
Differential Power Analysis on Light Weight Implementations of Block Ciphers

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Panasayya S.V.V.K Yalla
Bachelor of Science

Sir C.R. Reddy College of Engineering, 2007

Director: Dr. Jens-Peter Kaps, Professor
Department of Electrical and Computer Engineering

Summer Semester 2009
George Mason University

Fairfax, VA

Copyright c© 2009 by Panasayya S.V.V.K Yalla
All Rights Reserved

ii

Dedication

I dedicate this thesis to My parents Anantha Lakshmi and Ananda Ramayya Yalla, brother
Satish and sister Swathi.

iii

Acknowledgments

I would like to thank many people who helped during various stage of thesis work. First
and foremost, I would like to thank my thesis advisor Dr Jens-Peter Kaps without whom
my thesis would not be possible. Thank you for all your support and time.
I would also like to thank Dr Kris Gaj and Dr David Hwang for their valuable support. I
would also thank Dr Alok Berry for all the help he rendered during crucial hours. I would
also thank all CERG group members for giving a good time during my thesis. Last but not
least I thank my friends Mahi, Sabari, Rajesh for support.

iv

Table of Contents

Page

List of Tables . viii
List of Figures . ix

Abstract . x
1 Introduction . 1

1.1 Light Weight Cryptography . 1

1.2 Light Weight Cryptography for FPGAs . 1

1.3 Power Analysis Attacks . 2

1.3.1 Simple Power Analysis Attacks . 2

1.3.2 Differential Power Analysis Attacks 2

1.4 Thesis Organization . 4

2 Optimization Techniques . 5

2.1 Spartan-3 Generation FPGA Architecture 5

2.1.1 Configurable Logic Block Structure 5

2.2 Optimizations . 10

2.2.1 Plaintext and key Storage . 10

2.2.2 Finite State Machine . 11
2.2.3 Other components . 11

3 HIGHT . 12
3.1 Introduction . 12
3.2 Algorithm . 12

3.2.1 Notations . 12
3.2.2 Key schedule . 14

3.2.3 Initial Transformation . 15
3.2.4 Round Function . 16
3.2.5 Final Transformation . 17

3.3 Light weight Architecture of HIGHT . 17

3.3.1 Data storage . 18

3.3.2 Key Storage and Scheduling . 19

v

3.3.3 Control Logic . 19

4 Camellia . 21
4.1 Introduction . 21
4.2 Camellia . 21

4.2.1 Notations . 22
4.2.2 Encryption for 128-bit key . 22

4.2.3 Key schedule . 24

4.3 Compact Architecture of Camellia . 27

4.3.1 S-Boxes and F-Function . 27

4.3.2 FL and FL −1 . 28
4.3.3 Key Storage and Scheduling . 29

4.3.4 Controller . 29
5 Present . 31

5.1 Introduction . 31
5.2 Specification . 31

5.2.1 Notations . 31
5.2.2 addRoundKey . 32

5.2.3 sBoxLayer . 33

5.2.4 pLayer . 33

5.2.5 Key schedule . 34

5.3 Light Weight Architecture of Present . 34

5.3.1 Data storage . 35

5.3.2 S-box Implementation . 35

5.3.3 Permutation Layer . 36

5.3.4 Key Storage and Scheduling . 36

6 AES and xTEA . 39
6.1 AES . 39

6.1.1 Introduction . 39
6.1.2 Architecture and Implementation . 39

6.2 xTEA . 40
6.2.1 Introduction . 40
6.2.2 xTEA Encryption Algorithm . 41

7 Light Weight Implementation Results and Analysis 43

7.1 Tools Used . 43
7.2 Comparison of Block cipher Elements . 43

7.3 Results and Analysis of Light Weight Implementations 43

vi

8 Differential Power Analysis Attacks . 47

8.1 Test Equipment . 47

8.2 Attack Setup . 47

8.2.1 Notations Used . 48
8.3 DPA Attack on Camellia . 48
8.4 DPA Attack on HIGHT . 49
8.5 DPA Attack on xTEA . 50
8.6 DPA Attack on AES . 52
8.7 DPA Attack on Present . 53
8.8 Results and Conclusions . 54

9 Future Work . 56

vii

List of Tables

Table Page

4.1 Key schedule constants . 25

4.2 Round keys for 128-bit keys . 26

4.3 Number of shifts of shift register . 30

4.4 Components for Camellia implementation 30

5.1 S-box Table . 33
5.2 Table of pLayer . 34

7.1 Block cipher elements . 45

7.2 Light weight implementation results . 45

7.3 Results of our light weight implementation compared to other smallest im-

plementation of block ciphers and the eSTREAM Portfolio ciphers on FPGA 46

8.1 Result of DPA attacks . 55

viii

List of Figures

Figure Page

2.1 Arrangement of Slices within the CLB . 6

2.2 SLICEL . 7
2.3 SLICEM . 7
2.4 Logic Cell SRL Structure . 8

2.5 Single-Port and Dual-Port Distributed RAM 9

3.1 Initial Transformation . 16
3.2 Round Function . 17
3.3 Final Transformation . 18
3.4 Top level block diagram of HIGHT . 20

4.1 Block diagram of 128-bit key encryption . 23

4.2 F-function . 24
4.3 Key scheduling . 25

4.4 Top level Block Diagram . 27

4.5 Key scheduling using shift registers . 30

5.1 Top level algorithmic description of present 32

5.2 16-bit datapath of Present . 35

5.3 Key scheduling of Present . 38

6.1 Top level block diagram of AES Datapth . 40

6.2 Top level block diagram of xTEA . 42

8.1 Correlation plot for attack on round function of camellia 49

8.2 Correlation plot for attack on XOR operation in HIGHT 51

8.3 Correlation plot for addition operation in initial transformation round of

HIGHT . 51
8.4 Correlation plot of xTEA . 52

8.5 Correlation plot of AES . 53

8.6 Correlation plot of Present . 54

ix

Abstract

DIFFERENTIAL POWER ANALYSIS ON LIGHT WEIGHT IMPLEMENTATIONS OF
BLOCK CIPHERS

Panasayya S.V.V.K Yalla, MS

George Mason University, 2009

Thesis Director: Dr. Jens-Peter Kaps

There is a growing interest in light weight implementation of cryptographic algorithms

for low-resource ubiquitous computing devices such as a wireless sensor nodes (WSN) or ra-

dio frequency identification (RFID) tags. Most light weight cryptographic implementations

are targeted to application specific integrated circuits (ASIC). However, ASICs have a high

non-recurring engineering cost and longer time to market. Even though field programmable

gate arrays (FPGA) are reconfigurable and have low non-recurring engineering cost, they

consume more power than ASICs. Power consumption is a primary concern for light weight

cryptographic applications. With the development of low-cost, low-power FPGAs for bat-

tery powered devices, they are becoming an interesting target for light weight cryptography

(LWC). In this thesis we describe compact architectures of AES, Camellia, xTEA, HIGHT

and Present are implemented on low-cost Xilinx Spartan3 FPGAs. Different optimization

techniques are employed to minimize the area consumption by smart use of the Configurable

Logic Block (CLB) structure in FPGAs. All the cipher implementations are light weight but

with full strength security i.e. not 80-bit but 128-bit key length. Furthermore, differential

power analysis (DPA) attacks are performed on these implementations to investigate their

”natural”, i.e. without any countermeasures resistance to this form of attack.

Chapter 1: Introduction

1.1 Light Weight Cryptography

Ubiquitous computing represent the third era of computing devices after mainframes and

personal computer for first and second eras. Radio frequency identification (RFID) tags

and wireless sensor nodes (WSN) are a few examples which are being used for automated

electronic toll systems, identification tags for food products, pets, clothing and so on. This

brings us close to the threshold of pervasive computing. The mass deployment of these

device brings serious concerns for security and privacy. The traditional cryptographic algo-

rithms may not be suitable for these device as they have limited memory and computational

power along with serious power constraints. This led to development of new branch of cryp-

tography called light weight cryptography. HIGHT [1] and Present [2] are the algorithms

developed specifically for light weight cryptography. AES and Camellia though not consid-

ered light weight, are also being used on these devices.

1.2 Light Weight Cryptography for FPGAs

Until now light weight cryptography is targeted towards application specific integrated

circuits (ASICs). ASICs involve high non-recurring cost and long time to market where as

Field Programmable Gate Arrays (FPGAs) involve low non-recurring cost and less time to

market. The only dominant factor favorable to ASICs is their lower power consumption,

which is of primary concern for light weight cryptographic devices and their lower cost

in large volumes. With the advent of low-cost and low-power FPGAs,we expect them to

become popular for battery powered applications such as WSN. Hence they are a targeted

for light weight cryptographic applications. Reconfigurability of FPGAs allows the system

1

to be upgraded if ever the need arises which is not possible with ASICs. Further more,

light weight crypto implementations lead to area saving over traditional implementations.

This enables a designer to add crypto to an existing design at a minimal cost or to reduce

the overall area consumption which might lead to cost saving as the design might now fit

into a smaller, cheaper FPGA. We designed ight weight architecture of Present, Camellia,

HIGHT for Xilinx Spartan3 FPGAs. For all the ciphers considered in this thesis are of full

strength security i.e 128-bit key length, even though traditional light weight cryptography

considers 80-bit key length to be secure.

1.3 Power Analysis Attacks

Cryptographic devices leak information in the form of sound, power and electromagnetic

radiation while executing a cryptographic algorithm. This information can be used to reveal

the secret key. Such type of attacks are called side channel attacks. Power analysis attacks

analyzes the power consumption of cryptographic device while the cryptographic algorithm

is executed. These attacks were discovered by Kocher et al [3] in 1998. He showed that the

power analysis attack can reveal the secrets of smart card. This shattered the belief in the

security of cryptographic devices. These attacks are of considerable concern as they can

be mounted with existing hardware costing from a few hundred to a few thousand dollars.

The amount of time required depends on the type of attack employed.

1.3.1 Simple Power Analysis Attacks

Simple power analysis (SPA) attacks involves direct interpretation of the power consumption

measured during cryptographic operations. These attacks are more challenging.

1.3.2 Differential Power Analysis Attacks

Differential power attacks (DPA) are more powerful attacks than SPA. DPA exploits the

data dependency of the power consumption of the cryptographic device. Unlike SPA, DPA

2

requires a large number of power traces. The following are the steps involved for performing

a DPA attack.

1. Choosing an intermediate result of the executed algorithm.

2. Measurement of power consumption for n number of encryptions or decryptions with

different data blocks.

3. Developing a hypothetical power model.

4. Relating the hypothetical power model with actual measured power consumption val-

ues.

The intermediate result of the algorithm is chosen such that

• Its depends on the key.

• It changes with known input or output of the cipher.

• we ar able to predict the key by combining it with the known input or output and

guess of the key.

Power Model

The most popular power models used are hamming weight (HW) and hamming distance

(HD). HW is a simple model which count the number of ’1’s in a given set of data. HD

counts the number of 0→1 and 1→0 transitions in a given set of data within a certain time

interval. HD power model assumes that all 0→1 and 1→0 transitions consume equal power.

The 0→0 and 1→1 transitions are considered to consume no power. In order to use the HD

power model, consecutive data values are needed. If data V1 changes to V2 then relation

between HD and HW is given by equation 1.1. In this thesis, we consider the HD power

model for DPA attacks.

HD(V1, V2) = HW (V1 ⊕ V2) (1.1)

3

Pearson Correlation

To relate the hypothetical power model values with the measured values, correlation co-

efficients are used. We use the Pearson correlation coefficient which is given by equation

1.2.

r(P, G) =
n

∑n
i PiGi+−∑n

i Pi
∑n

i Gi√
n

∑n
i P 2

i − (
∑n

i Pi)2
√

n
∑n

i G2
i − (

∑n
i Gi)2

(1.2)

1.4 Thesis Organization

Chapter 2 describes common the optimization techniques employed for developing the light

weight architecture of several block ciphers. Chapters 3, 4, and 5 describes how these

optimization are applied to the block ciphers HIGHT, Camellia and Present block ciphers.

AES[4] and xTEA[5] architecture are discussed briefly with respect to DPA attacks. The

Implementation results are analyzed in Chapter 6. DPA attacks and the conclusions drawn

from them are described in Chapter 8. Finally Chapter 9 describes future work.

4

Chapter 2: Optimization Techniques

Designing a compact architectures in FPGAs depends on effective use of architectural fea-

tures provided in the targeted FPGAs. Xilinx Spatan3 family FPGAs have features like

Look Up Table (LUT) based 16-bit shift register (SRL16) and distributed random access

memory (DRAM) which can be employed to improve the performance and decrease the

area of a given design by an order of magnitude. Light weight architectures of Camellia,

Present and HIGHT are developed making use of these architectural features.

2.1 Spartan-3 Generation FPGA Architecture

2.1.1 Configurable Logic Block Structure

Spartan-3 generation consist of five fundamental programmable function elements

1. Configurable logic blocks (CLBs)

2. Input/output blocks (IOBs)

3. Block RAMs

4. Multiplier blocks

5. Digital clock manager (DCM) blocks

The main logic resource for implementing synchronous as well as combinational circuits

are constituted by CLBs. Each CLB consists of four interconnected slices which are grouped

in pairs and organized as columns as shown in Fig 2.1. The pair on left side of the CLB

supports both logic and memory functions and is called SLICEM. The other pair on the

right side of the CLB supports only logic and is called SLICEL. The structure of SLICEL

5

X0Y1
SLICE

X0Y0
SLICE

X1Y0
SLICE1

X1Y1
SLICE

SHIFTIN

SHIFTOUT

COUT

COUT

CIN

CIN

or Shift register)
(Logic Only)

Left−Hand SLICEM Right−Hand SLICEM

to Neighbours

InterconnectSwitch
Matrix

CLB

(Logic or Distributed RAM

Figure 2.1: Arrangement of Slices within the CLB

and SLICEM are shown in Fig 2.2 and Fig 2.3 respectively. Both SLICEL and SLICEM

have the following features which provide logic, arithmetic and ROM functions.

• Two 4-input LUT function generators, F and G

• Two storage elements (Flipflops)

• Two wide-function Multiplexers

• Carry and arithmetic logic

Apart from this SLICEM LUTs provide additional features namely 16x1 distributed

RAM blocks called RAM16 and 16-bit shift register called SRL16.

Shift Register (SRL16)

The SLICEM LUT can be configured as a 16-bit shift register called SRL16 without using

the flipflop available in each slice. Fig 2.4 shows the basic cell structure of SRL16. The

F-LUT and G-LUT in the SLICEM shown in Fig 2.3 are the basic components of SRL16.

Within SLICEM, LUTs cascade from the G-LUT MC15 output to the F-LUT DI input

6

Carry

Carry

Register

Register

LUT4(G)

LUT4(F)

FiMUX

F5MUX

Arithmetic Logic

Figure 2.2: SLICEL

LUT4(G)

RAM16

SRL16

LUT4(F)

RAM16
SRL16

Carry

Carry

Register

Register

FiMUX

F5MUX

Arithmetic Logic

Figure 2.3: SLICEM

7

SHIFT−REG

A[3:0}

WS DI

MC15

D

CK

CE(SR)

CLK

WE

A[3:0}

D D

SRLC16

SHIFTOUT

Registered
Output

(optional)

DI(BY)

SHIFTIN

4

Output

DIF_MUX/DIG_MUX F/G−LUT

Figure 2.4: Logic Cell SRL Structure

through DIFMUX. The SHIFTIN and SHIFTOUT lines allow cascading SLICEMs us-

ing DIGMUX to form larger shift registers. Each shift register provides a shift output

MC15 for the last bit in each LUT in addition to addressable access to any bit in the shift

register through normal D output. The shift register input can come from a dedicated

SHIFTIN signal and Q15/MC15. The addressable D output is available in all SRL prim-

itives while Q15/MC15 signal that can drive SHIFTOUT are only available in SRLC16

primitive. SRLC16 are cascade-able shift register C stands for cascade-able. Each CLB

resource can be configured as a 64-bit shift register using four LUTs. The synthesis tool

infers SRL16s when a shift register is described in hardware descriptive language (HDL). If

a reset is placed, synthesis tool infers them as flipflops. The number of slices required for

implementing a shift register depends on number of taps required for reading or writing as

additional taps require additional flipflops. Taps are positions of shift register where the

data can be written into or read out. These taps are configured as flipflops.

8

D

Address

Write

WCLK

Address

SPO

Read

Read

Read Port

R/W Port

Dual−Port RAM

DPO

D
O

Address

Write

WCLK

Read

Single−Port RAM

Figure 2.5: Single-Port and Dual-Port Distributed RAM

Distribute RAM (RAM16)

The SLICEM LUT can be configured as 16x1-bit synchronous RAMs called as distributed

RAM (DRAM) or RAM16. These LUTs are cascade-able for realizing deeper memories

with minimal penalty on timing. Distribute RAM support two types of memory

• Single-port RAM with synchronous write and asynchronous read. Synchronous reads

are configured using the flipflop associated with it.

• Dual-port RAM with one synchronous write and two asynchronous read ports. Syn-

chronous reads are possible. The second read port is an independent read port.

Fig 2.5 shows the single- and dual-port RAMs. The flipflop in SLICEM allows the

capturing of output from distributed RAM. Each CLB can be configured as a 64-bit single

port RAM or 32-bit dual-port RAM. Use of RAM16s allows to store large amount of data

in small RAM blocks. DRAMs offer fast and localized memory. They can be inferred or

instantiated directly in design depending on the specific logic synthesis tool used. Most of

the tools infer them based on the hardware description of RAMs.

9

2.2 Optimizations

Area efficient architectures are developed using of the features described in 2.1.1. Choosing

the appropriate feature for implementing a specific component in the design results in an

efficient and compact architecture. The most area consuming are data and key storage

components. DRAM and shift register are two ways of efficient memory implementation.

Use of shift registers for storing of data does not involve addressing which makes the control

logic simpler. However, accessing the intermediate data values other than at the taps of the

shift register is not possible. In that case the best suitable one is DRAM. Shifting of data

in DRAM is complicated. The best suited one is shift register. DRAM involve addressing

which increases the complexity of the control logic.

2.2.1 Plaintext and key Storage

For developing light weight architectures, the algorithm implementations are scaled down

to either 8-bit or 16-bit implementations. Key and data are loaded either 8-bits or 16-bits

depending on the implementation. Loading into shift register is simpler as the number of

control bits needed are less as compared to DRAM which needs addressing. The size of

the address increases with increase in number of words to be stored in DRAM, where as

control bits of shift register are independent of size of the data it stores. However, some

cipher require intermediate data values. For example in the case of Camellia, the different

bytes of the data are required to compute a single byte. This makes use of DRAM more

appropriate. In other two cipher implementations Present and HIGHT, plaintext is stored in

shift registers as data is needed in a regular order. The key scheduling in ciphers Camellia,

HIGHT and Present involve shifting of key which make use of shift register more apt.

However in HIGHT, key is need in a different order during initial and final transformations

compared to round operation which is difficult using shift register. In this case DRAM is

used to store the key.

10

2.2.2 Finite State Machine

Finite State Machines (FSM) are used for realizing the control logic of complex systems.

Traditionally, FSM are implemented using flipflops and programmable logic. However this

type of FSM implementation is complex and is not efficient. Use of RAM blocks for sequen-

tial logic led to ROM-based FSM implemented which proved to be efficient [6], [7], [8]. The

control signals for each operation are clubbed as one big control word. These control words

are stored in a memory location which can be accessed by an address. DROM are inferred

by holding the write signal low for DRAMs. ROM- based FSM have additional advantages.

The maximum frequency at which a ROM-based FSM operates is independent of complex-

ity of the circuit. This method is also proved be power saving [9]. For HIGHT and Present

architectures, the control signals are generated by using counter and some additional logic.

2.2.3 Other components

The size of control word is reduced by removing any control signals which are repeated

many times. Control signals for round operation are repeated sequence of operations. This

control signal are remove from the main control word reducing the size ROM needed for

implementing the FSM. This is applied for camellia where the control signals for round

function f are generated by another sub-controller called F-controller.

11

Chapter 3: HIGHT

3.1 Introduction

HIGHT [1] a is block cipher developed by a group from Korea University, National Security

Research Institute (NSRI) and Korea Information Security Agency (KISA) in 2006. HIGHT

(HIGH security and light weighT) is a 64-bit block cipher with 128-bit key length and 32-

rounds. The round function consists of a generalized Feistel structure with simple operations

such as XOR, addition modular 28, and left bitwise rotation. The absence of traditional

substitution layer,its feistel structure and byte oriented operations make it suitable for low-

cost, low-power and ultra-light implementations. The original design presented in [1] was

implemented on ASICs with 3048 gates. The HIGHT algorithm was modified [10] to reduce

the critical path in the key scheduler which also reduced the area to 2608 gates. Initial

security analysis [1] proved 19 rounds of HIGHT to be secure. Further analysis [11] proved

28 rounds of hight to be secure.

3.2 Algorithm

3.2.1 Notations

The following notations are used in describing HIGHT. The 64-bit plain text P is split into

eight 8-bit blocks P7, · · · , P0. The intermediate values X and cipher text C are also split

into eight 8-bit blocks X7, · · · , X0 and C7, · · · , C0 respectively. The 128-bit master key MK

is a concatenation of sixteen 8-bit blocks. The whitening keys and subkeys are denoted by

WK and SK each is of 8-bit size.

12

P = P7 ‖ P6 ‖P1 ‖ P0

C = C7 ‖ C6 ‖C1 ‖ C0

X = X7 ‖ X6 ‖X1 ‖ X0

MK = MK15 ‖ MK14 ‖MK1 ‖ MK0

(3.1)

The mathematical operations used in HIGHT are denoted as follows

¢ addition mod28

¯ subtraction mod28

⊕ XOR(eXclusive OR)

A≪s s-bit left rotation of a 8-bit value of A

The HIGHT encryption consist of key schedule, initial transformation, round function

and final transformation. The algorithm for encryption process can be described as follows

HightEncryption(P,MK) {
KeySchedule(MK,WK,SK);

HightEncryption(P,WK,SK){
InitialTransformation(P,X0,WK3,WK2,WK1,WK0);

for i = 0 to 31 do

RoundFunction (Xi,Xi+1,SK4i+3,SK4i+2,SK4i+1,SK4i);

end for}
FinalTransformation(X32,C,WK7,WK6,WK5,WK4); } }

13

3.2.2 Key schedule

Key scheduling of HIGHT involves two algorithms WhiteningkeyGeneration and Subkey-

Generation.The key schedule algorithm is as follows

KeySchedule(MK,WK,SK){
WhiteningkeyGeneration(MK,WK);

SubkeyGeneration(MK,SK);}

Whiteningkey Generation

WhiteningkeyGeneration generates 8 whitening key bytes WK0,WK1,· · · ,WK7 for initial

and final transformations. Whitening keys are used to avoid direct revealing of inputs to

F0 and F1 during first and last rounds. The whitening key algorithm is as follows

WhiteningkeyGeneration{
for i = 0 to 7 do

if 0 ≤ i ≤ 3 then

WKi ← MKi+12;

else

WKi ← MKi−4;

end if

end for}

Subkey generation

SubkeyGeneration generates 128 subkey bytes SK0,SK1,· · · ,SK127 for 32-round functions.

The algorithm SubkeyGeneration uses ConstantGeneration which generates 128 7-bit con-

stants δ0, δ1, · · · , δ127, for generating the subkeys SK0,SK1,· · · ,SK127. δ0 has a fixed value

of 10110102 which is the initial state (s0,· · · ,s6) of the 7-bit LFSR h. The characteristic

14

polynomial of h is x7+x3+1 in Z2 with a period of 27-1=127. Using a LFSR h for subkey

generation enhances the randomness of subkey bytes. This provides improved resistance

against slide attack. The ConstantGeneration algorithm uses the LFSR h to produce 128 δ

values as follows

ConstantGeneration{
S0 ← 0; S1 ← 1; S2 ← 0; S3 ← 1;

S4 ← 1; S5 ← 0; S6 ← 1;

δ0 ← S6‖ S5 ‖ S4 ‖ S3 ‖ S2 ‖ S1 ‖ S0 ‖;
for i = 1 to 127 do

Si+6 ← Si+2 ⊕ Si−1;

δi ← S6 ‖ S5 ‖ S4 ‖ S3 ‖ S2 ‖ S1 ‖ S0 ‖;
end for}

The algorithm for Subkey generation is as follows

SubkeyGeneration(MK,SK){
Run ConstantGeneration

for i = 0 to 7 do

for j = 0 to 7 do

S16i+j ← MK(j−i) mod 8 ¢ δ16i+i;

end for

for j = 0 to 7 do

S16i+j+8 ← MK((j−i) mod 8)+8 ¢ δ16i+j+8;

end for

end for}

3.2.3 Initial Transformation

InitialTransformation uses the four whitening key bytes WK0, WK1, WK2 and WK3 to

transform a plain text P into the input of first RoundFunction, X0=X0,7 ‖ X0,6 ‖......X0,1 ‖
15

wk
3

wk
1

wk
2

0,3x0,4x0,6x 0,5x0,7x 0,1x0,2x 0,0x

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

wk
0

Figure 3.1: Initial Transformation

X0,0. The InitialTransformation performs a XOR or modular addition on the input which

is shown in Fig 3.1. as follows

InitialTransformation(P,X0,WK3,WK2,WK1,WK0) {
X0,0 ← P0 ¢ WK0; X0,1 ← P1; X0,2 ← P2 ⊕ WK1; X0,3 ← P3;

X0,4 ← P4 ¢ WK2; X0,1 ← P5; X0,6 ← P6 ⊕ WK1; X0,3 ← P3; }

3.2.4 Round Function

RoundFunction uses two auxiliary function F0 and F1 along with addition mod8 and XOR

operations. The alternative combination of addition mod8 and XOR is used in the round

function. This makes it more resistant to existing attacks. The two functions F0 and F1,

described in equations 3.2 and 3.3 respectively, provide bitwise diffusion which is similar

to linear transformation from GF (2)8 to GF (2)8. The RoundFunction transforms the in-

put Xi=Xi,7 ‖ Xi,6 ‖· · ·Xi,1 ‖ Xi,0 into Xi+1=Xi+1,7 ‖ Xi+1,6 ‖· · ·Xi+1,1 ‖ Xi+1,0 for i=

0,1· · · ,30,31 which is shown in Fig 3.2

F0(x) = x≪1 ⊕ x≪2 ⊕ x≪7 (3.2)

F1(x) = x≪3 ⊕ x≪4 ⊕ x≪6 (3.3)

RoundFunction(Xi,Xi+1,SK4i+3,SK4i+2,SK4i+1,SK4i) {

16

F1 F1F0F0

sk
4i

sksk
4i+1

sk
4i+24i+3

x
i−1,0

x
i−1,1

x
i−1,2

x
i−1,3

x
i−1,4

x
i−1,5

x
i−1,6

x
i−1,7

x
i,1

x
i,2

x
i,3

x
i,4

x
i,5

x
i,6

x
i,7

x
i,0

Figure 3.2: Round Function

Xi+1,1 ← Xi,0; Xi+1,3 ← Xi,2;

Xi+1,5 ← Xi,4; Xi+1,7 ← Xi,6;

Xi+1,0= Xi,7 ⊕ (F0(Xi,6) ¢ SK4i+3);

Xi+1,2= Xi,1 ¢ (F1(Xi,0) ⊕ SK4i+2);

Xi+1,4= Xi,3 ⊕ (F0(Xi,2) ¢ SK4i+1);

Xi+1,6= Xi,5 ¢ (F1(Xi,4) ⊕ SK4i); }

3.2.5 Final Transformation

In the Final transformation, the data is shifted towards right and transforms X32=X32,7 ‖

X32,6 ‖· · ·X32,1 ‖ X32,0 into cipher text C by using the four whitening key bytes WK4, WK5,

WK6 and WK7 as shown in Fig 3.3

(X32,C,WK7,WK6,WK5,WK4) {
C0 ← X32,1 ¢ WK4; C1 ← X32,2; C2 ← X32,3 ⊕ WK5; C3 ← X32,4;

C4 ← X32,5 ¢ WK6; C5 ← X32,6; C6 ← X32,7 ⊕ WK7; C7 ← X32,0;

3.3 Light weight Architecture of HIGHT

Our light weight architecture of HIGHT is achieved by applying the optimizations described

in Chapter 2. Implementation of different components used in this architecture were de-

scribed.

17

wk
7

wk
5

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

x
32,1

x
32,2

x
32,3

x
32,4

x
32,5

x
32,6

x
32,7

x
32,0

4wkwk
6

Figure 3.3: Final Transformation

3.3.1 Data storage

RoundFunction involves shifting of data for which shift register are bested suited one. Shift

registers have an advantage over DRAMs as they do not need addressing. This makes the

control logic simple. The shift register used for storing the data is a 64-bit shift register

which performs an 8-bit left-circular shift. In order to generate one byte, RoundFunction

needs either one byte or two bytes of consecutive data. The shift register used in this

architecture has 8-bit datain and 16-bit dataout. The first subkey generated for ith round

operation is used in computing Xi+1,6 from Xi,5 and Xi,4. So taps are placed at 5th and 4th

bytes. The round function computes Xi+1,6 using Xi,5 and Xi,4 and writes the result into Xi,5

as it is no longer required for computation of other bytes. This saves extra memory needed

for temporary storage. The next byte Xi+1,5 is Xi,4 which can be achieved by shifting the

data by one byte as Xi,4 is next to Xi+1,6. Now, the 5th and 4th byte locations contains Xi,3

and Xi,2 which are required for computing Xi+1,4. The same process is repeated to compute

all bytes. It takes 8-clock cycles to compute all bytes for one RoundFunction but the data is

misaligned by two bytes. The data is aligned by shifting the data by 2-bytes which involves

2-clock cycles. With this, the total clock cycles required for one RoundFunction are 10.

Pre- and Post-whitening Rounds

The initial and the final transformations are performed by using the datapath of round

function with use of two extra multiplexers. The initial transformation is performed while

the data is being loaded into the shift register which save clock cycles. When all the data is

18

loaded, data is misaligned by 2-bytes as the input tap to shift register is at 6th byte position.

The data is shifted by 2-byte to aligned it. In order to accomplish final transformation, the

data should be shifted by 5-bytes requiring 5 extra clock cycles.

3.3.2 Key Storage and Scheduling

The 128-bit key is stored in a Single-Port RAM. Using two 64 bit shift registers for storing

the key would make the control logic more simpler. But generation of whitening keys would

involves more clock cycles than using a RAM. The subkeys and whitening can be generated

by using two 3-bit counter and a 2x1 multiplexer. The selection bit and most significant

bit of the key address are generated by using a 4-bit shift register.

3.3.3 Control Logic

Control logic for this architecture is much simpler compared to Present and Camellia de-

scribed in Chapters 5 and 4 respectively as shift register need few control signals. The

control signals for all operation are generated by using 4-bit and 6-bit counters. The 4-bit

counter is used for counting the intermediate states of round operation. So the only extra

hardware needed for the control logic is 6-bit counter along with some logic functions. The

top level block diagram is shown in Fig 3.4.

19

F0

F1

left counter

add

34

1

3

3

wk

8
8

8
datain

8

8

8

LFSR

sk

8

7

(SRAM)

Key

Single−port

RAM

8

shift

7

right counter

8 8

8

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

Figure 3.4: Top level block diagram of HIGHT

20

Chapter 4: Camellia

4.1 Introduction

The Camellia algorithm [12] was jointly developed by Nippon Telegraph and Telephone

Corporation (NTT) and Mitsubishi in 2000. It was designed for a wide range of design

platforms from low power and limited resources to high performance on multiple platforms.

However, the main design goal was security. The New European Schemes for Signatures,

Integrity, and Encryption (NESSIE) project has nominated Camellia as a strong block

cipher in 2003 [13]. The structure of Camellia provides features for a compact design.

Several different attacks were performed successfully only on reduced round versions of

Camellia. An impossible differential cryptanalysis on reduced round Camellia is described

in [14], collision attacks in [15,16]. The best know attack can break 9-rounds of Camellia

with 128-bit key [15].

4.2 Camellia

Camellia [12] is a 128-bit block cipher which supports key lengths of 128, 192 or 256 bits. In

this paper, we describe an implementation with 128-bit key length. The Camellia algorithm

uses a Feistel network with pre-whitening before first and post-whitening after last rounds.

The functions, FL and FL−1 are inserted after 6th and 12th round introduce non-regularity.

The block diagram of 128-bit encryption can be seen in Fig 4.1. The F-function contains

a Substitution-Permutation Network (SPN) which is composed of non-linear S-function

and linear P-function. The S-function consists of 8 S-Boxes which are selected from four

different types. The P-function is comprised of byte permutations. The block diagram of

the F-function is shown in Fig 4.2. The key schedule generates round keys of 64-bit size by

21

shifting the original key KL and the modified key KA. Computation of KA is described in

the Section 4.2.3.

4.2.1 Notations

XL left-half data of X.

XR right-half data of X.

⊕ bitwise exclusive-OR operation.

‖ concatenation of two operands.

≪n circular rotation to left by n bits

≫n circular rotation to right by n bits

∪ bitwise AND operation

∩ bitwise OR operation

4.2.2 Encryption for 128-bit key

The 128-bit plain text M128 is XORed with pre-whitening key kw1‖kw2 and separated into

two halves L0 and R0 each of 64-bit size. L0 is then passes through the F-function where

it is XORed with round key k0 The result is applied to the S-Boxes and output of S-box

to P-function which is XORed with right half of the data R0. At the end of each routine

the left half and the right half of the data are swapped. The same process is repeated for

all the 18 rounds. The 6th and 12th rounds, the left half of the data L
′
r is given to FL and

right half R
′
r to FL−1. The round functions can be described as follows

For r=1 to 18 except r=6 and 12

22

F

F

F

F

F

F

0(64)L 0(64)R

3(64)L 3(64)R

1(64)L 1(64)R

2(64)R

5(64)R

4(64)R

l(64)k

2(64)k

3(64)k

4(64)k

2(64)L

5(64)k 4(64)L

6(64)k 5(64)L

−1FL

−1FL

18(64)k17(64)k16(64)k
15(64)k14(64)k13(64)k

c (128)

M(128)

kw4(64)kw3(64)

kwl(64)

6−Round

FL

12(64)k11(64)k10(64)k
9(64)k8(64)k7(64)k

6−Round

FL

6−Round
5(64)k4(64)k
2(64)kl(64)k

6(64)k
3(64)k

kl

kl 2(64)

kl 3(64)

kl 4(64)

0(64)RL 0(64)

2(64)kw

1(64)

Figure 4.1: Block diagram of 128-bit key encryption

23

k i(64)

x8(8)

x7(8)

x6(8)

x5(8)

x4(8)

x3(8)

x2(8)

x1(8)

4S

2S

3S

2S

3S

4S

1S

1S
Z8(8)

Z7(8)

Z6(8)

Z5(8)

Z3(8)

Z4(8)

Z2(8)

Z1(8)

P−FunctionS−Function

Figure 4.2: F-function

Lr = F (Lr−1, kr)⊕Rr−1

Rr = Lr−1

For r=6 and 12

L
′
r = F (Lr−1, kr)⊕Rr−1

R
′
r = Lr−1

Lr = FL(Lr, kl2r/6−1)

Rr = FL−1(R
′
r, kl2r/6)

C = (R18 ‖ L18)⊕ (kw3 ‖ kw4)

4.2.3 Key schedule

In the first phase of the key schedule, the modified key KA is computed from the original

key KL. In the second phase, round keys are generated through rotation of KL or KA by

15 or 17-bits according to Table 4.2. KA is computed by passing KL through 4 rounds of

the same Feistel network which is used for encryption with XOR of KL after the 2nd round.

The round keys used are four constant shown in Table 4.1.

24

F

F

F

F

K L(128)

K A(128)

1(64)Σ

4(64)Σ

3(64)Σ

2(64)Σ

L(128)K

Figure 4.3: Key scheduling

Table 4.1: Key schedule constants∑
1 0xA09E667F3BCC908B∑
2 0xB67AE8584CAA73B2∑
3 0xC6EF372FE94F82BE∑
4 0x54FF53A5F1D36F1C

25

Table 4.2: Round keys for 128-bit keys
Round round key value

Pre-whitening kw1 (KLÀ>0)L

Pre-whitening kw2 (KLÀ>0)R

F(Round 1) k1 (KAÀ>0)L

F(Round 2) k2 (KAÀ>0)R

F(Round 3) k3 (KLÀ>15)L

F(Round 4) k4 (KLÀ>15)R

F(Round 5) k5 (KAÀ>15)L

F(Round 6) k6 (KAÀ>15)R

FL kl1 (KAÀ>30)L

FL−1 kl2 (KAÀ>30)R

F(Round 7) k1 (KLÀ>45)L

F(Round 8) k2 (KLÀ>45)R

F(Round 9) k3 (KAÀ>45)L

F(Round 10) k4 (KLÀ>60)R

F(Round 11) k5 (KAÀ>60)L

F(Round 12) k6 (KAÀ>60)R

FL kl1 (KLÀ>77)L

FL−1 kl2 (KLÀ>77)R

F(Round 13) k1 (KLÀ>94)L

F(Round 14) k2 (KLÀ>94)R

l F(Round 15) k3 (KAÀ>94)L

F(Round 16) k4 (KAÀ>94)R

F(Round 17) k5 (KLÀ>111)L

F(Round 18) k6 (KLÀ>111)R

Post-whitening kw3 (KAÀ>111)L

Post-whitening kw4 (KAÀ>111)R

26

S−box

>>>1

<<<1
<<<1

Data_in

8−bits
8−bits

8−bits

Dual−port

RAM

(DRAM)

8−bits

L−data

R−data

Round keyX

Y

Z

K

FLM2

FLM1

Data

8−bits

Figure 4.4: Top level Block Diagram

4.3 Compact Architecture of Camellia

Our goal is to design a very compact architecture for small area with an acceptable through-

put. We choose to implement our architecture on Xilinx spartan-3 family FPGA devices.

Our architecture uses a 8-bit datapath and does both encryption and key scheduling. Fig

4.4 shows the top level block diagram of our architecture. We tried different implementation

strategies for several component used in the architecture to get the best results.

4.3.1 S-Boxes and F-Function

The S-Boxes S2, S3, S4 can be derived from S-Box using the equation through equations

4.1, 4.2 and 4.3. This can be realized in hardware through one S-Box and two multiplexers.

Hence instead of 8 S-Boxes, only one S-box is required which reduces the area by 85% .

S2(x) = S1(x) <<<1 (4.1)

S3(x) = S1(x) >>>1 (4.2)

S4(x) = S1(x <<<1) (4.3)

In this architecture, a dual port 16x8 Distributed RAM (DRAM) is used for storing the

data which reduces the area by approximately 75% compared to using a 128-bit register.

In this implementation, the 64-bit F-function is broken down into several of 8-bit oper-

ations. The XOR of 8-bits of the left data X and 8-bits round key K passes through S-Box.

27

The result is XORed with of corresponding 8-bits of right data Y. This is repeated depend-

ing on the number of XORs required to complete the P-function. XORing the output from

S-box with right data saves storage required for the intermediate values. For this reason a

dual port DRAM is used. The swapping of data is accomplished by addressing. It takes 44

clock cycles to complete one round. The multiplexers before the 1st XOR and after the 2nd

XOR operation enable the computation of the modified key from the original key and the

pre-and post whitening operation.

4.3.2 FL and FL −1

The FL function breaks its 64-bit input into two 32-bit halves namely XL and XRand

similarly 64-bit key kl as klL and klR. The FL ‘is broken into two parts FL1 and FL2 and

FL−1 function into FL−1
1 and FL−1

2 .

FL1(XL, XR, klL) = ((XL ∩ klL) ≫1)⊕XR (4.4)

FL2(XL, XR, klR) = (XR ∪ klR)⊕XL (4.5)

FL−1
1 (XL, XR, klR) = (XR ∪ klR)⊕XL (4.6)

FL−1
2 (XL, XR, klL) = ((XL ∩ klL) ≪1)⊕XR (4.7)

As can be seen from equations 4.4 and 4.7, FL1 and FL−1
2 are the same operation and

Similarly FL2 and FL−1
1 from equations 4.5 and 4.6. Hence, we combine FL1 and FL−1

2

as one function called FLM1 and FL2 and FL−1
1 as FLM2.

FLM1(XL, XR, klL) = ((XL ∩ klL) ≪1)⊕XR (4.8)

FLM2(XL, XR, klR) = (XR ∪ klR)⊕XL (4.9)

This saves two XORs needed for FL and FL−1 operations. The 32-bit cyclic rotation in

FLM1 is implemented as a 1-bit left shift on 8-bit data with one flipflop to store the shifted

28

bit. After completing FLM1, the last bit is computed again to get the correct bit.

4.3.3 Key Storage and Scheduling

The Camellia algorithm needs two keys of size 128 bit, the original key KL and the modified

key KA, which are rotated to generate the round keys. They both are stored in 128-bit shift

registers. However, such a shift register has only a single bit output and each output or tab

requires a flip-flop. Hence, the area consumed by such a shift register depends mainly on

the number of taps required to access the data. All the shift registers in this implementation

shift by 8-bit in order to match the width of the datapath. However, the rotations needed

for round key generation are 15, 30, 45, 60, 77, 94 and 111-bits. as shown in Table 4.3.

We can accomplish this by 8-bit shifts and an 8-bit 5:1 multiplexer as n mod 8 has only

5 different results. In order to make the control logic simple and uniform, shifting of the

key is done at the last clock cycle of the round. For normal round key generation, tapping

15-bits is sufficient. However, due to FLM1 which has a 32-rotation, 41-bits additional tabs

are required. This increased the size of the shift register approximately by 2 folds. The

key scheduling can be seen in Fig 4.5. The original key KL is initially loaded into both

DRAM and KL shift register. The constants for generating modified key KA are stored in

a separate shift register. KA is computed using the datapath from Fig 4.4. It is loaded into

the KA shift register, while data is loaded into DRAM. Using shift registers for both KL

and KA reduces the area by about 75% compared to using two 128-bit registers.

4.3.4 Controller

The control unit consists of a main controller and sub controllers for the F- and FLM

functions. The main controller stores its control words in as Distributed ROM (DROM) for

the reasons stated in Section 4.3.1. The address for the control word is generated by a 6-bit

counter. Using a DROM and a counter for the main controller, its size is reduced by 97%

as compared to a FSM. The sub controllers stores their control words in a shift registers as

they repeat a sequence of operations.

29

15−bits0 14

Round key
8−bits

8−bits

8−bits 8−bits

key for FLM2

46−bits

8−bits

shiftshift

key for FLM1

8−bits

0 7
0 7

0 46−bits45 0 46−bits45

8−bits

0 7
0 8−bits7

data_in L−data

0 15−bits14

7
38

32−bits

8−bits 78
71

8−bits
77

70

constants

KL KA

8

32−bits
39

Figure 4.5: Key scheduling using shift registers

Table 4.3: Number of shifts of shift register

Round keys R
ot

at
io

n
of ke

y
(n

)

N
um

be
r

of
8-

bi
t

sh
ift

s

R
el

at
iv

e
sh

ift
s

n
m

od
8

kw1,kw2,k1,k2 0 0 0 0
k3,k4,k5,k6 15 1 1 7

kl1,kl2 30 3 2 6
k7,k8,k9 45 5 2 5

k10,k11,k12 60 7 2 4
kl3,kl4 77 9 2 5

k13,k14,k15,k16 94 11 2 6
kw3,kw4,k17,k18 111 13 2 7

Table 4.4: Components for Camellia implementation
Component Implementation slices

F-controller-(1) FSM 40
F-controller-(2) Shift Register 2
Key storage-(1) Register 128
Key Storage-(2) Shift Register 32

Controller-(1) FSM 214
Controller-(2) DROM 40

Data storage-(1) Register 64
Data storage-(2) DRAM 16

30

Chapter 5: Present

5.1 Introduction

Present is an ultra-lightweight block cipher proposed by A.Bogdanov, L.R.Knuden and G.

Lender et al [2]. Present is a 31-round Substitution-Permutation (SP) network with a

block size of 64-bit and 80-bit or 128-bit key lengths. In this thesis a 128-bit key length

is considered. Present was designed with area and power constraints as the basic design

goals without a compromise in security. Present was designed by incorporating the features

of Serpent [17] and Data Encryption Standard (DES) [18] which demonstrated excellent

performance in hardware. The non-linear substitution layer, S-box in Present is similar

to that of Serpent and the linear permutation layer to that of DES. The original Present

proposal provides basic security analysis [2]. Further more analysis is performed in [19],

[11] and [20] proving 31-round Present still secure.

5.2 Specification

5.2.1 Notations

P 46-bit plaintex

C 64-bit ciphertext

K 128-bit user supplied key

ki 64-bit ith round key

Present encrypts a 64-bit plaintext P to a 64-bit ciphertext C in 31-rounds of SP network

and a post whitening round using 32-round keys k generated from 128-bit input key K. The

31

plaintext

sBoxLayer

pLayer
update

sBoxLayer

pLayer
update

plaintext

key

Figure 5.1: Top level algorithmic description of present

three stages addRoundkey, sBoxLayer and pLayer are involved in each round of Present.

The overall Present algorithm is shown in Fig 5.1.

generateRoundkeys()

for i = 1 to 31 do

addRoundKey(STATE,Ki)

sBoxLayer(STATE)

pLayer(STATE)

end for

addRoundKey(STATE,K32)

5.2.2 addRoundKey

The addRoundkey operation introduces the round key which gets XORed with current

STATE b63· · · b0. For the given round key ki=ki
63· · · ki

0 for 1≤ i ≤ 32 and the current state

b63......b0 addRoundKey consists of the operation for 0≤ j ≤63

32

Table 5.1: S-box Table
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

bj ← bj ⊕ ki
j . (5.1)

5.2.3 sBoxLayer

The second stage is non-linear sBoxLayer which consist of 4-bit to 4-bit S-boxes which

are given in hexadecimal notation in Table 5.1. During sBoxLayer operation, the 64-

bit current state b63 · · · b0 is a concatenation of sixteen 4-bit words w15, · · · , w0 where

wi=b4∗i+3‖b4∗i+2‖b4∗i+1‖b4∗i for 0 ≤ i ≤15 and output S(wi) gives the updated state value.

For0 ≤ i ≤ 15

b4∗+3b4∗+2b4∗+1b4∗i ← S(wi). (5.2)

5.2.4 pLayer

The linear bit permutation pLayer is third stage of the round operation. The bit permuta-

tion of Present can be described in equations 5.3, 5.4, 5.5 and 5.6.

For0 ≤ i ≤ 15

bi ← b4∗i (5.3)

bi+16 ← b4∗i+1 (5.4)

bi+32 ← b4∗i+2 (5.5)

bi+48 ← b4∗i+3 (5.6)

33

Table 5.2: Table of pLayer
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55
i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59
i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 2

Bit permutation is also shown in Table 5.2

5.2.5 Key schedule

The user-supplied or original 128-bit key K is stored in a register and represented as

k127k126· · · k1k0. For the round i, the left most 64 bits of the current state of register

K are the round key. So for the round i,

ki = k63k62 · · · k1k0 = k127k126 · · · k65k64. (5.7)

After the round key ki is extracted, the key register K=k127k126 · · · k1k0 is shifted to the

left by 61 bits and left most 8-bits are passed through two S-boxes of Present. The 5-bits

k66k65k64k63 are XORed with 5-bit round counter.

1. [k127k126 · · · k1k0]=[k66k65 · · · k68k67]

2. [k127k126k125k124]=S[k127k126k125k124]

3. [k123k122k121k120]=S[k123k122k121k120]

4. [k66k65k64k63]=[k66k65k64k63]⊕round counter

5.3 Light Weight Architecture of Present

Most the area is usually consumed for key and data storage. Reduction of area of the

architecture is achieved by scaling the 64-bit implementation to a 16-bit implementation

34

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

S S S S

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

data_in 16

16

4 4 4

4 4 4

16

16

16−bit shift

16−bit or 4−bit shift

4

4

16
Round key

Figure 5.2: 16-bit datapath of Present

and by applying the optimization techniques stated in Chapter 2 for different components

used in this implementation. Scaling to 8-bit would decrease the throughput drastically with

very small reduction area due to overhead involved for performing permutation operation.

The top level datapath is shown in Fig 5.2

5.3.1 Data storage

The 64-bit data is stored in a shift register for the reason specified in 2.1.1 which performs

a 16-bit circular left-shift. We consider the 64-bit shift register as a combination of sixteen

4-bit block 15,· · · ,0. To perform the round operation, the 16 most significant bits (MSB)

are tapped out of shift register.

5.3.2 S-box Implementation

Present consists of 4-bit to 4-bit S-boxes which can be implemented by using a single LUT

each. This architecture uses a total of six S-boxes, four for round operations and two for

35

key scheduling.

5.3.3 Permutation Layer

When the 16 MSB bits are given to the four S-boxes and the output from S-boxes to the

linear-permutation pLayer, 4-bits blocks 15, 11, 7 and 3 are computed. In next clock cycle,

blocks 14, 10, 6 and 2 are computed. So in order to arrange this blocks in the correct order

for the next round, another 64-bit shift register which preform a either 4-bit or 16-bit shifts

is used. The input to the shift register are given to blocks 12, 8, 4 and 0. The block 15, 11,

7, and 3 are placed in block positions of 12, 8, 4 and 0. In the next clock cycle, the data in

the shift register is shifted by 4-bits which moves the blocks 15, 11, 7 and 3 to positions 13,

9, 5 and 1 respectively. The blocks 14, 10, 6 and 2 computed in that clock cycle are placed in

12, 8, 4 and 0 aligning with the previous blocks 15, 11, 7 and 3. The same process repeated

for another two clock cycles for computing and aligning the remaining blocks. When all the

blocks of data are computed, the data is loaded back into the initial shift register during

which both shift registers perform 16-bit shifts. Loading of 64-bit data back into the initial

shift register would require additional clock cycles. So each round operation requires eight

clock cycles.

5.3.4 Key Storage and Scheduling

The key is stored in a 128-bit shift register which performs a 16-bit circular left-shift. The

initial round key are the 64-MSB bits of the original key. During first 4-clock cycles, the

first round key is obtained in 4 blocks of 16-bit each and the key is shifted by 64-bits.

However for next round key generation, the original key is shifted by 61 bits and 8 MSB

bits of the resultant key are applied to two S-boxes. Finally, 5-bits of the round counter are

XORed with bits 66,65,· · · ,62. The resulting 64-MSB bits are the next round key. Using

16-bit shifts, a 61-bit shift is not possible. This problem is solved by placing 3-extra taps

on shift register and use of two 3-bit registers A and B along with multiplexers. After

the first round of operation, the key is misaligned by 3-bits. To compensate this, register

36

A stores 3 LSB bits of shift register output of the previous clock cycle. Those 3-bits are

concatenated as MSB bits with 16-bit shift register output resulting in total number of bits

to 19. The 3-LSB bits of the 19-bits are stored in A and the remaining 16 bits are given as

input to round key generator block denoted by RK as shown in Fig 5.3. This can be viewed

as 3-bit shift on 19-bit key resulting in the 16-bits needed for generating the first block of

the round key. This results in a total shift of 64-3=61 bit shift. The RK block consists of

two S-boxes for S-box operation, 5-bit XOR to perform XOR operation with round counter

and multiplexers to choose the appropriate bits for round key generation. The 13 MSB bit

of the shift register, 3-bits from register A, 3-bit from register B and 5-bits of the round

counter are the inputs to the RK block. The RK block performs one of the three operation,

S-box operation or XOR operation with round counter or bypass both operations. The

output of RK block is the round key. There is misalignment of 6-bit between any two

consecutive round key generation with the exception of the first round. This offset of 6-bit

is compensated by using another 3-bit register B. So using multiplexer M2, M3 and M5

along with B, the the 3-bit shift is performed on the 19-bits data (16-bits from the RK

block and the 3-bits either from B or shift register output). The resulting 16 MSB bits are

given as input to the shift register. With this the 3-bit offset is compensated. Another 3-bit

are compensated by performing another 3-bit shift using 3-bits of A and 16-bits of shift

register output.

37

M1

M3

M4

M2
M5

16

2

16 16

13

Key16−bit shift

data_in

3

16

16

Round key

16 3

16
16

B
13

3

A

3

16

3

RK

1

5
3

16

13 3

16

Round

counter

Figure 5.3: Key scheduling of Present

38

Chapter 6: AES and xTEA

6.1 AES

6.1.1 Introduction

AES was selected and standardized by National Institute of Standards and Technology

(NIST)as a Federal Processing standard FIPS-197 [21] in 2001. AES is a 128-bit block

cipher with 128-, 192- and 256-bit key length. In this implementation,a 128-bit key is

considered. AES is throughly scrutinized and still considered to be secure. AES with 128-

key has 10 rounds apart from initial round key addition operation. Each round of operation

except the last round consists of four operation SubBytes, ShiftRows, MixColumn and

AddRoundKey. In the very last round, mixcolumn operation is skipped. AES algorithm

preforms operations on two-dimensional array of bytes call the State matrix.

6.1.2 Architecture and Implementation

This architecture was developed for ultra-low power applications for ASIC in [5]. In this

implementation, the input data and the key are stored in memory. Each AES transformation

and the key expansion load their operand in a specific order from the state memory or key

memory respectively and write them back. This process is streamlined by grouping the

AES transformation into four stages:

1. Initial ADDRoundKEY-SubBytes-ShiftRows

2. MixColums

3. AddRoundKey-SubBytes-ShiftRows

4. FinalAddRoundkey

39

R3

R4

R2

SBox

R1

R0

Rcon

Enc/H Keys

Data

Key Expansion

da
ta

bu
s

Mix Column

Figure 6.1: Top level block diagram of AES Datapth

This grouping allows re-use of registers and minimize the number of internal memory ac-

cess. This architecture has five 8-bit register R0, R1, R2, R3 and R4. Register R0 is used

exclusively for key storage and R2, R3 and R4 for state computations. R1 is used for key

computations except during MixCloumns operation. The boxes labeled Keys and Data are

the register files for the Round Keys and the State Memory respectively.

In the Initial ADDRoundkey-SubBytes-ShiftRows stage, the 128-bit data and the secret

key are read from the memory and ADDRoundkey, SubBytes and ShiftRows operations

are performed. The ADDRoundkey-SubBytes-ShiftRows is run for nine times with round

keys generated on the fly for ADDRoundKey. MixColumns are implemented by using the

method in [22]. In Final AddRoundkey stage, computing final round key and AddRoundkey

operation are performed.

6.2 xTEA

6.2.1 Introduction

The Tiny Encryption Algorithm (TEA) was developed by David Wheeler and Roger Need-

ham and presented in an unpublished technical report[23]. The authors eliminated the

weaknesses later found in the original TEA and called eXtended TEA (xTEA) for exten-

sion of TEA [24]. xTEA uses simple addition, XOR and shifts operations and has a small

40

size of code. These features make it ideal candidate for sensor nodes which have limited

memory and computational power. TEA was developed for software implementations but

its simple design makes it suitable for hardware implementations. TEA implementation

of both software and hardware are reported in [25], [26], [27], [28], and [4]. TEA for sen-

sor nodes are reported in TEA was designed for software implementation. Cryptanalysis

were performed on reduced round of xTEA in [29],[30]. The 32-round version of xTEA is

considered still to be secure.

6.2.2 xTEA Encryption Algorithm

Notations

¿ x logical left shift by x-bits.

À x logical right shift by x-bits.

⊕ bitwise XOR.

Algorithm and Implementation Architecture

xTEA is a 64-bit block cipher with 128-bit key length. The number of rounds typically are

32. Each of the 64-bit input blocks are split into two halves y and z. These two halves

are applied to the Feistel network and then mixed using integer addition modulo 232. The

variable z, y, and sum are of 32-bit size. The formula used for computing the new values

of y and Z is the same for both consisting permutation function and a subkey generation

are shown in 6.1 and 6.2.

G eneration of subkey consists the function k(sum) which selects the one of the four 32-

block of the original key depending on either bits 1 and 0, or bits 12 and 11 of the variable

sum. The subkey sk is XORed with output of the permutation function to generate the new

value. The simplified block diagram of the xTEA is shown in Fig 6.2. One round of TEA

computes new values of y and Z . Computation of each value can be viewed as half-round

as the same functions are used for both. A new value of sum is computed between first and

41

f

+/−

Keygen

f

XOR

+/−

Keygen

+/−

XOR

subkey

sum key

128

z/y

32 32 32

y/z

Halfround 1

Halfround 2

∆

subkey

Figure 6.2: Top level block diagram of xTEA

second half-round. It is incremented by a constant δ. This architecture was developed and

implemented on both ASICS and FPGAs in [4].

(z) = (z ¿ 4⊕ z À 5) + z (6.1)

f(y) = (y ¿ 4⊕ y À 5) + y (6.2)

sk = sum + k(sum) (6.3)

42

Chapter 7: Implementation Results

7.1 Tools Used

All the implementation described in Chapters 3, 4, and 5 are implemented on the smallest

device of the Xilinx Spartan-3 FPGA-XC3S50-5 using Xilinx ISE 9.2i for synthesis and

Active HDL 7.2 for simulation.

7.2 Comparison of Block cipher Elements

The Table 7.3 gives an overview of the functional elements of the block ciphers considered in

this thesis. AES has the least number of rounds while HIGHT and xTEA have the highest

number of rounds. AES, Camellia, and HIGHT use pre-whitening rounds while xTEA and

Present do not. Camellia, Present, and HIGHT have post-whitening rounds while AES and

xTEA do not. Of all the five ciphers , xTEA does have neither pre- nor post-whitening

rounds. xTEA and Camellia have a traditional feistel structure while HIGHT uses a different

feistel structure. AES, Camellia, and Present have SP networks for mixing the bits while

xTEA and HIGHT have addition modular 2W, XOR, and bitwise wise rotation operations

for mixing. AES uses eight 8x8 Sboxes of same type while Camellia uses eight 8x8 Sboxes

chosen from four different types. Present uses sixteen 4x4 Sboxes.

7.3 Results and Analysis of Light Weight Implementations

Implementing an 8x8 Sbox needs 64 slices while 4x4 Sbox needs 2 slices. This shows use

of 4x4 Sbox makes the design small. AES and Camellia occupies more area even though

they are scaled down to 8-bit implementations as they both use 8x8 Sboxes. In these im-

plementations AES and Camellia use only one Sbox. The Sboxes of AES and Camellia

43

occupy 16% and 20% of total design area. Our implementation of Present uses six 4x4

Sboxexs which occupy 10% of total design area. The AES and xTEA implementations use

register for data and key storage which leads to high area consumption. Camellia uses a

dual-port DRAM for data and two shift register for storing its two keys. The total area

of Camellia was huge due to 15- or 17-bit shifts in round key generatation. Implementing

shift which are multiples of 8 require less area. The same can be observed in Present’s key

schedule as its involves 61-bit shifts. Implementing permutation functions also increase the

area consumption and latency for light weight implemenations in FPGA. The latency of

AES and Camellia increased due to the permutation function resulting in reduced through-

put. Increase in area consumption by 25% and latency by nearly 93% are observed in

Present due to the permutation function. All results of light weight implemenations are

summarized in Table 7.2. TinyxTEA-3[5] has the highest throughput while AES [4] has

the lowest. Even though delay of Camellia is low, its throughput is reduced due to its

high latency. Present outperformed in throughput/area with 0.24Mbps/slice followed by

HIGHT with 0.21Mbps as these two are developed specifically for light weight cryptography.

In Table 7.3 we also compare our implementations with other smallest implementation

of block cipher along with the Estream portfolio stream ciphers. Table 7.3 consists of four

cluster, implementation developed in this thesis, implementations of AES and TinyxTEA

by one group, all block cipher implementations and finally stream ciphers. We believe

our implementation of Present and HIGHT only FPGA implementations to date. The

stream cipher have very higher throughput/area than all block cipher implementations

while maintaining a small area. Our implementations are so tiny that they can be used for

light weight cryptographic applications.

44

Table 7.1: Block cipher elements

Cipher B
lo

ck
si

ze

K
ey

si
ze

N
um

be
r

of
ro

un
ds

Fe
is

te
l

SP
ne

tw
or

k

A
dd

it
io

n
m

od
2w

S-
bo

xe
s

AES 128 128 10 Yes Yes
xTEA 64 128 32 Yes Yes

Camellia 128 128 18 Yes Yes Yes
Present 64 128 31 Yes Yes
HIGHT 64 128 32 Yes Yes

Table 7.2: Light weight implementation results

Cipher F
lip

flo
ps

L
U

T
s

R
A

M
s

Sh
ift

re
gi

st
er

s

DATA Key A
re

a(
sl

ic
es

)

D
el

ay
(n

s)

C
lo

ck
cy

cl
es

T
hr

ou
gh

pu
t

(M
bp

s)

T
hr

ou
gh

pu
t/

A
re

a(
M

bp
s/

sl
ic

e)

AES[5] 338 531 0 0 Register Register 393 14.21 534 16.86 0.04
TinyxTEA-3[4] 226 424 0 0 Register Register 254 15.97 112 35.79 0.14
TinyxTEA-1[4] 259 513 0 0 Register Register 266 13.87 240 19.23 0.07

Camellia 164 420 16 88 DRAM Shift 318 7.95 875 18.41 0.06
register

Present 114 159 0 35 Shift Shift 117 8.783 256 28.46 0.24
register register

HIGHT 34 149 8 53 Shift DRAM 97 11.17 279 20.53 0.21
register

45

Table 7.3: Results of our light weight implementation compared to other smallest imple-
mentation of block ciphers and the eSTREAM Portfolio ciphers on FPGA

Design M
ax

im
um

D
el

ay
(n

s)

C
lo

ck
C

yc
le

s

B
lo

ck
Si

ze
(b

it
s)

K
ey

Si
ze

(b
it

s)

A
re

a
(s

lic
es

)

B
lo

ck
R

A
M

s

T
hr

ou
gh

pu
t

(M
bp

s)

T
hr

ou
gh

pu
t/

A
re

a
(M

bp
s/

sl
ic

e)

Device
Camellia 7.95 875 128 128 318 0 18.41 0.06 xc3s50-5
Camellia 11.01 875 128 128 399 0 13.28 0.03 xc2s30-6
Present 8.783 256 64 128 117 0 28.46 0.24 xc3s50-5
HIGHT 11.17 279 64 128 97 0 20.53 0.21 xc3s50-5
AES[5] 14.21 534 128 128 393 0 16.86 0.04 Xc3s50-5

TinyXTEA-1 [4] 13.87 240 64 128 266 0 19.22 0.07 xc3s50-5
TinyXTEA-3 [4] 15.97 112 64 128 254 0 35.78 0.14 xc3s50-5

Camellia [12] 22.62 44 128 128 908 0 128.58 0.14 Xilinx VirtexE
Camellia [31] 18.28 18 128 128 1023 8 388.9 0.25 xc3s1000
Camellia [31] 17.34 18 128 128 1031 8 410.5 0.27 xc3s1000
AES 8-bit[32] 14.93 3900 128 128 124 2 2.2 0.01 xc2s15-6

AES [33] 16.67 46 128 128 222 3 166 0.32 xc2s30-6
Grain v1 [34] 5.10 1 1 80 44 0 196 4.45 xc3s50-5

Grain 128 [34] 5.10 1 1 128 50 0 196 3.92 xc3s50-5
MICKEY v2 [34] 4.29 1 1 80 115 0 233 2.03 xc3s50-5

MICKEY 128 [34] 4.48 1 1 128 176 0 223 1.27 xc3s50-5
Trivium [34] 4.17 1 1 80 50 0 240 4.80 xc3s50-5

Trivium (x64) [34] 4.74 1 64 80 344 0 13,504 39.26 xc3s400-5

46

Chapter 8: Differential Power Analysis Attacks

8.1 Test Equipment

In order to perform the DPA attack, the light weight architectures are implemented on

Xilinx Spartan3e starter board containing a XC3S500e-FG320-4 FPGA. The core voltage

net capacitances are removed for better data dependency power traces. The external power

supply unit is used for core voltages of FPGA. Power consumptions CMOSare measured

using a Tektronics CT-1 current probe and an Agilent DSO6054A oscilloscope, which has

a bandwidth of 500MHz and sampling rate of 4GSa/sec.

8.2 Attack Setup

A wrapper is build on top of the algorithm for performing the DPA attack. Wrapper consist

of 2x1 multiplexer for selecting key and data inputs to the algorithm along with a LFSR and

two counters. Random Plaintexts are generated by using an LFSR either 64-bit or 128-bit

depending on the block size needed. 2000 plaintexts are generated using the same seed for

LFSR. A different seed is employed for next set of plaintexts. One of the two counter is

used for generating trigger signal to identify the appropriate clock cycle for attack. We use

hamming distance model for all the attacks described in chapter 1. The algorithm are not

executed until the very end but are always reset after few cycles of trigger signal generation

and new data is loaded.

47

8.2.1 Notations Used

K =Actual key

Kguess =key guess 0≤ kguess ≤0xff

P =input plaintext

I =intermediate result

Pm =Measured power

Ps = Hypothetical power model values

8.3 DPA Attack on Camellia

Architecture of Camellia presented in this thesis makes it difficult to attack on pre-whitening

round. Modified key KA is computed using the datapath of round function and stored

initially in DRAM. KA is loaded into the shift register while the data XORed with pre-

whitening key is written into that location. The data in DRAM is unknown and the

incoming known data gets XORed with unknown pre-whitening key. The new data and

the previous data in that location is unknown which makes the attack difficult. We choose

to attack the round function to access the strength of round function against DPA, assuming

there is no pre-whitening round. With no pre-whitening round, known data is loaded into

DRAM. During the first clock cycle of the round operation, 8-bits of known data denoted by

P1 is XORed with 8-bit of unknown round key K. The result is applied to S-box data then

XORed with another 8-bits of known data denoted by P2. The result is written into address

location of P2. We attack at this point when the data is being written into that location.

This is repeated for all the 2000 encryptions performed. The hypothetical intermediate

values are calculated using Kguess as the key for different plain text inputs. The values of

Kguess are varied from 0 to 255. Ps is calculated using the hamming distance model using

equations 8.1 and 8.2. The Pm and Ps are correlated using equation 1.2 and the plot can

be seen in Fig 8.1. The attack was successful with 2000 power traces. This attack can be

repeated for calculation other key bits.

48

0 50 100 150 200 250 300
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

X: 161
Y: 0.09222

 key guess

 c
or

re
la

tio
n

Figure 8.1: Correlation plot for attack on round function of camellia

I = (sbox(P1 ⊕ kguess))⊕ P2) (8.1)

Ps = HD(I, P2) (8.2)

8.4 DPA Attack on HIGHT

The attack on HIGHT is performed on initial transformation round. We performed attack

two attacks one on an addition and the other on XOR operation of initial transformation

. Let P1, P2, P3 and P4 be the consecutive 8-bit data inputs. Let Ia be the intermediate

result for addition and Ix for XOR operation. Initially the shift register to store data is set

to zeros. In the first case, we attack when P2 is XORed with whitening key and the result

49

is written into block location 6 shown in Fig 3.4. The change of data in block 6 is from P1

to Ix during this operation. For the second case, we attack when P4 is added to whitening

key and the result is written into block 6. During this operation, the data changes from

P3 to P4. The Psx and Psa represents hypothetical values for XOR and addition operation

respectively. Values of Psx and Psa are calculated using equations 8.3, 8.4, 8.5 and 8.6. The

correlation plot for XOR operation attack have patterns but has a peak at the correct key

guess. The correlation plot for addition operation also involves patterns which did not have

any peak at the correct key guess. The correlation plots for 2000 power traces of XOR and

addition operation are shown in Fig 8.2 and Fig 8.3 respectively.

Ix = P4 ¢ Kguess (8.3)

Psx = HD(Ix, P1) (8.4)

Ia = P2 ⊕Kguess (8.5)

Psa = HD(Ia, P3) (8.6)

8.5 DPA Attack on xTEA

We perform the attack after the first half round operation. The attack point is when result

of the half round is being written into Z. The plaintext input P here is a 32-bit input as

xTEA is a 32-bit implementation. Let the T denotes the f(z) given by 6.1. For calculation

of Ps we only consider 8 MSB bits of the T denoted by T1. Let 8 MSB bits of P be denoted

by P1 The calculation of Ps are given by equations 8.7, 8.8 and 8.9. The correlation plot

for 1000 power traces is given by Fig 8.4.

50

0 50 100 150 200 250 300
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

X: 161
Y: 0.01928

 key guess

 c
or

re
la

tio
n

Figure 8.2: Correlation plot for attack on XOR operation in HIGHT

0 50 100 150 200 250 300
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

X: 36
Y: 0.01912

 key guess

 c
or

re
la

tio
n

Figure 8.3: Correlation plot for addition operation in initial transformation round of HIGHT

51

0 50 100 150 200 250

−0.1

−0.05

0

0.05

0.1

0.15
X: 168
Y: 0.1502

C
or

re
la

tio
n

Key Guess

Figure 8.4: Correlation plot of xTEA

T = ((P ¿ 4⊕ P À 5) + P) (8.7)

I = T1 ⊕Kguess (8.8)

Ps = HD(I, P1) (8.9)

8.6 DPA Attack on AES

The attack on AES is performed on computation of 8-bits of first round operation. On reset

the data in register R2, R3 and R4 in Fig 6.1 are set 0x00. In the next clock cycle, the

output of register R3 changes from 0x00 to 0x63 as its input is Sbox(R2). The output of

R2 is 0x00. The value in R2 changes from 0x00 to input data P . In the next clock cycle R3

changes from 0x00 to Sbox(P ⊕K). This is the clock cycle the attack is performed on R3.

Ps values are calculated using equations 8.10 and 8.11. The correlation plot for this attack

is shown in Fig 8.5.

52

0 50 100 150 200 250
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

X: 23
Y: 0.1442

 Key Guess

 C
or

re
la

tio
n

Figure 8.5: Correlation plot of AES

I = Sbox(P ⊕Kguess) (8.10)

Ps = HD(I, 0x63) (8.11)

8.7 DPA Attack on Present

We performed attack on first round of Present. Here the plaintext P is 16-bit data input

with 8 MSB bits are considered concatenation of two 4-bit P1, P2. The 8-bit key guess Kguess

is also considered concatenation of two 4-bit Kguess1, Kguess2. Initially zeros are loaded into

the second shift register in Fig 5.2. So in the first clock cycle of round operation, the 16-bit

plaintext is XORed with 16-bit round key and applied to four Sboxes. The resultant data

is written into the second shift register. So the data in the shift register changes from

all zeros to 16-bit output of first round. The Ps is calculated using equations 8.12 and

8.13. The correlation plot is given by Fig 8.6. The attack on Present was not successful

as the correlation plot did not contain the peak at the correct key guess even with 3000

power traces. We believe this is due to use of shift register which have very little power

53

0 50 100 150 200 250 300
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

X: 16
Y: 0.001932

 key guess

 c
or

re
la

tio
n

Figure 8.6: Correlation plot of Present

consumption due to change of bits.

I = Sbox(P1 ⊕Kguess1) ‖ Sbox(P2 ⊕Kguess2) (8.12)

Ps = HD(0x00, I) (8.13)

8.8 Results and Conclusions

The Table 8.1 summarizes the DPA attacks on all the five block cipher implementations.

From the results , we came to the following conclusions

• Use of registers for data and key storage are more vulnerable to DPA attacks followed

54

Table 8.1: Result of DPA attacks

cipher Targeted round N
um

be
r

of Sa
m

pl
es

K
ey

re
ve

al
ed

Camellia First round 3000 Yes
HIGHT XOR-Initial 3000 Yes

Transformation
HIGHT addition-Initial 3000 No

Transformation
xTEA First half 1000 Yes

round
AES First round 1000 Yes

Present First round 3000 No

by DRAMs and shift registers.

• Use of XOR operations make the algorithm more vulnerable to DPA than addition

operations.

The natural resistance of a physical implementation of cryptographic algorithm to DPA

depends on operations used in the algorithm and its implementation architecture. For

example, use of shift register make them more resistant to DPA then register for storage of

data and key.

55

Chapter 9: Future Work

In this thesis only Camellia, HIGHT and Present are optimized. These optimizations can

be extended for AES and xTEA. Implementing other light weight cipher like DES, DESXL,

Clefia and mCryton and analyzing them would be good area to explore. Analyzing in-

dividual components of cipher against DPA would be another another extension of this

work.

56

Bibliography

[1] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim, and S. Chee, “HIGHT: A new block cipher suitable for
low-resource device,” in CHES 2006, ser. LNCS, L. Goubin and M. Matsui, Eds., vol.
4249. International Association for Cryptologic Research, 2006, pp. 46–59.

[2] A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw,
Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-lightweight block cipher,” in Cryp-
tographic Hardware and Embedded Systems–CHES 2007, ser. Lecture Notes in Com-
puter Science (LNCS), vol. 4727. Springer, 2007, pp. 450–466.

[3] K. Paul, J. Joshua, and J. Benjamin, “Introduction to differential power analysis and
related attacks,” http://www.cryptography.com/resources/whitepapers/DPATechInfo.
pdf, 1998.

[4] J.-P. Kaps, “Chai-tea, cryptographic hardware implementations of xTEA,” in IN-
DOCRYPT 2008, ser. LNCS, D. Chowdhury, V. Rijmen, and A. Das, Eds., vol. 5365.
Heidelberg: Springer, Dec 2008, pp. 363–375.

[5] J.-P. Kaps and B. Sunar, “Energy comparison of AES and SHA-1 for ubiquitous com-
puting,” in Embedded and Ubiquitous Computing (EUC-06) Workshop Proceedings, ser.
Lecture Notes in Computer Science (LNCS), X. Z. et al., Ed., vol. 4097. Springer,
Aug 2006, pp. 372–381.

[6] M. Rawski, H. Selvaraj, and T. Luba, “An application of functional decomposition in
ROM-based FSM implementation in fpga devices,” J. Syst. Archit., vol. 51, no. 6-7,
pp. 424–434, 2005.

[7] V. Skylarov, “Synthesis and implementation of RAM-based finite state machines in
FPGAs,” in FPL ’00: Proceedings of the The Roadmap to Reconfigurable Computing,
10th International Workshop on Field-Programmable Logic and Applications. London,
UK: Springer-Verlag, 2000, pp. 718–728.

[8] I. Garcia-Vargas, R. Senhadji-Navarro, G. Jiménez-Moreno, A. Civit-Balcells, and
P. Guerra-Gutierrez, “Rom-based finite state machine implementation in low cost FP-
GAs,” in Industrial Electronics, 2007 ISIE 2007. IEEE International Symposium on,
June 2007, pp. 2342–2347.

[9] A. Tiwari and K. A. Tomko, “Saving power by mapping finite-state machines into
embedded memory blocks in fpgas,” in DATE ’04: Proceedings of the conference on
Design, automation and test in Europe. IEEE Computer Society, 2004, p. 20916.

57

[10] L. Young-Il, L. Je-Hoon, Y. Younggap, and C. Kyoung-Rok, “Implementation of
HIGHT cryptic circuit for RFID tag,” IEICE Electronics Express, vol. 6, no. 4, pp.
180–186, 2009.

[11] O. Ozen, K. Varici, C. Tezcan, and C. Kocair, “Lightweight block cipher revi-
sisted:cryptanalysis of reduced round PRESENT and HIGHT,” in Australasian Con-
ference on Information Security and Privacy -ACISP, vol. 5594, 2009, pp. 90–107.

[12] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita,
“Camellia: A 128-bit block cipher suitable for multiple platforms – design and analy-
sis,” in SAC 2000, ser. LNCS, vol. 2012. Springer, 2001, pp. 39–56.

[13] Final report of NESSIE, April 2004, https://www.cosic.esat.kuleuven.be/nessie/
Bookv015.pdf.

[14] J. Lu, J. Kim, N. Keller, and O. Dunkelman, “Improving the efficiency of impossible
differential cryptanalysis of reduced Camellia and MISTY1,” in CT-RSA 2008, ser.
LNCS, T. Malkin, Ed., vol. 4964. Berlin: Springer-Verlag, April 2008, pp. 370–386.

[15] D. Lei, L. Chao, and K. Feng, “New observation on Camellia,” in ACM Symposium
on Applied Computing 2006, ser. LNCS, B.Preneel and S. Tavares, Eds., vol. 3897.
Berlin: Springer-Verlag, February 2006, pp. 51–64.

[16] G. Jie and Z. Zhongya, “Improved collision attack on reduced round Camellia,” in
CANS 2006, ser. LNCS, D.Pointcheval, Y. Mu, and K.Chen, Eds., vol. 4301. Berlin:
Springer-Verlag, November 2006, pp. 189–190.

[17] E. Biham, R. Anderson, and L. Knudsen, “Serpent: A new block cipher proposal,” in
Fast Software Encryption,FSE 1998,, ser. Lecture Notes in Computer Science (LNCS),
vol. 1372. Springer,, January 1998, pp. 222–223.

[18] Data Encryption Standard, National Institute of Standards and Technology, FIPS Pub-
lication 46-3, October 1999, http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.
pdf.

[19] w. Meiqin, “Differential cryptanalysis of reduced-round PRESENT,” in Cryptographic
hardware and embedded systems – CHES 2008, ser. Lecture Notes in Computer Science
(LNCS), S. Vaudenay, Ed., vol. 5023. Springer, 2008, pp. 40–49.

[20] B. Collard and F.-x. Standaert, “A statistical saturation attack against the block cipher
PRESENT,” in CT-RSA, vol. 5473. Springer, 2009, pp. 195–210.

[21] AES, NIST, FIPS Publication 197, Nov 2001, http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

[22] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong authentication for RFID
systems using the AES algorithm,” in Cryptographic hardware and embedded systems
– CHES 2004, ser. Lecture Notes in Computer Science (LNCS), M. Joye and J.-J.
Quisquater, Eds., vol. 3156. Springer, Aug 2004, pp. 357–370.

[23] D. Wheeler and R. Needham, “TEA, a tiny encryption algorithm,” Cambridge Uni-
versity, England, Tech. Rep., Nov 1994.

58

[24] ——, “Correction to xtea,” Cambridge University, Tech. Rep., 1998.

[25] S. Liu, O. V. Gavrylyako, and P. G. Bradford, “Implementing the TEA algorithm on
sensors,” in ACM-SE 42: Proceedings of the 42nd annual Southeast regional conference.
New York, NY, USA: ACM Press, 2004, pp. 64–69.

[26] M. Pavlin, “Encryption using low cost microcontrollers,” in 42nd International Con-
ference on Microelectronics, Devices and Materials and the Workshop on MEMS and
NEMS. Society for Microelectronics Electronic, 2006, pp. 189–194.

[27] P. Israsena, “Securing ubiquitous and low-cost RFID using tiny encryption algorithm,”
in Symp. on Wireless Pervasive Computing. IEEE, Jan 2006, 4 pp.

[28] ——, “Design and implementation of low power hardware encryption for low cost secure
RFID using TEA,” in Information, Communications and Signal Processing, Dec 2005,
pp. 1402–1406.

[29] D. Moon, K. Hwang, W. Lee, S. Lee, and J. Lim, “Impossible differential cryptanalysis
of reduced round XTEA and TEA,” in Fast Software Encryption, FSE 2002, ser. LNCS,
J. Daemen and V. Rijmen, Eds., vol. 2365. Springer, 2002, pp. 49–60.

[30] J. C. H. Castro and P. I. Viñuela, “New results on the genetic cryptanalysis of TEA
and reduced-round versions of XTEA,” in Congress on Evolutionary Computation
CEC2004, vol. 2, 2004, pp. 2124–2129.

[31] D. Denning, I. James, and D. Malachy, “Compact iterative FPGA camellia algorithm
implementation,” in FPT 2004, December 2004, pp. 311–314.

[32] T. Good and M. Benaissa, “AES on FPGA from the fastest to the smallest.” in CHES
2005, ser. LNCS, J. R. Rao and B. Sunar, Eds., vol. 3659. Springer, 2005, pp. 427–440.

[33] P. Chodowiec and K. Gaj, “Very compact FPGA implementation of the AES algo-
rithm,” in CHES 2003, ser. LNCS, vol. 2779. Springer, Sep. 2003, pp. 319–333.

[34] D. Hwang, M. Chaney, S. Karanam, N. Ton, and K. Gaj, “Comparison of FPGA-
targeted hardware implementations of eSTREAM stream cipher candidates,” in SASC
2008, Feb 2008, pp. 151–162.

59

Curriculum Vitae

Panasayya Yalla received his Bachelor of Engineering degree from Sir C.R.Reddy College of
Engineering, Andhra Pradesh, India in 2006. He started workign towards his master’s degree
in George Mason University from 2007. He was involved in teaching various undergraduate
courses. He is also a member of Cryptographic Engineering Research Group (CERG).

60

