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Abstract

The evolution of galaxies through cosmic time remains a key question in Extra-

galactic Astronomy. Globular Clusters (GCs) are believed to be good tracers of

this evolution as they form during large star formation events. In this thesis we use

spectroscopic data of GCs, taken using the FORS2 instrument on the Very Large

Telescope, to create a catalogue of kinematics and metallicities for GCs in the S0

galaxy of NGC 3115. In order to do this the data was reduced using the ESO RE-

FLEX program, creating 1D spectra for each of the GC targets. These were then

fed into a modified version of the full spectrum fitting method ’pPXF’ to extract

the kinematics, metallicities and ages of each target. The dataset created via this

method was then compared to, and combined with, supplementary data from other

surveys to create a more complete catalogue of GCs in NGC 3115. From this cata-

logue there is evidence that the bimodal colour distribution is caused by a underlying

bimodal metallicity distribution. Implying that at least two major star formation

events have occurred in the history of NGC 3115.
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Chapter 1

Introduction

Understanding how galaxies form and evolve over time is a major unanswered ques-

tion in extragalactic astronomy. A deeper knowledge of the processes that create

and change galaxies, building the Universe we see around us, would allow accurate

modelling of many aspects of the Universe to become a possibility, potentially open-

ing the doors to understanding some of the other great questions in cosmology and

astronomy.

With this in mind, the search has been for tracers in galaxies, that might shed

light on the processes involved in galaxy formation and evolution, more specifically

their star formation history over the Hubble time since the Universe formed ∼13

Gigayears (Gyrs) ago. Given that ∼75% of the stellar mass in the local universe is in

spheroids (Fukugita et al. 1998) (e.g. spiral bulges, halos and early-type galaxies),

a tracer of this star formation needs to be formed from the same events as the

bulk of stars, rather than low-level star formation in galaxies. This led astronomers

to consider observing globular clusters (GCs) due to the observation that they are

formed in significant numbers in galaxy mergers (Schweizer 2002; Ashman et al.

1992), which are thought to play a large role in galaxy evolution. Although the

underlying processes forming GCs are not completely understood, there appears to

1



1.1. Globular clusters in galaxy evolution 2

be evidence to suggest they are a good candidate as will be discussed.

1.1 Globular clusters in galaxy evolution

1.1.1 Globular Clusters

Globular clusters are collections of old stars (relative to the host galaxy) that are

gravitationally bound. They are generally spherical in shape and have a higher

stellar density towards their centre. It is believed that the formation of GCs occurs

in single star formation events from large clouds of gas, leading to all the stars

contained within the cluster having the same physical properties (age, metallicity,

abundance ratio). This is known as a simple stellar population (SSP). An integrated

spectrum from an SSP would then allow mean values for the physical properties to

be obtained. This is a key assumption, in both previous and current studies.

All galaxies of sufficient mass will contain a population of GCs (Harris 1991a). This

fact, along with the assumption that GCs are SSPs, enables GCs to be used to track

star formation in their host galaxies, and to measure specific properties of stars

at different epochs over the galaxy’s lifetime. If multiple populations of GCs are

detected, then there has been more than one distinct star formation event in the

lifetime of the galaxy.

More recently, there have been studies which suggest that GCs may not all be the

SSP that they were once presumed to be (Decressin et al. 2008; Marino et al. 2008;

Ferraro et al. 2004). These studies have shown evidence of multiple populations of

stars contained within single GCs possibly due to differing ages and He abundances

(Piotto et al. 2007). So far this phenomenon has only been attributed to large

GCs in the Milky Way galaxy and, given the constraints of current instruments,

cannot be tested in extragalactic GCs. Therefore, although useful to acknowledge

June 5, 2018



1.1. Globular clusters in galaxy evolution 3

the potential of multiple populations, it is safe to continue to approximate GCs as

SSPs, at least for the purposes of these studies.

1.1.2 Specific Frequency

A key property for relating a GC population to its host galaxy is the specific fre-

quency (SN) (Harris et al. 1981). It is defined as the number of clusters per unit

galaxy luminosity (Harris 1991a) and is defined numerically as:

SN = NGC × 100.4(MV +15) (1.1.1)

Where NGC is the total cluster population and MV is the galaxy absolute magnitude.

SN can vary quite drastically between the different classifications of galaxies with

spirals having SN<1 (van den Bergh 1982) while ellipticals and S0s have SN between

2-6 (Harris et al. 1981; Kundu et al. 1998). Understanding why some galaxies were

more adept at holding or creating GCs became known as the ’Specific frequency

problem’, as seen in Figure 1.1. What causes these differences in SN , for different

galaxies, has become integral in the development of galaxy formation models (Harris

1991a).

The formation of elliptical galaxies via major mergers of spirals, for example, was

called into question by van den Bergh (1982) due to spirals having a lower SN than

elliptical galaxies by a factor of ∼3-6. However, Ashman et al. (1992) argued that

SN would increase after a merger if new GCs were formed. Ashman et al. (1992)

predicted that there would be two populations of GCs after the merger, a metal-

poor one and a metal-rich one; these were indeed observed in elliptical galaxies

shortly after (Zepf et al. 1993). However, this does not account for the high SN in

S0 galaxies, as they are not expected to have been formed by mergers (West 1993).

They have also been observed to contain bimodal populations of GCs (Kundu et al.

2001) but the processes that caused these are still being researched.

June 5, 2018



1.1. Globular clusters in galaxy evolution 4

Figure 1.1: The upper plot shows galaxy luminosity against specific frequency, where the filled

circles represent elliptical and S0 galaxies and the crossed circles represent spiral and irregular

galaxies. Five giant ellipticals at the centres of rich clusters (Virgo, Fornax, Hydra, Coma, A2199)

are denoted by the circled dots. The bottom plot shows specific frequency against morphological

classification. ER and ES represent ellipticals in rich and sparse clusters respectively and cD shows

the central-giant ellipticals from the upper plot. Taken from Harris (1991b).

June 5, 2018



1.1. Globular clusters in galaxy evolution 5

1.1.3 Bimodality of GC populations

One of the most significant discoveries in the field of extragalactic GCs, is the

observation that most colour distributions of GC systems are bimodal (Peng et al.

2006b), as can be seen in Figure 1.2. This suggests that the majority of massive

galaxies contain at least two distinct sub-populations of GCs as seen in Figure 1.3.

The differences in colour between the sub-populations could be caused by a difference

in age, in metallicity or a combination of both. Therefore, spectroscopy of individual

GCs is needed to identify the true cause.

Figure 1.2: Histogram of the V-I colour of GCs in M87 in the Virgo cluster. The histogram

shows the GCs to have a bimodal colour distribution. Taken from Larsen et al. (2001).

After many GC surveys, both in the Milky Way and other galaxies, it has been
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1.1. Globular clusters in galaxy evolution 6

confirmed that the most likely cause of the difference in colour is due to differing

metallicities in two older sub-populations of GCs (Kuntschner et al. 2002; Brodie

et al. 2012; Barmby et al. 2000; Harris 1996). This suggests that there is an older

metal-poor population, most likely formed during the galaxies’ early formation, and

a younger metal-rich population formed later. The findings of some of these studies,

in particular ones more relevant to the research of this thesis, will be discussed later

in this chapter.

Figure 1.3: Globular cluster mean metallicity against galaxy luminosity (MB) for metal-poor

and metal-rich GC sub-populations in a variety of galaxies. Data is from Strader et al. (2004) and

Strader et al. (2006) and was converted from V-I and g-z to [Fe/H] by the relations of Barmby

et al. (2000) and Peng et al. (2006a). Figure taken from Brodie et al. (2006)

In order to explain these multiple sub-populations, there needs to be a mechanism by

which multiple star formation events are triggered. There are three widely discussed

scenarios that could produce such events. The first idea is the major merger model

Zepf et al. (1993), which built on research relating to the formation of elliptical (E)
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1.1. Globular clusters in galaxy evolution 7

galaxies by major mergers (Schweizer 2000; Toomre et al. 1972). It suggests that the

metal-poor GCs come from the original disk galaxies, whilst the metal-rich GCs are

formed during the merger, where the interaction between the two galaxies initiates

a star formation event.

This model was examined by Forbes et al. (1997), who argued that the colour dis-

tributions of the GCs in the elliptical galaxies were not in line with what should

be seen from a major merger. More precisely, it was discovered that the relative

numbers of GCs and their colour distributions were not consistent with the predic-

tions made by the theory. Forbes et al. (1997) offered an alternate theory, whereby

the metal-poor GCs were formed in fragments of gas in the early stages of galaxy

formation. GC formation then ceased for a few Gyrs, and then resumed, along with

the formation of the field stars Forbes et al. 1997. This is known as multi-phase

dissipational collapse. Forbes et al. (1997) suggested that this could occur via feed-

back, where gas was removed from the gas clouds, that earlier formed GCs, and then

cooled over time, before eventually becoming dense enough to collapse, forming the

new metal-rich GCs.

The third model, discussed for the origin of bimodality, is the accretion scenario

(Côté et al. 1998). In this scenario, metal-rich GCs are formed in large seed galaxies

and the metal-poor GCs are acquired, not from a second star formation event but

via accretion from low mass neighbouring galaxies or satellites. This idea is plausible

as there is a known connection between the mass of a host galaxy and the mean

metallicity of its GC populations (Brodie et al. 1991; Forbes et al. 2001; van den

Bergh 1975). However, it is reliant on two key assumptions:

• Firstly, that E galaxies have a ’zero-age’ population of GCs that were formed

during the initial collapse of the host galaxy and whose metallicity increased

in line with galaxy mass.

• Secondly, that the initial galactic mass-function of the low-mass galaxies is

June 5, 2018



1.2. The Lenticular (S0) Galaxy NGC 3115 8

steep. This is consistent with λCDM models but is currently steeper than

observations would suggest.

The actual cause of GC bimodality has still not been completely identified and it is

hoped that studies such as the present one, performed on a variety of galaxies, may

shed light on its true nature. Its implication, however, is that galactic star formation

can be tracked using GC populations and when its origin is known, we can use GCs

as a fossil record of what has happened to the galaxy since its formation.

1.2 The Lenticular (S0) Galaxy NGC 3115

NGC 3115 is a lenticular (or S0) galaxy that is almost edge-on to the Milky Way,

located in the Sextans constellation at a right ascension (RA) of 10h05m14.0s and

a declination (dec) of −7o43′07” (Materne 1979). It is located at a distance of 9.7

Megaparsecs (Mpc) and has a radial velocity of 665 [±39] kms−1 (Paturel et al. 2002;

Tonry et al. 2001). At this distance 3115 is one of the closest S0 galaxies, making it

a prime candidate for studies of extragalactic GC systems.

S0 galaxies are believed to be an intermediate type of galaxies between spirals and

elliptical galaxies. They differ morphologically from elliptical galaxies as they con-

tain a stellar disk. They do, however, share similarities as they both have little or

no on-going star formation and share some spectral features and scaling relations.

From galaxy surveys, there is an increase in population size of S0’s since a redshift

of 1 whilst simultaneously there has been a decrease in the number of spiral galaxies,

particularly in cluster environments (Dressler et al. 1997). This leads to a conclusion

that their evolution must somehow be linked.

One theory of their formation is that S0 galaxies are spiral galaxies in which star

formation has ceased and have been passively evolving since. This is plausible given
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that the there is an absence of gas but presence of dust in the disk (Elmegreen

et al. 2002). Moore et al. (1998) suggest that tidal harassment from nearby galaxies

could contribute to this and cause the disappearance of the spiral structures in the

galaxies arms. It has also been suggested that S0 galaxies could be formed via

merger processes. Burstein et al. (2005) and Sandage (2005) both found that S0’s

had a higher surface brightness than spiral galaxies, this could be accounted for if

the S0 was the result of a major merger.

The idea of S0’s being faded spirals has also been tested by looking at GCs in S0

galaxies, Aragón-Salamanca et al. (2006) and Barr et al. (2007) showed that, as the

age of the central region of an S0 galaxy increased, so did its GC specific frequency.

The increase measured is what would be expected if the galaxy was formed from

the fading of a disk after star formation ceased. Figure 1.4 shows the findings of

both studies. For younger S0 galaxies their specific frequencies were closer to that

of spirals whereas older S0’s were closer to that of ellipticals supporting the theory

of S0 galaxies being formed from fading spirals. Barr et al. (2007) also assert that,

given there are no young S0’s with a high specific frequency, large amounts of GCs

cannot be created during S0 formation. Or that if they are, the galaxy undergoes a

large increase in luminosity at the same time.

1.3 Previous investigations of NGC 3115

The work contained in this thesis follows on from two previous studies of the GC

system of NGC 3115. They are: ’VLT spectroscopy of NGC 3115 globular clusters’

by Kuntschner et al. (2002) (hereafter K02) and ’The SLUGGS Survey: NGC 3115,

A critical test case for metallicity bimodality in globular cluster systems’ by Brodie

et al. (2012) (hereafter B12). Our study examines GCs in the same area of the sky

as both of these surveys, and so provides some overlap of results. This section will,

therefore, examine in detail the results these two particular studies before giving an
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Figure 1.4: The graph shows derived ages for S0 galaxies against their specific frequency. The

dashed line is what is expected from a fading galaxy with a starting SN=0.4, from the stellar

population models of Bruzual et al. (2003). Taken from Barr et al. (2007)

overview of other studies that have been conducted on NGC 3115, and give their

findings.

1.3.1 VLT spectroscopy of NGC 3115 globular clusters

K02 was the first spectroscopic study dedicated to looking at the GC system of

NGC 3115 and is the foundation for our work. In this paper, ∼50 globular cluster

candidates were studied using the FORS2 spectrograph on the Very Large Telescope

(VLT). Of that number, radial velocities for 28 GC candidates were obtained, which

were then compared to the radial velocity of NGC 3115, to decide whether the

candidate was a member of the NGC 3115 GC system. For their observations, K02

decided that the velocity cut-off would be between 200-1300kms−1, and 26 of the

candidates met this criterion.

To calculate metallicity from the line-strengths of the spectra, K02 enforced a cap
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Figure 1.5: Histogram of (V-I) colours for GC candidates in NGC 3115 from Kuntschner et al.

(2002) (filled histogram) and Kundu et al. (1998). Taken from Kuntschner et al. (2002).

on the signal to noise ratio (SNR) of > 12 per pixel which reduced the sample size to

17 clusters. From this sample, the mean radial velocity was 600 [±12.6] kms−1, with

a dispersion of σ =215 kms−1. The colour distribution of this sample can be seen in

Figure 1.5. Out of the final 17 candidates, 9 had a high enough quality spectrum to

obtain line strength indices and are also kinematically associated with NGC 3115.

In order to obtain abundance ratios, metallicities and ages of their GCs the ratio of

Mg to Fe, and line strengths of Hβ and [MgFe] were used. The line strength indices

system used to obtain age and metallicity in this study was the LICK/IDS system

(Worthey et al. 1997; Trager et al. 1998). The data from the FORS spectroscopy

needed to be convolved with a gaussian kernel in order to match the resolution of

the LICK/IDS system. The line strengths could then be measured against the LICK
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definitions and used in the analysis.

Metallicities and ages were calculated for each of the candidates in the sample. As

the error bars are large in around half of the spectra, an error-weighted mean for

age and metallicity was calculated. This gave mean ages of 12+1.5
−2.0 and 10.8+1.7

−1.8

Gyrs for the metal-poor and metal-rich clusters respectively. The average [Fe/H]

was −1.05 ± 0.09 for the metal-poor sample and −0.26 ± 0.05 for the metal-rich

sample; where the errors quoted are 1σ values. K02 also examine the abundance

ratios of the GCs in NGC 3115. They find that [Mg/Fe] varies from around the

solar value to ' 0.3 and note that there appears to be no trend with colour. With

both sub-populations containing varying abundance ratios.

K02 concluded from their data that there were two populations of GCs in NGC 3115

and that they had the same age of 11-12Gyr using the Hβ vs [MgFe] measurements.

K02 also used higher order Balmer line measurements (Hγ, Hδ) and obtained ages of

7 and 5 Gyr for the blue and red clusters. This is a large offset from the ages obtained

using Hβ, and K02 believe this discrepancy is due to an inaccurate calibration of

higher order Balmer lines in the models used for the age calculation. It is therefore

suggested, that this measurement should not be taken as reliable and one should

instead use the Hβ vs [MgFe] measurements for age estimates.

In the discussion of their findings, K02 do make the concession that their data is

dominated by the bright end of the luminosity function and that this may play a

role in the conclusions that can be drawn from the data. It cannot be concluded

that the two populations are separated by age, as well as metallicity, as the data

suggests that they both formed around 11-12 Gyr ago, although it is possible for

the red clusters to be slightly younger.

It can be concluded from their data that the metal-rich clusters, with solar [Mg/Fe]

abundance ratios, must have been well mixed containing the products of both Type

2 and Type 1a supernovae. Thus, knowing that Type 1a supernovae are delayed with
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Figure 1.6: An age and metallicity diagram from Kuntschner et al. (2002). Using [MgFe] as the

metallicity indicator and Hβ as the age indicator. The K02 sample of GCs are the open triangles

and circles, representing the red and blue clusters respectively. The filled triangle and circle are

the error weighted means of their respective cluster and the filled square represents the centre of

NGC 3115 from Trager et al. (1998). The solid and dashed lines are the ages and metallicities

from solar-abundance ratio SSP models by Thomas et al. (2002a) and Maraston (2002) over the

ranges [Fe/H] = −2.25,−1.35,−0.33, 0.00, 0.35 (dashed lines, left to right) and ages 3, 5, 8 and 12

Gyr (solid lines from top to bottom).
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respect to Type 2 in an SSP, those clusters with solar abundance ratios must have

formed after the initial star burst event. K02 suggest that the possible scenarios

needed to explain the observed abundance ratio distribution, are difficult to fit within

a theory that only involves two formation events, creating the red and blue clusters.

K02 put forward a hypothesis that the metal-poor non-solar abundance ratio clusters

are formed with the halo, and the metal-rich non-solar abundance ratio clusters are

formed with the bulge during the galaxy’s formation. Then around 1-2 Gyr later,

the metal-rich solar ratio clusters are formed with the disk, possibly due to another

star forming event (ie merger). In order for this scenario to be correct the disk stars

would need to have near solar abundance ratios. The kinematics of the GCs in the

disk would also be expected to be clearly different from GCs contained in the halo

or bulge of NGC 3115. K02 therefore conclude, that more spectroscopic studies of

GCs in nearby galaxies are needed in order to improve our understanding of the

formation of GCs.

The study presented in this thesis, aims to address this issue by adding more GCs

to the catalogue for NGC 3115 and at a larger galactocentric radii. This will help to

remove any biases caused by the sample size of the data and the spatial distribution

of different sub-populations.

1.3.2 The SLUGGS Survey: NGC 3115

The SLUGGS survey (The SAGES Legacy Unifying Globulars and GalaxieS) has

looked at 25 early-type galaxies with a range of stellar masses, central stellar kine-

matics and environments all within a range of 30 Megaparsecs (Forbes 2017). It

uses the Subaru Suprime-Cam (Miyazaki et al. 2002) for its gi photometry and

Keck/DEIMOS for spectroscopy. Unlike the Kuntschner et al (2002) study, SLUGGS

uses the CaT index that measures the Calcium II triplet at∼850nm for spectroscopic
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metallicity estimates. In NGC 3115, B12 obtained kinematics and metallicities for

∼150 GCs from different areas of the galaxy, and aimed to provide more clarity on

the bimodality of the GC population.

B12 note, in their discussion, that there have been criticisms of using the CaT index

as a measure for metallicity, as it may become less sensitive at high metallicities

[Z/H]>-0.4 and that it may also be sensitive to changes in the horizontal branch

morphology (Foster et al. 2010). However, B12 assert that SSP models have now

shown these effects to be minimal and therefore would not impact on the results of

their survey.

From the initial data set, a cut at SNR > 12 per Angstrom was set, to produce

a sample of 71 GCs. Figure 1.7 shows the histogram of metallicities derived from

the CaT index for the sample, and it clearly has a bimodal distribution. Overlain

are predictions based on colour-metallicity relations suggested by models from Yoon

et al. (2011) and Usher et al. (2012).

Figure 1.7: GC metallicity distribution functions (MDF) in NGC 3115. The solid line shows

the MDF derived from the the CaT measurements. The dashed line is obtained from (g-i) colours

using the Yoon et al. (2011) non-linear colour-[Z/H] relation and the dotted line is obtained using

the Usher et al. (2012) empirical colour-[Z/H] relation. Taken from Brodie et al. (2012)
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B12 conclude that the CaT index can effectively be used to obtain metallicities for

GCs and that in NGC 3115 both the colour and CaT observations show a bimodal

population. Figure 1.7 indicates that the suggestion by Yoon et al. (2006), that the

populations are in fact uni-modal, and only appear bimodal due to an artefact of

nonlinear colour-metallicity transformations, cannot be the case for NGC 3115.

The B12 study provides an excellent comparison sample for the study in this thesis,

due to its large sample size and use of the CaT line to obtain metallicities. Whilst

there could be potentially large offsets between the data due to the difference in

methods used to obtain metallicity, if the results are consistent, it would prove to

be a major verification for the theory that the bimodality is caused by metallicity

and not age or horizontal branch offsets.

1.3.3 Other work

There have also been several photometric studies of the GC population of NGC

3115 in both the optical and in the infrared (Puzia et al. 2002; Cantiello et al. 2014;

Jennings et al. 2014). The results of the colour distributions for an infrared and

optical study can be seen in Figure 1.8 and Figure 1.9.

The infrared studies assumed the following relation in order to convert colour into

[Fe/H] (Puzia et al. 2002):

[Fe/H] = −5.52(±0.26) + 1.82(±0.11)× (V −K) (1.3.2)

Whereas the optical studies used (Peng et al. 2006a):

[Fe/H] = −6.21 + (5.14± 0.67)× (g − z) (1.3.3)

for 0.7 < (g − z) ≤ 1.05 and outside of that range using:

[Fe/H] = −2.75 + (1.83± 0.23)× (g − z) (1.3.4)
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This allowed the two results to be compared against each other, and along with

agreeing on a bimodal colour distribution, the studies all agree that the two pop-

ulations of GCs are separated by metallicity. A drop in the numbers of GCs with

metallicities in the range 1.1 > [Z/H] > 0.4 is found in the studies, creating a

bimodal metallicity distribution. Comparing the photometric and spectroscopic

studies shows that the conclusions from both are consistent with each other. All of

the studies to date have agreed on a bimodal distribution for the GC population of

NGC 3115 in both colour and metallicity.

Figure 1.8: V-K histogram plot of all sources (solid histogram) and GC candidates (shaded

histogram) along with a probability-density estimate of the data (thick line) and it’s 1σ uncertainty

(dotted lines) for NGC 3115. Taken from Puzia et al. (2002)

Figure 1.9: (g-i) histogram for Suprime-Cam imaging of detected GC candidates in NGC 3115

from Jennings et al. (2014). Overlaid is a Gaussian kernel density estimate which was normalised

so the total number of GCs is the same as in the histogram.

It is also useful to examine other work that has been done on NGC 3115, such as
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integrated light spectroscopy of the galaxy. This allows comparisons between these

findings and those obtained from observing the GC population.

Norris et al. (2006) looked at NGC 3115 using long slit spectroscopy from the GMOS

instrument. The spheroid of NGC 3115 was found to have a similar age, metallicity

and [α/Fe] to that of the red GC population (Norris et al. 2006), which is suggested

as an indication of a common origin. However, the study also found evidence of a

younger (5-8 Gyr) and chemically enriched stellar population in the disk, meaning

it was likely formed in a different star formation event to the spheroid. An issue of

Kuntschner et al (2002) was also addressed, as the offset in ages obtained from Hβ

and higher order Balmer lines can be explained mostly by a varying [α/Fe].

In relation to the GC population, Norris et al. (2006) argue that the red GC popu-

lation and the spheroid could have formed at the same star formation epoch, due to

their shared parameters, whereas the blue GC population probably came from the

initial star formation burst when the halo was formed.

1.4 Outline of this thesis

The aim of this thesis is to continue the work of these studies and add to the cata-

logue of kinematics and metallicities for GCs in NGC 3115. The original objective

of the observations that this thesis is based on, was to measure spectroscopic ages,

metallicities and [α/Fe] ratios for around 100 GCs, along with measuring velocities

for ∼200 GCs at a range of radii from the galactic centre.

In this thesis, the methods used for the data reduction and analysis of the obser-

vations will be presented, as well as discussing the implications of the results and

comparing them to the previous studies of the system.

The general structure will be as follows:
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• Chapter 2 presents the data reduction including the methods and software

used to accomplish it. It will also look at the quality of the data and any

problems that occurred during the reduction.

• Chapter 3 presents the data analysis and explores how the pPXF programme

(Cappellari 2017) can be used to derive ages and metallicities for GC popula-

tions. It will also look at the issues encountered and what could be done to

increase the quality and reliability of the results.

• Chapter 4 presents the results of this analysis including final kinematics and

metallicities, along with data from other studies to create a more complete

catalogue of GCs for NGC 3115

• Chapter 5 presents a discussion of the results, in the context of GC formation

theories, and the conclusions that can be drawn from them. It will also present

a summary of the thesis and areas of potential future research.
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Chapter 2

Observations and Data Reduction

The study presented in this thesis focuses on spectroscopic observations the GC

population of NGC 3115 on a larger scale than had been previously attempted at

the time of the observations, covering a range of targets at various galactocentric

radii. The main aims of this study are:

• To measure ages, metallicities and [α/Fe] ratios of ∼100 GCs around NGC

3115

• To measure velocities of ∼200 GCs with which to constrain the dark matter

(DM) content and profile of NGC 3115

The observations were taken in 2008-2009 and, at the time, would have been the

largest study of the GC population in NGC 3115. Since then the SLUGGS survey

has taken place, observing at least as many GCs as this study, and covering a similar

area of the galaxy. However, not only are the majority of the target GCs different

between the two surveys, but repeat measurements of GCs, in different studies, will

only help to confirm findings. Also, both studies have used different methods of

obtaining metallicities and differing wavelength ranges, so the comparisons between
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them will provide insight into the reliability of the methods used and any systematic

offsets.

2.1 Instrument Description

The data for this study was obtained using the FORS2 spectrograph instrument

on the ESO Very Large Telescope (VLT). The VLT is operated by the European

Southern Observatory (ESO) and consists of 4 main Unit Telescopes (UT 1-4), each

with an 8.2m diameter mirror. The observatory is located on Cerro Paranal in the

Atacama Desert of northern Chile, with coordinates of 24◦37’38”S, 70◦24’15”W and

an altitude of 2,635 m. These telescopes can either work individually, as in this case,

or in conjunction with each other, to create a large interferometer (ESO 2011b).

FOcal Reducer/low dispersion Spectrograph 2 (FORS2) is a multi-function optical

instrument that is located at UT1’s Cassegrain focus (see Figure 2.1). It can ob-

serve in imaging, polarimetry, long slit and multi-object spectroscopy modes over a

wavelength range of 330-1100 nm (Appenzeller et al. 1998). For the observations de-

scribed here the instrument was used in Multi-Object Spectroscopic Mask (MXU)

mode and the observations were taken in service time. This allows for the most

GC targets to be observed simultaneously in each exposure, with a mask produced

containing a set number of slits covering the GC targets in each field. In order to

achieve this, the FORS Instrumental Mask Simulator (FIMS) is used to create the

masks in advance of the observations. FIMS has a graphical user interface which

enables users to see the FORS field of view and position the slits of the MXU mask

on the image (see Figure 2.2). This enables users to create optimised masks that

cover as many targets as possible within the field of view.

This telescope and instrument were selected for this study due to the criteria needed

to successfully observe GCs in NGC 3115. In order to obtain accurate metallicities,
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Figure 2.1: Diagram showing a schematic view of the FORS instrument at the Cassegrain focus

of UT1. Taken from the FORS2 User Manual.
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Figure 2.2: An example of FIMS being used to place slits on a field whilst in MXU mode. Taken

from the FIMS manual.
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a signal to noise ratio (SNR) of around 12 per Angstrom (Kuntschner et al. 2002) is

needed. Therefore, for objects at the distance of 9.7 Mpc, and the luminosity of a GC

(typically ∼MV = −6.5), a large telescope such as the VLT is required. FORS2 was

chosen due to its large field of view (6’.8x6’.8 for standard resolution and 4’,2x4’.2

for high resolution), allowing observations of GCs at a range of galactocentric radii

(up to 30 kpc). In order to probe to even larger galactocentric radii, some fields

were centred on the major axis of NGC 3115, and also offset into the halo (Figure

2.3).

Figure 2.3: All possible GC candidate targets, identified from pre-imaging exposures taken with

the same instrument. Each colour represents a field around NGC 3115 which can be identified by

the legend. The image of NGC 3115 is obtained from the SDSS survey (Abolfathi et al. 2017).

The observations were taken over two observing runs, as the initial run didn’t observe

all of the requested fields. They have the program ID’s: 083.B-0720(A) and 081.B-

0633(B). The observations covered 5 fields in NGC 3115, as seen in Figure 2.3. The

June 5, 2018



2.2. Target selection and Pre-imaging 25

Table 2.1: The Field ID, Mask ID, central coordinates and exposure times of the masks used in

this study.

Field Mask ID RA Dec Exposure Time (s)

1 971913 151.331935 -7.69047 10800

2 901611 151.280663 -7.74215 13500

3 913942 151.389366 -7.63397 13500

4 925440 151.223613 -7.79916 13500

5 970716 151.335022 -7.74496 13500

areas selected covered targets previously observed in Kuntschner et al. (2002), along

with previously unknown GC candidates based on the pre-imaging. The locations

of the masks along with their IDs and exposure times can be seen in Table 2.1.

2.2 Target selection and Pre-imaging

Pre-imaging of the fields was taken in order to aid target selection and the reduction

of these images was completed by Dr Mark Norris. The pre-imaging was taken using

V,R and I filters, each for an exposure time of ∼ 35 seconds. The imaging was also

zero pointed to match the photometry of Puzia et al. (2004), which allowed the two

sets of data to be directly compared. The depth of the pre-imaging can be seen in

Figure 2.5, which is ∼ 24.5 magnitude. Although as seen from the figure the cut-off

magnitude used was slightly lower than this as seen in Figure 2.4.

From the pre-imaging, objects were extracted using SExtractor (Bertin et al. 1996)

and several cuts were applied. These cuts removed any objects that had an R-band

ellipticity of less than 0.4 and an R-band Class Star of greater than 0.5. This ensured

that the objects were close to round and not obviously extended sources, in order

to attempt to remove any background galaxies. As seen in Figure 2.5 there were
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Figure 2.4: This plot shows V Magnitude against the number of targets in each magnitude bin.

It contains all targets selected by FIMS in each of the 5 fields in the study. The magnitude cut-off

of the survey of ∼ 23.5 can be seen from the histogram. The vertical line shows the expected peak

of a Gaussian GC luminosity function with MV = −7.5
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also cuts applied to the V and R magnitudes and the V-I and V-R colours, shown

by the dashed lines in the plot. These restricted objects to magnitudes and colours

where GCs are expected to be found. The plot also shows known galaxies denoted

by the green dots and spectroscopically confirmed GCs in blue and red from Puzia

et al. (2004) for comparison.

Using these criteria, the FIMS mask creation software was then used to create the

masks for the observations. The targets had a designated priority based upon how

closely they met the cut-off criteria or had other special features (ie previously

untargeted object). FIMS uses this information, along with the location of the

targets, to optimally select the most targets, with the highest priority, to place on

the masks.

There were approximately 60 slits per mask and 5 masks in total. For the observa-

tions 1” wide slits were used with the 600B grism, it has a central wavelength of 465

nm, range of 330 - 621 nm and dispersion on 50Å/nm (ESO 2011a). The observa-

tions were taken over a wavelength range of 330-621nm (depending on the position

of the slit) and had a resolution of ∼4.8Å, full width half maximum (FWHM), with

1.2 pixels per Angstrom and a seeing of 6 1.0”. Each field had a total exposure

of 13,500s, split over 5 exposures of 2700s, apart from field 1 which had a total

exposure of 10,800s split into 4 exposures of 2700s. The wavelength range covered

by the observations varies slightly based on the positions of the slits on the mask.

The selected range allowed coverage of some of the key absorption lines that can be

used to determine metallicity, such as: G band (4304Å), Hβ (4862Å), Mgβ (5175Å)

and Fe5270 (5270Å), as can be seen in Figure 2.7.
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Figure 2.5: These four plots summarise the GC target selection process. For the pre-imaging the

photometry was zero pointed to match the V, R and I data of Puzia et al. (2004). The top plots

show the cut-off points based on the SExtractor star-galaxy separation parameter (Class Star) and

ellipticity from the R photometry (from SExtractor). The ellipticity cut-off was less than 0.4 and

the Class Star greater than 0.5, ensuring the sources were close to round and not too extended.

WFPC2 imaging was used as a training set to help determine which objects were galaxies. The

bottom plots show the cuts based on V magnitude and V-R and V-I colours, where the green

circles are objects determined to be galaxies, based on WFPC2 photometry. and the blue and red

points are spectroscopically confirmed GCs from Puzia et al. (2004).
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Figure 2.6: On the left plot is the position of targets of Field 5 overlaid on an image of NGC

3115. The right plot shows the MXU mask of the same targets and the differing length of the slits.
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Figure 2.7: Sample spectra of NGC 3115 GC targets, of varying metallicity, from the 081.B-

0633(B) observation of Field 1. Dashed lines show key rest wavelength absorption features. The

redshift of the GCs is visible from the discrepancy between the rest wavelength and the location

of the absorption features in the spectra.

2.3 Data reduction pipeline

In order to reduce the data, the ESO Reflex software was used, in conjunction with

the FORS2 reduction pipeline (Freudling et al. 2013). This allowed the standard set

of reduction steps to be completed with relative ease, along with the ability to check

products of the reduction at each stage. Reflex (Freudling et al. 2013) is a graphical

environment that allows a simple way of reducing VLT data, it is very similar to

Esorex (ESO 2016) but automates the data organisation of each product created at

every stage of the reduction. It is also interactive, and so parameters used in the

reduction can be changed within the graphical environment. This means the effects

of changing each parameter can be viewed before the data is completely reduced.

Firstly a master bias is created for each exposure automatically, it first finds the bias

frames, which are provided with the observations, and the readout noise for each
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Figure 2.8: The FORS CALIB interactive window where each section represents a different

process step of the reduction. Top left shows the wavelength-calibrated arc lamp frame, centre left

shows the positions of detected arc lines in the rectified frame and bottom left shows the residuals

between predicted and detected arc line positions. The top right shows the slits positions in pixel

values and the centre and bottom right are the raw and normalised master flat fields

frame is obtained from the standard deviation in each detector readout port. The

master bias is produced by combining the bias frames using the median values and

its error then appropriately propagated. This master bias is then subtracted from

any of the raw files used in the pipeline. Reflex then begins the reduction by calling

two procedures: fors calib and fors science. These procedures perform the bulk of

the data reduction using interactive windows and are described in detail below.
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2.3.1 FORS CALIB

The fors calib recipe first takes the grism table, arc lamp exposures, master bias,

reference line catalogue and spectral screen flat exposures from the observation logs

and downloads the relevant files using the ESO archive server. The recipe then

identifies reference lines on the arc lamp exposure and fits a polynomial that maps

the pixel space to wavelength space. In the case of this study, the lamps FlatBlue+4

and FlatRed+3 were used with the arc lines used for identification documented in

Table 2.2. It then traces the edges of the spectra on the flat field, allowing the

recipe to create a normalised flat field frame and the spectral extraction mask which

is applied in the scientific data reduction. The spectra are also rectified using the

arc lines to correct for the curvature of the spectra on the slits.

Figure 2.8 shows the fors calib interactive window; in each panel a different cali-

bration process is being shown. Top left shows the wavelength-calibrated arc lamp

frame, there should not be any empty rows as that indicates an error in the detection

of the arc lines. Centre left shows the positions of detected arc lines in the recti-

fied frame and once again should not show any empty rows. Bottom left shows the

residuals between predicted and detected arc line positions, for which the majority

should be less than 0.5 pixels. Outliers are allowed so long as there is not a trend,

and any badly fit lines can be added to an ignore list. The top right shows the slit

positions in pixel values, which should not be curved or overlapping. Centre and

bottom right are the raw and normalised master flat fields. The red lines indicate

the edges of the slits and this, along with the area of each slit, should be the same

in both panels.
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Table 2.2: The master arc line catalogue used in fors calib

Wavelength (Å) Chemical Ion Line set

3466.92 Cd I standard

3611.69 Cd I standard

3650.153 Hg I standard

3888.643 He I standard

4026.206 He I standard

4046.563 Hg I standard

4358.328 Hg I standard

4471.501 He I standard

4678.149 Cd I standard

4713.173 He I standard

4799.912 Cd I standard

4921.931 He I standard

5015.678 He I standard

5085.822 Cd I standard

5460.735 Hg I standard

5769.363 Hg I standard

5790.663 Hg I standard

5875.663 He I standard

6438.47 Cd I extended

6678.152 He I extended

7065.249 He I extended
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Figure 2.9: This figure shows the interactive window for fors science (response). The top panel is

the extracted standard star spectrum, the centre panel shows the raw response (ratio of reference

spectrum and observed spectrum integrated over same bins as reference spectrum) and fit. The

bottom panel shows the flux-calibrated standard star spectrum and reference.
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2.3.2 FORS SCIENCE

The fors science reduction is completed in two parts. The first is shown in Figure

2.9 and is the fitting of the spectrophotometric response curve using a standard

star. This is done to account for any effect the response of the instrument may

have on the shape of the spectra. Once the response has been calculated using

a spectrophotometric standard, the correction can be applied to all the spectra

obtained in the next stage of the recipe. At the top of Figure 2.9 is the extracted

star spectrum. The centre panel shows the raw response (the ratio of the reference

spectrum and observed spectrum integrated over same bins as reference spectrum)

and the best fit, represented by the dots and blue line respectively. Finally, the flux-

calibrated standard star spectrum and reference spectrum is shown in the bottom

panel; the red line is the star spectrum after the response curve is calibrated while

the blue and green is the reference data. Any discrepancy between the blue and

green dots here represents an error in the wavelength calibration, whilst differences

between the red and blue indicate errors in the inter/extrapolation.

Sky subtraction takes place with the spectral extraction, with each individual spec-

trum having the sky above and below the object sampled to create a sky spectrum.

Figure 2.10 shows how the sky subtraction and spectral extraction has been per-

formed. The top panel shows the mapped and sky-subtracted 2-dimensional spec-

trum, that has also been wavelength calibrated and rectified. Also indicated are the

extraction limits of each spectrum, shown by the yellow and red lines. Each spectrum

can be viewed in the bottom panel to check if the sky has been acceptably removed.

Figure 2.11 shows a summary of the products that running FORS SCIENCE pro-

duces and the definition for each, taken from the FORS User manual.

June 5, 2018



2.3. Data reduction pipeline 36

Figure 2.10: The FORS SCIENCE interactive window where the top panel shows the mapped

sky-subtracted 2-dimensional spectrum which has also been wavelength calibrated and rectified

and the bottom panel shows the final 1d spectrum for a typical target. Underneath is a close up

of an individual GC target as seen on the slit.
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Figure 2.11: This shows the products of running FORS SCIENCE and the definition of each as

specified in the FORS User Manual. Taken from the FORS User Manual.
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2.3.3 Verification of the FORS2 reduction pipeline

After the reduction pipeline has been run, the final 2-D spectra and some reference

and calibration data are created. This allows the processes carried out in the pipeline

reduction to be checked, to ensure they have worked as intended. The wavelength

calibration can be checked in MAPPED ALL SCI MXU, which shows the spectra

after the removal of optical and spectral distortions. The wavelength calibration has

been successful if the bright sky lines are straight and aligned vertically, as seen in

Figure 2.12 (an analysis of this is found in Chapter 3). As mentioned previously, the

sky subtraction can also be checked using the error spectra created. This is done

by ensuring the residual noise is compatible with the statistical error associated to

the extracted object spectra, as stated in the FORS2 data reduction manual (Izzo

et al. 2012).

2.3.4 Final Data Processing

The 2-D spectra produced were split into individual files for further processing.

This was accomplished using the scopy function in Pyraf (Pyraf is a product of the

Space Telescope Science Institute, which is operated by AURA for NASA). The 1-D

spectra were then identified using the object tables created during the reduction,

so that they could be correctly co-added with other exposures from the same field.

Scombine was used to combine the spectra, with average sigma clipping used to reject

anomalous pixels. The spectra were then scaled and combined based on the median

value. This produced the final 1-D spectra, that are used in the data analysis, an

example of which can be seen in Figure 2.13.

From the initial target list of ∼280 slits, 244 reduced 1-D spectra were obtained (as

seen in Table 1); leaving a large sample size to perform further analysis on. The loss

of spectra is mostly due to the spectral extraction, as some objects were too faint
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Figure 2.12: 2-D spectra of targets in Field 1, after wavelength calibration. Note the prominent

sky lines visible towards the right side which can be used to check the wavelength calibration from

the data reduction. Each of the lighter coloured rectangles correspond to a 2D spectrum extracted

from one of the multi-slits shown in Figure 2.10.

Figure 2.13: 1-D spectrum of a target in Field 3, displayed using the Python implementation

of IRAF (Pyraf). This spectrum has been completely reduced and co-added to increase the SNR.

The total exposure time for this spectrum was 13,500s. Units on the y-axis are in ADU per second.
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to be detected by Reflex.
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Chapter 3

Data Analysis and Model Fitting

There are two main methods for extracting metallicities from an integrated GC

spectrum. These are the Lick/IDS line strength system and the full spectral fitting

method. The Lick/IDS system is commonly used to measure the line strengths at

optical wavelengths (Worthey et al. 1997; Trager et al. 1998). During 1972 to 1984

S.Faber and collaborators used the Image Dissector Scanner (IDS) to obtain spectra

for many hundreds of stars in the Milky Way, creating a large library which was

used to define the line strength system, originally containing 11 indices (Faber et

al. 1985). This has more recently been updated to include more than 25 indices,

including more age sensitive indices, such as Hδ and Hγ, by Worthey et al. (1997).

The combination of the large number of indices, and range of stellar types within

the library, have made the Lick/IDS system an important method for creating SSP

models. It is then possible to compare obtained spectra to these theoretical SSP

models in order to determine parameters such as age, metallicity and [α/Fe].

The full spectral fitting method can also be used to obtain properties of unre-

solved stellar populations, such as GCs (Foster et al. 2011; Lützgendorf et al. 2012;

Lützgendorf et al. 2013). This method involves comparing spectra with grids of

synthetic stellar population templates, of various ages and metallicities, and finding
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the best matching combination of templates. This enables ages and metallicities to

be estimated from the observations. These templates are also convolved with a line-

of-sight velocity distribution (LOSVD) to estimate kinematics from the spectrum.

3.1 Introduction to pPXF

In order to obtain kinematics and metallicities from the GC spectra in this study,

the publicly available distribution of the Penalised Pixel Fitting Method (pPXF),

developed by Cappellari and Emsellem (Emsellem et al. 2004; Cappellari 2017)

was used. pPXF was chosen as it allows kinematics and metallicities to be easily

extracted via the method of full spectrum fitting. It uses large numbers of template

spectra to reduce the risk of template mismatch and, therefore, inaccurate results

being obtained. pPXF fits the spectra in pixel space, using a maximum penalised

likelihood approach, making it easier for the user to mask emission lines and bad

pixels in the fit.

In order to produce the best fit spectrum, pPXF creates an optimal fitting tem-

plate, for each input spectrum, formed by varying contributions from multiple user

defined stellar population templates. Legendre polynomials are used to account for

differences in continuum shape between the input spectra and the templates used.

pPXF trials many LOSVD and, for each, a combination of templates is selected,

using a linear least-squares method (Lawson et al. 1974), to create the optimal tem-

plate with an associated set of template weights. These weights reflect the fraction

of how much each stellar population template contributes to the optimal template,

over the wavelength range. The goodness of fit for each trial is calculated via a χ2

value and the template weights with the best χ2 are used. From this, values for the

kinematics, age and metallicity of the input spectra can be calculated, based upon

the weights of the contributing templates.
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3.2 Setup and use of pPXF

In order to use pPXF to obtain kinematics and metallicities using the data in this

study, some modifications to the code in the public distribution had to be made. The

new code created was checked using the examples given in the pPXF distribution, in

order to ensure it worked as intended. The main change made was to ensure that the

wavelength start and end points for each spectrum could be changed individually,

based on where the number of counts were non-zero. Without this, pPXF produced

incorrect results, as it was including invalid data in the fit, due to the nature of

multi-slit spectroscopy.

In order to fit the data, 144 stellar population models from Vazdekis et al. (2010)

were used as the template spectra. These models are from the Medium-resolution

Isaac Newton Telescope Library of Empirical Spectra (MILES) (Sánchez-Blázquez

et al. 2006). This library is used primarily as it covers the wavelength range of the

spectra in this study (3525-7500Å), in addition to covering a large range of stellar

ages (0.063 to 17.78Gyr) and metallicities ([M/H]=-2.32 to +0.22). These templates

are based on the solar value of [α/Fe], meaning all metallicities extracted will be

based on this assumption.

The use of pPXF was split into two parts (kinematics and metallicity) and separate

scripts were created for each. When fitting for kinematics, the user is given the

option of how many LOSVD parameters to fit for (mean velocity, velocity dispersion,

h3 and h4). h3 and h4 are the Gauss-Hermite coefficients and represent the the

skewness and kurtosis of the velocity distribution of the GCs. In the case of NGC

3115 GC spectra, obtaining even velocity dispersion is difficult. This is because the

typical velocity dispersion of GC’s are > 10kms−1 which is too low to be resolved

given the spectral resolution of FORS2. This was verified by testing in pPXF, which

always returned a value of 1 kms−1. Therefore only the mean velocity produced by

pPXF will be given in the final results.
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The majority of the code for these two implementations is the same, with key dif-

ferences being the use of multiplicative legendre polynomials (instead of additive

legendre polynomials) to account for the shape of the spectra, and the application

of regularization, both of which are used in the metallicity implementation. When

pPXF fits a spectrum, it assigns weights to each of the stellar templates used in the

fitting and, in order to obtain meaningful values for metallicity using pPXF, these

weights need to be regularized. This is because obtaining the star formation history

(SFH), and therefore metallicity, from integrated spectra is an ill-posed problem

(Engl et al. 2000; Cappellari 2017). Regularization in pPXF is performed using the

REGUL keyword, using equation (19.5.10) of Press (2007).

For each spectrum an appropriate value for REGUL had to be obtained and the

method for doing so is set out in the documentation for pPXF. The basic process is

as follows:

• Perform an unregularized fit (REGUL=0)

• Re-scale the NOISE spectrum so that χ2/NDOF = 1. This is done in Python

by NOISE = NOISE*sqrt(pp.chi2).

• Iteratively change REGUL until ∆χ2 = χ2−χ2
unregul =

√
2× len(goodP ixels)

In order to decrease the amount of computation time needed to perform this process,

the input GC and noise spectra, along with the template spectra, were normalised.

This forced the range of values REGUL could take to be similar in all spectra, and

typically two orders of magnitude lower than the counts values. The value obtained

for the regularization using this method is the the maximum that enables the SFH

to be the smoothest (minimum curvature or variation) but still consistent with the

data (Cappellari 2017). Once each spectrum has an associated value for REGUL,

pPXF was then used to obtain kinematics and metallicity values for each spectrum.

The value obtained for velocity was checked against the version of the code that did

June 5, 2018



3.3. Reliability of results 45

not use REGUL, to ensure that pPXF was working as intended, as the kinematics

result should not be overly reliant on the regularization, as found in testing.

In order to ensure that the results would be reliable, and comparable to other stud-

ies, different cut-off points were selected for the minimum SNR for kinematics and

metallicities. The signal to noise ratio was calculated for each pixel and then av-

eraged over the entire spectrum. For kinematics a SNR ≥ 6 per pixel was chosen

and for metallicities it was set higher at a SNR ≥ 10 per pixel. This ensured that

the errors obtained weren’t too large as to make the results unusable. Errors were

calculated using a Monte Carlo approach (Newman et al. 1999). Each spectrum had

an additional noise spectrum created using the combined errors of read-out noise,

Poisson noise and sky noise. Using this, the spectra were randomly redrawn, for

each trial, and fit 200 times. Values for mean velocity and metallicity were ob-

tained; taking the standard deviation of these values gave the 1 σ error in these

parameters.

3.3 Reliability of results

When fitting using pPXF, the option to display the fit is given. This gives an

opportunity to inspect the goodness of fit by eye, although it shouldn’t be used to

discount a target without additional reasons. It has however, provided a useful tool

to inspect whether the results given by pPXF are realistic, based on whether the

optimal template produced fits the absorption features of the input spectra. This

section will show some examples of fits to the data before providing the final results

of the data analysis.

In Figure 3.1 there are two fits to the same spectrum. The top plot was obtained

after running the kinematics code and therefore the REGUL option of pPXF is

turned off. The bottom plot shows the fit of the same spectra where REGUL is
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used. From the figure it is possible to see that the bottom plot seems to better

fit the absorption features depth, indicating a more reliable obtained value for the

metallicity of the target.

In some spectra is was not possible for pPXF to accurately fit the spectra and the

causes of these problems are not always obvious. However, there were some common

features when pPXF could not perfectly fit a spectrum. In Figure 3.2 we see a star

that has contaminated the data set, due to the usage of SSP models for the pPXF

fitting the absorbtion lines are not correctly accounted for.

In order to see if the results obtained are reasonable and believable, some checks

were carried out. Firstly the SNR was plotted against the V magnitude of the

targets observed, from Figure 3.3 we can see that as magnitude increases the SNR

decreases, which is what we would expect. In Figure 3.4 the SNR has been plotted

against velocity error (from pPXF), this allows us to see if the the size of the errors

increases as the quality of the spectra decreases. Indeed we can that this is the case

for the majority of the targets, there are some outliers with very large errors, which

may indicate a problem with those specific spectra. This plot can also be used to

see if the kinematic SNR cut-off is appropriate. As can be seen in the plot, once the

SNR gets to 5-6 the numbers of large errors is increasing and so it would not make

sense to decrease the cut-off as the velocities would become meaningless.

Figure 3.5 shows the SNR plotted against the pPXF obtained metallicities. Gen-

erally it follows the same trend as with the kinematics with lower SNR meaning a

larger error. There are some spectra that have suspiciously low error for a low SNR,

potentially indicating a problem with obtaining the errors from pPXF in certain

spectra. In Figure 3.6 the scatter on the 5577 Åline, from Field 1, is shown. This

gives an indication of the accuracy of the wavelength calibration performed during

the data reduction process.
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Figure 3.1: A GC spectrum from Field 5 (Object ID 5 47). Top panel shows the fit using

the kinematics implementation of pPXF. The bottom panel shows the fit using the metallicity

implementation in which the depth of the absorption features are clearly better incorporated. In

each plot the the black line is the original observed spectrum and the overplotted red line is the

best fit spectrum created by pPXF. The green dots are the residuals from the fitting process, the

green vertical lines and blue lines show areas of large residuals from the fit and the difference

between the spectra and the model.
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Figure 3.2: A star spectrum from Field 5 (Object ID 5 27) with incorrect fitting. This is because

the models used are for SSPs and therefore do not account for single hot stars.

Figure 3.3: This plot shows the SNR and the V magnitude of all the GC targets for which

kinematics could be extracted. As would be expected there is the general trend that as the

magnitude increases the SNR decreases.
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Figure 3.4: In this plot the SNR and the error from the pPXF velocities are shown. The errors

increase in size with decreasing SNR and begin to get much larger as the cut-off SNR is reached.

This therefore shows that the cut-off SNR is appropriate and going to lower SNR would not yield

any useful results.

Figure 3.5: In this plot the SNR and the error from the pPXF [Z/H] errors are shown.
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Figure 3.6: This plot shows the scatter in the sky line at 5577Å in one of the slits after the data

reduction process has taken place.

3.4 Results of the data analysis

The final results for velocities and metallicities obtained from the pPXF fits are

shown in Appendix A, Table 2 and a subset of the results are shown here, in Table

3.1. In order to improve the fits it may be possible to include more templates, 144

templates were used but there is the option to add more from the MILES database.

However, based on other studies in the literature, this number of templates should

be sufficient for the majority of cases.

Table 3.1: Table of GC targets listing: Object ID, SNR, Velocity, Velocity Error, metallicity and

metallicity error obtained from pPXF. Complete table given in Appendix A.

Object ID SNR Velocity Vel error [Z/H] [Z/H] error

1 12 37 187 3 -0.43 0.07

1 14 6 1074 242

1 15 5 484 23
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Object ID SNR Velocity Vel error [Z/H] [Z/H] error

1 19 21 1127 5 -0.19 0.08

1 21 7 992 29

1 22 8 476 69

1 24 9 223 223 -0.79 0.13

1 25 9 822 14 -0.21 0.07
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Chapter 4

Results and Analysis

From the initial 266 GC candidate targets, 111 had a high enough SNR to extract

kinematics and 67 passed the threshold for useful metallicity determination. At the

distance of NGC 3115, it is difficult to ensure that only GCs are detected using

purely photometric (image size and shape) data. To ensure that the sample was

not contaminated with background galaxies or foreground stars, a velocity cut was

therefore imposed. NGC 3115 has a heliocentric radial velocity of 663 [±4] kms−1

(Tonry et al. 2001; Paturel et al. 2002). Using this, and the velocity cut from

Kuntschner et al. (2002), our sample therefore contains objects with radial velocities

between 200 kms−1 and 1300 kms−1 (including errors). After this cut, there are 69

remaining candidates with velocities and 31 with metallicities, the locations of which

can be seen in Figure 4.1. Therefore, 65% of the candidates, with SNR greater than

6 per pixel, were deemed dynamically associated with NGC 3115.

Using these remaining targets, a V-I vs V colour-magnitude plot was produced,

along with a colour histogram (see Figure 4.2). The cut off between the red and

blue GCs is the mean value of the full HST sample from Kundu et al. (1998), given

as (V-I) = 1.06. These plots show that there is an excess of red GCs, and we would

therefore expect the metallicity results to reflect this as colour and metallicity are
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Figure 4.1: The positions of the red and blue GC targets, after the velocity cut, are shown

overplotted on an image of NGC 3115. North is to the bottom of the image and East is to the left.

clearly linked in GC populations (Barmby et al. 2000; Kundu et al. 2007; Spitler et

al. 2008). Of the final 69 targets, 47 were classified as red GCs and 26 as blue GCs.

There is, however, no obvious bimodality in the colours of the target population (as

seen in Figure 4.2), although the low number of GC targets may be a cause of this.

4.1 Kinematics of NGC 3115 Globular Clusters

The 69 radial velocities are obtained from GCs at various projected galacto-centric

radii (see Figure 4.3). The confirmed GCs have an average distance of 10.6 kpc,

compared with the average of all the initial GC targets of 12.9 kpc. The majority

(74%) of the targets for which kinematics could be extracted are found within 15 kpc.

The average velocity of the GCs is 602 [±29] kms−1 which agrees with the observed

radial velocity of NGC 3115, to within the errors. A histogram showing the velocity

distribution of the targets can be seen in Figure 4.4. Taking the recessional velocity
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Figure 4.2: Both plots contain the GC targets with V-I less than 2.00, there is one target off

the plot with V-I = 2.58. The top plot shows the blue and red clusters, plotting V magnitude

against V-I colour. The cut off between blue and red colour comes from Kundu et al. (1998) and

is given as (V-I) = 1.06. There is also a representative error in both the magnitudes and colours

underneath the legend. The bottom plot is three histograms showing the colour distribution for

the GC targets at different stages of the selection process.
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Figure 4.3: Histogram showing the projected galacto-centric distance for all the GC targets that

could have kinematics extracted and lie within the velocity range expected for GCs associated with

NGC 3115. 74% of the targets lie within 15 kpc of the galactic centre.

of the GCs to be that of NGC 3115 (663 kms−1), the velocities relative to the system

were obtained.

The results for the kinematics were matched with data from other studies in order

to examine the reliability of the obtained results. They were first matched with the

data from Kuntschner et al. (2002), but none of the their GC targets were covered in

the final dataset of this study. The GC targets were then matched with the SLUGGS

survey, using the positions from Arnold et al. (2011), which returned 22 matches.

GC targets were deemed a match if the separation between the positions was less

than 2 arcseconds; for these 22 matches the average separation was 1.05 arcseconds.

The error bars for the present study are larger than that of the SLUGGS results,

due to the lower SNR of the spectra. Overall however, there is a good correlation

between the velocity data sets as seen in Figure 4.6. The average offset between the

two datasets is 31.3 kms−1, with none higher than 87 kms−1. The dataset was also

compared with Puzia et al. (2004), for which there was a single match. Puzia et al.
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Figure 4.4: Histogram showing the distribution of velocities for the confirmed GC targets in NGC

3115. The average velocity is 602 ±29 kms−1, as shown by the red line, and a standard deviation

of 245 kms−1. The overplotted line green line shows the radial velocity of NGC 3115

(2004) find a velocity of 957 kms−1 compared to 912 ± 19 kms−1 from this study,

however no error is given for their value.

4.2 Metallicities and Ages

The targets for which metallicities were obtained came from similar projected dis-

tances as the kinematics, as seen in top plot of Figure 4.7, with ∼ 77% coming from

within 15 kpc. Despite only containing 31 GCs, there appears to be evidence of a bi-

modal population in the bottom plot of Figure 4.7. This plot also shows a reflection

of the colour distribution, with more metal-rich clusters present in the sample than

metal-poor clusters, which is to be expected if there is a higher number of red clus-

ters. In Figure 4.8 the colour-metallicity relationship for the target clusters can be

seen, along with the best fit line and the relationship found by Kundu et al. (1998)
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Figure 4.5: The top plot shows the absolute velocities obtained for the GC targets from this

study where the major axis data has been mirrored about the minor axis. The velocities are δV

having had the NGC 3115 system velocity of 660 kms−1 subtracted. The bottom plot shows the

rotation curve of the bulge and disk of NGC 3115. Filled circles are from Norris et al. (2006),

asterisks from Bender et al. (1994) and squares are from Fisher (1997). The filled triangles are

blue GCs and unfilled triangles are red GCs both from Kuntschner et al. (2002). Taken from Norris

et al. (2006).
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Figure 4.6: This Figure shows the velocity comparison between the dataset of this study and

that of Arnold et al. 2011, along with a line of best fit between the two datasets. There is an

average offset of 31.3 kms−1 between the two datasets.

for NGC 3115. Figure 4.9 shows the metallicity gradient for the GC targets. The

top plot shows both the blue and red clusters from our sample, whereas the bottom

plot shows the mean [Z/H] for GCs within radial galacto-centric distance bins. The

metallicity gradient has a downward trend with increasing distance, which would be

expected if the metal-poor clusters reside predominantly in the galaxy’s halo.

Unfortunately, when attempting to compare the metallicity data with that of other

studies, only 3 targets could be matched. These targets were observed in the

SLUGGS survey and the comparisons are in Table 4.1, with 2 of the 3 agreeing

within the errors. However, such a small sample size is not sufficient to establish

whether the two studies agree overall. Figure 4.10 shows a comparison between

this study, SLUGGS and the data from Kuntschner et al. (2002), for the metallic-

ity distributions of each studies GC targets. Although it should be noted that the

Kuntschner et al. (2002) sample is limited in size, the datasets show similar features

for the metallicity distribution, with both this study and SLUGGS having a deficit
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Figure 4.7: The top histogram shows the projected galacto-centric radii of the targets for which

metallicities could be extracted. The bottom histogram is the metallicity distribution for the

targets in the dataset for this study. There is an indication of a bimodal population, although

the number of targets is not high enough for this to be strongly confirmed. A Gaussian Mixture

Method (GMM) profile is plotted over the histogram.
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Figure 4.8: This plot shows the colour vs metallicity for each object with a high enough SNR.

Overplotted is the best fit line for the data along with the line found by Kundu et al. (1998) for

NGC 3115.

Figure 4.9: This plot shows [Z/H] against galacto-centric distance for the red and blue clusters.

From the graph we can see there is some overlap between the red and blue clusters in the metal-poor

and metal-rich areas.
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Target ID [Z/H] [Z/H] error SLUGGS ID [Z/H] [Z/H] error

2 47 -0.043 0.072 GC109 -0.03 0.12

2 52 -0.27 0.073 GC12 -0.01 0.31

2 53 -0.53 0.127 GC14 -0.94 0.14

Table 4.1: Table showing the comparison between the matched targets in the GC metallicity

dataset of this study and that of the SLUGGS survey.

in the number of GCs in a similar location ([Z/H]=-0.5 to -0.8).

As previously noted in the dataset from this study, we find a higher number of

metal-rich (21) than metal-poor (10) clusters, when taking [Z/H] = -0.7 to be the

cut-off between the two populations. In the SLUGGS survey this population bias

does not appear to be present, and from their sample there are 62 metal-rich clusters

to 61 metal poor clusters. This suggests that the relative number of metal-rich to

metal-poor clusters may be spatially dependant, given that the present study has a

higher average distance from the galactic centre than in the SLUGGS survey (11.1

kpc compared to 9.0 kpc).

Age estimates are more difficult to obtain from spectra using pPXF, as they require

an even higher SNR in the spectra for reliable results. However, age estimates were

obtained for those spectra which met the same criteria as the metallicity sample.

Figure 4.11 is a histogram that shows the frequency of the obtained ages, in which the

majority of the spectra fall between 9-10 Gyr (29/31 GCs). Given that this sample

contains both metal-rich and metal-poor clusters, it might be expected that there

would be a some difference in ages if multiple GC formation events had occurred.

The ages of the clusters against their galacto-centric distance can be seen in Figure

4.12, from the plot there doesn’t appear to be a difference in age based on the

distance from the galactic centre. In Kuntschner et al. (2002) they find the two GC

sub-populations to be coeval to ∼ 2Gyr but based on this study, this appears to be
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Figure 4.10: Histogram showing the metallicity distribution for this study along with that of

Kuntschner et al. (2002) and Arnold et al. (2011). Both this study and the SLUGGS survey have

the metal rich and metal poor peaks at a similar metallicity. Unfortunately the sample size of

Kuntschner et al. (2002) is not large enough to draw any strong conclusions from the distribution.
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Figure 4.11: Histogram of the ages obtained from pPXF. The majority of GCs fall within 9.25-

10 Gyr and there is no obvious bimodal age distribution as may be expected from multiple GC

formation events. However the age estimates errors vary greatly and are up to ±1 Gyr.

closer to ∼ 1Gyr. This result is also mostly consistent with the ages found by Norris

et al. (2006), as will be discussed in Chapter 5.

4.3 Combined datasets

The datasets of this study, Kuntschner et al. (2002) and Arnold et al. (2011) can be

combined together in order to create an overview of the kinematics and metallicities

of GCs in NGC 3115. Figure 4.13 shows the histograms of the combined data for

these three studies, along with a best fit double GMM profile for the metallicities.

It is clear from the data that there is a bimodal population of GCs, with the peak

values at [Z/H]=-1.2 and -0.21. The combined kinematics are also consistent with

the average mean velocity of the total dataset being 666 [±13] kms−1. The com-

bined velocity distribution (Figure 4.14) again shows the general downward trend of
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Figure 4.12: The plot shows pPXF obtained ages against their projected galacto-centric radii.

From the plot it appears that for our GC targets, age remains relatively constant out to larger

distances from the galactic centre.

velocities at greater galacto-centric distance, as seen by the best fit function. This

shows the decreasing velocity dispersion of the GC system at larger galacto-centric

radii, reflecting the dark matter halo in which NGC 3115 is embedded.

The metallicity gradient can also be constructed from the combined data of this

survey and that from the SLUGGS survey. The top plot in Figure 4.15 shows

metallicity against distance for all the GCs in both surveys. It appears that the

general trend in both surveys agree, as metallicity decreases with projected galacto-

centric radii. This has also been found to be the case in other galaxies apart from

NGC 3115, as noted by in Zinn (1985) and Forbes et al. (2011). The bottom plot,

shows the mean metallicity against binned distance for both the surveys, and is

consistent with the relation of the previous plot.
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Figure 4.13: Histograms showing the kinematics and metallicity distributions for the combined

dataset. The top graph shows the distribution of obtained velocities from Kuntschner et al. (2002),

Arnold et al. (2011) and this study. The average velocity of all the GCs is 666 [±13] kms−1. This

is shown as the red line on the plot and the radial velocity of NGC 3115 is shown in green. The

bottom plot is the metallicity distribution for the combined datasets of Kuntschner et al. (2002),

Arnold et al. (2011) and this study, with a best fit line overplotted. The metallicities peak at

[Z/H]=-1.2 and -0.21.
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Figure 4.14: The top plot shows velocity residual (relative to the systemic velocity of NGC 3115)

against distance along the major axis for the combined data of this study, Kuntschner et al. (2002)

and Arnold et al. (2011). A maximum error for the velocities is shown in the top right corner

of the plot. The bottom plot shows the mean velocity residual (in radial distance bins) against

distance along the major axis for the data from this study, Kuntschner et al. (2002) and Arnold

et al. (2011). Along with a representative error bar in the top right corner.
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Figure 4.15: The top plot shows metallicity against projected galacto-centric distance for the

GC targets of both Arnold et al. (2011) and this study, along with best fit lines for both datasets.

The bottom plot is the mean [Z/H] against projected galacto-centric distance for the combined

dataset, with a best fit line plotted over the data.
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Chapter 5

Discussion and Conclusions

The aim of this project was to add to the expanding dataset of spectroscopy for

GCs around the S0 galaxy NGC 3115. More specifically, GCs that are located at

larger galacto-centric distances than had previously been attempted, in order to

obtain velocities and metallicities, for GCs from varying components of the galaxy,

thereby gaining a greater understanding of the distribution of the GC subpopulations

within NGC 3115. Within this thesis the methods for reducing the data, along

with obtaining meaningful results from them, has been presented. The analysis

of these results has been presented within the context of previous studies. In this

chapter, the implications of the results of this study, and the precursor studies, will

be investigated to establish preliminary conclusions and areas that require further

investigation.
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5.1 Implications for the formation of NGC 3115

and its GCs

The velocity distributions presented in Chapter 4, show evidence that the GC system

of NGC 3115 is rotating about the minor axis of the galaxy (Figure 4.5) and within

the inner ∼5 kpc, the GCs have velocities consistent with that of the stellar bulge

measured by Norris et al. (2006). The best fits of both binned and unbinned velocity

residuals appear to be declining at larger radii (see Figure 4.14), which corroborates

the findings of Arnold et al. (2011) shown in Figure 5.1. According to their analysis,

this result is not consistent with a major merger event, as this would produce higher

than observed rotation in the outer regions of the galaxy. Arnold et al. (2011)

instead postulate that the detection of a declining rotation profile, suggests a two-

phase assembly scenario, where the inner bulge forms at high redshift and the outer

bulge and halo growth is created by minor-merger accretion events (Vitvitska et

al. 2002; Abadi et al. 2006; Bournaud et al. 2007; Qu et al. 2010). The declining

velocity gradient of the GC system shown in Figure 4.14, could therefore represent

the transition between a component formed at high redshift and another which

has been formed by accretion. A similar rolling fit method to that of Arnold et al.

(2011) has been used on the data in this study, which can be seen in Figure 5.2. This,

along with Figure 5.3, which shows the method applied to the combined dataset,

is consistent with the plot from Arnold et al. (2011), finding a declining velocity

gradient beyond 5 kpc. It should be noted however, that at the largest radii there

are low numbers of clusters in the radial bins.

The metallicities obtained in this study, appear to confirm what has previously been

found in other studies. NGC 3115 hosts a bimodal GC population in metallicity as

well as having a bimodal colour distribution. This bimodality can be seen in both

the sample from this study (Figure 4.7), and when combined with Kuntschner et al.

(2002) and Usher et al. (2012) (Figure 4.13). The combined metallicity distribution
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Figure 5.1: The left plot shows the smoothed rolling-fit rotational profile with uncertainty en-

velope for the metal-rich GCs (red curve) and metal-poor GCs (blue curve) along with the stellar

light (black curve). The right plot shows the v/σ profile of the metal-rich GCs compared with

a simulated merger remnant with a 1:10 mass-ratio (from Bournaud et al. (2005). Taken from

Arnold et al. (2011).

is found to be bimodal using a Gaussian Mixture Method (GMM) test, as seen in

Figure 4.13. These results suggest that the bimodal colour distribution of the GC

population in NGC 3115, is consistent with being caused by a bimodal metallicity

distribution. It is therefore unlikely that other effects, such as a difference in ages

between the GC sub-populations, play a major role in creating the bimodality in

colour. Both the sample from this study, and the combined data, imply a declining

metallicity gradient. This is again consistent with the findings of Arnold et al.

(2011) and would be expected in their hypothesis of a two-phase assembly scenario

because the lower-mass accreted systems would be expected to be more metal-poor

than NGC 3115 (Naab et al. 2009; Bezanson et al. 2009).

Kuntschner et al. (2002) found the GC sub-population ages in NGC 3115 to be

coeval at 11-12[±2] Gyr, with an indication that the red clusters may be slightly

younger by ∼2 Gyr. The results of the study in this thesis find 29 of the 31 GCs

to be between 9-10 Gyr, which is within 1σ of the mean age found by Kuntschner
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Figure 5.2: This figure shows the velocity plot using a rolling fit technique similar to that of

Arnold et al. (2011). The data for both studies is binned in radial distances of 1 kpc. The top plot

is only for data produced from the study in this thesis, whereas the bottom plot is for the data

from Arnold et al. (2011). In our data we find a similar result with the velocity gradient decreasing

at radii ≥ 5kpc.
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Figure 5.3: This is a rolling-fit velocity profile using the data from the study in this thesis and

that of Arnold et al. (2011). The data is binned in radial distances of 1 kpc, with the bins within

15 kpc containing ∼ 15 GC velocities. However, those at the largest radii frequently only contain

1 GC.
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et al. (2002). There is also no sign of a large age difference between the two sub-

populations of GCs, with both metal-poor and metal-rich clusters having similar

mean ages. These results may be compared with the findings of Norris et al. (2006),

who looked at longslit spectra of the minor axis of NGC 3115 (which should trace

the spheroidal component of the galaxy) and found it to have similar properties

to the red GCs at large radii, and estimate that the spheroid has a mean age of

∼10-12 Gyr. In the sample in this thesis, there is also potential evidence of a small

younger population of GCs, with ages ∼8 Gyr, although only two such objects were

found in this study. Norris et al. (2006) suggest that there may be a young (5-8Gyr),

chemically enriched stellar disc component in their major axis disc spectra, therefore

if these ages are correct, these younger GCs may have formed along with the disc

in NGC 3115.

If GCs only form during major periods of star formation, then the results of this

study suggest that NGC 3115 has not undergone such an event in the last ∼8

Gyr. This is similar to the conclusions of Puzia et al. (2002), who claim that

NGC 3115 has a similar GC population to the Milky Way, with two sub-systems

differing mainly in metallicity, with a small age difference between them. It is still

possible that multiple GC formations have occurred in NGC 3115, however, this

study finds that these events would have to have occured within a period of ∼1 Gyr

for the ages obtained to be consistent with this hypothesis. It is possible that other

subpopulations of GCs exist in NGC 3115, with ages different from those detected

in this study, however there is no significant evidence for it from our sample of GCs.

5.2 Suggestions for further investigation

In order to better understand the GC population of NGC 3115, higher SNR obser-

vations of the GCs discovered in this study are ideally required. The initial dataset

covered a large range of galacto-centric radii, which has not been previously or sub-

June 5, 2018



5.3. Summary and Conclusions 74

sequently observed, that could allow for GC subpopulations to be associated with

different components of NGC 3115. In this study there were initially many more GC

candidate targets than the final number of useful spectra used in the data analysis,

so obtaining observations with a higher SNR should be a priority. This will allow a

larger number of GCs to have their ages and metallicities extracted and investigate

whether the sub-populations, of blue and red clusters, are separated by small age

differences as well as metallicity. Abundance ratios for more clusters would also

enable further investigation of the trends of α/Fe, found in the stellar populations

by Norris et al. (2006), applies to the GCs as well. Finally, the aim of these studies

is not simply to discover more about the GC population of NGC 3115, but also to

attempt to find a way of using GCs to understand galaxy evolution in all galaxy

types. Therefore, expanding the analysis to other galaxies, and more specifically

other galaxy morphologies, will help establish the extent to which GCs are a viable

tracer of galaxy evolution.

5.3 Summary and Conclusions

This thesis has explored the importance of GCs in the context of galaxy evolu-

tion, and how they can be used to track star formation events over time. Previous

studies of extragalactic GCs, with particular reference to studies that examined

NGC 3115, were discussed and their conclusions presented. The GC sample of this

thesis was then introduced, along with an explanation of how the data reduction

was performed. The use of the full spectrum fitting method pPXF and how it

was implemented with this sample was explored, and details of how kinematics and

metallicities were extracted from the spectra were presented. The reliability of the

results were examined, to ensure that the data analysis had produced realistic re-

sults. The velocity and metallicity distributions for NGC 3115 were then compared

to previous studies. Finally, the sample of this study was combined with that of
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Kuntschner et al. (2002) and Usher et al. (2012) to enable more robust conclusions

to be derived from the augmented dataset.

This study was a success in so far as it has added more kinematic, metallicity and

age results to the previous studies of GCs in NGC 3115. However, the numbers of

useful spectra expected from the initial research proposal were significantly higher

than the final sample size. This was primarily due to the lower than expected SNR

in many of the GC spectra. Even with this reduced sample size, it has however

been possible to obtain meaningful results from the data and strengthen findings of

previous studies of NGC 3115.

We find a bimodal metallicity distribution which is consistent with that of Brodie et

al. (2012), based on their CaT index results. This does not support the suggestion of

Yoon et al. (2006) that the metallicity distributions are uni-modal and the observed

colour bimodality is caused by an artefact of strongly non-linear colour-metallicity

transformations. We also find declining metallicity and velocity gradients, which give

support to the suggestion of Arnold et al. (2011), that NGC 3115 was formed in a

two-phase assembly process. While the ages obtained have significant uncertainty,

due to the SNR of the spectra, they do appear to be consistent with previous studies

to within errors. The results demonstrate that the two sub-populations of GCs are

coeval, which supports previous work by Kuntschner et al. (2002) and Arnold et al.

(2011). As no GCs have been detected with ages less than 8 Gyr, it suggests that

there has been no major star-formation events in NGC 3115 since that time.

With a combined sample of ∼230 GC velocities and ∼180 metallicities, there is

now a significant population of GCs in NGC 3115 from which to draw conclusions.

This enables more confidence in the results, as the sample is more likely to be

representative of the entire GC population of NGC 3115. Also, with GCs coming

from a wider range of galacto-centric radii, possible links between GC properties

and different components of NGC 3115 are becoming better established, with the
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potential of finding common origins for these components. This will allow for refined

tests of galaxy formation and evolution theories and determine whether GCs can be

used successfully as tracers of their host galaxy stellar population in a wide range

of galaxy types.
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Table 1: Table of target objects with their: Field, Slit ID, Object ID, Right Ascension, Declina-

tion, VRI magnitude and associated error obtained from the pre-imaging.

Field Slit ID Object ID RA Dec V V error R R error I I error

1 2 1 2 151.3568 -7.6754 22.4893 0.1349 21.3288 0.0683 20.1392 2.3501

1 3 1 3 151.3436 -7.6886 21.4501 0.0767 20.8305 0.0508 20.2397 1.2104

1 4 1 4 151.3303 -7.7017 22.8284 0.1586 22.2282 0.1079 21.4675 1.3609

1 5 1 5 151.317 -7.7149 18.3627 0.0179 17.6577 0.0114 17.1361 1.2266

1 6 1 6 151.3038 -7.7280 21.265 0.0716 20.8016 0.0495 20.2009 1.0641

1 7 1 7 151.3598 -7.7316 21.0537 0.0648 20.582 0.0452 20.1106 0.9431

1 8 1 8 151.3535 -7.7347 22.2826 0.1233 21.666 0.0785 21.0167 1.2659

1 9 1 9 151.3732 -7.7118 22.5152 0.1367 21.9251 0.09 21.1605 1.3547

1 10 1 10 151.3908 -7.7039 21.853 0.0958 21.107 0.0585 20.4672 1.3858

1 11 1 11 151.3486 -7.7489 21.7059 0.0902 20.4353 0.042 18.5298 3.1761

1 12 1 12 151.3549 -7.7496 19.1626 0.026 18.7138 0.0186 18.3459 0.8167

1 14 1 14 151.3547 -7.7157 21.6676 0.0885 21.0918 0.0588 20.6838 0.9838

1 15 1 15 151.3536 -7.7207 21.678 0.0886 21.0776 0.0585 20.51 1.168

1 16 1 16 151.345 -7.7345 22.7455 0.1522 22.0206 0.094 21.5896 1.1559
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Field Slit ID Object ID RA Dec V V error R R error I I error

1 17 1 17 151.3371 -7.7230 22.6441 0.1453 22.0455 0.0972 21.2812 1.3629

1 18 1 18 151.3271 -7.7367 21.4195 0.0786 21.057 0.0573 20.581 0.8385

1 19 1 19 151.3256 -7.7350 19.682 0.0332 19.0906 0.0223 18.505 1.177

1 20 1 20 151.3479 -7.7089 22.7593 0.1529 22.1831 0.1022 21.8391 0.9202

1 21 1 21 151.3383 -7.7147 21.3679 0.0756 20.848 0.052 20.3741 0.9938

1 22 1 22 151.3263 -7.7161 21.8502 0.0921 21.1244 0.058 20.6333 1.2169

1 23 1 23 151.3163 -7.7331 22.486 0.1328 21.9236 0.0892 21.2686 1.2174

1 24 1 24 151.3471 -7.6990 21.0486 0.0631 20.5651 0.0445 20.2138 0.8348

1 25 1 25 151.3197 -7.7185 20.9298 0.0598 20.3087 0.0395 19.7518 1.178

1 26 1 26 151.3178 -7.7129 21.8397 0.0918 20.9207 0.0527 20.2478 1.5919

1 27 1 27 151.3362 -7.6919 21.9049 0.0962 21.2622 0.0624 20.7533 1.1516

1 28 1 28 151.3037 -7.7128 21.2223 0.0686 20.4938 0.0431 19.9314 1.2909

1 29 1 29 151.3161 -7.7039 21.349 0.073 20.5426 0.0442 19.9066 1.4424

1 30 1 30 151.3222 -7.7018 22.131 0.1087 21.5046 0.0697 20.7283 1.4027

1 31 1 31 151.335 -7.6784 22.2501 0.1168 21.6859 0.078 21.301 0.9491

1 32 1 32 151.3511 -7.6524 20.9152 0.0602 20.4558 0.0427 20.0462 0.869

1 33 1 33 151.3121 -7.6950 21.7918 0.0901 21.1842 0.0602 20.7872 1.0046
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Field Slit ID Object ID RA Dec V V error R R error I I error

1 34 1 34 151.321 -7.6894 22.9849 0.1697 22.2699 0.1012 21.8254 1.1595

1 35 1 35 151.2801 -7.6688 20.385 0.0463 19.8846 0.0323 19.4429 0.9421

1 36 1 36 151.2894 -7.6636 22.1656 0.1149 21.703 0.0793 21.1723 0.9933

1 37 1 37 151.3118 -7.6496 20.4987 0.049 19.9074 0.0327 19.2696 1.2291

1 38 1 38 151.3291 -7.6405 21.2131 0.0693 20.6802 0.0472 20.203 1.0101

1 39 1 39 151.3111 -7.6543 23.0507 0.1756 22.34 0.1133 21.9788 1.0719

1 40 1 40 151.2605 -7.6804 21.1418 0.0697 20.7866 0.0507 19.7395 1.4023

1 41 1 41 151.3034 -7.6747 21.8605 0.0965 21.2663 0.0634 20.7849 1.0756

1 42 1 42 151.3418 -7.6414 22.226 0.118 21.4649 0.07 20.942 1.284

1 43 1 43 151.3253 -7.6667 21.8437 0.0964 21.4393 0.0687 21.0279 0.8158

1 44 1 44 151.3285 -7.6669 20.2944 0.0443 19.5882 0.0281 18.9837 1.3107

1 45 1 45 151.3088 -7.6903 22.3354 0.1247 21.6137 0.0774 21.143 1.1924

2 1 2 1 151.3188 -7.7143 21.858 0.0888 20.8644 0.0498 20.1563 1.7017

2 2 2 2 151.3055 -7.7275 22.2175 0.1053 21.4166 0.0641 20.61 1.6075

2 3 2 3 151.2923 -7.7406 20.8649 0.0575 20.242 0.0379 19.5182 1.3467

2 4 2 4 151.279 -7.7538 22.1888 0.1056 21.6061 0.0722 20.8924 1.2964

2 6 2 6 151.2525 -7.7801 21.6571 0.0818 21.1823 0.0582 20.7093 0.9478
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Field Slit ID Object ID RA Dec V V error R R error I I error

2 7 2 7 151.3488 -7.7569 23.197 0.1748 21.7502 0.079 20.6753 2.5217

2 8 2 8 151.3452 -7.7577 21.0729 0.0609 20.619 0.0444 20.2252 0.8477

2 9 2 9 151.3167 -7.7832 19.1421 0.0249 18.7804 0.0188 18.4096 0.7325

2 10 2 10 151.3044 -7.7932 22.094 0.1017 21.4727 0.0679 20.9783 1.1157

2 11 2 11 151.2933 -7.7986 22.4107 0.123 21.7213 0.0782 21.1754 1.2353

2 12 2 12 151.3044 -7.7846 22.9924 0.1614 21.8379 0.0798 20.0503 2.9421

2 13 2 13 151.3381 -7.7483 21.6203 0.0819 20.7796 0.0484 19.601 2.0193

2 14 2 14 151.2826 -7.8002 21.8632 0.0908 21.2424 0.0601 20.5425 1.3207

2 15 2 15 151.2998 -7.7804 21.0489 0.061 20.5333 0.0429 20.0059 1.043

2 16 2 16 151.2813 -7.7965 23.2 0.1798 21.8402 0.0818 20.1607 3.0393

2 17 2 17 151.2865 -7.7894 22.6305 0.1329 21.9173 0.0831 21.3256 1.3049

2 18 2 18 151.3309 -7.7391 20.9032 0.0572 20.4309 0.0408 19.8833 1.0199

2 19 2 19 151.3133 -7.7598 22.3473 0.116 21.7208 0.0772 21.0975 1.2498

2 20 2 20 151.2833 -7.7827 21.5143 0.0767 20.9329 0.0519 20.2694 1.2449

2 21 2 21 151.2898 -7.7727 21.1914 0.0656 20.6832 0.0459 20.1064 1.085

2 22 2 22 151.3004 -7.7590 22.7288 0.1367 22.1095 0.0907 21.3472 1.3816

2 23 2 23 151.3225 -7.7338 21.2816 0.0686 20.8226 0.0491 20.2298 1.0518
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Field Slit ID Object ID RA Dec V V error R R error I I error

2 24 2 24 151.2929 -7.7573 21.3955 0.0728 20.929 0.0517 20.36 1.0355

2 25 2 25 151.298 -7.7450 20.1883 0.0406 19.6386 0.028 19.0985 1.0898

2 26 2 26 151.3092 -7.7368 19.9097 0.0356 19.0943 0.0217 18.4077 1.502

2 27 2 27 151.3068 -7.7365 21.8551 0.089 21.258 0.0602 20.7348 1.1203

2 28 2 28 151.3049 -7.7328 19.7678 0.0333 19.1414 0.0222 18.5572 1.2106

2 29 2 29 151.3056 -7.7347 21.375 0.071 20.7374 0.0471 20.0843 1.2907

2 30 2 30 151.3174 -7.7356 20.6028 0.0493 20.1085 0.035 19.6546 0.9482

2 31 2 31 151.334 -7.7615 22.6471 0.1343 21.5627 0.0702 20.087 2.5601

2 32 2 32 151.3041 -7.7276 21.46 0.0739 20.8325 0.0487 20.2728 1.1872

2 34 2 34 151.2776 -7.7500 21.5579 0.078 20.889 0.0508 20.2057 1.3522

2 37 2 37 151.2949 -7.7262 22.4688 0.122 21.9172 0.0828 21.1053 1.3635

2 39 2 39 151.3061 -7.7076 21.8272 0.088 21.2211 0.0594 20.6065 1.2207

2 40 2 40 151.3059 -7.7050 21.0325 0.059 20.2926 0.0376 19.6633 1.3692

2 41 2 41 151.2998 -7.7083 21.9116 0.0941 21.2284 0.0604 20.5619 1.3497

2 42 2 42 151.2753 -7.7409 20.4246 0.0455 19.832 0.0307 19.1541 1.2705

2 43 2 43 151.3004 -7.7041 21.0777 0.0617 20.4468 0.041 19.7898 1.2879

2 44 2 44 151.288 -7.7090 22.5144 0.1243 21.9394 0.0846 21.3979 1.1165
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Field Slit ID Object ID RA Dec V V error R R error I I error

2 45 2 45 151.2624 -7.7318 22.6215 0.1321 22.0369 0.0897 21.5699 1.0516

2 46 2 46 151.2419 -7.7498 21.6067 0.0803 21.1939 0.0588 20.8069 0.7998

2 47 2 47 151.2901 -7.7000 19.9748 0.0368 19.3738 0.0248 18.7466 1.2282

2 48 2 48 151.2836 -7.7043 21.7371 0.0857 21.1969 0.059 20.4626 1.2745

2 49 2 49 151.2838 -7.7014 22.9555 0.1563 22.2092 0.0973 21.5093 1.4462

2 50 2 50 151.2679 -7.7146 21.9907 0.1002 20.9437 0.053 20.0348 1.9559

2 51 2 51 151.279 -7.7008 22.5702 0.1343 22.0723 0.0941 21.4106 1.1596

2 52 2 52 151.2739 -7.6948 20.9863 0.0593 20.406 0.0402 19.7525 1.2338

2 53 2 53 151.2522 -7.7133 20.5191 0.0475 20.0309 0.0337 19.4914 1.0277

2 54 2 54 151.2392 -7.7233 21.9892 0.0969 21.471 0.0674 20.9638 1.0254

2 55 2 55 151.2806 -7.6792 22.1474 0.1068 21.5833 0.0712 21.0116 1.1358

2 56 2 56 151.271 -7.6859 22.1327 0.1047 21.5505 0.0708 21.013 1.1197

2 57 2 57 151.273 -7.6811 22.1651 0.1061 21.4984 0.0685 20.8811 1.284

2 58 2 58 151.2778 -7.6727 22.2152 0.1098 21.5844 0.0711 21.195 1.0202

2 59 2 59 151.245 -7.7014 22.4897 0.1281 21.6839 0.0749 20.8835 1.6062

2 60 2 60 151.2529 -7.6882 20.1275 0.0398 19.6708 0.0284 19.2264 0.9011

3 7 3 7 151.4397 -7.6664 23.1483 0.1623 22.474 0.1082 21.7857 1.3626
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Field Slit ID Object ID RA Dec V V error R R error I I error

3 8 3 8 151.4046 -7.6985 22.9566 0.1432 22.5266 0.1106 22.2126 0.744

3 9 3 9 151.4175 -7.6837 22.685 0.129 22.0099 0.0871 21.381 1.304

3 10 3 10 151.4435 -7.6557 20.712 0.0496 20.2096 0.0357 19.7227 0.9893

3 11 3 11 151.4245 -7.6717 21.377 0.0678 20.8733 0.0489 20.2962 1.0808

3 12 3 12 151.4 -7.6921 22.9348 0.1489 21.6819 0.0752 20.5532 2.3816

3 13 3 13 151.4482 -7.6409 21.7726 0.083 21.3788 0.0619 20.8466 0.926

3 14 3 14 151.4396 -7.6465 22.9985 0.1486 21.7577 0.0753 20.1054 2.8931

3 15 3 15 151.4007 -7.6816 22.5478 0.1209 22.1109 0.0908 21.6167 0.9311

3 16 3 16 151.4237 -7.6540 22.5042 0.1163 21.9748 0.0839 21.6087 0.8955

3 17 3 17 151.4267 -7.6533 23.6413 0.2031 22.4396 0.1074 21.1445 2.4968

3 18 3 18 151.4005 -7.6742 20.874 0.0537 20.1734 0.0354 19.427 1.447

3 19 3 19 151.4066 -7.6652 22.0212 0.092 21.4421 0.0645 20.9121 1.1091

3 20 3 20 151.425 -7.6438 21.2456 0.0637 20.5076 0.0411 19.8666 1.379

3 21 3 21 151.384 -7.6807 23.1221 0.1674 21.6928 0.0758 20.5468 2.5753

3 22 3 22 151.4339 -7.6272 22.9691 0.148 22.3367 0.0996 21.7078 1.2613

3 23 3 23 151.3825 -7.6753 22.3616 0.11 21.6108 0.0723 20.6961 1.6655

3 24 3 24 151.4331 -7.6223 21.3282 0.0678 20.9672 0.0526 20.4308 0.8974
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Field Slit ID Object ID RA Dec V V error R R error I I error

3 25 3 25 151.3892 -7.6626 21.906 0.088 21.1943 0.0574 20.5159 1.3901

3 26 3 26 151.4318 -7.6171 22.1351 0.0972 21.6307 0.0701 21.1349 1.0002

3 27 3 27 151.3835 -7.6621 21.8485 0.0848 20.7364 0.0459 19.3037 2.5448

3 28 3 28 151.4192 -7.6242 22.1989 0.1012 21.5329 0.0688 21.062 1.1369

3 29 3 29 151.4177 -7.6231 22.0798 0.0951 21.5028 0.0661 20.7368 1.343

3 30 3 30 151.3655 -7.6724 23.7221 0.2178 23.106 0.1519 22.1516 1.5705

3 31 3 31 151.4244 -7.6060 20.3641 0.0422 19.84 0.0301 19.4861 0.878

3 33 3 33 151.3798 -7.6465 20.193 0.0389 19.7747 0.0291 19.4012 0.7918

3 34 3 34 151.3733 -7.6504 21.9622 0.0877 21.4561 0.0646 20.8789 1.0833

3 35 3 35 151.4206 -7.6011 21.2557 0.0643 20.8323 0.0482 20.4309 0.8248

3 36 3 36 151.3943 -7.6244 22.0695 0.0945 20.9074 0.0496 19.3618 2.7077

3 37 3 37 151.4097 -7.6060 22.8352 0.1373 21.8529 0.0793 20.9553 1.8799

3 38 3 38 151.3636 -7.6480 21.7765 0.0817 21.0852 0.0539 20.493 1.2835

3 39 3 39 151.3755 -7.6332 21.7259 0.0801 20.8024 0.0476 20.0541 1.6718

3 40 3 40 151.3713 -7.6350 22.7933 0.1368 22.0269 0.0889 21.6132 1.1801

3 41 3 41 151.3539 -7.6498 19.684 0.0308 19.2951 0.0233 18.9123 0.7717

3 42 3 42 151.3725 -7.6289 21.2194 0.063 20.3942 0.039 19.6834 1.536
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Field Slit ID Object ID RA Dec V V error R R error I I error

3 43 3 43 151.383 -7.6158 23.5063 0.189 22.1329 0.0897 20.2198 3.2865

3 44 3 44 151.3925 -7.5979 21.4687 0.0707 20.7672 0.0465 20.4854 0.9833

3 45 3 45 151.3833 -7.6039 21.1045 0.0596 20.2441 0.0363 19.4853 1.6192

3 46 3 46 151.3421 -7.6420 22.3729 0.1077 21.8781 0.0801 21.3552 1.0177

3 47 3 47 151.4011 -7.5811 22.5236 0.1165 21.2666 0.0599 19.3912 3.1324

3 48 3 48 151.3442 -7.6350 22.6371 0.1246 21.591 0.0696 20.1533 2.4838

3 49 3 49 151.3843 -7.5928 20.8148 0.052 19.7287 0.0285 18.449 2.3658

3 50 3 50 151.359 -7.6152 24.1811 0.269 22.6554 0.1181 21.1563 3.0248

3 51 3 51 151.33 -7.6415 21.2569 0.0641 20.7302 0.0457 20.2027 1.0542

3 52 3 52 151.3437 -7.6222 22.8779 0.143 21.9602 0.0857 21.1446 1.7333

3 53 3 53 151.3363 -7.6243 22.097 0.0963 21.4932 0.067 20.9695 1.1275

3 55 3 55 151.361 -7.5968 23.0989 0.1557 22.0393 0.0857 20.4039 2.695

3 56 3 56 151.3299 -7.6255 23.2992 0.1751 22.9165 0.1329 22.3834 0.9158

3 57 3 57 151.3311 -7.6185 22.6331 0.1253 21.5599 0.0702 21.02 1.6131

3 58 3 58 151.3456 -7.6014 20.5958 0.047 20.0573 0.0333 19.5276 1.0682

3 59 3 59 151.3664 -7.5782 22.5144 0.116 21.2526 0.0586 19.506 3.0084

3 60 3 60 151.3755 -7.5667 22.028 0.0936 21.7484 0.0749 20.7967 1.2313
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Field Slit ID Object ID RA Dec V V error R R error I I error

4 1 4 1 151.2617 -7.7711 22.623 0.1255 22.4138 0.1032 21.9266 0.6964

4 4 4 4 151.2219 -7.8106 23.7522 0.2199 23.1856 0.1516 22.9129 0.8393

4 7 4 7 151.2511 -7.8541 23.232 0.1665 22.6519 0.1166 22.4356 0.7964

4 8 4 8 151.2429 -7.8596 21.7073 0.0796 21.4769 0.0653 20.8299 0.8774

4 9 4 9 151.2849 -7.8153 22.1827 0.101 21.5769 0.0689 20.9948 1.1879

4 10 4 10 151.2601 -7.8376 19.1596 0.0241 18.717 0.0178 18.2581 0.9015

4 12 4 12 151.2629 -7.8297 21.2176 0.0629 20.7081 0.0452 20.3218 0.8958

4 13 4 13 151.2301 -7.8532 21.3319 0.0666 20.728 0.0455 20.0058 1.3261

4 14 4 14 151.2854 -7.8016 22.5361 0.1205 21.6375 0.0701 20.7104 1.8257

4 16 4 16 151.2828 -7.7984 21.0414 0.058 20.5076 0.0411 19.89 1.1514

4 17 4 17 151.2815 -7.7969 22.7706 0.1362 22.1165 0.0908 20.1786 2.592

4 18 4 18 151.2287 -7.8457 22.8012 0.1405 22.3293 0.1045 21.5967 1.2045

4 19 4 19 151.2651 -7.8056 22.3928 0.1119 21.8247 0.077 21.2893 1.1035

4 20 4 20 151.2717 -7.7959 23.7022 0.2163 22.9969 0.1435 22.6349 1.0673

4 21 4 21 151.2551 -7.8098 21.3337 0.0671 20.8343 0.0484 20.2885 1.0452

4 22 4 22 151.2463 -7.8157 22.4918 0.118 21.8959 0.0818 21.2336 1.2582

4 23 4 23 151.2304 -7.8285 23.2335 0.1707 22.6691 0.1217 22.1569 1.0766
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Field Slit ID Object ID RA Dec V V error R R error I I error

4 24 4 24 151.2703 -7.7863 22.6885 0.1272 21.636 0.0704 19.9071 2.7814

4 25 4 25 151.2546 -7.7993 23.0816 0.1554 21.917 0.0806 20.3867 2.6949

4 26 4 26 151.2481 -7.8033 23.7792 0.2177 22.83 0.1327 21.62 2.1592

4 27 4 27 151.227 -7.8217 21.4484 0.0703 20.8023 0.0471 20.2371 1.2113

4 28 4 28 151.2333 -7.8128 23.4285 0.1869 22.2885 0.0981 20.4631 2.9654

4 29 4 29 151.2618 -7.7817 22.1939 0.1008 21.6701 0.0714 21.0802 1.1137

4 30 4 30 151.2647 -7.7759 21.7005 0.0792 21.1472 0.0556 20.2919 1.4086

4 31 4 31 151.2462 -7.7916 20.7606 0.0508 20.1382 0.0345 19.5157 1.2449

4 32 4 32 151.2522 -7.7790 21.735 0.0802 21.1863 0.0564 20.7064 1.0286

4 33 4 33 151.2168 -7.8115 21.8859 0.0875 21.2758 0.0589 20.3482 1.5377

4 34 4 34 151.2138 -7.8115 22.0881 0.0956 20.9878 0.0513 19.5677 2.5204

4 35 4 35 151.2029 -7.8194 21.5226 0.0727 21.1166 0.0546 20.7156 0.807

4 36 4 36 151.1968 -7.8230 23.3925 0.1828 22.4619 0.1107 21.7284 1.6641

4 37 4 37 151.2478 -7.7698 20.9368 0.0552 20.4215 0.0395 19.8635 1.0733

4 38 4 38 151.1983 -7.8119 19.0127 0.0225 18.4363 0.0156 17.9072 1.1055

4 39 4 39 151.228 -7.7861 22.6665 0.1263 21.7168 0.0731 20.9409 1.7256

4 40 4 40 151.1839 -7.8235 22.906 0.1422 22.4338 0.1044 21.9163 0.9897
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Field Slit ID Object ID RA Dec V V error R R error I I error

4 41 4 41 151.1971 -7.8084 21.7051 0.0799 21.3008 0.0598 20.785 0.9201

4 42 4 42 151.2396 -7.7640 21.4762 0.071 20.3444 0.038 18.8273 2.6489

4 43 4 43 151.2321 -7.7642 21.652 0.0779 21.0935 0.0543 20.4962 1.1558

4 44 4 44 151.2251 -7.7686 22.3758 0.1104 21.135 0.0551 19.2103 3.1655

4 45 4 45 151.2155 -7.7756 22.7521 0.1349 21.5916 0.0693 20.666 2.0861

4 46 4 46 151.1931 -7.7946 20.5351 0.0457 19.8244 0.0297 19.1572 1.3779

4 47 4 47 151.1966 -7.7880 21.9634 0.092 21.1853 0.0577 20.4527 1.5107

4 48 4 48 151.1835 -7.7982 21.1068 0.0598 20.7258 0.0454 20.419 0.6878

4 49 4 49 151.2308 -7.7487 20.7004 0.0496 19.7699 0.0291 18.7624 1.938

4 50 4 50 151.1712 -7.8048 21.2396 0.0636 20.6914 0.0447 20.1206 1.119

4 51 4 51 151.1884 -7.7851 22.8866 0.1409 21.7932 0.0757 20.3973 2.4893

4 52 4 52 151.1967 -7.7745 19.2055 0.0246 18.8546 0.019 18.4338 0.7717

4 53 4 53 151.1705 -7.7980 20.6852 0.0491 19.6538 0.0275 18.3695 2.3157

4 54 4 54 151.1801 -7.7857 23.1303 0.1617 22.7852 0.121 22.1342 0.9961

4 55 4 55 151.1811 -7.7820 22.3181 0.1069 21.945 0.0815 21.495 0.8231

4 56 4 56 151.2129 -7.7478 19.9961 0.0356 19.489 0.0255 18.9694 1.0267

4 57 4 57 151.1687 -7.7888 22.1897 0.1013 21.3645 0.0626 20.6163 1.5734
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Field Slit ID Object ID RA Dec V V error R R error I I error

4 58 4 58 151.1862 -7.7649 21.8791 0.0862 20.9196 0.0497 20.0305 1.8486

4 59 4 59 151.19 -7.7586 22.5199 0.1183 21.9708 0.0834 21.2165 1.3034

4 60 4 60 151.168 -7.7780 22.5949 0.1223 21.7384 0.0741 20.7908 1.8041

4 61 4 61 151.1601 -7.7831 22.8741 0.1389 21.8613 0.0782 20.6621 2.212

4 62 4 62 151.1744 -7.7662 19.8604 0.0334 19.3308 0.0238 18.9148 0.9456

5 1 5 1 151.3734 -7.7169 23.4987 0.1903 22.7861 0.1308 22.4648 1.0339

5 2 5 2 151.3601 -7.7300 21.1829 0.0621 20.6119 0.0432 20.069 1.1139

5 5 5 5 151.3203 -7.7695 20.3278 0.0419 19.7622 0.0291 19.1049 1.2229

5 7 5 7 151.3945 -7.7682 23.6589 0.2068 22.2885 0.098 21.2106 2.4483

5 8 5 8 151.3981 -7.7614 20.1566 0.0385 19.7494 0.0288 19.2962 0.8604

5 9 5 9 151.4021 -7.7545 22.9893 0.147 22.5403 0.1082 21.9417 1.0476

5 10 5 10 151.3479 -7.8056 21.1041 0.06 20.6328 0.0437 20.0621 1.042

5 11 5 11 151.3993 -7.7528 24.2172 0.2879 23.2152 0.1635 22.5032 1.714

5 12 5 12 151.3842 -7.7659 21.9867 0.0908 21.409 0.0634 20.8287 1.158

5 13 5 13 151.3885 -7.7593 22.5141 0.1208 21.1242 0.0574 19.9915 2.5226

5 14 5 14 151.396 -7.7496 20.2016 0.0402 19.6623 0.0287 19.1268 1.0748

5 15 5 15 151.3967 -7.7468 23.6757 0.2244 22.9911 0.1606 22.7963 0.8794
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Field Slit ID Object ID RA Dec V V error R R error I I error

5 16 5 16 151.3936 -7.7486 22.9614 0.1492 22.4728 0.1103 21.8704 1.091

5 18 5 18 151.3507 -7.7862 22.9135 0.1415 22.2381 0.0943 21.6612 1.2523

5 19 5 19 151.3945 -7.7448 22.5762 0.1286 21.2888 0.064 20.2041 2.3721

5 20 5 20 151.3924 -7.7422 22.9385 0.1497 21.7213 0.0751 20.6259 2.3126

5 21 5 21 151.3812 -7.7506 21.837 0.085 21.2883 0.0599 20.5279 1.3091

5 22 5 22 151.3301 -7.7984 22.5447 0.1188 21.2725 0.059 19.2031 3.3416

5 23 5 23 151.3823 -7.7438 22.9857 0.1474 22.0299 0.0846 20.4627 2.523

5 24 5 24 151.3886 -7.7349 20.4768 0.0447 19.8908 0.0308 19.3319 1.1449

5 25 5 25 151.3789 -7.7422 21.9669 0.0899 21.3343 0.0611 20.6224 1.3445

5 26 5 26 151.3591 -7.7593 21.2623 0.0645 20.3356 0.0379 19.4307 1.8316

5 27 5 27 151.3654 -7.7504 20.4772 0.0447 20.1319 0.0345 19.7135 0.7637

5 28 5 28 151.3643 -7.7486 21.626 0.0766 21.0279 0.0531 20.5387 1.0873

5 29 5 29 151.356 -7.7538 19.1917 0.0247 18.278 0.0146 17.3404 1.8513

5 30 5 30 151.3427 -7.7646 23.0399 0.1507 22.446 0.1059 21.8586 1.1813

5 31 5 31 151.3553 -7.7499 19.233 0.0251 18.7696 0.0183 18.3021 0.9309

5 32 5 32 151.3449 -7.7575 21.0852 0.0583 20.6655 0.0438 20.2072 0.878

5 33 5 33 151.3201 -7.7796 20.4013 0.0432 19.8576 0.0303 19.246 1.1553

J
u
n
e

5
,

2
0
1
8



5
.3

.
S
u
m

m
a
ry

a
n
d

C
o
n
clu

sio
n

s
9
2

Field Slit ID Object ID RA Dec V V error R R error I I error

5 34 5 34 151.34 -7.7573 22.4669 0.1141 21.4305 0.0636 19.8685 2.5984

5 35 5 35 151.3336 -7.7612 22.7146 0.1289 21.6297 0.0699 20.1013 2.6133

5 36 5 36 151.3537 -7.7349 22.3413 0.1075 21.6575 0.0715 21.0185 1.3228

5 37 5 37 151.3644 -7.7213 21.6502 0.0774 21.2058 0.0574 20.6604 0.9898

5 38 5 38 151.3496 -7.7328 20.1139 0.0378 19.7342 0.0286 19.3354 0.7785

5 39 5 39 151.3451 -7.7344 22.7335 0.1301 22.153 0.0907 21.5966 1.1369

5 40 5 40 151.3364 -7.7399 19.8841 0.034 19.447 0.025 18.985 0.8991

5 41 5 41 151.3469 -7.7259 20.5975 0.0473 20.1307 0.0344 19.6894 0.9081

5 42 5 42 151.3297 -7.7396 20.4761 0.0447 19.9863 0.0322 19.4329 1.0432

5 43 5 43 151.3215 -7.7451 22.4518 0.1142 21.9294 0.083 21.3148 1.137

5 44 5 44 151.3126 -7.7513 22.0001 0.0897 21.2938 0.0595 20.6901 1.31

5 45 5 45 151.2994 -7.7584 22.7305 0.1284 22.1102 0.0879 21.4213 1.3092

5 46 5 46 151.2914 -7.7498 19.103 0.0237 18.6672 0.0174 18.2529 0.8501

5 47 5 47 151.3027 -7.7358 19.0775 0.0234 18.5216 0.0163 17.9407 1.1368

5 48 5 48 151.319 -7.7166 20.8459 0.0532 20.2825 0.0371 19.7905 1.0554

5 49 5 49 151.3284 -7.7045 21.7535 0.0811 21.229 0.0577 20.5895 1.164

5 50 5 50 151.3314 -7.6988 20.8376 0.0531 20.1727 0.035 19.6325 1.2051
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Field Slit ID Object ID RA Dec V V error R R error I I error

5 51 5 51 151.3363 -7.6909 21.4588 0.0706 20.8319 0.0479 20.1834 1.2754

5 52 5 52 151.3223 -7.7020 23.074 0.1518 22.7759 0.1244 22.3885 0.6855

5 53 5 53 151.3177 -7.7040 21.8472 0.0845 21.2341 0.0576 20.6292 1.218

5 54 5 54 151.3158 -7.7036 21.1635 0.0616 20.5309 0.0416 19.7899 1.3736

5 55 5 55 151.2754 -7.7411 20.4379 0.0439 19.8434 0.0301 19.1804 1.2575

5 56 5 56 151.2929 -7.7211 22.0762 0.0944 21.5045 0.0657 20.7497 1.3265

5 57 5 57 151.31 -7.7016 21.1089 0.06 20.6339 0.0436 20.0908 1.0181

5 58 5 58 151.3047 -7.7043 19.9578 0.0348 19.3858 0.0242 18.7825 1.1753

5 59 5 59 151.2748 -7.7312 23.0359 0.149 22.3083 0.0966 21.8113 1.2246

5 60 5 60 151.2974 -7.7061 20.5358 0.0459 20.0225 0.0327 19.4906 1.0452

5 61 5 61 151.293 -7.7080 21.9965 0.0912 21.3623 0.062 20.9094 1.0871

5 62 5 62 151.2997 -7.6986 20.9183 0.0551 20.3556 0.0383 19.7233 1.195

5 63 5 63 151.3232 -7.7311 21.6028 0.0755 21.0542 0.053 20.5274 1.0754

5 64 5 64 151.3166 -7.7308 23.6704 0.2115 23.2393 0.1652 22.5958 1.0746J
u
n
e

5
,

2
0
1
8
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Table 2: Table of GC targets listing: Object ID, SNR, Velocity, Velocity Error, metallicity and

metallicity error obtained from pPXF.

Object ID SNR Velocity Vel error [Z/H] [Z/H] error

1 12 37 187 3 -0.43 0.07

1 14 6 1074 242

1 15 5 484 23

1 19 21 1127 5 -0.19 0.08

1 21 7 992 29

1 22 8 476 69

1 24 9 223 223 -0.79 0.13

1 25 9 822 14 -0.21 0.07

1 28 6 1072 18

1 29 5 831 21

1 32 11 646 42 -0.87 0.11

1 35 19 328 7 -0.33 0.07

1 37 13 894 8 -0.22 0.07

1 38 6 601 9

1 43 5 572 258

1 44 15 86 6 0.09 0.07

2 15 7 380 13

2 18 9 503 17 -0.28 0.41

2 20 6 689 51

2 21 8 442 27

2 23 7 470 42

2 24 6 402 64

2 25 15 410 7 -0.4 0.07

2 26 17 136 6 -0.11 0.07

2 28 19 501 7 -0.26 0.07
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Object ID SNR Velocity Vel error [Z/H] [Z/H] error

2 29 6 497 25

2 30 15 143 15 -0.66 0.08

2 35 474 23 5

2 40 7 1199 13

2 42 10 435 8 -0.21 0.07

2 43 8 751 11 -0.35 0.08

2 47 17 671 7 0 0.07

2 52 10 807 10 -0.23 0.07

2 53 14 479 12 -0.53 0.13

2 60 14 30 9 -0.32 0.08

3 10 16 136 7 -0.43 0.08

3 11 9 600 35 -0.74 0.22

3 13 7 19 15

3 16 5 163 509

3 18 11 685 46 -0.19 0.71

3 19 6 718 76

3 20 10 -1400 1000 -0.71 0.21

3 21 6 600 0

3 25 6 112 12

3 26 7 6 18

3 29 6 809 19

3 31 20 2600 0 0.11 0.07

3 35 12 191 23 -0.69 0.09

3 38 7 140 9

3 39 6 79 23

3 41 33 369 17 -1.37 0.08

3 42 10 173 13 -0.29 0.09
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Object ID SNR Velocity Vel error [Z/H] [Z/H] error

3 44 12 600 2

3 45 10 39 9 -0.19 0.71

3 49 10 72 29 -0.2 0.71

3 53 6 1019 230

3 58 16 510 52 -1.11 0.14

4 8 13 108 132 -0.19 0.07

4 10 33 212 25 -0.61 0.12

4 12 9 -4 23 -0.52 0.08

4 13 9 600 23 -0.47 0.08

4 16 13 600 27 -1.09 0.10

4 21 9 162 34 -0.63 0.09

4 27 9 213 9 -0.19 0.71

4 29 5 600 0

4 30 6 459 333

4 32 8 181 32 -1.05 0.24

4 35 7 -209 525

4 37 13 474 29 -0.88 0.32

4 38 52 193 3 0.01 0.07

4 43 7 600 39

4 46 17 90 5 0.04 0.07

4 48 15 -618 551 -0.37 0.07

4 49 11 26 16 -0.31 0.07

4 50 10 693 55 -0.55 0.14

4 52 43 -14 16 -1.6 0.07

4 53 26 -8 92 -0.09 0.07

4 56 26 74 5 -0.15 0.07

4 58 6 6 28
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Object ID SNR Velocity Vel error [Z/H] [Z/H] error

4 62 27 792 10 -0.94 0.1

5 8 27 170 7 -0.59 0.08

5 10 8 684 27

5 12 5 837 139

5 14 13 600 0 -1.11 0.15

5 18 5 410 157

5 24 17 216 6 -0.15 0.07

5 25 6 689 51

5 26 8 24 15

5 27 22 303 90 -0.66 0.27

5 28 7 194 23

5 31 42 194 4 -0.4 0.07

5 32 11 195 17 -0.9 0.18

5 33 18 721 7 -0.43 0.07

5 37 8 673 49

5 38 27 3 14 -0.83 0.11

5 40 30 105 5 -0.33 0.08

5 41 16 410 9 -0.22 0.07

5 42 16 943 16 -0.98 0.1

5 46 46 89 3 -0.58 0.07

5 47 37 481 4 -0.36 0.07

5 48 7 698 62

5 49 5 974 201

5 50 9 967 27 -0.19 0.13

5 51 7 912 19

5 55 15 538 33 -0.27 0.07

5 57 8 708 105 -1.01 0.25
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Object ID SNR Velocity Vel error [Z/H] [Z/H] error

5 58 13 922 8 -0.27 0.07

5 60 15 754 16 -0.77 0.22

5 62 11 950 9 -0.28 0.07

5 63 8 800 18
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