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Many cardiac therapeutic modalities, including pacemakers, implantable cardioverter 

defibrillators, and cardiac resynchronization therapy devices, are used to treat 

abnormalities in cardiac function and conduction.  Both electrical and mechanical 

dyssynchrony can have deleterious effects including reduced cardiac output and an 

increased susceptibility to cardiac arrhythmias.  It is postulated that electro-

mechanical dyssynchrony may contribute to the susceptibility of the heart to cardiac 

arrhythmias.  In this study, a novel system was developed to study these effects by 

altering the electro-mechanical activation sequence in cultured neonatal rat 

cardiomyocyte monolayers by dyssynchronously stimulating the monolayers with 

applied electrical fields and pulsatile mechanical strain.  Specifically, optical mapping 

was utilized to compare action potential duration and quantify arrhythmia 

susceptibility of cardiomyocytes subjected to pulsatile mechanical strain, electrical 

stimulation, and dyssynchronous electrical and mechanical stimulation.  This system 

provides a method to evaluate changes in cardiomyocyte conduction properties due to 

altered electro-mechanical coupling and the subsequent impact on arrhythmogenesis. 
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Chapter 1: Introduction 

Cardiac function is derived from cellular electro-mechanical coupling where an 

electrical impulse elicits a mechanical contraction in cardiac tissue.  The electrical 

impulse, known as an action potential, is propagated from cell to cell through 

electrically coupled low-resistance gap junction proteins.  The initial period of an 

action potential consists of a depolarizing current, immediately followed by an influx 

of Ca2+, which then triggers a cellular contraction which is a decrease in cell length.  

An electrical impulse followed by mechanical contraction with a delay on the order of 

tens of milliseconds is the natural activation sequence of the heart.   

 

Many cardiac therapeutic modalities, including devices such as pacemakers, 

implantable cardioverter defibrillators, and cardiac resynchronization therapy devices, 

are used to treat abnormalities in cardiac function and conduction.  Electrical 

dyssynchrony, or the lack of coordinated electrical activation throughout the heart, 

has been shown to reduce cardiac pump function and induce myocardial stress.1  

Mechanical dyssynchrony is discoordination of mechanical interactions within and 

between ventricles which leads to inefficient mechanical forces that are necessary for 

normal cardiac contraction.2  Mechanical dyssynchrony is often a by product of 

electrical dyssynchrony, but can occur even with normal electrical activation.3  Both 

electrical and mechanical dyssynchrony can have deleterious effects including 

reduced cardiac output and an increased susceptibility to cardiac arrhythmias.4  

Electro-mechanical dyssynchrony, also known as mechano-electrical feedback or 

contraction-excitation feedback, is a phenomenon in which cardiac electrical activity 
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is modulated by mechanical stretch.5  The changes electrophysiological properties 

develop according to the timing of mechanical strain (during different phases of the 

action potential).6  It is also postulated that electro-mechanical dyssynchrony may 

contribute to the susceptibility of cardiac arrhythmias and rhythm disorders.7 

 

Cardiomyocyte monolayers have been used as a simplified model for examining 

various properties of cardiac tissue.8-10  In particular, the effects of mechanical 

strain11-22 and electrical stimulation23-27 have been examined previously in separate 

studies using cultured cardiomyocyte monolayers.  However, it is unknown if any 

system has been designed to study simultaneous mechanical and electrical stimulation 

in cardiomyocytes.  The goal of this research is to implement a system with the ability 

to alter the electrical and mechanical activation sequence of cardiomyocytes, 

specifically electrical stimulation in synchrony (in phase) or dyssynchrony (out of 

phase) with mechanical strain.  The aim of this study is to contribute to the 

understanding of cardiac electro-mechanical dyssynchrony and its impact on cardiac 

remodeling and cardiac conduction properties, as well as to measure its ability to 

promote arrhythmogenesis. 
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Chapter 2: Background 

Cardiac Remodeling 

Cardiac remodeling can be defined as a change in tissue properties due to an initiation 

or termination of a stimulus.  Cardiomyocyte remodeling can occur due to stimuli, 

including disease (such as heart failure), injury (such as myocardial infarction), or 

therapy (such as pacing).28  Remodeling can be evident through cardiomyocyte 

adaptation, such as protein production or alteration of ion channel responses.29  While 

initial improvements, such as synthesis of new contractile proteins and new 

sarcomere assembly,28 can be apparent due to remodeling, adverse functional effects, 

due to changes in electrophysiological properties such as action potential 

prolongation, may contribute to arrhythmia formation.  For example, it has been 

suggested that remodeling may contribute to the development of an arrhythmogenic 

substrate in the failing human heart.22, 30, 31  Electrical and or mechanical stimulation 

can be used to elicit a remodeling response in cultured cardiomyocytes.13, 14, 21-23, 26  

Electro-mechanical dyssynchrony alters the activation sequence of cardiomyocytes 

which induces remodeling, which is characterized by changes in protein synthesis, 

cellular organization, and cell signaling pathways. 

 

Ventricular Arrhythmia 

Arrhythmia is defined as a cardiac rhythm disorder which can be further categorized 

by the location of the affected cardiac region in the whole heart.  In cardiac tissue, the 

formation of an arrhythmia can occur when the leading edge or wavefront of the 
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action potential (AP)  propagation wave interacts with the repolarization phase of a 

preceding wave.32, 33  Reentry describes repetitive ventricular arrhythmias in which 

the activation front of an action potential never meets refractory tissue, causing the 

rhythm to persist.33  Reentrant arrhythmias can be classified as either anatomical or 

functional.  An anatomical reentry is a repetitive propagation wave that circulates 

around an inexcitable obstacle, such as a cardiac structure including blood vessels or 

scar in cardiac tissue or gaps in cardiomyocyte monolayers.34  A functional reentry, 

which is the focus of this study, also known as a spiral wave is a reentry that 

circulates freely and is not necessarily anchored to an anatomical obstacle.  The 

reentry occurs due to functional changes such as excitability, fiber orientation, or 

conduction properties of the cardiomyocytes or myocardium.  These arrhythmias can 

manifest in 2D substrates in several ways including rotating single-arm spirals, multi-

arm spirals (spiral waves that rotate in the same direction around a common center), 

or unstable spirals (which continuously form and break up).35  Rotating spirals can 

also be characterized by chirality, or direction of rotation, and are usually denoted as 

clockwise or counterclockwise. 

 

Reentry also can be caused by a region of cardiac tissue exhibiting slow conduction, 

short refractory periods, large dispersion of refractory periods, or unidirectional 

blocks.36  Other changes in functional electrophysiological properties, such as action 

potential duration restitution (APDR) and conduction velocity, can also lead to an 

arrhythmic conduction pattern such as reentry. 
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As stated earlier, ventricular arrhythmias are commonly seen in heart failure 

patients.33, 37  The mortality rate of severe heart failure patients correlates with 

depressed left ventricular function and the presence of ventricular arrhythmias.33  The 

combination of left ventricle dilation and low ejection fraction is linked to ventricular 

arrhythmias, which may indicate that chronic strain can cause electrophysiological 

remodeling which in turn can be a factor of arrhythmia formation in heart failure 

patients.33  As seen in myocytes isolated from failing hearts, action potential duration 

prolongation can also cause monolayers to be highly arrhythmogenic.38 

Proteins 

There are several significant proteins which are commonly studied in cardiomyocyte 

research and commonly observed during cardiac remodeling.  Specifically, F-actin, 

connexin, and cadherins are proteins that aid in the organization, function, and 

electro-mechanical coupling of cardiomyocytes.  F-actin is a cytoskeletal protein with 

a filamentous polymer subunit structure that can easily be identified by specific 

molecular probes.  The F-actin polymers form bundles and networks that not only 

provide a structural framework for the plasma membrane but are also necessary for 

cardiac contraction.  Bundles of repeating arrays of actin filaments, called 

sarcomeres, undergo shortening during cardiac contraction.39 

 

Connexin is a transmembrane protein which provides the gap junction structure in 

cardiomyocytes.  Gap junctions, intercellular couplers, are channels between cells 

that permit the exchange of ions and a low-resistance pathway for electrical current to 

flow between cells.  These are critical in fast conduction of action potentials in that 
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conduction velocity is dependent on the magnitude of the intercellular resistance 

which is largely determined by gap junctions.  Specifically, Connexin 43 (Cx43) is 

most abundant in the heart32 and the location and amount of Cx43 impacts 

cardiomyocyte membrane electrical properties.40 

 

Cadherins are transmembrane proteins that function as cell adhesion molecules by 

linking cells together and attaching cells to extracellular matrix proteins.  N-cadherin 

is located in the intercalated disks of cardiomyocyte membranes and is necessary for 

myofibril (chain of sarcomeres) organization and stabilization,41, 42 as well as aiding 

in the assembly of Cx43.42 

 

During cardiac remodeling, the alteration of these proteins, including their location 

and production, is commonly observed and measured.43, 3, 44 

 

Cardiomyocyte Cell Culture 

When myocytes from hearts early in development are isolated and plated in a high 

enough density on an appropriate substrate, they adhere to the substrate.  They 

randomly disperse and spread in multiple directions, and when they encounter other 

myocytes, form gap junctions.  The result is a two dimensional monolayer or 

continuous cell network that behaves like native cardiac tissue, in that cells are 

excitable, remain mechanically active such that they contract following electrical 

stimulation, and APs can propagate from cell to cell.  Cardiomyocytes typically 

exhibit spontaneous contractile activity (beating) at 1-2 Hz.23  Since monolayers 
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behave similarly to native tissue, they have been used to study hypertrophy,12, 16 

arrhythmias,8, 35 intracellular communication,22 protein expression,23-26 and the effects 

of static22, 45 and pulsatile strain.13, 14, 16-18, 20-22, 22 

 

Cardiac tissue is naturally anisotropic which means the properties of the tissue vary 

according to the direction of measurement.46  Therefore the spatial alignment of 

myocytes and location of intercellular junctions such as gap junctions affect the 

electrical conductivity of the tissue.46  Anisotropy allows for sequential electrical and 

mechanical activity which aids in efficient pumping of the heart.46  However, cultured 

myocytes form two dimensional monolayers that are isotropic because individual 

cells are randomly oriented and therefore are not aligned to enhance end-to-end 

connections;46 therefore, intercellular connections are not necessarily representative 

of native cardiac tissue.  Myocytes transform electrophysiologically over time in that 

cell size, morphology, and action potential duration (APD) all change during 

development.23  Since cardiomyocyte monolayers are well established for use in 

cardiac remodeling studies,22-26, 46 consist of a homogeneous cell type, and are a 

preparation that is easily sustainable and reliable, they were chosen as the ideal 

preparation of cardiac tissue for these experiments.  

 

Mechanical Strain 

In this study, mechanical strain will be used to initiate cardiac remodeling.  However, 

mechanical strain can also induce alignment of myocytes, called anisotropy which is 

a characteristic of cardiomyocytes in vivo.  Alignment of cells in myocyte 
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monolayers can be induced using several techniques including microabrasion,46, 47 

micropatterning and photolithographic patterning,12 microfabrication including 

mictrotexture with grooved or pegged surfaces,48 or external mechanical force on a 

deformable membrane.14, 22  The application of mechanical strain to cultured neonatal 

cardiomyocytes is a method that induces alignment of the myocytes and promotes 

protein synthesis, which ultimately impacts the electrical properties of the myocytes 

and monolayers.  In order to more accurately simulate native cardiac tissue in vivo, 

mechanical strain of a pliable silicone substrate was the technique chosen for this 

study in order to produce cardiomyocyte alignment while at the same time 

mechanically stimulating the cardiomyocytes. 

 

The ability of mechanical strain to induce cell alignment in culture is dependent upon 

the initiation time of strain exposure.21  It has been shown that mechanical strain 

induces cell alignment when the applied strain was started three (3) hours after 

seeding, while no alignment was evident when strain was initiated 24 hours after 

seeding.13  Although time of strain initiation was not indicated, Zhuang, et al. showed 

that alignment occurred after six (6) hours of continuous pulsatile strain.22  It has also 

been shown that applied strain was able to induce alignment in monolayers plated at a 

low density, where there were fewer cell-cell contacts, as opposed to high density 

monolayers where alignment did not occur.13  As a result of the applied mechanical 

strain, cell orientation in the monolayer is promoted parallel to the direction of 

strain.14 
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The effect of mechanical strain on protein synthesis has also been studied extensively 

in myocyte cultures and it has been shown that strain increases the synthesis of gap 

junction proteins.22  Specifically, strain causes an overall increase in Cx43,20 an 

increase in Cx43 protein area,22 an increase in Cx43 mRNA,19 and localization of 

Cx43 at the longitudinal cell termini.14   

 

Other proteins are impacted by mechanical strain in myocyte monolayers.  For 

example, strain causes an increase in the density of cytoskeletal filaments20 and 

activates RhoA, which is a protein that promotes actin formation.14, 21  Applied strain 

also causes an increase in N-cadherin,20, 22 which has been shown to be a vital 

component for the alignment and arrangement of myocytes.13  Additionally, strain 

promotes the localization of N-cadherin at the longitudinal cell termini.14   

 

Strain induces alignment and protein changes which consequently impact the 

electrical properties of the myocytes.  For example, propagation velocity and the 

velocity of the action potential upstroke have been shown to increase with pulsatile 

strain.22  It has also been shown that static strain increases the conduction velocity of 

myocytes.22 

Electrical Field Stimulation 

Temporal synchrony of cardiomyocyte activation is imperative for proper cardiac 

contraction and function.  In cell culture, electrical field stimulation with periodic 

pulses stabilize the time dependant developmental changes in functional electrical 

properties of myocytes, induces morphological changes in monolayers, including cell 
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alignment, and increases gap junction connections, thereby increasing conduction 

velocity.23, 26, 27  Electrical field stimulation also stabilizes electrophysiological 

properties of cardiac cells such as APDR and conduction velocity restitution curves.23  

Electrical field stimulation of myocyte monolayers at 2 Hz has been shown to 

maintain and stabilize APDR and maximum capture rate (MCR) over a time period of 

days 4 to 8 (post plating) when compared to non-stimulated monolayers which 

showed a downward shift in APDR over the same time period.23  Conduction 

velocities have been shown to increase over the time of culture (from day 4 to day 6) 

in both electrically stimulated and non-stimulated monolayers although the rate of 

increase was greater in electrically stimulated monolayers.23  Electrical field 

stimulation has also been shown to suppress spontaneous myocyte beating.23 

 

Similarly, electrical field stimulation increases the quantity of gap junction 

connections between cells.  In one study, after five days of continuous electrical 

stimulation, cell connections via gap junctions, including Cx43, were more 

prevalent.26  This indicates that these proteins, which were previously disorganized 

during digestion in the cell culture process, recovered and reorganized.26  The Cx43 

levels in the aforementioned study were measured using multiple methods, including 

molecular expression levels, amounts, distribution and gene expression.  Cx43 levels 

in electrically stimulated monolayers treated with Verapamil, a L-type Ca2+ channel 

blocker, were found to be comparable to electrically stimulated drug-free controls and 

showed that electrical stimulation maintains the level of functional gap junctions 

without myocyte contraction.26  Applied electrical field stimulation increases gap 
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junction quantity which causes an increase in conduction and overall functionality of 

cardiac tissue. 

 

Electrical field stimulation also causes morphological changes in myocytes, which is 

indicative of a positive myocyte response.  Electrical stimulation (1Hz, 5V/cm, 2 ms 

rectangular pulses) applied continuously to monolayers for five days increased 

intercellular coupling, alignment (evidenced by myofibers aligning in the direction of 

electrical field lines), elongation, and synchronous contractions.26  The time between 

plating of monolayers and initiation of electrical stimulation is important because 

enzyme digestion temporarily inhibits electrical signal transmission and in turn 

contraction.26  Optimal cellular activity have been found to occur when stimulation 

was initiated on days 3-5 of the culture.26 

 

Optical Mapping 

Optical mapping is an imaging technique that utilizes voltage-sensitive dyes to 

visualize the electrical activity of the heart.  The voltage sensitive dye molecules bind 

to the cellular membrane of the myocytes and, when excited with light of a certain 

wavelength, emits light of another wavelength (emission wavelength) with an 

intensity that is proportional to the transmembrane potential of the cells.  

 

There are several advantages that make optical mapping ideal for these types of 

experiments.   Optical mapping allows simultaneous events to be recorded from many 

sites and depicts the spatial information of a monolayer unlike electro-cardiographic 
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techniques.  The use of voltage-sensitive dyes allows transmembrane potentials to be 

recorded during the application of electrical pulses while keeping the recorded data 

free of electrical stimulus artifacts.8  It also has been a well documented and widely 

used technique for research involving cardiomyocyte cultures at microscopic9 as well 

as macroscopic length scales.9, 49 



13 

Chapter 3: Dyssynchronous Mechanical and Electrical 

Stimulation 

Objectives  

The objective of this research was to develop a system to electrically stimulate 

cardiomyocyte monolayers dyssynchronously (out of phase) with pulsatile 

mechanical strain, validate this system by measuring electrophysiological changes of 

cardiomyocyte monolayers resulting from dyssynchronous mechanical and electrical 

stimulation, and finally quantify the susceptibility of monolayers to arrhythmias due 

to dyssynchronous mechanical and electrical stimulation.  Until now, cardiomyocyte 

studies have investigated the morphological and protein expression changes due to 

mechanical strain or electrical field stimulation separately.12-14, 19-22, 26  However, no 

studies have explored stimulating cardiomyocytes with both mechanical strain and 

electrical fields, either synchronously or dyssynchronously.  The arrhythmogenic 

tendency of cardiomyocytes due to dyssynchronous mechanical and electrical 

stimulation has similarly not been fully explored.  It is the goal of this research to 

develop a system to induce cardiac remodeling through dyssynchronous mechanical 

and electrical stimulation and to quantify the changes in electrophysiological 

properties of cardiomyocyte monolayers. 
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Materials and Methods 

All animals were treated according to protocols approved by the Institutional Animal 

Care and Use Committee (IACUC) at the White Oak Animal Facility of the Food and 

Drug Administration (FDA) in accordance with the Guide for the Care and Use of 

Laboratory Animals.50 

 

Cell Culture 

Cardiac cells were removed from ventricles of 2-3 day old neonatal Sprague-Dawley 

rats (Harlan, Indianapolis, IN).  The ventricles were minced in to 8-12 pieces and 

digested in a 0.7 mg/mL 3x trypsin solution (~614,000 USP/g ) (US Biological, MA) 

while being gently swirled at 75 rpm overnight at 4°C.  The trypsin solution was then 

aspirated and the ventricles were quenched with 25 mL of warm growth media.  The 

growth media consisted of Dulbecco's Modification of Eagle's Media (DMEM) 

supplemented with L-glutamine, 2mg/mL vitamin B12, 10% Fetal Bovine Serum 

(FBS) to remove fibroblasts, 0.1 mM Bromodeoxyuridine (BrdU) to inhibit the 

growth of non-myocardial cells, 10mM HEPES to maintain physiological pH, and 

50 µg/mL streptomycin/penicillin to inhibit bacterial growth (all obtained from Fisher 

Scientific).8, 46, 51-53  The ventricles and media were rotated at 75rpm in a 37°C water 

bath for 4 minutes.  The ventricles were then dissociated into a suspension of single 

cells using a four step digestion using 45mg/mL (254 u/mg) collagenase 

(Worthington Biochemical Corporation, NJ).  The first digestion was discarded.  The 

other three digestion phases consisted of pipetting the collagenase-tissue solution to 

help dissociate the cells.  The collagenase tissue solution was then centrifuged at 
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1000 rpm.  The supernatant was discarded and the cell pellet was resuspended in 

Hank’s buffered salt solution (HBSS) (Fisher Scientific).  After the cells were well 

suspended in solution, the cell suspension was filtered through a 40μm cell strainer 

(Fisher Scientific).  The suspension was then centrifuged again at 1000 rpm.  The 

supernatant was discarded and the cell pellet was resuspended in warm media and 

pre-plated in a tissue culture flask in a 5% CO2, 37°C incubator for one 15 minute 

period to reduce the fibroblast content.22 

 

After a cell count, the cells were plated on a 3.2 cm x 3.2 cm area (10.2 cm2) of the 

silicone strain chamber (STREX, B-Bridge International, Inc., CA) with a total of 

~2.6 million cells.  The silicone surfaces were coated with 25µg/1mL human 

fibronectin (BD Biosciences, MA) to ensure adhesion of the cells to the chambers and 

growth of dense monolayers without large intercellular spaces.  Since the square 

silicone chambers were 10.2 cm2 and the dish where the monolayers would be placed 

for experimentation was a circular region of 23 mm in diameter, fibronectin was 

placed in the center of the silicone chamber and then covered with a circular glass 

coverslip (23 mm in diameter) to pattern the fibronectin in a circular shape in the 

center of the silicone chamber.  Cells adhered to the fibronectin coated area and not 

the outlying non-fibronectin coated silicone membrane area.  A monolayer plated on 

a circular substrate was necessary to fit in the cell dish system used during the 

experimental protocol (described in Experiment Protocol section).  Confluent 

monolayers were then grown in a CO2 incubator at 37˚C.  
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Chambers with confluent monolayers, assessed under phase contrast microscopy, 

were used for experimentation.  All experiments were done 4-5 days after culturing.  

Each series of experiments was performed on 5 to 12 cultures derived from one cell 

isolation.  Prior to experimentation, the fibronectin and monolayer coated circular 

area was cut from the center of the silicone chamber.  The circular pattern of the 

monolayer was necessary so that when this cut was made, it prevented cellular injury 

or disruption in monolayer confluence. 

 

Mechanical Strain Unit 

A mechanical strain unit (STREX Cell Strain Instrument, B-Bridge International, 

Inc., CA) (Figure 1.) was used to subject cardiomyocyte monolayers to uniaxial 

pulsatile mechanical strain while in culture.  This mechanical strain unit was adapted 

to have an analog signal sensor output which produced a voltage waveform that was 

proportional to the cycle of strain and expressed the changes in length of silicone 

chamber due to the strain (Figure 2.).  The 8% uniaxial pulsatile strain cycle (0.5 Hz) 

consisted of a strain period of 0.25 sec, a hold period of 0.5 sec, a relax period of 

0.25 sec and hold period of 1 sec.  Cell strain in the y direction (εY) is defined as  

100x
L

L
Y

−
=
lε              (Equation 1.1) 

where L is the length of the silicone chamber before strain and ℓ is the length of the 

silicone chamber at maximum strain (Figure 3.). 
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Fig. 1. Mechanical strain unit and silicone chamber (inset).  The arrow indicates the direction 
of strain. 
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Fig. 2. Equivalent voltage waveform for 8% mechanical strain.  The mechanical strain unit 
was adapted to have analog signal sensor output which produced a voltage waveform that 
was proportional to the cycle of strain and expressed the changes in length of the silicone 
chamber due to the strain.  The uniaxial pulsatile strain cycle (0.5 Hz) consisted of a strain 
period of 0.25 sec, a hold period of 0.5 sec, a relax period of 0.25 sec and hold period of 1 
sec.  The pulsatile mechanical strain cycle depicted above the equivalent voltage output from 
mechanical strain unit.  The amplitude of the voltage waveform represents the percent strain. 
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Fig. 3. Depiction of strain on a silicone chamber in the y direction.  The grey rectangle 
depicts the silicone chamber.  Pink represents the well of the silicone chamber.  Blue 
represents the cardiomyocyte monolayer.  The image on the left depicts a silicone chamber 
during the hold phase immediately after the relation phase of mechanical strain cycle. L is the 
length of the silicone chamber before strain.  The image of the right represents the silicone 
chamber during the hold phase immediately after the strain phase of the mechanical strain 
cycle.  ℓ is the length of the silicone chamber at maximum strain or 8% strain. (The images 
are not to scale). 
 

Electrical Field Stimulation System 

In order to subject cardiomyocytes monolayers in culture to electrical field 

stimulation by a field stimulus, a stimulation setup was adapted from experiments by 

Sathaye et al., 2006 and Johnson et al., 199423, 24 and is shown in Figure 4.  Square-

wave pulses were delivered by a stimulator (Grass SD9) through 0.12 inch diameter 

parallel carbon rod electrodes (Ladd Research, VT).  The carbon electrodes were 

submerged in media at opposite sides of each chamber in the strain system to form an 

electric field within each chamber across the monolayer of cells.  The carbon rods 

were held by a custom-built polycarbonate scaffold.  The chambers were electrically 

connected in series via platinum wire adhered to the carbon rods by biocompatible 

epoxy (Epoxy Technology, MA).  In order to reduce ion buildup, the polarity of the 



19 

stimulus for every other pulse was reversed using an A385 stimulus isolator (World 

Precision Instruments, FL).   

 

Stimulus threshold and capture of the cultures at the stimulus rate of 0.5 Hz was 

determined by visual inspection of the cardiomyocytes under phase contrast 

microscopy and was consistent across cultures from different isolations.  To 

standardize the experiments, the stimulation current was set to 30mA with a 4 ms 

pulse duration, which resulted in an output voltage of 9 V and a 0.56 V/cm field 

stimulus across each monolayer. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Electrical Field Stimulation Setup.  The upper panel is a schematic of the electrical 
field stimulation setup.  The cardiomyocyte monolayers are represented in blue.  The entire 
setup is placed in an incubator which is represented by a dotted line.  The lower panel is the 
scaffold that holds the carbon electrodes used to electrical stimulate cardiomyocyte 
monolayers in the silicone chamber during incubation. 
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Mechanical and Electrical Stimulation Timing 

In order to dyssynchronously, mechanically and electrically stimulate cardiomyocyte 

monolayers, in culture, a signal conditioning circuit was used for timing electrical 

field pulses from the electrical field stimulation system to be dyssynchronous with 

mechanical strain from the mechanical strain unit, such that the electrical stimulus 

rate was determined according to the frequency of strain.  The mechanical strain 

control unit containing the strain settings (% strain and frequency) was connected to 

the strain instrument which consists of a step motor that physically moves the 

brackets holding the silicone chambers on either end.  The strain instrument was 

custom designed to convert an analog signal sensor, which detects the distance 

between the brackets (or change in distance that the brackets move in the y direction) 

to an analog voltage output that is proportional to the applied strain in the system.  

This voltage output was then processed using a signal conditioning circuit in order to 

time the electrical stimulation relative to the applied mechanical stimulation.   

 

The signal conditioning circuit converted the position signal from the sensor in the 

strain unit to a signal that could be used for triggering a Grass SD9 stimulator.  The 

stimulator was used to set the timing of the electrical pulses and the A385 stimulus 

isolator was used to convert the signal into a constant current output with alternating 

polarity.  Details of the signal conditioning circuit can be found in Appendix A.  The 

equivalent mechanical strain waveform and corresponding electrical signal can be 

seen in Figure 5. 
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The normal pattern for activation of cardiac cells follows a sequence where an 

electrical impulse propagates through the tissue, followed by a mechanical 

contraction.  In order to mechanically and electrically stimulate cardiomyocytes 

dyssynchronously, the electrical stimulation was applied to the cardiomyocytes 

immediately prior to, the onset of mechanical strain.  The timing of the electrical field 

stimulus was set to be 1075 ms after the onset of strain from the mechanical strain 

unit.  In this way, the native activation sequence is reversed.  The frequency of both 

mechanical and electrical stimulation was set to 0.5 Hz. 
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Fig. 5. Mechanical and electrical timing.  The uniaxial pulsatile strain cycle (0.5 Hz) 
consisted of a strain period of 0.25 sec, a hold period of 0.5 sec, a relax period of 0.25 sec and 
hold period of 1 sec.  The pulsatile mechanical strain cycle is depicted above the equivalent 
voltage output from mechanical strain unit.  The amplitude of the voltage waveform 
represents the percent strain. The timing of the electrical stimulus is also represented below 
the voltage output from the mechanical strain unit.  The electrical stimulation was delayed 
1075 ms from the onset of mechanical strain in order to induce dyssynchronous mechanical 
and electrical stimulation.  The dotted line represents the location of the electrical stimulation 
prior to mechanical stimulation during normal or synchronous cardiomyocyte activation. 
  



22 

Experimental Groups 

After isolation and plating, the monolayers were divided into four experimental 

groups during the incubation period; Control (no stimulation), Mechanical strain, 

Electrical stimulation, and Dyssynchronous mechanical strain and electrical 

stimulation.  The schedule for stimulation for these groups is shown in Figure 6.  
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Fig. 6. Overview of experimental protocol.  At 3 hours post plating, a subgroup of 
monolayers was mechanically strained at 0.5 Hz and 8% strain for 24 hours.  At day 1 post 
plating, a subgroup of monolayers underwent electrical field stimulation at 0.5 Hz for 24 
hours.  At day 1 post plating, a subgroup of monolayers underwent dyssynchronous 
mechanical strain and electrical stimulation for 24 hours.  All groups underwent optical 
mapping between day 4 and 5 post plating. 
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The control group consisted of monolayers grown on silicone chambers without any 

type of stimulation.  The post plating incubation period was 1-5 days. 

 

A second group consisted of monolayers subjected to mechanical stimulation during 

the incubation period using the cell mechanical strain system.  Cardiomyocyte 

monolayers underwent uniaxial pulsatile mechanical strain from a computer-

controlled stepping motor (STREX Cell Strain Instrument, B-Bridge International, 

Inc., CA).  This group was subjected to 8% uniaxial pulsatile strain at 0.5 Hz that 

began three hours after plating until 24 hours after plating.  These stimulation 

parameters were chosen to reduce the amount of cell death that occurred and to 

replicate the frequency of strain of several previous studies. 13, 14, 21  The percentage 

strain was also chosen to be consistent with previous studies.12, 54, 55  The start time of 

mechanical strain was also chosen to be consistent with previous studies.13, 14, 21 

 

The third group was the electrically stimulated group that underwent 24 hours of 

electrical field stimulation during the incubation period at 0.5 Hz starting one day 

after plating.  Although previous studies have electrically stimulated myocytes at 1 

and 3 Hz,23-27 it was found that the cardiomyocytes were healthier when strained at a 

rate 0.5 Hz and therefore the same frequency was chosen for the electrical stimulation 

frequency.  The start time of electrical stimulation strain was also chosen to be 

consistent with previous studies.23, 26, 27 
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The fourth group consisted of monolayers subjected to both mechanical and electrical 

stimulation during the incubation period.  This group underwent the 24 hours of 

dyssynchronous 8% pulsatile mechanical strain and field electrical stimulation at 

0.5 Hz starting one day after plating. 

 

Optical Mapping System 

The optical recording system consisted of a Nikkor Model NI8514/1450 (85 mm 

focal length, 1.4 numerical aperture) (Japan) tandem lens setup to transfer the 

monolayer image onto a 16x16 element Hamamatsu Model C4675-102 photodiode 

array (PDA) (Figure 7).9, 56  A Quartz Tungsten Halogen lightsource (Newport 

Corporation, CA) trans-illuminated the monolayers after passing through a heat filter, 

an Oriel Model 76994 shutter, and a 510 nm excitation filter (Chroma, VT).  The 

voltage-sensitive dye fluoresced through a 610 nm emission filter (Chroma, VT) and 

was detected by the PDA.  (The staining procedure for the voltage-sensitive dye will 

be discussed in the section entitled Experimental Protocol.)  The 256 optical signals 

were collected, passed through a current-to-voltage converter and amplified using 256 

custom designed amplifiers for up to 100x amplification.  Signals were filtered using 

a switched capacitor Bessel filter.  A monochrome charged coupled device (CCD) 

camera was used to visualize the preparation to ensure the monolayer image was 

focused on the PDA.  The PDA imaged a 17.5 x 17.5 mm2 area.  The dimensions of 

the individual diodes were 0.95 x 0.95 mm with an interdiode (center-to-center) 

distance of 1.1 mm.  The signals were then digitized at 1 kHz using a data acquisition 

board (Sheldon Instruments).  Data acquisition software was written in LabVIEW 



25 

(National Instruments) which allowed data acquisition at 1000 samples per second 

per diode.  Additionally, LabVIEW was programmed to control the timing of the 

stimulators during experimentation and control the shutter between the preparation 

and the light source during data acquisition.  
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Fig. 7. Optical mapping system schematic.  A lightsource passes through an exaction filter to 
trans-illuminated the monolayers  The light passes through tandem lens through an emission 
filter and onto PDA.  The optical signals are passed through a current-to-voltage converter (I-
V) and amplified using 256 custom designed amplifiers for up to 100x amplification and 
filtered using a switched capacitor Bessel filter.  The signals were then digitized at 1 kHz 
using a data acquisition board (Sheldon Instruments).  A monochrome charged coupled 
device (CCD) camera was used to visualize the preparation to ensure the monolayer image 
was focused on the PDA. 
 

Experimental Protocol 

First, the cardiomyocyte monolayers were stained with 24µL of 4.2 mM voltage-

sensitive dye (di-8-ANEPPS) (Invitrogen) for 30 minutes.  Cardiomyocyte 
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monolayers underwent a steady state pacing protocol while being optically mapped in 

order to record their activity in response to a pacing stimulus.  Monolayers were 

paced with a point electrode at predetermined intervals and a decrementing pacing 

frequency from 1 to 10 Hz (1000 to 100 ms cycle length) with an electrical pulse 

stimulus at 1.5 times voltage threshold (at which capture first occurred for each 

monolayer) and a 10 ms pulse duration.  Monolayers were paced for a minimum of 30 

seconds prior to data collection.  Additionally, between changes in stimulation 

interval, 30 seconds was allowed for cell recovery.  Stimulation intervals were 

decreased until the cardiomyocyte monolayers were no longer capturing or induction 

of an arrhythmia occurred.  Capture is defined as cardiomyocyte activation being 

equal to the frequency of the pacing stimulus, also called 1:1 capture (Figure 8).  A 

recording of the optical measurements of the electrical activity of the monolayers was 

made for six to eight seconds while monolayers were stimulated at each pacing 

frequency.  During experimentation, the preparation was maintained at 37°C using a 

culture dish system (Bioptechs, PA) in which thermal transfer occurs from the stage, 

through the glass dish that lies beneath the monolayers.  The monolayers are 

superfused with warm CO2-infused DMEM via a customized adaptor (Bioptechs, PA) 

and micro-perfusion pump set (Bioptechs, PA) at a rate of 0.5 mL/min. 
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Fig. 8.  Pacing Protocol.  The upper panel represents an electrical pacing stimulus.  The lower 
panel is a schematic of the activation of action potentials in response to the pacing stimulus.  
(A) 1:1 capture.  The activation of the action potentials is equal to the frequency of the pacing 
stimulus.  (B) loss of 1:1 capture.  The activation of the action potential is not equal to the 
frequency of the pacing stimulus. 
 

If an arrhythmia was induced during the pacing protocol, the electrical stimulation 

from the point electrode was stopped to see if the arrhythmia would terminate without 

an electrical stimulus.  A sustained arrhythmia was considered an arrhythmia that did 

not spontaneously terminate for at least 16 seconds.  A shock protocol was applied to 
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terminate sustained arrhythmias.  The shock protocol consisted of applying a high 

voltage stimulus from a Grass S88 stimulator starting with 20V (25 Ω) and 20 ms via 

the perfusion tubes of the customized adaptor (Figure 9).  If a shock failed to 

terminate the arrhythmia, the shock voltage and duration was increased by 10V and 

10 ms.  If the arrhythmia still would not be terminated by a 60V and 60 ms shock, the 

experiment was ended. 

 

 

Fig. 9. Customized Adaptor.  An enlarged view of the customized adapter with perfusion 
tubes.  This adaptor is placed over the temperature controlled culture dish system on which 
the monolayers is placed. 
 

Immunohistochemistry 

Immunohistochemistry was performed in order to confirm alignment and orientation 

changes in cardiomyocyte monolayers due to 8% pulsatile mechanical strain.  

Cardiomyocyte monolayers adhered on silicone chambers were fixed in 4% formalin 

in Dulbecco’s Phosphate Buffered Saline (PBS) (Fisher Scientific) for 10 minutes and 

rinsed two times with PBS.  Each chamber was blocked with 0.2% Triton-X and 2% 
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Bovine Serum Albumin and immunostained for F-actin using monoclonal anti-F actin 

(Invitrogen).  Other monolayers were immunostained for both F-actin and Cx43 using 

monoclonal anti-F actin (Invitrogen) and Alexa fluor 488 goat anti-rabbit 

(Invitrogen), respectively.  Immunostained monolayers were mounted on glass slides 

and examined by an Olympus IX70 confocal microscope. 

 

Data Analysis 

Data preparation and initial filtering was performed in LabVIEW.  Data preparation 

included identifying which pixels from the PDA contained fluorescence data and 

interpolating pixels with missing data as needed.  Typically 5 pixels, but no more than 

10 pixels, were interpolated due to damaged pixels or motion artifacts.  Filtering 

included a seventh order median filter, a detrend filter, and if necessary an eighth 

order low pass Bessel filter with a cutoff frequency of 60 Hz to reduce signal noise.  

The low pass filter was verified to ensure that while noise was reduced, the 

quantitative analysis of the data was not affected.  A detrend filter was used to deduct 

baseline drift by subtracting a third order polynomial, fit to the signal, from the 

original optical signal.  Data measurement and quantification was preformed with 

PV-Wave software (Visual Numerics, TX).  For each optical recording, all data was 

normalized to set the minimum and maximum fluorescence at each pixel to the same 

scale. 

 

APD80 is the time interval between depolarization and 80% repolarization of the 

action potential, which is defined as 80% of the maximum amplitude 



30 

(Figure 10).46, 47, 49  APD80 calculations were performed on an averaged action 

potential from each optically mapped recording for each pixel such that APD80 was 

an aggregate APD80 for the coverslip at a given cycle length.  Restitution curves were 

generated by plotting APD80 as a function of each pacing interval (or basic cycle 

length).  Average APD80 of reentrant arrhythmias were measured by taking the 

average of three action potentials during the arrhythmia, at the time and pacing rate of 

arrhythmia onset.  Maximum capture rate (MCR), defined as the maximum pacing 

frequency during the steady state pacing protocol at which capture occurs, was 

identified and recorded for each cardiomyocyte monolayer for comparison.26, 51 

 

 

 

 

 

 

 
Fig. 10.  APD80 calculation method.  This is a schematic of action potentials obtained from 
optical mapping image.  ΔF/F is the fluorescence signal, which is proportional to Vm which 
is membrane potential. 
 

Statistical Analysis 

Data was presented as a mean ± standard deviation (SD) and analyzed using one-way 

ANOVA followed by post hoc student’s t-test.  Correlation and regression analysis 

(Microsoft Excel) were used to evaluate trends in data sets.  Differences of P<0.05 

were considered significant.   
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Results 

Morphology  

In order to confirm that the chosen mechanical strain parameters in these experiments 

induced cellular alignment, immunofluorescent microscopy was performed on the 

control group and mechanical strain induced group.  Immunofluorescent imaging of 

F-actin confirmed that the 8% mechanical strain, using the mechanical strain unit, 

induced cell alignment in the direction of strain as seen in Figure 11.  It also 

demonstrated that Cx43 was diffusely distributed around the cytoplasmic membrane 

in the control group, while localized at longitudinal cell termini in the mechanically 

strained group. 
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Fig. 11. Expression and distribution of F-actin and Cx43 in cultured cardiomyocyte 
monolayers.  Representative immunofluorescent micrographs (at 60x magnification) of 
cardiomyocyte monolayers with and without mechanical strain are shown.   Cardiomyocyte 
monolayers were stained for F-actin (with phalloidin in green) in the upper panel.  
Cardiomyocyte monolayers were stained for F-actin (with phalloidin in red) and Cx43 (Alexa 
fluor 488 goat anti-rabbit in green) in the lower panel.  Arrow indicates strain direction.  Both 
F-actin and Cx43 aligned in the direction of strain. 
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APD80 

The average APD80 of control monolayers (n=10),  mechanically strained monolayers 

(n=11), electrically stimulated monolayers (n=11), and mechanically and electrically 

stimulated monolayers (n=6) was measured at cycle lengths, 1000 ms, 500 ms, 

333 ms, 250 ms, and 200 ms and reported in Figure 12.  Previous studies usually 

report APD80 measured at a 2 Hz pacing rate.23, 47, 49  Therefore, in addition to the 

figure depicting APD80 at different pacing frequencies, the average APD80 at a pacing 

frequency of 2 Hz for control monolayers, mechanically strained monolayers, 

electrically stimulated monolayers, and dyssynchronously mechanically and 

electrically stimulated monolayers was 214.34 ± 32.56, 201.09 ± 37.56, 

179.47 ± 23.34, and 179.39 ± 22.14 ms respectively.  At a cycle length of 1000 ms, 

there was significant difference between all stimulation groups compared with 

control.  At a cycle length of 500 ms, there was a significant difference between the 

electrical stimulation group and the combined electrical and mechanical stimulation 

groups compared with the control group.  At a cycle length of 500 ms, there was also 

a significant difference between the mechanical stimulation and electrical stimulation 

groups.  There was no significant difference observed between any groups at cycle 

lengths 333 ms, 250 ms and 200 ms.  The sample APs of all experimental groups are 

also shown in Figure 13. 
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Fig. 12.  Average APD80.  The average APD80 of each experimental group measured at 
different cycle lengths.  (* indicates p<0.05) 
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Fig. 13. Representative cardiomyocyte monolayer action potentials in experimental groups 
showing changes in action potential shape.  The electrical stimulation and mechanical and 
electrical stimulation groups have shortened action potential durations and different rates of 
repolarization compared to the control and mechanical strain group. 
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Arrhythmia Inducibility 

Arrhythmias developed in 12 of 27 control monolayers, six (6) of 18 mechanically 

strained monolayers, seven (7) of 21 electrically stimulated monolayers and four (4) 

of 15 mechanically and electrically stimulated monolayers for total inducibilities of 

44.4%, 33.3%, 33.3%, and 26.7%, respectively (Figure 14).  No significant difference 

in inducibility between experimental groups was observed, however a trend was 

observed where the stimulated groups seemed to be less inducible when subjected to 

increasingly rapid pacing from a point electrode than the control group. 
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Fig. 14. Arrhythmia inducibility in cardiomyocyte monolayers.  Percent inducibility of each 
experimental group is plotted showing a trend in which groups with any type of stimulation 
seem to be less inducible than control. (The whiskers represent 95% confidence intervals). 
 

APD80 of Reentrant Arrhythmias 

The average APD80 of arrhythmias, measured at arrhythmia onset at the pacing 

frequency at which the arrhythmia occurred, in control monolayers (n=12), 

mechanically strained monolayers (n=6), electrically stimulated monolayers (n=7) 

and mechanically and electrically stimulated monolayers (n=4) was 

206.48 ± 59.811 ms, 198.33 ± 45.23 ms, 270.67 ± 71.05 ms and 195.96 ± 51.07 ms, 
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respectively (Figure 15).  The average APD80 of arrhythmias in each experimental 

group was not found to be significantly different. 

 

 

 

 

 

 

 

Fig. 15. APD80 of reentrant arrhythmias.  Average APD80 of reentrant arrhythmias for all 
experimental groups.  No significant difference between the groups was found. 
 

Maximum Capture Rate 

The average MCR of control monolayers was 180.5 ± 80.3 beats/minute (range of 60 

to 300 beats/minute).  The average MCR of mechanically strained monolayers was 

184.8 ± 46.5 beats/minute (range of 120 to 240 beats/minute).  The average MCR of 

electrically stimulated monolayers was 187.6 ± 60.4 beats/minute (range of 60 to 300 

beats/minute).  The average MCR of mechanically and electrically stimulated 

monolayers was 160.9 ± 64.8 beats/minute (range of 60 to 240 beats/minute) 

(Figure 16).  The average MCR of each experimental group was not found to be 

significantly different and no trend was apparent. 
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Fig. 16. Maximum capture rates of cardiomyocyte monolayers during pacing protocol.  The 
average maximum capture rates of all experimental groups was plotted.  No significant 
difference between groups was observed. 
 

Average Arrhythmia Rate of Rotation and Type of Arrhythmia 

Of the 12 control monolayers that resulted in arrhythmias, the average rate of rotation 

was found to be 3.5 ± 1.0 Hz.  Eight (8) of these monolayers were single arms spirals, 

while three (3) monolayers had two-arm spirals with the same chirality and one (1) 

had a three-arm spiral with different chirality.  Of the six (6) mechanically strained 

monolayers that resulted in arrhythmias, the average rate of rotation was found to be 

3.5 ± 0.8 Hz.  Three (3) of these monolayers exhibited single spirals, while one (1) 

monolayer had a two-arm spiral with the same chirality and two (2)  monolayers had 

two-arm spirals with different chirality.  Of the seven (7) electrically stimulated 

monolayers that resulted in arrhythmias, the average rate of rotation was found to be 

2.7 ± 0.8 Hz.  All seven (7) of these arrhythmias were single spirals.  Of the four (4) 

mechanically and electrically stimulated monolayers that resulted in arrhythmias, the 
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average rate of rotation was found to be 3.7 ± 0.8 Hz (Figures 17 and 18).  All four 

(4) of these arrhythmias were single spirals.  The average rate of rotation for each 

experimental group was not found to be significantly different. 
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Fig. 17. Types of Arrhythmias.  The number of single, double, and triple arm arrhythmias 
were plotted in each experimental group.  The majority of arrhythmias in all groups were 
single arm spirals.  The electrical stimulation and mechanical and electrical stimulation 
groups only had single arm spirals.  
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Fig. 18. Average rate of rotation of reentrant arrhythmias in cardiomyocyte monolayers.  The 
average rate of rotation of arrhythmias was measured in each experimental group.  No 
significant difference was found between each group. 
 

Arrhythmia Sustainability and Termination Voltage 

Of the 12 control monolayers with inducible arrhythmias, 10 of these arrhythmias 

were sustained.  Nine (9) control monolayers that exhibited sustained arrhythmias 

were subjected to the shock protocol, of which six (6) were successfully shocked out 

of arrhythmia.  Termination shocks required an average voltage of 22.5 ± 3.5 V with 

an average duration of 22.5 ± 3.5 ms. 

 

Of the six (6) mechanically strained monolayers in which arrhythmias were induced, 

three (3) of these arrhythmias were sustained.  These three (3) monolayers with 

sustained arrhythmias were subjected to the shock protocol of which two (2) were 

successfully shocked out of arrhythmia.  Termination shocks required an average 

voltage of 25.0 ± 7.1 V with an average duration of 25.0 ± 7.1 ms. 
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Of the seven (7) electrically paced monolayers in which arrhythmias were induced, 

four (4) of these arrhythmias were sustained.  Two (2) of these monolayers with 

sustained arrhythmias were subjected to the shock protocol but neither were 

successfully shocked out of arrhythmia. 

 

Of the four (4) mechanically and electrically stimulated monolayers in which 

arrhythmias were induced, three (3) of these arrhythmias were sustained.  Three (3) of 

these monolayers with sustained arrhythmias were subjected to the arrhythmia 

termination protocol of which two (2) were successfully shocked out of arrhythmia.  

Termination shocks required an average voltage of 35.0 ± 7.1 V with an average 

duration of 35.0 ± 7.1 ms 

 

Discussion 

A system to apply dyssynchronous mechanical and electrical stimulation to 

cardiomyocyte monolayers was successfully developed.  This is the first system to 

apply this combined stimulation to cardiomyocyte monolayers for the purpose of 

investigating the consequences of dyssynchronous electrical and mechanical 

stimulation on cardiac electrophysiology.  This system was used to characterize the 

changes in conduction properties including APD80, APD80 of reentrant arrhythmias, 

rate of reentry rotation, and maximum capture rate.  The overall inducibility of 

cardiomyocytes subjected to dyssynchronous mechanical and electrical stimulation 

was also compared.  
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Morphology and Protein alignment 

Using immunohistochemistry techniques, it has been confirmed that 8% mechanical 

strain induces alignment of F-actin and Cx43 in cardiomyocytes.  This agrees with 

previous studies in which cell orientation, F-actin, and Cx43 distribution was 

promoted in the direction of strain.13  The movement of Cx43 is also evidence of gap 

junction remodeling in cardiomyocytes as shown previously.22, 30, 31 

 

APD80  

APD80 in non-inducible monolayers paced at 2 Hz has been previously reported to 

range from ~106-225 ms.8, 47, 49  The APD80 values in all groups in this work are 

consistent with these previous studies.  Specifically, APD80 (measured during 2 Hz 

pacing) in electrically stimulated and non-stimulated cardiomyocyte monolayers has 

been previously reported by Sathaye et al. (2006) to be 210.6 ± 9.9 ms and 

197 ± 11.8 ms respectively.23  In this study, APD80 results differed from the Sathaye 

study.  Sathaye et al. (2006) compared APD80 of electrically stimulated and non-

stimulated monolayers and found no significant difference between groups at any 

cycle length.23  In this study, a significant difference between the electrically 

stimulated group and the control group at the 1000 ms and 500 ms cycle lengths was 

found.  This difference could be due to differences between electrical stimulation 

protocols during the incubation period.  Sathaye et al. (2006) electrically stimulated 

their monolayers for three days while this study stimulated the monolayers for 

24 hours.23  The length of stimulation period could make a difference since it has 

been shown that chronic pacing stabilized APD over time.23  Sathaye et al. reported 



41 

that six days of electrical stimulation was less effective at stabilizing APD than eight 

days of electrical stimulation.  In the Sathaye control group, APD80 decreased over 

time.  However, in the Sathaye electrical stimulation group, APD80 remained constant 

over time.  It is hypothesized that electrical stimulation causes continual contraction 

of the cells which promotes activation of stabilizing gap junction proteins and reduces 

the variability of stress response protein expression.23, 57  Continual electrical 

stimulation could potentially keep the conduction properties across a monolayer 

constant and thereby reduce the variability of APD80. 

 

There also seems to be a trend in which any form of stimulation causes a decrease in 

average APD80.  It may be possible that stimulation whether mechanical, electrical, or 

combination may shorten APD80 which could contribute to arrhythmia resistance.  

Since APD80 is only one factor contributing to cardiac conduction, further 

experimentation needs to be performed to identify the impact of shortened APD80 on 

culture cardiomyocytes arrhythmogenesis. 

 

Arrhythmia Inducibility 

It is difficult to compare the arrhythmia inducibility results in cardiac recordings of 

this study with previous studies due to differences in pacing protocols used to induce 

arrhythmias.  In a 2006 study, by Bursac et al., anisotropic monolayers were initially 

subjected to a rapid pacing protocol similar to this study;47 however, in the Bursac 

study, if spontaneous reentries did not occur when 1:1 capture was absent, reentry 

was induced by rapid point pacing trains from peripheral sites to perturb reentries.  
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Bursac et al. (2006) did not clarify the number of spontaneously developing 

arrhythmias versus perturbed arrhythmias.  They reported a total inducibility rate of 

84.5% with the average rapid pacing rate to be 6.2 ± 1.4 Hz.  The percent inducibility 

in this study is significantly lower than reported by Bursac et al. (2006) but only 

includes arrhythmias occurring due to rapid pacing. 

 

Although no significant difference in arrhythmia inducibility was found between 

experimental groups, a trend of the stimulated groups to be less inducible than the 

control group was observed.  This trend, combined with the reduced APD80 in the 

stimulated monolayer groups at higher cycle lengths, may warrant further 

experimentation with a larger sample size to determine if any form of stimulation in 

monolayers may reduce arrhythmia susceptibility.  Since elongated APD80 is not the 

only parameter responsible for arrhythmia inducibility, other parameters such as 

culture homogeneity (fiber orientation), conduction velocity, excitability, and 

refractory period may need to be quantified to identify different factors which may 

contribute to arrhythmia susceptibility. 

 

APD80 Reentrant Arrhythmias 

Iravanian et al. (2003) reported APD80 of reentrant arrhythmias to range between 

~92-117 ms.49  The arrhythmia APD80 values from this study range from 

~195-271 ms are larger than the Iravanian study which may be due to their 

measurements being taken at days 4-7 after plating while in these experiments 

measurements were taken at days 4-5 after plating. 
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Maximum Capture Rate 

The MCRs found in this work are consistent with MCRs reported in previous 

studies.23, 26, 51  Sathaye et al. (2006) reported MCRs in monolayers electrically 

stimulated for four (4) days and non-stimulated monolayers to be 264 ± 54 beats/min 

and 288 ± 54 beats/min, respectively and did not show a significant difference 

between groups.23  My results are consistent with the Sathaye study, as a significant 

difference between the electrically stimulated and control group was not found.  

Radisic et al. (2004) also compared MCRs of monolayers electrically stimulated for 

five days to control monolayers and showed a significant difference in MCRs when 

measured on day eight.26  The average MCR was reported to be 550 ± 20 beats/min 

and 400 ± 10 beats/min in electrically stimulated and non-stimulated monolayers, 

respectively, with a significant difference found between these groups.  Since no 

significant difference between electrically stimulated and non-stimulated groups was 

found, the results of this study disagreed with the Radisic study.  However, this 

discrepancy in results could be due to the difference in applied electrical stimulation 

protocol duration.  In this study, electrical stimulation was applied to monolayers for 

a shorter time period, 24 hours, as opposed to the Radisic study which electrically 

stimulated myocytes for five days.  Radisic et al.( 2004) also plated their 

cardiomyocytes on an alternate substrate and measured MCRs on a different day after 

culture.  Overall, a significant difference in average MCR between all experimental 

groups was not shown.  
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The MCR control values in previous studies23, 26, 51 are much higher than those in this 

study.  It may be postulated that these differences are due to culture variability, 

substrate differences, and measurement method.  For example, the MCRs of neonatal 

ventricle wall tissue (1.5-2.5 mm thickness) was reported by Bursac et al. (1999) to 

be 475.0 ± 25.0 beats/min.  In the same study, the MCRs of neonatal rat 

cardiomyocytes plated on a polyglycolic acid (PGA) mesh scaffold construct (2 mm 

thickness) was 111.7 ± 9.5 beats/min and 175.0 ± 21.3 beats/min when plated with a 

higher fraction of myocytes.51  The MCRs found by this study are most consistent 

with the values reported in the three dimensional (3D) constructs by Bursac et al. 

(1999).  Although my experiments are on a two dimensional (2D) construct, the cell 

preparation for both the 2D monolayers and the 3D constructs was identical.  

Additionally, the microelectrode array used to stimulate and record signals was in the 

same plane and essentially was a 2D recording of the signals similar to my monolayer 

recordings.  Sathaye et al. (2006) used a point electrode to stimulate monolayers 

which was identical to my preparation.  Radisic et al. (2004) used field electrodes to 

stimulate the myocytes but measured electrical activity with a separate electrode.  

However, in general it seems that ventricular wall tissue and myocytes plated on 

constructs or scaffolds that mimic 3D tissue produce higher MCRs than 

cardiomyocytes plated on 2D substrates, as was seen this experiment. 

 

Average Arrhythmia Rate of Rotation and Type of Arrhythmia 

The average rate of rotation of reentries found in this study are consistent with rate of 

rotations reported in previous studies such as Bursac, et al. (2004) who reported the 
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average rate of rotation of single-arm spirals to be 4.6 ± 1.2 Hz.35  Bursac et al., 2006 

also reported the average rate of rotation of single-arm spirals to be 5.2 ± 1.7 Hz.47  

Bursac et al. (2006) did not report the average rate of rotations in multi-arm spirals.  

In this study, both single arm and multi-arm spirals in the control and mechanical 

strain groups were observed.  However, when compared, no significant difference 

between the average rate of rotation of the single-arm and multi-arm spirals within 

each group was found.  Although no significant difference in the average rate of 

rotation in reentrant arrhythmias was found between experimental groups, it seems 

that arrhythmias in monolayers subjected to electrical stimulation alone during culture 

have a slower rate of rotation.  Since the rate of rotation may be influenced by many 

factors including conduction velocity, monolayer confluency, cellular alignment or 

meandering of the spiral, further experimentation to measure these parameters should 

be performed. 

 

Arrhythmia Sustainability, and Termination Voltage 

As stated previously, it is difficult to compare the arrhythmia characteristics in 

cardiac recordings of this study with previous studies due to the difference in pacing 

protocol.47  Sustained and non-sustained reentry rates are reported in previous 

studies,35, 49 but the categorization of arrhythmias occurring due to a steady state 

pacing protocol or due to a dynamic pacing protocol was not distinguished.47  

Arrhythmia termination voltages were also not reported in previous studies.  

Nonetheless, the termination voltages observed in this study were able to end 

arrhythmias. 
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Study Limitations 

In this research, a model has been developed to study the effects of mechanical strain 

and electrical stimulation on cardiomyocyte monolayers and the impact of these 

perturbations on arrhythmia formation.  However, this model has some limitations, 

including being a 2D preparation, the electrophysiological transformation of 

cardiomyocytes over time, the physiological differences of the monolayer model, and 

using a steady state pacing protocol during experimentation.   

 

Cardiomyocyte monolayers cannot represent the complex 3D structure of intact 

cardiac muscle.  However, there are several advantages for using a 2D cell culture 

model to study cardiac electrophysiology.  Monolayers, as opposed to single cell 

preparations allow the study of more complex phenomena such as wavefront 

propagation and cell-to-cell communication.23  The 2D nature of this model allows 

one to study reentrant arrhythmias which cannot exists in anything less than a 2D 

system while eliminating the complexity of a 3D system, such as whole heart models 

where tracking the path of conduction can be difficult.8  Monolayers are composed of 

a homogeneous cell type that does not include connective tissue or blood vessels 

which can interfere with optical recordings or the propagation of action potentials.8 

 

A source of variability in this preparation is that cardiac cells transform 

electrophysiologically over time.23  The cell size, morphology, and APD all change 

during development.23  To reduce the electrophysiological changes with time, 

experiments are performed on the same day of cellular development for each culture. 
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There are several physiological disadvantages for using a monolayer model.  For 

example, the action potentials of the neonatal rate are inherently different than the 

human.  Secondly, it is not physiological for cells to be attached to a substrate.  

However, one advantage is that the attachment of the monolayer to a substrate 

eliminates motion artifacts and obviates the need for electro-mechanical uncouplers, 

needed in ex-vivo tissue preparations, that affect the electrophysiology of the cells.8  

Thirdly, the electrical behavior of the cardiomyocyte monolayer is dependent on the 

confluency of the monolayer and the isotropy of the cardiomyocytes which are 

parameters that are not factors in cardiac tissue.  In this study, monolayers were 

plated with a high density of cardiomyocytes in order to ensure the confluency of the 

monolayers.  As a byproduct of mechanical strain, anisotropy was induced in 

mechanically strained monolayers, which is more physiologic. 

 

Another limitation of this study is the selection of a steady state pacing protocol to 

induce arrhythmias in the cardiomyocyte monolayers.  There are several other pacing 

protocols that can be used to induce arrhythmias including paired stimulus 

(S1S2),49, 58 strong electric shocks59 and burst35, 47 pacing protocols.  The S1S2 pacing 

protocol consists of a series of paced beats (S1) to which a premature stimulus (S2) is 

applied at various intervals relative to the end of the S1 stimulus.  The burst pacing 

protocol consists of a rapid (usually ≥ 2 Hz) burst of 10-20 pulses from a point 

electrode.  The purpose of these protocols is to consistently induce arrhythmias in 

cardiomyocyte monolayers in order to measure arrhythmia inducibility, arrhythmia 

characteristics, mechanism of formation of arrhythmia, or even measure the success 
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of the arrhythmia inducing pacing protocol.  There is no standard method to induce 

arrhythmias in experimental preparations.  Therefore, a limit to this study was that 

arrhythmia inducibility using a steady state pacing protocol has not been previously 

performed and therefore is not easily compared.  It would be useful in future 

experiments to measure arrhythmia inducibility using a S1S2 pacing protocol that 

seems to be more common in published literature. 

 

Another limitation is that the stimulus threshold and capture of the cultures that was 

determined for electrical field stimulation during the incubation period was 0.5 Hz 

and determined by visual inspection of the cardiomyocytes under phase contrast 

microscopy at room temperature.  Although the stimulus threshold and capture rate 

consistent across cultures from different isolations, it would be advantageous to 

determine the stimulus threshold and capture rate at physiological temperature. 

 

Conclusion 

Electro-mechanical dyssynchrony is a significant phenomena that can change the 

electrophysiological properties of the heart.6  The altered electrical and mechanical 

timing in this dyssynchrony can also contribute to anomalies in action potential 

depolarization which can increase arrhythmogensis.  It is important to study electro-

mechanical dyssynchrony because it is a phenomena that can occur during increased 

afterload or preload in vivo as is seen in patients with heart failure.7  Since this 

phenomena is difficult to investigate in vivo, a system that subjects cultured 

cardiomyocyte monolayers to mechanical strain, electrical stimulation, or a 
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combination of mechanical strain and electrical field stimulation in culture with 

variable levels of synchrony or dyssynchrony has been developed.  This system was 

used to characterize the electrophysiological properties of those cardiomyocyte 

monolayers.  Most mechanical strain experiments have studied protein production, 

DNA/RNA production, signal transduction pathways, and alignment.11-17, 22  A 

limited number of studies have focused on the impact of strain on cardiomyocyte 

conduction properties.22, 60  Similarly, a large proportion of electrically stimulated 

myocyte studies have focused on protein synthesis, DNA/RNA production, and 

cellular alignment.23-27  While studies that research the impact of electrical 

stimulation on cardiomyocyte conduction properties are more common,23, 26 they do 

not discuss arrhythmia susceptibility.  This system has the ability to compare 

cardiomyocyte monolayers subjected to multiple types of stimulation during culture 

with control monolayers which has not been performed in previous studies.  

Additionally, this system has the ability to alter mechanical strain parameters 

including variable strain cycles and strain percentage.  Furthermore, the 

characteristics of electrical field stimulation, such as pulse duration and stimulus 

amplitude, during culture can easily be altered.  More importantly, the system has a 

controllable delay in which the timing of the electrical field stimulation with respect 

to the mechanical strain cycle can be varied.  While previous studies limited their 

measurements to cardiomyocyte conduction properties, the susceptibility of 

monolayers to arrhythmias has also been measured in this study.  The culmination of 

these added system features results in an enhanced capability to replicate cardiac 
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remodeling via multiple stimulation methods which are fundamental to cardiac 

function. 
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Appendix A 
 

The conditioning circuit diagram is located in Figure 19.  This circuit was powered by 

a ± 15 V DC-DC converter (VESD1-S12-D15-SIP, V-Infinity).  A low-noise dual 

operational amplifier (TL072, STMicroelectronics) was used to invert the analog 

signal, and in conjunction with a 100 kΩ trimming potentiometer, increased the gain 

of the signal and adjusted the DC offset.  An optoisolator (H11L1, Motorola) was 

used to reduce signal noise by isolating the output timing pulse from the input 

waveform of the strain instrument.  The selected optoisolator has an infrared-emitting 

diode (IRED) in combination with a Schmitt trigger output and is used to electrically 

isolate the timing signal.  The optoisolator takes an input electrical signal and 

converts it to a beam of infrared light, where it crosses a gap and is detected by a 

photosensor, which then converts the signal back into an electrical output signal.  The 

input and output of the optoisolator are identical; however, the output is unaffected by 

any electrical noise from the input signal since there is no electrical conduction 

through the gap between the IRED and photosensor.  The Schmitt trigger is a 

comparator circuit which utilizes hysteresis.  When the input signal is higher than a 

set threshold (6 V) then the output signal goes low, when the input signal crosses the 

same threshold again, the output goes high.  Since the mechanical strain output 

waveform is trapezoidal, the Schmitt trigger transforms the signal into a square pulse.   

The output from the optoisolator – Schmitt trigger serves as the input to a Grass SD9 

stimulator (Grass Technologies, RI).  The square waveform triggers an electrical 

stimulus to be output by the Grass SD9 stimulator.  The SD9 made it possible for the 
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duration and delay of the stimulation pulse, from the onset of mechanical strain to be 

varied, which for these experiments was set to 4 ms and 1075 ms, respectively.  The 

polarity of the stimulation pulse output from the Grass SD9 stimulator was alternated 

by the A385 stimulus isolator. 

 

 

Fig. 19. Signal conditioning circuit schematic. 
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