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ABSTRACT 

RESILIENCE OF TRANSPORTATION INFRASTRUCTURE SYSTEMS TO CLIMATIC 

EXTREME EVENTS 

FEBRUARY 2015 

ALEXANDRA TESTA, B.S., TUFTS UNIVERSITY 

M.S.C.E. UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Alice A. Alipour 

A topology-based approach has been used to measure the resilience of a highway network to 

extreme events of a climatic nature. Because these systems are regionally distributed, their 

components undergo a wide range of hazard intensities, often dependent on their relative 

locations. This creates a conditional vulnerability situation inherently complex to analyze. The 

ability of an infrastructure system to withstand, adapt to, and rapidly recover from extreme 

events is paramount to its ability to continuously serve users. The topological properties of a 

network can provide a good means to assess the resilience of the system. While the topic of 

resilience has been largely investigated after seismic events, studies regarding the resilience of 

infrastructure systems to extreme events of climatic sources such as: hurricanes, storm surges, 

and rising sea levels are less abundant. Furthermore, the effects of climate change are proven to 

increase the intensity of climatic events, worsening the effects of these stressors on infrastructure 

networks. The vulnerability of the transportation network of New York City, the most populous 

and crucial urban area in the U.S., was underlined in the aftermath of Hurricane Sandy, and for 

this purpose has been chosen as the test bed for this study. Reducing the highway system to a 

combination of nodes and links, the principles of graph theory are applied to quantify defining 

network properties. More specifically, by assessing and measuring the change in topological 
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properties during extreme climatic events, the resilience of a transportation network can be 

succinctly evaluated. 
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CHAPTER I 

INTRODUCTION 

 

Resilience is an indicator of the preparedness and adaptability of a civil infrastructure system; it 

is useful to a range of management teams such as policy makers, engineers and emergency 

service workers. Civil infrastructure systems, such as transportation networks, power 

transmission systems and water distribution networks, constitute the backbone of a functioning 

society and affect entire populations if disrupted. The importance of resilience in networks has 

grown parallel to the increasing traffic volumes traveling highways and roads, and the continued 

construction of urban and suburban areas, trends that will continue well into the future. 

Additionally, there is a lack of long-term investment to elongate, if not simply guarantee, the 

lifespan of current infrastructure systems. With more vehicles on the roads, and the increase of 

truck loads, the consequences and delays resulting from a seemingly minor accident or failure 

can propagate through the system over a wide radius (FHWA, 2010); a developed area will 

suffer greater economic damage from an extreme event than a more rural region. Infrastructure 

resilience can be improved after assessing its current state, thereby reducing the vulnerability of 

civil infrastructure networks to disruptions and extreme events, allowing plans for possible 

failures, flexibility during probable disruptions, and post-event response and eventual repairs. 

These components correspond to the preparedness, absorptiveness, adaptation, and recovery of a 

resilient infrastructure system. This can be done by analyzing the resilience of the infrastructure 

system, allowing a holistic approach that takes into account several different aspects to improve 

the network’s overall performance against disturbances.  
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Of the expected extreme events, the urban networks located on the northeastern coast of 

the US are most susceptible to hurricanes, their hazardous wind speeds and storm surges. 

Hurricanes are so deadly because of their combination of destructive forces; namely, high wind 

speeds, powerful storm surges and the resulting flooding. As a result of climate change, the 

intensity of hurricanes and extreme climatic events is expected to worsen (IPCC, 2014). Storm 

surges will be the concentration of this investigation and the Sea, Lake, Overland Surges from 

Hurricanes (SLOSH) program by NOAA will be used to develop storm surge projections. 

Simultaneously, the predictions for sea level rise released in the 2014 IPCC report were more 

severe than those in previous reports. The Atlantic coast of North America is expected to 

experience accelerated sea level rise because of regional factors increasing the effects of global 

sea level rise. These include the spatial distribution of Earth’s gravitational mass, the climate of 

the Atlantic coast and geological processes along the shore. The northeastern coast of the US will 

thus be one of the most affected regions in the world, necessitating improvements and 

preparations for worsened conditions.  

 To effectively and efficiently manage the planning and finances of these improvements, 

decision makers need to know where vulnerable areas and the most important links of the 

transportation network are located. In a dense highway network, this often translates to 

identifying the roads and intersections which are highly vital to the adequate connectivity of a 

transportation network. This can be done using network performance indicators such as 

topological properties that describe, quantitatively, the connectivity and redundancy present in 

the system. Topological graph theory is the study of the physical layout and structure of a 

network; this is especially relevant to transportation networks, which are entirely physical 

systems. The New York City metropolitan transportation network is chosen as a case study with 
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which to illustrate the measured performance and resilience of a major urban transportation 

network. Modeling the region’s highways and roads as a simple network made of links and 

nodes allows the mathematical determination of network properties. With these measurements, 

the resiliency of the current transportation network can be quantified.  

 The text is arranged in a format to allow a cohesive, sequential ordering of research tasks 

and results. In Chapter 2, the definition of the term resilience is examined. Resilience is a widely 

used concept to describe properties of a range of systems and objects in science, technology, and 

engineering. It was first defined, within the academic world, as a term relative to ecological 

systems. Since then, although the concept of resilience has been applied in different ways, there 

are significant commonalities in modern uses that derive from this first definition. Resilience is 

then discussed as it relates to engineering and, more specifically, systems of infrastructure. A 

thorough literature review of the researched methods to analyze, describe, and quantify resilience 

is synopsized. To provide a foundation for the rest of the thesis, resilience is differentiated from 

terms commonly used in similar ways—namely, risk assessment and vulnerability. The 

exhaustive study of resilience from its origins to the many forms it takes now was useful to 

develop the most appropriate definition and method to measure resilience in this study of 

highway networks, which is described in detail in the last subsection of Chapter 2. 

 Chapter 3 summarizes the hazard characterization as it pertains to this case study. 

Specifically, hazards highly relevant to the northeastern coast of the U.S. are discussed. In 

Section 3.1, a review of the available hurricane and wind field models is done. This describes the 

models most applicable to analyzing the effects of a hurricane, and how wind field models may 

differ among studies. Of most interest in this study are the storm surge models, described in 

Section 3.2. The two most commonly used models, SLOSH and ADCIRC, are compared and 
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their advantages and disadvantages are outlined. In Section 3.3, climate change is addressed and 

its projected effects are related to the worsening of hurricane intensity, frequency, and storm 

surge consequences. Then a review of climate change as it specifically relates to transportation 

networks is performed (Section 3.4). Preparing and developing infrastructure networks for the 

effects of climate change is a challenge across the globe, so this review is critical for exploring 

applications of this study. Section 3.5 of Chapter 3 concentrates on the studies performed on 

New York City, allowing a better understanding of its uniqueness as an urban development and 

of its regional hazards. The last section in Chapter 3 described the hazard characterization in this 

study.  

 In Chapter 4, graph theory is reviewed and its high relevancy to measuring resilience is 

outlined. To adequately understand why graph theory and its principles can be used to describe 

resilience and applied to a study of highway networks, an in-depth review of graph theory 

literature is performed. Despite the overwhelming nature of graph theory and its principles, the 

first subsection of Chapter 4 covers the concepts of graph theory necessary to comprehend the 

analysis in this study. This subsection, in addition to several definitions and terms, includes a 

short synopsis of select models, such as the Erdos-Renyi graph, that are used in network science 

to develop conclusion of graph property behaviors. Although these models are not employed in 

this thesis, analysis of network properties is performed which is derived from such initial 

network models. Chapter 4, Section 3 relates the study of resilience to graph theory, reviewing 

researchers who have used graph properties in the study of resilience. Section 4 examines how 

network response to failures is studied, both by differentiating between removal techniques and 

by defining types of failures known to researchers. More specific to this thesis is Section 5, 

which reviews the available studies that have employed graph theory to study transportation 
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networks. The concluding section of Chapter 4 explains how the expansive graph theory is 

applied in the approach of this thesis. 

 Chapter 5 provides a brief discussion of the methods and a comprehensive synopsis of the 

results of this case study.  The highway network of New York City was chosen as a case study 

because of its location on the northeastern coast of the U.S., its high density of development and 

population, as well as its existing hurricane hazard. To study the network behavior in a general 

sense, the highway network, after being modeled as a combination of links and nodes, was 

subject to random node removal. Described in Chapter 5.2, the random node removal involves 

increasing the fraction of nodes which are removed after several trials of removal have been run 

at each fraction. During this random removal, graph properties are measured to observe any 

trends or transitions that occur during increasing nodal failure. The node removal technique is 

then supplemented with SLOSH results, meaning that hurricane storm surge predictions 

determine which nodes are removed from the network, and this is summarized in Chapter 5.3. 

The next section, Chapter 5.4, described the results of considering node elevations in the node 

removal based on SLOSH scenarios. Using these results, the same network properties that were 

measured during random removal are again quantified and trends are described. Chapter 6 is the 

concluding chapter of this thesis.  
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CHAPTER II 

DEFINITION OF RESILIENCE 

 

2.1 Introduction 

Before developing a topological-based method to measure the resilience of transportation 

networks, it is necessary to first define resilience in this context. Specifically, the focus of this 

investigation will be the resilience of critical infrastructure. The damage or destruction of critical 

infrastructure impacts security, economic flow and public health and safety (The White House, 

2013). The critical infrastructure systems of which we wish to consider the resilience are those 

that most govern community life, sometimes referred to as lifelines. The goal of this 

investigation is to formulate a standardized approach to measuring the resilience of critical 

infrastructure systems with an algorithm describing the process. Specifically, a transportation 

network will be evaluated from a holistic perspective, considering all components on which the 

network function relies. The motivation of this project is to improve the resilience of existing 

infrastructure by finding a method to first evaluate it and, secondly, by applying this method to 

identify the most efficient approach to bolstering network resilience. Additionally, the effects of 

climate change will be considered as they relate to the vulnerability and the level of exposure of 

infrastructure. The resilience literature reviewed is from a variety of fields and approaches, 

enabling a comprehensive perspective of the concept or resilience, its derivations, and 

applications. 

2.2 Resilience in other fields  

The first documented appearance of the concept of resilience as a scientific term is found in 

Holling (1973), where it is used to describe the adaptive behavior of ecological systems:  

“Resilience [is] a measure of the ability of these systems to absorb changes of state variables, 
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driving variables, and parameters, and still persist. In this definition resilience is the property of 

the system and persistence of probability of extinction is the result.” This primary meaning 

served as a foundation for future ecologists and biologists.  

Several scientists and researchers have approached the topic of resilience from an 

economic standpoint, choosing to highlight the financial and business effects of an extreme event 

or disaster. This perspective is certainly relevant to our investigation of critical infrastructure 

resilience, as the economic losses may outweigh the physical losses to the system. In determining 

economic resilience, although it is perhaps more tangible and easier to quantify the physical asset 

loss immediately after an extreme event, this often only corresponds to a short-term economical 

consequence. A longer period of loss occurs with respect to business operations, both indirectly 

and directly (Rose, 2004). Of course, in order to appropriately suggest strategies through which 

resilience and vulnerability of critical infrastructure can be improved, the economic factors and 

costs must be taken into account. In analyzing the economic resilience of a system, two different 

types of resilience are recognized: the inherent resilience, which occurs in normal situations, and 

the adaptive resilience, which occurs in situations of crisis. Adaptive resilience is separated 

because it is characterized by an ingenuity only elicited in an extreme event, such as conserving 

water after a devastating earthquake (Rose, 2011). These branches of resilience may be applied 

to a more engineered approach. Finally, excluding economic resilience will actually result in an 

underestimation of post-event measurements of loss. Considering the economic resilience is also 

significant to legislators and decision-makers because it allows an evaluation of mitigation 

strategies primarily concerned with the minimization of financial losses. In a more specific 

study, several of these strategies for businesses, such as using less water by recycling and 

production rescheduling, were found possible to implement with little to no cost (Rose, 2007). 
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Resilience is separated by magnitude: microeconomic, mesoeconomic, and macroeconomic 

levels. At the microeconomic level, resilience reflects individual behavior of firms, households, 

and organizations. Resilience of the economic sector, individual market, or cooperative group is 

represented at the mesoeconomic level. And at the macroeconomic level, resilience is that of all 

individual units and markets combined. The three levels of resilience is a concept that could be 

easily adapted to infrastructure resilience by breaking an infrastructure system down into level of 

subsystems and components. 

Resurreccion et al. (2013) uses a stochastic inventory model to maintain above-minimum 

levels of inventory as a resilience strategy that could effectively reduce the onset of disruption. 

The cascading effect, which is the domino-like propagation of a failure from its origin outward 

throughout the network, and the disruption in complex infrastructure and economic systems are 

discussed with the assumption that preparedness and prevention are the two principals to 

increasing the resilience of a system. By building crucial adaptability into a system to foster 

disaster resilience and recovery, despite the clear costs involved, the response to such failures 

can be mitigated. Risk assessment and management are differentiated: risk assessment is defined 

as a process that addresses the possible hazards and their respective probabilities, as well as their 

consequences; risk management is a separate process, which addresses the options for managing 

the risk. Input-output data is utilized to build relationship of inventory, demand, and resilience, 

while distribution functions are used to model inventory of the manufacturing and retail and 

trade sectors. The dynamic inoperability input-output model (DIIM) is used to perform event 

simulations and project amassed economic losses; the stochastic-based dynamic inoperability 

input-output model (SIDIIM) is specific to an individual sector and estimates the consequences 

of a disaster. Both the SIDIIM and DIIM are calculated across a predetermined recovery period. 
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Economic loss and inoperability are the two identifiable consequences of disaster for each 

economic sector. Although hazard analysis is often dependent on the long tail of low likelihood, 

high damage events, most economic loss estimations in the resulting simulations were largely 

representative of the high likelihood, mid-level damage events. The study provided an alternative 

perspective on hazard consideration and suggested that high probability events were important in 

analysis. 

2.3 Resilience in engineering 

 Resilience as an engineering concept was differentiated also by the ecologist C.S. Holling in 

1996. The differences between the established definitions are important. In the ecological 

definition of resilience, the term reflects the ability of the system to absorb changes of state 

variables, driving variables, and parameters, and still persist. Engineering resilience, however, is 

not inherently adaptive. For instance, while an organism may benefit from changing in response 

to an environmental event, a structure or system of structures is not designed to be dynamic; 

instead of returning to an enhanced state post-event, as an ecological system may, a building 

would ideally return to its original state (Figure 1).  

Several fundamental characteristics are common to the definition of resilience across 

ecological, economic, and hazard-based research. The ability of a system to anticipate and 

prepare for these types of likely disruptions is usually considered in the resilience. Once the 

network-damaging event has occurred, the network absorptiveness, the ability of the system to 

reduce and adjust to shock, is the commonly identified next stage in a time-dependent study of 

resilience. This is followed by a measurement of adaptability, a concept used in varying ways, 

but the root of remains the ability to change, adapt, and reform in the face of an extreme event. 

Perhaps derived from the ecological origins of resilience, Ortiz et al (2009) defines a specific 
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measure of adaptability as adaptive capacity, which measures how efficiently a network can 

accommodate extra disturbances in flow. After the initial disruptive event has occurred, the 

system’s ability to recover completely and in a reasonable time frame contributes to its 

resilience. The speed and completeness of recovery is mentioned in a number of texts, whether 

referring to a structure or economic market. In total, these compose four important “abilities” of 

a system which are used to measure resilience: ability to anticipate, to absorb, to adapt and to 

recover (Carlson et al., 2012). Additionally, across disciplines, the idea of resilience almost 

always includes both pre-event and post-event tasks.  

Bruneau et al. (2003) outline four aspects of the resiliency concept: robustness, 

redundancy, resourcefulness and rapidity. Robustness is a measure of strength, describing how 

adept the system is at simply resisting the forces of disruption. The existence of alternative paths 

and options in a network is represented by a level of redundancy; in a transportation network this 

may refer to the range of combinations of roads and highways allowing a vehicle to travel 

between the same origin and destination. Post-event, the ability to efficiently direct resources and 

repairs reflects the system resourcefulness and the rapidity is the speed at which recovery is 

accomplished. Encompassing these concepts, resilience of a transportation network is defined as 

the ability of the system to withstand, adapt to and rapidly recover from the consequences of 

disruptive events (Turnquist and Vurgin, 2013). Resilience of a transportation network is defined 

similarly as the ability to absorb minor disruptions and, after more extreme events, to return back 

to full serviceability in a short time (Ortiz et al., 2009).  

2.3.1 Risk assessment, vulnerability and resilience 

Although often used interchangeably with risk, resilience considered varying with the dimension 

of time, the time-dependent occurrence of the event and the related resilience measures, 
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resilience assessment can be distinguished from risk assessment. Risk is inherently a simpler 

concept and can be defined as the likelihood of experiencing damage or loss. Risk assessment is 

the analysis and determination of this probability. Several researchers use the measurement of 

risk to describe some aspect of system resilience because they are so closely interconnected 

(Furtado and Alipour, 2013; Bocchini and Frangopol, 2011; Shinozuka et al., 2003-2004). 

However, the entirety of resilience is more of a process, not solely determined by the system 

response to a disruption, but also by its preparation and recovery.  

Another term referenced simultaneously, and incorrectly interchanged, with risk and 

resilience is vulnerability. While risk describes the likelihood of threats and hazards, 

vulnerability is the proneness of a system or object to experiencing adverse effects (IPCC, 2012). 

Vulnerability, like risk and resilience, is complex to measure and can vary across dimensions 

such as the economy and time. Gitz and Meybeck (2012) postulate that the first step to 

improving resilience is reducing the vulnerability.  

2.3.2 Quantifying Resilience 

While there have been attempts to qualitatively report resilience, at the current time, there is no 

efficient method to quantify the resilience with regards to natural disasters. This difficulty in 

accomplishing an accepted method of quantification has as much to do with the ubiquity of the 

term resilience to describe a variety of properties as it has to do with the inherent complexity of 

the concept. As a consequence, there is no appropriate way to compare the resilience of different 

communities and civil infrastructure systems (Simonovic, 2012). This is to the point that some 

researchers reject the possibility of accurately measuring resilience with a single number, citing 

the range of different sectors exposed to different risk intensities, and propose its representation 

as a multi-dimensional concept with a range of contributing factors (Haimes, 2009). Resilience 
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can be represented as the performance of a system, which is a quantifiable quantity, in both time 

and space paths. There are several challenges that arise when considering resilience as a function 

of temporal and spatial variables, namely finding these functions with respect to a number of 

different sub-systems (i.e. the spatial distribution of hazards, location-dependent economic 

representations, time-varying health data, and energy consumption over time).   

There is widespread emphasis on the probabilistic nature of resilience. It is accepted that 

the probabilistic nature both of extreme event occurrence and the variability inherent in the 

nature of a civil infrastructure system necessitates the application of probabilistic theories in 

quantifying resilience. Furthermore, to increase the validity of resilience analysis with respect to 

different events or threats, it is crucial to include its probabilistic characteristics. The robustness 

of a system is thus determined by the vulnerability and exposure conditions of several smatter 

network components, and is expressed with regard to PHEOS. PHEOS is an acronym which 

stands for the five units of community resilience, as outlined by Simonovic (2012): physical, 

health, economic, organizational and social components. In order to successfully and completely 

consider each of these units, multi-disciplinary research and investigations must form the basis of 

the resilience model. Measuring and analyzing resilience may be made significantly easier by 

utilizing existing models of these systems (i.e. water lines, transportation networks, economic 

flow) and observing the effects of an extreme event. A systematic, quantitative approach to 

measuring resilience would allow for such comparisons and a more comprehensive evaluation of 

resilience which, in turn, would lead to more effective strategies to reduce loss in extreme events. 

It is also necessary to note that, in a resilient community, events and changes can allow for 

growth and ingenuity (Simonovic, 2012). Adachi (2007) compares seismic event effects and 

network resiliency modeled from a Probabilistic Hazard Assessment (PSHA) to the results of a 
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single earthquake scenario. The stark difference in results clearly motivates relying on 

probabilistic methods over those which are uniformly distributed. The difficulties and challenges 

in quantifying resilience is a ubiquitous theme investigated by many researchers (Haimes, 2009; 

Bruneau et al., 2006; Ortiz et al., 2009). The complexity and multi-faceted nature of resilience, in 

addition to the lack of a central and concise definition, form an unbalanced and complicated 

foundation on which a variety of uncertainties exist. Motivation for pinning down one reliable 

process to quantify resilience is high because of its implications. With a systematic and simple 

measurement of resilience, comparative studies could more easily be carried out on different 

communities and methods used to currently enhance resilience. The goal of a resilience 

measurement is to represent the ability of a system to react to the stresses which challenge its 

performance, specifically in response to a disaster.  

After comparing resilience studies, the commonality among these is the idea that 

measuring resilience requires an understanding of system structure and operations, in addition to 

the depth and range of holistic uncertainties. Qualitative methods are for the most part rejected 

for universal use because of their objective bases. Resilience quantification dependent on a 

multitude or set of data values and measurements (i.e. Bruneau et al., 2003) is less desirable than 

a process which results in one number, but which single metric to use is another discussion. 

Graph theory used with GPS navigation data and GIS is more comprehensive and adaptable to 

different regions and networks (Leu et al, 2010; Berche et al., 2009). By marking nodes and links 

as important, then simulating attack scenarios with graph indicators, Berche et al. (2009) were 

able to gather a quantifiable rank for the system resilience. Overall, despite some breakthrough 

theories and approaches, current methods for measuring resilience are too dependent on specific 

concepts and approaches.  
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The quantification of resilience is focused on earthquakes, justified by their high 

economic losses and community disruptions. Bruneau et al. (2003) recognized the need for 

quantitative measures of resilience to more efficiently evaluate and compare the options for 

improving systems and identifying weaknesses. Enhancing seismic resilience, similar to the 

improvement of any type of resilience, means minimizing any reduction in the quality of life 

from earthquakes. The most critical organizations (those that will have the largest and most 

immediate impacts on quality of life) are identified: utility companies, hospitals and emergency 

management companies. System performance is approached as varying over time, a path through 

a multi-dimensional space of performance measures (Figure 2).  

Q(t) is defined as the quality the infrastructure of a community which varies with time. 

Resilience, R, is the size of the degradation in quality and functionality over time and is a 

modified integral of the function Q(t). This is sometimes referred to as the “resilience triangle” 

(Reinhorn et al., 2011). But outlining what exactly Q(t) is and its definition is somewhat avoided. 

The concept of functionality is made more concrete in Reinhorn et al. (2011). A performance 

function is such defined as a relationship which adequately describes the usefulness of the 

system and dependent on usage, integrity, costs and other specific parameters. In the commonly-

used example of a hospital, this would translate to the function of providing better health to 

individuals with the total population, unhealthy population, medical staff, medical infrastructure, 

and built infrastructure as parameters. Bruneau and Reinhorn (2006) then used sets of 

intersecting axes to account for the relationship between robustness, redundancy, resourcefulness 

and rapidity. By expanding the two-dimensional plot of quality vs. time (robustness and rapidity) 

into a third dimension, resourcefulness and redundancy can be connected. The inclusion of a 

temporal variable to measure resilience by is also a defining point in the Ortiz et al. (2009) 
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investigation. Using the dependent variable to represent some measure of performance (i.e. cost 

or travel time), which may differ depending on the system, the resilience plot is split into two 

phases of (i) disruption and (ii) recovery to quantify the resilience of freight transportation 

networks.  

To quantify the seismic resilience, the concept of Sliding an Overlaid Multidimensional 

Bell-curve of Response for Engineering Resilience Operationalization (SOMBRERO) is 

introduced in an Orthogonal Limit-space Environment (OLE). The OLE is made of floor 

accelerations (PSA) and inter-story drifts (Sd), and the limits of both are indicated by dotted lines. 

The response surface is a probability distribution surface expressed with a series of contours. 

Dependent on different situations, resilience-enhancing measures and disasters, the surface can 

move along the axes defined by the OLE. When the surface crosses one of the limits previously 

defined by dotted lines, the area under the curve represents the probability that response exceeds 

the limit. It is thus visually (and quantitatively) clear when measures taken enhance the resilience 

or when disasters weaken the structure. The methods proposed in Bruneau and Reinhorn (2006) 

provide a relationship between seismic performance, fragility curves and resilience functions.  

By first defining resilience and identifying dimensions, ways to measure the dimensions 

of resilience are more easily found. Three complementary measurements of resilience make up 

the general framework: “Reduced failure probabilities”, “Reduced consequences from failures”, 

and “Reduced time to recovery”. There are two sets of dimensions identified; one set--

robustness, resourcefulness, redundancy and rapidity--reflects the properties of resilience in any 

situation while the second set--technical, organizational, social and economic--represents four 

interrelated dimensions encompassed by resilience. The “four Rs” each have definitions for 

technical, organization, social and economic dimensions. (Two distinguishing notes: redundancy 
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and rapidity are the “means” by which resilience can be improved to achieve the “ends” of 

robustness and resourcefulness - these are also represented in a plot of Q(t) and time; the 

resilience of companies like utility corporations is represented by technical and organizational 

performance measures while community resilience is better represented by social and economic 

measures.) One of the problems in this postulation is that these four dimensions of resilience 

cannot be accurately measured by one number representing performance.  

Attempting to build on the work done by Bruneau et al. (2003), Cimellaro et al. (2010) 

defined resilience as the normalized area underneath Q(t). Although similarly focused on seismic 

resilience, the goal is admittedly to develop a function or process which is adaptable to all types 

and forms of resilience. The resilience properties outlined by Bruneau et al. (2003), and clarified 

by Bruneau and Reinhorn (2006), are also carried through Cimellaro et al. (2010). Two new 

variables are introduced to better define these dimensions: control time (Tlc), and recovery time 

(Tre). Tlc is a period usually decided by owners of the system under consideration and is used to 

normalize the resilience to calculate the Resilience Index. Tre is the period necessary to restore 

the structure functionality to a desired level (the same, close to, or better than the baseline). The 

value of Tre is largely uncertain and usually smaller than the Tlc. Using loss and recovery 

functions, the factors of Q(t) are quantified and the resulting resilience value is dimensionless. 

Reinhorn et al. (2011) identifies six sources of uncertainty in quantifying resilience: intensity 

measures, response parameters, performance threshold, performance measures, losses and 

recovery time. Although oversimplified, the concepts outlined are interesting as they attempt to 

integrate all of the dimensions of resilience. The demonstration case used is that of a typical 

Californian hospital building, and is appropriate because it is a facility vital to community 

resilience.  
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2.4 Resilience to climatic effects 

Perhaps of especial interest to our investigation is Simonovic and Peck (2013), which evaluated 

climate change resilience as it applies to coastal megacities. Urban resilience, as defined in the 

investigation, is the ability of physical and social urban systems to absorb disturbance while still 

being able to continue functioning. Like Bruneau et al. (2003), Simonovic and Peck (2013) 

identified four interconnected areas from which to define urban resilience: the physical 

environment (both constructed and natural), metabolic flows (production, supply and 

consumption chains), governance networks (institutional and organization), and social dynamics 

(demographics, human capital and inequity). They built on the idea that resilience is made of 

inherent and adaptive qualities (Rose, 2003) and noted its applicability to the four interconnected 

areas outlined above. A concentration on critical facilities is taken in this process, like most other 

quantification framework outlines. Generally defined in Equation (1.1), resilience is represented 

in Equation (1.2) as a function of the dimensions vulnerability (V), exposure (E), and adaptive 

capacity (AC). Resilience is taken as a definite integral or sum over all impacts which 

characterize the impacts of disasters on a community (physical, health, economic, social, and 

organizational). What is developed is referred to as an ST-DRM, a space-time dynamic resilience 

measurement, which defines the system performance at a specific point in space relative to time, 

mathematically shown in Equation (1.3).  

𝑅 = ∫ [100 − 𝑄(𝑡)]𝑑𝑡
𝑡1

𝑡0
         (1.1) 

𝑅(𝑡, 𝑠) = 𝑓(𝐸(𝑡, 𝑠), 𝑉(𝑡, 𝑠), 𝐴𝐶(𝑡, 𝑠))       (1.2) 

𝑅(𝑡, 𝑠) = (∏ 𝛾𝑖(𝑡, 𝑠))
1

𝑀

𝑀
𝑖=1          (1.3) 

These impacts are quite comparable to the dimensions of resilience outlined in Bruneau et al. 

(2003) and are measured using different metrics such as GDP for economic impact, and age for 
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social impact. Resilience is calculated from the change in system performance. A coastal 

megacity is approached as a system made up of three interdependent subsystems: the natural 

subsystem, the socio-economic subsystem and the administrative institutional subsystem. The 

resilience framework described is then implemented in a system dynamics model called the 

Coastal Megacities Resilience Simulator (CMRS) and integrated with GIS software. This results 

in ST-DRM values for each point in a region, and a dynamic map that illustrates the changes in 

resilience. As a case study, Simonovic and Peck (2013) suggested that adding medical 

emergency response teams would increase resilience in a coastal Canadian community and 

proved this by using their ST-DRM in combination with the CMRS.  

Another interesting case study was performed on two communities in Chennai, India by 

Joerin et al. (2012). Instead of evaluating the effects of climate change on transportation, they 

compared the resilience of two municipalities to climate-related disasters: Ward 79 and Ward 

131. Both communities are largely residential and have similar exposure to hazards along with a 

significant population growth over recent decades. Like other communities in India and South 

Asia, the regions in Chennai are prone to cyclones which cause major flooding. Aside from these 

large-scale events, there are man-made floods when dams are opened and water logging from 

small-scale flooding. The main difference between Ward 79 and Ward 131 is their 

urbanization—Ward 79 belongs to a historical district of Chennai while Ward 131 is highly 

developed. The goal of the study was to understand resilience as it applies to communities and to 

find ways in which community resilience can be enhanced. Like other types of resilience, 

community resilience is defined here as the ability of a group of individuals to absorb, manage 

and bounce back after a climate-related disaster. Like the Boston metropolitan area studied in 

Suarez et al. (2005), Chennai is a low-lying area near the sea, making it especially susceptible to 
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coastal flooding caused by storm surge. Quite clearly, several individuals who reside near rivers 

and canals are more at risk of flooding. Less clear, however, was the finding that despite their 

flood experience, these individuals do not show an increase in adaptive capacity as an aspect of 

resilience to flooding. As a baseline, and to determine their existing physical capacity of 

resilience as coping capacity, the current supply of electricity, water and other necessities was 

assessed among households. Joerin et al. (2012) quantified resilience as a combination of 

adaptive and coping capacity. Not surprisingly, with fewer resources, less privileged residents 

were also found to be less resilient. However, households with disaster experience, which were 

expected to have more resilience, are not more resilient compared to other households. This was 

attributed to the lack of adaptive capacity needed to increase coping capacity. Although the 

survey techniques adapted by Joerin et al. (2012) were extensive and encompassed many facets 

of resilience, their qualitative and anthropological approach to resilience is not especially helpful 

in pursuing a quantitative method, but does provide insight into the humanitarian impact of 

pursuing resilience improvements to natural disasters.   

2.5 Resilience approach in this thesis 

By performing an exhaustive literature review encompassing the variety of applications and 

definitions of the concept of resilience, resilience as defined in this study will incorporate some 

of the ideas previously discussed. Specifically, properties of graph theory will be applied to 

effectively quantify quantities such as robustness, redundancy, resourcefulness, and rapidity, the 

“four Rs” of resilience originally outlined in Buneau et al. (2003). These are components that can 

be appropriately applied to the study of transportation networks and infrastructure engineering, 

perhaps more so than the types of resilience identified in economic studies, like adaptive and 
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inherent resilience (Rose, 2004) simply because they are systems designed to behave in an 

expected way.  

However, select concepts present in studies of economic resilience are useful to the 

analysis of transportation networks under extreme events. Specifically, the idea of delineated 

levels of resilience—macro-, meso-, and microeconomic—can be applied to analyze resilience 

on both a global network scale and a local network scale. Real networks are usually composed of 

several smaller networks, called clusters. Parameters specific to each cluster provide revealing 

information of the resilience and redundancy of a network, especially locally. In transportation 

networks, evaluating clusters allows for the efficient concentration of improvements and funds to 

the most needy network areas. On a global level, average properties of network-spanning 

connectivity can be measured, for instance, and on a more local level, properties reflecting the 

clustering of network components will be quantified. With regard to the four factors of 

resilience, different graph properties conceptually and quantitatively measure robustness, 

redundancy, resourcefulness, and rapidity. For example, local clustering measures are most 

representative of redundancy. In preparing a network for disaster, policy makers would be better 

equipped to make decisions about the locations of resources and where more improvements 

could be made. With measures of graph parameters contextualized by factors relevant to 

resilience, the resilience of the network is better understood. 

 In this particular study of transportation networks, disruptive events be non-targeted and 

originate from climatic sources. This poses unique challenges in improving the separate, 

temporal states of resilience described in Carlson et al. (2012)—anticipation/preparedness, 

absorptiveness, adaptability, and recovery—especially considering the uncertainties associated 

with extreme events of climatic nature. In a highway network, the resilience will be broken down 
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into these separate abilities of the entire system to withstand, adapt to, and rapidly recover from 

the consequences of disruptive events such as floods and surges. As measuring resilience 

requires some concept of network performance, and applying the principles used in Bruneau et 

al. (2003), where Q(t) is representative of the quality of infrastructure, the network performance 

in the highway network will be viewed as relative to the serviceability of highway drivers and 

vehicles using the road networks. Because delays, cancellations, and traffic accidents can cause 

significant financial and economic losses, the usability, connectivity, and network flow will be of 

utmost concern in this study. 
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Figure 1 Ecological resilience (top) and engineering resilience (bottom) concepts. 

 

 
Figure 2 System performance as the quality of infrastructure varying with time. 
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CHAPTER III 

HAZARD CHARACTERIZATION 

 

3.1 Introduction 

Recent natural disasters that have hit critical northeastern urban areas, such as Hurricanes Sandy 

and Irene, exposed the vulnerabilities of current infrastructure to extreme events of climatic 

nature. While manmade hazards, such as terrorist attacks, are worthy of their own analyses, the 

random nature of natural disasters creates a dangerous situation for which it is difficult to 

prepare. Furthermore, the increasing awareness and worsening projects of climate change have 

rendered previous characterizations of many hazards as underestimates of the actual risk. This is 

of interest as the northern Atlantic coast of the U.S., the study concentration area, is expected to 

be especially affected by changes in hurricane patterns and rising sea levels, which would only 

worsen the effects of a hurricane (Sallenger et al., 2012). Additionally, higher percentages of the 

population are migrating towards the coasts at an unprecedented rate, which increases the 

number of people affected by the adverse effects of climate events (Wilson et al., 2010). Because 

of the regionally-specific nature of hazard characterization, a review of the risks most relevant to 

the urban infrastructure of the northeastern coast of the United States was necessitated. The 

hazard characterization, described in this chapter, is a review of hurricane risk and a synopsis of 

potential climatic changes which would exacerbate the consequences of a hurricane.  

3.2 Literature review 

3.2.1 Hurricane and wind models 

Although storm surge is the main concern of this study, wind causes a large portion of hurricane 

damages. Additionally, storm surge is worsened by winds and the most accurate analyses of 

hurricane damages include a joint simulation of wind and storm surges. One of the reasons it is 
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difficult to perform these types of modeling conditions is the lack of adequate wind speed data, 

motivating several studies of synthetic wind databases. Rosowsky and Lee (2007) published one 

of the first papers on the development of a synthetic hurricane wind speed database. Because 

wind speed data is highly useful but largely inconvenient to measure, a “short-term hurricane 

wind field model” was created to estimate surface wind speed time histories at each site for the 

historical hurricanes which lack this format of wind speed data. Wind speeds can be correlated to 

physical and economic damage, two consequences that are of high interest to predict and 

measure. The “long-term hurricane wind field model” was developed to replicate discrete 

hurricanes stochastically. In contrast to the short-term model, the long-term model was employed 

to create synthetic wind speed records, which can be used in structural risk assessment, to 

compose maps of wind speeds and to analyze hurricane hazards. For the gradient wind field 

model, there are limited historical records. Georgiou’s model, which includes pressure and the 

maximum wind speed radius, was used instead of historical records (Georgiou, 1985). The model 

from Rosowsky and Lee (2007) was validated after comparing observed and simulated hurricane 

parameters along the east coast. 

Predicting potential extreme events, such as hurricanes, involves so much uncertainty that 

thousands, if not hundreds of thousands, of events must usually be considered. The efficiency 

and time required to perform hazard analyses on such a large scale can hamper the benefits of a 

thorough investigation. Estimation of losses resulting from hurricanes over the long term is often 

completed by simulating thousands of historical or synthetic regional hurricanes and estimating 

the losses caused by each. Legg and Nozick (2010) applied the hazard-consistent scenario 

approach, first introduced by Chang et al. (2000) for earthquake simulation, to choosing a small 

set of hurricanes to simulate. This approach reduces an expansive set of events by calculating 
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new annual occurrence probabilities for the smaller set of events, such that one event can 

mathematically represent all like events (Legg and Nozick, 2010). Legg and Nozick (2010) 

compare available methods to loss estimation for long-term regional hurricane events to illustrate 

the advantages of their proposed approach. The first method, simulating events using historical 

or synthetic catalogs, has different disadvantages dependent on which type of database is used. If 

historical hurricanes are considered, the method is more direct but requires the often-disproved 

assumption that the future will reflect the past. Using synthetic databases, on the other hand, 

requires a much higher level of computation but can account for storms not yet recorded. Instead 

of simulating the storm database more than once, the sample return period event method selects 

one storm with a 1/r probability of exceedance after performing only one full synthetic database 

simulation. The hazard and loss associated with this one storm is then considered to be the r-year 

return period hazard and loss maps. The downside of this method is that it does not include all 

possible events so, if the study area extends beyond that which is affected by the one selected 

event, it may not be representative of the hazard. In the maximum likelihood approach, all 

historical storms are simulated and a Weibull distribution is determined for the wind speeds at 

each specified site. These Weibull distributions are then used to calculate r-year return period 

wind speeds, which are applied to damage and loss models. Unlike the previous method, the 

maximum likelihood approach does not depend on a synthetic database of catalog; the 

disadvantage is that, over the course of analysis, the spatial information for individual events and 

the spatial correlation between assets is lost. The method outlined in Legg and Nozick (2010), 

the hazard-consistent probabilistic scenario method, is different because it can guarantee the 

lowest possible error between regional hazards and does not necessitate the user to identify 

which events belong in the reduced set.  
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 The larger set of “candidate” hurricanes, when applying the approach of Legg and Nozick 

(2010), should be both realistic and span the range of possible wind speeds for an area. It can be 

a set of historical hurricanes, a synthetic database, or taken from HAZUS-MH. The required 

input data includes this candidate set as well as the wind speed for each census tract and return 

period, the wind speed at each census tract caused by each hurricane, and user-defined 

parameters for wind speed threshold and the maximum number of hurricanes in the smaller set. 

Davidson et al. (2011) expanded upon this method considering both wind and storm surge for 

hurricane hazard analysis. Usually, wind and storm surge are not both considered in the same 

study. Even when they are, they are assessed independently. The method proposed by Davidson 

et al. (2011) estimates long-term probabilistic regional hurricane hazard with storm surge and 

wind simultaneously. Nominally an optimization-based probabilistic scenario (OPS) approach, 

the method is based off of that described in Legg and Nozick (2010). After collecting a large set 

of potential hurricane scenarios, wind speeds are estimated across the area of interest, using a 

wind metric such as sustained wind speed, as well as the coastal surges for each storm scenario, 

done using a coarse or low-resolution grid. Using mixed-integer linear optimization, a smaller set 

of hurricanes is identified and the annual occurrence probability is matched to equal the true 

wind speeds and surges. The mixed-integer linear optimization minimizes the weighted sum of 

the errors over point locations between true hazard curves and the curves from the set of reduced 

hurricanes. Both the wind speed and surge depth errors are divided based on intensity and the 

population density at the control point. This is important because errors in high density or high 

wind speed/surge points are considered more important and are weighted, a technique that could 

be adapted to reflect different study priorities. Each error is thus the difference between the true 

annual exceedance probability 1/r and the annual exceedance probability estimated using the 
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reduced set of hurricanes. The mixed-integer linear optimization requires a heuristic solution to 

first identify the smaller set of hurricanes and then a standard linear program solver to estimate 

the annual occurrence probabilities. For this smaller set, the inland surges are estimated across 

the area of interest using a high-resolution surge grid. Finally, loss estimations can be determined 

for each hurricane and, when applying the specified annual occurrence probabilities, loss 

exceedance curves can be generated. The OPS method probabilistically accounts for the entire 

range of possible events and their probabilities of occurrence, and then provides approximate 

calculations of storm surge and wind speeds. 

 Davidson et al. (2011) included a literature review of the wind hazard and storm surge 

hazard for long-term hurricane modeling. For the wind hazard, they categorize two methods: 

analysis which models the full hurricane track and analysis that separates the most important 

hurricane statistics and assumes a linear decay model after landfall. The full track analysis, or the 

empirical track method (ETM), was first introduced by Vickery et al. (2000) and involves 

updating key hurricane parameters every six hours using a wind field model. This method, 

although computationally demanding, is appropriate for large regions, allowing for the full 

probability distribution of losses and maintains the spatial correlation for hurricane scenarios. 

Because there are thousands of events, the damage and loss estimations are not found for each 

scenario; instead, the sample return period event method is followed. In storm surge assessment, 

the five methods are discussed. One of these, using design storm events to represent the true 

hazard, is found to sometimes omit important storm events, thereby not capturing the variability 

of a regional hurricane hazard. The joint probability method (JPM) steers clear of the errors 

inherent to using historical storms, but is requires high levels of computation. In response, the 
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joint probability method with optimal sampling (JPM-OS) was created to reduce the number of 

storm simulations such that storm surges could be estimated for each event. 

3.2.2 Surge model 

Storm surge is defined as an abnormal rise of water precipitated by both low pressure and wind 

speeds of a hurricane moving over shallow coastal waters (Figure 3). Despite the inherent 

dangers of high wind speeds and torrential rainfall, storm surges are the most costly and deadly 

consequences of hurricane events for coastal developments (Pielke and Pielke, 1997). The risk of 

hurricanes is often all too dependent on the value of the Saffir-Simpson hurricane category; this, 

however, does not correlate well to the risk of storm surge (Pei, 2012). Hurricanes grouped in the 

same category can cause dramatically different storm surges. When considering the growing 

risks of climate change, the increase in severity and frequency of hurricanes renders the accurate 

prediction of storm surge heights more important than ever. 

Simpson (1981) published a table which correlates storm parameters, such as wind, storm 

surge height, and damage, to the Saffir-Simpson Category number (Table 1). Although the 

Saffir-Simpson hurricane scale is useful to categorize storm intensity for some parameters, it 

does not correlate well to the severity of storm surges. In response, there are two main platforms 

used to calculate storm surge, Sea, Lake, and Overland Surge Heights (SLOSH) and the 

ADvanced CIRCultation model (ADCIRC). SLOSH basins (in the U.S. Eastern Coast and the 

Gulf of Mexico) are low resolution grids (~1 km) on which storm surge predictions are made 

using a simplified parametric wind field model. Other storm surge models provide greater 

resolution, such as ADCIRC (~100 km), which  models with a wind field that uses a dynamic 

atmospheric model to fully account for the physical processes that cause storm surges. Both have 

advantages and disadvantages, the most prominent of which is computation power required. 
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Because of the slight approximations in modeling physical phenomenon and its coarser grid, the 

SLOSH program runs much faster than the ADCIRC model (Jelesnianski et al., 1992). It is thus 

more useful for analysis of large sets of hurricanes and storms. It should also be noted that 

SLOSH does not account for astronomical tides or waves, but that ADCIRC can approximate 

both. However, neither ADCIRC nor SLOSH can account for rainfall runoff or specific sea level 

rise scenarios, although the mean sea level can be adjusted in ADCIRC (Lin et al., 2012). 

Normally, the maximum storm surge occurs before the high of river flooding does. While the 

levees and barriers protecting some flooded areas may suffer structural damage from surges, this 

possibility is also not considered in SLOSH or ADCIRC. Because the focus of the study is 

transportation consequences not necessarily storm modeling, SLOSH is relied on for adequate 

predictions at a fraction of the computational power required by ADCIRC.  

To model the flooding and inundation due to storm surges, SLOSH uses a bathtub model, 

which is a simple elevation model that can somtimes inaccurate and overestimate flooding values 

(Murdukhayeva et al., 2013). However, its simplicity cuts down computation time and SLOSH 

results are estimated to be within 20% of the true storm surge; errors are largely due to incorrect 

track and intensity inputs (Jelesnianski et al., 1992; Aggarwal, 2004, Blain, 1997). The most 

accurate SLOSH-generated storm surge predictions are the storm surges over 12 feet (Glahn et 

al., 2009), which works to benefit the analysis in this particular study. Clearly, infrastructure 

systems experience most hurricane-related damage from high storm surges, so these are the 

levels of most interest. The computational speed of SLOSH offsets the reasonable error, 

especially in regards to this specific study.  

 The SLOSH display program makes two enveloped simulations available: Maximum 

Envelope of Water (MEOW) and Maximum of the MEOWs (MOM). Each MEOW is 
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representative of storms with the same Saffir-Simpson category, direction, forward speed, and 

pressure difference but with varying landfall locations. A MEOW illustrates the maximum storm 

surge at each grid cell in the basin over thousands of simulated hurricanes from synthetic 

SLOSH model runs. There are five MOMs for each SLOSH basin—one for every category of 

storm. Storm speed, direction, tide level, and landfall point can vary for each data point in a 

MOM because they are essentially the maximum of all MEOW simulations at each point. 

Representative of about 15,000 synthetic storms, MOMs are clearly more conservative 

simulations than MEOWs, and in real-time, they are run 120 hours before landfall of an 

approaching storm; MEOWs are recommended for simulation 48 hours before landfall. While 

both MEOWs and MOMs are useful tools for hurricane preparation, MEOWs were solely 

depended upon in this study to describe the hurricane hazards. 

 In addition to the SLOSH display program, NOAA offers a probabilistic SLOSH analysis 

interface called P-surge. P-surge is available in the hours leading up to an anticipated hurricane 

event. By assuming a normal distribution, the average along-track, across-track and maximum 

wind speed error distributions can be found. The error distribution of the radius of maximum 

winds is calculated by using the wind field model under the assumption of a constant pressure. 

Although P-surge does not currently include data to determine structural design criteria for wind, 

surges, and waves, this may be a reasonable part of a future version of P-surge. The importance 

of real, usable data for structural engineers is highly relevant to researchers working to predict 

such hazards. It should be noted that P-surge was able to provide accurate data during the 

approach of Hurricane Katrina, but its limited availability renders it inapplicable to the current 

study. 
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Pei (2012) includes both storm surge modeling and wind field modeling in investigating 

hurricane storm surge simulation. Hurricane wind field modeling used the HURDAT database in 

parallel with a wind field model to generate wind velocities and pressure values. These were 

included in the storm surge model through meteorological parameters and combined with a finite 

element mesh and boundary conditions. The storm surge model presented in Pei (2012) 

generated water elevations. As most storm surge investigations do, Pei (2012) employs the use of 

SLOSH and ADCIRC models. Their hurricane wind field model is based off of the discrete time 

model of Georgiou (1985) then applied to the finite element grid of the ADCIRC model. 

Parameters, the hurricane track, translational speed, heading angle, and central pressure, 

available through HURDAT from historical storms are collected with values in six-hour 

intervals. ADCIRC then linearly interpolates the input time histories, converting them to 15-

minute intervals. The resulting simulated water elevations are compared to those measured 

during historic hurricanes and, although the differences are not significant, there were definite 

systemic and random errors.  

As in Pei (2012), Lin et al. (2012) uses both ADCIRC and SLOSH models. ADCIRC 

requires surface wind estimations, projected by employing an analytical hurricane wind profile 

along with other added parameters. SLOSH is used first, because of its computation efficiency in 

analyzing large sets of storms, to identify the most hazardous surge events. The probability 

density function of surge events is then calculated by statistical analysis. ADCIRC is used to 

refine the nine highest surge-generating storms for in-depth probability distributions. The 

ADCIRC wind inputs are those generated by the SLOSH wind field model and the pressure field 

model is calculated using a Holland pressure distribution. The ADCIRC analysis matched 

closely to SLOSH with a few exceptions that are most likely due to its coarser resolution grid, 
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showing that SLOSH is acceptable for an NYC-focused analysis if storm surge is the controlling 

parameter of the risk assessment. 

3.2.3 Effects of Climate Change and Its Consequences 

The undeniable occurrence of climate change is attributed to a number of factors, but the 

correlation between increasing temperatures, the melting of the polar ice caps, and rapidly 

changing climatic patterns is thoroughly reported by the IPCC (2014). Design of civil 

infrastructure is based on an unchanging set of weather and climate patterns of the past which, 

scientists have shown, are not necessarily representative of future events (Wright et al., 2013). 

This motivates an investigation which relies on future climate change predictions, whether they 

are of carbon dioxide levels, precipitation rates or temperature changes. While weather (short-

term variations) and climate (average weather conditions) are important, we will focus on the 

resilience of extreme events, which are weather events that are rare at a particular place and time 

of year. By considering the available data of climate change, the system vulnerability is more 

accurate and useful.  

However, the uncertainties associated with these changing conditions must also be noted. 

Specifically, the growing number of natural hazards attributed to climate change will be of 

interest, especially those that affect coastal urban environments. These include: rising sea level, 

increased intensity and frequency of storms, flooding, corrosion, erosion and increased 

vulnerability. Coastal cities are notable urban systems off of which to base resilience models 

because of their high population density, economic importance, social connectedness and 

exposure to coastal weather patterns (i.e. hurricanes, storms and flooding). As predicting the 

climate changes and atmospheric carbon dioxide levels in the future is highly uncertain, studies 
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evaluating specific cases of climate-induced hazards modeled different greenhouse gas emission 

scenarios to encompass possible future cases.  

Global climate change models have predicted varying degrees of changes in maximum 

daily precipitation, therefore affecting peak flow rates for thousands of watersheds. These 

conditions create more severe environments for bridges, which will exhibit different scour 

vulnerability depending on the climate. As eastern coastal communities are more susceptible to 

hurricanes and storm surges, their bridges are significantly more vulnerable to scour as climate 

conditions worsen, possibly necessitating major repairs such as raising bridge heights and 

designing structures for higher water levels and flooding. It is vital to consider scour when 

estimating the service life of a bridge and, thus, when evaluating the resilience of a critical 

infrastructure system that includes bridges. In a study by Wright et al. (2012), the National 

Bridge Inventory (NBI) was utilized to identify bridges that are most vulnerable to the negative 

effects of increased flooding. When combined with the projected increases in flow, the list was 

narrowed to include the structures designed to withstand the new conditions. 

The effects of historical climatic events have resulted in a growing concern for 

preparedness against such hazards, specifically in the coastal communities most affected. 

Hurricanes are noteworthy in their deadly combination of natural forces and unpredictable 

nature. High wind speeds, heavy rainfall, storm surges and powerful waves can wreak havoc on 

civil infrastructure and communities. Hurricanes Katrina (2005), Ike (2008), Irene (2011) and 

Sandy (2012) left extensive destruction across their respective regions at landfall. They served as 

unfortunate reminders of the powerful and unpredictable forces of climatic events, often causing 

a renewed effort to bolster vulnerable regions against further hurricane damage. Estimates of 

hurricane damage for the US are about $6 billion annually and for Hurricane Katrina, $150 
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billion (Bjarnadottir, 2011). These numbers reflect not only the direct costs of immediate 

flooding and emergency response but the indirect costs such as bridge repairs and infrastructure 

clean-up. The intensities of such hurricanes are projected to worsen with the irrefutable changing 

climate, necessitating an even greater focus on preparing coastal communities for climatic events 

(Emanuel, 2006).  

Mudd et al. (2014) used probabilistic models to model the impact of climate change on 

hurricanes by comparing future climate scenarios as Lin et al. (2012) did SLR scenarios. The 

model used is dependent on an assumed stationary relationship between sea surface temperature 

(SST) and pressure (IPCC, 2014). Representative Concentration Pathway (RCP) scenarios, as 

published in IPCC (2014), are four independent scenarios developed by different groups; Mudd 

et al. (2014) considers only RCP 8.5, the worst case RCP. To obtain SST values, the Community 

Earth System Model (CESM), a global climate model that is capable of simulating climate states, 

was employed along the RCP 8.5 projection. From the simulations, monthly average SST values 

were gathered and stored for hurricane simulations. The annual occurrence rate of hurricanes in 

the Atlantic basin is found to be 13.9, larger than the 2005 occurrence rate of 8.4 by more than 5 

storms (Figure 4). This was calculated after following a Poisson process to simulate hurricane 

events, for which thousands of years of storms were simulated to construct a database such that 

probabilities of exceedance could be extracted. Further proving the theory that changing climate 

conditions will affect hurricane intensity and occurrence, Mudd et al. (2014) underlines the need 

to prepare coastal communities for storm hazards. 

The combined effects of melting ice caps and thermal expansion of ocean water are 

gradually causing the rise of global sea levels. Relative sea level describes the local 

measurements and depends also on regional properties and activities such as uplift, tectonic plate 
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movement, and geologic processes. The current rate of rising sea levels is due to both land 

subsidence in the Atlantic Ocean and the increase in global average temperature (IPCC, 2014). 

This has deleterious consequences for, among many areas, coastal developments, wetlands and 

any structures along the waterfront. Rising sea levels can cause a number of events such as 

inundation, increased salt concentrations in groundwater, more forceful waves and erosion of 

structures and roads. Of interest to this study is Kirshen et al. (2008a), which presents a study of 

the impacts of climate change along the coast of Boston and its surrounding areas along with 

suggested adaptation strategies. These are categorized into three types of responses: protection, 

accommodation, and retreat, to be determined in a site-specific manner. Boston was chosen 

because of its coastal exposure, densely populated areas, and an aging infrastructure that is 

struggling to meet the growing transit demands of the area. The results of investigating two 

possible sea level rise scenarios—relative SLRs of 0.6 and 1.0 m by 2100—was shown to affect 

the storm risk assessment. It was also shown that, by 2100, an increase in total SLR of 0.6 m 

causes the 10-year storm elevation to reach what is now considered the 100-year storm elevation. 

SLR is not modeled in this study, but the possibility that it may change a northeastern storm risk 

assessment is relevant to the importance of analyzing the effects of hurricanes on coastal 

communities. 

As hurricane surge levels are dependent on the regional sea level, it is reasonable to 

suggest that incorporating the climate effect of sea level rise is significant, but complex. Emanuel 

et al. (2006) simulated hurricane tracks based on best-track tropical storm data from the National 

Hurricane Center (NHC) to evaluate storm surges in the New York City area. In order to 

investigate the stress imposed by climate change, sea level rise was manually incorporated into 

the storm surge projections by changing the mean sea level in ADCIRC. Lin et al. (2012) chose 
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four climate models to predict climate conditions for the New York region, leaving a wide range 

of future storm predictions that attest to the uncertainty inherent in climate change models. Lin et 

al. (2012) is the first study to model surge events under projected climates, examining how SLR 

conditions affect hurricane properties and patterns, instead of focusing on the effects of SLR on 

flooding. A Global Climate Model (GCM) and a statistical/deterministic hurricane model with 

hydrodynamic surge models were combined to simulate storm surges. It is assumed in this 

investigation that storm surge height is determined both by the properties of the storm and by the 

physical properties of the coast. Considering astronomical tides and SLR was a motivation as 

SLOSH does not account for either. The study showed that the combined effects of SLR and 

storm surge heights can drastically change both hazard assessments and storm occurrence 

intervals. While SLR scenarios are beyond the scope of this project, understanding their 

projections emphasizes the importance of hurricanes storm surges as a growing and worsening 

hazard. 

3.2.4 Climate Change and Transportation 

Because of the long-term analysis and quantity of data needed, relatively little 

information is known regarding how climate-related extreme weather events affect transportation 

networks as systems. While researchers have focused efforts on mitigating the climate impact 

from transportation networks (National Research Council Panel, 2010; Dedinec et al., 2013; 

Sperling and Cannon, 2007), other, more recent research argues that these efforts should partially 

be redirected into adapting to the impacts of climate change (Peet, 2014; Cooper and Pile, 2013; 

Wall and Meyer, 2013). There is enough evidence to safely assume that some effects of climate 

cannot be completely prevented at this point. Towards this motivation, attention must be directed 
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to assessing the impacts of climate change on current transportation systems and the future 

hazards of climatic events.  

Flooding events are costly for the government; any increase in their damage may 

significantly strain the federal budget. Coastal urban flooding was analyzed as a cause of 

increased travel time and trip cancellations in the metropolitan area of Boston (Suarez et al., 

2005). As a case study, the Boston Metro area is chosen because of its dense transportation 

network and coastal location. Massachusetts, specifically, is at a higher risk of flooding on the 

coasts and near rivers because of its extensive coastline, river, and stream network as well as its 

highly developed neighborhoods. Suarez et al. (2005) describe their modeling approach, first by 

outlining possible reasons for transportation disruptions: cancellations because either endpoint of 

a trip is flooded, cancellations because a link in the trip is flooded, or delays because of altered 

routes or congestion. They used the Urban Transportation Modelling System (UTMS) to 

simulate the flow of metro road traffic under different situations. First, the model is run to gather 

reference data in normal circumstances. Then it is run with links and nodes “flooded” or marked 

unusable. Their process of assuming flooding links and nodes unusable is replicated in this study 

of New York City. The results, which found a doubling in delays and cancellations, were 

interesting but largely specific to the Boston metropolitan area.  

Similar to the preface made by Suarez et al. (2005), Jaroszweski et al. (2010) noted that, 

like delays and cancellations, traffic accidents can cause significant financial and economic 

losses for a government. Also noted is the undeniably strong relationship between weather and 

transport, which of all industries, is constantly subjected to and severely affected by the weather 

conditions. While some may argue that the effects of climate change do not need to be 

considered for current structures, Jaroszweski et al. (2010) notes that the impacts of climate 
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change are well within the lifetime of newly-built or recently-constructed structures. Based on 

the climate-related weather changes outlined in Peterson et al. (2008), Jaroszweski et al. (2010) 

drew each climate effect to its specific impact in transport. As an example, increased heavy 

precipitation brought about by climate change would have four main effects on transportation: 

road submersion and underpass flooding; increased landslides and undercutting; poor visibility; 

exceedance of the existing 100-year flood. The presented concise table is an eye-opening, direct 

way to examine the effects of climate change on transportation and serves to validate ongoing 

research into this sector. But perhaps the most interesting objective of Jaroszweski et al. (2010) 

was to approach the effects of climate change with the knowledge that the future transportation 

network will be different than it is now. Similar studies, such as Mills and Andrey (2002), 

account for a changing climate but not an altered transportation system nor new technology. 

Jaroszweski et al. (2010) postulated that there will also be changes in transportation patterns, 

both human and freight. Although the exact future situation cannot clearly be predicted, 

scenarios can be used to account for the uncertainty in socio-economic pathways. The analysis 

process is then repeated for a range of socio-economic scenarios. Two specific scenarios are 

outlined: a “World Markets regime” where societal values are centered around consumption, 

leading to a greater demand on transport but also more resources dedicated to bettering the 

efficiency; a “Global Sustainability” society where the community values sustainability and 

energy efficiency which increases the cost of transport. Using scenarios alongside climate 

change predictions is a viable and more accurate method to create realistic modeling conditions.  

Koetse and Rietveld (2009) published an overview of current empirical findings on the 

effects of climate change and weather conditions on transport. Traffic disruptions and road 

conditions of transportation systems, highly affected by the climate and weather, will worsen 
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parallel to the changes in climate. Many of these predictions were played out in reality when 

Hurricane Sandy hit the eastern coast in 2012. The corresponding instances of inundation and 

vehicle delays were caused by hazardous storm surges from the coast. Of particular interest and 

uniqueness is this study was the concentration on the shifts that would occur in both tourism and 

agricultural production as a result of increasing temperatures. These shifts would affect 

transportation by similarly shifting passenger and freight transport. By accepting that 

temperatures will rise in Northern communities, which account for the majority of travelers, 

fewer people will be persuaded to migrate south. Regarding the freight sector of transportation, it 

follows that farming will be less suited for countries at low longitudes. Both of these climate-

related effects will alter the transportation industry and demands. Additionally, Koetse and 

Rietveld (2009) note the increase in the frequency (with a decrease in the severity) of automobile 

accidents that would occur as a result of increased precipitation. While uncertainty is the largest 

regarding predicting changes in precipitation patterns and severity, it is nonetheless important to 

consider. Communities on the East Coast are the most at-risk regions for the effects of sea level 

rise and flooding. Here, even small network disruptions have large consequences, economic and 

social. As temperatures inland increase more severely than those in coastal areas, rivers and 

waterways vital to inland transportation will undergo lowering water levels. Thus, economic 

losses will be experienced as shipping costs are increased for more difficult and risky traveling. 

Despite this comprehensive overview of the effects climate change may have on transportation, 

Koetse and Rietveld (2009) conclude that the impacts are ambiguous and region-specific, a 

relatively common denominator in similar investigations. 
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3.2.5 Hazard studies in New York City 

A case study of the New York City metropolitan area by Rosenzweig and Solecki (2001) is dated 

but remains relevant to this investigation. Rosenzweig and Solecki (2001) made a valid point that 

bolsters the importance of studying urban areas and their responses to climate change: the effects 

of climate change are not confined to the physical area of the metropolitan region, but instead 

can ripple through the surrounding areas which are dependent on the economical and 

transportation resources provided by the city. Policy change in a metropolitan area like New 

York City is challenging mainly because of the diverse political and socioeconomic population 

which sets an unsteady foundation for environmental and sustainability reform. In fact, most 

political decisions are responses to short-term concerns. The overview relied on the Metropolitan 

East Coast (MEC) Regional Assessment, a climate change study performed from 1998-2000. 

Higher average temperatures, a greater number of heat waves in the summer, increasing sea 

levels, shorter recurrence intervals for severe storms and more frequent droughts and flooding 

were all expected effects in New York City. The MEC Regional Assessment studied the effects 

of climate change for seven sectors: coasts, infrastructure, wetlands, water supply, public health, 

energy demand and institutional decision making (Rosenzweig and Solecki, 2001). To estimate 

the general change in temperature, GCMs were used before interpolating specifically for New 

York City. Along with the baseline costs, increased stress on energy resources, urban 

infrastructure, and utilities were found to magnify any damage resulting from climate change. As 

a city situated on the coast, SLR is of clear interest. Rising sea levels are hazardous to urban and 

developed areas for a plethora of reasons, the most costly and disastrous of which were 

determined to be the resulting heightened storm surges. The longstanding approach to placing 

unappealing but necessary infrastructure (airports, railways, highways and water quality 
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treatment facilities) near waterways could backfire; in the event of coastal storm surges, repair 

and recovery would be even more costly and, for water quality treatment facilities, the risk of 

salt-water intrusion is significant. In addition to being a vital regional ecosystem, wetlands were 

cited as providing protection to developed coastal areas; SLR would accelerate the loss of crucial 

wetlands which are already endangered by erosion and development. These risks were described 

in detail and their potential effects briefly explored in Rosenweig and Solecki (2001), which 

pointed further research to new focuses.  

 As part of a holistic risk assessment of the New York City transportation system focusing 

on climate change, ClimAid outlined three goals of their work: to collect the frequency of 

historic storm surge events in New York City and to identify a hazard distribution regarding the 

maximum daily and yearly storm surges; second, to predict storm surges based on a probabilistic 

model; third, to assess infrastructure based on reliability (ClimAid, 2010). In Hwang (2013), 

once past storm tide data is collected, the data was analyzed to determine a probability 

distribution of storm surges and, eventually, a risk assessment for uncertain future events was 

developed. Because the Saffir-Simpson scale is primarily based on wind strength, the intensity of 

hurricanes causing the analyzed storm surges was measured in an alternative way. A region 

consisting of an 80-mile radius around NYC was selected to be considered in the study. The four 

critical historical hurricanes, for which tide and surge data was specifically examined, were 

determined to be Donna (1960), Gloria (1985), Irene (2011), Sandy (2012). Hurricane Donna 

had the highest recorded surge with 13.3 feet occurring in 10 hours until Hurricane Sandy hit—

its storm surge was recorded at 17.3 feet in 14 hours. For tide reference levels, four points of 

observation were placed in New York and six in New Jersey. In the analysis of the maximum 

daily water heights in NYC, Hwang (2013) found a linearly increasing trend of daily water 
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heights with an 8.1 feet mean value. In order to accurately predict future daily maximum water 

heights, a linear regression is used for a basis. The corresponding statistical analysis on the daily 

water height data showed that the standard deviation is actually constant across about 90 years of 

water heights, but that the mean value is linearly increasing. To find the parent probability 

distribution, which was determined to be a logistic distribution, goodness-of-fit testing was 

performed on maximum daily water height data. A similar process was performed on the 

maximum yearly storm surge data for NYC, which resulted in a determination of a generalized 

extreme value parent distribution. To develop distributions of maximum storm surges in a 

specified period of time, the extreme value theory, a principle useful in the risk assessment of 

extreme events, and the effect of including Hurricane Sandy tides in the dataset, is more closely 

studied. Two cases for maximum water height analysis are considered: one that includes 

Hurricane Sandy data and one that excludes it. The resulting storm surges for specific return 

periods are significantly different (i.e. a 50-year storm has a storm surge of 12.68 if Sandy data is 

excluded and 13.38 feet if Sandy data is included) (Hwang, 2013). From this, Hurricane Sandy is 

concluded to be a singular event. For comparison, the data from Hwang (2013) is compared to 

that from Lin et al. (2010), which utilized SLOSH-generated surges coupled with a Pareto 

distribution. The storm surges for each return period were comparable, and the Hwang (2013) 

empirical data excluding Sandy matched the synthetic data from Lin et al. (2010) more closely. 

 During Hurricane Sandy, seven subway tunnels positioned below the East River were 

flooded. Motivated by the widespread and devastating flooding in the subway network of NYC, 

Hwang (2013) chose to concentrate on the potential applications of storm surge predicting to 

subway stations. Subway flooding can be due to both storm surges and heavy rainfall, and 

Hwang (2013) traced the path of water vertically through grates and stairwells. The time history 
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of a storm surge is modeled, modifying the equation to match the generated general extreme 

value distribution for peak storm surge height; 100,000 time histories were simulated. These time 

histories were combined with underground infrastructure dimensions to estimate the total volume 

of water flooding underground. To perform a stochastic analysis of vulnerability, iterations of 

storm surges were simulated varying the return period and elevation of infrastructure to generate 

random peak heights. The time history of storm surges was generated and the volume of water 

calculated. All of this data was applied to find exceedance and fragility curves, which predict the 

probability of reaching or passing various damage states, after 1 million simulations (Hwang, 

2013). These can be used to direct resources to appropriate subway stations and gauge the risks 

for New York City. 

3.3 Hazard characterization in this thesis 

The New York City metropolitan area is chosen as a case study for its dense urban 

population, highly developed infrastructure, and its criticality to the national economy. Because 

of the shared dependence on the road system in New York City, especially by out-of-city and 

out-of-state commuters, the highway network will be modeled and analyzed. The New York City 

metropolitan area is prone to typical hazards characteristic of communities along the northeastern 

Atlantic coast: hurricanes, high winds, flooding, nor’easter storms, snow, high humidity, heat 

waves, among other events of climatic sources. The occurrence of Hurricanes Sandy and Irene 

has brought the vulnerability of New York City to such hazards to national attention, motivating 

the concentration in this thesis on hurricanes. In these two recent events, storm surges were 

responsible for millions of dollars of damages. With the knowledge of potential projections of 

sea level rise, the importance of examining the current hazard of hurricane storm surge is high. - 

While scenarios of climate change will not be directly applied to this analysis, in future studies, 
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this could increase the value of such analyses to communities. Along those lines, the correlation 

between rising SSTs and hurricane power dissipation reflects the possibility of more frequent 

and intense hurricanes (IPCC, 2014). Storm surges will be characterized using the MEOW 

enveloped scenarios in the SLOSH modeling program. In contrast to alternative storm surge 

models like ADCIRC, the simplifications and grid resolution allow for more efficient 

computations and analysis. As resources continue to be directed towards improving the resilience 

of New York City to future events, the results of this hazard characterization can be used to more 

efficiently improve highway infrastructures.  
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Table 1 Saffir-Simpson scale correlation to hurricane properties. 

Scale Number 

(Category) 

Central 

Pressure (mb) 

Central 

Pressure (in) 

Winds (mph) Surge (ft) Damage 

1 > 979 > 28.91 74-95 4-5 Minimal 

2 965-979 28.50-28.91 96-110 6-8 Moderate 

3 945-964 27.91-28.47 111-130 9-12 Extensive 

4 920-944 27.17-27.88 131-155 13-18  Extreme 

5 <920 <27.17 >155 >18 catastrophic 
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Figure 3 Schematic diagram of a storm surge (NOAA, 2005). 

 
Figure 4 Sea surface temperature (SST) and hurricane power dissipation 

 (IPCC, 2014). 

 
Figure 5 Global mean sea level rise trend (IPCC, 2014). 
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CHAPTER IV 

NETWORKS AND NETWORK SCIENCE 

 

4.1 Introduction 

Transportation networks, due in large part to their physical layout at the most fundamental level, 

consist essentially of nodes and links. Their properties can thus be adequately measured with 

graph theory, or the study of networks comprised of nodes and links. Many researchers have 

chosen to use the principles of graph theory in studies of networks (Adachi, 2007; Buhl et al., 

2004; Cohen et al., 2000; Hu et al., 2011). The topological properties used are derived directly 

from the fundamental theories of graph theory to achieve consistency and reliability. While 

graph theory encompasses levels of analysis other than topological ones, topology measures 

translate best to real networks and their resilience and are convenient for their versatility in 

describing overall network properties and also how each component contributes. By evaluating 

the topological properties of the network, quantifications of resilience are found that measure the 

preparedness of an infrastructure system to extreme events. The use of topological network 

properties also allows for a concrete quantification of resilience based off of traditional, accepted 

units of measurement.  

Resilience is dependent on the structure of the network, vulnerability, and adaptive 

capacity. Similar to adaptive capacity is network flexibility, which is the ability of a network to 

easily adapt and change while maintaining function in the event of a disturbance. Road and 

highway networks are relatively flexible compared to a network such as railway tracks, where 

the existence of alternative paths is not as abundant. The question that must be answered is how 

decision-makers and public departments can assess and improve infrastructure resilience. Critical 

components must first be identified; this can be done by ranking network components according 
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to importance or betweenness. Scott et al. (2006) and Cimellaro et al. (2011) proposed a network 

robustness index, which allows a ranking of the most important or critical network links. In fact, 

Cimellaro et al. (2011) used a clustering coefficient as a measure of local connectivity and 

betweenness as a measure of node centrality to consider the behavior of topological network 

properties. In the resulting case study of the Minnesota highway network, these topological 

properties were plotted against random node removal. This was similarly investigated using the 

San Francisco highway network in Testa et al. (2014). The combined properties from both 

studies—average degree, clustering coefficient, average core numbers, redundancy ratio, average 

shortest path length, efficiency—were each found to behave differently as nodes were randomly 

removed from the network. These studies are highly relevant to this thesis, which uses graph 

theory to study resilience. However, to understand the basis of graph properties holistically, a 

complete literature review of the theory and range of applications of graph theory was 

performed. 

4.2 Fundamental concepts of graph theory 

4.2.1 Definitions and terms 

Knowledge of the most fundamental concepts of graph theory is necessary to investigate the 

topological parameters of a network. For this reason, an overview of essential terms and 

definitions in graph theory will be discussed. Graphs are composed of two types of elements--

links (edges) and nodes (vertices)—and can be uniquely defined by the set of links and nodes 

they contain. Networks and graphs are two different terms to describe the same concept, 

although networks are usually examples of graph systems that exist in reality. The connections 

and locations of nodes and links determine the majority of identifying properties of the graph. A 

network is a wide-inclusive term; it can include links and nodes of different types, weights and 
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(for links) directions. Directed graphs—digraphs—can be cyclic, with closed loops, or acyclic, 

without closed loops. Hypergraphs are graphs with hyperlinks, or links that connect more than 

two nodes. Bipartite graphs contain two different types of nodes and, generally, links connect 

only nodes of the same type (Figure 7).  

Several properties of graphs are actually graphs in themselves—collections of links 

and/or nodes of the main graph. These, or any defined subsets of graph elements within a larger 

graph, are called subgraphs (Figure 6). In highway network studies, properties of a path between 

two nodes are of special importance. A path is an ordered sequence of links necessary to travel 

from the origin node to the destination node; the length of a path is the number of links it 

includes. Distance is expressed as a length, but it is always the length of the shortest path 

between two nodes. If there is no path connecting two nodes, the distance is defined as infinite.  

Topological graph theory is based on the physical layout, or structure, of the graph and 

relies on several measures of connectivity. Topological graph parameters are sometimes 

combined with properties measuring network flow and referred to as topology-flow effects. 

Connectivity, a reflection of the adjacency and ease of flow between nodes via links, is closely 

tied with the intra-dependencies of the network. There are various levels of connectivity, but the 

highest exists is that of a complete graph, where for every pair of nodes there exists a link 

between them. For a graph to be connected at all, at least one pair of its nodes must be linked by 

a path. When evaluating the response of a network to a node or link failure, the interruption of 

flow or failure of paths is contingent on the connectivity. If a link fails, flow may still be possible 

between two nodes if there are other available paths along connected nodes. Thus maintaining a 

certain level of connectivity is necessary to preserve the functionality, or operability, of the 

network.  
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Node degree is a network measure which compares the number of nodes to the number of 

links per node. Average nodal degree is a quantification of network connectivity, taking the 

mean of the number of links connected to each node. For one node, the degree, d(v) is defined as: 

𝑑(𝑣) = |𝐸(𝑣)|          (4.1)  

where |E(v)| is the number of links at node v. The average degree of the network is simply the 

total number of degrees in the network summed over all nodes, divided by the number of nodes 

in the network.  

𝑑(𝐺) =  
1

|𝑉|
∑ 𝑑(𝑣)𝑣∈𝑉           (4.2) 

 Topological graph characterizations often rely on finding the law followed by the degree 

distribution. These rely on pk, the fraction of nodes that have degree k and the probability that an 

arbitrary node has degree k. By compiling the node degrees into a histogram, a plot of the degree 

distribution can be created (Figure 8). A histogram can lose its analytical value for large 

networks, so illustrating the degree distribution can be modified by creating exponentially 

increasing bin sizes for the histogram or by mapping a cumulative distribution function. More 

inclusive bin sizes reduce the noise prevalent in a large-network histogram while the cumulative 

distribution function simply shows the probability that the degree is greater than or equal to k. 

Power-law and exponential distributions are simple to identify if their cumulative distributions 

are plotted on log or semi-log scales. It is important to note that directed networks essentially 

have two sets of degrees, the in-degree and out-degree, which must both be considered in finding 

the degree distribution for the network. Likewise, bipartite graphs with two types of nodes and 

links running only between nodes of the same type have a degree distribution for each node type 

(Newman, 2003). The maximum degree value is generally dependent on the size of the network 

and can be found through different manipulations on the cumulative degree distribution. 
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The presence of clusters in a network can determine how well the network functions as a 

system. A cluster is a subgraph of nodes which are tightly connected. The strongest type of 

cluster, one in which all nodes are adjacent, is called a clique. Clustering Coefficients are found 

to quantify the local clustering of graph elements into neighborhoods and are a measure of local 

connectivity and another important graph property, transitivity. Similar to the mathematics 

transitive property, network transitivity implies that if node A is connected to node B which is 

adjacent to node C, it follows that the probability of A and C being adjacent is high. This 

probability is also referred to as the clustering coefficient and measures the density of transitive 

triangles in the network. A neighborhood of a node v is denoted Г(v) and is essentially a 

subgraph comprised of the nodes adjacent to v (excluding v).  
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In Equation 4.3, |E(Гv)| is the number of links in the neighborhood of v. The denominator is the 

number of possible links in Г(v). The value of the clustering coefficient, which is between zero 

and one, expresses the portion of neighbors of v that are connected. The grouping of graph 

elements into more isolated neighborhoods is referred to as the formation of clusters and can 

occur in different network simulations. This is illustrated in Figure 9 by the comparative 

clustering of node v. In the network on the left, node v has a clustering coefficient of zero 

because none of its neighbors, v1-v6, are connected. Node v has a high clustering coefficient in 

the right-most network, where several of its neighboring nodes are, in fact, connected. 

Of course, often clusters are not random groups of nodes but instead predictable based on 

certain network element characteristics. In social networks, for example, assortative mixing, or 

homophily, is very apparent by race, age and income. Cluster analysis of social networks 
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involves assigning a connection strength value to pairs of nodes (which represent persons) and 

adding links in decreasing strength order. From here, the nodes and links are separated into 

communities (Barabasi et al., 2012). 

The shortest path is especially relevant to studies of transportation systems. The flow of a 

highway or road network is the traffic which moves along its links, dependent on the trips taken 

by vehicles. Likewise, trips are dependent on origin-destination data as well as the shortest path 

between the origin and destination pairs. There are several methods for calculating the shortest 

path between two nodes, but most revolve around a similar basic procedure.  

            (4.4) 

The variable n in Equation 4.4 is the number of nodes in the network. Starting at one node, i, and 

all other nodes marked as unoccupied, the distances to every neighboring node by a link is 

marked. The algorithm moves to this set of neighboring nodes and considers the distances to the 

neighbors of the neighbors, marking each with a new distance. If a node can be reached with a 

shorter path, its marked distance is replaced with a smaller number. The “shortest” path is 

eventually found as all nodes of the network are evaluated to get from node i to node j.  

Betweenness centrality is used to identify the most important, critical nodes to the 

network flow and is a measure of the centrality of a node. It is defined as: 
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where g(i,v,j) is the number of shortest paths from node i to node j that pass through v. The 

denominator within the summation represents the total number of shortest path from i to j. The 

longest distance from any node of a central node is that which is as small as possible. The 

betweenness centrality quantity can be compared for all nodes in the network to decide where to 
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direct resources and make resourcefulness decisions. It essentially provides a measure from 

which to rank the network links and nodes according to their roles in topology and flow. By 

depending on the betweenness centrality quantity to rank nodes instead of other measures, such 

as nodal degree, the possibility of missing important nodes that may form vital bridges between 

peninsulas or interstates is avoided. The ability to rank network elements is the first step in 

predicting response to the removal or failure of elements.  

4.2.2 Random graphs  

The development of the Erdos-Renyi random graph (Figure 10) was a turning point in graph 

theory science. Undirected with a fixed number of nodes, the random graph is one of the 

fundamental graphs analyzed for simulations or properties. The existence of a specific node is 

dependent on a probability p. The degree distribution is binomial or, if the number of nodes n is 

large, follows a Poisson distribution. The study of random graphs often involves creating a 

random graph in stages of increasing p values. A specific graph property is tracked and the 

corresponding p value at its phase transition is the concern of research. It should be noted that 

there are different modified clustering coefficients in a random graph, where the clustering 

coefficient is equal to the probability that two nodes are adjacent, p. In most real networks, 

however, the clustering coefficient is much higher. Random graphs can be modified to be more 

realistic, which is often done to create a base model for a network, but these generalized random 

graphs lack the transitivity property. Incorporating transitivity into random graphs is difficult 

because of the presence of loops, which is another barrier in using them to model complex 

networks. 

At first, random graphs were used to study the science of complex networks because such 

networks had no clear organizing pattern and the links seemed to be randomly distributed. 
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Unfortunately, complex real world networks are not similar to random graphs. Many of the graph 

properties studied in real networks were not apparent in equal form in random graphs. The small-

world effect, however, is one of the few properties of real world networks reproducible in 

random networks and describes the theory that most pairs of network nodes are connected by a 

relatively short path. The small-world model is used to investigate various path processes such as 

percolation. In calculating the average shortest path for the network, nodes which are not 

connected by any path are excluded from the mean. Networks exhibit the small-world effect if 

the value of the average shortest path scales logarithmically or slower with network size for a 

specific average degree (Newman, 2003). Albert and Barabasi (2002) prove that the average 

shortest path is similar for real complex networks and random networks with the same number of 

nodes. Although critical to understanding the basis of many graph properties, the emergence of 

random graph theory was more relevant to the development of probabilistic mathematics to 

prove graph properties. Complex graph theory necessitated further types of analysis (Albert and 

Barabasi, 2002), which are described in Section 4.2.3. 

In a random network, the probability that a link exists is equal for all links; this is an 

example of a binomial degree distribution. The degree distributions for most real world 

networks, however, are highly right-skewed. Because the degree distribution of the small-world 

model does not match those of real world models, it is problematic for those using a random 

network to simulate realistic conditions. In fact, empirical data shows that most real systems 

have nodes that are abnormally highly connected with the vast majority of nodes having only a 

few connections (Duenas-Osorio, 2005). The exceptions to this observation are power and 

transportation networks, which exhibit exponential tails in the degree distributions.  
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4.2.3 Studies of complex networks 

The dramatic increase in the size and complexity in networks which were desirable to analyze, 

such as the Internet (Figure 11), necessitated a change in traditional analytic methods. Graph 

theory, up until recently, was mainly concerned with the study of traditional networks, or 

networks where nodes all had similar levels of connectivity and degrees. Real networks, 

however, did not follow this pattern and, as exhibited by the Internet network, exhibited hubs—

nodes of extremely high connectivity—and nodes with minimal connectivity. The difference in 

degree distributions between traditional and real networks is sometimes referred to as 

homogeneous and heterogeneous graphs, where homogeneous graphs have a uniform degree 

distribution and heterogeneous graphs have a power law degree distribution. Traditional graph 

theory has since grown to the study of complex networks to incorporate dynamic properties, 

irregular topology and to allow the comparison of networks from separate fields of study 

(Boccaletti et al., 2006). Additionally, common methods of observing the graphics of a network 

quickly became useless to large, expansive networks. The analysis of complex networks 

necessitates a different set of properties and characteristics than those which describe traditional 

graphs. Accurately modeling network topology in complex networks is a challenge but has been 

shown, in several studies, to lead to more accurate determination of network properties. Network 

topology is vital to complex networks mainly because it determines dynamic properties, such as 

the network response to failure (Boccaletti et al., 2006). 

Complex networks exhibit a slightly different topology than traditional networks. 

Because of the size of several complex networks, the graph can sometimes be described as sparse 

if K, the total number of degrees, is tiny in comparison to the total number of nodes, N, to the 

second power: K << N
2
. Alternatively, it can be dense if both K and N

2
 are of the same order of 
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magnitude. A component is a maximally connected induced subgraph of the network and is often 

referred to in analyzing failures and attacks on the network. In some graph models, a giant 

component may form which has a size the same order of magnitude as N. Like traditional 

networks, the degree distribution determined the properties of complex networks; more 

specifically, the degree distribution determines the properties of uncorrelated networks 

(Boccaletti et al., 2006).  

In the real world, highly researched networks mostly fall into four categories: social, 

information, technological, and biological. Most models try to incorporate observed properties of 

real world networks into an artificial model. However, as pointed out by Newman (2003), it 

would be more insightful to learn how networks grow to have these properties. One of the most 

common examples (and earliest used example) of a network is the citation network of papers 

(Price, 1965). This is a directed network and a link connects a cited paper to the paper which 

cites it. It cannot be cyclic, that is, papers which are already written cannot cite papers that have 

cited it. Quite quickly, the in- and out-degree distributions of the paper citation network were 

found to follow power laws. The most studied networks are those with highly skewed degree 

distributions. The challenge is thus to explain how such skews develop in real networks. Without 

significant computation equipment or analyses, Price (1965) explained the power-law degree 

distributions he found by preferential attachment. This was followed up by an investigation on a 

modified, undirected model but still assuming linear preferential attachment (Barabasi and 

Albert, 1999). It was shown that the probability a link will exist between an added node j and an 

existing node i is linearly proportional to the degree of i. Furthermore, the number of links added 

with each new node is a fixed quantity.  
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The first model which successfully reproduces the power-law distribution was a scale-

free network. Scale-free is a term used to describe the graph that has the same functional form at 

all scales. It references the mathematical concept of function scaling and is expressed 

accordingly: f(ax) = bf(x). There is a strong desire to create networks with a power law 

distribution because of its appearance in real world networks. Real networks are not homogenous 

and can be classified as scale-free networks. Networks of biology, sociology and technology are 

more often heterogeneous with small paths and high local clustering. Studies have shown that 

power grids, highway, social, and cellular networks are more accurately modeled by small world 

networks and scale-free networks (Cimellaro et al., 2006). Evolving scale-free networks 

(Boccaletti et al., 2006) were developed to incorporate dynamic network properties to the static 

scale-free network. Although highway networks are not dynamic, there are many networks 

which have dynamically evolving structures.  

The Barabasi-Albert model was modeled after the development of the World Wide Web 

(WWW). On the WWW, it is much more likely a web page will contain a link to a popular page 

than to a little-known, rarely visited site. The conclusion follows that popular web pages are 

more attractive. Translated to graph theory, nodes prefer to connect with nodes of high degrees. 

Barabasi and Albert (1999) observed that highly connected websites acquire new links at higher 

rates than low-degree networks. Generalizations of the Barabasi-Albert model have been 

developed to make it more realistic (i.e. non-linear preferential attachment, allowing the mean 

degree to change over time and adding and removing links). In one modification, Krapivsky and 

Redner (2001) considered a directed version of Barabasi-Albert model, which turns out to have 

dramatically different properties than the original model.  
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Gastner and Newman (2004) investigated the topological structure of three complex 

networks: the highway system, the Internet and flight network. All of these networks exhibit a 

preference to shorter links. Especially relevant to this study is their study of the highway 

network, applying shorter links, lower degrees and a larger average shortest to the model. These 

properties arise mostly because the highway network is restricted to the surface of the earth (it is 

planar), which limits the shortest paths that it can have. 

4.3 Resilience measurement using network properties 

Resilience is characterized by a variety of factors which can be quantified by the parameters 

described in the previous section. Nodal and average degrees, which allow the determination of 

degree distribution, are crucial to the vulnerability of a network to nodal or link failure. The 

degree distribution across all nodes relates to the network robustness, or how well the network 

absorbs a shock without failure in service or functionality after an extreme event. By 

categorizing the degree distribution, specifically as homogeneous or heterogeneous, the level of 

damage after a catastrophic event can be estimated. Separately, the algorithm to calculate nodal 

degrees is often the first step in the calculations of other parameters, such as betweenness. The 

betweenness centrality measure underscores the importance of nodes relative to links in a 

network and becomes central to a discussion on network resilience. The removal of a node 

potentially affects several links, certainly all the links of which it is an end. The removal of a 

link, however, only affects the functionality of one link. Therefore, the failure of a network node 

is more harmful to network performance than the failure of a link. By ranking nodes based on 

betweenness centrality, the resilience of a network to extreme events can be quantified. Events 

that result in the failure of important nodes are clearly more devastating than those on nodes of 

lower importance.  
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Real networks are usually composed of several smaller networks, called clusters. 

Parameters specific to each cluster provide revealing information of the resilience and 

redundancy of a network, especially locally. In transportation networks, evaluating clusters 

allows for the efficient concentration of improvements and funds to the most needy network 

areas. The clustering coefficient is a measure of connectivity – specifically, how connected the 

network is locally. This is sometimes referred to as the “regularity” or “locality” of the network. 

For a grid-like network, a large clustering coefficient corresponds to a high average path length. 

In fact, however, most real networks have high clustering coefficients but low average path 

lengths. With regard to the factors of resilience, the clustering coefficient is best representative of 

redundancy. In preparing a network for disaster, policy makers would be better equipped to make 

decisions about the locations of resources and where more improvements could be made. With 

measures of graph parameters contextualized by factors relevant to resilience, the resilience of 

the network is better understood. 

Holme et al. (2002) brought about an important point regarding network topology that 

challenged the accepted significance of node degree with respect to resilience measurement. 

While nodes with the highest degrees are vital, nodes with small degrees may connect two 

important clusters of a network, acting as bridges. These should not be overlooked in evaluating 

resilience and how node removal will affect the average shortest path value. Especially relevant 

for targeted attacks, node betweenness provides a measurement on which nodes can be ranked by 

importance in the network. From this logic, the relevance of measures of betweenness centrality 

has evolved. Betweenness centrality, like degree, is specific to each node and depends on the 

number of shortest paths within the network which travel through the considered node. Goh et al. 

(2002) showed that the distribution of betweenness centrality in scale-free networks follows a 
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power law. One would expect that the nodes with the most degrees have the highest 

betweenness. Zio and Sansavini (2011b) employ betweenness measures to the maximum load 

which can be distributed by a node in a power network, constantly comparing the value to the 

component capacity. Although, in every network, there is a correlation between node degree and 

betweenness centrality, there are sometimes low-degree nodes which have the largest 

betweenness centrality. This is proven by plotting the correlation between degree and 

betweenness across several network models.  

Scott et al. (2005) found the same pattern from another similar measure, network 

robustness index. The greatest difference between network robustness index and capacity is in 

networks with low connectivity. The difference in ranking nodes based on degree and ranking 

based on betweenness may explain the difference in response to targeted and random attacks. 

Initial betweenness-based removal of nodes is IB removal and the recalculated removal is RB 

removal. Generally, Scott et al. (2005) found attacks based on the nodal degree are local while 

those based on betweenness are global, resulting in more inefficient algorithms.  

Redundancy, a critical part of network resiliency, depends on the availability of 

alternative paths to traverse from one node to another. Duenas-Osorio et al. (2005) uses the 

number of paths between a node and the neighborhood of its neighborhood to calculate the 

node’s redundancy within a graph: 

𝑅𝑅𝑣 =  
1

(|𝑆|−1)2
∑ 𝐼(𝑣, 𝑗)𝑗∈𝑉(Г𝑣2)         (4.6) 

Determined by a fairly complex equation, the redundancy ratio is specific to one node. I(i,j) is 

the number of paths between nodes i and j which share only i and j as nodes. I(v,j) is thus the 

number of node-independent paths between nodes v and j. Гv
2
 is the neighborhood of all of the 

nodes in the neighborhood of v. So the number of node-independent paths is taken between the 
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node under consideration and each node in the neighborhood of neighbors. This sum is then 

divided by the number of independent paths between v and the complete graph connecting v, Гv 

and Гv
2
. To achieve one redundancy ratio representative of the entire network, the collective set 

of redundancy ratios for all nodes are ordered and the median is taken as the redundancy ratio for 

the network.  

 Another method used to measure redundancy is by measuring network connectivity 

indices. Because these describe the number of cycles, links, nodes, and maximum links, they can 

reveal information about the redundancy of graph connectivity using simple graph 

characteristics. There are three indices—alpha, beta, and gamma—which comprise the set of 

connectivity indices.  

𝛼 =  
𝑢

2𝑛−5
           (4.7) 

𝛽 =  
𝑙

𝑛
            (4.8)  

𝛾 =  
𝑙

3(𝑛−2)
           (4.9) 

where, u is the number of independent cycles in the graph, l is the number of links, and n is the 

number of nodes. The simplicity of these algorithms makes them convenient to calculate for 

several trials. 

Instead of human-made networks, a study by Buhl et al. (2004) used ant networks to 

illustrate network resiliency—specifically, efficiency and robustness. Unlike many real-world 

networks modeled for network science, ant networks are not scale-free and do not exhibit the 

small-world effect. Similar to transportation networks, ant networks are planar and restricted to 

two dimensions. This spatial constraint clearly limits the possible connections and adjacent pairs 

of links; two nodes far apart are much less likely to be adjacent because of the cost associated 

with adjoining them. The development of an ant network is construction most likely guided by 
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adaptive biological principles evolved in the species of ants. It is thus an excellent example to 

study how network growth reflects a trend towards robustness and efficiency. Buhl et al. (2004) 

created a controlled ant nest network by setting up a disk of sand and allowing ants to dig only 

from the circumferential link. After three days, the ants stop digging, the desired network is 

complete and used as a model to create a static graph.  

Because of the spatial constraints on the system, traditional topological graph properties 

are modified. For example, the average shortest path length in small-world network models often 

scales as the logarithm of the system size; this is not true in the ant network. Likewise, the 

clustering coefficient, as previously defined, measures only cycles of three in the network and 

does not correspond well to the clustering of a planar graph. Instead, a new coefficient is 

proposed, the meshed coefficient M (Equations 4.10 and 4.11, in which m is the number of links 

and n is the number of nodes), which considers the network planarity and is a ratio of the number 

of faces to the maximum possible number of faces.  

𝑀 =  
𝑓

𝑓𝑚𝑎𝑥
           (4.10) 

𝑓 = 𝑚 − 𝑛 + 1 𝑎𝑛𝑑 𝑓𝑚𝑎𝑥 = 2𝑛 − 5            (4.11) 

Measures of efficiency, both average and global, consider not only the topological path length 

(number of links) but also the geometric path length (length of links). After gathering values of 

meshedness and efficiency for a range of network sizes, it was found that both global efficiency 

and meshedness increase with network size. Network robustness, or the fragility of the network 

against random disturbances, was then assessed by measuring the size of the largest component 

for different fractions of nodes removed from the network.  

Perhaps the most relevant aspect to network science with regards to civil infrastructure is 

the cost of improving network resiliency. This is smartly considered in Buhl et al. (2004) as a 
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function of the length of the network in Equation 4.12, where LEXP, LMST, and LGT are defined 

respectively as the total network length, the length of the minimum spanning tree, and the length 

of the greedy triangulation. It is illustrated that a relatively low increase in cost can significantly 

increase the path efficiency and robustness. 

𝑐 =  
𝐿𝐸𝑋𝑃−𝐿𝑀𝑆𝑇

𝐿𝐺𝑇−𝐿𝑀𝑆𝑇
           (4.12) 

4.4 Analyzing network response to failures 

4.4.1 Targeted and random removal in graph theory 

Real networks function and grow under what are often less than ideal circumstances and 

environments, motivating specific studies of real network resilience to removal techniques. 

Albert et al. (2000) and Barabasi et al. (1999) attributed this resiliency to the inherent 

redundancy built into these complex systems and refer to it as error tolerance. When a network 

exhibits this type of tolerance, however, they are also especially vulnerable to targeted attacks. 

Node removal was investigated in two real-world networks: Internet topology and its subset of 

the World Wide Web, both of which have approximately power-law degree distributions 

(Barabasi and Albert, 1999). The mean node-node distance was measured as a function of the 

number of nodes removed. Interestingly, it was concluded that mean distance was unaffected by 

random node removal but dramatically affected by targeted removal. To further study this 

observance, Albert et al. (2000) compared the average shortest path between any two network 

nodes of two network models (Erdos-Renyi and scale-free) as fractions of nodes were removed. 

First, a random attack was simulated. Because, in a homogenous network like the Erdos-Renyi 

network, the effect of removing any node is about the same throughout the system, removing 

each node causes the same amount of failure. Under a targeted attack of the most connected 

nodes, the Erdos-Renyi model actually exhibited a similar response; the average shortest path of 
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the network changed by a comparable amount. In the scale-free network, on the other hand, this 

pattern did not hold true. Instead, the network was able to tolerate a number of random removals 

and its diameter was, for the most part, maintained. Under a targeted attack, the network 

diameter increased dramatically, illustrating that the connectivity of a scale-free, heterogeneous 

network is highly dependent on a small number of well-connected nodes. The removal of these 

nodes also completely changes the network topology.   

Barrat et al. (2008) explored the resilience and robustness of heterogeneous networks; 

these types of systems often exhibit high robustness to random attacks but are vulnerable to 

targeted attacks on the nodes and links most vital to functionality. To model network response to 

both of these attacks, different node removal techniques are employed and the results are 

observed and measured. In a simulated targeted attack, the node with the highest degree is 

removed first, followed by the node with the second highest degree, and so on. It should be noted 

that as nodes are removed, the initial ranked order may actually shift because the network 

structure is changing. Choosing to remove nodes based on the initial order or based on this 

changing, dynamic order will certainly affect the response. This attack is referred to as initial 

degree distribution removal, or ID removal, whereas removal which follows the recalculated 

order is recalculated degree removal, or RD removal (Holme et al., 2002).  

The percolation theory has become a fundamental part of graph theory as it relates to 

resilience because it is a method to simulate network disturbances. Percolation is a process in 

which nodes or links are randomly designated “occupied” or “unoccupied”, referring to their 

ability to function or fail, respectively. Site percolation and bond percolation are the two types of 

network percolation, where site refers to nodes and bonds indicate links. It first considers a 

random network where the probability of nodes being occupied is denoted by p and links connect 
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only occupied nodes. Thus the probability of a link being occupied is also p. Most commonly, 

the percolation theory is demonstrated by a lattice or grid network. As the probability p 

increases, the number of clusters also increases. There is then a value of probability which is 

critical to the network, defined as pc, at which there are clusters of all sizes and an infinite 

cluster. If p<pc, there is no global connectivity and an infinite cluster appears; if p>pc, there is 

global connectivity and all clusters have a finite size.  A percolating cluster is one which spans 

the entirety of the network by allowing for a path between two extreme nodes. While a series of 

integrals and summations are required to evaluate pc and other percolation theory parameters, the 

theoretical basis is significant when studying any type of network resilience. Percolation is 

strongly tied to the concept of fragility, defined by Duenas-Osorio (2005) to be the susceptibility 

of a network to fail given a certain level of disruption. Fragility provides a way to connect 

representative nodes and links to their real-world counterparts with physical and mechanical 

properties.  

Robustness of real networks was first reported by Albert et al. (2000), who studied how 

the properties of the Internet changed when a fraction of nodes were removed randomly and also 

when specific nodes were targeted. Boccaletti et al. (2006) then discussed static and dynamic 

robustness in their overview of complex networks. Robustness was, in this later study, defined as 

the ability of a network to maintain functionality when one or several of its components are 

disturbed. There were two types of robustness identified: static, when the flow of the network 

does not need to be redistributed, and dynamic, when the redistribution of flow is necessary. 

First, static tolerance to attacks was considered in an approach that depends on percolation 

theory. Cohen et al. (2000) found that, by simulating site percolation in real world networks, 

there is always a giant component. Using this conclusion, Boccaletti et al. (2006) measure the 
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size and appearance of the giant component to investigate as a function of the probability of 

percolation. In another portion of the study of static robustness, global and local efficiency were 

studied for BA and KE scale-free networks. Global and local efficiency values are alternative 

properties that measure clustering for scale-free networks and consider the harmonic mean of the 

shortest path length over all network node pairs (Equations 4.13 and 4.14, where N is the total 

number of nodes and dij is the shortest path from node i to j). Both local and global efficiencies 

were found to be unaffected by the random removal of nodes.  

𝐸 =  
1

𝑁(𝑁−1)
∑

1

𝑑𝑖𝑗
𝑖,𝑗∈𝑁,𝑖≠𝑗          (4.13) 

𝐸𝑙𝑜𝑐 =  
1

𝑁
∑ 𝐸(𝐺)𝑖∈𝑁          (4.14) 

For a targeted attack, however, both efficiency values rapidly decrease. The results elicit 

a valid point that efficiency may be better quality to consider as nodes are removed in scale-free 

networks. Dynamic tolerance to attacks measured the network flow at various points as nodes 

and links were removed. This agreed with the Barabasi and Albert (1999) finding that scale-free 

networks are robust to random removal. Zio and Sansavini (2011b) also used percolation theory 

to study the response of random and scale-free graphs to random and targeted attacks, but it was 

to set a percolation threshold for simulating cascading failures (Section 4.4.2). Above this 

designated threshold, cascading failures are assumed to propagate in interdependent systems. 

Something which would later be confirmed by other studies like Boccaletti et al. (2006) and Zio 

and Sansavini (2011b), Albert et al. (2000) were the first to have found that, while random 

attacks produce similar results for both random and scale-free graphs, targeted attacks produce 

very different results.  
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Although the presence of both resilience to random removal but vulnerability to targeted 

removal was thought to appear only in scale-free networks, other networks have exhibited the 

same coincident properties. For example, food-webs, which are not scale-free, hold up well to 

random node failures but lose function suddenly when nodes are removed by decreasing degree 

(Dunne et al., 2002). In comparing the size of the largest component to the fraction of nodes 

disconnected, Buhl et al. (2004) found that the size decreases slowly during random node 

removal but rather quickly during targeted removal. This differs from similar experiments on 

random graphs and spanning tree graphs. Results from the ant network simulations also show 

that robustness increases with the skewedness of the degree distribution.  

4.4.2 Types of network failures 

There are, of course, different types of failures that can occur in a system. Rinaldi et al. (2001) 

categorized these into three classes: escalating failures, cascading failures, and common cause 

failures. Escalating failures can happen when one failure or disturbance in a facility adversely 

affects the function of another facility (Adachi, 2007). When two network components fail at the 

same time from disturbance caused by the same event a common cause failure occurs. Perhaps 

the most destructive failure scenario is that which is referred to as a cascading failure. When a 

component of a network is damaged or fails, it is sometimes necessary to redistribute the load (or 

flow) that was carried by the component to undisturbed parts of the network to preserve 

functionality. This can cause overloading in other components, resulting in more failures, 

although only the original failed component was directly damaged. The cascade carries on until 

the load cannot be redistributed. All types of networks are not necessarily at risk for cascading 

failures; if relationships are cut off in social networks, in one example, this does not call for a 

redistribution of a friendship or acquaintanceship to a new individual. But cascading failures 
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have gained significant attention in studies of power transmission networks and water 

distribution systems (e.g., Zio and Sansavini, 2011a, 2011c; Shuang et al., 2014) and their effects 

can be costly and disastrous for systems. Heterogeneous networks with a relatively uniform 

distribution of flow are shown to be most vulnerable to cascading failure, especially if the failed 

component is one which carries a high flow (Barabasi et al., 2012). Power networks provide a 

unique example because their components are generally working at or close to full capacity, 

meaning that taking on more loading can quickly cause failure. Because of the known 

heterogeneous nature of transportation networks (Jiang et al., 2005), cascading failures are 

valuable to consider and evaluate. 

Blume et al. (2011) studied the resilience of networks to cascading failures, using an 

approach largely based on the topological properties of a network. According to their study, 

different structures of networks tend to behave differently when undergoing cascading failures. 

Similar to the percolation theory and the study of functionality by Duenas-Osorio (2005), which 

explored the probability of power network element failures by using Monte Carlo simulations, 

the investigation by Blume et al. (2011) relies on a probabilistic approach. Under the assumption 

that each node v possesses a threshold l(v), the node fails if at least l(v) neighbors fail. The 

threshold l(v) is chosen from a probabilistic distribution μ and the failure probability of a specific 

node v is the probability that the node fails when the node thresholds are taken independently 

from  μ. 

𝑓𝜇(𝐺) = 𝑠𝑢𝑝𝑣∈𝑉(𝐺)𝑓𝜇(𝐺, 𝑣)           (3.15) 

As the number of links in the network increases, the maximum probability of failure, fμ, 

(Equation 3.15, where sup notates the supremium of the subset of failed nodes) increases. Like 

real cascading failures, the failure of simulated networks is shown to depend heavily on the way 
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which the failure spreads through the graph. This is likewise dependent on network topology. 

However, cascading failures, and other types of propagating network failures, have a strong tie to 

network flow properties. Shuang et al. (2014), which is a study of cascading failures in water 

distribution systems, pointed out that, along with topological measures of connectivity and 

centrality, it is equally important to incorporate measures of network flow such that failures in 

demand can be pinpointed. For these reasons, cascading network flow is beyond the scope of this 

purely topological study of highway networks. In future work, simulating and analyzing 

cascading failure in a transportation network would complement the current study.  

4.5 Graph theory in transportation studies 

The study of road and transportation systems will be the focus of this investigation. Properties 

relevant to road systems are abundant in graph theory literature, as is the direct study of road 

system resilience. To measure the communication of nodes across the entire network, Boccaletti 

et al. (2006) proposed global efficiency. Efficiency is seen as one of the best ways to measure 

performance before and after an extreme event. Chang and Nojima (2001) defined a ratio of the 

length of highway open to traffic after the extreme event to the length open to traffic before the 

event. Although it should be noted this is only based on damage. Another measure of distance 

was introduced to measure minimum network travel distances to measure accessibility changes 

post-extreme event. Liu and Frangopol (2006) created a method to measure bridge network 

performance using network connectivity, user satisfaction and structural reliability. Bocchini and 

Frangopol (2011) defined an index for bridge network functionality assuming that for every 

closed bridge, there exists at least one route to bypass the closed bridge.  

Research focusing on the performance of transportation networks at times relies on 

origin-destination (OD) data to measure the functionality of a network over time. Origin-
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destination data, although not used in this thesis, is a significant metric in studies of traffic flow. 

Specifically, the networks used in Bocchini and Frangopol (2011) and Furtado and Alipour 

(2014a) are constructed according to graph theory with directed links and nodes representing 

highways and intersections or where highway properties change, respectively. As common 

practice in transportation studies, each node is both an origin and a destination, thus requiring 

both sets of travel data in terms of originating and destined vehicles with respect to time. Each 

link is assigned a “congestion function” to quantify the time needed to transverse the section of 

highway; this value is dependent on a measure of ordinary and critical traffic flow 

(vehicles/time). Bridges are characterized by their specific links and their damage level, assigned 

by the random field sample. After the extreme event has been simulated, the capacity of each 

bridge needs to be modified in accordance with the damage level assigned; each damage level is 

assumed to have varying reductions in capacity expressed as a percent flow decrease. For each 

pair of origin-destination nodes, the shortest path is computed. The OD matrix is estimated using 

a gravitational model; it is assumed that network users will modify their original destinations to 

those closer if an extreme event has occurred. Each element in the OD matrix ij represents the 

number of vehicles that travel from i to j in the unit time. In redistribution, new shortest paths are 

found, along with new times to travel across highway segments, allowing for an updated OD 

matrix. To measure network performance, total travel time and the Fully Connected Ratio, FCR, 

if all network nodes are reachable, were employed in addition to the summation of time required 

by all users to travel from origin to destination. Because of scenarios where the network is 

disconnected, the total travel time was concluded to be the more realistic measure of network 

performance. Also expressing resilience as a measure of costs, both indirect and direct, Furtado 

and Alipour (2014a) combined transportation and regional economic data to analyze the effects 
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of bridge failures. This allowed for a recommendation of repair methods and preparation 

procedures to improve bridge network resilience (Furtado and Alipour, 2014b). In this particular 

study, resilience will be measured in terms of network properties. 

The range and set of four damage states is common throughout hazard analysis literature 

and is used to evaluate the lifetime resilience of highway networks considering the effect of 

component aging (Alipour, 2010). The probabilistic results are combined into an average value 

of damage. This two-dimensional space is reduced to a one-dimensional problem by neglecting 

the difference in x- and y-distance. The correlation coefficient of damage is calculated knowing 

the damage state and location. In the random field simulation, the simulated variable is the 

damage level of the bridges. It follows that the marginal probability and correlation structure 

must be estimated and, in this investigation, it is assumed that the marginal probability follows a 

continuous and uniform distribution varying from 0 (no damage) to 4 (collapse). The advantage 

of the stochastic approach, or simulating damage as a random field, lies in the reduction in 

computational power. Instead, there are a minimal number of structural fragility analyses 

required to be run. On the other hand, the disadvantage, which can be great, is that many of the 

structural properties of the bridges considered are averaged and generalized. If the bridges in the 

study have vastly different structural characteristics, the use of a single variable field should be 

modified or reconsidered.  

 Alipour (2010) measured the degradation of highway networks as a result of seismic 

events by driver delay, after relating bridge damage to the damage in links. The effects of 

seismic events on a highway network can then be expressed as economic losses and costs. In 

modeling the highway network of Los Angeles and Orange County, the speed limit and lane 

capacity is assumed depending on the type of road and the presence of a traffic signal. To 
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calculate the traffic flow in the network, origin-destination data is gathered from public sources 

and OD matrices are developed for six types of trips, which represent the number of trips during 

one full day. Arguably, the number and pattern of trips taken after an extreme event may change 

because of human response to the event. Two models used to account for the effects of this on 

network traffic demand are the fixed and variable-demand models. The fixed model is shown to 

overestimate traffic demand most notably for parts which are undamaged. There are linear and 

nonlinear versions of the variable-demand model, both of which estimate more accurate travel 

delays than the fixed model. Reduction ratios are then applied to the OD data to find post 

extreme event traffic flow. Travel cost is found by first calculating the total travel time at 

equilibrium condition. Transportation network vulnerability is measured by the damage of 

network components, specifically the damage of bridges. As in other studies, there are four 

defined damage states for bridges estimated by Monte Carlo simulations, which are translated to 

link damage states.  

Adachi (2007) measured the serviceability of civil infrastructure systems by the ratio of 

users who are reached by service to those needing service. The water and electrical networks in 

Shelby County, Tennessee are used as an illustrative example of interdependent civil 

infrastructure systems. This serviceability ratio is the connectivity loss, a topological graph 

property also seen in Duenas-Osario (2005). A method to analyze the effects of seismic events 

on civil infrastructure systems is introduced and considers the functional interaction among 

infrastructure systems. In assessing the network serviceability, the damage to network 

components is estimated individually from specific fragility curves. Fragility curves are also 

employed to compute the probability that a node fails; the probability of a link failing is 

dependent on the nodes it connects (Duenas-Osario, 2005).  
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Ortiz et al. (2009) explored the resiliency of the freight transportation network. The 

freight transportation network is made not only of highways, roads, ports and railway 

infrastructure but also the carriers and shippers that transport goods. Although notably larger and 

more inclusive than the highway and roadway system, the fundamentals of analyzing resilience 

are common. Resilience here is defined as the ability to absorb smaller disturbances as well as 

the ability to quickly return to full functionality after large disasters. The benefits of experiencing 

small disruptions in a real network are found in identifying where the critical network 

components seem to be post-event. In this way, DOTs can be better prepared against larger 

disruptions. Ortiz et al. (2009) first proved the costly nature of both small and large disruptions, 

which cost not to just directly repair routes and reroute traffic but also ripple through the 

economy in more subtle ways. The economic importance of the transportation and freight system 

is undeniable as almost all sectors of the economy depend on it in some way. Resilience of the 

network is also highly dependent on its redundancy and the availability of alternative paths in the 

event of a component failure or close. The distinguishing factor in the logical use of alternative 

paths is their relative capacity to that of the main road; in most cases, in fact, their capacity is 

quite limited. 

Resilience was presented as a measure of disturbance to the network as a function of time 

in Ortiz et al. (2009). It is split into two phases: disruption and recovery. Disruption includes the 

time in which damage and failure to the network occurs as well as when the disruptions which 

propagate through the network. Recovery starts as the damaged components are repaired and its 

function starts returning to normal. By representing resilience as a function of time, the area 

under the graph is representative of a total physical property, often cost. Ortiz et al. (2009) note 

that state agencies should be cautious of out-of-date infrastructure and be aware of increases in 
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congestion; both of these conditions can easily aggrandize the detrimental effects of extreme 

events. Much of the study is devoted to recommending the integration and collaboration of 

public and private agencies to bolster network resilience. 

3.6 Graph theory in this study 

The use of topological network properties, more ubiquitous in graph theory, to measure 

resilience and performance allows for a concrete quantification of resilience based off of 

traditional, accepted units of measurement. Topological performance measures, reviewed in 

depth in Newman (2003), are convenient for their versatility in describing both overall network 

properties and the contribution of each component. The studies Duenas-Osorio (2005) and 

Cimellaro et al. (2010) were both referenced to identify which network properties would best 

describe resilience aspects. Average nodal degree, average shortest path, measures of 

betweenness centrality, clustering coefficient, and redundancy ratio will be measured across 

simulated network scenarios. After reviewing node removal techniques used in Albert et al. 

(2000) and Barabasi et al. (1999), random node removal was chosen to first examine the network 

response to a non-targeted attack, perhaps the closest node removal technique to a natural 

disaster. The aim of this study is to highlight the sensitivity of the network to different levels of 

node removal and highlight its impact on different aspects of the network characteristics. 

Furthermore, the probable storm surge heights under specific scenarios have been evaluated and 

the performance of the network under these conditions is measured using graph theory. 
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Figure 6 A graph and one possible subgraph (right).

 

 

Figure 7 Clockwise from top-left: A cyclic directed graph, acyclic directed graph, 

bipartite graph, hypergraph  

 

 

Figure 8 Degree distribution histograms of a random (left) and a real network (right)  
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Figure 9 Clustering of zero (right) and high clustering (left). 

 

Figure 10 An Erdos-Renyi random graph (Barabasi et al., 2012). 

 

Figure 11 The Internet, an example of a complex network (Barabasi et al., 2012). 
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CHAPTER V 

NEW YORK CITY AS A CASE STUDY 

 

5.1 Introduction 

The highway network of New York City was chosen as a case study for several reasons. Its 

location is situated on the coast, specifically the northeastern coast of the US, and its highly 

developed, urban infrastructure renders the consequences of an extreme event devastating and 

costly. Currently, its main structural protection against hurricanes is a seawall on the border of 

Manhattan rising just 1.5m above sea level (Lin et al.., 2008). While the northeastern coast is not 

as at risk for a high frequency of hurricanes as the Gulf Coast is, its risk of high intensity 

hurricanes is substantial. Aside from hurricane risk, the number of days of extreme precipitation 

in New York City is also predicted to double under future climate scenarios (Ntelekos, 2010). On 

a larger scale, the importance of New York City to the economy of its region and the nation 

cannot be overstated. The potentially devastating consequences of climate change will not be 

confined to the relatively small set of counties analyzed, instead inducing possible widespread 

damage to the U.S. economy (Rosenweig and Solecki, 2001). By concentrating on vital urban 

centers, an investment is made not only for the individuals inside the city but for those connected 

to it. Of course, the inherent diversity present in such environments makes implementing and 

enforcing policy changes challenging for governing bodies. The risks pertinent to the New York 

City metropolitan area are mainly hurricanes which involve the simultaneous occurrence of high 

winds, torrential rains, and large storm surges.  

5.2 Random node removal 

The New York City metropolitan highway network was reduced to a combination of 3,698 nodes 

connected by 8,494 unique links. This model was manipulated by randomly removing a fraction 
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of nodes to simulate random events that would lead to failure of different links or nodes. Figure 

14 compares an intact network diagram to networks with 10, 30 and 60% node removals. To 

investigate the trends of system properties, each topological network property was measured as 

the fraction of nodes removed was gradually increased. Using this method enabled the evaluation 

of the effects of different random failure scenarios through topological network properties. The 

changing, often decreasing, values of the network properties represent the degradation of 

different aspects of system resilience. 

Degree distribution can reveal many network properties. As described in Chapter 4, it 

dependent on the probability p(k) that a randomly chosen node as a degree k. The plot which is 

used to determine degree distribution is often displayed as logarithmic and has an x-axis of k and 

a y-axis variable of p(k). The degree distribution was determined for the original network of the 

New York City highway system and is plotted in Figure 12. It is clear the degree with the highest 

probability is 2—that is, most nodes in the network have a degree two. Degree distributions of a 

random graph and of a scale-free graph were also plotted. A random graph has a Poisson degree 

distribution (Equation 5.1), where z is the average nodal degree. The degree distribution of a 

scale-free network follows a power law, Equation 5.2, where γ and its zeta function are 

determined empirically.  
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To determine which distribution the network was better fit to, a goodness of fit test was 

performed on the data using a normalized mean square error (NMSE). The results of the NMSE 

values, which range from negative infinity to 1 (a perfect fit), indicated a better match to the 
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Poisson degree distribution (-0.59) versus the power law distribution (-1.01). This was expected, 

mainly because most of the network nodes have similar degrees, which is characteristic of a 

random graph, and does not appear to have hubs of highly connected nodes. In fact, the highest 

degree in the NYC network is just 6. Thus, this comparison implies that the New York City 

network may behave similarly to a random graph when subject to failure or node removal. A 

random graph has high robustness to targeted attacks, which focus on disturbing the most 

connected nodes, because there are not hubs of highly connected nodes. However, random 

graphs are typically not robust to random attacks, which may cause worsened effects on network 

properties during random node removal. To test if the degree distribution itself changed during 

random node removal, it was determined for several scenarios at each fraction of removal. The 

results showed no trend and, instead, the NMSE did not vary with an overall standard deviation 

of just 0.007.  

  Related to degree distribution is the degree correlation of a graph. Degree correlations 

measure the likelihood that nodes link to other nodes with similar degrees. There are three main 

types of degree correlations in network science: assortative, random and disassortative. In 

networks with assortative degree correlations, high degree nodes connect to each other. Perhaps 

the most appropriate example of this is in social networks. A graph with a random degree 

correlation has virtually no correlation among degrees. Instead, nodes connect to each other 

randomly. Disassortative is the opposite of assortative, and a network is considered to have a 

disassortative degree correlation when high degree nodes connect to nodes of low degrees, 

creating hubs. This occurs in some transportation and technology networks, such as airway travel 

and the Internet. In air transportation, there is a small number of major airports to which all 

minor airports are connected. On the Internet, often less frequented web pages will link to 
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popular websites. For the network under consideration in this study, the highway network of 

NYC, the degree correlation was measured by the Pearson coefficient, with the original network 

having a value of -0.08. As nodes are randomly removed from the highway network to simulate a 

random attack, the network tends to move from disassortive to random (Figure 13). Disassortive 

networks have negative Pearson coefficients, random degree correlations have a coefficient of 

zero, and assortative networks have positive coefficients. Because nodes are being isolated as 

random removal occurs, the network experiences a loss of transportation efficiency. This is 

reflected in the trend of degree correlation, where a randomly correlated network represents a 

lower ease of transportation flow. 

 One of the most fundamental properties to track is the average nodal degree, the trend of 

which is shown in Figure 15. The average degree is representative of the connectivity of the 

network and when compared to the undisturbed network value, it can reveal the difference in 

ease of travel and commute for vehicles. Instead of paralleling the linear decrease in number of 

nodes, the nodal degree declines exponentially from a starting value of 2.3, which is the average 

number of links to which each network nodes is connected in the original network. After a 

seemingly reasonable removal of one-fourth of the network nodes, the average degree has 

already decreased by half its original value. There is no detectable variation in the average nodal 

degree among simulations, attesting to the fact that it is entirely dependent on the number of 

nodes removed, which is constant across trials, instead of which nodes are removed, which is 

random.  

Local clustering is an indicator of the redundancy and connectivity of the network. It 

reflects the presence of nodes grouped in defined clusters (i.e. neighborhoods) that are somewhat 

inaccessible from the main network. Whereas average node degree measures the global 
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connectivity, the clustering coefficient measures local connectivity. A network may have high 

global connectivity, where all nodes and links are clumped in one network-spanning cluster, but 

low local connectivity, lacking the existence of many small clusters. On the global scale of 

resilience, clustering translates to the degree of local redundancy in the network. For relatively 

local paths, clustering describes if there are available alternative paths. The undisturbed network 

of NYC has an average clustering coefficient of 0.006. As nodes are randomly removed, the 

clustering coefficient staggers downward in a vaguely linear trend (Figure 16). Unlike the error 

of the average nodal degree measure, the clustering coefficients have irregular and significantly 

varying values. The clustering coefficient is highly dependent on which nodes are removed and 

their importance. If nodes of low connectivity are removed, clustering will be unaffected and 

remain fairly constant. If nodes of high importance and high connectivity are removed, groups of 

nodes may become isolated within the network, creating more clusters and increasing the 

clustering coefficient. However, on average, the clustering coefficient decreases as nodes are 

removed. 

Many studies use the average nodal degree to rank network elements based on 

importance. The logic that follows is that nodes which are connected to large numbers of links 

are the most critical to the function of the network. This is true in most cases, but there are 

instances where nodes of low degree may play vital connectivity roles in the network, such either 

end of a water-spanning bridge (Holme et al., 2002). These nodes would connect two otherwise 

isolated transportation systems. Average betweenness centrality is dependent not on the number 

of links connected to a node, but instead on the number of shortest paths which contain the node. 

Because of this, its value has strong correlation to the importance of a node to the network 

performance. During random node removal, the average network betweenness rapidly drops 
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(Figure 17). The error is high and in some simulations, the average betweenness centrality 

increased after node removal. In some scenarios, the failure of specific nodes will cause the 

formation of more isolated clusters and a network which depends on a small number of elements. 

These elements have large betweenness values, sometimes with differences of orders of 

magnitude, which increase the network average. But after just 20% of nodes are removed, the 

average betweenness value has dropped to almost zero and the error has similarly decreased. 

This dramatic trend reflects the potential detrimental effects of a random failure affecting the 

seemingly minor fraction of points that are very important to the functionality of the network.  

The network property average shortest path is measure of the system redundancy. It 

becomes especially critical in transportation systems, where users direct resources to finding the 

shortest route from an origin to a desired destination. For a graph network, the shortest path is 

the smallest combination of links from one node to another. Using graph theory algorithms, each 

pair of nodes in a system is considered and after measuring all possible paths between them, the 

length of the shortest one is deemed the shortest path. If there is no possible path between two 

network nodes, the value of the shortest path is infinite. To limit the range of values for 

illustrative purposes, the infinite upper limit is reset to 1000. It is still large enough that an 

occurrence of a disconnected pair will force the average to dramatically increase. The large error 

bars in Figure 18 indicate the high variability of the average shortest path and its dependency on 

which nodes are removed during the simulation and where they are located, corresponding to the 

behavior of the average betweenness centrality. In fact, the average shortest path follows an 

inverted betweenness trend; after 20% of links are removed, the number of infinite shortest paths 

is adequate to cause the convergence to an upper limit of 1000. The pattern observed would 

cause serious delays and cancellations in a real transportation network with relatively low 
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percentages of nodes damaged. 

 The computational time required for the redundancy ratio algorithm limited the number 

of trials to four with an undisturbed network (no links removed) and networks with 10%, 30% 

and 60% removal. The results (Figure 19) show an immediate drop off after just 10% node 

removal, followed by less drastic decreasing trend. A transportation facing a climatic event may 

reasonably experience damage to 10% of nodes. The difference in the redundancy ratio between 

the undisturbed network and one after 10% node removal is problematic and infers the need for 

more alternate routes to bolster resilience. Alternatively, it implies that the network flow depends 

on too few routes for paths from node to node. Another, more efficient method that can be used 

to measure redundancy is by use of connectivity indices. These indices, which include the alpha 

index, beta index, and the gamma index, are dependent on the number of links and nodes as well 

as the number of cycles present in a graph. Under random removal (Figure 20), the plots 

compare quite well to the limited results from measuring the redundancy ratio. All three indices 

exhibit a decreasing, nonlinear trend, signifying the disintegration of network redundancy.  

5.3 Node removal with SLOSH results 

The analysis described above was repeated with consideration of results from the storm surge 

modeling program SLOSH. Initially, 12 events were selected to run as a worst case scenarios set 

of storms. These storms were all modeled in the SLOSH display program as MEOWs, an 

enveloped case described in Chapter 4.3, and they were set to occur at high tide conditions with 

60 mph average wind gusts—these are two of the four conditions that can vary in modeling a 

MEOW; the remaining conditions, direction and Saffir-Simpson category, were varied to create a 

set of 12 storms. Storms were either a category three or four, and the directions ranged from 

north, northeast, north-northeast, northwest, north-northwest, and west-northwest. After running 

these through the SLOSH display program, storm surge values for each cell in the New York 
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basin grid were output. The data was manipulated to develop contours specific to each storm, 

delineated according to storm surge value. 

 For every storm scenario, the contours were overlaid with the highway network of New 

York City. Using MATLAB, the contours were searched for network nodes, and a list of flooded 

nodes could be created for each storm. Translated to a physical network, this meant that no other 

node was adjacent to a flooded node; the node is effectively unreachable. After creating a new 

adjacency matrix for each storm scenario, an analysis of network properties could be performed. 

This was completed by determining the average degree, local clustering, average shortest path, 

and betweenness centrality values of the disturbed network. Unlike in the random node removal 

process previously described, this analysis required only one new set of network properties for 

each storm; in other words, the stages of node removal during the storm were not tracked step-

by-step. The resulting data shows noticeable reductions in network connectivity from the 

original, undisturbed New York City highway network.  

 Perhaps the most severe cases were both storms (category 3 and 4) making landfall from 

the west-northwest direction (Table 2, last row). In this scenario, with a category three storm, the 

total number of links and nodes came to only about 53% of the original network, meaning that 

47% of the network was flooded. In examining a map of the remaining nodes and contours, it is 

clear that the coast of Long Island is among the worst areas hit by this potential storm. There are 

no visible nodes left in this area of the highway network. The percentages in Table 2 are 

comparisons to the corresponding network property in the original network. The linear 

relationship between links, nodes and average network degree causes the similarity among their 

percentages for each scenario. The largest difference between storms headed in the same 

direction with different categories is in the north-northwest scenarios. In the north-northwest 
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category 3 storm, 80% of the original network remains intact. But in the category 4 storm of the 

same direction, only 56% of the network is undisturbed. In this case, because of the direction the 

hurricane lands, the surges are highly dependent on the wind speed; the higher sustained wind 

speeds characteristic of category 4 storms caused a dramatic increase in surge heights, resulting 

in a more damaged network. Although the average shortest path has no correlation to the average 

degree, all disturbed networks exhibit a dramatic increase in average shortest path value, 

reflecting a worsening level of connectivity in the network. Interestingly, the clustering 

coefficient increases in all hurricane scenarios. This indicates an occurrence of the same trend 

exhibited during the random node removal procedure where some scenarios had an increase in 

clustering. An increase in local clustering after node removal can be attributed to the presence of 

more defined clusters as nodes are removed. 

 To examine more closely what is occurring in the network during each storm scenario, 

the behavior of the most critical nodes were investigated. The relative node importances, like 

other network characteristics, will be gauged by measures of graph properties. The nodes most 

critical to network performance were determined by the magnitude of betweenness centrality for 

each node. As described in Chapter 4, the algorithm for determining the betweenness property 

involves calculating how many of the network’s shortest paths between any two nodes contain 

the node under consideration. Referring to the original, undisturbed network of NYC, the 

betweenness centrality was calculated for each of the 3698 nodes. The 20 maximum betweenness 

values were chosen as the 20 most critical nodes and their node IDs were extracted (Figure 21). 

Node 1015 has the highest betweenness centrality measure by more than 300,000. The 12 worst 

case storm set and its corresponding data of flooded nodes were searched to find which of the 

most important nodes were flooded in each scenario. A resulting list of each storm and the set of 
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important nodes flooded was compared to the network behavior analysis of each storm. If a high-

ranked network node is flooded in an event, the properties of the network resulting from the 

storm would be severely impacted. For example, the value of the shortest paths which originally 

depended on a high-ranked node as an intermediate node would dramatically increase, bringing 

the overall average to a much higher value.  Storm scenario 1, a north-directed event with a 

category of three, has no apparent effect on the most critical network nodes, certainly providing 

an adequate reason for its mildly different network properties than the original network. The 

difference between scenarios 7 and 8, both north-northwest storms with different Saffir-Simpson 

categories, is the flooding of nodes 1726 and 1797. Both are critical network nodes and 1726 has 

the ninth highest betweeness centrality value, perhaps the main factor in the large difference 

between their average shortest path values (510 and 331). Nodes 1174, 1141, and 1251 are 

flooded in 11 cases. Their locations along the Hudson River put them in high-risk territory for 

damaging storm surges and flood levels.  

To bolster the method of determining which nodes are flooded by various storm 

scenarios, elevation data was gathered from National Aeronautic and Space Administration 

(NASA) and USGS and was largely the product of collaboration between the United States and 

Japan. While this 1-arc-second data is widely used for geographic applications, it should be 

noted that the vertical accuracy is reported to be about 17-m at a 95% confidence level. SLOSH 

surge heights are referenced to the North American Vertical Datum of 1988 (NAVD88), and the 

vertical datum used by GDEM 2 is the 1996 Earth Gravitational Model (EGM96) geoid. To 

compare the SLOSH surge heights output for each enveloped storm scenario, it was crucial to 

make sure only one vertical datum is used. The results were combined with the node locations 

and IDs to build a complete, elevation-notated database.  
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All disturbed networks experience various degrees of higher average degree values, 

shortest paths and betweenness centralities. Illustrative of the trend observed when the network 

was under random node removal, the clustering coefficient decreases and increases depending on 

the MEOW. In fact, in most MEOWs the clustering coefficient increases. The scenarios after 

which the network clustering decreases are interestingly among the cases where the most nodes 

and links are flooded (13-15%). This explains the clustering coefficient trend in which, during 

low fractions, of node removal, more clusters form to increase local clustering. There is a turning 

point where there are too many failed nodes to create clusters, perhaps this falls somewhere 

before 13-15% nodes are flooded. The scenarios causing node failures in this percentage range 

are again notable for the behavior of another network property. Although this percentage range is 

not necessarily far from the other fractions of flooded nodes that modeled scenarios caused, the 

effects of these particular enveloped scenarios have extreme consequences to the lengths of the 

average shortest path; they are upwards of six times the undisturbed value for the shortest path, 

indicating acritical network vulnerability. The worst case MEOW is the category 4, west-

northwest heading storm envelope with 60 mph sustained winds which makes landfall at high 

tide. Under these conditions, considering several individual storms within one model run, 15% of 

network nodes are flooded.  

The differences between the original results with a surge cut-off and the results with 

elevation data considered are significant. Immediately, it is clear that the percentages of nodes 

and links damaged are much lower, indicating that consideration of elevation data is necessary to 

develop more realistic network analysis in the event of a hurricane. One also must note that these 

scenarios are enveloped, so in the event of a singular hurricane with similar characteristics to the 

MEOW, less severe consequences would be expected. However, the MEOW results are 



 

 

88 

indicative of the most vulnerable nodes and all potential effects of an oncoming storm. The worst 

case scenario in both the original data and the analysis considering elevation was the same 

MEOW: category 4, west-northwest, 60 mph sustained winds making landfall at high tide.  

5.5 Battery Park Surges 

To further investigate the behavior of the New York City highway network under hurricane 

stressors, the resulting surges of these 24 storm scenarios at Battery Park, New York City, were 

studied. The scenarios are each shown along with the damaged New York City Networks in 

Figures 22-45. Battery Park, a frequented and popular destination for city-dwellers and tourists, 

is a low-lying public park located on the southernmost tip of Manhattan. It was chosen as a point 

study for its location and the surge levels experienced during Hurricane Sandy, which reached 

almost 14 feet. The data points in the Figure 46 plot are differentiated by Saffir-Simpson 

category (3 or 4) and direction (north, northeast, north-northeast, northwest, north-northwest, 

west-northwest). Aside from these parameters, the studies vary in wind speed (30 mph or 60 

mph) and tide level at landfall (mean or high). While the category 4 storms were expected to all 

exceed the surges of the category 3 storms, this was not the case. The highest surges, all above 

25 feet, are category 4 storms. However, below this, the category 3 and 4 surges are interspersed 

with each other. Instead, a clearer trend is apparent in the direction of the storm, implying, in this 

specific case, the direction may be more indicative of storm surge levels. The northeast-directed 

storms all fall below a surge level of 15 feet; the north-northeast storms result in slightly higher 

surges, but still remain below 17 feet. The higher surges are caused by storms heading west-

northwest, northwest, and north-northwest. North-directed storms seem to cause surges ranging 

between these two groups. In New York City, the storm direction may play an especially 

significant role because of the geometry of New York Harbor. The movement of surge-causing 
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waters into the inlet bordered by Staten Island, northern New Jersey, and western Long Island 

can trap waves to create powerful surges. 

Storm scenario results were grouped into three categories by storm surge height at 

Battery Park, NYC: surges less than 18 feet; surges from 18 to 24 feet; surges above 24 feet. The 

behavior of network properties was then studied with a focus on the comparison among these 

three surge categories. First, the average degree of the damaged networks was plotted (Figure 

47). Generally, storms causing a higher surge experienced a lower average degree. Two storm 

scenarios in the 18-24 ft group are exceptions, both are north-directed scenarios making landfall 

at high tide with 60 mph winds—one is a category 3 storm, the other is a category 4, and their 

average degrees (2.27 and 2.23, respectively) are higher than those of the remaining scenarios in 

the same 18-24 ft surge group.  This is explained by the dependence of average degree on the 

number of nodes damaged or removed from the network. While other properties depend on 

which nodes are flooded, the average network degree is reflective of only the quantity.  In these 

two storms, there are not many flooded nodes with 99% and 97% of nodes remaining, 

respectively, allowing for high average degree values.  

The plot in Figure 47 shows a noticeable gap—there are no damaged networks with 

average degrees between 2.00 and 2.14. There are storms from the 18-24 ft and > 24 ft ranges 

with degree values higher and lower than this gap. Another two storms in the 18-24 ft group are 

outliers, but their average network degrees fall notably below the trend: both make landfall at 

high tide, but one is a category 4 storm directed west-northwest with 30 mph winds, the second 

is a category 3 storm headed northwest with 60 mph winds. In the > 24 ft range, two storms have 

average degrees above the value gap: a west-northwest, category 3 storm making landfall at high 

tide with 60 mph winds and a north-northwest, category 4 storm making landfall at mean tide 
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with 60 mph winds. The gap is also evident when studying the percentage of nodes flooded in 

the scenarios. No storm scenarios result in node percentages between 88-92%.  The storm 

scenarios which flood more than 12% of nodes are the 7 storms with the lowest average degree. 

The two storm scenarios resulting in a Battery Park surge greater than 24 ft have fewer flooded 

nodes than the other five nodes in the same group, both less than 18%. The storm scenario 

resulting in the network with the lowest average degree also results in the most flooded nodes—

15% of the original network. 

 The average network shortest path and betweenness centrality values were plotted in 

Figures 48 and 49, respectively. Similar to the comparison found during the random node 

removal, the plots of average shortest path and betweenness centrality are inverses of each other. 

The focus of these results are the five extreme points of both properties, all which are storm 

scenarios that result in a Battery Park surge above 24 feet. As expected, these are all category 4 

storms and they are also characterized by 60 mph wind speeds. Higher intensity hurricanes cause 

higher surges, which flood more nodes and decrease the average betweennes value. However, 

they differ in direction and tide level: two are northwest storms, one at high tide and one at mean 

tide, two are west-northwest storms, one at high tide and one at mean tide, and the remaining 

scenario is north-northwest at high tide. The average betweenness values for these five scenarios 

are close in range, only varying by 2000. In fact, three storms have the same betweenness value 

of 57,835. After investigating which nodes were flooded in these scenarios, specifically which of 

the nodes with the highest betweenness centrality values, it was determined that the extreme 

difference was due to the effective removal of four top nodes. These five storms, unlike the other 

19 scenarios, cause the flooding of the 2
nd

, 5
th

, 7
th

, and 14
th

 most important network nodes, 

measured by betweenness centrality. The explanation stands for the average shortest path plot, 
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where the same five storms exhibit average shortest path values in close range to each other, but 

over 300 from the next highest value. Without access to these critical intersections (flooded 

nodes), travel between origins and destinations is negatively impacted. The value of the average 

shortest path jumps significantly once these four top nodes are removed. The plots of average 

shortest path and betweenness centrality behavior for networks under random node removal also 

illustrate dramatic increases in value between 0 and 20% node removal.  

The average clustering coefficient of the networks after the hurricane scenarios were 

simulated was then investigated (Figure 50). There is no clear correlation displayed in the plot, 

although the data does seem to trend downwards towards a lower clustering coefficient, with 

high error among trials. One of these outliers, the highest clustering coefficient of a damaged 

network, was found in a storm scenario with a northwest direction, category 3, 60 mph winds 

making landfall at high tide. Observing the SLOSH results from this specific scenario, the 

distribution of surge heights is noticeably different than the SLOSH results from the other 

scenarios. There are higher surges concentrated around Manhattan, which may be the cause of 

node flooding that increases the local clusters. As can be seen from the clustering coefficient 

behavior of the network under random node removal, the value of the clustering coefficient is 

highly dependent on which nodes are removed and there is high error for the general decreasing 

trend seen. These outlying storm scenarios in Figure 50 are indicative of this high variability. 

After selecting the highway network of the New York City metropolitan area, for a range 

of reasons, as a case study for this research, the network behavior was studied as fractions of 

random nodes were removed from the network. During these simulations of random attacks, 

topological network properties were measured and plotted against the fraction of node removal 

to observe trends and make comparisons. To develop a more realistic node removal method, 
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SLOSH was used to simulate enveloped hurricane scenarios on the New York City basin. These 

results were used to determine which nodes were flooded, then to find which nodes were 

removed from the network. In these scenarios, the specific surge heights at Battery Park were 

used to categorize the results into groups. Network properties were then measured in each 

scenario-based damaged network, which were plotted to observe the degradation of network 

connectivity and redundancy. Overall, these results provide important information which can be 

closely related to the resiliency of the New York City network to both random and scenario-

based removals. 
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Table 2 Node removal with SLOSH 

  

Storm                   

Direction (Cat.)
Links %Links Nodes % Nodes

Average 

Degree

Average 

SP
% SP

Average 

Betweenness

Average 

Clustering

Original network 8494 100% 3698 100% 2.30 98 100% 2.06E+05 4.85E-03

1 North (3) 7404 87% 3193 86% 2.00 240 246% 1.88E+05 5.06E-03

2 North (4) 6590 78% 2861 77% 1.78 469 481% 8.03E+04 5.67E-03

3 Northeast (3) 7394 87% 3225 87% 2.00 245 251% 1.91E+05 5.24E-03

4 Northeast (4) 7586 89% 3335 90% 2.05 206 211% 2.06E+05 5.28E-03

5 North-northeast (3) 7604 90% 3326 90% 2.06 203 209% 2.08E+05 5.27E-03

6 North-northeast (4) 7488 88% 3203 87% 2.02 232 238% 1.89E+05 5.00E-03

7 North-northwest (3) 6770 80% 2935 79% 1.83 322 330% 1.74E+05 5.51E-03

8 North-northwest (4) 4748 56% 2049 55% 1.28 511 524% 6.97E+04 5.02E-03

9 Northwest (3) 4918 58% 2126 57% 1.33 493 506% 7.15E+04 5.11E-03

10 Northwest (4) 4574 54% 1985 54% 1.24 527 540% 6.66E+04 4.93E-03

11 West-northwest (3) 4844 57% 2096 57% 1.31 500 513% 7.00E+04 4.92E-03

12 West-northwest (4) 4506 53% 1958 53% 1.22 533 547% 6.45E+04 5.01E-03
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Table 3 Flooding of critical nodes 

 

 

Storm         

Direction (Cat.)

1 North (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 North (4) 0 0 3 4 5 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

3 Northeast (3) 0 0 3 4 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

4 Northeast (4) 0 0 3 4 5 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

5 North-northeast (3) 0 0 3 4 5 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

6 North-northeast (4) 0 0 3 4 5 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

7 North-northwest (3) 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0

8 North-northwest (4) 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 17 0 0 0

9 Northwest (3) 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 17 0 0 0

10 Northwest (4) 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 17 0 0 0

11 West-northwest (3) 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 17 0 0 0

12 West-northwest (4) 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 17 0 0 0

Important Nodes Flooded
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Figure 12 Original network degree distribution. 

 

Figure 13 Effect of random node removal on degree correlation. 
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Intact network              10% of nodes removed 

 

30% of nodes removed              60% of nodes removed 

 

Figure 14 New York City network random node removal. 
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Figure 15 Effect of random node removal on average nodal degree. 

 

 

Figure 16 Effect of random node removal on average local clustering. 
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Figure 17 Effect of random node removal on average betweenness centrality. 

 

 

Figure 18 Effect of random node removal on average shortest path. 
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Figure 19 Effect of random node removal on redundancy ratio. 

 

 

Figure 20 Effect of random node removal on connectivity indices. 
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 Figure 21 Betweenness centrality of most important network nodes. 
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Figure 22 Northeast, Category 3, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right). 

  



 

 

102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Northeast, Category 4, 60 mph wind storm at mean tide. SLOSH (left) and damaged network (right). 
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Figure 24 Northeast, Category 4, 30 mph wind storm at high tide. SLOSH (left) and damaged network (right). 
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Figure 25 Northeast, Category 4, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right). 
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Figure 26 North-northeast, Category 3, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right). 
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Figure 27 North-northeast, Category 4, 60 mph wind storm at mean tide. SLOSH (left) and damaged network (right). 
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Figure 28 North-northeast, Category 4, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right). 
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Figure 29 North-northeast, Category 4, 30 mph wind storm at high tide. SLOSH (left) and damaged network (right). 

  



 

 

109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 North, Category 3, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right). 
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Figure 31 North, Category 4, 30 mph wind storm at high tide. SLOSH (left) and damaged network (right). 
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Figure 32 North, Category 4, 60 mph wind storm at mean tide. SLOSH (left) and damaged network (right). 
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Figure 33 North-northwest, Category 4, 30 mph wind storm at high tide. SLOSH (left) and damaged network (right).  
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Figure 34 North-northwest, Category 3, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right).  
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Figure 35 West-northwest, Category 4, 30 mph wind storm at high tide. SLOSH (left) and damaged network (right).  
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Figure 36 Northwest, Category 4, 30 mph wind storm at high tide. SLOSH (left) and damaged network (right).  
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Figure 37 North, Category 4, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right).  
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Figure 38 Northwest, Category 3, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right).  
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Figure 39 West-northwest, Category 3, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right).  
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Figure 40 North-northwest, Category 4, 60 mph wind storm at mean tide. SLOSH (left) and damaged network (right). 
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Figure 41 North-northwest, Category 4, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right).  
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Figure 42 Northwest, Category 4, 60 mph wind storm at mean tide. SLOSH (left) and damaged network (right). 
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Figure 43 West-northwest, Category 4, 60 mph wind storm at mean tide. SLOSH (left) and damaged network (right). 
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Figure 44 Northwest, Category 4, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right). 
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Figure 45 West-northwest, Category 4, 60 mph wind storm at high tide. SLOSH (left) and damaged network (right). 
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Figure 46 Storm scenarios and respective surge heights at Battery Park, NYC. 

 

 
Figure 47 Average degree of damaged networks. 
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Figure 48 Average shortest path of damaged networks. 

 
 

 
Figure 49 Average betweenness centrality of damaged networks. 
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Figure 50 Average clustering coefficient of damaged networks.  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

After reviewing resilience and its many definitions as an academic term, a form specific to this 

study was outlined. This definition is that of engineering resilience, comprised of aspects of 

robustness, resourcefulness, redundancy, and rapidity.  Although it can be measured in different 

ways, in this thesis research, resilience was quantified by topological graph properties of the 

network under consideration. The hazards most relevant to coastal urban networks were then 

examined, and hurricanes, specifically storm surges, were identified as the focus of this study. 

 Before modeling hazard scenarios, the original network was investigated and general 

graph properties were determined. Of these characteristics, the most significant one was finding 

the degree distribution, which is closest to a Poisson distribution, or the distribution of a random 

graph. Interestingly, random graphs are less robust to failures of a random nature, and more 

robust to targeted attacks, providing some insight to the results of the failure simulations of the 

New York City network. These failure simulations were random, and the failures subjected to the 

network occurred at increasing fractions of node failures to observe how the network behaved 

during random node removal. Topological graph properties were then used to illustrate this 

behavior of system resilience, specifically degree correlation, local and global connectivity, and 

redundancy. The evaluated graph properties evaluated showed varying trends reflecting overall 

degradations in network performance and connectivity.  

SLOSH software was employed to simulate enveloped hurricane scenarios of different 

categories, wind speeds, tide levels, and directions. The storm surge heights were combined with 

elevation data of the nodes to simulate the results of a real hurricane. The SLOSH results were 

then used to determine which nodes were effectively removed from the network in scenario-
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based node removals. By using results from SLOSH investigations, nodes can be more 

accurately identified as disrupted and then removed. Similar to the method applied in the random 

removal scenarios, topological graph properties were measured in each hurricane scenario. These 

were grouped with respect to surge height at Battery Park, Manhattan, and then compared among 

each other and to the random removal results. 

The results in this investigation can be replicated to evaluate and compare network 

resilience measures between different systems or after improvements and developments have 

been made to existing infrastructure. The large uncertainty associated with extreme climatic 

events forces transportation agencies to respond with over-engineered designs or in many cases, 

to not prepare at all because of the overwhelming and expensive nature of the potential hazards. 

Supplied with this type of data, however, decision-makers and legislators are better able to direct 

resources to the most vital locations, allowing a more reasonably budgeted response to climatic 

hazards. Transportation agencies can pinpoint the specific network components which are most 

critical to maintaining network flow. Instead of attempting a complete system overhaul, agencies 

can easily achieve prioritization of replacements and structural updates. The approach which 

references hurricane storm surge simulation results allows transportation agencies to identify not 

only the nodes which are most critical to network flow, but also those which are most vulnerable 

to a specific hazard. While a range of methods exist to measure the resilience of a network, the 

use of topological graph properties to track network response are shown to be useful in 

investigations of this transportation network. Examining the nodes most affected by the envelope 

simulation, planners can incorporate these vulnerabilities into long-term planning. 
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