
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst

Masters Theses May 2014 - current Dissertations and Theses

2015

Measuring the Resilience of Transportation
Networks Subject to Seismic Risk
Mark N. Furtado
University of Massachusetts - Amherst, mfurtado@umass.edu

Follow this and additional works at: http://scholarworks.umass.edu/masters_theses_2

Part of the Civil Engineering Commons, Risk Analysis Commons, and the Structural
Engineering Commons

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses May 2014 - current by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Furtado, Mark N., "Measuring the Resilience of Transportation Networks Subject to Seismic Risk" (2015). Masters Theses May 2014 -
current. 148.
http://scholarworks.umass.edu/masters_theses_2/148

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1199?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/masters_theses_2/148?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


 

MEASURING THE RESILIENCE OF TRANSPORTATION NETWORKS 
SUBJECT TO SEISMIC RISK 

 

 

A Thesis Presented  

 

by 

 

MARK N. FURTADO 

 

 

Submitted to the Graduate School of the  
University of Massachusetts Amherst in partial fulfillment  

of the requirements for the degree of 
 
 
 

MASTER OF SCIENCE IN CIVIL ENGINEERING 
 
 
 
 

February 2015 
 
 
 
 
 

Civil Engineering  
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Mark N. Furtado 2015 
All Rights Reserved 

 



 

MEASURING THE RESILIENCE OF TRANSPORTATION NETWORKS 
SUBJECT TO SEISMIC RISK 

 

A Thesis Presented  

by 

MARK N. FURTADO 

 

Approved as to style and content by: 

  

Alice Alipour, Chairperson 

 

Behrouz Shafei, Member 

 

John Collura, Member 

 

 

     Richard Palmer, Department Head 
     Civil and Environmental Engineering Department
 

  



 

iv 

ABSTRACT 
 

MEASURING THE RESILIENCE OF TRANSPORTATION NETWORKS 
SUBJECT TO SEISMIC RISK 

FEBRUARY 2015 

MARK FURTADO, M.S.C.E., UNIVERSITY OF MASSACHUSETTS 

Directed by Professor Alice Alipour

 
Infrastructure systems are essential for day-to-day life but when subject to seismic hazards, these 

critical systems can experience disruptions that severely impact the communities that are so 

heavily reliant upon them. After a seismic event, a resilient society should be able to minimize 

disruption and recover in a timely fashion. In this thesis, a framework to quantify resilience of 

highway networks to seismic events is presented. A resilient system should have the ability to 

absorb the initial impact of the event, provide alternatives for damaged infrastructure, prioritize 

goals and provide additional resources where needed, and restore functionality to an acceptable 

level quickly. This study details the development of a model that combines structural fragility 

analysis and complex network flow analysis to determine the impacts of a seismic event on the 

network functionality. The highway network of the San Francisco Bay area and the Oakland area 

are selected as the test bed for the developed methodologies. To account for the effect of different 

improvement strategies before and after earthquake, an original highway network is compared 

with several scenario-based models with retrofits and improved repair conditions. The costs 

associated with each event is calculated including costs from the actual repair of the bridge and 

costs experienced by network users due to decreased traffic performance is estimated. Using the 

probability of each event, the seismic risk can also be calculated. Post-event scenarios are 

compared and include planning activities that contribute to effective and rapid recovery 

strategies. For this case, a series of repair acceleration techniques are applied in order to shorten 

the repair time and restore the network to an acceptable level of functionality with minimum 
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resources. This thesis provides network stakeholders with a means to determine the resilience of 

their network which will provide appropriate decision making tools that will limit disruptions due 

to earthquakes in a cost effective manner. 
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CHAPTER 1   

INTRODUCTION AND MOTIVATION 

1.1. Introduction 

It is crucial for a modern society that critical infrastructure systems such as water 

distribution, power gridlines, transportation networks, and communication services run 

smoothly. Critical infrastructure systems are required to maintain a healthy economy, 

allow reliable transportation and to provide the day-to-day needs for communities. After 

a natural disaster however, these infrastructure systems can experience damage that can 

severely decrease their performance. This problem is exacerbated by the fact that the 

performance of these systems is of greater importance during and directly after the 

disaster for emergency response and recovery actions. 

Transportation networks are one of the most important types of civil infrastructure 

systems. Transportation networks let users commute to conduct their everyday activities, 

allow for emergency vehicles to perform time critical duties, and provide businesses with 

a means to transport goods among other important functions. When a transportation 

network is damaged, the local community can suffer costs. In some cases, when the 

network is an important part of a larger network, the losses even propagate to 

communities further away. After a network is damaged, until different segments are 

repaired, the indirect costs associated with its normal functionality accumulate over time. 

In seismically prone regions, performance of transportation networks could be 

substantially disrupted due to failures to its components such as roadways, tunnels, 

bridges, and culverts. Bridges in particular are susceptible to the effects of seismic events 

as they can be damaged by ground shaking, liquefaction and landslides. Also, the repair 
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time for bridges can be expensive and lengthy. Furthermore, bridges normally act as 

“bottlenecks” in case of damage and can hinder the emergency responses after disruptive 

events. In the United States, the Loma Prieta (1989) and Northridge (1994) earthquakes 

damaged important highway bridges which brought on heavy repair costs and large 

traffic delays. 

Performance of transportation networks under seismic hazards highlights the need 

to study the concept of risk and resilience. Risk is a function of the possible seismic 

events, the probability of occurrence each event, and the outcomes of the events. 

Resilience is the ability of a system to absorb the impact of an event then recover 

afterwards. Resilience is a complex measure which can be seen as the aggregate of its 

components. These components include the expected level of physical damage after an 

event, the topographical reliability of the network layout, the prioritization important 

goals and the speed of which the network recovers to an acceptable level. While the 

concept of resilience has existed for decades, the applicability to complex systems such 

as transportation networks is a recent and understudied topic. This thesis will concentrate 

on applying the concepts of resilience to transportation networks under seismic risk. It 

aims to provide efficient methods of evaluating the resilience of transportation networks 

so that the owners of the network can gauge its vulnerability, discover weaknesses in the 

network, and increase preparedness in order to limit the potentially large direct and 

indirect costs that an earthquake can carry.  

1.2.Overview of the Thesis  

The goal of this thesis is to quantitatively assess the risk and resilience of transportation 

networks subjected to seismic hazard and to develop methods that provide decision 
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makers with the required tools to make pre-event decisions that can improve the 

resilience of the network. First in this thesis, an overview on the topics of risk and 

resilience will be provided. Following this, the methods used to quantify said risk and 

resilience will be detailed and a case study demonstrating these methods will be detailed. 

To help decision makers make pre-event decisions, a method of prioritizing bridge 

retrofits will be detailed and demonstrated in another case study.  

Chapter 2 concentrates on the topics of risk and resilience and provides methods 

to quantify each. A comprehensive literature review on the resilience of civil 

infrastructure systems is given to provide an overview on the topic. For this purpose, first 

the historical disruptions to infrastructure networks under natural hazards have been 

reviewed. The chapter continues with a look at the vulnerability of bridges and explains 

the integration of the traffic demand model to the damaged network. For a system wide 

analysis, modeling the damage to each bridge in detail would be prohibitively expensive. 

For this purpose, the damage state limit state are defined for a set of 28 bridge classes and 

then the fragility curves are utilized to determine the probability of each damage state for 

a given bridge. This is done using the characteristics of the bridge and the level of 

shaking at the bridge site or the amount of displacement from liquefaction. The level of 

damage is tied into the ability for the bridge to carry traffic. With that, the traffic model is 

updated using a four step model to estimate the changes in the capacity of the network 

before and after the earthquake. Furthermore, the concept of resilience and its historical 

applications is introduced. An in-depth interpretation of the different components of 

resilience is presented each with its own quantitative measure. Resilience is then linked to 

the costs associated with a given earthquake scenario. Costs come from both the actual 
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repair costs of the bridge and the costs from the change in network performance after the 

earthquake.  

In Chapter 3, the available methodologies to analyze the seismic risk of the 

spatially distributed systems have been discussed and a review of the effects of 

prioritization and alternative repair techniques on restoration of the functionality of the 

network after extreme events has been conducted. The chapter ends with a case study that 

takes place in the San Francisco Bay area. The San Francisco Bay area is a populous 

region subject to very high seismic hazard making it an ideal location for a test bed. The 

highway network in the study area will be subjected to a series of earthquakes in order to 

evaluate the post-earthquake behavior of the network. A risk assessment is presented for 

the given area utilizing a range of earthquakes from nearby faults. Then, the resilience of 

the network is studied. Lastly, the effects of prioritizing bridges for repair are explored in 

greater depth. 

Chapter 4 will analyze the options available for retrofitting against seismic 

hazards and provides a method to select bridges for retrofit based on their importance in 

the network. A history of bridge retrofitting will be collected and a list of common 

retrofit techniques will be given that includes advantages and disadvantages to each 

technique. Next, some optimization methods considered for the study are detailed and the 

technique used in this thesis will be justified and explained. A case study in the Oakland 

area will be conducted that selects retrofits based on the risk in the area. Also shown in 

the study will be sensitivity of the costs to factors such as cost of retrofitting and risk. 
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The last chapter reviews the conclusions for the thesis and discusses possible 

future developments. A summary of the thesis will be collected and the possible uses and 

potential impact of the study will be given. 
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CHAPTER 2 

RISK AND RESILIENCE ASSESSMENT 

2.1. Impact of Earthquake on Infrastructure Systems 

The economy of the modern societies and the well-being of its citizens depend on the 

uninterrupted and reliable functionality of its infrastructure systems. According to the 

report of the U.S. President’s Commission on Critical Infrastructure Protection (PCCIP-

1997), the nation’s critical infrastructure systems provide a reliable flow of products and 

services essential to the defense and economic security of the society. Transportation 

networks are categorized as one of the critical infrastructure systems as their physical 

damage and functionality loss not only hinder every day residential and commercial 

activities but also impair post disaster evacuation, response, and recovery. Furthermore, 

considering the interdependent nature of the critical infrastructure systems (Rinaldi et al. 

2001), the loss of functionality in transportation network can also adversely affect 

interdependent networks such as telecommunication and health networks (Chang et al. 

2013). Highway bridges are one of the most critical components of the transportation 

network acting as “bottlenecks” in case of any disruption or failure in their service. 

Seismic events impose a large hazard to highway transportation network as they can 

adversely affect a large portion of this spatially distributed system. Earthquake prone 

areas bear the risk of very large losses due to seismic events.  The estimated annualized 

earthquake loss in the United States has been determined by FEMA to be 5.3 billion in 

2005. A large portion of the annualized cost is concentrated along the west coast with 

nearly 40% of the cost in the Los Angeles and San Francisco Bay area alone (FEMA 

2008).  
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Historically, seismic events have caused major disturbances to transportation 

networks. After the 1995 Great Hanshin earthquake, the Port of Kobe in Japan suffered 

damage that severely limited its ability to move cargo for two years causing severe and 

possibly long-lasting impact to the area (Chang 2000). The 1989 Loma Prieta earthquake 

stressed the  public transit systems as the highway bridges were damaged and users began 

using public transit as an alternative (SPUR 2010). Los Angeles saw major disruptions to 

the highway network after the 1994 Northridge earthquake. Most notably, portions of the 

Santa Monica Freeway, an extremely busy highway with average daily traffic being 

about 261,000 around the time of the earthquake, were shut down until bridge repair 

could be done (US DOT 2002). 

Predicting the effects of earthquakes on transportation networks can be difficult. 

Post-earthquake traffic flows are more difficult to predict than in other emergencies such 

as hurricane or nuclear hazards as earthquakes offer no prior warning and are coupled 

with immediate damage to infrastructure (Chang et al. 2010). Bridges are especially 

important when considering earthquakes because the supports of bridges are often located 

near bodies of water or steep slopes which means particular susceptibility to landslides 

and liquefaction. The repair cost that is associated with liquefaction is generally high 

since liquefaction can lead to high damage states (Kiremidjian et al. 2007). 

Substantial research has been focused on evaluating the impact of seismic events 

on the transportation networks. These studies include the post-earthquake flow models to 

estimate the functionality of the network (Nojima and Sugoito 2000, Lee et al. 2011, 

Chang et al. 2012), development of annual risk curves using probabilistic scenario based 

models (Shiraki et al. 2007, Stergiou and Kirmidjian 2010, Alipour 2010), integrating 
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transportation network and regional economic models to estimate the direct and indirect 

costs associated with failure of bridges in transportation networks (Cho et al. 2000, 

Tatano and Tsuchiya 2008, Danielle and Love 2010, Rose et al. 2011 and Furtado and 

Alipour 2014a), and proposing prioritization methods for bridge retrofit to enhance the 

functionality of the networks (Zhou et al. 2010, Chang et al. 2012, Bocchini et al. 2012, 

Rokneddin et al. 2013, Venkittaraman and Banerjee 2013, and Furtado and Alipour 

2014b). Most of these studies have suggested strategies for asset protection and 

vulnerability reduction; however, recently there is an increasing emphasis on the 

resilience of the transportation networks, which is defined as the ability of the system to 

withstand, adapt, and rapidly recover from the effect of disruptive events (Turnquist and 

Vurgin 2013). The recognition of the importance of this issue has caused national 

security communities seek for alternatives to ensure the infrastructure resilience. The 

examples of policy shift include the U.S. Department of Homeland Security National 

Infrastructure Protection Plan (NIPP: DHS, 2009) and Presidential Policy Directive 8 

(PPD-8 2011), which contain explicit language calling for increasing the resilience of the 

nation’s critical infrastructure against the threats that pose the greatest risk to the security 

of the nation, including acts of terrorism, cyber-attacks, pandemics and catastrophic 

natural disasters. Fragility Analysis of Bridges 

2.2. Risk Analysis and Resilience Assessment 

The resilience of networks and communities has been a topic of interest in the past few 

years where it complimented seismic risk assessment and risk management studies. 

However, resilience is a concept that is difficult to describe quantitatively. The ability to 

quantify resilience could be useful to management agencies to better understand which 
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aspects of a network should be improved in order to better deal with the consequences of 

earthquakes. The novelty of the current research is to develop a holistic framework to 

quantitatively measure different dimensions of seismic resilience in a large transportation 

network. 

The term resilience has been used in many fields and, though the core concept 

remains the same, no singular definition has been universally accepted. The Oxford 

English Dictionary (2010) defines resilience as the action or an act of rebounding or 

springing back; rebound, recoil. Holling (1973) was the first to define resilience is a 

measure of the persistence of systems and of their ability to absorb change and 

disturbance and still maintain the same relationships between populations or state 

variables. Pimm (1984) introduced a definition of resilience as a speed measure for the 

system to return to its stability after a disturbance. This definition although initially 

applied to ecological systems, made a significant impact on other fields. Later the 

definition of resilience was also applied to the actual speed of recovery. The latter 

definition has been found useful to investigate both short-term disruptions due to extreme 

events (e.g., Tierney, 1997, Bruneau et al., 2003, and Rose, 2004) and long-term changes 

(Dovers and Handmer, 1992, and ASCE, 2013). This highlights the importance of time as 

a factor in recovery which primarily distinguishes resilience from risk. The PPD-8 (2011) 

calls resilience as the ability of a system to adapt to changing conditions, withstand 

disruptions, and rapidly recover from them. This definition is very close to the one 

proposed by Rose (2009), which divides the resilience into two levels: i) static resilience 

as the ability of a system to maintain function after a catastrophic event, and ii) dynamic 
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resilience as the speed by which the system recovers from a severe shock to achieve a 

desired state of functionality. 

Recently there has been an exponential increase in the topic of resilience across 

many different fields following a string of disasters such as the Loma Prieta earthquake 

(1989), hurricane Katrina (2005), the recent financial crisis (2008), and the Tohoku 

earthquake (2011) (Park et al. 2013). Disaster resilience has been the topic discussed by 

the disaster roundtable under the topic of grand challenges in science and technology and 

put emphasis on pre-emergency recovery planning (2005). A workshop funded by the 

National Science Foundation and conducted by the National Research Council labeled 

community resilience framework as one of five grand challenges in earthquake 

engineering, stating that such a framework also could advance our understanding of both 

the direct and indirect impacts of earthquakes so that community-level interactions and 

impacts can better characterized (2011).  

A system’s resilience is largely dependent on i) the state of its components also 

called their vulnerability, ii) the hazards that it may be exposed to, and iii) the 

consequences of such hazards given the state of the system. Another concept very close 

to resilience is the risk which could be characterized as a function of three main factors: i) 

nature and probability of occurrence of a destructive event, ii) state of the system in terms 

of resilience, and iii) probability of different outcomes or consequences of the events 

under consideration. Upon identification of the most important components of the 

system, the risk associated to them can be quantified by a series of predictive models that 

express the probability and severity of damage due to destructive events. As it relates to 

seismic risk analysis, the hazards include the probability and the intensity of ground 
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motion, liquefaction, landslides and other hazards. The vulnerability would relate to the 

expected level of damage that will occur in components of the system for a given set of 

seismic events. How exactly resilience ties into risk analysis has been a subject of debate. 

The resilience of a system is sometimes viewed as an outcome of vulnerability; a system 

has a certain amount of vulnerability and resilience is the reaction to the events the 

system is vulnerable to. Other times, resilience is viewed as a process which at least 

partially bears the responsibility of damage mitigation (Cutter et al. 2008). In this study, 

risk analysis and resilience will be looked at as interconnected ideas. Risk analysis is 

useful for estimating how much damage is expected to occur while resilience can help 

define which aspects of a system are most critical to recovery. Time for recovery is also 

an aspect which is often more important in resilience than in risk as the characteristics of 

resilience are often defined using time as a dimension. While still a fairly new topic, there 

have been studies in the resilience assessment of networks across a range of disciplines. 

Rose (2004) used the concept of economic resilience and applied it to damage due to 

earthquakes in water distribution network in the Portland Metro area. Chang and 

Shinozuka (2004) discussed a quantitative measure for resilience and applied it to the 

Memphis water system. Improving on the Chang and Shinozuka (2004) model, Chang et 

al. (2008) measured the resilience of the Los Angeles lifeline network. Cimellaro et al. 

(2010), following similar framework, evaluated the resilience of a hospital network using 

the change in healthy population as a measure of resilience. Omer et al. (2009) examined 

the global internet infrastructure system using the ratio of information flow before and 

after a disturbance. Bocchini and Frangopol (2012) used resilience and cost as objectives 

in deciding scheduling for interventions for bridges on a simple highway network.   
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According to Haimes (2009), the vulnerability assessment mainly contributes to a 

system’s protection, whereas the resilience assessment goes beyond the system’s 

protection and additionally includes system’s recovery following extreme events. As a 

case in point, hardening of a system against region-specific hazards (i.e., pre-event 

investment) may reduce the vulnerability of the system, but if the recovery needs are not 

properly addressed, the resilience of the system in terms of recovery time and cost will 

not always be improved. Understanding of the needs of broad use of resilience ranging 

from the bridge structure to other structures to infrastructures to networks to 

communities, an operational definition of resilience should enable its measurement by 

meeting the following requirements for which metrics are either available or needed: i) 

building on national priorities and presidential policy directives (PPD-8 2011, PPD-21 

2013), ii) modeling the disturbing events considering their uncertainties as stochastic 

processes, iii) knowledge of initial capacity or capacity after event of structure/system, 

iv) accounting for the changes in time due to aging or improvements that will be 

considered in the system, v) considering the abilities to prepare and plan for, absorb, or 

adapt to the hazard (NRC 2013), v) including the performances of different entities in the 

infrastructure system such as the physical assets, people, economy, and community 

(MCEER 2010), vi) define the system performance in terms of objectives and outputs, 

vii) integrating models to account for the rate of recovery over time, and viii) being able 

to connect to other relevant topics such as reliability and risk analysis 

Bruneu et al (2003) describes a resilient community as one which has reduced 

failure probabilities, reduced consequences from failures and reduced time to recovery. 

These characteristics are ensured if the system has four “R’s” for resilience: robustness, 
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redundancy, resourcefulness and rapidity. According to this definition, robustness is the 

ability the system or elements to withstand stress without the loss of functionality, 

redundancy is the ability to provide alternatives and make substitutions for damaged 

elements in a system, resourcefulness is the ability to prioritize actions and supply 

resources (human, monetary and otherwise) to achieve goals and rapidity is a measure of 

how quickly these goals can be achieved. Also laid out are four dimensions aspects of 

resilience: technical, organizational, social and economic. The technical aspect measures 

the performance of physical systems after an earthquake event. The organizational aspect 

is the ability for organizations to react appropriately to earthquakes and perform critical 

functions. The social aspect refers to the ability to minimize harm done to society itself. 

The Economic aspect is the ability to minimize economic losses due to earthquakes. 

Figure 2.1 depicts the components of resilience on a system performance curve. 

Assuming the system is 100% functional before the event, the severity of the initial drop 

is dependent on both the robustness and redundancy of the network. Depending on the 

ability of the system to absorb the shock and find alternatives to accommodate the traffic 

demand, the percent drop in functionality will be affected. Being interlinked concepts, no 

discrete portion of the drop can be applied to only robustness or redundancy by itself. 

Shown in the graph are two separate curves, the one on top is where goals are prioritized 

and additional resources are allocated and one without these properties. The former 

shows a more resourceful repair process which prioritizes goal. tf occurs when the repair 

curve meets the rapidity performance criteria. At this point, the network reaches an 

acceptable level of performance. What exactly qualifies as an acceptable level of 

performance depends on the standards of the managerial bodies responsible. The 
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performance of the bridge network can eventually return to the pre-event state if 

everything is repaired, remain below pre-event levels if some aspects are beyond repair, 

or even rise above the pre-event levels if improvements are made to the network (Ayyub 

2013). For this thesis, it will be assumed that the performance will return to the pre-event 

level. The area between the two curves is an indicator of the system resourcefulness.  

 

 

 

 

Figure 2.1: Contributions of resilience components on the resilience curve 
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CHAPTER 3  

SEISMIC RISK ANALYSIS 

3.1. Introduction  

For a long time, risk has been measured as the product of hazard and vulnerability. As it 

relates to seismic risk analysis, the hazards include the probability and the intensity of 

ground motion, liquefaction, landslides and other hazards. The vulnerability would relate 

to the expected level of damage in structures that will occur for a given set of hazards 

(Musson 2000). 

Because of the nearly limitless possible hazard scenarios and network 

configurations, measuring vulnerability balances accuracy and breadth against 

complexity and resource intensiveness. Murray et al. (2008) defines four main 

classifications of approaches for evaluating the vulnerability of the network: scenario-

specific, strategy-specific, simulation-based and mathematical modeling methodologies. 

The scenario-specific assessment looks at a small set of specific disruption scenarios. 

Strategy-specific assessment looks at scenarios where a structured loss of facilities is 

expected. The simulation-based approach works under the assumption that if enough 

simulations are run, a good representation of the vulnerability can be presented. 

Mathematical assessment seeks out extreme scenarios (worst-case and best-case 

scenarios). This paper will use a simulation based approach to estimate the seismic risk in 

the case study. 

Analyzing seismic hazards and vulnerability can provide useful and varied insight 

for network owners. Currently available research explores a range of different 

performance criteria, geographical locations, seismic sources and general methodologies. 
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Shiraki et al. (2007) created risk curves to estimate the annual probability of network 

delay due to earthquakes affecting the Los Angeles area. Alipour and colleagues (2010, 

2011, and 2013) developed a multiple hazard framework to estimate the functionality of 

the Los Angeles and Orange County areas after earthquakes. Rossi et al. (2012), using a 

test network in north-east Italy, performed seismic risk analysis to compare different 

retrofitting scenarios in order to prioritize groups of bridges for retrofit. Mehary and 

Dusicka (2012) developed a seismic risk assessment model for major trucking routes in 

Oregon which indicates that an earthquake could disable trading route for extended 

periods of time and cause other sever economic and social impacts. Chang et al. (2012) 

demonstrated a model used on the Memphis metropolitan areas road network that looks 

at the vulnerability of the network in terms of its ability to supply capacity for evacuation. 

In this study, the seismic risk of the San Francisco Bay area will be analyzed. For this 

purpose the topology of the network will be created using graph theory and the 

fundamentals of network science and traffic analysis will be used to measure the 

performance of the network after the event. Finally, the direct and indirect costs 

associated with a set of scenario earthquakes will be estimated and the risk curves will be 

generated. 

3.1.1. Test Bed Highway Network  

The San Francisco bay area is an ideal location to test of the resilience of a transportation 

network because of its high seismic risk, bustling urban population, reliance on highway 

bridges, and the wealth of data available after the Loma Prieta Earthquake. The study 

area will include five counties in the bay area: San Francisco, Alameda, San Mateo, 

Marin and Contra Costa. The National Highway Planning Network (NHPN) database is 
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used to collect geographic, topographic, and connectivity information for the network 

under study. Within the study area are 910 traffic analysis zones (TAZs). TAZs aggregate 

socio-economical information within their borders from which productions (total number 

of origins) and attractions (total number of destinations) are generated based on this 

information. The highway network is generalized as a graph which consists of a set of 

node and links. Nodes are important points in the network such as intersections, trip end 

locations and ramps. Links are roadways that connect the nodes together. Links should 

contain information important to the traffic model such as capacity and travel speed. 

Figure 3.1 presents the location of the links and nodes in the study area. 

To determine the effects of bridge damage to the driving public, first a model that 

can predict driver behavior has to be created. The model should be able to determine the 

origin and destinations of the trips, the route the drivers take and the frequency of trips. 

For this purpose, a four step model which consists of trip generation, trip distribution, 

mode choice, and traffic assignment steps is used.  

Trip generation determines how often trips originate and end in different traffic 

analysis zones (TAZ) across the network. Trip origins and destinations are generalized 

such that trip ends occur in the geometric center of each traffic analysis zone. TAZs that 

share common borders are connected by a link with a free flow travel speed of 30 miles 

per hour. Attraction and production data was taken from the 2009 update to the Regional 

Transportation Plan (RTP), a transportation project in the San Francisco Bay area that 

helps define future policy and investment in the area. The tables include predicted trip 

ends for each of the 910 TAZs in the bay area across 5 time period in the day: AM early 

(midnight - 6  am), AM peak (6 - 10 am), Midday (10 am - 3 pm), PM peak (3 - 7 pm) 
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and PM late (7 pm - midnight). The study area of the RTP is larger than the study area of 

the model in this paper (containing 4 more of the surrounding counties) so the traffic 

from the counties that are in the RTP area but not in this study’s area will be included as 

external stations.  

 After the total number of attractions and productions are determined, the trip 

distribution step pairs the origins and destinations so that the number of trips between 

every two TAZs can be determined using the gravity model. In the gravity model, the 

TAZs that are closest to a production zone will generally attract a large portion of the 

trips compared to a zone further away. The formula for the gravity model is as follows: 

𝑇𝑖𝑖 = 𝑃𝑖𝐴𝑖𝑓𝑖𝑖/(∑ 𝐴𝑖′𝑓𝑖𝑖′)𝑖′         (3.1) 

where Tij is the amount of trips from origin i to destination j, Pi is the number of trips 

originating from i, Aj is the constant to balance the trips destined to zone j, and fij is the 

distance decay factor which is inversely related to the zone separation in a form of 

gamma, power, or exponential factor. 

The mode choice step gives the method of travel for each trip be it by car, train or 

any other mode of transportation. Since the study is concentrated on highway traffic, the 

relevant data is the percentage of drivers for each trip purpose. Mode choice is based on 

the data from the Metropolitan Transportation Commission (MTC) and for the San 

Francisco Bay area 60% for the total trips are conducted by car.  

The traffic assignment predicts the paths that the users on the network will take 

for each trip. Users on the network will try to select the paths with the least cost so an 

algorithm has to be used that collects the shortest paths. The algorithm generates all-or-

nothing path definition which is a path choice where only one path is used between each 
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node pair for every user going between the same O-D pair. In actuality, if every user 

taking a trip between a specific origin-destination pair took the same path, the roadways 

on the path may become loaded to the point where congestion increases the travel time. 

At this point, previously calculated shortest path may not be the shortest path anymore so 

all-or-nothing assignment is run again utilizing a portion of the previous assignments link 

flow. This process is repeated until the network reaches user equilibrium: the state where 

no user can decrease travel costs by changing paths. The travel time of each link after 

congestion is calculated using the Bureau of Public Roads formula which is:  

𝑡 = 𝑡𝑖 � 1 + 0.15 �𝑣
𝑐
�
4
�        (3.2) 

where t is the travel time of the link, ti is the free flow travel time, v is the volume on the 

link and c is the capacity of the link.  

To identify the shortest path a modified version of the Dijkstra's algorithm has 

been used. The time it takes to run a basic Dijkstra’s algorithm is proportional to the 

square of the number of nodes in the network. This means that for very large networks or 

studies that require many simulations, the model can take a prohibitively long time to run. 

However, the algorithm can be optimized by using sparse matrices. A sparse matrix only 

considers the non-zero values in the matrix. In a network model of the scale used in this 

study, the number of links is far fewer than the square of the number of nodes so a sparse 

matrix is used which offers the ability to ignore some of the updating that the algorithm 

would have to process.  

Traffic demand after an earthquake can be modeled as fixed or variable. In fixed 

traffic demand assumption, the demand is unchanged from before the event. In variable 

demand, the demand may increase or decrease after the event. Whether the demand 
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increases, decreases or remains the same depends on regional behavior. In the case of 

decreasing demand, it is possible that the travel time between links also decreases 

(though not necessarily so). In a fixed scenario, the travel time will increase due to the 

damaged state of infrastructure. In the case of increasing demand, one could expect an 

increase in travel time due to both congestion and damaged infrastructure (Kiremidjian et 

al. 2007). The cost of traffic delay is calculated differently from agency to agency. 

Overall though, the cost is usually calculated as the product of traffic delay and value of 

time. The value of time is often based on the average hourly wage in a particular region. 

3.1.2. Seismic Hazard and Vulnerability Analysis  

The San Andreas Fault is a source of great seismic threat to the San Francisco Bay area. 

Historically, some of the most important seismic events originate from the San Andreas 

Fault. The Loma Prieta earthquake, a 7.1 magnitude earthquake that struck south of the 

San Francisco bay in 1989, severely disrupted the transportation network in the bay area. 

A span of the San-Francisco-Oakland Bay Bridge collapsed closing the bridge for over a 

month until the bridge was repaired. Being the busiest bridge in the area, this greatly 

affected network users who would rely on this bridge for their commute and other 

purposes (Plakfer and Galloway 1989). For this study the scenario earthquakes on both 

San Andreas and Hayward faults has been considered. To present the risk from these two 

faults, four representative earthquake sources were selected: three sites are located on the 

San Andreas Fault and one on the Hayward fault. Fault lines and rupture locations are 

shown in Figure 3.2. Six different scenarios with moment magnitudes ranging from 6.0 to 

8.5 with 0.5 steps has been considered, which makes for a total of 24 scenario 

earthquakes. For the purpose of seismic risk analyses, the range of earthquake scenarios 
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utilizing all 4 epicenter locations and the magnitudes has been identified. The 

probabilities of each scenario are then considered to determine the risk. The USGS 

earthquake probability mapping tool based on the 2008 USGS-National Seismic Hazard 

Mapping Project update was the source for earthquake probabilities in the area. From 

there, the probabilities were divided amongst the San Andreas and Hayward fault based 

on the relative probabilities that each fault will produce an earthquake. 

The rupture length for each earthquake is taken as a function of the moment 

magnitude of the earthquake. The following equations are adapted from Wells and 

Coopersmith (1994) for a strike slip fault.  

log(𝑆𝑆𝑆) = 0.74 ∗ 𝑀 − 3.55         (3.3) 

where SRL is the median rupture length in km, M is the moment magnitude, the standard 

deviation of the logarithm of the rupture length is equal to 0.23.  

The Campbell (1997) attenuation relationship is used here to evaluate the level of 

ground motion intensity at the location of each bridge.  

 ln𝑃𝑃𝐴 =  −3.512 + 0.904𝑀 − 1.328 ln�𝑆2 + (0.149 exp(0.647𝑀))2 

+[1.125 − 0.112 ln𝑆 − 0.0957𝑀]𝐹 + [0.440 − 0.171 ln𝑆]𝑆𝑆𝑆    

+[0.405 − 0.222 ln𝑆 ]𝑆𝐻𝑆       (3.4a)   

  

𝑆𝐿(𝑆𝐴𝐻) = 𝑆𝐿(𝑃𝑃𝐴) + 𝑐1 + 𝑐2 tanh[𝑐3(𝑀− 4.7)] + (𝑐4 + 𝑐5𝑀)𝑆  

 +0.5 𝑐6𝑆𝑆𝑆 + 𝑐6𝑆𝐻𝑆 + 𝑐7 tanh(𝑐8𝐷) (1 − 𝑆𝐻𝑆) + 𝑓𝑆𝑆(𝐷)  (3.5b)   

where PHA is the peak horizontal acceleration in g, M in the moment magnitude, R is the 

site-to-source distance, F is 0 for strike slip faulting and 1 otherwise, SSR is 1 for soft rock 

sites and 0 otherwise, SHR is 1 for hard rock sites and 0 otherwise, SAH is the median 
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value of horizontal spectral ordinates, D is the depth to the basement rock, cx are 

coefficients based on period and fSA(D) is a function based on the depth of the basement 

rock. Figure 3.3 shows the distribution of PHA values for a 7.5 magnitude earthquake 

occurring at site 2. 

In addition to the ground motion, liquefaction can pose a serious threat to 

transportation networks. San Francisco is particularly affected by liquefaction as a very 

large portion of the area has soil conditions that make for high liquefaction susceptibility. 

The HAZUS-MH (2012) methodology will be used to determine the expected peak 

ground deformation and damage associated with these deformations. The methodology 

considers the soil conditions at the site and the peak ground acceleration (PGA) that the 

site is subjected to. Each site has a relative susceptibility rating based on soil conditions. 

The ratings are broken up into the following categories: none, very low, low, medium, 

high and very high. Two types of peak ground displacements are considered: lateral 

spreading and settlement. Lateral spreading is dependent on the susceptibility, PGA and 

water depth at a site. Settlement is based on the susceptibility and the probability of 

liquefaction for each susceptibility class. Using the greater of the two displacements, 

fragility curves similar to those based on shaking are used which instead give the 

probability of failure for PGD. Figure 3.4 presents the liquefaction susceptibility map for 

the study area (USGS 2000).This combined with the damage from ground shaking will be 

used to determine the overall damage in the network. 

Bridge information is taken from the National Bridge inventory (NBI). After 

parsing the NBI for bridges near highway links, there are 2424 bridges in the network. 

Figure 3.5 presents the location and distribution of all the bridges on the study area. Since 
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the developed network contains thousands of bridges, it would be impractical to conduct 

individual finite element analysis on each individual bridge to measure the response to 

every possible earthquake scenario. For this purpose bridges which share common 

characteristics are separated into categories following the 28 categories provided by 

HAZUS-MH (2012), a loss estimation software package developed by the Federal 

Emergency Management Agency (FEMA). The characteristics are based on bridge 

geometry, construction materials and whether or not the bridge was designed with 

seismic hazard as a major concern. To estimate the likelihood of the bridges damaged 

under specific earthquake scenarios, the concept of fragility curves has been used. The 

fragility curves describe the probability of a given level of damage for a given ground 

motion intensity measure. The fragility function is defined as follows: 

 𝐹𝑘(𝑎|𝜁𝑘, 𝑐𝑘) =  𝛷 �
ln� 𝑎𝑐𝑘

�

𝜁𝑘
�        (3.6) 

where Fk(a) is the probability of exceeding damage state of k, Φ[∙] is the standardized 

normal distribution function and c and ζ are the median and standard deviation, 

respectively which are estimated using the maximum likelihood  function (Shinozuka et 

al. 2001). Damage states are descriptions of the level of damage that the bridge 

experiences. Four damage states: minor, moderate, extensive and complete have been 

considered in this study. The minor damage state corresponds to a situation where the 

bridge is fully functional and only minor repairs are needed and each state increases in 

severity until the complete damage state where a complete replacement of a span or 

bridge has to be conducted. Figure 3.6 shows the envelopes for the fragility curves for 

each of these bridges types.  
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Link damage states will be set equal to the highest damage state of the bridges on 

the link. In this way, the bridges act like a bottleneck for each link. For each damaged 

link, the capacity of the road may be reduced based on the damage. For minor damage, it 

is assumed that the bridge can still carry its full capacity. For moderate damage, it will be 

assumed that the link can still carry 25% of the original capacity. For extensive and 

complete damage, it will be assumed that the bridge will be closed for repair so the 

bridge will have no remaining capacity. 

In areas where a single bridge carries all the traffic between an origin-destination 

(O-D) pair, the capacity of the pair is equal to the capacity of the bridge in its damaged 

state. If a detour is available, the detour route can carry a portion of the traffic load. To 

conduct the analysis the concept of residual capacity can be utilized. Residual capacity 

describes the ability for a link to carry a percentage of its normal capacity even when 

damaged. For example, there could be a case with high residual capacity where detours 

allow for 50% of its original capacity when damaged (Bocchini and Frangopol 2011). 

3.1.3. Network Performance Measures 

To establish a holistic framework that evaluates the functionality of a transportation 

network, it is essential to identify appropriate performance measures that are capable 

estimating the state of the network pre- and post-event. Among various measures 

proposed to date, three measures of connectivity, flow capacity and travel time are 

proven to be the most appropriate ones. The flow capacity can be used to quantify the 

extent of damage to the network after an extreme event. This measure represents the 

largest possible flow between the origin and destination nodes without exceeding the 

capacity of the connecting links (Ahuja et al., 1993). The connectivity analysis 
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determines whether any path remains operational between the given origin and 

destination nodes and is mostly suitable for immediate post-disaster emergency response 

(Rojahn et al., 1992). It is especially important in situations where a node with very few 

links connected to it becomes isolated after a seismic event. Travel time is another 

measure that has been widely employed to estimate the level of performance of a 

damaged network (Nojima and Sugito, 2000, Stergiou and Kiremidjian, 2010, and Zhou 

et al., 2011). The calculation of this measure requires OD data, which can be accessed 

from surveys or mathematical models. The travel time can be obtained using static or 

dynamic traffic assignment models. To account for the time-dependent nature of travel 

time after an extreme event, dynamic traffic assignment models and OD modification 

factors are introduced to improve the results obtained from the static models (Shinozuka 

et al., 2005, Shiraki et al., 2007, and Kiremidjian et al., 2007).  

While these metrics are useful for looking at each aspect of risk analysis 

resilience assessment independently, it is useful to have one unit of measure that can be 

used on multiple aspects of analyses in this study. Monetary cost measures are applicable 

across various aspects of risk and resilience and can be easily calculated from bridge 

damage and travel delay. For that reason, the monetary cost will be used in this thesis. 

Costs will be broken up into two categories: direct and indirect costs.   

Direct costs relate to the actual costs of repair of the bridges in the network. The 

direct cost of an individual bridge is proportional to the level of damage the bridge 

sustains and the size and complexity of the bridge. Getting a detailed estimate for the cost 

of each bridge would be prohibitively complicated as it would depend on the bridge type, 

the extent of damage, the availability of local resources among other factors. In this study 
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an efficient method that estimates the repair costs of damaged bridges as a function of the 

damage state, initial cost and the size of the bridge is used. For each damage state, a 

damage ratio is given where the damage ratio is the cost of repair divided by the total 

replacement cost. The total expected bridge cost from the sth scenario earthquake can be 

expressed as: 

𝑆𝑅𝑠 = ∑ 𝑃(𝐷𝐷𝑘|𝐼𝑀𝑠).𝑅𝑐. 𝑟𝑘4
𝑘=1         (3.7) 

where RCs is the expected restoration cost of the bridge due to earthquake event s, IMs is 

the ground motion at the site of bridge due to sth earthquake event, Cc is the replacement 

value of the bridge, rk is the damage ratio corresponding to kth damage state, and P is the 

probability of bridge in kth damage state under ground motion IMs. The length and area 

of each bridge comes from the NBI database. Based on California Department of 

Transportation (2013) data, a value of $160 per square foot is a reasonable estimate for 

the replacement value. 

The indirect costs associated with delay can be viewed as the product of the delay 

(hours), the mean vehicle occupancy, and the value of time for the users (dollars/hour). 

The mean vehicle occupancy and value of time can differ based on local demographics 

and preferences. The delay is the change in total travel time across the network can be 

calculated using the following equation: 

𝑑 =  ∑ [𝑥𝑖′𝑡𝑖′(𝑥𝑖′)]  − ∑ [𝑥𝑖𝑡𝑖(𝑥𝑖)𝑁
𝑖=1

𝑁
𝑖=1  ]      (3.8) 

where d is the delay, N is the number of links, xi is the flow on link i before the 

earthquake, ti(xi) is the travel time of the link as a function of the flow before the 

earthquake, and xi’ and ti’ are post-earthquake flow and travel time, respectively. 
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After an earthquake, the demand for travel can also change. As a case in point, the 

static traffic assignment model used in the Bay area after the 1994 Northridge earthquake 

overestimated the travel time ten times larger than the travel time obtained from the local 

traffic reports (Werner et al., 2006).  There is a cost associated with the opportunities lost 

due to the forgone trips. As a lower bound, it can be estimated that the trip would be 

worth (at the least) the time it would take to travel to the destination. Similarly, if for 

some reason the travel time decreases after an earthquake, the user gains benefit. The 

opportunity cost is defined as follows:  

𝜙𝑝 =  ∑ ∑ �
(𝑞𝑖𝑖

𝑝−𝑞𝑖𝑖
′ 𝑝)(𝑡𝑖𝑖

′ −𝑡𝑖𝑖)

2
�𝑖𝑖         (3.9) 

where 𝜙𝑝is the opportunity cost, qij
p

 is the number of trips from zone i to zone j before an 

earthquake, tij is the travel time between zone i and j before an earthquake and similarly 

with qij
p’ and tij’ after an earthquake. As with travel delay, this value can be multiplied by 

the vehicle occupancy and value of time to get a monetary value. The trip reduction will 

follow the model used in Shinozuka et al. (2008) where the reduction in trip demand is 

linked to the reduction of usable floor space in the area. 

Unlike direct costs which can be estimated based on the state of the network 

directly after the earthquake, indirect costs keep piling up day after day until network 

performance is restored. Because of this, it is important to be able to estimate the time it 

takes for a bridge to be repaired. In this study, a set of continuous repair curves have been 

introduced following the HAZUS-MH (2012) strategy. To form these repair curves it is 

assumed that repair strategies will start right after the earthquake and will increase 

following a cumulative normal distribution function. The parameters of the normal 

distribution differ for different damage states indicating the faster repair for minor and 
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moderate damage states and more time consuming repair strategies for major and 

complete damage states (Figure 3.7). To assign a monetary value to the unit time values 

calculated during this procedure, a probability density function for the value of time for 

users in the San Francisco Bay area across different income levels proposed by Sall et al. 

(2009) will be used. Adjusting the value for 2014 dollars, an expected value of $12 an 

hour can be estimated. 

The performance measures mentioned here will be utilized in this and following 

chapters of this study. This demonstration will show the application of these performance 

measures to networks of realistic scale, traffic demand and seismic hazard levels and will 

elevate the topic of resilience beyond a conceptual framework and show the concept of 

resilience can be used to perform real-world analysis. 

3.3. Seismic Risk Analysis 

To conduct the seismic risk analyses, the attenuation relationships introduced in section 

3.1.2 have been used to estimate level of ground motion intensity measure under each of 

the scenario earthquakes at the location of the bridges. Figure 3.8 depicts the damage 

states in network bridges from one of the simulations under the 7.5 magnitude earthquake 

originated from Site 2 on San Andreas Fault. Considering the high susceptibility of the 

San Francisco Bay area to liquefaction, the damage states under PGD are controlling in 

most of the cases. Since Liquefaction results in extensive or complete damage states, the 

percentage of the failures in these damage states is substantial. Table 3.1 shows the 

percentages of bridges in each damage state. Most of the damage occurred in the San 

Francisco and San Mateo County, the two locations closest to the epicenter.  Link 

damage states will be set equal to the highest damage state of the bridges on the link. The 
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earthquake is expected to cause very large disruptions to the transportation network. 

Figure 3.9 shows the link damage states directly after the scenario earthquake depicted in 

Figure 3.8. As shown, the damage states tend to be higher towards the epicenter of the 

earthquake. In this scenario, it is especially problematic since the epicenter in proximity 

of the city of San Francisco which will cause significant travel delays.  

The disruption causes network users to change their paths, populating different 

roads. An example of this shift is seen in Figure 3.10. In this example, the San Mateo 

Bridge (shown here as the non-operational bridge in the southern part of the bay) is 

closed. Because of that, there is less activity on either end of the bay, resulting in a shift 

of demand to other areas. Similarly with the Golden Gate bridge (the non-operational 

bridge extending north of the city), the bridges nearby to the Golden Gate Bridge 

experience a substantial increase in traffic. Many of the links in blue experience little 

change in flow after the earthquake. This is due to fact that the link and surrounding links 

either didn’t have bridges or were far enough from the source that the impact was 

minimal. 

The high potential for structural damage is reflected in large direct damage costs. 

Figure 3.11 represents the direct losses associated with the scenario earthquakes of all 

magnitudes in Site 2. It’s clear that the direct losses increase with an increase in 

magnitude of the ground motion at the same site. Figure 3.12 shows the direct losses due 

to the magnitude of 7.5 across the different sites, highlighting the effect of the location of 

the source of the ground motion. In this case, the maximum destruction is occurring due 

to an earthquake in site 4 while the minimum is caused by an earthquake at site 1. This 

indicates the destructive effects of earthquakes that are originated in proximity of the 
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highly populated regions. Comparison of the direct losses over the San Andreas fault 

shows that they vary based on the location of the rupture and this could be attributed to 

the fact that some of them are far away from the densely populated regions. On the other 

hand, the site located on Hayward fault is in the heart of a populated region of the 

network and as such results in higher losses. For the same magnitudes site 4 on Hayward 

fault results in losses comparable to that of site 2, the most damaging of the sites located 

on the San Andreas Fault. Though locations further away from the population zones can 

also have a strong impact in areas outside the study area. 

A study of the simulation results for indirect losses indicates the same trend as 

those for direct losses. Figure 3.11 shows these results for a range of magnitudes 

generated in site 2 and for a specific magnitude across the different sites, Figure 3.12. For 

each of the scenario earthquakes the indirect losses are estimated as a combination of 

driver’s delay and opportunity losses. For very large magnitudes of earthquake (i.e 

Mw=8.5) there is a diminishing increase in the indirect costs. This may be due to the fact 

that the network is approaching a state already where many of the vulnerable bridges are 

already damaged. Also, as the ground motion intensity increases, the number of trips 

decrease which can offset some of the congestion that would be seen in a more static 

demand model. 

Seismic risk curves for direct damage and daily indirect damage are shown in 

Figure 3.13. This figure helps put the expected annual cost into perspective; while the 

very high magnitude earthquakes cause more damage than the lower magnitude 

earthquakes (in the billions of dollars), they are less likely than the lower magnitude 

earthquakes. The higher magnitude earthquake are represented in the shallow slopes 
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closer to the right side of the figure and the lower magnitude earthquakes have more 

influence on the left hand side of the figure where the slope is sharper. It is important to 

note that since the indirect damage is daily, the cost piles up until the network is repaired. 

As the network begins to return to normalcy, the daily indirect costs decrease. To 

simulate the effects of repair progress in the indirect costs endured by the network, the 

repair curves in Figure 3.7 will be used. For the scenario earthquake generated at site 2 

and different magnitudes, Figure 3.14 shows the decrement in the network indirect losses 

after the earthquake. As shown, scenarios with higher magnitudes, in addition to having 

higher initial indirect costs, also take longer to return to a state with lower costs. The 

actual repair time for completely damaged bridges isn’t dependent on the magnitude so 

the final bridges regardless of scenario finishes nearly the same time (assuming every 

case has a number of bridges in the complete damage state).  

 

 

Table 3.1: Percentages of bridges in each damage state for one of simulations of the 
scenario earthquake 

Damage State No damage Minor Moderate Extensive Complete 
Percent of bridges 71.3 6 2.7 5.3 14.7 
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Figure 3.1: Links and nodes representing the highway network of the study area  

 

 

Figure 3.2: Location of four epicenters on San Andreas and Hayward faults 
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Figure 3.3: Contour of PHA for an earthquake of 7.5 magnitude at Site 2  

 

 

Figure 3.4: Liquefaction susceptibility map of the San Francisco Bay area 
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Figure 3.5: Location and distribution of bridges in the study area  

 

 

Figure 3.6: Fragility curve envelopes for the 28 category of bridges 
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Figure 3.7: HAZUS-MH restoration curves for highway bridges  
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Figure 3.8: A realization of bridge damage states for the scenario earthquake 

 

Figure 3.9: A realization of link damage states for the scenario earthquake 

 

Figure 3.10: A realization of post-event traffic flow for the scenario earthquake 
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Figure 3.11: Frequency of direct costs (top) and daily indirect costs (bottom) by moment 
magnitude at site 2 
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Figure 3.12: Frequency of direct costs (top) and daily indirect costs (bottom) by site 
location 
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Figure 3.13: Seismic risk curves for the direct (top) and daily indirect costs (bottom) 
 

 

Figure 3.14: Change in indirect costs over time following a scenario earthquake 
at site 2  
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CHAPTER 4 

POST-EVENT PERFORMANCE ASSESSMENT  

4.1. Seismic Resilience Assessment of Highway Networks 

A resilient system is more reliable, faces fewer consequences in face of calamities, and 

has a faster recovery process. The novelty of the current research is to develop a holistic 

framework to quantitatively measure different dimensions of seismic resilience in a large 

transportation network. According to Bruneu et al. (2003) for a system to be resilient, 

four properties should be provided: robustness, redundancy, resourcefulness, and 

rapidity. Robustness is an indicator of the level of performance of the system 

immediately after the earthquake. To define robustness of the systems there is a need to 

define a suitable system performance metric to evaluate the serviceability of the highway 

bridge network. As mentioned in Section 3.1.3., the travel time is used as the 

performance metric for this study. The robustness measure, Rυ, for a transportation 

network, G, with measure of performance, ε(G,d,c), the vector of demands, d, the vector 

of user link functions, c, and the vector of link capacities, u, is defined as the relative 

performance retained under a given uniform capacity retention ratio, υ, with υ ∈ (0, 1], so 

that the new capacities are given by υu. Its mathematical definition is given as follows:  

𝑆𝜐(𝐺, 𝑐,𝑑, 𝑣,𝑢) = 1 − 𝜖𝜐

𝜖0
         (4.1) 

Redundancy is a concept which is closely related to robustness. In that way, 

redundancy can be viewed as a way to describe elements of robustness that don’t directly 

have to do with the vulnerability of the components of the system. In the extreme, a 

system is completely non-redundant when the failure of a component causes the failure of 

the entire system (Bertero and Bertero 1999). Redundancy is a complex measure that 
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helps quantify the ability of the network to provide alternate routes after a disturbance. In 

a redundant network, the network will continue to function, although the level of service 

might be affected due to a decreased capacity of the alternate routes. Redundancy is best 

defined if aspects of different networks were being compared. Furthermore, redundancy 

could be categorized as a topological property of the network rather than a flow-based or 

cost-based indicator. However, it should be noted that even the networks that have same 

redundancy properties might be different in term of capacity they could handle. 

Following the network theory the three following indices will be used to measure the 

connectivity of the network: i) alpha index, α, ii) beta index, β, and iii) gamma index, γ. 

The alpha index is the ratio of the number of cycles in a network divided by the 

maximum number of cycles in the network.  A cycle is a sequence of links that originate 

and end at the same node without reusing links. Networks with higher alpha values 

generally contain more possible paths to take between nodes. 

𝛼 = 𝑢
2𝑛−5

   , α ∈ (0, 1]        (4.2) 

The beta index is equal to the number of links in the network divided by the 

number of nodes in the network.  Simple networks have values less than one but more 

complex networks (such as typical highway networks) should have values greater than 

one. Networks where every node is connected but only contains one cycle have a value of 

one.  

𝛽 = 𝑙
𝑛
           (4.3) 

The gamma index measures connectivity by considering the ratio between the 

number of links and the maximum possible number of links. If every node was directly 

connected to every other node (without passing through an intermediate node,) the 
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gamma index would be equal to one. A value of one is unrealistic but offers an 

opportunity to compare the current level of connectivity in the network to the theoretical 

maximum level. 

𝛾 = 𝑙
3(𝑛−2)

   , γ ∈ (0, 1]        (4.4) 

where n is the number of nodes, l is the number of links (edges), and u is the number of 

cycles (l – n +p), and p is the number of sub-networks (Rodrigues 2013). With these 

indices, network owners can compare the level of connectivity in their network to other 

networks. The indices can also be used in comparing potential additions to the network in 

terms of their improvement to the networks connectivity.  

In this thesis, the most important aspect of resourcefulness is the ability to 

prioritize goals and to provide additional resources towards goals of particular 

importance. Specifically, these goals should include the accelerated repair of bridges that 

have the most impact on the network. The resourcefulness will be relative to a situation 

where there is no prioritization or additional resources allocated; a situation where every 

bridge is treated with equal weight and are repaired in the time it would take using 

conventional repair techniques.   

Rapidity is closely related to resourcefulness. Resourcefulness can lead to an 

increase in network performance partway through the repair process. After the bridges 

that are being prioritized are repaired, the change in network performance can taper off 

meaning that, oftentimes, the rapidity as defined in this paper is best suited for situations 

where the performance criteria establishes an acceptable level of performance that may 

not necessarily be equal to that of the fully functional state. 
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4.2. Robustness and Redundancy 

To measure the robustness of the network in terms of direct and indirect costs, the 

probability distributions of these factors have been generated. The earthquake is expected 

to result in 1.17 billion dollars in direct costs. Figure 4.1 shows the probability 

distribution of the direct and indirect costs. Indirect costs were measured against the 

initial Vehicle Hours of Travel (VHT). For the purpose of the analyses in this study, the 

performance criteria was set such that the indirect costs directly after the earthquake 

could not exceed 15% of the initial VHT in the network. The initial VHT was equal to 

2.25 million miles per day meaning that an increase of 338,000 hours in cost would cause 

the network to fail the performance criteria. The mean indirect cost for the earthquake 

was 760,000 hours daily, a large amount above the criteria. None of the simulations show 

that, for this scenario, the performance criteria will be met. If a transportation agency had 

this performance measure, they should consider strengthening the network by measures 

such as adding more links or retrofitting bridges to decrease vulnerability.  

Immediately after the earthquake, there is an average drop in vehicle trips by 

about 240,000 a day. This drop in trips comes from the expected damage to the floor 

space of structures in the TAZ affected by the earthquake. Even after the reduction in 

trips, the average trip length increased significantly. Before the event, the average trip 

length was equal to about 18.5 minutes. After the earthquake, this value increased to 23.5 

minutes, increased by 27.3%. It should be noted that this includes trips whose origins and 

destinations didn’t change after the earthquake. Trips with unchanged trip ends (such as 

work and school related trips), contributed more to this increase while trips whose ends 
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changed after contributed less because these users adapted their trip behavior to suit the 

change in network performance.  

Local agencies may want to consider adding redundancy in order to decrease the 

effects of the earthquake on the network performance. Values for the connectivity indices 

that define redundancy are given in Table 4.1. The importance of these indices is more 

apparent when compared to other networks. For this purpose, the values of connectivity 

indices from three locations: Los Angeles, CA; Reno, NV; and Boston, MA have been 

compared to those of the study area. The areas of the networks are clipped such that they 

are equal in geographic size to the study area and the network data was taken from the 

NHPN. The highway networks for these cities are shown in Figure 4.2. Los Angeles is 

similar to San Francisco is some ways; it is a coastal Californian city with high seismic 

susceptibility. However, Los Angeles is significantly larger in population and the size of 

the urban area. Reno is less populated and dense then San Francisco and has a simpler 

highway network. Boston, although located on the opposite side of the country, is similar 

to San Francisco in population and land area. The connectivity indices for these cities are 

also in Table 4.1.  

As shown, the redundancy of the network is not directly correlated with the 

complexity of the network. Reno, despite being the simplest network, has similar to 

values to the San Francisco network. This is because the nodes on the highway network 

in the Reno network tend to have a higher degree. Boston, despite being a similar city to 

San Francisco in many respects, has higher connectivity values than San Francisco. This 

may be intuitive looking at the maps of the two highway networks where Boston looks 

like a more complicated, interconnected network but the index values confirm this 
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mathematically. The Los Angeles network is very densely populated throughout the study 

area. This plays a part in the need for a complex, deeply connected highway network and 

it shows in the high index values. Note that these comparisons are made solely on 

highway links. The bay area is very much dependent on a few bridges that connect highly 

populated areas. This is one reason why the topology of the network isn’t as strong as 

some of the comparisons. In order to increase the redundancy, more bridges would have 

to be added across the water. These bridges would be expensive and could be susceptible 

to earthquake damage themselves so these costs would have to be balanced against the 

benefit of redundancy. 

4.3. Repair Strategies 

Repair time itself can be taken into account when considering the cost of repairing a 

bridge. This is seen in A + B bidding. In this bidding style, bids are awarded to the 

contractor who can minimize the cost to repair the bridge, A, and minimize the time to 

repair, B. The total cost of the bridge repair can be seen as A + B multiplied by the daily 

cost of closure. The competition between contractors to finish early leads to repair times 

that are shorter than what would be estimated after other bidding processes. The 

NYSDOT, an early adopter of A+B bidding, started using the process in 1994. The 

bidding process was to be restricted to critical projects or project phases where traffic 

inconvenience and delays must be held to a minimum and should not be used as a 

routine. Under normal circumstances, contractors are expected to work about 40 hours a 

week. For the projects considered for A+B bidding, the contractor should be allowed to 

work 60 hours a week with less restrictions on overtime. The NYSDOT found that 

contractors are bidding at 31% below the engineer’s estimated time in A+B contracts. In 
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order to make sure that the bridge is repaired in time, incentives and disincentives are 

placed that reward contractors for finishing ahead of schedule and fine them for finishing 

behind schedule. Over the course of 133 contracts, the NYSDOT found that 114 earned 

incentives totaling $57.6 million while securing savings of $305 million in user costs 

(NYSDOT 1999). In this paper, the A+B concept will be further extended by considering 

the cost of repair and the user costs across an entire network of bridges rather than just 

individual construction contracts. 

Adding incentives increases the possibility of bridges being repaired ahead of the 

schedule. There have been many documented cases where this has been applied to 

emergency scenarios. The collision of a barge to bridge pier on I-40 near Webbers Falls, 

Oklahoma in 2002 resulted in collapse of one of the bridge spans. This bridge was a 

critical component of the local transportation network and it was imperative that the 

bridge be restored in a timely manner. For this purpose, the design, demolition and 

reconstruction phases were all incentivized. The demolition phase was finished by the 

scheduled time. The design phase was finished 4 days ahead of schedule with a bonus of 

$5,000 a day. The reconstruction phase was originally expected to take 72 days. 

Competitive A+B bidding helped sign a contract with a 57 day schedule. In addition to 

these incentives, a $144,000 per day bonus was awarded which lead to the phase 

completion in 46 days instead. The entire project was finished in 64 days after the 

collapse, a record for a project of this type (Bai et al. 2006). Table 4.2 demonstrates the 

details related to different phases of the project and the cost and benefits associated with 

incentivizing activities. 
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One of the examples of incentivizing the repair phases was after the 1994 

Northridge earthquake when many key components of the transportation network were 

damaged. For instance, a segment of I-10 was heavily incentivized with an 

incentive/disincentive of $200,000 for each day deviated from schedule (approximately 

$315,000 in 2014 dollars adjusted for inflation). This project involved the simultaneous 

construction of two bridges with work running 24-hours a day, 7 days a week. 228 

carpenters and 134 iron workers were assigned to the project which is a large increase 

from the 65 and 15 respectively for a normal project. As shown in  

Table 4.3 , there is a correlation between the incentives and the time percent 

decrease in repair time (US DOT 2002). In addition to incentivizing the repair process, 

the recently developed construction techniques could be used to reduce the repair time 

over conventional construction techniques. One such technique is the accelerated bridge 

construction (ABC). Under ABC, sections of the bridge are constructed and assembled 

off-site and then put in place afterwards. This technique has been used extensively in 

recent years for the construction of new bridges but it can also be used in emergency 

replacement. Benefits of this technique include a much shorter construction time even 

with the inclusion of the off-site construction but it can cost more than conventional 

construction. It is estimated that the direct cost of ABC is about 30% higher than 

conventional construction (California Department of Transportation 2008). Also, not all 

bridges are candidates for ABC replacement. In general, simpler bridges are better 

candidates for this technique.  

Combining incentivizing and ABC has been shown to have impressive results. In 

2007, a fuel tanker traveling in Oakland, California tipped over and caused an explosion 
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which damaged the I-580/990 connector. Two spans were destroyed. The indirect losses 

of this segment were estimated to tally $6 million a day for the busy San Francisco bay 

area. Using the ABC techniques and a $200,000 daily incentive resulted in the 

completion of the project in only 20 days after the accident (California Department of 

Transportation 2008).  

Other techniques have been utilized such as modular bridging which can provide 

temporary bridges while the original bridge is repaired. The concept from a cost 

standpoint is similar; an extra direct cost is incurred but there should be a reduction in the 

indirect cost. In this thesis, the application of the A+B and ABC techniques  in the 

rapidity of repairs after earthquakes will be presented considering a decrease in the mean 

repair time of bridges and an increase in the direct cost of the bridges. Because of the 

complex interaction between bridges in a network where multiple bridges fail 

simultaneously, it would be an over simplification to apply an indirect cost per day to 

each bridge and instead the total indirect cost summed across the entire network will be 

the focus in this thesis. 

4.4. Resourcefulness and Rapidity 

To simulate the impact of resourcefulness, three different repair techniques will 

be tested: i) conventional repair ii) incentivized repair and iii) accelerated construction 

techniques. Considering the importance of the allocation of resources and the repair 

strategies, it is required to identify the links that mostly impact the performance metrics 

of the system. For this purpose, the concept of the betweenness centrality from network 

theory will be used to rank the most important components of the system. The 



 

49 
 

betweenness centrality of a link, l, is defined as the number of shortest paths between pair 

of nodes that pass through a specific link, given by this equation: 

𝐵𝑅𝑙 = ∑ 𝑆𝑃𝑖𝑖(𝑙)/𝑆𝑃𝑖𝑖𝑖≠𝑖≠𝑙          (4.5) 

where SP(l) is the number of shortest paths between nodes i and j that pass through l and 

SP is the total number of shortest paths. After each link is ranked, the links with the 

highest rank will have the additional resources allocated to the bridges on the link. From 

there, the next highest link is evaluated and the process is repeated until the additional 

resources are dispensed. 

The benefit of resourcefulness is shown in Figures 4.3-4.8. Accelerating the repair 

of important bridges helps decrease the indirect costs for the users on the network over 

the baseline case where no accelerations are committed. In order for the accelerations to 

be worth the investment, the decrease in indirect cost should exceed the additional costs 

for repair. The decrease in indirect costs is measured as the area between the non-

accelerated curve and the curves for other repair scenarios in Figure 4.3. Each curve has 

been averaged from 100 simulations for each scenario. Data is taken in time steps of 50 

days. As shown, there is a reduction in indirect costs with the increase in the number of 

bridges accelerated and the scenarios with accelerated construction techniques showed an 

improvement over scenarios with incentivization alone. In every scenario, there is a large 

decrease in daily cost in the 50 to 100 day time step. This is due to the fact that this is 

when the majority of the extensively damaged bridges become repaired. In the more 

accelerated scenarios, the decrease starts earlier and is more pronounced. This is due to 

the repair time of accelerated extensive and complete damaged bridges being completed 

during the first 100 days. The scenarios with accelerated construction techniques presents 



 

50 
 

an earlier drop than those with incentives only, this is because the accelerated 

construction techniques have completed quicker. Eventually, the indirect costs per day 

converge as the last few bridges are repaired. At this point, even though there aren’t 

many bridges remaining, the impact of the damaged bridges is still substantial.  

The indirect costs decrease as the physical state of the bridges improves. Figure 

4.4 shows the number of bridges at each damage state throughout the repair process. As 

shown, there are a large number of bridges in the more severe damage states that remain 

to be repaired even after the less severe bridges are repaired. This is unfortunate as the 

higher damage states also affect the  network performance more than the lower damage 

states because the more damaged bridges carry less (if any) capacity. Also shown are 

repair curves with resourceful prioritization for extensive and complete damage state. 

Similar curves for minor and moderate damage states are coincident with the non-

resourceful curves as these damage states are less likely to be prioritized for repair in this 

scenario. Comparing this figure with Figure 4.3, it can be seen that a period of rapid 

repair results in a sharp decrease in the indirect costs namely in the 0 to 100 day range. 

Also shown in a fairly constant rate of repair between the 100 to 350 day range after 

which the repairs taper off.  

For rapidity, let the performance measure be the time it would take to return to 

95% of the original performance where the loss of performance is the ratio of the delay to 

the total VHT. Local agencies will have to be able to set different measures based on the 

standards they hold. A more resourceful network may meet rapidity goals sooner as 

shown in Figure 4.5. The expected amount of time it would take to meet the performance 

measure is less than 200 days for the quickest repair scenario. For comparisons sake, 
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without the additional resources, it would take 350 days to meet the criteria. However, if 

the performance measure was set to a complete restoration of performance, the 

resourcefulness would not significantly contribute to rapidity. 

The total cost accumulated piles up quickly early on in the repair stages and tapers 

off as the network achieves better performance. Indirect costs accumulate quickly early 

on in the repair stages and slows down when more bridges are repaired and stops 

accumulating when the network reaches its pre-earthquake state. The indirect costs end 

up being the dominant cost after accumulation of all other costs. The additional repair 

costs and incentives are small in comparison to the indirect costs. This shows that, if even 

a fairly small percentage of the indirect cost is deterred, the additional repair and 

incentives will be worth it. As the number of bridges accelerated increases, the indirect 

cost decreases and the incentives and additional direct costs increase. Even then, the 

indirect cost still dominates and the additional costs are small in comparison. 

Figure 4.6 depicts the costs associated with different rapid repair techniques over 

time. With incentivization alone, the direct costs are equal early on. After the incentivized 

bridges are completely repaired, the baseline scenario and the incentivized scenarios 

deviate in favor of the incentivized scenarios showing that the offset of indirect costs 

outweigh the incentivization costs. Similar behavior is seen in the ABC with 

incentivization with the exception of the increased direct costs early on due to the 

increased construction costs associated with the ABC. 

Table 4.4 shows the change in total costs using incentivization alone and ABC 

with incentivization over the baseline cost. As shown, both techniques offer 

improvements over baseline scenario. While there is a continual decrease in the costs as 
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more bridge repairs are accelerated, there is a decrease in efficiency. For example, there 

is a decrease in cost of over 14% after 10% of the bridges are incentivized. To decrease 

the cost by an additional 5%, another 20% of the severely damaged bridges must be 

accelerated. This shows the importance of being resourceful enough to at least accelerate 

the repair on the most important links. This can include making a list of contractors for 

invitational bidding and providing the resources needed for ABC among other means of 

preparation. In this study, there is an improvement with each of the acceleration regimes 

but it this can be different depending on the study area. These characteristics may include 

the costs of the bridges damaged, the redundancy of the network (availability of detours 

with similar costs) and the travel behavior and volume of the users on the network.  

Next is the comparison between a prioritized and the non-prioritized repair 

processes. Figure 4.7 demonstrates this for the 10% incentivized scenario as an example. 

In this case, even without targeted prioritization, there is still a benefit from improving 

the network. However, the benefit is significantly less than in the prioritized scenario. 

The difference between the two prioritization scenarios is about $390 million dollars; a 

cost that can be easily avoided by determining the importance of the links before the 

seismic event.    
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Table 4.1: Connectivity indices for the highway networks of San Francisco, Los 
Angeles, Reno and Boston 

 San Francisco Los Angeles Reno Boston 
α 0.269 0.373 0.272 0.303 
β 1.536 1.745 1.526 1.605 
γ 0.513 0.582 0.523 0.536 
N 707 2264 76 1015 
L 1086 3950 116 1629 

 
 

Table 4.2: Oklahoma I-40 Bridge repair acceleration using ABC techniques 

Project Reconstruction Demolitio
n Design Total 

Scheduled completion 
time 

72 days expected, 57 
days as bid 16 days 16 days 89-104 days 

Completion time 46 days 16 days 12 days 64 days 
Decreased Time (%) 19.3 over bid 0 25% 28.1 to 38.4 
Bonus/day $144,000 $50,000 $5,000 - 
Total Bonus (est.) $1,488,000 $0 $20,000 $1,508,000 
Cost of project (no 
bonus) $10,900,000 $850,000 $137,000 $11,887,000 

Bonus / Cost of project 13.65% 0.00% 14.60% 12.69% 
 

 

Table 4.3: Example of bridge repair acceleration after the Northridge earthquake using 
incentives 

Project I-10 SR-14/I-5 I-5 Gavin SR-118 
Scheduled completion 
time 158 days 207 days 154 days 124 days 

Completion time 84 days 172 days 121 days 116 days 
Decreased Time (%) 46.8 16.9 21.9 7.3 
Bonus/day $200,000 $100,000 $150,000 $50,000 
Total Bonus (est.) $14,800,000 $3,500,000 $4,950,000 $400,000 
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Table 4.4: Improvement over baseline for total costs at the end of the repair process 

Repair Strategy 
Improvement 

Percent Million 
dollars 

Incentive (5%) 11.5 393 
Incentive (10%) 14.10 481 
Incentive (30%) 19.10 652 
ABC+ Incentive 
(5%) 15.90 542 

ABC+ Incentive 
(10%) 19.20 655 

ABC+ Incentive 
(30%) 26.90 917 
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Figure 4.1: Cumulative probabilities for direct (left) and indirect cost (right) 

 
(a)                                                                        (b) 

 

(c)                                                                        (d) 

     
Figure 4.2: Highway networks for (a) San Francisco, (b) Los Angeles, (c) Reno, and (d) 

Boston 
  

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.9 1.1 1.3 1.5

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Direct cost (billion $)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Daily indirect cost (Million $/day)



 

56 
 

 

 

Figure 4.3: Effect of different repair strategies on traffic delay after the earthquake 
 

 

Figure 4.4: Number of bridges in each damage state throughout repair 
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Figure 4.5: Performance curve for network delay with incentivization (top) and with 
incentivization and accelerated bridge construction technique (bottom) 
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Figure 4.6: Total cost including incentivizing (left) and combination of incentivizing and 
ABC technique (right) 

 

 

Figure 4.7: Comparison between repair processes with and without prioritization 
techniques 
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CHAPTER 5 

PRE-EVENT DAMAGE MITIGATION 

5.1. Introduction 

Much of the discussion thus far in the thesis as it pertains to resilience has been focused 

on the post-earthquake behavior of network but decision can be made prior to the event to 

bolster resilience as well. Retrofitting bridges is an effective way to lessen the initial 

impact of earthquakes and thus increases the robustness of the network. In 1971, the San 

Fernando earthquake struck the greater Los Angeles area causing extensive damage 

throughout the region. The general unpreparedness served as a wakeup call to engineers 

which lead to an increased awareness of the importance of proactive measures to reduce 

earthquake damage. Since then, seismic design became a crucial part of the bridge design 

process.  Bridges were designed to be more ductile as to avoid sudden, catastrophic 

failure (Rafik and Liao 2003). However, the bridges built prior to 1971 are still key 

components of modern highway networks. Also, even when designed with seismic 

concerns in mind, bridges deteriorate over time and need to be brought up to par with 

seismic demand. It is for this reason that bridges that are vulnerable to seismic hazards 

are retrofit. Bridge retrofitting can extend the lifespan of bridges and in many instances 

do so in a cost-effective manner. Retrofit costs, while sometimes considerable, are 

oftentimes small compared the large-scale repair of a damaged bridge or the cost of a 

complete replacement of a bridge that is beyond repair. However, if the bridge is rarely or 

never subject to enough seismic demand to damage it, the retrofit is for naught.  

After each major earthquake, the awareness of the need for retrofitting and better 

seismic design increases dramatically. California, being especially susceptible to 
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earthquakes, has been acutely aware of the need for retrofit. Earthquakes serve as a 

learning experience as retrofitting methods and seismic design considerations thought to 

be adequate before the earthquake are shown to be faulty. Shortly thereafter, new, 

hopefully more effective methods are developed based on the data from previous 

earthquakes. Methods supported by Caltrans include seat extensions, cable restrainers, 

column jacketing, shear keys and additional piles among other methods (Roberts 2005). 

Seismic retrofit practices differ across different geographical regions. Different 

regions are subject to different levels of seismic hazard and some areas are more affected 

by liquefaction and landslides than others. In the central and southeastern United States, 

bridges are threatened by earthquakes especially in the New Madrid Seismic Zone. Over 

100,000 bridges existing in the states near the New Madrid Seismic Zone many of which 

are in danger should a major earthquake strike the area. Many of the bridges were 

constructed without seismic concerns in mind which further puts the area at risk to suffer 

extreme possible losses. There are five primary retrofit measures employed in the area: 

seismic isolation, longitudinal and transverse restrainers, seat extenders, column 

strengthening and bent cap strengthening (Wright et al. 2011). 

The Pacific Northwest is another part of United States that is highly susceptible to 

earthquakes. There have been at least 20 damaging earthquakes in the past 125 years in 

Washington including the 6.8 Mw Nisqually earthquake which struck Northeast of the 

capital city Olympia, Washington in 2001. Oregon and Washington have made efforts to 

ensure the ability to protect bridges against these events.  Like California, despite being 

in an area of high seismic hazard, there are many bridges still in operation from a time of 

more lax seismic design so the need to retrofit bridges is critical. Some retrofitting 
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techniques used include restrainer bars and cables, replacement or modification of 

vulnerable bearing types and column jackets (steel usually but composite materials have 

been used in the past) (Fridley 2007). 

5.2. Retrofit Methods 

There are a range of retrofit methods that are employed by different agencies. Different 

retrofit methods benefit bridge strength in various ways from increasing the flexural 

capacity of specific bridge components to preventing the unseating of bridge spans. 

Below is an overview of some of the more common retrofit methods. 

Seismic isolation increases in the fundamental period of vibration of the bridge 

which in turn can reduce the accelerations in the superstructure and decrease the inertia 

forces transmitted into the substructure. A consequence of this is that the relative 

displacement of the superstructure and the substructure increase but this displacement is 

designed to stay within acceptable levels. Isolation bearings are installed that remain stiff 

under normal conditions but will dissipate energy under earthquake loadings. Common 

types of bearings including elastomeric bearings where a (typically) lead filled bearing is 

utilized whose lead core deforms under extreme loading and friction based bearings 

where, after a friction coefficient is exceeded, slippage occurs and energy is dissipated by 

the friction caused by this slippage (FHWA 2006). 

Restrainer cables and bars were among the first type of retrofit strategies used in 

California after the 1971 San Fernando earthquake. Restrainer bars and cables serve as a 

low cost means to prevent the loss of support between the superstructure and the bearing 

seats. Restrainer cables and bars are designed to stay in the elastic range under stress and 

usually only carry tension forces (Roberts 1971). Either bars or cables can be used but 
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cables are more common for a variety of reasons. Cables are able to be used in shorter 

lengths which can often give cables an economic advantage over bars. Cables are also 

able to accommodate transverse and vertical movements while bars might require 

additional vertical and transverse restraint. While restrainer cables and bars have been 

effective in many situations, they have failed in larger earthquakes. This was 

demonstrated in recent times during earthquakes such as the 1989 Loma Prieta 

earthquake in California and the 1995 Kobe earthquake in Japan. Restrainer cables and 

bars are often used in conjunction with other retrofitting methods (Shafieezadeh et al. 

2009). 

Seat extenders widen bent caps and abutments and help prevent unseating of 

bridge spans. Seat extenders are additions of concrete or steel to the sides of bent caps 

and abutments that are flush with the top of these components. During an earthquake, this 

extra space will allow for more movement of bridge spans without unseating. For bridges 

at risk of unseating, seat extenders have been shown to be very cost effective as they are 

among the cheapest retrofit to prevent unseating. Catcher blocks are similar to seat 

extenders in many ways. These blocks are attached to the top of abutments or bents and 

“catch” the girders should the bearings fail. Catcher blocks are used in place of seat 

extenders with high bearings. The reason catcher blocks are used is that there may not be 

sufficient space in high bearing bridges to attach seat extenders (FHWA 2006). 

Column jacketing is another form of retrofitting used often. In reinforced concrete 

columns, it is common that, when subject to earthquakes, the vertical reinforcement bows 

out reducing the strength of the column and possibly leading to the collapse of the bridge. 

This is due to inadequate strength in the hoops in the column. Column jacketing seeks to 
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make up for this but enveloping the column in a material that will help prevent the 

column from bursting. Jacketing can be made from a variety of materials from steel to 

concrete to FRP. Steel is the preferred material by some agencies including Caltrans. In 

steel jacketing, two shells are wrapped around the column and welding along the vertical 

seam between them. The plates are usually given a small clearance between themselves 

and the column of 0.5 to 1 inch and this space is then filled with grout. The plates 

themselves are between 0.375 and 1 inch thick. Both circular and rectangular columns 

can be retrofitting with jacketing but rectangular columns benefit more from oval or 

circular shaped jacket than it would a rectangular one. Jacketing can be used for the entire 

height of the column or just a portion. In either case, space is left at the top and bottom of 

the column where there is no jacketing as to make sure the jacketing doesn’t provide 

strength in the axial direction (FHWA 2006). 

The main function of bent caps are to transfer loads from the bearings of the 

bridge down to the columns but during an earthquake, the shear strength and flexural 

capacity of the caps are tested in ways that aren’t seen under normal service conditions. 

For this reason, bent caps are sometimes considered for retrofit. One common way to 

retrofit the caps is to add steel rods to increase compressive strength. To do this, 

posttensioned rods are added along the outside of the cap running lengthwise or 

prestressed rods are added through the bent cap itself. Another retrofit method is to add 

steel plates along the top and bottom of the bent cap. These two plates are attached by 

steel rods. This serves to brace the bent cap against shear forces. Yet another method is to 

encase the entire bent cap in concrete or steel which will increase flexural and shear 

strength (Wright et al. 2011).  
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Shear keys are useful when trying to prevent excessive movement in the 

transverse direction. Shear keys are simply blocks that are placed between girders that 

serve to provide lateral restraint in the event that the superstructure sways during an 

earthquake. Typically, shear keys are made of reinforced concrete and are attached to the 

top of bent cables with dowels. Similar in purpose to shear keys are keeper brackets. 

Keeper brackets are steel brackets that are attached to the top of the bent cap and both 

side of bridge girders. As with the shear keys, keeper brackets allows a transfer of lateral 

force from the superstructure to the substructure (Wright et al 2011). 

5.3. Retrofitting Standards 

The FHWA’s Seismic Retrofitting Manual for Highway Structures and its predeceasing 

documents serve as guidelines for many transportation agencies on how to design bridge 

retrofits and how to select bridges for retrofit. Specific types of bridges may have their 

own manual as well such as the Seismic Retrofitting Guidelines for Complex Steel Truss 

Highway Bridges which itself is largely based on the previously mentioned manual. 

These manuals serve as a useful tools to help design bridges and select bridges to retrofit 

but, especially on selecting bridges, are simplified and don’t take into account the 

complexities that arise when considering entire networks of bridges. 

The Seismic Retrofitting Manual for Highway Structures employed a rating 

system that assign a number to each bridge based on its likelihood to benefit substantially 

from retrofitting and using these ratings, transportation agencies and other bridge owners 

can determine the order of the bridges that need to be retrofit. A bridge’s importance is 

based on a classification labeled “essential”. As essential bridge is one has one or more of 

the following characteristics: the bridge is required for secondary life safety (necessary 
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for emergency vehicles or carries an important lifeline such as water for example); the 

bridges loss would create major economic impact; the bridge is defined as critical by a 

local emergency plan; The bridge is critical to defense and security. The manual then 

recommends if the bridge should be retrofit or not based on an acceptable level of 

performance the bridge should meet given the importance of the bridge, the lifespan of 

the bridge and the hazard level of the bridge site. 

The Indices Method can be used to rank bridges by giving them a rank. The 

bridges rank, R is the product of a vulnerability rating, V, and the seismic hazard rating, 

E. Both V and E rank from 1 through 10 meaning R ranks from 0 through 100. The 

vulnerability rating V is the maximum of two other rankings V1 and V2 where V1 is 

calculated based on the vulnerability of the connections, bearings and seat widths and V2 

is a rating based on the vulnerability of the columns, abutments, and the vulnerability to 

liquefaction. A flow chart used to find these values can be found in Figure 5.1. 

Another method in the manual is Expected Cost Method. This method is very 

much similar to how direct costs were calculated earlier in this study in that the expected 

level of damage is found for each bridge and the cost for each bridge will be the level of 

damage multiplied by both a repair cost ratio and a total replacement cost. The problem 

with the method as presented in the manual is that it is largely incomplete. The manual 

mentions that indirect costs should be considered but says that “quantifying these costs is 

extremely difficult and cannot be done without considering each bridge in its functional 

and societal context. Risk assessment models of complete highway systems are under 

development for this and other purposes, and are a promising tool for developing insight 

into the complex relationships that govern indirect costs.” Also mentioned is the need to 
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consider the redundancy of the bridge in the network but the description is very much 

vague and leaves the level of redundancy and the effect of redundancy as a matter of 

judgment. The redundancy is largely a matter of availability of local detours but doesn’t 

give any quantifiable method to determine redundancy and doesn’t consider many of the 

complexities that come up when dealing with larger networks. 

The last method mentioned is the Seismic Risk Assessment Method which 

involves using fragility functions to perform explicit analysis of highway networks and 

considers traffic flow and other considerations. Unfortunately, how exactly to use this 

method isn’t explained as it seems more of a class of methods than one particular method 

itself. This method would be the most complex and the most complete. 

If the benefit of retrofitting could be translated into changes in fragility curves, it 

would make the analysis of post-earthquake bridge networks much easier. Fragility 

curves, as mentioned earlier simplify bridge characteristics in a way that gives the 

probability of failure as a simple function of ground motion and bridge type. However, 

the fragility is still based on a more complex analysis bridges that considers the failure of 

individual components of the bridge. The benefit of retrofit is also complex as different 

retrofit techniques prevent different types of damage to specific bridge components. 

Because of this, simplifying the effect of retrofit can be a difficult task. Nonetheless, it 

has been attempted by various researchers. Some examples of such attempts are as 

follows. 

Agrawal et al. (2012) looked at the retrofit of multi-span continuous steel bridges 

in New York. This study created a model bridge and compared the damage before and 

after a range of ground motion was applied to the bridge. The bridge itself was a three 
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span bridge with outer spans of 30m and with the inner span crossing 36m. The bridge 

features 6 steel girders supporting a concrete slab. The retrofit schemes tested were 

elastomeric bearings, lead-rubber bearings, viscous damping and jacketing with carbon 

fiber reinforcement. Elastomeric bearings and lead-rubber bearings were tested 

individually and with a range of dampening applied. The effects of these retrofits were 

quite significant. The median PGA for each damage state for the retrofit schemes can be 

found in Table 5.1. It was also shown that the risk of rupture in the piers after applying 

the jacketing was very small showing that this type of retrofit can prevent one of the most 

catastrophic modes of failure. 

Billah et al. (2012) compared the effects of different jacketing on the fragility of 

multicolumn bridge bents. The types of jackets include steel, concrete, engineered 

cementitious composite (ECC) and carbon-fiber reinforced polymer. This study used 40 

ground motion excitations with 20 being near-fault and 20 being far-field. In this case, 

near-fault means that the site-to-source distance is less than 10 miles and far-field is the 

opposite of near-fault. Nonlinear time-history analysis was performed on a bridge and the 

retrofit schemes were compared. In this study, it was found that ECC and the carbon fiber 

reinforced jackets were most effective. 

Kim and Shinozuka (2003) used two different example bridge types and subjected 

them to a large range of ground accelerations to create fragility curves for bridges retrofit 

with steel jacketing. The first bridge was a 3 span bridge with a total length of 34m and 

the second bridge was a 5 span bridge with a length of 242m and also had an expansion 

join in the middle span. 60 ground accelerations were used based on motions in the Los 

Angeles area. In these bridges, it can be seen that jacketing, while less effective in 
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preventing lesser damage, can greatly prevent more worrisome damage states. The 

number of damaged bridges in this study’s simulations can be found in Table 5.2 and 

fragility curves can be found in Figure 5.2. 

Fridley and Ma (2007) conducted a report for the Washington Department of 

Transportation that looked at the fragility of bridges before and after retrofit. The model 

bridge was a “typical Washington bridge” with 120ft spans. As often used in fragility 

analysis, peak ground acceleration will be used to describe seismic hazard. A range of 

jacketing efforts were looked at including quarter, half and full-height steel jacketing as 

well as full-height composite jacketing. As with the other studies, it can be seen that 

jacketing can greatly help prevent damage from earthquakes including the more major 

damage states. Fragility curve parameters can be found in Table 5.3. This data was also 

used to determine which retrofit should be selected by using design PGA and acceptable 

probably of failure. 

Padgett and DesRoches (2008) present a method to develop fragility curves for 

retrofitted bridges. Retrofit methods used in the example include column jackets, 

elastomeric bearings, restrainer cables, seat extenders and shear keys. Emphasized in this 

methodology is how the state of the bridge is based on multi-component analysis. In the 

sample three-span bridge used for the demonstration, the bearings helped at lower 

damage states while jacketing and seat extenders helped more in the major damage states. 

This shows that the selection of retrofit should be based on the damage state of interest. 

5.4. Retrofit Optimization Algorithms 

Currently, it is very difficult for decision makers to properly select bridges for retrofit. 

Oftentimes, the bridge retrofit selection process considers the bridge by itself rather than 
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considering it as a component in a large network. While selecting bridges for retrofit 

based on the expected physical damage can be done fairly easily, gauging the greater 

impact of the bridge failure is difficult. This is especially true in earthquake situations 

where there can be multiple simultaneous bridge failures. Because of this, the actual 

selection of which bridges in a network are retrofit aren’t made in the most effective and 

efficient manner. 

It would be of great benefit if there was an optimization scheme that minimizes 

losses from earthquakes without overspending on retrofits. There are numerous types of 

optimization algorithms that can be applied but the difficulty of implementation but the 

accuracy and the computational intensiveness of the algorithms make actually utilizing 

some these algorithms difficult. In this section, different types of optimization methods 

that have been used in retrofit selection problems will be detailed and a novel 

optimization method will be introduced that will provide an effective retrofit scheme that 

runs with reasonable computational resources. 

The three existing optimization methods detailed will include genetic algorithms, neural 

networks and two-stage stochastic optimization.  

5.4.1. Genetic Algorithms 

Genetic algorithms mimic natural selection to find an optimal solution to a given 

problem. In a genetic algorithm, potential solutions are defined with a genome. In the 

biological sciences, a genome is the set of DNA for an organism and the DNA defines 

what an organism is. The algorithms genome behaves in a similar way. In the retrofit 

problem, the genome may be a binary list which bridges are retrofit with which types of 

bridge retrofit. Genetic algorithms have been used in problems that bear similarities to the 
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goals in this thesis. Dong et al (2014) used genetic algorithms to find a set of pareto-

optimal solutions that minimize retrofit cost and societal cost with particular focus on 

sustainability including CO2 emissions. Elhadidy et al. (2013) created a visual basic 

program that utilizes a genetic algorithm to find the pareto-optimal solution set that helps 

decision makers decide if and when pavement should be rehabilitated in a network by 

minimizing maintenance cost and maximizing pavement condition. Bocchini and 

Frangopol (2012) used genetic algorithms to determine the optimal set of solutions for 

interventions on bridges on a highway segment where the objective is to minimize cost as 

well as increase resilience where resilience is based on the travel time in the network.  

In nature, random mutations can change a genome for a particular organism. This 

mutation may affect how well the organism thrives in its environment. The organism may 

be more or less likely to thrive or the mutation may have no noticeable effect at all. If the 

organism is more likely to thrive, it will be more likely to pass on this mutation and its 

offspring will carry the benefits. If the mutation is not beneficial, the opposite is true. The 

genetic algorithm works much in the same way. Mutations are applied to the genome in a 

way that change the values in the genome. .With these new values will thus change the 

objective function. If the new genome improves the objective function, it will be more 

likely to produce offspring that may have mutations of their own. Through this process, 

the algorithm generally improves over time and the algorithm is stopped when 

convergence is found.  

Genetic algorithms do carry significant drawbacks however. For one, the 

algorithm doesn’t promise to find the globally optimal solution. Due to its nature as a 

stochastic search algorithm, it is prone to getting “stuck” at local maxima and minima. 
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This can be remedied sometimes with starting the algorithm with different starting 

genomes but this is at the expense of computational resources and still doesn’t guarantee 

the optimal solution. Also, genetic algorithms often take a long time to converge. This 

last point in particular is the reason why this class of algorithms will not be used in this 

study. Each evaluation of the objective function comes with computationally intensive 

processes such as calculating user equilibrium in a network so if the genetic algorithm 

requires a very large amount of evaluations of the objective, the computationally 

requirements will be extremely high. 

5.4.2. Artificial neural networks 

Artificial neural networks can be used to approximate solutions to optimization problems 

by mimicking how the human brain learns. Neural networks are machine learning models 

that, when given a set of inputs and outputs, try to establish a pattern that will allow for 

the model to create an approximate function that explains what effects the inputs have on 

the output. For example, a manufacturer may produce a product and may be curious as to 

which markets to expand to next. The manufacturer could use the input demographic data 

from their available markets as well as their sales in each of these markets. The model 

will then use this data to estimate how aspects such as total population, education and 

income effects sales of the product. From this, an approximate function that links the 

demographics and sales are created. Then, the demographics of possible markets are 

input into this function to estimate sales. 

The most useful aspect of neural networks is the fact that it can approximate 

functions without needing to know the underlying behavior of the problem. In the 

previous example, the model doesn’t actually need to know why income affects sales. It 
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just determines if it does and how much. This type of model is considered a “black box” 

model where the input and outputs are known but the actual mechanisms in between are 

unknown. This would be useful in retrofit selection. If possible, a neural network would 

weigh bridges based on the impact it has after retrofitting without needing to involve 

complexities such as its probability of failure, its importance in the network, its capacity 

and so on. 

Neural networks have previously been used in problems related to seismic 

damage. Jafarzadeh et al (2013) used neural networks to predict retrofit construction 

costs of buildings by using predictors such as structure types and using the retrofit net 

construction costs as the output. Gonzalez-Perez and Valdes-Gonzalez (2011) used neural 

networks to predict to structural damage to a vehicular bridge by using data populated 

from 12,801 damage scenarios developed using a finite element model. Arangio (2013) 

uses readings from accelerometers across a cable stayed bridge as well as 19 years of 

damage data to train a neural network model to help identify possible damage. 

Neural networks were tested utilizing our previously mentioned cost metrics on 

small test networks. For the test networks, a number of simulations were run where 

earthquake affected the network, damaging bridges in the network. Bridges were retrofit 

at random and the bridges that were retrofit were more likely to survive the earthquake. 

From there, the direct and indirect costs were calculated for each simulation. The retrofit 

schemes and sum costs were used as inputs and outputs respectively into the neural 

network toolbox within MATLAB. Unfortunately, even for small networks, the model 

had a difficult time determining the weight of the bridges in the network. This is due to 

the large amount of randomness in the network. For example, it would be entirely 
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possible for a bridge to survive an earthquake even when not retrofitted in one simulation 

but then fail in another simulation where the bridge is retrofit. In this case, the neural 

network may interpret this retrofit as negatively impacting the direct and indirect costs 

which is not the case. In order to eliminate these situations, many simulations need to be 

run in order to give the model a decent amount of data to learn from. The number of 

simulations needed for these test networks to produce a reasonable approximate function 

is quite high and for larger networks, it would take magnitudes more simulations to 

produce a function. For this reason, neural networks and other black box methods weren’t 

used in this thesis. 

5.4.3. Two-Stage Stochastic Model 

The last method of optimization considered was the two-stage stochastic model. The 

premise behind a two-stage stochastic model is the decisions should be made using 

available data without knowing for certain future events. Usually this involves knowing a 

probabilistic distribution of possible events and finding a solution that minimizes some 

costs based on that probability. In the case of earthquakes, it is unknown if an earthquake 

will strike in a given time frame and it’s just as difficult to predict its severity. Even then, 

it’s impossible to say for certain which bridges will be damaged for a specific earthquake. 

However, it can be said how likely it is for an earthquake to happen as well as how likely 

it is for a bridge to fail after an earthquake. Using this information, we can try utilize the 

expected cost in a minimization function to help best choose a retrofit scheme that will 

give the greatest benefit. The two-stage stochastic model does just that by incorporating 

the expected cost and the cost of implementing decision variables (in this case the 

decision to retrofit) into an objective function in a minimization problem. 
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The basic formulation of a two-stage stochastic problem is as follows: 

min𝑥 𝑐𝑇𝑥 + 𝐸[𝑄(𝑥, 𝜉)]         (5.1) 

where cT is the cost vector for implementing first stage decision variable x and E[Q(x,ξ)] 

represents the expected cost of the second-stage problem where Q(x,ξ) is the solution to 

the second-stage problem and ξ is a set of random properties. In this particular 

formulation, the cost associated with decision variable x is written as a linear function but 

it doesn’t necessary have to be formulated in this way. The second-stage problem is 

solved after the random properties have been realized. The second stage problem is: 

min𝑦 𝑞(𝑦, 𝜉)           (5.2) 

    s.t.   𝑇(𝜉)𝑥 + 𝑊(𝜉)𝑦 = ℎ(𝜉) 

where y is a vector of the second stage variables, T(ξ), W(ξ) and h(ξ) are functions 

forming the constraints of the second stage problem which are themselves based on the 

realization of the random parameters. 

Oftentimes, functions of ξ are unobtainable or at least difficult to implement. It 

would be useful to be able to use an approach that discretizes the expected value of the 

second stage as a means to reasonable estimate the expected costs of the stage. The 

expected cost term can be rewritten as follows: 

𝐸[𝑄(𝑥, 𝜉)] =  ∑ 𝑝𝑘𝑄(𝑥, 𝜉𝑘)𝐾
𝑘=1        (5.3) 

where K is a number of scenarios representing the full distribution of possible scenarios, 

pk is the probability of scenario k occurring and ξk represents the random parameters 

associated with scenario k. If a sufficiently large number of simulations are run, the 

simulations can reasonable estimate the expected cost term. In this study, K will represent 
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the number of earthquake simulations run, pk will represent the probability that the 

earthquake will occur and ξk will contain random parameters such as bridge failures. 

The two-stage problem lends itself very well to the retrofit problem. The first 

stage problem is where bridges are decided to be retrofit. The x becomes a binary vector 

that gives information on whether or not a bridge is retrofit (with 1 being retrofit and 0 

being non-retrofit). This can be further extended if need to be considered for different 

types of retrofit fairly easily by having x as a vector of size 1 by [number of 

bridges×types of retrofit] and having the binary variables represent if a particular type of 

retrofit is conducted on a particular bridge. The second stage will contain variables 

pertaining to how the drivers behave after the earthquake. Variables will include flow 

rates for each link and have constraints related to the traffic demand after the earthquake.  

Some work has been conducted so far on application of two-stage stochastic 

algorithms for finding the optimal. Liu et al. (2009) utilized a two-stage stochastic model 

to retrofit bridges in models for the Sioux Falls network as well as an Alameda County 

network. The study uses Benders decomposition, a well-known method of solving 

stochastic programming problems, to solve for an optimal retrofit scheme. This study 

shows that the method can be effective but it still showed some potential issues related to 

high-computational resources, simplifications to the failure process (retrofit bridges are 

assumed to never fail) and, since the networks were fairly small, questions about the 

scalability of the model. Fan and Liu (2010) expanded on the previous work by using a 

method progressive hedging instead of Benders decomposition as well as using a 

discretized model. 
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The two-stage model fits the problem quite well and if the difficulties regarding 

the computational intensiveness of the model can be solved, it would be better than many 

of the other families of optimization methods. Because of this, the two-stage model will 

be the method utilized in this thesis. In order to overcome the shortcomings of the model, 

some simplifications will be made in order to solve the problem quickly for fairly large-

scale problems. 

The formulation of the two-stage problem utilized in this study will be as follows 

starting with the first stage: 

min𝑥  𝑐𝑟𝑟𝑡𝑟𝑟𝑟𝑖𝑡𝑟 + ∑ 𝑝𝑘𝑄(𝑟, 𝜉𝑘)𝐾
𝑘=1        (5.4) 

   s.t.   𝑟 ∈ {0,1} 

where the second stage problem takes the form: 

𝑄(𝑟, 𝜉𝑘) ∶=  min𝑥 𝑐𝑟𝑟𝑝𝑟𝑖𝑟(𝑟, 𝜉𝑘) +  𝑐𝑖𝑛𝑖𝑖𝑟𝑟𝑐𝑡 ∑ ∫ 𝑡𝑟𝑘(𝑥𝑟𝑘, 𝜉𝑘)0
𝑥𝑎𝑘

0𝑟    

 (5.5) 

s.t.  𝑡𝑟𝑘 = 𝑡0,𝑟 �1 + 0.15 �𝑥𝑎
𝑘

𝑐𝑎𝑘
�
4
� 

�𝑓𝑃,𝑖𝑖
𝑘 = 𝑞𝑖𝑖𝑘

𝑃

 

𝑥𝑟𝑘 =  ���(𝛿𝑟,𝑃
𝑖𝑖 ∗ 𝑓𝑃,𝑖𝑖

𝑘 )
𝑃𝑖𝑖

 

𝑥𝑟𝑘 ≥ 0 ; 𝑓𝑃,𝑖𝑖
𝑘 ≥ 0 

where cretrofit is a vector represents the retrofit cost for each bridge, r is a binary vector 

representing the decision to retrofit a bridge, crepair(r, ξk) represents the total repair costs 

under scenario k, cindirect converts travel time into indirect costs by methods mention 

earlier in the paper, ta
k (xa

k, ξk) is the travel time of link a under simulation k as a function 
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of link flow 𝑥𝑟𝑘 , t0,a represents the free flow travel time of link a, 𝛿𝑟,𝑃
𝑖𝑖  is 1 if the link 

between i and k is in path P and 0 otherwise, 𝑐𝑟𝑘 is the capacity of link a, 𝑓𝑃,𝑖𝑖
𝑘   is the flow 

on path P between nodes i and j and qij
k is the trip rate between i and j. The constraint in 

the first stage establishes r as a binary vector. The objective function in the second stage 

establishes the repair cost for the simulation in the first term and sets the condition for 

user equilibrium in the second term. The first constraint is the BPR function as described 

in the traffic demand modeling section of the paper. Note that the capacity can change 

from simulation to simulation as the capacity is a dependent on the states of the bridges 

on that link. The next constraint makes sure that travel demand is met by having the sum 

of all flow on the used paths between i and j be equal to the demand between the nodes. 

Note that the demand will be calculated using the gravity model described earlier. The 

third constraint in the second stage connects the concepts of link flow and path flow. The 

final constraint prevents negative path and link flow. 

From here, the user can use a solver capable of solving the problem. There are 

multiple commercial solvers that can be utilized such as AMPL and the MATLAB 

optimization toolbox. The software packages often include a variety of algorithms such 

as interior point algorithms and active set algorithms. Most of the algorithms follow the 

some overarching idea: the algorithm starts at a guess for the solution and the algorithm 

iterates towards a better solution until some sort of convergence criteria is met. These 

general algorithms can work well on smaller networks but as the network scales, the 

algorithms cannot be expected to solve the problem in a reasonable amount of time. 

When the bridges number in the thousands, there are at least an equal number of first 

stage decision variables. When a network has thousands of links and hundreds of 
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simulations, there are hundreds of thousands of values for link flow that must be solved. 

The problem has to be simplified or a strong guess for the initial solution must be 

obtained. 

After the algorithm is complete, it can either be used as is for an approximation 

for the solution to the two-stage stochastic problem or as a warm start to a more general 

solver. This being a greedy algorithm (As it makes decisions based on the locally 

optimum choice at each iteration), the program may stop closer to a local minimum 

which may not necessarily be the same as a global minimum. For this reason, this 

algorithm is best suited for situations where the network that is large enough to require a 

simplified method of evaluation and networks with different solution sets that are similar 

in their optimality. 

5.5. Retrofit Optimization Study Area 

To demonstrate the retrofit selection algorithm, a cutout of the larger San Francisco Bay 

area network will be used. This cutout will include the Oakland area, one of the busier 

areas in the whole network and extends eastwards towards the bounds of the previous 

case study. A map of the cutout region can be seen in Figure 5.3. This area will include 

1017 bridges and 817 nodes. This scale will allow for a more compact demonstration of 

the algorithm while still utilizing a sizable network. The algorithm itself can be applied to 

networks larger or smaller than the Oakland area however. 

Some simplifications and alterations will be utilized for the retrofit selection 

demonstration. Since most of the retrofits discussed previously aren’t used in liquefaction 

scenarios and the Bay area happens to be an area of very high liquefaction susceptibility, 

the chance of liquefaction will not be incorporated into the demonstration. Also, the 
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initial hazard levels and driver demand were set to values such that the effects of 

retrofitting can be easily visualized and may be different then the values used in the risk 

analysis section. 

A retrofit technique that mirrors the qualities of steel jacketing will be selected for 

this demonstration. The change in fragility will be adapted from the results found in from 

Kim and Shinozuka (2003) which was mentioned in the previous section. This bridge 

type is similar to many types of bridges that might be seen in the area. A retrofit cost of 

$12000 per column will be used as a starting point. The number of columns will be 

estimated using NBI statistics and it will be assumed that every bridge could be a 

candidate for retrofit. As with the previous study, all bridges are considered to be in the 

pre-retrofit state to begin with. It will be assumed that there is enough resources to retrofit 

up to 600 of the bridges. 

Retrofit selection at any iteration will be based on the expected detour and the 

expected repair cost of each bridge. The detour will be the shortest path from one end of 

the link with the bridge on it to the other if the bridge is closed or the capacity is reduced. 

The detour is generally longer in length than the original link and may be congested in 

the post-earthquake state. The expected time is then calculated based on likelihood of 

failure and the length of the detour after failure. This is multiplied by the number of users 

effected by the detour and is converted to a dollar value. This is then added to the 

expected repair cost and the bridges are then ranked by this value and selected for retrofit 

accordingly. At any iteration, the state of the network changes and the detours must be 

recalculated in order to reflect this change. 
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It is important to know how the retrofit selection process changes with the 

characteristics of the network and the characteristics of the retrofit technique itself. A 

network stakeholder might want to know if more or less bridges should be retrofit if the 

cost of retrofitting increase for instance. Because of this, the sensitivity of the retrofit 

selection to risk, cost of retrofit, and effectiveness of retrofit will be analyzed.  

Multiple risk scenarios will be tested in order to show the sensitivity the retrofit 

selection process has to the hazard level. In the initial scenario, seismic hazard will be 

based off the probability of the earthquake scenarios on the Hayward fault site in the San 

Francisco case over a period of 50 years. Scenarios of lesser and higher risk will be tested 

as well. In a lesser risk scenario, this chance will be halved while in a higher risk 

scenario, the hazard will be increased by fifty percent. To show the sensitivity to cost, 

three levels of retrofit costs will be used. In the initial scenario, the costs mentioned 

previously will be used. In a cheaper scenario, this will be halved while in a more 

expensive scenario this will be doubled. Lastly, the effectiveness of retrofit strategies on 

the selection of number bridges for retrofit will be explored. Three scenarios will be used: 

the first scenario is a baseline scenario that behaves as one might expect from a steel 

jacketed retrofit, the second scenario will represent half the benefit (which will mean the 

change in the mean of the fragility curve will be halved), and the third scenario will 

assume that bridges that are retrofit do not fail. Some studies have selected bridges based 

on this assumption and it would be important to see if that assumption is reasonable. 

5.6. Discussion of Results 

The retrofit selection algorithm was applied to the Oakland network and from there, the 

information was used to determine which bridge to retrofit and how different parameters 
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including seismic risk, retrofit cost and retrofit effectiveness can affect the selection. 

Figure 5.4 and Table 5.4 displays the change in costs as more and more bridges are 

retrofit. Costs are broken down into those associated with drivers’ delay, retrofit and 

repair with the total cost being the sum of the three. Initially, no bridges are retrofit this 

leaves a state with no retrofit costs but higher delay and repair costs. The first bridges 

selected are based on the expected repair costs. As shown, the drop in repair costs 

outpaces the increase in retrofit cost at first. Shortly after 50 bridges, the change in repair 

costs and retrofit costs even out and then retrofit selection incorporates delay more in the 

selection process. At around 151 bridges, the cost starts increase slightly then begins to 

plateau. This makes the retrofit state at 151 a good choice for a retrofit scheme. Figure 

5.5 shows the bridges that were selected for retrofit at the optimal stage (=150 bridges). 

Important factors include the distance from the site to the fault, the type of bridge, detour 

length and driver demand for the bridges. The general trend toward repairing bridges 

closer to the fault and those closest to the city of Oakland itself can be seen but 

incorporating these other factors requires detailed analysis as they may not be readily 

apparent from looking at the figure. 

Figure 5.6 and Table 5.5 display the results for the total costs the network 

experiences under different risk scenarios. As expected, the initial cost without retrofit is 

proportional to the likelihood of the earthquake scenarios. In the lower risk scenario, 

fewer bridges are retrofit and less benefit can be seen for retrofitting these bridges 

optimally. This intuitively makes sense as if the network is unlikely to experience any 

earthquakes, only the few most important bridges will be retrofit even those only provide 

so much benefit when compared to the cost. The opposite is true in the higher risk 
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scenarios. The greater the risk, the more bridges selected for retrofit and the greater 

benefit they provide. In the higher risk scenario, the choice of retrofit is bounded by the 

limitation on the maximum possible retrofits though the benefits from retrofitting 600 

against retrofitting a sizably lower amount isn’t that large as the benefits begin to slow 

down greatly near the 200 bridge mark. This shows how important it is to understand the 

hazard level of the surrounding area when considering seismic retrofits.  

The sensitivity to the cost of retrofit can be seen in Figure 5.7 and Table 5.6. The 

benefit and disadvantages of cheap and expensive retrofits respectively are made clear. 

With cheaper retrofits comes greater feasibility in retrofitting bridges. If the retrofit cost 

is halved, the number of bridges before the benefits plateau is slightly higher and the 

reduction in cost increases significantly. This shows the importance of developing cheap, 

effective retrofit techniques as the benefit can be quite large. The inverse is the case for 

expensive retrofits. The benefits of retrofitting begin to become a burden on the network 

quickly and thusly, not many bridges can be retrofit efficiently.  This may be an issue in 

areas that do not have access to affordable retrofit techniques. One important factor to 

note is that during the first few retrofits, the curves for all scenarios are very close. This is 

because for especially important bridges that undergoes retrofit (which are retrofit first), 

the benefits far outweigh the costs even if the retrofit comes at a premium. This shows 

that for important bridges, expensive retrofits can still be well worth the price. 

The last sensitivity parameter looked at is the change in retrofit selection with a 

change in retrofit effectiveness. Even after retrofitting, there’s still a chance of failure. 

Similar to how more expensive retrofits limit the feasibility of retrofitting so does 

decreasing its effectiveness. The retrofit with halved effectiveness sees a significant 
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decrease in benefit as does the expensive retrofits but the less effective retrofits also carry 

the disadvantage of requiring a larger number of bridges retrofit to achieve this already 

unimpressive benefit. This means additional resources such as man-hours used on a 

retrofit that doesn’t perform up to par. The no-fail retrofits show a sizeable increase in the 

benefit received when retrofit. However, the number of bridges that are retrofit before 

plateauing did not increase all too much. This means that, at least in this network, the 

improved retrofits does more to increase the benefit of bridges that would be selected 

anyway rather than make retrofits more feasible on other bridges. This also shows 

however that the assumption used in some models that the post-retrofit failure can be 

ignored can lead to an overestimate on the benefit of retrofitting. The effect of the 

optimal retrofit scheme on the resilience curve of the network can be seen in Figure 5.9 

for a 7.5 magnitude earthquake located near the city. As shown, the impact of retrofitting 

can be seen in the initial drop after the earthquake strikes. This furthers the idea that 

retrofitting increases what we labeled as the robustness of the network. This makes sense 

as the robustness is dependent on the fragility of the network elements before the event 

and retrofitting will make these elements less fragile. This also highlights the notion that 

robustness is based on pre-earthquake decisions. The retrofit curve shows a reduction in 

performance loss of 34% over the non-retrofit state. 
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Table 5.1: Median PGA for MSC bridges before and after retrofitting 

Damage State Minor Moderate Extensive Complete 
Original Bridge 0.6 0.66 1.07 1.19 

Elastomeric bearings  0.74 0.89 >1.20 >1.20 
Lead-rubber bearings  0.68 0.84 >1.20 >1.20 
Elastomeric bearings + 

dampening 
0.80-0.93 0.95-1.10 >1.20 >1.20 

 

Table 5.2: Number of bridges damaged before and after column jacketing (Kim 
and Shinozuka, 2003) 

  Bridge 1 Bridge 2 

Damage State Before 
Retrofit 

After 
Retrofit 

Before 
Retrofit 

After 
Retrofit 

No Damage 56 53 51 50 
Minor 51 44 47 41 

Moderate 41 28 37 22 
Extensive 34 15 30 10 
Complete 17 2 14 4 

  

Table 1.3: Fragility curve parameters for the retrofitted bridges (Fridley and Ma 
2007) 

    Minor Moderate Extensive Complete 

No Retrofit 
c 0.45 0.8 1.04 1.66 
ξ 0.84 0.84 0.84 0.84 

Steel Jacket 
c 0.75 1.25 1.73 5.5 
ξ 0.84 0.84 0.84 0.84 

Half-Height Steel 
c 1.8 1.72 1.49 1.39 
ξ 0.21 0.18 0.16 0.15 

Full-Height Steel 
c 1.43 1.28 1.16 1.09 
ξ 0.2 0.2 0.18 0.17 

Full-Height 
Composite 

c 1.05 0.96 0.89 0.84 
ξ 0.21 0.17 0.15 0.14 
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Table 5.4: Drivers’ delay, retrofit, repair and total costs for retrofitting the Oakland 
network under initial conditions (million $) 

 

Bridges 
Retrofit 

Delay 
Cost 

Retrofit 
Cost 

Repair 
Cost  

Total 
Cost 

0 276 0 151 427 
100 264 18.5 85 368 
200 253 35.0 77 366 
300 243 48.5 76 368 
400 230 62.8 74 367 
500 212 79.1 71 362 
600 212 95.3 68 375 

 
    

Table 5.5: Bridge retrofit cost reduction for varying risk scenarios 

 

Risk Scenario Bridges Retrofit Cost Reduction (Million $) 

Lower Risk 83 26 
Initial Risk 151 67 
Higher Risk 600 133 

 

Table 5.6: Optimal bridge retrofit for varying cost per retrofit 

 
Retrofit Cost Bridges Retrofit Cost Reduction (Million $) 
Half cost 247 115 
Initial Cost 151 67 
Double Cost 600 308 

  
Table 5.7: Optimal bridge retrofit for varying retrofit effectiveness 

 
Effectiveness Bridges Retrofit Cost Reduction (Million $) 

Lower effectiveness 103 35 
Initial effectiveness 151 67 
No failure possible 600 130 
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Figure 5.1 (Contd.): Flow chart for the values of V1 and V2  
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(a)       (b) 

 

(c)       (d) 

 

Figure 5.2: Fragility curves for the bridge with steel jacketing (Kim and Shinozuka, 
2003) 

 
 Figure 5.3: Highway network of the test bed (Oakland) for the damage mitigation 

strategies 
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Figure 5.4: Delay, retrofit, repair and total costs for retrofitting the Oakland 

network under initial conditions  
 

  

 Figure 5.5: Bridges selected for retrofit in the initial scenario  
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Figure 5.6: Total costs for retrofitting the Oakland network for varying risk scenarios 

 

  

Figure 5.7: Total costs for retrofitting the Oakland network for varying cost per retrofit 
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Figure 5.8: Total costs for retrofitting the Oakland network for varying retrofit 
effectiveness 

 

Figure 5.9: Network performance with and without retrofit for a 7.5 Mw earthquake near 
Oakland 

 

 

  

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600

To
ta

l C
os

t (
M

ill
io

n 
$)

Bridges Retrofit

Lower
effectiveness
Initial effectiveness

80%

85%

90%

95%

100%

-100 100 300 500

N
et

w
or

k 
Pe

rf
or

m
an

ce
 (%

)

Days after the earthquake

Retrofit

Non-Retrofit



 

92 
 

CHAPTER 6 

CONCLUSIONS  

A large earthquake near a vulnerable or highly populated area can cause enormous losses 

to the critical civil infrastructure systems including the transportation infrastructure. 

Damage to transportation infrastructure carries costs both in terms of repair costs and in 

decreased performance during the repair period. The goal of this study is to generate 

comprehensive resilience quantification framework that will provide the decision makers 

with the required tools to determine the vulnerability of highway network in face of 

calamities, plan for possible disruptions, and prepare for possible consequences with the 

final goal of decreasing the downtime in the functionality of the system. 

 Transportation networks are particularly important infrastructure networks to 

consider. There have been numerous historical events such as the 1989 Loma Prieta 

earthquake and the 1994 Northridge earthquake that caused great damage throughout the 

local transportation systems. For these and other instances, very large costs have been 

seen as network owners scramble to repair damaged bridges all the while network users 

see huge delays in their day-to-day lives which makes it difficult for society to functional 

normally. In order to prevent or limit the impacts from earthquakes on transportation 

networks, a deep understanding of the expected level of damage, the network recovery 

process  and effect of additional precautions to help strengthen the network must be 

achieved. 

This thesis sets out to provide methods to better describe how transportation 

networks respond to an earthquake by studying the resilience of the network. A resilient 

network should be able to recover quickly and limit the impact due to earthquakes. 
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However there is an ongoing discussion between researchers, community leaders, and 

authority bodies  on quantifying the resilience of a system. This thesis gives a detailed 

methodology that can be utilized by network owners to determine how well the 

individual bridges perform after an earthquake, what level of physical damage can be 

observed throughout the network, what level of indirect damage (including driver delay) 

can be expected, how providing additional resources to the repair process can help the 

network recover quickly and how to select pre-event actions in order to limit damage 

most effectively. 

Resilience is a topic of growing concern in recent time. From its beginnings in the 

scientific literature as a descriptor of ecological behavior, it has expanded until fields 

including engineering and economics. Concern grew in the last decade due to disasters 

including hurricane Katrina and the 2008 economic crash and the importance of studying 

and measuring resilience has been recognized by those ranking up to the highest offices 

in the United States. Even with acceptance of the importance of the topic, works that can 

be applied to real world situations are fairly sparse and this thesis sets to create a 

framework for resilience that has tangible benefits to society. 

This study follows an overarching definition of resilience set forth by Bruneau et 

al. (2003). In that study, resilience is seen as the sum of four characteristics called the 

four “R’s” of resilience and four dimensions called TOSE. The four R’s include 

robustness, redundancy, resourcefulness and rapidity. Robustness describes how well the 

system can absorb the impact of an event, redundancy describes how well the system can 

provide alternatives when needed, resourcefulness measures how well systems prioritize 

goals and provides resources to accomplish them and rapidity describes how quickly the 
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system is restored. The four dimensions include technical, organizational, social and 

economic aspects (TOSE). Technical dimensions describe how well physical system 

stand up to disasters, organizational dimension refers to how well governmental and other 

deciding bodies respond to disaster, social dimension measures how well the system 

limits social losses and economic resilience describes how well a system limits economic 

losses.  

A concept closely related to resilience is risk analysis, which helps determine 

probabilistically the level of damage expected in the system. In the study of earthquakes, 

it would be useful to know how often earthquakes occur, the severity of the earthquake 

and how susceptible the transportation infrastructure is to the earthquakes. The likelihood 

and severity of the earthquake can be considered its level of hazard and the susceptibility 

can be considered as the vulnerability of the community. Risk itself is seen as the product 

of hazard and vulnerability. Knowing the risk of a community informs the community 

leaders the extent of preparation needed for earthquakes and helps determine mostly 

affected parts of the community. A framework for the risk assessment of the 

transportation network in a seismic prone region has been provided. As a demonstration, 

a model of the San Francisco bay area has been presented. As a location of high seismic 

activity, dense population and high liquefaction susceptibility, it is a prime example of an 

area which benefits from seismic risk analysis. The seismic risk originated from both San 

Andreas and Hayward faults has been taken into account. There are three scenarios of 

rupture on San Andreas Fault and one on the Hayward fault. Six levels of magnitude 

from 6.0 to 8.5 have been studied adding up to a total of 24 scenario earthquakes.  
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Hazards include ground shaking and liquefaction. Ground shaking is dependent 

on factors such as the magnitude of the earthquake, the distance from the source and the 

site, and site conditions. In our study area in particular, liquefaction is particularly 

important. Liquefaction happens when a large amount of pressure is applied to the soil 

and it starts behaving like a liquid which can lead to large displacements which in turn 

can lead to the failure of the bridge. 

Two types of costs are considered: direct and indirect costs. Direct costs come 

from the actual repair of the bridge. This cost is calculated using the replacement cost of 

a bridge as well as its expected level of damage. The level of damage is calculated based 

off fragility curves which give an expected level of damage based on the intensity 

measure (such as level of shaking or ground displacement) and the classification of a 

bridge based on its general structural characteristics. Indirect damage originates from 

measuring drivers’ delay and opportunity costs. In order to measure this, a four step 

transportation model is used. This model, including a trip generation, trip distribution, 

mode choice and traffic assignment step, predicts the flow rate throughout the network 

which is essential to calculate indirect costs. 

Performance criteria are useful for establishing goals that the resilience must 

meet. Each of the four characteristics of resilience offers important insight into how the 

network recovers. Robustness shows damage that occurs directly after the earthquake. 

Robustness looks at the damage before any repair can be done so this means, for costs 

that accumulate over time, it gives the maximum daily damage that will occur after an 

earthquake. Robustness also predicts the base repair costs that will need to be spent in 

order to repair every bridge back to its fully functional state. A clear connection between 
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hazard level and robustness is established as earthquakes of larger magnitude and 

earthquakes nearer to population centers are shown to have greater impact. Redundancy 

is used as a measure of how strong the network is as a graph. Here, indices including the 

alpha, beta and gamma index are used to quantitatively measure the redundancy of the 

network and comparisons are made to networks of same aerial size including Los 

Angeles, Reno and Boston. Resourcefulness is an aspect that ties into every other 

dimension of resilience and represents the decision making capability and capacity to 

provide whatever resources necessary to accelerate high priority projects. 

Resourcefulness in this study was used to describe how well network owners prioritize 

bridges for repair in the network and how well they used repair acceleration techniques to 

help repair bridges faster. Rapidity is used to measure how quickly the performance of 

the network returns to an acceptable level of performance and it becomes clear that this 

topic ties in with resourcefulness as a more resourceful network should repair more 

rapidly. 

This study considers two types of acceleration techniques: incentivization and 

accelerated bridge construction. Incentivization involves competitive A+B bidding which 

reduces the expected repair time while paying the contractor a bonus for finishing ahead 

of schedule. Using the ABC technique the project is accomplished in a relatively short 

amount of time but increased construction costs are associated with it. Also compared are 

a well prioritized and a poorly prioritized repair process. The well prioritized network 

performed a significant amount better than the poorly prioritized network. This 

emphasizes on the importance of preparation before the event in order to assess the 

significance of each link in the network. It was shown that although the cost decreases 
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with an increase of resourcefulness, the cost reduction results in diminishing returns. This 

shows that while it is important to be as resourceful as possible, it is especially important 

for relatively less resourceful networks to begin planning for seismic events in order to 

reap the most effective benefits.  

This study also looks into the effects of pre-event retrofit actions that result in 

strengthening the network, hence increasing its robustness against earthquakes. A unique 

contribution of this study is that instead of looking into the increase in resilience of 

individual bridges, it takes a system level approach and considers the effect of retrofit on 

performance of the network in its entirety. Retrofitting is a set of techniques often used to 

strengthen bridges that have inadequate seismic strength or have deteriorated. Various 

retrofit techniques such as column jacketing, restrainer cables, shear keys, and base 

isolation are presented. These techniques are used across the seismically vulnerable 

portions of the United States and studies have shown a clear link between retrofitting and 

the fragility of bridges. 

A novel retrofit selection algorithm was also created in this thesis. This algorithm 

considers repair cost and network performance that can be used on a sizeable and 

complex network. The sensitivities to hazard levels, repair cost, and effectiveness have 

been considered. It was shown that at higher hazard levels, the need to retrofit is 

especially pronounced while at lower hazard levels, the benefit is minimal. Furthermore, 

the results showed that the retrofit scheme is very much affected by the cost of the retrofit 

which highlights the need to develop cheap retrofit methods. The effectiveness of the 

retrofit method was also important. The assumption that retrofitted bridges will not fail 

during an earthquake can significantly overestimate the benefits of retrofitting. 
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The retrofit scheme was tested across a portion of the San Francisco bay area. In 

this study, the Hayward fault possesses a serious risk to the transportation network of the 

Oakland area. A sizeable portion of the network was selected for retrofit with a method 

akin to column jacketing was utilized to strengthen the bridges against this threat. It was 

also shown that there is sensitivity in the selection process to risk as well as the cost and 

effectiveness of retrofits. A higher risk area is suited better than a lower risk area to 

retrofitting and a greater number of bridges are selected for retrofit. The benefit of 

retrofitting was also shown to correlate positively with its effectiveness and negatively 

with its cost. 

Further work may be conducted to help further the study of resilience of 

transportation networks. Topics related to the change of driver behavior in the days after 

earthquake events are ongoing but incomplete. Traffic demand after an earthquake differs 

from pre-event demand but in ways that is not fully understood. The effect of retrofitting 

on fragility across a set of bridges that could be used to describe a network of a variety of 

bridges is also a topic that can be further explored. Also helpful to the study would be the 

implementation of different indirect costs and performance under one model. While other 

studies have used measures such as accessibility, network capacity and connectivity 

among other measures, connecting these different measures and comparing them in a 

single model would allow for a more complete understanding of resilience. 

This thesis shows clearly the impact that earthquakes have on seismically prone 

areas and the consequences of not fully understanding the response the network would 

have to earthquake events. Valuable contributions were made that describe the different 

aspects of resilience as well as methods to increase the resilience of transportation 
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networks. With these contributions, this thesis will help government agencies and other 

network stakeholders prepare for seismic events by showing which aspects of the 

network are most critical. Network owners will be able to evaluate how resilient the 

network is and can use the model to test improvements to the network in order to better 

withstand earthquakes. 
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