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Abstract

In this thesis I present a detailed study of the optical to X-ray spectral properties

of Active Galactic Nuclei (AGN). We propose a new broadband SED model which

combines the standard accretion disc emission, low and high temperature Compton-

isation components by introducing a corona radius. Applying the new models to

broadband spectral data, we found that RX J0136.9-3510 and RE J0134+396 have

similar rms spectra and broadband SEDs, representing a distinct spectral state

which can only be attained by super Eddington flows.

A detailed optical and X-ray spectral analysis is then carried out for a big sample

of 51 unobscured nearby type 1 AGNs. We find that NLS1s tend to have softer 2-

10 keV spectra, lower black hole mass, higher Eddington ratio, higher αox index

and smaller coronal radius. The edge of Balmer continuum is shifted redwards

and smoothed by more than predicted by the FWHM of the Balmer emission lines.

A new method called ‘Correlation Spectra Technique (CST)’ is proposed, which

is powerful for multi-waveband spectral analysis. We find that among the three

Balmer line components, the broad component has the best correlation with hard

X-ray emission. Optical oxygen forbidden lines all well correlate with the hard X-ray

emission.

We conducted a systematic cross-correlation among the 9 key SED parameters:

Γ2−10keV , κ2−10keV , κ5100A, λEdd, FWHMHβ , MBH , αox, Lbol and L2−10keV , and found

the driven parameters to be MBH , λEdd and Lbol (or equivalently Ṁ). AGN’s intrin-

sic SEDs exhibit strong diversity and changes similarly with λEdd, κ2−10keV , κ5100,

Γ2−10keV , FWHMHβ and MBH . However, the SED shape is not sensitive to Lbol.
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the total model spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Broadband SED fitting of RE J1034+396 and RX J0136.9-3510 using

Model-A (optxagn with fcol = 1) and Model-B (optxagnf). The SED

consists of accretion disc (solid green), low temperature Comptonisation

(solid orange) and high temperature Comptonisation (solid blue), under

the physical scenario presented in Figure 2.1. . . . . . . . . . . . . . . . 58

3.1 The aperture effect correction results for 17 extended sources in the

sample. The point like source RBS 0769 (the last figure marked by

**) is also shown for comparison. We over-plot OM data points on

to the SDSS spectrum. Red OM points are data obtained directly

from the OM PPS files. Blue OM points are the corresponding data

after applying a smaller 6′′ aperture to all OM filters, and applying

appropriate OM corrections to the flux eg. deadtime correction, coin-

cidence loss correction and OM time sensitivity degradation correction. 67
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3.2 An example of results from SDSS spectrum fitting. The left panel

shows a good fit for PG 2233+234. The black line is the observed

spectrum, the red line is the total model spectrum. The green line

represents the observed underlying continuum. The Balmer contin-

uum (blue), FeII emission (light blue) and other strong emission lines

(orange) are shown underneath. The right panel shows an example of

detailed line profile fitting to the FeII subtracted region around the

Hβ (upper) and Hα lines (lower) including Hα, Hβ, [OIII] λ5007/4959

doublets, [NII] λ6585/6548 doublets, Li λ6708, [SII] λ6717/6733 dou-

blets, [OI] λ6300/6363 doublets. In our profile fitting, three Gaus-

sian components are used for Hβ and Hα, two components for [OIII]

λ5007, and one Gaussian for all other lines. The various Gaussian

profiles are shown in blue, the total model is shown in red. . . . . . . 69

3.3 The Balmer continuum models of Grandi (1982). The upper panel

shows the dependence of the model on the electron temperature. The

lower panel shows the dependence of the model on the FWHM of the

convolved Lorentzian profile. . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 An expanded view of the region around the BPR edge in PG 1427+480.

The blue and dashed lines represent the Balmer continuum model su-

perposed on the underlying disc continuum (green solid line) using

standard parameters (blue dash), and also a set of best fit parame-

ters (red dash line). The red and blue solid lines are models of the

total optical spectrum, including the corresponding Balmer contin-

uum components and plus other components described in the text.

The observed spectrum is shown in black. . . . . . . . . . . . . . . . 79
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3.5 A comparison between the results of two subtractions of host galaxy contribution.

2XMM J112328+052823 (Fig-a1 and Fig-a2) shows an underlying continuum that

more closely resembles a disc continuum (solid green line in Fig-a1) after modelling

and subtracting the host galaxy contribution (light blue spectrum in Fig-a1). The

left panel of Fig-a2 shows the original broadband SED fitting without subtracting

the host galaxy contribution. The dashed green line shows the modelled accretion

disc emission in the best-fit SED. The inserted panel shows a magnification of the

fit in the optical/UV region, where a big discrepancy exists between the SDSS

data and best-fit SED model. The right panel of Fig-a2 is the new SED fit using

the new underlying disc continuum (shown as solid green line in Fig-a1) after

subtracting the host galaxy contribution. The new fit is improved in the optical

region compared with the previous results in the left panel of Fig-a2. In contrast

to the above example, PG 1415+451 (Fig-b1 and Fig-b2) has little host galaxy

contribution in the SDSS optical spectrum (see the light blue component in Fig-

b1), and its broadband SED fitting in the optical region remains poor regardless

of the amount of host galaxy subtraction applied (see the two panels in Fig-b2).

The spectral template for Elliptical galaxies in Kinney et al. (1996) was used in

both cases since their host galaxies both have elliptical morphologies in SDSS image. 90

3.6 Distributions of our sample for different properties. In each panel the

blue areas show the distribution for the whole sample, while the red

areas show the distribution for the 12 NLS1s in our sample. We note

that the Hα, Hβ and [OIII] λ5007 luminosities are based on results

of line profile fitting, after subtracting the blends from other nearby

emission lines (see Section 3.3.1). For comparison we also indicate the

Balmer decrement value of 2.86, found under case B recombination,

as shown by dashed line in the same panel. . . . . . . . . . . . . . . . 94

3.7 The distribution of model dependent parameters using the same colour

coding as in Figure 3.6. Comments on each distribution are given in

Section 3.6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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3.8 The Balmer line parameter distributions. The first row is for Hα

and the second is for Hβ. We combine the intermediate and broad

components in each Balmer line profile to form the total broad line

properties, giving values of the FWHM, EW and luminosity. The final

panel shows the luminosity distribution of the narrow component for

comparison. The distributions for the 12 NLS1s are indicated by the

red regions, as in Figure 3.6. . . . . . . . . . . . . . . . . . . . . . . . 97

3.9 The bolometric luminosity distribution for the different continuum

components of the SED, i.e. accretion disc (green), Comptonisation

(orange) and hard X-ray Comptonisation (blue). The upper left panel

shows the percentage within each luminosity bin for each of these

three SED components. The Upper right panel shows the luminosity

distribution of the whole sample, with each bin divided into three

regions according to the fractional contribution from the different

components in that luminosity bin. The lower panel shows how the

contribution from each component changes as a function of rank order

in Hβ FWHM, after the narrow line component has been removed. . 100

3.10 A comparison of various methods used to derive black hole mass.

The total distributions are shown with the 12 NLS1s show by the

red regions. The purple dashed line indicate the average black hole

mass for the whole sample. The orange and cyan dotted lines indicate

the average masses of NLS1s and BLS1s, respectively. The average

values are listed in Table 3.4. Values for individual objects are listed

in Table B.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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3.11 Correlations of best-fit black hole mass (‘MBH -Fitting’ or ‘MBH,FIT ’)

vs. Hβ FWHM determined black hole mass (‘MBH -Hβ FWHM’ or

‘MBH,IC+BC ’) and vs. radiation pressure corrected black hole mass

(‘MBH -Radiation Pressure’ or ‘MBH,RP ’). Red points represent the 12

NLS1s. The inserted panel in panel-A shows the distribution of the

mass difference between MBH,IC+BC and MBH,FIT , while the inserted

panel in panel-B shows the distribution of the mass difference between

MBH,RP and MBH,FIT . Red regions highlight the distribution of NLS1s.105

3.12 The average SED of our sample. The panel on the left shows the averaged SED

for the 12 NLS1s (including two marginal NLS1s, 2XMM 112328.0+052823 and

1E 1346+26.7). The average Hβ FWHM is 1400 ± 500 km s−1. The red area

indicates a one standard deviation region on either side of the average spectrum.

The central panel is for 12 objects with moderate line width. The average FWHM

is 3700 ± 600 km s−1. The green region indicates one standard deviation. The

panel on the right is the mean SED for the 12 broadest line objects in our sample,

including the one double-peak source. The average FWHM is 9800 ± 2900 km

s−1. We also show the average value of the 2-10 keV power-law photon index, the

2-10 keV bolometric correction, and the αox value with a one sigma error. DL

on the Y-axis title is the luminosity distance. The unit of Y-axis is ‘keV (ergs

s−1 keV−1)’ in logarithm. The same arbitrary constant of 1.31×10−46 is used for

rescaling each plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1 Examples of spectral fitting in Chapter 3. Left panel shows the broad-

band SED fitting of PG 1115+407 which consists of a modified ac-

cretion disc (green dashed line), a soft X-ray Comptonisation (orange

dotted line) for the soft X-ray excess and a hard X-ray Comptonisa-

tion (blue dash-dotted line) for the hard X-ray power law tail. Right

panel shows the emission line fittings of RBS 1423 around Hα and

Hβ. Blue solid lines represent different line components. . . . . . . . 115
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4.2 The OXCSs for our sample, the method of constructing them is de-

scribed in Section 4.3.2. The red line is the OXCS for the 12 NLS1s

in our sample. The blue line is the OXCS for the 37 BLS1s in our

sample. Purple and cyan dotted lines indicate the wavelengths of

some most prominent optical emission lines for a typical AGN, with

cyan lines indicating the weaker line of any doublets. Green dotted

lines indicates the wavelengths of Mg b and Na D stellar absorption

features. ‘(NC)’ is the narrow component, while ‘(BC)’ is the broad

component. The dashed region of Hα(BC) means that this region is

not covered by the BLS1 OXCS. . . . . . . . . . . . . . . . . . . . . . 120

4.3 The luminosity correlation between Balmer line components and 2-

10 keV. The upper figure shows Hβ luminosity (NC subtracted) vs.

L2−10keV . The connected filled and empty purple stars indicate the

position of PG 1004+130 before and after being corrected for the 0.73

dex (Miller et al. 2006). The connected filled and empty green circles

indicate different optical positions of Mrk 110 as calculated from the

SDSS spectrum and the FAST spectrum (Landt et al. 2011). The

solid orange line shows the linear regression line treating L2−10keV as

the independent variable, with the two dashed orange lines indicating

the ±1σ region for new observations, and the shaded region showing

the ±2σ region. The lower panels present the same type of corre-

lations for different Hβ components, i.e. Hβ NC, IC, BC, IC+BC

(or NC-sub) and the whole line. In each plot, Spearman’s rank coef-

ficients were calculated after excluding PG 1004+130 and Mrk 110.

The regression coefficients are listed in Table C.2. . . . . . . . . . . . 124
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4.4 The luminosity correlations between Hβ IC+BC and broadband SED

components. ‘Corona’ means the coronal luminosity, which is the

sum of the luminosities of the soft and hard X-ray Comptonisation

components. Different symbols represent different type of sources as

explained in Figure 4.3. In each panel the Spearman’s rank coefficient

is given, along with the orange dotted line indicating the bisector

regression line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 The correlations of Hβ component EW vs. L2−10keV (first row),

κ2−10keV (second row). Different symbols represent the same type of

sources as in Figure 4.3. Spearman’s rank coefficients are calculated

for the whole sample. The orange dotted line indicates the bisector

regression line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.6 L2−10keV vs L5100. Different symbols represent the same type of sources

as in Figure 4.3. Solid orange line is the bisector regression line as-

suming L2−10keV is the independent variable. In each histogram, the

red region highlights the distribution of the 12 NLS1s in our sample. . 132

4.7 The correlations of Hβ component EW vs. Hβ IC+BC FWHM (first

row) and best-fit black hole mass (second row). Different symbols

represent the same type of sources as in Figure 4.3. Spearman’s rank

coefficients were calculated for the whole sample. The orange dotted

line indicates the bisector regression line. . . . . . . . . . . . . . . . . 134

4.8 Balmer decrement distributions of different Balmer line components.

In each panel the entire histogram shows the distribution of the whole

sample, with green solid line indicating the mean decrement value.

Red region highlights the distribution of the 12 NLS1s and the or-

ange dashed line indicates their mean decrement value. The cyan

dashed line shows the mean decrement value of the BLS1s. The mean

decrements are also listed in Table 4.2. . . . . . . . . . . . . . . . . . 136

xvii



4.9 Balmer decrement changing across the Balmer line profile from + 5000 km s−1

to − 5000 km s−1. Each data point represents the average decrement

value in that segment with the vertical bar showing the ±1 standard

error. Blue points show the results for the BLS1s; red points show

the results for NLS1s. But due to the small line width of NLS1, the

flux outside +/− 3000 km s−1 for NLS1s is of low S/N, thus only

the mean decrement values in the central +/− 3000 km s−1 region

were calculated and shown. The horizontal purple dotted line is a

reference line at F(α)/F(β) = 3. . . . . . . . . . . . . . . . . . . . . . 138

4.10 The Hβ line shape correlation with Eddington ratio. The upper panel

uses FWHMBC/FWHMIC to represent Hβ shape, while the lower

panel uses σline/FWHMIC+BC instead. In each panel the various

symbols represent the same type of sources as in Figure 4.3. The

orange data points are the binned data for different Eddington ratio

bins with 1 standard error on the Y-axis. . . . . . . . . . . . . . . . . 144

4.11 The luminosity correlations between components of [OIII] λ5007 and

L2−10keV . All symbols and lines have the same meanings as in Fig-

ure 4.3. In each panel, a histogram is shown for the Log(L[OIII]λ5007/L2−10keV )

values of our sample, with the red histogram highlighting the NLS1s. 145
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4.12 The ‘SED to [OIII] λ5007 Correlation Spectra (SOCS)’. This is pro-

duced by calculating the Spearman’s rank coefficient between the

[OIII] λ5007 luminosity and the luminosity contained in each energy

bin of broadband SED, thus the bigger coefficient indicates the better

correlation in that energy bin. Lines of different color show the SOCS

of different subsets as been labelled in the plot. The Γ2−10keV≥2.0 sub-

set (S1: red line) contains 16 AGNs; the Γ2−10keV≤1.8 subset contains

(S2: blue line) 18 AGNs; the 1.8 < Γ2−10keV < 2.0 subset (S3: orange

line) contains 16 AGNs. Only spectral ranges below 0.006 keV and

above 0.3 keV have observational data. The ionizing flux responsible

for [OIII] λ5007 emission is above 0.035 keV as shown by the purple

dotted line. The two shaded regions are where model extrapolation

was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1 An example of the broadband SED fitting using optxagnf model in

Xspec v12 which includes the effect of a colour correction. The data

is taken from SDSS and XMM-Newton observations of RBS 769. The

solid red line shows the total model; the dashed green line shows the

colour corrected and truncated accretion disc emission; the dotted

orange line shows the low temperature optically thick Comptonisa-

tion; the dot-dash blue line shows the high temperature optically thin

Comptonisation. The reduced χ2 is 1.16 for this spectral fitting. . . . 158
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5.2 The cross-correlatin between L2500 and L2keV . The solid orange line

is the bisector regression line for our sample, while regression lines

of other studies are plotted as dashed lines in different colours. The

red symbols represent NLS1s; purple symbols show the radio loud

AGN; the green symbol is Mrk 110. The filled purple star is the

BAL-quasar PG 1004+130, and the open purple star is the position

if its intrinsic X-ray flux was 0.73 dex higher (Miller et al. 2006).

The square symbols show all Population A sources whose Hβ FWHM

is less than 4000 km s−1. In the two histograms the green and red

regions are for the Population A sources, and the red region indicates

the 12 NLS1s. The dashed green line is based on Hasinger05; the

dashed cyan line is based on Green09; the dashed pink line is based

on Lusso10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3 αox vs. L2500, L2keV and redshift. Each symbol represents the same

type of source as in Figure 5.2. In each panel the solid orange line is

the OLS regression line for our sample, assuming the X-axis variable

to be the independent variable. The dashed blue line is based on

Steffen06; the dashed pink line on Green09; and the dashed green

line on Lusso10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4 κ2−10keV vs. αox. Each symbol represents the same type of source as

in Figure 5.2. The solid orange line is the best fit line found using a

second order polynomial, and the shaded area is the ±1σ zone. . . . . 167

5.5 λEdd vs. αox. Each symbol represents the same type of source as

in Figure 5.2. The solid orange line is the bisector regression line

determined by our sample. The cyan crosses are the binned data

points of our sample. The dashed green line is from Lusso10; the

dashed purple line is from Grupe10. . . . . . . . . . . . . . . . . . . . 170

5.6 λEdd vs. κ2−10keV . Each symbol represents the same type of source

as in Figure 5.2. The solid orange line is the bisector regression line

determined for our sample. The binned data points are from VF07

(pink) and VF09 (blue). The dashed green line is from Lusso10. . . . 172
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5.7 κ5100 vs. λEddr and κ2−10keV . Each symbol represent the same type

of source as in Figure 5.2. In the left panel, the solid orange line is

the OLS line assuming λEddr to be the independent variable. The two

dashed orange lines show the ±1σ region, and the shaded region is

the ±2σ region. The green open square symbol is Mrk 110 reported

by Landt et al. (2011). The vertical and horizontal purple lines are

for κ5100=9 and λEddr=1. The symbols and lines in the right panel

have the same meaning as those in the left panel. . . . . . . . . . . . 173

5.8 Γ2−10keV vs. λEddr and κ2−10keV . Each symbol represents the same

type of source as in Figure 5.2. In the left panel, the solid orange

line is the bisector regression line. The dashed green line is that

reported by Zhou10b. The vertical and horizontal purple lines are

for Γ2−10keV =2 and λEddr=1. The symbols and lines in the right

panel have the same meaning as those in the left panel. The vertical

purple line is for κ2−10keV =100. PG 1004+130 was excluded when

performing the regression, but assuming its intrinsic X-ray flux to be

1 dex higher and a Γ2−10keV ∼1.8 would make it consistent with the

other sources. It is shown as the open purple star in both panels. . . 176

5.9 Γ2−10keV vs. FWHM of Hβ and MBH . In the upper left panel, a broken line is fitted to

the sample using the minimum χ2 method. S06,08 proposed the linear correlation between

Γ2−10keV and Log(Hβ FWHM) was not followed by their 10 extremely high luminosity sources,

so we plot their sample as blue diamond symbols for comparison. In the right panel binned

points are plotted with 1 standard error of Γ2−10keV in order to show the break points more

clearly. The two red points only include the NLS1s, the two dark points are the broadest BLS1s.

The cyan point is the binned point for the whole sample of S06,08. The blue point is the binned

point for S06,08’s sample but excluding LBQS 0109+0213 whose Γ2−10keV is anomalously low.

The square orange point is the break point. 1E 1556+27.4 shown by the red circle is another

source with Γ2−10keV <1.5. In the second row, the symbols all have the sample meaning as in

the first row. We plot the linear regression line as the dashed orange line. . . . . . . . . . 179
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5.10 MBH vs. Hβ FWHM. The symbols used represent the different types

of source as in Figure 5.2. The solid orange line is the OLS regres-

sion line, assuming Hβ FWHM to be the independent variable. The

shaded region is the ±1σ region of the regression line. The cyan trian-

gle shows the position of (FWHMHβ,break, Log(MBH,break)) in Figure 5.9.180

5.11 κ2−10keV vs. L2−10keV . Different symbols represent the same type of

sources as in Figure 5.2. The orange and gray shaded regions rep-

resent the theoretical κ2−10keV with ±1σ scattering at each L2−10keV

in Hopkins07 and Marconi04. The green data points are reproduced

from Fig.3 in VF07. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.12 Examples of some good correlations not reported previously. In each

panel the various symbols represent the same types of source as in

Figure 5.2. The solid orange line is the bisector regression line. The

cyan symbols are the binned data points over the X-axis with a 1

standard error on the Y-axis. . . . . . . . . . . . . . . . . . . . . . . 186

5.13 The AGN mean SEDs based on different values of the 9 key parameters from Model-B fitting

(i.e. including the effect of a colour temperature correction). For each parameter, the 51 sources

are sorted according to the parameter value, and then are divided into three equal subsets so

that each contains 17 sources. PG 1004+130 is excluded from its subset. Finally, a mean SED

is constructed for each of the three subsets after renormalizing each individual SED to the mean

luminosity at 2500Å of that subset. The three panels (A, B, C) in each row show the mean SEDs

for the subsets classified by the parameter shown in the panel title. In each panel the solid curve

is the mean SED, while the shaded coloured region is the ±1σ deviation. The 2500 Å and 2 keV

positions are marked by the vertical solid orange lines, whose relative height indicates the value

of αox. The peak position of the SED is marked by the vertical solid purple line. The average

values of some other parameters in that subset are also shown in the panel. Each mean SED

has been rescaled by the same arbitrary constant on the Y-axis which is 1×10−46. Note that

the energy ranges E < 6 eV and 0.3 keV < E < 10 keV, are covered by SDSS, OM and EPIC

data respectively, while the SED in the rest energy bands is determined from an extrapolation

of the best-fit model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.13 continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
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5.14 a) The three mean spectra from Figure 5.13, derived using fcol = 1,

but we show the fit (excluding the unobservable 0.01-0.3 keV region)

with fcol = 2.5 for the lowest mass/highest mass accretion rate

spectrum, where the disc temperature exceeds Tscatt = 105 K. M1

(blue) has L/LEdd = 0.058 and black hole mass of 1.4×108 M⊙.

M2 (green) has L/LEdd = 0.23 and black hole mass of 1.1×108 M⊙.

M3 (red) has L/LEdd = 0.77 and black hole mass of 2.6×107 M⊙.

b) shows the spectral evolution with L/LEdd alone by redoing each

model for a single black hole mass of 108 M⊙ (and fcol = 1). . . . . . 197

5.15 Comparison of parameter distributions between Model-A and Model-

B SED fittings. In each panel the shaded cyan histogram is based on

our modified SED fitting using Model-B (listed in Table D.3), with

the 12 NLS1s highlighted by the shaded orange region. The solid

black line shows the parameter histogram for Model-A fitting (listed

in Table 3 of Chapter 3), with the dashed red line indicating the 12

NLS1s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.1 The spectral fitting results. Object order follows all other tables in this paper as increasing RA

and DEC. 1. Broadband SED fitting plot (panel-a): X-ray data has been rebinned for each

object. Green solid line is the pure accretion disc component peaking at optical/UV region,

orange line is Comptonisation component producing soft X-ray excess below 2 keV, blue line

is the hard X-ray Comptonisation component dominating 2-10 keV spectrum, and red is the

total broadband SED model. 2. SDSS spectrum fitting plot (panel-b): only the fitted spectrum

below 7000Å is plotted. Green solid line is the best-fit underlying continuum from accretion

disc. Orange line shows all best-fit emission lines, including the results from detailed Balmer

line fitting in panel-c. FeII emission is plotted as light blue, while Balmer continuum being dark

blue. The total best-fit model with reddening is drawn in red solid line. 3. Balmer emission line

fitting plot(panel-c): spectral ranges containing Hα and Hβ profiles are plotted separately, with

blue lines showing individual line components and red line showing the whole best-fit model.

These are also the corresponding zoom-in plots of nearby regions of Hα and Hβ in panel-b.

The given black hole mass is the broadband SED best-fit value, see Section 3.6.5 for detailed

descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
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C.1 The luminosity correlations between Hβ line components and SED

components. Red points represent NLS1s; blue points represent the

broadest Hβ line BLS1s; green point is Mrk 110; purple star is PG

1004+130; purple symbols indicate radio loud sources. The orange

dotted line denotes the OLS regression line assuming the SED com-

ponent luminosity is the independent variable. Spearman’s rank cor-

rection coefficient ρs for the whole sample is also given in each panel. 248

C.2 The cross-correlation plots between Hβ line component EWs and

L5100A (the monochromatic luminosity at 5100Å) and L/LEdd (the

Eddington ratio) Different symbols have the same meaning as in Fig-

ure C.1. Spearman’s ρ is given in each panel. . . . . . . . . . . . . . . 249
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E.2 The AGN mean SEDs based on different values of the 9 key parameters from Model-A fitting

in Jin et al. (2011) (i.e. without effect of color temperature correction). For each parameter,

the 51 sources are sorted according to the parameter value, and are then divided into three

subsets evenly so that each subset contains 17 sources. PG 1004+130 is excluded from its

subset. Finally, a mean SED is constructed for each of the three subsets after renormalizing

each individual SED to the mean 2500Å luminosity of that subset. The three panels (A, B, C)

in each row show the mean SEDs of the subsets classified by the parameter shown in the panel

title. In each panel, the solid curve is the mean SED, while the color shaded region is the ±1σ

deviation. The 2500 Å and 2 keV positions are marked by the vertical solid orange lines, whose

related height shows the value of αox, The SED peaking position is also marked by the vertical

solid purple line. The average values of some other parameters in that subset are also shown in

the panel. All the mean SEDs have been rescaled by the same arbitrary constant in the Y-axis

which is 1.3×10−46. Note that the energy ranges E < 6 eV and 0.3 keV < E < 10 keV are

covered by SDSS, OM and EPIC data, while the SED in the rest energy bands is determined

by the extrapolating of the best-fit model. . . . . . . . . . . . . . . . . . . . . . . 266
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Chapter 1
Introduction

1.1 Black Holes

A ‘Black hole’ is an extreme object predicted by Einstein’s general relativity, the

name of which suggests that it is totally invisible. During the eighteenth century,

Laplace and Michell first postulated the existence of black holes using Newtonian

mechanics and the particle theory of light. It was proposed that if an object’s mass

is so huge that its escape velocity (2GM/R)1/2 exceeds the speed of light c, then

no light will be observed from it, i.e. totally ‘black’ to all types of detectors. This

concept was ignored because at that time light was considered only as pure electro-

magnetic wave rather than particles, and so not affected by gravity. In 1915, the

establishing of Einstein’s special and general relativity theory brought the concept

of a ‘black hole’ back to public attention. Schwarzschild (1916) derived the first an-

alytical solution of Einstein’s field equation in the vacuum (Gµν = 0), which depicts

the gravity field around a static, spherical symmetric point mass. The uniqueness

of this solution was proved by Israel (1967). Kerr (1963) derived a more general

solution for a static, spherical symmetric point mass with non-zero spinning. How-

ever, the name ‘black hole’ itself was first used publicly by John Wheeler in 1967,

afterwards this name became popular.

Although there are abundant physical properties related to the progenitor of a

black hole, all information will be lost once the black hole forms, except for three

properties (i.e. the ‘no-hair’ theorem): black hole mass (M), charge (Q) and angular

momentum (L) which is more often expressed by the black hole spin parameter

α = L/M . According to the value of these three parameters, black holes can be

classified into the following four types: a Schwarzschild black hole (M 6= 0, Q =

0, α = 0), a Kerr black hole (M 6= 0, Q = 0, α 6= 0), a Reissner-Nordstrom black hole

1
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(M 6= 0, Q6= 0, α = 0) and a Kerr-Newman black hole (M 6= 0, Q6= 0, α 6= 0).

A key parameter of a black hole is its gravitational radius (Rg), which is defined

as:

Rg = GM/c2 (1.1)

Rg serves as a natural unit of distance of the gravitational field around a black

hole. In the simplest case of a Schwarzschild black hole, there is a spherical surface

called the ‘event horizon’, whose radius is Rs = 2Rg (also called the Schwarzschild

radius). No electromagnetic wave or particles can be emitted from inside Rs. For a

Schwarzschild black hole, the ‘event horizon’ also overlaps with the ‘infinite redshift

surface’, which is defined such that any electromagnetic wave launching from this

surface will have its energy approach zero as it propagates further and further away

from the black hole. Another typical radius is the ‘last stable circular orbit’ (Rlso),

which defines the region within which no stable circular orbit can exist. For a

Schwarzschild black hole, Rlso = 6Rg. But these radii can be different for other

types of black hole. For example, a Kerr black hole has Rs∼Rg, Rlso∼1.24Rg, and

its ‘infinite redshift surface’ no longer overlaps with the ‘event horizon’. Note that

the spin parameter α satisfies the condition 0 <∼ α <∼ 0.998GM/c (Thorne 1974).

1.1.1 Different Types of Black Hole

The black holes in the observable universe may have the following forms: micro

black hole, stellar-mass black hole, supermassive black hole and intermediate-mass

black hole.

(i) Micro black holes (MBH)

A micro black hole is a hypothetical type of black hole where quantum mechanical

effects are important. The formation of MBH may be due to density fluctuations

in the early universe, so they are also referred to as ‘primordial black hole (PBH)’.

It was first realized by Hawking (1971) that such density perturbations can cause

mass collapse to form black holes. There is yet no observational evidence to confirm

the existence of such PBH, but some theories suggest that MBH can form in high



1. Introduction 3

energy particle accelerators such as the Large Hadron Collider (LHC) when the en-

ergy reaches TeV. However, MBH are not the concern of this thesis and so we will

not continue to discuss it.

(ii) Stellar-mass black holes (SBH)

Compared to the PBH, the existence of stellar-mass black holes is much more cer-

tain. Although it is not possible to observe a SBH directly, their existence is strongly

implied by many X-ray binary systems. Cygnus X-1 is one of the most well-known

examples of SBH. It has a companion star in a close orbit, from which one can deter-

mine the mass of the companion star to be 8 − 15 M⊙ (Axelsson et al. 2011; Orosz

et al. 2011). This is higher than the upper limit of mass for a white dwarf (1.4 M⊙:

Chandrasekhar mass for a star supported by electron degeneracy pressure) or a neu-

tron star (2.2 M⊙: as proposed by Kalogera & Baym (1996) for a star supported by

neutron degeneracy pressure), leaving the only possibility of a SBH. Other exam-

ples include LMC X-1, LMC X-3, M33 X-7, NGC 300 X-1, GRS 1915-105 etc.. The

formation of SBH is still not clear. A neutron star may continue accreting nearby

material, its mass finally exceeds the upper limit so that it collapses into a SBH.

(iii) Super-massive black holes (SMBH)

Strong radio sources such as 3C 48 and 3C 273 were first discovered during 1960s.

These sources appear star-like in the optical images, but their optical spectra were

confusing since there are very broad emission lines. Then it was realized that those

emission lines are actually Hydrogen Balmer lines, and thus the redshift was iden-

tified to be 0.158 for 3C 273 (Schmidt 1963), which immediately implies extremely

high luminosity of these ‘Quasi-stellar objects’ (or quasars). To explain the huge

energy output, the possible role played by massive black hole in such sources was

proposed (e.g. Zel’Dovich & Novikov 1964), but it was not until the accretion pro-

cess near SMBH was modelled (Shakura & Syunyaev 1973; Shields 1978) that the

accretion mechanism and the cosmological distance of quasars were widely accepted.

The most direct evidence for the existence of SMBH is the observation of stellar

and gas motion in the centre of our galaxy and nearby galaxies such as M87 and

NGC 4528. For example, Hubble Space Telescope (HST) observed a disc of gas

of Keplerian velocity profile near the centre of M87 galaxy, from which one can
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Figure 1.1: The stellar orbits around Sagittarius A⋆ in the centre of the Milky Way.

The S2 orbit has a period of 15.2 year and a pericentre distance of 17 light hours,

strongly implying a central point mass of (4.31±0.42)×106M⊙. This is one of the

most direct evidence for the existence of SMBH. Figure is taken from Gillessen et

al. (2009a).

estimate a total mass of 2×109 M⊙ within 18 parsec (pc) (Harms et al. 1994),

strongly implying a SMBH.

Figure 1.1 shows the stellar orbits around Sagittarious A⋆ in the centre of our

Milky Way (Gillessen et al. 2009a). The observation of the whole orbit of S2 star

suggests a period of 15.2 year and a pericentre distance of 17 light hours (or at

2100 Rs of a 3×106 M⊙ black hole) (Schödel et al. 2002), confirming the existence

of a point mass (i.e. a SMBH) in the centre of Milky Way with a refined mass of

(4.31±0.42)×106M⊙ (Gillessen et al. 2009b). However, such direct observations can
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not be conducted for any other galaxies harboring SMBH due to the limited spacial

resolution.

Other less direct, but no less important, techniques can also predict the existence

of SMBHs with masses between 105−1010 M⊙, such as reverberation mapping tech-

niques (Chapter 1.3.4) and Equation 1.15 where the radius of broad line region

(RBLR) and stellar/gas velocity dispersion (σvelo) can both be determined observa-

tionally (Chapter 1.3.4).

(iv)Intermediate-mass black hole (IMBH)

The mass of IMBH may fill in the gap of 102−105 M⊙ between SBH and SMBH, but

the existence of IMBH is much less certain than SBH and SMBH. These black holes

are suspected to be associated with ultra-luminous X-ray sources (ULXs). Detailed

X-ray spectral studies suggest that ULXs are more likely to be super-Eddington and

in a new, ultraluminous state, with the black hole mass ranges between 10−100 M⊙

(e.g. Roberts 2007; Gladstone, Roberts & Done 2009; Vierdayanti et al. 2010; Mid-

dleton et al. 2011). Further details regarding IMBH are beyond the scope of this

thesis. In the following chapters we will focus only on SMBH, and refer to the

accretion processes in SBH where relevant.

1.1.2 Black Hole Accretion Processes

The in-fall of material onto a black hole converts gravitational potential energy into

kinetic and thermal energy, resulting in strong radiative emission over the entire

waveband from radio to hard X-ray. The conversion of gravitational potential energy

into radiated energy can be described by the accretion efficiency µ. Thus if the mass

accretion rate is Ṁ , then the radiated luminosity is:

L = µṀc2 (1.2)

The accretion efficiency is directly related to Rlso which in turn depends on the

spin of SMBH. µ ranges from 0.06 for a Schwarzschild black hole to 0.31 for an

extreme Kerr black hole (Thorne 1974), thus the measurement of µ can be used to

determine the spin of black hole. In this thesis we make the simplest assumption of
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a Schwarzschild black hole and adopt an overall efficiency of 0.057 (Novikov-Thorne

emissivity).

The radiation will also exert a force on the accreting material. Simply considering

the accreted material to consist of a proton and an electron, the irradiated photons

from the centre may be scattered by both proton and electron. But the Thomson

cross-section is σT ∝ m−2, which shows that the proton scattering is negligible

compared to the electron scattering. The radiation pressure in a radiation field of

luminosity L can be expressed as:

Frad =
LσT

4πr2c
(1.3)

This force is also exerted indirectly on protons due to the Coulomb force between

electrons and protons. The gravitational force on an electron-proton pair is:

Fgra =
GM(mp + me)

r2
≃ GMmp

r2
(1.4)

The critical luminosity satisfies Frad = Fgra can be derived from Equation 1.3 and

1.4 as:

LEdd =
4πGMmpc

σT

= 1.3 × 1038(M/M⊙) ergs s−1 (1.5)

LEdd is called the ‘Eddington luminosity’ which simply scales with black hole mass.

The ratio between actual bolometric luminosity and Eddington luminosity is called

the ‘Eddington ratio’ (i.e. λEdd = L/LEdd), which represents the relative importance

between radiation pressure and gravity.

However, the assumption of steady accretion flow, spherically symmetric and

accreted material of fully ionized hydrogen may not be valid in a real source, so

the above LEdd is only a rough approximation. For example, the accreted material

may contain heavier elements than hydrogen, and the material may not be fully

ionized, thus the actual cross-section σT may be much bigger. Heinzeller & Duschl

(2007) suggested that LEdd only weakly depends on the geometry, but the critical

luminosity should vary at different radii of accretion disc.

Despite these caveats in LEdd, λEdd has proved to be one of the most funda-

mental parameters in the accretion process around black holes, especially in X-ray

binaries whose SED state shows dramatic changes with changing Eddington ratio
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(e.g. Remillard & McClintock 2006; Done, Gierliński & Kubota 2007). The SED

dependence on λEdd has been proposed in AGNs but not in great detail (e.g. Va-

sudevan & Fabian 2007). This is one of the main issues studied in this thesis.

One of the most interesting issues concerns sources having super-Eddington ac-

cretion flows, whose λEdd is above 1. In such cases the radiation pressure is too high

to be overcome by gravity, and so blows away at least part of the accreting material,

forming a disc wind. In Chapter 2 I discuss one of the most extreme super-Eddington

sources, namely RX J0136.9-3510.

1.2 AGN Taxonomy and Unified Model

The term of ‘active galactic nuclei (AGN)’ describes the luminous central region of

galaxies. The huge energy output of AGN over a wide waveband cannot simply be

explained as originating a single star or star clusters, although sometimes an AGN

at the cosmological distance does appear star-like (i.e. quasar). It is now widely

accepted that each AGN harbors a SMBH in its centre, and it is the accretion

process around SMBH that generates the powerful multi-frequency radiation.

1.2.1 AGN Taxonomy

The taxonomy of AGN is complex and somewhat confusing because the fundamental

physical differences between different types of AGN are not clear. However, there

are some generally recognised AGN subsets which are summarised in Table 1.1 and

discussed below.

(1) Seyfert Galaxies

The first AGN optical spectrum was observed from a Seyfert galaxy NGC 1068 by

E. A. Fath in 1908 at Lick Observatory. Seyfert (1943) realised that there are other

sources similar to NGC 1068, whose host galaxy has a compact and bright nuclei

emitting strong, high-ionisation lines, including a series of forbidden lines. The

hydrogen lines are broader than the forbidden lines. Many more Seyfert galaxies

were found after that, whose host galaxies all show spiral morphology. Khachikian

& Weedman (1974) realised that there are two sub-types of Seyferts, namely type 1
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Table 1.1: The summary of different types of AGN. Table adopted

from the website of Department of Astronomy, Virginia University

(http://www.astro.virginia.edu/class/whittle/astr553/Topic15/Lecture 15.html)

and type 2, depending on the visibility of broad component in the permitted lines

(Figure 1.2). Osterbrock (1981) further introduced type 1.5, 1.8 and 1.9 Seyferts,

according to the presence of broad base in Hα and Hβ lines. Generally speaking,

Seyfert galaxies are lower luminosity AGNs with MB > −21.5 + 5log(h0), with

quasars defining the higher luminosity AGNs. But the luminosity division between

Seyferts and quasars is rather arbitrary.

Narrow Line Seyfert 1 (NLS1) are a special class of Seyfert AGN, whose defini-

tion is Seyfert 1 AGN with Hβ FWHM ≤ 2000 km s−1 and [OIII] λ5007/Hβ < 3

(Goodrich 1989). However, there seems to be more fundamental differences between

NLS1s and broad line Seyfert 1s (BLS1s). For example, compared to BLS1s, NLS1s

have stronger soft X-ray excess (Done et al. 2011) and more prominent FeII emission

(e.g. Komossa 2008). Their central black hole masses were found to be systemat-

ically lower than that prediction based on the M-σ∗ relation which holds well for

BLS1s (Greene & Ho 2006) (Chapter 1.3.4). It is proposed that the central black
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Figure 1.2: Optical spectrum of different types of AGN. Figure adopted from W.

Keel’s home page (http://www.astr.ua.edu/keel/agn/spectra.html)

hole of NLS1s may still be growing (e.g. Mathur, Kuraszkiewicz & Czerny 2001;

Komossa & Mathur 2001; Komossa 2008). It is also found that among all AGNs

the highest mass accretion rates in terms of Eddington are in the NLS1s (Casebeer,

Leighly & Baron 2006; Middleton et al. 2009; also see Chapter 3). In this thesis,

we will examine the differences between NLS1s and other type 1 AGNs.

(2) Quasars

Quasars were first identified in 1950s during the first systematic radio surveys. The

optical counterparts of some of these strong radio sources was stellar in appear-

ance rather than a diffused galaxy. The first optically identified quasar was 3C

48, identified by Matthews and Sandage (1963). Later, another quasar 3C 273 was

identified by Hazard, Mackey & Shimmins (1963), whose redshift z = 0.158 was

first determined by Schmidt (1963) from the Hydrogen Balmer lines. The cosmo-

logical distance implied by the high redshift of quasars implies extreme luminosity

(typically ≥ 1045 ergs s−1), which could not be explained immediately at that time.

But now it is clear that quasars form another class of AGNs lying at high redshift
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with higher luminosity than Seyfert galaxies, the radiated energy is also from the

accretion onto SMBH.

Although the first quasar was discovered due to its radio emission, most quasars

found in optical surveys were not present in radio surveys. In fact ‘radio-quiet (RQ)’

quasars are 10-20 times more numerous than ‘radio-loud (RL)’ quasars. The flux

ratio between radio (5GHz) and optical (B band or 4400Å) F5GHz/FB ≥ 10 is used

as the criteria for classifying RL AGNs (Kellermann et al. 1989).

(3) Radio Galaxies

Radio galaxies can be considered as the RL counterpart of Seyfert galaxies, but the

morphology of a radio galaxy is elliptical, while the majority of Seyferts have spiral

host galaxies. Similar to quasars and Seyfert galaxies, radio galaxies can also be

divided into broad line radio galaxy (BLRG) and narrow line radio galaxy (NLRG).

(4) Low-ionisation Nuclear Emission-line Galaxies (LINERs)

LINERs are the least luminous but most common type of AGNs. They were first

identified by Heckman (1980). More than 30% of all spiral galaxies are LINERs,

thus they are the most common type of AGN. The optical spectrum of LINERs

is similar to Seyfert 2’s as both types of AGN show low ionisation narrow emis-

sion lines, but the Seyfert 2 can also exhibit strong highly ionised species as well.

The differences between LINERs and Seyferts can be directly seen in the ‘Baldwin-

Phillips-Terlevich (BPT)’ diagram (Baldwin, Phillips & Terlevich 1981), as shown

in Figure 1.3. Compared to Seyferts, LINERs have stronger low-ionisation lines such

as [SII] λλ6717,6731, [NII] λ6584, [OII] λλ3726,3729 and [OI] λ6300 (Ho, Filippenko

& Sargent 1997). They also have [OIII] λ5007/Hβ ≤3.

(5) Blazars

Blazars are a different type of AGN which show extreme variability at most frequen-

cies. All blazars have radio emission. Other terms used for this type of AGN are

BL Lac objects and ‘Optical Violent Variables (OVVs)’. These AGNs have contin-

uum emission which is dominated by a relativistic jet. In the Unified Model (next

section) they are believed to be viewed in a direction closely aligned with the jet,

hence the emission undergoes relativistic Doppler boosting.
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Figure 1.3: Three BPT diagrams used for classifying different galaxies using emission

line ratios. Red solid lines are the extreme starburst classification lines from Kewley

et al. (2001); Blue dashed line is pure star formation line from Kauffmann et al.

(2003); Blue solid lines are the Seyfert-LINER classification lines from Kewley et

al. (2006). These lines are used to separate galaxies into HII-region-like, Seyferts,

LINERs, and composite HII-AGN types (‘Comp’). Figure is from Kewley et al.

(2006).

1.2.2 The Unified Model

Osterbrock (1978) suggested that the absence of broad component in the permitted

lines could be due to the obscuration of the central region. Convincing evidence was

found in the Seyfert 2 AGN NGC 1068 whose polarisation spectrum shows broad

hydrogen lines similar as in Seyfert 1 galaxies (Antonucci & Miller 1985). This

hidden BLR is also observed in other Seyfert 2 galaxies (e.g. Tran 1995; Heisler,

Lumsden & Bailey 1997). Blandford and Rees (1978) recognised that blazars may

be normal AGNs except that we are viewing along the relativistic beaming axis.

Based on these results, Antonucci & Miller (1985) and Antonucci (1993) proposed

the unified model for all the AGNs and introduced the orientation effect to account

for different types of AGN in the same scenario.

Figure 1.4 shows a cartoon of unified model. The model includes a SMBH in

the centre of AGN, a standard accretion disc forms around the black hole down

to a few Rg whose emission dominates the optical/UV bump in AGN’s broadband
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SED (Shields 1978; Chapter 1.3). A torus of gas and dust at a few parsecs distance

surrounds the accretion disc, reprocessing high energy central emission so that it

emerges at infrared waveband. Type 2 AGN can be explained as type 1 AGN

viewed ‘Edge-on’ thus the central broad line region (BLR) is obscured by the dusty

torus. This model is supported by the observation that the UV spectrum in Seyfert

2 galaxies is similar to that of Seyfert 1 galaxies (Kinney et al. 1991). The narrow

line region (NLR) lies up to 10s of kpc from the centre, and so is visible at all viewing

angles. Blazars are observed close to the angle of a highly collimated jet, and so

they are less common than other types of AGN.

However, orientation alone in the unified model is too simple to explain all the

observed differences between the different types of AGN. For example, the radius

and covering factor (the fraction of the spherical area covered) of the dusty torus may

also depend on the AGN’s luminosity (the so-called receding torus model: Lawrence

(1991)). The mass of SMBH may also be systematically smaller in NLS1s than in

other AGNs. The formation mechanism and mass accretion rates for different AGNs

may also be different, resulting in a range of spectral and temporal characteristics

(e.g. Shemmer et al. 2006; Brandt, Mathur & Elvis 1997).

1.3 AGN Optical/UV Emission

An AGN’s optical/UV emission contains a wealth of information about the physical

environment in the core region. A typical AGN’s UV/optical spectrum consists of a

series of emission lines superposed on the underlying continuum. Figure 1.5 shows

a typical quasar composite spectrum over the spectral range between 800Å - 8500Å.

All major emission line features are labelled according to the ion species, while the

underlying continuum is shown as the dashed and dotted lines.

1.3.1 Accretion Disc Continuum

The optical/near UV emission is considered to be the tail of the big blue bump

(BBB) peaking in the UV/soft X-ray region. The optical underlying continuum

is attributed to the sum of emission at each radius within the accretion disc. For
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Figure 1.4: The cartoon of unified model of AGN. The physical size of accretion

disc is up to a few hundred Rg. The size of dusty torus is between a few parsecs and

hundreds of parsecs. The size of the NLR is up to tens of kilo-parsecs. Illustration:

Aurore Simonnet/Sonoma State University.

a standard accretion disc which is geometrically thin and optically thick, one can

assume local thermal equilibrium at the surface of the accretion disc, thus the energy

is dissipated as a local black-body at each radius. Equation 1.6 shows that the

surface temperature of the accretion disc changes with the radius roughly as:

T ≈ T0 (r/Rs)
−3/4 (1.6)

where kBT0 ≈ 54 (ṁ/M8)
1/4 eV , with ṁ being the mass accretion rate in the unit

of the Eddington mass accretion rate, and M8 the black hole mass in the units of

108 M⊙. This equation implies that the inner region of accretion disc is hotter and

emits photons at higher energy (or shorter wavelengths). The sum of all the local

black-body emission from the entire accretion disc between the inner radius Rin,

and outer radius Rout forms the spectrum of the standard accretion disc (also called

multi-colour accretion disc). Figure 1.6 shows the spectrum of such a disc which

consists of a series of black-body components.
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Figure 1.5: Median quasar composite spectrum showing various emission lines. Two

power law components are fitted to the underlying continuum (dotted and dashed

lines). Figure is taken from Vanden Berk et al. (2001).
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Figure 1.6: A simplified picture of a multi-colour accretion disc spectrum (red solid

line), formed by adding the black-body emission at each radius (dash lines).

As mentioned previously the maximum effective temperature of a geometrically

thin, optically thick accretion disc is kBTmax≈10 ṁ/M8 eV (Shakura & Sunyaev

1973; Novikov & Thorne 1973), and the peaking energy of the disc spectrum is

∼2.7kBT . So for a 107 M⊙ black hole accreting at 10% of the Eddington mass

accretion rate, the maximum effective temperature is 10 eV , and the peak energy

of the disc spectrum is 30 eV (i.e. ∼400Å). So the accretion disc spectrum peaks

in the UV region and produces significant continuum emission in the UV/optical

spectrum. Taking the outer radius Rout of the standard accretion disc to be 500 Rs

(outside which the disc may become clumpy due to self-gravity: e.g. Collin & Huré

2001), then the temperature KBT at Rout, calculated from Equation 1.6, is ∼0.5 eV

(i.e. ∼2 µm). Therefore, optical photons with 3000Å <∼ λopt <∼ 7000Å have an

intermediate photon energy of:

kBT (Rin) ≫ hνopt ≫ kBT (Rout) (1.7)
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Also note that for such a locally thermalised accretion disc, we can write:

L(ν) = 2π2cos(i)

∫ Rout

Rin

rI(ν, T )dr (1.8)

where i is the inclination angle, I(ν, T ) is the Planck’s equation for the black-body

spectrum:

I(ν, T ) =
2hν3

c2
1

ehν/kT − 1
(1.9)

Combining Equation 1.6, 1.7, 1.8 and 1.9, one can derive the spectral shape for a

standard accretion disc in the optical and near UV region as:

L(ν) ∝ ν1/3 (1.10)

i.e. the predicted optical continuum emission from the standard accretion disc has

the form of L(λ) ∝ λ−7/3.

The observed spectrum from accretion disc will be much more complicated than

this simple picture if we also consider the rotation, inclination, magnetic field, rela-

tivistic effects, etc. (e.g. Czerny & Elvis 1987; Laor & Netzer 1989). For example,

the temperature gradient will deviate from a simple power law as r approaches Rin

where general relativistic effects become important (e.g. Gierliński et al. 1999); the

black hole spin determines Rlso and thus affects the disc spectrum (e.g. Norikov

& Thorne 1973; Zhang et al. 1997); the power index −3/4 in Equation 1.6 may

increase if the radial advection becomes important (e.g. Mineshige et al. 1994;

Kubota et al. 2005); electron scattering inside the accretion disc may also modify

disc spectrum considering the vertical disc temperature profile (Done et al. 2011).

In order to derive a more accurate accretion disc spectrum, one needs to perform a

full radiative transfer calculation and a complete treatment of all the above factors.

1.3.2 Dust Reddening

A typical UV/optical spectrum often appears flatter (redder) than the predicted

optical slope of accretion disc spectrum (Chapter 3). One of the main reasons for

this apparent flatness is dust reddening. Figure 1.7 gives an example in which strong

reddening flattens the intrinsic UV/optical spectrum of NGC 3227.
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Dust grains between light emitter and observer will scatter and absorb photons

in a wavelength dependent way, according to the size and composition of the grains.

It is observed that the dust grains in the interstellar medium scatter more blue

optical light than red, resulting in an absorbed optical spectrum that is ‘reddened’.

The extinction in magnitudes is written as Aλ, so the observed flux fo is related to

the intrinsic flux fi as:

fo = fi×10−0.4×Aλ (1.11)

The commonly used variable to quantify the reddening level is the ‘colour excess’

between the B band and V band: AB − AV (i.e. E(B − V )), then the reddening

curve shown as a Rλ vs. λ plot where Rλ is defined as:

Rλ =
Aλ

AB − AV
=

Aλ

E(B − V )
(1.12)

Reddening curves can also be determined relative to the V band and normalised to

E(B − V ) (Savage & Mathis 1979) as:

ξ(λ) =
Eλ−V

E(B − V )
= Rλ − RV (1.13)

where RV refers to the Rλ in the V band. Its value differs from galaxy to galaxy

depending on the grain size (see below).

The dust reddening curve for the Milky Way (MW) has been well studied and

constrained (e.g. Seaton 1979; Koornneef 1983; Pei 1992). The model of graphite-

silicate grains with a wide size range has been used to depict the Galactic dust

(Mathis, Rumpl & Nordsieck 1977; Pei 1992). The Galactic dust reddening in each

direction of the sky can be obtained from publicly available databases such as the

Leiden/Argentine/Bonn (LAB) map (Kalberla et al. 2005) and Dickey & Lockman

(DL) map (Dickey & Lockman, 1990). The typical RV for the MW is 3.08 (Pei

1992) but may change for a different line of sight.

Figure 1.8 shows the reddening curve of the Milky Way. The strength of ab-

sorption increases towards shorter wavelengths, with a stronger absorption feature

centred at 2175Å. The origin of this bump is still not clear. Its central wavelength

is almost invariant, but its width changes with the line of sight. It is suggested
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that the dust grains responsible for this feature may consist of organic carbon and

amorphous silicates (Bradley et al. 2005).

While the Galactic reddening has been well measured, the ‘intrinsic’ reddening

for other galaxies (especially the galaxies hosting AGNs) is more difficult to quantify.

Figure 1.8 also includes the reddening curves for Large Magellanic Cloud (LMC),

Small Magellanic Cloud (SMC) and starburst galaxies (SB). It is clearly seen that

the strength of dust absorption differs significantly below 3000Å between the MW,

LMC, SMC and SB, while above 3000Å all the curves are quite similar except for

the SB. It was also shown by Crenshaw et al. (2001) that the reddening curve of

NGC 3227 (a Seyfert 1) is very similar to that of the SMC for wavelengths longer

than 4000Å, below which the absorption is stronger in NGC 3227. In contrast, work

by Gaskell et al. (2004) based on a large sample of RQ and RL quasars showed that

the reddening curve of quasars is flatter than the MW, which may be due to a larger

grain size in AGNs than in the MW (Maiolino et al. 2001). The 2175Å feature is also

absent in the SMC, NGC 3227 and the quasar reddening curves reported in Gaskell

et al. (2004). This may be due to an underabundance of carbon in the interstellar

medium (ISM) of these galaxies. Overall all these studies confirm that over the

optical range of 4000Å - 7000Å (which I am focusing on in this thesis) adopting a

reddening curve of either the MW, LMC or SMC for non-starburst AGNs, is equally

acceptable.

1.3.3 Dusty Torus and Host Galaxy Continuum

The emission from a dusty torus and a host galaxy can contribute to the longer

wavelength emissions in the optical spectrum, as shown by Figure 1.9. The dusty

torus absorbs emission from the AGN and reprocesses it into infrared emission long-

ward of 1 µm. Together with the optical underlying continuum, it produces a local

minimum in the SED at 1 µm which is commonly observed in AGNs (Sanders et

al. 1989; Landt et al. 2010). The temperature of the dusty torus must be less

than 2000 K, because above this dust grains will sublimate. The emission from the

hottest part of dusty torus can be approximated by a single blackbody with best-fit
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Figure 1.7: The strongly reddened UV/optical spectrum of NGC 3227, compared

with the unobscured UV/optical spectrum of NGC 4151. Solid lines show the shape

of the underlying continua. Note that the reddened spectrum is much flatter than

the intrinsic spectrum. Figure is obtained from Crenshaw et al. (2001).
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Figure 1.8: The extinction curves for the Milky Way (MW; Pei 1992),

Large Magellanic Cloud (LMC; Pei 1992), Small Magellanic Cloud (SMC;

Pei 1992) and Starburst Galaxies (SB; Calzetti et al. 2000). RV =

3.08 (MW ), 3.16 (LMC), 2.93 (SMC), 4.05 (SB). The marked position is the

2175Å bump. Rλ is defined in Equaiton 1.12.
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Figure 1.9: Two examples of optical to Infrared SED taken from Hao et al. (2010).

Data points are fitted with standard accretion disc model (red dashed), plus a black-

body component representing emission from hot dust (magenta dashed), plus an-

other blackbody component possibly arising from emission from outer region of the

accretion disc (green dashed), and emission from the host galaxy (blue solid). The

black dotted line is the sum of all the components.

temperature ranging from 1100-1700 K (Landt et al. 2010). The Wien tail of this

infrared blackbody emission can extend into the optical region, but its contribution

is small as seen in Figure 1.9.

The starlight from the host galaxy may also make a significant contribution to

the optical region. However, the spectral shape depends on the stellar population.

Figure 1.10 shows stellar spectral templates for different types of host galaxy. It

is clear that the star-burst galaxies have strong emission blueward of the optical

region. Quiescent galaxies mainly contribute to emission redward of 5000Å. The

clearest signatures of host galaxy emission are the strong absorption features of Ca

H+K λλ3969, 3934, CaII λλ8498, 8542, 8662 triplets and Mg Ib λλ5167, 5173, 5184

triplets, etc.. But since the study in this thesis focuses on type 1 AGNs without a

star-burst component, only the optical spectrum above 5000Å might be significantly

contaminated by the host galaxy.
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Figure 1.10: Spectral templates (binned in 200Å) for different types of host galaxies,

normalised at 4000Å. ‘SB’ represents starburst galaxy template with different E(B−
V ): SB 1 for E(B − V ) ≤ 0.10; SB 2 for 0.11 ≤ E(B − V ) ≤ 0.21; SB 4 for

0.39 ≤ E(B − V ) ≤ 0.50; SB 6 for 0.61 ≤ E(B − V ) ≤ 0.70. Figure is taken

from Kinney et al. (1996).
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1.3.4 Emission Features

One of the main difference between the optical spectrum of an AGN and a galaxy

is that the AGN spectrum exhibits abundant emission lines. The most prominent

emission lines between 3000-9000Å include hydrogen Balmer line series (Hα, Hβ,

Hγ, etc.), HeII λ4686, Li λ6708, FeII emission line series, forbidden lines [OIII]

λλ4959,5007, [NII] λλ6548,6584, [OI] λλ6300,6363, [SII] λλ6718,6732, etc.. There

are also many other important and strong emission lines in both UV and infrared

wavebands, such as CIV λ1549, MgII λ2799 and the hydrogen Paschen series. These

lines are not studied in this thesis because they are not covered by the SDSS spectra

of sources in our sample.

Along with strong emission lines, another prominent features in the optical spec-

trum is the hydrogen Balmer continuum which forms the small blue bump (SBB).

The ideal shape of the Balmer continuum is a sharp edge (i.e. the Balmer pho-

ton recombination Edge: BPR edge) at 3646Å with an exponentially decreasing

blue wing extending toward shorter wavelengths (e.g. Grandi 1982; Wills, Netzer &

Wills 1985). I describe the detailed properties of the BPR edge in Chapter 3.

According to their ionisation potential, some forbidden lines are referred to as

high ionisation lines (HILs), such as [Fe XIV] λ5303, [Fe X] λ6374 and [Fe XI] λ7892,

if their ionization potential is ≥100 eV (e.g. Mullaney et al. 2009). Because these

lines were first observed in the solar corona, they are also referred to as “coronal

lines”, in spite of the crucial difference that collision excitation dominates in the

solar corona while photon ionisation dominates in an AGN. I do not study these

lines in this thesis due to their limited S/N in the SDSS spectra.

The main emission lines studied in this thesis are Hα, Hβ and [OIII] λ5007.

As mentioned previously these lines all have complex profiles (Figure 1.11), often

including a broad base and a narrow core component, and sometimes also an inter-

mediate component, when fitted by multiple Gaussian profiles (e.g. Hu et al. 2008;

Mei, Yuan & Dong 2009; Zhu, Zhang & Tang 2009). The different line components

are thought to originate from different regions, i.e. the narrow component from

the ‘narrow line region’ (a low density extended region), broad component from the
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‘broad line region’ (a dense compact region) and intermediate component from the

‘intermediate line region’ (a transition region in between the previous two). These

regions are discussed as below.

Narrow Line Region (NLR)

The NLR is responsible for the narrow lines in the optical/UV spectrum. This

region often extends from several hundred parsecs out to above 1 kilo-parsecs (e.g.

Schmitt et al. 2003a,b). It is so far the most compact optical/UV structure that can

be spatially resolved, which is directly associated with the AGN. The temperature

and electron density can be determined from the relative strengths of some forbidden

lines (e.g. [OIII] λλ4363, 4959, 5007 and [SII] λλ6716, 6731) and has Te ∼ 104 K

and ne ∼ 102 − 104 cm−3 (e.g. Osterbrock 1989; Cai & Pradhan 1993).

The line width of the narrow lines is a few hundred km s−1, with typical width of

∼500 km s−1. A blue component is often observed to accompany the core component

in [OIII] λ5007 profile, as shown in Figure 1.11, which suggests outflows in NLR of

a few hundred km s−1 (e.g. Boroson 2005, Bian, Yuan & Zhao 2005; Komossa et al.

2008). Ruiz et al. (2005) reported HST observations of the NLR in some Seyferts. It

is found that the NLR is clumpy with ‘knots’ of emission extending a few arcseconds

(Evans et al. 1991, 1993; Schmitt et al. 2003a). The NLR has various morphologies

which may depend on the viewing angle (Schmitt et al. 2003b). The morphology

of the NLR appears more axisymmetric than spherical symmetric, which stands out

clearly in maps of [OIII] λ5007 as ‘ionisation cones’ (Pogge 1988), with a typical

opening angle of 30◦−100◦.

The width of the narrow lines can also be used to infer stellar/gas velocity dis-

persions. One of the most important results obtained from the study of narrow line

emission and absorption features is the M-σ∗ relation (Figure 1.12) (Gebhardt et al.

2000; Ferrarese & Merritt 2000) where σ∗ is the gas velocity dispersion which can be

determined from the width of the [OIII] λ5007 emission line (Boroson 2003; Greene

& Ho 2005; Bian et al. 2006; Komossa & Xu 2007; Barth, Greene & Ho 2008),

or from the stellar velocity dispersion which can be determined from the width of
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Figure 1.11: An example of broad Hα and Hβ emission lines, along with nearby

emission lines such as [OIII] λλ4959,5007, [NII] λλ6548,6584 and [SII] λλ6716,6731,

from the SDSS spectrum of RBS 1423, fitted with multiple Gaussian components

(blue solid lines). The red solid line is the sum of all the Gaussian components.

This figure is reproduced from Jin et al. (2011).
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Figure 1.12: The latest M-σ∗ relation from Xiao et al. (2011). Different symbols

represent different samples as shown in the figure. The solid and dotted lines are

the linear regression lines. Strong correlation is seen for the whole mass range of

SMBH with ∼1 dex dispersion.



1. Introduction 27

absorption lines such as Ca II λλ8498, 8542, 8662 triplets (CaT), Mg Ib and Fe

λ5270 (e.g. Barth et al. 2002; Barth, Greene & Ho 2005; Greene & Ho 2006; Xiao

et al. 2011).

Broad Line Region (BLR)

There are a series of strong broad lines in the optical spectrum, especially Hα and

Hβ, as shown in Figure 1.11. The line profile is believed to be broadened by motions

of gas within the BLR. So the line width is often quoted in the units of km s−1.

However, it remains controversial which particular estimate of line width best corre-

lates with the mass of the central SMBH. Several possibilities include full width at

half maximum (FWHM), full width at zero intensity (FWZI) and second moment

of the line profile (Peterson et al. 2004), which is defined as.

σ2
line(λ) =

[

∫

λ2f(λ)dλ/
∫

f(λ)dλ
]

− λ2
0 (1.14)

The FWHM of broad lines ranges from a few hundred km s−1 up to a few

104 km s−1 with typical widths ∼5000 km s−1 (e.g. Boroson & Green 1992; Peterson

et al. 2004; Zhu, Zhang & Tang 2009). If thermally broadened, such velocity

dispersion requires the temperature of the gas in BLR to be ∼109 K. But such a

high temperature is not realistic, so the preferred explanation is that of bulk motions

of individual clouds in BLR which is clumpy rather than homogeneous (Baldwin et

al. 1995).

The physical properties of the BLR are hard to derive since it is such a com-

pact region and cannot be spatially resolved by any telescopes. However the broad

optical/UV emission lines can provide crucial clues. For example, the absence of a

broad component to the [OIII] λ4363 line implies that the electron density of BLR

is higher than the collision de-excitation density of 108 cm−3. In fact, the zone of

the BLR producing the strong carbon emission lines may have a density close to

1011 cm−3 (Ferland et al. 1992).

The total mass of gas in the BLR is estimated to be at least several hundred M⊙

(e.g. Baldwin et al. 2003). It consists of more than 104 clouds with a volume filling
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Figure 1.13: A schematic model from Gaskell (2009) showing the flattened BLR and

dusty torus. The BLR emission can be observed through the two cones along the

axis.

factor (i.e. the ratio between the total volume of all the clouds and the volume of

the whole BLR) as small as 10−7. However, if the clouds are distributed uniformly

around the central source, then the observed strength of the emission lines implies a

high covering factor of 50% (Gaskell, Klimek & Nazarova 2007), which would result

in Lyman continuum absorption that has not been observed (MacAlpine 2003). So

instead of a uniform distribution, a flattened geometry of the BLR was proposed by

Gaskell (2009) as shown in Figure 1.13. Another scenario proposed recently intro-

duces a link between star formation in the self-gravity dominated disc region and the

BLR (Wang et al. 2011). In this scenario the star formation in the disc elevates gas

above the disc to form the BLR, then the gas cools down to form dust and sinks back

to the disc so that BLR disappears. This could explain the metalicity-luminosity

correlation observed in the BLR gas (Hamann & Ferland 1999; Warner et al. 2003;

Matsuoka et al. 2011) and also various types of broad line profile. In this thesis,

I will investigate the density, dust abundance and inflow velocity in the BLR, and
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discuss the correlations between BLR emission and various parameters associated

with the central continuum.

Reverberation Mapping

The radius of the BLR can be best estimated by using the ‘Reverberation Map-

ping (RM)’ technique (e.g. Kaspi et al. 2000; Peterson et al. 2004), the theory

of which was established by Blandford & McKee (1982). Using the velocity width

of the broad line as the indicator of velocity dispersion in the BLR, the black hole

mass can then be determined using the relation,

MBH = f
RBLR σ2

velo

G
(1.15)

(e.g. Peterson et al. 2004; Bentz et al. 2010; Denney et al. 2010; Barth et al. 2011).

The essence of this method is to monitor the optical/UV underlying continuum

simultaneously with the broad emission lines, then calculate the time lag t required

by various broad lines to respond to the variation of the underlying continuum. So

the light crossing distance ct is an estimate of RBLR. The exact value of the scaling

factor f depends on detailed geometry and kinematics, and its uncertainty remains

an open question, e.g. f = 3 by assuming an isotropic velocity dispersion and

σvelo = FWHM/2 (Peterson et al. 2004). The most important result from using

the RM technique is the correlation found between RBLR and the monochromatic

luminosity at 5100Å (i.e. λLλ(5100Å)), i.e. RBLR ∝ (λLλ(5100Å))0.7±0.03 (e.g.

Kaspi et al. 2000; Woo & Urry 2002). This permits a ‘single-epoch Virial mass

estimate’ using a single optical spectrum, such as the spectra from the Sloan Digital

Sky Survey (SDSS), to estimate black hole masses of large samples of AGN (e.g.

Baskin & Laor 2005; McGill et al. 2008). In Chapter 4 of this thesis I will discuss

the uncertainties in the black hole masses derived from the RBLR - λLλ(5100Å)

relation.
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1.4 X-ray Emission from AGN

The X-ray band (0.1-100 keV) is one of the most useful for AGN observation. This is

not only because the AGN X-ray emission contributes a high fraction of around ten

percent of the total emitted energy, but also because the observed X-ray variability

has a time scale of only a few minutes. Considering a black hole of mass 108 M⊙,

the gravitational radius Rg is 1.5×1013 cm, so the time scale of light crossing time is

∼Rg/c = 8.2 min, which has a similar time scale to the AGN as X-ray variability.

This suggests that the X-ray emission originates from the innermost region close

to the central SMBH. Note: a few Seyfert galaxies show extended structure in soft

X-ray waveband (e.g. Elvis et al. 1990), which may arise from electron scattering

of the central X-ray emission and/or the nearby hot gas thermal bremsstrahlung

emission. For analysis the X-ray spectrum is often divided into the ‘soft’ and ‘hard’

wavebands, referring to 0.1-2 keV and 2-10 keV, respectively.

1.4.1 The Hard X-ray Power Law Spectrum

The hard X-ray spectrum often exhibits the shape of a power law with the following

form:

FE = F0×E−Γ(photons/s/cm2/keV ) (1.16)

F0 can be determined from the photon counts at 1 keV, and the index Γ is called

the ‘photon index’. However, it is more common to show the spectrum in terms of

EFE vs. E, since EFE = FE×hν directly shows the energy density distribution of

the X-ray spectrum. Initially, the 2-20 keV X-ray spectrum was found to be well

fitted by a single power law with Γ≃1.7 ± 0.2 (Mushotzky et al. 1980). Later it

was shown that the power law shape spectrum can extend to 100 keV. Figure 1.14

shows an example of the entire X-ray spectrum observed for MCG 01-05-047 by

XMM-Newton and Swift’s BAT. It is clear that the hard X-ray can be well fitted by

an absorption modified power law, although an additional component is required in

the spectral range below 2 keV (i.e. the ‘soft excess’, see Chapter 1.4.2). The origin

of this hard X-ray power law spectrum is thought to be inverse Compton scattering

of accretion disc photons by a hot electron population with temperature of a few
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Figure 1.14: The entire X-ray spectrum of MCG 01-05-047 consists of data from

XMM-Newton (black) and Swift BAT (red) observations. The figure is taken from

Trippe et al. (2011). The fitted model is an absorption modified power law for the

hard X-ray, plus another power law for the ‘soft excess’. A small Gaussian profile

component is also added to fit the iron Kα line emission at ∼6.4 keV.

hundred keV, forming a corona surrounding the disc (Zdziarski et al. 1990). This

inverse Compton scattering process is referred to as ‘Comptonisation’. The photon

index Γ is predicted to be only weakly dependent on the temperature and optical

depth of this corona (Haardt & Maraschi 1991; Zdziarski et al. 2000). However, the

precise nature of this corona and its coupling with the accretion disc remains unclear.

At even higher energies above 100 keV, the spectrum will exhibit an exponential cut-

off at a few hundred keV. But the cut-off energy varies from AGN to AGN, which

may help us to distinguish between different interpretations of X-ray spectra such as

reflection, absorption and Comptonisation (Done et al. 2011). The γ ray emission

from AGN is often weaker than predicted from extrapolation of a simple power

law, which is consistent with the prediction from electron-positron pair production

processes.
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Figure 1.15: The strong soft X-ray excess observed in RX J0136.9-3510. The blue

dashed line is the power law fit to the 2-10 keV spectrum observed by XMM-Newton.

The green dotted line shows the soft excess which is fitted by a separate Compton-

isation component. The red solid line is the sum of both components.

1.4.2 The ‘Soft Excess’

A single power law is not sufficient to explain the overall X-ray spectrum. In many

cases the soft X-ray spectrum appears much steeper than the hard X-ray spectral

slope (e.g. Nandra & Pounds 1994; Middleton, Done & Schurch 2008; Jin et al.

2011), producing a excess flux commonly known as the ‘soft X-ray excess’. Fig-

ure 1.15 shows another example, the X-ray spectrum of the Seyfert 1 RX J0136.9-

3510. A power law is fitted to the 2-10 keV spectrum, then extrapolated below 2

keV. The best-fit photon index is Γ = 2.27±0.08. The ratio of the total flux to the

power law flux at 0.4 keV is ∼4, suggesting a strong soft excess.

The origin of this excess flux is still a source of controversy among the AGN

community. Although some simple forms of spectral models are often used to fit the

soft X-ray spectrum such as a (broken) power law and blackbody. Although this

approach can achieve some success in fitting the spectral shape phenomenologically,

it is not based on actual physical scenarios. Physical models capable of explaining
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the existence of the ‘soft excess’ include reflection from a partially ionised disc,

partial absorption and Comptonisation (e.g. Crummy et al. 2006; Sobolewska &

Done 2007; Done & Nayakshin 2007; Middleton et al. 2009; Done et al. 2011). The

accretion disc emission may also make a significant contribution in the soft X-ray

region in some low black hole mass, high mass accretion rate sources (Done et al.

2011; Jin et al. 2011). I will discuss the origin of the ‘soft-excess’ in several sections

of this thesis.

1.4.3 Further Modifications to The X-ray Spectrum

The intrinsic X-ray spectrum consists of a hard X-ray power law and a soft X-ray

excess, but the actual observed spectra are often much more complicated due to var-

ious spectral modification influences such as cold and warm absorption, reflection

and iron Kα emission.

Absorption

Photo-ionisation of neutral or partial ionised gas along the line-of-sight may ab-

sorb the intrinsic X-ray emission and change the shape of the observed spectrum.

The most common origin of absorption is that due to neutral gas in both the AGN’s

host galaxy and our own Galaxy. Many metal species are responsible for the ab-

sorption e.g. Oxygen and Iron, but it is the convention to use the equivalent neutral

hydrogen column density nH to quantify the amount of absorption by assuming a

solar metal abundance. Note that the actual metal abundance in AGN may be

higher than solar abundance. In that case the evaluated nH is an over-estimate

(Hamann et al. 2002; Nagao et al. 2006a; Nagao et al. 2006b).

The Galactic nH is of the order of 1020 cm−2 (Dickey & Lockman 1990), mainly

resulting in absorption below 2 keV. However, an AGN’s intrinsic nH can sometimes

be above 1024 cm−2 (such as in NGC 5135, Levenson et al. 2004), resulting in strong

absorption below 10 keV which is due to the fact that photoelectric absorption of

the X-ray photons becomes more serious. These sources are called ‘mildly Compton-
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Figure 1.16: The combined Chandra medium-energy grating (MEG) and high-

energy grating (HEG) first order 900 ks spectrum of NGC 3783, showing abundant

warm absorption features especially in the soft X-ray region below 2 keV. This figure

is taken from Kaspi et al. (2002).

thick’ sources (Comastri, 2004). Sources with nH ≥ 1025 cm−2 are called ‘heavily

Compton-thick’ since in such cases the entire primary X-ray emission is strongly

attenuated (Matt et al. 2000).

Compared to the neutral gas absorption, another type of absorption is due to a

‘warm-absorber’ composed of gas which is located much closer to the high radiation

core and is thus partially ionised (e.g. Nandra & Pounds 1994; Crenshaw, Kraemer

& George 2003). The main characteristic of a ‘warm-absorber’ is the presence of

a broad absorption trough at 0.7∼0.8 keV consisting of numerous absorption lines

and edges of partially ionised Oxygen and Iron (e.g. Turner et al. 2004), as shown

in Figure 1.16.

Reflection and Fe K emission

Another mechanism that may occur in the core region of AGN is the reprocess-

ing of X-ray emission by a partially ionised accretion disc, i.e. ‘Reflection’ from the

disc (e.g. Ross & Fabian 1993; Ross, Fabian & Young 1999; Reynolds 1999; Fabian

2005). An X-ray photon entering the disc is subject to several interactions. It may
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Figure 1.17: Reflection spectra with different ionisation parameter (ξ) values. The

incident continua all have a power law shape of Γ = 2 (dotted lines). The figure is

taken from Ross, Fabian & Young (1999).

be Compton down-scattered by electrons within the disc, or be photoelectrically ab-

sorbed which is then followed by fluorescent line emission or “Auger” de-excitation.

Taking the incident X-ray continuum to have a power law shape of Γ = 2,

examples of the reflected spectra are shown in Figure 1.17. The shape of the reflected

spectrum depends on the ionisation parameter ξ, which is defined as:

ξ =
4πF

nH
(1.17)

ξ is sensitive to the mass accretion rate (Ross & Fabian 1993; Ross, Fabian & Young

1999). Although the reflection mechanism can naturally produce a soft-excess by

choosing a low value of ξ, the predicted flux can only be a maximum factor of 2-

3 above the 2-10 keV continuum (Sobolewska & Done 2007). In addition, it also



1. Introduction 36

predicts sharp atomic features in the spectrum which are difficult to reconcile with

the observed smoothness of the soft-excess. It would require extreme relativistic

effects to smear out the predicted atomic features (e.g. Crummy et al. 2006). These

effects are large even when compared to the expected relativistic smearing from

the innermost regions of the accretion disc, and so require some fine-tuning of the

ionization state of the reflecting material.

Another form of reflection is the so-called ‘cold reflection’, which is due to re-

flection by the cold, Compton-thick medium further out from the core region which

strongly absorbs the X-ray emission in Compton-thick sources. However, this reflec-

tion component is often difficult to detect since it is two orders of magnitude fainter

than the primary emission.

As can be seen in Figure 1.17 that a prominent iron K-α emission line at 6.4 keV

is often associated with the reflection spectrum, which is indeed observed in many

AGN spectra (e.g. Nandra et al. 2007; Reynolds et al. 2009). Due to different

locations of the reflection gas, the iron K-α line often exhibits a narrow component

which corresponds to reflection from distant neutral gas, and a broad component

which corresponds to reflection from the inner accretion disc. The line does not

vary directly with the underlying power law, but it does vary on short timescales

(Iwasawa et al. 1996, 1999; Nandra et al. 2000; Fabian et al. 2002; Fabian 2005).

The AGNs studied in this thesis all have ‘clean’ X-ray spectrum, i.e. without

evidence of strong absorption or emission features. Thus the modification effects

summarised above should not affect the sources studied in the following chapters.

1.5 Broadband SED of AGN

The spectral energy distribution (SED) of AGN has been modeled for several decades.

Initial studies focused on the infrared, optical and ultraviolet continuum. With the

inclusion of X-ray data, it was possible to define the continuum on both sides of

the ultraviolet/X-ray gap which is due to Galactic and intrinsic photoelectric ab-

sorption. It is possible to constrain and model the whole broadband SED from the

infrared/optical to hard X-ray, and so constrain properties of the accretion disc (e.g.
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Figure 1.18: Mean quasar SEDs taken from Richards et al. (2006). Each point is an

actual observation. The black solid line is the radio-quiet quasar mean SED from

Elvis et al. (1994). The thick green, red, blue and orange solid lines show mean

quasar SEDs based on SDSS sub-samples classified by their optical luminosity. The

thin green, blue and orange solid lines show host galaxy contribution. Dotted lines

show the range of αox.

Ward et al. 1987; Elvis et al. 1994). This is a core goal of the work described in

this thesis.

1.5.1 Broadband SED Shape and Parameters

The shape of AGN broadband SEDs exhibit strong diversity across the whole AGN

population (e.g. Elvis et al. 1994; Richards et al. 2006; Jin et al. 2011). SEDs

can be quite different not only between different types of AGN, but also between

individual sources. Figure 1.18 shows some SED for different types of AGN. Some

of previous studies of multi-wavelength SEDs are summarised below.

At first it was found that the strength of soft X-ray excess anti-correlates with

the velocity width of permitted lines such as Balmer lines (Puchnarewicz et al. 1992;

Boller; Brandt & Fink 1996). Later Walter & Fink (1993) combined soft X-ray and
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optical data for 58 Seyfert 1s, and showed that their broadband SEDs have a bump

peaking in the UV and soft X-ray region, which is now referred to as the big blue

bump (BBB) (also confirmed by Grupe et al. 1998, 1999). Elvis et al. (1994) studied

47 quasars in a UV/soft X-ray sample, and derived the mean SEDs for radio-loud

and radio-quiet sources (the black solid line in Figure 1.18). Recently, more detailed

spectral models have been applied to broadband SEDs. For example, Vasudevan &

Fabian (2007, 2009) combined a disc and a broken power law model to fit optical,

far UV and X-ray data for 54 AGNs. They found a well-defined correlation between

the hard X-ray bolometric correction and the Eddington ratio. Middleton, Done &

Gierliński (2007) applied various broadband SED models such as a disc plus power

law model, disc reflection model and disc wind absorption model to the sample

presented in Crummy et al. (2006). Grupe et al. (2010) used the models of two

exponentially cut-off power law and a double broken power laws to describe AGN

broadband SEDs. Simultaneous optical/UV and X-ray observations are used more

frequently to avoid potential problems related to variability between optical/UV and

the X-ray (Brocksopp et al. 2006; Crummy et al. 2006; Vasudevan & Fabian 2009;

Grupe et al. 2010). Most of the sources in the sample studied in this thesis have

simultaneous XMM-Newton OM optical/UV and EPIC X-ray data (Chapter 3)

Among these SED studies a number of important AGN parameters received

intense study, including: black hole mass (MBH), Eddington ratio (LEdd), bolo-

metric luminosity (Lbol), 2-10 keV luminosity (L2−10keV ), 2-10 keV photon index

(Γ2−10keV ), Hβ FWHM, etc. In addition, parameters directly related to broad-

band SED shape were also proposed, such as the optical to X-ray spectral index

(αox, defined as Equation 1.18), 2-10 keV bolometric correction (κ2−10keV , defined

as Lbol/L2−10keV ), 5100Å bolometric correction (κ5100, defined as Lbol/L5100 where

L5100 is the monochromatic luminosity at 5100Å, Kaspi et al. 2000).

αox = −Log(F (2keV )/F (2500Å))

2.605
(1.18)

Since the number of sources with both optical/UV and X-ray spectra is relatively

small, researchers searched for correlations among these AGN SED parameters, es-

pecially for parameters able to predict the shape of broadband SED. In this thesis
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Figure 1.19: Suggested geometries for different spectral states of Black Hole Binary

(BHB) systems. Solid lines in the left panels compare the shape of corresponding

SEDs between BHB (blue solid) and AGN (red solid). Note that the mass of AGN is

much higher than BHB (106 ×), so the AGN SED appears much cooler. The dashed

and dotted vertical lines on the left panels show the energy ranges for RXTE and

XMM-Newton, respectively. This figure is from Done & Gieliński (2005).

I carry out a systematic across-correlation study of all the parameters mentioned

above (Chapter 3, 4 and 5).

1.5.2 The Spectral States of AGN

Several distinct spectral states have been identified in BHB systems, namely the

‘hard state’ (low/hard state), ‘thermal state’ (high/soft state), ‘ultra-soft state’ and

‘very high’ state (SPL-steep power law state), with quasi periodic oscillation (QPO)

being most prominent during the ‘very high’ state (Remillard & McClintock 2006).

In this scenario the Eddington ratio is the primary indicator of these accretion

states, and changes from high to low Eddington ratios was confirmed as these BHB
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sources undergo transitions through the ‘very high’, ‘high/soft’ and ‘low/hard’ states

during an outburst. It has been proposed that the accretion processes in AGN may

be the scaled up counterparts of those seen in BHB as shown in Figure 1.19 (Done

& Gierliński 2005; McHardy et al. 2006; Gierliński et al. 2008; Middleton et al.

2009; Jin et al. 2009). Therefore, the Eddington ratio may also be a good indicator

of AGN accretion states, and also determining the shape of the AGN broadband

SED (e.g. Vasudevan & Fabian 2009; Done et al. 2011). A BHB can undergo an

outburst within tens of days, and exhibit a clear spectral state transition (Remillard

& McClintock 2006; Done, Gierliński & Kubota 2007). Clearly it is not possible

to observe similar accretion state transitions in an AGN on time scales accessible

to our observations. Instead, different SEDs can be looked for representing AGNs

in different accretion states. One of the main aims of this thesis is to investigate

similar SED states in AGN as seen in BHB, and to explain the many correlations

found between the various AGN SED parameters (Chapter 5).

1.6 This Thesis

In this thesis I undertake conduct a systematic study of the characteristics associated

with the emission lines and continua in AGN optical/UV and X-ray spectra. In order

to probe the intrinsic properties of AGN radiation from and near the disc, this thesis

focuses on unobscured type 1 AGNs with high quality spectra. I do not consider

AGN with strong jets and focus on radio-quiet sources. The structure of the thesis

is as follows. First, a new broadband SED model is described in Chapter 2 and is

fitted to the spectral data of a subclass of NLS1s which display the most extreme

super Eddington accretion flows. Chapter 3 defines a nearby unobscured type 1 AGN

sample which is used in the following chapters. Detailed optical/UV and broadband

SED fitting is described in this Chapter. Chapter 4 applies the results from Chapter

3 to investigate cross-correlations between optical/UV emission and X-ray emission,

including emission line correlations and SED continuum correlations. Chapter 5

reports the correlations between various SED parameters. Different AGN mean

SEDs are presented in this Chapter to show the distinct spectral states analogous
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to those seen in BHB systems. All the principal results in this thesis are then

summarised in Chapter 6, along with a discussion of open questions for future study.

The appendix contains the results of spectral fitting for each source in the sample

described in Chapter 2. A flat universe model with Hubble constant of H0 = 72 km

s−1 Mpc−1, ΩM = 0.27 and ΩΛ = 0.73 is adopted throughout the thesis.
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Chapter 2
AGN’s SED Model and

Super Eddington

Accretion State

2.1 Introduction

In this chapter, We propose a new broadband SED model for AGN’s optical to hard

X-ray spectrum, which is so far the most advanced SED model used for big AGN

sample studies and will be used throughout this thesis.

Then we summarize the properties of RE J1034+396. The most unusual feature

of RE J1034+396 is its extreme SED shape, which exhibits a peak in the far UV

which connects smoothly onto the steep soft X-ray spectrum. These components

form a huge ‘soft X-ray excess’ with respect to the Γ ∼ 2.2 X-ray tail which domi-

nates above ∼ 2 keV (Puchnarewicz et al. 1995; Casebeer, Leighly & Baron 2006;

Middleton, Done & Gierliński 2007; Middleton et al. 2009). The energy dependence

of its variability is also very different to that commonly seen in other AGN. The

fractional variability amplitude (as measured by root mean square, hereafter rms)

rises steeply to ∼ 2 keV and then levels off. This is most likely due to the presence

of two separate components in the X-ray spectrum, with the variability being asso-

ciated with the X-ray tail, whilst the soft excess component remains more or less

constant (Middleton et al. 2009). This situation contrasts with the flat or falling

rms spectra seen in other AGN, sometimes with a peak at ∼ 2 keV superimposed

on this (Vaughan et al. 2003; Vaughan et al. 2004; Fabian et al. 2004; Gierliński

& Done 2006; Ponti et al. 2006; Petrucci et al. 2007; Larsson et al. 2008), which

43
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makes it more likely that the apparent soft excess in these objects is due instead to

a single spectral component distorted by reflection and/or absorption (Crummy et

al. 2006; Gierliński & Done 2006).

We make use of the unusual energy dependence of the X-ray variability in RE

J1034+396 to search for potentially similar objects. A survey of all long (>∼ 50 ks)

XMM-Newton observations of bright and variable AGN yielded a similar rms shape

only in one object RX J0136.9-3510 (2MASSi J0136544-350952). This AGN also

has a similar broadband spectrum to RE J1034+396, suggesting that they may

form a subclass of the highest mass accretion rate AGN. Therefore, we apply the

new broadband SED models to the spectral data of both RE K1034+396 and RX

J1036.9-3510, in order to confirm the accretion rate of Super Eddington in this

subclass.

The SED models described in this chapter have been published in Done et al.

(2011). The temporal and spectral properties of RX J0136.9-3510 presented in this

chapter have been published in Jin et al. (2009).

2.2 Broadband SED Model: optxagn(f)

A standard interpretation of the broadband SED is that the emission is dominated by

a multi-temperature accretion disc component which peaks in the UV (e.g. Gierliński

et al. 1999, Xspec model: diskpn). This produces the seed photons for Compton up-

scattering by a hot, optically thin electron population within a corona situated above

the disc, resulting in a power law component above 2 keV (e.g. Haardt & Maraschi

1991; Zdziarski, Poutanen & Johnson 2000, Xspec model: bknpl). However, the X-

ray data clearly show that there is yet another component which rises below 1 keV

in almost all high mass accretion rate AGNs. The ubiquity of this component can be

seen, for example, in the compilation of AGN SEDs presented in Middleton, Done

& Gierliński (2007), and one of the strongest cases is the NLS1 RE J1034+396

(Casebeer, Leighly & Baron 2006; Middleton et al. 2009). The origin of this so-

called soft X-ray excess is still unclear (e.g. Gierliński & Done 2004; Crummy et

al. 2006; Turner et al. 2007; Miller, Turner & Reeves 2008), and so some previous
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broadband SED modeling studies have explicitly excluded data below 1 keV. An

obvious consequence is that in such studies a soft excess component cannot influence

the models, so making it possible to fit the data using just a disc and (broken) power

law continuum (Vasudevan & Fabian 2007, here after: VF07; Vasudevan & Fabian

2009, here after: VF09). However, in our current study we include all of the data,

and so we require a self-consistent model which incorporates this soft component.

Whatever the true origin of the soft X-ray excess, the simplest model which

can phenomenologically fit its shape is the optically thick, low temperature thermal

Comptonisation model (compTT). But the observed data are used to constrain the

three separate components, diskpn + compTT + bknpl, which is generally problem-

atic given the gap in spectral coverage between the UV and soft X-ray regions caused

by interstellar absorption. So instead, we combine these three components together

using a local model in Xspec, assuming that they are all ultimately powered by

gravitational energy released in accretion. This model can be loaded to Xspec v12

as optxagn (Done et al. 2011). It is in essence a faster version of the models recently

applied to black hole binary spectra observed close to their Eddington limit (Done &

Kubota 2006) and to the (possibly super Eddington) Ultra-Luminous X-ray sources

(Gladstone, Roberts & Done 2009; Middleton & Done 2010), thus this model is

more appropriate for fitting a medium sized sample of objects. It assumes that the

gravitational energy released in the disc at each radius is emitted as a blackbody

only down to a given radius, Rcorona. Below this radius, it further assumes that

the energy can no longer be completely thermalised, and is distributed between the

soft excess component and the high energy tail. Thus the model includes all three

components which are known to contribute to AGN SED in a self consistent way.

As such it represents an improvement on the fits in VF07 in several respects, by

including the soft excess and by requiring energy conservation, and it improves on

Done & Kubota (2006) by including the power law tail. Figure 2.1a shows a cartoon

of the above physical scenario of the model, along with the resultant spectrum. This

model is available from Xspec v12 as optxagn (Done et al. 2011).

However, the assumption of completely thremalised emission may not be true in

some cases because AGN discs can also be dominated by electron scattering rather
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Figure 2.1: A schematic of the model geometry and resultant spectra, with outer disc (red)

which emitts as a blackbody, and an inner disc (green) where the emission is Compton

upscattered by a low temperature, optically thick electron population. Some fraction of

the energy is also Compton upscattered by a high temperature, optically thin electron

population in a corona (blue) to produce the hard X-ray power law tail. Figure is adopted

from Done et al. (2011).
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than absorption if the temperature in some disc regions is well above the Hydrogen

ionization energy of 13.6 eV or 105 K (e.g. Ross, Fabian & Mineshige 1992). This is

because the absorption opacity depends on physical conditions such as temperature,

density and photon energy, while electron scattering opacity is constant. Typically,

κabs ∝ nT−β where n is the density and T is the temperature. β ≈ 3.5 for

both free-free and bound-free absorptions. As n ∝ M−1 and T ∝ M−1/4, we

have κabs ∝ M−1/8. Thus for an AGN and a BHB of the same Eddington ratio,

electron scattering is more important in AGN discs. However, electron scattering

is only important in disc regions where T > 3×104 K so that enough Hydrogen

atoms are ionized. The maximum effective temperature of the accretion disc is

kT ∼ 10(ṁ/M8)
1/4 eV (where ṁ = Lbol/LEdd, M8 = M/108 M⊙), thus electron

scattering opacity can only dominate in AGNs with both low mass and high mass

accretion rate such as NLS1s (e.g. Boller, Brandt & Fink 1996). A typical colour

temperature correction of 2.6 is expected for an AGN of MBH=106M⊙, λEdd=1.0

(Davis et al. 2006), which when combined with the already hot disc due to the low

mass, results in a disc spectrum that extends significantly into the soft X-ray region.

It is not realistic to directly use results from full disc radiative transfer models

to conduct spectral fitting for a big sample of AGNs. Therefore, an approximation

can be made by introducing a colour temperature correction fcol to the standard

accretion disc spectrum. Davis et al. (2006) derives:

fcol ∼ (72/TkeV )1/9 (2.1)

where TkeV is the maximum effective disc temperature. This equation was derived

for BHBs but can also be applied to AGNs (Done et al. 2011). Figure 2.2 shows

a standard disc spectrum for a black hole of M = 106 M⊙ and L/LEdd = 1

(black dashed line) corrected by fcol = 2.6 (blue solid line) and is compared to

the disc spectrum calculated from the full radiative transfer (red solid line). This

colour temperature corrected disc spectrum is a good approximation to the spectrum

derived from full disc radiative transfer models and can be used for spectral fitting.

This model is available from Xspec v12 as either optxagn where users can define

their own fcol, or optxagnf where the colour temperature correction is calculated for
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Figure 2.2: a standard disc spectrum for a black hole of M = 106 M⊙ and L/LEdd = 1

(black dashed line) corrected by fcol = 2.6 for all radii with T > Tscatt = 105 K (blue

solid line) and is compared to the disc spectrum calculated from the full radiative transfer

(red solid line). Figure is adopted from Done et al. (2011).
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each temperature from the approximations given in Done et al (2011).

Such colour temperature corrected SED models have never been used in AGN

broadband SED fittings. Therefore, in the following sections I will always use op-

txagn without colour temperature correction first so that the results are more com-

parable with previous works, then optxagnf will be used to study the differences

introduced by colour temperature correction.

2.3 Source Selection

We searched the XMM-Newton Master Log & Public Archive for pointed observa-

tions with exposure times in the PN instrument of ≥ 50000 s in “subject category”

”AGN, QSOs, BL-Lacs and XRB”. This resulted in 115 observations available at

the time of our study (November 2008). We further refined this criteria to include

only those objects with PN count rates of >∼ 1.0 counts/s, to include only bright

sources for which the variability can be well determined.

We also searched the XMM-Newton Serendipitous Source Catalogue (2XMMi

Version) for serendipious bright AGN detected in similarly long exposures, by set-

ting pn 8 flux >10−12 erg cm−2 s−1 and pn ontime>50000 s. This yielded 29 obser-

vations.

We then combined these two samples to give a total of 68 individual sources.

For each dataset we calculated the fractional variability amplitude using lcstats

in xronos 5.21. This is defined as the root mean square of the intrinsic (corrected

for error bars) variance about the lightcurve mean, σ2, normalised to this mean, I.

Only sources which are strongly and significantly variable can provide constraints

on the energy dependence of the variability, so we select only sources for which the

rms is ≥ 0.1 at more than 3 sigma significance (determined from the uncertainty

on the rms, which relates to the χ2 distribution as the variance is a sum of squares,

see e.g Done et al. (1990)). This filtering leaves 19 AGNs.

We then excluded 2 known BL Lac objects (PKS2155-304 and 0716+714) since

their X-ray variablity is thought to be due to jet related processes. For the two

observations of NGC 4051, one (0157560101) only has an exposure time of 49917
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s, while the other (0109141401) does not have the pn time value in the catalog, so

they were formerly excluded by the filtering. However, since NGC 4051 is a well

known, bright, NLS1 and our study is not a statistical study, we still included these

two observations. This inclusion should not affect our general conclusions. We also

included the famous Seyfert 2 AGN, MCG-5-23-16 (0302850201), although its rms

variability is only 0.073. This gives us a total of 19 AGNs for subsequent study,

with one or more selected observations for each of them.

For each of these datasets we calculated the fractional variaibility amplitude as

a function of energy using the method of Gierliński & Done (2006). This showed

the standard range of rms spectral shapes. Only RX J0136.9-3510 (0303340101)

displayed the very different type of rms spectrum associated with the QPO AGN,

RE J1034+396, in which the fractional amplitude rises as a function of energy, then

remains high. Having identified this unusual AGN, we investigate its properties and

compare it with RE J1034+396 in more detail below.

2.4 RX J0136-3510: lightcurve and RMS Spec-

trum

The lightcurve and rms spectrum are extracted from the X-ray data (0.3-10 keV),

using SAS7.1.0 and xronos5.21. We use regions with radius of 70′′, 40′′ and 40′′

for pn, MOS1 and MOS2, respectively. No significant pile-up is seen from the SAS

command epatplot so no central region was excluded. There are high background

flares during the first 10000 s, so we exclude these data, resulting in ∼40000 s (with

background count rate< 0.4 counts/s) for the rms spectrum generation. Figure 2.3

shows the resultant total lightcurve (PN, MOS1 and MOS2), binned on 200 s. The

source shows strong variability (also seen by Ghosh et al. 2009, in preparation),

with the rms fractional variation being 0.13. However, there is no obvious QPO,

and a power spectral analysis shows no peaks above even 1σ significance using the

method of Vaughan (2005).

We rebin the lightcurve on 2000 s in order to provide enough count statistics
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Figure 2.3: Background subtracted lightcurve of RX J0136.9-3510 binned on 200 s. The

exposure start time (UTC) is 2005-12-14 20:45:30, but the first 10 ks was excluded due to

the high background contamination.

Figure 2.4: Similar rms spectra between RE J1034+396 (panel a, 100s binning time) and

RX J0136.9-3510 (panel b, 2000s binning time).
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to calculate the fractional variability as a function of energy. Figure 2.4b shows

that this rms rises steeply from 0.3 keV to ∼2 keV, then flattens off. The weak

decrease from 2-10 keV is not significant as the low count rate means their are

large uncertainties on the last point. We also calculated the rms spectra from 200

s binning, but this is not significantly different. This rms spectra is very similar

as the rms spectra for RE J1034+396 binned at 100s. (Figure 2.4b). The mass

of RX J0136.9-3510 is 10-50× higher than RE J1034+396 (see next section below),

thus similar variabilities in RX J0136.9-3510 and RE J1034+396 must have different

timescales scaling with the black hole mass.

2.5 Black Hole Mass Estimation

The optical spectrum has an FeII/Hβ flux ratio of ∼ 8.3 Grupe et al. 1999),

compared to the ∼ 1 average for NLS1s (Véron-Cetty, Véron & Goncalves 2001),

making RX J0136.9-3510 an unusual NLS1 (Ghosh et al. 2004). We use the optical

spectrum shown in Fig 2.5 (D. Grupe, private communication) to estimate the black

hole mass. The Hβ line width is used as a proxy for this (see Woo & Urry 2002 and

references therein) from

MBH = 4.817×[
λLλ(5100Å)

1044ergs−1
]0.7FWHM2 (2.2)

Comparing this method for a sample of AGN with reverberation mapping, the rms

difference is about 0.5 dex (Woo & Urry 2002). The flux at λ = 5100Å from

the optical spectrum is ∼1.5×10−16erg cm−2s−1. The luminosity distance is DL =

1455.2 Mpc for z = 0.289 assuming H0 = 72 km Mpc−1, ΩM = 0.27, and Ωvac = 0.73.

Estimating the FWHM of the line is not straightforward as the Hβ line profile

is complex. There is clearly also a component from the extended narrow line re-

gion (NLR). This should be similar to the profile of the [OIII] emission line. So

Grupe et al. (1999) use a template constructed from the [OIII]λ5007 line to rep-

resent the narrow component, together with a broader Gaussian component, with

FWHM=1320 km/s, to reconstruct the Hβ line. This gives a black hole mass esti-

mate of 1.3×107M⊙.
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Figure 2.5: The optical spectrum of RX J0136.9-3510, including the Hβ emission line

fitting. The data is from Grupe D. and we show this figure with his permission.
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However, the optical spectrum plainly has limited signal-to-noise, and the [OIII]

5007 line is probably contaminated by FeII emission as it should be in 3:1 ratio with

the (unobserved) [OIII] line at 4959Å. Hence we perform our own best fit of the Hβ

line profile with a gaussian of width 870 km/s for the narrow line component, see

Figure 2.5. This gives a FWHM for the broad component of 3200±2600 km s−1,

with a (not significant) blueshift of -370±1100 km s−1. Using our new value for the

FWHM, the resultant black hole mass is 7.85×107M⊙.

Even with the lower black hole mass estimate, this AGN is still probably ∼ 10×
more massive than the QPO AGN, RE J1034+396, (with the later mass estimate

being ∼ 50× larger). Thus any similar QPO in RX J0136.9-3510 would be on

timescales 10-50× larger, requiring a much longer X-ray observation in order to

detect it.

2.6 Broad band SED Analysis and Eddington Ra-

tio

We use the standard products to obtain the XMM-Newton X-ray (PN) spectra and

optical/UV (OM) photometry. We then combine these with selected continuum

points from the (non-simultaneous) optical spectum (D. Grupe, private communica-

tion) using FLX2XSP to incorporate these into the same format as the XMM-Newton

data. We likewise include the J,H and K near infrared flux points from 2MASS, and

perform all spectral fitting using xspec11.3.2.

2.6.1 SED Fitting in Xspec Using diskpn+compTT+bknpl

We follow the approach of Vasudevan & Fabian (2009) in modelling the broadband

SED, using diskpn to model an accretion disc extending down to the last stable orbit

around a non-spinning black hole. However, our source is at z = 0.289 so we modify

the diskpn code to incorporate the redshift dependance. The normalisation of the

diskpn model is (M2 cos i)/(D2
kpcβ

4) where M is the mass in solar units, Dkpc is the

distance in kpc, and the cosine of the inclination and colour temperature correc-
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Table 2.1: The best-fit parameters for the model in Figure 2.6.

constant 2 Tdisk (eV) kTe (keV) τ Ncomp Γpow Npow χ2
ν/d.o.f

0.92+0.10
−0.10 7.93+0.28

−0.31 0.28+0.03
−0.02 12.17+0.72

−0.75 10.64+2.37
−1.73 2.28+0.07

−0.08 1.12+0.55
−0.37 475/493

tion (cos i and β, respectively) are both set to unity following Vasudevan & Fabian

(2009). We start at the highest estimated black hole mass in Section 2.5, which gives

a diskpn normalization of 2910, and fix this in the spectral fitting. Compton scatter-

ing of these disc photons can be approximated by a broken power law (bknpower),

with index of Γ = 0.33 below a break at 3kTdisk. We then added a low tempera-

ture Comptonisation component to model the soft excess, using comptt, with seed

photons set to the disc temperature. We assume that these intrinsic components

are absorbed by both gas and dust in our Galaxy, and so fix this parameter to the

the Galactic HI column1 (wabs) value of NH = 0.0208×1022 cm−2. The reddening

(redden) is linked to this assuming a E(B-V)=1.74× 10−22NH (Spitzer 1978). Since

the optical data were not simultaneous with the UV and X-ray data, we allow for

long time-scale variation as a constant offset in normalisation between the XMM-

Newton data and the optical spectrum. We exclude the infrared data points from

our spectral fitting, since the model we use describes the intrinsic emission from

the accretion flow whereas the infrared emission is likely due to reprocessing of the

UV emission by dust in the host galaxy, plus a possible contribution from intrinsic

starlight. The resultant best-fit parameters are given in Table 2.1.

Figure 2.6 shows the rebinned data (black), with the optical flux corrected for

their best fit normalisation of ∼ 0.92× that of the XMM-Newton UV and X-ray

spectra, and all datapoints are corrected for absorption/reddening. This model

is a good description of the overall shape of the optical/UV/X-ray spectrum and

gives a bolometric (0.001-100 keV) flux of 1.1×10−10erg cm−2s−1, corresponding to

a bolometric luminosity of 2.7×1046erg s−1.

Using our own fitting value for the FWHM, from which the resultant black hole

mass is 7.85×107M⊙, the Eddington ratio for RX J0136.9-3510 is as high as ∼ 2.7!

Moreover, if we adopt the lower estimated black hole mass which is 1.3×107M⊙, then

1http://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl
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Figure 2.6: RX J0136.9-3510 unfolded spectrum. All data points from different wave

bands are included in this figure, though the infrared points are not included in the

model fitting. The model spectrum without galactic extinction and dust reddening is also

generated and superposed on the source spectrum, with red representing redshifted disk

component, green representing compTT and blue representing bknpower . The orange line

shows the total model spectrum.
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Model NH MBH L/LEdd rcor kTe τ Γ fpl χ2/ν

(1020 cm−2) (106M⊙) (Rg) (keV)

RE J1034 A 1.7 1.2 5.0 31 0.23 11 2.2 0.05 1.12

B 4.9 5.8 1.1 14 0.18 15 2.2 0.12 1.66

RX J0136 A 0.0 14 24 13 0.31 11 2.2 0.22 1.28

B 0.0 48 3.9 16 0.30 11 2.2 0.24 1.80

Table 2.2: Broadband SED Fitting Parameters of RE J1034+396 and RX J0136.9-3510

for Model-A (optxagn, assume fcor = 1) and Model-B (optxagnf) (see Figure 2.7). NH :

the intrinsic NH column density; rcor: corona radius; kTe and τ : electron temperature and

optical depth of the low energy Comptonisation component; fpl: the fraction of coronal

emission powers the high energy Comptonisation component; Γ: photon index of the high

energy Comptonisation component.

the normalization of diskpn is 80, and the resultant disk temperature rises to 31 eV.

The UV region is then dominated by disk emission, though the Comptonisation

still is required to model the soft X-ray excess. This gives a bolometric flux of

8.8×10−11 ergs s−1 cm−2, giving an even higher Eddington ratio of 13.2! This is the

highest known Eddington ratio for an AGN (Vasudevan & Fabian 2009; Shen et al.

2008). Thus modelling the spectral energy distribution with the two extreme mass

estimates gives a range for the Eddington ratio of RX J0136.9-3510 of 2.7-13.2. Even

without models, simply integrating the observed spectrum using a straight line to

connect the UV and soft X-ray data gives an Eddington ratio of ∼ 1 for the highest

black hole mass, making this a robustly super-Eddington source.

2.6.2 SED Fitting in Xspec Using Optxagn(f)

In this section, we apply the optxagn(f) model in Xspec v12 to both RE J1034+396

and RX J0136.9-3510 to show their broadband SED similarity. The spectral data

of RE J1034+396 is from the EPIC and OM monitor of XMM-Newton and the Sloan

Digital Sky Survey (SDSS) (see Chapter 3).

First we use optxagn by assuming fcor = 1 (Model-A). A value for the black

hole mass is derived from Equation 2.2 but is allowed to change during the spectral

fitting. We also included two sets of corrections for attenuation (reddening-wabs),
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Figure 2.7: Broadband SED fitting of RE J1034+396 and RX J0136.9-3510 using Model-

A (optxagn with fcol = 1) and Model-B (optxagnf). The SED consists of accretion

disc (solid green), low temperature Comptonisation (solid orange) and high temperature

Comptonisation (solid blue), under the physical scenario presented in Figure 2.1.
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to account for the line of sight Galactic absorption and for the absorption intrinsic

to each source, the latter is redshifted (zred and zwabs in Xspec). The Galactic

HI column density is fixed at the value taken from Kalberla et al. (2005), but the

intrinsic HI column density is left as a free parameter. The standard dust to gas

conversion formula of E(B-V)=1.7×10−22NH (Bessell 1991) is used for both Galactic

and intrinsic reddening. We set the initial value of the power law photon index to

be that of the photon index in the 2-10 keV energy band, but it can vary during

the fitting process. However, we set an upper limit of 2.2 for the power law photon

index, not only because the photon index is < 2.2 for the majority of Type 1 AGNs

(Middleton, Done & Gierliński 2007) but also because otherwise the much higher

signal-to-noise in the soft excess in some observed spectra can artificially steepen

the hard X-ray power law and result in non-physical best-fit models. Then optxagnf

is used to include the effect of colour temperature correction (Model-B). Similarly,

absorptions are included in the model.

Figure 2.7 presents the SED fitting results. Best-fit parameters are listed in

Table 2.6.2. It is obvious that the broadband SEDs of RE J1034+396 and RX

J0136.9-3510 are quite similar to each other, the SED parameters are also similar.

Compared with the SED decomposition in Figure 2.6, the additional constraint

of energy conservation in optxagn(f) results in an accretion disc dominated SED

decomposition for RX J0136.9-3510. The mass accretion rate in both of these two

sources is quite high, so colour temperature correction is significant and causes the

black hole mass from Model-B to be higher than from Model-A. The Eddington

ratio obtained from Model-B is also lower. However, both models result in super-

Eddington mass accretion rate, confirming the robust existence of super-Eddington

accretion flows in both of these two sources.

2.7 Summary and Conclusion

In this chapter we present new broadband SED models which combine a standard

accretion disc, a low temperature Comptonisation and a high temperature Comp-

tonisation by introducing a corona radius. Electron scattering is also considered in
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these models which results in colour temperature correction for high temperature

disc spectra.

We also report that RX J0136.9-3510 is the only well observed, X-ray bright,

variable AGN which has a similar energy dependence to its X-ray variability as

the so far unique QPO AGN, RE J1034+396. After applying various SED models

to their optical, UV and X-ray data, we find that both sources have similar Ed-

dington ratios of around 3, although the larger mass of RX J0136.9-3510 means

any QPO is undetectable in its data. The broad band SED of RX J0136.9-3510

is also remarkably similar to that of RE J1034+396, being well decomposed into a

truncated multi-colour disc component, a low temperature, optically thick Comp-

tonisation component, plus a high temperature, optically thin Comptonisation com-

ponent. Spectra such as this have also been fit by “slim” disc models (Abramowicz,

Kato & Matsumoto 1989), where the accretion rate is so high that radiation cannot

easily escape vertically before it is carried radially (advected) along with the flow

(Puchnarewicz et al. 2001; Wang & Netzer 2003). However, simple slim disc models

do not fit the curvature of the soft X-ray spectra as well as Comptonisation (Mid-

dleton et al. 2009), although more complex models of slim discs do include such

scattering in the disc atmosphere (e.g. Kawaguchi 2003).

Low temperature, optically thick Comptonisation is also occasionally seen in

the stellar mass black hole binary systems, for example in the most extreme mass

accretion rate spectra of GRS 1915+105 (Middleton et al. 2006; Middleton et al.

2009). Recent studies of spectra of the Ultra-Luminous X-ray sources also indicates

that these are well modelled by such material (Gladstone, Roberts & Done 2009).

This evidence suggests that there is indeed a distinct spectral state which can only

be attained by super Eddington flows (Gladstone, Roberts & Done 2009). Future

long duration X-ray observations of AGN should reveal additional examples, and

objects with low black hole masses are potential QPO candiates.



Chapter 3
Type 1 AGN Study - I.

Optical and Broadband

SED Modeling

3.1 Introduction

The observed spectral differences between various types of AGN are not only due

to selective absorption and orientation effects, as implied by the simplest version of

AGN unification model (Antonucci 1993), but also result from a wide range in basic

physical parameters, such as black hole mass and accretion rate (e.g. Boroson &

Green 1992; Boller, Brandt & Fink 1996; Done & Gierliński 2005; Zhou et al. 2006).

To better understand the accretion processes occurring close to the super massive

black hole (SMBH), we construct broadband SEDs. Galactic dust reddening, to-

gether with the intrinsic reddening of the AGN itself, attenuates the optical/UV

band emission. Furthermore, Photoelectric absorption from gas modifies the lower

energy X-ray continuum. But these factors can be quantified and corrected. The

uncertainty of these corrections must be small if we only focus on the unobscured

sources. Thereby we can recover the intrinsic SED, except for the unobservable

far-UV region. If we have reliable data on both sides of the energy gap between the

UV and soft X-ray, we can apply a multi-component model which spans across it.

In this chapter we define an X-ray/optically selected sample of 51 AGN, all

of which have low reddening (so excluding Seyfert 2s and 1.9/1.8s), to construct

SEDs ranging from about 0.9 microns to 10 keV. We also apply corrections for the

permitted iron features, the Balmer continuum and stellar contribution, in order to

61
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model the non-stellar continuum free from emission line effects. Included in this

sample are a number of NLS1s, a subclass of AGN whose permitted line widths are

comparable to those of forbidden lines. Their [OIII]λ5007/Hβ ratio is also lower

than the typical value of broad line Seyfert 1s (BLS1s) (Shuder & Osterbrock 1981;

Osterbrock & Pogge 1985). For consistency with previous work, we classify AGNs

in our sample as NLS1s if they have ratios of [OIII]λ5007/Hβ < 3 and FWHMHβ <

2000 km/s (Goodrich 1989). We identify 10-12 NLS1s in our sample1.

All objects in our sample have high quality optical spectra taken from the Sloan

Digital Sky Survey (SDSS) DR7, X-ray spectra from the XMM-Newton EPIC cam-

eras, and in some cases simultaneous optical/UV photometric data points from the

XMM-Newton OM. Combining these data reduces the impact of intrinsic variability

and provides a good estimate of the spectral shape in the optical, near UV and X-ray

regions. In addition, by analyzing the SDSS spectra, we can derive the parameters

of the principal optical emission lines and underlying continuum. An important

result from reverberation mapping study is the correlation between black hole mass,

monochromatic luminosity at 5100 Å and Hβ FWHM (e.g. Kaspi et al. 2000; Woo

& Urry 2002; Peterson et al. 2004). We measure these quantities from the SDSS

spectra, and then estimate black hole masses using this correlation.

Compared with previous studies mentioned in Chapter 1.5, a significant improve-

ment of our work is that we employ a new broadband SED model which combines

disc emission, low temperature Comptonisation and a high temperature Compton-

isation component in the context of an energetically self-consistent model for the

accretion disc emission (i.e. the optxagn(f) models presented in Chapter 2). To

be more consistent and comparable with previous works, we do not consider the

effect of colour temperature correction in this chapter, and just use optxagn with

fcol = 1 to perform broadband SED fitting. Spectral fitting results from the colour

temperature corrected model optxagnf will be discussed separately in Chapter 5 and

1Although 2XMM J112328.0+052823 and 1E 1346+26.7 have Hβ FWHMs of 2000 km s−1,

2050 km s−1 respectively, they both have Hα FWHM of 1700 km s−1, and also share other

NLS1’s spectral characteristics. Thus they could both potentially be classified as NLS1s, making

a total of 12.
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compared with the results in this chapter.

By fitting optxagn (fcol = 1) to our data, we can reproduce the whole broadband

SED from the optical to X-ray. From this detailed SED fitting, we derive a number

of interesting AGN properties such as: the bolometric luminosity, Eddington ratio,

hard X-ray slope, and the hard X-ray bolometric correction. Combining all the

broadband SED parameters with the optical parameters, we can provide further

evidence for many previously suggested correlations, including all the correlations

between optical and X-ray claimed in previous work, plus many others such as the

Hβ FWHM versus X-ray slope, black hole mass versus Eddington ratio, [OIII]λ5007

emission line and the high excitation lines (e.g. [FeVII]λ6087, [FeX]λ6374) versus

their ionizing flux (e.g. Boroson & Green 1992; Boller, Brandt & Fink 1996; Grupe

et al. 1998; Grupe et al. 1999; Sulentic et al. 2000; Mullaney et al. 2009).

This chapter is organized as follows. Section 2 describes the sample selection

and data analysis procedures. The detailed spectral fitting methods and results

including Balmer line fitting, optical spectral fitting and broadband SED fitting

are each discussed in sections 3, 4 and 5, separately. We present the statistical

properties of our sample in section 6. The summary and conclusions are given in

section 7. A flat universe model with Hubble constant of H0 = 72 km s−1 Mpc−1,

ΩM = 0.27 and ΩΛ = 0.73 is adopted. In the next chapter, we will present our

analysis of correlations between selected optical/UV emission features and the SED

components, and discuss their physical implications. All the results in this chapter

are contained in the already published paper Jin et al. (2011).

3.2 Sample Selection and Data Assembly

To identify a sample of Type 1 AGNs having both high quality X-ray and optical

spectra, we performed a cross-correlation between 2XMMi catalog and SDSS DR7 cat-

alog. We filtered the resulting large sample as described below. Our final sample

consists of 51 Type 1 AGNs including 12 NLS1s, all with high quality optical and

X-ray spectra and low reddening/absorption, and with Hβ line widths ranging from

600 km s−1 up to 13000 km s−1. All the sources are listed in Table 3.1.
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3.2.1 The Cross-correlation of 2XMMi & SDSS DR7

The first step was to cross-correlate between 2XMMi and SDSS DR7 catalogs. The

2XMMi catalog contains 4117 XMM-Newton EPIC camera observations obtained be-

tween 03-02-2000 and 28-03-2008, and covering a sky area of ∼ 420 deg2. The SDSS

DR7 is the seventh data release of the Sloan sky survey. The SDSS spectroscopic

data has sky coverage of ∼ 8200 deg2, with spectra from 3800 Å to 9200 Å, and

spectral resolution between 1800 and 2200.

Our cross-correlation consisted of three steps:

1. We first searched for all XMM/SDSS position pairs that lay within 20′′ of each

other, resulting in 5341 such cases.

2. For these 5341 unique X-ray sources, we imposed two further selection criteria:

that source positions be separated by less than 3′′, or that sources be separated by

no more than 3 × the XMM-Newton position uncertainty and no more than 7′′. This

filtering resulted in 3491 unique X-ray sources. The 3′′ separation is chosen because

we want to include all possible XMM/SDSS pairs during these early filtering steps.

From the 2XMMi and SDSS DR7 cross-correlation, there are 114 XMM/SDSS pairs

whose separations are less than 3′′, but are still nevertheless greater than 3 × the

XMM position uncertainty. We included all of these pairs. The 7′′ separation upper

limit mitigates spurious matches, especially for fainter objects and/or those located

far off-axis.

3. We selected only objects classified as extragalactic, giving a total of 3342 for

further analysis.

3.2.2 Selection of Seyfert 1 with High Quality Spectra

Within these 3342 unique X-ray sources which satisfied all the above criteria, we

applied further filtering to select only Type 1 AGNs having both high quality optical

and X-ray spectra. The five steps in the filtering were as follows:

1. In order to obtain black hole mass estimates, we require Hβ and Hα emission lines

to be measurable. So we only selected sources with Hβ in emission (as indicated by

the SDSS Hβ line models with at least 3σ significance and EW > 0) and redshift
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Table 3.1: The Seyfert 1 Galaxy Sample Set
2XMMi Catalog XMM-Newton SDSS DR7 SDSS EPIC

ID Common Namea Redshift IAU Name (2XMMb) Obs Date MJD-Plate-Fibre Obs Date Countsc

1 UM 269 0.308 J004319.7+005115 2002-01-04 51794-0393-407 2000-09-07 19126

2 MRK 1018 0.043 J020615.9-001730 2005-01-15 51812-0404-141 2000-09-25 2056

3 NVSS J030639 0.107 J030639.5+000343 2003-02-11 52205-0709-637 2001-10-23 35651

4 2XMMi/DR7 0.145 J074601.2+280732 2001-04-26 52618-1059-399 2002-12-10 9679

5 2XMMi/DR7 0.358 J080608.0+244421 2001-10-26 52705-1265-410 2003-03-07 2912

6 HS 0810+5157 0.377 J081422.1+514839 2003-04-27 53297-1781-220 2004-10-19 4189

7 RBS 0769 0.160 J092246.9+512037 2005-10-08 52247-0766-614 2001-12-04 32731

8 RBS 0770 0.033 J092342.9+225433∗ 2006-04-18 53727-2290-578 2005-12-23 104028

9 MRK 0110 0.035 J092512.8+521711 2004-11-15 52252-0767-418 2001-12-09 515453

10 PG 0947+396 0.206 J095048.3+392650 2001-11-03 52765-1277-332 2003-05-06 58555

11 2XMMi/DR7 0.373 J100025.2+015852 2003-12-10 52235-0501-277 2001-11-22 7187

12 2XMMi/DR7 0.206 J100523.9+410746 2004-04-20 52672-1217-010 2003-02-02 5437

13 PG 1004+130 0.241 J100726.0+124856 2003-05-04 53055-1744-630 2004-02-20 3781

14 RBS 0875 0.178 J103059.0+310255 2000-12-06 53440-1959-066 2005-03-11 69434

15 KUG 1031+398 0.043 J103438.6+393828 2002-05-01 53002-1430-485 2003-12-29 63891

16 PG 1048+342 0.160 J105143.8+335927 2002-05-13 53431-2025-637 2005-03-02 47858

17 1RXS J111007 0.262 J111006.8+612522∗ 2006-11-25 52286-0774-600 2002-01-12 6147

18 PG 1115+407 0.155 J111830.2+402554 2002-05-17 53084-1440-204 2004-03-20 64601

19 2XMMi/DR7 0.101 J112328.0+052823 2001-12-15 52376-0836-453 2002-04-12 10098

20 RX J1140.1+0307 0.081 J114008.7+030710 2005-12-03 51994-0514-331 2001-03-26 35616

21 PG 1202+281 0.165 J120442.1+275412 2002-05-30 53819-2226-585 2006-03-25 66550

22 1AXG J121359+1404 0.154 J121356.1+140431 2001-06-15 53466-1765-058 2005-04-06 12975

23 2E 1216+0700 0.080 J121930.9+064334 2002-12-18 53140-1625-134 2004-04-26 8028

24 1RXS J122019 0.286 J122018.4+064120 2002-07-05 53472-1626-292 2005-04-12 8338

25 LBQS 1228+1116 0.236 J123054.1+110011 2005-12-17 52731-1232-417 2003-04-02 165823

26 2XMMi/DR7 0.304 J123126.4+105111 2005-12-17 52731-1232-452 2003-04-02 8816

27 MRK 0771 0.064 J123203.6+200929 2005-07-09 54481-2613-342 2008-01-15 40705

28 RX J1233.9+0747 0.371 J123356.1+074755 2004-06-05 53474-1628-394 2005-04-14 6041

29 RX J1236.0+2641 0.209 J123604.0+264135∗ 2006-06-24 53729-2236-255 2005-12-25 17744

30 PG 1244+026 0.048 J124635.3+022209 2001-06-17 52024-0522-173 2001-04-25 8509

31 2XMMi/DR7 0.316 J125553.0+272405 2000-06-21 53823-2240-195 2006-03-26 7591

32 RBS 1201 0.091 J130022.1+282402 2004-06-06 53499-2011-114 2005-05-09 209458

33 2XMMi/DR7 0.334 J132101.4+340658 2001-01-09 53851-2023-044 2006-04-26 4425

34 1RXS J132447 0.306 J132447.6+032431 2004-01-25 52342-0527-329 2002-03-09 6305

35 UM 602 0.237 J134113.9-005314 2005-06-28 51671-0299-133 2000-05-07 18007

36 1E 1346+26.7 0.059 J134834.9+263109 2000-06-26 53848-2114-247 2006-04-23 71985

37 PG 1352+183 0.151 J135435.6+180518 2002-07-20 54508-2756-228 2008-02-12 36171

38 MRK 0464 0.050 J135553.4+383428 2002-12-10 53460-2014-616 2005-03-31 13974

39 1RXS J135724 0.106 J135724.5+652506 2005-04-04 51989-0497-014 2001-03-21 12081

40 PG 1415+451 0.114 J141700.7+445606 2002-12-08 52728-1287-296 2003-03-30 55786

41 PG 1427+480 0.221 J142943.0+474726 2002-05-31 53462-1673-108 2005-04-01 70995

42 NGC 5683 0.037 J143452.4+483943 2002-12-09 52733-1047-300 2003-04-04 18885

43 RBS 1423 0.208 J144414.6+063306 2005-02-11 53494-1829-464 2005-05-04 37568

44 PG 1448+273 0.065 J145108.7+270926 2003-02-08 54208-2142-637 2007-04-18 134532

45 PG 1512+370 0.371 J151443.0+365050 2002-08-25 53083-1353-580 2004-03-14 40432

46 Q 1529+050 0.218 J153228.8+045358 2001-08-21 54563-1835-054 2008-04-07 10952

47 1E 1556+27.4 0.090 J155829.4+271715 2002-09-10 52817-1391-093 2003-06-27 6995

48 MRK 0493 0.031 J155909.6+350147 2003-01-16 53141-1417-078 2004-05-14 124115

49 II Zw 177 0.081 J221918.5+120753 2001-06-07 52221-0736-049 2001-11-08 36056

50 PG 2233+134 0.326 J223607.6+134355 2003-05-28 52520-0739-388 2002-09-03 7853

51 MRK 0926 0.047 J230443.3-084111 2000-12-01 52258-0725-510 2001-12-15 59513

a for some targets without well-known names, we simply use ‘2XMMi/DR7’;

b the full name is ‘2XMM J...’; for targets with * symbol, the full names is ‘2XMMi J...’;

c the total counts in all three EPIC monitors, namely pn, MOS1 and MOS2, and there are at

least 2000 counts in at least one of these three monitors;



3. Type 1 AGN Study - I. Optical and Broadband SED Modeling 66

z < 0.4. This selection resulted in 802 unique X-ray sources, and 888 XMM/SDSS

pairs (since some X-ray objects were matched with more than one SDSS spectrum).

2. Then we searched for the Type 1 AGNs (including subtypes 1.0, 1.5, 1.8 and 1.9)

which have a minimum of 2000 counts in at least one of the three EPIC cameras.

Our search retrieved 96 such broad line AGNs. We then inspected each of these

XMM/SDSS pairs, to confirm that all the matches were indeed genuine.

3. From inspection of the SDSS spectra, we excluded 22 sources whose blueward

part of the Hβ line showed strong reddening or low S/N, which would distort the

Hβ line profile. We also excluded one object, RBS 0992, because its SDSS spectrum

did not show an Hβ line, due to a bad data gap. We ensured that the remaining 73

objects all had good Hβ line profiles.

4. As a simple method to assess the spectral quality of the X-ray data, we used

wabs*power-law model in xspec11.3.2 to fit the rest-frame 2-10 keV X-ray spec-

tra of all 73 objects. The error command was used to estimate the 90% confi-

dence region for the photon index parameter. Based on the results, 16 objects with

photon index uncertainties greater than 0.5 were thereby excluded, leaving 57 Type

1 AGNs with relatively well constrained 2-10 keV spectra.

5. By examining the 0.2-10 keV X-ray spectra, we excluded another 6 objects

(i.e. IRAS F09159+2129, IRAS F12397+3333, PG 1114+445, PG 1307+085, PG

1309+355 and PG 1425+267) whose spectral shapes all showed clear evidence of an

absorption edge at ∼0.7 keV (possibly originating from combined Fe I L-Shell and

O VII K-Shell absorptions (Lee et al. 2001; Turner et al. 2004)). This is a typi-

cal spectral signature of a warm absorber (e.g. Nandra & Pounds 1994; Crenshaw,

Kraemer & George 2003). By removing such objects with complex X-ray spectra,

our broadband SED fitting is simplified. Our final sample contains 51 Type 1 AGNs.

3.2.3 Characteristics of the Sample

The sample selection procedure described above ensures that every source in our

AGN sample has both high quality optical and X-ray spectra. In addition, a large

fraction of the sample have simultaneous optical/UV photometric points from the



3. Type 1 AGN Study - I. Optical and Broadband SED Modeling 67

Figure 3.1: The aperture effect correction results for 17 extended sources in the

sample. The point like source RBS 0769 (the last figure marked by **) is also shown

for comparison. We over-plot OM data points on to the SDSS spectrum. Red OM

points are data obtained directly from the OM PPS files. Blue OM points are the

corresponding data after applying a smaller 6′′ aperture to all OM filters, and ap-

plying appropriate OM corrections to the flux eg. deadtime correction, coincidence

loss correction and OM time sensitivity degradation correction.
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OM. Such high quality data enables accurate spectral fitting. In the optical band

our sample is selected to have low reddening, since if present this would significantly

modify the intrinsic continuum as well as the optical emission lines. This requirement

reduces the complexity and uncertainty in our modeling of the intrinsic continuum,

and also increases the overall quality of Hβ and Hα line profiles useful for estimating

the black hole masses. Furthermore, low reddening is essential in the UV band.

The inclusion of OM-UV photometric data observed simultaneously with the X-ray

spectra provides a reliable link between these bands. This helps to reduce fitting

uncertainty of the SED resulting from optical and X-ray variability. Besides, all

sources are well constrained in the 2-10 keV band, which is directly associated with

the compact emitting region of the AGN. Our exclusion of objects with evidence

of a warm absorber means that the 2-10 keV spectral index is likely to be intrinsic

rather than hardened by absorption in the soft X-ray region.

In summary, compared with previous AGN samples used for broadband SED

modelling, the spectrally ‘cleaner’ nature of our sample should make the recon-

structed broadband SEDs more reliable. Consequently, the parameters derived from

the broadband spectral fitting should be more accurate. This may reveal new and

potentially important broadband correlations, which we will discuss in detail in the

next chapter.

3.2.4 Additional Data

The 51 Type 1 AGNs all have SDSS survey-quality spectra (flagged as “sciencePri-

mary” in SDSS catalog), including 3 objects that have multiple SDSS spectra (i.e.

NVSS J030639, 1RXS J111007 and Mrk1018). In such cases we adopt the SDSS

spectrum which connects most smoothly with the OM data.

For each object, we used all available EPIC X-ray spectra (i.e. pn, MOS1 and

MOS2) for the broadband SED modeling, unless the spectrum had few counts and

low S/N. We also searched through the XMM-OM SUSS catalog for all data in the OM

bands (i.e. V, B, U, UVW2, UVM2 and UVW1), which are observed simultaneously

with the corresponding EPIC spectrum. Of our 51 sources, we have 14 sources
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Fig-2a: An Example of SDSS Spectrum Fitting Fig-2b: Balmer Line Fitting

Figure 3.2: An example of results from SDSS spectrum fitting. The left panel shows

a good fit for PG 2233+234. The black line is the observed spectrum, the red line

is the total model spectrum. The green line represents the observed underlying

continuum. The Balmer continuum (blue), FeII emission (light blue) and other

strong emission lines (orange) are shown underneath. The right panel shows an

example of detailed line profile fitting to the FeII subtracted region around the

Hβ (upper) and Hα lines (lower) including Hα, Hβ, [OIII] λ5007/4959 doublets,

[NII] λ6585/6548 doublets, Li λ6708, [SII] λ6717/6733 doublets, [OI] λ6300/6363

doublets. In our profile fitting, three Gaussian components are used for Hβ and Hα,

two components for [OIII] λ5007, and one Gaussian for all other lines. The various

Gaussian profiles are shown in blue, the total model is shown in red.

with SDSS optical spectra and XMM EPIC X-ray spectra, and 37 sources which in

addition to this also have XMM-OM photometry.

3.2.5 OM Data Corrections and Aperture Effects

In the procedure of combining the SDSS spectra and OM data points, we identi-

fied that in some objects there is a clear discrepancy between these two data sets.

The OM points often appear higher on the spectral plots (brigher) than is consis-
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tent from a smooth extrapolation of the SDSS spectral shape. In fewer cases this

discrepancy appears in the opposite sense, with the OM points apparently too low

(fainter), see Figure 3.1 for some examples). This discrepancy may arise for sev-

eral reasons, including a simple aperture effect. Compared to 3′′ diameter for the

SDSS spectroscopy fibres, the OM monitor has a much larger aperture, i.e. 12′′ and

35′′ diameter for the OM optical and OM UV filters respectively (Antonio Talav-

era.OMCal Team 2009). If the host galaxy is sufficiently extended, e.g. in the case

of RE J1034+396, the larger aperture of the OM would include more host galaxy

emission than that in the SDSS spectrum (see also section 3.5.3 for other possible

reasons to account for this discrepancy). To investigate the aperture issue in more

detail, we performed the following tests:

(1) We examined the combined SDSS and OM data plots, searching for those ob-

jects with excess OM flux compared with that expected from the extrapolated SDSS

spectrum. We identified 27 such cases out of the 51 sources;

(2) Within this sample of 27 sources, we checked the catalog flag for an extended

source in each OM filter. We noted those flagged as an extended source in at least

one OM filter. This yielded 13 sources out of the 27.

(3) We also extracted the SDSS CCD images for all 51 objects and visually checked

whether they appeared extended. As a result, we included another 4 objects for

which their SDSS CCD images show that their host galaxy is extended beyond the

3′′ diameter of the SDSS aperture. Either they were not flagged as extended sources

in any OM filter, or they did not have any OM optical data. For these 17 objects,

an aperture effect could at least be partially responsible for an excess flux in the

OM data.

(4) For these 17 objects we downloaded all available OM image files. In each OM

image, we applied a 6′′ diameter aperture from which to extract the flux. We used

the same sized aperture placed on a blank region of sky close to the object, to esti-

mate the background. The quoted PSF FWHM of the OM for the different filters

are: V(1.35′′), B(1.39′′) , U(1.55′′), UVW1(2.0′′), UVM2(1.8′′), UVW2(1.98′′). Thus

in all cases 6′′ is at least 3×PSF FWHM. So this aperture includes effectively all

optical flux for a point source, and more than 90% that from a UV point source
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detected by the OM.

Before subtracting the background flux from the source+background flux, we

performed three count rate calibrations, according the method described in the OM

instrument document.2 The first is the deadtime correction, required because for

a small fraction of the exposure time the CCD is in readout mode, and so cannot

record events. The second calibration is for coincidence losses, which occur when

more than one photon arrives on the CCD at the same location and within the same

frametime, so results in under counting. The third calibration is for the OM time

sensitivity degradation correction. We performed these calibrations, according to the

algorithms set out in the OM instrument document, separately for the background

and source+background count rates. We then subtracted the background count rate

from the source+background count rate to obtain the corrected source count rate.

Figure 3.1 shows the OM data points before and after correction for aperture

effects for the 17 objects. The reduced OM aperture does improve the alignment

between the OM points and SDSS spectrum. This correction not only lowers the

OM flux, but also changes the continuum shape defined by the OM points. Although

choice of an aperture smaller than 6′′ will lower the OM fluxes by a larger factor, it

will also introduce uncertainties and systematics caused by the PSF. Therefore we

compromise by adopting a 6′′ diameter aperture. In our subsequent SED modeling

we use the aperture corrected OM data.

3.3 Optical Spectral Modeling: The Emission Lines

Our optical spectral modeling employs linked Hα and Hβ profile fitting and the

complete optical spectral fitting. We wrote the code in IDL (Interactive Data Lan-

guage) v6.2, to perform all the optical spectral fitting. The ‘MPFITEXPR’ program

from the Markwardt IDL Library is incorporated within our code to perform the

Levenberg-Marquardt least-squares algorithm used to obtain the best-fit parameters.

2URL: http://xmm2.esac.esa.int/docs/documents/CAL-TN-0019.ps.gz; Also see the XMM-

Newton User Handbook: http://xmm.esac.esa.int/external/xmm user support/document-

ation/uhb/index.html.
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The SDSS spectra (stored in SDSS spSpec files) were extracted directly from the

SDSS DR7 data archive and analyzed in IDL using our code. A detailed description

of our spectral modeling procedures is presented in the following subsections.

3.3.1 Profile Fitting of the Hα, Hβ and [OIII]λ5007 Emis-

sion Lines

Based on current AGN emission line models, there are thought to be stratified

regions emitting different lines. These regions are divided somewhat arbitrarily into

a narrow line region (NLR), a broad line region (BLR) and possibly an intermediate

line region (ILR, e.g. Grupe et al. 1999; Hu et al. 2008; Mei, Yuan & Dong

2009; Zhu, Zhang & Tang 2009). Following previous studies, we use several separate

Gaussian profiles representing each of these emitting regions to model the Balmer

line profiles.

The Hα and Hβ line profiles each pose distinct difficulties for the spectral analy-

sis. In the case of the Hβ line, the permitted FeII emission features (which are often

strong in NLS1s) and broad HeII 4686 line blended with the Hβ line, which can

affect the determination of the underlying continuum and hence the Hβ line profile.

For the Hα line, there is the problem of blending with the [NII] λ6584,6548 doublet,

improper subtraction of which may distort Hα’s intrinsic profile. Our approach,

therefore, is to fit Hα and Hβ simultaneously using the same multi Gaussian com-

ponents. The assumed similarity between the intrinsic profiles of these two Balmer

lines assists in deblending from other nearby emission lines, and should yield a more

robust deconvolution for the separate components of their profile.

3.3.2 The FeII Problem

We use the theoretical FeII model templates of Verner et al. (2009). These include

830 energy levels and 344,035 transitions between 2000Å and 12000 Å, totaling

1059 emission lines. The predicted FeII emission depends on physical conditions

such as microturbulence velocity and hardness of the radiation field, but we use the

template which best matches the observed spectrum of I ZW 1 (Boroson & Green
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1992; Véron-Cetty et al. 2004) i.e. the one with nH = 1011 cm−3, vturb = 30 kms−1,

Fionizing = 20.5 cm−2s−1. Detailed modelling of high signal-to-noise spectra shows

that the FeII emission is often complex, with four major line systems in the case

of 1 Zw 1, (one broad line system, two narrow high-excitation systems and one

low-excitation system: Véron-Cetty et al. 2004; Zhou et al. 2006; Mei, Yuan &

Dong 2009). However, for simplicity we will assume only one velocity structure and

convolve this template with a single Lorentzian profile.

We fit this to the actual FeII emission line features between 5100 Å and 5600 Å

(no other strong emission lines lie in this wavelength range) of the de-redshifted SDSS

spectra, leaving the FWHM of the Lorentzian and the normalization of the FeII as

free parameters. The resulting best-fit FeII model to this restricted wavelength

range, was then extrapolated and subtracted from the entire SDSS spectrum. A

major benefit from subtracting the FeII features is that the profiles of the [OIII]

λ5007 lines no longer have apparent red-wings. This is particularly important for

the NLS1s, where the FeII emission is often strong. After subtracting FeII, we used

either 2 or 3 Gaussian components (depending on the profile complexity) to fit the

[OIII] λ5007 line.

3.3.3 Deconvolution of the Balmer Lines

After fitting the [OIII] λ5007 line, we start to fit the Hα and Hβ line profiles simul-

taneously. Following previous studies we consider a simplified picture in which the

Balmer lines have three principal components, namely a narrow component (from

the NLR), an intermediate component (from a transition region ILR between the

NLR and BLR or from the inner edge of dusty torus (Zhu, Zhang & Tang 2009)),

and a broad component (from the BLR). The intermediate and broad components

are both represented by a Gaussian profile, whereas the narrow component is as-

sumed to be similar to that of [OIII] λ5007. Since we do not know whether or not

the Balmer decrements are the same in these different emitting zones, the relative

strengths of different line components were not fixed, but their FWHM and rela-

tive velocity were both kept the same. The [OIII] λ4959 line was set at 1/3 that
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of [OIII] λ5007 from atomic physics. The [NII] λ6584,6548 line doublet were also

fixed to the [OIII] λ5007 line profile. For simplicity, the [SII] λ6733,6717 doublet,

[OI] λ6300,6363 doublet and Li 6708 were all fitted with a single Gaussian profile

separately, because they are all relatively weak lines and do not severely blend with

Balmer lines.

In order to separate the narrow component of the Balmer lines from the other

components as accurately as possible, particularly for NLS1s and some broad line

objects which lack clear narrow line profiles, we applied the following four different

fitting methods:

1. The profile of the narrow component is held the same as the entire [OIII] λ5007

profile; and the normalization of each component in the Hα and Hβ lines are left

as free parameters;

2. Only the central narrow component of the [OIII] λ5007 profile is used to define

the profile of the Balmer narrow component, and of the [NII] λ6585,6550 doublet;

the normalization of each component in the Hα and Hβ lines are free parameters;

3. The shape of the narrow component is held the same as the entire [OIII] λ5007

profile, and also the normalization of the Hβ line narrow component is set to be

10% of [OIII] λ5007, this ratio being an average for the NLR in typical Seyfert 1s

(Osterbrock & Pogge 1985; Leighly 1999); all other components have their normal-

izations as free parameters;

4. All conditions are the same as in method 3, except that the Balmer line narrow

component and the [NII] λ6584,6548 doublet adopt the central narrow Gaussian

component of the [OIII] λ5007 line.

We applied each of the above fitting methods to every object in our sample,

and then compared the results. For those objects with clear narrow components to

their Balmer lines, we used the best fitting result from method 1 and 2. For the

other objects whose narrow components were not clearly defined or even visible,

we adopted method 3 and method 4, unless method 1 or 2 gave much better fitting

results. Figure 3.2 right panel shows an example of our fitting. Results for the whole

sample are shown in Figure A.1.

After obtaining the best-fit parameters, we used the intermediate and broad
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components to reconstruct the narrow-line subtracted Hβ line profile, and then

measured the FWHM from this model. The rationale for using this method, instead

of directly measuring the FWHM of the Hβ line from the data, is because for low

signal/noise line profiles direct measurement of FWHM can lead to large uncertain-

ties, whereas our profile models are not prone to localized noise in the data. The

Hβ FWHM measurements for each of the 51 sources, after de-convolving using the

instrumental resolution of 69 kms−1, are listed in Table 3.3.

3.4 Optical Spectral Modeling

In order to obtain the underlying continuum, we must model the entire SDSS spec-

trum so that we can remove all the emission lines as well as the Balmer continuum

and host galaxy contribution. As we are now concerned with the broad continuum

shape, we choose to refit the FeII spectrum across the entire SDSS range, rather

than restricting the fit to the Hα and Hβ line regions as discussed in the previous

section.

Figure 3.2 shows an illustrative example of our optical spectral fitting, and the

results for each of the 51 sources are presented in Figure A.1. In the following

subsections we give further details of the components that make up these modeled

spectra.

3.4.1 Emission Lines Including FeII

We use the models for [OIII], Hα and Hβ as derived above. We add to this a series

of higher order Balmer lines: from 5→2 (Hγ) to 15→2. We fix the line profile of

these to that of Hβ up to 9→2, then simply use a single Lorentzian profile for the

rest weak higher order Balmer lines. We fix the line ratios for each Balmer line

using the values in Osterbrock (1989), Table 4.2, with Te between 10,000 K and

20,000 K. We similarly use a single Lorentzian to model the series of Helium lines

(HeI 3187, HeI 3889, HeI 4471, HeI 5876, HeII 3204, HeII 4686) and some other

emission lines (MgII 2798, [NeIII] λ3346,4326, [OII] λ3727,3730, [OI] λ6302,6366,

[NII] λ6548,6584, Li 6708, [SII] λ6717,6733).
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We use the same model for the FeII emission as described in Section 3.3.1.

However we now fit this to the entire SDSS wavelength range, rather than restricting

the fit to 5100–5600 Å.

3.4.2 The Balmer Continuum

Another potentially significant contribution at shorter wavelengths is from the Balmer

continuum. Canfield & Puetter (1981) and Kwan & Krolik (1981) predicted the op-

tical depth at the Balmer continuum edge to be less than 1, we use Equation 3.1 to

model the Balmer continuum under the assumptions of the optically thin case and a

single-temperature electron population (also see Grandi 1982; Wills, Netzer & Wills

1985).

FBC
v = FBE

v e−h(v−vBE)/(kTe) (v > vBE) (3.1)

where FBE
v is the flux at Balmer edge, vBE corresponds to the Balmer edge frequency

at 3646Å. Te is the electron temperature. h is the Planck’s constant, k is the

Boltzmann’s constant. This Balmer continuum equation is then convolved with a

Gaussian profile to represent the real Balmer bump in SDSS spectra.

There are several parameters that may slightly modify or significantly change the

shape of the Balmer continuum. It is already seen that the electron temperature

Te appearing in Equation 3.1 and the optical depth can both change the Balmer

continuum shape, but there are additional important factors. Any intrinsic velocity

dispersion will Doppler broaden all the Hydrogen emission features. Therefore a

better description of the Balmer continuum can be obtained by convolving Equa-

tion 3.1 with a Gaussian profile, whose FWHM is determined by the line width

of Hβ (or other broad lines), as shown by Equation 3.2, where G(x) represents a

Gaussian profile with a specific FWHM.

FBC
λ = FBE

λ ehc/(λBEkTe)

∫ +∞

0

e−hc/(λkTe)G(λ1 − λ)dλ1 (3.2)

Figure 3.3 shows how the Balmer continuum’s shape depends on the electron

temperature and velocity broadening in Equation 3.2. The electron temperature

modifies the decrease in the Balmer continuum towards shorter wavelengths, but
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Figure 3.3: The Balmer continuum models of Grandi (1982). The upper panel shows

the dependence of the model on the electron temperature. The lower panel shows

the dependence of the model on the FWHM of the convolved Lorentzian profile.

has little effect on the broadening of (Balmer Photo-recombination) BPR edge. On

the contrary, velocity broadening mainly affects the shape of the BPR edge, but the

emission longward of 3646Å is still very weak compared to the emission blueward

of the BPR edge, i.e. the BPR edge is still sharp.

We initially applied Equation 3.2 to fit the Balmer continuum bump below 4000Å

in the SDSS spectra. We assumed the velocity profile for the convolution was a Gaus-

sian with its FWHM determined from the Hβ line profile, and the wavelength of

the position of the BPR edge was taken as the laboratory wavelength of 3646Å.

However, this model did not provide an acceptable fit, for example see the model

shown by the blue line in Figure 3.4. It appears that the observed spectrum requires

a model with either a more extended wing redward of the BPR edge, or a BPR edge

that shifts to longer wavelength than 3646Å. However, additional velocity broad-

ening should affect both the Balmer continuum and Balmer emission lines equally,

as they are produced from the same material, although the multiple components
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present in the line make this difficult to constrain.

One way the wavelength of the edge may be shifted without affecting the lines

is via density (collisional, or Stark) broadening (e.g. Pigarov et al. 1998). Multiple

collisions disturb the outer energy levels, leading to an effective nmax for the highest

bound level ≪ ∞, i.e. lowering the effective ionization potential. We set the edge

position and the FWHM as free parameters, and let the observed spectral shape

determine their best fit values. The red line shown in Figure 3.4 represents a good

fit, obtained with FWHM of 6000 kms−1 and the BPR edge wavelength of 3746 Å,

which implies nmax ∼ 12. The theoretical nmax can be determined by the plasma

density Ne and temperature Te as nmax = 2 × 104(Te/Ne)
1/4 (Mihalas 1978), so for

a typical temperature of 104−105 K, the required density is 7×1016-7×1017 cm−3.

Such high density is not generally associated with the BLR clouds, and may give

support to models where the low ionization BLR is from the illuminated accretion

disc (e.g. Collin-Souffrin & Dumont 1990). However, any reliable estimation of the

density would require more accurate subtraction of other optical components such

as the FeII line blends and many other non-hydrogen emission lines, which is not

the focus of this thesis. Nonetheless, this remains an interesting problem which is

worthy of further study.

Yet another issue in modeling the Balmer continuum is how to quantify the

the total intensity of this continuum component, especially when there is limited

spectral coverage below 4000Å, which makes it difficult to define the overall shape.

The theoretical flux ratio between the Balmer continuum and the Hβ line under

case B conditions can be expressed by Equation 3.3 (Wills, Netzer & Wills 1985),

I(Bac)/I(Hβ) = 3.95 T 0.4
4 (3.3)

but other theoretical calculations of photonionization models show that by varying

the Balmer optical depth, electron temperature and electron number density, this

can result in very different values of I(Bac)/I(Hβ). For example, Canfield & Puetter

(1981)s calculation resulted in a I(Bac)/Hα range of 0.05∼10, Kwan & Krolik (1981)

suggested I(Bac)/I(Hβ)=1.6∼15, and other theoretical work also confirmed a large

range in flux ratios (Puetter & Levan 1982; Kwan 1984; Hubbard & Puetter 1985).
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Figure 3.4: An expanded view of the region around the BPR edge in PG 1427+480.

The blue and dashed lines represent the Balmer continuum model superposed on

the underlying disc continuum (green solid line) using standard parameters (blue

dash), and also a set of best fit parameters (red dash line). The red and blue

solid lines are models of the total optical spectrum, including the corresponding

Balmer continuum components and plus other components described in the text.

The observed spectrum is shown in black.
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The observed ranges in I(Bac)/I(Hβ) are also large. Canfield & Puetter (1981)

showed an observed range of ∼0.5−3 for I(Bac)/I(Hα). Wills, Netzer & Wills (1985)

observed 9 intermediate redshift QSOs whose I(Bac)/I(Hβ) ranges from 4.65 to 9.5.

Thus we were unable to constrain the intensity of the whole Balmer continuum by

using a standard flux ratio fixed to the other Balmer emission lines. As a result, we

must rely on the shape of the observed Balmer bump, and then adopt the model’s

best fit parameters.

However, this limitation in defining the Balmer bump introduces uncertainties in

modeling the underlying continuum, because over-subtraction of the Balmer bump

will depress the slope of the remaining underlying continuum, and vice-versa. In

the course of the broadband SED fitting described in section 3.5, we found that the

temperature of the accretion disc (determined by black hole mass) is sensitive to the

slope of optical continuum, unless the continuum slope is in the opposite sense to

that of the accretion disc model and thus can not be fitted, or there are OM points

providing stronger constraints. We also found that a flatter optical continuum may

lead to a lower best-fit black hole mass, although this also depends on other factors.

Therefore, the subtraction of the Balmer continuum can have an impact on the

modeling of broadband SED and the best-fit black hole mass. The influence of this

depends on the relative importance of other SED restrictions. This is the reason

why the Balmer continuum must be carefully modeled and subtracted.

3.4.3 The Intrinsic Underlying Continuum

Our basic assumption is that the residual optical spectrum, after subtraction of the

Balmer continuum, FeII emission and other emission lines mentioned previously,

arises mainly from the accretion disc emission. As a reasonable approximation over

a limited wavelength range we use a power-law of the following form to fit the

underlying continuum,

F (λ) = C1·(λ/5100Å)−C2 (3.4)

The power-law approximation for the optical underlying disc continuum is also

widely adopted in previous and recent AGN optical spectral studies. (e.g. Grandi
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1982; Tsuzuki et al. 2006; Zhou et al. 2006; Landt et al. 2011).

We model the dust reddening using the Seaton (1979)’s 1100Å to 10000Å red-

dening curve, and we apply this to the overall model, i.e. emission lines, Balmer

continuum and the disc continuum. There are also other reddening curves available

such as Fitzpatrick (1986) for the Large Magellanic Cloud, Prévot et al. (1984) and

Bouchet et al. (1985) for the Small Magellanic Cloud and Calzetti et al. (2000) for

starburst galaxies, but over the wavelength range of 2500Å to 10000Å, the difference

between these reddening curves is small, except for Calzetti et al. (2000)’s curve

which is appropriate for starburst galaxies, and is thus not applicable for our AGN

sample.

3.4.4 The Host Galaxy Contribution

Many previous studies on AGN’s optical/infrared spectra have adopted a power law

as a reasonable approximation for the accretion disc continuum blueward of 1µm

(e.g. Mei, Yuan & Dong 2009; Bian & Huang 2010), but these studies also needed to

include additional contributions from the host galaxy and emission from the dusty

torus to account for the extra continuum emission at long wavelengths of the optical

spectrum (e.g. Kinney et al. 1996; Mannucci et al. 2001; Landt et al. 2011). In our

work we have also identified an inconsistency between the 3000Å−8000Å spectral

shape and a single power law shape (i.e. the flat optical spectrum problem discussed

in Section 3.5.3). The blue end of the optical spectrum, presumed to arise from a

standard accretion disc, often shows a steeper spectral slope than the red end.

However, in our sample we found evidence suggesting only a weak if any, contri-

bution from the host galaxy. For example, the optical spectra of our sample do not

show the strong curvature characteristic of the presence of a stellar component in

a host galaxy. Furthermore, the good quality optical spectra do not exhibit stellar

absorption features (see Section 3.5.3 and Figure 3.5). In fact the 3′′ diameter fibre

used to obtain the SDSS spectra also helps to reduce the contribution of stellar

emission from a host galaxy, particularly for nearby sources in our sample such as

KUG 1031+398. This evidence argues against the possibility that the red optical
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continuum is primarily dominated by host galaxy emission. In fact, it is possible

that the observed additional component arises due to emission from the outer regions

of a standard accretion disc (e.g. Soria & Puchnarewicz 2002; Collin & Kawaguchi

2004; Hao et al. 2010). The existence of such an additional red optical continuum

component reduces the consistency of a power law fit to the optical spectra.

3.4.5 The Optical Spectrum Fitting

Our optical spectral fitting is performed only for data blueward of 7000Å. The choice

to truncate the model at 7000Å is made for several reasons. We wish to include

Hα line in the spectral fitting range, and the broad wing of Hα profile sometimes

extend to ∼7000Å (e.g. PG 1352+183, RBS 1423, Mrk 926). There are some

objects whose SDSS spectra extend only to ∼6700Å (e.g. 2XMM J080608.0+244421,

HS 0810+5157, 2XMM J100025.2+015852). The choice of 7000Å, rather than a

longer wavelength, is to maintain consistency of optical spectral fitting for the whole

sample. The final reason concerns an aspect of the power law fitting. We found that

in some objects (e.g. PG 1115+407, LBQS 1228+1116, PG1352+183), a flat slope

power-law under predicts the observed emission at ∼7000Å. Therefore, if we include

longer wavelengths than 7000Å, our power law fitting for the standard accretion disc

continuum towards the blue optical spectra would be biased by other continuum

emission at these longer wavelengths, and so affect the broadband SED fitting.

Consequently, we chose to truncate our optical spectral fitting at 7000Å.

However, we still cannot be sure that the underlying continuum is totally free

from other non-disc continuum components. So after completing the fitting pro-

cedure, we then checked the spectral fitting status within two narrow wavebands,

i.e. 4400Å - 4800Å and 5100Å - 5600Å. Emission features if present in these two

wavebands are mainly from FeII emission, and the underlying continua of these two

wavebands should be totally dominated by the accretion disc emission. Assuming

that the FeII emission lines within these two wavebands have similar relative inten-

sity ratios as in the FeII template described in Section 3.3.2, the best-fit underlying

power-law plus FeII emission model should have good fitting status in both of these
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two wavebands. In general, the best-fit model derived from the full optical spectrum

fit also gives reasonably good fitting status in both of these two narrow wavebands.

However, in some cases the model over-predicted the flux in 5100Å - 5600Å but

under-predicted the flux in 4400Å - 4800Å, so that we should slightly increase the

slope of power-law to produce better spectral fitting in these two wavebands. We

adopted these parameter values in preference to those directly from the full spec-

trum fit, as they should be more immune to problems such as host galaxy or hot

dust contamination.

3.5 The Broadband SED Modeling

3.5.1 Data Preparation

For each object we extracted the original data files (ODFs) and the pipeline products

(PPS) from XMM-Newton Science Archive (XSA) 3. In the following data reduction

process, tasks from XMM-Newton Science Analysis System (SAS) v7.1.0 were used.

First, EPCHAIN/EMCHAIN tasks were used to extract events unless the events files had

already been extracted for each exposure by PPS. Then ESPFILT task was used to

define background Good Time Intervals (GTIs) that are free from flares. In each

available EPIC image, a 45′′ radius circle was used to extract the source region, and

an annulus centered on the source with inner and outer radii of 60′′ and 120′′ was

used to define the background region. For other sources listed in the region files of

PPS that are included in these regions, these were subtracted using the default radii

generated by PPS, which scaled with the source brightness. Then the GIT filter,

source and background region filters were applied to the corresponding events files

to produce a set of source and background events files. We only accepted photons

with quality flag =0 and pattern 0−4. The EPATPLOT task was then used to check

for pile-up effects. When pile-up was detected, an annulus with inner and outer

radii of 12′′ and 45′′ was used instead of the previous 45′′ radius circle to define the

source region. Then source events files were reproduced using the new source region

3http://xmm.esac.esa.int/external/xmm data acc/xsa/index.shtml
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Table 3.2: Broadband SED Fitting Parameters, and Model Outputs (Lbol, fd, fc, fp). ID:

object number, the same as Table 3.1; NH,gal and NH,int: the fixed Galactic and free

intrinsic neutral hydrogen column densities in 1020 cm−2; Γpow: the power-law compo-

nent’s slope in the SED fitting, (*) denotes the objects whose power-law slopes hit the

uplimit of 2.2 and were fixed there; Fpl: the fraction of power-law component in the total

reprocessed disc emission; Rcor: corona (truncation) radius in unit of Gravitational radii

(rg) within which all disc emission is reprocessed into the Comptonisation and power-law

components; Te: temperature of the Compton up-scattering electron population; Tau:

optical depth of the Comptonisation component; log(MBH ): the best-fit black hole mass;

log(Ṁ ): total mass accretion rate; Lbol: bolometric luminosity integrated from 0.001 keV

to 100 keV; fd, fc, fp: luminosity fractions of disc emission, soft Comptonisation and hard

X-ray Compotonisation components in the bolometric luminosity; χ2: the reduced χ2 of

the broadband SED fitting.
ID NH,gal NH,int Γpow Fpl Rcor Te Tau log(MBH ) log(Ṁ) Lbol f d f c f p χ2

×1020 ×1020 rg keV M⊙ g s−1 1044 redu

1 1.79 0.00 1.71 0.69 100. 0.262 17.2 8.61 26.06 58.9 0.19 0.25 0.56 1.00

2 2.43 1.06 1.77 0.39 100. 0.226 15.7 7.85 25.21 8.28 0.19 0.49 0.32 0.97

3 6.31 9.88 1.91 0.25 11.9 0.108 20.0 7.41 25.92 42.9 0.87 0.10 0.03 1.57

4 3.49 2.81 1.66 0.50 100. 0.312 15.4 8.78 25.41 13.3 0.19 0.41 0.40 1.15

5 3.53 4.03 2.12 0.36 54.9 0.205 14.9 7.87 26.28 98.4 0.32 0.44 0.24 1.10

6 4.24 0.00 1.93 0.46 23.9 0.347 12.6 8.50 26.33 111 0.59 0.22 0.19 1.02

7 1.33 3.74 2.20∗ 0.29 8.37 0.137 40.3 7.00 26.53 175 0.26 0.53 0.21 1.20

8 3.12 7.35 1.82 0.15 24.1 1.380 3.44 7.09 25.85 36.6 0.58 0.35 0.06 1.39

9 1.30 1.36 1.71 0.71 12.9 0.360 11.1 6.96 25.94 45.0 0.84 0.05 0.11 17.2

10 1.74 0.00 1.91 0.32 100. 0.295 13.8 8.47 26.20 81.5 0.19 0.55 0.26 1.72

11 1.72 2.00 1.71 0.49 20.2 0.449 9.23 7.80 26.02 53.8 0.65 0.18 0.17 1.01

12 1.20 1.08 1.68 0.48 20.6 0.402 11.4 7.79 25.27 9.46 0.65 0.18 0.17 1.20

13 3.56 0.00 1.37 0.87 10.9 0.146 17.9 9.20 26.52 170 0.90 0.01 0.09 3.12

14 1.76 0.00 1.72 0.71 100. 0.294 16.0 8.24 25.82 33.6 0.19 0.23 0.58 1.07

15 1.31 2.43 2.20∗ 0.09 14.2 0.214 12.3 6.23 25.31 10.4 0.80 0.18 0.02 2.27

16 1.70 0.65 1.72 0.31 100. 0.327 13.0 8.33 25.85 36.2 0.19 0.56 0.25 1.44

17 0.65 0.85 1.74 0.14 48.7 0.326 11.4 7.97 25.85 36.5 0.35 0.56 0.09 1.08

18 1.45 0.19 2.20∗ 0.24 29.5 0.254 13.6 8.17 26.18 76.9 0.51 0.37 0.12 1.37

19 3.70 1.41 1.98 0.19 45.8 0.142 21.5 7.71 24.85 3.61 0.37 0.52 0.12 1.10

20 1.91 4.77 2.20∗ 0.36 9.63 0.210 16.8 6.46 25.36 11.9 0.94 0.04 0.02 1.39

21 1.77 0.00 1.79 0.75 22.7 0.206 19.6 7.98 26.09 63.4 0.61 0.10 0.29 3.59

22 2.75 8.84 1.86 0.21 50.5 0.108 25.1 7.84 25.42 13.5 0.34 0.52 0.14 1.09

23 1.59 0.00 1.41 0.45 86.9 0.626 9.59 7.99 25.02 5.40 0.22 0.43 0.35 0.99

24 1.63 0.00 1.82 0.94 32.2 0.182 32.2 8.26 25.96 46.5 0.48 0.03 0.49 2.13

25 2.34 0.00 1.79 0.40 25.7 0.351 12.9 8.49 26.26 94.2 0.56 0.27 0.17 1.83

26 2.31 7.25 2.10 0.03 33.8 0.310 9.69 7.37 26.23 87.7 0.46 0.52 0.02 1.14

27 2.75 0.00 1.85 0.22 37.6 0.554 8.29 7.50 25.44 14.2 0.43 0.45 0.12 1.12

28 1.45 0.00 1.69 0.60 71.3 0.353 13.7 8.24 25.81 33.0 0.26 0.30 0.45 1.26

29 1.18 1.36 2.00 0.12 30.9 0.389 8.85 7.76 26.03 55.1 0.49 0.45 0.06 1.24

30 1.87 2.64 2.20∗ 0.36 9.67 0.234 16.9 6.79 25.77 30.3 0.94 0.04 0.02 1.03
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Table 3.2: continued...
ID NH,gal NH,int Γpow Fpl Rcor Te Tau log(MBH ) log(Ṁ) Lbol f d f c f p χ2

×1020 ×1020 rg keV M⊙ g s−1 1044 redu

31 0.84 0.00 1.68 0.54 100. 0.404 12.9 8.70 25.84 35.9 0.19 0.37 0.43 0.99

32 0.90 0.14 1.80 0.44 100. 0.388 12.2 7.69 25.15 7.30 0.19 0.46 0.35 1.66

33 1.07 0.82 2.18 0.57 15.0 0.226 15.6 7.78 25.96 47.3 0.78 0.10 0.13 1.15

34 1.83 0.93 1.90 0.33 100. 0.252 14.8 8.71 26.03 55.1 0.19 0.54 0.26 1.11

35 1.76 0.90 1.80 0.83 100. 0.202 20.4 7.67 26.13 69.8 0.19 0.14 0.67 1.05

36 1.18 3.94 2.18 0.22 16.2 2.000 2.71 6.52 25.13 6.90 0.75 0.20 0.05 1.81

37 1.82 0.00 2.04 0.38 100. 0.219 17.2 8.23 25.88 39.3 0.19 0.50 0.31 1.33

38 1.42 0.37 1.58 0.97 100. 0.251 25.0 7.69 24.54 1.80 0.19 0.02 0.79 1.28

39 1.36 4.77 2.10 0.11 40.6 0.281 11.4 7.01 25.17 7.57 0.40 0.53 0.07 1.90

40 0.77 5.21 2.05 0.06 24.0 0.930 4.28 7.41 26.26 93.6 0.59 0.39 0.02 2.27

41 1.81 0.00 1.90 0.39 28.9 0.298 14.0 8.39 26.10 65.2 0.52 0.30 0.19 1.63

42 2.86 3.29 1.84 0.41 100. 0.083 31.3 7.74 24.68 2.45 0.19 0.47 0.33 1.01

43 2.69 0.00 1.71 0.58 55.8 0.406 11.9 8.07 26.10 64.7 0.31 0.29 0.40 1.29

44 2.78 5.90 2.17 0.04 27.6 0.501 6.71 7.26 26.13 68.6 0.53 0.45 0.02 2.33

45 1.46 0.00 1.82 0.49 41.0 0.286 14.1 8.62 26.75 290 0.40 0.30 0.30 2.42

46 4.02 0.55 1.81 0.81 100. 0.207 20.3 8.56 25.58 19.4 0.19 0.15 0.66 1.12

47 3.78 16.69 1.82 0.25 100. 0.115 29.8 7.96 25.62 21.5 0.19 0.61 0.20 0.99

48 2.11 0.87 1.85 0.19 18.1 0.525 8.61 7.19 25.16 7.40 0.70 0.24 0.06 1.19

49 4.90 0.36 2.20∗ 0.33 72.5 0.211 19.6 7.73 25.15 7.33 0.25 0.50 0.25 1.15

50 4.51 0.00 2.20∗ 0.80 7.88 0.131 48.5 7.86 27.42 1350 0.98 0.00 0.01 1.39

51 2.91 1.53 1.79 0.95 100. 0.112 45.2 7.65 25.32 10.8 0.19 0.04 0.77 1.38

filter. Source and background spectra were extracted from these events files for each

available EPIC exposure. Tasks RMFGEN/ARFGEN were used to produce response

matrices and auxiliary files for the source spectra. These final spectra were grouped

with a minimum of 25 counts per bin using the GRPPHA v3.0.1 tool for spectral

fitting in Xspec v11.3.2. To prepare the OM data, the om filter default.pi file and

all response files for the V,B,U, UVW1, UVM2, UVW2 filters were downloaded from

the OM response file directory in HEASARC Archive4. We then checked the OM

source list file for each object to see if there were any available OM count rates.

Each count rate and its associated error were entered into the om filter default.pi

file and then combined with the response file of the corresponding OM filter, again

by using the GRPPHA tool to produce OM data that could be used in Xspec.

Finally, the XMM-Newton EPIC spectra are combined with the aperture cor-

rected OM photometric points, and the optical continuum points produced from the

optical underlying continuum (obtained from the full optical spectrum fitting) using

FLX2XSP tool. From these data we constructed a broadband nuclear SED of each

AGN. There is a ubiquitous data gap in the far UV region which is due to photo-

electric absorption by Galactic gas. Unfortunately, in most cases of low-redshift

4http://heasarc.gsfc.nasa.gov/FTP/xmm/data/responses/om/
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Table 3.3: Broadband SED Key Parameters. ID: object number, the same as Table 3.1;

Γ2−10keV : the slope of the single power-law fitted to 2-10 keV spectrum. L2−10keV : 2-10

keV luminosity (in 1044 erg s−1); κ2−10keV : the 2-10keV bolometric correction coeffi-

cient; λL
2500Å

: the monochromatic luminosity at 2500Å (in 1043 erg s−1); νL2keV : the

monochromatic luminosity at 2keV (in 1043 erg s−1); αox: the optical X-ray spectral index;

λL5100: the monochromatic luminosity at 5100Å (in 1044 erg s−1); κ5100: the 5100Å bolo-

metric correction coefficient; FWHMHβ : the narrow component subtracted Hβ FWHM;

Lbol/LEdd: the Eddington Ratio.
ID Γ2−10keV L2−10keV κ2−10keV λL

2500Å
νL2keV αox λL5100 κ5100 FWHMHβ Lbol/LEdd

×1044 ×1043 ×1043 ×1044 km s−1

1 1.69±0.06 4.941 11.9 81.3 25.6 1.19 8.15 7.24 13000 0.11

2 1.67±0.10 0.469 17.7 18.4 2.47 1.33 0.791 10.5 6220 0.089

3 1.77±0.07 0.289 149 41.0 1.91 1.51 1.35 31.7 2310 1.3

4 1.80±0.11 0.567 23.6 12.8 3.15 1.23 1.91 6.98 10800 0.017

5 2.10±0.22 2.284 43.2 134 12.9 1.39 5.48 18.0 2720 1.0

6 1.93±0.18 4.855 22.9 290 27.6 1.39 14.8 7.52 5430 0.27

7 2.39±0.22 0.267 657 61.3 2.43 1.54 1.95 89.6 1980 13

8 1.84±0.04 0.418 87.7 23.5 2.89 1.35 0.539 68.1 2840 2.3

9 1.76±0.01 0.839 53.8 22.7 5.35 1.24 0.113 399 3030 3.8

10 1.92±0.05 3.532 23.1 205 23.1 1.36 7.59 10.8 4810 0.21

11 1.71±0.11 1.811 29.8 78.9 9.03 1.36 3.75 14.4 5640 0.66

12 1.68±0.23 0.502 18.9 21.2 1.57 1.43 1.04 9.12 4390 0.12

13 1.37±0.12 0.751 227 790 2.99 1.93 42.6 4.00 10800 0.082

14 1.69±0.04 3.189 10.6 50.2 17.0 1.18 3.91 8.60 7060 0.15

15 2.35±0.12 0.042 251 2.89 0.353 1.35 0.204 51.1 988 4.7

16 1.78±0.07 1.502 24.2 90.8 8.24 1.40 4.26 8.53 3560 0.13

17 1.80±0.20 0.779 46.9 71.7 3.62 1.50 3.31 11.1 2250 0.30

18 2.23±0.08 1.254 61.5 157 9.67 1.46 6.11 12.6 2310 0.40

19 1.98±0.18 0.084 43.1 8.59 0.497 1.47 0.443 8.19 2000 0.054

20 2.34±0.12 0.053 224 4.44 0.476 1.37 0.215 55.4 774 3.1

21 1.70±0.04 3.856 16.5 109 20.5 1.28 2.22 28.6 6090 0.51

22 1.70±0.09 0.396 34.1 27.3 2.17 1.42 0.983 13.8 7050 0.15

23 1.80±0.19 0.145 37.5 11.5 0.907 1.42 0.708 7.66 1980 0.043

24 1.83±0.18 4.735 9.84 106 25.1 1.24 6.64 7.01 13900 0.20

25 1.88±0.03 3.054 30.9 249 20.0 1.42 8.44 11.2 4980 0.24

26 2.09±0.25 0.362 243 63.3 2.60 1.53 2.04 43.2 1720 2.9

27 1.94±0.04 0.277 51.5 20.3 2.51 1.35 0.988 14.4 4310 0.34

28 1.71±0.14 2.951 11.2 63.6 13.2 1.26 4.80 6.91 4240 0.15

29 2.00±0.12 0.726 76.0 76.3 4.75 1.46 3.25 17.0 3560 0.73

30 2.46±0.09 0.146 207 13.4 1.28 1.39 0.452 67.2 954 3.8

31 1.69±0.14 2.420 14.9 53.6 11.9 1.25 6.49 5.54 6810 0.055

32 1.88±0.03 0.464 15.8 13.7 2.97 1.26 0.512 14.3 3100 0.12

33 2.14±0.21 1.157 41.0 69.7 7.55 1.37 4.03 11.8 5690 0.60

34 1.90±0.14 2.489 22.2 140 13.5 1.39 10.8 5.13 3310 0.082

35 1.76±0.07 3.918 17.9 67.5 51.5 1.04 3.59 19.5 2790 1.2

36 2.20±0.08 0.091 76.3 3.31 0.651 1.27 0.244 28.4 1890 1.6

37 1.95±0.08 1.768 22.3 88.8 12.3 1.33 5.39 7.30 3960 0.18

38 1.55±0.09 0.175 10.3 1.89 0.768 1.15 0.197 9.16 6630 0.028

39 2.17±0.20 0.079 96.5 6.89 0.737 1.37 0.233 32.6 991 0.56
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Table 3.3: continued...
ID Γ2−10keV L2−10keV κ2−10keV λL

2500Å
νL2keV αox λL5100 κ5100 FWHMHβ Lbol/LEdd

×1044 ×1043 ×1043 ×1044 km s−1

40 2.02±0.06 0.468 200 70.0 3.54 1.50 2.05 45.7 2790 2.8

41 1.94±0.05 2.444 26.7 167 15.8 1.39 6.26 10.4 2610 0.20

42 1.76±0.11 0.158 15.5 4.92 0.804 1.30 0.265 9.28 4920 0.034

43 1.74±0.07 4.524 14.3 109 25.7 1.24 4.36 14.9 4550 0.43

44 2.25±0.05 0.236 292 45.5 2.13 1.51 2.36 29.2 1070 2.9

45 1.82±0.06 17.502 16.6 645 98.4 1.31 30.4 9.58 10900 0.53

46 1.81±0.12 2.175 8.93 19.0 10.4 1.10 2.97 6.55 9930 0.041

47 1.45±0.25 0.868 24.9 36.6 4.39 1.35 0.931 23.2 4100 0.18

48 2.03±0.11 0.101 73.2 8.71 0.734 1.41 0.278 26.7 1190 0.37

49 2.40±0.22 0.200 36.8 14.5 1.69 1.36 0.719 10.2 1340 0.11

50 2.41±0.18 3.299 411 860 27.3 1.57 29.5 46.0 2200 14

51 1.67±0.03 1.659 6.50 12.5 8.30 1.07 0.624 17.3 11100 0.19

AGN, their intrinsic SED also peaks in this very UV region, and so this unobserv-

able energy band often conceals a large portion of the bolometric luminosity. In

order to account for this, and to estimate the bolometric luminosity, we fit the X-

ray and UV/optical continua all together using a new broadband SED model (Done

et al. 2011, Xspec model: optxagn). We then calculate the bolometric luminosity

by summing up the integrated emission using the best-fit parameters obtained for

each continuum component.

3.5.2 The Broadband SED Model

We use optxagn (with fcol = 1) in Xspec v12 to perform the broadband SED

fitting. The two key free parameters are the black hole mass and mass accretion

rate in terms of Eddington. The optical/UV data constrains the mass accretion rate

through the outer disc, provided we have an estimate of the black hole mass. We

constrain this by our analysis of the Hβ emission line profile. The main difference

from previous studies based on non-reverberation samples is that we do not directly

use the FWHM of the Hβ profile to derive the black hole mass. Rather, we use the

FWHM of the intermediate and broad line component determined from the emission

line fitting results presented in Section 3.3.1. These are then used in Equation 3.5

(Woo & Urry 2002 and references therein) to derive the black hole mass limits

required for the SED fitting:

MBH = 4.817×[
λLλ(5100Å)

1044ergs−1
]0.7FWHM2 (3.5)
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where Lλ(5100Å) is measured directly from the SDSS spectra. The rms difference

between the black hole masses from this equation and from the reverberation map-

ping study is ∼0.5 dex. Thus we also adopted any best-fit values that fell below

the original lower limit (which was set by FWHM of the intermediate component)

by less than 0.5 dex. With this method, the best-fit black hole mass found by SED

fitting is always consistent with the prediction from the Hβ profile. Section 3.6.5

discusses the differences between the best-fit black hole masses and those estimated

using other methods.

Once the black hole mass is constrained, the optical data then sets the mass ac-

cretion rate Ṁ , and hence the total energy available is determined by the accretion

efficiency. We assume a stress-free (Novikov-Thorne) emissivity for a Schwarzschild

black hole, i.e. an overall efficiency of 0.057 for Rin = 6Rg. Thus the total luminos-

ity of the soft excess and power law is 0.057Ṁc2(1 − Rin/Rcorona). This constrains

the model in the unobservable EUV region, with the input free parameter Rcorona

setting the model output of the luminosity ratio between the standard disc emis-

sion and Comptonisation components. The upper limit of Rcorona is set to be 100

Rg, which corresponds to 81% released accretion disc energy. This upper limit is

based on the requirement that the seed photons should be up-scattered (Done et

al. 2011). We assume that both the Comptonisation components scatter seed pho-

tons from the accretion disc with temperature corresponding to Rcorona. The other

model input parameters are; the temperature (kTe) and optical depth (τ) of the soft

Comptonisation component which are determined by the shape of the soft X-ray

excess, the spectral index (Γ) of the hard X-ray Comptonisation that produces the

2-10 keV power law, with electron temperature fixed at 100 keV. The model output

fpl represents the fraction of the non-thermalised accretion energy (i.e. given by the

luminosity originating from the region of Rcorona to Rin), which is emitted in the

hard X-ray Comptonisation.

The same constrains are set as in Chapter 2.6.2 on the Galactic and intrinsic

absorptions and the hard X-ray power law photon index. All free parameters used

in the broadband SED fitting are listed in Table 3.4.5. For completeness, we also

explicitly calculate the fraction of the total luminosity carried by each component
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of the model (i.e. disc: fd; soft Comptonization: fc; hard X-ray Comptonization:

fp) from the model fit parameters Rcor and Fpl (see Table 3.4.5) 5. Table 3.3 lists

the important characteristic parameters. The main uncertainty in these parame-

ters, especially the black hole mass, is dominated by other systematic uncertainties

introduced by the observational data, model assumptions (e.g. the assumption of

a non-spinning black hole and the inclination dependence of the disc emission) and

the analysis methods involved. Therefore the parameter fitting uncertainties which

are often less than 10%, are not significant in comparison, and thus are not listed.

The statistical properties of these parameters are discussed in Section 3.6.

3.5.3 Problems in The SED Fitting

We further discuss two problems we encountered during the fitting procedure in the

following subsections. The first problem is the discrepancy between the OM and

SDSS continuum points (mentioned in Section 3.2.5). The second problem is that

of the observed flat optical continuum, whose shape cannot be accounted for in our

SED model (mentioned in Section 3.4.4).

The discrepancy between the OM photometry and the SDSS continuum

There remains a significant discrepancy between many of the OM and SDSS contin-

uum points, even after applying the aperture correction discussed in Section 3.2.2

(see Figure A.1). The OM points often appear above (brighter) the extrapolation

of the SDSS continuum to the OM wavelengths. We identify three possible reasons

for this discrepancy:

(1) Remaining aperture effects: There is an aperture difference between the SDSS

fibres (3′′diameter) and the OM apertures we used (6′′diameter). Clearly the OM

points will still include more host galaxy starlight than the SDSS points, and so will

appear above the SDSS spectrum.

(2) Contamination from emission lines: The wavelength ranges for each OM

5a full description of the model parameters can be found on the Xspec web page:

http://heasarc.nasa.gov/xanadu/xspec/models/optxagn.html



3. Type 1 AGN Study - I. Optical and Broadband SED Modeling 90

Fig-a1: 2XMM J112328.0+052823 Optical Spectrum Fig-a2: SED Fitting Before and After Host Galaxy Subtraction

Fig-b1: PG1415+451 Optical Spectrum Fig-b2: SED Fitting Before and After Host Galaxy Subtraction

Figure 3.5: A comparison between the results of two subtractions of host galaxy contribution.

2XMM J112328+052823 (Fig-a1 and Fig-a2) shows an underlying continuum that more closely

resembles a disc continuum (solid green line in Fig-a1) after modelling and subtracting the host

galaxy contribution (light blue spectrum in Fig-a1). The left panel of Fig-a2 shows the original

broadband SED fitting without subtracting the host galaxy contribution. The dashed green line

shows the modelled accretion disc emission in the best-fit SED. The inserted panel shows a magni-

fication of the fit in the optical/UV region, where a big discrepancy exists between the SDSS data

and best-fit SED model. The right panel of Fig-a2 is the new SED fit using the new underlying

disc continuum (shown as solid green line in Fig-a1) after subtracting the host galaxy contribution.

The new fit is improved in the optical region compared with the previous results in the left panel

of Fig-a2. In contrast to the above example, PG 1415+451 (Fig-b1 and Fig-b2) has little host

galaxy contribution in the SDSS optical spectrum (see the light blue component in Fig-b1), and

its broadband SED fitting in the optical region remains poor regardless of the amount of host

galaxy subtraction applied (see the two panels in Fig-b2). The spectral template for Elliptical

galaxies in Kinney et al. (1996) was used in both cases since their host galaxies both have elliptical

morphologies in SDSS image.
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filter (over which the effective transmission is greater than 10% of the peak effective

transmission) are as follows: UVW2 1805-2454Å, UVM2 1970-2675Å, UVW1 2410-

3565Å, U 3030-3890Å, B 3815-4910Å, V 5020-5870Å. We exclude the contribution

from strong optical emission lines within the OM U, B, V bandpass (and also the

Balmer continuum contribution in U band) by using the best-fit optical underlying

continuum which excludes such features from the SDSS spectral fitting. In fact,

this was an important initial motivation of the study, i.e. to obtain more accurate

estimates of the true underlying continuum rather than simply to use the SDSS

‘ugriz’ photometric data. Inclusion of strong emission lines within these photometric

data would result in over-estimation of the optical continuum, and so compromise

our aim to study the shape of the optical underlying continuum. This is an important

spectral characteristic used to constrain the accretion disc component in the SED

fitting (see also the discussion in section 5.1.2). There are some strong emission

lines within the UV bandpasses such as Lyα, CIV 1549, CIII 1909 and MgII 2798,

whose fluxes are not available from SDSS spectrum. Accurate subtraction of these

line fluxes for each object would require new UV spectroscopy. We conclude that

inclusion of emission line flux within the OM photometric points may account for

some of the observed discrepancy.

(3) Intrinsic source variability: AGN are well known to be variable across their

SEDs. In general there is a significant time difference between acquistion of the SDSS

and OM-UV data, so intrinsic variation may contribute to any observed discrepancy.

Mrk 110 is the most extreme example of this phenomena in our sample, as its SDSS

spectrum has a very large discrepancy compared with the OM data. The recent

paper by Landt et al. (2011) gives another set of optical spectra for Mrk 110, which

is more consistent with our best-fit model. It shows that the inclusion of OM data

is useful to help identify cases such as this. As an additional test for variability, we

assembled all available GALEX data for our sample. We find that 43 objects in our

sample have GALEX data. Using a GALEX aperture of 12′′, which is limited by the

PSF and which is also similar to the UV OM apertures, we compare these values

with the SED model. The ratio of the GALEX data and our SED model within the

same bandpass differ by less than a factor of 2 for the majority of our sample, and
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significantly the flux ratio distribution is almost symmetric and is centered close to

unity. This suggests that the non-simultaneous OM and SDSS data is not likely to

be a major impediment to our modeling.

In effect, these three factors will merge together to produce the observed discrep-

ancy between the SDSS and OM data. Since the combined effects of Point (1) and

(2) which will add flux and generally be greater than that caused by optical/UV

variability as shown by previous long term reverberation mapping studies (Giveon

et al. 1999; Kaspi et al. 2000), we should treat the OM points included in our SED

modeling as upper limits when interpreting the results of our modeling. Indeed, the

90% confidence uncertainties in the BH masses derived directly from the Xspec

fitting are almost certainly small compared with the systematic errors introduced

by the above uncertainties.

The observed flat optical continuum

A related problem in our fitting is about the SDSS continuum shape. For some

AGNs, their SDSS continuum data points exhibit a very different spectral slope

from that of the SED model. This cannot be reconciled by adjusting the param-

eters of the accretion disc model, and thus implies the presence of an additional

component at longer optical wavelengths, which flattens compared with that pre-

dicted by the accretion disc models. One obvious explanation for this flux excess is

the contribution from the host galaxy. In late type host galaxies such as elliptical

and S0 galaxies, emission from their old stellar populations peaks at near infrared

wavelengths. Kinney et al. (1996) combined spectra of quiescent galaxies and con-

structed an average spectral template for each morphological type, including bulge,

elliptical, S0, Sa, Sb, Sc and starburst galaxies. For some objects in our sample with

high S/N SDSS spectra which show at least marginal stellar absorption features, we

have added the corresponding type of host galaxy spectral template taken from Kin-

ney et al. (1996), into the overall SDSS spectral fitting. This revised the underlying

continuum in the optical, and was then used in the broadband SED fitting. We are

then able to compare it with the original fit, to see how the subtraction of a stellar

population template effects the overall SED fitting.
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Figure 3.5 shows two examples. The first is 2XMM J112328.0+052823, in which

after subtracting the host galaxy component, the observed optical continuum is

closer to the slope of the SED model. However, the results for PG1415+451 in

Figure 3.5 lower panel imply that its host galaxy cannot be the origin of the flat

optical spectrum. The reason is that its optical spectrum does not show any strong

stellar absorption features. This means that the maximum amount of host galaxy

contribution is small, and so and there remains a substantial inconsistency in the

slope versus the SED model. In addition to 2XMM J112328.0+052823 above, only

Mrk1018 and 2XMM J125553.0+272405 show clear stellar absorption features. Also

the 3′′ diameter fibre excludes much of the host galaxy component at these redshifts.

Therefore, on these general grounds we conclude that host galaxy contamination is

small for most sources in our sample, and consequently cannot fully account for

the observed flat optical continuum. Additional support for this view comes from

good correlations between the X-ray components and the red optical continuum,

suggesting that this extra optical flux is likely related to the intrinsic activity (e.g.

Soria & Puchnarewicz 2002; Collin & Kawaguchi 2004; Hao et al. 2010; Landt et

al. 2011).

3.6 Statistical Properties of The Sample

Histograms of data on our sample are shown in Figure 3.6, Figure 3.8 and Figure 3.9,

including redshift, HI column density, optical and X-ray modeling parameters etc.

The red region in the histograms show the distributions for the 12 NLS1s in our

sample. It is clear that NLS1s are distinct among the whole sample in several

respects.

3.6.1 General Properties

Figure 3.6 shows some basic properties of our sample which are not model dependent:

(1). Redshift: the sample’s redshift ranges from 0.031 (Mrk 493) to 0.377 (HS

0810+5157). The NLS1s are found mainly at lower redshifts, with < z >n= 0.12

compared to the < z >n= 0.19 for the BLS1s. For comparison we see that the
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Figure 3.6: Distributions of our sample for different properties. In each panel the

blue areas show the distribution for the whole sample, while the red areas show the

distribution for the 12 NLS1s in our sample. We note that the Hα, Hβ and [OIII]

λ5007 luminosities are based on results of line profile fitting, after subtracting the

blends from other nearby emission lines (see Section 3.3.1). For comparison we also

indicate the Balmer decrement value of 2.86, found under case B recombination, as

shown by dashed line in the same panel.



3. Type 1 AGN Study - I. Optical and Broadband SED Modeling 95

Figure 3.7: The distribution of model dependent parameters using the same colour

coding as in Figure 3.6. Comments on each distribution are given in Section 3.6.2.
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sample of VF07 has a similar redshift range, but it has a lower average redshift of

0.10.

(2). The Galactic nH: the average Galactic nH is 2.25×1020.

(3). The photon indexes obtained from simple power law fits to the restricted

energy range of 2-10 keV. The NLS1s cluster on the higher photon index side, with

an average of 2.21±0.20, which differs from the sample average of 1.92±0.25 and

the BLS1s’ average of 1.83±0.18. This means that NLS1s tend to have softer X-ray

spectra, which is further confirmed in the following section on the mean SEDs.

(4). The X-ray continuum and 2-10 keV luminosity: this distribution shows that

NLS1s have lower 2-10 keV luminosities in spite of their steeper slopes. We note

that the VF07 sample has a similar distribution, except for their inclusion of three

extremely low X-ray luminosity AGN (i.e. NGC4395, NGC3227 and NGC6814),

these objects were not included in our sample due to our selection criteria and/or a

lack of SDSS spectra.

(5). The optical continuum luminosity at 5100 Å. On average the NLS1 have lower

optical luminosities than BLS1.

(6-8). The [OIII] λ5007, Hα and Hβ emission line luminosities. Again the NLS1s

have on average lower luminosities than BLS1s.

(9). The Balmer decrement. The average value for the whole sample is 3.14±0.62,

and for NLS1s is 3.05±0.38. This difference is not statistically significant, but we

return to the issue in the next chapter, where we consider the separate components

as well as the overall profile.

3.6.2 Results from The Broadband SED Modeling

Figure 3.7 shows properties derived from the SED fits:

(1). The bolometric luminosity: the distribution range is between 1.8×1044ergs s−1

(Mrk 464) and 1.4×1047ergs s−1 (PG 2233+134). There is no clear difference in

the distribution of the complete sample and the sub-set of NLS1s. The average lu-

minosity is Log(Lbol)=45.49±0.55, which is consistent with the value of 45.19±1.01

found in VF07 sample, except for the three extremely nearby and low luminosity
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Figure 3.8: The Balmer line parameter distributions. The first row is for Hα and

the second is for Hβ. We combine the intermediate and broad components in each

Balmer line profile to form the total broad line properties, giving values of the

FWHM, EW and luminosity. The final panel shows the luminosity distribution

of the narrow component for comparison. The distributions for the 12 NLS1s are

indicated by the red regions, as in Figure 3.6.

AGNs in VF07.

(2). The black hole mass: using the best-fit black hole masses, the whole sample

peaks between 107M⊙ and 108M⊙. Equation 3.5 suggests that the black hole mass

should depend on both Hβ FWHM and L5100, and the results from our SED fitting

suggest that NLS1s with smaller Balmer line FWHM do indeed harbour lower mass

black holes. KUG 1034+396 has the lowest black hole mass in our sample. The

value of 1.7×106M⊙ is consistent with the estimate based on the first firmly de-

tected AGN QPO (quasi periodic oscillation) found in this source (Gierliński et al.

2008). Again we can compare our results with those of VF07 sample. We find that

their average black hole mass is 7.89±0.82, calculated using the M(L5100, FWHMHβ)

relation. Adopting this same method for our sample, we find a very similar average

of 7.99±0.93. Our best-fit masses have a slightly lower average value of 7.83±0.64

(also see Section 3.6.5 for a comparison of different estimates of black hole masses).

(3). The Eddington ratio: the average values are 3.21±3.07 for NLS1 which display
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a wide dispersion, and 0.57±0.50 for BLS1 and 0.93±0.85 for the whole sample. Of

the eight objects whose Eddington ratios are above 1, six are NLS1 galaxies, and the

highest value is 14.2 (PG 2233+134). Clearly, NLS1s tend to have larger Eddington

ratios. Our Eddington ratio distribution is also similar to that found in the sample

of VF07 whose average value is 0.47±0.44, except that their distribution has a more

pronounced peak at ∼0.1.

(4). The αox index, is defined between restframe continuum points at 2500 Å and

2 keV (see Lusso et al. 2010 and references therein). The distribution for NLS1 is

peaked at marginally higher values than for BLS1.

(5). The κ2−10 bolometric correction, is defined as Lbol/L2−10 (see VF07 and ref-

erences therein). We find that NLS1s have a significantly higher fraction of their

bolometric luminosity emitted as hard X-rays than the BLS1s. Compared with the

VF07 sample, both distributions peak at κ2−10=10∼30, but our sample shows a

smoother distribution decreasing as κ2−10 increases after ∼30, and so results in a

slightly higher average value of κ2−10.

(6). The intrinsic nH: This distribution shows that the intrinsic equivalent neutral

hydrogen column densities are low for our sample, which is a natural consequence

of our initial sample selection criteria. The NLS1s have slightly higher intrinsic ab-

sorption than BLS1s, which may imply a slightly higher dust reddening. However

the distribution of Balmer decrements shows no significant difference between these

two types of AGNs.

(7). The temperature of the Comptonisation component used to describe the soft

X-ray excess. This is close to 0.2 keV in all objects, confirming the trend seen in

previous studies for this component to exhibit a narrow range of peak energy (Cz-

erny et al. 2003; Gierliński & Done 2004). The distribution peak at this energy

is more marked for the BLS1 than for NLS1, although the small number statistics

means that this difference cannot be considered as definitive for our sample.

(8). The optical depth of the soft excess Comptonised component. It is clear that

this component is always optically thick, with most objects having τ∼10−30. There

is no significant difference in temperature or optical depth between the broad and

narrow line objects.
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(9). There is a difference in the corona radii distribution between the BLS1s and

NLS1s. Corona radius controls the relative amount of power emerging from the

accretion disc and the soft X-ray excess/hard tail. There are two peaks in the distri-

bution for the broad line objects, one between 10 and 20 Rg (where Rg = GM/c2),

and the other at 100 Rg (which is set as the upper limit of this parameter in our

broadband SED model). By contrast these radii in NLS1 are consistent with just

the first peak. At first sight this is surprising, since NLS1 are expected to be those

with the strongest soft X-ray excess. However, their similar soft excess temperatures

around 0.2 keV suggests that atomic processes may be significant (reflection and/or

absorption from partially ionized material), and this may influence our fits. The

average corona radii are 32±26 Rg for NLS1, 59±37 Rg for BLS1 and 53±36 Rg for

the whole sample. This supports the conclusion of VF07 that high Eddington ratio

AGN have lower coronal fractions compared to those with low Eddington ratios.

3.6.3 Balmer Line Parameter Distribution

Figure 3.8 shows further details of the modeled profiles of Hα (first row), and Hβ

(second row).

(1). The FWHM of the broad emission profile. This is calculated from co-adding

the two best fit Gaussian profiles for the broad and intermediate line components,

and then using the resultant profile to determine the FWHM. This is equivalent

to subtracting the narrow line core from the observed profile and measuring the

resultant FWHM.

Note, the NLS1s by definition have Hα < 2000 km s−1.

(2-3). The equivalent widths and line luminosities are again measured using the

total broad emission line profile as above. The NLS1s have both lower equivalent

widths and line luminosities.

(4). By contrast, there is no pronounced difference between NLS1s and BLS1s in

their Balmer narrow line component. This suggests that the narrow line region is

less influenced by whatever difference in properties is responsible for the defining

difference between NLS1s and BLS1s in the broad line region.
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Figure 3.9: The bolometric luminosity distribution for the different continuum com-

ponents of the SED, i.e. accretion disc (green), Comptonisation (orange) and hard

X-ray Comptonisation (blue). The upper left panel shows the percentage within

each luminosity bin for each of these three SED components. The Upper right panel

shows the luminosity distribution of the whole sample, with each bin divided into

three regions according to the fractional contribution from the different components

in that luminosity bin. The lower panel shows how the contribution from each com-

ponent changes as a function of rank order in Hβ FWHM, after the narrow line

component has been removed.

3.6.4 The Bolometric Luminosities

The fraction of the total luminosity contained in each component of the SED model

is shown in Figure 3.9. The upper left panels show these fractions as a function

of the bolometric luminosity. It seems that as the bolometric luminosity increases,

the disc component slightly increases in importance. However, the total numbers of

objects at high luminosities is small, as seen in the upper right panels, where the

fraction is multiplied by the number of objects in the bin, so we should be cautious
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Table 3.4: The average black hole masses, as shown in Figure 3.10.

NLS1 BLS1 ALL

<MBH,IC > 6.58±0.49 8.09±0.56 7.73±0.84

<MBH,BC > 7.72±0.49 9.05±0.55 8.74±0.78

<MBH,IC+BC > 6.75±0.49 8.37±0.65 7.99±0.93

<MBH,σ > 6.57±0.46 7.89±0.47 7.58±0.73

<MBH,FIT > 7.11±0.54 8.05±0.48 7.83±0.64

<MBH,RP > 7.42±0.39 8.44±0.53 8.20±0.66

about this finding.

The lower panel shows this fraction for each of the objects ranking from the

smallest to biggest Hβ FWHM. Thus low rank objects have the narrowest Hβ (and

hence are by definition NLS1s). These also have the lowest black hole masses and

highest Eddington ratios. They are more likely to have a smaller fraction of their

total luminosity emitted in the soft X-ray excess component, than the BLS1s. This

relates to the issue of the corona radii, see Point (9) of Section 3.6.2. There are also

some BLS1s which have an apparently high fraction of power in their soft X-ray

excesses, but they may also have alternative spectral fits including reflection and/or

absorption.

We note that in all these plots the lower limit to the disc fraction of 0.19 results

from setting an upper limit of 100 Rg for the corona radius parameter, as mentioned

in Section 3.5.2

3.6.5 The Black Hole Mass

The black hole mass is one of the key parameters used in our SED fitting, and

it largely determines the continuum shape in the optical/UV region. The masses

derived from reverberation mapping are considered to be the most accurate, but

the total number of objects which have been studied using this technique is still

relatively small (e.g. Peterson et al. 2004; Denney et al. 2010; Bentz et al. 2010).

In the absence of reverberation mapping, the empirical relation between MBH and
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Hβ linewidth and L5100 is often used as a proxy to estimate the black hole mass

(Peterson et al. 2004). A serious limitation of this method is that it is still not clear

which specific measure of the Hβ profile provides the closest association with the

velocity dispersion of the gas in the broad line region.

There are various alternative measures of the velocity width used for determining

the black hole mass, including the FWHMs of the intermediate component (IC) and

the broad component (BC) (e.g. Zhu, Zhang & Tang 2009). One could also use the

model independent second momentum (e.g. Peterson et al. 2004; Bian et al. 2008),

or more simply the FWHM of the Hβ line after subtracting the narrow component

(NC) (e.g. Peterson et al. 2004). The NC subtracted FWHM and the second

momentum estimates often lie within the range of values covered by the IC and BC

FWHMs, except for some peculiar objects such as those with broad double-peaked

profiles, for example UM 269. Given all these uncertainties we decided to adopt the

the best-fit black hole mass obtained from the SED model, rather than simply fixing

it at a value determined from a specific linewidth measurement. Moreover, it is now

suggested that radiation pressure may be important in modifying the black hole

mass derived using the relation between MBH and L5100 and Hβ FWHM, especially

for objects with high Eddington ratios such as most NLS1s (e.g. Marconi et al.

2008).

In order to compare our results with those from other studies, we have made

various estimates of black hole masses for every source in our sample as follows:

(1) MBH,IC , MBH,BC and MBH,IC+BC are derived using Equation 3.5 with different

Hβ FWHMs obtained from our Balmer line fitting procedure.

(2) MBH,σ is the black hole mass calculated from the second momentum of the total

Hβ line profile (see Peterson et al. (2004) for details of the definition of ‘second

momentum’), by using RBLR ∝L0.518
5100 and a geometry factor of f = 3.85. These

assumptions are considered to be appropriate when using second momentum as a

measure of the velocity dispersion in BLR (Bentz et al. 2006; Collin et al. 2006;

Bian et al. 2008).

(3) MBH,RP is the black hole mass corrected for radiation pressure, using equation

(9) in Marconi et al. (2008) with f = 3.1, log(g) = 7.6.
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Figure 3.10: A comparison of various methods used to derive black hole mass. The

total distributions are shown with the 12 NLS1s show by the red regions. The purple

dashed line indicate the average black hole mass for the whole sample. The orange

and cyan dotted lines indicate the average masses of NLS1s and BLS1s, respectively.

The average values are listed in Table 3.4. Values for individual objects are listed

in Table B.2.
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We compare the black hole mass distributions obtained from these different methods

in Figure 3.10. The mean values are listed in Table 3.4.

The MBH,IC and MBH,BC represent the two extreme estimates of black hole

masses. The MBH,IC could still be influenced by contamination from a NLR compo-

nent, especially for NLS1s where deconvolution of the narrow and broad components

is very difficult. If there is a residual narrow line component, it will introduce a bias

that underestimates black hole masses. Conversely, using MBH,BC is more likely

to bias towards higher black hole masses, due to the presence of low contrast very

broad wings often seen in Hβ profiles. We found FWHMIC+BC/σHβ=1.30±0.39 for

our sample, which is consistent with 1.33±0.36 found by Bian et al. (2008). This

leads to slightly lower values of MBH,σ than MBH,IC+BC , but these two methods both

give black hole masses between MBH,IC and MBH,BC , with MBH,IC+BC spanning a

broader mass range.

Our best-fit SED black hole masses (MBH,FIT ) are also distributed between

MBH,IC and MBH,BC , with similar average masses as MBH,IC+BC (a comparison

is shown in Figure 3.11 Panel-A). Note that MBH,FIT is a free parameter in the SED

fitting unless it hits the lower or upper limits set by MBH,IC and MBH,BC , which

occasionally happened (see Table B.2). It is clearly shown in Figure 3.11 that the

black hole masses from the SED fitting are not consistent with estimates based on

either extremely narrow or extremely broad lines. So for NLS1s, the mean MBH,FIT

is 0.36 dex higher than MBH,IC+BC ; while for BLS1s, the mean MBH,FIT is 0.22

dex lower than MBH,IC+BC . Interestingly, this also implies that the MBH,FIT of

NLS1s may have less deviation from the established M-σ∗ relation than that using

the M(L5100, FWHMHβ) relation as shown in several previous studies (e.g. Wang &

Lu 2001; Bian & Zhao 2004; Zhou et al. 2006).

The situation may be further complicated as Marconi et al. (2008) showed

that NLS1s could be consistent with the M-σ∗ relation if a correction for radiation

pressure is applied to black hole masses derived from M(L5100, FWHMHβ). In our

sample, correction for radiation pressure adds to the average MBH,IC+BC by 0.67 dex

for NLS1, 0.07 dex for BLS1 and 0.21 dex for the whole sample. We also found a

very similar mass distribution between MBH,RP and MBH,FIT , except for an average
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Figure 3.11: Correlations of best-fit black hole mass (‘MBH -Fitting’ or ‘MBH,FIT ’)

vs. Hβ FWHM determined black hole mass (‘MBH -Hβ FWHM’ or ‘MBH,IC+BC ’)

and vs. radiation pressure corrected black hole mass (‘MBH -Radiation Pressure’

or ‘MBH,RP ’). Red points represent the 12 NLS1s. The inserted panel in panel-A

shows the distribution of the mass difference between MBH,IC+BC and MBH,FIT ,

while the inserted panel in panel-B shows the distribution of the mass difference

between MBH,RP and MBH,FIT . Red regions highlight the distribution of NLS1s.

of 0.36 dex higher in MBH,RP . The differences between the average mass of NLS1s

and BLS1s are 0.78 dex and 0.72 dex in MBH,RP and MBH,FIT , respectively (see

Figure 3.11 Panel-B). Therefore, if MBH,RP can provide a good match to the M-

Sigma relation even down to low mass NLS1s as proposed by Marconi et al. (2008),

then our SED determined MBH,FIT may also give similar results. This implies that

the suggested deviation from the M-σ∗ relation for NLS1s may not be an intrinsic

property, but rather a consequence of using black hole estimates based on M(L5100,

FWHMHβ) relation, which may not be appropriate for NLS1s (e.g. Grupe & Mathur

2004; Komossa 2008).
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3.6.6 The Average SEDs

Elvis et al. (1994) constructed SED templates for both radio-loud and radio-quiet

AGN, based on a sample of 47 quasars between redshift 0.025 and 0.94. VF07

modeled optical-to-X-ray SED for a sample of 54 AGNs with redshifts between

0.001 and 0.371, and showed that the SED was related to Eddington ratio. They

also suggested that κ2−10keV is well correlated with Eddington ratio. In a later study

(Vasudevan & Fabian 2009) based on SED modeling of 29 local AGNs from Peterson

et al. (2004), the SED dependence on Eddington ratio was reinforced. Recently,

Lusso et al. (2010) studied 545 X-ray selected type 1 AGN over the redshift range

of 0.04 to 4.25. They computed SEDs at different redshifts, and investigated αox

correlations with other parameters such as redshift, κ2−10keV , λEdd etc.

We present a mean SED for our sample which is sub-divided according to their

Hβ FWHM. This gave three sub-samples, those with the narrowest lines, those

with moderately broad lines, and those with very broad lines. All objects were de-

redshifted to their local frame. First, each of the best-fit SEDs was divided into

450 energy bins between 1 eV and 100 keV. For each energy bin we calculated the

monochromatic luminosity for the sub-sample with 12 NLS1s, using their individual

SED models. Then an average value and standard deviation in each energy bin were

calculated in logarithm space. Thus a mean SED for the 12 NLS1s was constructed.

Using the same method for the 12 moderate and 12 broadest line objects, their mean

SEDs were produced. The total SED energy range is 1 eV to 100 keV, but we note

that only spectral ranges from 1.5-6 eV and 0.3-10 keV are actually covered by the

observational data, and all other ranges are based on model extrapolations.

Obviously, limitations of our mean SEDs include the relatively small sample sizes

comprising the SEDs, and the redshift restriction z < 0.4. On the other hand, we

have assembled high quality data sets of optical, UV and X-ray observations. The

exclusion of objects with high intrinsic absorption in the optical/UV helps to sim-

plify the modeling assumptions. Our exclusion of warm-absorber objects may have

introduced unknown selection effects, but again this simplified the SED modeling.

Our model of the accretion flow also includes more detailed physical assumptions
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on the optical-to-X-ray spectrum than in previous broadband SED studies. These

advantages make our broadband SED fitting more physically plausible. Thus our

mean SEDs too should be more reliable, especially in the unobservable far UV re-

gion, where often the peak of the energy is emitted.

Figure 3.12 shows the mean SEDs for the three subsets of our sample. We

caution that there is still substantial spectral diversity within each subsample, and

echo Elvis et al. (1994)’s warning that if AGN SEDs are simply averaged without

considering their detailed intrinsic properties, then the dispersion in the resultant

mean SED will be large, so the mean SED may lose some useful information about

AGN properties. Nevertheless, there appears to be a clear SED connection with

Hβ FWHM. As the line width increases, so the big blue bump (BBB) in the UV

region becomes weaker relative to the hard X-rays, and its peak shifts towards lower

energy. Also the spectral slope at high energies becomes harder.

This evolution in spectral shape is similar to that found by VF07 and Vasudevan

& Fabian (2009), in which two mean SEDs of different mean Eddington ratio were

compared. This relation might be expected since the FWHM and Eddington ratio

are also strongly (anti)correlated in our sample. VF07 interpreted the spectral

diversity as a scaled up version of the different accretion states of Galactic black

hole binaries. The low Eddington ratio AGN could be analogous to the low/hard

state in black hole binaries in having a weak disc giving a strong high energy tail,

and the high Eddington ratio sources are analogous to the high/soft state, in which

the disc emission dominates. Our SED templates do not extend down to such low

Eddington ratios as in VF07, but we still see a similar behaviour.
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Figure 3.12: The average SED of our sample. The panel on the left shows the averaged SED for the 12 NLS1s (including two marginal NLS1s, 2XMM

112328.0+052823 and 1E 1346+26.7). The average Hβ FWHM is 1400 ± 500 km s−1. The red area indicates a one standard deviation region on either

side of the average spectrum. The central panel is for 12 objects with moderate line width. The average FWHM is 3700 ± 600 km s−1. The green region

indicates one standard deviation. The panel on the right is the mean SED for the 12 broadest line objects in our sample, including the one double-peak

source. The average FWHM is 9800 ± 2900 km s−1. We also show the average value of the 2-10 keV power-law photon index, the 2-10 keV bolometric

correction, and the αox value with a one sigma error. DL on the Y-axis title is the luminosity distance. The unit of Y-axis is ‘keV (ergs s−1 keV−1)’ in

logarithm. The same arbitrary constant of 1.31×10−46 is used for rescaling each plot.
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3.7 Summary and Conclusions

In this chapter we presented a spectral study of 51 unobscured Type 1 AGNs,

including 12 NLS1s. We assembled X-ray data from the EPIC monitor on board the

XMM-Newton satellite, and optical data from the SDSS DR7. In addition we added

optical/UV data from the XMM-Newton OM monitor when available. Our results

confirm some previously known correlations. For example, NLS1s often have softer

power-law fits from 2-10 keV, and have lower 2-10 keV luminosities. Their Hα, Hβ

and [OIII]λ5007 lines are also less luminous on average than found in BLS1s.

• We use detailed models to fit the Hα and Hβ line profiles, with multi-

components to deblend the narrow, intermediate and broad components by means

of simultaneous modeling of the FeII continuum and other blended lines. We then

use results from the Hβ line fitting to constrain the black hole mass. The FWHM

of the intermediate and broad components give a lower and upper limit for the

mass, respectively. This supports previous studies which find that NLS1s tend to

have lower black hole masses and higher Eddington ratios, although their bolometric

luminosities are not significantly different from those of BLS1s.

• We include the Balmer continuum and permitted iron emission, and extend

the modeling across the entire SDSS spectrum in order to isolate the intrinsic opti-

cal underlying continuum. However, this pure optical continuum is often (in 32/51

objects) flatter than is predicted by the standard accretion disc model. This could

indicate some contamination from the host galaxy, but the lack of stellar absorption

features in most of the SDSS spectra suggests that this cannot be a general expla-

nation. Instead it seems more likely that there is an additional component in the

optical region related to the AGN, which is as yet not well understood.

• We also show that the Balmer continuum is not well modeled if the edge

wavelength is fixed at its laboratory value of 3646Å. It is shifted redwards, and

smoothed by more than predicted by the FWHM of the Balmer emission lines.

These effects could both be produced by density broadening. Potentially more

detailed models of the optical emission could employ this as a new diagnostic tool

for studying the physical conditions e.g. electron density and temperature, in the
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innermost Balmer emitting regions.

• The optical, UV and X-ray data were fitted using a new broadband SED model

(optxagn in Xspec v12), which assumes that the gravitational potential energy is

emitted as optically thick blackbody emission at each radius down to some specific

corona radius. Below this radius the remaining energy down to the last stable

orbit is divided between a soft X-ray excess component and a hard X-ray tail. This

energetically constrains the model fits in the unobservable EUV region. We construct

the resulting SEDs for each of the sources.

• A multi-component decomposition of the broadband SED shows that relative

contributions to the bolometric luminosity from the accretion disc, Compotonisation

and power law components vary among sources with different luminosity and Hβ

linewidth. We find a slight increase in contribution from the accretion disc as the

luminosity increases, but a larger sample with more sources at both low and high

luminosities is needed to confirm this.

• Our study also supports the distinctiveness of the NLS1s among the whole

sample. We find that NLS1s tend to have a softer 2-10 keV spectrum, lower 2-10

keV luminosity, lower black hole mass, higher Eddington ratio and higher αox index.

However NLS1s do not stand out from the whole sample in terms of their bolometric

luminosity distribution. We estimate the corona radii for every AGN in our sample

from the SED fitting. This shows that on average NLS1s have smaller corona radii,

and correspondingly a smaller coronal component contribution.

• We compare the best-fit black hole masses with those corrected for radiation

pressure, and other estimates of black hole mass based on the RBLR-L5100 relation,

including numerous options for measuring the velocity width of the Hβ emission

line. These results show that the black holes masses derived from SED fitting have

a similar distribution to that derived from profiles corrected for radiation pressure

effects, except for an offset of 0.3 dex lower in both the NLS1 and BLS1 subsamples.

The black hole mass difference between NLS1s and BLS1s from these two methods

(i.e. SED fitting and radiation pressure corrected profiles) are both smaller than

inferred from other mass measurements. This implies that compared with black

hole mass estimates based only on the Hβ FWHM, NLS1s may lie closer to the



3. Type 1 AGN Study - I. Optical and Broadband SED Modeling 111

established M-σ∗ relation at the low mass end, when their black hole masses are

corrected for radiation pressure, and when we use masses derived from our SED

fitting.

• Finally, we form three broadband SED templates by co-adding SEDs in three

subsamples (consist of 12 objects in each) to examine how the broadband SED

depends on Hβ FWHM velocity width, and by extending the Eddington ratio. The

results show that there is a change in the SED shape as the FWHM increases,

with NLS1s having the largest big blue bump in the extreme-UV region. Other

important parameters such as Γ2−10keV , κ2−10keV and αox, also change as the Hβ

FWHM increases. The implications of correlations among these parameters will be

discussed in Chapter 5.
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Chapter 4
Type 1 AGN Study - II.

X-ray and Optical

Spectral Relation

4.1 Introduction

In Chapter 3, we presented modelling results for a sample of 51 unobscured nearby

Type 1 AGNs. From the spectral fitting we derived numerous spectral parameters

that were not contaminated by X-ray or optical obscuration. In this chapter, we aim

to investigate the link between the central ionization flux characterized by the un-

obscured hard X-ray, and the properties of the various optical emission lines and the

continuum. We conduct this investigation by studying the profile of various emis-

sion lines, and the luminosity correlations between hard X-ray and various optical

emission features, making use of the spectral fitting results in Chapter 3.

Narrow Line Seyfert 1s (NLS1s) are often considered as a special type of AGN

whose permitted line width is comparable to other forbidden lines, and their [OIII]

λ5007/Hβ flux ratio is lower than is typical of normal Seyfert 1s (Shuder & Oster-

brock 1981; Osterbrock & Pogge 1985). We have shown in Chapter 3 that NLS1s

were often found to have low black hole masses (e.g. Wang & Lu 2001; Bian &

Zhao 2004; Zhou et al. 2006; Komossa & Xu 2007; Zhu, Zhang & Tang 2009,

hereafter: Zhu09). These may be systematically lower than predicted by the M-σ∗

relation which holds well for BLS1s (Grupe & Mathur 2004; Mathur & Grupe 2005).

The NLS1s also have high Eddington ratios (Boroson 2002; Komossa 2008). It is

thus proposed that NLS1’s central black hole may still be growing (e.g. Mathur,

113



4. Type 1 AGN Study - II. X-ray and Optical Spectral Relation 114

Kuraszkiewicz, & Czerny 2001; Komossa & Mathur 2001; Komossa 2008). In addi-

tion, NLS1s have softer 2-10 keV spectra, lower 2-10 keV luminosities, higher αox

values and more energetic BBB (see Chapter 3 and references therein). In this chap-

ter, we continue to pay special attention to the NLS1 subset in our sample and show

how they behave differently from other sources in the cross-correlation study.

This chapter is organized as follows. We first review some most important char-

acteristics of the sample in Section 2, in order to emphasize that our study con-

ducted in the following sections should be related to the most intrinsic properties

of AGN’s bare core. Section 3 will present the ‘Optical to X-ray Correlation Spec-

trum (OXCS)’ based on our new ‘Correlation Spectrum Technique (CST)’, from

which various correlation features related to the hard X-ray luminosity are found

in the optical spectrum. Section 4 will study the cross-correlation between differ-

ent Balmer line components and broadband SED components. Section 5 will focus

on correlations related to the Balmer line equivalent width (EW). Section 6 will

study the physical properties of different Balmer emission line regions. [OIII] λ5007

line’s property and its correlation with different SED components are put in Sec-

tion 7. Summary and conclusion will be made in Section 8. Following Chapter 3,

flat universe model is adopted with the Hubble constant H0 = 72 km s−1 Mpc−1,

ΩM = 0.27 and ΩΛ = 0.73. All the results presented in this chapter has been

submitted to MNRAS as Jin et al. (2012a).

4.2 The Sample and The Spectral Modelling

4.2.1 Sample Selection

The sample used in this chapter is a nearby unobscured Type 1 AGN sample derived

from the cross-correlation of 2XMMi & SDSS DR7 catalogs. The main selection

steps are listed below for completeness. A full source list and more detailed expla-

nation of the sample selection can be found in Chapter 3.

(1) We searched 2XMMi and SDSS DR7 catalogs and identified 3342 extragalactic

sources with both X-ray and optical spectra.
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Figure 4.1: Examples of spectral fitting in Chapter 3. Left panel shows the broad-

band SED fitting of PG 1115+407 which consists of a modified accretion disc (green

dashed line), a soft X-ray Comptonisation (orange dotted line) for the soft X-ray

excess and a hard X-ray Comptonisation (blue dash-dotted line) for the hard X-ray

power law tail. Right panel shows the emission line fittings of RBS 1423 around Hα

and Hβ. Blue solid lines represent different line components.

(2) Within these sources, we selected those with Hβ in emission and redshift z < 0.4,

so that both the Hα and Hβ emission lines are covered by the SDSS spectra. This

assists on the modelling of the Balmer lines (see Chapter 3). This selection resulted

in 802 unique X-ray sources.

(3) Within this sample set, we identified 96 Type 1 AGNs with a minimum of 2000

counts in at least one of the three XMM-Newton EPIC cameras, to ensure high

X-ray spectral quality.

(4) We then excluded 23 sources whose Hβ line was distorted due to strong redden-

ing, low S/N or bad data gap in the SDSS spectra, so the remaining sample contains

73 AGNs.

(5) For each of the 73 sources, a power law model was fitted to the rest-frame 2-10

keV X-ray spectra. 16 objects with photon index uncertainties greater than 0.5 were

thereby excluded, leaving 57 Type 1 AGNs with relatively well constrained 2-10 keV

spectra.
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(6) Another 6 objects were excluded due to the obvious signature of warm absorp-

tion at ∼0.7 keV.

The final sample contains 51 AGNs with 12 AGNs being classified as NLS1 using

the conventional definition (Goodrich 1989), while the others are all BLS1s. Most

objects in this sample are radio quiet, except for 3 sources that were reported as

radio loud, i.e. PG 1004+130, RBS 0875 and PG 1512+370. High quality XMM-

Newton EPIC X-ray spectra and SDSS optical spectra are available for every source

in this sample. In addition, simultaneous optical/UV photometric data from the

XMM-Newton OM monitor are available for 37 sources.

We exclude PG 1004+130 from all correlations as it is a BAL quasar, so its X-ray

flux is likely to be heavily obscured even though it does not show clear evidence for

absorption edges (Miller et al. 2006). We also exclude Mrk 110 from the optical

correlations (Sections 3, 4 and 5) as this shows strong optical variability (Kollatschny

et al. 2001; Kollatschny 2003) and the SDSS spectrum is very different from the

(non-simultaneous) XMM-Newton OM data (see Chapter 3). However, the [OIII]

line luminosity does not change with the optical continuum, so we include this object

in the [OIII] versus broad band SED correlations in Section 7.

4.2.2 Selection Bias

Our sample distributes evenly within 0.031 < z < 0.377 with a mean redshift

< z >= 0.137+0.158
−0.073. Its selection is mainly based on both high quality optical and X-

ray spectra, thus any AGN that was not detected or only marginal detected by SDSS

or XMM-Newton would not be included in the sample, i.e. sources with low mass

accretion rate or strong obscuration were excluded. Further selection criteria are

more related to specific spectral characteristics, such as excluding objects with heavy

optical reddening, Type 2 objects and X-ray warm absorber objects. Therefore it will

be hard to directly estimate the bias due to these selection effects. However, we could

compare our sample’s general properties with previous samples. We found that our

sample had very similar redshift, 2-10 keV luminosity and bolometric luminosity

distributions as Vasudevan & Fabian (2007)’s sample (hereafter: VF07), except
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that VF07’s sample also includes some extremely nearby and low X-ray luminosity

sources such as NGC 4395, NGC 3227 and NGC 6814, which did not fall into

our sample. The redshift distribution of our sample is also similar as Grupe et

al. (2010), except that their sample has a bigger fraction of lower redshift sources

(< z >= 0.112 ± 0.077). The selection effect regarding the broadband SED shape

should be weak, which is because the broadband SEDs of our sample have shown

a very strong shape diversity, with the intrinsic optical to X-ray spectral index

αox ranges 1∼2. It is true that any objects with extraordinary optical to X-ray

luminosity ratios would not be included in our sample. But such odd broadband

SEDs are more likely due to optical or X-ray obscuration, rather than being intrinsic

to AGN, thus they are no longer the type of unobscured sources we need in this

sample.

4.2.3 Major Sample Properties

The most important characteristic of this particular sample is the high quality of

both their optical and X-ray spectra. In the optical, none of these sources suffer

strong dust reddening, thus all sources have very clear optical underlying continuum

superposed by a series of clear broad and narrow emission lines. In the X-ray our

selection criteria have excluded sources whose spectra from XMM-Newton have low

signal to noise or contain strong warm absorber features (i.e. the absorption edge

at ∼0.7 keV, from combined absorption features from partially ionized Oxygen and

Iron, see e.g. Lee et al. 2001; Turner et al. 2004). The rest of the sources all

have high quality X-ray spectra which represent the emission from the AGN’s core

emission.

4.2.4 The Spectral Modelling

Another important characteristic is the availability of all important spectral param-

eters from optical to X-ray for the whole sample, which results from our thorough

modelling of the multi-component Balmer lines, optical spectrum and broadband

SED.
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In the emission line fitting (e.g. Figure 4.1 right panel), two Gaussian compo-

nents were used to fit the [OIII] λ5007 line, i.e. a central component and a blue

component. Then the whole profile of [OIII] λ5007, i.e. including both central and

blue components, was used in the fitting of the narrow component of Balmer lines.

Two additional Gaussian profiles were included in fitting each of the Hα and Hβ

lines, so that each line contains a narrow component (NC), an intermediate compo-

nent (IC) and a broad component (BC). All other strong nearby emission lines, e.g.

[NII] λλ6585/6548 doublets, Li λ6708, [SII] λλ6717/6734, are included by adding

more Gaussian profiles into the whole model. Various constrains were set for these

Gaussian components which are all described in Chapter 3.

In the broadband SED fitting (e.g. Figure 4.1 left panel), we made use of a

new SED model (optxagn model in Xspec v12: Done et al. 2011), which modifies

the accretion disc emission (the green dashed line) by assuming a corona radius

within which all accretion disc emission is transferred to a soft X-ray Comptonisation

component (the orange dotted line) to account for the observed soft X-ray excess,

plus a hard X-ray Comptonisation component (the blue dash-dotted line) to model

the hard X-ray power law tail. We rebuilt the broadband SED from the optical

to hard X-ray by extrapolating the best-fit model over the unobservable UV/soft

X-ray region, and then derived all the SED parameters. Detailed descriptions of

these spectral fitting can be found in Chapter 3.

4.3 The Optical to X-ray Correlation Spectrum

(OXCS)

4.3.1 The Motivation of OXCS

The hard X-ray emission from AGN rises from Compton up-scattering of disc pho-

tons by a high temperature (100s of keV) electron population which forms a corona

region located above the accretion disc. Although this hard X-ray emission may

only contribute a small fraction of the total central ionizing flux (depending on the

corona radius, see Chapter 3), it is capable of penetrating deeply into the most dense
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gas regions near AGN’s core, which emits some specific line species. Provided that

the intrinsic hard X-ray emission is not heavily absorbed and the optical spectrum is

not heavily reddened, we can identify those optical emission features closely linked

with the high energy core emission by testing their correlation with the hard X-ray.

As noted above, our sample was selected based on the unobscured nature of both

the optical and X-ray spectra, so the hard X-ray luminosity can be used as a reliable

diagnostic to investigate its relation to the optical spectral properties. Here we pro-

pose and test a new type of spectrum, the ‘Optical to X-ray Correlation Spectrum

(OXCS)’ (see Figure 4.2). This is a direct extension of previous monochromatic

luminosity correlation studies between X-ray and optical e.g. L2keV vs. L
2500Å

(e.g.

Green et al. 2009; Lusso et al. 2010).

4.3.2 Construction of OXCS

The principle behind the OXCS is to cross-correlate the hard X-ray luminosity (here

we choose the luminosity of 2-10 keV: L2−10keV ) with the monochromatic luminosities

at each wavelength of the optical spectrum for the whole sample of objects. Then

we plot the correlation coefficient against the wavelength, to see how the correlation

changes with wavelength. For each source in the sample, we corrected the SDSS

spectra for Galactic reddening and de-redshifted them to their rest frame. We define

a standard optical spectral region that is covered by the SDSS spectrum of every

source (around 3700-6700Å), and calculate the monochromatic luminosity at 1000

wavelengths distributed evenly across this spectral range. The Spearman’s rank test

was used to cross-correlate these monochromatic luminosities with L2−10keV , and so

the Spearman’s ρ coefficient was derived at each of the 1000 wavelengths. Figure 4.2

plots the Spearman’s ρ coefficient against the wavelength for the 12 NLS1 (red line)

and 37 BLS1 (blue line). The wavelengths of some of the most prominent optical

emission and absorption features in a typical AGN spectrum are indicated in the

plot. Note that the spectral coverage is not exactly the same for different OXCS

subsets, because these subsets have slightly different redshift ranges.



4. Type 1 AGN Study - II. X-ray and Optical Spectral Relation 120

Figure 4.2: The OXCSs for our sample, the method of constructing them is described

in Section 4.3.2. The red line is the OXCS for the 12 NLS1s in our sample. The

blue line is the OXCS for the 37 BLS1s in our sample. Purple and cyan dotted lines

indicate the wavelengths of some most prominent optical emission lines for a typical

AGN, with cyan lines indicating the weaker line of any doublets. Green dotted lines

indicates the wavelengths of Mg b and Na D stellar absorption features. ‘(NC)’ is

the narrow component, while ‘(BC)’ is the broad component. The dashed region of

Hα(BC) means that this region is not covered by the BLS1 OXCS.



4. Type 1 AGN Study - II. X-ray and Optical Spectral Relation 121

4.3.3 Correlation Features

Within the limited wavelength range of OXCS, the underlying continuum correlation

would not be expected to change significantly, and so it forms a basic correlation

level that is relatively flat in OXCS. Superposed on this basic correlation continuum

there are various emission and absorption-line-like features, which shows that those

lines have stronger or weaker correlation with L2−10keV than the underlying contin-

uum. We identify some of the most noticeable characteristics in the OXCSs as below:

(1) L2−10keV emission correlates well with the entire optical underlying continuum.

The underlying correlation is ∼0.8 in the BLS1 OXCS, and ∼0.9 in the NLS1 OXCS.

A noticeable phenomena is that the underlying correlation does not decrease signifi-

cantly towards either the blue or red end of the optical spectral range. This confirms

that our sample suffers little intrinsic reddening, and that the optical continua red-

ward of 5000Å are dominated by AGN emission, i.e. the host galaxy contamination

is small in most cases. There is also suggestions about the existence of an extra

component contributing optical emission at redward of 5000Å, which is probably

originated from the self-gravity dominated region of accretion disc (Vanden Berk

et al. 2001; Collin & Huré 2001; Puchnarewicz et al. 2001; Soria & Puchnarewicz

2002; Pierens, Huré & Kawagushi 2003; Collin & Kawaguchi 2004; Hao et al. 2010;

but see Landt et al. 2011). But we find it difficult to investigate this component

merely using SDSS spectra due to the difficulties in accurately subtracting the host

galaxy emission.

(2) In the BLS1 OXCS, the broad wings of Hα and Hβ correlate better with L2−10keV

than the optical continuum, and so result in the apparent broad-wing-like features

around 4860Å and 6565Å. However, the core region of Balmer lines has a much

weaker correlation with L2−10keV as shown by the two narrow correlation dips cen-

tred at 4862.68Å and 6564.61Å in the OXCSs. This directly shows that the Balmer

lines in BLS1s consist of (at least) two components, from the NLR and BLR of differ-

ent physical conditions. We will investigate this issue further in later sections. The

[OIII] λλ4959/5007 doublets in BLS1s show a very strong correlation with L2−10keV ,
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in spite that the [OIII] λλ4959/5007 originates in the NLR far from AGN’s core. We

will investigate this in more detail in Section 4.7. The Balmer line profile in NLS1s

is not strongly broadened, so the NLS1 OXCS does not exhibit similar correlation

bumps around Balmer lines as in the BLS1 OXCS. In contrast to the BLS1s, the

[OIII] λλ4959/5007 in NLS1s also have much weaker correlation with L2−10keV than

their local optical continuum.

(3) The BLS1 OXCS also exhibit emission-line-like features at the wavelengths

of some other emission lines in a typical BLS1 optical spectrum, such as [NeIII]

λλ3869/3967, [OI] λλ6300/6364 and [OII] λλ3726/3729. This suggests that these

emission lines all correlate strongly with the hard X-rays. However, [OI] λ6300 is a

relatively weak line, and its prominence in the OXCS may support the existence of

dense gas clouds near AGN’s core inside which gas stays neutral or at low ionization.

Only hard X-rays can penetrate into these clouds and produce such low ionization

lines. The fact that [OII] λλ3726/3729 correlates quite well with L2−10keV suggests

that reddening is indeed quite low for our sample, since otherwise the presence of

dust would tend to diminish any correlation. It is apparent that in terms of the

OXCS around emission lines, the NLS1s are different from BLS1s. This may be a

result of geometrical effects, or that the line emitting regions in NLS1s are not as

closely associated with hard X-ray emission as in the BLS1s.

(4) On the contrary, it is seen that the stellar absorption lines Mg b and Na D do

not correlate well with L2−10keV , producing absorption-like features in the OXCSs.

Neither does FeII emission in the ranges 4400-4800 Å and 5100-5600 Å correlate

with L2−10keV , especially for BLS1s.

4.3.4 The Correlation Spectrum Technique (CST)

More generally, the OXCS provides a new tool for spectral studies based on medium

to large samples of objects. We will name this the ‘Correlation Spectrum Technique

(CST)’. As shown above, an example of the CST is the OXCS, which has proved to
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be useful for investigating hard X-ray related correlations in the optical spectrum

for different AGN populations.

Using hard X-ray as a diagnostic, we can also apply the CST to spectra of longer

wavelengths such as near and far infrared, provided that an AGN sample with good

spectral data is available. We can also use luminosities other than hard X-ray as the

diagnostic in CST. For example, in Section 4.7.2 we constructed the ‘SED to [OIII]

λ5007 Correlation Spectrum (SOCS)’, in which case the CST uses the luminosity

of [OIII] λ5007 to produce the correlation spectrum from optical to hard X-ray for

different sample subsets.

4.4 Balmer Line Luminosity

For Type 1 AGN, each Balmer line profile consists of two to three distinct com-

ponents, i.e. narrow component (NC) from the narrow line region (NLR) which

extends a few hundred parsecs from the central black hole (e.g. Bennert et al. 2006;

Heckman et al. 2005), broad component (BC) from the broad line region (BLR)

which is tens of light-days from the black hole (e.g. Kaspi et al. 2005; Bentz et al.

2006). Sometimes another intermediate component (IC) is present, with moderate

linewidth which is probably originated from the intermediate line region (ILR) which

may extend up to the region of the inner radius of the dusty torus (e.g. Zhu09).

Therefore the distance of these line emitting regions from the compact AGN goes as

NLR, ILR, BLR from the farthest to the closest. Among these emission line regions

we may also expect a density gradient and a correlation trend with the central ioniz-

ing flux. The correlation between the Balmer line luminosity and X-ray luminosity

has been known long ago (e.g. Ward et al. 1988), but the hard X-ray correlations

for different Balmer line components have never been studied. Now our sample with

both high quality optical and X-ray spectra provides an opportunity for this study.

4.4.1 Balmer Line Component Luminosity vs. L2−10keV

We have shown in the previous section that different components in the Hα and

Hβ lines may have different correlation status with L2−10keV . In this section we
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Figure 4.3: The luminosity correlation between Balmer line components and 2-10

keV. The upper figure shows Hβ luminosity (NC subtracted) vs. L2−10keV . The con-

nected filled and empty purple stars indicate the position of PG 1004+130 before and

after being corrected for the 0.73 dex (Miller et al. 2006). The connected filled and

empty green circles indicate different optical positions of Mrk 110 as calculated from

the SDSS spectrum and the FAST spectrum (Landt et al. 2011). The solid orange

line shows the linear regression line treating L2−10keV as the independent variable,

with the two dashed orange lines indicating the ±1σ region for new observations,

and the shaded region showing the ±2σ region. The lower panels present the same

type of correlations for different Hβ components, i.e. Hβ NC, IC, BC, IC+BC (or

NC-sub) and the whole line. In each plot, Spearman’s rank coefficients were cal-

culated after excluding PG 1004+130 and Mrk 110. The regression coefficients are

listed in Table C.2.
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Figure 4.4: The luminosity correlations between Hβ IC+BC and broadband SED

components. ‘Corona’ means the coronal luminosity, which is the sum of the lumi-

nosities of the soft and hard X-ray Comptonisation components. Different symbols

represent different type of sources as explained in Figure 4.3. In each panel the

Spearman’s rank coefficient is given, along with the orange dotted line indicating

the bisector regression line.

investigate the correlation of L2−10keV with the individual components (Narrow, In-

termediate and Broad) derived from our Balmer line decompositions for each source

in Chapter 3. The best correlation is for L2−10keV vs. Hβ IC+BC (i.e. the combi-

nation of NC and BC, equivalent to NC subtracted Hβ) luminosity, shown in the

upper panel in Figure 4.3. NLS1 (red squares) and BLS1 (blue circles) clearly lie on

the same strong correlation. Spearman’s rank test gives a correlation coefficient of

ρs = 0.9 and probability of random distribution of ds = 8.1 × 10−19.

We also plot the uncorrected data from our two excluded sources (PG 1004+130:

purple star and Mrk 110: green circle) on the correlation. These strongly deviate

from the best-fit line (orange solid line), the ±1σ lines (orange dash lines) and the

±2σ region (light gray region). However, PG 1004+130 is the only BAL quasar in

our sample, whose X-ray was reported as being 0.73 dex weaker than normal PG

RLQs after correcting for intrinsic absorption and normalizing to similar optical/UV

luminosities (Miller et al. 2006). Mrk 110’s optical continuum is highly variable

(Kollatschny et al. 2001; Kollatschny 2003). The SDSS spectrum of Mrk 110 is ∼1

order of magnitude less luminous than the FAST optical spectrum (Landt et al.

2011), which is just the required amount of correction we need to pull Mrk 110 back

onto the best-fit correlation line. Therefore, we conclude that this tight correlation
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between Hβ IC+BC luminosity and 2-10 keV luminosity is an intrinsic property.

We propose that if an AGN is found to strongly deviate from this correlation, then

it is likely that its X-ray or optical emission is obscured.

We calculated three types of regression lines as described in Isobe et al. (1990).

Since Hα also gives similar results (see Table 4.1), we give bisector regression equa-

tions for both Hβ and Hα:

(i) L2−10keV expressed by the Balmer line Luminosities:

LogL2−10 = (0.83±0.03)LogLHα(NCsub) + (8.35±1.43) (4.1)

LogL2−10 = (0.83±0.04)LogLHβ(NCsub) + (8.56±1.52) (4.2)

(ii) Balmer line Luminosities expressed by L2−10keV :

LogLHα(NCsub) = (1.20±0.05)LogL2−10 − (9.50±2.09) (4.3)

LogLHβ(NCsub) = (1.18±0.04)LogL2−10 − (9.17±2.04) (4.4)

Using the above equations we estimate that PG 1004+130’s X-ray luminosity is

weaker than normal Type 1 AGNs by 1.0±0.3 dex, which is slightly higher than

Miller et al. (2006)’s estimation of 0.73 dex weaker than normal PG radio-loud

quasars with similar optical/UV luminosities based on their X-ray spectral analysis.

The lower panels in Figure 4.3 show the (weaker but still very significant) cor-

relations for the different line components. It is clear that the BC has the best

correlation with hard X-ray emission as found previously; IC+BC and the whole

Hβ line also show good correlations; the NC related correlations are not as good

as others. This confirms that the BLR has the closest link with the AGN’s central

X-ray continuum.

We note that the well-known Malmquist bias (Gonzalez & Faber 1997, and ref-

erences therein) will be partly responsible for these correlations, but it should affect

all of the correlations equally. Hence the change in correlation strengths among

the different Balmer line components should be real. We also examined these cor-

relations using flux instead of luminosity, and a very similar trend of strength of

correlation was found for NC, IC and BC. Note that the components in Hα show

similar correlation status as in Hβ (see Table 4.1).
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Table 4.1: The luminosity correlations between Balmer line compo-

nents and 2-10 keV. The Bisector regression coefficients in the equation:

Log(LBalmerLine)=β0Log(L2−10keV )+ξ0 are listed, along with the Spearman’s

rank correlation coefficients (ρs, ds) as defined in Table C.2.

Line Comp. Bisector Regress Coef. Rank Cor.

Hα β0 ξ0 ρs ds

NC vs. L2−10keV 1.00±0.06 -2.01±3.28 0.76 -10

IC vs. L2−10keV 1.18±0.05 -9.00±2.26 0.92 -20

BC vs. L2−10keV 1.23±0.05 -11.51±2.19 0.93 -22

IC+BC vs. L2−10keV

(i.e. NC-sub) 1.20±0.05 -9.50±2.09 0.94 -22

Whole vs. L2−10keV 1.15±0.04 -7.66±1.95 0.93 -22

Hβ β0 ξ0 ρs ds

NC vs. L2−10keV 1.02±0.07 -3.49±3.35 0.76 -10

IC vs. L2−10keV 1.17±0.05 -9.41±2.54 0.86 -15

BC vs. L2−10keV 1.21±0.05 -10.67±2.09 0.93 -21

IC+BC vs. L2−10keV

(i.e. NC-sub) 1.18±0.04 -9.17±2.04 0.92 -20

Whole vs. L2−10keV 1.15±0.04 -7.91±1.97 0.93 -21
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4.4.2 Cross-correlation between Balmer Line Components

and Broadband SED Components

In Chapter 3 we decomposed the Balmer lines into broad, intermediate and nar-

row components. We also decomposed the broadband SED into three components,

namely the disk, soft X-ray Comptonisation and hard X-ray Comptonisation. Thus

it is possible for us to correlate each line component with each SED component. The

results are presented in Table C.2 and Figure C.1. Note that for every source we

subtracted the FeII emission from the nearby region of Hβ line before conducting

the line decomposition, thus the dispersion in these correlations is not related to

the FeII contamination. We find that among the three SED components, the hard

X-ray Comptonisation produces the best correlations, while the accretion disc emis-

sion and soft X-ray Comptonisation show weaker correlations. Among the different

Balmer line components, the correlation strengthens from NC, IC to BC. Figure 4.4

shows the correlation status for Hβ IC+BC vs. broadband SED components. It is

clear that the best correlation is found in the hard X-ray component though the cor-

relation is also good for adding both soft and hard X-ray Comptonisation together

as total corona luminosity.

Figure 4.4 also shows that for BLS1s the Hβ IC+BC correlate well with the

accretion disc luminosity and bolometric luminosity. However, NLS1s are much

more dispersed in these correlation plots, and thus dilute the correlation strength

of the whole sample. We need a larger sample to confirm the different behaviors of

NLS1s and BLS1s in these correlations.

4.5 Balmer Line Equivalent Width (EW)

4.5.1 Balmer Line Component EW vs. L2−10keV

In the previous section we reported the strong correlation between Hβ luminosity

and L2−10keV as LHβ ∝ L1.15±0.04
2−10kV for the whole Hβ line, and LHβ(IC+BC) ∝ L1.18±0.04

2−10kV

for the IC plus BC in Hβ. The index 1.18±0.04 is bigger than unity which indicates

that the luminosity of broader components of Hβ increase faster than linearly with
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Figure 4.5: The correlations of Hβ component EW vs. L2−10keV (first row), κ2−10keV

(second row). Different symbols represent the same type of sources as in Figure 4.3.

Spearman’s rank coefficients are calculated for the whole sample. The orange dotted

line indicates the bisector regression line.

L2−10kV (also see Table 4.1). The situation is the same for Hα. In order to investigate

this issue further, we study the properties of Balmer line EW. We perform the cross-

correlation between L2−10keV and Hβ component EW. Figure 4.5 shows the results.

There is no correlation between L2−10keV and Hβ NC EW, but the correlations

between L2−10keV and Hβ IC, BC EWs are significant as confirmed by Spearman’s

rank test (see Table C.2). A bisector regression analysis shows that Hβ IC+BC EW

∝ L0.45±0.03
2−10kV .

We also find clear anti-correlations between the 2-10 keV bolometric correction

(i.e. κ2−10keV =Lbol/L2−10keV ) and Hβ EWs, as shown in the second row of Figure 4.5.

κ−1
2−10keV is the fraction of 2-10 keV emission in the Bolometric luminosity, thus these

correlations suggest that as the fraction of 2-10 keV emission increases, the EWs

of Hβ IC and BC also increase. This is not surprising since there is no correlation

between Hβ EWs and the bolometric luminosity, as shown in Table C.2 the Spear-

man’s rank correlation coefficients (ρs) are only -0.08, 0.13, 0.21, 0.22 and 0.22 for

Lbol vs. the EW of Hβ NC, IC, BC, IC+BC and the whole line, respectively. The

sources with large κ2−10keV are mostly NLS1s which tend to have high mass accretion
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rates in terms of Eddington, Lbol/LEdd (Vasudevan & Fabian 2007, 2009; Paper-I;

Jin et al. in prep., hereafter: Paper-III). However, when we directly cross-correlated

Eddington ratio with the various Hβ EWs, no significant correlations were found

(Figure C.2). Similar results were found when using Hα line instead of Hβ.

4.5.2 Does A Balmer Line Baldwin Effect Exist?

The existence of the Hβ Baldwin effect is controversial. It was reported by Zhu09

that the Hβ IC EW anti-correlates with the monochromatic luminosity at 5100Å

(hereafter: L5100), with Pearson rank correlation coefficient being -0.48 and at 99%

level of smaller than 0, while the BC EW and the whole NC subtracted Hβ EW

does not correlate with L5100. They suggest this should be due to the flat geometry

of ILR and spherical geometry of BLR, but they did not mention whether such anti-

correlation could also be found in their Hα IC or not. To compare with Zhu09’s

results, we use our Balmer line fitting results to perform similar correlation test.

We first investigate the correlation between L2−10keV and L5100 which can be

seen directly from the OXCSs in Figure 4.2. The L2−10keV vs. L5100 correlation is

plotted in Figure 4.6 with Spearman’s ρs = 0.88 and ds = 1.1× 10−16. The bisector

regression lines are found to be:

(i) L5100 expressed by L2−10keV :

Log(L5100) = (0.92 ± 0.05)Log(L2−10keV ) + (3.76 ± 2.24) (4.5)

(ii) L2−10keV expressed by L5100:

Log(L2−10keV ) = (1.08 ± 0.06)Log(L5100) − (4.07 ± 2.66) (4.6)

Considering the strong correlations reported in previous paragraphs between Hβ

IC, BC EWs and L2−10keV , the correlations between Hβ IC, BC EW and L5100 were

expected. However, we do not confirm any strong positive or negative correlations

between Hβ IC, BC EWs and L5100, though there is a large scatter in these cross-

correlation plots, as shown in Figure C.2 and Table C.2. There is a weak anti-

correlation between NC EW and L5100. We therefore conclude that no evidence of
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Baldwin effect is found in our study for Balmer IC and BC, but there may be such

an effect for NC.

In fact, there are some important uncertainties in Balmer line decomposition and

L5100, which need to be considered before studying the Baldwin Effect of Balmer

line components:

(1) The spectral quality of the Balmer line profile is crucial since currently decom-

position of Balmer line totally depends on the line profile. This is more of a problem

for Hβ since strong reddening can significantly reduce its S/N and distort its profile,

so the Hβ decomposition for such reddened sources will be unreliable. But this is

not a problem for our low reddening sample.

(2) Even with high quality Balmer line profiles, the line decomposition still has un-

certainties. It is highly probable that the Balmer lines in Type 1 AGN must contain

at least a NC and a BC. Assuming a Gaussian or Lorentzian profile for the BC,

an additional IC is required during the line fitting procedure by the χ2 statistics.

However, the assumption of Gaussian or Lorentzian profile is not secure. In some

cases, Balmer lines also exhibit a double-peak profile (Eracleous & Halpern 2003;

Strateva et al. 2006; Bian et al. 2007) or an extended flat red wing (e.g. Mrk 0926,

see Chapter 3), which causes problem for the three-component decomposition.

(3) The L5100 may not have just one contributor. In addition to the standard ac-

cretion disc emission in the optical, L5100 may also contain stellar emission from

host galaxy. It was reported that an additional component, probably from the outer

region of accretion disc where self-gravity dominates, might also contribute a signif-

icant fraction of L5100 (see Section 4.3.3).

Therefore, it is difficult to find the intrinsic correlations between Balmer line compo-

nent EWs and L5100 due to the above uncertainties, and so the existence of Baldwin

effect in any Balmer line component is still unclear.
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Figure 4.6: L2−10keV vs L5100. Different symbols represent the same type of sources as

in Figure 4.3. Solid orange line is the bisector regression line assuming L2−10keV is the

independent variable. In each histogram, the red region highlights the distribution

of the 12 NLS1s in our sample.
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4.5.3 Balmer Line Component EW vs. FWHM and BH

Mass

Another result we found for Balmer line EW is its correlation with Balmer line

width and black hole mass. We cross-correlate the Hβ component EWs with the

Hβ FWHMIC+BC and the ‘best-fit’ black hole mass (see the description of ‘best-fit’

black hole mass in Chapter 3). Figure 4.7 shows our results. It is clear that there

are significant correlations between FWHM, black hole mass and the EWs of IC and

BC. The best correlation is again found in BC. The results suggest that as the black

hole mass increases (so does the Balmer line width), the emission from the ILR and

BLR becomes more luminous relative to the continuum luminosity. We also note

from Figure 4.7 that if you only consider BLS1s (circular points in Figure 4.7), then

these is almost no correlation either between Hβ FWHM and component EWs or

between black hole mass and Hβ component EWs. The broadest 12 BLS1s (blue

circular symbols) exhibit larger scatter than the rest of the sources. However, the

correlation between Hβ BC EW and black hole mass is very strong for NLS1s (red

square symbols). There also seems to be a weak anti-correlation between black hole

mass and Hβ NC EW. Similar results can be found replacing Hβ with Hα.

4.5.4 The Nonlinear Dependence of Balmer IC and BC Lu-

minosities on L2−10keV and L5100

As shown in previous sections that the relations between LHβ(IC+BC), L2−10keV and

L5100 can be expressed as:

LHβ(IC+BC) ∝ L1.18±0.04
2−10keV ∝ L1.28±0.05

5100 (4.7)

Similar results can be found for Hα. Such non-linear dependences imply that if the

continuum luminosity is the first-order factor, then there must be a second-order

factor causing the EW of Balmer line IC and BC to depend on L2−10keV . This

second-order factor could be the covering factor of the ILR and BLR seen from the

central ionizing continuum. AGNs with higher L2−10keV and L5100 may also have

larger ILR and BLR covering factors, making their Balmer IC and BC EWs larger
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Figure 4.7: The correlations of Hβ component EW vs. Hβ IC+BC FWHM (first

row) and best-fit black hole mass (second row). Different symbols represent the

same type of sources as in Figure 4.3. Spearman’s rank coefficients were calculated

for the whole sample. The orange dotted line indicates the bisector regression line.

than in the AGNs of low L2−10keV and L5100.

4.6 The Properties of ILR And BLR

4.6.1 Balmer Decrement

In addition to the luminosity and EW of Balmer line IC and BC, we can also

investigate the intrinsic properties of ILR and BLR by studying the profiles of Hα

and Hβ. The Balmer decrement is one of the main parameters to investigate. It

was reported that the change in Balmer decrement may arise from changes in the

physical conditions of the partially ionized line emitting regions (Kwan & Krolik

1979; Kwan & Krolik 1981; Mathews, Blumenthal & Grandi 1980 and Canfield &

Puetter 1981). For example, a decrease of Balmer decrement may be due to an

increase of electron density Ne−, or an increase of ionization parameter Ξ (i.e. the

ratio of the photon density to the gas density), or an increase of Lyα optical depth

τLyα (Krolik & McKee 1978; Davidson & Netzer 1979; Shuder82). A high Balmer

decrement can also be explained by a high dust abundance. This argument was used
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Table 4.2: The mean Balmer Decrements of different line components for NLS1

population, BLS1 population and the whole sample.

Line Comp. NLS1 BLS1 Whole Sample

NC 4.31±1.09 5.02±1.96 4.85±1.81

IC 3.50±0.61 5.24±2.33 4.83±2.18

BC 2.19±0.52 2.11±0.91 2.13±0.84

IC+BC

(i.e. NC-sub) 2.73±0.30 3.12±0.79 3.03±0.73

Whole Line 2.94±0.30 3.16±0.72 3.11±0.65

as evidence in Zhu et al. (2009) to support the link between ILR and dusty torus.

Therefore, Balmer decrements can be used as a clue to infer the physical conditions

of the emission line region, and so it is important to obtain an accurate measurement

of the decrement value. We calculated the Balmer decrement between Hα and Hβ

for each line component. Figure 4.8 shows our results. The five histograms from top

to bottom show Balmer decrement (Hα/Hβ) distributions of NC, IC, BC, IC+BC

and the whole line. The mean Balmer decrements with 1 standard deviation are

also listed in Table 4.2.

The results show that although the Balmer decrements of the whole Balmer line

distribute around 3, the situation for different line components is quite different.

The NLR has a big range of Balmer decrement values, with most probable value

lying between 3.5-4.5, and a mean value of 4.85±1.81. Therefore, it may imply the

presence of some dust in the NLR. The IC from ILR also has a big mean decrement

of 4.83±2.18, while The BC from BLR has a small mean decrement of 2.13±0.84.

However, the Balmer decrement of the IC+BC distributes around 3, which seems

that the low decrement in BC and high decrement in IC are artificially due to our

multi-Gaussian decomposition. To investigate this issue, we conduct the following

study.

First, we think that the Balmer decrement we found for NLR is correct, based

on the fact that this component has a narrow width, and is matched to the observed

[OIII] profile. For BLS1s, the profile of the NC is easy to define as a small spike
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Figure 4.8: Balmer decrement distributions of different Balmer line components.

In each panel the entire histogram shows the distribution of the whole sample,

with green solid line indicating the mean decrement value. Red region highlights

the distribution of the 12 NLS1s and the orange dashed line indicates their mean

decrement value. The cyan dashed line shows the mean decrement value of the

BLS1s. The mean decrements are also listed in Table 4.2.
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superposed on the much broader line wings (see the Balmer line profiles in Chapter

3); while for NLS1s, untangling of the NC may introduce bigger uncertainties. How-

ever, since the NLR is far from AGN’s centre and thus much less sensitive to the

AGN’s central properties, we should not expect big difference in NLR’s properties

between BLS1s and NLS1s, such as Balmer decrement. This is consistent with what

we see in Figure 4.8, that the mean decrement values are similar between NLS1 and

BLS1. This supports our assertion that the NC decomposition is reliable, and the

derived high Balmer decrement in NLR is real for the majority of sample sources.

Second, we have reason to conclude that our decrement distributions for the IC

and BC are also intrinsic to Balmer line regions. To prove this, we must first note

that our combined Hβ and Hα line fitting has ensured very similar line decomposi-

tions for the two Balmer lines. To be specific, the IC and BC have the same central

velocity shifts and FWHM in both Hβ and Hα, but the IC and BC can have very

different relative fluxes (for more detailed description see Chapter 3). The observed

decrement distribution differences between IC and BC reveal real changes in the

decrement values across the emission line profile.

To see this directly, we divided each of the two Balmer lines into 10 segments in

the velocity space from -5000 km s−1 to 5000 km s−1, and calculated the decrement

value in each segment. We performed this spectral analysis for each object in our

sample. Then the average decrement value in each segment was calculated for

sources with a reliable decrement measurement in that segment. This method is

model-independent except for the subtraction of the local underlying continuum

and removal of the [NII] λ6584,6550 doublets which uses the line fitting results from

Chapter 3. The mean values for NLS1 subset and BLS1 subset in each segment

are plotted in Figure 4.9. We see that the decrement peaks at the line centre and

then decreases towards both sides. This suggests a low decrement in the broad

wings, which is mainly modelled by the BC, and so supports the low decrement

value found for the BC. For BLS1 subset, the decrement in the red side (indicating

a positive velocity) is lower than in the blue side (negative velocity). It also appears

in Figure 4.9 that NLS1s tend to have lower Balmer decrements than BLS1s in

each segment. However, Figure 4.8 shows that the BC decrement distributions for
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Figure 4.9: Balmer decrement changing across the Balmer line profile from

+ 5000 km s−1 to − 5000 km s−1. Each data point represents the average decrement

value in that segment with the vertical bar showing the ±1 standard error. Blue

points show the results for the BLS1s; red points show the results for NLS1s. But

due to the small line width of NLS1, the flux outside +/− 3000 km s−1 for NLS1s is

of low S/N, thus only the mean decrement values in the central +/− 3000 km s−1

region were calculated and shown. The horizontal purple dotted line is a reference

line at F(α)/F(β) = 3.

the NLS1s and BLS1s are similar, although they are sometimes of low contrast

to the continuum. Thus it suggests that the observed lower Balmer decrement of

NLS1s is mainly due to the lower decrement value of the IC in NLS1s, which is also

consistent with the IC decrement distributions in Figure 4.8. Therefore, we conclude

that the observed differences in Balmer decrement distributions between different

line components are mainly due to the complex decrement status across the Balmer

line profile, with the broad wings having a lower decrement value and contributing

mainly to the BC.
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There is also support for our findings from previous work by Shuder (1982) (here-

after: Shuder82), who showed ratios of the Hα and Hβ lines for 18 Seyfert 1 AGNs.

They reported that the average Hα/Hβ ratio ranged from 4.8 in the core to 2.2 in

the wings, which is very similar to what we have found. They explained this as

approaching the inner region of AGN, the velocity dispersion would increase, and

so do the Ne− and Ξ. This is also consistent with the systematic inflow velocity

we found for the BC as we will discuss later. Zhu09 also reported that the Balmer

decrement in the IC was 4.78 and in BC it was 2.54, although their line decompo-

sition for Hα and Hβ were not linked as in our study. However, they explained this

high decrement in IC as due to the higher dust reddening in the ILR, and so could

support the link between ILR and dusty torus. Therefore, the Balmer decrement

change can be explained by either dust abundance or line optical depth processes.

Since it is likely that BLR is closer to the core region than the ILR, timing analysis

such as detailed reverberation mapping of Balmer lines can be used to distinguish

the radii between ILR and BLR. If the ILR is connected with BLR, then the changes

of physical parameters such Ne−, Ξ and τLyα may be the explanation of the higher

Balmer decrement in ILR than in BLR. Alternatively, if the ILR is confirmed to

be a distinct region from BLR and is close to the dusty torus, then dust reddening

may be a more plausible answer. Finally, we find no correlation between the Balmer

decrement and the bolometric luminosity, as was suspected by Shuder82.

4.6.2 Balmer Line Component Fraction

Zhu09 proposed an evolutionary scenario for the emission line region, which claimed

that as the black hole mass and luminosity increased, ILR and BLR would become

closer to each other and finally merge. In our sample 49 of the 51 sources require

including two broad Gaussian components to fit their Balmer lines, as suggested by

the Bayesian Information Criteria (BIC). The fraction of each Gaussian component

is calculated for both Hα and Hβ, and cross-correlated against the black hole mass,

bolometric luminosity and the component line width. The results are listed in

Table 4.3. The dominant component in Hβ is IC, but in Hα it is BC. The NC
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Table 4.3: The fraction of each Balmer line component and its correlations with

black hole mass (MBH), bolometric luminosity (Lbol) and the Hβ IC+BC FWHM.

ρs and ds are Spearman’s rank coefficients as explained in Table C.2.

frac vs. MBH vs. Lbol vs. FWHM

Hα ρs ds ρs ds ρs ds

NC 10±8 -0.6 -6 -0.2 -1 -0.7 -7

IC 53±11 0.1 -0 -0.1 -0 0.1 -0

BC 37±11 0.4 -2 0.3 -2 0.4 -2

IC+BC 90±8 0.6 -6 0.2 -1 0.7 -7

Hβ % ρs ds ρs ds ρs ds

NC 7±6 -0.6 -5 -0.2 -1 -0.5 -4

IC 38±12 -0.0 -0 0.0 -0 -0.4 -2

BC 55±14 0.4 -2 0.1 -0 0.5 -5

IC+BC 93±6 0.6 -5 0.2 -1 0.5 -4

fraction is ∼10% in both lines.

We confirm a weak anti-correlation between the IC fraction and IC FWHM of

Hβ (Spearman’s ρs = −0.4, ds = −2), similar to that found by Zhu09. But no such

anti-correlation was found in Hα. So we conclude that it is still not clear whether

the anti-correlation between the IC fraction and IC FWHM is an intrinsic property

of the ILR. We did not find any correlation in the IC or BC fractions vs. black

hole mass or bolometric luminosity. Therefore, the scenario proposed by Zhu09

regarding the geometry of ILR and BLR can not be confirmed by the results of our

study. Instead, our results suggest that the ILR may simply be an intermediate

region between BLR and NLR regardless of the black hole mass and bolometric

luminosity. As the black hole mass increases, the luminosities of NC, IC and BC

in both Hα and Hβ all increase, but the luminosity of IC and BC increase more

significantly than the NC, resulting in the significant anti-correlation between the

black hole mass and NC fraction.
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4.6.3 Balmer Line Shape

Dependences on Eddington ratio

The complex Balmer line profile can often be well modelled using contributions

from the NLR, ILR and BLR, but it is also likely that local turbulence in the

BLR may further broaden the Balmer line profile and be responsible for the pres-

ence of a very broad wing. Collin et al. (2006) (hereafter: Collin06) divided the

reverberation-mapped sample into two populations: sources in the first population

have narrower Hβ lines with more extended wings, along with higher Eddington ra-

tios; while sources in the second population have broader but flat-topped Hβ lines,

together with lower Eddington ratios. They found a weak anti-correlation between

FWHM/σline and Eddington ratio where σline is the second moment of Hβ line (see

the definition given in Peterson et al. 2004). This can be explained in terms of

higher turbulence in the core region of high Eddington ratio AGNs. We can explore

this result for our sample.

The second moment was measured from the NC subtracted Hβ line profile. It is

clear from the definition that the flux farther from the line centre would have more

contribution to the total second moment, thus σline/FWHMIC+BC can be a repre-

sentative of the broad wing strength compared to the whole line profile, i.e. a higher

value of σline/FWHMIC+BC corresponds to stronger broad wings. In our Balmer line

profile fitting, the broad wing is mainly modelled by the BC, thus the FWHM ratio

between BC and IC should have similar physical meaning as σline/FWHMIC+BC .

We correlate both σline/FWHMIC+BC and FWHMBC/FWHMIC with Eddington

ratio (Lbol/LEdd).

Figure 4.10 shows our results. Orange points are the binned values over X-axis

(Eddington ratio) with one standard error in the Y-axis (line width ratio). Note that

the errors of Eddington ratio and line width ratio for each data points are dominated

by systematical uncertainties in the spectral fitting which is difficult to quantify (see

Chapter 3), thus the individual point error-bars are not provided. Such uncertainties

are likely to increase the dispersion of the sample in this correlation plot. However,

positive correlations have been confirmed in both panels with Spearman’s rank test
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being ρs=0.47, ds = 10−3 (upper panel) and ρs=0.35, ds = 10−2 (lower panel). Our

results confirm the correlation between Hβ line profile and Lbol/LEdd. Interestingly,

we also find similar correlations when replacing Lbol/LEdd with κ2−10keV and αox.

For σline/FWHMIC+BC , the Spearman’s test has ρs=0.46 (ds = 10−3) for κ2−10keV

and ρs=0.51 (ds = 10−4) for αox. For FWHMBC/FWHMIC , the Spearman’s test

has ρs=0.54 (ds = 10−4) for κ2−10keV and ρs=0.54 (ds = 10−4) for αox. But since

the Eddington ratio is an intrinsic AGN parameter, and it also correlates with both

κ2−10keV and αox (Vasudevan & Fabian 2007; Vasudevan & Fabian 2009; Lusso et

al. 2010; Grupe et al. 2010), it may be the driving parameter that regulates the

Balmer line shape, as was also suggested by Collin06. Therefore, the FWHM of

the BC may depend primarily on black hole mass, but it may also be regulated by

Lbol/LEdd. This also explains the stronger correlation between black hole mass and

the IC FWHM than between black hole mass and the BC FWHM.

Inflow Implied by the Balmer Line Profile

Another effect that may change the width of the whole Balmer line is the systematic

velocity structure of the BLR as evinced by the general redshift of the BC and IC. It

was found previously that both the IC and BC may be associated with inflows (e.g.

Sulentic et al. 2000; Hu et al. 2008). Our analysis also shows that for the whole

sample both IC and BC have a wide range of velocity shifts relative to the central

component of [OIII] λ5007, but on average we find a statistically significant shifts of

100 km s−1 for the IC and 550 km s−1 for the BC. The inflow velocity we find for the

BC is also consistent with the ∼400 km s−1 typical inflow velocity of the FeII emission

features found by Hu et al. (2008), supporting their conclusion that FeII emitting

region may trace some portions of the BLR exhibiting inflow. It seems probable that

there is a velocity gradient within the BLR clouds, with the inner region of the BLR

having a higher inflow speed, which gives rise to the extended red wing. However,

the multi-Gaussian Balmer line decomposition method used in this study cannot

resolve the detailed changes in the kinematics and physical conditions within BLR.

Therefore, a much more detailed broad line spectral and timing study is required.

The relative velocity shifts between the IC and BC determines the asymmetry of
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the Balmer lines, but we did not find any significant correlation between the relative

velocity shift and Eddington ratio. So the relative velocity shift cannot explain the

correlation between σline/FWHMIC+BC and Lbol/LEdd.

4.6.4 Summary of results for the ILR and BLR

To summarize the previous subsections, we propose the following characteristics of

the ILR and BLR. First, these two regions are likely to be closely related, with

the ILR being an extension of the BLR. We found no evidence to support the ILR

being a distinct region from the BLR. The inner region of the BLR may produce

the red wing of the Balmer profile, indicating an systematic inflow velocity. The

physical parameters change continuously from the ILR into the BLR, probably with

increasing electron density, ionization parameter and Lyα optical depth. The inflow

velocity of the ILR gas is smaller than the BLR. The possibility that the ILR is as-

sociated with the dusty torus cannot be ruled out, and indeed its Balmer Decrement

is higher than found for the BLR. Unfortunately we are unable to draw any firm

conclusions about the geometry of the ILR or BLR. A second-order factor such as

the covering factor of the ILR and BLR may cause the faster than linear dependence

of the Balmer IC and BC luminosities on the continuum luminosity. Considering

the tight correlations between the IC FWHM, BC FWHM and black hole mass,

both the ILR and BLR should be gravitational bound and Virialized. For the BC

from BLR, its FWHM may further be affected by the Eddington ratio through the

process of local turbulence. Different inflow velocities of the ILR and BLR may also

modify the shape of the Balmer lines.

4.7 Properties of Emission Line [OIII] λ5007

The NLR may extend hundreds of parsecs from the AGN’s compact core. It is

ionized by the central continuum in a bi-conical geometry with an axis defined by

the plane of the dusty torus. Since the NLR extends far from the dusty torus, the

intrinsic dust reddening is expected to be low. Therefore in both Type 1 and Type

2 AGNs, the luminosity of narrow optical emission lines from NLR can provide an
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Figure 4.10: The Hβ line shape correlation with Eddington ratio. The upper

panel uses FWHMBC/FWHMIC to represent Hβ shape, while the lower panel uses

σline/FWHMIC+BC instead. In each panel the various symbols represent the same

type of sources as in Figure 4.3. The orange data points are the binned data for

different Eddington ratio bins with 1 standard error on the Y-axis.
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Figure 4.11: The luminosity correlations between components of [OIII] λ5007 and

L2−10keV . All symbols and lines have the same meanings as in Figure 4.3. In each

panel, a histogram is shown for the Log(L[OIII]λ5007/L2−10keV ) values of our sample,

with the red histogram highlighting the NLS1s.

orientation-independent estimate of the central ionizing radiation (e.g. Mulchaey et

al. 1994; Heckman 1995).

4.7.1 [OIII] λ5007 Component Luminosity vs. L2−10keV

As one of the strongest narrow forbidden lines, [OIII] λ5007 is often employed as a

proxy to estimate the intrinsic luminosity of type 2 AGN (e.g. Heckman et al. 2004;

Brinchmann et al. 2004). This is not only because of its large EW, but also because

it is free from serious contamination of other spectral features. Heckman et al.

(2005) (hereafter: Heckman05) used [OIII] λ5007 as an optical selection criteria to

study the difference between optical and X-ray selected AGN samples. They showed

a tight correlation between [OIII] λ5007 luminosity and hard X-ray luminosity for

Type 1 AGNs in both optical and X-ray selected samples. But the correlation is

much weaker for an optically selected Type 2 AGN sample, which is mainly due

to their X-ray weakness resulting from intrinsic photoelectric absorption. Since our

Type 1 AGN sample has been carefully selected based on the high quality optical

and X-ray spectra and the absence of severe absorption, our [OIII] λ5007 vs. rest

frame 2-10 keV luminosity correlation should be indicative of intrinsic connections.
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Figure 4.12: The ‘SED to [OIII] λ5007 Correlation Spectra (SOCS)’. This is pro-

duced by calculating the Spearman’s rank coefficient between the [OIII] λ5007 lu-

minosity and the luminosity contained in each energy bin of broadband SED, thus

the bigger coefficient indicates the better correlation in that energy bin. Lines of

different color show the SOCS of different subsets as been labelled in the plot. The

Γ2−10keV≥2.0 subset (S1: red line) contains 16 AGNs; the Γ2−10keV≤1.8 subset con-

tains (S2: blue line) 18 AGNs; the 1.8 < Γ2−10keV < 2.0 subset (S3: orange line)

contains 16 AGNs. Only spectral ranges below 0.006 keV and above 0.3 keV have

observational data. The ionizing flux responsible for [OIII] λ5007 emission is above

0.035 keV as shown by the purple dotted line. The two shaded regions are where

model extrapolation was used.
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We also find that the line profile of [OIII] λ5007 consists of two components, a

dominant central component and a blue-shifted component. Thus we analyze these

two components separately.

Figure 4.11 shows our results. We find that both components in [OIII] λ5007

have very strong correlations with L2−10keV , as confirmed by the Spearman rank

test. The total [OIII] λ5007 line correlates slightly better with L2−10keV than the

two separate components, suggesting that the central ionizing radiation ionizes both

the outflowing [OIII] λ5007 region (which produces the blue component), and the

spatially more extended [OIII] λ5007 region (which produces the central component).

The solid orange line is the regression line assuming L2−10keV to be the independent

variable. The two dashed orange line indicate the ±1σ region for new observation.

The shaded region denotes the ±2σ region.

Again, we put our two excluded objects on the correlation. Mrk 110 (green

circle) sits on the best fit line as neither its X-ray nor its [OIII] line luminosity are

affected by the optical continuum variability. The X-ray weakness of PG 1004+130

(purple star) does not cause strong deviation in these correlation plots considering

the dispersion. The other outlier is 1RXS J122019 (the blue circle point farthest from

the shaded region) whose SDSS spectrum shows that this is one of the ‘broadest’

BLS1s, but its narrow lines (including [OIII] λ5007,4959 doublets) are much weaker

relative to the broad lines than any other sources in our sample. It is possible that

compared with other sources, 1RXS J122019 has a smaller NLR covering factor.

We also calculated Log(L[OIII]λ5007/L2−10keV ) using the luminosity of the whole

[OIII] λ5007 line. We derived a mean value of -1.88±0.31 for the whole sample,

and -1.78±0.30 for the 12 NLS1s. This is consistent with but slightly lower than

-1.59±0.48 reported by Heckman05 based on their sample of 20 Seyfert 1s, which is

likely due to the fact that their sample includes sources with strong X-ray absorption,

e.g. they included Type 1 AGNs such as NGC 3227 and Mrk 766 whose X-ray spectra

are absorbed by a warm absorber. Trouille & Barger (2010) (hereafter: TB10)

reported -1.85±0.5 for their 19 BLAGN sources with z < 0.5 and -1.76±0.5 for their

∼100 BLAGNs with z < 0.85. Georgantopoulos & Akylas (2010) (hereafter: GA10)

reported -1.98±0.39 for their 34 Seyfert 1s. These values are all consistent with
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ours within 1σ. Our mean Log(L[OIII]λ5007/L3−20keV ) value is -2.00±0.33, which

is consistent with -1.96∼2.14 reported by Heckman05. Note that compared with

previous works, our sample is spectrally ‘cleaner’, i.e. more carefully selected for

low reddening and absorption sources. Thus our mean Log(L[OIII]λ5007/L2−10keV )

and Log(L[OIII]λ5007/L3−20keV ) are better constrained as having smaller dispersions.

The correlations between [OIII] λ5007 and L2−10keV can be used to estimate the

intrinsic hard X-ray luminosity especially for nearby Type 2 AGNs and calculate the

X-ray luminosity function (e.g. Sazonov & Revnitsev 2004; Shinozaki et al. 2006;

Yencho et al. 2009; GA10). We present our OLS bisector regression lines below:

(i) L[OIII]λ5007) expressed by L2−10keV and L3−20keV :

LogL[OIII]5007 = (1.06±0.05)LogL2−10 − (4.44±2.64) (4.8)

LogL[OIII]5007 = (1.02±0.05)LogL3−20 − (2.93±2.65) (4.9)

(ii) L2−10keV and L3−20keV expressed by L[OIII]λ5007):

LogL2−10 = (0.94±0.05)LogL[OIII]5007 + (4.20±2.26) (4.10)

LogL3−20 = (0.98±0.05)LogL[OIII]5007 + (2.87±2.43) (4.11)

Note that since the luminosity measurements of both [OIII] λ5007 and L2−10keV

may contain uncertainties from the intrinsic absorptions and variability, the OLS

bisector regression method is more appropriate than the standard OLS method used

in previous works. Combining previous results from Heckman05, TB10 and GA10

with ours, we can conclude that such tight luminosity correlations between hard

X-ray and [OIII] appear valid for at least z < 0.85, Log(L[OIII]λ5007)=38−44 and

Log(L2−10keV )=40−46.

4.7.2 The SED to [OIII] λ5007 Correlation Spectra (SOCS)

The ionizing energy for [OIII] λ5007 is 0.035 keV, thus all photons above this energy

can in principle produce [OIII] λ5007 emission. As another application of CST, we

cross-correlate [OIII] λ5007 luminosity with the luminosity contained in the con-

tinuum SED in each energy bin from optical to X-ray, and produce the ‘SED to
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[OIII] λ5007 correlation spectrum (SOCS)’. Our broadband SED model consists of

three components: the disc, soft X-ray Comptonisation and hard X-ray Comptonisa-

tion. The soft and hard Comptonisation components can both contain a significant

amount of energy above 0.035 keV, the disc emission may also extend above this

energy when the black hole mass is small and mass accretion rate is high (Done

et al. 2011). We divided our sample into three subsets: Γ2−10keV≥2.0 (S1: 16

AGNs), Γ2−10keV≤1.8 (S2: 18 AGNs) and 1.8 < Γ2−10keV < 2.0 (S3: 16 AGNs). PG

1004+130 is excluded due to its unique SED shape but Mrk 110 is now included

since the previous section shows that its [OIII] and hard X-ray luminosity are not

distorted by the optical continuum variability. S1 includes all 12 NLS1s, while S3

contains the broadest BLS1s. A SOCS was calculated for each of the three subsets.

Figure 4.12 shows the resultant SOCSs. Note: in this study only spectral ranges

below 0.006 keV and above 0.3 keV have observational data. Overall, [OIII] λ5007

correlates best with hard X-rays above 2 keV. It is also well-correlated with the

optical emission. However, the correlation in the UV/X-ray region is poor, which

may be caused by the spectral modification due to Galactic and intrinsic extinction.

This indicates that the hard X-ray ionizing flux also has a strong link with the

optical flux which is presumably dominated by accretion disc emission.

Regarding the SOCS of different subsets, we find that S1 has the strongest cor-

relations in the optical/UV band, which implies that our broadband SED fitting

may be more reliable for sources in S1 whose soft X-ray excess is more likely to be a

real extra component (Middleton et al. 2009; Jin et al. 2009; Middleton, Uttley &

Done). The S2 group shows highly significant correlations in the hard X-ray band,

which may imply that the hard X-ray power law tail of Γ2−10keV≤1.8 is an intrinsic

separate component rather than being an artifact caused by absorption or reflection

(Done et al. 2011). Therefore, the S1 and S2 groups may indeed represent two

distinct types of AGNs (e.g. NLS1s and BLS1s). We also find that the correlation

for S3 in optical and X-ray bandpasses is much less significant than for either S1 or

S2. This may indicate that other spectral factors such as absorption and reflection,

may be more important for the sources in S3, in which case our three-component

SED model is too simple to recover their intrinsic SEDs.
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4.7.3 Outflow of NLR Implied by [OIII] λ5007 Profile

The two components in the profile of [OIII] λ5007 have been reported previously.

Bian, Yuan & Zhao (2005) indicated that these two components are related to two

physically distinct regions. Komossa et al. (2008) also reported blue outliers in [OIII]

λ5007 whose blue-shift velocity is up to 500∼1000 km s−1, favoring a decelerating

wind NLR scenario. These results are all confirmed by our study. We find that

for our sample, the velocity shift of the blue component in [OIII] λ5007 relative

to the central component ranges from -610 to -0 km s−1, and the mean velocity

is −130+80
−230 km s−1. We also find a strong correlation between the FWHM and

velocity shift of the blue component, as Spearman rank test gives: ρs=0.52 and

ds = 10−4. The larger FWHM of the blue component implies a smaller distance

from AGN’s core region, so this correlation suggests that the outflow velocity of

inner NLR emitting [OIII] λ5007 is higher than that in the outer NLR. An outflow

speed decreasing as it flows away from the centre is a signature of decelerating wind.

4.8 Summary and Conclusions

In this chapter, we made use of the detailed spectral fitting of an AGN sample

reported in Chapter 3, to study their optical spectral properties using their hard X-

ray luminosity as a diagnostic. Our study focused on the Hβ, Hα and [OIII] λ5007

emission lines and the underlying continuum. The main results are summarized

below.

• The OXCSs have been constructed for different subsets of AGNs using our

new spectral analyzing technique called CST. The OXCSs reveal many correla-

tion features with L2−10keV across the entire optical spectrum. Some were known

previously, others are new. For example, the entire optical underlying continuum

strongly correlates with L2−10keV . [NeIII] λλ3869/3967, [OI] λλ6300/6364, [OII]

λλ3726/3729, [OIII] λλ4959/5007 and the IC and BC in Balmer lines all well corre-

late with L2−10keV especially for BLS1s. However, stellar absorption lines, FeII and

the NC in the Balmer lines have much weaker or no correlation with L2−10keV . We
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find some evidence for differences in the OXCSs between NLS1s and BLS1s.

• A cross-correlation between luminosities of Hβ and Hα line components and

the broadband SED components was performed. The results suggest that among

the three SED components, the hard X-ray power law component correlates the best

with Balmer line luminosity, and the correlations strengthen from the NC, IC to BC

of Balmer lines. This supports the view that the BC has the closest link with AGN’s

central UV/X-ray continuum emission.

• Significant correlations were found between the Hβ component EWs and L2−10keV ,

κ−1
2−10keV , Hβ FWHM and black hole mass, although these correlations become

weaker for the BLS1 subset alone. By cross-correlating Balmer line component

EWs with L5100, no evidence for the ‘Baldwin Effect’ was found for the IC and BC,

but such effect is weakly detected for the NC.

• Our results suggest a faster than linear dependence of Balmer line IC and BC

luminosities on the underlying continuum (e.g. L2−10keV and L5100; Equation 4.7),

implying the presence of a second-order factor. We propose that this second-order

effect could be the covering factor of the BLR and ILR seen by the central UV/X-ray

continuum, so that higher L2−10keV and L5100 sources may also have larger ILR and

BLR covering factors.

• We carried out detailed Balmer line shape studies in order to reveal the nature

of ILR and BLR. We found that the Balmer Decrement value, defined by Hα/Hβ,

peaks at the line centre and decreases towards both sides, with the red wing having a

lower decrement than the blue wing for BLS1 subset. This was also consistent with

IC’s average decrement value of 4.83±2.18 compared to the BC’s 2.13±0.84. These

results, along with the systematic inflow speed we found in the BC (mean velocity:

550 km s−1), support the scenario that the inner region of BLR forms the red wing

while the outer edge links with the ILR. Compared to the ILR, the BLR may have

higher inflow speed, higher electron density, larger ionization parameter or higher

Lyα optical depth, A weak correlation between the shape of Balmer line profile and

Eddington ratio was confirmed. A higher Eddington ratio corresponds to a more

extended wing relative to the overall Balmer line structure. This implies that the

velocity width of the Balmer line is not simply determined by the black hole mass,
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but also affected by local turbulence whose strength depends on the Eddington ratio.

The higher Balmer decrement in ILR than in BLR could also be explained of the

ILR has a higher dust abundance, but we found no other evidence to support ILR’s

link with the dusty torus. A weak anti-correlation between the EW of Balmer line

NC and black hole mass was found.

• In our study of [OIII] λ5007, we confirmed its tight correlation with L2−10keV

and L3−20keV . We found that the blue and central components of [OIII] λ5007 should

be added together to provide the best correlation with hard X-rays. Using our best-

fit broadband SEDs from Chapter 3, we produced the SOCSs for different sample

subsets. The SOCSs show strong correlations between [OIII] λ5007 luminosity and

the continuum luminosities in either optical or hard X-ray bandpass. Subset S1 and

S2 both have highly significant correlations in the hard X-ray band, which implies

that the shape of hard X-ray power law tail in these two subsets are intrinsic in spite

of their totally different photon indices. But the SED of moderate Γ2−10keV sources

in S3 may be more complex.

• The mean outflow velocity of the blue component in [OIII] λ5007 is −130+80
−230 km s−1.

The strong correlation between the FWHM and velocity shift of the blue component

in [OIII] λ5007 suggests that the outflow speed of [OIII] λ5007 clouds decreases from

the central region outwards, suggesting a decelerating wind.

• In this chapter, we present well constrained equations which can be used to

convert between the luminosity of Balmer line broad component and the intrinsic

L2−10keV (Equation 4.1∼4.4), between the intrinsic L5100 and L2−10keV (Equation

4.5∼4.6), and between the [OIII] λ5007 luminosity and the intrinsic L2−10keV and

L3−20keV (Equation 4.8∼4.11). We suggest that these equations be used for inferring

the intrinsic optical and X-ray luminosities of obscured sources such as BAL quasars

or Type 2 AGNs, and for calculating the X-ray luminosity function. Considering

the limited redshift range of and size of our sample, similar studies should be carried

out on larger samples to test the robustness and evolution of these equations at high

redshift, which requires high quality infrared spectra. In the next chapter, we are

going to discuss the broadband SED properties of the same sample.



Chapter 5
Type 1 AGN Study -

III. Broadband SED

Properties

5.1 Introduction

The number of AGN with both high quality optical/UV and X-ray spectra is rela-

tively small, thus much effort in the literature is devoted to searching for correlations

among key SED parameters, especially those parameters capable of influencing the

properties of broadband SED, such as black hole mass (MBH), Eddington ratio

(λEdd), bolometric luminosity (Lbol), 2-10 keV luminosity (L2−10keV ), 2-10 keV pho-

ton index (Γ2−10keV ), Hβ FWHM, the optical-to-X-ray spectral index (αox, defined

as Equation 5.1, e.g. Lusso et al. 2010, hereafter: Lusso10), 2-10 keV bolomet-

ric correction (κ2−10keV , defined as Lbol/L2−10keV , e.g. Vasudevan & Fabian 2007,

2009 hereafter: VF07, VF09) and 5100Å luminosity scaling factor (κ5100, defined

as Lbol/L5100 where L5100 is the monochromatic luminosity at 5100Å, Kaspi et al.

2000).

Then for those many AGNs lacking sufficient spectral information, these correla-

tions can be used to predict the SEDs that cannot be defined from direct observation.

Indeed, many such parameter correlations have been proposed. For example, VF07

reported a strong correlation between κ2−10keV and λEdd (VF07; VF09; Lusso10).

Correlations were also found between Hβ FWHM vs. Γ2−10keV (e.g. Leighly 1999;

Reeves & Turner 2000; Shemmer et al. 2006, hereafter: Shemmer06; Shemmer et

al. 2008, hereafter: Shemmer08; Zhou & Zhang 2010, hereafter: Zhou10a), λEdd

153
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vs. Γ2−10keV (e.g. Lu & Yu 1999; Porquet et al. 2004; Wang, Watarai & Mineshige

2004; Bian 2005; Shemmer06; Shemmer08) and Hβ FWHM vs. λEdd (e.g. Grupe10;

Chapter 3). The correlation between L2500 and L2keV is another important result,

which led to further correlation studies related to αox, L2500, L2keV and redshift (e.g.

Green et al. 2009, see references given in Table 5.2). In table D.1, we list some of the

principal parameters, and list the relevant papers discussing the correlations. Later

in this chapter we will discuss some other additional correlations between e.g. MBH

vs. Γ2−10keV and MBH vs. κ2−10keV , in the context that changes in these parameters

are caused by changes in the fundamental physical processes.

However, due to the difficulty in obtaining and analyzing both optical/UV and

X-ray spectra for a large sample, these parameter correlations are reported sepa-

rately and based on different samples, rather than being studied systematically for

a single well-defined sample. Furthermore, most of the previous samples were not

selected based on their spectral properties, so effects such as reddening will introduce

biases into the cross-correlations. The lack of a self-consistent physically motivated

broadband model, has also been a problem when performing a more detailed SED

study.

In Chapter 3 we defined a sample of 51 Type 1 AGNs with both optical/UV and

X-ray spectra which are of high quality, and without evidence of complex spectral

absorption features e.g. a warm absorber. Based on this bright and unobscured Type

1 AGN sample, we applied our latest optical and broadband SED model to perform

the spectral fitting, and so matched the optical spectrum and produced a broadband

SED for each AGN in the sample. This is so far the most detailed spectral analysis

for a medium sized sample of AGNs, with such well defined high quality spectra.

In Chapter 4 we studied the profile of various emission lines, and the luminosity

correlations between hard X-ray and various optical emission features, based on the

same sample and the spectral fitting results in Chapter 3. This chapter is also based

on Chapter 3, but focuses on the properties of the broadband SED and all the SED

parameters mentioned above. We will study this issue by first investigating the

numerous correlations previously reported among these SED parameters. Then a

set of mean SEDs based on these parameters are constructed and studied in detail.
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Table 5.1: The mean parameter values with one standard deviation for our sample, together with some recently published samples.

Lusso10: Lusso et al. (2010); Grupe10: Grupe et al. (2010); Zhou10a: Zhou & Zhang (2010); VF07,09: Vasudevan & Fabian (2007,

2009). m: the Eddington ratios were calculated using the luminosity dependent 2-10 keV bolometric correction in Marconi et al.

(2004); r : the black hole masses are from the reverberation mapping study in Peterson et al. (2004).

Redshift Γ2−10keV κ2−10keV κ5100 λEdd FWHMHβ MBH αox Lbol

Sample km s−1 log(M⊙) log(erg s−1)

This Work 0.137+0.158
−0.073 1.91±0.26 38+58

−23 15+14
−7 0.27+0.61

−0.19 3560+3880
−1860 7.93±0.52 1.35±0.14 45.47±0.57

Lusso10 1.440+1.020
−0.597 — 27+28

−14 — — — — 1.40±0.16 45.54±0.57

Grupe10 0.112±0.077 — — — 1.87±3.26 — — 1.42±0.17 —

Zhou10a 0.050+0.103
−0.034 1.97±0.29 — — m0.24+0.76

−0.18 2600+2500
−1280 — — —

VF09 0.033+0.074
−0.023 1.85±0.32 28+74

−20 — 0.18±0.16 — r7.93±0.66 1.39±0.24 44.89±1.00

VF07 0.064+0.147
−0.044 — 26+39

−16 — 0.15+0.76
−0.13 — 7.89±0.82 — 45.20±1.01
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In the broader context of accretion processes there are three accretion states in

Galactic black hole binary (BHB) systems, namely the ‘hard’ state (low/hard state),

‘thermal state’ (high/soft state) and ‘very high’ state (SPL-steep power law state),

with quasi periodic oscillation (QPO) being most common in the ‘very high’ state

(Remillard & McClintock 2006). In this scenario the Eddington ratio is the primary

indicator of these accretion states, and the change from high to low Eddington ratio

corresponds to transitions through the ‘very high’, ‘high/soft’ and ‘low/hard’ state.

It has been proposed that the accretion processes in AGNs are scaled up counterparts

those in BHBs (Done & Gierliński 2005; McHardy et al. 2006; Gierliński et al. 2008;

Middleton et al. 2009; Jin et al. 2009). Therefore the Eddington ratio may also be

a good indicator an AGN’s accretion state, and so determine the shape of its SED.

However, a BHB system undergoes an outburst over tens of days, and exhibits clear

spectral state changes (Remillard & McClintock 2006; Done, Gierliński & Kubota

2007). However, a similar change in the accretion state of an AGN will take very

much longer. So we observe a snapshot SED for an AGN in a particular accretion

state, by constructing a set of mean SEDs, based on sources with similar values

of key parameters. In this chapter we suggest that these may represent similar

accretion states to those often seen in a BHB, and explain why there are many

strong correlations among the various SED parameters.

This chapter is organized as follows. Section 2 gives a brief description of the

main characteristics of the sample, and the method used for fitting the broadband

SED. Further details of this are presented in Chapter 3. In Section 3 we examine the

parameter correlations across five parameter groups. Some significant new correla-

tions are proposed. In Section 4 we perform a systematic study of all correlations

among the 9 selected key SED parameters, and build a cross-correlation matrix. A

principal component analysis technique is used on this correlation matrix in order

to derive the eigenvectors. In Section 5 various mean SEDs are constructed, based

on the mean value ranges of the 9 parameters. In Section 6 we investigate further

the reliability of these correlations, including the effect of correction for radiation

pressure correction. In Section 7 we summarize our results, and propose topics for

further study. Following previous chapters, a flat universe model with a Hubble con-
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stant of H0 = 72 km s−1 Mpc−1, ΩM = 0.27 and ΩΛ = 0.73 is adopted. The results

presented in this chapter has been submitted to MNRAS as Jin et al. (2012b). The

content related to the mean SEDs at different Eddington ratios has been published

separately in Done et al. (2011).

5.2 Properties of the Sample and Broadband SED

Modeling

The AGN sample used in this chapter is from the cross-correlation of SDSS DR7 and

XMM-Newton catalogs. The detailed sample selection criteria and sample properties

can be found in Chapter 3. The main properties of the sample include the following:

(i) the AGN are nearby Type 1s with redshift <0.4. This limit is imposed so as to

include the Hα emission line. The redshift distribution is very similar to the sample

of VF07 (see Chapter 4). (ii) both high quality SDSS and XMM-Newton spectra

are available for every source. (iii) all sources are unobscured. No significant optical

reddening, X-ray absorption or evidence of a warm absorber is seen in the spectra,

except for PG 1004+130 whose weak and featureless X-ray emission is still under

debate (Miller et al. 2006). This criterion means that the observed spectra are

very likely directly related to emission from the bare central core. This reduces

dispersions caused by non-intrinsic effects in the correlations. (iv) three sources in

our sample are radio-loud i.e. PG 1004+130, RBS 0875 and PG 1512+370, and so

the vast majority of the sample are radio-quiet. (v) the Hβ FWHM of the sample

ranges from 600 km s−1 to 13000 km s−1, including 12 NLS1s.
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Figure 5.1: An example of the broadband SED fitting using optxagnf model in Xspec

v12 which includes the effect of a colour correction. The data is taken from SDSS

and XMM-Newton observations of RBS 769. The solid red line shows the total

model; the dashed green line shows the colour corrected and truncated accretion

disc emission; the dotted orange line shows the low temperature optically thick

Comptonisation; the dot-dash blue line shows the high temperature optically thin

Comptonisation. The reduced χ2 is 1.16 for this spectral fitting.
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Table 5.2: Comparison of regression line coefficients for L2keV , L2500, αox and redshift Correlations. Lusso10: Lusso et al. (2010); Grupe10:

Grupe et al. (2010); Green09: Green et al. (2009); Just07: Just et al. (2007); Steffen06: Steffen et al. (2006); Strateva05: Strateva et al.

(2005); Hasinger05: Hasinger (2005). opt : optically selected sample. xray : X-ray selected sample. 1linear regression results using L2keV

and L2500 from the reconstructed broadband SED corrected for both intrinsic and Galactic reddening/extinction. 2linear regression when

L2keV and L2500 were not corrected for the best-fit intrinsic reddening/extinction, but corrected for the Galactic value. afor the SDSS main

sample + high-z sample + Sy 1 Sample (see Strateva05). zonly for the zBox subsample described in Green09. ∗measured directly from the

regression line in Fig.5(b) of Hasinger05.

L2keV vs. L2500 αox vs. L2500 αox vs. L2keV αox vs. Redshift

Sample βbi
1 ξbi1 βem

2 ξem2 βem
3 ξem3 βem

4 ξem4
1This Work 0.95±0.06 -2.04±1.77 0.07±0.02 -0.61±0.60 -0.03±0.03 2.17±0.76 0.16±0.13 1.31±0.03

2This Work-Rint 0.91±0.05 -0.69±1.68 0.08±0.02 -0.92±0.57 -0.01±0.03 1.55±0.76 0.23±0.13 1.26±0.03

Lusso10xray 0.76±0.02 3.51±0.64 0.15±0.01 -3.18±0.22 0.02±0.01 0.86±0.34 0.06±0.01 1.26±0.02

Grupe10opt — — 0.11±0.01 -1.18±0.31 — — — —

Green09opt 1.12±0.02 -7.59±0.64 0.06±0.01 -0.32±0.26 0.10±0.01 1.38±0.21 -0.001±0.14z —

Just07opt 0.71±0.01 4.88±0.63 0.14±0.01 -2.71±0.21 0.09±0.01 -0.90±0.36 — —

Steffen06opt 0.72±0.01 4.53±0.69 0.14±0.01 -2.64±0.24 0.08±0.02 -4.1±0.39 0.08±0.01 1.40±0.01

Strateva05opt 0.65±0.02a 6.73±0.64a 0.14±0.01a -2.62±0.25a — — non-linear non-linear

Hasinger05xray 1.0∗ -3.7∗ — — — — — —
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Based on the high quality spectra, Chapter 3 conducted detailed spectral analysis

for each source in the sample. In the optical spectral fitting, a complete model with

multiple components were used, including the underlying continuum approximated

by a power law, the Balmer continuum, the FeII ‘false’ continuum and all strong

emission lines. The Hα and Hβ lines were fitted using three Gaussian components,

i.e. a narrow component, an intermediate component and a broad component. The

broadband SED model used in Chapter 3 (hereafter Model-A) consists of the follow-

ing three continuum components: 1. emission from a modified standard accretion

disc, whose energy within the corona radius is completely reprocessed into the other

two high energy Comptonisation components; 2. emission from the low temperature,

optically thick Comptonisation, which mainly accounts for the soft X-ray excess; 3.

emission from the high temperature, optically thin Comptonisation which gives the

power law shape of the hard X-ray spectrum above 2 keV. Both Galactic extinction

and the small amount of intrinsic reddening/extinction are included in the model.

However, in Chapter 3 we did not consider the effect of a colour temperature

correction in the accretion disc model (e.g. Ross, Fabian & Mineshige 1992; Davis

& Hubeny 2006). This effect is due to the fact that higher temperature photons

emerge from regions deeper in the accretion disc. The absorption opacity decreases

significantly as the black hole mass increases (κabs ∝ M−1/8, Done et al. 2011),

and so electron scattering opacity is much more important in AGNs than in BHBs.

However, the electron scattering is only important in regions of the disc where

T > 3×104 K, so that sufficient hydrogen atoms are ionized. The maximum

effective temperature of the accretion disc is kT ∼ 10(ṁ/M8)
1/4 eV (where ṁ =

Lbol/LEdd, M8 = M/108 M⊙), so the electron scattering opacity can only dominate

in AGNs with both a low mass black hole and a high mass accretion rate, such

as the NLS1s (e.g. Boller, Brandt & Fink 1996). A typical colour temperature

correction of 2.6 is predicted for an AGN with MBH=106M⊙, λEdd=1.0 (Davis et al.

2006). This effect combines with an already hot disc due to the low black hole mass,

resulting in a disc spectrum that extends significantly into the soft X-ray range.

In this chapter, we re-fit all the broadband SEDs in our sample using the (op-

txagnf in Xspec v12) model which applies a colour temperature correction for the
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Comptonised accretion disc model (hereafter Model-B). Figure 5.1 shows an exam-

ple of the broadband SED fitting to the multi-waveband spectra of RBS 769. A

detailed description of Model-B in comparison with the earlier Model-A (i.e. optx-

agn), can be found in Chapter 3. The set of fitting parameters for each source, based

on Model-B, is given in Table D.2. Section 5.7.3 discusses the statistical differences

resulting from using Model-B and Model-A for our sample.

All the principal SED parameters such as λEdd, κ2−10keV and αox are calculated

from the new model fitting (Table D.3). A cross-correlation study of the various

parameters is then conducted. In Table 5.1 we compare the mean values of some

SED parameters our sample with those for samples used in previous work. The

result of correlations established in these previous studies will be compared with

ours in the following sections.

There are two sources that we treated as being anomalous in our study. The first

is PG 1004+130, a broad absorption line (BAL) quasar, whose X-ray was reported

as being extraordinarily weak. Although its X-ray spectrum does not show clear

absorption edges, it is nevertheless likely to be heavily absorbed, or has a different

origin of X-rays, such as a sub-parsec-scale jet. It has been suggested that the X-

ray emission from PG 1004+130 could be 0.73 dex weaker than normal PG radio

loud quasars (PG RLQs), even after correcting for its intrinsic absorption (Miller et

al. 2006). Due to its distinct X-ray spectrum (and correspondingly different X-ray

parameters), we did not include this source in our regression analysis. In Chapter

4, we proposed that an order of magnitude increase in the hard X-ray flux of PG

1004+130 is required to make its properties consistent with other sources. The other

anomalous source is Mrk 110, whose SDSS spectrum is not consistent with its OM

data (see Chapter 3). However, the optical spectrum obtained using FAST shown

in Landt et al. (2011), is consistent with the OM data, and is also an order of

magnitude brighter than the SDSS spectrum. Therefore the SDSS spectrum of Mrk

110 is not consistent with its broadband SED parameters, and so we exclude Mrk

110 from the cross-correlation analysis.
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5.3 Investigating the Correlations for Various SED

Parameter Groups

In this section we divide the SED parameters into several sub-groups, based on

correlations reported in the literature (see Section 5.1), and then conduct a cross-

correlation analysis within each group.

5.3.1 Group 1: L2500, L2keV and αox

The αox index has been used as the indicator of the SED shape for more than

thirty years. It is often used as an indication of the AGN’s broadband SED, to

convert between the AGNs’ optical luminosity function (OLF) and X-ray luminosity

function (XLF) (e.g. Hopkins, Richards & Hernquist 2007, hereafter: Hopkins07 ;

Tang, Zhang & Hopkins 2007, hereafter: Tang07). It is defined as Equation 5.1

(Tananbaum et al. 1979):

αox = −Log(F (2keV )/F (2500Å))

2.605
(5.1)

Note that the negative sign in Equation 5.1 is not included in some previous work

(e.g. Steffen et al. 2006; Just et al. 2007; VF07), thus their αox is negative.

But in this chapter we follow the definition in Lusso10 and Grupe10 to ensure a

positive αox. Many studies have been carried out on the evolution of αox with

both luminosity and redshift (e.g. Avni & Tananbaum 1982; Wilkes et al. 1994;

Strateva et al. 2005; Steffen et al. 2006; Just et al. 2007; Green et al. 2009,

hereafter: Green09; Lusso10; Grupe10), which may provide clues on the emission

mechanism. The value of αox has been found in the range 1.2∼1.8, with a mean

value of ∼1.5. Correlations have also been found between L2keV , L2500, αox and

redshift, with the primary correlation being L2keV ∝ Lβ
2500. The slope index β

was often found to deviate from unity for both optically selected (e.g. Strateva et

al. 2005; Steffen et al. 2006; Just et al. 2007) and X-ray selected AGN samples

(e.g. Lusso10). However, La Franca, Franceschini & Cristiani (1995) re-analyzed

Wilkes et al. (1994)’s sample by considering both variables and intrinsic scattering,

and found that β was consistent with unity. Green09 collected a large, well-defined
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sample of 2308 SDSS/ChaMP QSOs in the redshift range 0.2∼5.4, and concluded

that β is not less than unity.

The reality of a non-linear correlation in L2keV vs. L2500 remains an open ques-

tion, but one possible explanation could be a selection effect in a flux limited sample

for which dispersions in the optical and X-ray luminosity are not equal, or which

change with cosmic time (Yuan, Siebert & Brinkmann 1998, hereafter: Yuan98;

Tang07). However, the possibility of a truely intrinsic non-linear correlation cannot

be ruled out. A non-linear L2keV vs. L2500 correlation implies that there is a depen-

dence of αox on L2keV and L2500 (e.g. Vignali, Brandt & Schneider 2003; Just et al.

2007; Lusso10), but this is still a matter of debate (Yuan98; Tang07).

To further test the basis of these correlations, we also calculated the values of

L2keV , L2500 and αox from our best-fit model of the SEDs, and then preformed the

same cross-correlation analysis. The limitation of our results arises from the lack of

actual spectral coverage at 2500Å for the 16 sources without OM UVW1 and UVM2

data. The luminosity and redshift range of our sample is also relatively small. But

on the merit side we have included two inputs of reddening/absorption to model both

the Galactic and the AGN’s intrinsic extinction during the broadband SED fitting,

so our values of L2keV , L2500 and αox should be closer to those of the intrinsic source.

The unobscured nature of our sample and the exclusion of warm absorber sources

also helps reduce uncertainties in the corrections caused by reddening/absorption.

The L2keV vs. L2500 Correlation

Figure 5.2 shows our L2keV vs. L2500 correlation. The statistical methods used are

the same as in Lusso10, i.e. we use the full parametric estimate and maximized

regression (EM) algorithm. We use this to derive two regression lines assuming,

first L2keV , then L2500 to be the independent variable. Then the bisector of the two

regression lines is calculated using the equations in Isobe et al. (1990). This method

is more appropriate in cases where the cross-correlations are dominated by intrinsic

scatter. The correlations found are as follows:
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Figure 5.2: The cross-correlatin between L2500 and L2keV . The solid orange line is

the bisector regression line for our sample, while regression lines of other studies are

plotted as dashed lines in different colours. The red symbols represent NLS1s; purple

symbols show the radio loud AGN; the green symbol is Mrk 110. The filled purple

star is the BAL-quasar PG 1004+130, and the open purple star is the position if its

intrinsic X-ray flux was 0.73 dex higher (Miller et al. 2006). The square symbols

show all Population A sources whose Hβ FWHM is less than 4000 km s−1. In the

two histograms the green and red regions are for the Population A sources, and the

red region indicates the 12 NLS1s. The dashed green line is based on Hasinger05;

the dashed cyan line is based on Green09; the dashed pink line is based on Lusso10.
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(i) the EM regression line, when L2500 is assumed to be the independent variable:

Log(L2keV ) = (0.83±0.05)Log(L2500) + (1.59±1.55) (5.2)

(ii) the EM regression line, when L2keV is assumed to be the independent variable:

Log(L2keV ) = (1.09±0.09)Log(L2500) − (6.17±2.66) (5.3)

(iii) the bisector of the above two regression lines (the solid orange line in Figure 5.2)

Log(L2keV ) = (0.95±0.06)Log(L2500) − (2.04±1.77) (5.4)

The Spearman’s rank test gives a rank coefficient of ρs = 0.87, and the probability

of deviation from a random distribution is ds = 1.2×10−16, confirming a very high

level of significance. We superimpose PG 1004+130 (filled purple star) on Figure 5.2,

showing that it lies far from the correlation due to its unusual X-ray weakness. It

matches much better to the regression line if corrected in L2keV by 0.73 dex (Miller

et al. 2006, the empty purple star in Figure 5.2).

Our correlation between L2keV vs. L2500 is close to linear, but previous studies

have found a wide range of values as listed in Table 5.2. Figure 5.2 plots these

results for comparison. The correlation found by Hasinger05 (green dashed line)

which is based on an X-ray selected sample, is the most consistent with our sample,

whereas the slope found by Lusso10 (pink dashed line) is significantly flatter. Our

slope is also consistent with Green09 (cyan dashed line) in which a large sample

of optically selected quasars is analyzed. We note that our sample only covers the

low luminosity region of the sample in Green09. The NLS1s are the least luminous

sources. The different value of the Y-axis intercept in Green09 may be due to their

larger sample and larger luminosity dispersion.

There can be several reasons for the difference between our results and Lusso10.

Firstly there may be a selection effect of a flux limited sample if there are dif-

ferent amounts of dispersion in optical and X-ray luminosities (Yuan98; Tang07).

More importantly, our sample is corrected for both Galactic and intrinsic redden-

ing/absorption in the host Galaxy through the spectral fitting whereas that of

Lusso10 is only corrected for Galactic absorption. We remove the intrinsic red-

dening correction and re-compute the EM regression, with results given in Table 5.2
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Figure 5.3: αox vs. L2500, L2keV and redshift. Each symbol represents the same type

of source as in Figure 5.2. In each panel the solid orange line is the OLS regression

line for our sample, assuming the X-axis variable to be the independent variable.

The dashed blue line is based on Steffen06; the dashed pink line on Green09; and

the dashed green line on Lusso10.

under the row ‘This Work-Rint’ The dust reddening and gas absorption column are

related by, E(B-V)=1.7×(NH/1022)cm−2 (Bessell 1991), which means that L2500 is

suppressed much more severely than L2keV . Hence the removal of intrinsic reddening

correction decreases our correlation slope from 0.95 (±0.06) to 0.91 (±0.05). Thus

the intrinsic reddening can flatten the correlation, but it does not seem to be enough

on its own to explain the difference with Lusso10, unless their sample is strongly

reddened in the optical.

The αox vs. L2keV , L2500 and Redshift Correlations

To further investigate the correlation between the optical/UV and X-ray continua,

we adopt the same approach as in previous work to produce αox vs. L2500, αox vs.

L2keV and αox vs. redshift correlations. If we assume L2keV ∝ Lβ
2500, then αox ∝

L1−β
2500 and αox ∝ L

β(1−β)
2keV are expected by definition. However, the Spearman’s rank

test does not imply very strong correlations: ρs = 0.31, ds = 0.03 for αox vs. L2500;

ρs = −0.13, ds = 0.35, for αox vs. L2keV ; ρs = 0.19, ds = 0.18, for αox vs. redshift.

The regression lines were derived have a large uncertainty. The results are presented

in Figure 5.3 and listed in Table 5.2. The solid orange line in each panel of Figure 5.3
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Figure 5.4: κ2−10keV vs. αox. Each symbol represents the same type of source as

in Figure 5.2. The solid orange line is the best fit line found using a second order

polynomial, and the shaded area is the ±1σ zone.

is our EM regression line, compared with some previous work shown by dashed lines.

Note that our results are limited to redshift z < 0.4, L2500 < 10+31 erg s−1 Hz−1 and

L2keV < 10+27.5 erg s−1 Hz−1. Our results also suggest that the cross-correlations in

αox vs. L2500 and L2keV are dominated by the AGN’s intrinsic dispersion.

5.3.2 Group 2: αox, κ2−10keV and λEdd

As mentioned in the previous section αox is often used as a proxy for the broadband

SED shape. Since Lbol is often dominated by the big blue bump (BBB) peaking in the

unobservable EUV region (Walter & Fink 1993). κ2−10keV , defined as Lbol/L2−10keV ,

is also an indicator of the SED shape. λEdd is an important parameter which relates

directly to the accretion processes close to the central SMBH. Therefore, correlations

are to be expected between λEdd, κ2−10keV and αox.
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The αox vs. κ2−10keV Correlation

Lusso10 reported a tight second-order polynomial correlation for κ2−10keV vs. αox.

We find a similar correlation for our sample. Spearman’s rank test shows ρs = 0.73

and ds = 2×10−9. We also fitted a second-order polynomial to the correlation and

obtained the following equation:

Log(κ2−10keV ) = (5.7±3.4) − (8.8±5.2)αox + (4.3±2.0)α2
ox (5.5)

Figure 5.4 shows our best-fit polynomial (solid orange line) with ±1σ dispersion

region (the shaded region). Note that our fit excludes BAL quasar PG 1004+130

(purple star in Figure 5.4). The best-fit polynomial from Lusso10 is plotted as

the dashed green line, which is not as steep as ours. The reason is that our value

of κ2−10keV (and Lbol) is higher than found by Lusso10, especially for the narrow

line objects (the average κ2−10keV for our 12 NLS1s is 86+96
−45). Lusso10 constructed

their broadband SEDs by first assuming a power law extending from the optical

to 500Å, then connecting the continuum at 500Å linearly to that at 1 keV, and

finally by extrapolating from 1 keV towards higher energies, using an exponentially

cut-off power law. This model substantially underestimates Lbol for narrow line

objects because such objects often have strong soft-X-ray excesses which contain a

large fraction of the Lbol (Middleton et al. 2009; Jin et al. 2009; Chapter 3). Our

detailed broadband SED fitting has modeled this soft-excess feature by including

a low temperature optically thick Comptonization component. We claim that this

results in a more accurate estimate of Lbol (Chapter 3). So certainly for the nearby

Type 1 AGNs (redshift < 0.4), the κ2−10keV vs. αox correlation we find should be

more reliable. How the correlation behaves at high redshift requires further study,

but Lusso10 has shown that such a second-order polynomial correlation still holds

for Type 1 AGNs up to redshifts z = 4.

The αox vs. λEdd Correlation

The existence of a correlation of αox vs. λEdd remains unclear. VF07 found no

correlation between these quantities, and so they proposed that αox did not pro-

vide useful information on the broadband SED shape. S08 confirmed VF07’s result
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for their sample of 35 moderate to high luminosity radio-quiet AGN. On the con-

trary, Lusso10 did find a correlation between αox and λEdd, although with a large

dispersion. This was confirmed by Grupe10 for their sample containing 92 soft X-

ray selected AGNs, but their correlation was both flatter and stronger than that of

Lusso10. We use our sample to investigate this situation, and our results are shown

in Figure 5.5. The Spearman’s rank test gives ρs = 0.35 and ds = 1×10−2, suggest-

ing that a correlation does exist. We then applied the ordinary least squares (OLS)

regression, assuming λEdd to be the independent variable, and found the following

relation:

αox = (0.079±0.038)Log(λEdd) + (1.384±0.029) (5.6)

Figure 5.5 shows our results. Our correlation has less dispersion than found by

VF07 and Lusso10, but more dispersion than that from Grupe10. The exclusion of a

correlation is at the ∼2σ significance level, which is less significant than in Lusso10

and Grupe10. Our regression line slope is consistent with but slightly flatter than

that in Lusso10 (β = 0.133±0.023) and Grupe10 (β = 0.11±0.02). This is partly

because our estimation of Lbol is higher than for previous work, due to the inclusion

of a soft X-ray excess in our model. Therefore our value of λEdd is also higher

for the NLS1s and other relatively narrow line objects. Another reason could be a

selection effect due to our low redshift criterion (z < 0.4), while Lusso10’s sample

covers a larger range in redshift (0.04 < z < 4.25). The positive correlation of

αox vs. redshift reported by Lusso10 implies that sources at higher redshift have

statistically steeper αox. Indeed their sample contains many objects with αox > 1.5

and z > 0.4, which populate the empty region above αox = 1.5 in Figure 5.5 and

create a higher dispersion. This can also explain the difference between Lusso10

and Grupe10, since Grupe10’s sample is also a nearby AGN sample with redshift

z < 0.3. These results suggest that αox cannot be used to infer the mass accretion

rate in terms of Eddington (λEdd).
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Figure 5.5: λEdd vs. αox. Each symbol represents the same type of source as in

Figure 5.2. The solid orange line is the bisector regression line determined by our

sample. The cyan crosses are the binned data points of our sample. The dashed

green line is from Lusso10; the dashed purple line is from Grupe10.



5. Type 1 AGN Study - III. Broadband SED Properties 171

The κ2−10keV vs. λEdd Correlation

Wang, Watarai & Mineshige (2004) reported the correlation between κ2−10keV and

λEdd, which was later confirmed by VF07,09. Most recently, Lusso10 also found

this correlation for the 545 X-ray selected type 1 AGNs from the XMM-COSMOS

survey. They suggested that the observed step change in this correlation does not

result from the Lbol dependence on both κ2−10keV and λEdd. In our study we also find

that λEdd is correlated with κ2−10keV . A Spearman’s rank test resulted in ρs = 0.60,

ds = 5×10−6 for the whole sample, and ρs = 0.60, ds = 5×10−6 for the 12 NLS1s.

Figure 5.6 shows our results, together with the results from VF07,09 and Lusso10.

We performed an EM regression analysis and derived the following equations:

(i) An EM regression with λEdd being the independent variable

Log(κ2−10) = (0.482±0.088)Log(λEdd) + (1.840±0.071) (5.7)

(ii) An EM regression with κ2−10keV being the independent

Log(κ2−10) = (1.179±0.166)Log(λEdd) + (2.232±0.090) (5.8)

(iii) bisector of the above two lines (solid orange line in Figure 5.6):

Log(κ2−10) = (0.773±0.069)Log(λEdd) + (2.004±0.049) (5.9)

Our regression lines are highly consistent with the binned points from VF07,09 and

also the regression line reported by Lusso10. The two lowest data bins from VF07,09

seem to have a relatively high deviation from the correlation lines, which may imply

a change in slope of the correlation for sources with λEdd < 0.01. But we cannot

test this possibility from our data due to the exclusion of sources with low λEdd

resulting from our sample selection (Chapter 3).

The results show that the κ2−10keV vs. λEdd correlation extends up to high

κ2−10keV (∼100) and super Eddington accretion rates (∼10); such objects are mainly

NLS1s (red square symbols in Figure 5.6) and some other relatively narrow line

sources (black square symbols). We also note that the dispersion in our regression

line is smaller than that in VF07,09 and Lusso10, in spite of the different meth-

ods used in deriving Lbol and the different redshift ranges. This suggests that the
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Figure 5.6: λEdd vs. κ2−10keV . Each symbol represents the same type of source as

in Figure 5.2. The solid orange line is the bisector regression line determined for

our sample. The binned data points are from VF07 (pink) and VF09 (blue). The

dashed green line is from Lusso10.
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Figure 5.7: κ5100 vs. λEddr and κ2−10keV . Each symbol represent the same type

of source as in Figure 5.2. In the left panel, the solid orange line is the OLS line

assuming λEddr to be the independent variable. The two dashed orange lines show

the ±1σ region, and the shaded region is the ±2σ region. The green open square

symbol is Mrk 110 reported by Landt et al. (2011). The vertical and horizontal

purple lines are for κ5100=9 and λEddr=1. The symbols and lines in the right panel

have the same meaning as those in the left panel.

dispersion observed in the correlation is intrinsic. In Figure 5.6, we see that PG

1004+130 (filled purple star) deviates far from the regression line (also more than

3σ from VF07,09’s binned data points), confirming its anomalously weak L2−10keV .

Increasing its L2−10keV by 0.73 dex (open purple star) moves it much closer to the

correlation line.

5.3.3 Group 3: κ5100, λEddr and κ2−10keV

The 5100Å monochromatic continuum luminosity (L5100) is often used to estimate

Lbol, particularly for very large samples of AGN, when broadband SED modeling

for every source is not practical. The conventional method is to use a constant

scaling factor κ5100 = 9 (Kaspi et al. 2000; Richards et al. 2006: 10.3±2.1), or κ5100

value that is anti-corrected with Lbol (Marconi et al. 2004, hereafter: Marconi04).

VF07 showed that for high λEdd sources such as many of the NLS1s, there is a
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clear deviation from constant κ5100 = 9. In addition, potential contamination from

the host galaxy will introduce dispersion into the κ5100 vs. λEdd correlation for low

luminosity sources. However, this should not be a severe problem for our sample

since in our sample host galaxy is not dominating (Chapter 3). In our study a

much stronger correlation was found in κ5100 vs. λEdd as the Spearman’s rank test

gives ρs=0.81 (ds=4×10−13). Motivated by the strong correlations between λEddr

and κ2−10keV , we also found a strong correlation between κ5100 and κ2−10keV , with a

Spearman’s rank test of ρs=0.64 (ds=9×10−7).

The left panel of Figure 5.7 shows the correlation between κ5100 and λEdd. The

solid orange line is the OLS regression line, the two dashed orange lines show the ±1σ

region, and the shaded region is the ±2σ region. For a specific λEdd value, the 1σ

dispersion of κ5100 is ∼ 0.17 dex. The binned data points from VF07 are also shown

in the plot for comparison. VF07’s results are consistent with ours within ±2σ,

but our correlation is much stronger. This may be attributed to the high spectral

quality of our sample and the carefully derived κ5100 and λEdd, based on our detailed

broadband SED fitting. It also shows that the distribution of κ5100 peaks at 10∼20,

with a 1σ dispersion of 0.29 dex. For the NLS1s, the mean κ5100 increases to 20 (1σ

= 0.23 dex). This means that using a κ5100 = 9 (the horizontal purple line in the

left panel Figure 5.7) would significantly underestimate the intrinsic Lbol and λEdd,

especially for samples containing sources with high λEdd e.g. the NLS1s. The OLS

regression line that assumes λEdd to be the independent variable can be expressed

by the following equation:

Log(κ5100) = (0.467 ± 0.045)Log(λEdd) + (1.430 ± 0.027) (5.10)

We superimpose the SDSS and FAST (Landt et al. 2011) data from Mrk 110

(filled and open green square, respectively) on Figure 5.7. This shows the large

optical variability in the spectrum. The FAST data is much more consistent with

the XMM-Newton OM and also matches very well with the regression line. This

supports the reliability of the correlation.

The strong correlation between κ5100 and κ2−10keV (shown in the right panel

of Figure 5.7) is an expected result, given that both κ5100 and κ2−10keV strongly
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correlate with λEdd. Such a correlation is also reasonable considering the strong

correlation between L2−10keV and L5100 (Chapter 3I). The 1σ dispersion of κ2−10keV

is 0.40 dex, which is larger than that 0.29 dex for κ5100. The ±1σ, ±2σ zones are also

shown in the Figure. The bisector regression line can be expressed by the following

equation:

Log(κ5100) = (0.593 ± 0.053)Log(κ210) + (0.239 ± 0.086) (5.11)

Mrk 110 and PG 1004+130 are superimposed on the plot, and their corrected posi-

tions are much more consistent with the regression lines.

Marconi04 proposed that κ5100 anti-correlated with Lbol, but our study does not

support such an anti-correlation, although our sample only occupies the Lbol region

above 1010.7 L⊙ in Fig. 3 left panel of Marconi04. A Spearman’s rank test for

our sample gives ρs=0.12 (ds=0.39), suggesting no correlation. The sources lying

between 1011 ∼1012.5 L⊙ have a mean κ5100= 16, with a 1σ dispersion of 0.29 dex.

So we find that our κ5100 values for these objects are much higher than reported in

Elvis et al. (1994) and Marconi04.

5.3.4 Group 4: Γ2−10keV , λEdd and κ2−10keV

The strong correlation between 2-10 keV photon index (Γ2−10keV ) and λEdd has

been studied in detail for the past ten years (e.g. Lu & Yu 1999; Wang, Watarai &

Mineshige 2004; S06,08; Zhou10a). It is proposed that increasing the mass accretion

rate leads to enhanced emission from the accretion disc, resulting in more seed

photons from the disc, which then increases the Compton cooling of the corona, and

softens the Comptonized hard X-ray spectrum, i.e. the slope of Γ2−10keV increases.

It was also reported that both Γ2−10keV and λEdd strongly correlate with the FWHM

of Hβ (e.g. Brandt, Mathur & Elvis 1997; S06,08; Grupe10), therefore these three

parameters all strongly correlate with each other. However, S06,08 found that the

correlation of Γ2−10keV vs. FWHMHβ is weakened by the inclusion of highly luminous

sources, but that the correlation of Γ2−10keV vs. λEdd still exists. This implies that

the correlation of Γ2−10keV vs. λEdd is more fundamental. We also mentioned in

Section 5.3.2 that the strong correlation between λEdd and κ2−10keV is confirmed,
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Figure 5.8: Γ2−10keV vs. λEddr and κ2−10keV . Each symbol represents the same

type of source as in Figure 5.2. In the left panel, the solid orange line is the bisector

regression line. The dashed green line is that reported by Zhou10b. The vertical and

horizontal purple lines are for Γ2−10keV =2 and λEddr=1. The symbols and lines in the

right panel have the same meaning as those in the left panel. The vertical purple line

is for κ2−10keV =100. PG 1004+130 was excluded when performing the regression,

but assuming its intrinsic X-ray flux to be 1 dex higher and a Γ2−10keV ∼1.8 would

make it consistent with the other sources. It is shown as the open purple star in

both panels.
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thus a strong correlation between Γ2−10keV and κ2−10keV is expected. Indeed, such a

correlation has been reported recently by Zhou & Zhao (2010), hereafter: Zhou10b.

In this section we carry out a similar cross-correlation study, to test the robustness

of previous claims.

The Correlations and Regression Lines

The two panels in Figure 5.8 show our correlations between Γ2−10keV , λEdd and

κ2−10keV . Table 5.3 summarizes the numerical results. Significant correlations are

confirmed based on the Spearman’s rank test: ρs=0.40 (ds=4×10−3) for Γ2−10keV

vs. λEdd, and ρs=0.73 (ds=4×10−9) for Γ2−10keV vs. κ2−10keV .

Following S08’s approach, we applied the χ2 minimization method for Γ2−10keV

vs. λEdd correlation, assuming Γ2−10keV = βLog(λEdd) + ξ. A typical error of 10%

was assumed for λEdd. The small error in Γ2−10keV for Mrk 110 (square green symbol)

caused the slope β to be 0.018±0.019, which is clearly not the best-fit line for the

whole sample. We therefore excluded Mrk 110 and so found a more reasonable

slope of 0.189±0.026, but this is still ∼5σ away from 0.31±0.01 reported by S08

using the same method. It implies that the χ2 minimization technique may not be

an appropriate method for quantifying this correlation, because it can be strongly

biased by sources with small error in the Γ2−10keV measurement (if the 2-10 keV

spectrum has high S/N). The χ2/ν = 6.5 in our fitting means that this correlation

contains a big intrinsic dispersion along with the observational dispersion, thus the

method of assuming χ2/ν ∼1 by taking intrinsic dispersion into account is more

appropriate. This method gives slopes of 0.202±0.061 and 0.226±0.026 before and

after excluding Mrk 110, so the results are less sensitive to individual sources of

much smaller error bars. The intrinsic dispersion is 0.18, which is 86% of the total

dispersion, and is also consistent with ∆Γ2−10keV ∼0.1×Γ2−10keV reported in S08.

The bisector regression line is derived. The result is plotted as a solid orange line

in the left panel of Figure 5.8, and it can be expressed by the following equation:

Log(λEdd) = (1.773 ± 0.238)Γ2−10keV − (3.983 ± 0.469) (5.12)

The slope is ∼2σ steeper than the bisector slope of 0.9±0.3 reported by S08 (dashed
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Table 5.3: The line coefficients found using different regression methods for the

correlations of Γ2−10keV vs. λEddr and κ2−10keV .

Log(λEdd)=βΓ+ξ Log(κ210)=βΓ+ξ

OLS(Y|X) β 0.918±0.269 1.115±0.172

ξ -2.325±0.527 -0.573±0.329

OLS(X|Y) β 4.730±1.217 2.209±0.283

ξ -9.650±2.304 -2.675±0.525

Bisector β 1.753±0.239 1.533±0.153

ξ -3.931±0.471 -1.376±0.288

χ2 min β 4.416±0.510 2.620±0.184

ξ -8.761±0.946 -3.447±0.343

χ2/ν ∼1 β 1.274±0.283 1.529±0.183

ξ -3.003±0.544 -1.372±0.350

green line in the left panel of Figure 5.8). This discrepancy may be due to the

different methods used to estimate the bolometric luminosity. We will discuss this

point in Section 5.3.4.

Similar analytical methods were applied to the relation of Γ2−10keV vs. κ2−10keV .

Zhou10b reported a slope of 2.52±0.08, using standard χ2 minimization and as-

suming κ2−10keV = βLog(Γ2−10keV ) + ξ. This is consistent with our value of β =

2.620±0.184 with a χ2/ν = 2.78. Considering the intrinsic scatter, Zhou10b re-

ported a slope of 1.12±0.30 by adding 0.32 dex of intrinsic dispersion to reduce

χ2/ν to unity (the dashed green line in the right panel of Figure 5.8). Applying

the same method to our sample resulted in a slope of 1.529±0.183, which is steeper

than found by Zhou10b. The intrinsic dispersion found by us is 80% of the total

dispersion. The bisector regression method gives a slope of 1.533±0.153 (the solid

orange line in the right panel of Figure 5.8) and can be expressed by the following

equation:

Log(κ2−10keV ) = (1.533 ± 0.153)Γ − (1.376 ± 0.288) (5.13)

This is also consistent with the results found by assuming χ2/ν ∼1.
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Figure 5.9: Γ2−10keV vs. FWHM of Hβ and MBH . In the upper left panel, a broken line is fitted to the sample

using the minimum χ2 method. S06,08 proposed the linear correlation between Γ2−10keV and Log(Hβ FWHM)

was not followed by their 10 extremely high luminosity sources, so we plot their sample as blue diamond symbols

for comparison. In the right panel binned points are plotted with 1 standard error of Γ2−10keV in order to show the

break points more clearly. The two red points only include the NLS1s, the two dark points are the broadest BLS1s.

The cyan point is the binned point for the whole sample of S06,08. The blue point is the binned point for S06,08’s

sample but excluding LBQS 0109+0213 whose Γ2−10keV is anomalously low. The square orange point is the break

point. 1E 1556+27.4 shown by the red circle is another source with Γ2−10keV <1.5. In the second row, the symbols

all have the sample meaning as in the first row. We plot the linear regression line as the dashed orange line.
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Figure 5.10: MBH vs. Hβ FWHM. The symbols used represent the different types

of source as in Figure 5.2. The solid orange line is the OLS regression line, assuming

Hβ FWHM to be the independent variable. The shaded region is the ±1σ region

of the regression line. The cyan triangle shows the position of (FWHMHβ,break,

Log(MBH,break)) in Figure 5.9.
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Advances from Our Correlation Analysis

Compared with the results found by S08 and Zhou10b, our study of Γ2−10keV vs.

λEdd and κ2−10keV provides the following advances.

(1) We have confirmed these correlations based on sample of twice the size of those

in S08 and Zhou10b, including more sources with high values of λEdd, Γ2−10keV and

κ2−10keV , which significantly extend the previous correlations (see Figure 5.8). The

regression line fits are better constrained and cover wider parameter space. The dif-

ference between our regression lines and those of previous studies may be partially

due to the fact that we have more sources of most extreme λEdd.

(2) Our sample has been carefully screened to exclude sources with a strong warm

absorber. These sources may have Γ2−10keV and higher κ2−10keV artificially lower

than the intrinsic values. Our sample quality is essential to reduce the dispersion

and so reveal intrinsic correlations.

(3) Our estimates of Lbol were derived from the broadband SED fitting, which was

based on high quality spectra and a new multi-component model. We claim this

to be more reliable than the procedure used in previous studies. A conventional

method is to apply a multiplication factor to L5100 to estimate Lbol. However, we

showed in Section 5.3.3 that κ5100 is well correlated with λEdd, rather than being

constant or dependent on Lbol, consequently the conventional scaling from L5100 to

Lbol is likely to result in poor accuracy in some cases. The Lbol used in Zhou10b

does come from VF09’s broadband SED model for the reverberation mapped sam-

ple, but it does not take account of the ‘soft X-ray excess’ component or where the

disc peaks in the EUV. Therefore the Lbol we calculate will be larger than previous

works, especially for those sources with a strong ‘soft excess’, Our λEdd and κ2−10keV

will also be higher, which could account for the differences in slope between our

regression lines and those reported in previous work.
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5.3.5 Group 5: Γ2−10keV , Hβ FWHM and MBH

The Γ2−10keV vs. Hβ FWHM Correlation

The correlations between the soft/hard X-ray slopes and the Balmer line velocity

width have been the subject of much work. Laor et al. (1994) studied 23 ROSAT

selected bright quasars, and found an anti-correlation between the 0.2-2 keV slope

(αX) and the Hβ line width. Later Boller, Brandt & Fink (1996) showed that

NLS1s tend to have softer X-ray spectra. Brandt, Mathur & Elvis (1997) extended

this anti-correlation to include the 2-10 keV slope, by showing that NLS1s also

have steeper hard X-ray continua than BLS1s, a result which was confirmed and

extended by other studies (e.g. Grupe et al. 1999; Leighly 1999; Piconcelli et al.

2005; Brocksopp et al. 2006; S08; Zhou10a). However, there is large scatter within

this correlation, and the trend seems to invert below ∼1000 km s−1 for NLS1s

(Zhou et al. 2006). The observed large scatter is to be expected since we know

that it is not a single variable that determines the spectral slope in either the soft

or the hard X-ray region. In the soft X-ray region, the extinction, a soft-excess

component and a warm absorber will all influence the spectral shape, which would

require very detailed modeling. The situation for the 2-10 keV region is somewhat

less complicated since often a single power law dominates (e.g. Middleton, Done

& Gierliński 2007), but a warm absorber and reflection may still modify the hard

X-ray spectral shape. In summary, the true correlation can only be found when the

intrinsic X-ray continuum is used.

Our sample selection has ensured that every object in the sample has high qual-

ity 2-10 keV spectra, without significant cold gas absorption or a warm absorber

(Chapter 3). We confirm that there is an anti-correlation between Γ2−10keV and Hβ

FWHM, see Figure 5.9. The Spearman’s rank test gives ρs=-0.72 (ds=4.9×10−9).

The best-fit lines from Zhou10a are also plotted in Figure 5.9 as the cyan lines.

Compared with their linear correlation in using FWHMHβ , we find that the linear

correlation using Log(FWHMHβ) is better. Previous work also noted that the cor-

relation may change form at ∼4000 km s−1 (Sulentic et al. 2008). Therefore we fit

a broken power law to the Γ2−10keV vs. Log(FWHMHβ) data, and find the following
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best-fit parameters:

(i) when Log(FWHMHβ) 6 3.61,

Γ = (−0.87 ± 0.02)Log(FWHMHβ) + (4.90 ± 0.09) (5.14)

(ii) when Log(FWHMHβ) > 3.61,

Γ = (−0.03 ± 0.02)Log(FWHMHβ) + (1.86 ± 0.09) (5.15)

The best-fit break FWHMHβ is 4070±90 km s−1 (Log(FWHMHβ) = 3.61±0.01),

which is consistent with that found by Sulentic et al. (2008).

The only source included in the correlation whose Γ2−10keV < 1.5, is 1E 1556+27.4,

(the data for PG 1004+130 is superimposed but not used for the regression). A closer

examination of the spectrum of this AGN shows that it probably has a strong re-

flection component modifying its intrinsic hard X-ray power law slope (Chapter 3).

All other objects have values consistent with Γ2−10keV > 1.5. The differences in

the results of Zhou10a and our work are not only because we performed our corre-

lation fitting using Log(FWHMHβ), but also because their sample did not exclude

BAL quasars and warm absorbers, whose low values of Γ2−10keV are probably not

intrinsic. This will bias the correlation and increase the scatter.

Our sample includes six objects with FWHMHβ >10000 km s−1. These are the

sources have average < Γ2−10keV >= 1.76±0.14 independent of the FWHMHβ. This

is slightly lower but still consistent with the Γ2−10keV = 1.97 ± 0.31 index found by

S06,08, who included more high redshift, high luminosity sources, with FWHMHβ >

10000 km s−1.

The Γ2−10keV vs. MBH Correlation

The Hβ FWHM is frequently used to estimate the MBH , using the relation MBH ∝
FWHM2

Hβ (Wandel, Peterson & Malkan 1999; Woo & Urry 2002). The correlation

of Γ2−10keV vs. FWHMHβ implies a similar correlation in Γ2−10keV vs. MBH . This is

confirmed in our study as shown in the second row of Figure 5.9. The Spearman’s

rank test gives ρs=-0.3 (ds=3×10−2). The correlation shows a change in slope at

Log(MBH) = 7.82±0.02, which can be expressed as follows:



5. Type 1 AGN Study - III. Broadband SED Properties 184

(i) when Log(MBH) 6 7.82,

Γ2−10keV = (−0.472 ± 0.013)Log(MBH) + (5.494 ± 0.116) (5.16)

(ii) when Log(MBH) > 7.82,

Γ2−10keV = (0.044 ± 0.011)Log(MBH) + (1.458 ± 0.091) (5.17)

We show a plot of FWHMHβ vs. MBH in Figure 5.10. This is an independent

plot as our MBH are derived from the SED continuum fits rather than being directly

measured from FWHMHβ. The OLS regression gives MBH ∝ FWHM1.16
Hβ , with a

1σ = 0.4 dex. The cyan triangle symbol in the figure shows the position of the break

in FWHMHβ vs MBH . We note that this point lies within ±1σ of the regression line,

suggesting that the similar correlations found between Γ2−10keV vs. Log(FWHMHβ)

and Γ2−10keV vs. Log(MBH) are indeed caused by the tight correlation between

FWHMHβ and MBH . But Γ2−10keV has weak dependence on MBH for Log(MBH) >

7.82, with a mean value of 1.84±0.21.

5.3.6 Other Strong Correlations

The diverse correlations found in small parameter groups imply more correlations

among all these parameters. We show some significant correlations in Figure 5.12.

These include decreasing λEdd, κ2−10keV , κ5100 with increasing Hβ FWHM and MBH .

Binned data points are shown as cyan crosses. The dashed orange line in each panel

is the bisector regression line.

The κ2−10keV vs. L2−10keV correlation

Marconi04 and Hopkins07 reported a strong positive correlation in κ2−10keV vs.

L2−10keV , based on a quasar SED template and the αox vs. L2500 correlation reported

by Steffen et al. (2006). VF07 tested the same correlation in their low redshift AGN

sample but found no correlation (see Figure 5.11). We tested this correlation in our

sample and confirmed VF07’s result (see Figure 5.11). A highly dispersed anti-

correlation of κ2−10keV vs. L2−10keV is found in our study.
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Figure 5.11: κ2−10keV vs. L2−10keV . Different symbols represent the same type of

sources as in Figure 5.2. The orange and gray shaded regions represent the theo-

retical κ2−10keV with ±1σ scattering at each L2−10keV in Hopkins07 and Marconi04.

The green data points are reproduced from Fig.3 in VF07.
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Figure 5.12: Examples of some good correlations not reported previously. In each

panel the various symbols represent the same types of source as in Figure 5.2. The

solid orange line is the bisector regression line. The cyan symbols are the binned

data points over the X-axis with a 1 standard error on the Y-axis.

For the well sampled high X-ray luminosity region (L2−10keV >1043 erg s−1), both

VF07 and our samples show very similar distribution and dispersion. NLS1s in both

samples mainly populate the regions of κ2−10keV >100 and 1042 erg s−1 <L2−10keV <1043

erg s−1, and deviate from the correlation suggested by Marconi04 and Hopkins07.

The main difference from VF07 is that our sample have more sources within the

range of 3×1042 erg s−1 <L2−10keV <1043 erg s−1, while VF07 sample contains three

extraordinary weak X-ray sources whose L2−10keV < 2×1042 erg s−1. Thus we think

those intrinsically X-ray weak (L2−10keV ∼1042 ergs−1) sources may populate the

low L2−10keV , small κ2−10keV region, creating a scattered distribution in the κ2−10keV

vs. L2−10keV plot. The correlations from Marconi04 and Hopkins07 may have un-

derestimated the uncertainties in using αox vs. L2500 correlation (see discussion in

Section 5.3.1) and the universal quasar SED template (e.g. Elvis et al. 1994; VF07;

Chapter 3). However, we cannot rule out the possibility that the behavior of nearby
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Table 5.4: The cross-correlation matrix of the 9 key SED parameters. ID 1∼9 are

given to each parameter. ρs is the Spearman’s rank coefficient. ds is the logarithm

of the significance level of being random distribution.
Parameters Γ2−10keV κ2−10keV κ5100A λEdd Hβ FWHM MBH αox Lbol L2−10keV

km s−1 M⊙ 10+44 10+44

log log log log log log log

Γ2−10keV ρs 1 0.73 0.32 0.40 -0.72 -0.33 0.39 0.05 -0.38

ds -∞ -8. -2. -2. -8. -2. -2. -0. -2.

κ2−10keV ρs — 1 0.64 0.60 -0.81 -0.45 0.74 0.12 -0.49

ds — -∞ — -5. -12. -3. -9. -0. -3.

κ5100A ρs — — 1 0.80 -0.56 -0.60 0.32 0.20 -0.24

ds — — -∞ -11. -5. -5. -2. -1. -1.

λEdd ρs — — — 1 -0.40 -0.24 0.38 0.62 0.16

ds — — — -∞ -2. -1. -2. -6. -1.

Hβ FWHM ρs — — — — 1 0.64 -0.48 0.17 0.63

ds — — — — -∞ -6. -3. -1. -6.

MBH ρs — — — — — 1 -0.03 0.55 0.78

ds — — — — — -∞ -0. -4. -10.

αox ρs — — — — — — 1 0.33 -0.17

ds — — — — — — -∞ -2. -1.

Lbol ρs — — — — — — — 1 0.78

ds — — — — — — — -∞ -10.

L2−10keV ρs — — — — — — — — 1

ds — — — — — — — — -∞

Seyfert AGNs are different from quasars at higher redshift.

5.4 A Study of Correlations between All The 9

Key SED Parameters

To summarize the various correlations discussed in the previous section, we per-

formed a systematic correlation study of the following key SED parameters: Γ2−10keV ,

κ2−10keV , κ5100A, λEdd, FWHMHβ , MBH , αox, Lbol and L2−10keV .

First, a correlation matrix was constructed as shown in Table 5.4. The Spear-

man’s rank coefficient and probability of a null hypothesis are given. The table

shows that there are some sub-groups of parameters which are strongly coupled

with each other. For example, κ2−10keV , κ5100A and λEdd are coupled; Γ2−10keV , Hβ
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FWHM and κ2−10keV are also coupled with each other. The strong correlation be-

tween Hβ FWHM and κ2−10keV can be expressed by the following equation derived

from a bisector regression analysis:

Log(κ2−10) = (−1.22±0.12)Log(FWHM) + (5.88±0.45) (5.18)

There also appears to be a sub-group consisting of MBH , Lbol and L2−10keV , and

a sub-group consisting of MBH , Hβ FWHM and L2−10keV . However, correlations

within these sub-groups are probably a result of selection effects arising from our

sample selection criteria. Inclusion of extremely weak L2−10keV sources may weaken

or eliminate the correlations between L2−10keV and other parameters.

The observed properties of AGN should be ultimately driven by the black hole

mass, mass accretion rate, black hole spin and orientation angle. We have assumed

the simplest Schwarzschild black hole in our model and so its spin is not consid-

ered. Uncertainties introduced by orientation angle should also be small since our

sample only contains unobscured Type 1 AGNs. Therefore, the remaining intrinsic

parameters are just the black hole mass and mass accretion rate (or equivalently,

Eddington ratio)

We can examine the correlations further by performing a principal component

analysis (PCA) on the correlation matrix formed by Pearson’s correlation coefficient

(Boroson & Green 1992). The dimension of this matrix is 9, so the outcome of the

PCA must contain 9 normalized eigenvectors (principal components: PCs), each

associated with a positive eigenvalue. Each PC is a linear combination of the 9

SED parameters, and is orthogonal to all the other PCs. The sum of the 9 eigen-

values equals 9. A higher eigenvalue would suggest a larger fraction of correlations

contained in the direction of the corresponding eigenvector.

The EIGENQL program in IDL (Interactive Data Language) v6.2 was used to

perform the PCA. We found that the first three eigenvectors contain 90% of the to-

tal correlations in the matrix, i.e. 50% in eigenvector 1 (PC1), 30% in eigenvector 2

(PC2) and 10% in eigenvector 3 (PC3). To determine the actual contributors of these

eigenvectors, we cross-correlated them with the 9 SED parameters. Table 5.5 lists

the Spearman’s rank coefficients. It is clear that PC1 correlates/anti-correlates very
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Table 5.5: The cross-correlation of the three principal eigenvectors with the 9 key

SED parameters. The coefficients given are from the Spearman’s rank test.

Eigenvector 1 Eigenvector 2 Eigenvector 3

Property 50% 30% 10%

Γ2−10keV 0.74 0.13 0.32

κ2−10keV 0.92 0.25 0.26

κ5100A 0.70 0.32 -0.43

λEdd 0.54 0.71 -0.33

Hβ FWHM -0.92 0.08 -0.15

MBH -0.72 0.44 0.34

αox 0.55 0.44 0.56

Lbol -0.13 0.98 0.03

L2−10keV -0.66 0.68 -0.13

well with most SED parameters, except for Lbol. The highest correlation strength

is for Hβ FWHM and κ2−10keV . These in turn are probably proxies for the physical

variables of MBH and λEdd. PC2 is dominated by Lbol which confirms that Lbol is a

relatively independent variable. We have assumed that Lbol = µṀc2, where µ is the

standard accretion efficiency of 0.057 (see Chapter 3), so PC2 is in effect dominated

by the mass accretion rate Ṁ . PC3 is dominated by αox, but its contribution to the

total set of correlations is small compared to PC1 and PC2. The other seven eigen-

vectors share the remaining 10% of correlations, and are therefore not important.

It was also reported by Boroson (2002) that the PC1 from the correlation matrix

of optical emission line parameters is driven predominantly by the Eddington ratio,

while the PC2 from the same matrix is dominated by the luminosity. Therefore, the

PC1 and PC2 from our correlation matrix of SED parameters have a similar basis

to the two eigenvectors reported by Boroson (2002).
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5.5 The Mean SEDs

5.5.1 Diversity of the Mean SEDs

In Chapter 3 we derived the mean SED for the 12 NLS1s in our sample, and com-

pared this with the mean SEDs of another two groups of BLS1s. We showed that

the SED shape changes dramatically as the Hβ FWHM increases. Since quasar

SED are not uniform, modelling their spectra and evolution using a single template

such as that of Elvis et al. (1994), will mask out a large dispersion in their intrinsic

properties. In our study we aim to minimize this dispersion by grouping the SED

based on each of the 9 SED parameters discussed in the previous section.

There are 51 AGNs in our sample. For each of the 9 SED parameters we sorted

the sources according to the parameter value, and then classified the sample into

three subsets so that each subset includes 17 sources. Then the BAL quasar PG

1004+130 was excluded from its subset. The SEDs constructed using Model-B in

this chapter were first corrected for redshift, and then divided into 450 energy bins

between 1 eV and 100 keV in the logarithm. Within each subset we calculated the

average luminosity in every energy bin in logarithm, together with the 1σ deviation.

Then we derived the mean SED for each group together with the 1σ dispersion. The

same calculation was repeated for each of the 9 parameters, so that there are three

mean SEDs for each parameter. No special note was made for the NLS1s because

their defining parameter, Hβ FWHM, is one of the 9 parameters.

Figure 5.13 shows our results. Each row displays the three mean SEDs divided

according to the parameter shown in the panel title. The SEDs have all been

renormalized to the mean luminosity at 2500Å of each subset. To highlight the

differences among these SEDs, we mark the locations of 2500Å and 2 keV by the

vertical orange lines. The relative height of these two lines directly reflects the value

of αox, and the height of the bar at 2 keV shows the dispersion in αox since the

co-added SED’s are all normalized at 2500Å. We also mark the energy peak for each

mean SED by the vertical thick purple line. The mean values of other parameters

are given in each plot for comparison.

We find that the mean SED changes in a similar way with all the parameters
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except Lbol. The energy at which the disc emission peaks decreases along with the

ratio of luminosity in the disc compared to the Comptonised components, and the

2-10 keV spectral slope. Our stringent sample selection means that these spectral

differences are intrinsic rather than due to absorption/extinction.

If the SED changes are determined solely by one of the parameters considered

here, then binning based on that parameter should result in the minimum dispersion

within each individual binned SED, and maximal difference between the three SEDs

spanning the range in that parameter. However, the SED changes should ultimately

be physically dependent on changes in MBH and λEdd. Since there are two dependent

variables no single parameter will completely determine the behaviour. Hence the

dispersion within each of the three binned SEDs is minimized (and the difference

between them is maximized) for composite parameters which depend on both λEdd

and MBH such as κ2−10keV , κ5100 and Hβ FWHM rather than the fundamental

physical parameter λEdd. Future work with larger samples can improve on this

study by selecting a subsample of AGN with different λEdd but similar MBH . Such

mass selected samples would give the best comparison to the SED changes in Black

Hole Binaries (BHB), which all have the same mass to within a factor of ∼ 2.

5.5.2 Discussion of the Mean SEDs

Since our SED fitting is based on a physical model, we can ‘correct’ for the mass

dependence of the SED shape to get an estimate for the SED differences in AGN as

a function solely of λEdd. This is shown in Done et al. (2011) for a MBH = 108M⊙

and forms the basis of a direct comparison with the BHB spectral states seen for

these MBH = 10M⊙ systems as λEdd changes. This has many superficial similarities

to the dramatic state change seen in BHB as their luminosity increases. The SED

changes from a ‘low/hard state’ being dominated by Comptonisation, with a hard

X-ray spectral index Γ2−10keV < 2, and the disc component peaking at rather low

temperature, to a ’high/soft state’ where the disc dominates the luminosity and the

X-ray spectral index is softer, Γ2−10keV ∼ 2 − 2.2 (see e.g. the review by Done,

Gierliński & Kubota 2007). However, this occurs at λEdd ∼ 0.02 for moderate
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Figure 5.13: The AGN mean SEDs based on different values of the 9 key parameters from Model-B fitting (i.e.

including the effect of a colour temperature correction). For each parameter, the 51 sources are sorted according to

the parameter value, and then are divided into three equal subsets so that each contains 17 sources. PG 1004+130

is excluded from its subset. Finally, a mean SED is constructed for each of the three subsets after renormalizing

each individual SED to the mean luminosity at 2500Å of that subset. The three panels (A, B, C) in each row show

the mean SEDs for the subsets classified by the parameter shown in the panel title. In each panel the solid curve is

the mean SED, while the shaded coloured region is the ±1σ deviation. The 2500 Å and 2 keV positions are marked

by the vertical solid orange lines, whose relative height indicates the value of αox. The peak position of the SED is

marked by the vertical solid purple line. The average values of some other parameters in that subset are also shown

in the panel. Each mean SED has been rescaled by the same arbitrary constant on the Y-axis which is 1×10−46.

Note that the energy ranges E < 6 eV and 0.3 keV < E < 10 keV, are covered by SDSS, OM and EPIC data

respectively, while the SED in the rest energy bands is determined from an extrapolation of the best-fit model.
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Figure 5.13: continued
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changes in mass accretion rate (Maccarone 2003), an order of magnitude lower than

the spectral differences seen here in the AGN (see also the discussion in Done et

al. 2011). This could indicate some subtle differences in the transition due to the

very different masses, but in BHB this transition is also associated with the radio

jet switching off (Fender, Belloni & Gallo 2004). If the Compton dominated states

in AGN correspond to the low/hard state in BHB then we would expect them to be

radio loud. However, AGNs are radio-quiet by a factor of 10:1.

This makes unlikely an identification of the two lower λEdd AGN templates as

analogs to the low/hard (or intermediate state) seen in BHB. Instead, there is an-

other state in BHB called the ‘very high’ or ‘steep power law state’, where the disc

also peaks at a lower temperature than expected, and where the Comptonised com-

ponent contains a large fraction of the total luminosity (see e.g. the review by Done,

Gierliński & Kubota 2007). However, this state has Γ2−10keV > 2.5 i.e. the hard

X-ray spectra are steep. Yet these AGN have Γ2−10keV < 2, as well as a soft X-ray

excess component. Therefore, to match the AGN with the very high state would

require that reflection and/or complex absorption modify the spectrum, producing

an apparent soft X-ray excess and a hard power law from an intrinsically steep spec-

trum. However, the time variability properties of individual objects make it clear

that these high mass, relatively low Eddington ratio objects do indeed have two sep-

arate components. The intrinsically hard power law which is more variable on short

timescales, and a soft X-ray excess which is relatively constant on these timescales

but more variable over longer times (e.g. Mkn509: Mehdipour et al. 2011; Noda et

al. 2012).

Therefore, the two lowest λEdd spectra shown in Figure 5.13 do not look similar

to any state observed in BHB. Yet these sources span the typical QSO accretion

rates (e.g. Steinhardt & Elvis 2010), and indeed our templates are very similar to

the mean SED in Elvis et al. (1994). It seems that these most common QSO SED’s

are not simply analogous to BHB accretion flows. Only the very rare AGN SED’s

with the highest λEdd can be well matched to the BHB, as they are similar to the

high/soft state (see also Done et al. 2011).
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5.6 Analogy with Black Hole Binary Systems

BHB show (at least) three different states, variously termed the low/hard, high/soft

(i.e. thermal dominant or disc dominant) and very high (a.k.a. steep power law

state). Spectra from this latter state appear very similar to intermediate spectra

seen as the source makes a transition from the low/hard to high/soft states (e.g.

Belloni et al. 2005). It is plain from Figure 5.14b that the highest L/LEdd spectrum

of M3 (see caption of Figure 5.14) is very much like a disc dominated high/soft

state spectrum with a small amount of additional soft Comptonisation. The lower

luminosity spectra are more ambiguous, and could be either low/hard state spectra

or intrinsically steeper very high state spectra which are modified by complex ab-

sorption/reflection. We explore each of these possibilities below, and then discuss

how we can distinguish between the two scenarios.

5.6.1 AGN sequence as a low/hard to high/soft transition

The increasing dominance of the disc with increasing L/LEdd, together with the

switch from hard to soft 2-10 keV X-ray emission is initially very reminiscent of the

spectral transition seen in stellar mass galactic black hole binary systems (BHB).

These show a clear switch from a hard power law dominated low/hard state to disk

dominated high/soft state with a steep tail to higher energies (see e.g. the reviews

by McClintock & Remillard 2006 hereafter MR06; DGK07). This is generally inter-

preted as a decreasing transition radius between a cool disc and hot comptonised

region (Esin, McClintock & Narayan 1997), matching the decreasing rcorona seen in

our AGN fits.

The BHB in the low/hard state also often show a complex continuum, with a

softer Comptonisation component from the outer parts of the flow which intercept

more seed photons from the disc, together with a harder tail from the hotter central

regions (Ibragimov et al. 2005; Takahashi et al. 2008; Makishima et al. 2008;

Kawabata & Mineshige 2010). This inhomogeneous Comptonisation in BHB is also

required to explain the time lags seen in the data (Kotov, Churazov & Gilfanov 2001;

Arévalo & Uttley 2006). Thus the two component (soft and hard) Comptonisation
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required to fit the X-ray spectra in M1 and M2 could be analogous to the two

component Comptonisation spectra seen in the BHB low/hard state.

However, there are also some significant differences. The transition in BHB

occurs at L/Edd ∼ 0.02 when the mass accretion rate is slowly declining, (Maccarone

2003). This is as expected for an advection dominated flow, which collapses when

the energy transfer between the ions and electrons becomes efficient. The collapse

depends only on optical depth of the flow rather than black hole mass, so should

be the same for both AGN and BHB (Narayan & Yi 1995). Yet in these AGN

the low/hard state must persist up to at least L/LEdd ∼ 0.2 to explain M2. Such

high transition luminosities are only seen in BHB during the rapid rise during disc

outbursts (see e.g. the compilation by Yu & Yan 2009) which drive the flow out

of its equilibrium states (Gladstone, Done & Gierliński 2007). Our M2 spectrum

would then be analogous to the intermediate state seen during this transition, but

this transition is very rapid in BHB so these intermediate spectra are rare (Dunn

et al. 2009). By contrast, M2 is very similar to the mean QSO spectral template

of Elvis et al. (1994). and has similar mass and mass accretion rate as a typical

QSO (Kollmeier et al. 2006; Steinhardt & Elvis 2010) so it must be a very common

state. Thus it does not seem very likely that all these AGN are preferentially seen

during a dramatic rise in mass accretion rate. The only real possibility for this AGN

sequence to represent a low/hard to high/soft transition is if there is some weak mass

dependence on the critical luminosity not predicted by the advective flow models

(Narayan & Yi 1995).

5.6.2 AGN sequence as high mass accretion rate transition

This motivates us to explore the alternative possibility, that the AGN spectra seen

here are above the low/hard state transition luminosity, so correspond to one of the

high mass accretion states in BHB. The hard X-ray tail (Γ < 2) is incompatible

with this, as these high mass accretion states in BHB almost always have Γ > 2

(MR06; DGK06). Hence the observed hard X-ray spectra in M1 and M2 would have

to be distorted by complex absorption and/or reflection, whereas M3 already has
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Figure 5.14: a) The three mean spectra from Figure 5.13, derived using fcol = 1, but

we show the fit (excluding the unobservable 0.01-0.3 keV region) with fcol = 2.5 for

the lowest mass/highest mass accretion rate spectrum, where the disc temperature

exceeds Tscatt = 105 K. M1 (blue) has L/LEdd = 0.058 and black hole mass of

1.4×108 M⊙. M2 (green) has L/LEdd = 0.23 and black hole mass of 1.1×108 M⊙.

M3 (red) has L/LEdd = 0.77 and black hole mass of 2.6×107 M⊙. b) shows the

spectral evolution with L/LEdd alone by redoing each model for a single black hole

mass of 108 M⊙ (and fcol = 1).
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a soft 2-10 keV spectrum, so does not require complex absorption. This potential

difference is supported by the behaviour of the soft X-ray excess. In the highest

L/LEdd spectra (M3 and REJ1034+396) the soft excess appears as a true excess

over a Γ = 2-2.2 extrapolation of the 10 keV flux level down below 2 keV, unlike

M2, M1 and PG 1048+231 where the vfv flux level at 0.1 keV is roughly similar

to that at 10 keV. The soft excess seen in the highest L/LEdd spectra could then

represent a ‘true’ soft X-ray excess connected to the disc as its approaches Eddington

(perhaps bulk motion Comptonisation from turbulence: Socrates et al 2004, or

trapped radiation advected along with the flow which can then be released in the

plunging region: Sadowski 2009), while the ‘bend’ seen in the lower L/LEdd is a

‘fake’ soft excess, where the apparently hard 2-10 keV spectrum and steeper 0.3-2

keV excess are both distortions from complex absorption and/or reflection. Complex

absorption seems quite likely in an AGN environment, as a UV bright disc is very

efficient in producing a strong wind from UV line driving (Proga, Stone & Kallman

2000). The wind should become stronger as L/LEdd increases, which is at first sight

inconsistent with the requirement that the spectral distortion is larger in M1 and

M2 than in M3. However, the wind also depends strongly on black hole mass as

it is launched from the region where the disc temperature is around the energies

of the strong UV resonance lines, as this is where the opacity peaks. The increase

in UV opacity for a lower temperature (i.e. higher mass, lower L/LEdd) disc may

more than compensate for the lower L/LEdd. The wind mass loss rate may even

be substantial enough to modify the disk structure, significantly reducing the mass

accretion rate below the wind launching point. We caution that this may require new

disc models, which allow the mass accretion rate to change with radius. The fraction

of luminosity emitted in the inferred Γ ∼ 2.2 tail is substantial in both M1 and

M2. These spectra would then correspond to the very high/steep power law state

seen in BHB (e.g. DK06), whereas M3 would still be a disc dominated state with a

small additional Comptonisation component. However, the M1/M2 spectra do not

appear to be modified by complex X-ray absorption. While the signal-to-noise in

PG 1048+213 is not overwhelming, its spectrum is very similar to the much better

data from Mkn 509 which has similar mass and mass accretion rate (Mehdipour et
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al 2011; Noda et al 2011). Here the ‘soft excess’ clearly has different variability to

the ‘power law’, supporting a true two component interpretation of the spectrum

(Noda et al 2011). It is the higher mass accretion rate, low mass objects (more like

M3) for which the complex spectral variability is most often interpreted in terms of

reflection and/or complex absorption (Fabian et al 2002; Fabian et al 2009; Ponti

et al (2010); Miller et al 2007; 2009; 2010; 2011; Turner et al 2007).

5.6.3 Distinguishing between a low/hard and very high state

The shape of the power spectra of the rapid X-ray variability correlates with spectral

state in BHB. However, both low/hard and very high states have variability power

spectra which can be roughly characterised as band limited noise, i.e. have power

spectra with both a low and high frequency break (see e.g. MR06; DGK07). Con-

versely, stationary high/soft states (in Cyg X-1) show only a high frequency break

(e.g.MR06; DGK07). Thus both possibilities predict that the objects contributing

to M2 should predominantly have power spectra which are band limited noise, while

those which contribute to M3 should extend unbroken to low frequencies. Currently

there are no objects in our samples with well defined variability power spectra, but

objects with similar L/LEdd to those in M2/M3 typically show only a high frequency

break i.e. are more similar to the high/soft state in Cyg X-1 (see e.g. the review

by McHardy et al. 2010). However, we caution that if M1 and M2 do indeed corre-

spond to very high state spectra, distorted by complex absorption/reflection, then

their variability will also be similarly distorted. Variable obscuration in a clumpy

absorber will add to the intrinsic variability, changing the shape and/or normalisa-

tion of the power spectrum. Even in the reflection model there are differences in

predicted variability from the more neutral reflection seen in AGN compared to the

much higher ionisation expected for the hotter discs in BHB (Done & Gardner 2011,

in preparation). The only clearcut distinction may be the high energy spectral shape

since this should be much less affected by atomic processes. Low/hard state spectra

are intrinsically hard up to a thermal Comptonisation rollover at a few hundred keV

(e.g. Ibragimov et al. 2005; Takahashi et al. 2008; Makishima et al. 2008), while
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the high/soft and very high states are soft and extend unbroken beyond 511 keV

(Gierliński et al 1999; Zdziarski et al. 2001; Gierliński & Done 2003). We already

know that local AGN do show hard spectra in the 20-200 keV band, with a clear

high energy rollover (Zdziarski et al. 1995), but these have mean luminosity below

M1, so clearly correspond to a low/hard state (Vasudevan et al. 2009). Currently

there are no objects in our sample with well defined high energy spectra. Sensitive

higher energy data from NuSTAr or ASTRO-H on the objects in the M1/M2 sample

should give a clear test of their spectral state.

5.7 Discussion

5.7.1 Selection Effects

Biases and systematics inherent in this sample have already been discussed at length

in Chapter 3 and Chapter 3I. The principal imposed selection effect is that sources

in our sample are bright nearby AGN (z < 0.4). The luminosity of our sources

is higher than the average among nearby sources, but only moderate with respect

to samples containing higher redshift sources (e.g. Green09; Lusso10). Our sample

contains very few sources with L2−10keV < 5×1042 erg s−1 or λEdd < 0.05. As

discussed in Section 5.3.2 and Section 5.3.6, those very low luminosity sources may

not follow the linear regression line in the κ2−10keV vs. λEdd plot in Figure 5.6, and

these sources may populate the low L2−10keV , low κ2−10keV region in Figure 5.11.

It is also possible that these sources may not follow other correlations reported in

this chapter, thereby weakening the correlations between L2−10keV and MBH and Hβ

FWHM. Further studies of large samples are required to test such possibilities.

The weak anti-correlation found between λEdd and MBH (Table 5.4) also implies

some selection effect. Sources having both low black hole mass and low mass ac-

cretion rate are unlikely to be included in our sample as they would be too faint.

Hence low mass sources in our sample will have relatively high λEdd. For higher

mass sources, their luminosity will peak when there is a considerable supply of gas

around them to be accreted. This occurs around redshift ∼2, and as the available
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gas decreases, the mass accretion rate of high mass AGN in the local universe is sup-

pressed (so-called downsizing, Fanidakis et al. 2010). Therefore, in the local universe

high mass sources should have low λEdd, resulting in the weak anti-correlation found

between MBH and λEdd (Done et al. 2011).

There are also redshift selection effects. Although comparison of parameter cor-

relations with previous work (based on larger samples) results in a general consis-

tency, the question remains whether there could be a redshift dependence in the

correlations we find. However, there are some evidences that redshift evolution in

the spectral properties of AGN may not be strong (Fan 2006).

5.7.2 Limitations of the Model and Uncertainties

There is another underlying question, whether the correlations found might arise

artificially as a result of our model assumptions. We will consider this point in two

ways:

First, there are no direct constrains on the parameters in our SED model. Com-

pared with some previous work (e.g. VF07, Lusso10, Grupe10), our spectral fitting

employs the least external constraints on the values of its parameters. The only pa-

rameter that is directly constrained is MBH , whose value is restricted by the FWHM

of the intermediate and broad components of the Hβ emission line. However, this

range often spans more than one order of magnitude, and the best-fit MBH did not

exceed the model limits for most sources (see Table C1 of Chapter 3). Therefore

this constraint should not be strong enough to cause systematics.

Second, for previously known correlations such as λEdd vs. κ2−10keV , λEdd vs.

Γ2−10keV and Hβ FWHM vs. Γ2−10keV , our results are all consistent with past

studies based on a variety of AGN samples. This suggests that the reported corre-

lations should be intrinsic, and that our results are not strongly contaminated by

model assumptions. As discussed in the previous sections, the differences between

our results and those previously reported are mainly due to two reasons. One is

our exclusion of highly obscured sources, which reduces the non-intrinsic dispersion

within these correlations. The other reason is that our parameter values are derived
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Table 5.6: The average value of parameters from the best-fit SEDs using Model-A

(without a colour temperature correction, Chapter 3) and Model-B (with colour

temperature correction). The values and their standard deviations are calculated

separately for NLS1s, BLS1s and for the whole sample.
NLS1s NLS1s BLS1s BLS1s Whole Sample Whole Sample

Model- A B A B A B

< κ2−10keV > 127+197
−77 86+96

−45 29+44
−17 30+38

−17 41+85
−27 38+58

−23

< κ5100A > 29+37
−16 20+13

−8 13+17
−8 14+14

−7 16+23
−9 15+14

−7

< λEdd > 0.95+5.33
−0.80 0.35+0.99

−0.26 0.27+0.81
−0.20 0.25+0.52

−0.17 0.36+1.42
−0.29 0.27+0.61

−0.19

<MBH > 7.11±0.54 7.37±0.47 8.04±0.48 8.10±0.41 7.83±0.64 7.93±0.52

< αox > 1.42±0.08 1.39±0.10 1.34±0.16 1.34±0.15 1.36±0.14 1.35±0.14

<Lbol > 45.19±0.54 45.02±0.49 45.59±0.52 45.61±0.53 45.49±0.55 45.47±0.57

from a detailed spectral fitting, rather than from simply applying scaling relations

which will contain high uncertainties.

However, the range of values for each of the 9 SED parameters discussed previ-

ously could be dominated by model uncertainties, except for Γ2−10keV , whose mea-

surement is relatively model independent. For this reason we did not adopt the

uncertainties returned by Xspec, because they must be negligible compared with

the model uncertainties. Such model uncertainties are very difficult to estimate,

and the values of the same parameter derived from different SED models, can be

quite different. As an illustration, in the following paragraphs we will compare the

parameter values before and after introducing a colour temperature correction into

our broadband SED model.

5.7.3 The Effect of the Colour Temperature Correction

The colour temperature correction is only important for sources having both a low

black hole mass and a high mass accretion rate (see Done et al. 2011 and references

therein). So it only affects a small fraction of all the sources in our sample, mainly

the NLS1s. The main consequences of introducing a colour temperature correction

by using Model-B (i.e. optxagnf in Xspec v12) are that MBH increases, Lbol decreases

and so λEdd decreases. For example, the λEdd of PG 2233+134 decreases significantly

from 14 to 2.4 after using Model-B, making it much less extreme. κ2−10keV and κ5100A
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also decrease due to the decrease of Lbol. αox changes slightly but not significantly,

because the luminosity at 2500Å is mainly constrained by the OM data (Chapter 3).

Figure 5.15 compares the distribution of these parameters between Model-A (Chap-

ter 3) and Model-B fitting. Table 5.6 lists the average values of these parameters

for NLS1s, BLS1s and the whole sample, for both Model-A and Model-B fitting.

This confirms that the large differences in results from the Model-A and Model-B

fittings are mostly restricted to the NLS1s, whose colour temperature corrections

are significant.

In order to further investigate the differences between using Model-A and Model-

B, we redo all of the above cross-correlation analysis by adopting Model-A parameter

values from Chapter 3, and then we compare the statistical results in the appendices.

Appendix E.1 shows all of the correlation plots that could in principle be modified by

the differences between the Model-A and Model-B fittings. In each plot the dashed

gray lines are for Model-B fitting (this chapter), compared with the solid orange lines

for Model-A fitting. It is clear that there are no significant changes in any of these

correlation plots. This is further confirmed by the correlation matrix for Model-A

fitting in Appendix D.4. Performing a PCA on this matrix, very similar eigenvectors

and eigenvalues are obtained. Appendix E.2 shows the mean SEDs based on the

parameter values obtained from Model-A fitting, which does not include the colour

temperature correction. Therefore, we conclude that use of the refined Model-B

compared with the original Model-A, does not alter the main results reported in

this chapter, although for individual sources such as the NLS1s, the refined model

should be more realistic.

5.7.4 Correction for Radiation Pressure

Marconi et al. (2008) suggested that the virial mass estimates should be corrected

for the effects of radiation pressure (RP), especially for those sources with high

Eddington ratios, such as the NLS1s. In our study the MBH was not derived directly

from the virial mass, but was only constrained by the virial masses calculated from

the FWHM of the intermediate and broad components of the Hβ line. The final
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estimate of MBH is derived from the best-fit SED, and so there is no need to correct

for the RP effect. However, we may still choose to derive the virial mass from using

the FWHM of Hβ profile (narrow component subtracted), and then correct these

values for the RP effect. Chapter 3 has listed and compared these masses (MRP ) with

the best-fit masses (MBF ) from the SED fitting using Model-A. The distributions of

these two estimates of masses are very similar, except that the average MRP is 0.4

dex higher compared with MBF .

As discussed in previous section, the SED fittings including the colour temper-

ature correction (Model-B) increases the average MBF by 0.27 dex for NLS1s, and

0.05 dex for BLS1s (Table 5.6). So for the NLS1s using Model-B fitting, the average

MBF is just 0.05 dex smaller than the average MRP , while for the BLS1s the differ-

ence is still 0.34 dex. Furthermore, no significant difference is found in Table 5.4 if

we substitute MRP for MBF , and cross-correlate with the other 8 SED parameters.

The coefficients in Equation 5.16, 5.17 only differ by less than 1 σ when using MRP

instead of MBF . This suggests that the difference between MRP and MBF is far less

than the intrinsic dispersion in any of the correlations, and so is not important in

our correlation studies.

5.7.5 The 4000 km s−1 Hβ FWHM Break

The FWHMHβ = 2000 km s−1 is the conventional, but arbitrary value to distinguish

between NLS1 and BLS1 (Goodrich 1989). Recently, the limit of 4000 km s−1 for

the FWHMHβ was claimed to be of special interest. For example, when AGNs

are divided into two populations based on FWHMHβ = 4000 km s−1 (population A:

FWHMHβ < 4000 km s−1 and B: FWHMHβ > 4000 km s−1), it appeared that most

radio loud sources are contained in population B (Sulentic et al. 2008). Compared

with the RL-RQ and the NLS1-BLS1 divisions, this dividing line in FWHM also

seems to be more effective in distinguishing the different SEDs (Sulentic et al. 2008).

Furthermore, Zhou10a reported that in the FWHMHβ vs. Γ2−10keV correlation plot,

there is a change in the slope at ∼4000 km s−1, as consistent with our results. They

also showed that the the broadest iron Kα lines, those with intrinsic width σ > 0.5
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Figure 5.15: Comparison of parameter distributions between Model-A and Model-B

SED fittings. In each panel the shaded cyan histogram is based on our modified

SED fitting using Model-B (listed in Table D.3), with the 12 NLS1s highlighted by

the shaded orange region. The solid black line shows the parameter histogram for

Model-A fitting (listed in Table 3 of Chapter 3), with the dashed red line indicating

the 12 NLS1s.

keV) have are all found in AGNs with FWHMHβ < 4000 km s−1.

In Section 5.3.5, we confirmed a slope change at FWHMHβ = 4070±90 km s−1

in FWHMHβ vs. Γ2−10keV correlation plot. All the three RL sources in our sample

(purple symbols in Figure 5.9) have FWHMHβ > 4000 km s−1. To highlight the

27 population A sources in our sample, we use the square symbol to identify these

sources in all correlation plots, and we show their distribution in the histograms as

the green region. The 12 NLS1s among them are shown as the red region. The

two-sided KS-Test was used to determine the significance of the difference between

the distributions of the sub-samples for the NLS1-BLS1 division, and the population

A-B division. Among the 9 SED parameters, the population A-B provides a slightly

better division for the four parameters: κ2−10keV , κ5100A, λEdd, Hβ FWHM and
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αox; while NLS1-BLS1 division is better for the other parameters (see Table 5.7).

Therefore, the population A-B division for our RQ Type 1 AGN sample does not

seem to be significantly better than the NLS1-BLS1 division.

5.8 Summary and Future Work

5.8.1 Summary of Principle Results

In this chapter, we have studied the SED properties of our Type 1 AGN sample.

We employ a new broadband SED model (optxagnf in Xspec v12), which includes a

colour temperature correction, to construct the SED for each source in the sample.

Various parameters were obtained from the results of the SED fitting. A detailed

statistical analysis was performed, which can be divided into three major parts:

• In the first part we studied the diverse correlations found among the SED

parameters. We divided these parameters into five groups, according to previously

reported correlations. Within each group we conducted a detailed cross-correlation

analysis, and applied several regression methods. Our results are generally in good

agreement with previous work. However, as a consequence of the unobscured nature

of the sample and the more reliable parameter values that resulted from our refined

spectral fitting, we were able to reduce the non-intrinsic dispersion and so obtain

the intrinsic and better constrained correlations.
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Table 5.7: The significance level of the difference in the NLS1-BLS1 pair and Population A-B pair for values of the 9 key SED

parameters. The two-sided Kolmogorov-Smirnov test is applied. A smaller value suggests a greater difference within each sample

division pair.

Γ2−10keV κ2−10keV κ5100A λEdd Hβ FWHM MBH αox Lbol L2−10keV

NLS1-BLS1 2×10−5 5×10−5 1×10−1 5×10−1 1×10−7 1×10−5 2×10−1 4×10−3 7×10−7

Population A-B 1×10−4 7×10−6 5×10−3 8×10−3 4×10−11 1×10−3 1×10−2 5×10−1 1×10−2
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For example, we confirmed the linear correlation in Log(L2500) vs. Log(L2keV )

with slope ∼1. The correlation of Log(κ2−10keV ) vs. αox can be approximated using

a second order polynomial. The correlation between αox and Log(λEdd) is weak and

dominated by dispersion in intrinsic source properties. Some strong correlations

have been confirmed e.g. Log(κ2−10keV ) vs. Log(λEdd), Log(κ5100) vs. Log(λEdd),

Log(κ5100) vs. Log(κ2−10keV ), Γ2−10keV vs. Log(λEdd), Γ2−10keV vs. Log(κ5100),

Log(MBH) vs. Log(FWHMHβ) and Log(κ2−10keV ) vs. Log(MBH). The correlations

in both Γ2−10keV vs. Log(FWHMHβ) and Γ2−10keV vs. Log(MBH) change slopes as

Γ2−10keV decreases to ∼1.8. The break region is around FWHMHβ=4070±90 km s−1

and Log(MBH)=7.82±0.02. Γ2−10keV is almost independent of the FWHMHβ after

the break region, with a mean value of 1.8±0.2.

• In the second part of our work, we performed a systematic cross-correlation

study by producing the correlation matrix of the 9 SED parameters: Γ2−10keV ,

κ2−10keV , κ5100A, λEdd, FWHMHβ , MBH , αox, Lbol and L2−10keV . The PCA was per-

formed on the correlation matrix to discover the principal eigenvectors that drive

the most correlations. We found that the first two eigenvectors (PC1 and PC2)

contain 80% of all correlations in the matrix. PC1 contains 50% of all correlations

and strongly correlates with MBH , while PC2 contains 30% of all correlations and is

dominated by Lbol. In addition both PC1 and PC2 well correlate with λEdd. Thus

the two principle eigenvectors are driven by MBH , λEdd and Lbol (or equivalently

Ṁ). Our eigenvectors also have similar properties to the two principal eigenvectors

derived by Boroson (2002) based on their optical emission line study.

• In the third part we produced various mean SEDs classified by each of the 9

parameters. The SED shapes are found to exhibit similar changes with most pa-

rameters except Lbol. This explains the strong correlations found among these SED

parameters. A more detailed mean SED comparison suggests that the dispersion

within each of the three binned SEDs is minimized (and the difference between them

is maximized) for composite parameters which depend on both λEdd and MBH , such

as κ2−10keV , κ5100 and Hβ FWHM. This is because the SED change is not determined

solely by any one of the 9 parameters. It should ultimately depend on both λEdd

and MBH .
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• To test the robustness of the main results from our correlation study, we looked

at the black hole masses corrected for the effect of radiation pressure. We found no

significant differences from using our best-fit black hole masses. We also compared

the correlation results between Model-A (without a colour temperature correction)

and Model-B (including a colour temperature correction) fitting, and found that

they were all very similar.

• The population A-B division for AGNs was compared with the NLS1-BLS1

division, but it did not prove to be a better AGN classification method.

5.8.2 Future Work

Our sample is limited to relatively high λEdd, with few objects below λEdd = 0.05.

These (predominantly LINER) objects are the ones expected to be the counterparts

of the low/hard state in BHB. Another important extension would be to increase

the sample size and include rare higher mass objects with high Eddington ratios.

This would allow the SEDs to be co-added for different λEdd at a given (fixed) black

hole mass, thus providing a direct comparison with the BHB states.

The major result of this study is that the SEDs of AGN exhibit a very wide

range, most plausibly as a function of mass accretion rate for a given mass black

hole. This clearly shows that so-called unified schemes, where AGN have intrinsically

identical spectra which are modified by orientation dependent obscuration, are an

over simplification of the actual situation. In fact, unobscured AGN can have quite

different SED shapes depending on λEdd, and MBH .

Although not widely appreciated, this is broadly expected by analogy of AGN

with BHB. The stellar mass black holes clearly show a dramatic change in spectral

shape with λEdd, but unlike AGN, these changes can be tracked in a single object

because of the much shorter timescale for variability. However, while the highest

λEdd spectra appear similar to the disc dominated ‘high/soft state’ seen in BHB,

the more typical AGN (with an SED similar to the standard quasar SED template

in Elvis et al. (1994)), do not appear to have SED properties which match with any

spectral state known in BBB.
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This might indicate a physical break in the properties of the accretion flow

between stellar mass and supermassive black holes. The most obvious change in

physical conditions between these two mass regimes is that AGN discs are strong in

the UV, and so are capable of powering substantial mass loss via a UV line driven

wind. A consequence of mass loss in the wind is that the accretion rate is no longer

constant as a function of radius, causing an intrinsic change in the structure of the

accretion flow (e.g. Proga, Stone & Kallman 2000). Emission/absorption/scattering

processes in the wind can also change the observed properties of the spectrum (Sim

et al. 2010). Further work on theoretical disc models including these effects will

show whether standard AGN accretion flows are indeed sculpted by a wind.



Chapter 6
Conclusions

In this thesis I have conducted a systematic study of AGN spectra from optical

to hard X-ray wavelengths. New AGN SED models are described in Chapter 2

and applied to two extremely high Eddington ratio sources. An unobscured Type

1 AGN sample is selected from objects with high signal to noise SDSS and XMM-

Newton data. The optical data are decomposed into multiple line and Balmer/FeII

components in order to determine the continuum SED. This is combined with the X-

ray continuum and fit with the new SED model. The correlation of this continuum

SED with the line and continuum parameters are presented in Chapter 4. A complete

cross-correlation is conducted between some key SED parameters in Chapter 5, and

the sample is split into three to show how the mean SED changes when averaged

over different parameters. Here, I conclude the thesis by summarizing the main

results of each previous chapter, and suggest possible future research directions to

extend this study which may finally lead to a more detailed understanding of the

intrinsic emission in AGN.

6.1 Broadband SED Model And Super Eddington

Accretion State

In this chapter we present the new broadband SED models (optxagn(f) in Xspec

v12) which combine a standard accretion disc, a low temperature Comptonisation

and a high temperature Comptonisation, constrained so that the total luminosity

is set by the mass accretion rate through the outer disc which produces the optical

211
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emission. The key parameter in these models is a coronal radius, the radium within

which the accretion power is disspated in the Comptonised components rather than

in the blackbody emission from a thin disc. Electron scattering is also considered

in these models which results in colour temperature correction to the blackbody

spectra for the highest temperature (predominantly NLS1) discs.

• We report that RX J0136.9-3510 is the only well observed, X-ray bright, vari-

able AGN which has a similar energy dependence to its X-ray variability as the so

far unique X-ray QPO AGN, RE J1034+396. After applying various SED models to

their optical, UV and X-ray data, we find that both sources have similar Eddington

ratios of around 3, although the larger mass of RX J0136.9-3510 means any QPO

is undetectable in its lightcurve. The broad band SED of RX J0136.9-3510 is also

remarkably similar to that of RE J1034+396, being well modelled by a multi-colour

disc component, a low temperature, optically thick Comptonisation component, plus

a high temperature, optically thin Comptonisation component. Such super Edding-

ton flows may suggest a distinct spectral state related those seen in the ULX.

6.2 Type 1 AGN Study - I. Optical and Broad-

band SED Modeling

In this chapter, we presented a spectral study for 51 unobscured Type 1 AGNs,

including 12 NLS1s. We assembled X-ray data from the EPIC cameras on board

the XMM-Newton satellite, and optical data from the SDSS DR7. In addition we

added optical/UV data from the XMM-Newton OM monitor when available. Our

results confirm some previously known correlations. For example, NLS1s often have

softer 2-10 keV power-laws, and lower 2-10 keV luminosities. Their Hα, Hβ and

[OIII]λ5007 lines are also less luminous on average than found in BLS1s.

• We fit the Hα and Hβ line profiles with multi-components to deblend the

narrow (NC), intermediate (IC) and broad (BC) components by means of simulta-

neous modeling of the FeII continuum and other blended lines. We then use the

results from the Hβ line fitting to constrain the black hole mass. The FWHM of
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the intermediate and broad components give a lower and upper limit for the mass,

respectively. Our results confirm previous studies which find that NLS1s tend to

have lower black hole masses and higher Eddington ratios, although their bolometric

luminosities are not significantly different from those of BLS1s.

• We include the Balmer continuum and permitted iron emission, and extend the

modeling across the entire SDSS spectrum in order to isolate the intrinsic optical

underlying continuum. However, this ‘pure’ optical continuum is often (in 32/51

objects) flatter than is predicted by the accretion disc continuum models. This

could be due to host galaxy contamination, but the possibility of an additional

component in the optical region related to the AGN cannot be ruled out.

• We also show that the Balmer continuum is not well modeled if the edge

wavelength is fixed at its laboratory value of 3646Å. It is shifted redwards, and

smoothed by more than predicted by the FWHM of the Balmer emission lines.

These effects could both be produced by density broadening.

• A multi-component decomposition of the broadband continuum SED with

optxagn model shows that relative contributions to the bolometric luminosity from

the accretion disc, Compotonisation and power law components vary among sources

with different luminosity and Hβ linewidth.

• Our study also supports the distinctiveness of the NLS1s among the whole

sample. We find that NLS1s tend to have softer 2-10 keV spectrum, lower 2-10

keV luminosity, lower black hole mass, higher Eddington ratio and higher αox index.

However NLS1s do not stand out from the whole sample in terms of their bolometric

luminosity distribution. We estimate the corona radii for every AGN in our sample

from the SED fitting. This shows that on average NLS1s have smaller corona radii,

and correspondingly a smaller coronal component contribution. This means that

NLS1 have the largest fraction of their luminosity emitted in the standard disc

component.

• The SED fitting also gives constraints on black hole mass which are much

tighter than the original limits from the Hβ IC and BC line widths, though these

will be somewhat affected by the lack of inclination dependence in the model. We

compare these derived masses with other mass estimates based on the RBLR-L5100
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relation, including numerous options for measuring the velocity width of the Hβ

emission line and corrections for radiation pressure. These results show that the

black holes masses derived from the SED fitting are best correlated with the masses

derived from the Hβ profiles corrected for radiation pressure effects, but with an

offset to lower masses of 0.3 dex for both the NLS1 and BLS1 subsamples. This

supports the use of the radiation pressure correction to the FWHM of the Hβ line,

so that these objects may lie closer to the established M-σ∗ relation.

• Finally, we form three broadband SED templates by co-adding SEDs in three

subsamples (consisting of 12 objects in each) to examine how the broadband SED

depends on Hβ FWHM velocity width (roughly equivalent to the Eddington ratio).

The results show that there is a marked change in the SED shape as the FWHM

increases, with NLS1s being the most disc dominated, with the largest big blue

bump in the extreme-UV region. Other important parameters such as Γ2−10keV ,

κ2−10keV and αox also change as the Hβ FWHM increases.

6.3 Type 1 AGN Study - II. X-ray and Optical

Spectral Relation

In this chapter, we made use of the detailed spectral fitting of the AGN sample

reported in Chapter 3, to study their optical spectral properties using their hard X-

ray luminosity as a diagnostic. Our study focussed on the Hβ, Hα and [OIII] λ5007

emissions lines and the underlying continuum. The main results are summarized

below.

• We use the Correlation Spectral Technique to produce an optical ’spectrum’,

showing the strength of correlation of optical flux at each each wavelength against the

hard X-ray luminosity, L2−10keV . This reveals that L2−10keV drives correlations

across the entire optical spectrum. Some were known previously, others are new. For

example, the entire optical underlying continuum strongly correlates with L2−10keV .

[NeIII] λλ3869/3967, [OI] λλ6300/6364, [OII] λλ3726/3729, [OIII] λλ4959/5007 and

the IC and BC in Balmer lines all well correlate with L2−10keV , especially for BLS1s.
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However, stellar absorption lines, FeII and the NC in the Balmer lines has much

weaker or no correlation with L2−10keV .

• A cross-correlation between the Hβ and Hα line component luminosities and

the broadband SED component luminosities was performed. The results suggest that

among the three SED components, the hard X-ray power law component correlates

the best with Balmer line luminosity, and the correlations among different Balmer

line components strengthen from NC, IC to BC. This supports the view that the

BC has the closest link with AGN’s central UV/X-ray continuum emission.

• Significant correlations were found between Hβ EWs and L2−10keV , κ−1
2−10keV ,

Hβ FWHM and black hole mass, although these correlations become weaker for the

BLS1 subset alone. By cross-correlating Balmer line component EWs with L5100, no

evidence for the ‘Baldwin Effect’ was for Balmer line IC and BC, but such effect is

weakly detected for the Balmer line NC.

• Our results suggest an exponential, rather than linear, dependence of Balmer

line IC and BC luminosities on the underlying continuum (e.g. L2−10keV and L5100),

implying the presence of a second-order factor. We propose that this second-order

effect could be the covering factor of the BLR and ILR seen by the central UV/X-ray

continuum, so that higher L2−10keV and L5100 sources may also have larger ILR and

BLR covering factors. The covering factor may be affected by the corona radius.

• We carried out detailed Balmer line shape studies in order to reveal the nature

of ILR and BLR. We found that the Balmer Decrement value, defined by Hα/Hβ,

peaks at the line centre and decreases towards both sides, with the red wing having

a lower decrement than the blue side. This was also consistent with IC’s average

decrement value of 4.83±2.18 compared to the BC’s 2.13±0.84. These results, along

with the systematic inflow speed we found in the BC (mean velocity: 550 km s−1),

support the scenario that the inner region of BLR forms the red wing while the outer

edge links with the ILR. Compared to the ILR, the BLR may have higher inflow

speed, higher electron density, larger ionization parameter or higher Lyα optical

depth, A weak correlation between the shape of Balmer line profile and Eddington

ratio was confirmed. A higher Eddington ratio corresponds to a more extended wing

relative to the overall Balmer line structure. This implies that the velocity width of
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the Balmer line is not simply determined by the black hole mass, but also affected

by local turbulence whose strength depends on the Eddington ratio. As for ILR,

we could not find strong evidence to support its link with the dusty torus. A weak

anti-correlation between the EW of Balmer line NC and black hole mass was found,

suggesting relatively less NLR emission in higher black hole mass AGNs.

• In our study of [OIII] λ5007, we refined its tight correlation with L2−10keV and

L3−20keV . We found that the blue and central components of [OIII] λ5007 should be

added together to provide the best correlation with hard X-rays. The mean outflow

velocity of the blue component in [OIII] λ5007 is −130+80
−230 km s−1. The strong

correlation between the FWHM and velocity shift of the blue component in [OIII]

λ5007 suggests that the outflow speed of [OIII] λ5007 clouds decreases from the

central region outwards.

• Using our best-fit broadband SEDs from Chapter 3, we produced another cor-

relation spectrum, with each wavelength of the entire continuum SED correlated

against the luminosity in [OIII]. This showed strong correlations between [OIII]

λ5007 luminosity and the continuum luminosities in both optical and hard X-ray

bandpasses, but surprisingly there is less correlation with the EUVE-soft X-ray com-

ponent. We split the sample into three subsamples depending on 2-10 keV spectral

slope: S1, corresponding to the steepest slopes (Γ2−10keV ≥ 2.0, i.e. predominantly

NLS1) S2 corresponding to the flattest (Γ2−10keV ≤ 1.8, predominantly BLS1), with

S3 between these two. S1 and S2 both have highly significant correlations in the

hard X-ray band, implying that the shapes of hard X-ray power law tail in these

two subsets are intrinsic, in spite of their totally different spectral slopes. However,

the 2-10 keV flux is much less strongly correlated with the [OIII] luminosity for the

moderate Γ2−10keV sources in S3.

• In this chapter, we present well constrained equations which can be used to

convert between the luminosity of Balmer line broad component and the intrinsic

L2−10keV (Equation 1∼4), between the intrinsic L5100 and L2−10keV (Equation 5∼6),

and between the [OIII] λ5007 luminosity and the intrinsic L2−10keV and L3−20keV

(Equation 8∼11). We suggest that these equations be used for inferring the intrinsic

optical and X-ray luminosities of obscured sources such as BAL-quasars or Type 2
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AGNs, and for calculating the X-ray luminosity function. Considering the limited

redshift range and size of our sample, similar studies should be carried out on larger

samples to test the robustness of these relations.

6.4 Type 1 AGN Study - III. Broadband SED

Properties

In this chapter, we have studied the SED properties of our Type 1 AGN sample.

We employ a new broadband SED model (optxagnf in Xspec v12), which includes a

colour temperature correction, to construct the SED for each source in the sample.

Various parameters were obtained from the results of the SED fitting. A detailed

statistical analysis was performed, which can be divided into three major parts:

• In the first part we studied the diverse correlations found among the SED

parameters. We divided these parameters into five groups, according to previously

reported correlations. Within each group we conducted a detailed cross-correlation

analysis, and applied several regression methods. Our results are generally in good

agreement with previous work. However, as a consequence of the unobscured nature

of the sample and the more reliable parameter values that resulted from our refined

spectral fitting, we were able to reduce the non-intrinsic dispersion and so obtain

the intrinsic and better constrained correlations.

For example, we confirmed the linear correlation in Log(L2500) vs. Log(L2keV )

with slope ∼1. The correlation of Log(κ2−10keV ) vs. αox can be approximated using

a second order polynomial. The correlation between αox and Log(λEdd) is weak and

dominated by dispersion in intrinsic source properties. Some strong correlations

have been confirmed e.g. Log(κ2−10keV ) vs. Log(λEdd), Log(κ5100) vs. Log(λEdd),

Log(κ5100) vs. Log(κ2−10keV ), Γ2−10keV vs. Log(λEdd), Γ2−10keV vs. Log(κ5100),

Log(MBH) vs. Log(FWHMHβ) and Log(κ2−10keV ) vs. Log(MBH). The correlations

in both Γ2−10keV vs. Log(FWHMHβ) and Γ2−10keV vs. Log(MBH) change slopes as

Γ2−10keV decreases to ∼1.8. The break region is around FWHMHβ=4070±90 km s−1

and Log(MBH)=7.82±0.02. Γ2−10keV is almost independent of the FWHMHβ after
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the break region, with a mean value of 1.8±0.2.

• In the second part of our work, we performed a systematic cross-correlation

study by producing the correlation matrix of the 9 SED parameters: Γ2−10keV ,

κ2−10keV , κ5100A, λEdd, FWHMHβ , MBH , αox, Lbol and L2−10keV . The PCA was per-

formed on the correlation matrix to discover the principal eigenvectors that drive

the most correlations. We found that the first two eigenvectors (PC1 and PC2)

contain 80% of all correlations in the matrix. PC1 contains 50% of all correlations

and strongly correlates with MBH , while PC2 contains 30% of all correlations and is

dominated by Lbol. In addition both PC1 and PC2 well correlate with λEdd. Thus

the two principle eigenvectors are driven by MBH , λEdd and Lbol (or equivalently

Ṁ). Our eigenvectors also have similar properties to the two principal eigenvectors

derived by Boroson (2002) based on their optical emission line study.

• In the third part we produced various mean SEDs classified by each of the 9

parameters. The SED shapes are found to exhibit similar changes with most pa-

rameters except Lbol. This explains the strong correlations found among these SED

parameters. A more detailed mean SED comparison suggests that the dispersion

within each of the three binned SEDs is minimized (and the difference between them

is maximized) for composite parameters which depend on both λEdd and MBH , such

as κ2−10keV , κ5100 and Hβ FWHM. This is because the SED change is not determined

solely by any one of the 9 parameters. It should ultimately depend on both λEdd

and MBH .

• To test the robustness of the main results from our correlation study, we looked

at the black hole masses corrected for the effect of radiation pressure. We found no

significant differences from using our best-fit black hole masses. We also compared

the correlation results between Model-A (without a colour temperature correction)

and Model-B (including a colour temperature correction) fitting, and found that

they were all very similar.

• The population A-B division for AGNs was compared with the NLS1-BLS1

division, but it did not prove to be a better AGN classification method.
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6.5 Future Work, What Lies Ahead?

The work described in this thesis can be extended further and lead to a more detailed

understanding of the intrinsic emission of AGN. I summarize a few possible topics

below:

• In Chapter 2, we propose that the spectral state indicated by super Edding-

ton accretion rate may be associated with the QPO. This speculation requires more

sources in this subclass, and most crucially requires another AGN QPO to be de-

tected. One good candidate is PG 1244+026, whose broadband SED is very similar

as RE J1034+396 and probably has a super Eddington accretion flow. A 100 ks

XMM-Newton observation of PG 1244+026 has just been taken (PI: Jin), from

which we may obtain more evidence on the unique properties of this extreme spec-

tral state. However, the higher mass of this AGN means that even 100ks is not

enough to significantly detect a similar QPO even if it is present.

• The sample can be extended by relaxing the strict signal-to-noise selection

criteria for the sample. A larger number of AGN enable us to better determine

the correlation between the luminosity of Balmer line broader component and the

luminosity of intrinsic 2-10 keV emission (see Chapter 4).

• An important extension of this work is to include more sources with intrinsic

L2−10keV < 1042 ergs s−1. As discussed in Chapter 5 that the inclusion of these

intrinsically X-ray weak sources may break the correlations between L2−10keV and

other parameters. But the weakness of their X-ray emission also indicates that it

is difficult to obtain high quality X-ray spectra from these sources. The very low

Eddington ratio AGNs (e.g. λEdd < 0.01) may also have different properties from

our luminous AGN sample, and so are worth more a detailed study.

• Another important extension of this work is to perform similar study for AGN

samples at higher redshift, which we have already started to do. It is not clear

whether AGN SEDs would evolve with redshift or not. However, strong evolution

seems unlikely as the mean SED of moderate Eddington ratio sources (Panel 4-B in

Figure 5.13) has similar shape as the mean RQ quasar SED in Elvis et al. (1994).

• The spectral variability analysis in Chapter 2 showed the importance of studing
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the time dependent characteristics of the source as well as the time averaged SED.

This would provide better evidence for the link between the emission in different

wavebands. Currently, such multi-waveband spectral and temporal data is only

available for very few sources, but more would be expected in the future.

• In Chapter 3, we reported the extended red wing of the edge of the Balmer

continuum, and pointed out that this spectral characteristic requires more detailed

study because it may provide information about the densest regions of the BLR.

• The Cross-correlation Spectra presented in Chapter 4 is a powerful tool for

studying the link between different wavebands of AGN spectra. The next step is to

use a bigger sample to refine these optical and X-ray cross-correlation spectra. We

have also started to extend these spectra into the infrared wavebands.

• The nature of the optical spectral slope change at ∼5000Å remains unclear.

More detailed investigation including reliable host galaxy subtraction and redden-

ing correction is required to clarify this question. Optical reverberation mapping

technique can also help to answer this question.

Consequently, the results presented in this thesis are just the first steps to under-

standing the intrinsic multi-waveband emission of AGN. However, this work provides

a set of methods that is useful for further studies based on better data and more

complete samples. There are more exciting discoveries coming in the years ahead!
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Figure A.1: The spectral fitting results. Object order follows all other tables in this paper as increasing RA

and DEC. 1. Broadband SED fitting plot (panel-a): X-ray data has been rebinned for each object. Green solid

line is the pure accretion disc component peaking at optical/UV region, orange line is Comptonisation component

producing soft X-ray excess below 2 keV, blue line is the hard X-ray Comptonisation component dominating 2-10

keV spectrum, and red is the total broadband SED model. 2. SDSS spectrum fitting plot (panel-b): only the fitted

spectrum below 7000Å is plotted. Green solid line is the best-fit underlying continuum from accretion disc. Orange

line shows all best-fit emission lines, including the results from detailed Balmer line fitting in panel-c. FeII emission

is plotted as light blue, while Balmer continuum being dark blue. The total best-fit model with reddening is drawn

in red solid line. 3. Balmer emission line fitting plot(panel-c): spectral ranges containing Hα and Hβ profiles are

plotted separately, with blue lines showing individual line components and red line showing the whole best-fit model.

These are also the corresponding zoom-in plots of nearby regions of Hα and Hβ in panel-b. The given black hole

mass is the broadband SED best-fit value, see Section 3.6.5 for detailed descriptions.
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Figure A.1: continued
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Figure A.1: continued
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Figure A.1: continued
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Table B.1: XMM-Newton and SDSS DR7 source position and separation of our sample.

ID: object number, the same as Table 3.1; XMM Ra and XMM Dec: source’s right as-

cension and declination in the corresponding XMM-Newton observation; XMM PosErr:

X-ray position uncertainty from XMM-Newton; SDSS Ra and SDSS Dec: source’s right

ascension and declination measured by SDSS; Separation: the angular separation between

source’s XMM-Newton and SDSS coordinates; Sep./XMM PosErr: the ratio between co-

ordinates separation and X-ray position uncertainty, showing the significance of coordinate

separation.
ID XMM Ra XMM Dec XMM PosErr SDSS Ra SDSS Dec Separation Sep./XMM PosErr

degree degree arcsec degree degree arcsec

1 10.83216 0.85443 0.35 10.83227 0.85425 0.75 2.10

2 31.56642 -0.29178 1.03 31.56664 -0.29144 1.44 1.40

3 46.66479 0.06204 0.35 46.66487 0.06200 0.33 0.93

4 116.50527 28.12559 0.36 116.50530 28.12559 0.09 0.25

5 121.53373 24.73937 0.40 121.53390 24.73919 0.86 2.14

6 123.59218 51.81109 0.38 123.59217 51.81095 0.50 1.32

7 140.69583 51.34385 0.35 140.69595 51.34390 0.33 0.92

8 140.92903 22.90931 0.35 140.92918 22.90907 1.00 2.86

9 141.30347 52.28644 0.35 141.30355 52.28621 0.85 2.44

10 147.70155 39.44735 0.35 147.70161 39.44737 0.19 0.54

11 150.10520 1.98110 0.17 150.10519 1.98115 0.18 1.04

12 151.34968 41.12950 0.38 151.34980 41.12941 0.44 1.14

13 151.85868 12.81567 0.38 151.85876 12.81562 0.34 0.89

14 157.74620 31.04878 0.35 157.74623 31.04884 0.21 0.61

15 158.66084 39.64129 0.35 158.66082 39.64119 0.36 1.03

16 162.93283 33.99096 0.35 162.93290 33.99075 0.76 2.17

17 167.52841 61.42283 0.37 167.52898 61.42262 1.23 3.36

18 169.62621 40.43171 0.35 169.62619 40.43167 0.17 0.47

19 170.86692 5.47319 0.36 170.86718 5.47311 0.98 2.71

20 175.03644 3.11972 0.35 175.03633 3.11984 0.58 1.63

21 181.17565 27.90348 0.35 181.17545 27.90328 0.95 2.69

22 183.48412 14.07530 0.26 183.48415 14.07537 0.27 1.05

23 184.87880 6.72630 0.28 184.87863 6.72623 0.66 2.38

24 185.07680 6.68898 0.37 185.07683 6.68878 0.71 1.94

25 187.72544 11.00311 0.20 187.72550 11.00310 0.23 1.16

26 187.86003 10.85327 0.22 187.86020 10.85314 0.75 3.46

27 188.01513 20.15831 0.35 188.01511 20.15821 0.38 1.07

28 188.48376 7.79869 0.37 188.48381 7.79888 0.71 1.92

29 189.01670 26.69323 0.36 189.01677 26.69335 0.46 1.28

30 191.64732 2.36918 1.00 191.64687 2.36910 1.64 1.63
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Table B.1: continued...
ID XMM Ra XMM Dec XMM PosErr SDSS Ra SDSS Dec Separation Sep./XMM PosErr

degree degree arcsec degree degree arcsec

31 193.97112 27.40152 0.27 193.97104 27.40146 0.33 1.23

32 195.09236 28.40082 0.13 195.09234 28.40073 0.32 2.45

33 200.25592 34.11620 0.38 200.25590 34.11609 0.38 1.00

34 201.19851 3.40888 0.37 201.19856 3.40908 0.71 1.92

35 205.30811 -0.88743 0.35 205.30807 -0.88755 0.45 1.26

36 207.14581 26.51932 0.25 207.14562 26.51943 0.72 2.90

37 208.64863 18.08835 0.35 208.64872 18.08820 0.64 1.80

38 208.97286 38.57458 0.36 208.97302 38.57464 0.49 1.37

39 209.35241 65.41847 0.25 209.35220 65.41831 0.67 2.69

40 214.25318 44.93513 0.35 214.25341 44.93510 0.60 1.69

41 217.42952 47.79076 0.35 217.42947 47.79061 0.54 1.52

42 218.71847 48.66196 0.25 218.71857 48.66188 0.38 1.50

43 221.06099 6.55192 0.35 221.06111 6.55188 0.47 1.32

44 222.78667 27.15737 0.35 222.78651 27.15748 0.64 1.82

45 228.67944 36.84746 0.35 228.67946 36.84734 0.46 1.29

46 233.12007 4.89952 0.37 233.11998 4.89956 0.34 0.93

47 239.62260 27.28773 0.37 239.62235 27.28729 1.80 4.86

48 239.79023 35.02983 0.35 239.79012 35.02986 0.35 1.00

49 334.82724 12.13148 0.35 334.82721 12.13144 0.18 0.52

50 339.03200 13.73203 0.37 339.03201 13.73205 0.11 0.29

51 346.18072 -8.68642 1.00 346.18116 -8.68573 2.95 2.95
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B.2 Black Hole Masses from Different Methods
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Table B.2: Black hole masses from different methods. MBH,IC : black hole mass calculated

from the FWHM of Hβ intermediate component in logarithm and solar mass; MBH,BC :

black hole mass calculated from the FWHM of Hβ broad component; MBH,IC+BC : black

hole masses calculated from the FWHM of superposing Hβ intermediate component (IC)

and broad component (BC) (i.e. narrow component subtracted), using Equation 3.5;

MBH,σ: black hole mass calculated from the second momentum of the whole Hβ line profile,

see Section 3.6.5 for details; MBH,F it: the best-fit black hole masses in logarithm, which

is constrained by MBH,IC and MBH,BC , but values within 0.5 lower than log(MBH,IC )

were also adopted in the fitting, see Section 3.6.5; log(MBH,RP ): the radiation pressure

corrected black hole mass using Equation 9 in Marconi et al. (2008) with f=3.1 and

logg=7.6; (*): note that MBH,IC+BC is always within the range of MBH,IC and MBH,BC ,

except for UM269 whose Hβ shows double-peak profile.

ID Common Name MBH,IC MBH,BC MBH,IC+BC MBH, σ MBH,Fit MBH,RP

log, M⊙ log, M⊙ log, M⊙ log, M⊙ log, M⊙ log, M⊙

1 UM269 8.89 9.11 9.55∗ 8.26 8.61 9.26

2 MRK1018 7.77 8.75 8.20 7.79 7.85 8.14

3 NVSSJ030639 7.40 8.72 7.50 7.47 7.41 7.86

4 2XMMi/DR7 8.32 9.15 8.94 8.15 8.78 8.76

5 2XMMi/DR7 7.94 9.11 8.07 7.71 7.87 8.43

6 HS0810+5157 8.70 9.82 8.97 8.45 8.50 8.97

7 RBS0769 7.28 8.15 7.48 6.89 7.00 7.98

8 RBS0770 7.24 8.31 7.40 7.22 7.09 7.60

9 MRK0110 6.77 7.74 6.98 6.76 6.96 7.15

10 PG0947+396 8.52 9.48 8.66 8.13 8.47 8.70

11 2XMMi/DR7 8.16 9.39 8.59 8.18 7.80 8.53

12 2XMMi/DR7 7.86 8.90 7.98 7.64 7.79 8.01

13 PG1004+130 9.40 10.30 9.89 8.97 9.20 9.61

14 RBS0875 8.59 9.52 8.79 8.28 8.24 8.66

15 KUG1031+398 6.13 7.49 6.19 5.85 6.23 6.98

16 PG1048+342 8.02 9.02 8.23 7.80 8.33 8.40

17 1RXSJ111007 7.62 8.79 7.75 7.46 7.97 8.20

18 PG1115+407 7.75 8.95 7.96 7.69 8.17 8.45
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Table B.2: continued...

ID Common Name MBH,IC MBH,BC MBH,IC+BC MBH, σ MBH,Fit MBH,RP

log, M⊙ log, M⊙ log, M⊙ log, M⊙ log, M⊙ log, M⊙

19 2XMMi/DR7 6.79 7.83 7.04 6.82 7.71 7.41

20 RXJ1140.1+0307 5.74 6.80 5.99 5.83 6.46 6.97

21 PG1202+281 8.13 9.21 8.49 8.09 7.98 8.41

22 1AXGJ121359+1404 8.02 8.88 8.37 7.85 7.84 8.28

23 2E1216+0700 7.04 8.13 7.17 6.96 7.99 7.58

24 1RXSJ122019 8.60 9.63 9.54 8.51 8.26 9.26

25 LBQS1228+1116 8.50 9.54 8.73 8.23 8.49 8.75

26 2XMMi/DR7 7.27 8.56 7.37 7.13 7.37 7.97

27 MRK0771 7.48 8.46 7.95 7.49 7.50 7.98

28 RXJ1233.9+0747 8.19 9.24 8.41 7.90 8.24 8.50

29 RXJ1236.0+2641 7.94 9.02 8.14 7.78 7.76 8.30

30 PG1244+026 6.26 7.41 6.40 6.27 6.79 7.30

31 2XMMi/DR7 8.77 9.92 8.92 8.54 8.70 8.80

32 RBS1201 7.29 8.29 7.46 7.38 7.69 7.62

33 2XMMi/DR7 8.28 9.55 8.62 8.22 7.78 8.56

34 1RXSJ132447 8.19 9.04 8.45 7.71 8.71 8.73

35 UM602 7.82 8.61 7.96 7.29 7.67 8.28

36 1E1346+26.7 6.63 7.55 6.81 6.81 6.52 7.18

37 PG1352+183 8.27 9.20 8.39 8.33 8.23 8.52

38 MRK0464 7.56 8.36 7.83 7.39 7.69 7.83

39 1RXSJ135724 6.08 7.20 6.23 6.10 7.01 7.03

40 PG1415+451 7.47 8.51 7.79 7.42 7.41 8.07

41 PG1427+480 7.96 9.08 8.07 7.68 8.39 8.48

42 NGC5683 7.43 8.27 7.66 7.33 7.74 7.69

43 RBS1423 8.23 9.20 8.45 7.96 8.07 8.49

44 PG1448+273 6.81 8.19 7.00 7.01 7.26 8.00

45 PG1512+370 9.12 10.19 9.79 8.84 8.62 9.51

46 Q1529+050 8.70 8.86 9.01 8.26 8.56 8.81

47 1E1556+27.4 7.76 8.40 7.89 7.55 7.96 7.94

48 MRK0493 6.33 7.56 6.45 6.43 7.19 7.13

49 IIZw177 6.59 7.79 6.83 6.72 7.73 7.52

50 PG2233+134 8.26 9.62 8.39 8.10 7.86 9.10

51 MRK0926 8.15 9.01 8.63 8.06 7.65 8.51
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B.3 Emission Line Fitting Parameters of TheWhole

Sample
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Table B.3: Emission line parameters for the whole sample. Narrow component (NC), interme-

diate component (IC), broad component (BC) and intermediate plus broad component (I+B) are

shown separately for Hα and Hβ. IC and BC are both Gaussian, while NC may have the same

profile as the whole [OIII] λ5007 or only the narrowest Gaussian component in [OIII] λ5007. [OIII]

λ5007 has two (or sometimes three) Gaussian components. In the case of [OIII] λ5007, ’I+B’ raw

shows the parameters for the whole emission line rather than having narrow component subtracted

Only one Gaussian profile is used for HeII λ4686, [FeVII] λ6087 and [FeX] λ6374. Sometimes the

S/N of our spectra is not high enough to resolve all these lines, or they are too week to be resolved,

thus they do not have their line parameters measured. ’vel’ means velocity of line center relative to

the rest frame vacuum wavelength in kms−1. The velocity of ’NC’ is small and may come from the

redshift uncertainty in Sloan’s final redshift measurement, and thus should not be taken seriously.

FWHMs of ’NC’, ’IC’ and ’BC’ are directly from the Gaussian profile parameters. FWHM for

’I+B’ is measured directly from the superposed model profile. The numbers are all in kms−1.

’lum’ and ’ew’ means luminosity in Log10(ergss
−1) and equivalent width in Å.

ID Hα Hβ [OIII] 5007 HeII FeVII FeX

vel fwhm lum ew vel fwhm lum ew vel fwhm lum ew lum lum lum

1d NC — 456 42.09 21 — 457 41.46 3.1 — — — — — 42.3 —

(1)f IC -3700 6080 43.18 270 -3700 6080 42.67 50 47 203 41.49 3.5 — — —

BC 3400 7840 43.23 300 3400 7840 42.73 57 -47 720 42.19 18 — — —

I+B — 13000 43.51 570 — 13000 43.00 110 — 462 42.27 21 — — —

2 NC — 405 40.77 5.0 — 401 40.13 0.94 — — — — 41.1 41.0 —

(1)f IC 1000 3810 41.98 83 1000 3810 41.19 11 21 386 41.15 10.0 — — —

BC 1100 11700 41.81 55 1100 11700 41.70 34 -300 892 40.46 2.0 — — —

I+B — 4330 42.21 140 — 6220 41.82 45 — 401 41.23 12 — — —

3 NC — 470 41.84 42 — 469 41.17 6.4 — — — — 41.3 41.3 41.2

(1)f IC 120 2040 42.36 140 120 2040 41.86 32 52 396 41.59 17 — — —

BC 1100 9390 42.05 68 1100 9390 41.80 28 -130 1030 41.51 15 — — —

I+B — 2190 42.53 210 — 2310 42.14 59 — 468 41.85 32 — — —

4∗ NC — 251 40.89 3.5 — 249 40.35 0.81 -34 239 40.82 2.5 40.8 — —

(1)f IC -400 5260 42.23 77 -400 5260 41.31 7.4 140 192 41.23 6.2 — — —

BC -450 13700 42.29 86 -450 13700 42.20 57 -110 1370 40.87 2.7 — — —

I+B — 6500 42.56 160 — 10800 42.25 64 — 248 41.49 11 — — —

5 NC — 326 41.76 13 — 325 41.01 1.6 — — — — 41.9 41.9 —

(2)f IC 190 2360 43.15 320 190 2360 42.56 58 -23 325 41.71 8.4 — — —

BC 900 9030 42.96 200 900 9030 42.52 53 -150 794 42.01 17 — — —

I+B — 2610 43.37 520 — 2720 42.84 110 — 474 42.19 25 — — —

6 NC — 461 42.66 51 — 457 41.88 4.7 — — — — 42.4 — —

(1)f IC 400 3980 43.40 280 400 3980 42.86 45 -76 387 42.25 12 — — —

BC 1400 14400 43.53 370 1400 14400 43.16 90 -120 1020 42.19 10. — — —

I+B — 4930 43.77 650 — 5430 43.34 140 — 462 42.52 22 — — —

7 NC — 580 41.88 38 — 575 41.38 8.0 — — — — 41.5 — —

(2)f IC 160 1570 42.10 62 160 1570 41.60 13 -160 580 40.96 3.2 — — —

BC -120 4300 41.99 48 -120 4300 41.70 17 -610 1200 41.27 6.5 — — —

I+B — 1820 42.35 110 — 1980 41.95 30 — 1030 41.45 9.7 — — —

8∗ NC — 442 41.75 78 — 445 41.08 12 -27 300 41.10 13 41.6 41.0 41.0

(1)f IC 73 2360 42.28 260 73 2360 41.68 48 -160 663 41.26 19 — — —

BC 920 8080 41.97 130 920 8080 41.72 53 -170 1390 41.03 11 — — —

I+B — 2580 42.45 390 — 2840 42.00 100 — 444 41.62 43 — — —

9∗ NC — 317 41.46 150 — 319 40.81 34 -10. 297 41.66 240 40.6 40.4 —

(1)f IC 200 2360 42.02 530 200 2360 40.99 50 150 1450 40.44 14 — — —

BC 840 7230 41.48 150 840 7230 41.14 72 -41 509 41.10 64 — — —

I+B — 2500 42.13 680 — 3030 41.37 120 — 316 41.79 320 — — —
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Table B.3: continued
ID Hα Hβ [OIII] 5007 HeII FeVII FeX

vel fwhm lum ew vel fwhm lum ew vel fwhm lum ew lum lum lum

10 NC — 405 42.06 18 — 401 41.13 1.3 — — — — 41.9 42.0 41.2

(1)f IC 180 4060 43.45 430 180 4060 42.87 70 28 330 41.96 8.9 — — —

BC 1200 12300 43.12 200 1200 12300 42.83 64 -210 934 41.97 9.2 — — —

I+B — 4440 43.62 630 — 4810 43.15 130 — 407 42.27 18 — — —

11 NC — 279 42.03 47 — 281 41.38 5.8 — — — — 41.7 — —

(1)f IC 230 3440 42.89 340 230 3440 42.11 31 -43 249 42.06 29 — — —

BC 730 14100 43.10 550 730 14100 42.66 110 -82 634 41.77 15 — — —

I+B — 4360 43.31 900 — 5640 42.77 140 — 279 42.24 44 — — —

12 NC — 396 41.55 36 — 394 40.60 2.8 — — — — 41.6 — —

(1)f IC -76 3850 42.53 350 -76 3850 41.90 57 36 1590 40.92 6.2 — — —

BC -140 12600 42.11 130 -140 12600 41.77 43 -23 372 41.33 16 — — —

I+B — 4130 42.67 480 — 4390 42.14 100 — 395 41.47 22 — — —

13 NC — 396 42.50 10. — 395 41.94 1.6 — — — — 42.8 42.3 —

(1)f IC 580 6160 43.53 110 580 6160 42.85 13 -44 304 42.16 2.8 — — —

BC 700 17200 43.62 140 700 17200 43.46 52 -250 1190 42.37 4.5 — — —

I+B — 7730 43.88 240 — 10800 43.55 65 — 395 42.58 7.3 — — —

14 NC — 298 41.97 23 — 300 41.48 5.8 — — — — 42.0 41.9 —

(1)f IC 300 5580 43.31 520 300 5580 42.59 74 6.0 893 42.10 25 — — —

BC 1900 16300 42.81 160 1900 16300 42.70 96 -49 266 42.31 41 — — —

I+B — 5940 43.43 680 — 7060 42.95 170 — 297 42.52 65 — — —

15 NC — 342 41.03 30 — 345 40.43 7.4 — — — — 40.7 40.0 40.4

(2)f IC 58 918 41.22 46 58 918 40.73 15 53 299 40.84 19 — — —

BC -20 4400 40.97 26 -20 4400 40.48 8.3 -320 1000 40.74 15 — — —

I+B — 994 41.42 73 — 987 40.92 23 — 340 41.09 34 — — —

16 NC — 279 41.62 9.9 — 281 40.98 1.5 — — — — 42.1 41.4 —

(2)f IC 37 2810 43.14 330 37 2810 42.47 46 -55 968 41.53 5.4 — — —

BC 1300 8860 42.85 170 1300 8860 42.61 63 -76 280 42.00 16 — — —

I+B — 3080 43.32 500 — 3560 42.84 110 — 297 42.13 22 — — —

17∗ NC — 608 42.00 37 — 607 41.08 2.9 -28 617 41.84 17 41.7 41.8 41.7

(3)f IC 160 1930 42.91 300 160 1930 42.35 53 140 235 41.14 3.4 — — —

BC 430 7450 42.67 170 430 7450 42.34 51 -530 1600 41.57 9.2 — — —

I+B — 2120 43.10 470 — 2250 42.64 100 — 607 42.08 30 — — —

18 NC — 400 42.23 32 — 401 41.53 3.6 — — — — 42.1 — 41.9

(1)f IC 220 1810 43.02 200 220 1810 42.44 29 -60 260 41.28 2.1 — — —

BC 360 7220 42.93 160 360 7220 42.66 48 -210 701 41.61 4.6 — — —

I+B — 2060 43.28 360 — 2310 42.86 76 — 401 41.78 6.7 — — —

19 NC — 188 40.90 13 — 191 40.25 2.3 — — — — 41.0 40.4 40.5

(2)f IC 46 1500 41.77 96 46 1500 41.16 19 75 186 40.93 11 — — —

BC -54 5010 41.66 74 -54 5010 41.40 33 -100 445 40.80 8.4 — — —

I+B — 1730 42.02 170 — 2000 41.60 51 — 223 41.17 20 — — —

20 NC — 232 40.64 14 — 230 40.03 3.1 — — — — 41.2 — 39.8

(2)f IC 29 578 41.12 40 29 578 40.51 9.5 43 234 40.29 5.8 — — —

BC 120 1970 41.12 41 120 1970 40.76 17 -230 460 39.80 1.9 — — —

I+B — 686 41.42 82 — 774 40.95 27 — 254 40.41 7.6 — — —

21 NC — 354 42.05 49 — 357 41.53 11 — — — — — 41.5 —

(2)f IC -250 3990 43.03 470 -250 3990 42.14 44 110 357 42.29 64 — — —

BC 730 13900 42.93 380 730 13900 42.58 120 -200 1160 42.27 63 — — —

I+B — 4570 43.29 840 — 6090 42.71 170 — 419 42.58 130 — — —

22 NC — 317 40.86 6.5 — 319 40.08 0.86 — — — — 41.5 — —

(2)f IC 750 4700 42.28 170 750 4700 41.59 28 -19 316 40.92 6.0 — — —

BC 59 12600 42.18 130 59 12600 41.98 68 -150 764 40.90 5.8 — — —

I+B — 5510 42.53 300 — 7050 42.13 96 — 389 41.21 12 — — —
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Table B.3: continued
ID Hα Hβ [OIII] 5007 HeII FeVII FeX

vel fwhm lum ew vel fwhm lum ew vel fwhm lum ew lum lum lum

23 NC — 340 41.56 39 — 344 40.79 5.0 — — — — 41.0 — 41.0

(1)f IC 130 1700 42.15 150 130 1700 41.66 37 31 256 40.59 3.2 — — —

BC 340 5970 41.92 89 340 5970 41.60 33 -79 930 40.81 5.4 — — —

I+B — 1890 42.35 240 — 1980 41.93 70 — 340 41.01 8.7 — — —

24 NC — 576 41.37 3.9 — 575 41.04 1.6 — — — — 42.3 42.2 —

(1)f IC 150 4700 42.74 91 150 4700 41.59 5.5 44 327 41.00 1.4 — — —

BC 1400 15400 43.19 260 1400 15400 42.91 120 -110 1090 41.52 4.8 — — —

I+B — 7280 43.32 350 — 13900 42.93 120 — 577 41.64 6.2 — — —

25 NC — 400 42.49 47 — 395 41.79 5.6 — — — — 42.1 — —

(1)f IC -74 3820 43.36 350 -74 3820 42.72 47 29 365 42.51 31 — — —

BC -87 12700 43.22 250 -87 12700 42.92 75 -99 943 42.13 13 — — —

I+B — 4350 43.59 590 — 4980 43.13 120 — 395 42.66 43 — — —

26 NC — 543 42.16 88 — 544 41.63 16 — — — — 41.5 — —

(2)f IC 44 1540 42.53 210 44 1540 42.05 43 -40 545 41.71 21 — — —

BC 490 6770 42.42 160 490 6770 41.92 32 -330 1630 41.21 6.6 — — —

I+B — 1730 42.78 370 — 1720 42.29 76 — 577 41.83 27 — — —

27∗ NC — 255 40.98 7.6 — 256 40.48 1.8 49 254 41.53 20 41.5 40.9 40.9

(2)f IC -150 2500 42.40 200 -150 2500 41.64 26 -130 504 41.15 8.6 — — —

BC 780 7780 42.43 220 780 7780 42.17 86 -350 1240 41.00 6.1 — — —

I+B — 3030 42.72 420 — 4310 42.28 110 — 291 41.76 35 — — —

28 NC — 368 42.31 55 — 369 41.74 11 — — — — 42.7 — —

(1)f IC 0 3260 42.99 260 0 3260 42.32 43 -9.0 356 42.62 88 — — —

BC -690 10900 42.75 150 -690 10900 42.52 68 -21 1530 41.94 18 — — —

I+B — 3610 43.19 420 — 4240 42.74 110 — 365 42.71 110 — — —

29 NC — 497 42.03 34 — 494 41.40 5.6 — — — — 41.8 41.5 41.0

(1)f IC 12 2810 42.87 240 12 2810 42.30 44 39 385 41.69 11 — — —

BC 810 9770 42.71 170 810 9770 42.46 64 -160 789 41.75 13 — — —

I+B — 3170 43.10 400 — 3560 42.69 110 — 498 42.02 24 — — —

30 NC — 386 41.31 39 — 388 40.66 5.1 — — — — 41.1 39.8 40.3

(1)f IC 110 808 41.43 52 110 808 41.09 14 -19 336 40.97 11 — — —

BC 110 3040 41.41 49 110 3040 41.10 14 -210 703 40.74 6.5 — — —

I+B — 943 41.72 100 — 953 41.39 28 — 389 41.17 17 — — —

31 NC — 382 41.61 8.0 — 382 40.54 0.51 — — — — 41.2 — —

(3)f IC 610 5730 43.14 270 610 5730 42.59 57 20 333 41.29 3.0 — — —

BC 850 21500 42.75 110 850 21500 42.62 61 -460 814 41.17 2.3 — — —

I+B — 6140 43.29 380 — 6810 42.90 120 — 377 41.54 5.2 — — —

32 NC — 425 41.24 23 — 424 40.61 5.3 — — — — 41.1 41.0 40.3

(1)f IC 140 2550 42.17 200 140 2550 41.48 39 -58 388 41.51 42 — — —

BC 1000 8070 41.68 63 1000 8070 41.52 43 -130 1170 41.09 16 — — —

I+B — 2710 42.30 260 — 3100 41.80 82 — 419 41.65 58 — — —

33 NC — 423 41.68 16 — 426 41.03 2.7 — — — — 41.6 — —

(1)f IC 17 4700 42.92 290 17 4700 42.37 59 100 412 41.99 25 — — —

BC 23 16700 42.66 160 23 16700 42.44 68 -610 1370 41.42 6.8 — — —

I+B — 5170 43.11 450 — 5690 42.71 130 — 425 42.09 32 — — —

34 NC — 838 42.57 44 — 836 41.70 4.0 — — — — 41.8 — —

(3)f IC 260 2470 43.06 130 260 2470 42.52 26 -150 1440 42.48 25 — — —

BC 1200 6570 42.97 110 1200 6570 42.72 41 -240 634 42.30 16 — — —

I+B — 2910 43.32 250 — 3310 42.93 67 — 829 42.70 41 — — —

35 NC — 572 42.67 130 — 576 42.01 22 — — — — 42.0 41.8 42.1

(1)f IC 270 2380 43.31 560 270 2380 42.65 96 -120 1250 42.28 43 — — —

BC 1300 5880 43.01 280 1300 5880 42.54 76 -140 512 42.55 79 — — —

I+B — 2640 43.49 840 — 2790 42.90 170 — 571 42.74 120 — — —
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Table B.3: continued
ID Hα Hβ [OIII] 5007 HeII FeVII FeX

vel fwhm lum ew vel fwhm lum ew vel fwhm lum ew lum lum lum

36∗ NC — 274 41.15 36 — 271 40.32 5.1 54 175 40.54 8.6 41.1 40.2 39.6

(1)f IC 210 1540 41.29 49 210 1540 40.69 12 -62 448 40.62 10. — — —

BC -160 4450 40.98 24 -160 4450 40.75 14 -290 1150 40.42 6.5 — — —

I+B — 1690 41.47 73 — 1890 41.02 26 — 248 41.01 25 — — —

37 NC — 567 41.92 13 — 566 41.17 2.2 — — — — 42.5 41.7 41.0

(1)f IC 220 3440 43.17 230 220 3440 42.68 72 72 294 41.37 3.7 — — —

BC 870 10000 42.88 120 870 10000 42.55 53 -170 824 41.79 9.8 — — —

I+B — 3790 43.35 350 — 3960 42.92 130 — 558 41.93 13 — — —

38∗ NC — 326 41.61 140 — 325 41.05 38 38 635 41.22 56 41.1 — —

(1)f IC -100 4830 42.23 580 -100 4830 41.25 60 60 286 41.51 110 — — —

BC -390 12200 41.83 230 -390 12200 41.51 110 -140 1280 40.77 20 — — —

I+B — 5250 42.38 800 — 6630 41.70 170 — 328 41.74 190 — — —

39 NC — 212 41.00 32 — 217 40.44 6.9 — — — — 40.8 40.0 40.1

(1)f IC 29 829 41.47 93 29 829 40.87 19 33 193 41.06 29 — — —

BC 50 3000 41.25 57 50 3000 40.90 20 -20 427 40.73 14 — — —

I+B — 925 41.67 150 — 990 41.19 38 — 216 41.22 43 — — —

40∗ NC — 446 41.34 8.0 — 451 40.45 0.88 -130 465 40.73 1.7 — — 41.0

(3)f IC 210 1930 42.64 160 210 1930 41.84 22 130 123 40.59 1.2 — — —

BC 76 6350 42.47 110 76 6350 42.21 51 -160 1590 41.27 6.0 — — —

I+B — 2180 42.86 270 — 2790 42.37 73 — 450 41.45 8.9 — — —

41 NC — 400 42.10 23 — 401 41.47 3.5 — — — — 42.3 — —

(2)f IC 170 2300 43.38 440 170 2300 42.85 84 -52 401 42.32 25 — — —

BC 890 8300 43.09 220 890 8300 42.73 62 -260 908 42.25 22 — — —

I+B — 2510 43.56 660 — 2610 43.10 150 — 486 42.59 47 — — —

42 NC — 307 40.74 14 — 306 39.90 1.6 — — — — 41.1 40.6 39.9

(1)f IC 120 3760 41.89 190 120 3760 41.27 38 26 721 40.43 5.6 — — —

BC -300 9930 41.66 110 -300 9930 41.44 56 -3.0 287 41.02 22 — — —

I+B — 4240 42.09 300 — 4920 41.67 94 — 303 41.12 27 — — —

43 NC — 414 42.10 29 — 419 41.60 6.5 — — — — 42.0 — 41.0

(1)f IC 12 3550 43.23 380 12 3550 42.51 53 79 324 42.07 20 — — —

BC 1400 10900 42.95 200 1400 10900 42.67 75 -310 993 42.22 28 — — —

I+B — 3920 43.41 590 — 4550 42.90 130 — 419 42.45 47 — — —

44 NC — 265 41.86 26 — 262 41.34 5.1 — — — — 41.8 40.3 40.8

(1)f IC 73 852 42.41 91 73 852 41.80 15 110 220 41.67 11 — — —

BC 97 4190 42.32 74 97 4190 42.04 26 -98 852 41.72 13 — — —

I+B — 952 42.67 170 — 1070 42.24 40 — 260 41.99 24 — — —

45 NC — 345 42.82 33 — 344 42.22 5.2 — — — — — — —

(1)f IC -870 6210 43.81 330 -870 6210 43.01 32 15 267 42.79 20 — — —

BC 1400 17200 43.89 390 1400 17200 43.56 110 -62 880 42.93 28 — — —

I+B — 7740 44.16 720 — 10900 43.66 140 — 346 43.17 48 — — —

46∗ NC — 514 42.22 51 — 516 41.66 13 -11 432 42.32 63 41.4 41.9 —

(3)f IC 3000 6960 42.54 110 3000 6960 41.99 29 150 223 41.66 14 — — —

BC -1400 8410 42.93 260 -1400 8410 42.09 36 -150 1010 42.30 60 — — —

I+B — 9970 43.08 370 — 9930 42.34 64 — 534 42.66 140 — — —

47 NC — 391 41.58 27 — 391 40.93 5.7 — — — — 41.7 — —

(1)f IC 160 3550 42.70 360 160 3550 41.94 58 50 1080 41.19 11 — — —

BC 670 7400 42.02 74 670 7400 41.78 40 -24 355 41.70 34 — — —

I+B — 3730 42.78 430 — 4100 42.17 98 — 383 41.82 45 — — —

48 NC — 302 41.27 51 — 306 40.67 8.7 — — — — 40.4 — 40.2

(2)f IC 110 1040 41.53 92 110 1040 41.03 20 28 306 40.37 4.6 — — —

BC 33 4300 41.38 66 33 4300 41.00 19 -130 719 40.30 3.9 — — —

I+B — 1160 41.77 160 — 1190 41.32 39 — 365 40.64 8.4 — — —
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Table B.3: continued

ID Hα Hβ [OIII] 5007 HeII FeVII FeX

vel fwhm lum ew vel fwhm lum ew vel fwhm lum ew lum lum lum

49 NC — 284 41.27 19 — 281 40.65 3.8 — — — — 41.5 — 40.5

(1)f IC 16 1010 41.65 45 16 1010 41.05 9.4 44 268 40.98 8.1 — — —

BC 160 4040 41.49 31 160 4040 41.33 18 -260 578 40.37 2.0 — — —

I+B — 1120 41.88 76 — 1340 41.51 27 — 285 41.07 10. — — —

50∗ NC — 274 42.84 36 — 275 42.23 4.5 -73 402 41.87 2.1 42.3 42.2 41.9

(1)f IC 120 1880 43.60 210 120 1880 43.06 30 130 224 42.34 6.2 — — —

BC 91 8960 43.50 170 91 8960 43.12 35 -470 1770 42.42 7.4 — — —

I+B — 2090 43.86 370 — 2200 43.39 65 — 266 42.74 16 — — —

51∗ NC — 451 41.73 65 — 445 41.20 16 11 364 42.03 110 — 41.2 —

(1)f IC -1300 6490 42.44 330 -1300 6490 41.59 39 130 1150 41.57 39 — — —

BC 1400 17200 42.53 410 1400 17200 42.10 130 340 247 41.23 18 — — —

I+B — 8170 42.79 750 — 11100 42.21 170 — 450 42.21 170 — — —

f : The final fitting method used for each object. see Section 3.3.1 for detailed description of each fitting methods.

∗ : Three gaussian profiles are used for these objects, in this case (I+B) means the total of all three components.

d : UM 269, the only object in our sample showing double-peak feature in Balmer lines. Two gaussian profiles are used for

fitting the two peaks, thus the velocity shift of each component related to the line centre is huge.
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The Cross-correlation

Table and Figures in
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C.1 Supplement of Balmer Component Correla-

tion Plots

247
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Figure C.1: The luminosity correlations between Hβ line components and SED

components. Red points represent NLS1s; blue points represent the broadest Hβ

line BLS1s; green point is Mrk 110; purple star is PG 1004+130; purple symbols

indicate radio loud sources. The orange dotted line denotes the OLS regression line

assuming the SED component luminosity is the independent variable. Spearman’s

rank correction coefficient ρs for the whole sample is also given in each panel.
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Figure C.2: The cross-correlation plots between Hβ line component EWs and L5100A

(the monochromatic luminosity at 5100Å) and L/LEdd (the Eddington ratio) Differ-

ent symbols have the same meaning as in Figure C.1. Spearman’s ρ is given in each

panel.
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C.2 The Spearman’s Rank CorrelationMatrix be-

tween Hα, Hβ, [OIII] λ5007 Line Compo-

nents and SED Components
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Table C2. Spearman’s Rank Correlation Coefficients of SED components vs. Hα, Hβ And [OIII]5007 Line Parameters. ρs is Spearman’s rank correlation coefficient with 1 being perfect correlation
and -1 being perfect anti-correlation. ds is the logarithm of the significance level of being random distribution, i.e. a smaller ds suggests a stronger correlation. ‘NC, IC, BC, IC+BC, Whole’ mean
narrow component, intermediate component, broad component, intermediate plus broad component (i.e. narrow component subtracted) and the whole emission line, separately. For [OIII]5007, ‘Centre,
Blue, Whole’ mean the central lower velocity shift component, higher velocity shift component (often shows blue shift) and the whole emission line. ‘Compton’ indicates the soft X-ray Comptonisation
component. ‘Power law’ indicates the hard X-ray Comptonisation component. ‘Com+Pow’ indicates the sum of soft and hard X-ray Comptonisation emission (i.e. corona emission). The ‘SED Component
Fraction’ indicates the fraction of each component in the bolometric luminosity. ’frac2−10keV ’(i.e. κ−1

2−10keV
) is the fraction of 2-10 keV luminosity related to bolometric luminosity.

SED Component Luminosity SED Component Fraction 2-10 keV Energy Band
Disc Compton Power law Com+Pow Bolometric Disc Compton Power law Com+Pow Γ2−10keV Lumin frac2−10keV

ρs ds ρs ds ρs ds ρs ds ρs ds ρs ds ρs ds ρs ds ρs ds ρs ds ρs ds ρs ds

Hα NC 0.63 -6 0.58 -5 0.72 -9 0.74 -9 0.76 -10 0.00 0 -0.16 0 0.15 0 -0.00 0 -0.09 0 0.75 -9 0.15 0
Lumin IC 0.54 -4 0.60 -6 0.83 -13 0.78 -11 0.75 -10 -0.14 0 -0.07 0 0.29 -1 0.14 0 -0.26 -1 0.88 -17 0.31 -2

BC 0.56 -5 0.55 -4 0.85 -14 0.77 -10 0.76 -10 -0.10 0 -0.15 0 0.32 -2 0.10 0 -0.22 0 0.89 -17 0.34 -2
IC+BC 0.55 -5 0.58 -5 0.85 -15 0.79 -11 0.76 -10 -0.12 0 -0.11 0 0.30 -2 0.12 0 -0.26 -1 0.90 -18 0.33 -2
Whole 0.56 -5 0.59 -5 0.85 -15 0.79 -11 0.77 -10 -0.12 0 -0.11 0 0.30 -2 0.12 0 -0.25 -1 0.90 -18 0.32 -2

Hα NC 0.30 -1 0.36 -2 0.43 -3 0.48 -3 0.41 -3 -0.19 0 0.03 0 0.22 0 0.19 0 -0.12 0 0.41 -3 0.20 0
FWHM IC -0.05 0 0.02 0 0.56 -5 0.25 -1 0.12 0 -0.42 -3 -0.21 0 0.68 -7 0.42 -3 -0.73 -9 0.62 -6 0.74 -9

BC 0.14 0 0.06 0 0.52 -4 0.24 -1 0.22 0 -0.16 0 -0.28 -1 0.47 -3 0.16 0 -0.62 -6 0.61 -6 0.58 -5
IC+BC -0.03 0 0.04 0 0.58 -5 0.28 -1 0.14 0 -0.41 -3 -0.22 0 0.68 -7 0.41 -3 -0.71 -8 0.64 -6 0.74 -9
Whole 0.07 0 0.34 -2 0.54 -4 0.45 -3 0.30 -1 -0.39 -2 0.21 0 0.39 -2 0.39 -2 -0.42 -3 0.55 -5 0.39 -2

Hα NC 0.13 0 -0.10 0 -0.08 0 -0.08 0 0.01 0 0.20 0 -0.31 -2 -0.08 0 -0.20 0 -0.01 0 -0.04 0 -0.05 0
EW IC 0.13 0 0.25 -1 0.45 -3 0.36 -2 0.25 -1 -0.23 -1 -0.08 0 0.38 -2 0.23 -1 -0.54 -4 0.57 -5 0.46 -3

BC 0.30 -1 0.26 -1 0.61 -6 0.49 -4 0.44 -3 -0.14 0 -0.28 -1 0.42 -3 0.14 0 -0.40 -2 0.72 -9 0.50 -4
IC+BC 0.19 0 0.23 -1 0.53 -4 0.40 -2 0.32 -2 -0.21 0 -0.20 0 0.44 -3 0.21 0 -0.52 -4 0.66 -7 0.53 -4
Whole 0.22 0 0.24 -1 0.51 -4 0.40 -2 0.33 -2 -0.18 0 -0.20 0 0.39 -2 0.18 0 -0.50 -4 0.65 -6 0.49 -4

Hβ NC 0.64 -6 0.54 -4 0.74 -9 0.73 -9 0.76 -10 0.01 0 -0.21 0 0.18 0 -0.01 0 -0.08 0 0.75 -9 0.16 0
Lumin IC 0.54 -4 0.65 -7 0.79 -11 0.79 -11 0.75 -10 -0.14 0 -0.01 0 0.24 -1 0.14 0 -0.19 0 0.83 -13 0.25 -1

BC 0.55 -4 0.56 -5 0.84 -14 0.76 -10 0.74 -9 -0.11 0 -0.10 0 0.30 -2 0.11 0 -0.24 -1 0.88 -17 0.33 -2
IC+BC 0.53 -4 0.59 -5 0.84 -14 0.78 -11 0.75 -9 -0.14 0 -0.07 0 0.30 -2 0.14 0 -0.21 0 0.88 -17 0.32 -2
Whole 0.54 -4 0.59 -5 0.84 -14 0.79 -11 0.75 -10 -0.14 0 -0.08 0 0.30 -2 0.14 0 -0.21 0 0.88 -17 0.32 -2

Hβ NC 0.32 -2 0.36 -2 0.43 -3 0.49 -4 0.42 -3 -0.18 0 0.02 0 0.21 0 0.18 0 -0.12 0 0.42 -3 0.19 0
FWHM IC -0.05 0 0.02 0 0.56 -5 0.25 -1 0.12 0 -0.42 -3 -0.21 0 0.68 -7 0.42 -3 -0.73 -9 0.62 -6 0.74 -9

BC 0.14 0 0.06 0 0.52 -4 0.24 -1 0.22 0 -0.16 0 -0.28 -1 0.47 -3 0.16 0 -0.62 -6 0.61 -6 0.58 -5
IC+BC -0.05 0 0.01 0 0.55 -5 0.24 -1 0.11 0 -0.40 -2 -0.21 0 0.67 -7 0.40 -2 -0.73 -9 0.61 -6 0.74 -9
Whole 0.05 0 0.30 -1 0.42 -3 0.37 -2 0.24 -1 -0.32 -2 0.24 -1 0.29 -1 0.32 -2 -0.32 -2 0.43 -3 0.30 -1

Hβ NC 0.03 0 -0.18 0 -0.11 0 -0.13 0 -0.08 0 0.13 0 -0.31 -2 -0.02 0 -0.13 0 0.02 0 -0.12 0 -0.04 0
EW IC 0.00 0 0.24 -1 0.32 -2 0.29 -1 0.13 0 -0.31 -2 0.04 0 0.34 -2 0.31 -2 -0.40 -2 0.42 -3 0.39 -2

BC 0.11 0 0.11 0 0.50 -4 0.30 -1 0.21 0 -0.24 -1 -0.20 0 0.52 -4 0.24 -1 -0.56 -5 0.60 -5 0.60 -6
IC+BC 0.10 0 0.18 0 0.49 -4 0.34 -2 0.22 0 -0.28 -1 -0.15 0 0.50 -4 0.28 -1 -0.53 -4 0.61 -6 0.58 -5
Whole 0.11 0 0.18 0 0.49 -4 0.34 -2 0.22 0 -0.27 -1 -0.16 0 0.50 -4 0.27 -1 -0.53 -4 0.61 -6 0.57 -5

[OIII]5007 Centre -0.09 0 -0.22 0 -0.12 0 -0.21 0 -0.12 0 0.03 0 -0.23 0 -0.03 0 -0.03 0 -0.04 0 -0.07 0 -0.03 0
Lumin Blue 0.49 -4 0.52 -4 0.70 -8 0.66 -7 0.65 -7 -0.10 0 -0.14 0 0.27 -1 0.10 0 -0.19 0 0.77 -10 0.30 -1

Whole 0.54 -4 0.55 -5 0.81 -12 0.75 -10 0.73 -9 -0.12 0 -0.10 0 0.28 -1 0.12 0 -0.24 -1 0.85 -15 0.30 -1

[OIII]5007 Centre -0.13 0 -0.24 -1 -0.15 0 -0.24 -1 -0.17 0 0.02 0 -0.23 0 -0.01 0 -0.02 0 -0.08 0 -0.10 0 -0.01 0
EW Blue -0.09 0 -0.11 0 -0.04 0 -0.09 0 -0.12 0 -0.04 0 -0.19 0 0.16 0 0.04 0 -0.13 0 0.07 0 0.24 -1

Whole -0.05 0 0.02 0 0.22 0 0.14 0 0.02 0 -0.24 -1 -0.10 0 0.34 -2 0.24 -1 -0.35 -2 0.31 -2 0.42 -3
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Appendix D
Additional Tables in

Chapter 5

D.1 Summary of References for SED Parameter

Correlations

253
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Table D.1: A summary of references about the correlations among the most important AGN SED parameters. The upper right triangle shows some

most recent works about each correlations pair, while the lower left triangle shows which cross-correlations are studied in this paper. ‘
√
’ means this

cross-correlation pair is studied in this paper, ‘×’ means not studied. The ‘FWHM’ is the FWHM of narrow component subtracted Hβ profile. (RM)∗:

the reverberation mapping studies, e.g. Kaspi et al. (2000), Peterson et al. (2004); Green09: Green et al. (2009); G99: Grupe et al. (1999); G10: Grupe

et al. (2010); H07: Hopkins, Richards & Hernquist (2007); F10: Fanidakis et al. (2010); Jin11a: Jin et al. (2011); L10: Lusso et al. (2010); M04: Marconi

et al. (2004); S06: Shemmer et al. (2006); S08: Shemmer et al. (2008); V07: Vasudevan & Fabian (2007); V09: Vasudevan & Fabian (2009); Woo02:

Woo & Urry (2002); Zhou10a: Zhou & Zhang (2010); Zhou10b: Zhou & Zhao (2010).

Γ2−10 κ2−10 κ5100 λEdd FWHM MBH αox Lbol L2−10 L2keV L2500

Zhou10a

Γ2−10 — Zhou10b — S08; S06 G10; S08 S06 Green09 — — Green09 —

S06; G99

κ2−10
√

— — L10; V09 — — L10 M04; H07 V07; H07 — —

V07 M04

κ5100
√ √

— V07; R06 — — — — — — —

λEdd

√ √ √
— Jin11a F10 L10; V09 — — — —

G10 S08; V07

FWHM
√ √ √ √

— (RM)∗ G10 Jin11a Jin11a — —

MBH

√ √ √ √ √
— — Woo02 — — —

αox
√ √ √ √ √ √

— — — L10 L10; G10

Green09 S08; V07

Lbol

√ √ √ √ √ √ √
— H07; M04 — —

L2−10
√ √ √ √ √ √ √ √

— — —

G10; L10

L2keV × × × × × ×
√

× × — Green09

S08; V07

L2500 × × × × × ×
√

× ×
√

—
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D.2 SED Fitting Parameters Using Model-B (op-

txagnf ) Fitting

D.3 Key SED Parameters Using Model-B (optx-

agnf ) Fitting
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Table D.2: Broadband SED fitting parameters using Model-B, and the fitting outputs (Lbol, fd, fc,

fp). ID: object number, the same as Table 1 in Jin11a; NH,gal and NH,int: the fixed galactic and free

intrinsic neutral hydrogen column densities in 1020 cm−2; Γpow: the powerlaw component’s slope in

the SED fitting, (*) denotes the objects whose powerlaw slopes hit the uplimit of 2.2 and were fixed

there; Fpl: the fraction of powerlaw component in the total reprocessed disc emission; Rcor: corona

(truncation) radius in unit of Gravitational radii (rg) within which all disc emission is reprocessed

into the Comptonisation and powerlaw components; Te: temperature of the Compton up-scattering

electron population; Tau: optical depth of the Comptonisation component; log(MBH): the best-fit

black hole mass; log(Ṁ): total mass accretion rate; Lbol: bolometric luminosity integrated from

0.001 keV to 100 keV; fd, fc, fp: luminosity fractions of disc emission, soft Comptonisation and

hard X-ray Compotonisation components in the bolometric luminosity; χ2: the reduced χ2 of the

broadband SED fitting.
ID NH,gal NH,int Γpow Fpl Rcor Te Tau log(MBH ) log(Ṁ) Lbol f d f c f p χ2

×1020 ×1020 rg keV M⊙ g s−1 1044 reduced

1 1.79 0.00 1.74 0.69 100. 0.246 17.4 8.61 26.08 62.2 0.19 0.25 0.56 1.00

2 2.43 1.28 1.78 0.39 100. 0.212 16.3 7.84 25.25 9.11 0.19 0.49 0.32 0.97

3 6.31 9.44 1.85 0.25 10.2 0.214 12.2 7.61 25.92 42.8 0.87 0.10 0.03 1.14

4 3.49 2.80 1.66 0.50 100. 0.317 15.2 8.78 25.45 14.4 0.19 0.41 0.40 1.16

5 3.53 5.08 2.20 0.36 69.0 0.202 14.4 7.94 26.37 119 0.32 0.44 0.24 1.04

6 4.24 0.00 1.90 0.46 20.6 0.348 12.2 8.50 26.41 130 0.59 0.22 0.19 1.09

7 1.33 0.00 2.20 0.29 10.5 0.149 33.4 7.58 26.01 52.9 0.26 0.53 0.21 1.16

8 3.12 3.94 1.79 0.15 23.7 0.598 6.91 7.54 25.44 14.3 0.58 0.35 0.06 1.42

9 1.30 0.59 1.72 0.71 16.5 0.267 15.0 7.40 25.70 25.9 0.84 0.05 0.11 20.7

10 1.74 0.46 1.90 0.32 100. 0.295 13.7 8.34 26.24 89.9 0.19 0.55 0.26 1.40

11 1.72 0.57 1.49 0.49 22.5 0.775 8.40 7.92 26.02 54.2 0.65 0.18 0.17 0.96

12 1.20 1.13 1.65 0.48 19.5 0.385 11.0 7.82 25.32 10.7 0.65 0.18 0.17 1.13

13 3.56 0.00 1.38 0.87 11.4 0.142 17.9 9.20 26.50 161 0.90 0.01 0.09 1.33

14 1.76 0.00 1.72 0.71 100. 0.294 16.0 8.24 25.85 36.0 0.19 0.23 0.58 1.07

15 1.31 3.71 2.20 0.09 100. 0.764 4.33 6.30 25.28 9.72 0.80 0.18 0.02 3.67

16 1.70 2.06 1.80 0.31 100. 0.242 15.1 8.30 25.93 43.9 0.19 0.56 0.25 1.40

17 0.65 2.51 1.68 0.14 88.9 0.474 8.27 7.79 26.12 68.4 0.35 0.56 0.09 1.06

18 1.45 0.00 2.20 0.24 11.9 0.260 13.6 8.12 26.33 110 0.51 0.37 0.12 1.48

19 3.70 1.63 1.98 0.19 31.4 0.144 20.6 7.71 24.92 4.28 0.37 0.52 0.12 1.03

20 1.91 3.14 2.20 0.36 12.1 0.186 22.7 6.80 24.87 3.81 0.94 0.04 0.02 1.55

21 1.77 0.00 1.78 0.75 23.1 0.205 19.5 7.98 26.09 63.0 0.61 0.10 0.29 3.45

22 2.75 7.95 1.85 0.21 47.7 0.116 22.1 7.84 25.50 16.2 0.34 0.52 0.14 1.09

23 1.59 0.00 1.39 0.45 95.8 0.628 9.70 8.00 25.06 5.92 0.22 0.43 0.35 0.99

24 1.63 0.66 1.86 0.94 30.8 0.144 54.9 8.26 25.96 46.7 0.48 0.03 0.49 1.89

25 2.34 0.51 1.79 0.40 16.8 0.354 12.4 8.43 26.41 131 0.56 0.27 0.17 1.88

26 2.31 6.32 2.09 0.03 13.5 0.291 10.6 7.70 26.08 61.0 0.46 0.52 0.02 1.14

27 2.75 0.00 2.03 0.22 36.8 0.194 17.0 7.86 25.28 9.75 0.43 0.45 0.12 1.13

28 1.45 5.52 1.73 0.60 72.8 0.315 11.5 7.96 26.25 90.4 0.26 0.30 0.45 1.16

29 1.18 4.24 2.11 0.12 17.8 0.363 7.33 7.87 26.13 68.8 0.49 0.45 0.06 1.19

30 1.87 1.94 2.20 0.36 12.1 0.228 17.9 7.27 25.39 12.5 0.94 0.04 0.02 1.03

31 0.84 0.00 1.66 0.54 100. 0.400 13.0 8.70 25.89 39.5 0.19 0.37 0.43 0.99

32 0.90 0.02 1.82 0.44 100. 0.361 12.9 7.62 25.14 7.00 0.19 0.46 0.35 1.42

33 1.07 0.00 2.17 0.57 12.9 0.244 16.1 7.92 25.93 43.4 0.78 0.10 0.13 1.20

34 1.83 0.85 1.90 0.33 100. 0.252 14.8 8.71 26.06 59.4 0.19 0.54 0.26 1.11

35 1.76 2.30 1.83 0.83 70.8 0.178 17.7 7.67 26.27 95.9 0.19 0.14 0.67 1.02

36 1.18 3.77 2.20 0.22 30.1 0.624 5.58 7.00 24.90 4.05 0.75 0.20 0.05 1.62

37 1.82 0.00 2.04 0.38 100. 0.219 17.2 8.23 25.91 42.1 0.19 0.50 0.31 1.33
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Table D.2: continued...
ID NH,gal NH,int Γpow Fpl Rcor Te Tau log(MBH ) log(Ṁ) Lbol f d f c f p χ2

×1020 ×1020 rg keV M⊙ g s−1 1044 reduced

38 1.42 0.26 1.61 0.97 100. 0.229 31.1 7.79 24.55 1.82 0.19 0.02 0.79 1.22

39 1.36 3.45 2.08 0.11 38.1 0.259 13.2 7.34 24.94 4.50 0.40 0.53 0.07 0.98

40 0.77 2.01 1.92 0.06 22.4 1.150 4.75 7.88 25.81 32.8 0.59 0.39 0.02 1.51

41 1.81 0.46 1.88 0.39 14.0 0.354 11.9 8.14 26.33 109 0.52 0.30 0.19 1.31

42 2.86 3.26 1.84 0.41 100. 0.083 31.2 7.74 24.71 2.64 0.19 0.47 0.33 1.01

43 2.69 0.93 1.71 0.58 100. 0.469 10.7 8.07 26.17 75.9 0.31 0.29 0.40 1.26

44 2.78 7.77 2.26 0.04 9.96 0.218 13.5 7.56 26.15 73.2 0.53 0.45 0.02 1.56

45 1.46 2.23 1.93 0.49 44.5 0.198 17.2 8.78 26.86 369 0.40 0.30 0.30 2.45

46 4.02 0.54 1.81 0.81 100. 0.207 20.2 8.56 25.61 20.8 0.19 0.15 0.66 1.12

47 3.78 16.5 1.85 0.25 85.8 0.115 29.0 7.96 25.68 24.6 0.19 0.61 0.20 0.97

48 2.11 0.72 1.84 0.19 31.2 0.475 9.28 7.47 24.99 5.01 0.70 0.24 0.06 1.18

49 4.90 0.35 2.20 0.33 71.0 0.211 19.6 7.73 25.18 7.85 0.25 0.50 0.25 1.15

50 4.51 0.00 2.20 0.80 9.10 0.590 7.57 8.38 27.17 750 0.98 0.00 0.01 2.21

51 2.91 1.45 1.77 0.95 100. 0.136 31.8 7.60 25.37 11.9 0.19 0.04 0.77 1.41
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Table D.3: Broadband SED Key Parameters from Model-B fitting. ID: object number, the same

as Table 1 in Jin11a; Γ2−10keV : the slope of the single powerlaw fitted to 2-10 keV spectrum.

L2−10keV : 2-10 keV luminosity (in 1044 erg s−1); κ2−10keV : the 2-10keV bolometric correction

coefficient; λL
2500Å

: the monochromatic luminosity at 2500Å (in 1043 erg s−1); νL2keV : the

monochromatic luminosity at 2keV (in 1043 erg s−1); αox: the optical X-ray spectral index; λL5100:

the monochromatic luminosity at 5100Å (in 1044 erg s−1); κ5100: the 5100Å bolometric correction

coefficient; FWHMHβ : the narrow component subtracted Hβ FWHM; Lbol/LEdd: the Eddington

Ratio.
ID Γ2−10keV L2−10keV κ2−10keV λL

2500Å
νL2keV αox λL5100 κ5100 FWHMHβ Lbol/LEdd

×1044 ×1043 ×1043 ×1044 km s−1

1 1.69±0.06 4.941 12.6 84.3 25.8 1.20 8.15 7.65 13000 0.12

2 1.67±0.10 0.469 19.5 18.9 2.48 1.34 0.791 11.5 6220 0.10

3 1.77±0.07 0.289 148 38.9 1.77 1.51 1.35 31.7 2310 0.80

4 1.80±0.11 0.567 25.5 13.3 3.15 1.24 1.91 7.55 10800 0.019

5 2.10±0.22 2.284 52.2 132 13.1 1.38 5.48 21.8 2720 1.1

6 1.93±0.18 4.855 26.9 281 27.4 1.39 14.8 8.87 5430 0.32

7 2.39±0.22 0.267 199 43.0 2.38 1.48 1.95 27.1 1980 1.1

8 1.84±0.04 0.418 34.3 16.4 2.82 1.29 0.539 26.6 2840 0.31

9 1.76±0.01 0.839 30.9 20.2 5.29 1.22 0.113 230 3030 0.80

10 1.92±0.05 3.532 25.5 199 23.0 1.36 7.59 11.9 4810 0.32

11 1.71±0.11 1.811 30.0 70.5 9.06 1.34 3.75 14.5 5640 0.50

12 1.68±0.23 0.502 21.3 19.4 1.58 1.42 1.04 10.3 4390 0.13

13 1.37±0.12 0.751 215 697 3.03 1.91 42.6 3.79 10800 0.078

14 1.69±0.04 3.189 11.3 50.1 17.0 1.18 3.91 9.22 7060 0.16

15 2.35±0.12 0.042 234 2.09 0.397 1.28 0.204 47.7 988 3.7

16 1.78±0.07 1.502 29.3 107 8.27 1.43 4.26 10.3 3560 0.17

17 1.80±0.20 0.779 88.0 82.7 3.70 1.52 3.31 20.7 2250 0.86

18 2.23±0.08 1.254 88.0 153 9.68 1.46 6.11 18.1 2310 0.64

19 1.98±0.18 0.084 51.0 8.66 0.496 1.48 0.443 9.69 2000 0.064

20 2.34±0.12 0.053 71.9 2.29 0.468 1.26 0.215 17.7 774 0.47

21 1.70±0.04 3.856 16.4 84.7 20.5 1.24 2.22 28.5 6090 0.51

22 1.70±0.09 0.396 41.0 27.3 2.15 1.42 0.983 16.5 7050 0.18

23 1.80±0.19 0.145 41.1 11.0 0.912 1.42 0.708 8.39 1980 0.046

24 1.83±0.18 4.735 9.88 94.9 24.4 1.23 6.64 7.05 13900 0.20

25 1.88±0.03 3.054 43.1 261 19.6 1.43 8.44 15.6 4980 0.37

26 2.09±0.25 0.362 169 56.0 2.57 1.51 2.04 30.0 1720 0.94

27 1.94±0.04 0.277 35.3 19.1 2.52 1.34 0.988 9.89 4310 0.10

28 1.71±0.14 2.951 30.7 115 13.4 1.36 4.80 18.9 4240 0.77

29 2.00±0.12 0.726 95.0 78.1 4.93 1.46 3.25 21.3 3560 0.71

30 2.46±0.09 0.146 85.5 10.2 1.26 1.35 0.452 27.7 954 0.52

31 1.69±0.14 2.420 16.4 53.2 11.9 1.25 6.49 6.10 6810 0.061

32 1.88±0.03 0.464 15.1 11.4 2.96 1.23 0.512 13.7 3100 0.13

33 2.14±0.21 1.157 37.6 60.5 7.50 1.35 4.03 10.8 5690 0.40

34 1.90±0.14 2.489 23.9 141 13.5 1.39 10.8 5.53 3310 0.089

35 1.76±0.07 3.918 24.5 72.9 52.7 1.05 3.59 26.8 2790 1.6

36 2.20±0.08 0.091 44.7 3.18 0.651 1.26 0.244 16.6 1890 0.31

37 1.95±0.08 1.768 23.9 88.7 12.3 1.33 5.39 7.82 3960 0.19

38 1.55±0.09 0.175 10.4 1.57 0.770 1.12 0.197 9.26 6630 0.023

39 2.17±0.20 0.079 57.4 5.55 0.726 1.34 0.233 19.4 991 0.16

40 2.02±0.06 0.468 70.3 46.6 3.46 1.43 2.05 16.0 2790 0.34

41 1.94±0.05 2.444 44.7 156 15.9 1.38 6.26 17.4 2610 0.60

42 1.76±0.11 0.158 16.7 4.96 0.803 1.30 0.265 9.99 4920 0.037

43 1.74±0.07 4.524 16.8 121 26.0 1.26 4.36 17.4 4550 0.50

44 2.25±0.05 0.236 311 52.5 2.08 1.54 2.36 31.1 1070 1.5

45 1.82±0.06 17.502 21.1 840 100. 1.35 30.4 12.2 10900 0.47

46 1.81±0.12 2.175 9.60 19.2 10.4 1.10 2.97 7.04 9930 0.044

47 1.45±0.25 0.868 28.4 40.8 4.39 1.37 0.931 26.5 4100 0.21

48 2.03±0.11 0.101 49.5 7.14 0.728 1.38 0.278 18.1 1190 0.13

49 2.40±0.22 0.200 39.4 14.4 1.69 1.36 0.719 10.9 1340 0.11

50 2.41±0.18 3.299 228 834 27.8 1.57 29.5 25.5 2200 2.4

51 1.67±0.03 1.659 7.20 13.2 8.22 1.08 0.624 19.1 11100 0.23
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Table D.4: The cross-correlation matrix of the 9 key SED parameters based on Model-A data from Jin et al.

(2011). ID 1∼9 are given to each parameter. ρs is the Spearman’s rank coefficient. ds is probability of random

distribution in logarithm. α and β are the bisector regression line coefficients assuming Y=βX+α. The coefficients

in the upper right triangle region assumes the vertical parameters to be X. The coefficients in the lower left triangle

region assumes the horizontal parameters to be X.

Γ2−10keV κ2−10keV κ5100A λEdd Hβ FWHM MBH αox Lbol L2−10keV

km s−1 M⊙ 10+44 10+44

log log log log log log log

ID (1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) ρs 1 0.76 0.46 0.60 -0.72 -0.43 0.50 0.22 -0.38

ds -∞ -10. -3. -5. -8. -3. -4. -1. -2.

β 1 1.93±0.17 1.26±0.11 2.61±0.27 -1.27±0.12 -2.19±0.30 0.56±0.06 1.42±0.37 -2.02±0.33

α 0 -2.13±0.32 -1.24±0.21 -5.47±0.52 5.99±0.24 12.02±0.58 0.28±0.12 -1.26±0.70 3.77±0.65

(2) ρs 0.76 1 0.72 0.72 -0.80 -0.62 0.76 0.17 -0.57

ds -10. -∞ -8. -8. -11. -6. -10. -1. -5.

β 0.52±0.05 1 0.67±0.05 1.40±0.09 -0.66±0.06 -1.23±0.14 0.26±0.03 1.06±0.07 -1.24±0.13

α 1.10±0.07 0 0.12±0.08 -2.69±0.18 4.60±0.09 9.76±0.21 0.94±0.04 -0.21±0.15 1.86±0.19

(3) ρs 0.46 0.72 1 0.85 -0.59 -0.80 0.37 0.17 -0.41

ds -3. -8. -∞ -14. -5. -11. -2. -1. -3.

β 0.79±0.07 1.49±0.10 1 2.11±0.15 -0.98±0.09 -1.84±0.17 0.49±0.09 1.23±0.19 -1.68±0.18

α 0.98±0.09 -0.18±0.13 0 -2.96±0.19 4.71±0.11 10.01±0.19 0.76±0.11 0.02±0.24 1.88±0.23

(4) ρs 0.60 0.72 0.85 1 -0.53 -0.58 0.42 0.51 -0.12

ds -5. -8. -14. -∞ -4. -5. -3. -4. -0.

β 0.38±0.04 0.71±0.05 0.47±0.03 1 -0.51±0.06 -0.89±0.09 0.23±0.05 0.83±0.06 -0.97±0.04

α 2.10±0.04 1.91±0.03 1.40±0.03 0 3.31±0.06 7.41±0.09 1.45±0.03 1.85±0.08 -0.56±0.12

(5) ρs -0.72 -0.80 -0.59 -0.53 1 0.65 -0.59 0.08 0.63

ds -8. -11. -5. -4. -∞ -6. -5. -0. -6.

β -0.79±0.07 -1.51±0.15 -1.02±0.09 -1.96±0.23 1 1.85±0.17 -0.43±0.06 1.11±0.15 1.89±0.14

α 4.71±0.26 6.94±0.54 4.79±0.34 6.48±0.82 0 1.27±0.59 2.87±0.20 -2.46±0.55 -6.82±0.47

(6) ρs -0.43 -0.62 -0.80 -0.58 0.65 1 -0.25 0.31 0.76

ds -3. -6. -11. -5. -6. -∞ -1. -2. -10.

β -0.46±0.06 -0.82±0.09 -0.54±0.05 -1.12±0.11 0.54±0.05 1 -0.39±0.12 0.95±0.09 1.04±0.08

α 5.50±0.50 7.97±0.73 5.43±0.41 8.33±0.91 -0.69±0.38 0 4.38±0.91 -5.93±0.70 -8.23±0.64

(7) ρs 0.50 0.76 0.37 0.42 -0.59 -0.25 1 0.30 -0.32

ds -4. -10. -2. -3. -5. -1. -∞ -1. -2.

β 1.79±0.20 3.87±0.40 2.03±0.37 4.42±1.00 -2.33±0.31 -2.58±0.78 1 2.81±0.96 -3.09±0.77

α -0.49±0.27 -3.64±0.54 -1.55±0.51 -6.43±1.36 6.70±0.42 11.30±1.07 0 -2.32±1.30 4.06±1.05

(8) ρs 0.22 0.17 0.17 0.51 0.08 0.31 0.30 1 0.65

ds -1. -1. -1. -4. -0. -2. -1. -∞ -6.

β 0.70±0.18 0.94±0.07 0.82±0.13 1.21±0.09 0.90±0.13 1.05±0.10 0.36±0.12 1 1.14±0.13

α 0.89±0.26 0.20±0.13 -0.01±0.20 -2.24±0.15 2.21±0.20 6.26±0.18 0.83±0.18 0 -1.79±0.19

(9) ρs -0.38 -0.57 -0.41 -0.12 0.63 0.76 -0.32 0.65 1

ds -2. -5. -3. -0. -6. -10. -2. -6. -∞

β -0.50±0.08 -0.81±0.08 -0.60±0.07 -1.03±0.04 0.53±0.04 0.96±0.08 -0.32±0.08 0.88±0.10 1

α 1.87±0.04 1.50±0.06 1.12±0.05 -0.57±0.12 3.60±0.04 7.93±0.06 1.31±0.03 1.58±0.07 0

D.4 Parameter Correlations Matrix Using Values

from Model-A (optxagn) Fitting
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Appendix E
Additional Figures in

Chapter 5

E.1 Parameter Cross-correlations Using Values from

Model-A (Optxagn) Fitting

Similar cross-correlation plots as reported in previous sections but use parameter

values from Model-A fitting in Jin et al. (2011). In each panel, the various point

symbols show Model-A data. The solid orange line is the regression result for these

Model-A data using the same regression methods as in previous sections. The dashed

gray line is our result from previous sections based on Model-B data. All dotted

lines are from the other literatures as indicated in previous sections.
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E.1-7 E.1-8

E.1-9
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E.1-10
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E.2 Mean AGN SEDs from Model-A (Optxagn)

Fitting
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Figure E.2: The AGN mean SEDs based on different values of the 9 key parameters from Model-A fitting in

Jin et al. (2011) (i.e. without effect of color temperature correction). For each parameter, the 51 sources are sorted

according to the parameter value, and are then divided into three subsets evenly so that each subset contains 17

sources. PG 1004+130 is excluded from its subset. Finally, a mean SED is constructed for each of the three subsets

after renormalizing each individual SED to the mean 2500Å luminosity of that subset. The three panels (A, B,

C) in each row show the mean SEDs of the subsets classified by the parameter shown in the panel title. In each

panel, the solid curve is the mean SED, while the color shaded region is the ±1σ deviation. The 2500 Å and 2

keV positions are marked by the vertical solid orange lines, whose related height shows the value of αox, The SED

peaking position is also marked by the vertical solid purple line. The average values of some other parameters in

that subset are also shown in the panel. All the mean SEDs have been rescaled by the same arbitrary constant

in the Y-axis which is 1.3×10−46. Note that the energy ranges E < 6 eV and 0.3 keV < E < 10 keV are covered

by SDSS, OM and EPIC data, while the SED in the rest energy bands is determined by the extrapolating of the

best-fit model.
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Figure E.2: continued
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A&A, 388, 771

[50] Comastri A., 2000, NewAR, 44, 403
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