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ABSTRACT

ROUTE CHOICE BEHAVIOR IN A DRIVING
SIMULATOR WITH REAL-TIME INFORMATION

SEPTEMBER 2010

HENGLIANG TIAN
B.S., BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Song Gao

This research studies travelers' route choice behavior in a driving simulator
with real-time information en-route. We investigate whether travelers plan strate-
gically for real-time information en-route or simply select a �xed path from origin
to destination at the beginning of a trip, and whether network complexity and a
parallel driving task a�ect subjects' strategic thinking ability. In this study, strate-
gic thinking refers to a traveler's route choice decision taking into account future
diversion possibilities downstream enabled by information at the diversion node.
All of the subjects in this study participated in driving-simulator-based tests while
half of the subjects participated in additional PC-based tests. Three types of maps
were used. The �rst type required a one-time choice at the beginning of a trip to
test the traveler's risk attitude. The other two types o�ered route choices both at
the beginning of and during a trip to test the traveler's strategic thinking.

The study shows that a signi�cant portion of route choice decisions are strategic
in a realistic driving simulator environment. Furthermore, di�erent network com-
plexities impose di�erent cognitive demands on a subject and a�ect his/her strategic
thinking ability. A subject tends to be more strategic in a simple network. Lastly, a
parallel driving task does not signi�cantly a�ect a subject's strategic thinking abil-
ity. This seemingly counterintuitive conclusion might be caused by the simplicity
of the tested network.
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CHAPTER 1

INTRODUCTION

1.1 Background and Literature Review

A tra�c network is subject to signi�cant delays resulting from crashes, construc-

tion, inclement weather, special events, and so forth, and is inherently an uncertain

system. Tra�c delays will consume travelers' time and fuel and increase environ-

mental pollution. An advanced traveler information system (ATIS) can provide

travelers with real-time information on prevailing and predictive tra�c conditions

and are designed with the assumption that more information might help travel-

ers make better route choice decisions (e.g., Koppelman and Pas, 1980; Kanni-

nen, 1996). In general, the deployment of variable message signs (VMSs) to inform

drivers of tra�c conditions has been proven successful in terms of improving net-

work travel times (Chatterjee and McDonald, 2004). While the presence of real-time

information will a�ect a traveler's route choice decisions, the collective route choice

decisions of travelers will in turn impact the overall performance of tra�c systems.

In order to investigate the e�ectiveness of an ATIS, the route choice behavior of

drivers in an uncertain network should be studied thoroughly.

Most route choice models are only based on deterministic networks. They as-

sume that a traveler makes a complete route choice at the origin of a trip and

do not account for any real-time information provided en-route. Examples of

such models are Path Size Logit (e.g., Ben-Akiva and Ramming, 1998; Ben-Akiva

and Bierlaire, 1999), C-Logit (Cascetta et al., 1996), Cross-Nested (Vovsha and
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Bekhor, 1998), and Logit Mixture (e.g., Ramming, 2001; Bekhor et al., 2002; Fre-

jinger and Bierlaire, 2007).

It is hypothesized that travelers' route choice behavior in an uncertain network

with real-time information will be di�erent from that in a deterministic network.

With real-time information provided en-route, travelers could make route choice

decisions at decision nodes based on the current situation in order to avoid delay

downstream (McQueen et al., 2002). One recent overview of models which account

for real-time information en-route can be found in Abdel-Aty and Abdalla (2006).

Gao et al. (2008) studied two types of models that account for travelers' adap-

tation to real-time information. An adaptive path model assumes route choice is

a series of path choices at every decision node. Although an adaptive path model

could account for diversion from an initial chosen path, it assumes that travelers

are simply reactive to information on the spot and do not plan ahead for real-time

information that will be available later in the trip. A strategic route choice model

is based on a rule that maps network conditions in a stochastic network to routing

decisions. Contrary to the adaptive path model, such a model assumes that travel-

ers have some expectations for the real-time information downstream and travelers

are strategic or proactive in planning ahead for future events.

While many studies have addressed the problem of optimal strategies (e.g.,

Hall, 1986; Polychronopoulos and Tsitsiklis, 1996; Marcotte and Nguyen, 1998; Pre-

tolani, 2000; Miller-Hooks and Mahmassani, 2000; Miller-Hooks, 2001; Waller and

Ziliaskopoulos, 2002; Gao, 2005; Gao and Chabini, 2006), econometric models of

strategic route choice have not been studied thoroughly (Gao et al., 2008). Such an

econometric model was recently proposed by Gao (2005) and analyzed using syn-

thetic data by (Gao et al., 2008). More recently, stated preference (SP) data from

a PC-based survey were gathered and a route choice model was estimated in Razo
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and Gao (2010). where two latent classes of travelers, strategic and non-strategic

are both taken into account.

This research will use stated preference data from human subjects in driving-

simulator-based tests. The driving simulator is located in the Human Performance

Laboratory at the University of Massachusetts Amherst. It consists of an actual

car connected to three projectors that display a virtual tra�c database (Figure

1.1). Reviews of comparisons between driving simulator tests and �eld data indi-

cate that such a simulator is able to provide route choice data with high validity

(Kaptein et al., 1995). It is believed that this driving simulator environment could

induce a more realistic level of cognitive load than a traditional paper-and-pencil

or PC-based survey. Research shows that subjects' route choice behavior in a

driving simulator test that demands high cognitive load was dramatically di�erent

from that in a paper-and-pencil survey which demands low cognitive load (e.g.,

Szymkowiak et al., 1997; Katsikopoulos et al., 2000). Compared with paper-and-

pencil surveys, the relative importance of expected travel time over travel time

variability is more signi�cant in the driving simulator test. It is also shown in

some psychology studies that people's ability to make an informed intuitive judg-

ment is impaired by time pressure (Finucane et al., 2000) and concurrent pressure

(Gilbert, 1989; Gilbert, 1991; Gilbert, 2002). As to this study, we will investigate

whether network complexity and a parallel driving task a�ect people's ability to

make an informed route choice decision.

1.2 Research Objectives

The objective of this research is to investigate whether travelers plan strategi-

cally in a driving simulator environment and how this strategic thinking can be

a�ected by certain factors. For the purpose of this research, "strategic" is de�ned

as considering future diversion possibilities. The speci�c questions being addressed
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are:

1. Do travelers think strategically when they plan for a trip in uncertain networks

with probabilistic travel time distributions?

2. Does network complexity (the number of routes involved at the time a decision

is made) a�ect travelers' strategic thinking ability?

3. Does a parallel driving task (pre-trip versus en-route) a�ect travelers' strategic

choices?

Figure 1.1. The driving simulator
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CHAPTER 2

TEST DESIGN

2.1 Overall

There are three types of maps in the tests, shown in Figure 2.1. A single number

beside a route denotes a deterministic travel time, while (m, n) a random travel

time with two ordered out comes m or n (m < n), each with probability 50%.

From the origin node in each map, two options are available: either the safe Route

1 with a deterministic travel time tb, or the risky branch involving random travel

times on one or more routes.

The risky branch gets more complicated in topology from Map A through C,

containing one, two and three routes respectively. In Map A it contains one single

Route 2, with a possible low travel time tL and high travel time tH. In Map B,

a bifurcation is added to the risky branch, where the safe detour (Route 2) has

a deterministic travel time tH. The risky Route 3 has a low travel time tL and

a prohibitively long delay tM, probably due to an incident. At Node i, a subject

receives real-time information on the realization of the travel time on Route 3. If

tM is realized, Route 2 can serve as a diversion from Route 3. A traveler who takes

into account the value of information at Node i when making the route choice at the

origin is deemed as strategic. Map C adds another bifurcation to the risky branch,

upstream of the one in Map B, with two possible outcomes tb and tM. Real-time

information is available at Node i1 on the realized travel time on Route 2, and Node

i2 on the realized travel time on Route 4. Similarly the information at either node

could help travelers avoid the extremely high travel time tM on Route 2 or 4, and
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a traveler who takes into account the these facts in route choice decisions at the

origin is deemed as strategic. Note that a subject could behave strategically in one

scenario and non-strategically in another, therefore strictly speaking we can only

talk about strategic choices, not strategic subjects. However in the remainder of

the paper, these two terms will be used interchangeably if no confusion will arise.

Figure 2.1. Three types of maps in the test

Each type of map appeared six times with di�erent travel times as shown in

Table 2.1. The relationships between travel times in each scenario are tL < tb <

tH << tM and (tL+tH)/2 < tb << (tL+tM)/2. The rationale behind the travel time
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design is detailed in the subsection Test Design Revisited after the discussion of

strategic choice identi�cation in the next section. Travel times denoted with the

same symbol in three di�erent map types have the same numerical value.

Table 2.1. Travel time combinations in 6 groups of scenarios

tL tH tb tM

#1 30min 50min 45min 120min
#2 30min 60min 50min 120min
#3 30min 60min 55min 120min
#4 30min 70min 55min 120min
#5 30min 70min 60min 120min
#6 30min 70min 65min 120min

There are two factors in this study each with two levels: the test environment

(Driving simulator versus PC, approximating the en-route and pre-trip decision

context respectively) and the network complexity (Map B versus C). Map A is used

to gauge subjects' risk attitudes that are critical in identifying strategic choices and

always tested in combination with Map B or C, but not a level of a factor by itself.

The driving-simulator-based tests are set up with pre-fabricated blocks of road

geometries and street scenes from the simulator program. Our subjects generally

reported that they felt the experiences fairly close to real ones. Subjects were

required to drive slowly at the beginning of each scenario to observe a map of the

entire network with risky travel times before arriving at an intersection where a

route choice decision has to be made. This map was shown as a picture on the

up-right corner of the middle screen for exactly 10 seconds. In addition, there were

two identical roadside billboards shortly before each real-time information node

in Maps B and C, namely Nodes i, i1 and i2, where the actual travel times on

links immediately out of the information node were revealed, while risky travel

times further downstream remained unchanged. The two identical billboards were

intended for the subjects to have enough time to acquire the correct information. In
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order to implement di�erent travel times for the same route, lead vehicles with pre-

speci�ed speeds were assigned in every intersection in each scenario, and subjects

were instructed to follow lead vehicles. The simulator time that a subject actually

spent on driving on any route in a map was scaled down from the displayed travel

time by controlling the lead vehicle speeds. All route travel times in the same map

were scaled by the same factor, so that subjects bore the consequences of their

choices. Di�erent maps had di�erent scales due to the limitations of the simulator

software, however we believe this would not a�ect subjects' understanding of the

trade-o�s between routes in the same map. On average, a subject spent 2 minutes

in each scenario, and the complete test took around 1 hour including the time for

instruction, rest and entry- and exit-questionnaires.

In PC-based tests, subjects were required to view the map of the entire network

with risky travel times for exactly ten seconds at the beginning of each scenario

with all mouse or keyboard operations disabled. After ten seconds, all travel time

labels disappeared and subjects then clicked on one of the routes to make a choice.

An animated dot showed the movements along the routes, and upon the arrival at

an information node, actual travel times on immediate outgoing links were revealed.

The time spent in the PC-based tests for each subject was �xed and not proportional

to the displayed travel time. However, we asked the subjects to put these travel

times in their regular work-to-home commute context and make choices as they

would in real life. On average, a subject spent 20 seconds in each scenario.

As Table 2.2 shows, the �rst group of subjects participated in both the simulator-

based and PC-based tests using Maps A&B. Subjects in this group were presented

with six Map A scenarios and then six Map B scenarios in simulator-based tests

followed by six Map A scenarios and six Map B scenarios in PC-based tests. The

second group subjects were only presented with six Map A scenarios followed by

six Map C scenarios in the driving simulator. Two, three, and four warm up
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scenarios were scheduled before Map A, B, and C scenarios respectively to help

subjects familiarize himself/herself with each route in these three maps. Subjects

are randomly assigned to either of the two groups.

Table 2.2. Two factors in the test design

Maps A&B (�rst group) Maps A&C (second group)
Driving simulator X X
PC X

In order to eliminate any potential bias resulting from one speci�c scenario

sequence, each subject experienced a di�erent scenario sequence in each map type.

The six scenarios were divided into three blocks, where block 1 contained scenarios

1 and 4, block 2 contained scenarios 2 and 5, and block 3 contained scenarios 3

and 6. A randomization was applied to the three blocks with permutations of two

scenarios for each block. No randomization was conducted across map types, i.e.,

all Map A scenarios were presented before Map B or C scenarios.

9



CHAPTER 3

DATA PROCESSING AND STRATEGIC CHOICE
IDENTIFICATION

3.1 Data Cleaning

In total, we ran this study with 66 subjects. Data for one of the subjects were

deleted due to a misunderstanding and data for �ve other subjects were deleted

because of the extreme risk-seeking route choices in the Map A scenario with highly

risky travel times (tL, tM) in the risky branch. This scenario was set up to identify

highly risk-seeking subjects in addition to the main 6 scenarios.

We have two explanations for subjects' choices of the risky branch in Map B

or C if they chose the highly risky route, (tL, tM), in this Map A scenario. The

�rst one is that these subjects did not realize the value of information, but were

highly risk-seeking and thus willing to take Route 3 (Map B) or 4 (Map C) and

bear the risk of the prohibitively long delay just to get a possible low travel time

tL. The other one is that these subjects realized that the prohibitively long delay

could always be avoided by utilizing the real-time information and thus the risky

branch was pretty attractive. Therefore, we could not draw a de�nitive conclusion

as to whether these subjects are strategic and the data had to be deleted.

After the �rst round of data cleaning, we had 60 subjects, 30 subjects for each

group and a gender balance within each group with 15 males and 15 females.
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3.2 Identification of Strategic Route Choice

A strategic route choice is made with the consideration of a future diversion

possibility, while a non-strategic route choice is not. Conclusions about strategic or

non-strategic route choices are only concerned about route choice decisions in Map

B or C. Map A is used to test subjects' attitude towards risk and no strategic choices

can be identi�ed in Map A alone. However, all the conclusions about strategic route

choices in Map B or C should take into account results in matched Map A scenarios.

Next we discuss �rst the cases where the risky branch is chosen in Map A, and then

those where the safe route is chosen in Map A.

3.2.1 Map A Risky Branch Chosen for Group 1 (Maps A&B)

For the �rst group with Map A and B, if a subject chose the risky branch in

Map A but the safe route in Map B when these two maps used the same travel

time combination in TABLE 2.1, we conclude that this route choice in Map B is

non-strategic. The fact that this subject chose the risky branch in Map A implies

that he/she considered the risky branch (tL, tH) more attractive than the safe

route, tb. If this subject realized that the real-time information at Node i could

help avoid tM in Route 3 and further help simplify the risky branch as a travel

time combination (tL, tH), he/she should take the risky branch again in Map B.

Assuming that a subject's risk attitude will not change in a short time period, the

fact that a subject can tolerate the risk in Map A but appear not to in Map B

suggests non-strategic thinking.

On the other hand, if a subject chose the risky branch twice in the paired Map A

and B scenarios, we consider the route choice in Map B as a strategic route choice.

Because if he/she did not realize the value of real-time information at Node i, three

�xed routes were considered. The value of tM in Map B was set to be very large

so that Route 3 was much slower on average with a mean travel time (tL + tM)/2

and also involved an extremely high risk. Risk averse and risk neutral subjects
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would not take Route 3 because of the non-zero risk and slower mean travel time

compared to the safe Route 1. Risk-seeking subjects also would be highly unlikely

to choose Route 3 due to the extremely large risk involved. As mentioned before,

in rare cases some subjects were indeed highly risk seeking and have been identi�ed

from corresponding Map A scenarios and deleted. Furthermore, the deterministic

travel time on Route 2 (tH) was longer than that on Route 1 (tb). Therefore, only

strategic thinking would lead one to choose the risky branch in Map B.

3.2.2 Map A Risky Branch Chosen for Group 2 (Maps A&C)

For the second group with Maps A and C, regardless of whether a subject realized

the future diversion possibility provided by the real-time information at Node i1,

Route 2 could not have added to the attractiveness of the risky branch. Route 2 of

Map C served only as a decoy to make the route choice situation more complicated.

Note that the strategic parts of Maps B and C (Routes 2&3 in Map B and Routes

3&4 in Map C) are the same. Route 2 of Map C hides the strategic part further

downstream and a strategic route choice requires more forward thinking. Therefore

similar analysis of strategic behavior could be conducted in Map C.

Speci�cally, if a subject chose the risky branch in Map A but the safe route in

the paired Map C, we conclude that this route choice in Map C is a non-strategic.

If one subject chose the risky branch twice in the paired Maps A and C, we consider

the route choice in Map C as a strategic one.

Note that if tb is realized on Route 2 and revealed to a subject at Node i1, he/she

would essentially be facing the same decision problem as at the origin, except that

the strategic parts (Routes 3&4) are immediately downstream. We would expect

that if a subject is strategic at the origin, he/she would continue being strategic

downstream at Node i1 and choose the risky branch again. However several Route

2 (safe) choices were observed in Map C in such situations, and the inconsistency

in behavior might be explained by di�erent amount of decision time (more time at
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the origin than en-route), among others. These choices are still considered strategic

as our focus is on the behavior at the origin. The inconsistent behavior however

will be an interesting topic for future research.

3.3 Measurement Error

In Maps B&C, if the attractiveness of the safe route and the risky branch are

similar for a strategic subject, a measurement error will occur that will lead to

wrong conclusions about subjects' strategic route choices. Assume the safe route

and the risky branch are equally attractive for a strategic subject, e.g. 40 vs. (30,

50 ), and thus he/she is indi�erent between the two options and there is a 50%

chance of choosing either of them in Map B or C, regardless of his/her choices in

Map A. Following our logic in the previous two subsections, we would conclude

that out of the Map B or C observations with corresponding Map A risky choices,

50% of them are strategic. However in fact 100% of them could be strategic, but

just do not all appear so due to the indi�erence to travel times. This measurement

error does not exist for non-strategic subjects who do not see the favorable prospect

of the risky branch at the very �rst place, and thus no problems result from the

indi�erence towards it against the safe route.

In order to avoid this measurement error, we delete travel time combinations

where the risky branch for a strategic subject is not exceedingly more attractive than

the safe route. During the study, we observed non-negligible safe route choices in

Map A with travel time combinations #1 and #4, which were subsequently deleted

from further analysis.

3.4 Map A Safe Route Chosen: Indeterminate Observations

If a subject chose the safe route in Map A, his/her route choice in the paired

Map B or C cannot be determined as strategic or non-strategic. This subject did
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not accept the risk in Map A, and thus even if he/she was strategic in Map B or C

and realized the risky branch in Map B or C presented the same travel time prospect

as that in Map A, he/she was still not going to take the risk. In other words, the

strategic behavior was dominated by the risk aversion behavior and could not be

inferred. On the other hand, if he/she indeed takes the risky branch in Map B or

C, but not in A, there is an internal inconsistency in the behavior, which might

be explained by more detailed studies, e.g., an innate bias towards exible options

even if no real bene�t can be generated. However in the current study with limited

observed variables, it only complicates the strategic choice identi�cation. Therefore

we treat any Map B or C observation with a matching Map A safe route choice as

missing.

All the analysis above is summed up in TABLE 3.1. R refers to the risky branch

and S refers to the safe route.

Table 3.1. Inferences on strategic choices based on paired Map A and B/C choices

Map A Map B/C Inference
R R Strategic
R S Non-strategic
S R N/A
S S N/A

A subject might not select the risky branch in all the four remaining scenarios,

even though the risky branch is exceedingly more attractive. We are concerned

that such a subject tends to have a volatile risk attitude, which could undermine

our method of identifying strategic choices that relies on the assumption of a sta-

ble risk attitude during the experiment. Furthermore, such a subject will provide

fewer valid observations than other subjects due to missing observations, which

complicates the statistic analysis. Therefore we kept only subjects who chose the

risky branch in the remaining four Map A scenarios. We then counted the number
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of times a subject was strategic in either Map B or C (a value between 0 and 4).

Finally, we ended up with 22 valid subjects from Map A&B group and 23 valid

subjects from Map A&C group. The �nal results for these 45 subjects are shown

as follows.

First Group, Map A&B:(22 subjects)

Driving simulator: 3, 4, 4, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 1, 4, 0, 3, 1, 2, 4, 4, 4
PC: 2, 4, 4, 3, 1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 3, 4, 4, 4

Second Group, Map A&C: (23 subjects)

Driving simulator: 0, 4, 2, 4, 2, 4, 3, 1, 3, 0, 4, 2, 3, 3, 3, 4, 3, 3, 4, 4, 2, 0, 4

3.5 Test Design Revisited

In this subsection we discuss the design of the experiment in a higher level. The

previous discussions on data cleaning and strategic choice identi�cation provide a

basis for understanding the big picture in the design.

We do not directly observe a subject's thinking process, but only its outcome in

di�erent situations. Strategic route choices by de�nition include multiple outcomes

contingent on revealed information. One way to investigate this process is to con-

duct in-depth personal interviews and ask the subjects to describe the process in

detail. This method is suitable for an initial exploratory research phase, however

not so much in large-scale data collection.

We adopt another approach where through carefully designed networks and

travel time situations, we can equate strategic choices with choices of a certain

alternative. Our de�nition of a strategic choice is one that takes into account future

information value on route switching, and thus Map B in Figure 2.1 is the simplest

possible network for the study where the risky branch provides information and

diversion possibility and the safe route provides an alternative to the risky branch

for a non-strategic subject. The idea is to make the risky branch more attractive
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to a strategic subject and the safe route more attractive to a non-strategic subject.

As strategic planning is useful only when there are uncertainties, some travel times

must be random. However with random travel times, subjects' decisions are also

inuenced by their risk attitudes, which we do not know. The analyses in the

previous subsections deal with the problem of disentangling strategic thinking from

risk attitudes.

The travel time combination design is made with the above points in mind. To

make the risky branch more attractive for a strategic subject than the safe route,

it must have a smaller average travel time and thus (tL + tH)/2 < tb. However this

condition alone is not enough, so we make safe route travel time tb very close to the

higher travel time on the risky branch tH so that the possible bene�t of taking the

risk is very high. However some very risk-averse subjects might still prefer the safe

route, and therefore we set up Map A just to gauge a subject's risk attitude under

the same travel time combinations, yet without the complications of information

and the detour. Note that we cannot make tb greater than tH, in which case the

�xed route with travel time tH in the risky branch (Route 2 in Map B and Route 3

in Map C) is better than the safe route and even a non-strategic subject who only

see �xed routes will choose the risky branch.

To make the safe route more attractive for a non-strategic subject, we ensure

the two �xed routes in the risky branch are both worse than the safe route. The

one with a �xed travel time tH is trivial as tH > tb. The route with a possibly low

travel time tL has to be combined with an extremely high travel time tM to make it

highly unattractive. However some extremely risk seeking subjects might still want

to take the risk, therefore we set up an additional scenario in Map A with the same

high risk pro�le and delete subjects if they take the extreme risk.
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CHAPTER 4

RESULT ANALYSIS

1: Do travelers think strategically when they plan for a trip in uncertain

networks with probabilistic travel time distributions?

Most route choice models assume that a traveler makes a complete route choice

at the origin of a trip and do not account for any real-time information en-route. In

this study, if a traveler does not think strategically in an uncertain network, he/she

should always take the safe Route 1 with a deterministic travel time tb in Map B or

C. However, the �nal results show that a signi�cant number of route choices take

the risky branch in Map B or C.

Null hypothesis

H0: The median of the number of strategic choices for each subject in Map B or C

equals 0 .

Alternative hypothesis

H1: The median of the number of strategic choices for each subject in Map B or C

is greater than 0.

We performed a Wilcoxon Signed-Ranks Test on the counts of strategic route

choices from Map B or C in the driving simulator test. The null hypothesis is

rejected with a p-value of 3.388e-05 (one-sided) in Map B and a p-value of 7.71e-05

(one-sided) in Map C.
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To sum up, the answer to the �rst question above is a�rmative. Travelers think

strategically when they plan for a trip in uncertain networks with probabilistic

travel time distributions.

2: Does network complexity (the number of routes involved at the time

a decision is made) affect travelers’ strategic thinking ability?

By comparing the �rst group's and second group's strategic route choice counts

in the driving-simulator-based tests, we could investigate whether network com-

plexity a�ects travelers' strategic thinking. Map C is more complicated than Map

B with Route 2 serving a decoy.

Null hypothesis

H0: The median of the number of strategic choices for each subject in Map B equals

that in Map C.

Alternative hypothesis

H1: The median of the number of strategic choices for each subject in Map B is

greater than that in Map C.

The alternative hypothesis is one-sided because we have a strong a priori belief

that network complexity cannot improve a subject's strategic thinking ability. We

perform a Wilcoxon-Mann-Whitney test on strategic choice counts in two indepen-

dent samples from Map B and C respectively in the driving-simulator-based tests.

The null hypothesis is rejected with a p-value of 0.03749 (one-sided). We thus con-

clude that network complexity adversely a�ects subjects' strategic thinking. This is

intuitively understandable as recognizing the value of information from a part of the

network that is further downstream is more di�cult and requires higher cognitive

demand.
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An interesting future research topic would be to study a variety of more compli-

cated networks and �nd some systematic relationship between the level of strategic

thinking and network complexity. The result will be instrumental in estimating

strategic route choice models from revealed preference data in real-life networks.

3: Does a parallel driving task (pre-trip versus en-route) affect travel-

ers’ strategic choices?

We gave each subject in the Map A&B group exactly ten seconds to observe the

map topology and travel time distribution at the beginning of each scenario in both

the driving simulator test and the PC-based test. In the driving-simulator-based

tests, subjects were required to drive slowly during the ten seconds while reading

the map on the screen. This approximated an en-route decision-making context. In

the PC-based tests, there were no parallel driving tasks during the ten seconds and

subjects simply read the computer screen. This approximated a pre-trip decision-

making context. We hypothesize that a parallel driving task will add to a subject's

cognitive load, and cause him/her to be less strategic.

Null hypothesis

H0: The median of the number of strategic route choices for each subject without

a parallel driving task (PC-based) equals that with a parallel driving task (driving-

simulator-based).

Alternative hypothesis

H1: The median of the number of strategic route choices for each subject without

a parallel driving task (PC-based) is greater than that with a parallel driving task

(driving-simulator-based).
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A Wilcoxon Matched-Pairs Signed-Ranks Test gives a p-value of 0.7864 (one-

sided). The null hypothesis cannot be rejected. In other words, a parallel driving

task did not a�ect a subject's strategic thinking ability. This conclusion contradicts

common sense. As mentioned before, Map B is the simplest possible network to

study travelers' strategic thinking. It is possible that Map B is simple enough that

a subject can make a strategic route choice in well below ten seconds. In other

words, even if the traveler's cognitive capacity has been consumed by the driving

task to some extent, the remaining capacity is still enough for making a strategic

decision in such a simple situation as Map B. In order to thoroughly investigate a

parallel driving task's inuence on travelers' strategic thinking ability, we plan to

conduct another PC-based test using the more complicated network, Map C. Based

on our conclusion to the second question, we believe that the cognitive demand

needed for strategic thinking in Map C is more than that in Map B. Ten seconds

will be given to each subject taking this new PC-based test. We expect that the

added network complexity could di�erentiate the number of strategic choices made

with and without a parallel driving task.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

Through the driving-simulator and PC-based tests for two groups of subjects

using three types of network, we studied travelers' strategic route choice behavior

in uncertain tra�c networks. We �nd that a non-negligible portion of route choices

were made with strategic thinking in a realistic driving simulator. This is con-

sistent with a previous study using PC-based tests only. This demonstrates that

some travelers plan for real-time information en-route and negates the assumption

of many route choice models that travelers just simply select a �xed route at the

beginning of the trip. It also suggests that a more realistic route choice model

in a risky network with real-time information should include both strategic and

non-strategic behavior. Furthermore, we �nd that network complexity does af-

fect travelers' strategic thinking ability. In this study, travelers tended to make

fewer strategic route choices in a complex situation, such as Map C. This provides

guidance to the development of strategic route choice models in real-life networks.

Current studies in the literature focus on generating optimal strategies in a gen-

eral network, however an optimal strategy can be extremely complicated and thus

behaviorally unrealistic. The questions such as what is the limit of a traveler's

strategic planning capability and whether a traveler simpli�es a network to allow

for a high-level strategic planning would be interesting topics for future research.

Although we hypothesized that travelers' strategic thinking ability should be

a�ected by parallel driving tasks, data collected during the study did not support
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this hypothesis. This problem possibly results from the simplicity of the network

(Map B) used in this test and a more complex Map C will be used in future research.

The �ndings of this study will help us arrive at a better understanding of trav-

elers' route choice behavior in risky networks. More accurate route choice models

could be constructed and estimated, which will serve as a building block of a more

accurate system-wide tra�c prediction model. Finally, all the work will eventu-

ally lead to better decisions regarding ATIS placement and investment to serve

transportation networks more e�ciently.
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