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ABSTRACT  
 
 
 
 

ROBUST BIAS MITIGATION FOR LOCALIZATION IN WIRELESS NETWORKS  
 
Nikhil Bhagwat, MS 
 
George Mason University, 2010 
 
Thesis Director: Dr. Bijan Jabbari 
 
 
 
 
Localization of a wireless device or a sensor node has been a problem of great 

importance in recent years. Location services are becoming an essential part of the 

traditional wireless networks as well as the wireless sensor networks. Indoor localization 

in particular has been an issue of interest in recent studies since GPS is not suitable for 

indoor environments. The main issue in target node location estimation is the distance 

estimates affected by the non-line-of-sight (NLOS) signal measurements. In any practical 

setting, the NLOS errors are inevitable and need to be mitigated in order to achieve 

acceptable accuracy. In this work, first a theoretical analysis of effect of bias on the 

localization accuracy is performed. Then, a novel technique is presented which reduces 

the adverse effects of bias by utilizing the topological diversity provided by the  ܮ unique 

beacon combinations from the power set of ܰሺ൐ 3ሻ beacons. The proposed approach 

consists of two complementary weighted average methods combined to provide a high 



 

level of robustness. The simulation and empirical results show that the presented 

technique is effective independent of the bias distribution. Thus it can be implemented on 

top of variety of existing localization methods in wireless networks to mitigate the 

adverse effects of NLOS propagation and achieve high accuracy in a practical scenario.  
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1. INTRODUCTION 

 

Localization of a wireless device to estimate its location is a challenging problem. There 

has been a great amount of research on indoor localization, especially because of the fact 

that the “global positioning system” (GPS) is ineffective in an indoor environment. This 

necessitates the development of alternate approaches for solving the localization problem. 

The localization algorithms can be classified based on various criteria. They can be based 

on signal types (infrared, ultrasound, radio frequency), signal metrics (angle of arrival, 

time of arrival, received signal strength), and metric processing algorithms (triangulation, 

scene profiling). With the widespread of Wi-Fi technology, localization based on RF 

signal a is popular choice, compared to infrared and ultrasound localization. The latter 

techniques impose additional hardware requirements, and are beneficial only in certain 

special applications, such as Active Bat location system developed by AT&T researchers, 

or Cricket location support system developed by MIT computer science and artificial 

intelligence laboratory. Both of these systems use time-of-flight (TOF) data to compute 

the distance from the transmitter which requires synchronization. In general, algorithms 

using time of flight (TOF) or angle of arrival (AOA) as a signal metric need additional 

hardware for timing or beam forming purposes. AOA techniques require directional 

antennas which come at the cost of additional circuitry. In contrast, received signal 

strength (RSS) data is readily available in any Wi-Fi enabled device and no additional 
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hardware is required for computation. In addition, there is no need for synchronization. 

Nevertheless, the effectiveness of these algorithms highly depends on the environment as 

the properties of the wireless medium play a crucial role in the accuracy of each 

approach.  

 

In an indoor facility, RF signal propagation is affected by a number of factors such as 

multi-path fading, temperature, humidity variations, and other dynamic factors including 

the presence and mobility of human beings. These factors make it difficult to define a 

mapping function from RF signal properties to distance between the transmitter and the 

receiver. One of the popular existing solutions to this problem is the “fingerprinting” 

approach, which circumvents the signal strength to distance transformation operation by 

directly linking a geographical location with a unique RSS signature. This approach 

requires an offline training stage which creates a database of these signatures for the 

entire facility. After deployment, the target is localized by matching the current RSS data 

with the signature database. Successful implementation of this technique is presented by 

the National Institute of Standards and Technologies (NIST) and by Ekahau on a 

commercial level as well. The major drawback of this approach is the offline calibration 

procedure. Creating and maintaining the RSS signature database is a cumbersome task, 

and has scalability issues. Hence they are useful in very specific applications.  

 

In this work we mainly focus on online approaches based on RSS information. Low 

complexity of algorithms is a central theme of this paper, which facilitates actual testing, 
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rapid deployment and also low power requirements. We have assumed that RSS 

measurements are performed by the mobile sensor node itself; in contrast with the 

traditional network-based computational approach. All the simulation and experimental 

results are obtained using this approach. Nevertheless, it is possible to implement our 

algorithms in a centralized network-based system as well, since the algorithm is 

independent of system architecture. We also assume that the sensor node is provided with 

the topological information regarding the network prior to its deployment. The 

applications of such scenario include location identification for firefighters in emergency 

situations, for patients or visitors in hospitals, navigation assistance for the blind, and 

numerous commercial applications.  

 

The thesis is organized as follows. Chapter 2 provides the background information 

regarding the different issues involved with RSS based localization, and how different 

approaches have addressed them. In a broad sense, mathematically the problem can be 

divided into two parts – first the modeling of wireless environment, which is a 

transformation from signal space to Euclidean space; and secondly, implementation of 

tri-lateration or a similar technique to transform from Euclidean distance space to 

Cartesian coordinates. Chapter 3 discusses the major issue involved in the localization in 

non-line-of sight environment. It talks about the signal propagation models, and the 

presence of “bias” in the distance estimates. It also provides mathematical analysis of the 

bias on the localization accuracy. Chapter 4 introduces the two key concepts used in the 

proposed approach to mitigate the effect of bias on localization accuracy. It talks about 
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the various beacon combinations as well as an error estimator to predict the reliability of 

the location estimation. Chapter 5 introduces the proposed algorithm which utilizes 

selected methods explained in chapter 3 and chapter 4 and modifies them in order to 

preserve low complexity and still achieve improved accuracy over existing approaches. It 

presents a new perspective for looking towards the localization problem using spring-

force model concepts from physics. Based on these concepts it presents a novel dual 

weighted average algorithm which provided two fold robustness and high accuracy. 

Chapter 6 assesses the performance of the proposed algorithm and discusses 

complementary techniques which will assist the successful implementation in a practical 

scenario. The chapter also presents the results of the actual experiments performed in an 

indoor facility to verify the accuracy of the algorithm beyond simulation environment. 

Finally, we conclude by comparing the proposed algorithm with existing work from 

theoretical as well as practical stand point.  

 

  

 

 

 

 

 

 

 



5 

 

 

2. BACKGROUND 

 

As mentioned earlier, online localization can be split into two sub-problems. First, it is 

important to model the wireless channel in order to estimate the distance information 

from the available RSS data. This problem is stochastic in nature as signal propagation is 

strongly affected by fading, shadowing etc. which introduces randomness. Especially in 

an indoor environment, the randomness is difficult to model with straightforward 

probability distributions, which makes this sub-problem quite challenging. The second 

sub-problem is estimation of the coordinates of the target location from the distance 

estimates. This part is purely mathematical, and several triangulation or tri-lateration 

methods are used to solve this problem. It is important to note that the error in the final 

location estimate is caused by randomness involved in the first sub-problem, as well as 

the unavoidable approximations made in the second sub-problem. 

 

2.1 Signal Propagation Models 

Signal propagation is an extremely complex phenomenon. The electromagnetic waves 

propagation undergoes scattering, diffraction, reflection due to the obstacles in the path. 

The popular models to estimate the signal propagation are the ray tracing techniques. The 

ray tracing techniques denote electromagnetic waves as simple particles. Even though ray 

tracing successfully models the effects of reflection and refraction, more complex 
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phenomenon such as scattering cannot be estimated by them. Maxwell’s differential 

equations are more sophisticated techniques which explain scattering, but they are mostly 

ignored for all practical purposes. Besides the intrinsic complexity of propagation, the 

variability of the signal propagation channel or the environment makes it even more 

difficult to formulate deterministic models. Therefore, probabilistic models are used, and 

channels are defined by their statistical properties. Having this said, it is apparent that 

received signal power from the radio transmitter at a given distance is a stochastic 

process. Following is the review of popular empirical probabilistic models for signal 

propagation. 

 

A. Okumura Model 

Okumura Model is used for signal prediction in large urban areas. It is applicable for 

distances of 1-100 Km and frequency spectrum of 150-1500 MHz. The path loss formula 

is given as follows which is a function of distance, with frequency as a known parameter. 

 

௅ܲሺ݀ሻ݀ܤ ൌ ሺܮ ௖݂, ݀ሻ ൅ ܣ௠௨ሺ ௖݂, ݀ሻ െ ሺ݄௧ሻܩ  െ ሺ݄௥ሻܩ  െ  ௔௥௘௔ܩ

Where, 

ሺܮ ௖݂, ݀ሻ:  ݀ ܿ݊ܽݐݏ݅݀ ݐܽ ݏݏ݋݈ ݄ݐܽ݌ ݁ܿܽ݁݌ݏ ݁݁ݎ݂

௠௨ሺܣ ௖݂, ݀ሻ:   ݏݏ݋݈ ݄ݐܽ݌ ݁݁ݎ݂ ݋ݐ ݊݋݅ݐ݅݀݀ܽ ݊݅ ݊݋݅ݐܽݑ݊݁ݐݐܽ ݊ܽ݅݀݁݉

:ሺ݄௧ሻܩ  ݊݅ܽ݃ ܽ݊݊݁ݐ݊ܽ ݎ݁ݐݐ݅݉ݏ݊ܽݎݐ

:ሺ݄௥ሻܩ  ݊݅ܽ݃ ܽ݊݊݁ݐ݊ܽ ݎ݁ݒ݅݁ܿ݁ݎ

:௔௥௘௔ܩ  ݐ݊݁݉݊݋ݎ݅ݒ݊݁ ݂݋ ݁݌ݕݐ ݊݋ ݃݊݅݀݊݁݌݁݀ ݊݅ܽ݃

(2.1) 
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The Okumura model tries to capture the diversity of wireless channel by extensive 

experimental testing, and creating empirical tables or plots which categorize the values 

for ܣ௠௨ and ܩ௔௥௘௔.  

 

B. Hata and Cost 231 Models 

Hata model is the extension of Okumura model and it is valid for the same distance and 

the frequency ranges. It provides a closed form equation and gets rid of the empirical 

look up tables or plots. The parameters are the same as the Okumura model. 

 

௅ܲ,௨௥௕௔௡ሺ݀ሻ݀ܤ ൌ 69.55 ൅ ݋݈ 26.16 ଵ݃଴ሺ ௖݂ሻ െ ݋݈ 13.82  ଵ݃଴ሺ݄௧ሻ െ  ܽሺ݄௥ሻ ൅  ሺ44.9 െ

݋݈ ଵ଴(݄௧ሻ)݃݋݈ 6.55                                  ଵ݃଴ሺ݀ሻ  

 

Cost 231 model developed by the European Cooperative for Scientific and Technical 

Research is fundamentally same model, but applicable to 2 GHz frequency band.  

 

௅ܲ,௨௥௕௔௡ሺ݀ሻ݀ܤ ൌ 46.3 ൅ ݋݈ 33.9 ଵ݃଴ሺ ௖݂ሻ െ ݋݈ 13.82  ଵ݃଴ሺ݄௧ሻ െ  ܽሺ݄௥ሻ ൅  ሺ44.9 െ

݋݈ ଵ଴(݄௧ሻ)݃݋݈ 6.55                                  ଵ݃଴ሺ݀ሻ ൅   ெܥ 

Where all the parameters are same as earlier two models except for ܥெwhich is 0 dB for 

medium sized cities and 3 dB for metropolitan areas.  

C. Indoor Models 

Indoor environment presents additional attenuation factors which change the signal 

power drastically and quickly as well. Floors, walls, partitions, furniture and even human 

(2.2) 

(2.3) 



8 

beings affect signal power. The path loss suffered by the signal power for different 

materials is given in following table. 

Table 2.1 Path Loss Values for Different Obstacles 

Obstacle Type Loss in dB 

Cloth Partition 1.4 

Double Plasterboard Wall 3.4 

Foil Insulation 3.9 

Concrete Wall 13 

Aluminum Sliding 20.4 

All Metal 26 

 
The diversity and the random nature of the obstacles in the indoor environment makes it 

difficult to capture all the effects in one closed form formula. The popular approach is the 

use of simplified model which is a simple probabilistic approximation for the sum of all 

the attenuating factors in which the sum of attenuation due to various factors is 

represented as a shadowing parameter. The received power is then calculated with the 

following formula. 

௥ܲ ݉ܤ݀  ൌ  ௧ܲ ݀݉ܤ െ ଵ଴݃݋݈ ߛ 10 ቀ ௗ
ௗబ

ቁ ൅  Ψ ݀ܤ 

where,  

 ݐ݊݁݊݋݌ݔ݁ ݏݏ݋݈ ݄ݐܽܲ :ߛ

݀଴: ܴ݂݁݁݁ܿ݊ܽݐݏ݅݀ ݁ܿ݊݁ݎ, ݀ ݎ݋݂ ݈݀݅ܽݒ ݈݁݀݋݉ ൐  ݀଴ 

Ψ: ܴܽ݊݀݃݊݅ݓ݋݄݀ܽݏ ݈ܽ݉ݎ݋݊݃݋݈ ݃݊݅ݐ݊݁ݏ݁ݎ݌݁ݎ ݈ܾ݁ܽ݅ݎܽݒ ݉݋ 

(2.4) 
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Fig. 2.1 Path Loss Vs Distance 

 

The simplicity of this model has a great advantage for low complexity localization 

algorithms, and therefore this model is used throughout the work in this thesis. The 

distance is then calculated for measured receive power value by rearranging the equation 

as follows. 

 

݀ ൌ  ݀଴10
ು೟ష ುೝ

భబ ം כ 10
ഗ

భబ ം   

Note that the term 10
ഗ

భబ ം represents the error in the distance estimation, which depends on 

the random fluctuations in signal power denoted by  ߰ . We will discuss this in more 

detail in chapter 3.  

 

 

 

 

Path loss 
(dB) 

log(d) 

Shadowing  

(2.5) 
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2.2 Multi-Lateration  

Multi-lateration is a fundamental technique which estimates the location from the 

available distance information from known reference points or beacons. For two-

dimensional localization, theoretically three reference points are required, and for three-

dimensional localization four reference points are needed. In this thesis, we only consider 

two-dimensional space; nevertheless, the algorithms are independent of this assumption. 

From a geometric point of view, the reference beacons generate circles (spheres in the 

case of three-dimensional space) with radii equal to estimated distances. In the case when 

distance estimates are free of error, then all circles intersect in one unique point which is 

the location of the target. In the presence of error, the circles will not intersect in a single 

point at the location of the target. This is shown in the figures below.  

 

 

 

 

 

 

 

 

 

Fig.2.2 Distance Estimates (a) without Error (b) with Error 

 

Beacons 

Estimated Distances 
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Analytically, the location of the target can be found by solving the equations of the 

circles. If there is no error present, the system of equations is consistent, and will yield a 

unique solution as long as distances from at least three beacons are known. However, 

when there is error present in the distance data, the equations will be consistent, and 

target location must be estimated using methods such as least squares. Following is a 

description of two multi-lateration approaches. The first uses a non-linear optimization 

technique and the other transforms the system into linear equations and solves using the 

linear least square technique.  

 

2.2.1 Non-linear Approach  

Assume that the number of reference points (beacons) is Nሺ൒ 3ሻ. Then following system 

of equations is obtained from distance estimates from each beacon.  

ሺݔ െ ௜ሻଶݔ ൅ ሺݕ െ ௜ሻଶݕ ൌ መ݀௜
ଶ,      ݅ ൌ 1,2 … , ܰ 

    መ݀௜ ൌ  ݀௜ ൅ ݁௜      

Where, ሺݔ௜, ,ݔ௜ሻ are the coordinates of the ith beacon, ሺݕ  ሻ is the location of the mobileݕ

sensor node and መ݀௜ is the distance estimate from ith beacon. For nonzero error (݁ሻ, these 

N equations are inconsistent. Then the estimation (ෝ࢞ሻ for the target location is calculated 

as follows.  

Denote,  

࢞ ൌ ሾݔ,  ሿݕ

࢏࢞ ൌ ሾݔ௜,  ௜ሿݕ 

 ԡ࢞ െ ԡ࢏࢞ ൌ  ඥሺݔ െ ௜ሻଶݔ ൅ ሺݕ െ  ௜ሻଶݕ

(2.6) 

(2.7) 

        
(2.8) 
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Then, 

ෝ࢞ ൌ ݃ݎܽ min
௫

൝෍ሺ መ݀௜ െ ԡ࢞ െ ԡሻଶ࢏࢞
ே

௜ୀଵ

ൡ 

In the case, where each equation is assigned a weight "ݓ௜" based on some reliability 

criteria; then the above equation can modified as follow. 

ෝ࢞ ൌ ݃ݎܽ min
௫

൝෍ ௜ݓ כ ሺ መ݀௜ െ  ԡ࢞ െ ԡሻଶ࢏࢞
ே

௜ୀଵ

ൡ 

In either case, multivariable optimization technique must be used to estimate ෝ࢞. The 

popular approaches include Steepest Gradient Descent (SGD) and Gauss–Newton (GN) 

method.  For the sake of analysis, we will present the SGD method and compare it with 

the linear approach used in this thesis.  

 

Steepest Descent Algorithm 

Define,  

௜ݒ ൌ  ݀௜ െ  ԡ࢞ െ  ԡ࢏࢞

Then the objective function is expressed as, 

ሺ࢞ሻܨ ൌ  ෍ ௜ݒ
ଶ

ே

௜ୀଵ

 

 

 

 

 

 
(2.9) 

(2.10) 
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Figure 2.3 Steepest Descent Algorithm  

 

The main drawback of the steepest descent method is that it requires an initial value – a 

rough estimate of the target location. Unless there is a good initial value estimate, the 

Compute 
൫࢞ࡲ ൌ ࢞࢑൯ 

START 

Initialize ࢞ ൌ ࢞૙ 

If |ࡲ| ൏ ߳  

(Allowable error) 

સ ൫࢞ࡲ ൌ ࢞࢑൯ 
Compute 

௞ܮ ൌ
൫࢞ࡲ ൌ ࢞࢑൯

ԡસ ሺ࢞ࡲ ൌ ࢞࢑ሻԡଶ 

࢞࢑ା૚ ൌ ࢞࢑ െ ௞ܮ સ ൫࢞ࡲ ൌ ࢞࢑൯ 
 

ෝ࢞ ൌ ࢞࢑ 
(End) 

Yes 

No 

k = k+1 
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algorithm will not converge to the correct local minimum. Depending on the localization 

application, initial location information is not always available. The second important 

issue regarding SGD is that the recursive nature of the method may take large number of 

iterations before reaching acceptable accuracy. Large number of iterations demands 

increased processing power, making it energy inefficient. To circumvent these 

difficulties, an alternate linear approach is used, which is described in the next section. 

 

2.2.2 Linear Approach: Transformation into Linear System  

From equation 2.6 we have the following set of N nonlinear equations.  

ሺݔ െ ଵሻଶݔ ൅ ሺݕ െ ଵሻଶݕ ൌ መ݀ଵ
ଶ 

ሺݔ െ ଶሻଶݔ ൅ ሺݕ െ ଶሻଶݕ ൌ መ݀ଶ
ଶ 

 ڭ

ሺݔ െ ேሻଶݔ ൅ ሺݕ െ ேሻଶݕ ൌ መ݀ே
ଶ  

Now these N equations can be transformed into N-1 linear equations by subtracting the 

 terms ݕ ,ݔ equation from remaining N-1 equations. This cancels out the quadratic ݄ݐԢݎ

and following set of equations is obtained.  

݅ ݎ݋ܨ ൌ 1,2 … , ܰ ሺ݅ ്  ሻݎ
 

ሺݔଵ െ ݔ ௥ሻݔ  ൅ ሺݕଵ െ ݕ ௥ሻݕ  ൌ
1
2

ሾ መ݀௥
ଶ െ መ݀ଵ

ଶ െ ሺݔ௥
ଶ ൅ ௥ݕ

ଶሻ ൅ ሺݔଵ
ଶ ൅ ଵݕ

ଶሻሿ 

 
ሺݔଶ െ ݔ ௥ሻݔ  ൅ ሺݕଶ െ ݕ ௥ሻݕ  ൌ ଵ

ଶ
ሾ መ݀௥

ଶ െ መ݀ଶ
ଶ െ ሺݔ௥

ଶ ൅ ௥ݕ
ଶሻ ൅ ሺݔଶ

ଶ ൅ ଶݕ
ଶሻሿ 

 ڭ

ሺݔே െ ݔ ௥ሻݔ  ൅ ሺݕே െ ݕ ௥ሻݕ  ൌ
1
2

ሾ መ݀௥
ଶ െ መ݀ே

ଶ െ ሺݔ௥
ଶ ൅ ௥ݕ

ଶሻ ൅ ሺݔே
ଶ ൅ ேݕ

ଶ ሻሿ 

(2.11) 

(2.12) 
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which can be written in matrix form as, 

݅ ݎ݋ܨ ൌ 1,2 … , ܰ ሺ݅ ്  ሻݎ
 

ۏ
ێ
ێ
ۍ

ଵݔ െ ௥ݔ  ଵݕ െ ௥ݕ 
ଶݔ െ ௥ݔ  ଶݕ െ ௥ݕ 

ڭ
ேݔ െ ௥ݔ  ேݕ െ ے௥ݕ 

ۑ
ۑ
ې

ቈ
ݔ

ݕ
቉ ൌ  ଵ

ଶ

ۏ
ێ
ێ
ۍ

መ݀௥
ଶ െ መ݀ଵ

ଶ െ ሺݔ௥
ଶ ൅ ௥ݕ

ଶሻ ൅ ሺݔଵ
ଶ ൅ ଵݕ

ଶሻ  
መ݀௥

ଶ െ መ݀ଶ
ଶ െ ሺݔ௥

ଶ ൅ ௥ݕ
ଶሻ ൅ ሺݔଶ

ଶ ൅ ଶݕ
ଶሻ

ڭ
መ݀௥

ଶ െ መ݀ே
ଶ െ ሺݔ௥

ଶ ൅ ௥ݕ
ଶሻ ൅ ሺݔே

ଶ ൅ ேݕ
ଶ ሻے

ۑ
ۑ
ې
 

 

Now this system can be represented as: Ax = ½ B and can be solved using the least 

squares method. 

࢞ ෝ ൌ ଵ
ଶ

 ሺ࡭ࢀ࡭ሻି૚࡮ࢀ࡭ 

 

Geometric Interpretation of Nonlinear to Linear Transformation  

By transforming the system from non-linear to linear, we are no longer solving the 

equations of the circles; instead, we are solving the equations of the lines passing through 

the intersection points of the overlapping circles. In case the circles do not intersect with 

each other, the transformation still generates a line which is perpendicular to the line 

joining the two centers of the circles. The following figures show the three possible 

scenarios.  

 

 

 

 

 

 

(2.13) 

(2.14) 
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Fig. 2.4 Geometric Representation of the Linear Transformation 

 

It is important to note that, depending on the choice for the reference beacon (ݎᇱ݄ݐ 

equation) different sets of lines are generated. For instance, in the Fig. 2.5 if the reference 

beacon selected is A then lines L1 and L2 will be generated and not L3. And the least 

square solution will be the point P which is an intersection of lines L1 and L2. 

Interestingly, line L3 will also intersect the other two lines at point P. This will always be 

the case for N equal to three. Consequently, the selection of reference beacon does not 

influence the final target estimation. However, this is not the case for N > 3. As shown in 

C2 C1 

C1 
C2 

Linear 
Equation 

Linear 
Equation
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the Fig 2.6 different combinations of circles will yield different sets of lines which will 

not intersect in at unique point. These different systems of linear, but inconsistent 

equations are solved using least squares method, however, the final target location is no 

longer a unique solution. It strongly depends on the choice of the reference beacon. For 

instance, if B is selected as the reference beacon, then lines L1, L3 and L4 are generated. 

Whereas, if C is selected as the reference beacon, then lines L2,L3 and L5 are generated, 

which will have a different least square solution compared to the previous combination. 

We will revisit this issue in chapter 4 when we discuss the effect of bias in distance 

estimates.  

 

 

 

 

 

 

 

 

Fig. 2.5 Linear Transformation of System for N = 3 
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Fig. 2.6 Linear Transformation of System for N = 4 

 

 

2.3 Related Work 

Several methods have been proposed to model and mitigate the effect of the error in the 

distance estimates. This error is a result of the biased distance estimates from NLOS 

signal propagation. The bias can be modeled with different probability distributions such 

as Exponential [1], Uniform [2] and Gaussian [3]. It is assumed to be a positive quantity 

in virtually all scenarios since attenuation of signal is more likely than amplification.  The 

effect of bias on the location estimate is arbitrary and depends on multiple factors, such 

as topology of the beacons, location of the target node as well as the localization 

technique. One class of bias mitigation techniques includes identification and rejection of 

the NLOS distance estimates [4] [5]. A major drawback of this approach is the 

requirement of at least three LOS or unbiased measurements, which may not be possible 

L1 Linear 
Equations 

 L5 
L2 

P4 

P3 
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in many practical cases. Other methods of NLOS error mitigation techniques include 

addition of a correction factor [6], linear programming [3] and weighted average [1]. 

Most of these approaches are dependent on the underlying assumption for the bias 

distribution and thus they are only effective for specific applications. From these various 

techniques, we will use the Rwgs algorithm proposed in [1] for comparison purposes, as 

it uses a similar weighted average techniques utilized in this work. 
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3. LOCALIZATION ERROR MODELING 

 

In this chapter, we will discuss the various factors that generate the error in the location 

estimate, and different statistical approaches of modeling them. As mentioned earlier, 

RSS based localization is a two step process. First step is the transformation from signal 

space to Euclidean distance space. In this step, the errors are caused due to the 

complexity of signal propagation and the inevitable randomness associated with it. This 

randomness is the major source of error in the distance estimates which translates into the 

error in the location estimate in Cartesian space. However, it is important to note that the 

error in the location estimate is not linearly related with the error in the distance 

estimates. This fact is elaborated more in detail in chapter 4. But first, following is the 

description of the distance error model. 

 

3.1 Distance Error Estimation Using Simplified Path Loss Model 

௥ܲ ݉ܤ݀  ൌ  ௧ܲ ݀݉ܤ െ ଵ଴݃݋݈ ߛ 10 ቀ ௗ෠

ௗబ
ቁ ൅  Ψ ݀ܤ 

where Ψ~ ܰሺ0, σଶሻ 

By rearranging the above equation we get, 

መ݀ ൌ  ݀଴10
௉೟ି ௉ೝ

ଵ଴ ఊ כ 10
ట

ଵ଴ ఊ   

        ൌ  ݀଴݁
ଶ.ଷ଴ଷሺ௉೟ି ௉ೝሻ

ଵ଴ ఊ כ ݁
ଶ.ଷ଴ଷట

ଵ଴ ఊ  

(3.1) 
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 መ݀ ൌ  ݀ כ ݁
మ.యబయഗ

భబ ം                

 መ݀ ൌ  ݀ כ ݁஛                      

Where ݀ is the actual distance between the transmitter and the receiver and λ = ଶ.ଷ଴ଷஏ  
ଵ଴כஓ

 

From equation 2.7,  

݁ ൌ  መ݀ െ  ݀ 

 ݁ ൌ  ݀ כ ݁஛ െ  ݀ ൌ ݀ ൫݁஛ െ  1൯ 

Now using the Taylor series expansion,  

݁஛
 = 1 + λ ൅  ஛మ

ଶ!
 . . . ൎ 1 ൅  ߣ 

 
Since λ ൏ 1 for 99% of times for Ψ ~ ܰሺ0, σଶሻ with σଶ ൒ 6dB and γ ൒ 4 
 

 ݁ ൌ ݀ כ ߣ  ൌ ݀ כ  ଶ.ଷ଴ଷஏ  
ଵ଴כஓ

 
 

 ݁ ~ ܰ൫0, dଶσ஛
ଶ൯             

 
For Ψ~ Nሺ0,6dBሻ and γ ൌ 4 
 

ఒߪ  ൌ 0.345 
 

 ݁ ~ ܰሺ0, ሺ0.345dሻଶሻ   
 

 

The above model for error in distance estimation gives us a basic idea regarding the 

relationship between signal propagation and the distance. The model shows us that the 

variance of the error is strongly correlated with the distance between the transmitter and 

the receiver, which itself is an unknown parameter. Nevertheless, the assumption that 

signal propagation only consists of shadowing (Ψሻ random variable is far from practical 

situation, particularly in an indoor environment. If distance error is purely normally 

(3.2) 

(3.3) 
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distributed random variable with zero mean, then the error could be reduced significantly 

by averaging a high number of distance estimation samples. However, this is not the case 

in practical conditions. Therefore, more complex models are needed for accurate 

realization of the system. Following is a popular model for distance estimation, which 

accommodates two types of signal propagation scenarios – line of sight (LOS) and non 

line of sight (NLOS).  

መ݀ ൌ  ݀ ൅ ݊ ൅ ܾ 

where, 

 ݊ ~ ܰሺ0, σଶ) 

, ݉ݎ݋݂ܷ݅݊ ~ ܾ , ݈ܽ݅ݐ݊݁݊݋݌ݔܧ  ݊݋݅ݐݑܾ݅ݎݐݏ݅݀ ݈ܽ݉ݎ݋ܰ

 

The model assumes that signal propagation from a LOS path will only contribute errors 

with zero mean normal distribution, but the errors caused due to signal propagation from 

NLOS path need to be modeled differently. The NLOS path errors are often called as the 

“bias” in the distance estimation. The bias can be modeled with a uniform, exponential, 

Gaussian or some other distribution depending on the environment. In popular 

approaches, the bias is often modeled as a positive random variable. This assumption is 

based on the fact that attenuation of the signal is more likely than the amplification, 

which results into overestimation of the distance. We will use this model as a basis to 

calculate the error in location estimation from the distance data, which is described in the 

next section.  

3.2 Error in the Location Estimate 

(3.4) 
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In this section, we will show the derivation for the mean square error (MSE) in the 

location estimate, and discuss the factors that influence the error. We will use the linear 

least squares method to calculate the location estimate described in chapter 3. From 

equation 2.14 we have, 

ෝ࢞ ൌ ଵ
ଶ

 ሺ࡭ࢀ࡭ሻି૚࡮ࢀ࡭ 

where 

࡮ ൌ

ۏ
ێ
ێ
ۍ

መ݀௥
ଶ െ መ݀ଵ

ଶ െ ሺݔ௥
ଶ ൅ ௥ݕ

ଶሻ ൅ ሺݔଵ
ଶ ൅ ଵݕ

ଶሻ  
መ݀௥

ଶ െ መ݀ଶ
ଶ െ ሺݔ௥

ଶ ൅ ௥ݕ
ଶሻ ൅ ሺݔଶ

ଶ ൅ ଶݕ
ଶሻ

ڭ
መ݀௥

ଶ െ መ݀ே
ଶ െ ሺݔ௥

ଶ ൅ ௥ݕ
ଶሻ ൅ ሺݔே

ଶ ൅ ேݕ
ଶ ሻے

ۑ
ۑ
ې
 

The matrix B can be decomposed into actual and error terms using Eq. (2.7) as follows: 

۰ ൌ ܉۰   ൅ ۰܍ 
 

ࢇ࡮ ൌ  

ۏ
ێ
ێ
ۍ ݀௥

ଶ െ ݀ଵ
ଶ െ ሺݔ௥

ଶ ൅ ௥ݕ
ଶሻ ൅ ሺݔଵ

ଶ ൅ ଵݕ
ଶሻ  

݀௥
ଶ െ ݀ଶ

ଶ െ ሺݔ௥
ଶ ൅ ௥ݕ

ଶሻ ൅ ሺݔଶ
ଶ ൅ ଶݕ

ଶሻ  
ڭ

݀௥
ଶ െ ݀ே

ଶ െ ሺݔ௥
ଶ ൅ ௥ݕ

ଶሻ ൅ ሺݔே
ଶ ൅ ேݕ

ଶ ሻ  ے
ۑ
ۑ
ې
 

 

ࢋ࡮ ൌ  

ۏ
ێ
ێ
ۍ 2݀௥݁௥ െ 2݀ଵ݁ଵ ൅  ݁௥

ଶ െ ݁ଵ
ଶ

2݀௥݁௥ െ 2݀ଶ݁ଶ ൅  ݁௥
ଶ െ ݁ଶ

ଶ  
ڭ

2݀௥݁௥ െ 2݀ே݁ே ൅  ݁ே
ଶ െ ݁ே

ଶ ے  
ۑ
ۑ
ې
 

 

Then, the covariance of ࢞ ෝ  can be calculated as follows, 

ሺ࢞ ෝݒ݋ܥ ሻ ൌ ሼሺ࢞ ෝܧ – ࢞ሻሺ࢞ ෝ – ࢞ሻࢀሽ 
 
where ࢞ ൌ ሺݔ,  ,ሻ is the actual location of the target, which can be denoted asݕ
 

࢞ ൌ  ଵ
ଶ

 ሺ࡭ࢀ࡭ሻି૚ࢇ࡮ࢀ࡭ 
 
Therefore  

(3.7) 

(3.5) 

(3.6) 

(3.8) 
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ሺ࢞ ෝݒ݋ܥ ሻ ൌ
1
4  ሽࢀሻࢇ࡮ࢀ࡭ሻି૚࡭ࢀ࡭ሺ –࡮ࢀ࡭ሻି૚࡭ࢀ࡭ሻሺ ሺࢇ࡮ࢀ࡭ሻି૚࡭ࢀ࡭ሺ –࡮ࢀ࡭ሻି૚࡭ࢀ࡭ሼሺ ሺܧ

 
ൌ ଵ

ସ
 ሺ࡭ࢀ࡭ሻି૚ܧ ࢀ࡭൛ࢋ࡮ࢋ࡮

 ሻି૚࡭ࢀ࡭ሺ࡭ ൟࢀ
and 
 

ܧܵܯ ൌ ሺ࢞ ෝݒ݋ܥሺ݁ܿܽݎܶ  ሻሻ 
 

ࢋ࡮ࢋ࡮൛ܧ
 ൟ is an N-1 by N-1 matrix, and it strongly depends on the error model used. Twoࢀ

closed formed solutions have been derived in two scenarios which give us the 

fundamental platform and we use it as a basis for our proposed algorithm. Here we 

provide a brief derivation of the MSE, based on the paper by Guvenc, Chong and 

Watanabe. 

3.2.1 Mean Square Error without the Bias (Case I) 

መ݀ ൌ  ݀ ൅ ݊ 

 ݁ ൌ  ݊        

ࢋ࡮ࢋ࡮൛ܧ
ൟ௜௝ࢀ ൌ ൛ሺ2݀௥݊௥ െ  2݀௜݊௜ ൅  ݊௥

ଶ െ ݊௜
ଶሻ ൈ  ൫2݀௥݊௥ െ  2 ௝݀ ௝݊ ൅  ݊௥

ଶ െ ௝݊
ଶ൯ൟ 

                             ൌ ൛4݀௥ܧ
ଶ݊௥

ଶ ൅ ݊௥
ସ െ ݊௥

ଶ
௝݊
ଶ െ ݊௥

ଶ݊௜
ଶ ൅ ݊௜

ଶ݊௝
ଶൟ 

                             ൌ 4݀௥
ଶߪଶ ൅ ; ସߪ6             ሺ݅ ് ݆ሻ 

and 

ࢋ࡮ࢋ࡮൛ܧ         
ൟ௜௜ࢀ ൌ ሼሺ2݀௥݊௥ െ  2݀௜݊௜ ൅  ݊௥

ଶ െ ݊௜
ଶሻ૛ሽ 

                            ൌ ൛4݀௥ܧ
ଶ݊௥

ଶ ൅ 4݀௜
ଶ݊௜

ଶ ൅ ݊௥
ସ െ ݊௥

ଶ
௝݊
ଶ െ ݊௥

ଶ݊௜
ଶ ൅ ݊௜

ସൟ 

                             ൌ ଶሺ݀௥ߪ4
ଶ ൅ ݀௜

ଶሻ ൅  ସߪ8

3.2.2 Mean Square Error in the Presence of Bias (Case II) 

(3.11) 

(3.9) 

(3.10) 

(3.12) 



25 

መ݀ ൌ  ݀ ൅ ݊ ൅ ܾ  

To distinguish from the previous case we will denote the matrix with error terms by ࡮෩ࢋ 

instead of ࢋ࡮ which did not have bias terms in it.  

Now 

ࢋ෩࡮ ൌ  

ۏ
ێ
ێ
ۍ 2݀௥݁௥ െ 2݀ଵ݁ଵ ൅  ݁௥

ଶ െ ݁ଵ
ଶ

2݀௥݁௥ െ 2݀ଶ݁ଶ ൅ ݁௥
ଶ െ ݁ଶ

ଶ  
ڭ

2݀௥݁௥ െ 2݀ே݁ே ൅  ݁ே
ଶ െ ݁ே

ଶ ے  
ۑ
ۑ
ې
 

 
Where error is decomposed as: ݁ ൌ  ݊ ൅ ܾ        

ࢋ෩࡮ ൌ  

ۏ
ێ
ێ
ۍ

෨߲ଵ ൅ ෤݊ଵ ൅ ෨ܾଵ ൅ ܿ̃ଵ
෨߲ଶ ൅ ෤݊ଶ ൅ ෨ܾଶ ൅  ܿ̃ଶ 

ڭ
෨߲ே ൅ ෤݊ே ൅ ෨ܾே ൅ ܿ̃ே ے

ۑ
ۑ
ې
 

where 

෨߲௜ ൌ 2ሺ݀௥݊௥ െ ݀௜݊௜ሻ 

෤݊௜ ൌ  ݊௥
ଶ െ ݊௜

ଶ 

෨ܾ௜ ൌ  ܾ௥
ଶ െ ܾ௜

ଶ 

ܿ̃௜ ൌ 2ሺ݀௥ܾ௥ െ ݀௜ܾ௜ ൅ ܾ௥݊௥ െ ܾ௜݊௜ሻ 

Therefore 

ࢋ෩࡮ ൌ ࢋ࡮ ൅ ෩࢈ ൅  ෤ࢉ

and the covariance can be calculated as follows, 

ሺ࢞ ෝݒ݋ܥ ሻ ൌ  
1
4 ሺ࡭ࢀ࡭ሻି૚ܧ ࢀ࡭ ቄ࡮෩࡮ࢋ෩ࢋ

ቅࢀ  ሻି૚࡭ࢀ࡭ሺ࡭ 

ܧ ቄ࡮෩࡮ࢋ෩ࢋ
ቅࢀ ൌ ࢋ࡮ࢋ࡮൛ܧ

ൟࢀ ൅ ෩்ൟ࢈ࢋ࡮൛ܧ  ൅ ෤்ሽࢉࢋ࡮ሼܧ ൅ ࢋ࡮෩࢈൛ܧ
்ൟ ൅ ෩்ൟ࢈෩࢈൛ܧ ൅ ෤்ൟࢉ෩࢈൛ܧ ൅

ࢋ࡮෤ࢉ൛ܧ
்ൟ ൅ ෩்ൟ࢈෤ࢉ൛ܧ ൅  ෤்ሽ (3.13)ࢉ෤ࢉሼܧ
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where 
 
ࢋ࡮ࢋ࡮൛ܧ

 ൟ  is given by equations 3.11 and 3.12ࢀ
 
෩்ൟ௜௝࢈෩࢈൛ܧ ൌ ሺܾ௥

ଶ െ ܾ௜
ଶሻ ൈ ሺܾ௥

ଶ െ ܾ௝
ଶሻ 

 
෤்ሽ௜௝ࢉ෤ࢉሼܧ ൌ 4ሺ݀௥ܾ௥ െ ݀௜ܾ௜ሻ൫݀௥ܾ௥ െ ௝݀ ௝ܾ൯ ൅ ଶܾ௥ߪ4

ଶ ൅ ,ሺ݅ܫ  ݆ሻ4ߪଶܾ௜
ଶ 

 
෩்ൟ௜௝࢈ࢋ࡮൛ܧ ൌ ଶሺܾ௜ߪ2

ଶ ൅ ܾ௥
ଶሻ ൌ ࢋ࡮෩࢈൛ܧ 

்ൟ௝௜ 
 
෤்ሽ௜௝ࢉࢋ࡮ሼܧ ൌ 8݀௥ܾ௥ߪଶ ൅  4 ௝݀ ௝ܾߪଶ ൅ ,ሺ݅ܫ  ݆ሻ4݀௜ܾ௜ߪଶ ൌ ࢋ࡮෤ࢉ൛ܧ 

்ൟ௝௜ 
 
෤்ൟ௜௝ࢉ෩࢈൛ܧ ൌ 2ሺܾ௥

ଶ െ ܾ௜
ଶሻሺ݀௥ܾ௥ െ ௝݀ ௝ܾሻ ൌ  ෩்ൟ௝௜࢈෤ࢉ൛ܧ 

 
Where, 

,ሺ݅ܫ ݆ሻ ൌ  1;   ݂݅ ݅ ൌ ݆ 

ൌ  0;   ݂݅ ݅ ് ݆ 

 

3.2.3 Effect of Beacon Topology on the Mean Square Error 

To understand the effect of bias on location error we performed simulations using the 

above set of equations for different beacon combinations. For the following results, 

beacons (ܤ௜, ݅ ൌ 1: 4ሻ are located at [0, 0], [40, 0], [40, 40] and [0, 40].  The path of the 

target node is along the diagonal from ܤଵto ܤଷ with an increment of one unit in both x 

and y coordinates. Since the increments are identical, the location index refers to both the 

coordinates of the target node.  The noise component is normally distributed as: ࣨሺ0, 1ሻ. 

Bias is 2 for Fig. 3.1, Fig 3.2 and Fig. 3.4 and uniformly distributed from [0, 2] for Fig. 

3.3. In the Fig. 3.1 only ܤଵ provides biased distance estimate. Fig. 3.2 shows the effect of  

two biased estimates and Fig. 3.3 shows when all estimates are biased with a random 
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amount. Fig. 3.4 shows the effect of different bias configurations on the location 

estimation computed from a particular beacon combination. 

 

 

Fig.3.1 MSE Comparison – One Biased Estimate 

 
Fig.3.2 MSE Comparison – Two Biased Estimates 
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Fig.3.3 MSE Comparison – All Biased Estimates (Random Bias) 

 
Fig. 3.4 MSE Comparison for Particular Beacon Combination with Various Bias 

Configurations 
 
 

The observations made from these figures are as follows.  

 

1. The effect of bias is highly dependent on the target location, and exclusive use of 

combination with all ሺܰሻ beacons will not provide optimal results. Some 

combinations will suffer more than others from the accuracy perspective.  

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

Location Index

M
S

E
Biased Distance Estimates: All (Random Bias)
Black: Combination with N Beacons
Red, Blue: Combination with Beacons 2-3-4, 1-2-4

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

Location Index

M
S

E

 

 

data1
data2
data3

Beacons 1
Beacons 1, 4
Beacons 1, 3 

Biased Distance Estimates



29 

2. The topology of beacons plays an important role. It is possible to have a 

combination with high amount of bias and still provide a better location estimate 

than a combination with relatively small amount of bias.  

3. Lastly, as a corollary of the first two observations, it can be seen that symmetry 

can help reduce the effect of bias. Fig.3.4 shows that the MSE in the case of 

symmetrical biased beacons ሺܤଵ, ,ଵܤଷሻ is lower than the asymmetric case ሺܤ   .ସሻܤ

Interestingly, at some locations, it is even lower than the MSE in the case of the 

combination with single biased beacon ሺܤଵሻ.  

 

Based on these observations we define an estimator that is dependent on the beacon 

topology and captures the effect of symmetry.  Hence it has a strong correlation with the 

error. This estimator is described in the next chapter. 
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4. ERROR DECOMPOSITION AND ESTIMATION 

 

In this chapter we explain a novel algorithm based on the observations discussed 

previously. The primary goal of the algorithm is to reduce the effect of biased distance 

estimates on the target location error. The algorithm is divided in two parts. First part 

deals with combinatorics of the beacons, in which all possible combinations of three or 

more beacons are considered for location computation. The second part consists of the 

selection process of identifying the “good” or more reliable combinations versus the 

“bad” or unreliable combinations. We discuss four possible selection methods based on a 

“spring-mechanics” model. We show through simulation results that the algorithm is 

independent of statistical distribution of the bias component. We also provide the 

experimental results to validate the simulation results and show that the algorithm 

reduces errors and provides higher accuracy over existing techniques.  

 

4.1 Beacon Combinations 

Let ܵ be the set of ܰ beacons. Then the set of all possible combinations of N beacons is 

the power set of ܵ. Then number of total combination is given by, 

|Եሺܵሻ| ൌ 2ே 

where Եሺܵሻ is the power set of ܵ. 
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However, since we are considering the combinations of 3 beacons or more, we need to 

subtract the combinations of two or smaller number of beacons from the power set. Then 

the resultant set is the subset of the power set, and the number of elements in the subset is 

given by,  

ܮ ൌ  |Եכሺܵሻ| ൌ 2ே െ  ൫ே
ଶ൯  െ  ൫ே

ଵ൯  െ  ൫ே
଴൯ 

ൌ 2ே െ  
ܰଶ ൅ ܰ ൅ 2

2  

Hence ܮ increases exponentially as a function of  ܰ. Fig.4.1 shows the ܮ location 

estimates linked with the ܮ node combinations. 

 

 

 

 

 

 

Fig.4.1 Location Estimates from Beacon Combinations 
 

where 

෡૚ࢊ ൌ ൣ መ݀ଵ, መ݀ଶ, መ݀ଷ൧      
 
෡૛ࢊ ൌ ൣ መ݀ଵ, መ݀ଶ, መ݀ସ൧        
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N Beacons 
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 ڭ

෡૛ࢊ
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ෝ࢞૛ 

ෝ࢞ࡸ 

 ڭ

(4.1) 
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ෝ࢞࢏  is the ݅௧௛ location estimate associated with the corresponding distance estimates. 

These ܮ location estimates provide more diversity as some beacon combinations will 

provide more accurate location estimation than the others. As discussed in the previous 

chapter, depending on the amount of bias, topology of the beacons and few other factors, 

lower order combinations can provide higher accuracy compared to the location estimate 

from the higher order system. Now, it is crucial to identify these more accurate 

combinations from the others in order to improve the accuracy. The next section 

discusses these selection processes and compares them.  

 
 
4.2 Location Error Decomposition and Estimation 
 
Let ෝ࢞ be the target location estimate from some combination of ܯ beacons. Then we 

define a vector estimator, 

 

ડ ൌ  ෍
መ݀௝ െ ฮෝ࢞ െ ࢞࢐ฮ

ฮෝ࢞ െ ࢞࢐ฮ

ெ

௝ୀଵ

 ൫ෝ࢞ െ ࢞࢐൯ 

 

where,  

࢞࢐: ሺ݆ ݊݋݅ݐܽܿ݋݈ ݊݋ܿܽ݁ܤ ݄ݐ′݆ ൌ 1,2 … ,  ሻܯ

መ݀௝ ൌ ,ሺܴܵܵ ݐ݊݁݉݁ݎݑݏܽ݁݉ ݈ܽ݊݃݅ݏ ݉݋ݎ݂ ݊݋ܾܿܽ݁ ݄ݐ′݆ ݉݋ݎ݂ ݁ݐܽ݉݅ݐݏ݁ ݁ܿ݊ܽݐݏ݅݀  ሻܣܱܶ

(4.2) 
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The geometric representation of this vector estimator is given in Fig. 4.2. The red arrow 

represents the location error estimator which is the vector sum of the residual distance 

estimates, i.e. ෡݀௝ െ  ฮෝ࢞ െ ࢞࢐ฮ represented by the blue arrows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2 Target Location Error Estimator 

 

The error estimator can be written in terms of the actual error vector as follow.  

Denote  

௝ݎ ൌ  
መ݀௝ െ  ฮෝ࢞ െ ࢞࢐ฮ

ฮෝ࢞ െ ࢞࢐ฮ
 

       Actual Target Node                                                 Target Location Error 
        Estimated Target Node                                            Residual Dist. Estimate 
       Beacons (Imprecise Position)                                  Error Estimator 

  (4.3) 
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and substitute  ෝ࢞ ൌ ࢞ ൅  ࣈ

ડ ൌ  ∑ ௝ݎ
ெ
௝ୀଵ ሺ࢞ ൅ ࣈ െ ࢞࢐ሻ 

ࣈ ൌ
ડ ൅ ∑ ௝ݎ

ெ
௝ୀଵ ሺ࢞࢐ െ ࢞ሻ
∑ ௝ݎ

ெ
௝ୀଵ

 

ࣈ ൌ ܽડ ൅         ࡳ

where,  ࣈ  is the error in the location estimate. And, 

ܽ ൌ ଵ
∑ ௥ೕ

ಾ
ೕసభ

                                                                             

ࡳ ൌ  
∑ ௥ೕ

ಾ
ೕసభ ሺ࢞࢐ି࢞ሻ

∑ ௥ೕ
ಾ
ೕసభ

,                                        

                           

Now for any given beacon combination, location estimate error can be decomposed into 

two vector components, ܽડ and ࡳ. Note that ࡳ is a weighted vector sum of actual 

distances from beacons to target node. We assume the x and y components of ࡳ for any 

beacon combination as follows,  

For ݅Ԣ݄ݐ combination ሺ݅ ൌ 1,2, … ,  ሻܮ

,௜ೣீߤ௜ೣ~ ࣨ൫ܩ ࣨ ~௜೤ܩ ݀݊ܽ ଶ൯ߪ ቀீߤ௜೤,         ଶቁߪ

 

 

 

 

 

 

  (4.4) 

 (4.5) 

 (4.6) 
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5. PROPOSED DUAL WEIGHTED AVERAGE TECHNIQUE 

 

5.1 Error Distribution Based on the Weighted Average Technique 

Let ෥࢞ be the location estimate from a weighted average of ܮ initial location estimates. 

Then 

෥࢞ ൌ  ෍ ௜ݓ

௅

௜ୀଵ

ෝ࢞࢏ 

where, ݓ௜  is the weight of the ݅Ԣ݄ݐ combination.  

and    ∑ ௜ݓ ൌ 1. 

Then the error vector for the final location can be computed as follows. 

෨ࣈ ൌ  ෥࢞ െ  ࢞ ൌ  ෍ ௜ݓ

௅

௜ୀଵ

ෝ࢞࢏ െ  ෍ ௜ݓ

௅

௜ୀଵ

࢞ 

෨ࣈ ൌ  ෍ ௜ݓ

௅

௜ୀଵ

 ࢏ࣈ

࢏ࣈ ൌ  ܽ௜ડ࢏ ൅  ࢏ࡳ

 

Therefore from (4.6),  

࢏ሺܽ௜ડࣨ ~ ࢏ࣈ ൅ ,࢏ࡳࣆ ઱ሻ                         

∑෨ ~ ࣨ൫ࣈ ௜ݓ
௅
௜ୀଵ ሺܽ௜ડ࢏ ൅ ,ሻ࢏ࡳࣆ ઱෩൯ 

(5.1) 

(5.2) 

(5.3) 
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and 

ԡ࢏ࣈԡ~ܴ݅ܿ݁ሺݒ௜,                               ሻߪ

ฮࣈ෨ฮ ~ܴ݅ܿ݁ሺݒ෤,  ෤ሻߪ

where 

࢏ࡳࣆ ൌ ሾீߤ௜ೣ,  ௜೤ሿீߤ

෤ଶߪ ൌ ∑ ௜ݓ
ଶ௅

௜ୀଵ ଶߪ ൏  ∑ ௜ݓ
௅
௜ୀଵ ଶߪ ൌ        (are independent ࢏ࣈ Assuming)          ଶߪ 

઱ ൌ Covariance Matrix of ࢏ࣈ                        

઱෩ ൌ Covriance matrix of ࣈ෨  

௜ݒ ൌ  ԡܽ௜ડ࢏ ൅  ԡ࢏ࡳࣆ

෤ݒ ൌ ฮ∑ ௜ݓ
௅
௜ୀଵ ሺܽ௜ડ࢏ ൅   ሻฮ࢏ࡳࣆ

Now 

෨ฮൟࣈ൛ฮܧ  ൏  ԡሽ࢏ࣈሼԡܧ 

if   

෤ටߪ 
ߨ
2 ଵܮ  ଶ⁄ ቆെ

෤ଶݒ

෤ଶቇߪ2 ൏ ටߪ 
ߨ
2 ଵܮ  ଶ⁄ ቆെ

௜ݒ
ଶ

 ଶቇߪ2

where the parameters are as follows. 

ଵܮ ଶ⁄ ሺݐሻ ൌ  ݁௧ ଶ⁄ ሾሺ1 െ ଴ܫሻݐ ቀെ ௧
ଶ
ቁ െ ଵܫ ݐ  ቀെ ௧

ଶ
ቁ                                       

,଴ܫ :ଵܫ   ݏ݊݋݅ݐܿ݊ݑܨ ݈݁ݏݏ݁ܤ

Let  

ߙ ൌ  
௜ݒ

෤ݒ , ߚ ൌ
ଶߪ

෤ଶߪ ߛ ݀݊ܽ  ൌ
ԡሽ࢏ࢋሼԡܧ
෤ԡሽࢋሼԡܧ  

(5.4) 

(5.5) 

(5.6) 

(5.7) 
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Then Fig.5.1 shows the interrelationship between these three parameters. Note that, 

ߛ ൐ 1 implies that there is an improvement in the location accuracy. Since, ߪ෥ ଶ ൏  ଶߪ 

therefore, ߚ ൐ 1. Thus the only crucial criterion for improvement is ߙ ൒ 1. 

Consequently, the optimal solution for which accuracy improvement is maximized is 

achieved when ݒ෤ ൌ 0. In that case, ฮࣈ෨ฮ reduces to a Rayleigh distribution, which 

provides optimum results as seen in Fig. 5.1.  

 

 

Fig. 5.1 Accuracy Improvement vs. Alpha 

 

 

5.2 Inverse Estimator Weighted Average (IEWA) 

The first weighted average technique is a heuristic method based on the assumption that 

 ડ࢏ is a good estimator of the error. Therefore, the weights are assigned using the 

following inverse relation solely based on ડ࢏.   
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௜ݓ
ூா ൌ

1
ԡડ࢏ԡൗ

∑ 1
ԡડ࢏ԡൗ௅

௜ୀଵ
 

Therefore 

 ෥࢞ூா ൌ   ෍ ௜ݓ
ூா

௅

௜ୀଵ

ෝ࢞࢏ 

and 
 

෤ூாݒ ൌ  ะ
1

ܨܰ ෍ ܽ௜࢏ܝ ൅ 
௅

௜ୀଵ

෍ ௜ݓ
ூா

௅

௜ୀଵ

ะ࢏ࡳࣆ ൌ  ฮડ෨ ൅ ۵෩ฮ 

where,  
 
  ࢏Unit vector in the direction of ડ :࢏ܝ 
 
ܨܰ ൌ  ∑ 1

ԡડ࢏ԡൗ௅
௜ୀଵ                                                                           

ડ෨ ൌ ଵ
ேி

∑ ܽ௜࢏ܝ ௅
௜ୀଵ                                                                   

۵෩ ൌ  ∑ ௜ݓ
ூா௅

௜ୀଵ                                                                  ࢏ࡳࣆ

 

Now, ฮડ෨ฮ is a known parameter and it is bounded. The upper bound becomes very small 

as ܮ ՜ ∞. In contrast, ฮ۵෩ฮ is an unknown parameter and for higher values of ฮ۵෩ฮ , the 

IEWA performance degrades. Note that for a particular location, the value of ۵෩ is 

completely dependent on the weights and can be written as follows: 

 
 

۵෩ ൌ ෍ ௜ݓ
ூா

௅

௜ୀଵ

࢏ࡳࣆ ൌ ቂࡱࡵ࣓ۃ, ,ۄೣࡳࣆ ,ࡱࡵ࣓ۃ  ቃۄ೤ࡳࣆ

 
where,  

ࡱࡵ࣓ ൌ  ሾݓଵ
ூா, ଶݓ

ூா, … , ௅ݓ
ூாሿࢀ                                                  

(5.8) 

(5.9) 

(5.10) 
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ೣࡳࣆ ൌ  ሾீߤଵೣ, ,ଶೣீߤ … ,                                                ࢀ௅ೣሿீߤ

೤ࡳࣆ ൌ  ሾீߤଵ೤, ,ଶ೤ீߤ … ,                                                ࢀ௅೤ሿீߤ

.ۃ , .  ݎ݋ݐܽݎ݁݌ܱ ݐܿݑ݀݋ݎܲ ݎ݁݊݊ܫ :ۄ

 
Therefore ฮ۵෩ฮ and consequently ݒ෤ூா increases as  ೣࡳࣆ ,  .ࡱࡵ࣓ ೤ become co-linear withࡳࣆ

To mitigate this issue we propose another weighted average method which will act 

complementary to the IEWA technique and reduce the arbitrary adverse effects of 

unknown parameters  ೣࡳࣆ ,  .೤ࡳࣆ

 

5.3 Null Space Weighted Average (NSWA) 

As explained in the section IV, for the maximum improvement, ሺ݅. ݁.  min    ෨ฮൟ ሻࣈ൛ฮܧ

 

෤ݒ ൌ ะ෍ ௜ݓ

௅

௜ୀଵ

ሺܽ௜ડ࢏ ൅ ሻะ࢏ࡳࣆ ൌ 0 

 
ࡿࡺ࣓࡭ ൌ ૙                                          

where 
 
࡭ ൌ  ሾܽଵડ૚ ൅ ૚ࡳࣆ ܽଶડ૛ ൅ ૛ࡳࣆ … ܽ௅ડࡸ ൅  ሿࡸࡳࣆ

 
ࡿࡺ࣓ ൌ  ሾݓଵ

ேௌ, ଶݓ
ேௌ, … , ௅ݓ

ேௌሿࢀ 
 

Theoretically, this can be achieved by selecting ࣓ࡿࡺ from the null space of ࡭. However 

since ࡳࣆ is unknown, we use the null space of ࡰ࡭ ൌ ሾܽଵડ૚ ܽଶડ૛ … ܽ௅ડࡸሿ to 

compute ࣓ࡿࡺ. In addition, to compensate the adverse effects as ೣࡳࣆ, -೤ become coࡳࣆ

linear with ࣓ࡱࡵ, we propose the following weight selection method. 

Let 

(5.11) 
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ષ ׷  ࡰ࡭  ݂݋ ݁ܿܽ݌ݏ ݈݈ݑܰ

શ ׷  ࡱࡵ࣓ ݂݋ ݁ܿܽ݌ݏ ݈݈ݑܰ

Then select ࣓ࡿࡺ  such that 

ࡿࡺ࣓ א   ષ ת  શ 

Therefore 

෥࢞ேௌ ൌ   ෍ ௜ݓ
ேௌ

௅

௜ୀଵ

ෝ࢞࢏ 

This selection process has two important advantages. First, by choosing ࣓ࡿࡺ from the 

null space of  ࡰ࡭, we force ∑ ௜ݓ
ேௌ௅

௜ୀଵ ܽ௜ડ࢏ ൌ ૙. Therefore,  

෤ேௌݒ ൌ ฮ∑ ௜ݓ
ேௌ௅

௜ୀଵ ฮ࢏ࡳࣆ ൌ  ቛࡿࡺ࣓ۃ, ,ۄೣࡳࣆ ,ࡿࡺ࣓ۃ  ቛۄ೤ࡳࣆ

In additional, since ࣓ࡿࡺ is also from the null space of ࣓ࡱࡵ, NSWA a works 

complementary to IEWA in the following sense. For given ೣࡳࣆ,    ೤ࡳࣆ

As, 

,ࡱࡵ࣓ۃ ,ۄೣࡳࣆ ,ࡱࡵ࣓ۃ ۄ೤ࡳࣆ  ՜ max          ሺ׶  ሻݕݐ݅ݎ݈ܽ݁݊݅݋ܿ

,ࡿࡺ࣓ۃ  ,ۄೣࡳࣆ ,ࡿࡺ࣓ۃ ۄ೤ࡳࣆ ՜ 0                ሺ׶ ,ࡿࡺ࣓ۃ ۄࡱࡵ࣓ ՜ 0ሻ 

 
And, for obvious reasons the converse holds true as well.  
 
 
Thus, as ݒ෤ூா increases due to co-linearity, ݒ෤ேௌ decreases. In the worst case when both 

 ෤ேௌ reduces to zero and NSWA provides theݒ ;ࡱࡵ࣓ ೤ are co-linear withࡳࣆ and ೣࡳࣆ 

optimal solution. The null spaces ષ, શ can be found by singular value decomposition. 

The vector ࣓ࡿࡺ can be chosen from a linear combination of the obtained basis, and 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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should contain as many positive elements as possible. This can be achieved using 

methods such as linear programming. Since ࣓ࡱࡵ consists of all positive elements, ࣓ࡿࡺ 

will have some negative weights. The effect of these negative weights becomes 

negligible as ܮ increases. The only case when the effect is noticeable is ܰ ൌ 4; where the 

dimension of  ષ ת  શ  reduces to 2, which is smaller than the rank of the augmented 

matrix ሾࡰ࡭,  can be chosen exclusively from the null ࡿࡺ࣓ ሿ. In that particular caseࡱࡵ࣓

space of ࡰ࡭.   

 

5.4 Final Location Estimate 

The final location estimate is an average of estimates from the IEWA and NSWA 

methods.  

෥࢞௙௜௡௔௟ ൌ ݇ூா෥࢞ூா ൅ ݇ேௌ෥࢞ேௌ 

where ݇ூா , ݇ூா  are the level two weights ሺ݇ூா ൅ ݇ேௌ ൌ 1ሻ 

݇ூா , ݇ூா depend on the beacon topology and they can be recessively updated, if the recent 

target location information is available. If no information is available, then  ෥࢞௙௜௡௔௟ can be 

computed using simple average of  ෥࢞ூா , ෥࢞ேௌ as follows: 

෥࢞௙௜௡௔௟ ൌ
෥࢞ூா ൅ ෥࢞ேௌ

2  

 

 

 

 

(5.16) 

(5.17) 
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6. RESULTS  

 

Two approaches are compared against the proposed technique and the results are shown 

in the figures below. The first is the “Original” approach which considers only one 

combination of all available beacons. The second approach is the Rwgs method, which 

uses a similar weighted average algorithm proposed by Chen [1]. All simulations and 

experiments are performed for 20 randomly chosen target locations and results are 

averaged out. In the experiment, RSS to distance conversion was performed using the 

simplified path loss model. Fig. 6.1 shows the location error as the number of beacons 

increase for various mean bias values. It can be seen that the proposed technique is more 

stable and provides a rapid increase in accuracy compared to other approaches. Fig. 6.2 

shows the probability distribution of the error for the case of N=5. Both the figures show 

that the proposed technique yields higher accuracy and robustness independent of the bias 

distribution. In contrast, Rwgs method is only effective for exponential bias distribution. 

Lastly, Fig. 6.3 shows the actual experimental results in a wireless network with N=5, 

where proposed technique performs better as well.  
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6.1 Simulation Results 

 

Fig. 6.1 Location Error vs. Number of Beacons 
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Fig. 6.2 CDF of Error for Various Bias Distributions (ߤ ൌ 3݉ሻ 
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6.2 Experimental Results 

 

Fig. 6.3 Error Statistics from Experimental Testing 
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7. CONCLUSION 

 

In this thesis, a theoretical analysis of effect of biased distance estimates on localization 

accuracy was provided. We also presented a dual weighted average technique to mitigate 

the effects of bias. The simulations show an error reduction up to 40% and 25% while the 

actual experiments show a reduction of 56% and 28% compared to the “Original” and 

Rwgh methods, respectively. A significant reduction in the variance of error is also 

observed. The complementary weighted average methods provide two-fold robustness, 

making it applicable to a wide range of scenarios independent of the bias distributions. 

Even though the actual experiment was carried out in a wireless network, the technique 

can be applied to other types of networks as well. Thus the presented technique can be 

used along with wide variety of localization services in a practical environment.  
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