geszvain et al., 2012). 
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Figure 3.8: Effect of Mn(II) concentration on Mn(II) oxidation, (a) first 25-hrs., 
(b) entire incubation shown. 
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Bacteria induced responses to low nutrient environments are designed to increase cell 
survivability. Cell response mechanisms include formation of protective endospores and cell 
dwarfism, accompanied with decreased endogenous metabolism (Kjelleberg et al., 1983). 
Dwarfisms, whereby bacteria rapidly morph to smaller volumes, often by fragmentation 
mechanisms, allow cells to increase their surface/volume ratio, effectively increasing the 
apparent nutrient flux across their cell membranes (Kjelleberg et al., 1983).  As an example,  
Mn(II)-oxidizing  P. fluorescens  strain GB-1, which initially oxidizes Mn(II) in the early 
stationary phase, first undergoes a size reduction, from 4 to 7 um and 1 to 2 um in length 
with comparable width reduction, and produce polar flagella (Okazaki et al., 1997). In 
addition, encrustation with coatings of negatively surface charged Mn(III,IV) oxide, coupled 
with reduced size and improved motility, may increase cell mobility in competitive 
oligotrophic environments to locate nutrients, particularly surface-attached nutrients, which 
may lead to biofilm formation (Kjelleberg et al., 1983; Parikh and Chorover, 2005).  

3.6.8 pH and Temperature Effect on Mn(II) Oxidation 

The effect of pH (5.5 to 8.0) and temperature (5 to 40°C) on Mn(II)-oxidation for whole 
cells of strain EC211 was investigated in the presence of glucose, AHA, and without added 
carbon, in separate batch experiments. At pH > 8.5,  Mn(II) is susceptible to oxidation with 
O2, and can oxidize and precipitate, therefore isolate Mn(II) oxidation at pH > 8.0 were not 
investigated.  

3.6.8.1 Effect of pH 

The experimental results, shown in Figure 3.9, are typical ‘bell-shaped’ profiles characteristic 
of enzymatic activity. Mn(II)-oxidation occurred over a pH range from 5.5 to 7.5, with an 
apparent  pH optimum of 6.5, and sharp decreases in activities outside the optimum.  The 
ordinate data represents the percentage of 5 mg∙L-1 oxidized in the first 10 hours for each 
respective pH. The experiments were monitored for 24 hours and no Mn(II) oxidation was 
observed at  pH 5.0 and 8.0. For the experiment with no added carbon, Mn(II) is 100% 
oxidized, compared to 90% and 85% for Aldrich Humic Acid and glucose respectively. 
Without a carbon source, strain EC112 begins Mn(II) oxidation shortly after inoculation. In 
the presence of a carbon source, Mn(II) oxidation by EC112 was delayed to stationary phase. 
This pH profile is comparable to Mn(II)-oxidizers Pedomicrobium sp. ACM 3067 (Larsen et 
al., 1999) and Arthrobacter sp. (Broomfield and David, 1976), two species with favorable 
comparisons to  Pseudomonas Putida strains.  Optimal Mn(II)-oxidation rates by Arthrobacter 
sp., obligate, gram-positive aerobes common in soil and can grow on a variety of aromatic 
compounds,  occur in cell suspension at pH 6.5 with rates rapidly decreased below pH 5.7 
and above 7.5. Pedomicrobium sp. ACM 3067, a budding-hyphal bacterium; and 
Pseudomonas Putida MnB1, two heterotrophic Mn(II)-oxidizing bacteria common in soil, 
and are frequent hosts in biofilms in engineered aquatic bioreactors and water distribution 
systems. Each have a pH optimum of 7.0 to 7.5 and a higher alkaline range up to pH 8.0. 
Similarly, Leptothrix discophora SS1, a sheath-forming, freshwater  
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Figure 3.9: Effect of pH on strain EC112 Mn(II)-oxidation with initial Mn(II) of 
5 mg∙L-1 at 10 hr. incubation (duplicate averages). 
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Mn(II)-oxidizing bacterium, oxidizes Mn(II) in the pH range of 6.0 to 8.5 with a pH 
optimal of approximately 7.5.   

Hydrogen ion concentration has a marked effect on enzyme activity, on the secondary and 
tertiary conformation of enzymes, and the degree of ionization of the enzyme’s active site(s). 
This effect is manifested as pH variation alters the degree of ionization of the amino group’s 
side chains, hence altering the shape of the enzyme and the active site.  

Bacteria with varying pH-optimum for Mn(II) oxidation may gain an advantage under 
different environmental conditions. A possible advantage could be offered in terms of energy: 
at a higher pH-optimum may gain an energetic advantage compared to bacteria with lower 
pH-optimum. Thermodynamic calculations utilizing the standard Gibbs free energy of 
formation can readily support this assertation. The Gibbs free energy (∆G) released during 
Mn(II) oxidation, using oxygen as the terminal electron acceptor, is an exergonic reaction 
and increases with pH. In addition, at higher pH values, activation energy requirements 
diminish, due to the increased levels of OH- which aid in the transfer of electrons. (Luther, 
2005).  For example, -6.15 kcal∙mol-1 and -8.85 kcal∙mol-1 of free energy are released at pH 
6.5 and 7.5 respectively for 1 µM of reactant and 225 µM of O2 (Nealson et al., 1988). 
Various Mn(II) oxidation reactions can occur and produce Mn(III), mixed (III,IV) or 
Mn(IV) oxidation states. The precipitation oxidation of Mn(II) to yield stoichiometric 
manganese (IV) dioxide can be represented as:  

   Mn(II) + 0.5O2 +H2O → MnO2 + 2H+                 (3-9) 

   

The larger free energy release (-8.85 kcal∙mol-1) at pH 7.5 would be advantageous to bacteria 
with a higher pH optimum. At pH values higher than 8-9, and redox conditions, Eh, >200 
mV, homogenous Mn(II) oxidation with O2  is expected in days to weeks, in the absence of 
biological catalyst (Morgan, 2005). In addition, below pH 6.0, the energetics of Mn(II) 
oxidation is unfavorable, which may explain why bacteria grow and oxidize Mn(II) in the 
range from pH 6.0 to 8.5 (Nealson et al., 1988).  

Mn(II)-oxidizing bacteria that prefer to operate in oxidizing conditions in near neutral pH 
range may be advantaged to tap recalcitrant natural organic compounds (e.g., humic acids) 
for growth or energy requirements. Hydrogen ion concentration is expected to have a 
significant effect on the redox reaction involving manganese oxides and humic acids  
producing lower-molecular-weight bioavailable products. This may be due to modifications 
in the molecular humate structure from expanded,  linear colloids at alkaline pH to compact, 
aggregated configurations at lower pH values, effectively promoting adsorption to the 
hydrophilic metal oxide surfaces and increased rates of humate oxidation. Various research 
results involving humic and fulvic acids have clearly demonstrated the relationship between 
pH and apparent humate radius and adsorption to metal oxides. 
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3.6.8.2 Effect of temperature 

The experimental results to investigate the effect of temperature on Mn(II)-oxidation at the 
optimum pH 6.5 is shown in Figure 3.10. All three experimental conditions, without added 
carbon, Aldrich Humic Acids, and glucose, observed an apparent temperature optima for 
Mn(II)-oxidation at 30°C. The ordinate data represents the percentage of 5 mg∙L-1 oxidized 
in the first 10 hrs. for each temperature, while the experiments were monitored for 5 days. 
Temperature activation was most rapid for the experiment without added carbon, beginning 
at 20°C. Without carbon, strain EC112 begins Mn(II) oxidation shortly after inoculation, 
compared to after consumption of the carbon source, in the stationary phase, for the 
experiments with added carbon. All of the experiments reveal abrupt temperature 
inactivation above 30°C and Mn(II)-oxidation was not observed at 35°C or higher. Results 
are consistent with enzymatic activity observed in other Mn(II)-oxidizing bacteria in which 
Mn(II)-oxidation is characterized by a temperature optimum. Members of the genus 
Pseudomonas typically share similar growth and Mn(II)-oxidation conditions, which  are 
mesophilic and have optimal growth at 25° to 30°C.  Mn(II)-oxidation was observed at 5°C 
following one week of incubation. The temperature profiles are similar to Pedomicrobium sp. 
ACM 3067, for which an apparent optimum was 20° to 30°C and Mn(II)-oxidation was not 
observed above 37°C. 
 
Jung and Schweisfurth (1979), using cell extracts from P. Putida MnB1, observed a 
temperature optima of 40°C followed by rapid temperature inactivation above 45°C for 
Mn(II)-oxidation. Tipping (1984) provided strong evidence for biologic temperature 
optimum of 15° to 30°C for water samples from freshwater lakes. L. discophora SS1 was 
studied over a range of 10° to 40°C and had temperature optima of 30°C, with sharp 
deactivation at 40°C (Zhang et al., 2001).  

 

3.6.9 Kinetics of Mn(II) Oxidation with Glucose as Sole Substrate 

The kinetics of Mn(II) oxidation mediated by whole cells of strain EC112 was analyzed 
using the Mn(II) progress curves in Figure 3.8. Strain EC112 was spiked with five different 
Mn(II) concentrations in separate experiments in batch reactors amended with glucose as the 
sole carbon source. Three of progress curves more representative of the Mn range found in 
raw waters (1.0, 4.0, and 10.0 mg∙L-1) were selected for kinetic model calibration, with each 
set beginning with the onset of observable Mn(II) oxidation.  For model calibration, the S-t 
data sets were globally fit using nonlinear regression to the no growth, integrated Monod 
equation (Eqn. 3-10) and optimized with the Lenvenberg-Marquardt nonlinear least-squared 
algorithm using Sigmaplot 11.0 (Table 2).  The S-t data set for Mn(II) was used for model 
calibration to obtain estimated kinetic parameters kmc and Ks. The dry cell biomass 
concentration in stationary phase, X0, was determined in separate experiments under 
identical conditions as VSS was 25 ± 0.8 mg∙L-1. 
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Figure 3.10: Effect of temperature on strain EC112 Mn(II)-oxidation with initial  
Mn(II) of 5 mg∙L-1 at 10 hr. incubation. 
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The derivative forms of the Monod Kinetic equations (Eqns. 3-1 and 3-2), which relate 
microbial growth to uninhibited substrate consumption are given and have been used to 
estimate the model kinetic parameters in batch studies. These are nonlinear, ordinary 
differential equations which can be integrated and estimation of the model kinetic 
parameters can be obtained by fitting the single substrate (S) consumption data vs.  time (t) 
using the integrated forms with nonlinear regression. The consumption rate of the substrate 
is represented by the kinetic parameters kmc and Ks. Since Mn(II) oxidation by strain EC112 
was observed in the stationary phase, cell growth can be ignored.          

The integrated Monod Eqn., with no growth (X=X0) (Simkins and Alexander, 1984) (Eqn. 
3-10):                                                                            

 

                                          (3-10) 

      

The fitting process of each experimental data set (S vs. t) is often not straightforward, and is 
hindered by the requirement of the existence of initial first estimates of the model parameters 
and verification of the nonexistence of model parameter linear correlation.   

For strain EC112, Mn(II)-oxidation occurs in the stationary phase and is assumed to proceed 
under constant biomass conditions. To support this assumption, biomass was measured in 
separate experiments. Therefore, Mn(II) oxidation occurs under no growth conditions not 
directly related to EC112 growth. Within the time-frame of Mn(II) oxidation observed in 
the experiments, loss of biological activity or endogenous metabolism are assumed negligible. 
While these detrimental effects are likely inevitable and occurring to some degree, model 
verification utilizing the estimated model verification provide support for appropriateness for 
these underlying model assumptions.   

Mn(II) removal from solution in the batch experiments, for purposes of modeling kinetics, is 
assumed to be solely due to direct biological Mn(II)-oxidizing activity by stationary phase  
strain EC122 cells. Removal of dissolved Mn by cell uptake mechanisms or adsorption to 
charged cell membranes or solid phase Mn(III,IV) oxides precipitates  in suspension or 
encrusting  cell surfaces are assumed negligible.  These model considerations are supported 
by the results of the biological control study involving active and inactivated strain EC112 
cells shown in Figures 3.2 and 3.3.  

Mn(II) removal from solution by strain EC112 follows exhibits rates that are independent of 
concentration, according to the substrate progress curves in Figure 3.11.  The best fit 
(R2=0.997) model kinetic parameter estimates are (Table 3.2) Ks=1.086±0.029 mg·L-1 
(~19.55±0.522 µmol) and kmc = 0.180±0.003 mg Mn(II)/(mg cell· hr)(~3.24±0.054 µmol  
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Figure 3.11: Mn(II)-oxidation modeling for strain EC112. Biomass for Monod 
Model measured in stationary growth phase. 
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Mn(II)/mg∙cell·hr) indicate the no growth, integral form of the  Monod kinetic model is a 
good fit to the experimental data. For comparison to P. Putida MnB1, kinetic parameter 
values for Ks and kmc have been estimated at 8.81 mg Mn(II)·L-1 and 1.33x10-3 Mn(II)/(mg 
cell· hr (Jiang et al., 2010).  The relatively large estimated value for Ks  has implications, such 
that the initial Mn(II) concentration is equal to the half-saturation constant (S0=Ks) and 
kinetics cannot be approximated with zero or first order. If Ks <<S0, substitution of Ks into 
the Monod Eq., effectively reduces the expression to zero-order kinetics for the range of 
substrate concentration utilized. Zero-order kinetics would imply saturation substrate 
conditions and the Mn(II) oxidation proceeds at the fastest rates (kmc) capable by strain 
EC112. In addition, at the Mn(II) concentration levels studied, it would suggest diffusion 
controlled mechanisms are controlling oxidation rates (Stone and Morgan, 1984). In this 
simplified case, the kinetics have been simplified by the zero-order integral model (Simkins 
and Alexander, 1984).  

Several reports involving Mn(II)-oxidation kinetics incorporate the Michaelis-Menton model 
(Zhang et al., 2001; Clement et al., 2009). The biologic and kinetic disparity between the 
Michaelis-Menton enzymatic and the Monod growth model kinetic parameters, Ks and kmc, 

have been previously discussed and reviewed (Monod, 1949; Kovarova-Kovar and Egli, 
1998).  Albeit the differences, comparisons between Ks and kmc can be made purely in terms 
of the rate kinetics of Mn(II)-oxidation, without the necessity to consider the original 
mechanistic significance of the models, considering the mathematical forms of Monod and 
Michaelis-Menton Eqs. are equivalent in the no growth case (Liu and Zachara, 2001) and 
these parameters determine the shape of the Mn(II) depletion curve. Therefore, in this 
context, increasing Ks and kmc values effectively represents a shift toward mixed and first-
order kinetics, away from zero-order kinetics (Simkins and Alexander, 1984).   

Morgan (2000) summarized that Ks for microbial Mn(II)-oxidation activity in natural 
aquatic environments has been reported to range from 10-3 to 5 µM. For pure cultures,   
Zhang et al., (2001) reported a Michaelis-Menton half-saturation constant (Km) of 5.7 µmol 
and maximum oxidation rate Vmax of 0.35 µmol Mn(II)/mg∙cell·hr  for L. discophora cells for 
Mn(II) oxidation  grown in a chemically defined media. Larsen et al (1999) reported 26 
µmol and 0.75 µmol Mn(II)/mg∙cell·hr for Km and Vmax, respectively, for cells of 
Pedomicrobium sp. ACM 3067 grown in an undefined chemical media. These Vmax rate 
constants compare remarkably well with the kmc estimate for strain EC112, indicating a one-
order of magnitude equivalency between the maximum Mn(II) oxidation rates.  

The onset of Mn(II) oxidation and structural architecture disparities may have a role in the 
apparent, faster Mn(II)-oxidizing activity of strain EC112, as indicated by the lower Km. 
Two key differences between strain EC112 (and other P. Putida strains) may have a role in 
the faster Mn(II)-oxidizing activity. First, for strain EC112 and several other P. Putida 
strains, Mn(II) oxidation has been demonstrated to be a carbon starved stress-induced 
phenomenon, with the onset initially occurring in the stationary phase of growth subsequent 
to the depletion of the carbon source (Depalma, 1993). Therefore, during stationary phase 
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Mn(II)-oxidation,  Mn(II), and possibly dead cell material, comprise the electron donors for 
suspended cells of strain EC112. This contrasts with L. discophora SS1 and Pedomicrobium 
sp. ACM 3067, for which initial Mn(II)-oxidation occurs concurrently with growth in the 
early or middle exponential phase of growth.  

Second, L. discophora and Pedomicrobium sp. have the ability to assemble proteinaceous, 
extracellular structures including filamentous sheaths and stalked prosthecates, respectively. 
These extracellular structures may serve as diffusive barriers to Mn(II) ions in the bulk liquid, 
reducing the flux towards  oxidation sites either within the structures themselves or on the 
outer cell wall or membranes. For P. Putida strains similar to EC112, Mn-oxides are formed 
and directly deposited on the cell surface. This architecture may be more of a factor for 
Pedomicrobium sp., in light of the fact that L. discophora SS-1, is a sheathless strain, having 
strain lost the ability to form well-defined fibrillar networks of sheaths after several months of 
cultivation on laboratory media (Adams and Ghiorse, 1985). SS-1 excretes Mn-oxidizing 
proteins into the bulk solution that are responsible for the activity (Adams and Ghiorse, 
1985). 

Furthermore, Mn(II)-oxidation by Pedomicrobium sp. has been shown to be a  two-step 
process involving adsorption of Mn(II) to extracellular polysaccharides followed by 
subsequent oxidation to Mn oxide (Ghiorse and Hirsch, 1979). The rate limiting step is 
likely the catalysis of electron transfer kinetics. For Pedomicrobium sp. ACM 3067, the 
assignments of Mn(II)-oxidizing activity is complicated by  its dimorphic budding life cycle, 
producing swarmer and parent cells, with the Mn(II)-oxidizing activity of each phase likely 
unequal.   

3.6.10 Sensitivity Analysis 

Sensitivity equations, derived by taking the partial derivatives of the no-growth integrated 
Monod model (Eqn. 3-10) with respect to Ks and kmc, were used to evaluate the uniqueness 
of the best fit kinetic model parameter estimates obtained by nonlinear regression. Sensitivity 
coefficients calculated from these equations, using initial Mn(II) levels of S0=1, 4, and 10 
mg·L-1 and the model parameter best estimates (Table 2), are shown in Figure 3.12. 
Sensitivity coefficients are plotted against the independent variable, t, allowing a curve 
comparison and evaluate where the model is most sensitive to changes in parameters 
(Robinson and Tiedje, 1983). The utility of a sensitivity analysis is to identify favorable 
initial experimental conditions (e.g., S0 and X0) enabling the design of experiments that 
enable the collection of substrate depletion data that provide accurate and unique parameter 
estimates. For a qualitative comparison, visual superimposition of each pair of curves relative 
to each other, generated at each initial substrate level, S0, reveals parameter sensitivities are 
not proportional and have relatively good separation, suggesting that the model parameters 
represent unique estimates. The model separation in sensitivity coefficients and sensitivity to 
kmc increases with Mn(II) concentration (S>>Ks), representative of a shift towards a single-
parameter, saturation kinetic growth model (Knightes and Peters, 2000). 
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      Figure 3.12: Sensitivity plots for S0=1, 4, 10 mg∙L-1, and S0/Ks=25, 75, 250.  
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Previous sensitivity analyses by various authors using this approach for the integrated Monod 
model have shown that S0/Ks and S0/X0 ratios are important factors in determining parameter 
identifiability. Robinson and Tiedje (1984) determined that unique estimates of the Monod 
parameters µmax, Ks and Y were attainable at S0/Ks of 4, for S0 in the mixed-order region, but 
not for the first-order (0.02) or zero-order (50) kinetic regions. Ellis et al., (1996) performed 
a sensitivity analysis to evaluate model parameters for batch respiratory experiments 
involving constant cell concentrations of activated sludge biodegradation kinetics of single 
organic compounds at low concentrations. They examined sensitivity coefficients at different 
S0/Ks ratios, and for a 0.1 ratio concluded high correlation between qmax and Ks, but not for 
1.0 ratios or higher. Liu and Zachara (2001), utilizing a statistical dimensionless analysis 
approach to evaluate parameter uncertainty and correlation for both the integrated growth 
and no-growth Monod equations,  determined optimal experimental conditions for S0/Ks to 
be equal or greater than 5. Liu and Zachara (2001) argue that their statistics approach, 
involving calculation of parameter correlation coefficients, standard deviations, and 
confidence regions, offers the advantages of providing quantitative relationships that are 
more robust in determining parameter correlation and identification of optimal experimental 
conditions.  

For the sensitivity coefficients simulations in this study, which match the batch experimental 
conditions for S0, the S0/Ks ratios of 25, 75, and 250 have corresponding S0/X0 ratios of 0.04, 
0.12, and 0.40 under stationary phase constant biomass conditions of 25 mg∙L-1. For 
comparison, Figure 3.12 shows the sensitivity coefficients for S0/Ks ratios of 0.02, 5 and 50 
using S0=1.0 and Ks=52.5. For S0/Ks = 0.02, the sensitivity coefficients, dominated by Ks, are 
proportional and could not provide unique parameter estimates.  For S0/Ks = 5 and 50, the 
sensitivity coefficients have good separation.  In general, the degree of separation improved 
for higher S0/Ks ratios, agreeing with the sensitivity results by Ellis et al., (1996) and Liu and 
Zachara (2001). Owing to the no-growth conditions, Ellis et al., (1996) and Liu and 
Zachara (2001) results are more directly comparable to this study than those of Robinson 
and Tiedje, (1984). 

Considerable literature attention has been given to the influence of initial substrate (S0) to 
the initial biomass (X0) on kinetic parameter identifiability (Grady et al., 1996). For this 
reason, kinetics at low and high S0/X0 values have been termed extant and intrinsic kinetics, 
respectively, and specific numerical values to define either condition have been proposed. 
Expressed as chemical oxygen demand (COD) mg/L, parameter kinetics determined with 
greater than 20/1 mg∙L-1 or below 1/40 (0.025) S0/X0 thresholds  levels describe intrinsic and 
extant kinetics respectively (Dang et al., 1989; Barbeau. 1992; Grady et al., 1996).  
Intermediate threshold conditions should be described as undefined or defined, as proposed 
by Grady et al., (1996), with defined referring to conditions with a specific purpose. 

Intrinsic kinetics parameters occur with growing biomass and unrestricted growth with 
physiological changes in culture, while extant kinetics occurs with minimal growth or 
changes in culture. Chudoba et al., (1985), in their studies involving activated sludge 
bulking kinetics,  preferred low S0/X0 values for batch design studies. The applicability and 
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significance of S0/X0 values to this study as a useful check on parameter identifiability is 
tentative, considering strain EC112 Mn(II) oxidation as suspended cells in batch mode are  
modeled as unlinked to cell growth, rather Mn(II) oxidation is observed to occur as carbon-
stressed cultures with constant biomass.  Nevertheless, expressed as COD, the batch kinetic 
parameter estimates made here, would be intermediate or defined conditions, with  S0/X0 >  
0.025, though very close to the extant kinetic threshold at 0.04 to 0.12.  However, clearly 
the description as extant kinetic parameters is more appropriate for this study, considering 
the pure cultures of strain EC112 were representative of the conditions during growth for 
harvesting.  No growth is assumed to occur during Mn(II)-oxidation in the stationary phase. 
                                                   

                   
3.6.11 Strain EC112 Growth and Mn(II)-Oxidation in the presence of Humic Acid 
and MnO2  

Although biofiltration has great potential for manganese control, its efficiency may also 
depend upon the availability of organic growth substrate in source waters.  Mn(II)-oxidizing 
bacteria, which are heterotrophic require biodegradable organic for growth and energy needs.  
In drinking water sources in which Mn is frequently elevated, such as groundwater and 
oligotrophic environments where Mn can be often found in elevated levels, low total organic 
carbon concentrations may limit the application of biofiltration. Humic substances comprise 
30-50% of the dissolved natural organic matter found in groundwater, streams and lakes 
(Moran and Hodson, 1990; Basu and Huck, 2004).  Humic substances are generally 
considered to be recalcitrant to biodegradation due to their structural heterogeneity. 
However, it has been previously demonstrated that Mn oxides can degrade humic substances 
to low-molecular-weight, biodegradable compounds (Stone and Morgan, 1984; Waite et al., 
1988; Sunda and Kieber, 1994; Saratovsky, 2006). The objective of the following 
experiments is to evaluate strain EC112 growth on humic acids in the presence of MnO2.  

Batch experiments were conducted to investigate cell growth and Mn(II)-oxidation in the 
presence of HA and MnO2. The effect of pH and MnO2 concentration on the HA-MnO2 
reaction were investigated at 30°C, the optimal growth temperature for strain EC112. Three 
separate experiments were completed to: (1) evaluate the effect of MnO2 concentration and 
HA-MnO2 contact time on HA biodegradability, (2) evaluate the effect of pH and MnO2 
concentration on HA biodegradability, (3) measure the isolate growth and Mn(II)-oxidation 
rates on HA-MnO2 oxidation products. In addition, to identify changes in HA by MnO2 
oxidation, Fourier transform infrared (FT-IR) and proton nuclear magnetic spectroscopy 
(1H-NMR) of HA and HA-MnO2 are first presented and interpreted. 

3.6.11.1 Spectroscopy of Aldrich Humic Acids 

The noninvasive spectroscopic methods of FT-IR and 1H-NMR, which involve the 
interaction of electromagnetic energy with the study sample, have been used to investigate 
humic substance chemical structure. Both methods can identify humic functional groups and 
distinguish chemical and microbial humic degradation (Shin and Lim, 1996). In particular, 

http://apps.isiknowledge.com/WoS/CIW.cgi?SID=2E8oH5hnHnnbNcO2coN&Func=OneClickSearch&field=AU&val=Saratovsky+I&ut=000239932500048&auloc=1&fullauth=%20(Saratovsky,%20Ian)&curr_doc=7/1&Form=FullRecordPage&doc=7/1
http://en.wikipedia.org/wiki/Fourier_transform
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among the most reactive humic functional groups are carboxylic and phenolics, which have 
been previously studied using FT-IR, 1H-NMR, and 13C-NMR (Ruggiero and Interesse, 
1980; Gu et al., 1994). In this study, FT-IR and 1H-NMR spectra are obtained and utilized 
to identify changes introduced in HA by MnO2 oxidation. From an interpretation of the 
spectra, presented below, supported with UV-254, DOC, can be used to develop a 
mechanistic understanding of the MnO2 oxidation of humic acids. In addition, 
identification of the reactive functional groups of humic substances with MnO2. The FT-IR 
and 1H-NMR spectra for the following discussion are shown in Figure 3.13a and 3.12b. 

3.6.11.1.1 FT-IR-Spectroscopy  

The FT-IR spectra of HA before and following oxidation with MnO2, at pH 7.0 with added 
30 mg∙L-1 Ca2+ (as CaCl2), are shown in Figure 3.13a. Major adsorption bands assignments, 
largely based on FTIR conventions for Aldrich Humic Acids in the literature, are provided in 
Table 3.2. The main absorption bands for Spectra a exhibit the broad bands typical for 
humic acids and are qualitatively comparable with those in literature for HA, with the 
exception of stronger and more pronounced bands at 1110 cm-1 and 1020 cm-1, respectively, 
attributed to alcoholic hydroxyl groups and/or C-O stretching of polysaccharides. The weak 
shoulder bands at 2918 cm-1 and 2967 cm-1 (stretching of CH3 and CH2) are attributed to 
large, molecular weight aliphatic chains (H.S Shin et al., 1999).  FT-IR spectra of HA have 
previously shown that, according to molecular weight size fractions, larger molecular size 
components (>100,000 Daltons) are more aliphatic C in content and smaller size 
components (<10,000 Daltons) are higher in aromatic and carboxylate groups (H.S Shin et 
al, 1999). These chemical and functional characteristics have been observed in other humic 
acid studies (Huang et al., 2003). 

The oxidized HA (spectra b) shows the same broad bands as Spectra a, the only differences 
involve changes in absorption intensity that are attributed to MnO2 oxidation. A very broad 
weak band increase occurs from 1710-2800 cm-1 and a sharp peak at 1380 cm-1.  

Spectra b band increases include a broad, weak band from 1800 cm-1 to 2400 cm-1 and a 
sharp, narrow band at 1380 cm-1. The broad band is difficult to interpret and several 
tentative explanations are possible. The band could represent an overlap of carboxylate, 
carbonyl and fatty acid oxidation fragments. Spectra a reveals insignificant change in the 
aromatic content of the humic acids during the oxidation process. The sharp peak at 1380 
cm-1 is assigned to C-H symmetrical deformation in β-CH3 groups. 

Spectra b band intensity was attenuated from 1020-1150 cm-1, 1400-1500 cm-1, and 2900-
2970 cm-1. For 1020-1150 cm-1 , the substantial attenuation in band intensity is attributed 
to loss of alcohol C-O functional groups, the shoulder at 1710 cm-1 is interpreted as C=O of 
carbon acids, esters, aldehydes, or ketones (Kim et al., 1990). The principal molecular 
reactions likely involve primary and secondary alcohol MnO2-oxidation.  
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        Figure 3.13: FT-IR (a) and 1H-NMR (b) spectra for HA and HA-MnO2 . 

 
 

13
80

1000200030004000

AHA
AHA+MnO2

16
27

3443

11
10

29
18

29
67 10

20

       FT-IR Spectra
Aldrich Humic Acid and MnO2

(a)

ppm
024681012

   1H-NMR Spectra (in D2O)
   Aldrich Humic Acid and MnO2

Aldrich Humic Acids
Aldrich Humic Acids and MnO2

(b)



66 
 

Various adsorption mechanisms of NOM on solid metal-oxide surfaces have been proposed, 
but numerous studies supported with direct measurements, indicate that ligand exchange 
reactions between humic carboxyl and hydroxyl functional groups and surface coordinated 
H2O or OH groups. In addition, NOM adsorption increases with ionic strength and 
concentration of divalent cations, and decreasing pH. Gu et al., (1994) provide evidence by 
using FT-IR spectroscopy that the dominant bond formation is between C-O and phenolic 
OH- functional groups of NOM and iron oxide surfaces. NOM adsorbed on iron oxide 
showed strong FT-IR adsorption bands at 1100 cm-1, bands representative of carbohydrates 
or polysaccharide substances.  The FT-IR and 1H-NMR results do not allow a clear 
mechanistic interpretation of the oxidation reactions. However, the results are consistent 
with previous results involving humic acid adsorption on metal oxide surfaces. 
 

3.6.11.1.2 1H-NMR -Spectroscopy of Aldrich Humic Acids 

The 1H-NMR spectra of HA before and following reaction with MnO2 at pH 7.0 (with 
added Ca2+) are also shown in Figure 3.13b. Chemical shift assignments, largely based on 
literature for HA, are divided into the following spectral regions: (1) 0.5-1.1 ppm 
(resonances from protons on terminal methyl groups of methylene chains). (2) 1.3-2.0 ppm 
(resonances from protons from methine and methylene groups); (3) 2.0-3.2 ppm (resonances 
from protons on carbons with carbonyls or carboxylic functional groups or aromatic rings; 
(4) 3.5-4.9 ppm (resonances from protons on carbon directly bonded to electronegative 
functional groups, primarily containing oxygen); (5) 7.0-8.4 ppm (resonances from 
unhindered aromatic protons including phenols and quinones). 

The strong peak at 4.8 ppm is due to exchangeable protons from HA and D2O. The 
reference compound, methanol, represents the sharp peak at 3.3 ppm. The peak at 8.4 ppm 
is identified as formate, a naturally occurring compound in HA previously described as 
deriving from lignin hydrolysis (Wilson, et al., 1988). 

By comparison, the oxidized HA (spectra b) has more intense signals than spectra a within 
several of the assigned regions, including the 1.1-1.3 ppm, 2.2-2.3 ppm, 3.5-3.8 ppm, and 
4.0-4.2 ppm regions. 

The intense upfield signal shift at 1.1-1.3 ppm corresponds to the sharp peak at 1380 cm-1 in 
the oxidized FTIR spectra. This signal originates from terminating methyl protons on chain 
β or γ attached to aromatic rings (Grasso et al., 1990). Ruggiero and Interesse (1980), 
reported FTIR spectra for the peracetic oxidation of a soil humic and fulvic acid, describing a 
sharp peak at 1390 cm-1 as originating from protons on acetyl groups. They assigned the 
corresponding 1H-NMR signal to be at 1.9 ppm and deriving from ester CH3−CO− groups. 
Peracetic acid, is more oxidizing than δ-MnO2, with a standard potential of 1.81 eV, 
compared to 1.29 for δ-MnO2. They found possible partial cleavage of the fulvic aromatic 
rings, and little humic aromatic ring cleavage.  
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Degradation studies of humics designed to elucidate core structure show that despite a 
variety of oxidative methods (alkaline CuO, H2O2, ClO2, KMnO4, CH3CO3H) and humic 
substances,  produce qualitative  similar products are consistently produced  (Maximov et al., 
1977; Schnitzer, 1978; Liao et al.,  1982; Sonnenberg et al., 1989).  Benzenecarboxylic acid 
methyl esters, methyl esters of aliphatic mono- and dicarboxylic acids, and methoxy 
benzenecarboxylic acid methyl esters are representative of the major water structural groups 
identified as soluble oxidation products, with regards to the aromatics , tri-, tetra-, penta-, 
and hexacarboxylic acids are the major ring substitution patterns. and some of them are 
probably derived from oxidative cleavage of carbon side chains of alkyl substituted aromatic 
rings. The intense upfield signal shift at 1.1-1.3 ppm corresponds to the sharp peak at 1380 
cm-1 in the oxidized FTIR spectra. These peaks originates from terminating methyl protons 
on chain β or γ attached to aromatic rings (Grasso et al., 1990) and likely correspond to 
methyl groups in benzenecarboxylic acid methyl esters fragments.  

 

3.6.11.2 Strain EC112 Growth on HA-MnO2 Oxidation Products: Effect of MnO2 
and Contact Time  

Screening experiments were conducted to evaluate strain EC112 growth by providing HA-
MnO2 oxidation products as the sole carbon source under a range of MnO2 concentrations 
and HA-MnO2 contact times. Viable plate counts were used to enumerate cell growth.  
Temperatures and pH of the reaction solutions were maintained at 30°C and 7.0±0.30. 
Controls evaluated isolate growth provided only HA as the sole carbon source and without 
added MnO2 and treated to same conditions as tests.  

HA solutions for the growth experiments were prepared by adding HA powder (25 mg∙L-1) 
to SQ water in 2-L bottles. The pH was adjusted to 9.0 using 1 N NaOH and solutions were 
stirred for an hour to solubilize the HA. Solutions were supplemented with 30 mg∙L-1 Ca2+ 
(as CaCl2) prior to pH adjustment to approximately 7.20 to 7.30. 

Figure 3.14 shows the growth of strain EC112 at 30°C and pH 6.5 on the HA-MnO2 
oxidation products in 200-ml duplicate batch cultures at contact times of 0, 10, 30, and 60 
mins. Suspended cells of strain EC112 were incubated in 200-ml batch solutions of HA-
MnO2 oxidation products and growth was enumerated as viable cell counts.  

The results indicate relatively rapid cell growth, as measured by colony forming units 
(CFU∙ml-1) (duplicate mean) within 16 hrs., compared to little or no growth for the control 
(Figure 3.14a). Bacterial utilization of dissolved organic matter (DOC) containing humic 
substances from freshwater environments, including lakes,  
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Figure 3.14:  Strain EC112 growth on HA reacted with MnO2 concentrations of 
(a) 0 (b) 0.10 g (c) 0.50 g (d) 1.00 g (e) 5.00 g and (f) 10.00 g for HA 25 mg∙L-1 
and pH 6.5 and 30°C. Reactant contact times shown in figures. 
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streams and marshes, was observed before and reports of bacteria production on a time scale 
of days, much longer than the observed times in this study (Moran and Hodson, 1990; Volk 
et al., 1997).   

 As shown in Figures 3.14b-f, both MnO2 concentration and HA-MnO2 contact time have 
significant effects on humic  biodegradability as indicated by the cell growth.  

The most significant growth was observed with 10.00 g-MnO2 and a contact time of 10 
min., where a ten-fold increase in viable cell count, from 2 x 105 to 2 x 106 CFU∙ml-1 was 
observed (Figure 3.14f). The corresponding 30 and 60 min. contact times did not produce 
significant growth. For 5 g-MnO2 and 30 min. contact time, growth almost tripled, from 3.0 
x 105 to 8.5 x 106 CFU∙ml-1 (Figure 3.14e).   

For 0.10 g and 0.50 g-MnO2 both had the highest growth yield for the 60 min. contact time 
(Figure 3.14b and 3.14c). For the control, with no added MnO2 (0 g), the 10 min. contact 
time had an increase of 2.0 x 105 to 3.9 x 105 CFU∙ml-1. For 1.00 g-MnO2, marginal growth 
was observed for the 10 min. contact time, from 1.0 x 105 to 3.9 x 105 CFU∙ml-1. 

For the cultures with 10-g MnO2 and 50 mg∙L-1 HA, lack of growth were observed for the 
30 and 60 min. contact times, implying the lack of bioavailable growth HA-MnO2 oxidation 
substrates. Oxidation products produced during the first 10 minutes of contact time were 
apparently no longer available as growth substrates for the 30 and 60 min. contact times. 

During late exponential and early stationary phase of growth cells initiate clustering prior to 
the onset of Mn(II) oxidation, reducing apparent  cell density and rendering cell counts 
unreliable. 

Pyruvate and acetone, two of the largest yielding oxidation products identified in Sunda and 
Kieber’s (1994) study of the reaction products from  humic substances and Mn-oxides, 
showed a maximum production prior to decreasing at higher metal oxide concentrations. 
This was interpreted as subsequent oxidation of these products following their initial 
production.  In this study, oxidized HA moities produced during the initial 10 minutes of 
contact time may have been readsorbed onto the MnO2 surface without further reaction or 
oxidized to products less biodegradable prior to subsequent to release back into the bulk 
solution. 

Stone and Morgan’s (1984) study of the dissolution of Mn(III,IV) oxide suspensions by 
model organics under near neutral conditions, showed that several aromatic organics – 
containing functional groups representative of core structure of freshwater humics (e.g., 
catechol, methoxyphenol) - displayed appreciable reduction rates of the metal oxides within 
minutes. The results here suggest HA-MnO2 reaction rates of the same order, as evidenced by 
significant growth of strain EC112 on the HA-MnO2 oxidation products for 10 minutes of 
contact time. 
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These experiments show that MnO2 concentration and HA-MnO2 contact time have a 
critical role in the biodegradability of HA. Low experimental MnO2 concentrations (0.10 
and 0.50 g) require longer contact time (60 min.) while the larger MnO2 concentrations 
require a shorter reaction time to produce the growth patterns. This inverse relationship 
observed between contact time and MnO2 concentration effects on biodegradability suggests 
competition between HA molecules for the available reaction sites, implicating the negatively 
charged MnO2 surface as a limiting factor. These observations are consistent with adsorption 
isotherms from the Langmuir or Freundlich Model, which predict initial rapid adsorption 
when the availability of surface reaction sites are unrestrictive (Stone and Morgan, 1984). 
Furthermore, the observed effects of reaction time and MnO2 concentration on HA 
biodegradability imply optimal conditions exist to maximize biodegradability.  

Two exchange mechanisms that have been proposed in the literature for humic substance 
adsorption on metal oxides include anion exchange and ligand-exchange surface 
complexation (Sposito, 1984; Gu et al., 1994). Ligand-exchange mechanisms, involving 
humic COO- and OH-,   have been favored for adsorption below the metal oxides pH of 
PZC, accounting for considerable adsorption of the bulk humics (Gu et al., 1994). Gu et al., 
(1994) provide evidence by using FT-IR spectroscopy that the dominant bond formation is 
between C-O and phenolic OH- functional groups of NOM and iron oxide surfaces. NOM 
adsorbed on iron oxide showed strong FT-IR adsorption bands at 1030 to 1100 cm-1, bands 
interpreted as representing of aliphatic or carbohydrate OH functional groups (Gu et al., 
1995).   
 
3.6.11.3 Biodegradability of HA-MnO2- Oxidation Products: Effect of MnO2 
Concentration and pH 

Additional experiments were conducted to evaluate the biodegradability of HA-MnO2 
oxidation products as the sole carbon source. MnO2 concentration and solution pH of the 
HA-MnO2 reaction on strain EC112 cell growth were evaluated. Biochemical oxygen 
demand (BOD) was used as the measure of isolate growth on HA-MnO2 oxidized products. 
The incubation period was 48 hours at 30°C. The experimental range of MnO2 
concentrations were selected based upon the results in Section 3.11.10.1. Control 
experiments evaluated growth provided only HA as the sole carbon source and else wise 
experimental conditions were same as the test conditions. 

Earlier experiments using viable cell counts to determine cell growth demonstrated MnO2 as 
an effective oxidant to increase HA biodegradability, while HA-MnO2 contact time and 
MnO2 concentration are important experimental variables. Here, experiments were 
completed using 48-hr. BOD as the measure of biodegradability of HA-MnO2 oxidation 
products, replacing the viable cell count as a more reliable growth measure. During late 
exponential and early stationary phase of growth cells initiate clustering prior to the onset of 
Mn(II) oxidation, reducing apparent  cell density and rendering cell counts unreliable. 
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Preparation of the HA solutions followed the same procedures as experiments in Section 
3.3.11.1. For these experiments, the effect of pH (3.0, 7.0, and 9.0) and bivalent calcium 
(Ca2+) (at pH 7.0±0.25 only) on the HA-MnO2 reaction was investigated. 

MnO2 (0.5, 1.0, 1.5, 2.0, 2.5, 3.0 g) was added to 325-ml of 50 mg∙L-1 HA in 1-L 
Erlenmeyer flasks. The 1-L flasks were placed on a rotary shaker at 160 rpm and room 
temperature (approx. 25°C) for 45 minutes. Samples were collected before and after shaking 
for dissolved organic carbon (DOC) and uv-254 nm analysis. Both DOC and uv-254 are 
commonly used surrogate parameters for HA concentration. Uv-254 more specifically 
measures the aromatic HA fraction while DOC measures the total dissolved carbon 
concentration of the organic compounds. These parameters reflect changes in the aromatic 
structure of the HA and concentration of the HA due to adsorption to MnO2 or conversion 
to CO2. 

Following shaking, 1-mL of trace metal solution (stock trace metal solution), KH2PO4, 10 
mg/L; (NH4)2SO4, 1 mg∙L-1; were added to the MnO2  oxidized HA solutions.  The oxidized 
AHA solutions were adjusted to the desired experimental pH using 0.1 N NaOH and 0.1 N 
H2SO4.  The solutions were then each poured into standard BOD bottles (300-ml volume) 
following addition of 0.5 ml of isolate culture prior to capping with tapered ground glass 
stoppers. A residual volume of oxidized solution remained in the shaking flasks containing 
the solid MnO2 (GreensandPlus) sand particles. A blank experiment in duplicates was 
performed that did not involve addition of isolate culture or MnO2.  

The stoppered BOD bottles were placed on a rotary shaker at 100 rpm and 30°C for 48-hrs.  
Dissolved oxygen concentration was determined immediately upon completion of the 48-hr 
incubation using the Winkler Titration Method with undiluted samples (Standard Methods, 
4500-O B).  Winkler Titration results for the blanks were averaged and subtracted from 
both the control and test experiments.  

The biodegradability of the HA-MnO2 oxidation products, as a function of reaction MnO2 
concentration, pH, and for added Ca2+ at pH 7, is shown in Figure 3.15. The highest BOD 
was observed at pH 7 with added Ca2+, and exhibits an apparent optimum of 2.4 mg∙L-1 at 
1.5 g-MnO2. For pH 7 (without added Ca2+), the 48-hr. BOD is significantly less compared 
to added Ca2+, demonstrating the effect of  the bivalent cation, with an increase up to 1.5 g-
MnO2 followed by a plateau  for higher MnO2 levels. 
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Figure 3.15: 48-hr. BOD results for strain EC112, (a) HA concentration   
(measured as UV-254) and DOC, (b) 48-hr. BOD. For pH 7.0, values represent 
triplicates, remaining experimental values are singlets and no error bars. 
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BOD at pH 9.0 is small or insignificant, with 48-hr.BOD increases < 0.4 mg∙L-1 compared 
to controls. At pH 3.0, MnO2 had a more significant effect on the 48-hr. BOD, although no 
trend in BOD relative to MnO2 concentration is observed. The BOD of the controls at pH 
7.0 with added Ca2+ range from 0.5 mg∙L-1 to 0.7 mg∙L-1. 
 
Except for a significant decrease in DOC at pH 3.0 for MnO2 levels 1.0 g and higher, no 
significant changes in DOC are observed at pH 7.0 or 9.0, indicating HA moieties are not 
irreversibly adsorbed or mineralized by MnO2 (e.g., to CO or CO2) during the HA-MnO2 
reaction. Additionally, no significant changes in UV-254 are observed at any pH, suggesting 
that aromatic HA rings are not directly altered (e.g., cleavage of aromatic C-C bonds) or 
adsorbed to MnO2 in the HA-MnO2 reaction.  

These results are in agreement with the general trend of increasing adsorption of HA with 
decreasing pH, which has been previously observed for humic substance adsoprtion on Mn-
oxides and other metal oxides (Davis, 1982; Tipping, 1981; Walte et al., 1988; Avena and 
Koopal, 1999). For comparison, freshwater aquatic humic substances adsorb >60% on mixed 
Mn-oxides (Mn3O4 and β-MnOOH) at pH 4.0 and <10% at pH 10.0 in 0.01 mol dm-3 
NaCl (Tipping and Heaton, 1983). CaCl2, at 10-3 mol∙dm-3, exhibits  no observable effect on 
adsorption at pH 4.0 for either mixed Mn-oxide, but has an increasing effect for higher pH, 
particularly above each oxides point of zero charge (PZC) (pH 5.4 and 2.8, respectively).  

Oxidation of organic substrates by metal oxides is considered to be a surface reaction and can 
be generalized by the following steps: (1) diffusion/flux of organic substrates from bulk 
solution to the charged oxide boundary surface; (2) complex formation between the organic 
substrate and the oxide; (3) electron transfer from the substrate to the oxide; and (4) release 
of the oxidized organic and reduced metal into bulk solution (Stone and Morgan, 1984; 
Walte et al., 1988). The production of oxidized biodegradable organic substrates from HA is 
shown here to be dependent on MnO2 concentration, pH and Ca+2. Electrostatic charge has 
been previously attributed as a major mechanism for adsorption of humic substances on 
metal oxides and can provide a conceptual understanding (Tipping and Heaton, 1983; Gu et 
al., 1994). At high pH, both HA and MnO2 have a net negative electrostatic charge and will 
repel each other. Assuming the MnO2 surface reactive groups are primarily hydroxyl groups, 
many of which will be deprotonated, producing a strong net negative charge. The dominant 
humate reactive functional groups are carboxylic groups and phenolic groups whose charge 
density is pH dependent. HA carboxylics are >90% deprotonated above pH 7.0, (Shin et al., 
1999). In addition, phenolics, which generally begin to ionize above pH 8, will add to the 
negative net humate charge and repulsion at high pH from the negatively charged surface. 
Though contributing a smaller effect, ionized phenolic groups lose the ability to hydrogen 
bond with the highly negative oxide surface, further reducing adsorption (Stone, 1987). 
These strong electrostatic forces increase the intramolecular repulsion between carboxys 
prevent diffusion/flux of HA to the metal oxide surface and explain the apparent lack of 
production of biodegradable oxidized products at pH 9.  
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At pH 3, HA and MnO2 surface are electrostatically attracted, with the HA weakly negative 
most carboxylic groups protonated, and the MnO2 surface having a net positive charge since 
pH < pHpzc. Ligand exchange reactions between humic COO- and OH- and surface hydroxyl 
or water groups have been favored as the dominant adsorption mechanism, particularly at 
low pH (Tipping and Heaton, 1984; Gu et al., 1994).  

At pH 7, the oxide surface charge is weakly negative and HA has a net negative charge, 
comparable to conditions at pH 9. The addition of Ca2+

 significantly increased the 
biodegradable oxidized products. Bivalent cations has been previously shown to enhance 
adsorption of humic substances to oxide surfaces by serving as a bridge between humic 
anionic groups and surface O-, as an effective screening of the negative charge of the surface, 
and reduce humate charge density and overall size of HA molecules (Tipping and Heaton, 
1983). Clearly, the high HA adsorption coupled with relatively low 48-hr. BOD observed at 
pH 3, the adsorption mechanisms at pH 7 must differ, particularly with added CaCl2. 
Adsorption-desorption experiments for HA (protonated) on iron oxide (Fe2O3) using 
stagnation point flow have shown that adsorbed molecules at low pH can be desorbed by 
increasing the pH (Avena and Koopal, 1998). HA adsorbed at pH 3.25 can be rapidly 
desorbed by increasing the pH to 7.8, which effectively increases the molecule-surface 
repulsion (Avena and Koopal, 1998). The increase of 48-hr. BOD up to 1.5 g-MnO2 for 
both pH 7 experiments suggest the availability of surface reaction sites is limiting at lower 
MnO2 concentrations.  

The decrease in 48-hr. BOD observed for >1.5 g-MnO2 for at pH 7 suggests oxidized, 
biodegradable HA molecules may have been readsorbed onto the MnO2 surface without 
further reaction or oxidized to products less biodegradable prior to subsequent to release back 
into the bulk solution. In a keynote laboratory study investigating the oxidation of humic 
substances by synthetic Mn-oxides, it was demonstrated that low molecular weight 
bioavailable carbonyls, including pyruvate, acetone, formaldehyde and acetaldehyde were 
among the oxidation products (Sundra and Kieber, 1994). Oxidative production rates within 
the first hours after oxide addition were linear for formaldehyde and acetaldehyde and 
nonlinear for pyruvate and acetone, results which were argued to be consistent with 
subsequent reaction of the ketone pair with Mn oxide following their production. The 
estimated total carbonyl yield, as a percentage of natural organic carbon, was 0.46%, with 
pyruvate (0.32%) being the major LMW product.  Pyruvate and acetone, the two of the 
largest yielding oxidation products identified, showed a maximum production prior to 
decreasing at higher metal oxide concentrations. This was interpreted as subsequent 
oxidation of these products following their initial production.   
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3.6.11.4 Relative Cell Yield and Mn(II)-oxidation Rates on HA and HA-MnO2 
Oxidation Products 
 
In order to evaluate the potential of Mn(II) oxidation in the HA-MnO2 system, strain 
EC211 growth and Mn(II)-oxidation rates were studied in batch reactors  provided with 
HA-MnO2 oxidation products as the sole carbon source. MnO2 oxidized HA solutions were 
obtained following the procedures in section 3.11.10.2 except the HA concentration was 
increased to 50 mg∙L-1. In addition, 30 mg∙L-1 of Ca2+ (as CaCl2) was added to the HA 
solution, since Ca2+ was observed to enhance HA oxidation and the 48-hr. BOD values (Fig. 
3.15). The MnO2 concentration and HA-MnO2 contact time were fixed at the observed 
optimal amount of 45 min. and 2 g, respectively for 300 ml solutions of HA obtained in 
section 3.11.10.2.   Two 4-L volume reactors, one containing HA-MnO2 oxidized products 
and the second containing HA only, were used for the study.  Each reactor was maintained 
at pH 6.5±0.25 and an incubation temperature of 30°C.  

Growth was measured using volatile suspended solids (VSS) according to the Standard 
Methods 2540 E. The large reactor volume was necessary in order to permit sufficient 
amounts of biomass to be sampled for VSS analysis. 

To measure strain EC112 growth and Mn(II) oxidation, cells were inoculated in 4-L reactors 
containing 3.5-L of 200 mg∙L-1 HA and HA-MnO2 solutions. The relatively large HA 
concentration, compared to HA present in natural environments, was utilized to facilitate 
observance of significant difference in the measured parameters. DOC, VSS, and Mn(II) 
were measured and  results are shown in Figures 3.16, 3.17, and 3.18.  

Growth, as measured by VSS, increased from approx. 6.2 mg∙L-1 to 10.5 and 13.6 mg∙L-1 for 
HA and HA-MnO2, respectively.  Approximate biomass growth yields are 1.9% and 3.9% 
respectively for 200 mg∙L-1 each of HA and HA-MnO2 solutions. These yields are obtained 
from the quotient of VSS and HA multiplied by 100%. Mn(II)-oxidation rates were 0.083 
mg/l/hr and 0.14 mg/L/hr, measured in the late exponential to stationary growth phase (5 to 
24 hours following isolate 
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            Figure 3.16: HA (as DOC) utilization by strain EC112 in separate 4-L reactors. 

 

 

 

 

 

 

 

 

 

  

Figure 3.17: Strain EC112 Growth (as VSS) in separate 4-L reactors. 

Time [h]
0 20 40 60 80 100

D
O

C
 [m

g/
L]

90

95

100

105

110

w/o MnO2

with MnO2

Time [h]
0 20 40 60 80 100

V
S

S
 [m

g/
L]

0

2

4

6

8

10

12

14

16

w/o MnO2

with MnO2



77 
 

 

 

 

 

                    

 

 

 

 

 

 

 

 

        Figure 3.18: Biological Mn(II)-oxidation by strain EC112 in separate 4-L reactors. 
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inoculation). The 1.9% growth yield, which serves as the control yield, may largely represent 
utilization of labile compounds bound to the humic matrix in HA, such as simple 
carbohydrates and amino acids. 

From the 4-L reactor results, strain EC112 growth on HA and HA-MnO2 both show single 
phase growth. This suggests that energy favorable, easily assimiable carbon-energy sources 
were available in the oxidized products and constantly utilized. Diauxic growth (diauxic lag) 
or multiple growth phases with the easily metabolized products utilized first, is not observed, 
implying the bacterial cells did not expend energy to create a new pathway and/or enzymes 
for utilization of less favorable carbon-energy electron donors. A single growth phase is 
consistent with those under growth-limited conditions, whereas simultaneous utilization of 
the various HA-MnO2 oxidation products is observed. If substrates were present in high (not 
growth-limiting) concentrations, sequential utilization and diauxic growth is an often 
observed characteristic and the substrate that supports the highest growth rate is utilized 
preferentially from the mixture. 

Growth rates represented in the 4-L reactor experiments most likely underestimate the actual 
available pool of oxidized organic carbon produced from HA oxidation with MnO2.  No 
additional inorganic carbon sources (e.g., HCO3

-) were added to the 4-L reactor growth 
experiments, a requirement for several essential anabolic reactions. For example, 
heterotrophic bacteria growth on low molecular weight compounds, such as pyruvate, 
require CO2 (as HCO3

-) fixation to regenerate carbon in the citric acid cycle. Pyruvate 
carboxylase, which is found in Pseudomonas, catalyzes the production of oxolaacetate from 
pyruvate and requires HCO3

- (Jitrapakdee et al., 2008).  In addition, following oxidation, 
small highly polar molecules produced such as dicarboxylic acid methyl esters may sorb onto 
the HA, including the cross-linked regions of the remaining HA and participate in H-
bonding networks and may not be available as a growth substrate (Niederer, 2007). 
Terrestrial humic acids such as Aldrich Humic Acids commonly have higher sorption 
capacities compared to aquatic HA. Furthermore, loss of volatile, low-molecular-weight 
oxidized components during experimentation likely underestimated growth on the oxidized 
humic acids (Maximov et al., 1977).  In addition,  high HA concentrations of 200 mg∙L-1, 
significantly greater than those used in the 48-hr. BOD growth experiments, likely resulted 
in humic aggregration, shielding available nucleophiles (e.g., alcohols) with reduced 
adsorption and oxidation with MnO2.  Finally, the reaction conditions for HA-MnO2 
represent the apparent but not true optimum for production of biodegradable oxidation 
products. 

Mn-oxides are widely used in oxidation of alcohols to carbonyls, hydroxyl substituents of 
heterocyclic. However, most saturated alcohols, aldehydes and ketones, and carboxylic acids 
are unreactive with Mn-oxides, with pyruvic acid being an exception.   

The improved biodegradability of HA may be largely attributed to oxidation of primary and 
secondary short-chained, aliphatic, branched alcohols. This implicates HA alcohols as being 
recalcitrant to strain EC112. Pseudomonas sp., particularly, P. Putida strains, are well-known 
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for their ability to induce nonspecific enzymes and degrade generally recalcitrant 
compounds, including aromatic hydrocarbon compounds, such as benzene, toluene, and 
phenol (Reardon et al., 2000). However, several studies show recalcitrance to oxidizing 
certain primary, secondary, heterocyclic, and aromatic alcohols and that carbon chain length 
affects activity with alcohols. The presence of multiple alcohol hydroxyl groups is considered 
to improve substrate solubility and susceptibility to biodegradation of C-C bonds. 
Experiments with Pseudomonas O-3 show enzyme activity on secondary alcohols increases 
with longer alkyl chains, in particular with alcohols with carbon number greater than 5 
(Suzuki, 1976).  

Alcohols dehydrogenases (ADHs) are common in bacteria and have been classified in three 
groups, ADH I, II, and III, with each type having specific alcohol affinities. Type I ADH 
can be produced by pseudomonads, including P. Putida, and are produced while growing on 
smaller, short-chained alcohols (Gorisch and Rupp, 1989). Some Type II ADHs can oxidize 
heterocyclic and longer chain primary and secondary alcohols.  

Most ADH bacteria produce just one of the three types of ADHs, however, P. Putida HK5 
is the first isolate identified to produce three types of ADHs and can utilize a variety of 
alcohols, including primary, secondary and diols (Toyama, 1995). The apparent low affinity 
by strain EC112 for primary and secondary alcohols may be due to the lack of producing 
ADHs with the specificity for HA coupled with steric hindrance posed by the humic 
macromolecular structure.   

Phenolic compounds with electron-donating substituents such as alky or alkoxy ring groups 
degrade more rapidly compared to phenols with electron-withdrawing such as aceto, chloro, 
nitro, or carboxyl groups (Stone, 1987). Manganese oxides have been used as a selective 
reagent for the production of aldehydes and ketones from aliphatic primary and secondary 
alcohols. Sunda and Kieber’s (1994) study of the Mn-oxide products of Mn-oxide and 
humic substances identified ketones and aldehydes as the major oxidation products – 
including pyruvate, ketone, formaldehyde, and acetaldehyde. For longer reaction times, 
aldehydes may be further oxidized to carboxylic acids.   

Mn(II) oxidation rates will depend on the rate of Mn(II) adsorption to MnO2 oxide  and  
Mn(II)-bacteria concentration.  Rates of Mn(II) adsorption will depend on available metal 
center reaction sites. Rates of Mn(II)-bacteria oxidation will be dependent on bacteria cell 
concentration, bacteria species, pH, temperature, ionic strength and Mn(II) concentration. 

 

3.6.11.5 Mn(II)-oxidation Rates by strain EC112 utilizing HA-MnO2 Oxidation 
Products 

Experiments to study the kinetics of strain EC112 Mn(II)-oxidation were conducted in 
batch reactors  provided HA-MnO2 oxidation products as the sole carbon source. MnO2 
oxidized HA solutions were obtained following the procedures outlined in section 3.11.10.3 



80 
 

except the HA concentration was increased to 50 mg∙L-1 and with 30 mg∙L-1 Ca2+. The 
MnO2 concentration and HA-MnO2 contact time were fixed at the optimal conditions, 2 g 
of MnO2 and 45 minutes, as determined in section 3.13.2.  

Experiments were initiated by adding 0.5-ml of fresh, harvested cells of strain EC112 to 200 
ml of oxidized HA solution in 500-ml Erlenmeyer flasks, in triplicate. Mn(II) was added as 
1, 2, 3 and 4 mg∙L-1, respectively in each of flasks. VSS was used as the measure of growth 
and which consisted of an initial VSS (VSSi) and final VSS (VSSf).  For VSSi, aliquots of 0.5 
ml culture were pipetted in then immediately poured through glass fiber filters then held for 
drying prior to VSS analysis. Final VSSf measurements were obtained after completion of the 
time course experiment measuring Mn(II) oxidation, by filtering the entire 200-ml culture 
volumes through the glass filters and oven dried for at least 1-hr. at 103°C to 105°C prior to  
VSS analysis.  The flasks were placed on a rotary shaker at 140 rpm and each reactor were 
maintained at pH 6.5±0.25 and incubated at a temperature of 30°C. The results, shown in 
Figure 3.19, reveal Mn(II) oxidation begins at approximately 3-4 hours after cell inoculation. 
The initial VSSi 2.0±0.3 mg∙L-1 and the final VSSf was 3.8±1.0 mg∙L-1.  The measured 
difference, VSSf - VSSi, represents a growth or increase on biomass of 0.5 to 3.1 mg∙L-1 of 
cells through utilization of MnO2 oxidized HA as the sole carbon source.  

The kinetic parameters for Mn(II) oxidation obtained in Section 3.11.9 for the Monod no-
growth model were validated using the Mn(II) progress curves for  2, 3, and 4 mg∙L-1 in 
Figure 3.19. Biomass values for model validation were obtained by simulation using values 
from the range 0.5 to 3.1 mg∙L-1 of cells to determine a good-fit validation curve. For the 
initial Mn(II) concentrations of 2, 3, and 4 mg∙L-1 and 1.50, 1.25, and 0.75 mg∙L-1 of 
biomass respectively, show good fit model curves. 

Mn(II) removal from solution by strain EC112 follows an initial more rapid trend prior to 
slower Monod type kinetics according to the substrate progress curves in Figure 3.19, similar 
to the progress curves for Mn(II) oxidation obtained for cells grown on glucose, indicating  
the Monod kinetic model is a good fit to the experimental data. The Mn(II) oxidation 
kinetics may be influenced by the harvesting conditions or culture history of the cells prior to 
inoculation into the flasks, which involved glucose as the sole carbon source, and the relative 
size of the increase in cell biomass of 2.0±0.3  increases to 3.8±1.0 mg L-1 by the stationary 
phase. This low yields of biodegradable oxidized products from the HA-MnO2 reaction 
hinder Mn(II) oxidation study involving oxidized humic substances as the sole carbon source 
is hindered by the low yield of oxidized products to produce large biomass. 

 

 

 

 



81 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.19:  Mn(II)-oxidation by strain EC112 provided HA-MnO2 oxidation 
products (prepared separately) as sole carbon source. Monod kinetic model and 
experimental Mn(II) depletion curves shown for initial Mn(II) concentrations of 2, 
3, 4 mg∙L-1 at pH 6.5 and 30°C. Model biomass values were measured during the 
exponential growth phase and ranged from 0.5 to 1.50 mg∙L-1.  
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       Table 3.1: Growth of strain EC211 on carbon sources. 

 

 
 

 

 

 

 

 

 

 

 

                 aGrowth measured by changes in visual optical density after 
            5 days following culture inoculation. 
 

 

 

 

 

 

 

 

Carbon Source  Growtha 
Acetaldehyde + 

Acetate + 
Acetic Acid + 

Acetone + 
Sodium Benzoate + 

Catechol + 
Citrate + 

Formaldehyde + 
Fructose + 
Glucose + 

3-Nitrophenol + 
Phenol + 

Pyruvate + 
Sodium Citrate + 

Succinate + 
Trichloroethylene + 

Trichloroacetic Acid - 
Sodium Bicarbonate - 
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Table 3-2: No-growth Monod kinetic parameters for Mn(II) oxidation and their standard 
error.  

Substrate                       Parameter                     Best Estimate               Standard Error 

 
     glucose                              kmc        0.180               0.003  

                                              KS                1.086                          0.029 

 

 

Table 3.3: FT-IR band peak assignments for Aldrich Humic Acid.  

     Wavelength (cm-1)                                 Spectral Assignments 
   3400-3450                O-H stretching of hydroxyl groups carboxyl, hydroxyl, and phenolic groups. 
   2900-3000                  Stretching in CH of CH2 and CH3 of aliphatic chains.             

     2400-2700                   O-H stretching of COOH (very broad intensity). 
      1710-1725                   C=O stretching of COO-, aldehydes, esters, and ketones. 
      1600-1630                   Stretching of COO- and aromatic C=C. 
      1510-1540                   Aromatic ring stretching C=C. 
      1380-1435                COO- stretching, -OCH3 groups, O-H alcoholic and aliphatic CH2 or CH3                        
      1150-1050                  C-O stretching of polysaccharides, primary and secondary alcohols. 
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3.7 Summary and Conclusion 

A Mn(II)-oxidizing bacterium, P. Putida strain EC112, was isolated from a soil sample and 
found capable of oxidizing Mn(II) in the stationary growth phase as a carbon-stressed, 
enzymatic constitutive feature. The optimal incubation pH and temperature for Mn(II) 
oxidation for liquid cultures of strain EC112 were determined to be  pH 6.5 and 30°C.  

When compared to the untreated HA control, enhanced strain EC112 growth and Mn(II)-
oxidation rates were observed in the presence of HA-MnO2 oxidation products as sole 
carbon source. The oxidative degradation of HA to more biodegradable and smaller 
substrates is attributed to the higher rates.  HA-MnO2 contact (stirring) time, solution pH, 
MnO2 concentration and Ca2+ addition were found to have an effect on HA 
biodegradability. Negligible amounts of HA were adsorbed to MnO2 or mineralized to CO2 

during the HA-MnO2 reaction.  
 
Biological Mn(II)-oxidation kinetics for strain EC112 were adequately described using the 
no-growth Monod equation. Autocatalytic Mn(II) removal from bulk solution by sorption 
to MnO2 was negligible in control studies and Mn(II) kinetic data sets were modeled without 
such consideration. 
 
FT-IR and 1H-NMR spectra of HA-MnO2 degradation products reveal distinctive changes in 
humic structure.  The FT-IR spectra revealed the most significant HA degradation in the 
range 1000-1150 cm-1, which are assigned to alcohol OH- and C-O functional groups. 
These are interpreted to be evidence of exchange reactions between humic hydroxyl and C-O 
functional groups and MnO2 surface reaction sites. Sharp peaks on the 1H-NMR (at 1.05 
ppm) and FT-IR (at 1380 cm-1) are correlated and interpreted as representing oxidized HA 
fragments of the same source. 

The HA-MnO2 reaction is consistent with a mechanism of rapid humic adsorption and 
release of oxidation products from the oxide surface into the bulk solution.  

 

 

 
 
 
 
 
 

Copyright © Michael Snyder 2013 
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Chapter 4: Fixed-film Bioreactor Studies  

4.1 Abstract  

Mn(II)-oxidation by Pseudomonas Putida EC112 was investigated in fixed-film continuous 
flow bioreactors. Preliminary bioreactor experiments revealed D-glucose as a sole carbon 
source could not sustain bioreactor Mn(II) removal capacity (<0.05 mg·L-1). Bioreactor 
failure initiated after 14 days of operation for an influent Mn(II) concentration of 0.45±0.03 
mg·L-1 using a 12-hr. HRT and an effluent recycle ratio of 150.  Periodic (each 4 to 5 days) 
addition of nutrient/carbon spikes (nutrient broth/yeast extract) to the recycle line was 
required to sustain biological Mn(II) oxidation and  Mn(II) effluent levels below <0.05 
mg·L-1. 

Steady-state Mn(II) oxidation kinetics were studied and modeled using Monod Kinetics.   A 
fixed-film kinetic parameter for Mn(II) oxidation was obtained, which was calibrated and 
validated in separate bioreactors without the addition of a feed carbon source. For model 
calibration, 6 steady-states (1.1 to 25 hrs. HRT) and a reactor Mn(II) influent concentration 
of 690±45µg were used. Model validation was obtained for 3 steady-states (12.6, 6.3, 1.3 
hrs. HRT) and a reactor influent Mn(II) concentration of 750±45µg.  Experimental Mn(II) 
data sets were fitted to the Monod Model using nonlinear least-square regression and the 
Marquardt-Levenberg algorithm (MLA). Autocatalytic Mn(II) removal from bulk solution 
by sorption to MnO2 was not observed in control studies and Mn(II) kinetic data sets were 
modeled without such consideration. 

A continuous flow bioreactor, packed with MnO2-coated filter media (GreensandPlus),  
using Sewannee River Humic Acid (a model humic acid) as the sole carbon source, showed 
enhanced Mn(II) removal capacity compared to  controls.  

Biofilter Mn(II) releases were observed during the continuous flow bioreactor studies. 
Bioreactor conditions for release were identified and releases were modeled using pseudo 
first-order kinetics. The releases of Mn(II) into the bulk solution are interpreted to represent 
biotic Mn oxide reduction by strain EC112 and occur under Mn(II) saturating biofilter 
conditions. 

A 3 to 5-day cell attachment time was sufficient for filter media biofilm development using 
strain EC112 culture seed in the continuous flow studies. 
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4.2 Introduction 
 
Engineered biological treatment reactor systems to remove pollutants from wastewater and 
water are of one of two design types which use either aggregates of suspended cells or 
biofilms. In Chapter 3, Mn(II) oxidation was studied by the first type, suspended cells of 
strain EC112, also known as suspended floc,  in the stationary phase of growth.  The cells 
served as active biomass, catalyzing the oxidation of Mn(II) using enzymes as the Mn 
removal mechanism.  Mn(II) served as the electron donor and the active biomass served as 
the electron acceptor. In Chapter 4, the second reactor design, which incorporate biofilms or 
fixed films, will be studied and represent the most common type of biological reactor for 
Mn(II) control/removal for water treatment. 
 

The specific objectives of the fixed-film reactor studies are:  

(1) To evaluate the potential of Mn(II) oxidation in the fixed-film reactor using a single 
carbon source (e.g., glucose).  

(2) To estimate the intrinsic kinetic model parameters for biological Mn(II) oxidation. 
Parameters were obtained using the steady-state effluent Mn(II) conditions and the 
predictive flux equation derived from the pseudo-analytical solution of the biofilm 
model given by Atkinson and Davies (1974).  

 (3) To investigate the fate of Mn(II) in the biofilter.   

  (4) Assess humic acids as a sole carbon and energy source to sustain bioreactor capacity to 
remove Mn(II). 
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4.3 Materials and Methods 

Some of the report format and kinetic parameter discussion in the following sections is in 
accordance with Dastidar (2010). 

4.3.1 Fixed-Film Bioreactor 

Biological oxidation of Mn(II) was investigated in laboratory-scale fixed-film bioreactors.  
For objectives (1), (2), and (3), pure cultures of strain EC112 were immobilized by 
attachment to spherical 3-mm diameter glass beads using a 3-day (static conditions) period 
prior to reactor start-up. For objectives (4), pure cultures of strain EC112 were immobilized 
by attachment to GreensandPlus (GSP), using a 3 to 5-day (static conditions) period prior to 
reactor start-up. Bioreactors were operated with effluent recycle to maintain completely 
mixed conditions inside the bioreactor.  

 

4.3.2 Reactor Configuration and Operating Conditions 

The biofilm reactor used for all continuous flow, fixed-film studies was constructed from an 
acrylic column (internal diameter: 2.3 ± 0.02 cm, height: 20.1 ± 0.03 cm). The filter 
material consisted of 3 mm diameter spherical pyrex glass beads (Fisher Scientific) or GSP as 
the filter material (Figure 4.1). The empty bed volume of the reactor measuring at 83.6 mL. 
Total reactor surface area cell attachment in the packed bed reactor was constant for each 
reactor, depending on the number of beads.   

 

4.3.3 Bacterial Strain and Feed Composition  

The culture and feed composition and preparation procedures used in the biofilm reactor 
studies are described in Sections 3.3.3 and 3.3.4. For objective (1), glucose and an undefined 
carbon source (yeast extract/nutrient broth) were feed separately into reactors. For objective 
(2) and (3) the reactor influent feed composition consisted of the carbon-free medium 
described in section 3.3.4.3 supplemented with trace metal solution. For objective (4) humic 
acids (Sewannee River Humic Acid) was the sole carbon source supplemented with basal 
medium and trace metal solution. 
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Figure 4.1: Schematic of the fixed film reactor system used for all continuous flow 

experiments (Dastidar, 2010). 
 

 

 

 

 

 

Feed Pump 

Recirculation 
Pump 

Q 

Qr 

Substrate 
bottle 

Effluent Waste     
bottle 

Q 

Biofilm 
Reactor 

pH 
reading 

Qr +Q 



89 
 

and the connecting tubings were autoclaved at 121°C for 15 mins. The interior of the reactor 
was rinsed in 90% ethanol and dried before assembling the components under a germ free 
hood (Steril Gard Class II Model, The Baker Company, Stanford, ME).   

Biological growth in the feeding tubes was minimized by frequent replacement of parts and 
tubings. Bolted flanges and rubber gaskets were used on the top and bottom of the reactor to 
prevent leakage of the effluent from the reactor. Peristaltic pumps (Masterflex, Cole-Parmer) 
were calibrated and used for the influent and recycle flows and the reactor was operated in an 
up-flow mode to provide near completely submerged conditions in the reactor.  

 
4.3.4 Tracer Study  

A tracer study was conducted to determine the flow characteristics in the reactor. Mn(II) was 
used as the tracer with influent concentration of 5 mg∙L-1  and an influent feed flow rate of 
4.0 mL∙hr-1 (HRT = 0.48 days). The measured effluent Mn(II) concentrations were 
compared to the tracer response curve for an ideal completely mixed reactor using:  

                                                   

C -t/τ
=(1-e )

Co
                                                       (4-1) 

where C and C0  are influent and effluent Mn(II) concentration, t is the time of sample 
measurement and tau is the HRT based on the feed flow rate Q. Mn(II) was determined 
using the pesulfate method  (Section 3.3.3.2).  

 

 4.3.5 Control Study 

 
A control study was performed to investigate whether dissolved Mn(II) in the reactor 
influent could be oxidized or sorbed to the glass beads, tubing or the walls of the acrylic 
column reactor. The reactor was packed with 3 mm diameter glass beads that were 
autoclaved and oven dried and operated at 12-hr. HRT for 10 days. The feed solution 
consisted of 5 mg∙L-1 stock Mn(II) added to SQ water and pH adjusted to 7.0. Samples were 
collected daily from the reactor and analyzed for influent Mn(II) and effluent Mn(II).  
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4.3.6 Reactor Startup  

The bioreactors and its components were assembled under a laminar flow hood (Steril Gard, 
class II type A/B3, Baker Company, Sanford, ME), and packed with autoclaved oven dried 
solid glass beads (Fisher Scientific). The reactor was then inoculated with (15 to 30 mL) 
harvested cultures of strain EC112 of volume that filled the reactor about 1 inch above the 
top of filter material column.  Generally, 3 days was sufficient for visible biofilm 
development on glass bead filter material. For sand filter material (GreensandPlus), up to 5 
days was required. Optimum operating conditions were maintained in the reactor by 
frequent monitoring of pH which was maintained at ~ 6.5. The reactors for Objective 1 were 
operated under an influent Mn(II) concentration of 200 µg∙L-1 and HRT of 12 to 24 hrs. 

4.3.7 Steady-State Determination in the Biofilm Reactor 

For the steady-state biofilm reactors in Objective 2, the bioreactor was continuously operated 
under completely mixed-flow conditions at least four times the HRT following reactor start-
up to create steady-state conditions before changing the Mn(II) loading rate. Foggler (1999) 
and Jensen (2001) showed that in terms of pure hydraulics, a completely mixed reactor 
reaches a 95% steady-state concentration following four times the HRT.  Two separate 
reactors were studied for purposes of kinetic parameter modeling, a calibration and 
validation reactor. Samples were also collected for determining the viable suspended cells in 
the effluent from the reactor. For attached biomass analysis, samples were collected at reactor 
start-up and at the end of the reactor study. Intermittent samples were not collected due to 
the potential to disturb immobilized cells and release of accumulated Mn from the biolfilter. 

4.3.8 Analytical Methods 

4.3.8.1 Sample Handling and Quality Control 

Samples from the bioreactor were collected using 1 mL sterile disposable pipets (Fisher 
Scientific CO) at appropriate time intervals. The collected samples were immediately 
centrifuged at 10,000 rpm for 10 mins.. For Mn analysis using ICP, samples were acidified 
with 1 N HNO3 (pH < 2) and preserved at 4°C. Microbial biomass analysis involved 
determination of the total protein content of bacterial cells, and attached/suspended viable 
cell concentrations at the beginning and end of reactor operation. The biological samples 
were analyzed immediately to prevent any changes that may occur after collection. 

For protein analysis, the microreaction vessels (Supelco, Inc., Bellefonte, PA) were washed, 
rinsed, and oven dried prior to use. The 2.0 mL centrifuge tubes (Fisher Scientific CO., 
Pittsburg, PA) used for protein analysis and were first autoclaved at 121°C for 15 mins, and 
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then stored under the germ free hood (Steril Gard Class II Model, The Baker Company, 
Stanford, ME) before each use.  

4.3.8.2 Mn(II), Mn(IV)  

For the steady-state Mn oxidation reactor studies Mn was analyzed using ICP as described in 
section 3.3.3.2 in Chapter 3. The persulfate method was used for Mn for the remaining 
reactor studies. 

4.3.8.3 pH and Dissolved Oxygen Determination 

pH was measured using a pH meter (Denver Instrument, Denver, CO) equipped with an 
ATC Combo, Silver/Silver chloride electrode. The pH meter was calibrated with standard 
buffers of 4, 7 and 10 disinfected by 95% ethanol before use. DO was determined in situ 
using a DO meter (YSI 550A, Yellow Springs, Ohio), also calibrated and disinfected with 
95% ethanol before use. 

 4.3.9 Biomass Analysis 

Biomass analysis for the continuous flow bioreactor studies was performed for Objectives (2) 
and (4) using the following procedures. 

4.3.9.1 Attached Cell Count 

For the steady-state reactor for kinetic modeling five glass beads each from top and bottom 
of the reactor were removed under the laminar flow hood (Steril Gard Class II Model, The 
Baker Company, Stanford, ME). Each of the removed glass bead was placed inside a 10 mL 
microreaction vessel containing 1 mL MCSM (without yeast extract) solution. Six glass 
beads (three from top and bottom) were used for the determination of viable attached cell 
count, whereas, the rest were used for protein analysis of the attached cells.  

 

4.3.9.2 Viable Attached Cell Count  

The glass beads in the capped 10-mL vessels were shaken vigorously in a vortex mixer (Fisher 
Vortex Genie 2, Fisher Scientific Co, PA) for 10 mins. to achieve cell detachment. Samples 
(1.0 mL) from each microreaction vessel were serially diluted in 30-mL test tubes containing 
9.0 mL of MCSM (without yeast extract) solution. The diluted samples of 1.0-mL were then 
transferred to the solidified agar medium on the agar plates for colony counting.  
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4.3.9.3 Protein Measurement   

The vessels containing glass beads for protein analysis were also shaken in a similar manner 
for the occurrence of cell detachment. Samples (1.0-mL) from each vessel were transferred to 
2.0 mL centrifuge tubes (Fisher Scientific Co., Pittsburg, PA). The cell pellet obtained by 
centrifuging the samples at 10,000g for 15 mins. was then analyzed for protein 
concentration.       

Bradford reagent (Bradford 1976) sample (0.5-mL) was added to the cell pellet in the 
centrifuge tube and the contents were mixed for 15s, followed by incubation at room 
temperature for at least 5 mins. SQ water (0.5-mL) was then added to the tube and the 
contents mixed for 10 s and incubated for 25 to 30 mins. The absorbance reading of the 
samples was measured at 594 nm in a spectrophotometer. The true absorbance value of the 
collected samples was estimated by measuring the difference between the measured and the 
control (1:1 ratio of Bradford reagent and SQ water) values. The protein concentration in 
mg∙L-1 was then computed using a standard calibration curve obtained by treating different 
dilutions of bovine serum with Bradford reagent.   

  

4.4 Basic Biofilm Model For Steady-State Analysis 

A kinetic parameter was obtained using steady-state effluent Mn(II) conditions and the 
predictive flux equation derived from the pseudo-analytical solution of the biofilm model 
given by Atkinson and Davies (1974).   

 

4.4.1 Properties  

The physical properties and characteristic concentration profiles of an idealized homogenous 
biofilm (Figure 4.2) are listed as follows (Rittmann, 2001):  

1. The biofilm has a uniform biomass density Xf (Mx∙L-3).  

2. The biofilm is homogenous in nature with a uniform biofilm thickness (Lf) through out 
the reactor.  

3. The external mass transport resistance is represented by the effective diffusion layer of 
thickness (L), whereas, the internal mass transport resistance is due to molecular diffusion.  
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4. The consequence of the mass transport resistance leads to the lowering of the actual bulk 
Mn (II) concentration (S) to a value (Sf) inside the biofilm.  

5. A deep biofilm is characterized by the substrate concentration approaching zero at a 
certain point in the biofilm, whereas, in a shallow biofilm, the concentration (Sf) remains 
above zero at all points in the biofilm matrix. 

6. A fully penetrated biofilm is characterized by identical substrate concentrations at the 
outer (Ss) and attachment (Sw) surfaces.  

7. The increase in the biofilm thickness is due to growth of the biofilm itself with attachment 
from suspended cells negligible.       
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Figure 4.2: Idealized biofilm schematic with physical properties and characteristic 
concentration profiles (Rittmann, 2001).                 
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4.5 Liquid–Phase Parameters 
4.5.1 Effective Diffusivity 

The diffusivity of Mn(II) in water was estimated using the Nernst-Haskell equation 
(Longsworth, 1972):  

                                  DMn(II) =  RTF2
𝜆

|𝑧|
                                                             (4-2)                                                 

where DMn(II)= diffusion coefficient of Mn(II) in water (cm2s-1), T = absolute temperature 
(K), R= universal gas constant (J∙mo1-1∙K-1), F = Faraday’s constant (C∙g∙mol), λ = 
Electrolytic conductance (cm2∙ohm∙c), and z is the charge on the ion. The value of 
electrolytic conductance (λ) was obtained from the table of ionic conductivity and diffusion 
at infinite dilution (CRC Handbook, 2009). According to the CRC handbook guidelines 
(CRC Handbook, 2009), the listed electrolytic conductance (λ) value at 25°C should be 
increased 15% for every 5°C temperature rise in the medium.  

4.5.2 Porosity of the Medium Bed 

The porosity of the packed bed was estimated using the direct volumetric method:  

                                         V

T

Vε=
V

                                                                     (4-3)      

where Vv is the volume of the void-space in the medium bed, and VT is the total or bulk 
volume of the medium bed. The porosity of the medium bed was assumed constant for the 
purpose of model calculations under different operating conditions.  

 

4.5.3 Absolute Viscosity of Water 

The absolute viscosity of water (µ) used for model calculation was obtained at 30°C from 
the CRC handbook (2009).   

4.5.4 Modified Reynolds Number and Schmidt Number  

The modified Reynolds number Rem was calculated using the following equation (Jennings 
1975):  
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p

m

2ρd u
Re =

(1-ε)μ                                                            (4-4)                                       

where Rem = the modified Reynolds number, ρ = density of water (g∙cm-3), dp= diameter of 
the solid medium bed, u= superficial velocity (cm∙d-1), ε= porosity of the medium bed, and 
µ= absolute viscosity (g∙cm-1∙d-1).  

The superficial velocity (u) was estimated according to the following relationship between 
the feed flow rate and the cross sectional area of the flow stream:  

                                           
c

Qu=
A

                                                                  (4-5) 

where Q is the feed flow rate to the reactor (cm3∙d), and Ac is the cross sectional area of the 
flow stream (cm2). The calculated modified Reynolds number of 1.66 was within the limits 
typical for water (1≤ Rem≤ 30)  (Rittmann, 2001).  

The Schmidt number was calculated using the following equation:  

                                           Sc =   µ
ρDMn(II)

                                               (4-6) 

 

4.5.5 Effective Diffusion layer  

The thickness of the effective diffusion layer (L) or the external mass transfer layer was 
estimated using the empirical formula reported by Jennings (1975) for porous media:  

                      L =   
DMn(II)(Rem)0.75Sc0.67

5.7u
                                        (4-7) 

                            

The thickness value of the effective diffusion layer (L) used for steady-state data analysis was 
estimated by substituting the other liquid phase parameter coefficients into the Eqn. (4-7).  
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4.5.6 Molecular Diffusivity of Mn(II) in the biofilm 

The molecular diffusivity (Df) of Mn(II) in the biofilm was estimated according to 
Williamson and McCarty (1976) by using the ratio: 

 

                       Df
DMn(II)

 = 0.8                                                       (4-8) 

4.5.7 Biofilm Specific Surface Area  

The biofilm specific surface area was estimated using the following relationship:  

                                             nAa= 
V

                                                                (4-9) 

where a is the biofilm specific surface area (L-1), n is the number of glass beads in the 
reactor, A is the surface area of  glass beads (L2), and V is the empty bed volume of the 
reactor (L3).  

 

4.5.8 Biofilm Thickness and Biofilm Density 

The biofilm thickness and the biofilm density were computed from the following equations 
(Rittman et al.1986) assuming biofilm mass to be 99% water by weight:  

                                                        w
f

WL =
ρnA(0.99)

                                                   (4-10) 

                                                        d
f

f

WX =
AL

                                                            (4-11) 

                                                         

where Ww is the wet weight of the biofilm (M), ρ is the density of water (M∙L-3), n is the 
number of glass beads in the packed bed reactor, Xf is the biofilm density (M∙L-3), and Wd is 
the biofilm dry weight (M). 
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4.5.9 Model Inputs for Steady-State Analysis  

The parameters listed in Table 4.1 were used as inputs of the predictive flux model for 
analyzing the steady-state flux data obtained under steady-state conditions (Objective 2).  
The parameter values in Table 4.2 were used for validation of the steady-state biofilm model 
kinetic parameter.  

 
4.6 Steady-State Analysis 

4.6.1 Steady-State Mass Balance on Mn(II) 

The steady-state mass balance on Mn(II) in the completely mixed packed bed reactor is 
described by  

                                                      o e expQS -QS -J aV=0                                            (4-12) 

 

where Q is the steady-state flow rate (L3∙T-1), S0  is the influent Mn(II) concentration (M∙L-

3), Se is the effluent Mn(II) concentration (M∙L-3), Jexp is the observed steady-state Mn(II) flux 
(M∙L-2∙T) into the biofilm, a is the biofilm specific surface area (L-1), and V is the reactor 
volume (L3).  

The steady-state Mn (II) flux expression calculated from Eqn. (4-12) for the various steady-
state conditions in the packed bed reactor is given by:  

                                                          o e
exp

S -SJ =
τa

                                                 (4-13) 

where Ƭ is the empty bed detention time (T) = V
Q
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Table 4.1: Model Inputs for the Steady-State Calibration Data Analysis 

 

 

 

 

 

 

 

 

Table 4.2: Model Inputs for the Steady-State Valibration Data Analysis 

 

 

 

 

 

 

Parameters      Description Units Values 
DMn(II) Diffusivity 

Coefficient of 
Mn(II) 

       cm2∙hr-1 5.0 x 10-4 

ε 
Porosity of the 
medium bed 

------ 0.46 

µ 
Absolute viscosity 

of water g/cm.day 689.47 

Rem 
Modified Reynolds 

number ------ 
1.62 - 
17.06 

Sc Schmidt number ------- 962.28 

L Effective diffusion 
layer thickness cm 0.137 - 

0.255 

Df 
Molecular 
diffusivity       cm2∙day-1 0.702 

a Biofilm specific 
surface area cm-1 600.31 

Lf Biofilm thickness cm 0.005 
Xf    Biofilm density           µg∙cm-3    12,000 

Parameters      Description Units Values 

L 
Effective diffusion 

layer thickness cm 
0.147 - 
0.255 

Lf Biofilm thickness cm 0.005 
Xf    Biofilm density        µg∙cm-3    13,000 
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4.6.2 Mn (II) Volumetric Loading Rate 

The Mn (II) volumetric loading rate was calculated based on Eqn. (4-14):  

                                                           oQSVL= 
V

                                                   (4-14) 

where V∙L is the volumetric Mn(II) loading rate (M∙T-1L-3), Q is the influent Mn(II) flow 
rate to the reactor (L3T-1), S0 is the influent Mn(II) concentration (M∙L-3), and V is the 
volume of the reactor (L3).  

 

4.6.3 Mn (II) Applied Surface Loading Rate      

The Mn (II) applied surface loading rate was estimated using Eqn. (4-15) shown below:  

                                                JMn(II)= QS0
Ms(aM)

                                                   (4-15)      

where JMn(II) is the mass of Mn (II) applied per unit of biofilm surface area per unit of time 
(M∙L-2∙T-1), Ms is the total mass of glass beads in the reactor (M), and a/M is the surface area 
per unit mass of the glass beads (L2∙M-1).  

4.6.4 Mn(II) Oxidation Rate 

The Mn(II) oxidation rate was evaluated using the following Eqn. (4-16):  

                                                            o eS  - S = ν
τ

                                                  (4-16)      

where v  is the Mn(II) oxidation rate (M∙L-3∙T-1), τ is the HRT (T), and Se is the effluent 
Mn(II) concentration (M∙L-3).  

 

 



101 
 

4.6.5 Components of the steady-state biofilm model 

A recycle ratio of 150 was used to maintain completely mixed conditions in the bioreactors. 
The influent Mn(II) concentration S0 at the inlet of the reactor was estimated using the 
following mass balance equation:  

                                           o r e
o

r

QS + Q SS =
Q+ Q

                                                             (4-17) 

where Qr is the recycle flow rate (L3∙T-1).  

The Mn (II) concentration at the biofilm/liquid interface (Ss) (M∙L-3) was determined from 
the Fick’s first law:  

                                          exp
s e

LJ
S = S - 

D
                                                             (4-18) 

where L the thickness of the external mass transfer diffusion layer, Se is the effluent Mn(II)  
concentration (M∙L-1), and D is the diffusion coefficient of Mn(II) in water (L2∙T-1). 

 

4.6.6 Predicted Flux Model and the Optimization Algorithm 

The Mn(II) mass balance for a steady-state concentration profile in the biofilm can be 
described as:  

   0 =  Df
d2SMn(II)

dz2
− kXfSMn(II)

Ks+SMn(II)
                       (4-19)                                                                    

A pseudo-analytical solution of the above equation can be expressed according to Atkinson 
and Davies (1974): 

  

Jpr Mn(II) = ηLfSskXf
Ks+Ss

                                  (4-20) 

 



102 
 

SMn(II) flux in the biofilm. The biomass density (Xf) used in Eqn. (4-23) was calculated from 
the biomass dry weight (mg VSS). The kinetic parameters k and Ks in Eqn. 4-23 were 
estimated using a nonlinear regression analysis with SigmaPlot 11 application software 
(Systat Software Inc.). The software uses Marquardt-Levenberg algorithm (Marquardt, 1963) 
to estimate the optimized value of the parameters by minimizing the residual sum of squares 
between the observed flux (Eqn. 4-13) and the predicted flux (Eqn. 4-23) and is given by the 
equation: 

                          min∑ (Jexp,i
n
i−1 − JprMn(II),i(k, Ks))2                                 (4-21)   

where n= number of d The effectiveness factor (η),  which represents the ratio of the actual 
flux to the flux that would occur in a fully penetrated biofilm (Rittmann, 2001), can be 
estimated using Atkinson’s numerical solution to the biofilm model (Atkinson and Davies, 
1974):  

        -0.5 0.5f f
f f

s f s f

kX kX φη=1-(L ( ) )tanh(L ( ) )( -1)
K D K D tanhφ

  If  φ<1                               (4-22) 

 

       -0.5 0.5f f
f f

s f s f

kX kX1 φη= -(L ( ) )tanh(L ( ) )( -1)
φ K D K D tanhφ

 If  φ 1≥                               (4-23) 

The Thiele modulus (φ) can calculated using the following expression (Atkinson and Davies 
1974):  

                                                      0.5 -0.5sf
f

s f s

2SkXφ=L ( ) (1+ )
K D K

                                   (4-24) 

where k is the maximum specific Mn (II) oxidation rate (Ms∙Mx-1∙T-1), Ks is the saturation 
constant (M∙L-3), and Df is the diffusion coefficient of Mn (III) in the biofilm (L2∙T-1). The 
biofilm was considered fully penetrated if η was estimated to be ≈ 1.  

When Ss << Ks, Monod Kinetics (Eqn. 4-20) can be approximated by the first order 
expression: 

                       Jpr Mn(II) = ηSsk0LfkXf                              (4-25)       
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                                                        with ko = 
𝑘
𝐾𝑠

. 

While the effectiveness factor (η) can be approximated from (Levenspiel, 1998): 

                                     η = tanh(φ)
φ

                                             (4-26)       

and φ can be obtained: 

                                                     φ = Lf �
k0
Df
�
1/2

                                                  (4-27)       

 

4.7 Model evaluation and reliability of the parameter estimates 

A steady-state model kinetic parameter k was obtained by data calibration using phases III - 
VII of operation of the steady-state continuous bioreactor effluent Mn(II) data (Table 4.3 
and Figure 4.7) and the non-linear estimation routine. The model kinetic parameter k was 
validated using the steady-state Mn(II) data for Phases I to III of a second bioreactor (Table 
4.4 and Figure 4.8). 

Kinetic parameter reliability estimates were assessed using a 95% prediction interval. The 
coefficient of variation between the predicted JprMn(II) and the observed Jexp was obtained using 
a linear regression analysis plot.  
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4.8 Results and Discussion  

4.8.1 Reactor Tracer study  

The flow data in Figure 4.3 show that tracer response curves generated at a QR/QF=150 
using Mn(II) matched well with the ideal completely mixed flow curve. The difference 
between the observed data and the ideal tracer response curve was statistically insignificant at 
the 95% confidence level (α =0.05) for Mn(II) (p = 0.32). 

The completely mixed regime in the reactor was also investigated at a recycle ratio of 50 and 
125. The comparison between the observed data and the tracer response curve was not very 
good with the difference statistically significant (p = 0.01) at the 95% confidence level. 

The results of the study indicate that operation of the biofilm reactor at a recycle ratio of 150 
would ensure completely mixed conditions under the different Mn(II) loading rates.  
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Figure 4.3: Tracer study results to determine the optimum recycle rate. 
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 4.8.2 Chemical Control Experiment 

The reactor was operated under an influent Mn(II) concentration of 5 mg∙L-1 and a HRT of 
5 hrs. to investigate whether abiotic mechanisms such as adsorption and chemical oxidation 
are significant in the bioreactor. Figure 4.4 shows that the measured influent and effluent 
Mn(II) levels in the reactor were statistically insignificant (p = 0.119). The results of the 
control experiment demonstrate that abiotic Mn(II) oxidation or removal by adsorption in 
the bioreactor is negligible.   
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Figure 4.4: Results of control study for Mn(II) oxidation and sorption in the bioreactor. 
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4.8.3 Performance Analysis of the Glucose-feed Biofilm Reactors 

Reactor I: Figure 4.5 shows the influent and effluent concentrations of Mn(II) for 26 days 
for a continuous flow biofilm reactor feed 150 mg∙L-1 glucose as the sole carbon source. 
Reactor start-up commenced following 3 days allowed for cell immobilization to the glass 
beads under static flow conditions on the glass beads. The biofilm reactor was operated 
under a feed Mn(II) concentration of 0.45 mg∙L-1 and a HRT of 12-hrs. and conditions 
maintained at pH of 6.5 ± 0.3 and DO of 7.2 ± 0.5 mg∙L-1.  

After 1 day of operation, development of a light brown color was observed on the surface of 
the reactor bead coatings which darkened on each successive day. The effluent Mn(II)   was 
maintained at <0.05 mg∙L-1 from start-up to 6 days. After 14 days the effluent Mn(II) began 
an increasing trend (above 0.05 mg∙L-1) until complete reactor failure at 23 days when the 
feed and effluent concentrations were equal. During the 26 days four episodes of Mn(II) 
release were observed, at 7, 10, 21, and 22 days, increasing the effluent concentration above 
the influent concentration. 
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Figure 4.5: Mn(II) levels for a continuous flow bioreactor. HRT=12-hrs., 150 
 mg∙L-1 glucose sole carbon source.  
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Reactor II:  Figure 4.6 shows the influent and effluent concentrations of Mn(II) for 150 
days for a continuous flow biofilm reactor initially feed 15 mg∙L-1 glucose as the sole carbon 
source. The feed phosphate concentration was reduced to 5 mg∙L-1, compared to 50 mg∙L-1 
in Reactor I. Similar to Rector I, start-up commenced following 3 days allowed for cell 
attachment to the glass beads under static flow conditions on the glass beads. The biofilm 
reactor was operated under a feed Mn(II) concentration of 0.45 mg∙L-1 and a HRT of 12-
hrs. and conditions maintained at pH of 6.5 ± 0.2 and DO of 7.9 ± 0.3 mg∙L-1.  

Similar to Reactor I, development of a light brown color was observed on the surface of the 
reactor bead coatings within 1 day of reactor operation and darkening with each successive 
day. The effluent Mn(II) was maintained at <0.05 mg∙L-1 from start-up for 16 days. After 16 
days the effluent Mn(II) began an increasing trend (above 0.05 mg∙L-1). At 23 days, the feed 
glucose concentration was increased to 150 mg∙L-1 with the assumption the intitial glucose 
feed concentration was insufficient to support the attached biomass. Subsequent 
improvement in the reactor performance was observed with the effluent Mn(II) 
concentration decreasing below <0.05 mg∙L-1 within 24 hrs. Reactor performance was 
maintained with the Mn(II) concentration <0.05 mg∙L-1 until 43 days, when the effluent 
begin increasing until complete reactor failure by 48 days. The reactor was operated for 32 
days under failed conditions then the decision was made to add nutrient broth (5 mg/10 ml 
SQ water) to the recycle line. Within 24 hours the effluent Mn(II) had decreased <0.05 
mg∙L-1.  
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    Figure 4.6: Mn(II) levels for a continuous flow reactor study for Objective 1, HRT=12-
hrs., initial 15  mg∙L-1 glucose as carbon source.  
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Reactor performance <0.05 mg∙L-1 continued until 100 days, when effluent levels sharply 
increased and complete reactor failed by 103 days. Again, nutrient broth (5 mg/10 ml SQ 
water) was added to the recycle line and subsequent improvement in reactor performance 
(<0.05 mg∙L-1) was observed. For the remaining duration of the reactor operation, nutrient 
broth (5 mg/10 ml SQ water) was added to the recycle line every 4-5 days. 

 

4.8.4 Performance Analysis of the Steady-State Biofilm Reactor 

For Objective 2, two separate continuous flow reactor experiments were performed to study 
steady-state Mn(II)-oxidation by pure cultures of strain EC112. The first reactor was for 
model calibration of the observed effluent Mn(II) data sets. The second reactor was for 
model validation. 

The operating conditions and the performance data for the steady-state biofilm reactor for 
Phases I to VIII are in Table 4.3 and Figure 4.7. Biomass data for the steady-state reactor is 
shown in Table 4.4.  Bioreactor (validation) steady-state performance data is shown in Table 
4.5 

Figure 4.9 is a plot of Mn(II) oxidation efficiency of the biofilm reactor versus Mn(II) 
loading rates. Figure 4-10 shows the Mn(II) oxidation rates versus Mn(II) loading rates for 
Phase I to VIII.  

The Mn(II) oxidation efficiency of the biofilm reactor is characterized by decreasing 
efficiency with higher Mn loading rates. Mn(II) oxidation efficiency was 93.5 to 95.0 % for 
the last two phases (VII and VIII) of the reactor operation. The efficiency of the reactor 
dropped to 85.3% under a higher Mn (II) loading rate of 2.67 mg∙L-1∙day-1 in phase III. The 
efficiency dropped to 59.1% with a quadrupling of the Mn(II) loading rate to 12.0 mg∙L-

1∙day-1 in phase IV. 

The reactor Mn(II) effluent data in Figure 4.10 show the decrease in the Mn(II) oxidation 
rate with increase in the Mn(II) loading rates for each phase of reactor operation.     
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Table 4.3: Reactor (calibration) steady-state operating and performance data. 

 

 

     

Phase Duration 
(hrs.) 

HRT 
(hrs.) 

Influent 
Mn(II) 
(µg∙L-1) 

Effluent 
Mn(II) 
(µg∙L-1) 

Mn(II) 
SLR1  

Effluent 
Mn(IV) 
(µg∙L-1) 

DO 
(mg∙L-1) 

I 0-49 25 690±45 30±5 ±29.3 <50 8.5±0.2 
II 49-54 0.4 690±45 50-500 465±25 * * 
III 54-70 1.1 690±45 333±3 1005±22 * * 
IV 70-98 1.4 690±45 286±4 2535±121 * * 
V 98-117 3.2 690±45 171±3 998±35 * 8.2±0.3 
VI 117-140 6.3 690±45 103±2 998±35 <50 * 
VII 140-190 12.6 690±45 35±3 2205±79 <50 * 
VIII 190-286 25 690±45 45±3 4140±98 <50 8.3±0.5 
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Figure 4.7: Steady-state performance data showing effluent Mn(II) for 
bioreactor study for Objective 2. 
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Table 4.4: Biomass Data for Steady-State bioreactor (calibration). 

 

 

 

 

 

 

 

 

                  a: measurement not available 

 

Table 4.5: Bioreactor (validation) steady-state performance data.  

 

 

 

 

 
 
 
 

 

 

 

 

 

Phase Mn(II) LR 
(mg∙L-1∙day-1) 

Viable 
Suspended 
Cell Count 

Viable 
Attached 

Cell 
Count 

Total Attached 
Cell in Reactor 

(mg) 

I 1.33 5.8 x104 7.6 x 1011 71.3 
II 42.00 a a a 
III 15.27 2.6 x 104 a  
IV 12.00 7.8 x 103 a a 
V 5.25 2.2 x 103 a a 
VI 2.67 4.7 x 102 a a 
VII 1.33 6.7 x 102 6.3 x 1011 69.1 
VIII 0.67 a a a 

Phase Duration 
(hrs.) 

HRT 
(hrs.) 

Influent 
Mn(II) 
(µg∙L-1) 

Effluent 
Mn(II) 
(µg∙L-1) 

Mn(II) 
SLR1  

Effluent 
Mn(IV) 
(µg∙L-1) 

DO 
(mg∙L-1) 

I 0-49 12.6 750±13 33±3 ±29.3 <50 8.0±0.2 
II 49-105 6.3 750±13 124±14 465±25 <50 * 
III 105-184 1.3 750±13 350±26 1005±22 <50 7.9±0.5 
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Figure 4.8: Steady-state performance data showing effluent Mn(II) for validation bioreactor 
study for Objective 2. 
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         Figure 4.9: Plot of Mn(II) oxidation efficiency of the bioreactor versus Mn(II)   
loading rates.

Mn(II) Oxidation Loading Rate (mg/L*day)
0 2 4 6 8 10 12 14 16

M
n(

II)
 O

xi
da

tio
n 

E
ffi

ci
en

cy
 (

%
)

0

20

40

60

80

100

Phase III
Phase IV

Phase V

Phase VI

Phase VIII

Phase VII



118 
 

Mn(II) Oxidation Loading Rate (mg/L*day)
0 2 4 6 8 10 12 14 16

M
n(

II)
 O

xi
da

tio
n 

R
at

e 
 (m

g/
L*

da
y)

0

2

4

6

8

10

12

14

Phase VIII
Phase VI

Phase V

Phase IV

Phase III

Phase VIII

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Plot of Mn(II) oxidation rates versus Mn(II) loading rates Phase I to VIII.  
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4.8.8 Kinetic Parameter Estimation  

Several estimation techniques exist for steady-state biofilm kinetic parameters estimation for 
steady-state conditions.  Estimation methods include influent and effluent substrate 
concentration curve comparison for (Rittmann et al., 1986), use of fluidized reactors 
(Nguyen and Shieh (1995); linearization models (Eisenthal and Cornish-Bowden, 1974; 
Robinson, 1985); batch estimation using suspended cells of biofilm parameters (Van 
Loosdrecht et al., 1990; Grady et al., 1996); and use of dissolved oxygen concentration 
profiles (Riefler et al., 1998). 

In this study, a kinetic parameter (k) describing biological Mn(II) oxidation was obtained 
using an approach similar to Smets et al., (1999). The method involved using numerical 
solution derived for a biofilm model developed by Atkinson and Davies (1974). Measured 
Mn(II) flux into the biofilm under various HRT were fitted to a first order approximation of 
a predictive flux expression, which is a function of the Mn (II) concentration at the biofilm-
liquid interface (Ss). The parameters were characterized by their corresponding 95% 
confidence levels.     

 

4.8.8.1 Parameter Estimation Technique 

The average steady-state effluent Mn(II) concentrations measured from Phases III thru VIII 
of the reactor operation were used to compute the (Jexp,Ss) data pair for kinetic parameter 
estimation. Sigma Plot 11.0 (Systat Software Inc.), which employs the Marquardt-Levenberg 
algorithm (Marquardt, 1963) was used to estimate the parameters by minimizing the residual 
sum of squares between the observed flux (Eqn. 4-13) and the model simulation (Eqn. 4-
24), respectively. 

The optimized parameter obtained from the non-linear estimation routine and steady-state 
data is shown in Table 4.6. The covariance % (asymptotic standard error) of 3.85 indicates 
95% prediction intervals are bounding. Sigma Plot 11.0 was run for the (Jexp,Ss) data using 
different initial starting values of the parameters to ensure repeatability of the optimized 
estimate. 
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4.8.9 Evaluation of the Model Fit 

The model fit (Figure 4.11) was evaluated by means of a linear regression analysis of the plot 
between observed and model predicted Mn(II) flux values. A correlation coefficient of R2= 
0.98 suggested a good fit between the model and the experimental data (Figure 4.12). Two 
statistical tests (two-tailed paired t-test, and chi-square goodness of-fit-test) were also 
performed to evaluate any significant difference between the observed and predicted Mn(II) 
flux values. The two-tailed p-value (0.54 > 0.05) and the chi-square goodness of-fit test result 
(p =1) showed that the difference between model predicted and obtained Mn(II) flux values 
were statistically insignificant at the 95% confidence level. The good fit of first-order flux 
model with the experimental data indicates the robust character of strain EC112 for Mn(II) 
oxidation in biofilms. This is in addition to ignoring biofilm losses during reactor operation 
and without an added carbon source in the effluent. 
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Table 4.6: Optimized steady-state biofilm parameter k.  

 

 

  

a CV%: relative asymptotic standard error of the parameter 

 

 

 

  

 

  

 

 

 

 

 

 

 

Parameter Value CV%a 
    k , mg Mn(II)/cells.hr 0.0229 3.85 
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          Figure 4.11: Jexp versus Ss and model best fit for parameter estimation.    
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Figure 4.12: Linear regression analysis between the observed and predicted flux values. 
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4.8.10 Validation of the Steady-State Model  

The flux model (Eqn. 4-19) and the obtained best-fitted kinetic parameter (k) along with 
reactor specific parameters in Table 4.3 were used to predict the steady-state Mn(II) flux 
values for the three phases (I-III) of operation for a separate continuous flow bioreactor. The 
biofilm thickness (Lf) was estimated using Eqn. 4-10, whereas, the biofilm density (Xf) was 
calculated using Eqn. 4-11 respectively. Results in Table 4.7 show that the model predicted 
Mn(II) flux values were within an order of magnitude of the observed values. Phase I had the 
largest discrepancy, with a Jobs./Jpred. value of 2.84 compared to 0.744 and 0.621 for Phase I 
and II. For Phase I the Mn(II) effluent levels were below 50 µg∙L-1 and loss of analytical 
accuracy  for the Mn assay (ICP) at these low levels could have contributed the higher J for 
this phase. 
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Table 4.7: Validation of the steady-state model.  

 

 

 

 

Phase Lf 
 (cm) 

Xf 
(mg∙cm-3) 

P Ss Jobs  Jpred. Jobs./Jpred. 

I 0.005 13 0.065 0.014 0.054 0.019 2.84 
II --- --- --- 0.096 0.096 0.129 0.744 
III 0.005 13 0.065 0.299 0.251 0.404 0.621 
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4.8.11 Biofilter Mn Releases 

During preliminary continuous flow biofilm reactor experiments, described in Section 4.8.3, 
releases of Mn were observed from the biofilter involving pure cultures of strain EC112 (i.e., 
fixed films of pure cultures of strain EC112 attached to glass beads).   These releases 
appeared as Mn ‘spikes’ in the reactor effluent and were identified  when effluent  Mn(II) 
concentrations exceeded the reactor feed influent Mn(II) concentrations (Figure 4.5).  The 
Mn(II) releases could be attributed to be a consequence of high concentrations of chemical 
reducing agents in the feed solution, particularly phosphate ions. A plausible mechanism 
describing the observed biofilter Mn releases would involve diffusion of the chemical 
reducing agents (e.g., PO4

-3)  to Mn(III,IV)Ox reaction sites either coating the surface or 
intermixed within the attached biofilms and subsequent reductive dissolution of the 
bacteriogenic Mn oxide and release of Mn(II) back into the bulk solution.  

 In the preliminary continuous flow reactor studies, biofilter Mn releases were successfully 
abated by reducing the concentration or eliminating the suspected redox agent from the feed 
influent solution. For example, reduction of the phosphate concentration from 50 mg·L-1 to 
5 mg·L-1 resulted in the abatement of Mn releases from the preliminary glucose feed 
continuous flow biofilm reactor experiments. Batch control studies involving PO4

-3 (as 
K2HPO4

-3 and KH2PO4
-3) and solid Mn(III,IV)Ox harvested from strain EC112 showed that 

phosphate concentrations at 20  mg·L-1 or higher reduced measurable amounts of the biotic 
Mn-oxide to soluble Mn(II). 

 
4.8.11.1 Biofilter Mn-Release Reactor Experiments 

 

During a subsequent, continuous flow biofilm reactor experiment designed to investigate the 
steady-state kinetics of Mn(II) oxidation by biofilm cultures of strain EC112, biofilter Mn 
releases were observed following an increase in the influent flow rate (increase in Mn(II) 
loading on the biofilter). The observation of Mn(II) releases was unexpected, and not 
considered to be a reactive product of chemical reducing agents in the feed solution, 
considering the previous discussion, i.e., that the reactor feed solution  was absent of 
sufficient concentrations of chemical reducing agents capable of reducing accumulated 
Mn(III,IV)Ox in the biofilter.    

For this reactor, the feed media consisted of (mg·L-1): α-D-glucose, 20; Difco Yeast Extract, 
2; Difco Nutrient Broth, 2; Mn(II), 0.75; CaCl2·2 H2O, 1;   MgSO4·7 H2O, 1;  
(NH4)2SO4·7 H2O, 1; and 0.5 ml of trace metal solution (Section 3.3.1). The reactor 
conditions were maintained at 29±2 °C and pH 6.6±0.3, within the optimal conditions for 
Mn(II)-oxidation by strain EC112. 

The reactor was operated at an initial HRT of 12.6-hrs., corresponding to an influent flow 
rate of 1.9 ml·hr-1, and an influent Mn(II) concentration of 0.75 mg·L-1. After 72 hours of 
operation reactor start-up, the influent flow was increased to 6.0 ml·hr-1, decreasing the HRT 
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to 4.0-hrs., while increasing the Mn(II) loading from 0.0024 to 0.0076 µg·cm-2·hr-1, 
following the original experimental objective (Section 4.10.4) to establish a steady-state 
Mn(II) reactor conditions. The effluent Mn concentration and mass balance profiles for this 
reactor are shown in Figure 4.13a and Figure 4.13b.  As shown in Figure 4.13a, the effluent 
Mn(II) concentration steadily increased until complete breakthrough at 75.5 hrs., and a 
Mn(II) steady-state was unobtainable at this flow rate, similar to the reactor experiment 
previously described.  Shortly thereafter, the influent flow was decreased back to 1.9 ml·hr.-1, 
with the expectation that the reactor would recover and effluent Mn(II) concentrations 
would decrease to levels prior to the increase in Mn(II) loading (i.e., <0.05 mg·L-1).  
Subsequent monitoring of the reactor Mn(II) effluent  revealed that at 80 hrs. the effluent 
concentration had increased to 1.93 mg·L-1 and a maximum of 2.06 mg·L-1 at 95 hrs. prior 
to returning to the feed influent level at 131 hrs. 
 
Prior to the initiation of Mn(II) release from the biofilter at 75.5 hrs., a mass balance of the 
inflow (126 µg), and outflow (29.16 µg)  indicates 96.84 µg of Mn(II) from bulk solution 
had accumulated in the biofilter. Calculation of the curve area assumed to represent biofilter 
Mn(II) releases, between 75.5 to 224 hrs., yields a total release of 94.30 µg  to bulk solution.  
The biofilter, which had visibly began acquiring the dark-brown color of Mn(III,IV)Ox 
within a few hours following reactor start-up, clearly lightened in color as the Mn(II) release 
progressed from 75.5 to 224 hours. In addition, the release of Mn(II) from the biofilter had 
an effect on the Mn(II)-oxidizing activity by strain EC112, which apparently ceased 
subsequent to the release or at least occurred at rates significantly less than the Mn(II) release 
rates.  
 
Thus, Mn(II) releases from the biofilter may be predictable and subject to control. To 
further investigate biofilter Mn(II) releases, several  reactors were prepared and studied 
subject to various Mn(II) load increases until complete effluent breakthrough.  
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Figure 4.13: Preliminary biofilter Mn(II) release reactor experiment results. 
Effluent Mn concentration profiles (a) and cumulative Mn mass balances (b). 
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4.8.11.2 Biofilter Mn(II) Release Studies 

 
To provide further insight into the conditions and mechanisms for the  Mn(II)  releases 
observed during the steady-state kinetic experiment, reactor experiments were repeated for a 
fresh reactor prepared (with glass bead filter material) with strain EC112 cultures following 
the same procedures. 

Reactor experiments were conducted with the operation strategy of increasing the Mn(II) 
biofilter load until complete effluent Mn(II)  breakthrough,   followed by influent flow rate 
reduction back to the initial (start-up) HRT. The experimental hypothesis, that Mn(II) 
release from the biofilter would occur, as observed for the glucose feed reactor in Figure 4.13, 
when complete Mn(II) breakthrough was reached in the effluent. This strategy required real-
time monitoring of Mn(II) (mg·L-1) and was achieved using the persulfate method (Standard 
Method’s 3500-B), as in the previous experiment.      

The reactor feed media consisted of (mg·L-1): Na2SO4, 25; Mn(II), 0.75; CaCl2·2 H2O, 1;   
MgSO4·7 H2O, 1; (NH4)2SO4·7 H2O, 1; and 0.5 ml trace metal solution (Section 3.3.1). No 
carbon source was included in the reactor feed solution. Reactor operating conditions were 
maintained at 29±1 °C and pH 6.5±0.2, within the optimal conditions determined for 
Mn(II)-oxidation for strain EC112 in batch studies. No buffer was included in the feed 
solution for pH control. Influent reactor feed solutions were adjusted to pH 6.7. During 
reactor operation the pH measured in the recycle line was generally 0.1 to 0.2 pH units 
lower than the feed solution. Dissolved oxygen (DO) measurements in the recycle line 
remained above 8.0 mg·L-1. Steady-state Mn(II) kinetic rector experiments in Section 4.10.4 
using fixed film cultures of strain EC112 indicate oxygen cell consumption did not deplete 
oxygen significantly below DO saturation levels. 

For reactor biofilm development, 25-ml solutions of harvested cultures of strain EC112 were 
incubated for 3-days with the reactor filter material (glass beads) prior to reactor start-up. 
Five reactors (1through 5) were operated under an initial HRT of 12.6-hrs. (inflow rate of 
1.9 ml·hr-1) and subject to the strategy of increasing  the inflow feed rate, then awaiting 
complete Mn(II) effluent breakthrough, whereby increasing biofilter Mn(II) loading (Table 
4.8). Reactor 6 was prepared and operated under similar conditions, except for the loading 
conditions, and served as a control for Reactors 1 to 5. A summary of the influent and 
effluent reactor Mn(II) concentration profiles for Reactors 1 to 3 and Reactors 4 and 5 are 
shown in Figures 4.14(a) and 4.14(b), respectively. 

For this preliminary reactor experiment and the biofilter Mn(II) release experiments in the 
next section, Tables 4.8 and 4.9 summarize the operating conditions and the Mn mass 
balances, respectively. Table 4.8 summarizes reactor influent Mn(II) concentrations,  
influent flow rates per time period, hydraulic retention times (HRT), and Mn(II) loading 
(µg·cm-2·hr-1) rates. Mn(II) mass balances were obtained at the (1) beginning of Mn(II) 
release from the biofilter and  (2) end of reactor operation.  
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Figure 4.14: Biofilter Mn(II) release summary for Reactor 1-3 (a) and 4-5 (b) showing 
the nominal influent Mn(II) concentration and measured effluent Mn(II) concentration. 
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Table 4-8: Reactor influent Mn(II) concentrations, flow time period/rates, hydraulic 
retention times (HRT), and Mn(II) loading rates for Mn biofilter release experiments. 
 
Reactor ID Mn(II) mg∙L-

1 
Time (hrs.) Influent Flow  

Rate (ml∙hr-1) 
HRT 
(hrs.) 

Load Rate 
(µg·cm-1·hr-1) 

      
Prelim. 0.75±0.03 0-72.0 1.9 12.6 0.0024 

  72.0-75.5 6.0 4.0 0.0076 
  75.5-224 (rp*) 1.9 12.6 0.0024 
      
1 0.76±0.02 0-36.4 1.9 12.6 0.0024 
  36.4-39.0 24.0-72.0 1.0-0.3 0.0304-0.0912 
  39.0-53.0 (rp) 1.9 12.6 0.0024 
  53.0-250 1.9 12.6 0.0024 
      
2 0.84±0.03 0-48.0 1.9 12.6 0.0024 
  48.0-52.0 22.8 1.1 0.0289 
  52.0-67.0 (rp) 1.9 12.6 0.0024 
  67.0-152 1.9 12.6 0.0024 
      
3 0.79±0.03 0-45.8 1.9 12.6 0.0024 
  45.8-58.9 11.4-23.0 2.1-1.0 0.0144-0.0291 
  58.9-103.7(rp) 1.9 12.6 0.0024 
  103.7-179 1.9 12.6 0.0024 
      
4 0.79±0.03 0-68.5 1.9 12.6 0.0024 
  68.5-95.5 11.4-23.0 2.1-1.0 0.0144-0.0291 
  95.5-353(rp) 1.9 12.6 0.0024 
      
      
5 0.74±0.03 0-130.5 1.9 12.6 0.0024 
  131.0-144.7 11.4-23.0 2.1-1.0 0.0144-0.0291 
  144.7-509(rp) 1.9 12.6 0.0024 
      
      
6 0.76±0.02 0-93.0 1.9 12.6 0.0024 
  93.0-98.3 23.0 1.0 0.0291 
  98.3-153.0 1.9 12.6 0.0024 
  153.0-155.5 23.0 1.0 0.0291 
  155.5-165.0 (rp) 1.9 12.6 0.0024 
  165.0-220 1.9 12.6 0.0024 

 
*Mn(II) biofilter release period. 

 



132 
 

Table 4-9: Summary of biofilter Mn(II) release amounts.  

                 Reactor ID                                  Mn(II)(µg) [In – Out = Accum.]     

       
                 Prelim.                                             (1)126.00 – 29.16 = 96.84 
                                                    (2) 352.50 –350.00 = 2.54                                             
                                                                           Total Mn(II) release = 94.30 

                    
                             
                    1                                                (1) 158.35 – 59.45 = 98.90 
                                                (2) 428.89 –243.98 = 184.90                                              
                                                                            Total Mn(II) release = 2.49 
         
                   2                                                 (1)142.04 – 33.33 = 108.72 
                                                 (2)302.44 –171.59 = 130.85                                    
                                                                              Total Mn(II) release = 2.79 
         
                    3                                                 (1)163.23 – 46.95 = 116.28 
                                                                       (2)358.36 –239.41 = 118.95                                   
                                                                               Total Mn(II) release = 12.15 
                                                  
                     4                                                 (1)189.04 – 50.25 = 138.78 
                                                                         (2)614.94 –614.27 = 0.67                                              
                                                                               Total Mn(II) release = 138.11 
               
                     5                                                  (1)270.14 – 62.99 = 207.16 
                                                                         (2)580.42 –536.00 = 0.64                                     
                                                                                 Total Mn(II) release = 206.52 
 
                    6                                                 (1)354.75 – 156.10 = 198.65 
                                                                         (2)576.40 –213.74 = 362.66                                     
                                                                                  Total Mn(II) release = 1.21 
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For Reactor 1, the influent feed flow rate was 1.9 ml·hr-1 (HRT 12.6-hrs.) for 36.4 hrs. prior 
to an increase in flow from 24.0 to 72.0 ml·hr-1 for 2.6 hrs., ending at 39.0 hrs. with 
reduction of the inflow rate back to 1.9 ml·hr-1 (Figure 4.15a). Within 1-hr of complete 
Mn(II) effluent breakthrough (40.8 hrs.), a Mn(II) release was observed at 41.2 hrs., marked 
by an effluent concentration of 0.92 mg·L-1, higher than the influent concentration of 0.76  
mg·L-1.  The maximum Mn(II) release concentration measured, 1.03 mg·L-1,  at 41.6 hrs. 
prior to apparent cessation in releases at 53.0 hrs. Subsequently, Mn(II) oxidation activity by 
strain EC112 apparently reduces the inflow Mn(II) concentration to approx. 0.30  mg·L-1 
between 95 hrs. and 102 hrs. until gradual loss of activity followed by complete Mn(II) 
breakthrough at 226 hrs.  

Prior to the initiation of Mn(II) release from the biofilter at 39.0 hrs., a mass balance of the 
inflow (158.35 µg), and outflow (59.45 µg)  indicates a biofilter accumulation of 98.90 µg of 
Mn(II) from bulk solution, as shown in Table 4.9 and Figure 4.15b. Computation of the 
curve area assumed to represent biofilter Mn(II) releases, from  36.4 to 39.0 hrs., yields of 
total release of 2.49 µg.  

For Reactor 2, the time period for the initial influent feed flow rate at 1.9 ml·hr-1 is extended 
to 48 hrs., an additional 11.6 hrs. in comparison to Reactor 1 (Figure 4.16a). The time 
period of increased loading is similar but the loading rate average is lower, resulting in an 
almost equal amount of biofilter Mn(II) accumulation at 153.22 µg.  At 52.0 hrs. complete 
Mn(II) breakthrough was observed, and a Mn(II) release was detected at 53.0  hrs., marked 
by an effluent concentration of 0.90 mg·L-1, higher than the influent concentration of 0.84  
mg·L-1.  The peak Mn(II) release concentration measured, 1.00 mg·L-1,  was at 63.0 hrs. 
prior to apparent cessation in releases at 67.0 hrs. Subsequent to the cessation in release, 
Mn(II)-oxidation activity by strain EC112 appears to resume or become dominant, lowering 
the inflow Mn(II) concentration to approx. 0.60  mg·L-1 between 82 hrs. and 94 hrs. until a 
slow loss of activity and observance of complete Mn(II) breakthrough at 140 hrs.  

Prior to the initiation of Mn(II) release from the biofilter, a mass balance of the reactor 
inflow (142.04 µg), and outflow (33.33 µg)  indicates a biofilter accumulation of 108.72 µg 
as Mn(II), as shown in Table 4.9 and Figure 4.16b. Computation of the curve area assumed 
to represent biofilter Mn(II) releases, from 52.0 to 67.0 hrs., yields a total release of 2.79 µg.  

For Reactor 3, the initial influent feed flow period is 45.8 hrs., 2.2 hrs. lower than Reactor 2. 
The time period interval for increased Mn(II) loading was significantly longer, from 45.8 to 
58.9 hrs., for 13.1 hrs., increasing  the amount of Mn(II) accumulated in the biofilter.  
Within 1.0 hr. of obtaining complete Mn(II) breakthrough (58.9 hrs.), a Mn(II) release was 
observed at 61.3  hrs., marked by an effluent concentration of 0.87 mg·L-1, higher than the 
influent concentration of 0.79 mg·L-1 (Figure 4.17a).  The peak Mn(II) release concentration 
measured 1.16 mg·L-1 at 71.0 hrs. Mn(II) releases appear to cease by 104.0 hrs., when 
Mn(II)-oxidation activity by strain EC112 appears to resume, but more weakly compared to 
the recoveries observed for Reactors 1 and 2, lowering the inflow Mn(II) concentration to  
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   Figure 4.15: Biofilter Mn(II) release results for Reactor 1. Effluent Mn concentration  
    profiles (a) and cumulative Mn mass balances (b). 
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        Figure 4.16: Biofilter Mn(II) release results for Reactor 2. Effluent Mn concentration  
         profiles (a) and cumulative Mn mass balances (b). 
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      Figure 4.17: Biofilter Mn(II) release results for Reactor 3. Effluent Mn concentration  
       profiles (a) and cumulative Mn mass balances (b). 
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approx. 0.60  mg·L-1 by 82 hrs. Loss of activity and complete Mn(II) breakthrough occurs at 
155 hrs.  

A Mn(II) mass balance of the reactor inflow (163.23 µg), and outflow (46.95 µg) before the 
initiation of Mn(II) release indicates a biofilter accumulation of 116.28 µg as Mn(II), as 
shown in Table 4.9 and Figure 4.17b. Computation of the biofilter Mn(II) releases, between 
58.9 to 103.7 hrs., yields of total release of 12.15 µg, a larger release compared to Reactor 1 
and Reactor 2.  

For Reactor 4, the time period for the initial influent feed flow rate of 1.9 ml·hr-1 was 
increased to 68.5 hrs. and the loading time interval was significantly longer, from 68.5 to 
95.5 hrs., for 27.0 hrs., increasing  the amount of Mn(II) accumulated in the biofilter.  
Within 1.0 hr. of obtaining complete Mn(II) breakthrough at 94.8 hrs., a Mn(II) release was 
measured at 95.0  hrs., marked by an effluent concentration of 0.89 mg·L-1, higher than the 
influent concentration of 0.79  mg·L-1 (Figure 4.18a). The peak Mn(II) release concentration 
measured 1.39 mg·L-1  at 127.75 hrs. Mn(II) releases continued significantly longer than the 
previous reactors, until approx. 305 hrs. Further Mn(II)-oxidation activity by strain EC112, 
if any, did not contribute to recovery of the reactor below the influent Mn(II) level of 0.79 
mg·L-1.  
 
A Mn(II) mass balance of the reactor inflow (189.04 µg), and outflow (50.25 µg) before the 
initiation of Mn(II) release indicates a biofilter accumulation of 138.78 µg as Mn(II), as 
shown in Table 4.9 and Figure 4.18b. Computation of the biofilter Mn(II) releases, between 
95.5 to 352 hrs. yields of total release of 138.11 µg, which represents essentially all of the 
accumulated Mn(II) from bulk solution.  
 
For Reactor 5, the initial influent feed flow rate interval at 1.9 ml·hr-1 was increased to 130.5 
hrs., and the loading time interval was from 131.0 to 144.7 hrs., for 13.7 hrs. Within 1.5 hr. 
of obtaining complete Mn(II) breakthrough at 144.5 hrs., a Mn(II) release was measured at 
146.3 hrs., marked by an effluent concentration of 0.79 mg·L-1, higher than the influent 
concentration of 0.74 mg·L-1 (Figure 4.19a).  The peak Mn(II) release concentration 
measured 1.70 mg·L-1 at 186.7 hrs. Apparent Mn(II) releases continued significantly longer 
than for Reactors 1 to 4,  until approx. 510 hrs. Further Mn(II)-oxidation activity by strain 
EC112 was not apparent, as suggested by the failure of the reactor to recover below the 
influent Mn(II) level of 0.79 mg·L-1.  
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          Figure 4.18: Biofilter Mn(II) release results for Reactor 4. Effluent Mn concentration  
           profiles (a) and cumulative Mn mass balances (b). 
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         Figure 4.19: Biofilter Mn(II) release results for Reactor 5. Effluent Mn concentration  
          profiles (a) and cumulative Mn mass balances (b). 
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Within 1.5 hr. of obtaining complete Mn(II) breakthrough at 144.5 hrs., a Mn(II) release 
was measured at 146.3 hrs., marked by an effluent concentration of 0.79 mg·L-1, higher than 
the influent concentration of 0.74  mg·L-1 (Figure 4.19a).  The peak Mn(II) release 
concentration measured 1.70 mg·L-1  at 186.7 hrs. Apparent Mn(II) releases continued 
significantly longer than for Reactors 1 to 4,  until approx. 510 hrs. Further Mn(II)-
oxidation activity by strain EC112 was not apparent, as suggested by the failure of the 
reactor to recover below the influent Mn(II) level of 0.79 mg·L-1.  
 
A Mn(II) mass balance of the reactor inflow (270.14 µg), and outflow (62.99 µg) before the 
initiation of Mn(II) release indicates a biofilter accumulation of 207.16 µg as Mn(II), as 
shown in Table 4.9 and Figure 4.19b. Computation of the biofilter Mn(II) releases, between 
144.7 to 509 hrs., yields of total release of 206.52 µg, which represents release of all of the 
accumulated Mn(II).  
 

For Reactor 6, followed the same operating conditions for Reactors 1 to 5 except the 
operation strategy was to increase the Mn(II) loading on the biofilter until the effluent 
Mn(II) concentration approached breakthrough prior to easing the loading, testing the 
hypothesis that Mn(II) release occurs at complete breakthrough and should not occur at 
loading levels just below breakthrough. The time period for initial influent feed flow rate 
interval at 1.9 ml·hr-1 was 93.0 hrs. and 93.0 to 97.5 hrs.  at 24.0 ml·hr-1 for the increased 
loading time and flow rate (Table 4.8).  As shown in Figure 4.20a, the effluent Mn(II) 
concentration was 0.68 mg·L-1 at 97.5 hrs., 4.5 hrs. following the increased loading. At 
103.0 hrs., 5.5 hrs. subsequent to the reduction in loading back to the initial (start-up) flow 
rate of 1.9 ml·hr-1,   Mn(II) was 0.71 mg·L-1, below the influent feed concentration of 
0.76±0.02 mg·L-1. The effluent level began a decreasing trend and at 152.5 hrs. the Mn(II) 
measured 0.45 mg·L-1.   The influent flow rate was then increased to 24 ml·hr-1 at 153 hrs. 
and complete Mn(II) breakthrough occurred at 155.5 hrs. with a measured concentration of 
0.79 mg·L-1.  Within 30 minutes, a Mn(II) release was measured at 156.0 hrs., marked by an 
effluent concentration of 0.81 mg·L-1, higher than the influent concentration of 0.76±0.02 
mg·L-1.  The peak Mn(II) release concentration was 0.92 mg·L-1 at 158.8 hrs. The biofilter 
demonstrated complete recovery by 230 hrs., with the effluent Mn(II) < 0.05 mg·L-1, which 
Reactors 1 to 5 did not show.   

A Mn(II) mass balance of the reactor inflow (354.75 µg), and outflow (156.10 µg) before the 
initiation of Mn(II) release indicates a biofilter accumulation of 198.65 µg as Mn(II), as 
shown in Table 4.9 and Figure 4.20b. Computation of the biofilter Mn(II) releases, between 
155.5 to 165.0 hrs., yields a total release of 1.21 µg, the smallest release for all of the reactors. 
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     Figure 4.20: Biofilter Mn(II) release results for Reactor 6. Effluent Mn concentration  
      profiles (a) and cumulative Mn mass balances (b). 
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4.8.11.3 Kinetics of Biofilter Mn(II) Release  
 
Biofilter Mn releases were modeled using pseudo first-order rate kinetics, as given in Eqn. 4-
28 and Eqn. 4-29. The releases, for purposes of rate analysis, are interpreted to represent 
Mn(IV) reduction to Mn(II) in the biofilter and release of the soluble Mn into bulk solution. 
     
    d[Mn(IV)]/dt=k1[Mn(IV)]                                         (4-28) 
 
                                                       ln[Mn(IV)]=k1t                                                      (4-29) 
 
 
Data sets used for the kinetic analysis for each reactor, consisted of 3 to 13 points, included 
the first release of Mn(II) (i.e., first effluent concentration exceeding the feed influent level) 
through the maximum Mn(II) release measured. The results for the rate constants range 
from 0.015 to 0.092 hrs.-1 and the regression R2 values range from 0.675 to 0.993, as shown 
in Figure 4.21 and Figure 4.22. The rate constants represent the maximum apparent release 
rate.  
 
This approach of pseudo first-order kinetics has been previously used for Mn(IV) reduction 
rates by pure cultures of Mn-reducing bacteria (Dollhopf et al., 2000; Cerrato et al., 2010). 
Dollhopf et al., (2000) studied the release of Mn(II) from MnO2 during reduction by a 
Black Sea strain Shewanella putrefaciens MR-4. MR-4 is a gram-negative facultative anaerobe 
capable of metabolic Mn(IV) reduction. Cerrato et al., (2010), isolated various bacteria 
strains from biofilms in chlorinated water distribution systems each have the ability to both 
oxidize and reduce Mn (Cerrato et al., 2010). One of these, MB-4, a Bacillus pumilus gram 
positive strain isolated from an anthracite filter media, was capable of Mn-oxidizing and 
reducing both aerobically and anaerobically. Pseudo-first-order obtained for rate constant 
aerobic Mn(IV) reduction in batch studies for MB-4 was 0.117 days-1, or 0.005 hrs.-1, 
reduction rates that are about 3 times slower than the lower biofilter release estimates 
obtained for strain EC112.   The kinetic rate constants obtained for strain EC112 represent 
the apparent maximum release rates. Lower kinetic release rates for Reactor 4 and 5 might be 
obtained if the complete release curve is taken into account.  
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Figure 4.21: Kinetics of Mn(II) biofilter release for Reactor 1-6 (a-f). Pseudo-first order  
rate constant (k1) and R2 regression coefficient for each reactor shown. 
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    Figure 4.22: Kinetics of Mn(II) biofilter release for preliminary reactor (g). Pseudo-first    
order rate constant (k1) and R2 regression coefficient shown. 
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4.8.11.4 Discussion and Summary 
   
The hypothesis that Mn(II) release occurs at complete effluent Mn(II) breakthrough is 
supported by Mn release data at various operating conditions for the continuous flow biofilm 
reactors, implicating direct or indirect activity by strain EC112 as being responsible for the 
release. The following conclusions can be made with regards to the experimental results: 
 

(1) Biofilter Mn releases are observed for each reactor and occur within 0.5 to 1.5 hrs. of 
complete Mn(II) effluent breakthrough. 

(2) Mn releases appear to be independent of Mn(II) loading rates and occur with and 
without the presence of an added carbon source in the feed media solution.  

(3) The amount of released Mn(II) relative to the accumulated amount of Mn(III,IV)Ox 

is dependent on the timing of complete Mn(II) breakthrough. For breakthroughs 
that occur < 60 hrs. following reactor startup, only a minor fraction (roughly <10%)  
of the accumulated Mn is released. For breakthroughs that occur >75 hrs. following 
reactor startup, the bulk (> 99%) of the accumulated Mn(III,IV)Ox is released. This 
paradigm was not observed for Reactor 6, which released < 1% of the accumulated 
biofilter Mn following breakthough at 155.5 hrs. 

(4) Mn releases are consistent with the mechanism of reduction of the oxidized 
Mn(III,IV)Ox in the biofilter and subsequent release of reduced Mn(II) into bulk 
solution. 

 

The increased loading intensity or loading duration has no apparent effect on the quantity of 
Mn release from the biofilter. A general observation from the reactor release studies shows 
that the quantity of Mn(II) release from the biofilter increases for longer durations of the 
initial time interval following reactor start-up prior to the sudden load increase. In addition, 
increasing the time duration of the load increases the amount of Mn(II) released from the 
biofilter.  
 
The results for Reactor 6, a control reactor, support the hypothesis and that the Mn releases 
observed in Reactor 1-5 and the preliminary reactor cannot be attributed to cell detachment, 
cell lysis, or a similar mechanism.  The lack of observance of a Mn release after the first 
increase in Mn load (at 93.0 to 98.3 hrs.) supports this hypothesis Conversely, the 
occurrence of a Mn release following the second increase in load until complete Mn 
breakthrough is observed in the effluent is consistent with the results of the other reactors. 
However, a larger release, perhaps release of all the accumulated biofilter Mn would have 
been expected. Apparently the first increase in Mn loading had a damping effect on the 
release mechanism. 
 

The results of these biofilter Mn release experiments have many implications which are 
dependent on underlying assumptions concerning the mechanism of Mn(II) oxidation and 
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sorption. First, it is reasonable to assume that the accumulated Mn in the biofilter exists as 
biotic Mn(III,IV)Ox, produced by strain EC112 oxidizing the influent Mn(II). In addition, 
sorption of Mn(II) from bulk solution by Mn(III,IV)Ox in the biofilter is assumed negligible.  
Analysis of the biofilter biofilm samples shows the bulk of the Mn to be either Mn(III) 
and/or Mn(IV), as indicated by the reaction with the Leucoberbelin Blue reagent, indicating 
at most that no measurable amounts of Mn(II) have been adsorbed. Control batch studies 
involving solutions of Mn(III,IV)Ox produced by strain EC112 and Mn(II) did not reveal 
significant removal of the Mn cation from bulk solution, implicating biological Mn(II) 
oxidation as the removal mechanism, consistent with other studies involving Mn(II)-
oxidizing bacteria. 

For each reactor, Mn(II) releases from the biofilter occur within 0.5 to 1.5 hrs. following 
complete Mn(II) breakthrough in the effluent. At breakthrough, assuming the Mn(II) from 
bulk solution is due to the enzymatic Mn(II)-oxidizing activity of strain EC112 in biofilms 
attached to the reactor filter material, the enzymes are approaching substrate saturation. The 
Mn is in the Mn(III,IV) oxidation state in the filter biofilms.  As saturation is obtained, Mn 
is released as Mn(II), as evidenced by the effluent Mn(II) concentration exceeding the 
influent feed concentration,  suggesting the Mn in the biofilm is being reduced, implicating 
strain EC112 as having the dual capacity to both oxidize and reduce Mn. P. Putida strains 
have not been reported in the literature as Mn(III,IV)Ox reducing, however few reports exist 
for the study of pure cultures of Mn(IV) reducing bacteria. For Reactor 4 and Reactor 5, 
complete release of the accumulated Mn in the biofilter occurred subsequent to the increased 
loading event or enzyme saturation.  The release is consistent with Mn-reducing activity by 
strain EC112. These results indicate that sudden increases in Mn levels apparently saturate 
the biofilter would be capable of inducing Mn releases. 
 

4.8.12 GreensandPlus Filter Reactor Studies 

4.8.12.1 GreensandPlus Filter Reactor Studies Without Carbon Source 

Figure 4.23 shows the results of separate continuous-flow GP filter reactor experiments 
under 0.4 and 1.0 hydraulic retention times (HRT)  with and without biofilm pure cultures 
of P. Putida EC112. To the feed solution 1.0 mg·L-1 Mn(II) was added and no added carbon 
source.  For two of the reactors, prior to reactor start-up, cultures were incubated at room 
temperature (approx. 25°C) and pH 6.5 with the GP for 3 days to allow for cell attachment 
and biofilm development on the surface of the Mn-oxide coated filter nodules, identical to 
the conditions used for the steady-state continuous flow reactor modeling experiments using 
glass beads as the filter material.  For the 0.4 and 1.0-hr. HRT reactors packed with GP filter 
and without added culture, the effluent Mn(II) concentrations steadily increased and 
breakthrough at 5.2 and 6.8 days, respectively. The poor, unexpected, Mn(II) removal  
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Figure 4.23: Continuous flow reactor experiments using GreensandPlus (GP) filter 
material. No added carbon source. 
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performance for the GP filter may be attributed to the experimental filter conditions, which 
differ considerably from the filter operating conditions recommended by the manufacturer, 
Inversand Company (Clayton, New Jersey). Specifically, a minimum filter bed thickness of 
30 inches of GSP (for single media filters) and service flow rate of 5 to 12 gpm ·ft-2 is 
suggested, compared to 2 inch bed thickness and flow rate of approx. 0.001 gpm ·ft-2 
(determined using a reactor inflow feed rate of 1 ml·hr-1 and inner diameter of 0.075 ft. and 
1.0-hr HRT).  Therefore, for the experimental reactor conditions, filter bed thickness is 
implicated as the limiting condition for Mn(II) removal capacity compared to service flow 
rate for the reactors. 

For the 0.4 and 1.0-hr. HRT reactors incubated with strain EC112 cells for 3 days prior to 
reactor start-up, reactor effluent Mn(II) concentrations increased more sharply before 
plateauing at 2.2 and 2.3 days for 4 days. The plateau is followed by a second sharp increase 
until Mn(II) complete breakthrough at 7.4 and 8.6 days. The initial increase from t=2.2 to 
2.3 days,  the physical presence of strain EC112 or its biofilm products, presumably attached 
to the filter material, may have inhibited the Mn(II) ion flux from the bulk solution to 
abiotic Mn(II) surface sorption sites on the filter.  The Mn(II) breakthrough time increase 
may be attributed to activity of enzymatic Mn(II) oxidation by strain EC112 in  biofilms. 
The overall poor removal capacity of the reactors may have been due to lack of significant 
activity from the biotic Mn(II) oxidizing of the biofilms.  The 3-day incubation time for cell-
attachment prior to reactor start-up, although sufficient for attachment and biofilm 
development to glass beads as demonstrated in Section 4.2.1, was reconsidered. Repulsive 
negatively charged electrostatic surface forces (at pH 6.5) of the GP and the Gram negative 
cells of strain EC112 at pH 6.5 could have inhibited biofilm formation.  

To investigate the effect of a longer incubation time on Mn(II) removal performance, a GP 
packed reactor was prepared and the incubation time for strain EC112 was increased to 5-
days prior to reactor start-up. The results shown in Figure 4.23 for the reactor using a 0.4-hr. 
HRT show considerable improvement in reactor Mn(II) removal capacity.  A more gradual 
increase in effluent Mn(II) concentration is shown prior to plateauing from 6 days to 12 
days.  After 12 days the Mn(II) effluent begins to increase and approaches complete 
breakthrough at 19 days. The plateau may attributed to the Mn(II) oxidizing activity of 
strain EC112 in a pseudo steady-state until loss or reduction in enzymatic activity at 12 days. 
Addiitonally, the plateau may be attributed to autocatalytic Mn(II) oxidation by new 
adsorption sites formed on the GSP surface. Bulk Mn(II) ions presumably sorbed to the 
original oxide adsorption sites in the first 6 days may have been slowly oxidized to MnO2 to 
create new reaction sites. The oxidation of sorbed Mn(II) by oxide surfaces has been 
described as involving slow kinetics (Morgan, 1964; Coffey, 1994)   These results indicate 
that increasing the incubation from 3 to 5-days  the strain EC112 with the GP for biofilm 
development had a significant improvement on reactor performance compared to 3-days.    
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4.8.12.2 GreensandPlus Filter Studies with Humic Acid as sole carbon source 

Reactor performance and sustainability in the presence of humic acids was evaluated. Prior to 
reactor start-up, a solution containing harvested culture of strain EC112 was incubated for 5-
days at room temperature (approx. 25°C) and pH 6.5 with the GSP filter material to allow 
for cell attachment and biofilm development. A second reactor with GSP filter material 
without strain EC211 culture was studied under identical conditions. The Mn(II) 
concentration in the influent feed solution was lowered to  0.5 mg·L-1  Mn(II) and  10  
mg·L-1 of  Sewannee River Humic Acid was added as the sole carbon source.   Previous 
reactor experience indicated that agitation of the reactor during a sampling event risked 
inducing releases of Mn from the filter, making sampling biofilm biomass precarious and 
discouraging their collection. Therefore, biofilm biomass (as viable cell counts) was measured 
by sampling the effluent side GP filter material, which was more easily accessible, at t=0 and 
t=25 days as viable cell counts. The reactor conditions were 29°C±2°C and reactor pH 
6.5±0.2 with an 1.0-hr HRT. The results of both reactors are shown in Figure 4.24.  For the 
GP filter reactor without culture the effluent Mn(II) concentration steadily increase for 6 
days followed by a 6 day decreasing. The 6-day trend of decreasing Mn(II) concentrations 
parallels the performance for the reactor with GP filter and 5-day biofilm in Figure 4.23, 
suggesting the removal mechanism is similar and does not involve a biotic mechanism, either 
enzymatic or autocatalytic. After 12 days the effluent concentrations stabilize between 0.28 
to 0.36 mg·L-1 before increasing and complete breakthrough by day 30. For the reactor with 
strain EC112 biofilm the Mn(II)  effluent was <0.05 mg ·L-1  for 36 days until a rapid 
increasing trend and complete breakthrough on day 40. Addition of 10 mg/10 ml solution of 
nutrient broth/yeast extract to the recycle line restored reactor performance < 0.05 mg ·L-1  
Mn(II)  in the effluent within 1 day.  Bacteria counts from the biofilter were 3.5 x 108±1.7 x 
108 and 3.6 x 108±3.3 x 108 at t=0 and t=25 days respectively.  
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             Figure 4.24: Continuous Flow Reactor experiments using GreensandPlus (GP)            
filter material and Sewannee River Humic Acid as sole carbon source 

 

 

 

 
 

 

 
 

Time [d]
0 10 20 30 40 50 60

M
n(

II)
 [m

g/
L]

0.0

0.2

0.4

0.6

0.8

Nominal Mn(II) Influent mg/L
GP, 1.0-hr HRT, 10 mg/L Sewannee River HA
GP + biofilm, 1.0-hr HRT, 10 mg/L Sewannee River HA



151 
 

4.9 Summary and Conclusions 
 

The potential of Mn(II) oxidation in fixed film continuous flow bioreactors was investigated 
using cells of P. Putida strain EC112. Four research objectives were undertaken to 
determine: (1) operating conditions for sustainable bioreactor performance for Mn(II) 
removal, (2) kinetic parameter(s) for Mn(II) oxidation, (3) potential for humic acids (HA) as 
a sole carbon and energy source to sustain bioreactor and capacity for Mn(II) removal, and 
(4) fate of Mn in the biofilter. Experiments were conducted at the optimal conditions (pH 
6.5 and temperature 30°C) for strain EC112 Mn(II) oxidation. 

Preliminary bioreactor experiments revealed D-glucose as a sole carbon source could not 
sustain bioreactor Mn(II) removal capacity (< 0.05 mg·L-1). Reactor performance began to 
fail after 14 days of operation for an influent Mn(II) concentration of 0.45±0.03 mg·L-1.  A 
periodic (4-5 days) addition of a nutrient/carbon source (nutrient broth/yeast extract) to the 
recycle line was required to sustain the bioreactor. 

A steady-state flux model incorporating Monod Kinetics was used to estimate a fixed-film 
kinetic parameter for Mn(II) oxidation, which was calibrated and validated in separate 
bioreactors without the addition of a feed carbon source. For model calibration, 6 steady-
states (1.1 to 25 hrs. HRT)  and a reactor Mn(II) influent concentration of 690±45µg were 
used. Model validation was obtained for 3 steady-states (12.6, 6.3, 1.3 hrs. HRT) and a 
reactor influent Mn(II) concentration of 750±45µg.   

Experimental Mn(II) data sets were fitted to the Monod Model. Autocatalytic effects, 
described as Mn(II) removal from bulk solution by sorption to MnO2, were shown to be 
negligible in control studies, and Mn(II) data sets were modeled while ignoring such effects.  

A continuous flow bioreactor packed with MnO2 coated media with immobilized cells of 
strain EC112 using HA as the sole carbon source showed enhanced Mn(II) removal capacity 
compared to a control bioreactor.  

Biofilter Mn(II) releases were observed during the continuous flow reactors studies for 
reactors with and without an added carbon source. Bioreactor conditions for release were 
identified and releases were modeled using pseudo first-order kinetics. The mean kinetic 
constant (k1) and regression R2 were 0.048±0.036 and 0.824±0.128, respectively. The 
releases are interpreted to represent either direct or indirect reduction of Mn oxide by strain 
EC112 and release of Mn(II) into the bulk solution, occurring under Mn(II) saturating 
biofilter conditions. 

 

Copyright © Michael Snyder 2013 
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Chapter 5: Engineering Significance and Future Research 

 

Biological treatment processes for drinking water have been largely discouraged by water 
utilities, particularly in the U.S., due to the presence of microorganisms in the water. 
However, their gain in acceptance is in part due to their effectiveness to achieve biological 
water stability, and in the US, driven by more stringent regulations on disinfectants and 
disinfection byproducts (DBS) which in some cases discourage the use of chemical oxidants 
for treatment.  

In this study, it was shown that the substrate products from the reaction between a model 
humic acid (Aldrich Humic Acid) and Mn Oxide (MnO2) potentially represent viable 
carbon and energy sources for biological water treatment processes. In Chapter 3 the optimal 
conditions for the HA-Mn oxide reaction in batch bioreactors were identified. Batch 
(Chapter 3) and continuous flow bioreactor (Chapter 4) experiments conducted showed 
enhanced Mn(II) oxidation and growth by a new Mn(II)-oxidizing bacteria isolate, 
Pseudomonas Putida strain EC112. 

Water discoloration has been attributed to releases of Mn from water treatment filtration 
units and pipe walls of drinking water distribution systems. Biofilter Mn releases were 
observed in this study for continuous flow bioreactor experiments and release conditions 
were identified and release kinetics modeled in Chapter 4. 

GreensandPlus (GSP), a common filter material used for Mn removal for drinking water 
treatment, requires frequent backwashing and use of chemical oxidants (e.g., chlorine) to 
regenerate the catalytic Mn oxide coating. In Chapter 4, biofilms of strain EC112 
immobilized on GSP feed humic acids had higher Mn removal capacity compared to both 
biofilm/GSP without HA and GSP only, in separate continuous flow reactor experiments.  
Use of biofilms with GSP or other filter materials could also eliminate the frequent need to 
replace or regenerate adsorbents such as granular activated carbon (GAC) or use of chemical 
oxidants (e.g., chorine) to regenerate GSP. Such a strategy can also reduce the disinfection 
byproduct (DBP) potential by reducing the raw water natural organic matter (TOC is the 
surrogate parameter for NOM). This strategy can also reduce the quantity of for water 
utilities that practice enhanced coagulation.  while additionally reducing the quantity of 
coagulants (e.g., ferric chloride) used further reducing the  

The results from this study can potentially serve as an innovative water treatment technology 
and source of information for optimization of existing biological filters that treat Mn as part 
of drinking water treatment processes.  

 Based on the findings of this dissertation further research is warranted and includes:  
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1. Investigate potential for fulvic acids and other humic acids (from other sources) as a 
substrate for biological filtration. This study involved two model humic acids, 
Aldrich Humic Acid and Sewannee River Humic Acids. Other Humic acids and 
Fulvic acids will different percentages of the core elements, particularly  O and C,  
and functional groups, would be expected to  have different reactivities towards Mn-
Oxide, and therefore potentially varying yields of biodegradable substrates as 
products. Such a study should allow the further identification of the specific 
characteristics of recalcitrant organic matter that are amendable to product favored 
biological substrates by Mn oxide. This should be useful for water utilities to identify 
or assess the potential of water supply sources for biological water treatment for Mn.  

 
2. Investigate HA and  biotic Mn Oxide reactivity. The Mn Oxide used in this study 

was a synthetic MnO2 (GreensandPlus). Biotic Mn Oxide is structurally distinct, has 
larger surface area, and would be expected to have different reactivity with HA. 
Information gained from such a study could be used to assess the role of Mn Oxide 
in humic material cycling in the carbon cycle. Sunda and Kieber (1994) proposed 
that Mn Oxidizing bacteria may use the Mn Oxides as a mechanism to tap the 
recalcitrant carbon in humic materials.  
 

3. Mn Oxide – HA reaction was investigated in this study using FT-IR and 1H-NMR. 
Analyze the raction using 13C-isotope based spectroscopy such as solid state 13C CP-
MAS to provide further inside into oxidative changes induced by Mn Oxide in the 
humic structure is desirable.  
 

4. Further research the mechanism(s) for Mn(II) release observed during continuous 
flow bioreactors. Mn(II) releases observed during complete Mn(II) effluent 
breakthrough and were apparently a condition of biofilter saturation and the 
enzymes responsible for Mn(II) oxidation for strain EC112. It is speculated, due to 
the systematic timing and controlled nature of the releases, that the release of Mn(II) 
into bulk solution represent Mn reduction activity by strain EC112. Further 
elucidation of the conditions for the release may allow exploitation of this observance 
in biological filters. For example, biological filters are regularly backwashed to 
remove biofilm material and for filters that treat Mn, oxidized Mn. This may be a 
mechanism that could be used by water treatment operators to remove the oxidized 
Mn periodically.  
 

5. Repeat Mn release experiments observed for continuous flow bioreactors using 
different filter materials (e.g., MnO2 coated material such as GSP). 
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6. Repeat Mn release experiments for other Mn-oxidizing bacteria species in continuous 

flow bioreactors. Test the hypothesis that the Mn release observed in this study is a 
common trait among Mn(II) oxidizing bacteria. If so, does this characteristic have a 
cell physiological function? 
 

7. The release studies implicate strain EC112 as a Mn reducer. Further study strain 
EC112 for the ability to reduce Mn(IV). No Pseudomonas Putida strains have been 
identified as Mn reducers. 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Michael Snyder 2013 
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Chapter 6: Summary and Principal Findings 

 

The overall dissertation hypothesis, that in controlled bioreactor systems containing appropriate 
amounts of Mn(II), Mn oxide, humic acids and Mn-oxidizing bacteria,  Mn oxide under certain 
conditions will oxidize humic acids to more biodegradable products that can serve as the primary 
electron donor and carbon source for microbial energy and  growth.   The Mn(II)-oxidizing bacteria, 
upon utilization of the oxidized substrate products, will regenerate (oxidize) Mn(II) to insoluble, 
biotic Mn oxide, thus controlling/removing Mn(II) from solution.  Subsequent reduction and 
dissolution of Mn oxide will release Mn(II) into the bulk solution which can be oxidized by the 
bacteria and autocatalytically by MnO2 in the reactors. The overall HA-MnO2-Mn(II) oxidizing 
bacteria reaction described in Chapter 1 (Eqns. 1-1 to 1-4) can now be modified for this study 
(Eqns. 6-1 to 6-4):      

 
Bulk solution humic acids (HA) diffuse to Mn oxide surface reaction sites and initially form a HA– 
MnO2 precursor complex: 

            MnO2 + HA      ↔    HA–  MnO2                                      (6-1) 

 
Electron transfer from HA in the HA- MnO2 complex   to Mn oxide to form oxidation product 
HA(ox) and reduced Mn(II): 

                                                                                                  
                  HA– MnO2              ↔     Mn(II) + HA(ox)                                                       (6-2) 

 
Biological oxidation of Mn(II) formed  from Mn oxide reduction and dissolution  and Mn(II) 
originally present in source water, as Mn(II)(in), to form MnO2 utilizing HA(ox) as the substrate 
(electron donor) for growth and O2 as the final electron acceptor:     
      
                  Mn(II) + Mn(II) (in) + O2 +HA(ox) + strain EC112 cells  → MnO2  + H2O               (6-3) 
                                                                                              + new strain EC112 cells  
                                                                                     
 
Overall reaction:      
 
             Mn(II)(in) + MnO2 +HA +O2 + strain EC112 cells  →  MnO2  +  H2O  +                      (6-4)                        
            new strain EC112 cells                                                                                                                                         
                                                                                                                                                   

        
  
                                                                       



156 
 

This reaction should proceed in bioreactor systems as shown in Eqn. 6-4 which contain Mn(II) 
oxidizing bacteria, humic material, and MnO2 and at appropriate conditions.  At HA concentrations 
typical of natural waters, HA reaction with Mn Oxide to produce bioavailable organic substrates and 
growth of new bacteria cells within 1 – 2 hrs.  Optimal pH and temperature conditions for reaction 
will be pH 6.5 to 7.0 and 25 to 30°C respectively. Biological treatment of Mn in waters below 15°C 
and above 30°C will be negligible. At pH >7.5 and pH < 6.0, Mn(II)-oxidation activity by strain 
EC112 will be severely inhibited. Mn Oxide reaction with HA can proceed as low as pH 3.0, for 
higher pH that approach 9.0 reaction will not occur. Freshly formed biological Mn Oxide as a 
product of removal of Mn(II)in from bulk solution  may not contribute significantly as an 
autocatalytic Mn(II) removal mechanism, particularly for biological treatment of waters that are 
moderate to hard water where other divalent cations (e.g., Ca2+) are present to compete for sorption 
sites, at least in comparison to enzymatic Mn(II) oxidation rates by strain EC112. Mineralization of 
HA by Mn Oxide to CO2 will be negligible or absent and is not included as a product in Eqn. 6-3.  
For continuous flow bioreactors, sudden increases in Mn(II)in that saturate the biofilter, or localized 
biofilm regions,  for periods lasting for several minutes may induce Mn(II) releases of Mn(II).  
 

The principal findings of this dissertation are: 

 

(1) A Mn(II)-oxidizing bacterium, Pseudomonas Putida strain EC112, was isolated and found to 
oxidize Mn(II) in the stationary growth phase as a carbon-stressed, enzymatic constitutive 
feature, not requiring added Mn for induction. Optimal Mn(II)-oxidation conditions for 
cultures of strain EC112  were determined to be pH 6.5 and 30°C. Strain EC112 can utilize 
a variety of growth substrates as a carbon and energy source, showing robust growth for 
glucose and benzoate. 

 

(2) The potential of AHA as a substrate for Mn(II) oxidation was evaluated in a batch bioreactor 
containing MnO2 and strain EC112. The effect of MnO2 oxide on AHA biodegradability 
was evaluated utilizing viable cell counts and a modified 48-h BOD. The results indicate that 
the biodegradability of AHA   is dependent on both MnO2 concentration and AHA-MnO2 
contact time. Lower amounts of MnO2 oxide required longer reaction times and shorter 
reaction required higher amounts of MnO2   to yield comparable results.  The optimal 
contact time and MnO2 concentration were found to be 45 min. and 6.6 g L-1 for 50 mg/L 
AHA. The pH of the AHA-MnO2 reaction and added Ca2+ had a significant effect on 
biodegradability. For reactions at pH 3, 7 and 9, 48-h BOD increased ca. 3, 5, and 0.5-fold 
respectively compared to controls for the optimal AHA/ MnO2 oxide ratio. For reactions at 
pH 7, 40 mg L-1 added Ca2+ had a significant effect on 48-h BOD for MnO2 oxide levels up 
to 1.5 g.   
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(3) The growth and Mn(II)-oxidation rates of strain EC112 utilizing the oxidation products 
from the reaction of AHA and MnO2 (GreensandPlus) were higher compared to control 
experiments involving AHA only, validating the research hypothesis. Kinetic parameters were 
obtained by fitting experimental Mn(II) data sets to the Monod Model using nonlinear least-
square regression and the Marquardt-Levenberg algorithm (LMA).  Experiments were 
conducted at the optimal condition for Mn(II) oxidation for strain EC112, pH 6.5 and 
temperature 30°C. Batch kinetic parameter model calibration and validation was performed 
using separate carbon sources for growth of strain EC112, D-glucose and the substrate 
products from HA-MnO2, respectively. The best fit model parameters were determined for 
half-saturation coefficient, Ks = 1.086 ± 0.029 and, and maximum specific substrate 
utilization rate, kmc = 0.180 ± 0.003 and Mn(II)/ mg dry cell mass/hour.  Autocatalytic 
effects, described as Mn(II) removal from bulk solution by sorption to MnO2, were shown to 
be negligible in control studies, and Mn(II) data sets were modeled by ignoring such effects. 

 

(4) Changes in AHA by MnO2 oxidation are studied using Fourier transform infrared (FT-IR) 
and proton nuclear magnetic spectroscopy (1H-NMR). Comparison of the FT-IR and 1H-
NMR spectra of AHA and the MnO2 degradation products of AHA reveal striking changes 
in AHA structure.  The most prominent change is interpreted to be evidence of exchange 
reactions between humic hydroxyl and C-O functional groups and MnO2 surface reaction 
sites. 

 
(5) Biological Mn(II)-oxidation kinetics of strain EC112 cultures was investigated in continuous 

flow (fixed film)  bioreactors and kinetic parameters were obtained by fitting experimental 
Mn(II) data sets to the Monod Model using nonlinear least-square regression and the 
Marquardt-Levenberg algorithm (LMA).  Experiments were conducted at the optimal 
condition for Mn(II) oxidation for strain EC112, pH 6.5 and temperature 30°C. A steady-
state flux model was used to estimate a first-order kinetic parameter, which was calibrated 
and validated in separate bioreactors without the addition of a feed carbon source. For model 
calibration, data obtained from 6 steady-states (1.1 to 25 hrs. HRT)  under a reactor Mn(II) 
influent concentration of 690±45µg were used. Model validation was performed with for 3 
steady-states (12.6, 6.3, 1.3 hrs. HRT) and a reactor influent concentration of 750±45µg. 
Autocatalytic effects, described as Mn(II) removal from bulk solution by sorption to MnO2, 
were shown to be negligible in control studies, and Mn(II) data sets were modeled by 
ignoring such effects. 
 

(6) A continuous flow bioreactor packed with MnO2 coated media with immobilized cells of 
strain EC112 using HA as the sole carbon source showed enhanced Mn(II) removal capacity 
compared to  control bioreactors.  

http://en.wikipedia.org/wiki/Fourier_transform
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(7)  Mn(II) releases in water treatment filters and distribution systems, which contribute to dirty 

water events, were observed during the continuous flow reactors studies. Reactor conditions 
for release were identified and releases were modeled using pseudo first-order kinetics. The 
releases are interpreted as Mn oxide reduction by direct or indirect activity by strain EC112 
in the biofilter and release of Mn(II) into the bulk solution, occurring under Mn(II) 
saturating biofilter conditions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Michael Snyder 2013 
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                                                     Appendix I:  P. Putida strain EC112 Sequence 

NNNNNNTNCCGCGGCAGCTGATCCGCGATTACTAGCGATTCCGACTTCACGCACTC
GAGTTGCAGACTGCGATCCGGACTGCGACGGGTTTTGTGGATTTGGCTCCCCCCCC
CGTCTTGCCGCCCCTCGGTACCACCATTGGTATGACGTGTGTAGCCCTACCCATAAG
GGCCATGAGAACCTGACGTCATCCCCACCTTCCTCCGGTTTATCACCGGCAGTCTCC
TTAGAGTGCCCTTTCGTATGCTGTAATGACAAGGGTAGGGCTGCGCTCGTTGCTTAA
CTTAACCTCTCATCTCACGAGCTGACGACAGCCATGCCATGCCTGTGTCTAGGTGCT
CTTTCGAGAACTGACAGATCTCTGCTCGAGTCCTAGCAAGCCAAAGGTAAGTAACGG
TTTTCGCGTTGCGTCTAATTTCAAATTATCATCCATGCTCCACCGCTTGCCCCGGCC
CTTCCTTTGAGTTTTGACCTTTAATCTTGCCTCCCCACTCCCCAGGCTTAATGTTTAA
TGCTACGTTACTGACACCAAACCTCCCACTGCCCAATTGACATCATTCAGGGCGTGG
ACTACCAAGGTATCTAATATCTGTTTGCTGTTTGCTCTTTCGCTTTGACACGTCAGTA
CAGGTCCATGGACCTGCCTTCCGCCTTCGCCACTGGCGTTCCATCTACTATCTTCAA
TGCTACCTCTACAATTCCAAATTCCTCTACCCTCTTCTATACTATAAGATAACCAATAT
CAAACGCAGGTTGAGAGTTGAGCTCTGGCATCTCACCCCTGACATCGATATGCGCAC
GCTATGCGCTTTACAATTCCTATTAACGAATGCGCTAACCCCCTACCGATTACTGCTG
GCTGCTGGTTAGACGGTGCTTAGTCCTCCTGCTCCGACTACC 
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