
LIGHTWEIGHT IMPLEMENTATIONS OF THE SHA-3

FINALIST KECCAK ON FPGAS

by

Smriti Gurung

A Thesis

Submitted to the

Graduate Faculty

of

George ~'1ason University

In Partial fulfillment of

The Requirements for the Degree

of

Master of Science

Computer Engineering

Committee:

~,c<'
Dr. Jens-Peter Kaps, Thesis Director

Dr. Kris Gaj, Committee Member

Dr. Bernd-Peter PaTis, Committee I\Iember

Dr. Andre Manitius, Department Chair
of Electrical and Computer Engineering

Dr. Lloyd J.Griffiths, Dean, ~¥~- Volgenau School of Engineering

Date: &. i {)() 1;;(,	 Spring Semester 2012
George Mason University
Fairfax, VA

Lightweight Implementations of the SHA-3
Finalist Keccak on FPGAs

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Smriti Gurung
Bachelor of Science

Delhi College of Engineering, 2008

Director: Jens-Peter Kaps, Professor
Department of Electrical and Computer Engineering

Spring Semester 2012
George Mason University

Fairfax, VA

Copyright c⃝ 2012 by Smriti Gurung
All Rights Reserved

ii

Dedication

I dedicate this thesis to my parents Gen. Umesh Kumar Gurung and Mrs. Uma Gurung
for their undying love and support towards my work.

iii

Acknowledgments

I would like to thank my advisor Dr Jens-Peter Kaps for his utmost faith towards my aca-
demic abilities. Without his friendly advice and encouragement this work would not have
been complete. Especially his ability to decrypt my somewhat incomprehensible queries at
times which helped a lot in our smooth communication. I am also thankful to my CERG
team members for their suggestions and ideas during and after our group meetings. In par-
ticular I would like to thank Rajesh, Panasaya, Kishore and Susheel for their unconditional
moral support and presence, even during ungodly hours of the day.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . ix

1 Introduction . 1

1.1 Hash . 1

1.2 Secure Hash Algorithms . 3

1.3 Previous Work and Motivation . 5

1.4 Assumptions and Goals . 6

1.5 Thesis Organization . 6

2 Secure Hash Algorithms . 7

2.1 Background . 7

2.2 Round 2 . 8

3 Methodology . 10

3.1 Tool selection and Benchmarking . 10

3.2 Interface and Protocol . 10

3.2.1 Interface . 10

3.2.2 Protocol . 11

3.3 Performance Metrics . 12

3.4 Spartan-3 Architecture overview . 14

3.5 Design Process . 15

3.5.1 Phase I: Architectural Overview . 15

3.5.2 Phase II: Area Minimization Tecchniques 21

4 Keccak . 25

4.1 Introduction . 25

4.1.1 Notations . 27

4.1.2 Constants . 29

4.2 Keccak-256 . 30

4.2.1 Round Mode . 30

4.3 Block Diagram Of Keccak-256 . 32

v

5 Lightweight Implementations of Keccak . 33

5.1 Scheduling Data Flow in Keccak . 33

5.2 Design I . 34

5.3 Design II . 37

5.4 Design III . 39

5.5 Design IV . 41

5.6 Design V: Distributed RAM Architecture 42

6 Results and Conclusions . 45

6.1 Results and Analysis of Lightweight Implementations 45

6.2 Comparison Of SHA 3 Finalists . 48

6.3 Comparison with Other Published Results 50

6.4 Conclusion . 51

Bibliography . 55

vi

List of Tables

Table Page

1.1 Collision Resistance of SHA . 4

2.1 SHA-3 Round 1 Candidate . 8

2.2 SHA-3 Round 2 Candidate . 8

4.1 Parameters for Keccak . 27

4.2 r[x,y] Cyclic Shift Offsets . 29

4.3 Round Constants [RC] . 29

5.1 Function I : Pipelining of θ , ρ and π Function 34

5.2 Modified Rotator Offset Combinations . 44

6.1 Datapath Summary for Different Schemes of Keccak-256 Implemented . . . 45

6.2 Throughput Formulae for Different Implementations of Keccak 46

6.3 Results on Xilinx Spartan-3 . 48

6.4 Comparison of Lightweight Implementations of SHA-3 finalists on Xilinx FP-

GAs . 50

6.5 Implementation Results of Keccak on Xilinx 52

6.6 Implementation Results of our implementations of SHA-3 Candidates . . . 53

6.7 Implementation Results of SHA-3 Finalists on Altera 54

vii

List of Figures

Figure Page

1.1 Hash Digest . 2

1.2 Hash Application in Digital Signature . 3

3.1 SHA Core . 11

3.2 Message Length Known and Message Length Unkown 12

3.3 Spartan-3 Architecture . 16

3.4 Basic Components in CLB . 17

3.5 Configuration Logic Block Architecture . 18

3.6 Single and Dual Port Distributed RAMs . 19

3.7 LUT Configured as an Addressable Shift Register 19

3.8 Single and Dual Port Block RAMs . 20

3.9 Block RAM Timing Diagram . 21

3.10 Folding . 22

3.11 Pipelining . 23

4.1 Sponge Construction . 25

4.2 State and Lane . 28

4.3 Block Diagram For Keccak . 32

5.1 Datapath of Basic Keccak Design I . 35

5.2 64 bit Barrel Shifter . 35

5.3 Datapath of Keccak Design II . 37

5.4 16 bit Barrel Shifter . 38

5.5 Modified Offset Rotator . 39

5.6 Datapath of Keccak Design III . 40

5.7 Datapath of Keccak Design IV . 42

5.8 Datapath of Distributed RAM Based Architecture for Keccak 43

6.1 Area Consumption on Xilinx Devices . 47

6.2 Throughput Versus Area Performance on Xilinx Devices 47

6.3 Throughput Over Area Ratio on Xilinx and Altera Devices 49

viii

Abstract

LIGHTWEIGHT IMPLEMENTATIONS OF THE SHA-3
FINALIST KECCAK ON FPGAS

Smriti Gurung, MS

George Mason University, 2012

Thesis Director: Dr. Jens-Peter Kaps

The Secure Hash Algorithm (SHA) is a cryptographic hash function published by the

National Institute of Standard and Technology (NIST) as a U.S Federal Information and

Processing Standard (FIPS). In the past few years, a flaw discovered in the SHA-1 shows

its vulnerability to attacks. The current hashing standard SHA-2 which shares similarities

to SHA-1 is therefore under scrutiny for a possible attack. In 2007, NIST announced the

SHA-3 competition in hopes of finding a new algorithm with higher margin of security and

which is also more efficient in terms of software and hardware performance. Out of the

51 candidates selected in round one, only five remain in the third and final round namely

BLAKE, Grostl, JH, Keccak and Skein.

So far, several high speed implementations of the SHA-3 algorithms on FPGAs have been

published. However, these implementations become impractical for resource constrained

environments where area is a limitation for e.g small battery powered hand held devices.

Our goal was to design different lightweight architectures for the sponge construction based

algorithm Keccak. We tried to evaluate its performance with respect to its scalability. In

this study all the implementations were designed with an area constraint of 800 slices or

400-600 slices and one block RAM, targeting the low cost Spartan-3 devices. Designs were

also synthesized on different Xilinx and Altera devices for comparison with other published

results. Although our implementation of Keccak is one of the smallest reported so far, this

reduction came at the cost of lower throughput to area ratio.

Chapter 1: Introduction

1.1 Hash

The introduction of computers has brought about the need for automated tools to protect

the files and information stored on it. Such a need is even more acute for systems that can

be accessed over telephone network, data network, or the Internet. Secure communication

for transmitting data free from attacks by unauthorizes users is of utmost concern to us.

Thus in order to prevent and detect cheating or other malicious activities we employ cryp-

tography, a set of means or techniques for providing information security. The framework

of cryptography is based on four important goals

• Confidentiality : Secrecy from unauthorized individuals.

• Data integrity : Protection from unauthorized alteration of data.

• Authentication: Related to the identification of both the parties involved in the com-

munication.

• Non-Repudiation : A service which prevents an entity from denying previous commit-

ments or actions during a dispute.

There are three types of cryptographic algorithms: Message Encryption, Message Au-

thentication Code (MAC) and Hash functions.

To provide data integrity, any message could be simply encrypted. But the heavy

mathematical functions involved utilize bulk of the CPU resources thus incurring large

overheads. To reduce this load, certain applications use a lightweight procedure called a one-

way hash or simply hash functions. Unlike Message Encryption and MAC, hash functions

have no key. A hash function accepts a variable-size message M as input and produces a

1

Variable−size

M

y=H(M)

message

hash
function H

Message digest

fixed size

Figure 1.1: Hash Digest

fixed-size output, referred to as a hash code H(M). The hash code is also referred to as a

Message Digest or Hash Value.

Typical application of Hash function includes Universal Unique Identifiers (UUID/GUID),

Password tables, Random Number Generators and many more. But they finds their major

application in Digital Signatures. As shown in Fig. 1.2 the messages being sent from Alice

typically include both the plain text (unencrypted) and a digest of the message(encrypted).

The hash algorithm is applied to the received plain text at Bob‘s end and if the result

matches the message digest received, this means the received data was not altered. The

message digest is, in some senses, similar in concept to a checksum but has significantly

different mathematical properties.

To sum it up the basic requirements for a cryptographic hash function H are as follows

• H should accept data of any size as input.

• H should produce a fixed-length output no matter what the length of the input data

is.

• Given a message digest h, it is computationally difficult to find a message M such that

H(M) = y. This is called the one-way or preimage resistance property.

2

Function

Cipher

Hash#1 Hash#1 = ?

Message

BobAlice

Alice’s private key Alice’s public key

Signature

Hash
Function

Hash

Public Key
Cipher

Public Key

Figure 1.2: Hash Application in Digital Signature

• Given a message M1, it is computationally infeasible to find another message M2 with

H(M1) = H(M2). This is called the second preimage resistance property.

• These can be compared with a collision attack, which involves finding two arbitrarily

different messages M1 and M2 such that H(M1) = H(M2).

A good cryptographic function is always collision resistant such that a change as small

as a single digit in the input message should produce a large change in the hash value of the

message. The hash digest then produced is like a digital fingerprint of a message M that

is unique. These properties are therefore required in order to prevent or withstand certain

types of attacks which may render a cryptographic hash function useless and insecure.

1.2 Secure Hash Algorithms

The Secure Hash Standard (SHS) is a set of cryptographically secure hash algorithms spec-

ified by the National Institute of Standards and Technology (NIST)[1]. This Standard

specifies five secure hash algorithms (SHA) namely SHA-1, SHA-224, SHA-256, SHA-384,

and SHA-512. The SHA is a cryptographic one-way hash functions that can process a

message to produce a condensed representation called a Message Digest. This is used in

3

Table 1.1: Collision Resistance of SHA

HASH COLISSIONS SECOND PREIMAGE PREIMAGE

SHA−0 (80 rounds) 239 upto 52 rounds upto 52 rounds

SHA−1 (80 rounds) 260.3 upto 48 rounds upto 48 rounds

SHA−256 (64 rounds) upto 24 rounds upto 43 rounds upto 43 rounds

SHA−512 (80 rounds) upto 24 rounds upto 46 rounds upto 46 rounds

the generation and verification of Digital Signatures, Message Authentication Codes and

in the generation of Random Numbers or bits. The Table 1.1 gives an overview of the

security, namely the collision and the preimage resistance provided by the current Federal

Information Processing Standard (FIPS).

In 2005 the NIST approved SHA-1 standard showed potential vulnerability towards seri-

ous attacks. One such proposed attack was published in [2]. This casted a shadow of doubt

towards the current FIPS standard SHA-2, due to its similarities to SHA-1. In Novem-

ber 2007, after receiving public feedback and comments, the NIST officially announced the

SHA-3 competition in hopes of finding a new hashing standard with better security mar-

gin and hardware-software performance than the current SHA-2. Out of the 64 candidates

submitted on October 2008 only 51 entered the first round. By the second round this was

downsized to 14 candidates. During this period NIST allowed the authors to make small

tweaks in their respective algorithms. These tweaks were such that they did not invalidate

previous results. The candidates for the third and final round were announced in December

2012. They are BLAKE, Grostl, JH, Keccak and Skein.

The Third SHA-3 conference was held in Washington DC on Mar 22-23, 2012. This was

the last opportunity for many cryptographers and cryptanalyst to submit their findings on

the studies of these SHA-3 algorithms. Based on the valuable feedback from the public and

the judgment by the NIST panel, it is expected that the NIST would announce the winner

of the new SHA-3 standard before the Fall of 2012.

4

1.3 Previous Work and Motivation

The main selection criteria for a good cryptographic hash function after security is perfor-

mance in software and hardware. For hardware implementations the two major platforms

are Application Specific Integrated Circui t(ASICs) and Field Programmable Gate Arrays

(FPGAs).

When considering hardware implementations, apart from speed the scalability of the

algorithm also plays an important role. Reconfigurability at run time, design re-usability,

low non recurring engineering costs and faster time to market make the FPGA preferable

at certain times. With the development of low power and low cost FPGAs, implementing

applications that use cryptographic hash functions (along with some other component)

especially for resource constrained environments like battery powered hand held devices, on

FPGAs thus seems a logical choice.

Most of the implementations that were reported so far [3], [4], [5] were on based on high

speed implementations on FPGAs. To be an all round candidate, it is thus important that

the SHA-3 algorithms perform well on resource constrained environments. The goal is to

implement them as small as possible, but it is also important to take the throughput into

consideration while designing. With respect to the basic architectures of the algorithms that

can be built in a straightforward fashion, the reduction in the datapath for compact imple-

mentations may sometimes lead to unrealistic clock cycles or complex controller logic. This

is due to interdependencies among intermediate values in forthcoming functions. This leads

to unrealistic processing time and low throughput. Thus the best compact implementation

would be the one that offers optimum trade off between speed and area.

One of the finalists for SHA-3 is the sponge based construction, Keccak, that is claimed

to have provable security against all generic attacks. It is one of the best algorithms while

considering high speed implementations on FPGAs [3],[4]. Only two low area implemen-

tations [6], [7] have been reported for the so far. Still rating the finalists is an issue as

they are implemented on different target devices as well as vary in wide range for area and

throughput. In order to have a fair comparison among finalists we thus decided to design

5

Keccak in a given area budget with maximum throughput to area ratio. We also decided

to implement it on other devices of Xilinx and Altera for comparison with other reported

results.

1.4 Assumptions and Goals

Only 256 digest version of the algorithm was implemented. Since implementing for low area

alone may lead to unrealistic run times therefore our primary optimization goal at the end

was to get the best throughput to area architecture within the given area target. Compact

implementations requires the storage of initial and intermediate states as well as constants.

For this purpose we decided to design architectures with one Block RAM and 400-600 slices

or with only 800 slices targeting the low cost Spartan-3 device. We firstly compared the

implementations of the other SHA-3 round 2 candidates by the Cryptographic Engineering

Research Group (CERG) with similar constraints. The area budget was then determined

by the range of area over which they varied as well as the results reported on the SHA3

Zoo [8] at that time.

1.5 Thesis Organization

Chapter 2 acts as a guide to the SHA-3 competition so far. Chapter 3 focuses on the

protocols and the design methodology adopted for our implementations. In the subsequent

chapters we give a short introduction to the algorithm Keccak, and then move on to the dif-

ferent architectures implemented on various Xilinx and Altera devices. In the final chapter

we look at the results of our implementations and conclude.

6

Chapter 2: Secure Hash Algorithms

2.1 Background

In 2005, a paper on collision search attack on SHA-1 [2] was published. This paper claimed

that collisions of SHA-1 could be found with complexity < 269 hash operations. This was

a joint effort by a team of two researchers Xiao Yunwang and Hong Boyu of Shandong

University, China, along with Yiqun Lisa Yin an independent security consultant in the

United States. Although the current standard is SHA-2, yet its similarity to SHA-1 poses

a possible threat to its security also.

Due to these serious attacks, NIST held workshops to assess the status of its approved

hash function . As a result of the response they received, the NIST has decided to develop

a new HASH function through public competition similar to Advanced Encryption Stan-

dard (AES). In January 2007, NIST publicly announced the SHA-3 competition and asked

for public comments. By October 2008, 64 submissions were received. Adhering to the

minimum acceptability requirements only 51 made it to the round 1.

The first SHA-3 conference was held in Feburary 2009. At that point in time NIST

discarded 27 out of the 51 submissions that had been considered broken by then. MD6

designed by Ron Rivest was also withdrawn during this time. The reason they cited was

the inability to provide a substantial proof for the security of the reduced round MD6

against differential attacks. At the point when the candidates were down to 23, the NIST

allowed them to make some suitable tweaks to the algorithms that would not substantially

affect their previous analysis. Finally in July 2009 only 14 candidates entered the round 2.

7

Table 2.1: SHA-3 Round 1 Candidate

Abacus ARIRANG AURORA Blake Blender

BMW Boole Cheetah CHI CRUNCH

CubeHash DCH Dynamic SHA Dynamic SHA2 ECHO

ECOH EDON−R Enrupt ESSENCE FSB

FUGUE Grostl HAMSI JH Keccak

Khichdi 1 Lane Luffa LUX MCSSHA−3

MD6 MeshHash NaSHA NKS2D SANDstorm

Sarmal Sgail Shabal SHAMATA SIMD

SKein SHAvite−3 Spectral Hash StreamHash Swifftx

TANGLE TIB3 Twister Vortex WaMM

Waterfall

Table 2.2: SHA-3 Round 2 Candidate

Blake BMW CubeHash ECHO FUGUE

Grostl HAMSI JH Keccak Luffa

Shabal SHAvite−3 SIMD Skein

2.2 Round 2

The Second SHA-3 conference was held in August 2010. The Table 2.2 shows the list of the

14 round 2 candidates.

Many papers and presentations focused on different criteria like cryptanalysis, design

diversity and hardware and software performances. Despite the input from various sources,

it was still difficult to pin point a clear winner in the overall categories. Up till now

many implementations in hardware have also been done by multiple research groups and

individuals on ASICs and FPGAs. A Comprehensive list and links of these implementations

can be found at [8]. At the end of 2010, the five finalists were announced as Blake, Grostl,

JH, Keccak and Skein. From then until the period leading to Third SHA-3 conference in

8

March 2012 the remaining finalist were attacked, analyzed and implemented on various

hardware and software platforms. The analysis and findings by many groups were thus

presented at the conference in hopes of contributing to NISTs criteria in picking out a

winner. Currently the NIST is deliberating over the finalists based on their evaluation

criteria and analyzing results from various public sources available. In the next few months

the new SHA-3 will finally be chosen. The only possible best guess about the winner is that

the new SHA-3 will be the one who offers optimal security, lesser performance requirements

and faster than the current SHA standard.

9

Chapter 3: Methodology

3.1 Tool selection and Benchmarking

All the initial designs targeted the Spartan-3 FPGA. This meant that we had to explore the

architecture of Spartan-3 device, in order to get the best possible our low area design of our

implementation of the algorithm. Looking at the implementations by other groups [6], [7]

on various Xilinx devices, we also implemented our designs further on Virtex-5, Virtex-6,

Spartan-6 and Cyclone II devices. This was based on our interest to see how our designs

would perform on other families of FPGAs. All designs were implemented using the vendor

tools: Xilinx ISE 13.3 Web Pack and Altera Quartus II v. 10.0Web Edition. All results

were generated using the open source benchmarking tool ATHENa (Automated Tool for

Hardware EvaluatioN) [9].

3.2 Interface and Protocol

3.2.1 Interface

The I/O interface and the protocol for our implementation is based on the one suggested in

[10]. In a typical scenario we assume that our SHA-3 core is surrounded by two FIFOs at

the input and the out put. The SHA core is the active component that acts as a wrapper

around our implementation while the FIFO is a w bit wide register that is used to hold

intermediate data between two cores during processing. With the help of some handshaking

protocols the FIFO acts as a source of synchronization between two interfaces working at

different frequency or rates. For our version of the lightweight implementation we will be

considering the w = 16 bit data bus width.

10

CORE
din

dst_read

dst_ready

dout

src_ready

src_read

clk

clk rst

rst

w wSHA

Figure 3.1: SHA Core

3.2.2 Protocol

The protocol or the format of the input data is based on two scenarios

1. When the message length is known in advance

The message is transmitted as a single chunk or segment, having the message length

after padding “msg len ap” as the first 32-bit word, concatenated with a ’1’, followed

by message length before padding “msg len bp” in bits followed by the message. For

some algorithms “msg len bp” is required for computation even after padding the

message.

2. When the message length is not known

In this case the message is processed in segments seg0, · · · , segn−1. The segments

seg0, · · · , segn−2 are headed by “seg len ap” concatenated with a ’0’, this means that

there are more segments of the message coming in. The final segment segn−1 has

“seg len ap” concatenated with ’1’ and followed by “seg len bp” followed by the mes-

sage and all the padding bits. The padding for the time being is considered to be

done in software for all purposes.

11

 Message

0

w bits

seg_len_ap0

seg0

seg_len_ap1 0

segi

seg_len_bpi

seg_len_api 1

seg1

1

msg_len_bp

msg_len_ap

w

Figure 3.2: a) Message Length Known b) Message Length Unkown

msg len ap =

n−1∑
i=0

seg len api · 32

msg len bp =
n−2∑
i=0

seg len api · 32 + seg len bpn−1

The maximum amount of data that can be processed in a single block is therefore limited

to 232 bits or 4 Giga bytes which we assume is sufficient for such small implementations.

3.3 Performance Metrics

When considering the performance metrics it is very difficult to determine what would

be the best possible means to judge the performance by. When talking about hardware

performance it could be cycles per block, cycles per byte, Latency (cycles), Latency (ns),

12

Throughput for long messages, Throughput for short messages, Throughput at 100 KHz,

Clock Frequency, Clock Period, Critical Path Delay etc. The favoured parameter in general

however is Throughput (Mbits per sec) and Latency (ns). This is because they allow easy

cross-comparison among implementations in software (microprocessors), FPGAs (various

vendors) and ASICs (various libraries).

One of the key factors on which the performance depends on is the number of clock

cycles it takes to hash N blocks of message. The number of clock cycles needed to hash

N -blocks of message is given by the formula :

No.ofclk cycles = i+ h+ l1 + l · (N − 1) + p ·N + z + o

i Initialization (if not precomputed) p Processing one block

h Loading protocol header of message z Finalization

l1 Loading first block o Output of the hash value

l Loading each subsequent block

Each of these specify the number of clock cycles required to perform that particular function.

This formula can be simplified as

• Initial steps before processing : st = i+ h+ (l1− l)

• Loading and processing of one message block : (l + p)T

• The hashing out and finalization : end = z + o

Thus the number of clock cycles to hash N -blocks of data:

No.ofclk cycles = st+ (l + p) ·N + end

Another performance metrics that is of concern to us is the throughput. It is defined as

the number of input bits processed per unit time. The throughput of the hash function is

13

dependent on the number of message blocks N that is to be hashed, the number of clock

cycles to process one message block, block size b of the algorithm and the delay per clock

period T . Therefore throughput of a hash function can be given as:

throughput(N) =
b ·N
clk · T

=
b ·N

(st+ (l + p) ·N + end) · T

For short messages we assume that there is only one block of message after padding.

This makes the value of N = 1 in the above equation for computing the throughput. For

long messages, the st and end are only considered once at the begining and the finalization

of the message. So it makes a negligible effect on throughput. This leads us to the simplified

equation for throughput of long messages, which is

throughputlong =
b

(l + p) · T

3.4 Spartan-3 Architecture overview

We targeted the low cost Spartan-3 FPGA. This family of FPGAs are low cost integrated

circuits made of 100,000 to 1.6 million system gates. In order to implement the design

an overview of the resources available to us is also very important. Referring to [11] the

Spartan-3 architecture has five basic components :

• Configurable Logic Blocks (CLBs)

Consists of RAM based look up table to implement logic and storage elements that

can be used as flip-flops or latches. CLBs can be programmed to perform a wide

variety of logic functions as well as store data.

• Input Output Blocks (IOBs)

Controls the flow of data between IO pins and internal logic. Each IOB supports

bidirectional data flow, 3-state operation, and numerous different signal standards.

14

• Block RAM (BRAM)

Provides data storage in the form of 18-kbit dual-port/single-port blocks.

• 18 bit Multiplier Blocks

Accepts two 18 bit binary numbers as input to calculate the product.

• Digital Clock Manager (DCM)

Provides means for distributing, delaying, multiplying, dividing and phase shifting

clock signals.

These elements are organized as shown in the Fig. 3.3

3.5 Design Process

Given the set of specifications and interface that we are going to use, designing any algorithm

now requires two phases

• Phase I

Identifying the resources available on that particular implementation device and ex-

ploring the ones we require for our implementation.

• Phase II

Identifying the area minimization techniques applicable on the algorithm based on its

functionality and the resources available on the device.

3.5.1 Phase I: Architectural Overview

The initial step requires us to study the algorithm in detail and then design a pseudo code

based on our understanding. This means we need to identify and list out the important

functions it performs. For Keccak the only major functions it has is Cyclic Shift Offset,

XOR and other logic functions. It has a huge internal state of1600 bits, divided into 25

words of 64 bits each. Intermediate values generated during operations needs to be stored

for future processing. Using registers to store such huge data consumes a lot of area. Instead

15

DCM

Block RAM MULTIPLIER

CLBs

IOBs

Figure 3.3: Spartan-3 Architecture

16

the embedded memory resource available looks like a better compact option. Out of the

five major components we identified on the Spartan-3 device it is observed that we require

3 of them namely The CLBs, IOBs and the Block RAM. The next step is then to explore

these components in a bit detail.

1. Configurable Logic Blocks (CLBs)

M
ux

Carry

4LUT

RAM

Register

M
ux

Carry

Register

M
ux

Carry

4LUT

RAM

4LUT

RAM

Register

M
ux

Carry

M
ux

Register

M
ux

Carry

M
ux

4LUT

RAM

Register

Carry

Register

Carry

Slice 1

Slice 2

SLICE L SLICE M

Slice 3

Slice 4

4LUT

4LUT

Register

M
ux

Carry

Register

Figure 3.4: Basic Components in CLB

The Configurable Logic Blocks (CLBs) is the main logic resource for implementing

synchronous as well as combinatorial circuits. A CLB is composed of four slices, each

slice further contains two sets of four input Look-Up Tables (LUTs) to implement

logic and two dedicated storage elements that can be used as flip-flops or latches.

The two 4-input LUTs may be used as a 16X1 memory (RAM16) or as a 16-bit shift

register (SRL16), while additional multiplexers and carry logic simplify wide logic and

arithmetic functions. Since Each LUT has four inputs this implies that any logical

function with four inputs can be easily implemented in a Look Up Table. Since a slice

17

is composed of such two LUTs, all logical functions are automatically mapped to the

slice resources in the CLBs. Therefore this knowledge aids in estimating the number

of slices required. This is particularly useful when trying to optimize a design.

Right Hand SLICELLeft Hand SLICEM

Interconnect
to Neighbours

SLICE
X1Y1

SLICE
X1Y0

SLICE
X0Y0

Matrix
Switch

SLICE
X0Y1

CLB

COUT

CIN

COUT

Shiftin
Shiftout

CIN

Figure 3.5: Configuration Logic Block Architecture

2. Distributed RAM

In a CLB, the LUT within each SLICEM function generator resource optionally im-

plements a 16-deep x 1-bit synchronous RAM. The LUTs within a SLICEL slice do

not have distributed RAM. Distributed RAM writes synchronously and reads asyn-

chronously. However, if required the register associated with each LUT could imple-

ment a synchronous read function. Distributed RAM are sometimes preferred over

Block RAM in many high-performance applications that require relatively small em-

bedded RAM blocks, such as FIFOs or small register files. The Distributed RAM can

be implemented in two ways :

• Single-port RAM with synchronous write and asynchronous read. Synchronous

reads are possible using the flip-flop associated with distributed RAM.

• Dual-port RAM with one synchronous write and two asynchronous read ports.

18

Like single-port RAMs synchronous reads are possible.

The four LUTs in each CLB allows us to configure a 64-bits single port RAM or a

32-bit dual port RAM shown in Fig. 3.6.

DATAOUT

ADDRESS

WRITE

WCLK

DATAIN DATAOUT DATAOUT

WCLK

WRITEREAD

READ

READ/WRITE PORT

SINGLE PORT

DATAIN

ADDRESS

DATAIN

DUAL PORT RAM

 RAM

Figure 3.6: Single and Dual Port Distributed RAMs

3. Shift Registers

The Look-Up Table (LUT) in a SLICEM can configured as a 16 bit shift register,

Figure 3.7: LUT Configured as an Addressable Shift Register

called SRL16. The Shift-in operations are synchronous with the clock. A separate

dedicated output allows the possibility of cascading multiple 16-bit shift registers in

19

order to create a shift register of any needed size. Thus each CLB resource can be

configured using four of the eight LUTs as a 64-bit shift register. The Look-Up Table

can be described as a 16:1 multiplexer. The four inputs serve as select lines for the

data programmed into the Look-Up Table. With the SRL16 configuration, the fixed

LUT values are configured instead as an addressable shift register.

4. Block RAM

Single PortBRAM

Port−B

CLK

ENA
WEA

DINA
ADDRA

ENB
WEB

ADDRB
DINB

DOA

DOB

DOUTCLK

EN

WEN

ADDR

DIN

Port−A

Figure 3.8: Single and Dual Port Block RAMs

Storing large amount of data in the logic resources is a waste of space as they consume

a lot of area. Instead, a dedicated resource on the device called Block RAMs are used

for this purpose. The [12] is a good source to understand BRAMs present in Spartan-

3 FPGAs. BRAMs have large memory space of upto 18kbits to store data but are

limited by the number of I/O ports available. Like DRAMs they can be configured in

two modes i.e either a single port of 64-bits or dual port with 32 bits on each port.

The dual port BRAM has two completely independent access ports. The addressing

associated with the ports is independent of each other and so are the read and the

write operations. Both the ports are governed by their own individual clocks which

can either be synchronized to a single clock or both can run at different frequencies.

Generally in practice we prefer to source them by the same clock. Because of the

limited number of ports available, the amount of data that can be read and written

during a clock cycle is also limited. There are two modes of operation that you can

20

set your Block RAM to work in

• Read First Write Next mode :

It reads the old data from the memory location being addressed in that particular

clock cycle before updating that memory location with the new data available

at.

• Write First Read Next mode:

In this mode of operation the memory location being addressed gets updated

with the new data at its input, and this new data is then read out. In this mode

the previous stored value thus gets lost.

We prefer to use the read first write next mode. An important thing to remember is

that,for BRAM the data is written to the address applied in the current clock cycle,

but data read out is from the address given in the previous clock cycle. In Fig. 3.9

”00” is the address location given during the first clock cycle, while the data is read

out from that location during the second clock cycle.The data available at the input

port during the second clock cycle is M[01] which is read in and stored at location

”01” addressed during that clock cycle.

M([01])

clk

M_ADDR

DIN

DOUT

00

[00] [01]

02

M([02])

01

Figure 3.9: Block RAM Timing Diagram

3.5.2 Phase II: Area Minimization Tecchniques

1. Datapath

Thinking about the area minimization techniques, the most obivious approach that

21

one can think of is folding. This can either be horizontal folding or vertical folding

as shown in Fig. 3.10. The folding depends on the kind of parallelism the algorithm

has along its vertical or horizontal axis. In horizontal folding the critical path gets

reduced by the factor by which it was folded. While in vertical folding folding the

number of bits processed in clock cycle gets reduced. In both the cases the area gets

reduced but the number of clock cycles increases comparably by the folding factor.

Again the extent of folding depends on parallelism certain sub functions have in the

algorithm.

Horizontal Folding by 2

0 1

s

s

0 1

s/2 R/2

s/2

0 1

s

s

s

R/2
s/2

Vertical Folding by 2

Figure 3.10: Folding

Another method which is generally used to increase the overall throughput of any

system is Pipelining as shown in Fig. 3.11. This involves performing multiple tasks

simultaneously using different resources. By using registers an instruction can be di-

vided into stages. The potential speed up depends on the number of pipeline stages.

The output of each stage may serve as an input to the next stage which allows smooth

data forwarding. However there are limitation to pipelining such as if an instruction

depends on the result of a prior instruction still in the pipeline. In such cases the

data needs to be stored and forwarded at the right time. This involves interleaving

computations between two pipeline stages and is known as quasi-pipelining. This may

22

require introduction of stalls at certain stages in order to wait for data needed by cer-

tain functional units which may require certain cycles before proceeding forward. This

is to ensure the correct functionality of the algorithm during the execution of multi-

ple cycles simultaneously. We may also perform certain independent computations to

refrain from wasting clock cycles.

6

Inst.2 Inst.3 Inst.4

Inst.1 Inst.2 Inst.3 Inst.4

Inst.1 Inst.2 Inst.3 Inst.4

Inst.1 Inst.2 Inst.3 Inst.4

PIPELINED INSTRUCTIONS

Time

Stages

0 1 2 3

0

1

3

2

Inst.1

4 5

Figure 3.11: Pipelining

The last technique is the Rescheduling. At certain points even during pipelining

it is observed that data interdependencies may lead to introduction of stalls in the

pipeline. This increases the depth of the pipeline stages which could potentially lead

to slow down in our over all system. By rescheduling of data in certain manner

during pipelining we want the subsequent data generated to be independent so that

the pipelined stall are eliminated or at least reduced. At the same time the overall

functionality of the algorithm is not affected.

2. Controller

Designing of the controller for any low area implementation is a challenge. The con-

troller typically consists of Finite State Machines (FSM), ROMs to store the control

signals, Counter to calculate the clock cycles during each state and few registers to

23

hold in certain data or states. The area of a controller is mostly dependent on the size

of the ROM. The control signals define the width of the ROM while the clock cycles

define its depth. As the area of the datapath reduces, the number of clock cycles

incresase as well as the switching pattern between control signals. This increases the

size of the ROM and thus overall area in such a way that in certain cases the size of the

controller may become greater than the overall area of the datapath. In order to re-

duce the size of the controller we use the concept of sequence or bit matching between

control signals. Firstly all the signal transitions during each clock cycle are observed

and noted down. We try to look for signals that have the same bit pattern, so that

the two different destinations can be sourced from a single sourcel. This reduces the

overall number of states and thus the controller size. The addressing scheme in the

BRAM is of main concern to us. In case of Keccak because of data interdependencies

and potential dedicated write cycles, the addressing needs to be stored as control bits

in ROM which leads to consumption of significant area.

24

Chapter 4: Keccak

4.1 Introduction

Keccak [13] is a cryptographic hash function designed by Guido Bertoni, Joan Daemen,

Michal Peeters and Gilles Van Assche. Keccak is one of five finalists in the NIST hash

function competition to select a SHA-3 algorithm.

SQUEEZING PHASE

r r r

MiM1M0 H1H0

c

F F F F F

r 0

 0

ABSORBING PHASE

Figure 4.1: Sponge Construction

Keccak belongs to the family of hash functions that is based on the sponge construction.

The underlying theme behind the sponge construction is a fixed length iterated permutation

(or transformation) operating on the intial state b, called the width, for building a function

F that maps a variable-length input to a variable length output. Keccak has two phases,

called absorbing and squeezing. The message M is padded with a specified padding scheme

such that it is always a multiple of the block size r. During the absorbing stage, the initial

state b is initialized to all zeros and the r bits of the input blocks are XORed with the first

25

r bits of the state and processed through the function F. When all the input blocks are

processed in a similar manner, it switches to the squeezing mode where the first r bits of

the state are returned as output blocks.

Some of the key features behind choosing the sponge construction for Keccak are

• The Sponge construction that allows for modes that are provably secure against

generic attacks

• It is a kind of a block cipher without a key schedule

• The choice of operations it consists are simple XOR, AND, NOT and cyclic shift

offsets. There is no look uptables, arithmetic operations or data dependant operations.

• It is a function capable of generating variable length output.

• It is flexible in terms of security level, by trading in bit rate for capacity, without

changing the permutation .

Due to all of the properties mentioned above it can be used for multiple functions like MAC

function, stream cipher, mask generating function, reesedable pseudo random bit generator

as well as efficient authenticated encryption.

The permutation for Keccak[b] is chosen from a set of seven values such that b ∈ 25,

50, 100, 200, 400, 800, 1600, where b is the width of the permutation. Here b= r+c,

where r is the bit rate and c is the capacity. The number of rounds Nr depends on the

permutation width, and is given by Nr= 12 + 2l, where 2l= b=25. This gives 24 rounds

for Keccak-f[1600] state.

NIST requires the candidate algorithms to support at least four different output lengths

n ∈ 224, 256, 384, 512 with associated security levels. Depending on these output variants

the input parameters for Keccak varies as shown in the Table 4.1. For the 256 bit digest

thus the default b state is 1600. The initial round 1 consisted of 12+ l rounds which were

increased to 12+2l in round two. The other changes included were in the values of capacity

and bit rate. The capacity was made twice the value of the output digest. The tweaks in

26

Table 4.1: Parameters for Keccak

Algorithm Round bit rate (b) cpapacity (c) Identifier

Keccak-224 1 1024 576 28
Keccak–256 1 1024 576 32
Keccak–384 1 512 1088 48
Keccak–512 1 512 1088 64

Keccak-224 2 1152 448 28
Keccak–256 2 1088 512 32
Keccak–384 2 832 768 48
Keccak–512 2 576 1024 64

the third round is the removal of the diversifier d and the simplification of padding scheme

to pad rule 10*1.

4.1.1 Notations

The psudocode for the sponge mode of operation is described as follows

KECCAK[r,c,d](M)

INITIALIZATION AND PADDING

S[x, y] = 0, ∀ (x, y) in (0 · · · 4, 0 · · · 4)

P = M∥ 0x01 ∥ byte (d) ∥ byte(r/8) ∥ 0x01 ∥ 0x00 ∥ · · · ∥ 0x00

ABSORBING PHASE

for every block Pi in P

S[x, y] = S[x, y]⊕Pi[x+5y] ∀ (x, y) such that x+5y < r/w

S = KECCAK − f [r + c](S)

SQUEZZINGPHASE

Z = emptystring

27

whileoutputisrequested

Z = Z ∥ S[x+ y], ∀ (x, y) such that x+5y < r/w

S = KECCAK − f [r + c](S)

return Z

Here

• M : Is the original message.

• P : Message after padding. The padded message P is organised as an array of blocks

Pi that are further organized as arrays of lanes.

• S : Denotes the state as an array of lanes.A lane is a set of w bits with constant x and

y coordinates.

A[4,4]

x

y

z

z
LANE

A[0,0]

STATE

Figure 4.2: State and Lane

28

4.1.2 Constants

The Keccak 256 requires a set of cyclic offsets. Each of the values of these offsets depends

on the lane on which it operates and is given by r[x,y]. The values are shown in the Table

4.2

Table 4.2: r[x,y] Cyclic Shift Offsets

Axis x=0 x=1 x=2 x=3 x=4

y=0 0 1 62 28 27
y=1 36 44 6 55 20
y=2 3 10 43 25 39
y=3 41 45 15 21 8
y=4 18 2 61 56 14

Each block processing requires 24 rounds of operation. Each round has a certain round

constant needed at the end of the round and is shown in Table 4.3

Table 4.3: Round Constants [RC]

RC[0] 0x00000000000000001 RC[12] 0x000000008000808B
RC[1] 0x00000000000008082 RC[13] 0x800000000000008B
RC[2] 0x8000000000000808A RC[14] 0x8000000000008089
RC[3] 0x80000000080008000 RC[15] 0x8000000000008003
RC[4] 0x0000000000000808B RC[16] 0x8000000000008002
RC[5] 0x00000000080000001 RC[17] 0x8000000000000080
RC[6] 0x80000000080008081 RC[18] 0x000000000000800A
RC[7] 0x80000000000008009 RC[19] 0x800000008000000A
RC[8] 0x0000000000000008A RC[20] 0x8000000080008081
RC[9] 0x00000000000000088 RC[21] 0x8000000000008080
RC[10] 0x00000000080008009 RC[22] 0x0000000080000001
RC[11] 0x0000000008000000A RC[23] 0x8000000080008008

29

4.2 Keccak-256

The Keccak-256 requires an input message size of 1088 bits. In the initial state the message

M is concatenated with a set of 512 bits of 0’s to get the input state of 1600 bits before

processing. Each set of message block is processed for 24 rounds before hashing out.

4.2.1 Round Mode

KECCAK-f [b](A)

for i in 0 · · · nr − 1

A = Round[b](A,RC[i])

return A

The general mode of operation consists of iterating over 24 rounds for a block of message.

The message is stored as a state array A of 1600 bit size in total . Each round [b](A,RC[i])

basically consists of invertible steps that operate on states.

Round[b](A,RC)

θ STEP

C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 3]⊕A[x, 4], ∀ x in 0 · · · 4

D[x] = C[x− 1]⊕ROT (C[x+ 1], 1), ∀ x in 0 · · · 4

A[x,y] = A[x, y]⊕D[x] ∀ (x, y) in (0 · · · 4, 0 · · · 4)

ρ AND π STEPS

B[y,2x+3y]= ROT (A[x, y], r[x, y]) ∀ (x, y) in (0 · · · 4, 0 · · · 4)

χ STEP

A[x,y]= B[x, y]⊕ ((NOTB[x+ 1, y])AND B[x+ 2, y]),∀ (x, y) in (0 · · · 4, 0 · · · 4)

30

ι STEP

A[0,0]= A[0, 0]⊕RC

returnA

• A : Permutation state array at the beginning of the round

• A[x,y]: Particular lane in the state array A

• B[x,y],C[x],D[x]: Intermediate variables

• XOR : Exclusive OR

• AND : Bitwise logic AND

• NOT : Bitwise logic NOT

• OR : Bitwise logic OR

• ROT(W,r) : Bitwise cyclic shift modulo the lane size i.e cyclic left rotator

The 1600 bits is divided into 5x5 array of 64 bits each. This initialized state array

is called A. The sequence of operations are performed in the order shown above. The

θ operation is simple XORing and rotation between internal states. It is important to

remember that each of these operations being performed across the lane is always a modulo

of the lane size. The ρ stage applies cyclic shift offsets to the intermediate state array A

resulting from the operations in θ. The amount of offset depends on the value specified in the

Table 4.2 and is dependant upon the location of the lane. The π invloves the rearrangements

of the permutation state array into a new intermediate matrix B. This new matrix B serves

as an input to our χ stage. This stage performs pure logical operations of XOR, AND

and NOT to give the final resultant State array A. The ι stage simply consits of a XOR

operation between the lane A[0,0] of the finalized state array A with a Round Constant.

The value of the Round Constant is again dependant on the round and is defined in the

31

Table 4.3. The finalized State array A thus now serves as the new input state array A for

the next round.

4.3 Block Diagram Of Keccak-256

The following is the block diagram for the datapath of Keccak-256 :

θ

ρ & π

χ

ι

1087
0

1599
1088

1600

1600

1088
1088

1088
1599 1087

0

512

255
0

zeros

24x

M

0

1600
H

Const
Round

Rotate
Const

Figure 4.3: Block Diagram For Keccak

32

Chapter 5: Lightweight Implementations of Keccak

5.1 Scheduling Data Flow in Keccak

The flow of operations for Keccak have been discussed in chapter 4. Before designing the

datapath it is important to understand how we can schedule the execution of operations

with as few clock cycles as possible. As per the scheme the 1600 bit initial state is stored as

25 states in a 5X5 state array A of 64 bits each. This initial state goes through a series of

five major function during a round. In a straightforward manner the flow of data through

the functions is in the order of θ, ρ, π, χ and ι. We have divided processing of the round in

two functions. Function I consists of the θ , ρ and π function while Function II consists of

χ and ι. For our first implementation we decided to schedule the execution of operations

as shown in the Table 5.1. Here a level is of 5 clock cycles each, assuming intermediate

XOR and shift operation takes one clock cycle. The value of y axis in the Table 4.1 varies

from 0 to 4. Stage 1,2,3 and 4 comprise of the θ function while the stage 6 performs the ρ

and π function. The stages at each level are being executed in parallel. The output from

each preceding stage serves as an input for succeeding stages. An estimate is that these

functions should be executed on an average of 40 clock cycles. The χ involve simple logical

operations of XOR, NOT and AND between three 64 bit lanes of the intermediate state

array B at a time to generate new state array A. This should take an average of another 35

clock cycles. The final operation ι involves XORing of the lane A[0,0] with a constant pre

defined for that round. This should take another 3 clock cycles.

33

Table 5.1: Function I : Pipelining of θ , ρ and π Function

Level(=5 clock cycles) Stage 1 Stage 2 stage 3 Stage 4 Stage 5

I A[0,y] C[0]
II A[2,y] C[2] D[1]
III A[1,y] C[1] A’[1,y] B[y,2+3y]
IV A[4,y] C[4] D[3]
V A[3,y] C[3] D[2] A’[3,y] B[y,6+3y]
VI A[2,y] C[2] D[0] A’[2,y] B[y,4+3y]
VII A[0,y] C[0] D[4] A’[0,y] B[y,0+3y]
VIII A[4,y] A’[4,y] B[y,8+3y]

5.2 Design I

Taking the basic scheduling scheme assumed in the previous section we came up with the

following datapath shown in Fig. 5.1.

The various components serve the following purpose

• Block RAM(BRAM) : This is responsible for storing the initial state array A as well

as the 24 round constants .

• Reg A,B,C,D,X : These are used to store the intermediate states C[x] generated at

each level (every 5 clock cycles) .

• ρ and π : Consists of a 64 bit barrel shifter as shown in Fig. 5.2. π simply implies

the rearrangement of data.

• Single port DRAM(SDRAM) : stores the intermediate state array B. Because of data

interdependency and pipelining among among the stages, the presence of the DRAM

eliminates the possibility of Address contention in BRAM. This is specially important

while storing intermediate data like state array B, at locations that contain data which

might be reused for some other operation in future.

• Reg1,Reg2,Reg3 : reads in the values from SDRAM to serve as an input to the logic

function χ.

34

Port−A
re

g−
B

<
<

<
1

re
g−

X
re

g−
D

R
eg

A

<
<

<
1

re
g−

C
re

g−
C

R
eg

1
R

eg
3

R
eg

2

63

32

63

32

63

0

63

0
63

0

63

0

15

015

0

0

0

63

0

63

0

63

0

63

0

63

0

63

0

63

0

63

0

63

0

63

0

63

0

63

0

63

0

63

0

63

0

15

0
15

0

31

031

0

63

32 63

32
rc

_aR
eg

in

S
D

R
A

M
R

ho
&

pi

Din

Chi_B

Chi
Reg1_out

Reg2_out

Reg3_out

 Chi_B

 Chi_B

dout

0

15

31

31

A

A

A

A

Reg3_out

Reg2_out

Reg1_out

rc_aChi_B

rc_a

31

0

0

1

2

0

1

0

1

0

1
2

A

A
BRAM

Port−B

Figure 5.1: Datapath of Basic Keccak Design I

Dataout

<
<

<
32

0

1

0

1

0

1

0

1

0

1

0

<
<

<
16

1

<
<

<
1

<
<

<
2

<
<

<
4

<
<

<
8

Datain

Figure 5.2: 64 bit Barrel Shifter

35

As discussed already that in a BRAM data is written to the address applied in the current

clock cycle, while data is read from the address of the previous clock cycle. Following

the scheduling scheme in Table 5.1 we execute the Function I in 42 clock cycles. While

performing the χ operation, in order to ensure efficient utilization of data read during

each clock cycle from the DRAM, the new state matrix A is generated columnwise from

intermediate values B stored in the DRAMs. One column of such A[x,y] is generated in 9

clock cycles, while the whole operation takes 45 clock cycles. The ι operation reads in the

value of the round constant from the BRAM and XORs it with A[0,0] before storing it back

into the BRAM at the end of the round. This step requires another 4 clock cycles. Thus a

whole round in this datapath takes a total of 91 clock cycles for processing.

The controller is based on Finite State Machines(FSM) along with ROMs to hold the

states of the control signal states during processing. The finite state machine switches

between the states depending on the control signals and the execution cycle. These control

signals are stored as control words in the ROMs. The major area consumption of controller

is thus defined by the size of the ROMs .

To optimize the controller we first identify all the required control signals and note

down the bit switching during each clock cycle. Then we clubbed those signals together

that had similar switching patterns. This process is somewhat similar to horizontal or

vertical folding of a state into sub-states based on the parallelism offered by the bit patterns

in control signals. Avery simple example in this case would be sourcing the enables for

Register A,B,C,D,X and Register 1,2,3 from the same output of ROM in the controller.

The addressing scheme for the BRAM need 8 bit to address the memory locations for the

data. Another 5 bits is required to address the data in the DRAM. The select signals for the

required offset in the variable rotator require another 6 bits. In some cases it is observed

that the signals may follow a certain bit pattern similar to one or a combination of the

bits offered by the counter simultaneously. In such cases those control words are sourced

directly by the counter which saves area at no extra cost.

Despite using various minimization techniques the overall consumption in area was over

36

800 slices which was 200 more than our original target. Further this design could not fit

into the smallest Spartan-3 devices which has only 768 slices. This motivated us to focus

on minimizing the area in the datapath itself and led to the Design II architecture.

5.3 Design II

Although Design I was unable to meet our area requirements, it was good base to build our

second architecture upon. The main focus of this design architecture was to cut down on

the area from the previous version. The new datapath is as shown in the Fig. 5.3. The

rc_a

0

31

0

31

0

31

63

0 63

0

0

1 R
eg

−
B

63

0

63

0

63

0

63

0
1

<
<

<

SDRAM

63

0

63

0

0

1

2
0

1

0

1

32

63

32

63

0

31

0

31

din R
eg

RegA_out

RegB_out

RegC_out

A

out_32

out_32

C
hi

R
eg

−
A

R
eg

−
D

01

Rho&PiR
eg

−
C Reg−V

0

1

dout

0

15 BRAM

Port−A

Port−B

Chi_B

Chi_B

rc_a

Chi_B

rc_a
A

A

R
eg

A
_o

ut
R

eg
B

_o
ut

R
eg

C
_o

ut

Figure 5.3: Datapath of Keccak Design II

notable difference in the architecture is

1. Removal of four sets of registers i.e Reg1, Reg2, Reg3 and Reg X. And addition of a

register before the variable rotator to hold the intermediate rotation offset.

2. Downsizing the 64 bit barrel shifter(192 slices) to 16 bit (128 slices). This is as shown

in the Fig. 5.4.

37

Dataout

0

1

0

1

0

1

0

1

<
<

<
1

<
<

<
2

<
<

<
4

<
<

<
8

Datain

Figure 5.4: 16 bit Barrel Shifter

The order of scheduling of data read out from the BRAM needed some revisions in order

to accommodate the structural change . But surprisingly we were still able to compute

Function I in 42 clock cycles by downsizing the rotator as the 25 sets of cyclic shift offsets

now required 58 clock cycles which is 33 more than the one in design I. Since our design

was still pipelined at different levels along the various stages this change in offset cycles

meant we needed to introduce stalls at the preceding stages to prevent data misalignment

that may affect the overall functionality. Introducing stalls in pipeline stages thus quasi-

pipelined our overall datapath. The DRAM still serves the same function as before and

stores the intermediate array state B. We now employ the re-usability of the registers A, B

and C in the datapath to serve as a source of input for the values read from DRAM, into

the logic function χ. The controller employed followed a similar design structure to the one

in design one with a few extra clock cycles. The overall area consumed is around 620 slices

which is almost 200 slices cut down from the previous version. However this is at the cost

of 33 clock cycles per round or 792 clock cycles more per block of message. Which is a good

trade off considering our area requirements. However we were still over budget with our

area requirements, and this led to the designing of the third datapath where our goal was

to make the design even more smaller than before to reach our area target.

38

5.4 Design III

With the Design II architecture as our basis again the structural changes now included

1. Removal of Register D

2. Removal of DRAM

3. Modified Rotator that can only shift the 25 sets Keccak needs. On an average it takes

1.5 clock cycles per offset and consumes only 128 slices. The values chosen as offsets

were obtained after playing around with minimum possible combination of offsets for

all the listed sets of rotations. The advantage was that for the same number of slices

you get lesser clock cycles for as well as shorter critical path.

Data out

<<<2 <<<4 <<<28

<<<1 <<<8 <<<15

0 1 2 3

0 1 2 3

Data in

Figure 5.5: Modified Offset Rotator

The datapath is as shown in the Fig. 5.6.

With the removal of register D, the data read from the BRAM during the θ, stage

had to be rescheduled in a different order. The ρ and π had to be quasi pipelined as the

intermediate values of state array B,now needed dedicated clock cycles to be stored back into

the BRAM. Therefore these dedicated clock cycles enable us to avoid address contention

for locations that reused data for processing in future. For remedying this situation we also

39

C
hi 1

<
<

<

Rho&Pi

0

63

0

31

0

31

32

63

0

15 BRAM

Port−A

Port−B
0

31

0

31

0

1

dout 0

31

32

63

32

63

0

1

2

A

A

var_out

rc_a

var_out

rc_a

var_out
Chi_B

Chi_B

din

Chi_B

R
eg

−
A

0

1

R
eg

−
B

R
eg

−
C

01

Reg−V

R
eg

RegA_out

RegB_out

RegC_out

0

63

0

31

0

3

1

2

A

out_32

out_32

Figure 5.6: Datapath of Keccak Design III

needed to introduce suitable stalls which had no fixed patterns and varied depending upon

the offset cycles and the scheduling scheme. These three operations of Function I now took

total of 91 clock cycles. Since the data for the χ had to be read from the BRAM processed

and stored back into it at the same time we again had to use another sets of dedicated

write cycles to store back the values at the correct locations. There is no difference for the

ι operation. One round is now computed in 153 clock cycles. Although we were able to get

downsize the datapath, the greatest set back however came in the form of overall area of the

design because of the huge size of the controller. The final design exploded to 627 slices with

almost 700 clock cycles more. This is because of the quasi-pipelining and random address

generation during each clock cycle, made the minimization of the ROM size difficult in the

controller. For the cut down in the area of the datapath the corresponding increase in the

size of the controller was almost more than double which defeated the purpose of our earlier

goal. This made us realize that cutting down on the datapath and increasing the number

of clock cycles may not be the solution to our goal.

40

5.5 Design IV

The paper [14] is a good source of reference for various scheduling techniques and algorithms.

It specially has a section that described the principle behind resource constrained scheduling.

Since the controller was a big issue in our previous design, we decided to give a little bit

of leeway in the datapath size and re-structure our design based on some of the scheduling

schemes described in this paper. We then decided to do the following changes :

1. Removal of register C such that we now only have two sets of registers A and B. This

increases the number of clock cycles at the θ stage.

2. Full width 64 bit barrel shifter to remove any stalls in the system for regularized

addressing pattern.

3. Reorganizing the data locations in a new manner inside the Block RAM so as to

generate an addressing pattern during loading or processing or finalization.

4. Adding the Single port DRAM back into the datapath to remove address contention

and removes the dedicated clock cycles.

Based on these targets our datapath is designed as shown in the Fig. 5.7 We again resched-

uled the order in which data was read from the BRAM into the register for initial processing

to suit the execution order in the new datapath. The mode of operation here is similar to

the pipelining architecture we had for our Design II. The only difference is that the output

of the Sinle port DRAM now serve as the third input to the χ along with the output of

Register A and B in the absence of a register C. The θ, ρ and π function now took 57

clock cycles for execution. While the χ and ι took another 49 clock cycles. One round was

thus executed in 106 clock cycles. With these new modifications we were finally able to

get a datapath for Keccak under 600 slices on Spartan-3 device. From this observation we

realized that the regularized pattern had helped in the optimization of the controller.

41

rc_a

0

31

0

31
63

0 63

0

0

1

32

63

32

63

0

31

0

31

R
eg

−
B

<
<

<
1

0

31

0

1

63

0

63

0

63

0

63

0

63

0

63

0
63

0

C
hi

Chi_B

RegA_out

RegB_out

0

1

2 0

1

2

63

0
din R

eg

A

out_32

R
eg

−
A

0

15 BRAM

Port−A

Port−B

Chi_B

rc_a

Chi_B

rc_a
A

R
eg

A
_o

ut

A

Rho&Pi

SDRAM

R
eg

B
_o

utdout

out_32

Figure 5.7: Datapath of Keccak Design IV

5.6 Design V: Distributed RAM Architecture

With all the different possible architectures with Block RAM. It piqued our interest to see

how the performance of our design would vary if implemented using pure logic resources

on FPGAs. In order to facilitate the replacement of Block RAMs we gave ourselves a new

goal of implementing Keccak in under 800 slices on the Spartan-3 device using only logic

resources. For our logic version we can splits the BRAM into four single port Distributed

RAMs of 16-bits each to store the initial state.The message being read is in chunks of 16

bits at a time. The round constants can be easily stored in a ROM. This datapath is based

on the Design II version of our Block RAM with minor tweaks. This tweak includes using

the modified rotator instead of the full 64 bit shifter. The four registers(A through D) at

the output of the four DRAM‘s compute the θ stage. The output for the ρ and π is now

stored in an additional 64-bit single port Distributed RAM. The DRAM aids in de-coupling

the read from and write into the Block RAM which eliminates address contention. This

saves us from using dedicated write clock cycle. The ρ , π and θ stages are now computed in

58 clock cycles, while the χ and ι stages take another 39 clock cycles. Overall one round is

42

A

15

0

15

0

31

16

47

32

15

0

63

63

0

63

0

DRAM 63

0

31

16

15

0

0

1

2

31

16

47

32

0

1

2
47

32

63

63

0

1

15

0

15

0

R
eg

A

1
<

<
<

DRAM

63

0

63

0

R
eg

D

63

0

63

0

63

0

0

1

2
DRAM

DRAM

DRAM

48

0

1

2 ZEROS

Din

Dout

RC

RC

RC

48

48

Dout 0

3

1

2

R
eg

C
R

eg
B

A

CHI

RegV

01

Rho&Pi

0

3

1

2

Figure 5.8: Datapath of Distributed RAM Based Architecture for Keccak

processed in 97 clock cycles while one block is computed in 2328 clock cycles. It consumes

768 slices and just manages to fit into the smallest Spartan 3 device.

43

Table 5.2: Modified Rotator Offset Combinations

r[x,y] ρ 0 2 4 28 0 1 8 15

r[0,0] 0 X X
r[0,1] 36 X X
r[0,2] 3 X X
r[0,3] 41 X X X X
r[0,4] 18 X X X X
r[1,0] 1 X X
r[1,1] 44 X X XX
r[1,2] 10 X X
r[1,3] 45 X X X X
r[1,4] 2 X X
r[2,0] 62 X X XX
r[2,1] 6 X X XX
r[2,2] 43 X X X X
r[2,3] 15 X X
r[2,4] 61 X X X X XX
r[3,0] 28 X X
r[3,1] 55 X X X X
r[3,2] 25 X X X X
r[3,3] 21 X X X X
r[3,4] 56 XX XX
r[4,0] 27 X X X X
r[4,1] 20 X X X X
r[4,2] 39 X X X X
r[4,3] 8 X X
r[4,4] 14 X X X X

44

Chapter 6: Results and Conclusions

6.1 Results and Analysis of Lightweight Implementations

We implemented different lightweight architectures for our 256 bit hash version of Keccak.

These different architectures were designed using various optimization techniques discussed

in Chapter 3. Keccak requires simple logic functions and the intermediated datas show inter-

dependencies. This eliminated athe option of employing folding in the structure. Therefore

the only options left were to quasi- pipeline the structure and schedule the data efficiently

during each clock cycle. A brief description of the structural differences in the various

architectures of Keccak thus implemented is shown in the Table 6.1.

Table 6.1: Datapath Summary for Different Schemes of Keccak-256 Implemented

Desdin No. Version R
eg
is
te
r
A

R
eg
is
te
r
B

R
eg
is
te
r
C

R
eg
is
te
r
D

R
eg
is
te
r
X

R
eg
is
te
r
1

R
eg
is
te
r
2

R
eg
is
te
r
3

SDRAM Rotator Version
Design I BRAM X X X X X X X X X 64-bit
Design II BRAM X X X X X 16-bit
Design III BRAM X X X modified
Design IV BRAM X X X 64-bit
Design V Logic X X X X X 64- bit

Apart from the low area constraint the performance of our implementations is judged

on the basis of Throughput to Area ratio. The number of clock cycles needed to execute

N blocks of message determines the throughput of the system. The number of clock cycles

needed for executing the same algorithm may vary depending on how it is implemented.

Comparing the two tables Table 6.1 and Table 6.2 we observe that, the introduction of a

45

Table 6.2: Throughput Formulae for Different Implementations of Keccak

V
er
si
on

B
lo
ck

S
iz
e

(b
it
s)

b

R
ou

n
d
s

F
u
n
ct
io
n
I

(θ
ρ
π
)

cl
o
ck

cy
cl
es

S F
u
n
ct
io
n
II

(χ
ι)

cl
o
ck

cy
cl
es

C
lo
ck

C
y
cl
es

p
er

R
ou

n
d

Clock Cycles to hash
N blocks
clk =

st+ (l + p) ·N + end

Throughput
(long

Messages)

b

(l + p) · T

Design I 1088 24 42 49 91 2 + (68 + 2184) ·N + 17 1088/(2252 · T)
Design II 1088 24 42 81 123 2 + (68 + 2952) ·N + 17 1088/(3020 · T)
Design III 1088 24 91 63 154 2 + (68 + 3696) ·N + 17 1088/(3764 · T)
Design IV 1088 24 57 49 106 2 + (68 + 2544) ·N + 17 1088/(2612 · T)
Design V 1088 24 59 38 97 2 + (68 + 2328) ·N + 17 1088/(2396 · T)

single port DRAM to store in the intermediate states in the architecture reduces the number

of clock cycles by almost one third. Since the barrel shifter was one of the biggest compo-

nents in our design, cutting down on the size did not ensure that the final implementation

met our area constraints. On the other hand using a modified version of the rotator saved

clock cycles and reduced the critical path. Storing of data into particular memory locations

of BRAM is also an important factor in our designs. Based on the order of execution, the

data can be stored into continuous or interleaved memory locations. This also contributes

to generating a definite order of control bit sequence during processing. The address sig-

nals can then be generated with simple counters or logic and save space on ROMs in the

controller.

The graphs in Fig. 6.1 and Fig. 6.2 give an idea about the area consumption and

hardware performance of all our different lightweight implementations of Keccak on Xilinx

devices. In Fig. 6.1 we observe that Design version V was second biggest implementation in

terms of slices on Spartan-3 but on Virtex-5 it is one of the smallest ones. While comparing

only BRAM versions of our designs if Design IV was the smallest possible implementation

on Spartan-3 our target device, but on all the other devices Design III is the winner in

terms of low area implementation. A similar unpredictable pattern can be observed in the

Throughput versus Area results.

46

Figure 6.1: Area Consumption on Xilinx Devices

Figure 6.2: Throughput Versus Area Performance on Xilinx Devices

47

Table 6.3: Results on Xilinx Spartan-3

Algorithm

Keccak A
re
a
(s
li
ce
s)

B
lo
ck

R
A
M
s

M
ax

im
u
m

D
el
ay

(n
s)

T

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/
A
re
a

(M
b
p
s/
sl
ic
e)

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/
A
re
a

(M
b
p
s/
sl
ic
e)

Design I 817 1 8.68 55.65 0.068 53.72 0.065
Design II 618 1 7.33 49.11 0.079 48.84 0.079
Design III 627 1 8.90 32.5 0.05 32.20 0.05
Design IV 586 1 9.41 43.12 0.074 42.98 0.073
Design V 766 0 9.83 46.2 0.06 45.8 0.060

From the results obtained in Table 6.3 we can clearly see that the best implementation

according to our area budget and performance is the Design version IV of our BRAM

implementation.

6.2 Comparison Of SHA 3 Finalists

For low area implementations, after meeting the area considerations it is also important

that they perform be efficient in terms of throughput. For a fair comparison of performance

in hardware among the five finalists, the performance metrics we thus use is throughput

versus area. The Cryptographic Engineering Research Group at GMU,Virginia implemented

the other four finalists with the same design criteria of area constraints and targeting the

Spartan-3 device [15]. We propose Design IV of Keccak-256 for comparison with these

reported results. We have implemented them on various Xilinx devices also for relative

comparison of their performance. The Result of our implementations is as shown in the

Table 6.5. These results were generated using AtheNA [16].

The comparison of the lightweight implementations of the finalist on Xilinx and Al-

tera devices gives some interesting observations. The ranking of the candidates based on

throughput over area in Fig. 6.3 shows that Keccak is not one of the best candidates for

48

(a) on Spartan-3 (BRAM) (b) on Spartan-6 (BRAM) (c) on Virtex-V (BRAM)

(d) on Spartan-3 (Logic) (e) on Spartan-6 (Logic) (f) on Virtex-V (Logic)

(g) on Virtex-6 (BRAM) (h) on Cyclone-II (BRAM)

(i) on Virtex-6 (Logic) (j) on Cyclone-II (Logic)

Figure 6.3: Throughput Over Area Ratio on Xilinx and Altera Devices
49

Table 6.4: Comparison of Lightweight Implementations of SHA-3 finalists on Xilinx FPGAs

Algorithm R
ef
er
en

ce

Device I/
O

W
id
th

D
a
ta
p
a
th

W
id
th

C
lo
ck

C
y
cl
es

p
er

b
lo
ck

(p
)

A
re
a
(s
li
ce
s)

M
ax

im
u
m

F
re
q
u
en

cy
(M

H
z)

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

Keccak [Kerckhof] xc6vlx75t-1 64 64 2137 144 250 128 0.897
Keccak [Jungk] xc6vl 32 200 397 197 1071 2.69
Keccak [TW] xc6vlx75t-1 16 64 2612 135 335 136 1.010
Keccak [Jungk] xc5v 32 200 393 159 864 2.19
Keccak [TW] xc5vlx20-2 16 64 2612 198 231 98 0.496
Keccak [Jungk] xc3s 32 200 1665 71.2 387 0.23
Keccak [TW] xc3s50pq-2 16 64 2612 586 106.2 43.12 0.074

low area implementations. This could be attributed to the fact that the performance of the

algorithm is affected by its scalability. In case of Keccak the interdependency of data and

irregular diffusion patterns in the state matrix leads to over thousands of clock cycles per

block of message and hence affects the overall throughput. At the same time its inability

to scale down makes it huge in size compared to others.

6.3 Comparison with Other Published Results

One of the first reported results was by Bertoni et al.[13] with a proposed low co-processor

design on Virtex-5 device. This design used external system memory instead of having

all the storage capabilities internally. There is no information about the interface or the

protocols. But one round is processed in 215 clock cycles while it consumes an area of 448

slices which is almost twice the size of our current implementation. There are also other

reported results by Kerckhof et al. [7] and Jungk et al. [6] but on different Xilinx devices.

Although we targeted the spartan-3 device in our implementations we still synthesize them

on other devices to make comparisons with these reported results .

The comparison in Table 6.4 shows that we have the smallest reported implementation so

far. While considering the throughput over area ratio the comparison is somewhat difficult.

Jungk et al. [6] implements Keccak with a 200 bit datapath width. and uses 25 sets of 8∗

50

8 DRAMs. The huge datapath width and the independent read functions for each operand

during an operation aid in reducing the execution cycles to almost one tenth in practice.

But all of this is at the cost of almost double the area.

Similarly while looking at the architectures of Keccak in chapter 5 we observe that the

two independent set of Single port DRAMs eliminate the address contention issue we always

have while using BRAM implementations. The results for the comparison have been shown

in the Table 6.5

6.4 Conclusion

In this paper we presented the different low area implementations of SHA-3 finalist Keccak.

Only 256 bit digests were implemented and the designs targeted the low cost Spartan-

3 device. We were able to implement it in the given area constraint. Compared to the

other reported results it is one of the smallest implementations. The comparison with

other BRAM versions of the SHA-3 finalist implemented at GMU [15] help us in ranking

Keccak with respect to other finalists in terms of its performance in the resource constrained

environment. Apart from the basic functions that affect the number of clock cycles, the

scalability of an algorithm also plays an important role in its performance. The graph in

Fig.6.1 shows that the scalability also varies with the architecture of the device upon which

it is implemented. Through our different versions of Keccak we observed that the datapath

and the controller do not share a direct or even a inverse relationship in terms of area. We

thus realized that the key to scalability and performance of Keccak is efficient scheduling

without data dependency especially in memory based implementations.

51

Table 6.5: Implementation Results of Keccak on Xilinx

Long Short

Device Algorithm Version A
re
a
(s
li
ce
s)

B
lo
ck

R
A
M
s

M
ax

im
u
m

D
el
ay

(n
s)

T

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

Spartan 3 Keccak-256 I 817 1 11.23 55.653 0.068 55.6 0.065
Keccak-256 II 608 1 8.869 51.393 0.079 51.4 0.77
Keccak-256 III 627 1 8.97 32.2 0.5 32.3 0.52
Keccak-256 IV 570 1 12.805 43.606 0.074 42.8 0.077
Keccak-256 V 766 0 12.83 16.6 0.02 8.5 0.04

Spartan 6 Keccak-256 I 240 1 10.327 46.7 0.19 46.2 0.2
Keccak-256 II 163 1 8.459 42.5 0.26 42.7 0.25
Keccak-256 III 133 1 5.07 57.0 0.43 56.7 0.427
Keccak-256 IV 143 1 7.809 53.3 0.37 54.2 0.3
Keccak-256 V 161 0 5.77 78.7 0.49 78.1 0.42

Virtex 5 Keccak-256 I 246 1 5.95 83.12 50.33 82.5 0.29
Keccak-256 II 193 1 3.402 108.9 0.549 107.6 0.5
Keccak-256 III 159 1 4.04 71.6 0.45 71.3 0.42
Keccak-256 IV 193 1 5.019 99.6 0.49 98.9 0.48
Keccak-256 V 275 0 3.85 118.1 0.43 117.2 0.42

Virtex 6 Keccak-256 I 192 1 4.637 110.02 0.548 109.02 0.53
Keccak-256 II 157 1 3.10 129.73 0.779 128.2 0.7
Keccak-256 III 129 1 3.84 75.2 0.58 74.9 0.58
Keccak-256 IV 135 1 2.977 141.43 1.010 140.4 1.09
Keccak-256 V 106 0 3.34 136.0 1.28 135 1.27

52

Table 6.6: Implementation Results of our implementations of SHA-3 Candidates

Message Long Short

D
ev
ic
e

V
er
si
o
n

Algorithm A
re
a
(s
li
ce
s)

B
lo
ck

R
A
M
s

M
ax

im
u
m

D
el
ay

(n
s)

T

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

X
il
in
x
S
p
ar
ta
n
-3

(x
c3
s5
0
-5
)

B
R
A
M

BLAKE-256 549 1 8.05 219.3 0.40 205.9 0.375
Grøstl 594 1 7.65 122.4 0.21 61.9 0.104
JH42 502 1 9.19 69.6 0.14 34.0 0.068

Keccak 586 1 9.414 43.12 0.074 43.10 0.072
Skein 498 1 10.65 19.7 0.04 10.0 0.020

SHA-2 547 1 8.48 101.5 0.19 98.4 0.180

L
og

ic
on

ly

BLAKE-256 631 0 8.16 216.3 0.34 203.0 0.322
Grøstl 766 0 6.83 192.6 0.25 97.9 0.128
JH42 558 0 10.05 63.7 0.11 31.2 0.056

Keccak 766 0 9.83 46.2 0.06 45.8 0.060
Skein 766 0 12.83 16.6 0.02 8.5 0.011

SHA-2 745 0 8.52 137.8 0.19 132.1 0.177

X
il
in
x
S
p
ar
ta
n
-6

(x
c6
sl
x
4c
sg
-3
)

B
R
A
M

BLAKE-256 152 1 5.63 313.8 2.06 294.5 1.938
Grøstl 271 1 4.80 195.0 0.72 98.7 0.364
JH42 182 1 6.23 102.6 0.56 50.2 0.276

Keccak 153 1 7.77 53.8 0.35 53.4 0.0.34
Skein 182 1 7.19 29.2 0.16 14.8 0.081

SHA-2 140 1 5.93 145.2 1.04 140.7 1.005

L
og

ic
on

ly

BLAKE-256 164 0 5.34 330.6 2.02 310.2 1.882
Grøstl 230 0 4.43 297.3 1.29 151.2 0.657
JH42 156 0 6.14 104.2 0.67 51.0 0.327

Keccak 113 0 4.95 91.8 0.81 91.1 0.806
Skein 190 0 8.77 24.3 0.13 12.4 0.065

SHA-2 227 0 5.74 204.6 0.90 196.0 0.864

X
il
in
x
V
ir
te
x
-5

(x
c5
v
lx
20

-2
)

B
R
A
M

BLAKE-256 248 1 4.29 411.9 1.66 386.6 1.559
Grøstl 271 1 3.65 256.5 0.95 129.8 0.479
JH42 176 1 3.91 163.5 0.93 80.0 0.454

Keccak 198 1 4.314 98.2 0.496 96.2 0.85
Skein 218 1 5.69 36.9 0.17 18.7 0.086

SHA-2 234 1 3.98 216.2 0.92 209.5 0.895

L
og

ic
on

ly

BLAKE-256 271 0 3.94 448.2 1.65 420.7 1.552
Grøstl 313 0 3.15 417.4 1.33 212.3 0.678
JH42 183 0 3.99 160.3 0.88 78.5 0.429

Keccak 275 0 3.85 118.1 0.43 117.2 0.426
Skein 246 0 5.66 37.7 0.15 19.2 0.078

SHA-2 312 0 4.24 277.0 0.89 265.4 0.851

X
il
in
x
V
ir
te
x
-6

(x
c6
v
lx
75

T
-1
)

B
R
A
M

BLAKE-256 163 1 5.06 348.7 2.14 327.3 2.008
Grøstl 241 1 4.09 229.1 0.95 115.9 0.481
JH42 196 1 4.11 155.4 0.79 148.9 0.760

Keccak 135 1 2.977 136.9 1.010 136.3 1.009
Skein 207 1 6.00 35.0 0.17 17.8 0.086

SHA-2 155 1 4.84 177.8 1.15 172.3 1.111

L
og
ic

on
ly

BLAKE-256 166 0 3.72 474.6 2.86 445.4 2.693
Grøstl 263 0 2.78 473.3 1.80 240.7 0.915
JH42 171 0 3.96 161.5 0.94 154.9 0.906

Keccak 106 0 3.34 136.0 1.28 135.0 1.273
Skein 193 0 5.17 41.3 0.21 21.0 0.109

SHA-2 238 0 3.86 304.2 1.28 291.5 1.225

53

Table 6.7: Implementation Results of SHA-3 Finalists on Altera

Message Long Short

D
ev
ic
e

V
er
si
on

Algorithm A
re
a
(L

E
s)

M
em

or
y

B
it
s

M
ax

im
u
m

D
el
ay

(n
s)

T

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

T
h
ro
u
gh

p
u
t

(M
b
p
s)

T
P
/A

re
a

(M
b
p
s/
sl
ic
e)

A
lt
er
a
C
y
cl
o
n
eI
I(
ep

2
c8

f2
5
6
c6

)

B
R
A
M

BLAKE-256 1,367 2,048 9.98 176.9 0.13 166.0 0.121
Grøstl 1,221 3,072 6.26 149.6 0.12 75.7 0.062
JH42 1,045 3,840 9.15 69.9 0.07 66.9 0.064

Keccak 996 8,192 5.48 52.7 0.05 52.5 0.053
Skein 930 4,096 9.89 21.6 0.02 11.0 0.012

L
og
ic

on
ly

BLAKE-256 2,019 0 7.39 238.8 0.12 224.9 0.111
Grøstl 3,937 0 5.52 238.4 0.06 121.2 0.031
JH42 5,527 0 10.05 63.7 0.01 61.1 0.011

Keccak 6,247 0 8.49 53.5 0.01 53.1 0.008
Skein 6,141 0 15.83 13.5 0.001 6.9 0.001

54

Bibliography

55

Bibliography

[1] Secure Hash Standard (SHS), National Institute of Standards and Technology (NIST),
FIPS Publication 180-2, Aug 2002, http://csrc.nist.gov/publications/fips/fips180-
2/fips180-2.pdf.

[2] X. Wang, Y. Yin, and H. Yu, “Finding collisions in the full sha-1,” in Advances in
Cryptology - CRYPTO, 2005.

[3] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill, and W. P. Mar-
nane, “FPGA implementations of the round two SHA-3 candidates,” Second SHA-3
Candidate Conference, Tech. Rep., 2010.

[4] E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing hardware performance of
fourteen round two SHA-3 candidates using FPGAs,” Cryptology ePrint Archive, Re-
port 2010/445, 2010, http://eprint.iacr.org/.

[5] K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and comprehensive methodology
for comparing hardware performance of fourteen round two SHA-3 candidates using
FPGA,” in Cryptographic Hardware and Embedded Systems, CHES 2010, ser. LNCS,
S. Mangard and F.-X. Standaert, Eds., vol. 6225. Springer Berlin / Heidelberg, 2010,
pp. 264–278.

[6] B. Jungk and J. Apfelbeck, “Area-efficeint FPGA implementations of the SHA-3 final-
ists,” in International Conference on ReConfigurable Computing and FPGAs. IEEE:
ReConfig’11, DEC 2011.

[7] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M. de Dormale, and
F.-X. Standaert, “Compact fpga implementations of the five sha-3 finalists,” in 10th
Smart Card Research and Advanced Application Conference, CARDIS 2011, Leuven,
Belgium, Sep 2011.

[8] “The SHA-3 Zoo, Information Societies Technology (IST) Programme of the European
Commission, note = http://ehash.iaik.tugraz.at/wiki/the sha-3 zoo.”

[9] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B. Y. Brewster,
“ATHENa – Automated Tool for Hardware EvaluatioN: Toward fair and comprehen-
sive benchmarking of cryptographic hardware using FPGAs,” in 20th International
Conference on Field Programmable Logic and Applications - FPL 2010. IEEE, 2010,
pp. 414–421, winner of the FPL Community Award.

[10] Hardware Interface of a Secure Hash Algorithm (SHA), v. 1.4 ed., Cryptographic En-
gineering Research Group, George Mason University, Jan 2010.

56

[11] Spartan-3 Generation, FPGA User Guide, Ug331 (v1.2) ed., Xilinx, Inc., Apr 2007.

[12] Using Block RAM in Spartan-3 Generation FPGAs, Xapp463 (v2.0) ed., Xilinx, Inc.,
Mar 2005.

[13] G. Bertoni, J. Daemen, M. Peeters, and G. Van Asche, “Keccak function version 2.0,”
Sep 2009.

[14] S. Govindrajam, “Scheduling algorithms for high level synthesis,” University of Cincin-
nati, Dept of ECECS, University of Cincinnati, Term Paper, March 1995.

[15] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, S. Gurung, and J. Pham,
“Lightweight implementations of SHA-3 candidates on FPGAs,” in Progress in Cryp-
tology – INDOCRYPT 2011, ser. Lecture Notes in Computer Science (LNCS), D. J.
Bernstein and S. Chatterjee, Eds., vol. 7107. Springer, Dec 2011, accepted, to be
published.

[16] “ATHENa results database,” http://cryptography.gmu.edu/athenadb/, Automated
Tool for Hardware EvaluatioN project.

57

Curriculum Vitae

Smriti Gurung received her Bachelor degree from Delhi College of Enigneering under Delhi
University, India in 2008. She completed her Masters Degree in Computer Engineering from
George Mason University, Farifax in May 2012. She has worked as a Teaching Assistant
to ECE 332 course from Spring 2010 to Fall 2011. She is also a part of the Cryptographic
Engineering Research Group (CERG)group at GMU since Spring 2010.

58

