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Abstract

COMPACT IMPLEMENTATIONS AND BENCHMARKING OF TWO SHA-3 FINAL-
ISTS BLAKE AND JH ON FPGAS

Susheel Choudary Vadlamudi, M.S.

George Mason University, 2012

Thesis Director: Dr. Jens-Peter Kaps

Security and message authentication play a crucial role in communications. The current

hashing standards for message authentication are SHA-1 and SHA-2. Attacks on SHA-1

which show potential vulnerabilities of this algorithm were published in 2005. As SHA-

2 is based on SHA-1 it might be vulnerable to the same attacks. National Institute of

Standards and Technology (NIST) initiated a contest to determine a new American hash

standard called SHA-3. After evaluating the initial 64 algorithms that were submitted,

five algorithms were selected for the final round. The five finalists are: BLAKE, Grøestl,

JH, Keccak and Skein. Security and performance in hardware as well as software were the

key factors in choosing the five finalists. Evaluating the performance of these algorithms

in resource constrained environments, like PDAs and smart phones is of major interest for

mobile ubiquitous computing. New low-power Field Programmable Gate Arrays (FPGA),

which are suitable for battery powered devices, have low non-recurring engineering cost and

faster time to market than Application Specific Integrated Circuits (ASIC).



We designed compact architectures for BLAKE and JH, targeting Xilinx low-cost Spartan-

3 FPGAs. To achieve a good throughput to area ratio we developed different architectures,

maintaining the design criteria of 800 slices, or 400-600 slices with one Block RAM, respec-

tively, on Xilinx Spartan-3 devices. We compared the performance of our implementations

by synthesizing them on several devices from Xilinx and Altera. Our compact implementa-

tions of BLAKE and JH outperform other published results in terms of throughput to area

ratio. Considering the lightweight implementations of all the five finalists, BLAKE has the

best performance and JH has an average performance.



Chapter 1: Introduction

In recent years, new methods are employed for improving ways of communication. The

purpose of communication is to transmit information to others clearly and unambiguously.

This information has to be secured from attacks by unauthorized users. To make the infor-

mation and communication to be secure we use cryptography, which uses the two security

goals. They are:

• Confidentiality : Information must be protected from unauthorized personals.

• Integrity : Data can be changed only by authorized entities, using authorized methods.

Cryptography protects information by transforming it into unreadable format called

cipher text. Only the authorized personal can decipher the information. In this way the

confidentiality of the data can be maintained. In addition to confidentiality, integrity of the

data has to be preserved. To preserve the integrity, the data is passed through an algorithm

called as a cryptographic hash function.

A Hash function is an algorithm which takes arbitrary data as a block and returns a

fixed length of bits called as hash value. Any changes to the data produces a new hash

value thus maintaining the integrity of the information. The arbitrary data is referred as

message and the hash value is termed as message digest or simply digest.

For a cryptographic hash function to be secure it should satisfy three main properties.

They are:

• Preimage resistance

The hash algorithm should be a one way function. Given a hash value h it should be

difficult to find the message m such that hash−1(h) = (m).

1



(Fixed length)

Message or Data Block M
(Variable length)

Hash

Hash Value

Figure 1.1: Hash Function

• Second preimage resistance

For two different messages m1, m2, where m1 ̸= m2. It should be difficult to find a

message m2 by using message m1 such that hash(m1) = hash(m2).

• Collision resistance

It should be difficult to find two messages m1 and m2 that produces the same hash

value. It can be represented as hash(m1) ̸= hash(m2).

1.1 Secure Hash Standard

The Secure Hash Standard, also referred to as Secure Hash Algorithm is a standard

developed by the National Institute of Standards and Technology (NIST) and published as

Federal Information Processing Standard (FIPS 180). The FIPS 180-3[1] specifies five hash

algorithms - SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for federal use and these

algorithms were widely adopted by information industry.

With the advancement of technology, attacks on several cryptographic hash algorithms

were reported[2]. Though the algorithms were not approved by NIST, serious attacks on

NIST approved SHA-1 were also published in 2005[3], which show potential vulnerabil-

ities of this algorithm. SHA-2 architecture is based on SHA-1 making it vulnerable to

2



same attacks. NIST conducted two workshops to analyze the security of the Secure-Hash-

Algorithms(SHA). As a result of these workshops they concluded to develop a new American

hash standard through a public competition similar to AES[4]. NIST announced the com-

petition for the third SHA candidate on November 2007. The winning algorithm will be

called as SHA-3. As a part of the competition sixty four entries were submitted to NIST by

October 2008. Among the sixty four candidates only fourteen qualified for the second round

on July 2009. One year time line was alloted to evaluate the security and performance of

these algorithms in hardware and software. On December 2010, five algorithms progressed

to the third and final round. The five algorithms are:

• BLAKE

• Grøstl

• JH

• Keccack

• Skein

A year was allocated to deeply evaluate the performance of these algorithms. NIST will

be announcing the final winner in 2012.

1.2 Motivation

Performance in hardware has been a key factor in selecting the five finalists. Many hardware

implementations of the SHA-3 finalists have been published and most of them are targeted

to a design criteria of good throughput. Implementing the hash algorithms in resource

constrained environment is also a key factor as they should be implemented on wide variety

of platforms like PDAs and smart phones. Cryptographic algorithms may not be the main

application but a part of the chip, many other applications have to be included in addition

to security for System on Chip devices (SOC). In such cases area is a major constraint, for

implementing the hash algorithms. Generally System on chip devices are developed using

3



Application Specific Integrated Circuits(ASICs). ASICs have low non-recurring engineering

costs and also takes long time to market. With the development of low-cost FPGAs which

are suitable for battery powered devices and also have low non-recurring engineering costs

than ASICs, compact implementation of hash algorithms on FPGAs have become more

important.

Basic architecture of any algorithm is designed by straight forward implementation of

the function using the specifications described. Compact implementation is quite different

from basic implementations, as you need to minimize the size in proportion to speed. De-

creasing the size of datapath may increase the clock cycles to process, which results in a

low throughput. So consistency has to be maintained between area and also speed for a

good throughput over area ratio. Reducing the datapath results in a complex controller

which again is a hurdle to optimize. One such hurdle is permutation in hash functions.

Hash functions uses permutation, sometimes the permutation may not be in a sequence

which makes the controller complex. BLAKE and JH of SHA-3 finalists has complex per-

mutation functions. Optimizing these algorithms for a good throughput to area ratio has

been really interesting. Several compact implementations of BLAKE and JH on FPGAs

have been reported but they are implemented on different vendors and with no specific area

limitation. In order to have a fair comparison among the finalists, it is necessary to have an

area constraint and design the algorithms so that they achieve a good throughput to area

ratio and still falling under the area budget.

1.3 Assumptions and Goals

Only 256-bit variants of BLAKE and JH were implemented as these are the most likely

variants to be used in area constrained designs. Designing low-area architectures for hash

functions requires memory to store the state, message and also other constants needed for

hash computation. So memory/storage is also important in designing compact architectures.

Two ways of accumulating the data is by using the embedded resources or the logic resources

in FPGAs. Considering all the factors we fixed a design criteria of 400-600 slices with one

4



Block RAM or 800 slices with no Block RAM, respectively on Xilinx Spartan-3 device.

This design criteria was based on the results published on SHA3-Zoo[5] website and also

our analysis of the five finalists. Keeping this limitations, we designed our BLAKE and JH

to achieve a maximum throughput to area ratio and still falling under the postulated area

constraint.

1.4 Thesis Organization

Chapter 2 describes the protocol we used for our compact implementations and optimiza-

tion techniques for designing compact architectures. In subsequent chapters we discuss

specifications of BLAKE and different compact architectures of BLAKE, followed by JH

specification and compact architecture of JH. The implementation results and comparisons

are discussed in chapter 7 along with summary and future work.
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Chapter 2: Methodology

2.1 Interface and Protocol

Our hardware interface and I/O protocol (Fig.2.1) is based on the one presented in [6] and

revised in [7]. The SHA core contains our implementation and FIFOs are used to feed and

collect the data from it. A FIFO is a w bit wide register, which is used for synchronization

purpose in hardware. It has two pointers for having a hand shake protocol and this can be

easily interfaced to other micro controllers and circuits. The FIFO interface discussed in

[6] also suits for compact implementations. Compact implementations have lower databus

width than other implementations. Considering this we will be using a databus width w of

16 bits instead of 32 or 64 bits proposed in [6]. The SHA protocol supports two scenarios

1. when the message length is known

2. when the message length is not known

When the message length is known, the message is transmitted as a single segment, hav-

ing the message length after padding “msg len ap” as the first 32-bit word, concatenated

with a ’1’, followed by message length before padding “msg len bp” in bits followed by the

message. For some algorithms “msg len bp” is required for computation even after padding

the message.

When the message length is not known, the message is processed in segments seg0, · · · ,

segn−1. The segments seg0, · · · , segn−2 are headed by “seg len ap” concatenated with a

’0’, which states that more message segments are in queue. The final segment segn−1 has

“seg len ap” concatenated with ’1’ and followed by “seg len bp” followed by the message

6



and all the padding bits. The formula to compute the total number of bits before padding

and after padding is given below.

msg len ap =

n−1∑
i=0

seg len api · 32

msg len bp =

n−2∑
i=0

seg len api · 32 + seg len bpn−1

din
w

bitsw seg_len_ap  01

seg  
1

bitsw

seg  
0

seg  
n−1

src_ready dst_ready

clk

clk

SHA Core

src_read dst_write

rst

rst

dout
w

msg_len_ap 1

msg_len_bp

message

a)SHA Interface b)SHA Protocol

seg_len_ap  00

seg_len_ap  1

seg_len_bp  n−1

n−1

Figure 2.1: Interface and protocol for our SHA cores

2.2 Architectural Overview Of Spartan-3 FPGA

Utilization of architectural features provided in FPGAs is crucial for designing compact

architectures. Our target device is Spartan-3 FPGA, which is a low-cost and low-power

device. In order to have a great compact design we need to interpret the structural features

of Spartan-3 FPGAs. Compact architectures of BLAKE and JH are developed making the

use of these architectural features.

The spartan-3 FPGA, architecture consists of five fundamental programmable functional

elements

7



1. Configurable Logic Blocks (CLBs)

2. Input/Output Blocks (IOBs)

3. Block RAM

4. Multiplier Blocks

5. Digital Clock Manager (DCM) Blocks

The organization of these elements in a Spartan-3 device is given in Fig 2.2. Among

the listed functional elements we will utilize CLBs for implementing synchronous as well as

combinational circuits and Block RAM to store the bits required.
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Figure 2.2: Architecture of Spartan-3 FPGA

2.2.1 Configurable Logic Blocks (CLBs)

CLBs are used for implementing combinational and synchronous logic circuits. Each CLB

in Xilinx Spartan-3 FPGA is comprised of four slices, and each slice has two Look-Up

Tables(LUTs) for implementing logic. The LUTs are followed by dedicated storage elements

that can be used as registers or latches. The organization of slices in a CLB is given in Fig

2.3. Each CLB is divided into two half’s and each half is referred as SLICEL and SLICEM,

respectively. The two slices of SLICEM supports logic, arithmetic and ROM functions
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Figure 2.3: Organization of slices in CLB

where SLICEL supports only logic. The resources in SLICEM and SLICEL are show in

Fig 2.4 and Fig 2.5 respectively. Each slice in Xilinx Spartan-3 FPGA has the following

elements to support the above listed functions.

• Two 4-input LUT function generators F and G

• Two storage elements

• Two wide-function multiplexers

• Carry and arithmetic logic

Arithmetic Logic

LUT 4 (G)
RAM16

SRL16

LUT 4 (F)
RAM16

SRL16

Carry

Register

Register

Carry

FiMUX

F5MUX

Figure 2.4: SLICEM

9



Arithmetic Logic

LUT 4 (F)

LUT 4 (G)

Carry

Register

Register

Carry

FiMUX

F5MUX

Figure 2.5: SLICEL

2.2.2 Look-Up Tables

Look-Up Tables (LUTs) are mainly used for implementing logic functions. In addition,

LUTs in each SLICEM can be configured as Distributed RAMs or 16-bit shift registers

called SRL16. Each LUT have four logic inputs (A1-A4) and a single output D. Any

function with four inputs can be implemented in a single LUT. Functions with more inputs

are implemented by cascading LUTs and are connected by using carry and arithmetic logic

along with muxes. The LUTs are also directly connected to CLB output or to the storage

elements of CLB.

2.2.3 Distributed RAM

A Look-Up Table in SLICEM can be configured to store 16-bits of data, and each bit

can be addressed by the four inputs of LUT. This configuration of LUT helps us to build

Distributed RAMs. The LUTs can be cascaded to realize deeper memories with minimal

penalty on timing. Distributed RAM supports the following memory types:

• Single-port RAM with synchronous write and asynchronous read. Synchronous reads

are possible using the storage associated with the LUT

• Dual-port RAM which one synchronous write and two asynchronous read ports. As

above, synchronous reads are possible. The second read port is an independent read

port.
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Fig. 2.6 shows the Single-port and Dual-port Distributed RAMs. Each CLB contains four

SLICEM LUTs, which can be configured as 64-bits of single port RAM or 32-bits of dual-

port RAM. Large amount of data can be stored using RAM16s, which helps us to access the

required data independently. RAMs can be initialized with data depending on the design

criteria.

Single−Port RAM

D

Address

Write

WCLK

Address

SPO

Read

Read

Read Port

R/W Port

Dual−Port RAM

DPO

D
O

Address

Write

WCLK

Read

Figure 2.6: Single-port and Dual-port Distributed RAMs

2.2.4 Shift Registers

The SLICEM LUT can be configured as a 16-bit shift register, without using the flipflop

available in each slice. The F-LUT and G-LUT of SLICEM shown in Fig 2.4, are the basic

components for constructing SRL16. The basic structure of SRL16 is given in Fig 2.7. LUTs

within SLICEM can be cascaded by connecting MC15, the output of G-LUT to DI, input of

F-LUT through DIFMUX. SLICEMs can be cascaded by SHIFTIN and SHIFTOUT lines

which are routed through DIGMUX to form large shift registers. Each SRL16 provides a

shift output MC15 for the last bit in each LUT in addition to addressable access to any bit in

the shift register through normal D output. D output is available in SRL primitives, where

as MC15/Q15 signal that drives SHIFTOUT are available in SRLC16 primitive. SRLC16

refers to cascade-able shift registers. Each CLB can be configured as a 64-bit shift registers

using the four LUTs of SLICEM.
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Figure 2.7: Shift Register

2.2.5 Block RAM

Block RAMs (BRAMs) are the embedded memory elements on FPGAs. They can be used

for storing large amount of data, in place of logic resources which consume area on FPGAs.

BRAMs have large memory space but limited number of I/O ports. Each BRAM can be

configured as a single-port or dual-port memory with a maximum data width of 64-bits

or 32-bits per port, respectively. Each port is associated with an address input. A dual

port BRAM has two completely independent access ports. Both ports are interchangeable

and supports data read and write operations. The read and write operations of a port are

synchronous with its own clock, enable and write enable signals. BRAM limits the number

of independent values that can be accessed in one clock cycle because of the limited read

ports. Configuration of BRAM as a single-port and dual-port memory is given in Fig 2.8.

The spartan-3 data sheet specifies that, for a BRAM data is written to the address

applied in the current clock cycle, but reads out the data from the address of the previous

clock cycle.

Hence if you want to write the data to the same location i.e.Mem[i] = Mem[i] + k, where

each element is 64-bit word, it takes two clock cycles. So, if an address shift is not acceptable

you need to have dedicated write clock cycles.
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Figure 2.9: Timing diagram of BRAM

When address shift is acceptable i.e. Mem[i + i] = Mem[i] + k, you don’t need to have

dedicated write clock cycles.

2.3 Optimization Techniques

2.3.1 Datapath Optimization

Efficient compact architectures can be designed by optimizing the datapath of the algorithm.

Datapath optimization can be attained by following three main steps. They are

• Folding

• Pipelining

• Rescheduling

13



clk

addr

d_in

d_out

0201

[01]

f([01])

Figure 2.10: Dedicated write clock cycles for BRAM
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Figure 2.11: Address shift in BRAM

Folding

Scalability of an algorithm is important for developing compact architectures. Depending on

scalability, an algorithm can be folded either horizontally or vertically. Folding an algorithm

reduces the datapath width or the number of functions that are processed in one clock cycle.

The method of horizontal folding and vertical folding is given in fig 2.12(a) and fig 2.12(b)

respectively.

♢ Horizontal Folding

Depending on parallelism a function can be folded across the horizontal axis. Folding a

function horizontally either reduces the critical path or the number of functions computed

in one clock cycle. This increases the clock cycle count depending on the number of times

the function is folded.

For example, in fig 2.12(a) a function R is folded by half. So in one clock cycle only

half of R, which is R/2 is computed and stored back in the register. The remaining half is

executed in the next clock cycle, making two clock cycles to execute a single function. By
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Figure 2.12: Folding of Algorithms

this we reduce the area by almost half and also the critical path is cut down resulting in

doubling the throughput.

♢ Vertical Folding

Some functions have analogy across the vertical axis. Folding such functions across the

vertical axis reduces the number of bits that are processed in one clock cycle. The reduce

in the datapath width increases the clock cycles which is dependent on the number of times

the datapath is folded.

For example, in fig 2.12(b) the function R is folded across vertical axis. R/2 function

processes half of the data and stores in a register, the remaining half is processed in the

next clock cycle. The processed two halves are concatenated to be stored back in the state

register. As you have free registers after each LUT, storing the data after one clock cycle

will not increase the area.

Pipelining

Throughput of a design can be increased by implementing pipeline technique. Pipelining is

a method in which multiple instructions are overlapped and executed. It consists of breaking

long combinational path by introducing/using registers, this divides the instructions into

stages. Each stage completes or processes a set of instructions in parallel. All the stages are

connected to form a pipe - instructions enter at one end, progress through the stages and
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exit at the other end. Pipelining reduces the critical path by breaking the combinational

path, thus allowing to attain high clock frequencies.
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Figure 2.13: Unpipelined Machine
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Figure 2.14: Pipelined Machine

In some functions, the output of one pipeline stage becomes the input of the other

pipeline stage. This rises the concept of data forwarding, which allows flow of information

from one pipeline stage to the other. The flow of information may be to the next pipeline

stage or to a stage which is not subsequent. In such cases data has to be stored and

forwarded for the required pipeline stage. This technique is called as quasi-pipelining. In

this technique two or more pipeline stages allow interleaving computations belonging to any

two functions.

Rescheduling

Pipelining gives the concept of data forwarding and also data dependency. The data which is

needed by other functions to be computed may be in the pipeline and this results in pipeline
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stalls. By rescheduling the functions we can avoid data dependency and also avoid pipeline

stalls. The rescheduling of functions should be designed so that the overall functionality of

the algorithm is not altered.

In addition to the steps mentioned, choosing the appropriate feature for implementing

a specific component in the design and re-use of hardware results in an effective compact

design. For choosing appropriate feature we need to utilize the structural features of the

targeted FPGA. Storage is an important concern for compact architectures. Use of BRAM

for storing will reduce the area, but this restricts the data access and further increases clock

cycles. By using DRAMs for data which needs to be accessed frequently will reduce the

clock cycles with a slight increase in area.

2.3.2 Controller Optimization

Finite State Machines (FSM) are used along with ROMs for realizing the control logic of

complex systems. This led to ROM-based FSM implementation which proved to be efficient

[8], [9], [10]. Our control logic hash one main FSM, up to 8-states and additional counters to

count the clock cycle per state. The control signals are minimized by by eliminating some

signals which has the same pattern as others. Some signals can be generated using logic and

this reduces the area for storing the bits. The other important thing in designing controllers

is the addressing of BRAM. BLAKE has permutation which can’t be minimized because

of the irregularities. Using ROMs to generate the addressing for both ports consumes

significant area, in this case we need to optimize other signals to obtain minimum area.

2.4 Tools and Benchmarking

All our designs are targeted to Spartan-3 FPGA, but it is interesting to see the performance

of designs on other low-cost devices developed by Altera. So we implemented our designs on

Altera Cyclone-II, new low-cost spartan-6 devices and on high speed devices like Virtex-5

and Virtex-6. All designs were implemented using Xilinx ISE 13.1 Web Pack and Altera

Quartus II v10.0 Web Edition. All results were generated using benchmarking tool ATHENa
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(Automated Tool for Hardware EvaluatioN) [11].

2.5 Performance Metrics

The performance of the implementation depends on the number of clock cycles it takes to

hash N message blocks. This can be computed from the number of clock cycles that each

function requires to perform. The functions being:

i Initialization (if not precomputed) p Processing one block

h Loading protocol header of message z Finalization

l1 Loading first block o Output of the hash value

l Loading each subsequent block

As a result, the formula for the number of clock cycles for hashing N -blocks of message

is:

No.ofclk cycles = i+ h+ l1 + l · (N − 1) + p ·N + z + o

This formula can be simplified, by dividing the initial steps before the processing can

begin st = i+h+(l1− l), loading and processing of one message block l+ p and finally the

hashing out and finalization end = z + o. This results, the number of clock cycles to hash

N -blocks of data:

No.ofclk cycles = st+ (l + p) ·N + end

Throughput is the key factor for comparing the performance of algorithms. It is defined

as the number of input bits processed per unit time. The throughput of the hash function

is dependent on the number of message blocks N to be hashed, the number of clock cycles

to process one message block, block size b of the algorithm and the delay/clock period T .

So, throughput of a hash function can be given as:

throughput(N) =
b ·N
clk · T

=
b ·N

(st+ (l + p) ·N + end) · T
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In embedded applications, messages can be short, so it is important to calculate the

throughput of short messages. For this we use and empty message which after padding has

one block of message. This makes the value of N = 1 in the above equation for computing

the throughput. For long messages, the st and end takes place one time and so it makes

a negligible effect on throughput. This leads us to the simplified equation for throughput,

which is

throughputlong =
b

(l + p) · T
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Chapter 3: BLAKE

3.1 Introduction

BLAKE [12] is a hash function developed by Jean-Phillippe Aumasson and his group from

Switzerland. It was submitted to Secure Hash Algorithm-3 (SHA-3) contest that was orga-

nized by National Institute of Standards and Technology (NIST). The heritage of BLAKE

is threefold

1. BLAKE’s Iteration mode is HAIFA

2. BLAKE’s internal structure is local wide-pipe

3. BLAKE’s compression algorithm is a modification of Bernstein’s stream cipher ChaCha.

BLAKE is a family of four hash functions, which produce message digests of 224,256,384

and 512 bits with the same parameter sizes of SHA-2[1]. The second round submission

of these four hash functions were referred to as BLAKE-28, BLAKE-32, BLAKE-48 and

BLAKE-64. For the third round they were renamed as BLAKE-224, BLAKE-256, BLAKE-

384 and BLAKE-512. The difference between Round-2 and Round-3 is number of rounds.

BLAKE’s 32-bit version is named as BLAKE-256 and the 64-bit version is reffered as

BLAKE-512 which produces 256-bit and 512-bit hash outputs, respectively. Table.1 gives

the properties of the BLAKE hash functions.

BLAKE hash functions follows HAIFA(HAsh Iterative FrAmework) iteration mode[13].

The HAIFA iteration mode and the compression function depends on the Salt and the

number of message bits hashed with the help of a counter. The compression function is

developed from LAKE[14], which hash a large internal state which is initialized using the

initial hash values, salt and the counter. The inner state is updated by rounds which is
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Table 3.1: Properties of BLAKE hash functions

Algorithm Word Message Block Digest Salt Round-2 Round-3

BLAKE-224 32 < 264 512 224 128 10 14
BLAKE-256 32 < 264 512 256 128 10 14
BLAKE-384 64 < 2128 1024 384 256 14 16
BLAKE-512 64 < 2128 1024 512 256 14 16

message dependent and it is finally compressed to produce the next chaining hash value.

This strategy is called local wide-pipe[15].

Next chain valueInitialization FinalizationRounds

Counter Message

Chain value

Salt Chain value Salt

Figure 3.1: Widepipe of BLAKE

The inner state is represented as 4x4 matrix and the compression function, first updates

the all the four columns independent and four disjoint diagonals after that. For each update

two message blocks are used depending on the round. After the rounds, the state is reduced

using the initial hash value and salt.

3.1.1 Notations

The following notations are used in BLAKE description. If P is a bit string, it is viewed as

a string of words and Pi denotes i
th word component.For a message M, M i denotes its ith

16-word block. So M i
j is the jth word of the ith block of message M. For N-block message,

M is decomposed as M = M0, · · · ,MN−1 and each block M0 is composed of words.

The initial hash value is represented as IV and is composed of eight 32-bit words

IV0, · · · , IV7. The intermediate hash values in the iterated hash are called chain values
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and the hash output of the final message block of message is the final hash value or hash.

P = P0 ∥ P1 ∥ ......Pi−1 ∥ Pi

M = M0 ∥M1 ∥ ......Mi−1 ∥Mi

M0 = m0 ∥ m1 ∥ ......m14 ∥ m15

IV = IV0 ∥ IV1 ∥ ......IV6 ∥ IV7

(3.1)

The mathematical operations used in BLAKE are denoted as follows

Table 3.2: Operation & symbols used in BLAKE

Symbol Meaning

← Variable assignment
� Addition modulo 232

⊕ Boolean Exclusive OR(XOR)
<<< k rotating of k bits towards more significant bits
>>> k rotating of k bits towards less significant bits

3.2 BLAKE-256

BLAKE-256 operates on 32-bit words of message and returns a 32-byte hash value. This

section describes BLAKE-256, starting from the constants, compression function and finally

to the iteration mode.
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3.2.1 Constants

BLAKE-256 uses the same initial hash value as SHA-256.

IV0 = 6A09E667 IV1 = BB67AE85

IV2 = 3C6EF372 IV3 = A54FF53A

IV4 = 510E527F IV5 = 9B05688C

IV6 = 1F83D9AB IV7 = 5BE0CD19

BLAKE-256 requires 16 constant words.

c0 = 243F6A88 c1 = 85A308D3

c2 = 13198A2E c3 = 03707344

c4 = A4093822 c5 = 299F31D0

c6 = 082EFA98 c7 = EC4E6C89

c8 = 452821E6 c9 = 38D01377

c10 = BE5466CF c11 = 34E90C6C

c12 = C0AC29B7 c13 = C97C50DD

c14 = 3F84D5B5 c15 = B5470917

3.2.2 Compression function

The compression function is comprised of three functions namely:

• Initialization

• Round function

• Finalization

The compression function takes 30 words consisting of message, initial hash value, salt and

counter to produce a 32 byte chaining hash value. Compression function is represented as
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h’ = compress(h,m,s,t)

• chain hash h = h0, · · · , h7

• message block m = m0, · · · ,m15

• salt s = s0,s1,s2,s3

• counter t = t0,t1

Initialization

The initialization step is used to initiate an inner state of 16 words represented as v0, v1, · · · , v15.

The state is represented as a 4x4-matrix and is generated using the initial hash, salt, con-

stants and counter.



v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15


←



h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7



Round function

The round function operates on the inner state V and loops for 14 times to produce a new

V after each round. It consists of eight G-functions which operates on four words of inner

state. The first four G-function updates the four columns of the matrix independently and

the next four G-function updates the independent diagonals of the matrix. The G-functions

are represented as:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)

G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)
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For a round r, G-function is denoted as Gi(a, b, c, d) and it is defined as follows:

a ← a� b

a ← a� (mσr(2i) ⊕ cσr(2i+1))

d ← (d⊕ a) >>> 16

c ← c� d

b ← (b⊕ c) >>> 12

a ← a� b

a ← a� (mσr(2i+1) ⊕ cσr(2i))

d ← (d⊕ a) >>> 8

c ← c� d

b ← (b⊕ c) >>> 7

The first four G-functions G0, · · · , G3 can be computed in parallel as they operate on

independent columns of the matrix. Similarly G4, · · · , G7 operate on independent diagonals

of matrix and can be computed in parallel. The G-functions G4, · · · , G7 depends on the

output of G0, · · · , G3.Each G-function uses two permuted words of message and constants.

The permutation used for each round is determined by using σr mod 10 operation. Where r

denotes the round number. The permutation values for BLAKE-256 are given in Table 3.3.
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Figure 3.2: Gi Function
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Table 3.3: Permutations of Message and Constants used by BLAKE

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0
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Figure 3.3: Column and diagonals step of Round function

Finalization

After the round function, a new chain value h′0, · · · , h′7 is generated using v0, v1, · · · , v15,

input chain value h0, · · · , h7 and salt s0, s1, s2, s3.
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h′0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h′1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h′2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h′3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h′4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12

h′5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h′6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14

h′7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

3.2.3 Iterated hash

Each message is split into 16 word message block m0, · · · ,mN−1. The iterated hash of

BLAKE-256 is given by

h0 ← IV

for i = 0, · · · , N − 1

hi+1 ← compress(hi,mi, s, li)

return hN

3.2.4 Block diagram

The block diagram of BLAKE-256 is shown in Fig.3.4.
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Chapter 4: Compact Implementations of BLAKE

4.1 Dedicated Write Design-I

4.1.1 Datapath

Compact architecture of BLAKE-32 is designed by utilizing the optimization techniques

discussed in chapter 2. The storage element Block RAM is used to store message, constants,

initial & chaining hash values, salt, internal state V and counter. The internal state V ,

which is stored in Block RAM should be accessed in each round, in fact for each G-Function.

So, in order to have the state in the same address location we have dedicated write clock

cycles. This helps us to optimize the controller as we can achieve congruence across the

rounds.

The main function of BLAKE is the round function which consists of eight G-Functions.

This compact implementation has a 32-bit datapath and processes two G-Functions in

pipeline. Pipelining is implemented by using the free registers after the combinational

logic. As we implement a 32-bit datapath, the block RAM is configured as dual-port which

can read and write 32-bits of data for each port. The initialization and finalization functions

are simple XOR operations on 32-bit words. This XOR operations of 32-bit words, are

performed using a 32-bit XOR gate out side the pipelined round function. The initialization

and finalization values are stored back into the block RAM and this takes 16 and 48 clock

cycles, respectively.

For processing two G-Functions, we need to read eight words of internal state V and four

words each of message and constants. The four words of message and constants for each

round are permuted. In order to provide permuted messages and constants for the respective

rounds we generate addresses from the controller. The controller addresses the correct

message and constant word that is required for the G-Function in each round. The processed
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eight words of state has to be written back to the same locations from which we read them.

For writing back to the same locations of block RAM we use dedicated write clock cycles.
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Figure 4.1: Datapath of Dedicated Write Design-I

Let’s assume Gi and Gi+1 are two G-functions that are to be processed in pipeline. As

we need to read 16 words of data for both the G-Functions, each G-Function takes two clock

cycles for reading the state and two clock cycles for constants and message. The reads are

scheduled so that half of Gi can be processed and stored in the reserve registers, followed

by Gi+1. The second half of Gi is computed by pipelining it with the Gi+1. It takes eight

clock cycles to read out the data from dual-port block RAM and four clock cycles to write

back eight words of the internal state V . The scheduling of two pipelined G-functions is

given in Fig.4.2. Ports A and B denotes the reading and writing of the words for the two

G-functions. Level represents the instructions performed in each stage.

It takes 12 clock cycles to compute two G-Functions and write them back into the block

RAM. So, one round of BLAKE takes 48 clock cycles to process. The final or the chaining

hash value is stored back into the block RAM after finalization.
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Figure 4.2: Pipeline of Two G-Functions

4.1.2 Control Unit

The control unit is developed using counters and Distributed ROMs which store the control

words and addresses for block RAM. The block RAM is divided into segments, each consist-

ing of 16 words. It uses an eight bit address to read/write data from/to block RAM. Four

MSB bits are used for handling the segments and the four LSB bits are used for accessing

the words. Loading of message into desired segment of block RAM is addressed with the

help of a four-bit counter. For the initialization and finalization the control words and the

addresses are stored in separate ROMs. The round function hash congruence among other

rounds and we develop control signals and address bits for one round which can be used over

for other rounds. Addressing permuted message and constants for the round function are

stored in a 160x4− bit ROM. The selection between the message,constants and the internal

state segments of block RAM is is controlled with selection bits stored in a ROM. The

permutation of message words and constants have no pattern, no method can be employed

to optimize this ROM.
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The design utilizes the optimization techniques but still it has a low throughput, and

also has large controller area. This is because of the long critical path though we use

pipelining and the permutation function which can’t be optimized. In addition to above

mentioned, accessing of the internal state and the message from block RAM is a contention

as we can either read/write only two words per clock cycle. It increases the clock cycle

count for processing one message block which pulls down the overall throughput to area

ratio.

4.2 Dedicated Write Design-II

4.2.1 Datapath

Previous design implements pipelined architecture but still has a long critical path which

reduces the throughput. We can reduce the critical path by rescheduling the stages of

pipeline. This increases the clock cycles but may increase the overall throughput because

of the reduced critical path.

In order to cut down the critical path, the design is modified as shown in Fig.4.3. The

modification in design results in increase of one clock cycle for computing the Gi+1 function

of the pipelined two G-Functions. This is because of the bubble inserted after computing Gi

function which helps to process the values required for computing Gi+1. The initialization

and finalization functions are still the same as the previous design and take the same amount

of clock cycles.

4.2.2 Control Unit

The control unit is same as the previous design, which uses counters and distributed ROMs.

The control unit is built by making slight changes to the controller designed above. In the

earlier design it takes 48 clock cycles for one round function. We use a six bit counter to

generate the signals from the ROM which stores control words for round function. This

implementation takes 52 clock cycles, and by adding additional signals to the ROM does
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Figure 4.3: Datapath of Dedicated Write Design-II

n’t increase the area as a six bit addressable ROM can hold up to 64 control words.

We employed rescheduling to further increase the throughput of the design. When

increasing the clock cycles to decrease the critical path, consistency has to be maintained

so that overall throughput can raise. When this is not maintained it further reduces the

throughput. The reason for more number of clock cycles is because of the block RAM

contention which was previously discussed. Avoiding the block RAM contention will give

us a better throughput design and also reduces the area as the clock cycles count goes down.

4.3 Unpipelined Half G-Function

4.3.1 Datapath

Block RAM Architecture

Folding an algorithm is the main methodology of designing compact architectures. For one

round, BLAKE processes eight identical G-Functions, which operates on a 512-bit state.

These eight identical G-Functions can be folded and a single G-Function can be implemented
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for compact architecture. But, each G-Function is symmetrical along the vertical axis, so a

G-Function can be folded vertically and half G-Function is implemented.

Our former design’s, store the internal state in the block RAM which arises the ease of

accessing in other words, contention to access the internal state. In order to avoid block

RAM contention, we move the state out of the block RAM. The other storage elements in

an FPGA are registers and Distributed RAM’s. Storing a 512-bit state in 16 word registers

consumes a large area, so we use distributed RAMs. But preserving all the 16 words in

a single distributed RAM still gives a contention problem. To over come this we use four

4x32-bit Distributed RAM’s to store the 512 bit internal V-state. This gives the scope to

access independent columns of the internal state matrix.
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The datapath, implements a half G-Function for processing the round function of

BLAKE. Block RAM stores the constants, message, salt and counter value. The initial-

ization and finalization functions are implemented using two 32-bit XOR gates. For the

initialization, the initial/chaining hash values, constants and counter values are XORED

and stored in the four Distributed RAMs. The finalization step produces the chaining hash
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values and performs XOR operation on the internal state and chaining hash value. The

computed chaining/final hash value is stored into block RAM, which helps to process the

subsequent message blocks.

The half G-Function implemented for processing the round function, takes an input of

four 32-bit words from the four distributed RAM’s and one word of message and constant

from the block RAM. Each round performs eight G-Functions, as we are implementing half

a G-Function it takes two clock cycles to process one G-Function. Every half G-Function

for each round takes one word of permuted message and constant. The permuted message

and constants for the round function are read consecutively from the block RAM. As we

are using a single port asynchronous distributed RAM’s, the internal state words are stored

back into the same locations and this simplifies the control logic.

Distributed RAM Architecture

Replacing the block RAM with logic resources helps us to compare the performances be-

tween logic versus embedded resources. In some cases converting the block RAM into logic

resources, may help in improving the datapath design. Block RAM has data contention

problems, i.e., only two words of data can be accessed which we can over come by using dis-

tributed RAM’s. For BLAKE, the internal state is moved into four independent distributed

RAM’s for the block RAM design. For the Distributed RAM design, block RAM has to

be replaced with distributed RAM. We configured the block RAM as dual-port read/write,

but in spartan-3 we can’t design a dual-port distributed RAM. So we replace the dual-port

block RAM with two single-port distributed RAM’s. As a block RAM is synchronous to

clock, we can either design synchronous distributed RAM or store the output of the RAM

into a register to make it synchronous.

We use two 32x32− bit single-port distributed RAM’s to store the message, constants,

chaining hash values, salt and counter. The message and constants are to be stored in differ-

ent distributed RAM’s so that message and constant words can be XORED for the round

function. Apart from changing the block RAM into distributed RAM, we implemented the
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same half G-Function design as the block RAM architecture.

4.3.2 Control Unit

ROM based FSM controller design is employed to develop the control unit. It has a main

FSM, which selects the states and controls the state transfers. We use distributed ROMs to

store the control words and the ROM outputs are selected depending on the state. Similar

to our former design, block RAM is divided into sections and as we move the state out of

block RAM we use only two bits to access the sections. The message and constants for the

round function are permuted and no optimization technique can be employed to reduce the

addressing. As the total number of clock cycles to process one message block is less than

256, a 256 state ROM suits the purpose. So we use two 256x4 − bit ROM’s to store the

addresses of each port. Distributed RAMs has to be addressed for initialization, round and

finalization states. Addresses for the RAMs are stored in different ROMs depending on the

state and each ROM is selected according to the state. For the round function, the internal

state is stored back into the same address location of distributed RAMs. This helps us to

use a single ROM for storing the addresses and this can be used for all the rounds.

Shifting the internal state out of the block RAM, increases the ease of access and this

reduces the clock cycles count. As we cut down the clock cycle count by more than half

the throughput increases and also the area decreases because of the minimum control logic.

The ROMs for addressing the block RAM consumes almost 70% of the controller and this

is the main set back in the control unit. In addition to the huge ROMs, critical path is large

which reduces the frequency of the design. The critcal path is all along the half G-Function

and this reduces the throughput. Cutting the critical path with the use of free registers

may increase the clock cycle count and further increases the throughput.

36



4.4 Pipelined Half G-Function

4.4.1 Datapath

Block RAM Architecture

Our former design implements a half G-Function, which is achieved by folding the round

function. The design results in good throughput instead of the large critical path. The

throughput of the design can be further increased by reducing the critical path. Pipelining

is employed to cut down the critical path and this is achieved by using free registers in the

half G-Function. One register usage delays the data transfer to the next stage by one clock

cycle. So using registers increases the clock cycles count.

This pipelined compact implementation of BLAKE implements the initialization and

finalization functions similar to our previous designs. The pipeline architecture we imple-

ment in a half G-Function is a quasi pipelined architecture which is described in chapter.2.

Using pipeline registers in half G-Function delays the data transfer to the next stage, for

this we need to add stalls and we need to schedule the stages of pipeline. In this architecture

we use stalls, so that data can be written back into distributed RAM’s and schedule the

stages to complete one round function with a minimal increase in clock cycles.

The scheduling of one round or eight G-Functions is given in fig 4.6. The quasi pipelined

architecture takes four clock cycles to process four half G-functions and one extra clock cycle

(stall) to write back the values into DRAM. So eight G-Functions takes 20 clock cycles to

process and one extra clock cycle for each round to write the extra word into the DRAM.

This makes 21 clock cycles for each round. The message and constants for the round are

read out from the BRAM at the required clock cycles.

Distributed RAM Architecture

Similar to our former distributed RAM design, this architecture is developed by replacing

block RAM with two single-port distributed RAM’s. We use registers after each single-port

RAM, in order to have synchronous read/write operation with the clock like the block RAM
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architecture. As we have same architecture, controller designed for the block RAM version

serves the purpose for the distributed RAM with a simple tweak at the addressing of block

RAM.

4.4.2 Control Unit

The control unit is build using ROM based FSM methodology. We use a main FSM to

control the flow of the state and ROM’s to store the control words. The controller designed

for this architecture is used for both BLAKE-32 and BLAKE-256. The difference between

the two algorithms is the number of rounds. BLAKE-32 has ten rounds which process eight

G-Functions and BLAKE-256 consists of fourteen rounds. For the round function, we use a

distributed ROM to store the control words for the total 21 clock cycles. The control word

consists of the distributed RAM addresses and also write enable signals for the registers

in half G-Function. The addresses for the dual-port block RAM are stored in distributed

ROMs. The extra four rounds of BLAKE-256 uses the same permuted values of message

and constants as that of the initial four rounds. So a simple if condition helps to loop

back and perform the additional four rounds before stepping to the finalization step. It

takes more than 256 clock cycles to process one message block for BLAKE-256. So we

accommodate enable signals to disable the address ROM during pipeline stalls. This helps

us to use the same 256x4− bit ROM for addressing the block RAM.

Pipelined architecture reduced the critical path and with scheduling we are able to

implement a single round function in 21 clock cycles, which is just five clock cycles more

than our previous design. Though we increase our throughput, the clock cycles increases by

50 if we consider the whole BLAKE-32 algorithm. As we increase the number of rounds to

fourteen in BLAKE-256 it still reduces the throughput when compared to our BLAKE-32

design. We can employ rescheduling to reduce the clock cycles and still sticking to the

pipelined architecture.
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4.5 Rescheduled Pipelined Half G-Function

4.5.1 Datapath

Block RAM Architecture

Compact and efficient design of BLAKE is achieved by a implementing a complete folded

architecture of the G-function. In addition to the folded architecture we used pipeline

registers to reduce the time delay. With the use of pipeline registers we increased the clock

cycles count but we still maintain a good throughput. Rescheduling of G-Functions can

reduce the clock cycles needed for each round and still provide the functionality of the

algorithm.
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The main function of BLAKE is the round function which implements eight G-Functions.

The four G-Functions G4, · · · , G8 depend on the output of G0, · · · , G3. Using pipeline

registers will raise the use of stall, for getting the data available. To reduce the pipeline

stalls and limit the number of clock cycles we reschedule G-functions. A half G-Function

with quasi pipeline registers is implemented and we replace two consecutive pipeline registers
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with a two depth 32-bit shift register(SRL16) which reduces the area. Executing the eight

G-Functions in the order of G0, G1, G3, G2, G7, G6, G4, G5 will eliminate pipeline stalls. By

rescheduling and eliminating the pipeline stalls we implement one round in sixteen clock

cycles which is same amount of clock cycles as that of the unpipelined half G-Function

implementation. The scheduling of G-Functions across one round is given in Fig 4.8. After

the fourteen rounds of BLAKE-256, it the design requires two additional clock cycles before

proceeding to finalization. The two additional clock cycles are required to write back the

internal state words into distributed RAMs in other words to empty the pipeline stage.
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Figure 4.8: Pipeline of Round Function

Distributed RAM Architecture

Distributed RAM version of this design replaces the block RAM with two distributed RAM’s

which is similar to our previous design. We a register the value after the XOR operation

as the LUT based design has free register and it won’t increase the area. As we have

same architecture, controller designed for the block RAM version serves the purpose for the

distributed RAM with a simple tweak at the addressing of block RAM.

4.5.2 Control Unit

We develop a ROM based FSM controller for this architecture. The main state is controlled

by an FSM and control words are stored in distributed ROMs which are addressed by a
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counter. The addressing of the distributed RAM’s repeats for each round, with this we

can reduce the area of the controller. We develop a ROM which stores the addresses of

the distributed ROMs and this can be utilized across all the rounds. We employ the same

methodology as our previous design to address the additional four rounds of BLAKE-256.

As we reduce the clock cycles count, we can reschedule the addresses in 256x4− bit ROM

for addressing the permuted message and constants in the block RAM. Though we employ

all the optimization techniques, the addressing takes 70% of the controller and still occupies

most of the area.
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Chapter 5: JH

5.1 Introduction

JH[16] is a hash function developed by Hongjun Wu for the Secure Hash Algorithm-3(SHA-

3) contest initiated by NIST for selecting a new hashing standard. JH has four hash

algorithms JH-224, JH-256, JH-384 and JH-512. The algorithms are built on simple com-

ponents which makes efficient to implement in hardware and software.

JH structure is constructed using compression function from a large block cipher with a con-

stant key. It is based on generalized AES design methodology, so that a large block cipher

can be constructed from small components easily. Each message block in JH is 64 bytes

and it passes through 42-round compression function. The compression function structure

is given in Fig 5.1. The block size of the cipher is 2m bits. In the compression function, the

2m-bit hash value H(i−1) and m-bit message block M (i) are compressed to produce a 2m-bit

H(i). The compression function structure uses a key which is set to constant (permutation).

By this no extra variables are introduced into the middle of the function.

5.2 Generalized AES Methodology

AES uses substitution-permutation network (SPN) with the input as a two-dimensional

array. A Maximum Distance Separable (MDS) code is applied to the column in the even

rounds and to the odd rounds. Row rotations in AES makes the round functions identical.

This AES design methodology is generalized so that a large block cipher can be constructed

from small components. In the generalized methodology, the bits are divided into elements

and they form a d-dimensional array.
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Figure 5.1: Compression Function

For JH, eight-dimensional generalized AES design is used to construct the block cipher.

The input of the block cipher, which is 64 bytes is divided into 256 4-bit elements, and they

form an eight-dimensional array. The constant used as round keys are generated using a

six-dimensional block cipher.

5.3 Specifications

5.3.1 Notations

The following Notations and Parameters are used in JH.
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Word A group of bits

Ai ith bit in word A

C
(d)
r 2d-bit constant word used in round.

d dimension of a block of bits consisting of 2d 4-bit elements.

h Number of bits in a hash value.

H(i) ith hash value of h-bits.

H(i),j jth bit of the ith hash value.

l Length of message in bits.

m Number of bits in a message block M .

M Message to be hashed.

M (i) Message block i.

N Number of blocks in the padded message.

The following operations are used in JH specifications.

& Bitwise AND operation.

| Bitwise OR operation.

⊕ Bitwise XOR operation.

¬ Bitwise complement operation.

| Concatenation operation.

5.3.2 Functions

The following functions are used in JH specifications.

S-boxes

JH uses two S-boxes, S0 and S1 which are 4x4-bit S-boxes. The xored input passes through

the Sboxes and every round constant bit selects which Sboxes to be used. This increases

the overall algebraic complexity.
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Table 5.1: Sboxes S0 and S1

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S0(x) 9 0 4 11 13 12 3 15 1 10 2 6 7 5 8 14

S1(x) 3 12 6 13 5 7 1 9 15 2 0 4 11 10 14 8

Linear transformation L

Linear transformation operates on two 4-bit words and implements a (4,2,3) Maximum

Distance Separable (MDS) code over GF (24). The multiplication GF (24) is defined as the

multiplication of binary polynomials modulo x4 + x2 + 1. If A,B are the input and C,D

are the outputs, linear transform can be represented as

(C,D) = L(A,B) = (5 ·A+ 2 ·B + 2 ·A+B)

Bit wise computation of linear transformation can be represented as shown in Fig 5.2.

00||D(3)||0

<<< 1

<<< 1

4

4

4

4

A B

C D

00||A(3)||0

Figure 5.2: Linear Transformation L

Permutation Pd

Pd is a simple permutation of 2d 4-bit elements which is similar to row rotations in AES.

It is constructed from three different permutations πd, P
′
d and ϕd. Each takes 2d input
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A = (a0, · · · , a2d−1) and produces 2d output B = (b0, · · · , b2d−1).

Permutation πd

The computation of B = πd(A) is follows and is illustrated in Fig 5.3.

b4i+0 = a4i+0 for i = 0 to 2d−2 − 1

b4i+1 = a4i+1 for i = 0 to 2d−2 − 1

b4i+2 = a4i+3 for i = 0 to 2d−2 − 1

b4i+3 = a4i+2 for i = 0 to 2d−2 − 1

0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

a

Figure 5.3: Permutation πd

Permutation P ′
d

The computation of B = P ′
d(A) is follows and is illustrated in Fig 5.4.

bi = a2i for i = 0 to 2d−1 − 1

bi+2d−1 = a2i+1 for i = 0 to 2d−1 − 1

0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

a

Figure 5.4: Permutation P ′
d
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Permutation ϕd

The computation of B = ϕd(A) is follows and is illustrated in Fig 5.5.

bi = ai fori = 0 to 2d−1 − 1

b2i+0 = a2i+1 for i = 2d−2 to 2d−1 − 1

b2i+1 = a2i+0 for i = 2d−2 to 2d−1 − 1

15

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b

Figure 5.5: Permutation ϕd

Pd is a composition of πd, P
′
d and ϕd and is illustrated in Fig 5.6.

Pd = πd o P ′
d o ϕd

0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

a

Figure 5.6: Permutation Pd

Round Function Rd

Round function implements generalized AES design methodology and consists of three

layers. They are

1. S-boxes
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2. Linear Transformation

3. Permutation Layer

The input for the round function is 2d 4-bit word A denoted as A = (a0, · · · , a2d−1) and

produces 2d output B = (b0, · · · , b2d−1). The computation of B = Rd(A,C
(d)
r ) is given as

follows:

• for i = 0 to 2d − 1,

{

if C
(d),i
r = 0 then vi = S0(ai);

if C
(d),i
r = 1 then vi = S1(ai);

}

• (w2i, w2i+1) = L(v2i, w2i+1) for 0 ≤ i ≤ 2d−1 − 1;

• (b0, · · · , b2d−1) = Pd(w0, · · · , w2d−1)

Bijective Function Ed

Bijective function Ed is based on d-dimensional generalized AES design methodology. It

applies SPN and MDS to the d-dimensional array and is constructed from 6(d− 1) rounds

of Rd. Let A,B be the input and output of the Ed and Qr, Qr+1 be the input and output

for the round function. The computation of B = Ed(A) and is as follows

1. grouping of A into 2d 4-bit elements Qr

2. for r = 0 to 6(d-1)-1, Qr+1 = Rd(Qr, C
(d)
r )

3. Ungrouping of Qr+1 to obtain B

Grouping

for i = 0 to 2d−1 − 1,

{

49



q0,2i = Ai ∥ Ai+2.2d ∥ Ai+3.2d ;

q0,2i+1 = Ai+2d−1 ∥ Ai+2d−1+2.2d ∥ Ai+2d−1+3.2d ;

}

A
d−1

2.2   +2    A
    d     d−1

2   +2    A
d d−1

3.2   +2    A
    d     d−1

A2

2 +2A
d

2.2 +2A
d

3.2 +2A
d

A0

2A
d

2.2A
d

3.2A
d

q
0,0

q
0,2

q
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q
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3.2 +1A
d

2 −1A
d

2.2 −1A
d

3.2 −1A
d

4.2 −1A
d

2     

Figure 5.7: Grouping of A

Degrouping

for i = 0 to 2d−1 − 1,

{

Bi ∥ Bi+2.2d ∥ Bi+3.2d = q6(d−1),2i;

Bi+2d−1 ∥ Bi+2d−1+2.2d ∥ Bi+2d−1+3.2d = q6(d−1),2i+1;

}

B
d−1

2.2   +2    B
    d     d−1

2   +2    B
d d−1

3.2   +2    B
    d     d−1

B2

2 +2B
d
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B0
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3.2B
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Figure 5.8: Ungrouping of q
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Round Constants

The round constants are a 2d-bit word. The round constants C
(d)
r for each round are

generated using the round function Rd−2.

C
(d)
r = Rd−2(C

(d)
r−1, 0)

5.4 Compression Function

The compression function Fd is given in Fig 5.1. Fd compresses the 2d+1-bit message block

and 2d+2-bit H(i−1) into 2d+2-bit H(i).

H(i) = Fd(H
(i−1),M (i))

5.4.1 F8

F8 compresses 512-bit message block M (i) and 1024-bit H(i−1) into 1024-bit H(i). The

computation of H(i) = F8(H
(i−1),M (i)) is as follows

1. Aj = H(i−1),j ⊕M (i),j for 0 ≤ j ≤ 511

Aj = H(i−1),j for 512 ≤ j ≤ 1023

2. B = E8(A)

3. H(i),j = Hj for 0 ≤ j ≤ 511

H(i),j = Bj ⊕M (i),j−512 for 512 ≤ j ≤ 1023

5.4.2 Block diagram

The block diagram of JH42 is shown in Fig.5.11.
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Chapter 6: Compact Implementations of JH

6.1 Compact Implementation of JH

6.1.1 Datapath

Distributed RAM Architecture

Optimization techniques discussed earlier and developing resource constrained implemen-

tations of BLAKE help us to design efficient compact architecture of JH. JH is built on

simple functions, but requires more storage as the internal state and chaining hash value

are 1024-bits each. In addition to this, we need to store the message and round constants

for the round function Rd. Using a single memory space to store all the required bits will

limit the access which increases the clock cycles and this effects throughput of the design.

The compression function Fd of JH has one main function Ed which consists of grouping,

round function Rd and ungrouping. Grouping and ungrouping reorders 1024-bits of chaining

hash value to produce a 1024-bit internal state and vice versa. For each message block, the

ungrouped chaining hash value is grouped to form an internal state and after 42 iterations

of the round function Rd the internal state is ungrouped. Though it does n’t change the

value of the bits, the two functions consume significant amount of clock cycles. Storing

the initial/chaining hash values in grouped state helps to reduce the clock cycles count.

The grouped internal state is produced by XORing the initial/chaining hash value with

the message. Accumulating the hash values and the internal state in same storage element

requires dedicated write clock cycles, for synchronous RAM and this doubles the clock cycles

count. So we use different distributed RAM’s to store the hash values and the internal state.

The initial and chaining hash values are 1024-bit each, we use two 32x32 − bit single port

distributed RAMs for storage. The hash values are split into half, and stored in different
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Table 6.1: Permutation of Sixteen 4-bit words of Internal state

Initial 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πd 0 1 3 2 4 5 7 6 8 9 11 10 12 13 15 14
P ′
d 0 128 129 1 2 130 131 3 4 132 133 5 6 134 135 7

ϕd 0 129 128 1 2 131 130 3 4 133 132 5 6 135 134 7
Pd 0 129 128 1 2 131 130 3 4 133 132 5 6 135 134 7

Final 0 1 2 3 4 5 6 7 128 129 130 131 132 133 134 135

distributed RAMs. This gives independent access to two 32-bits of the same hash value

which reduces clock cycles during XOR operation with the message.

The round function Rd iterates for 42 times and operates on 1024-bit internal state. As

Rd consists of simple s-box, XOR and rotate operations, processing two 32-bit values in one

clock cycle can be done with minimal increase in area and it also cuts down the clock cycles

count by half. For this, we store the 1024-bit internal state in two 16x32 − bit distributed

RAMs. Our implementation uses 16 s-boxes and eight linear transform functions to process

the two 32-bit values. The half processed values are permuted and this produces sixteen

4-bit words which are out of sequence. In order to process the internal state for the following

rounds, we rearrange the 4-bit words to produce a sequenced 4-bit words. These words are

stored back in the distributed RAMs. The distributed RAMs are configured with different

read and write addresses. This helps to avoid address shift because of the register and also

reduces the control logic because of congruency among the rounds. The permutation and

rearranging of sixteen 4-bit words is given in table 6.1. The round constants required by

Rd are processes through round function R6 which is similar to round function Rd. The

R6 processes two 4-bit words in one clock cycle and the initial round constants for the first

message block are stored in distributed ROM. For each new message the two 16x4 − bit

distributed RAMs are loaded with the initial round constants. As we process 64-bits from

both the distributed RAMs in each clock cycle, it takes 16 clock cycles to complete one

round.

The internal state after processing for 42 rounds through round function Rd, should be
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Figure 6.1: Datapath of JH

XORed with the message for generating the chaining or the final hash value. This requires

the storage of message in a distributed RAM. As we have a 16-bit interface and considering

the grouping and ungrouping function of JH, we use a 32x16−bit distributed RAM to store

the message. For each clock cycle, only four bits of message is XORed with the internal

state/hash value. So, both the grouping and ungrouping required 64 clock cycles each.

After producing the chaining hash value, it is written back into 32x32 − bit distributed

RAMs which store the initial and chaining hash values.

Block RAM Architecture

The distributed RAM architecture uses both single port and read/write port distributed

RAMs. In spartan-3 architecture, a block RAM cannot be configured to have a both

read/write address for a single port. So the distributed RAMs which store the internal

state cannot be converted into block RAM. Two single port synchronous distributed RAMs

which store the initial and chaining hash values are joined and they can be replaced with a

dual-port block RAM. As we design synchronous distributed RAMs to store the initial and

chaining hash values, converting them to block RAM will not effect the clock cycles count.
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6.1.2 Control Unit

We have been employing ROM based FSM methodology for designing control units of

compact implementations. Compact implementation of JH also implements ROM based

FSM controller, which consists of a main FSM for controlling the transfer of states. The

total control signals are divided into states and ROMs are used to store the select signals for

each state. Each ROM is selected depending on the state and a counter is used to address

the ROM for generating the specified/required control bits for each clock cycle. Apart from

the select signals the other control signals are the addressing of distributed RAMs of both

internal state and the round constants. As the round constants and the internal state are

processed using same round function architecture they have same address bits in a single

clock cycle. So, a single ROM can hold the read and write addresses required by both

distributed RAM pairs, this minimizes the control logic area. The message is stored in a

32x16 − bit distributed RAM and only four bits is processed in a single clock cycle. As a

five bit counter takes less area than a 32-depth ROM, we use a counter which steps up the

value after two clock cycles for addressing distributed RAM which stores the message.
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Chapter 7: Results and Conclusion

7.1 Tools Used

All the implementations described in chapter 4 and 6 are targeted and implemented on

the smallest Spartan 3 device XC3S50-5 using Xilinx ISE v13.1 Webpack. Along with the

smallest Spartan 3 device, we implemented the designs on low-cost Spartan-6 and high speed

devices like Virtex-5 and Virtex-6 for a fair comparison with other group implementations.

The designs are also synthesized and implemented on Altera Cyclone-II devices using Altera

Quartus II v10.0 Web edition. All results were generated using benchmarking tool ATHENa

(Automated Tool for Hardware EvaluatioN) [11].

7.2 Results and Analysis of Compact Implementations

Compact architectures of BLAKE and JH are implemented using the optimization tech-

niques discussed in chapter 2. Different architectures are developed considering various

design configurations. Pipelining, quasi-pipelining and configuration of internal state in

block RAM/distributed RAM are the design configurations, which results in diverse archi-

tectures. Table 7.1 summarizes the implementation details of BLAKE and JH algorithm.

The performance of an implementation depends on the number of clock cycles it takes

to hash N message blocks. Clock cycles required to process one message block varies with

the implementations. The initial designs, which store the internal state in block RAM

requires more number of clock cycles to process one message block. By moving the state

into distributed RAM’s, the clock cycles count reduces by more than half. Introducing

pipeline registers and rescheduling of the G-Functions reduces the critical path by keeping

the same clock cycles per round as the un-pipelined design.
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Table 7.1: Implementation details of BLAKE and JH

Algorithm Version Design D
at
a
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e
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d
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d
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io
n
a
l

C
lo
ck

cy
cl
es

C
lo
ck

cy
cl
es

p
er

b
lo
ck

p

BLAKE-32 BRAM 4.1 32 10 48 64 544
BLAKE-32 BRAM 4.2 32 10 52 64 584
BLAKE-32 BRAM 4.3 32 10 16 32 192
BLAKE-32 BRAM 4.4 32 10 21 24 234
BLAKE-256 BRAM 4.4 32 14 21 24 318
BLAKE-256 BRAM 4.5 32 14 16 34 258

JH42 BRAM 6.1 32 42 16 64 736
BLAKE-32 Logic 4.3 32 10 16 32 192
BLAKE-256 Logic 4.4 32 14 21 24 318
BLAKE-256 Logic 4.5 32 14 16 34 258

JH42 Logic 6.1 32 42 16 64 736

Throughput is one of the key factor for comparing the performance of implementations.

It is defined as the number of input bits processed per unit time. The throughput of the

hash function is dependent on the number of message blocks N to be hashed, the number of

clock cycles to process one message block, block size b of the algorithm and the delay/clock

period T . Table 7.2 gives the formulae for calculating the throughput for different compact

implementations of BLAKE and JH.

The implementation results are summarized in Table 7.3. It can be seen that all imple-

mentations fall within our target range of 400 to 600 slices with one block RAM and 800

slices using logic cells on Spartan-3 device. We also compare the throughput for long and

short messages in Table 7.3.

The dedicated write clock cycle-I design stores the internal state in block RAM and

requires 480 clock cycles to process one message block. The critical path of the design is

15.05 ns which results in a low throughput. Rescheduling the pipeline stage to reduce the

time delay to 14.46 ns increases the clock cycles count but the decrease in time delay is not

consistent with the increase in clock cycles. This reduces the throughput of dedicated write
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Table 7.2: Throughput formulae for BLAKE and JH
V
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es

Clock Cycles to hash
N blocks
clk =

st+ ( l + p) ·N + end

Throughput
(long

Messages)

b

(l + p) · T

B
R
A
M

BLAKE-32 4.1 512 10 48 64 2 + ( 32 + 544) ·N + 17 512/( 576 · T )
BLAKE-32 4.2 512 10 52 64 2 + ( 32 + 584) ·N + 17 512/( 616 · T )
BLAKE-32 4.3 512 10 16 32 2 + ( 32 + 192) ·N + 17 512/( 224 · T )
BLAKE-32 4.4 512 14 21 24 2 + ( 32 + 234) ·N + 17 512/( 266 · T )
BLAKE-256 4.4 512 14 21 24 2 + ( 32 + 318) ·N + 17 512/( 350 · T )
BLAKE-256 4.5 512 14 16 34 2 + ( 32 + 258) ·N + 17 512/( 290 · T )

JH42 6.1 512 42 16 64 2 + ( 32 + 736) ·N + 17 512/( 800 · T )

L
o
g
ic

o
n
ly BLAKE-32 4.3 512 10 16 32 2 + ( 32 + 192) ·N + 17 512/( 224 · T )

BLAKE-256 4.4 512 14 21 24 2 + ( 32 + 318) ·N + 17 512/( 350 · T )
BLAKE-256 4.5 512 14 16 34 2 + ( 32 + 258) ·N + 17 512/( 290 · T )

JH42 6.1 512 42 16 64 2 + ( 32 + 736) ·N + 17 512/( 800 · T )

clock cycle-II resulting a low throughput/area ratio. Moving the internal state out of the

block RAM results in relatively less clock cycles for processing one message block but still

the time delay is the lagging factor. So, we employ both quasi-pipelining and rescheduling

to develop an effective design which requires relatively less clock cycles and also a decent

time delay which results in good throughput/area ratio of all the designs. All the compact

architectures of BLAKE fall within the area of 400 to 500 slices with one block RAM on

Xilinx Spartan-3 device, which is our primary design target. The permutation function of

BLAKE is different across the rounds and this results in a complex and large controller.

For JH, both block RAM and distributed RAM architectures are smaller than BLAKE due

to constant permutation across the rounds. The constant permutation results in a simple

and small controller which occupies just 20% of the total design area.
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7.3 Comparison of SHA-3 Finalists

Performance of an algorithm in software and hardware are key factors in selecting the five fi-

nalists. Compact architectures evaluate the efficiency of these algorithms in area constrained

environment which is also an essential criteria. Our Cryptographic Engineering Research

Group (CERG) implemented the remaining three finalists with the same design criteria,

targeted for the same device which helps for a fair comparison. The results are reported in

the following publication [17] and also available on ATHENa website [18]. Though all the

implementations are designed and targeted for Xilinx Spartan-3, they are implemented on

other devices for evaluation. We implemented different architectures for BLAKE, but we

consider our best design for comparison with the five finalists. Table 7.4 and 7.5 gives the

implementation results of all the five finalists on Xilinx and Altera devices.

Compact implementation results of the five finalists on Xilinx and Altera show that

BLAKE has a good throughput to area ratio of all the algorithms on Xilinx and Altera

devices. Compact implementations depend on the scalability of the algorithm. BLAKE

consists of eight identical G-Functions which are really scalable. This scalability option of

BLAKE results in a high throughput to area ratio over the other algorithms. JH performs

decently among all the algorithms considering its scalability and number of rounds. Though

BLAKE and JH requires same amount of clock cycles for processing one round, 42 rounds of

JH results in more number of clock cycles for processing one message block which reduces

the overall throughput of the design. Apart from the number of rounds, JH is scalable

and also has constant permutation function which results in consistent low area of all the

algorithms.

7.4 Comparison With Other Published Implementation Re-

sults

The first compact implementation of BLAKE was reported by Jean-Luc Beuchat and Teppei

Yamazaki [19]. This implementation uses two block RAMs, one for storage and one for
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(a) on Spartan-3 (BRAM) (b) on Spartan-6 (BRAM) (c) on Virtex-V (BRAM)

(d) on Spartan-3 (Logic) (e) on Spartan-6 (Logic) (f) on Virtex-V (Logic)

(g) on Virtex-6 (BRAM) (h) on Cyclone-II (BRAM)

(i) on Virtex-6 (Logic) (j) on Cyclone-II (Logic)

Figure 7.1: Throughput over area ratio on Xilinx and Altera devices61



generating the control signals. It has four pipeline stages and also has very low area on

Spartan-3 device but it takes more number of clock cycles for processing one message block.

The implemented design uses two block RAM and has low throughput to area ratio and no

specific design criteria. We developed a design criteria for a fair comparison of all the five

finalists. BLAKE and JH are implemented considering this design criteria are implemented

on the same devices for an equitable comparison with other published results. Table 7.6

gives the comparison of our implementation results with other reported results.

The comparison shows that our compact implementation of BLAKE and JH has a good

throughput to area ratio than other group implementations. Compact implementations of

BLAKE and JH by [20] and [21] doesn’t consider the loading clock cycles for calculating

the throughput. Our GMU-Light Weight Protocol considers the clock cycles for loading

the message as it takes place for each message block and also effects the throughput of

the design. Since our implementations are targeted to Spartan-3 devices, implementing the

same designs on Spartan-6 and Virtex-5 do not utilize the architectural features of those

devices, effecting the throughput of the designs. Though the designs don’t use the same

I/O protocol and datapath size, effort was made for a fair comparison by using the same

target device as of other implementations.

7.5 Conclusion

In this work, we presented compact FPGA implementations of two SHA-3 finalists BLAKE

and JH. Both the algorithms were implemented using the same assumptions, goals, tools,

interface, and the same area optimization techniques. All the implementations of BLAKE

and JH are evaluated with respect to throughput over area ratio. The results are compared

with other SHA-3 finalists which use the same assumptions, goals, tools and interface. The

comparison helps to rank the algorithm based on performance in area constrained envi-

ronment. Ranking of compact implementations shows that BLAKE ranks first among all

the implementations followed by Grøstl and JH. The ranking is different from implemen-

tations for best throughput to area ratio designs reported in [7], [22], [23]. Increasing the
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area criteria of compact implementations for a better throughput over area ratio will help

us to evaluate the scalability of these algorithms. Our compact implementation results of

BLAKE and JH are compared with other published results and the variations shows that

our results outperform all the reported results.

7.6 Future Work

In this thesis compact implementations of BLAKE and JH are implemented with a design

criteria of 400-600 slices using one block RAM and 800 slices with no block RAM on Xilinx

Spartan-3 device. The implementation results show that both compact implementations of

BLAKE and JH fall far below the area criteria of 800 slices with no block RAM. Evaluating

the throughput of these designs by unrolling will increase the area and also helps for bet-

ter understanding the scalability of the algorithms. In addition to unrolling the compact

architectures on Spartan-3, designing compact architectures by considering architectural

features of low power devices like Spartan-6 and high throughput devices like Virtex-5 and

Virtex-6 will help use to develop better throughput over area ratio designs.
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Table 7.3: Implementation results of BLAKE and JH
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BLAKE-32 4.1 537 1 15.05 59.1 0.11 57.2 0.106
BLAKE-32 4.2 540 1 14.46 57.4 0.10 55.8 0.103
BLAKE-32 4.3 450 1 14.93 153.1 0.34 141.1 0.313
BLAKE-32 4.4 527 1 7.38 261.0 0.50 243.6 0.462
BLAKE-256 4.4 545 1 8.42 173.8 0.32 164.8 0.302
BLAKE-256 4.5 549 1 8.05 219.3 0.40 205.9 0.375

JH42 6.1 502 1 9.19 69.6 0.14 66.6 0.133
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BLAKE-32 4.1 136 1 7.26 122.4 0.90 118.5 0.871
BLAKE-32 4.2 142 1 7.09 117.2 0.83 113.7 0.800
BLAKE-32 4.3 141 1 10.28 222.1 1.57 204.7 1.452
BLAKE-256 4.4 139 1 6.47 226.0 1.62 214.3 1.542
BLAKE-256 4.5 152 1 5.62 313.8 2.06 294.5 1.937

JH42 6.1 182 1 5.34 102.7 0.56 98.4 0.540

L
o
g
ic

o
n
ly BLAKE-32 4.3 158 0 11.45 199.6 1.26 185.5 1.174

BLAKE-256 4.4 152 0 7.21 202.8 1.33 193.2 1.272
BLAKE-256 4.5 164 0 5.34 330.6 2.02 311.2 1.898

JH42 6.1 156 0 6.14 104.2 0.67 100.0 0.641

X
il
in
x
V
ir
te
x
-V

(x
c5

v
lx
2
0
-2
)

B
R
A
M

BLAKE-32 4.1 147 1 5.89 150.9 1.02 146.1 0.995
BLAKE-32 4.2 159 1 5.66 146.6 0.92 142.2 0.894
BLAKE-32 4.3 184 1 7.47 305.6 1.66 281.7 1.533
BLAKE-32 4.4 238 1 4.37 440.8 1.85 411.4 1.724
BLAKE-256 4.4 212 1 4.30 340.3 1.61 322.8 1.520
BLAKE-256 4.5 248 1 4.29 411.9 1.66 386.5 1.550

JH42 6.1 176 1 3.91 163.6 0.92 156.8 0.890

L
o
g
ic

o
n
ly BLAKE-32 4.3 214 0 7.85 291.1 1.36 270.6 1.264

BLAKE-256 4.4 231 0 4.12 355.0 1.53 338.6 1.465
BLAKE-256 4.5 271 0 3.94 448.2 1.65 422.0 1.557

JH42 6.1 183 0 3.99 160.3 0.88 153.8 0.840

X
il
in
x
V
ir
te
x
-6

(x
c6

v
lx
7
5
T
-1
)

B
R
A
M

BLAKE-32 4.1 138 1 6.03 147.4 1.06 142.7 1.035
BLAKE-32 4.2 135 1 5.87 141.4 1.04 137.2 1.014
BLAKE-32 4.3 139 1 8.10 282.1 2.03 260.0 1.871
BLAKE-256 4.4 146 1 5.26 277.7 1.90 263.4 1.804
BLAKE-256 4.5 163 1 5.06 348.7 2.13 327.2 2.007

JH42 6.1 196 1 4.11 155.5 0.79 149.0 0.760

L
o
g
ic

O
n
ly BLAKE-32 4.3 165 0 8.39 272.4 1.65 253.2 1.534
BLAKE-256 4.4 142 0 4.01 364.8 2.56 347.9 2.450
BLAKE-256 4.5 166 0 3.72 474.6 2.86 446.9 2.692

JH42 6.1 171 0 3.96 161.5 0.94 154.9 0.906
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Table 7.4: Implementation results of SHA-3 Finalists on Xilinx

Message Long Short
D
ev
ic
e

V
er
si
on

Algorithm A
re
a
(s
li
ce
s)

B
lo
ck

R
A
M
s

M
ax

im
u
m

D
el
ay

(n
s)

T

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

X
il
in
x
S
p
a
rt
a
n
-3

(x
c3

s5
0
-5
)

B
R
A
M

BLAKE-256 549 1 8.05 219.3 0.40 205.9 0.375
Grøstl 594 1 7.65 122.4 0.21 61.9 0.104
JH42 502 1 9.19 69.6 0.14 66.6 0.133

Keccak 590 1 8.97 32.2 0.06 32.1 0.054
Skein 498 1 10.65 20.0 0.04 10.2 0.020

L
og

ic
on

ly

BLAKE-256 631 0 8.17 216.3 0.34 203.6 0.323
Grøstl 766 0 6.83 192.6 0.25 97.9 0.128
JH42 558 0 10.05 63.7 0.11 61.1 0.109

Keccak 766 0 9.91 45.8 0.06 45.5 0.059
Skein 766 0 12.83 16.6 0.02 8.5 0.011

X
il
in
x
S
p
a
rt
a
n
-6

(x
c6

sl
x
4
-3
)

B
R
A
M

BLAKE-256 152 1 5.63 313.8 2.06 294.5 1.938
Grøstl 271 1 4.80 195.0 0.72 98.7 0.364
JH42 182 1 6.23 102.6 0.56 98.3 0.540

Keccak 133 1 5.07 57.0 0.43 56.7 0.427
Skein 182 1 7.19 29.7 0.16 15.1 0.083

L
og

ic
on

ly

BLAKE-256 164 0 5.34 330.6 2.02 311.2 1.898
Grøstl 230 0 4.43 297.3 1.29 151.2 0.657
JH42 156 0 6.14 104.2 0.67 100.0 0.641

Keccak 161 0 5.77 78.7 0.49 78.1 0.485
Skein 190 0 8.77 24.3 0.13 12.4 0.065

X
il
in
x
V
ir
te
x
-V

(x
c5

v
lx
2
0
-2
)

B
R
A
M

BLAKE-256 248 1 4.29 411.9 1.66 386.6 1.559
Grøstl 271 1 3.65 256.5 0.95 129.8 0.479
JH42 176 1 3.91 163.5 0.93 156.6 0.890

Keccak 207 1 3.99 72.4 0.35 72.0 0.348
Skein 218 1 5.69 37.5 0.17 19.1 0.087

L
og

ic
on

ly

BLAKE-256 271 0 3.94 448.2 1.65 422.0 1.557
Grøstl 313 0 3.15 417.4 1.33 212.3 0.678
JH42 183 0 3.99 160.3 0.88 153.8 0.840

Keccak 203 0 4.14 109.8 0.54 109.0 0.537
Skein 246 0 5.66 37.7 0.15 19.2 0.078

X
il
in
x
V
ir
te
x
-6

(x
c6

v
lx
7
5
T
-1
)

B
R
A
M

BLAKE-256 163 1 5.06 348.7 2.14 327.3 2.008
Grøstl 241 1 4.09 229.1 0.95 115.9 0.481
JH42 196 1 4.12 155.4 0.79 148.9 0.760

Keccak 145 1 3.84 75.24 0.52 75.0 0.517
Skein 207 1 6.00 35.6 0.17 18.1 0.087

L
og

ic
on

ly

BLAKE-256 166 0 3.72 474.6 2.86 446.9 2.692
Grøstl 263 0 2.78 473.3 1.80 240.7 0.915
JH42 171 0 3.96 161.5 0.94 154.9 0.906

Keccak 164 0 3.64 124.9 0.76 123.9 0.756
Skein 193 0 5.17 41.3 0.21 21.0 0.109
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Table 7.5: Implementation results of SHA-3 Finalists on Altera

Message Long Short

D
ev
ic
e

V
er
si
on

Algorithm A
re
a
(L

E
s)

M
em

or
y

B
it
s

M
ax

im
u
m

D
el
ay

(n
s)

T

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

A
lt
er
a
C
y
cl
o
n
eI
I(
ep

2
c8

f2
5
6
c6

)

B
R
A
M

BLAKE-256 1,367 2,048 9.98 176.9 0.13 166.0 0.121
Grøstl 1,221 3,072 6.26 149.6 0.12 75.7 0.062
JH42 1,045 3,840 9.15 69.9 0.07 66.9 0.064

Keccak 996 8,192 5.48 52.7 0.05 52.5 0.053
Skein 930 4,096 9.89 21.6 0.02 11.0 0.012

L
og

ic
on

ly

BLAKE-256 2,019 0 7.39 238.8 0.12 224.9 0.111
Grøstl 3,937 0 5.52 238.4 0.06 121.2 0.031
JH42 5,527 0 10.05 63.7 0.01 61.1 0.011

Keccak 6,247 0 8.49 53.5 0.01 53.1 0.008
Skein 6,141 0 15.83 13.5 0.001 6.9 0.001

Table 7.6: Comparison of lightweight implementations of BLAKE and JH on Xilinx FPGAs,
Logic only
([TW] – this work)

Algorithm R
ef
er
en
ce

Device I/
O

W
id
th

D
at
ap

at
h

W
id
th

C
lo
ck

C
y
-

cl
es

p
er

b
lo
ck

(p
)

A
re
a
(s
li
ce
s)

M
ax

im
u
m

F
re
q
u
en
cy

(M
H
z)

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

BLAKE-256 [20] xc6vlx75t-1 64 64 1,336 117 3.65 105.0 0.897
BLAKE-256 [TW] xc6vlx75t-1 16 32 290 166 3.72 474.6 2.860
BLAKE-256 [21] xc5v 32 32 228 251 4.73 115.0 0.927
BLAKE-256 [TW] xc5vlx20-2 16 32 290 271 3.93 448.2 1.650

JH42 [20] xc6vlx75t-1 64 64 689 240 3.47 214.0 0.892
JH42 [TW] xc6vlx75t-1 16 32 800 171 3.96 161.5 0.940
JH42 [21] xc5v 32 8 6,466 205 2.93 27.0 0.132
JH42 [TW] xc5vlx20-2 16 32 800 183 3.99 160.3 0.880
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