
IMPLEMENTATION AND BENCHMARKING OF PADDING UNITS AND HMAC�
FOR SHA-3 CANDIDATES IN FPGAS AND ASICS�

by�

Ambarish Vyas�
A Thesis�

Submitted to the�
Graduate Faculty�

of�
George Mason University�
in Partial Fulfillment of�

The Requirements for the Degree�
of�

Master of Science�
Computer Engineering�

Committee:

Dr. Kris Gaj, Thesis Director

Dr. Jens-Peter Kaps. Committee Member

Dr. Bernd-Peter Paris. Committee Member

Dr. Andre Manitius, Department Chair
of Electrical and Computer Engineering

Dr. Lloyd J. Griffiths. Dean,
Volgenau School of Engineering

Date: ---J d. / q /9- 0 II� Fall Semester 2011
George Mason University
Fairfax, VA

Implementation and Benchmarking of Padding Units and HMAC for SHA-3 Candidates in
FPGAs and ASICs

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Ambarish Vyas
Bachelor of Science

University of Pune, 2009

Director: Dr. Kris Gaj, Associate Professor
Department of Electrical and Computer Engineering

Fall Semester 2011
George Mason University

Fairfax, VA

Copyright c© 2011 by Ambarish Vyas
All Rights Reserved

ii

Acknowledgments

I would like to use this oppurtunity to thank the people who have supported me throughout
my thesis. First and foremost my advisor Dr.Kris Gaj, without his zeal, his motivation,
his patience, his confidence in me, his humility, his diverse knowledge, and his great efforts
this thesis wouldn’t be possible. It is difficult to exaggerate my gratitude towards him. I
also thank Ekawat Homsirikamol for his contributions to this project. He has significantly
contributed to the designs and implementations of the architectures. Additionally, I am
indebted to my student colleagues in CERG for providing a fun environment to learn and
giving invaluable tips and support.

Lastly, and most importantly, I wish to thank my parents,Madhu Vyas and Dinesh Vyas.
They have supported me, taught me, educated me and loved me. Despite the distance they
were always nearby. My father was always confident about what I was doing. Inspite of him
having no idea what I was doing he would still ask every week to explain what my thesis
was about. And I don’t have words to describe my mother’s emotional and moral support.
To them I dedicate this thesis.

iii

Table of Contents

Page

List of Tables . vii

List of Figures . ix

Abstract . xii

1 Introduction . 1

1.1 Background . 1

1.1.1 Applications . 2

1.1.2 Padding . 4

1.2 Previous work . 5

2 Design Methodology . 7

2.1 Interface and Protocol . 8

2.1.1 Interface . 8

2.1.2 Protocol . 9

3 Padding Rules . 11

3.1 BLAKE . 11

3.2 Grøstl . 12

3.3 JH . 13

3.4 Keccak . 13

3.5 Skein . 14

3.6 SHA-2 . 15

4 Padding Unit . 16

4.1 General Block . 16

4.1.1 Multi-Stage Adder . 20

4.2 BLAKE . 23

4.2.1 Boundary cases . 23

4.2.2 Block Diagram Description . 23

4.3 Grøstl . 25

4.3.1 Boundary cases . 25

4.3.2 Block Diagram Description . 25

4.4 JH . 27

iv

4.4.1 Boundary cases . 27

4.4.2 Block Diagram Description . 28

4.5 Keccak . 29

4.5.1 Boundary cases . 29

4.5.2 Block Diagram Description . 29

4.6 Skein . 31

4.6.1 Boundary cases . 31

4.6.2 Block Diagram Description . 31

4.7 SHA-2 . 33

4.7.1 Boundary cases . 33

4.7.2 Block Diagram Description . 33

5 Universal Padding Unit for ASICs . 35

5.1 Core Interface . 35

5.2 Universal Padding Unit-Byte version . 37

5.2.1 Interface . 37

5.2.2 Block diagram description . 38

5.3 Universal Padding Unit-Word version . 41

5.3.1 Interface . 41

6 Hashed Message Authentication Code . 43

6.1 Message Authentication Code . 43

6.2 HMAC . 45

6.3 HMAC Wrapper . 47

6.3.1 Interface and Protocol . 47

6.3.2 HMAC Datapath . 49

6.3.3 HMAC Top . 50

7 Results . 51

7.1 Design Summary . 51

7.1.1 Throughput . 51

7.1.2 Area . 51

7.1.3 Throughput/Area . 52

7.2 Padding Unit-Results . 52

7.3 Universal Padding Unit-Results . 56

7.4 HMAC Wrapper-Results . 60

8 Conclusion and Future work . 64

8.1 Conclusion . 64

8.2 Future work . 64

v

Bibliography . 65

vi

List of Tables

Table Page

2.1 Description of Interface Signals . 8

3.1 Overview of Padding Schemes of 5 Candidates and SHA-2.(‘||’ stands for

concatenation . 11

4.1 Area and maximum clock frequency results for both version of general padding

unit on Xilinx FPGAs . 19

4.2 Counter Size used in the the Padding rule 20

4.3 Area and maximum clock frequency results for combinational standard carry

chain adder (’+’ in VHDL) . 21

4.4 Area and maximum clock frequency results for Multi-Stage adder 22

5.1 Description of Interface Signals . 38

7.1 Througput equation for long messages with the I/O Data Bus width in bits,

Throughput in Mbits/s.TCLK denotes clock period in seconds 52

7.2 The effect of the padding unit on the performance of 5 Round 3 SHA-3

finalists in 4 FPGA families. Virtex 5 & Virtex 6, Stratix III & Stratix IV. 53

7.3 The effect of the padding unit on the performance of 512-bit variant of 5

Round 3 SHA-3 finalists in 4 FPGA families.Virtex 5 & Virtex 6 , Stratix

III & Stratix IV. 56

7.4 Area and maximum clock frequency results for both version of universal

padding unit on ASIC . 56

7.5 Area and maximum clock frequency results for implemented cores 256-bit

variant on ASIC . 57

7.6 Area and maximum clock frequency results for both version of universal

padding unit on Xilinx FPGAs . 57

7.7 Area and maximum clock frequency results for both version of universal

padding unit on Altera FPGAs . 58

7.8 Area and maximum clock frequency results for both version of universal

padding unit on Altera FPGAs . 58

vii

7.9 The effect of the HMAC WRAPPER on the performance of 256-bit variant

of 5 Round 3 SHA-3 finalists in 4 FPGA families.Virtex 5 & Virtex 6 , Stratix

III & Stratix IV. 60

7.10 The effect of the HMAC WRAPPER on the performance of 512-bit variant

of 5 Round 3 SHA-3 finalists in 4 FPGA families.Virtex 5 & Virtex 6 , Stratix

III & Stratix IV. 61

viii

List of Figures

Figure Page

1.1 Simplified block diagram description of Hash Function 1

1.2 Hash Function used for Digital signature generation 3

2.1 Interface of SHA core and a typical configuration with surrounding input and

output FIFOs. 9

2.2 Input data format for two different operation situations. Notation: msg len=

message length before padding, seg i len= segment i length before padding,

seg i= the ith segment of the message, ‘|’ concatenation. 10

3.1 BLAKE Padding Scheme . 11

3.2 Grøstl Padding Scheme . 12

3.3 JH Padding Scheme . 13

3.4 Keccak Padding Scheme . 13

3.5 Skein Padding Scheme.(a) shows the padding rule when the message length

is a multiple of a byte and (b) shows the padding rule when the message

length is not a multiple of a byte. 14

3.6 SHA-2 Padding Scheme . 15

4.1 Padding scheme of SHA-2 showing S-P: Start Padding and M-P: Mid Padding. 16

4.2 SHA-2 Padding unit using comparators. S-P : Start Pad String, M-P: Mid

Pad String, End Pad String. ‘i’ is the number of padding bits in the last

word of the message . 16

4.3 Message divided into three cases showing word before, during and after padding 17

4.4 Block Diagram for unit which calcualtes select signals for the padding unit

logic. 17

4.5 SHA-2 Padding unit using decoder logic. S-P : Start Pad String, M-P: Mid

Pad String, End Pad String. ‘i’ is the number of padding bits in the last

word of the message . 18

4.6 Block Diagram for unit which calcualtes select signals for the padding unit

logic for word size 32 bits. 18

ix

4.7 Maximum clock frequnecy vs. Area of general padding for both versions in

two xilinx families. V5- Virtex 5 and V6- Virtex 6. 19

4.8 Adder configuration used to calculate the size of the message for SHA-2 and

JH . 20

4.9 Block Diagram of Multi Stage Adder . 21

4.10 Maximum clock frequnecy vs. Area for both versions of adders on 2 xilinx

families and 2 Altera families.(a) plot for 64-bit adder,(b) plot for 128-bit

adder. V5- Virtex 5, V6- Virtex 6, S3- Stratix III, and S4- Stratix 4 22

4.11 Boundary cases for BLAKE . 23

4.12 Top level of Datapath of Padding unit: BLAKE. 24

4.13 Block diagram of BytePadBK . 24

4.14 Boundary cases for Grøstl . 25

4.15 Top level of Datapath of Padding unit:Grøstl 26

4.16 Block diagram of BytePadMUL . 26

4.17 Boundary cases for JH . 27

4.18 Top level of Datapath of Padding unit:JH 28

4.19 Boundary cases for Keccak . 29

4.20 Top level of Datapath of Padding unit:Keccak 30

4.21 Block diagram of BytePadKK . 30

4.22 Boundary cases for Skein . 31

4.23 Top level of Datapath of Padding unit:Skein 31

4.24 Block diagram of BytePadSK . 32

4.25 Boundary cases for SHA-2 . 33

4.26 Top level of Datapath of Padding unit: SHA. 34

5.1 Simplified block diagram showing interface between Input block and Hash

cores. Input bus width for keccak is 1088 and 512 for all others. 35

5.2 Byte version:Top level of Universal Padding Unit 37

5.3 Byte version:Top level of datapath . 39

5.4 LUT based decoder to generate select signals for BytePad 39

5.5 Block diagram for BytePad . 40

5.6 Word version:Top level of Universal Padding Unit 41

5.7 Word version:Top level of datapath . 42

5.8 Block Diagram of word pad . 42

x

6.1 Simplified block diagram showing generation of MAC from arbitrary length

message. 43

6.2 Communication between User A and User B over an unsecured channel. . . 44

6.3 Details of HMAC algorithm . 46

6.4 Interface for HMAC Unit . 48

6.5 Protocol supported by HMAC wrapper . 48

6.6 Datapath: HMAC wrapper . 49

6.7 Controller-Datapath communication signals 50

7.1 Change in throughput/area ratio after adding of padding unit in Altera de-

vices for 256-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for

Stratix III and (b) is Stratix IV . 54

7.2 Change in throughput/area ratio after adding of padding unit in Altera de-

vices for 512-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for

Stratix III and (b) is Stratix IV . 54

7.3 Change in throughput/area ratio after adding of padding unit in Xilinx de-

vices for 256-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for

Virtex 5 and (b) is Virtex 6 . 55

7.4 Change in throughput/area ratio after adding of padding unit in Xilinx de-

vices for 512-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for

Virtex 5 and (b) is Virtex 6 . 55

7.5 Area overhead due to addition of universal padding unit byte version for

GMU and ETHZ implementations in ASIC. 58

7.6 Area overhead due to addition of universal padding unit byte version for

GMU implementations in FPGA. 59

7.7 Change in throughput/area ratio after adding of HMAC wrapper in Altera

devices for 256-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for

Stratix III and (b) is Stratix IV . 62

7.8 Change in throughput/area ratio after adding of HMAC wrapper in Altera

devices for 512-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for

Stratix III and (b) is Stratix IV . 62

7.9 Change in throughput/area ratio after adding of HMAC wrapper in Xilinx

devices for 256-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for

Virtex 5 and (b) is Virtex 6 . 63

xi

7.10 Change in throughput/area ratio after adding of HMAC wrapper in Xilinx

devices for 512-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for

Virtex 5 and (b) is Virtex 6 . 63

xii

Abstract

IMPLEMENTATION AND BENCHMARKING OF PADDING UNITS AND HMAC FOR
SHA-3 CANDIDATES IN FPGAS AND ASICS

Ambarish Vyas, M.S.

George Mason University, 2011

Thesis Director: Dr. Kris Gaj

In 2005, a major security flaw was discovered in Secure Hash Algorithm-1 (SHA-1), an

NSA-designed cryptographic hash function, standardized by National Institute of Science

and Technology (NIST) since 1995. Basic components in the more recent NIST standard

SHA-2, introduced in 2002, are quite similar to SHA-1. As both functions are quite similar,

it is prudent to expect that the equivalent attacks can be found against SHA-2 in the future.

In retort to this possibility, NIST established a contest in search of a new cryptographic

hash function family called SHA-3. Presently, the competition is in Round 3 evaluations,

with 5 finalists shortlisted out of the 14 from Round 2. Various research groups from the

cryptographic community are evaluating the performance of the finalists in hardware while

trying their best to be fair in their design decisions. One of the topic of debate in the

cryptographic community is whether padding should be included in hardware design or

should it be done externally in software and not taken in consideration while evaluating the

designs. We propose that padding should be included in the designs for fair evaluations, but

should be designed intelligently so that the overall Throughput/Area ratio is not affected

by an undesirable amount.

In this thesis, we design and implement padding units for 5 Round 3 SHA 3 finalists

for two hardware platforms, FPGAs and ASICs. We show that the worst effect of padding

unit on the performance of the candidates does not exceed 18% in FPGAs and the overall

ranking of the finalists does not change from the ranking derived from the architectures

which do not support padding. Universal padding unit supporting all finalists and SHA-2

was designed for ASICs and the maximum area overhead due to the inclusion of a padding

unit is around 9% with no effect on maximum clock frequency. This thesis also focuses on

designing a Hash-based Message Authentication Code (HMAC) wrapper for all the SHA-3

finalists and SHA-2.

Chapter 1: Introduction

1.1 Background

Growth in technology and world wide web has made the world smaller and the need to pro-

tect information stored electronically very crucial. Network security is thus very important

and so cryptographic functions need to evolve for secure transmission of data. Thus hash

functions are of great significance in the modern era. Compared to non-cryptographic hash

functions, cryptographic hash functions are much more heavy in terms of computations and

need more resources and execution time. Therefore they are used only where the protec-

tion against security attack is necessary. Cryptographic hash functions takes message as

input and gives an output of fixed length called Message Digest or Hash Value. Combined

with other cryptographic transformations, such as secret-key and public-key ciphers, hash

functions can be used to provide message integrity, authentication, and non-repudiation [1].

Message M

Arbitrary Length

Message Digest

Fixed Length

Hash Function

Figure 1.1: Simplified block diagram description of Hash Function

1

Hash functions have three basic properties :

1. Compression : It should be easy to compute the output of fixed length, from an

arbitrary length input. For a given input ‘M’, one should be able to compute H(M)

easily with fixed length output.

2. Collision resistance : It should be computationally infeasible to find any two mes-

sages which yield the same hash output.

For given inputs ‘M1’ and ‘M2’ : H(M1) 6= H(M2)

3. Preimage resistance : It should be computationally infeasible to compute the input

from the obtained output.

For a given X, it is not possible to find ‘M’ such that H(M) = X.

Fig 1.1 shows simplified block diagram of a hash function. Message ‘M’ of arbitrary

length is input to the function and finally a fixed length output is obtained [1] [2].

1.1.1 Applications

1. Pseudorandom generation: Hash functions can be used in the generation of

pseudo-random output. In hash functions there is no correlation between input and

output bits and even a single bit change can change around 50% of the output bits.

2. Fingerprint of a program: Hash functions can be used to generate fingerprints

of a document or a program which can help to detect a modification by a virus or

intruder.

3. Storing Passwords: Instead of storing the ID and the password of a user in plaintex,

the system can store ID and hash value of the password. In order to authenticate a

user, the password presented by the user is hashed and compared with the stored hash

value.

2

algorithm

Public Key

=?

algorithm

Public Key

Hash Function

Message

Hash Function

Message

Alice’s Private Key

Signature

Alice’s Public Key

YES NO

Alice Bob

Signature

Hash value#1

Hash value#2

Hash value

Figure 1.2: Hash Function used for Digital signature generation

4. Digital Signatures: Most widely used application of cryptographic hash functions.

Digital signatures are used for verification of message integrity and strong authen-

tication of message sender. To establish whether any changes have been made to a

message, Message digests calculated before, and after the transmission of a message

can be compared [3]. Fig 1.2 gives an example of verifying message integrity. Alice

sends a message to Bob along with a digital signature. Digital signature is calculated

by first taking the hash of the message and then encrypting it using Alice’s private

key. On the other side, Bob also calculates a hash value using the same Hash func-

tion and compares it with the decrypted signature as shown in Fig 1.2. If both hash

value match then the message has not been altered [4].

3

1.1.2 Padding

The foremost use of padding in classical ciphers was to prevent attacks from cryptanalysts

by reducing the predictability of the message. Predictability lies generally at the start and

end of a message, with greetings or subject.

One of the infamous examples of padding in classical ciphers, which caused a false

impression and led to Admiral William Hasley, Jr. to drop of his pursuit of a Japanese

task force in the Battle of Leyte gulf [5]. A padding string was added at the start and

end of the message by Admiral Nimitz troop to avoid japanese cryptanalysts to guess the

predictable phrases at the start and end. Admiral Nimitz’s clerk used the phrase ”The

World Wonders” [5] at the end of the message. While deciphering the cipher text, Hasley’s

officer removed the leading phrase, but thought the end string looked appropriate and a

part of the message. So Hasley read the message as, “Where is, repeat, Where is TASK

Force Thirty Four?The world wonders” This created an resentment and Hasley found it a

harsh statement on his pursuit, and returned back in anger.

Majority of the cryptographic hash functions process messages divided in fixed length

blocks. But we cannot restrict a message to be a multiple of a fixed-length block, this lead

to inclusion of padding schemes in the hash functions. The job of the padding rule is not

just to extend the length of the message and make it possible for the hash functions to

process the total message, but it is also critical regarding security of the hash functions.

It is important that the padding rule preserves the collision resistance of the underlying

compression function. A padding rule should be injective [6], because an injective function

preserves distinctiveness. Injective function can also be called as one to one function as

every element in the codomain of the function is mapped to at the most one element from

its domain. Padding should be reversible that means it must be possible to determine the

original message from the padded message [7].

4

Merkle padding rule [4] is one of the most commonly used padding rules in hash func-

tions. The Padding rule is defined as,

PAD(M) = M ||1||0d||Len(M)s

where

M is the Message,

0d is a string of d zeros

d is the smallest non-negative integer required,

Len(M)s is length of the Message M in bits, encoded using s bits

s is generally chosen as 64 or 128.

This padding rule is used in the Merkle-Damgard construction of hash function [4]. Draw-

back of Merkle padding rule is that it can only support message of length 2s-1. Present

NIST standard SHA-2 [8] uses Merkle padding rule.

1.2 Previous work

As of writing this thesis, to the best of my knowledge there are very few published implemen-

tations of padding in hardware for the SHA-3 finalists. Until now, only [9,10] provide results

and evaluations of padding circuit in hardware. [11] has very comprehensive evaluation of

effect of padding, and has two versions for the padding unit.

1. Assumes that the message size is a multiple of a word (32 bits),

2. Does not put any restriction on the message size.

Both versions are extreme cases, where one is overly optimistic and the other is too pes-

simistic. The results show that the circuit slows down the overall performance considerably,

which should not be the case if the design is done properly. Jungk et al. in [10] sadly do

not give out much details and do not have comprehensive performance analysis and reports

on affect of padding in hardware.

5

Regarding HMAC implementations, to the best of my knowledge there is no previous

work regarding HMAC implementation on SHA-3 candidates. Mostly HMAC implementa-

tions [12,13] are on SHA-1 [14] and MD5 [15]. The strength of the HMAC depends on the

hash function deployed, and as SHA-1 and MD5 have been found to be vulnerable against

security attacks, the HMAC implementations are in the same arena of security holes. NIST

commented on the cryptanalysis and said that the HMAC is not under the same security

attack as SHA-1 but recommended moving to SHA-2. However, I could locate only one

implementation of HMAC based on SHA-2 [16] . The SHA-2 implementation is comprehen-

sive and have in depth analysis of energy, throughout, throughput/area criteria. Results

generated are for Virtex-2 and Virtex-E which are old devices and do not have as many

resources as the modern FPGAs.

6

Chapter 2: Design Methodology

This thesis follows the same established ground rules as proposed by [17] [18].

These decisions are listed below:

1. Hardware Platform: FPGAs as primary implementation platform. Only Config-

urable Logic Blocks (CLBs) in Xilinx FPGAs, and Logic Elements or Adaptive Look-

Up Tables (ALUTs) in Altera FPGAs are used for synthesis and implementation. No

Block RAMs, DSP units, or multipliers are used.

Universal Padding Unit was implemented on the ASIC platform. ASIC was based on

65nm Standard cell CMOS technology.

2. Interface and protocol : Uniform input/output interface is used in implementations

and is same as proposed by [19].

3. Language : VHDL.

4. CAD tools :

• FPGA

– Xilinx - Xilinx ISE Design Suite v 13.1.

– Altera - Quartus II v 11.1 Subscription Edition Software.

Open source benchmarking tool, called ATHENa (Automated Tool for Hardware

EvaluatioN), developed at George Mason University is used for benchmarking of

source codes and optimization of FPGA tool options [20].

• ASIC

– Front-end tool : Synopsys Design Compiler D-2010.03-SP1-1

7

– Back-end tool : Cadence Design Systems Encounter Digital Implementation

v10.12-s181 1

5. Optimization target : Throughput/area.

The source codes of the hash cores are taken from [21] and the details regarding the im-

plementation were found at [22]. Universal testbench developed by CERG-GMU is used to

verify all of the SHA-3 Round 3 finalists and SHA-2. The testbench accepts test vectors

generated by the script developed in Perl. The script uses the Known Answer Test (KAT)

test vector files available as a part of each candidate’s submission package.

2.1 Interface and Protocol

This section provides information about the Interface and Protocol used for SHA-3 Round

3 finalists and SHA-2 and is similar to what is proposed by [17].

2.1.1 Interface

Table 2.1: Description of Interface Signals

Signal Direction Description

din Input ‘w’ bits wide input data bus.

src ready Input Active low source ready indicator.

src read Output Set high to read next word from source.

dst write Output Set high to write next word to destination.

dst ready Input Active low destination ready indicator.

dout Output ‘w’ bits wide output data bus.

rst Input Synchronous Active high global reset.

clk Input Rising Edge Triggered global clock.

Table. 2.1 briefly describes function, width and names of the input and output ports in

the SHA interface as shown in Fig. 2.1(a). Parameter ‘w’ is the in data bus width depending

on the function. To be specific, w= 32 for SHA-256 and w=64 for the remaining functions.

Active high rst signal resets the SHA core, which now becomes ready for a new message.

src ready is an input used by the source of data to indicate to the SHA core that the next

8

word of data is ready. src read is an output used by the SHA core to read data from the

source. dst ready signal indicates that the output destination is ready and can be written

to by the SHA core. dst write control signal is an output of the SHA core, indicating to the

destination that SHA core wants to write data to it.

The configuration used to test the SHA core is as shown in Fig. 2.1(b) SHA core is

assumed to be surrounded by two standard FIFO modules: Input FIFO and Output FIFO.

Each FIFO module generates signals fifo empty and fifo full indicating that the FIFO is

empty or full, respectively. Each FIFO accepts control signals fifo write and fifo read,

indicating that the FIFO is being written to and read from, respectively. The FIFOs

are not a part of the SHA core and are used just to test the SHA core. Thus, during

verification of the SHA core, the FIFOs can be implemented as a part of a testbench and

for benchmarking they are not taken into account.

din

clk

clk

rst

SHA Core

src_read

src_ready

dst_write

dst_ready

dout
w w

rst

(a) Input-Output Interface

rst

SHA Core

fifoin_empty

fifoin_read

idata

ww

dst_write

dst_ready

din
odata

w

rst

full

write

clk rst

read

doutdin

write
fifoin_write

FIFO FIFO

ext_idata

fifoin_full
full empty

src_read

src_ready

w
din

fifoout_full

fifoout_write

empty

read

dout
ext_odata

fifoout_read

fifoout_empty

dout

Input Output

clk rst clk

clkclk clk rstrst

(b) FIFO configuration

Figure 2.1: Interface of SHA core and a typical configuration with surrounding input and
output FIFOs.

2.1.2 Protocol

A protocol describing a format of input is shown in Fig. 2.2, In the simplest case, the input

consists of the length of the message in bits followed by the message itself. The message

length is the actual message length before padding. Protocol shown in Fig. 2.2(a) can be

used when length of the message to be hashed is known in advance and the length can be

represented in ‘w’ bits. Protocol in Fig. 2.2(b) is used when the length of the message is

not known from the start, or is greater than what can be represented in ‘w-1’ bits (2w).

9

So the message is divided into known length segments. The lengths of segments from seg 0

to seg n-2 are required to be in the multiples of the message block length corresponding to

the algorithm. Also when the message is bigger than what can be represented by ‘w-1’ bits

(2(w− 1)-1), it can be split into segments and the latter protocol (b) can be used. Protocol

(a) is actually a subset of the protocol (b), because situation (a) can be seen as concerning

message which consists of only one segment. last is a one bit flag which signifies the last

segment of a message or just one-segment message in case of situation (a).

last = 1 | msg_len

w = 64 for all SHA−3 candidates

w = 32 for SHA−256

w−bit

message

(a) Message length known

seg_1

last = 0 | seg_1_len

last = 0 | seg_0_len

seg_0

seg_n−1

last = 1 | seg_n−1_len

w−bit

(b) Message length un-
known

Figure 2.2: Input data format for two different operation situations. Notation: msg len=
message length before padding, seg i len= segment i length before padding, seg i= the ith
segment of the message, ‘|’ concatenation.

10

Chapter 3: Padding Rules

This section describes padding rules of all 5 SHA-3 finalists and SHA-2.

Table 3.1: Overview of Padding Schemes of 5 Candidates and SHA-2.(‘||’ stands for con-
catenation

Sr. No. Algorithm Padding Scheme

1.
BLAKE-256 M ‖ ‘1’ ‖ “000...000” ‖ ‘1’ ‖ (Message Length)64
BLAKE-512 M ‖ ‘1’ ‖ “000...000” ‖ ‘1’ ‖ (Message Length)128

2. Grøstl M ‖ ‘1’ ‖ “000000” ‖ (Number of Blocks)64
3. Keccak M ‖ ‘1’ ‖ “000000” ‖ ‘1’

4. JH M ‖ ‘1’ ‖ “000...000” ‖ (Message Length)128
5. Skein If Message length is a Multiple of a byte : M ‖ “000...000”

Else : M ‖ ‘1’ ‖ “000...000”

6.
SHA-256 M ‖ ‘1’ ‖ “000...000” ‖ (Message Length)64
SHA-512 M ‖ ‘1’ ‖ “000...000” ‖ (Message Length)128

Brief description of padding scheme related to particular hash function is shown in

Table. 3.1. BLAKE and SHA-2 have varying schemes for 256 and 512-bit variants.

3.1 BLAKE

LM K

Message 000...0001 Length1

N*BlockSize

Figure 3.1: BLAKE Padding Scheme

Fig. 3.1 shows the padding rule of BLAKE. Suppose a Message ‘M’ bits long. First the

input message is appended with ‘1’ at the end of the input message, followed by minimum

11

required ‘K’ bits of zeroes. Then to this sequence ‘1’ is appended, followed by message

length of ‘L’ bits such that the total message size after padding is a multiple of the block

size.

Minimum number of bits appended are (L+2).

Maximum number of bits appended are (Blocksize+L+1).

HashSize = 256 : L = 64, Blocksize = 512,M + K + 2 ≡ 448 mod 512.

HashSize = 512 : L = 128, Blocksize = 1024,M + K + 2 ≡ 896 mod 1024.

3.2 Grøstl

Message 1 000...000 #Blocks

N*BlockSize

M K L

Figure 3.2: Grøstl Padding Scheme

Fig. 3.2 shows the padding rule for Grøstl. Suppose a Message ‘M’ bits long. First the

input message is appended with ‘1’ at the end of the input message, followed by minimum

required ‘K’ bits of zeroes. Then to this sequence, number of blocks of message after padding

represented by ‘L’ bits is appended at the end such that the total message size after padding

is a multiple of the block size.

Minimum number of bits appended are (L+1).

Maximum number of bits appended are (Blocksize+L).

HashSize = 256 : L = 64, Blocksize = 512,M + K + 1 ≡ 448 mod 512,

HashSize = 512 : L = 64, Blocksize = 1024,M + K + 1 ≡ 896 mod 1024.

12

3.3 JH

Message 1 000...000 Length

M K L

N*BlockSize BlockSize

Figure 3.3: JH Padding Scheme

Fig. 3.3 shows the padding rule of JH. Suppose a Message of length ‘M’ bits long. First the

message is appended with ‘1’ at the end of the message, followed by minimum required ‘K’

bits of zeroes. Then to this sequence, message length of ‘L’ bits is appended at the end

such that the total message size after padding is a multiple of the block size.

Minimum number of bits appended are Blocksize.

Maximum number if bits appended are (2*Blocksize-1) JH will always contain an extra

block with no message bits in it.

HashSize = 256/512 : Blocksize = 512,K = 383 + (512−M) mod 512.

3.4 Keccak

M

Message 1 000...000 1

N*BlockSize

K

Figure 3.4: Keccak Padding Scheme

Fig. 3.4 shows the padding rule of Keccak. Suppose a Message of‘M’ bits long. First the

13

message is appended with ‘1’ at the end of the message, followed by minimum required ‘K’

bits of zeroes. Then to this sequence ‘1’ is appended such that the total message size after

padding is a multiple of a block size.

Minimum number of bits appended are 2.

Maximum number of bits appended are (Blocksize+1).

HashSize = 256 : Blocksize = 1088, (M + K + 2) mod 1088 = 0

HashSize = 512 : Blocksize = 576, (M + K + 2) mod 576 = 0

3.5 Skein

Message 1

M K

000...000

N*BlockSize

K

Message

M

000...000

N*BlockSize

(a) (b)

Figure 3.5: Skein Padding Scheme.(a) shows the padding rule when the message length is a
multiple of a byte and (b) shows the padding rule when the message length is not a multiple
of a byte.

Fig. 3.5 shows the padding rule of Skein. Suppose a Message of ‘M’ bits long. If ‘M’ is a

multiple of a byte, then the message is appended with minimum required ‘K’ bits of zeroes

such that the total size after padding is a multiple of the block size. If ‘M’ is not a multiple

of a byte, then ‘1’ is appended at the end of the message and followed by minimum required

‘k’ bits of zeroes. Skein padding rule will never result in an extra block.

If ‘M’ is a multiple of a byte,

Minimum number of bits appended are 0.

Maximum number of bits appended are (Blocksize-8).

14

Else,

Minimum number of bits appended are 1.

Maximum number of bits appended are (Blocksize-1).

HashSize = 256/512 : Blocksize = 512

M mod 8 = 0 : (M + K) mod 512 = 0

M mod 8 6= 0 : (M + K + 1) mod 512 = 0

3.6 SHA-2

Message 1 000...000 Length

N*BlockSize

M K L

Figure 3.6: SHA-2 Padding Scheme

Fig. 3.6 shows the padding rule of SHA-2. Suppose a Message‘M’ bits long. First the

message is appended with ‘1’ at the end of the message, followed by ‘K’ bits of zeroes. Then

to this sequence, message length represented by ‘L’ bits is appended at the end such that

the total message size after padding is a multiple of the block size.

Minimum number of bits appended are (L+1).

Maximum number of bits appended are (Blocksize+L).

HashSize = 256 : L = 64, Blocksize = 512,M + K + 1 ≡ 448 mod 512

HashSize = 512 : L = 128, Blocksize = 1024,M + K + 1 ≡ 896 mod 1024

15

Chapter 4: Padding Unit

4.1 General Block

S−P

Message 00000000 Length00000000

M−PM−P

10000000

Figure 4.1: Padding scheme of SHA-2 showing S-P: Start Padding and M-P: Mid Padding.

1 01 0

1 0 1 0i<64

8 8

8 8

8

i==8

i<8

S−P

8 8

8 8

8

64

(63:56)din (7:0)
din

dout

i==64

8 8

S−PM−P M−P

Figure 4.2: SHA-2 Padding unit using comparators. S-P : Start Pad String, M-P: Mid Pad
String, End Pad String. ‘i’ is the number of padding bits in the last word of the message

Fig. 4.1 shows in detail the padding strings when the message size is a multiple of a

byte. Input message word is divided into equal segments of a byte each. The padding block

consists of two levels of multiplexers. Each two level MUX combination has a constant

value associated with it, starting from 64 and ending with 8. They either select the input

message byte or the respective padding string to pass. Padding string is either Start padding

or Mid padding, and in some cases there is End padding string. These selections are done

16

by two select signals as shown in Fig. 4.2. ‘i’ is calculated using the message length. If the

position is less than a constant value (multiple of 8), you let input message segment pass.

If the constant is equal to i, then the Start Padding String, S-P, is selected. Depending

on the padding scheme of an algorithm the values of S-P and M-P are determined. When

you want to pass just the padding string for the whole word then ’i’ should be greater than

the highest constant value which in the figure shown above is 64. Which means any value

greater than 64 for ‘i’ will pass M-P through to the output. So ‘i’ is 7 bits wide which

means we need eight 7-bit comparators. Fig. 4.3 shows three possible cases and values of ‘i’

during each case. ‘i’ is the number of padding bits in the last word of the message. Case 3

is a special case where we want only zeros to pass to the core.

���������
���������
���������

���������
���������
���������64 56 48 32 24 16 8 0

����������������
����������������
����������������
����������������

���������������
���������������
���������������
���������������

Msglen mod 64 i = 32

Case 1

Case 2

Case 3

i = 0

i = 64 − (MsgLen mod 64)

i = 65

Figure 4.3: Message divided into three cases showing word before, during and after padding

x"00"x

8

SelInp

b"00100000"

b"00010000"

b"00000010"

b"00000001"

b"00000100"

b"00001000"

b"10000000"

b"01000000"

b"11000000"

b"11100000"

b"11111100"

b"11111110"

b"11111000"

b"11110000"

b"00000000"

b"10000000"

0 1 0 1

LUT−2
33

3

8 8 8 8

SelPad

8

LUT−1 LUT−2

"FF"

LUT−1

Case 1 Case 3

(MsgLength mod 64)

Figure 4.4: Block Diagram for unit which calcualtes select signals for the padding unit logic.

The more efficient way to calculate the select signals for the mux is by using a decoder.

The decoders for the two select signals are implemented using Look up tables as shown in

17

Fig. 4.4 . We assume the message ends on the boundary of a BYTE, thus we can ignore

the first three bits of the message length. For input word size 64 bits, bit position 5 to 3

is used as the address to the look up tables. If the input word size is 32 bits (in SHA-256)

the input address is just 2 bits and output of the lookup table is 4 bits as shown in Fig. 4.6.

To pass the input message ‘SelInp’ is set to all ‘1’s. When it is required to pad with ‘0’s

‘SelInp’ is set to “00”.

1 01 0

1 0 1 0

8 8

8 8

8

S−P

8 8

8 8

8

64

(63:56)din (7:0)
din

dout

8 8

S−PM−P

SelPad(7) SelPad(0)

SelInp(0)SelInp(7)

M−P

Figure 4.5: SHA-2 Padding unit using decoder logic. S-P : Start Pad String, M-P: Mid Pad
String, End Pad String. ‘i’ is the number of padding bits in the last word of the message

1 01 0

x"F" x"0"

b"1110"

b"1100"

b"0000"

b"1000"

LUT−1

b"0001"

b"0010"

b"1000"

b"0100"

LUT−2

22

2

4 4 4 4

SelInp SelPad

LUT−1 LUT−2

4 5

Case 1 Case 2

MsgLength mod 32

Figure 4.6: Block Diagram for unit which calcualtes select signals for the padding unit logic
for word size 32 bits.

18

Table 4.1: Area and maximum clock frequency results for both version of general padding

unit on Xilinx FPGAs

Virtex 5 Virtex 6

Area Max.Clock Area Max.Clock

Type [CLB slices] [MHz] [CLB slices] [MHz]

Padding Unit
Comparator 38 294.72 34 321.54

Decoder 32 313.97 31 330.25

20 25 30 35 40 45 50
220

240

260

280

300

320

340

M
a
x
.C

lo
c
k
[M

H
z
]

Area[CLB slices]

Comparator

Decoder

V5

V6

V6

V5

Figure 4.7: Maximum clock frequnecy vs. Area of general padding for both versions in two

xilinx families. V5- Virtex 5 and V6- Virtex 6.

As shown in Table. 4.1 padding unit which uses decoder logic to calculate the select

signals is faster and slightly smaller. Moreover the controller does not have to calculate the

position value also, which makes the controller smaller too compared to the one which uses

comparators. Fig. 4.7 plots the improvement of area as well as frequency when decoders are

implemented using LUT instead of using comparators.

19

4.1.1 Multi-Stage Adder

As shown in Table. 3.1 SHA-2, BLAKE, JH appends message length in bits at the end of

the message and Grøstl appends message length in multiples of block size. Table. 4.2 lists

the length of the counter needed by the algorithms. In some algorithm the counter size

changes depending on the variant.

Table 4.2: Counter Size used in the the Padding rule

Algorithm Variant Counter Size

BLAKE
256 64-bit
512 128-bit

JH
256 128-bit
512 128-bit

Grøstl
256 64-bit
512 64-bit

SHA-2
256 64-bit
512 128-bit

6432

������
������
������

������
������
������

����������
����������
����������

����������
����������
����������

����������
����������
����������

����������
����������
����������

�����
�����
�����
�����

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

128

128

SHA−256

ADD

64

64

SHA−512

JH−256/512

INPUT #2

INPUT #1

OUTPUT

INPUT #2

ADD

OUTPUT

INPUT #1

Figure 4.8: Adder configuration used to calculate the size of the message for SHA-2 and JH

JH and SHA2 have a very short critical path and such a wide adder is certain to

increase the critical path due to the carry chain propagation and thus will decrease the

high performance of the algorithm. This is avoided by using a Multi-Stage adder [23].

Carry signals are propagated in subsequent clock cycles to the next adder. In the Fig. 4.9

each adder is 16-bits wide and the registers are 17-bit wide except the last one as we ignore

20

16

16

16

16

16 16

dout

w
;

16 17 17 17

16161616

1616

REG−0REG−(N−2)

din

carry[N−2]carry[N−1] carry[2] carry[1]

w=64 : N=8w=32 : N=4

REG−1REG−(N−1)

2*w

Figure 4.9: Block Diagram of Multi Stage Adder

the carry. Depending on the output the number of registers and adders change. The output

is available in 8 clock cycles for 128-bit output and in 4 clock cycles for 64-bit output. Input

is divided in segments of 16 and fed into adders. The other input is taken from the register

where result of previous addition was stored. The outputs of the registers are concatenated

to get the final output.

Fig. 4.8 show the two different cases the adders are used. The message segment length

is added to the previous stored length to get the total length of the message.

Table 4.3: Area and maximum clock frequency results for combinational standard carry
chain adder (’+’ in VHDL)

Virtex 5 Virtex 6 Stratix III Stratix IV

Area Max.Clock Area Max.Clock Area Max.Clock Area Max.Clock

Adder size [CLB slices] [MHz] [CLB slices] [MHz] [ALUTs] [MHz] [ALUTs] [MHz]

64-bits 32 320.20 31 281.45 65 350.26 65 507.25

128-bits 48 229.30 47 221.236 129 209.69 129 321.75

21

Table 4.4: Area and maximum clock frequency results for Multi-Stage adder

Virtex 5 Virtex 6 Stratix III Stratix IV

Area Max.Clock Area Max.Clock Area Max.Clock Area Max.Clock

Adder size [CLB slices] [MHz] [CLB slices] [MHz] [ALUTs] [MHz] [ALUTs] [MHz]

64-bits 54 453.92 51 434.02 74 593.12 74 706.21

128-bits 92 420.875 74 446.43 146 609.76 146 658.76

20 30 40 50 60
200

250

300

350

400

450

500
(a)

Area[CLB slices]

M
a
x
.C

lo
c
k
[M

H
z
]

SCCA

Multi−Stage

100 150 200

200

300

400

500

600

700

800
(b)

Area[ALUTs]

M
a
x
.C

lo
c
k
[M

H
z
]

SCCA

Multi−Stage
V6

V5

V6

V5

S4

S4

S3

S3

Figure 4.10: Maximum clock frequnecy vs. Area for both versions of adders on 2 xilinx
families and 2 Altera families.(a) plot for 64-bit adder,(b) plot for 128-bit adder. V5- Virtex
5, V6- Virtex 6, S3- Stratix III, and S4- Stratix 4

Table. 4.3 and Table. 4.4 gives area and maximum clock frequency of a 64 and 128-bit

standard carry chain adder and the multistage adder respectively. Multistage adder is

slightly bigger but is aroound 40% faster compared to the basic carry chain adder. Fig. 4.10

shows the improvement in speed with a little increase in area of Multi-stage adder over

standard carry chain adders for both 64-bit and 128-bit adders.

22

4.2 BLAKE

4.2.1 Boundary cases

This section describes the possible boundary cases when the message size is a multiple of

byte.

MSG

64 64

MSG

0000000 0000001

MSG

1000 000

100 00

0000000 0000000

0000000 0000000

0000000 0000001

1000000 0000000

0000000 0000000

0000000 0000001

64

LenLenLen

(a) (c)(b)

Figure 4.11: Boundary cases for BLAKE

Fig. 4.11 shows the possible three cases which can occur depending on the size of the

last block. Suppose length of the last block is ’M’.

For BLAKE -256: For BLAKE -512:

Case(a) M ≤ 440, Case(a) M ≤ 888

Case(b) 440 < M < 512, Case(b) 888 < M < 1024

Case(c) M = 512. Case(c) M = 1024

4.2.2 Block Diagram Description

Fig. 4.12 shows a simplified block diagram of top level of datapath for BLAKE. 2-input mux

selects either the message passed through BytePadBK which pads the input if necesary or

it selects the message length to pass to the hash core. Fig. 4.12(b) is for BLAKE-512, as

in the 512-bit version the length field in padding rule is reprented in 128-bits, so it is split

23

len
64

1

64

0

64

64

DataIn

BytePadBK

DataOut
(a) BLAKE-256

len63:0

0 2

127:64

64 64

64

64

64

1

len

BytePadBK

DataIn

DataOut
(b) BLAKE-512

Figure 4.12: Top level of Datapath of Padding unit: BLAKE.

into two and a 3 input mux selects the input to pass depending on the state of the message

loading.

8

8

8

8

8

8

8

8

8

64

88

8

8

8

8 888

SelInp(0)1 01 0SelInp(1)

8

1 0

0080

1 0

8

1 0

0080

SelPad(6)

SelInp(6)

SelPad(1)

DataOut

DataIn(7:0)DataIn(15:8)DataIn(55:48)

Note: All Constants are in Hexadecimal notation

1 0SelInp(7)

8

1 0

DataIn(63:56)

SelPad(7)

0080

LastWord || SelPad(0)13 02

81 01 80 00
8 8 8

Figure 4.13: Block diagram of BytePadBK

Fig. 4.13 shows a simplified diagram of BytePadBK. The construction of the circuit is

similar to the padding unit shown in fig. 4.2 with the exception of the last mux which takes

care of the last byte in a word. The strings are precalculated depending on the different

cases. LastWord is set by the controller when the last word of the last block is written to

the hash core by the padding unit before it appends the message length. This facilitates in

appending a trailing ‘1’ to the message.

24

4.3 Grøstl

4.3.1 Boundary cases

This section describes the possible boundary cases when the message size is a multiple of

byte.

0000000 0000000

0000000 0000000

#Blocks

0000000 0000000

1000000 0000000

0000000 0000000

#Blocks

0000000 0000000

MSGMSG

0000000 0000000

MSG

#Blocks

1000 000

100 00

64 64 64

(a) (b) (c)

Figure 4.14: Boundary cases for Grøstl

Fig. 4.14 shows the possible three cases which can occur depending on the size of the

last block. Suppose length of the last block is ’M’

For Grøstl-256: For Grøstl-512:

Case (a) M ≤ 440, Case (a) M ≤ 952,

Case (b) 440 < M < 512, Case (b) 952 < M < 1024,

Case (c) M = 512. Case (c) M = 1024.

4.3.2 Block Diagram Description

Fig. 4.15 shows a simplified block diagram of top level of datapath of Padding unit for

Grøstl. 2-input mux selects either the message passed through BytePadMUL which pads

the input if necesary or selects the number of blocks in the message to pass to the core.

25

64

1

64

0

64

64

DataIn

BytePadMul

Blocks

DataOut

Figure 4.15: Top level of Datapath of Padding unit:Grøstl

8

8

8

8

8

8

8

8

8

8

8

8

1 0SelInp(7)

8

1 0

DataIn(63:56)

SelPad(7)

0080

64

88

8 8 8 8

SelInp(0)1 0

8

1 0

0080

SelPad(0)

1 0SelInp(1)

8

1 0

0080

1 0

8

1 0

0080

SelPad(6)

SelInp(6)

SelPad(1)

DataOut

DataIn(7:0)DataIn(15:8)DataIn(55:48)

Figure 4.16: Block diagram of BytePadMUL

Fig. 4.16 shows a simplified diagram of BytePadMUL. The construction of the circuit is

same as the padding unit shown in fig. 4.2. It either allows the input to pass or the padding

string which could be either “80” or “00” depending on the select signals. This structure is

used by JH and SHA-2 as well as they have similar padding rules.

26

4.4 JH

4.4.1 Boundary cases

This section describes the possible boundary cases when the message size is a multiple of

byte.

Len

0000000 0000000

0000000 0000000

Len127−63

63−0 Len

1000000 0000000

0000000 0000000

Len127−63

63−0

0000000 0000000

0000000 0000000

100 00
MSG

64

MSG

64

(b)(a)

Figure 4.17: Boundary cases for JH

Fig. 4.17 shows the possible two cases which can occur depending on the size of the last

block. Suppose length of the last block is ’M’

For JH-256/512

Case (a) M ≤ 512,

Case (b) M = 512.

27

4.4.2 Block Diagram Description

len63:0

2

127:64

64 64

64

64

64

1

len

DataIn

DataOut

0

BytePadMul

Figure 4.18: Top level of Datapath of Padding unit:JH

Fig. 4.18 shows a simplified block diagram of top level of datapath of Padding unit for

JH. 3-input mux selects either the message passed through BytePadMUL which pads the

input if necesary or it selects the higher 64-bits or the lower 64-bits of the message length

to pass to the hash core.

28

4.5 Keccak

4.5.1 Boundary cases

This section describes the possible boundary cases when the message size is a multiple of

byte.

6464

MSG

MSG

0000000 0000000

0000000 0000000

00000001

0000000 0000000

000000 10000000

00000001 0000000

0000000 0000000

(a) (b)

Figure 4.19: Boundary cases for Keccak

Fig. 4.19 shows the possible two cases which can occur depending on the size of the last

block. Suppose length of the last block is ’M’

For Keccak -256: For Keccak -512:

Case (a) M < 1088, Case (a) M < 576,

Case (b) M = 1088. Case (b) M = 576.

4.5.2 Block Diagram Description

Fig. 4.20 shows top level of datapath of Padding unit for Keccak. Padding rule of Keccak

has no counter so BytePadKK either pads the input if necessary or lets the input message

pass to the hash core.

Fig. 4.21 shows a simplified diagram of BytePadKK. The construction of the circuit is

similar to the padding unit shown in fig. 4.2 with the exception of the last mux which takes

29

BytePadKK

DataIn

64

64

DataOut

Figure 4.20: Top level of Datapath of Padding unit:Keccak

8

8

8

8

8

8

8

8

8

64

88

8

8

8

SelInp(0)1 01 0SelInp(1)

8

1 0

00

1 0

8

1 0

0001

SelPad(6)

SelInp(6)

SelPad(1)

DataOut

DataIn(7:0)DataIn(15:8)DataIn(55:48)

LastWord || SelPad(0)

Note: All Constants are in Hexadecimal notation

3 2 1 0

8

018081
88

1 0SelInp(7)

1 0

DataIn(63:56)

SelPad(7)

00

8 8 8 8 8

01 01 00

Figure 4.21: Block diagram of BytePadKK

care of the last byte in a word. The strings are precalculated depending on the different

cases. LastWord is set by the controller when the last word of the last block is written to

the hash core by the padding unit before it appends the message length. This facilitates in

appending a trailing ‘1’ to the message.

30

4.6 Skein

4.6.1 Boundary cases

This section describes the possible boundary cases when the message size is a multiple of

byte.

0000000 0000000

0000000 0000000

000 00

64

MSG

64

MSG

(a) (b)

Figure 4.22: Boundary cases for Skein

Fig. 4.22 shows the possible two cases which can occur depending on the size of the last

block. Suppose length of the last block is ’M’

Skein -256/512

Case (a) M < 512,

Case (b) M = 512.

4.6.2 Block Diagram Description

BytePadSK

DataIn

64

64

DataOut

Figure 4.23: Top level of Datapath of Padding unit:Skein

31

Fig. 4.23 shows top level of datapath of Padding unit for Skein. Padding rule of Skein

has no counter so BytePadSK either pads the input if necessary or lets the input message

pass to the hash core.

88

8

8

8

64

88

8

8 888 88

SelInp(0)11SelInp(1)1 SelInp(6)

DataOut

1 0SelInp(7)

00
DataIn(63:56) DataIn(7:0)DataIn(15:8)DataIn(55:48)

000

00 00 00

Figure 4.24: Block diagram of BytePadSK

Fig. 4.24 shows the diagram of BytePadSK. It is a very simple construction as skein just

appends zeros if the message is not a multiple of block size. So only one level of mux is

required.

32

4.7 SHA-2

4.7.1 Boundary cases

This section describes the possible boundary cases when the message size is a multiple of

byte.

1000000 0000000

0000000 0000000

0000000 0000000

Len

MSG

0000000 0000000

1000 000

100 00

Len

MSG

W W W

MSG

(a) (b) (c)

Len

0000000 0000000

0000000 0000000

0000000 0000000

Figure 4.25: Boundary cases for SHA-2

Fig. 4.25 shows the possible three cases which can occur depending on the size of the

last block. Suppose length of the last block is ’M’

For SHA-256: For SHA-512:

Case (a) M ≤ 440, Case (a) M ≤ 888,

Case (b) 440 < M < 512, Case (b) 888 < M < 1024,

Case (c) M = 512. Case (c) M = 1024.

4.7.2 Block Diagram Description

Fig. 4.26 shows a simplified block diagram of top level of datapath for SHA2. 3-input mux

selects either the message passed through BytePadMUL which pads the input if necesary or

it selects the higher 32-bits of the message length or the lower 32-bits to pass to the hash

33

len

32

2

64
32

31:063:32

0 1

32

BytePadSH

DataIn

DataOut
(a) SHA-256

len63:0

0 2

64 64

64

64

64

1

len127:64

BytePadMul

DataIn

DataOut
(b) SHA-512

Figure 4.26: Top level of Datapath of Padding unit: SHA.

core. Fig. 4.26(b) is for SHA-512, as in the 512-bit version the length field in padding rule

is reprented in 128-bits, so it is split into two and a 3 input mux selects the input to pass

depending on the state of the message loading.

34

Chapter 5: Universal Padding Unit for ASICs

To implement and benchmark SHA-3 Round 3 finalists in ASICs and see how different

optimization targets lead to different results, two groups George Mason University, Virginia

USA (GMU) and Swiss Federal Institute of Technology Zurich (ETHZ) contributed one

set of implementations each. Standard-cell based 65nm CMOS technology was used to

implement all candidate algorithms and a reference implementation of SHA-2. 256-bit

variants of all algorithms were implemented with Round 3 tweaks.

5.1 Core Interface

Input Register

64

Padding Unit

LFSR

256

DataCntxDI

643

AlgSelxSI

PadDataxDI

PadDataxDO

SipoEnxSI

FinWordxSI

InpWordWrxSI

PenUltCyclexSO

OutWrEnxSO

FinBlockxSO
OutWordWrxSO

OutRdyxSI

DataxDI

DataxDO
MsgLenxDI

InWrEnxSI
FinBlockxSI

64

DataxDO

64

512/1088

Input Block

HASH
CORE

N

Figure 5.1: Simplified block diagram showing interface between Input block and Hash cores.
Input bus width for keccak is 1088 and 512 for all others.

Due to pin limitations, an LFSR (using the primitive polynomial x73 + x25 + 1) was

implemented which calculates 64-bits of output per clock cycle as a pseudo-random number

35

generator. The output of this LFSR becomes the input of the Padding Unit whose output is

stored as a new input message block in an Input register which acts like a Serial In Parallel

Out (SIPO). All cores get the message block in parallel as input as shown in Fig. 5.1. 4-bit

AlgSelxSI selects the core to be active, and it also controls clock gating, thus only one core

is active at any given time. Whenever a new message block is ready InWrEnxSI is set high

to alert the core. FinBlockxSI signal is set high if the message block is the last block of the

message. One clock cycle before the core can accept new data, it sets high PenUltCyclexSO

signal. The core will assert OutWrEnxSO as soon as the 256-bit output is ready. The

wrapper is expected to sample this output as soon as the OutWrEnxSO is active.

As area was limited on the chip having individual padding unit for each algorithm was

not feasible. So a universal padding unit was developed which pads the input depending

on AlgSelxSI. The padding unit should be small and fast enough not to slow any of the

algorithm. Two padding units were developed, one assuming that the message length ends

on the boundary of a byte and the other assumes that the message ends on the boundary of

a word. Signals regarding the Padding unit which are independent of the core are discussed

in the next section.

36

5.2 Universal Padding Unit-Byte version

This section provides details regarding the Interface signals and the design of the universal

padding unit which assumes that the message ends at the boundary of a byte.

5.2.1 Interface

DATAPATH
64

64

PadDataxDO
64

M
id

P
a
d

E
x
tr

a
B

lo
c
k

L
a
s
tW

o
r
d

2
S

e
lD

a
ta

2

CONTROLLER

AlgSelxSI

S
e
lI

n

PadDataxDI

OutWordWrxSO

RstxRBI

FinBlockxSO

OutRdyxSI

ClkxCI

FinWordxSI

InpWordWrxSI

3

3

64

DataCntxDI
64

3

Figure 5.2: Byte version:Top level of Universal Padding Unit

Fig. 5.2 illustrates signals from the controller to the datapath. As can be seen from the

figure datapath is completely combinational in structure with no clock input. DataCntxSI

which is the output of a message length counter, is an input to the controller. It is used to

calculate the time at which the message ends and thus gives us the information regarding

start of padding. Table. 5.2.1 briefly describes function, width and names of the input,

output and control signals. Padding unit only interfaces with the wrapper around it and

has no direct communication with the hash core.

37

Table 5.1: Description of Interface Signals

Signal Direction Description

PadDataxDI Input 64-Bit input data bus.

DataCntxDI Input 64-Bit Message length (in bytes).

AlgSelxSI Input 3-Bit Algorithm Select.

InpWordWrxSI Input Set high each time the next word is
written to the Padding Unit.

FinWordxSI Input Set high when the last word is written
to the Padding Unit.

ClkxCI Input Rising Edge Triggered global clock.

PadDataxDO Input 64-Bit output data bus.

OutWordWrxSO Output Set high when the next word is written
to the output.

FinBlockxSO Output Set high when the last word of the last
block is written to the output.

OutRdyxSI Input Set High when the Padding unit can
start writing the next word.

RstxRBI Input Asynchronous Active low reset.

5.2.2 Block diagram description

Fig. 5.3 shows the top level of the datapath. BytePad does the job of padding the message

and takes PadDataxDI as an input. As described before in Table. 3.1 JH, BLAKE, and

SHA-2 append message length at the end of the message. Depending on the algorithm,

the length is represented by 128 or 64 bits. Grøstl appends total number of blocks in the

message represented by 64 bits. SelData from the controller selects either the message or

the other fields depending on AlgSelxSI. DataCntxSI is message length in bytes, so it is

shifted to the left by 3 positions to get the message length in bits. Block size of Grøstl

256-bit variant is 512, so shifting the message length, which is a multiple of a byte by 6

positions to the right will give the total number of blocks in the message. Signal ExtraBlock

is set high by the controller when the padding scheme results into an extra block which

doesn’t not contain any bits of message.

SelIn is a 2-bit signal generated by the controller to control the output of the LUTs.

MidPad selects zeros which are to be padded in between. Lower three bits of DataCntxDI

38

Decoder
(LUT)

0 21

>>6<< 3

64 64 64

Blocks

64

1
63:0Len

64

3

ExtraBlock

DataCntxDI

PadDataxDO

2
SelData

10

Len 127:64

64

3

AlgSelxSI

PadDataxDI

Byte Pad
LastWord

SelPad

SelInp

64

MidPad
SelIn

SelPad

SelInp

3

Figure 5.3: Byte version:Top level of datapath

b"11000000"

b"11100000"

b"11111100"

b"11111110"

b"11111000"

b"11110000"

b"00000000"

b"10000000"

x"00"

1 0

x x

8

SelInp

LUT−1 LUT−2

b"00100000"

b"00010000"

b"00000010"

b"00000001"

b"00000100"

b"00001000"

b"10000000"

b"01000000"

33

3

8 8 8 8

SelIn(0)

SelPad

8

LUT−1 LUT−2

2 1 0

"FF"

8

MidPad || SelIn(1)

"00"

DataCntxDI(2:0)

Figure 5.4: LUT based decoder to generate select signals for BytePad

39

88 8 8 8 8
8 8

88

01 80

88

8 8

8

1 0AND

1 0

8 8

8

1 0

00

88 8 8 88 8 8

810001

3 2 1 0 3 2 1 0

1 0

0 1

8081 01 80 00

2 0

1

2

2
LastWord || SelPad(0)

0

DoutPadded

SelPadLast
2

Note: All Constants are in Hexadecimal notation

64

AlgSelxSI /= Skein

SelPadLastAlgSelxSI == Keccak

AlgSelxSI /= Skein

SelPad(7)

SelInp(7) SelInp(0)

AlgSelxSI == Keccak

PadDataxDI(7:0)PadDataxDI(63:56)

Figure 5.5: Block diagram for BytePad

are used as the address to the LUTs. LUT logic is similar as explained in section(blah).

As seen in Table. 3.1, all units from chapter Padding unit are very similar to each other.

So all of them can be combined in one single universal unit and because of high level of

comparability the circuit will not expensive. Starting string(x“80”) in all algorithms is the

same except for Keccak. So a mux selects x“01” for keccak and x“80” for rest. All the

algorithms add minimum number of 0s, so x“00” is common Mid padding string. Skein just

append zeros for a message ending at the boundary of a byte, so if the algorithm is Skein,

the rest of the values are ignored as shown in Fig. 5.5. The same structure is instantiated

7 times and the last byte is treated differently. Keccak and BLAKE append a trailing one

at the end of the message, Thus 2 4x1 muxs are used at the last byte to accommodate the

trailing ’1’. LastWord is set high by the controller when the last word of the last block

is written to the hash core. SelInp and SelPad are generated using the LUT as shown in

Fig. 5.4.

As seen in Table. 3.1, all units from chapter Padding unit are very similar to each other

40

5.3 Universal Padding Unit-Word version

This section provides details regarding the Interface signals and the design of the universal

padding unit which assumes that the message ends at the boundary of a word(64-bits).

5.3.1 Interface

DATAPATH
64

64

3

PadDataxDI

DataCntxDI

PadDataxDO
64

S
ta

r
tP

a
d

E
x
tr

a
B

lo
c
k

L
a

s
tW

o
r
d

2
S

e
lD

a
ta

2

CONTROLLER

RstxRBI

ClkxCI

InpWordWrxSI

FinWordxSI

3
AlgSelxSI

OutWordWrxSO

FinBlockxSO

OutRdyxSI

3

S
e
lI

n
p

Figure 5.6: Word version:Top level of Universal Padding Unit

Fig. 5.6 illustrates signals from the controller to the datapath. The interface signals

with the wrapper are similar to the one explained in section 5.2.1 . But control signals are

different because now it is assumed that the message ends on the boundary of a word, thus

one does not need to calculate at what position in the word the message ends. FinWordxSI

indicates message end, which can be used as an indication to start padding.

As we assume that the message ends at the boundary of a word(64-bit), we don’t need

the LUT based decoder to generate the control signals. The controller generates StartPad

and SelInp depending on where the message ends.

41

0 21

>>6<< 3

64 64 64

64

Blocks

64

1
63:0Len

64

3

ExtraBlock

DataCntxDI

PadDataxDO

2
SelData

10

Len 127:64

64

Word Pad

3

AlgSelxSI

PadDataxDI

LastWord
StartPad

SelInp

Figure 5.7: Word version:Top level of datapath

Top level of datapath is similar to the byte version, except few control signals. Word

Pad unit is similar to the byte pad with the exception that the padding strings are of word

lengths. Thus instead of many smaller multiplexers, a big 64x1 mux is used. The trailing

‘1’ in Keccak and BLAKE is dealt with the same logic as explained in section 5.2.2, but

now the strings are of word length.

PadDataxDI

0 21

01

1 0

00..01 00..00
80..0080..01

13 02

64 64 646464 64

64 64 64

64

64 64

1

00..00

0

1 0

80..0001..00

64 64

AND

StartPad

01..80 00..80

2

2
2

2

0

64

0

1

AlgSelxSI /= Skein

64

AlgSelxSI == Keccak

SelInp

AlgSelxSI == Keccak
LastWord || StartPad

AlgSelxSI /= Skein

StartPad

Note: All Constants are in Hexadecimal notationDoutPadded

Figure 5.8: Block Diagram of word pad

42

Chapter 6: Hashed Message Authentication Code

6.1 Message Authentication Code

When two users are communicating with each other over a computer network which is

unsecured, there needs to be a mechanism which provides message integrity and entity au-

thentication. Message Authentication Code (MAC) is a secret key algorithm which provides

message Integrity and authenticity [1].

 MAC

Fixed Length

Message M

Arbitrary Length

MAC FunctionSecret KEY

Figure 6.1: Simplified block diagram showing generation of MAC from arbitrary length
message.

1. Message Integrity : It is a property which states that the message has not been

modified by an unauthorized user after the transmission of the message by an autho-

rized source.

2. Message Source Authentication : It is a property which states that message sent

by one source is authentic and confirms the identity of the source.

As shown in Fig. 6.1, MAC function takes in arbitrary length message as an input

to a compression function and the other input as a secret key shared between two users

43

and generates a fixed length output called a MAC or “authenticated tag”. When user A

transmits a message to user B over an insecure channel, he/she concatenates the calculated

MAC value, generated using the shared secret key, with the message. On receiving the

message, user B computes MAC using the same MAC function, with the key shared with

user A as an input. If the MACs are equal then the source is corroborated and the message

is assumed to be unchanged during transmission. MACs were generally implemented out

of block ciphers, but using MACs with cryptographic hash functions is a better option, as

hash functions are generally faster than block ciphers and the implementations are easily

and freely available. Keying hash function for message authentication was proposed by [24]

and is now a NIST standard [25].

MAC Function

MAC

MAC Function

=
MAC

Reject

Accept

N

Y

A B

Insecure Channel

Figure 6.2: Communication between User A and User B over an unsecured channel.

44

6.2 HMAC

Hash based message authentication code (HMAC) is a shared secret key algorithm that uses

hash functions for generating a MAC. Hash functions were not designed for entity authen-

tication as they don’t have secret key as part of the algorithm which are an indispensable

aspect of message authentication. [24] came up with an algorithm which integrates secret

key into the computation of hash function and called HMAC. The algorithm takes in two

inputs, a key and a message which is transmitted and gives out a MAC or authenticated

tag. The operation can be described by the equation:

HMAC(key, msg) = H((K⊕opad)||H((K⊕ipad)||msg))

The symbols used are listed below:

Key : Secret key shared between users communicating.

msg : Message which is to be transmitted and is used to calculate MAC.

H(x) : Hashing of data x using a hash function.

K : Key obtained after necessary preprocessing.

⊕ : XORing of two values.

|| : Concatenating two bit streams.

Step 1 Pre-Processing of key:

If size of the Key is equal to the block size of the hash function,

i.e. Key size = Block size, then K = Key.

If the size of the Key is less than the block size of the hash function, then the Key is

padded with zeros at the right end so that the size of the key becomes equal to the

block size.

i.e. Key < Block size; K = Key||“000. . . 000”.

If the size of the key is greater than the block size of the hash function, then the key

is hashed first and then the hashed result is padded with zeros if necessary to get the

final key.

K = H(Key)||“000. . . 000”

45

Mn

Hash Function

Hash Function

M1 M2K i

K o

PAD to

blocksize

Intermediate

HMAC

MAC

HMAC

PAD to

blocksize

IPAD

PAD to

blocksize

OPAD

b

b

b

b

h

h

b

b

b

b

b

iPad = 0x36 repeated b/8 times.

b: Block size of hash function.

Note:

opad = 0x5C repeated b/8 times.

Message

Figure 6.3: Details of HMAC algorithm

Step 2 XOR with ipad and HASH:

The obtained key after step 1 is XORed with ipad(inner pad) and the result is

padded to the left of the message as shown in Fig. 6.3. Now the total message with

the key is divided into blocks and processed using a hash function.

Step 3 XOR with opad and HASH:

The message digest obtained after the processing of the hash functions is the inter-

mediate HMAC and is padded by the padding rule of a particular hash algorithm if

necessary to make it equal to the block size. The key obtained from step 1 is XORed

with opad(outer pad) and is appended to the left of the padded intermediate HMAC

and is again passed through the hash function.

Step 4 Truncate MAC:

The final output from the hash function is called MAC and can be truncated from

the right depending on the length of the desired MAC tag.

46

6.3 HMAC Wrapper

Assumptions and features:

The HMAC unit is designed to process all key sizes (Key≤ Block size and Key>Block size).

The message size is assumed to be a multiple of a byte which is a limitation of the Hash

core. Truncation to get a desired length MAC is assumed to be done by the user outside

the HMAC unit. If the Key<Block size then the length has to be a multiple of the input

word and if the Key>block size than the Key size can be in the multiple of a byte. The

developed unit can reuse keys thus decreasing on computation time if using the same key

and thus increasing throughput.

The HMAC algorithm [24] was designed with the idea in mind that the hash core can

be treated as a black box and can be replaced by any approved Hash function by NIST. So

a generic HMAC unit is designed to accommodate all Round 3 finalists and SHA-2. Due

to this fact, a number of user defined constants are specified at the top level of VHDL code

and can be modified by the user to select desired hash algorithm, output size and input

word size.

6.3.1 Interface and Protocol

Input protocol is similar to what was used for the padding architecture described in section

2.1 before, as the HMAC unit is built as a wrapper on top of the SHA core. It supports

signals src ready and dst ready, and outputs src read and dst write. In this interface FIFOs

are connected at the input and output interface, but any module which can support the

above mentioned signals can be used at the input-output interface.

Input protocol is similar to what was used for the padding architecture described in

section(blah), the only difference being that now the first input is the key size and then the

key itself. Which is followed by the message length and message itself.

But the input to the SHA core is modified to accommodate the HMAC algorithm. As

seen from the Fig. 6.3 that after preprocessing the size of the key is equal to the block size of

the hash algorithm thus in part 1 of the input the block size is sent to the core and then the

47

rst

fifoin_empty

fifoin_read

idata

ww

dst_write

dst_ready

din
odata

w

rst

full

write

clk rst

read

doutdin

write
fifoin_write

FIFO FIFO

ext_idata

fifoin_full
full empty

src_read

src_ready

w
din

fifoout_full

fifoout_write

empty

read

dout
ext_odata

fifoout_read

fifoout_empty

dout

Input Output

clk rst clk

clkclk clk rstrst

HMAC Unit

Figure 6.4: Interface for HMAC Unit

last = 0 | BlockSize

last = 1 | MsgLen

last = 0 | BlockSize

last = 1 | HashSizelast = 1 | MsgLen

last = 0 | KeySize

w−bit

KEY

Message

w−bit

Message

w−bit

K OPADIPAD K

Part 1 Input

Input to SHA core
Input to HMAC unit

Note:

Part 2 Input

K = preprocess(KEY)

Intermediate

HMAC

Figure 6.5: Protocol supported by HMAC wrapper

Key XORed with iPad. Then the message itself with its length. The part 2 is key XORed

with opad and then the stored intermediate hash result. Width of the input depends on

the width supported by the hash algorithm.

48

6.3.2 HMAC Datapath

The figure below is a simplified block diagram of the datapath.

0

1

2

dout

write

read

din

RAM
clk

rst

HmacWrite

HmacRead

0

w

w

w

w
w

w

0

1

2

w
0

2

4

3

2

1

6

5

0

w

w

w

w

w

w

w

RAMdin

read

write

dout

opad
ipad

din
w

clk rst

dst_ready

src_ready

dout

src_read

dst_write

HmacIn

KeyWrite

KeyRead

ShaCoreOut CoreWrite

CoreRead

SourceInReady

DestOutReady

din

din

din

BlockSize

’1’ || HashSize

dout
w

ShaCoreOut

SelDin

SelInp

3

SelPad

2

clk rst

Hash Core

din’1’ ||

Figure 6.6: Datapath: HMAC wrapper

HMAC datapath consists of 2 RAMs and the SHA core. One RAM is used to store the

key. The RAM has a mux at the input to select either an input key from the input source

or the hashed key from the SHA core when the key is greater than the block size or zeros to

pad when the key is smaller than the block size of the particular hash function. ‘SelPad’ is

generated by the controller depending on the key size. The key is stored in the RAM so it

can be reused for other messages, additionally the key is simultaneously stored in the RAM

and also provided to the SHA core saving on time to store the key. As shown in Fig. 6.5

the SHA core receives the block size as an input and then the key itself. ‘SelInp’ generated

from the controller selects the required input depending on the state of the computation.

‘1’ is appended at the leftmost bit to indicate the end of message to the core. After the

key is processed, ‘SelInp’ selects the original message to be passed to the SHA core by

selecting ‘Din’. ’HmacIn’ is the intermediate HMAC stored in the output RAM. BlockSize

and HashSize are constants and depend on the hash function implemented. The other RAM

49

is the output from the SHA core, it stores the intermediate HMAC and is read from after

the XORing with opad state.

6.3.3 HMAC Top

clkrstrst clk

KeyRead

KeyWrite

SelPad 2

3

2

SourceInReady

CoreRead

CoreWrite

HmacWrite

HmacRead

C
O

N
T

R
O

L
L

E
R

din

w

w w

dst_ready

src_ready

src_read

dst_read

D
A

T
A

P
A

T
H

dout
w

SelInp

SelDin

DestOutReady

Figure 6.7: Controller-Datapath communication signals

The diagram shows the controller-datpath communication. The signals on the left of the

diagram are the input pins on the chip. CONTROLLER provides all the necessary signals

to the DATAPATH depending on the state. ‘HmacWrite’ and ‘HmacRead’ are the inputs

to the RAM which stores the intermediate HMAC. All the control signals to the SHA core

are provided by the controller.

50

Chapter 7: Results

7.1 Design Summary

7.1.1 Throughput

Throughput in terms of cryptographic algorithms can be defined as number of bits of a

message processed within a specific time. The overall time taken by a hash function to

process a message includes loading of messages from a source, initialization, computation,

finalization and loading of hash digest to the destination. All results shown in this section

are throughput for calculating long messages where all the other processes can be ignored

and only computation times are taken into account. Taking into account these assumptions

the formula for calculating throughtput is defined as follows:

Throughput =
BlockSize

TCLK · (#cycles)

Where BlockSize is the minimum number of bits required by the algortihm to start pro-

cessing and is specific to the algorithm.TCLK is the minimum clock period and #cycles is

the number of clock cycles required to process one block of a message.

7.1.2 Area

The designs contains only basic elements and no dedicated resources such as Block RAMs,

DSP units, multipliers, etc. Basic elements are specific to a given FPGA family. For Xilinx,

the Basic elements are defined as the number of CLB slices. For the Altera Stratix family

and more recent high performance families, Basic elements are defined as the number of

Adaptive Look-up Tables (ALUTs).

51

Table 7.1: Througput equation for long messages with the I/O Data Bus width in bits,
Throughput in Mbits/s.TCLK denotes clock period in seconds

256-bit variant 512-bit variant

Algorithm I/O Bus
Width

Throughput
[Mbit/s]

I/O Bus
Width

Throughput
[Mbit/s]

BLAKE 64 512/(29·TCLK) 64 1024/(33·TCLK)

Grøstl 64 512/(21·TCLK) 64 1024/(29·TCLK)

JH 64 512/(43·TCLK) 64 512/(43·TCLK)

Keccak 64 1088/(24·TCLK) 64 576/(24·TCLK)

Skein 64 512/(73·TCLK) 64 512/(73·TCLK)

SHA256 32 512/(65·TCLK) 64 1024/(81·TCLK)

7.1.3 Throughput/Area

All results are optimized for best thtoughput/area ratio. The formula for the Throughput

to Area Ratio is:

Ratio =
Throughput

Area

where Throuhgput and Area are the metrics described above.

Table. 7.1 lists all the formulas used for calculating the throughput for the algorithms.

The results section is divided into three subsections. Section I shows results regarding

padding unit in FPGAs, section II shows results for universal padding unit in ASICs and

section III shows results for HMAC implementations.

7.2 Padding Unit-Results

Notation: Tp throughput, A area, Tp/A Throughput to Area Ratio, [%] relative change

in the Throughput, Area, and Throughput to Area ratio as a result of adding padding unit

to the hash unit.

Table 7.2 and 7.3 show results of all the algorithms implemented with the padding unit with

256 and 512-bit variants on 2 Xilinx and 2 Altera devices.

52

Table 7.2: The effect of the padding unit on the performance of 5 Round 3 SHA-3 finalists
in 4 FPGA families. Virtex 5 & Virtex 6, Stratix III & Stratix IV.

Architecture Virtex 5 Virtex 6 Stratix III Stratix IV

Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-256

No-Pad 2308 1771 1.30 2226 1257 1.77 2157 3553 0.61 2337 3543 0.66

Pad 2266 1860 1.22 2363 1391 1.70 2206 3660 0.60 2316 3680 0.63

∆[%] -1.83 5.03 -6.53 6.18 10.66 -4.04 2.25 3.01 -0.74 -0.90 3.87 -4.59

Grøstl-256

No-Pad 6117 1795 3.41 7220 1870 3.86 6604 6460 1.02 6269 6421 0.98

Pad 6572 2020 3.25 7071 1884 3.75 6160 6466 0.95 6033 6415 0.94

∆[%] 7.44 12.53 -4.53 -2.06 0.75 -2.79 -6.72 0.09 -6.81 -3.76 -0.09 -3.67

JH-256

No-Pad 4955 982 5.05 5412 849 6.37 5276 3221 1.64 4759 3210 1.48

Pad 4543 1001 4.54 5086 918 5.54 5024 3383 1.49 4815 3415 1.41

∆[%] -8.32 1.93 -10.06 -6.02 8.13 -13.09 -4.77 5.03 -9.33 1.17 6.39 -4.90

Keccak-256

No-Pad 13337 1369 9.74 11839 1086 10.90 15493 3531 4.39 16104 3471 4.64

Pad 12745 1375 9.27 12451 1147 10.86 14624 4060 3.60 15167 3734 4.06

∆[%] -4.44 0.44 -4.86 5.16 5.62 -0.43 -5.61 14.98 -17.91 -5.82 7.58 -12.45

Skein-256

No-Pad 3023 1218 2.48 3373 1005 3.36 2475 3943 0.63 2592 3936 0.66

Pad 3127 1245 2.51 2957 1026 2.88 2495 3960 0.63 2647 3970 0.67

∆[%] 3.43 2.22 1.19 -12.33 2.09 -14.13 0.77 0.43 0.34 2.10 0.86 1.23

SHA-256

No-Pad 1400 396 3.54 1633 239 6.83 1656 959 1.73 1797 959 1.87

Pad 1559 427 3.65 1645 309 5.33 1673 1122 1.49 1739 1122 1.55

∆[%] 11.36 7.83 3.11 0.70 29.29 -21.96 1.03 17 -13.87 0.66 14.04 -12.15

Both tables show the effect of adding padding unit to the algorithms to the over all

throughput/area ratio.The designs were optmized for throughput/area ratio, so the per-

centage effect is marked in bold. Fig. 7.1 and 7.2 plots the change in throughput/area ratio

for Altera devices and Fig. 7.3 and 7.4 for Xilinx.

53

BLAKE Groestl JH Keccak Skein SHA−2
0

1

2

3

4

5
(a)

T
h
ro

u
g

h
p

u
t/

A
re

a

No−Pad

Pad

BLAKE Groestl JH Keccak Skein SHA−2
0

1

2

3

4

5
(b)

T
h
ro

u
g

h
p

u
t/

A
re

a

No−Pad

Pad

Figure 7.1: Change in throughput/area ratio after adding of padding unit in Altera devices
for 256-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for Stratix III and (b) is
Stratix IV

BLAKE Groestl JH Keccak Skein SHA−2
0

0.5

1

1.5

2

2.5
(a)

T
h
ro

u
g
h

p
u

t/
A

re
a

No−Pad

Pad

BLAKE Groestl JH Keccak Skein SHA−2
0

0.5

1

1.5

2

2.5
(b)

T
h
ro

u
g
h
p
u
t/
A

re
a

No−Pad

Pad

Figure 7.2: Change in throughput/area ratio after adding of padding unit in Altera devices
for 512-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for Stratix III and (b) is
Stratix IV

54

BLAKE Groestl JH Keccak Skein SHA−2
0

2

4

6

8

10
(a)

T
h
ro

u
g

h
p

u
t/

A
re

a

No−Pad

Pad

BLAKE Groestl JH Keccak Skein SHA−2
0

5

10

15
(b)

T
h
ro

u
g

h
p

u
t/

A
re

a

No−Pad

Pad

Figure 7.3: Change in throughput/area ratio after adding of padding unit in Xilinx devices
for 256-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for Virtex 5 and (b) is
Virtex 6

BLAKE Groestl JH Keccak Skein SHA−2
0

2

4

6
(a)

T
h
ro

u
g
h

p
u

t/
A

re
a

No−Pad

Pad

BLAKE Groestl JH Keccak Skein SHA−2
0

2

4

6

8
(b)

T
h
ro

u
g
h
p
u
t/
A

re
a

No−Pad

Pad

Figure 7.4: Change in throughput/area ratio after adding of padding unit in Xilinx devices
for 512-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for Virtex 5 and (b) is
Virtex 6

55

Table 7.3: The effect of the padding unit on the performance of 512-bit variant of 5 Round
3 SHA-3 finalists in 4 FPGA families.Virtex 5 & Virtex 6 , Stratix III & Stratix IV.

Architecture Virtex 5 Virtex 6 Stratix III Stratix IV

Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-512

No-Pad 3264 3435 0.95 3478 2610 1.33 2928 6977 0.42 3318 6971 0.48

Pad 3156 3569 0.88 3333 2608 1.28 3003 7115 0.42 3320 7114 0.47

∆[%] -3.29 3.90 -6.92 -4.18 -0.08 -4.10 2.55 1.98 0.56 0.06 2.05 -1.96

Grøstl-512

No-Pad 7686 3853 1.99 8375 3630 2.31 8669 12450 0.70 8504 12368 0.69

Pad 7462 3895 1.92 6843 3285 2.08 8638 12570 0.69 8507 12562 0.68

∆[%] -2.92 1.09 -3.96 -18.29 -9.50 -9.71 -0.37 0.96 -1.32 0.02 1.57 -1.52

JH-512

No-Pad 4882 1037 4.71 5825 931 6.26 5011 3288 1.52 5139 3294 1.56

Pad 4531 1125 4.03 4834 901 5.37 5024 3383 1.49 4815 3415 1.41

∆[%] -7.18 8.49 -14.44 -17.01 -3.22 -14.25 0.25 2.89 -2.56 -6.31 3.67 -9.63

Keccak-512

No-Pad 7612 1320 5.77 7208 1061 6.79 8526 3471 2.46 7825 3467 2.26

Pad 7179 1283 5.60 7465 1052 7.10 8029 3734 2.15 7607 3723 2.04

∆[%] -5.68 -2.80 -2.96 3.56 -0.85 4.45 -5.82 7.58 -12.45 -2.79 7.38 -9.47

Skein-512

No-Pad 3084 1418 2.17 3462 1114 3.11 2438 4006 0.61 2736 4015 0.68

Pad 2972 1348 2.20 3141 1186 2.65 2493 4035 0.62 2597 4026 0.65

∆[%] -3.64 -4.94 1.36 -9.28 6.46 -14.79 2.24 0.72 1.51 -5.07 0.27 -5.33

SHA-512

No-Pad 2012 798 2.52 2421 553 4.38 2128 1995 1.07 2377 1996 1.19

Pad 2026 870 2.33 2398 551 4.35 2142 2275 0.94 2390 2311 1.03

∆[%] 0.70 9.02 -7.54 -0.95 -0.36 -0.68 0.66 14.04 -12.15 0.55 15.78 -13.45

7.3 Universal Padding Unit-Results

Table. 7.4 shows the area and maximum clock frequnecy of the universal padding unit in

ASICs. The maximum clock frequnecy is far greater than the fastest core from both groups.

The maximum area overhead is less than 6% for the SHA-3 finalists. Table. 7.5 lists all

the implementations results, i.e. Area and Maximum clock frequency and the percentage

overhead in area due to the universal padding unit.

Table 7.4: Area and maximum clock frequency results for both version of universal padding
unit on ASIC

Version Area [kGE] Max.Clock[MHz]

Padding Unit
Byte 2.13 1428.5
Word 2.08 1428.5

56

Table 7.5: Area and maximum clock frequency results for implemented cores 256-bit variant
on ASIC

Algorithm Group Area [kGE] Max.Clock[MHz] Overhead[%]

BLAKE
GMU 43.02 252.40 4.95
ETHZ 39.96 201.41 5.33

Grøstl
GMU 160.28 459.14 1.33
ETHZ 69.39 273.15 3.07

JH
GMU 54.35 602.77 3.92
ETHZ 46.79 330.58 4.55

Keccak
GMU 80.65 599.16 2.64
ETHZ 46.31 485.40 4.60

Skein
GMU 71.90 179.86 2.96
ETHZ 71.87 349.41 2.96

SHA-2
GMU 25.14 537.63 8.47
ETHZ 24.30 294.55 8.77

Fig. 7.5 and7.6 plots the are overhead of the universal padding unit in ASICs and FP-

GAs respectively. Fig. 7.5(a) is the plot for GMU implementation and (b) is for ETHZ

implementations of the core. Fig. 7.6 is the plot for GMU cores implemented on FPGAs

showing the area overhead due to the universal padding unit. Fig. 7.6(a) is the plot of Virtex

5 and (b) for Stratix 3. Table. 7.6 and 7.7 show area and maximum clock frequency results

of universal padding unit for Xilinx and Altera FPGA devices.

Table 7.6: Area and maximum clock frequency results for both version of universal padding
unit on Xilinx FPGAs

Virtex 5 Virtex 6

Area Max.Clock Area Max.Clock
Version [CLB slices] [MHz] [CLB slices] [MHz]

Padding Unit
Byte 89 597.37 122 481.93
Word 89 580.72 93 581.73

The Table. 7.8 shows results for cores from GMU implemented on FPGAs to show area

overhead due to universal padding unit for virtex 5 and Stratix III family.

57

Table 7.7: Area and maximum clock frequency results for both version of universal padding
unit on Altera FPGAs

Stratix III Stratix IV

Area Max.Clock Area Max.Clock
Version [ALUTs] [MHz] [ALUTs] [MHz]

Padding Unit
Byte 340 526.59 340 558.04
Word 293 538.79 293 558.79

Table 7.8: Area and maximum clock frequency results for both version of universal padding
unit on Altera FPGAs

Virtex 5 Stratix III

Area Max.Clock Overhead Area Max.Clock Overhead
Algorithm [ALUTs] [MHz] [%] [ALUTs] [MHz] [%]

BLAKE 1515 122.249 8.05 3444 124.63 3.54

Grøstl 1719 207.211 7.10 7491 258.2 1.63

JH 898 406.174 13.59 3370 425.3 3.62

Keccak 1235 291.545 9.88 4115 302.57 2.96

Skein 1291 112.208 9.45 3939 91.55 3.10

SHA-2 625 230.415 19.52 1026 213.49 11.89

BLAKE Groestl JH Keccak Skein SHA−2
0

50

100

150

200
(a)

A
re

a
[k

G
E

]

Hash unit

Pad unit

BLAKE Groestl JH Keccak Skein SHA−2
0

10

20

30

40

50

60

70

80
(b)

A
re

a
[k

G
E

]

Figure 7.5: Area overhead due to addition of universal padding unit byte version for GMU
and ETHZ implementations in ASIC.

58

BLAKE Groestl JH Keccak Skein SHA−2
0

500

1000

1500

2000
(a)

A
re

a
[C

L
B

 s
lic

e
s
]

Hash unit

Pad unit

BLAKE Groestl JH Keccak Skein SHA−2
0

2000

4000

6000

8000
(b)

A
re

a
[A

L
U

T
s
]

Hash unit

Pad unit

Figure 7.6: Area overhead due to addition of universal padding unit byte version for GMU
implementations in FPGA.

59

7.4 HMAC Wrapper-Results

Notation: Tp throughput, A area, Tp/A Throughput to Area Ratio, [%] relative change

in the Throughput, Area, and Throughput to Area ratio as a result of adding padding unit

to the hash unit.

Table 7.9 and 7.10 show results of all the algorithms implemented with the HMAC wrapper

with 256 and 512-bit variants on 2 Xilinx and 2 Altera devices.

Table 7.9: The effect of the HMAC WRAPPER on the performance of 256-bit variant of 5
Round 3 SHA-3 finalists in 4 FPGA families.Virtex 5 & Virtex 6 , Stratix III & Stratix IV.

Architecture Virtex 5 Virtex 6 Stratix III Stratix IV

Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-256

Hash Core 2266 1860 1.22 2363 1391 1.70 2206 3660 0.60 2316 3680 0.63

HMAC 1615 1417 1.14 2318 1405 1.65 2158 4240 0.51 2324 4272 0.54

∆[%] -28.71 -23.82 -6.56 -1.89 1.01 -2.94 -2.17 15.85 -15.55 0.36 16.09 -13.55

Grøstl-256

Hash Core 6572 2020 3.25 7071 1884 3.75 6160 6466 0.95 6033 6415 0.94

HMAC 6285 1893 3.32 6326 1669 3.79 6349 7595 0.84 5787 7477 0.77

∆[%] -4.37 -6.29 2.15 -10.54 -11.41 1.07 3.08 17.46 -12.24 -4.08 16.55 -17.70

JH-256

Hash Core 4543 1001 4.54 5086 918 5.54 5024 3383 1.49 4815 3415 1.41

HMAC 3531 1226 2.88 3713 990 3.75 3519 3744 0.94 3483 3745 0.93

∆[%] -22.28 22.48 -36.56 -27.01 7.84 -32.31 -29.95 10.67 -36.70 -22.22 9.66 -34.04

Keccak-256

Hash Core 12745 1375 9.27 12451 1147 10.86 14624 4060 3.60 15167 3734 4.06

HMAC 12230 1470 8.32 12885 1251 10.30 14632 3483 4.20 149353 3746 3.99

∆[%] -4.04 6.91 -10.25 3.49 9.07 -5.16 0.06 -14.21 16.63 -1.53 0.32 -1.84

Skein-256

Hash Core 3127 1245 2.51 2957 1026 2.88 2495 3960 0.63 2647 3970 0.67

HMAC 3093 1452 2.13 3570 1182 3.02 2494 4535 0.55 2639 4535 0.58

∆[%] -1.09 16.63 -15.14 20.72 15.20 4.86 -0.01 14.52 -12.69 -0.28 14.23 -12.70

SHA-256

Hash Core 1559 427 3.65 1645 309 5.33 1673 1122 1.49 1739 1122 1.55

HMAC 1670 497 3.36 1614 339 4.76 1694 1180 1.44 1752 1187 1.48

∆[%] 7.11 16.39 -7.95 -1.91 9.71 -10.69 1.28 5.17 -3.62 0.75 6.74 -4.77

Both tables show the effect of adding HMAC wrapper to the algorithms to the over

all throughput/area ratio. The designs were optmized for throughput/area ratio, so the

percentage effect is marked in bold. Fig. 7.7 and 7.8 plots the change in throughput/area

ratio for Altera devices and Fig. 7.9 and 7.10 for Xilinx.

60

Table 7.10: The effect of the HMAC WRAPPER on the performance of 512-bit variant of
5 Round 3 SHA-3 finalists in 4 FPGA families.Virtex 5 & Virtex 6 , Stratix III & Stratix
IV.

Architecture Virtex 5 Virtex 6 Stratix III Stratix IV

Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-512

Hash Core 3156 3569 0.88 3333 2608 1.28 3003 7115 0.42 3320 7114 0.47

HMAC 3232 3941 0.82 3707 2737 1.30 2999 7956 0.37 3359 8036 0.41

∆[%] 2.41 10.42 -6.82 11.22 4.95 1.56 -0.12 11.82 -10.24 1.18 12.96 -11.06

Grøstl-512

Hash Core 7462 3895 1.92 6843 3285 2.08 8638 12570 0.69 8507 12562 0.68

HMAC 7583 3970 1.91 8526 3723 2.29 8306 14675 0.56 8015 14625 0.54

∆[%] 1.62 1.93 -0.52 24.59 13.33 10.10 -3.84 16.75 -17.97 -5.79 16.42 -19.41

JH-512

Hash Core 4531 1125 2.70 4119 1012 4.07 5024 3383 1.49 4815 3415 1.41

HMAC 3216 1191 4.71 5825 931 6.26 3486 4054 0.86 3515 4054 0.87

∆[%] -29.03 5.87 -33 -14.79 12.32 -24.21 -19.09 3.16 -21.82 -16.33 3.44 -18.97

Keccak-512

Hash Core 7179 1283 5.60 7465 1052 7.10 8029 3734 2.15 7607 3723 2.04

HMAC 6799 1368 4.97 7367 1117 6.60 7547 3274 2.31 7330 3293 2.23

∆[%] -5.29 6.63 -11.2 6.18 -7.11 4.45 -6.01 -12.32 7.21 -3.64 -11.55 9.12

Skein-512

Hash Core 2972 1348 2.20 3141 1186 2.65 2493 4035 0.62 2597 4026 0.65

HMAC 2903 1528 1.90 3584 1294 2.77 2485 4645 0.54 2644 4638 0.57

∆[%] -2.31 13.35 -13.64 14.12 9.11 4.53 -0.32 15.12 -13.71 1.80 15.20 -12.31

SHA-512

Hash Core 2026 870 2.33 2398 551 4.35 2142 2275 0.94 2390 2311 1.03

HMAC 2232 938 2.38 2431 683 3.56 2696 3142 0.85 2994 3132 0.95

∆[%] 10.19 7.82 2.15 1.40 23.96 -18.16 25.86 38.11 -8.72 25.28 35.53 -7.18

61

BLAKE Groestl JH Keccak Skein SHA−2
0

1

2

3

4

5
(a)

T
h

ro
u

g
h

p
u

t/
A

re
a

Hash Core

HMAC

BLAKE Groestl JH Keccak Skein SHA−2
0

1

2

3

4

5
(b)

T
h

ro
u

g
h

p
u

t/
A

re
a

Hash Core

HMAC

Figure 7.7: Change in throughput/area ratio after adding of HMAC wrapper in Altera
devices for 256-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for Stratix III
and (b) is Stratix IV

BLAKE Groestl JH Keccak Skein SHA−2
0

0.5

1

1.5

2

2.5
(a)

T
h

ro
u
g
h
p
u
t/
A

re
a

Hash Core

HMAC

BLAKE Groestl JH Keccak Skein SHA−2
0

0.5

1

1.5

2

2.5
(b)

T
h
ro

u
g
h
p
u
t/
A

re
a

Hash Core

HMAC

Figure 7.8: Change in throughput/area ratio after adding of HMAC wrapper in Altera
devices for 512-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for Stratix III
and (b) is Stratix IV

62

BLAKE Groestl JH Keccak Skein SHA−2
0

2

4

6

8

10
(a)

T
h

ro
u

g
h

p
u

t/
A

re
a

Hash Core

HMAC

BLAKE Groestl JH Keccak Skein SHA−2
0

5

10

15
(b)

T
h

ro
u

g
h

p
u

t/
A

re
a

Hash Core

HMAC

Figure 7.9: Change in throughput/area ratio after adding of HMAC wrapper in Xilinx
devices for 256-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for Virtex 5 and
(b) is Virtex 6

BLAKE Groestl JH Keccak Skein SHA−2
0

2

4

6
(a)

T
h

ro
u
g
h
p
u
t/
A

re
a

Hash Core

HMAC

BLAKE Groestl JH Keccak Skein SHA−2
0

2

4

6

8
(b)

T
h
ro

u
g
h
p
u
t/
A

re
a

Hash Core

HMAC

Figure 7.10: Change in throughput/area ratio after adding of HMAC wrapper in Xilinx
devices for 512-bit variant for all SHA-3 finalists and SHA-2. (a) is graph for Virtex 5 and
(b) is Virtex 6

63

Chapter 8: Conclusion and Future work

8.1 Conclusion

In this thesis, individual padding units for all 5 Round 3 SHA-3 finalists and SHA-2 for

reference were designed, implemented, tested, and analyzed. Padding rule accommodating

message length is the most challenging because of the counter and additional controller

logic. The worst affected in terms of the throughput/area ratio in 256-bit variants was

implementation of JH. This is because JH has a 128-bit adder and the core itself is very

fast and small. Skein is the least affected as it has a very simple padding scheme with no

counter and appends just zeros to the message. 512-bit variants follow similar trend as 256-

bit where JH is the most affected and Skein do not show any decrease in throughput/area

except for Virtex 6. BLAKE also show very small decrease in throughput/area ratio, just

because BLAKE is one of the biggest of the 5 algorithms and also has less throughput.

The aim to build a universal padding unit for an ASIC chip was to have a single small

unit which could accommodates all the padding rules and not increase the critical path.

Universal padding unit can run at a maximum clock frequency of 1.428 GHz which is faster

than all the algorithms.The area is 2.13 kGE for the byte version which results in only

around maximum of 6% area overhead, which is for in ETHZ implementation of BLAKE.

8.2 Future work

Implementing all algorithms supporting padding in hardware on FPGA boards and doing

experimental testing to see if the testing results are the same as what obtained after Post

place and routing.

64

Bibliography

65

Bibliography

[1] A. J. Menezes, P. C. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography.
CRC Press Inc., 1997.

[2] I. Damgard, “A design principle for hash functions,” in CRYPTO, 1989, pp. 416–427.

[3] ——, “Collision free hash functions and public key signature schemes,” in EURO-
CRYPT, 1987, pp. 203–216.

[4] R. Merkle, “SECRECY, AUTHENTICATION, AND PUBLIC KEY SYSTEMS,”
Ph.D. dissertation, Stanford University, Stanford, California, June 1979.

[5] M. Nathan, War at Sea: A Naval History of World War II. New York: Oxford
University Press, 1995.

[6] N. Mridul, “Characterizing Padding rules of MD Hash functions preserving Collision
Security,” in Proceeding of Information Security and Privacy, vol. 5594/2009. Springer,
2009, pp. 171–184.

[7] N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering:Design Principles
and Practical Applications. Indianapolis: Wiley Publishing, Inc., 2010.

[8] Secure Hash Standard (SHS), National Institute of Standards and Technology (NIST),
FIPS Publication 180-2, Aug 2002, http://csrc.nist.gov/publications/fips/fips180-
2/fips180-2.pdf.

[9] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and W. P. Marnane,
“A hardware wrapper for the SHA-3 hash algorithms,” Cryptology ePrint Archive,
Report 2010/124, 2010, http://eprint.iacr.org/.

[10] B. Jungk and J. Apfelbeck, “Area-efficeint FPGA implementations of the SHA-3 final-
ists,” in International Conference on ReConfigurable Computing and FPGAs. IEEE:
ReConfig’11, DEC 2011, accepted, to be published.

[11] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill, and W. P. Mar-
nane, “FPGA implementations of the round two SHA-3 candidates,” Second SHA-3
Candidate Conference, Tech. Rep., 2010.

[12] M.-Y. Wang, H. C.-T. Su, Chih-Pin, and C.-W. Wu, “An HMAC processor with in-
tegrated SHA-1 and MD5 algorithms,” in Asia and South Pacific Design Automation
Conference, 2004.

66

[13] E. Khan, W. El-Kharashi, and F. Gebali, “Design and performance analysis of a unified,
reconfigurable HMAC-hash unit,” IEEE Transactions on Circuits and Systems, vol. 54,
no. 12, pp. 2683–2695, DEC 2007.

[14] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the FULL SHA-1,” CRYPTO, pp.
1–20, 2005, also available at http://www.springerlink.com/content/26vljj3xhc28ux5m.

[15] R. Rivest, “The MD5 message-digest algorithm,” MIT Laboratory for Computer Sci-
ence and RSA Data Security Inc., RFC 1321, Apr 1992.

[16] M. Juliato and C. Gebotys, “FPGA implementation of an HMAC processor based on
the SHA-2 family of hash functions,” University of Waterloo, Tech. Rep., 2011.

[17] K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and comprehensive methodology
for comparing hardware performance of fourteen round two SHA-3 candidates using
FPGA,” in Cryptographic Hardware and Embedded Systems, CHES 2010, ser. LNCS,
S. Mangard and F.-X. Standaert, Eds., vol. 6225. Springer Berlin / Heidelberg, 2010,
pp. 264–278.

[18] E. Homsirikamol, “Fair and comprehensive comparison of hardware performance of
SHA-3 Round 2 Candidates using FPGAs,” Master’s thesis, George Mason University,
2010.

[19] E. Homsirikamol, M. Rogawski, and K. Gaj, “Throughput vs. area trade-offs archi-
tectures of five round 3 SHA-3 candidates implemented using Xilinx and Altera FP-
GAs,” in Workshop on Cryptographic Hardware and Embedded Systems CHES 2011,
ser. LNCS, B. Preneel and T. Takagi, Eds. Springer Berlin / Heidelberg, Sep 2011.

[20] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B. Y. Brewster,
“ATHENa – Automated Tool for Hardware EvaluatioN: Toward fair and comprehen-
sive benchmarking of cryptographic hardware using FPGAs,” in 20th International
Conference on Field Programmable Logic and Applications - FPL 2010. IEEE, 2010,
pp. 414–421, http://cryptography.gmu.edu/athena.

[21] “GMU SHA-3 source codes,” ONLINE, 2011, http://cryptography.gmu.edu/athena/.

[22] E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing hardware performance of
fourteen round two SHA-3 candidates using FPGAs,” Cryptology ePrint Archive, Re-
port 2010/445, 2010, http://eprint.iacr.org/.

[23] S. Drimer, T. Güneysu, and C. Paar, “DSPs, BRAMs and a pinch of logic: Extended
recipes for AES on FPGAs,” ACM Trans. Reconfigurable Technol. Syst. (TRETS),
vol. 3, no. 1, pp. 1–27, 2010.

[24] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for message au-
thentication,” Network Working Group, RFC 2104, Feb 1997.

[25] The Keyed-Hash Message Authentication Code (HMAC), National Institute
of Standards and Technology (NIST), FIPS Publication 198, Mar 2002,
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.

67

Curriculum Vitae

Ambarish vyas was born on July 22nd, 1987 in Jodhpur, Rajasthan India. He received his
Bachelor of Engineering Degree in Electronics and Telecommunications from University of
Pune, India in 2009. He started working towards his Master of Science degree in Computer
Engineering in University of Maryland from August 2009 and later transferred to George
Mason University in August 2010. During the course of his studies, he was involved in
teaching various undergraduate courses as a Teaching Assistant. Also a part of Crypto-
graphic Engineering Research Group (CERG), his focus was on efficient implementation of
cryptographic algorithms, embedded systems and physical VLSI design.

68

