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The regulation of gene expression is the driver of cellular differentiation in multicellular

organisms; the result is a diverse range of cell types each with their own unique profile

of expression. Within these cell types the transcriptional product of a gene is up

or down regulated in response to intrinsic and extrinsic stimuli according to its own

regulatory programme encoded within the cell. The complexity of this regulatory

programme depends on the requirements of the gene to change expression states in

different cell lineages or temporally in response to a range of conditions. In the case of

many housekeeping genes integral to the survival of the cell, this programme is simple

- switch on the gene and leave it on, whereas often the required level and precision of

regulatory control is much more involved and lends to subtle changes in expression.

This raises many questions of precisely where and how that regulatory information is

encoded and whether different biological systems encode it in the same way.

This project attempts to answer these questions through the development of novel ap-

proaches in quantifying the output of this regulatory programme according to the state

changes as observed from the expression profile of a given gene. Measures of complexity

in gene expression are calculated over a wide range of cell types and conditions collected

using CAGE, which provides a quantitative estimate of gene expression that precisely

defines the promoter utilised to initiate that expression. As expected, housekeeping

genes were found to be amongst the least complex, as a result of their uniform expres-

sion profiles, as well as those genes highly restricted in their expression. The genes

most complex in their expression output were those associated with the presence of

H3K27me3 repressive marks; genes poised for activation in a specific set of cell types,

as well as those enriched in DNAse I hypersensitive sites in their upstream region but

not necessarily conserved in that region. Evidence also suggests that different pro-

moters associated with a gene contribute in different ways to its resultant regulatory

complexity, suggesting that certain promoters may be more crucial in driving the regu-

lation of some genes. This allows for the targeting of such promoters in the analysis of

certain diseases implicated by changes in regulatory regions. Indeed, genes known to

be associated with diseases such as leukaemia and Alzheimer’s are found to be highly

complex in their expression.
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Chapter 1

Introduction to complexity

In this chapter I describe how the basic genetic material in a cell is utilized to form

protein products and the layers of regulation involved in order to achieve this. I describe

the core promoter and discuss its architecture observed on a genomic scale and how

regulatory elements interact with this core promoter, both locally (in cis) and off-site

(in trans), in order to regulate transcription beyond the basal levels achieved by the

core promoter alone.

I describe next generation sequencing technology, in particular cap analysis of gene

expression (CAGE), the basic technology currently leading the research in locating and

characterising transcriptional start sites.

I then discuss the concept of ‘regulatory complexity’, based on the idea that the in-

formation content in the genome acts in a combinatorial manner to achieve final levels

of expression observed across time and space within an organism. Using this idea the

regulation of expression is described as a regulatory program and I discuss how this

applies in the context of evolution across species as well as what it means for an indi-

vidual gene within a single eukaryote. This forms the basis for discussing measures of

regulatory complexity in gene expression, which will be covered in Chapter 2.

1
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1.1 Information flow: the central dogma of genetics

The central dogma off molecular genetics (Figure 1.1) describes the flow of genetic

information from the genetic blue-print, passed down from parent to child cells and

organisms, to the traits observed in the organism, via the production of molecular

machinery that builds and controls cells. Deoxyribonucleic acid (DNA) is the storage

medium for this genetic blue-print and is a polymer made up of a sugar-phosphate

backbone and nucleotide base side chains. Genetic information is encoded as a linear

string of four bases: adenine (A), cytosine (C), guanine (G) and thymine (T) along the

polymer. This quaternary system acts as a code, analogous to the binary encoding of

1’s and 0’s in digital technology.

DNA typically occurs not as a single strand as described above, but a double stranded

structure where the two polymers form a double helix, which resembles a ladder like

structure, with a sugar phosphate backbone and base pairs linked from each strand via

a hydrogen bond, thus forming the ladder rungs. The pattern of hydrogen bonding

between bases is complementary: A pairs with T and C pairs with G. This suggests

a mechanism for replication, since each separated strand of the DNA may act as a

template for a new strand. This was realised by Watson and Crick [Watson et al.,

1953], who first proposed the anti-parallel, double stranded structure for DNA, and

confirmed by Mesalson and Sthal [Meselson and Stahl, 1958], proving a mechanistic

basis for the inheritance of genetic material.

The information encoded within DNA translates into proteins, linear polymers of amino

acids. In this model, groups of three adjacent bases, known as codons, encode a specific

amino acid. In the standard genetic code that is common to most organisms, there

are twenty possible encoded amino acids. Since there are 43 = 64 possible triplet

combinations of the four bases, there is clearly a degeneracy in this code, implying that

multiple codons may encode the same amino acid. There are also three possible stop

codons, encoding the end of a protein. As the central dogma illustrates, Figure 1.1,

DNA sequence does not translate to proteins directly, but is first transcribed into

messenger ribonucleic acid (mRNA) molecules. RNA, like DNA, has a sugar-phosphate
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backbone and nucleotide base chains and mRNA is synthesised from one of the DNA

strands, using complementary base pairing rules as a template, similar to what is

observed in DNA replication.

After the mRNA is synthesised from DNA, it is loaded into a ribosome, which is a large

protein which sequentially reads the mRNA as a codon code, guiding the production

of the encoded protein through amino acid polymerisation. The proteins produced as

the enzymes, regulatory switches and structural components of cells.

Proteins are the major functional product of genomes, however some DNA sequences

encode other information; there are many molecular mechanisms which require an RNA

molecule rather than a protein as the functional output of a stretch of DNA sequence.

DNA sequence also encodes regulatory information, dictating when and in what quan-

tities specific products of the genome should be manufactured, or expressed. Almost

all cells in the human body contains the same genomic DNA sequence. However, clear

differences between cell types exist; for example, skin cells have a very distinct struc-

ture and function to muscle cells and again neurons and liver cells. The differences

between cell types represent changes in the genomic products manufactured, typically

being referred to as expressed. It is this aspect of regulated information flow from the

genome that is the central focus of this thesis - how one genome encodes the expression

patterns for hundreds of different cell types [Forrest et al., 2014].

DNA RNA PROTEIN
Transcription Translation

Figure 1.1: Central dogma of genetics. DNA becomes RNA through the process of
transcription, which becomes a protein through the process of translation.

1.2 Anatomy of the genome

Key aspects of genome structure, content and packaging of DNA are outlined in the

subsequent sections that provide context for the discussion of genomic regulation.
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1.2.1 Genes

Although the term is very loosely applied across different contexts, the stretch of DNA

that encodes a discrete product is referred to as a gene. A protein coding gene is a gene

where its transcribed RNA is subsequently translated by the ribosome into a protein.

Genes not transcribed into proteins are referred to as non-coding genes.

In a single (haploid) copy of the human genome, there are currently thought to be

approximately 20,300 protein coding genes and 24,885 non-coding genes (Ensembl ver-

sion 79 [Flicek et al., 2013]), although both numbers are subject to regular revision.

The transcription of a gene into RNA is performed by RNA-polymerase complexes.

All protein coding genes and many of the diverse non-coding RNAs are transcribed by

RNA-polymerase II, whereas the main RNA-polymerase I and III are involved in the

production of specialist, often high-abundance RNA species such as the ribosomal RNA.

This work focusses specifically on the regulation of RNA-polymerase II transcripts.

RNA polymerase II (polII) initiates transcription at the transcription start site (TSS)

and extends the RNA polymer along the template DNA until the termination of tran-

scription is triggered, a process often involving transcription across a cleavage and

polyadenylation signal (consensus sequence AATAAA) ([Colgan and Manley, 1997,

Elkon et al., 2013]).

The resultant RNA is modified co-transcriptionally through the addition of a 7-methylguanosine

(m7G) cap, a Poly-A tail via polyadenylation, and through co-transcriptional splicing

to remove non-coding intronic sequences (reviewed in [Bentley, 2014]). The capping

process occurs on the 5’ end of the nascent molecule, which contains a free triphosphate

group, since it is the first nucleotide in the transcript. The enzyme guanyltransferase

connects a guanine residual in a reverse orientation via a 5’-5’ linkage to this free

triphosphate group, which is in turn methylated by a methyltransferase on position

7. [Byszewska et al., 2014, Wei and Moss, 1977]. Capping is generally the first step

after the 5’ end of the transcript becomes exposed, thus protecting it from degradation

and effectively marking them for exportation into the cytoplasm, although not all tran-

scripts are necessarily capped and some may even have their capped removed in decay
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associated pathways [Bentley, 2014]. The chemical stucture of the 5’ cap is exploited

in the CAGE (Cap Analysis of Gene Expression) protecol, which essentially traps the

cap structure of the transcript, allowing for sequencing of these transcriptions and the

genome-wide identification of transcription start sites [Carninci et al., 2005]. CAGE

data forms the basis of the analysis in this project and the technique and datasets will

be explained in more detail later in this chapter and in chapter 3.

After capping, polyadenylation and splicing, the result is a mature protein coding tran-

script, containing a chain of codons encoding amino acids followed by a stop codon to

guide termination of translation, referred to as the coding sequence (CDS). The portion

of non-coding sequence between the 5’ cap and the coding sequences is referred to as

the 5’ UTR (untranslated region) and the RNA sequence between the coding sequence

and the poly-A tail is the 3’ UTR. It appears that every step in the production of such

a transcript, including the initiation of transcription, transcription elongation, splicing,

polyadenylation, transport, translation and degradation, are all mechanisms utilised by

cells to regulate the amount of a gene product produced (discussed in later sections)

[Jones, 2015]. In addition, alternative initiation sites, splicing and cleavage and poly-A

sites utilisation can allow a single gene coding region of DNA to encode multiple func-

tionally distinct products [Elkon et al., 2013]. Indeed, the currently annotated version

of the human genome (Ensembl version 79) suggests the 45,185 annotated coding and

non-coding genes can be processed into 198,622 distinct transcript species, and this is

almost certainly an under-estimate of the total transcript diversity [Flicek et al., 2013].

Gene body
Pol IITFs

Promoter5’ 3’

Figure 1.2: Simple schematic of transcription. One or more transcription factors
(TFs) bind to the promoter region. RNA polymerase II (Pol II) initiates transcription

from the transcription start site

The result is a strand of mRNA which can then be translated into a protein. Gene

products which are RNAs and not proteins are called non-coding RNAs. For protein-

coding genes, after the DNA has been transcribed into mRNA, the mRNA employs
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the help of the ribosome to make the required protein. Each set of three nucleotides

forms a codon which relates to a particular amino acid which binds to the appropriate

locations on the mRNA. When translation is complete, the completed protein falls off

of the mRNA strand.

A gene is expressed when its coding information in the DNA is used to create a func-

tional gene product. In the case of protein coding genes, this product is a protein which

is synthesised from RNA converted from the DNA code and which provides some kind

of function to the cell. Non protein coding genes produce RNA products, such as

tRNA, miRNA or snRNA (transfer RNA, microRNA and small nucleur RNA). Gene

expression is a tightly regulated process; genes are regulated by a number of different

modes - during transcription, post-transcription, during translation, post-translational

or through epigenetic factors. Most of the scope of this project focusses on transcrip-

tional initiation and epigenetic factors.

Exon 1 Exon 2 Exon 3
Intron 1 Intron 2

Figure 1.3: Simple schematic of the structure of a gene

1.2.2 Promoters and the initiation of transcription

Transcription initiation is the first and foremost step in the expression of a gene. Tran-

scriptional initiation is brought about by the presence of the core promoter of the gene,

a short sequence a small distance upstream of the start site. Six general transcription

factors bind to the promoter, namely TFIIa,TFIIB,TFIID,TFIIE,TFIIF and TFIIH

[Sims et al., 2004]. These assemble to form the pre-initiation complex (PIC). The PIC

results in the recruitment of polII to the transcription start site (TSS), so that initiation

Cap 5’ UTR Exon 1 Exon 2 Exon 3 3’ UTR Poly-A tail

Figure 1.4: Simple structure representing an mRNA transcript. The introns have
been spliced out, a cap added to the 5’ UTR region and a poly(A) tail added to the

3’ UTR. Further modifications may occur before it is translated into a protein.
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and productive elongation may occur. Evidence is accumulating that the complexes

forming the PIC have roles in mediating interactions with the three dimension struc-

ture within the nucleus and have important regulatory function in driving cell-specific

expression during development [Goodrich and Tjian, 2010].

Even after the completed assembly of the PIC onto the promoter, initiation of transcrip-

tion by polII does not occur until the template strands are separated. This requires

ATP, the unit of energy within the cell, and a subunit of TFIIH [Luse, 2013]. The

consensus is that TFIIH, within the PIC, rotates the DNA within the -9 to -2bp region

upstream of the actual TSS. Other complexes are further needed to aid the formation

of the first bond in the RNA-DNA complex and promote stable elongation and prevent

the early abortion of the transcript [Luse, 2013].

As polII moves past the TSS, promoter-proximal pausing, where transcription stops

immediately downstream of the TSS, may occur [Jonkers and Lis, 2015], often for long

periods of time. This pausing, typically around 30-60 nucleotides downstream of the

TSS, allows polII to wait in a ‘poised’ state for a signal to restart transcription, which

may rapidly occur. This mechanism has been commonly observed in the transcrip-

tional cycle of developmental genes, such as Hsp70 in drosophila, which rely pathways

controlled by stimuli [Burgess, 2012, Lis, 1998]. PolII pausing appears to be coupled

remodelling the local three dimensional genomic structure, keeping the promoter avail-

able for further regulatory cues [Gilchrist and Adelman, 2012, Gilchrist et al., 2010].

Such mechanisms allow for flexibility in the control of transcription, thus improving

the cells ability to transcribe according to exact requirements in time and space.

Since this project primarily concerns transcriptional initiation events from the TSS

region, the architecture of promoter regions and how they support transcriptional reg-

ulation will be discussed in the following section, before describing the regulation of

gene expression by regulatory elements outside of the core promoter region.
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1.2.3 Promoter architecture

Studies based on CAGE data have classified promoters into different categories [Lenhard

et al., 2012] [Carninci et al., 2005]. Type I promoters are ‘sharp’, generally depending

on a single TSS controlling the transcription of the gene and are generally associated

with tissue specific expression. Type II promoters are ‘broad’ and are associated with

multiple TSS spread out across the promoter region of the gene. Such genes are gener-

ally associated with ubiquitous expression, or ‘housekeeping’ genes. A third category

is Type III promoters, or those genes which are developmentally regulated and are

generally associated with polycomb repression marks.

The CpG island (CGI) is associated with ubiquitous expression of genes [Deaton and

Bird, 2011]. These are regions where CpG di-nucleotides (C followed directly by a G,

linked by a phosphate bond) are overrepresented. Estimates suggest that CGIs are

typically found in around 40% of promoters of genes [Fatemi et al., 2005]. According to

the promoter classification described above, Type I genes are generally associated with

a lack of CpG island, Type II and Type III genes are associated with CpG islands;

developmentally regulated genes often have large CpG islands overlapping the main

body of the gene [Lenhard et al., 2012].

Figure 1.5: Focussed transcription vs broad transcription. Focussed or sharp tran-
scription is associated with regulated promoters and is characterized by the existence
of a single TSS driving the initiation of transcription. This TSS is generally limited to
a small number of nucleotides. Dispersed transcription is commonly associated with
constitutive promoters and involves the existence of several weak transcription start
sites over a broad range of nucleotides upstream from the gene. Broad or dispersed
transcription is often associated with CpG islands, whereas focussed transcription is

generally not associated with CpG islands.
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The TATA box motif sequence, often associated with cell-specific expression, is the

most well-studied. Early studies have argued the essentialness of the TATA box as a

requirement for the initiation of transcription [Mathis and Chambon, 1981] although

in reality it is associated with only 10-15% of human genes. The TATA box acts as

a binding site for TATA-binding protein (TBP). The binding of TBP together with a

group of transcription factors and RNA polymerase form the pre-initiation complex,

although a recent study suggests TRF2 and not TBP is more important in ribosomal

protein coding genes [Wang et al., 2014b].

Whilst TATA is the most well known core promoter element in human, many promoters

lack TATA binding sites, and instead contain other elements binding TBP. Common

examples include the initiator motif (Inr), TFIIB recognition elements (BRE), down-

stream promoter element (DPE) and motif ten element (MTE) (see [Roy and Singer,

2015] for a recent review). The BRE consists of elements which may locate either

upstream or downstream of the TATA box. They are highly common in eurkaryotic

promoters in general, but are over-represented in TATA-less promoters compared to

TATA-containing promoters. The downstream promoter element (DPE) was first dis-

covered and characterized in the Drosophila genome and interacts with Inr. MTE

(motif ten element), which also interacts with Inr, is often found upstream of the DPE

element, but functions independently of DPE [Roy and Singer, 2015].

Studies suggest that different combinations of core promoter elements may be associ-

ated with directing the initiation of expression of tissue specific and/or developmental

regulation genes [Decker and Hinton, 2013, Müller and Tora, 2014, Roy and Singer,

2015]. In particular, a recent study suggests that rather than a simple promoter ar-

chitecture, the expression of many ubiquitously expressed genes are actually controlled

by multiple overlapping ‘selection codes’ [Haberle et al., 2014]. This thus raises further

questions about the role of the core promoter and exactly how it initiates transcription.
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1.2.4 The bidirectional nature of promoters

Bidirectional transcription, whereby transcriptional initiation occurs from both the

sense and anti-sense orientation within a tightly spaced region, typically less than

1000bp, has been observed at a large proportion of genes [Trinklein et al., 2004]. Such

bidirectional genomic organization often represents the scenario whereby two annotated

TSS transcribe in opposite directions, labelled the bidirectional promoter [Adachi and

Lieber, 2002]. Such transcriptional coupling allows for potential shared regulation of

expression, as observed through their co-expression in a cell-type restricted manner.

Supporting this claim, recently [Scruggs et al., 2015] showed that the TSS of bidirec-

tional promoters clearly demarcate a larger than expected nucleosome depleted region

(i.e an exposed region of DNA between the TSS), which is highly enriched for tran-

scription factor motifs.

Since the discovery of bidirectional promoters, a class of anti-sense non-coding tran-

scripts called promoter upstream transcripts (PROMPTs) has emerged. These are of

low detection rate due to their highly unstable properties, making them quickly de-

graded by surveillance mechanisms in the cell [Preker et al., 2008]. A recent study

of nascent transcriptional initiation events (thus with the ability to detect PROMPTs

pre-degradation) by [Duttke et al., 2015] classified promoters according to divergent,

where there is an annotated gene in one direction and no annotation in the reverse

direction, bidirectional, where there is an annotated gene in both directions, and unidi-

rectional, subsequently suggesting that human promoters generally act unidirectionally.

A further study directly challenged this view, suggesting that promoters are generally

bidirectional [Andersson et al., 2015], and so further experimental evidence is required

to fully understand bidirectional transcription. Furthermore, it does not change that

the functional role of anti-sense unstable transcription remains unknown.

Overall, it is clearly apparent from the above that whilst the basic idea of a core

promoter is universally understood with the same basic structure in mind, in reality

the core promoter is a very flexible and complex piece of transcription machinery, which

broadly varies in terms of its architecture and subsequent impact on initiation.
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1.3 Cis and trans regulation of gene expression

Promoter binding is essential to the expression of a gene, but other sequences may

be required to regulate the levels of transcription beyond their basal levels which may

be achieved from binding at the core promoter alone. These include cis-regulatory

elements, defined as sequences in the vicinity of the gene promoter which contain tran-

scription factor binding sites which, when bound to by required combinations of tran-

scription factors, produces the desired level of transcription from the gene. These

transcription factors, together with other off-location elements such as micro RNAs

affecting the expression of the gene, are known as trans-regulatory elements, and both

working together are crucial in the regulation of transcription [Dowell, 2010].

The class of cis-regulatory elements could refer to proximal promoters, locus control

regions, silencers, enhancers or insulators, the most common cis-regulatory element

being the enhancer (next section). Whilst some cis-regulatory elements have been

observed to be highly conserved across species, that is they exhibit few changes in

sequence compared to surrounding non-functional sequence between species, many of

these sequences exhibit high levels of changes, actually resulting in low levels of observed

conservation (i.e. they are turned over, a property discussed in the next section and

later sections in this chapter) [Meader et al., 2010, Villar et al., 2015].

1.3.1 Enhancers and long range promoter interactions

The main source of regulatory information outside of the promoter is concentrated in

genomic regions known as enhancers; transcription factor binding sites that have an

up-regulatory effect on the expression levels of the one on which it acts. These enhancer

regions are defined in a distinct manner from promoter regions because they are not

necessarily present on the immediate upstream region of the gene, but instead may

act in a distal manner [Bulger and Groudine, 2011], generally (but not always) located

on the same chromosome as the gene and can be upstream, downstream or within

the gene body itself [Spilianakis et al., 2005]. Another characterizing feature is their

ability to act in an orientation independent manner, with their targets either up- or
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downstream of their binding sites. Furthermore, A single enhancer may affect multiple

genes and may be located in regulatory regions surrounding a gene on which it does

not necessarily act upon. A classic example of a gene undergoing long range enhancer

interactions in cis is the SHH (sonic hedgehog) gene, with which multiple enhancers

have been shown to interact from a distance [Anderson and Hill, 2014].

Much effort has been made to identify and characterize enhancer sequences genome-

wide. Early studies have attempt to identify regions of conservation in non-coding

sequence; in particular, highly conserved non-coding regions (HCNEs) have been seen

to cluster in the vicinity of genes involved in developmental regulation [Nelson and

Wardle, 2013, Woolfe et al., 2004]. Enhancers may also detected through the pres-

ence of DHS I hypersensitive sites, ‘open’ regions of DNA exposed for accessibility to

transcription factors and cofactors [Thurman et al., 2012]. Whilst conservation and

DNase I hypersensitivity has allowed for highly useful genome-wide characterizations

of enhancers, it must be noted that the two sets do not necessarily overlap due to the

high turnover of regulatory sequences [Meader et al., 2010] and the low specificity of

open regions. Combining this information with further evidence such as the presence

of coordinated modifications to histones at certain sites has also proved to be a useful

avenue in improving the detection of enhancer regions [Rada-Iglesias et al., 2011].

Despite recent studies attempting to address the exact mechanism of how enhancers in-

teract with their targets, the complete mechanism is still not yet fully understood. The

most common mechanism by which enhancers are thought to interact with a specific

promoter is through looping in the DNA, so that the enhancer and the promoter are

brought within proximity of one another within the nucleus [Deng et al., 2012, Doyle

et al., 2014, Tolhuis et al., 2002], and appears to involve direct contact between the

promoter and enhancer genomic regions [Pombo and Dillon, 2015]. What set of rules

determining precisely which pairs of enhancers and promoters interact via looping cor-

responds to a complex set of parameters and is not simply down to closest proximity

[Whalen et al., 2016]. The looping interactions do appear to be restricted to within

larger (with an average of 1MB) domains of DNA referred to as topologically associ-

ated domains (TADS) [Dixon et al., 2012], which themselves can be proximal within
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the nucleus on a higher order level, potentially facilitating longer range interactions

[Fraser et al., 2015]. As observed in chromatin conformation data, putative interac-

tions through proximity is more commonly observed within these higher order domains

than it is between, and remain stably in place during development [Ghavi-Helm et al.,

2014].

Enhancers bind polII to produce a class of RNA commonly referred to as enhancer

RNAs (eRNA). Compared with mRNA, eRNA transcripts are, like the so-called PROMPTs

produced by anti-sense to promoter regions, typically unstable and quickly degraded by

certain ‘surveillance’ complexes [Andersson et al., 2014a]. The discovery that enhancers

may be defined by their bidirectional transcriptional signatures, with eRNA transcripts

produced in a constrained sense-antisense configuration has opened further avenues for

enhancer detection [Kim et al., 2010]. To this end, recent work by the FANTOM con-

sortium has utilized this observation by mapping enhancers across the genome based

on the presence of balanced bidirectional CAGE peaks as a signal of active enhancers

and identified around 43,000 candidate enhancers over 808 CAGE libraries in human

[Andersson et al., 2014b].

It is important to understand that whilst distinctions are made between what is an

enhancer and what is a promoter in research, their contrast in reality is blurred. Indeed,

promoters have been seen to act as weak enhancer elements and enhancers may act as

alternative promoters. A recent study based on the STARR-seq protocol has identified

sequences with enhancer ‘potential’ [Zabidi et al., 2014], observing that may of these

sequences overlap gene promoters, particularly those found activated in the context of a

housekeeping-type promoter. Indeed, much work is still being carried out to distinguish

actual enhancers from other regulatory elements such as alternate transcription start

sites, leading to the view of a ‘unified architecture’ when studying regulatory elements

[Andersson, 2015].

In contrast to an enhancer, a silencer is a transcription factor binding site on the DNA

that when bound by a repressor protein, prevents the binding of Polymerase II to the

core promoter, whereby reducing the level of or completely silencing transcription for

the gene on which the silencer acts on [Kolovos et al., 2012], although the functions
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carried out by enhancers and promoters are not always as clearly distinguished as their

name suggests [Reynolds et al., 2013]. Co-activators can increase the levels of gene

expression by binding to an activator with a DNA binding domain, which binds to the

DNA. Co-activators have regulatory roles in transcription, including elongation, RNA

splicing, degradation of co-activators-activator complexes. An example of a co-activator

is [Chen and Dent, 2014], which works to modify the physical genome structure.

In the next section, the epigenetic regulation of gene expression is discussed.

1.4 Epigenetic regulation of gene expression

Epigenetic factors refer to heritable changes as a result of regulatory signals occurring

outside of the DNA itself [Goldberg et al., 2007, Jaenisch and Bird, 2003], which may

have consequences in gene expression [Bernstein et al., 2007]. DNA can be thought

of as a linear ‘string’ which is wrapped around protein complexes called nucleosomes.

The nucleosomes consist of four histone proteins - two each of H2A, H2B, H3 and

H4, forming a histone octomer [Hughes and Rando, 2014]. DNA wraps around each

nucleosome 1.7 times with a distance between nucleosomes of approximately 147 bp

and the unwrapped DNA between nucleosomes being termed as ‘linker’ DNA. The re-

sulting ‘beads on a string’ formation then folds up into higher order structures called

chromatin domains. Chromatin domains, recently reviewed in [Chen and Dent, 2014],

are important in allowing all of the DNA to compact within the nucleus cell. Once

the DNA has folded into a chromatin structure, some parts of the DNA from different

chromosomes will become in contact with one another, facilitating long range interac-

tions [Lieberman-Aiden et al., 2009]. Thus, changes in chromatin structure within the

cell plays a highly important regulatory role.

Nucleosome binding by transcription factors [Ballaré et al., 2013] and the position and

occupancy of the nucleosomes play a crucial role in the regulation of gene expression

[Lenhard et al., 2012, Struhl and Segal, 2013]. In particular, the nucleosome directly

after the TSS, the +1 nucleosome, has important regulatory functions [Nock et al.,
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2012, Rhee and Pugh, 2012] and is typically subject to thousands of combinations of

covalent modifications, briefly reviewed in the next section.

The region upstream from the TSS is known as the nucleosome free region (NFR).

These regions are formed through the binding of pioneer transcription factors, which

result in the rearrangement of nucleosomes, revealing regulatory motifs which become

easily accessible to transcriptional-activation associated transcription factor complexes

[Iwafuchi-Doi and Zaret, 2014]. Thus, changes in the compactness of chromatin can

result in a gene switching between an on and off state of expression; genes present in

highly compacted areas of the DNA appear silenced whilst regions sufficiently accessible

by transcriptional machinery tend to be more actively transcribed.

1.4.1 Histones

Covalent post-transcription modifications (PTM) occur on histones, which may affect

transcription through modifications of chromatin structure or the recruitment of other

proteins. These modifications usually occur on one of the N- or C-terminal tails, al-

though they may also occur at globular domains [Campos and Reinberg, 2009]. The

first modification discovered was that of acetylation [Phillips, 1963], and further modi-

fications include methylation, phosphorylation and ubuitination [Zentner and Henikoff,

2013]. As mentioned, histone modifications with a direct regulatory impact on tran-

scriptional initiation are typically found on the +1 nucleosome.

Genome-wide chromatin immunoprecipitation (ChIP) based techniques currently form

the gold standard for mapping histone modifications across the genome[Consortium

et al., 2012, Mikkelsen et al., 2007, Wang et al., 2008]. In particular, trimethylation

of H3 lysine 4 (H3K4me3) and acetylation of H3 lysine 27 (H3K27ac) at the promot-

ers of genes is associated with active transcription and trimethylation of H3 lysine

27 (H3K27me3) at the promoter is associated with the repression of transcription

[Creyghton et al., 2010, Jenuwein and Allis, 2001, Li et al., 2007]. The trimethyla-

tion of H3K27me3 marks is catalysed by the polycomb group proteins (PcG), forming

repressive complexes PRC1 and PRC2 [Ku et al., 2008, Margueron and Reinberg, 2011].
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Some genes contain both active and repressive marks, known as bivalent genes. They

are generally developmental genes and their bivalency is thought to represent genes

which are held in a poised chromatin state ready for transcription to take place [Ku

et al., 2013, Voigt et al., 2013] are thought to be essential for defining cellular identity

and function [Lesch and Page, 2014].

Some marks are found along the body of the gene rather than the promoter of the

gene, including trimethylatino of H3 lysine 36 (H3K36me3), whose levels are correlated

with active transcription [Barski et al., 2007, Hahn et al., 2011] and trimethylation of

H3 lysine 9 (H3K9me3), which is associated with transcriptional silencing [Mikkelsen

et al., 2007, Schotta et al., 2004].

Putative enhancers appear to be marked with H3K4me1, often in combination with

H3K27ac and H3K27me3 according to transcriptional activity [Rada-Iglesias et al.,

2011, Zentner et al., 2011], and are often used to define enhancers [Villar et al., 2015];

in particular a high ratio of H3K4me1 to H3K4me3 is often seen as an enhancer mark

[Robertson et al., 2008], although this is far from what can be thought of as a definitive

way to distinguish enhancers from promoters [Andersson, 2015].

The scope for possible histone modifications is enormous, both in terms of the diversity

of modification sites and the range of modifications available [Tan et al., 2011], making

the analysis of the histone modifications very complicated, however certain patterns do

exist. Table 1.1 outlines some of the effects that certain histone marks are known to

have on expression. Attempts to chart histone modifications on a genome wide scale

[Consortium et al., 2012, Zhou et al., 2011] have questioned the existence of a histone

‘code; the idea that groups of histone modifications together act on the transcription in

a gene in a predictable manner [Rando, 2012, Wang et al., 2008], however the complexity

of the full situation and the number of possible combinations (more than the number

of nucleosomes in the genome) make it difficult to determine either way [Keung et al.,

2015].
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Mark Transcriptional impact
H3K4me3 Active
H3K27me3 Repressive, poised
H3K27ac Repressive
H3K36me3 Active
H3K9me3 Repressive

Table 1.1: Histone modifications and effect on gene expression [Barski et al., 2007,
Benevolenskaya, 2007, Koch et al., 2007]

Pol II

Pol II

Figure 1.6: Diagram showing a bivalent promoter region, active promoter region,
and poised promoter region. Green dots represent histone modifications associated
with gene activation, such as H3K4me3, whilst red dots represent histone modifications
associated with gene repression, such as H3K27me3. (Image adapted from [Kurdistani

and Grunstein, 2003], Figure 4)

1.4.2 DNA methylation

DNA methylation refers to the addition of a methyl group to cytosine nucleotides on

DNA. It generally acts as a silencing mark, leaving nearby genes in an ‘off’ state.

Methylation occurs at CpG dinucleotides which are typically depleted in the genome

[Li et al., 1992] (around 60-90% are methylated in mammals [Jabbari and Bernardi,

2004]), although it generally does not occur at CpG islands.

In adult cell types, CpG methylation is as a general rule fixed, stable and irreversible;

marks are laid down in early developmental stages [Smith and Meissner, 2013]. They
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are crucial to genomic imprinting, x-chromosome inactivation and chromosome stability

[Bird, 2002]. In mice, it has been observed that DNA methylation patterns act to

establish the lineage commitment of cell types, but is subsequently erased at around

E8.5 and E11 before re-establishment as part of an extensive reprogramming phase

[Seki et al., 2005]. It appears that some gene promoters associated with the germline

and development have a feed-loop mechanism, which requires DNA methylation to

prevent damage by transposable elements and genomic instabilities [Hackett et al.,

2012]. Therefore, these genes may not be directly repressed by methylation, but rather

methylation is coupled with other regulatory mechanisms. However, it is still not

definitive whether the observation of methylation is a feature of silencing, or vice-versa.

Methylation is important in brain development [Lister et al., 2013] and has been linked

with the ageing process [Horvath, 2013] and diseases such as cancer, where hypermethy-

lation (the accumulation of methylation in a given region) may occur at CpG islands,

causing the silencing of tumour suppressor genes [Esteller, 2007].

1.5 Regulation of gene expression at the post-transcriptional level

During the translation process, mRNA is translated at the ribosome, which involves

initiation, elongation and termination of protein synthesis. Regulation can occur at

numerous stages [Kong and Lasko, 2012], resulting in differences between the level of

transcribed mRNA and the final levels of protein achieved. Post-transcriptional modi-

fications explain a large proportion of the variance in protein, although transcriptional

initiation is believed to play the greatest role in this [Li and Biggin, 2015].

Alternative splicing results in the the same gene being able to produce multiple possible

gene products, allowing for the scenario where there are approximately 20k genes in

the genome but around 80-90k gene products [Brett et al., 2002, Roy et al., 2013]. A

significant proportion of genes in the genome can be alternatively spliced. Alternative

transcripts are often controlled by separate promoters, and may be distinguished using
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whole-transcript level sequencing methods such as RNA-seq, where switches in distri-

butions of isoform usage has been observed in genes comparing tumour samples with

controls [Sebestyén et al., 2015].

The complete mRNA transcripts are moved from the nucleus to the cytoplasm where

it may be translated into a protein by a process known as nuclear export [Köhler

et al., 2007]. Transcripts not properly processed are targeted for degradation. mRNA

transcripts are protected from degradation by the capping process. Capping on the 5’

end of the mRNA may also occur after it has been exported to the cytoplasm, as well

as decapping to aid the degradation of the mRNA [Bentley, 2014]. Degradation occurs

when exonucleases gradually shorten the polyA tail. mRNA degradation is known to

play crucial roles in post-transcriptional regulation of gene expression; mRNA removed

from the area where it is transcribed aids in the process of switching off a gene. It is

due to degradation that the levels of protein captured in a cell may not necessarily be

the levels of protein translated from mRNA.

Alternative polyadenylation refers to the fact that some protein coding genes have more

than one possible site for the poly-A tail to be added, thereby changing the location

of the 3’ end of the mRNA [Tian et al., 2005]. Sometimes this changes the protein,

although usually the result is simply a shortened 3’ UTR region [Shen et al., 2008].

From all of the layers upon layers of factors influencing the expression of a gene one can

begin to appreciate the extreme difficultly in explaining the regulatory processes in-

volved in each individual gene. Add this to the fact that genes themselves are regulators

and many transcribed RNA have multiple regulatory roles.

1.6 Gene expression quantification

1.6.1 Pre next generation methods of capturing gene expression

Prior to the more recent advent of high through-put sequencing technologies, northern

blotting was the main method used to determine the relative expression levels of a
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specific RNA, by means of electrolysis to separate out strands of RNA and using probes

to bind to elements of interest [Alwine et al., 1977]. It is similar to a Southern blot,

which detects DNA instead of RNA [Southern, 1975]. The method was time-consuming

and heavily limited on the number of genes one could analyse in a single study. Blotting

methods were significantly improved upon through the advent of qRT-PCR - reverse

transcription (generating a DNA template from the RNA), then quantitative PCR

(amplify resulting cDNA, estimate number of original copies. Very sensitive), which

resulted in faster and more accurate quantification.

Microarrays quickly became a very attractive method for quantifying the expression of

multiple RNAs in parallel [Lashkari et al., 1997, Schena et al., 1995]. Genetic material is

placed in a series of probes, one for each expression element. Gene expression intensity

is captured by observing the fluorescence of the spot on the chip for a gene. Generally

superseded by RNA-seq in recent years, due to RNA-seq’s ability to record over entire

genome without prior knowledge of genes. Microarray is a hybridization based method

of capturing gene expression. A microarray chip consists of a set of spots, one per gene

(or other DNA based element), each containing small amounts of DNA sequence for

that gene.

1.6.2 Genome wide quantification of transcription

Use of modern high throughput technologies allows for genome wide estimates of tran-

scriptional output. Two distinct categories of transcription sequencing include shotgun

based methods, where the mRNA is broken up into fragments, sequenced and mapped

back to the reference genome and tag based methods, where short sequences at a specific

position of the transcript is sequenced.

1.6.3 RNA-seq

In recent years the most common method employed is RNA-seq, which employs mas-

sively parallel sequencing to measure RNA abundance and has largely replaced mi-

croarrays due to the lack of required transcriptomic knowledge prior to sequencing
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[Mortazavi et al., 2008, Wang et al., 2009]. RNA-seq methods employ shotgun se-

quencing, so has the advantage of being able to quantify expression across an entire

transcript, obtaining information on expression levels for each exon and allowing for

the detection of alternative splicing events. The protocol varies, although generally

involves fragmentation, followed by conversion of RNA into cDNA, second strand syn-

thesis, ligation of adapter sequences at the 3’ and 5’ ends and final amplification before

the tags are sequenced and mapped back to the reference genome [de Klerk et al.,

2014]. A big disadvantage is that RNA-seq often under-represents tags around the 5’

and 3’ transcript ends [Roberts et al., 2011], thus tag based methods (see below) are

often preferred for capturing the locations where transcription starts [Forrest et al.,

2014]. Furthermore, RNA-seq is not necessarily strand specific since sequence orienta-

tion may be lost during random-primed cDNA synthesis [Roberts et al., 2011] although

strand-specific protocols have been developed in recent years [Armour et al., 2009, He

et al., 2008, Parkhomchuk et al., 2009], allowing one to distinguish between sense and

anti-sense transcription, which may supply important regulatory roles [Faghihi and

Wahlestedt, 2009].

1.6.4 Tag-based methods

Tag-based methods capture millions of reads across the genome from a specific part of

the transcript, with the aim of generating a fine-scale map of expression regulation at

base-pair resolution. They have the feature whereby they are inherently stranded as a

result of features in the protocol. The two main types of tag-based methods capture

tags from either the 5’ end or the 3’ of the transcript, the two most common methods,

CAGE and SAGE, which will be discussed below.

1.6.5 CAGE sequencing

Cap analysis of gene expression (CAGE) [Forrest et al., 2014, Kodzius et al., 2006,

Shiraki et al., 2003] captures the 5’ cap structure of the RNA, based on a cap trapping

method [Carninci et al., 1996, Takahashi et al., 2012]. The cap trapping protocol
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involves the biotinylation of molecules which contain pairs of hydroxide groups on

adjacent bonded carbon atoms. Briefly, mRNA is reverse transcribed and then an

adapter is ligated to the 3’ of the resulting cDNA using random primers, which is used

to facilitate the cleavage of the DNA with the restriction endonuclease EcoP15I at a

specific recognition site, resulting in a short tag around 25-27 nt long. In the standard

CAGE protocol, there is an amplification step using PCR prior to the sequencing

of the tags, which are then mapped back to the reference genome. The number of

tags overlapping a given nucleotide position then provides a quantitative estimate of

expression at that given location.

The Heliscope CAGE method avoids this amplification step altogether and involves only

three main steps [de Hoon and Hayashizaki, 2008, Kanamori-Katayama et al., 2011].

These are reverse transcription into cDNA followed by 5’-cap trapping and applying a

poly(A) tail to the 3’ end, after which sequencing can begin. This method has a distinct

advantage over the basic CAGE method, as the removal of the requirement to reverse

transcribe a second time, amplification and ligation removes sources of possible bias

and therefore provides a more exact quantification of the mRNA levels at the location

of the TSS, allowing for more detailed expression analyses.

The first genome-wide sequencing and annotation of full-length cDNAs in mouse was

made by the FANTOM Consortium [Okazaki et al., 2002], who have subsequently

applied CAGE to a large number of large scale projects, identifying different types

genome wide transcriptional initiation in a range of tissues, cell types and species, the

data of which forms the basis for the current project [Andersson et al., 2014b, Forrest

et al., 2014].

1.6.6 SAGE sequencing

In contrast to CAGE, which captures the 5’ end of the transcript, serial analysis of

gene expression (SAGE), sequences tags from the 3’ end of the transcript and relies on

the presence of the poly(A) tail [Hu and Polyak, 2006, Nielsen et al., 2006]. In brief,

the protocol works by washing thymine nucleotides attached to magnetic beads over
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the cellular contents. The resulting tagged transcriptions are then reverse transcribed,

amplified and sequenced. These sequences are mapped back to a reference genome,

resulting in genome wide gene expression estimations, which may be thought of as a

high-throughput version of microarrays in terms of its expression output [Lin and Li,

2005].

Whilst both CAGE and SAGE produce sequence tags representing RNA fragments

present in an mRNA sample, they capture fundamentally different information. Be-

cause SAGE only captures tags based on the detection of a recognition site in the

polyA tail of an RNA transcript, it does not give any information about alternative

splicing, but just the overall expression level for that transcript. Furthermore, if there

is no polyA tail present then the expression of that transcript will be missed altogether,

affecting approximately 1000 transcripts, or 1% of the genome [Saha et al., 2002]. In

conclusion, the main advantage of CAGE over SAGE in the context of of analysing the

regulation of expression for a particular gene is the ability to obtain information about

the number of and location of alternative promoters contributing the overall expression

of that gene.

Whilst CAGE is generally considered an efficient and robust method of capturing 5’

capped transcripts, it does have a disadvantage known as ‘exon painting’ whereby

transcripts are sometimes mapped onto the exon junctions, skewing estimates of TSS

location and expression levels [Zhao et al., 2011]. This is sometimes been attributed to

recapping events [Forrest et al., 2014], although this artefact is discussed and analysed

further in Chapter 3 of this thesis, where it is seen that promoter expression is correlated

with observed levels of exon painting within a gene.

1.6.7 Methods for capturing nascent transcription

The sequencing of 5’ end of RNAs prior to processing steps after polymerase II en-

gagement, known as nascent RNAs, can be achieved through methods called GRO-seq

(Global Run-On Sequencing) [Core et al., 2014, 2008] and PRO-seq (a nucleotide reso-

lution version of GRO-seq) [Kwak et al., 2013]. These methods capture those nascent
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RNAs which are actually engaged with Pol II at a given moment, including those

attached to Pol II that are undergoing different transcriptional steps, i.e. intitation,

pausing, productive elongation and termination. Sequencing of nascent transcripts al-

lows for the detection of transcription start sites from unstable transcripts such as

eRNAs and PROMPTs, which are often difficult to detect in CAGE as a result of

degradation processes.

A variant of GRO-seq is GRO-cap (and PRO-cap), which only captures 5’ transcrip-

tion start sites as a result of its 5’ cap enrichment step [Kwak et al., 2013]. GRO-cap

has been utilized to compare the initiation rates of thousands of enhancers and pro-

moters genome-wide in GM12878 and K562 cells in a fashion unbiased by degradation

complexes, finding striking architectural similarities between them, including similar

spacing of divergently initiating promoters, common core promoter element frequencies

and tightly regulated nucleosome positioning [Core et al., 2014].

Recently, NET-seq has been developed, which sequences nascent RNA from polymerase

that has either backtracked and/or arrested through the identification of the 3’ end of

the transcript within the Pol II active site. [Churchman and Weissman, 2012] [Nojima

et al., 2015]. The method is nucleotide resolution, although may only detect transcripts

around 30 nucleotides or greater beyond the TSS [Nojima et al., 2015].

1.6.8 DNase I hypersensitivity

DNase I hypersensitivity sites (DHSs) indicate areas of open chromatin whereby the

DNA is accessible to DNase I cleavage enzymes [Thurman et al., 2012]. Mapped sites

in the vicinity of the body of a gene, as well as within its exons or introns, may be

representative of cis-regulatory modules affecting the regulation and hence expression

of the gene. Such sites have been mapped extensively as part of the ENCODE project

via a method called DNASE-seq [Thurman et al., 2012]. This study used 125 different

human cell types obtaining around 2.9 million distinct DHSs. Another more recent and

efficient method for capturing hypersensitive regions is ATAC-seq, where hyperactive

Tn5 transposase inserts itself into exposed, nucleosome free regions of DNA, with its
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active properties allowing for the cutting of the DNA at these sites [Buenrostro et al.,

2013, 2015].

DHS sites mark the locations of actively bound cis-regulatory elements, including pro-

moters, enhancers, insulators, silencers and locus control regions [Thurman et al., 2012],

making the resultant maps an important source of gene regulatory information to draw

upon. For example, a recent study mapped the gain and loss of DHSs as cells progress

from embryonic stem cells to terminal fates [Stergachis et al., 2013], and DHS clas-

sifications have been used to characterize RNAs according to their nuclear stabilities

[Andersson et al., 2014a]. However, an open question in the area refers to the turnover

of such sites and whether many of them represent truly functional sequence, particularly

in the absence of a conservation signal, that exhibits high rates of turnover [Meader

et al., 2010, Young et al., tted].

1.7 The paradoxes of information content and complexity

How does one define the complexity of an organism? For example, the number of cell

types has been alluded to as an indicator of morphological complexity [Chen et al.,

2012]) the range of proteins produced within the organism [Schad et al., 2011]. Whilst

the size of the genome of an organism in terms of base pairs varies considerably between

species, it does not necessarily correlate with the perceived complexity of the phenotype,

a phenomenon commonly referred to as the c-value paradox [Gregory, 2001]. Indeed,

one of the largest animal genomes ever discovered is that of a locust, which has 17302

predicted genes [Wang et al., 2014a]. However, a lot of this genome size can be explained

by the fact that 60% of its genome is made up of repetitive DNA.

A way around this phenomenon is to count the number of genes present in the genome.

The g-value paradox is the name given to the fact that organisms vary widely in the

number of genes in their genomes [Hahn et al., 2002], from simple prokaryote unicellular

organisms such as E-coli, with around 4000 genes, to eukaryote multicellular organisms
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such as humans with around 25000 genes. In both of these organisms, genes are her-

itable units coded within DNA with similar mechanisms by which their expression is

controlled.

Many more involved attempts at measuring genome complexity have been attempted.

For example, studies in biochemistry look at the ‘energy per gene’ [Lane and Martin,

2010], which has been shown to be larger in multicellular eukaryotes than ‘simplistic’

prokaryotes. However the fact remains that it turns out that simply observing simple

characteristics of the genome is a very poor indicator of the overall complexity of that

organism.

A better perception of genomic complexity may be perceived through observed inter-

play of regulatory dynamics within an organism [de Mendoza et al., 2016]. Indeed,

many signalling pathways and transcription factors are highly conserved and shown

to be present through all the way down through to unicellular metazoan organisms

[Fairclough et al., 2013, Sebé-Pedrós et al., 2011, 2012]. Furhermore, two mechanisms

widely seen to represent shifts in complexity, the evolution of alternative splicing, which

allows for a single gene to code for many different products, and the use of long in-

tergenic non-coding RNAs (lincRNA), has also recently been suggested to have been

present in Creolimax, a unicellular relatives to animals [de Mendoza et al., 2016]. The

same study suggests that differences may lie in the differences in how these systems

are regulated, for example the increasing dependence on cell type specific expression by

these lincRNAs in diverged multicellular organisms [Gaiti et al., 2015]. So, it is likely

that the evolution of complexity in the organism lies in the mechanisms involved in

the regulation and control of the fundamental tools deeply conserved through lineages,

and this ‘extra’ regulatory complexity may provide an explanation as to why some

organisms develop a greater diversity of phenotypes.

1.8 Evolution and the variation of gene regulatory mechanisms

It has long been suggested that phenotypic differences between species are the cause

of changes in gene expression as a result of structural changes in the genome. King
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and Wilson [King et al., 1975] famously observed that regulatory changes must be

responsible for gene expression differences between human and chimpanzee, who share

96% of their DNA sequence, and since then evidence has been accumulating in favour

of between lineage gene expression divergence [Gilad et al., 2006, Khaitovich et al.,

2006, Tirosh et al., 2006]. Raff and Kaufman [Raff et al., 1991] argued that mutations

affecting regulatory regions were less likely to be deleterious than changes in protein

coding genes, and it has been seen that cis-regulatory changes are important drivers of

diseases such as cancer [Ongen et al., 2014].

A key question often asked is: how do changes in sequence cause changes in gene

expression variation, and therefore phenotype and disease? Few studies directly address

this question, although one study found that sequence changes at the core promoter may

not correlate well with expression divergence [Tirosh et al., 2006]. Another study found

that in the case of human mouse macrophage response, divergence in gene expression

was found to be negatively correlated with divergence in sequence [Schroder et al.,

2012], suggesting that although promoter sequence is evolutionary conserved between

species, patterns of gene expression are found to be highly divergent. One explanation

is that although the promoter itself may be conserved, there are a number of cis- and

trans- acting elements influencing the transcription of the gene. Indeed, it is frequently

thought that enhancers appear to be more responsible for divergence in cis-regulation

than promoters [Villar et al., 2015, Wittkopp and Kalay, 2012]. Enhancers appear to

have lower pleiotropy, where higher pleiotropy means that a single change has an effect

on multiple distinct phenotypes [Stearns, 2010]. This is rationalised by the tissue-

specific nature of enhancer sequences, as a change in a random tissue is unlikely to

affect the phenotype via significant changes in gene expression [Liao and Weng, 2012].

Furthermore, enhancers have been shown to exhibit a degree of redundancy, whereby

the loss of function in a given enhancer could be replaced or compensated by another

enhancer [Barolo, 2012], often in response to an environmental stimuli [Bothma et al.,

2015]. For this reason, it is thought that mutations within them are likely to survive

into future generations, giving rise to greater polymorphism/divergence than mutations

elsewhere [Wittkopp and Kalay, 2012].
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Through the above reasoning, evolutionary forces may be driven through the gain and

loss, referred to as the ‘turnover’, of regulatory elements over time [Frith et al., 2006].

Studies suggest that this turnover is substantial, by observing that as phylogenetic

distance from humans increases, there is a dramatic drop off in constraint in sequence,

and it is these changes in regulatory features that are driving evolution. [Meader et al.,

2010]. One study saw that during early vertebrate evolution, regulatory gains were

enriched around transcription factors and developmental genes [Lowe et al., 2011], and

a more recent study looked at the fitness consequences of point mutations in the human

genome, estimating that since the divergence between human and chimpanzee, 4.2–7.5%

of nucleotides in the human genome have influenced fitness [Gulko et al., 2015].

More and more studies are focusing on linking exactly when and how divergences in

cis- and trans- regulatory factors contribute to the observed divergence in the resulting

expression of a gene, and in turn the effect this has on phenotype [Wittkopp and

Kalay, 2012]. For example, changes in cis-regulation have been revealed as a driver of

evolution in drosophila, as observed by changes present in wing colour [Gompel et al.,

2005]. A classic example is the HOX gene paradox [Prince, 2002], which questions

how the substantial diversity observed in the anatomical features of body patterning

is controlled at the gene expression level, with a recent study revealing a mechanism

involving weak interactions of HOX gene proteins with transcription factor binding

sites [Crocker et al., 2014].

Finally, the advent of next generation sequencing allows for the systematic genome-

wide scale identification of eQTLs [Battle et al., 2014, Westra et al., 2013]. An eQTL is

a region of the genome containing DNA sequence variants that influence the expression

level of one or more genes[Albert and Kruglyak, 2015, Pai et al., 2015]. Many quan-

titative trait loci have been localised to regions that don’t apparently contain protein

coding sequence - it is thought that these may be transcriptional regulatory variants;

such eQTLs are increasingly being associated with human disease and phenotypic traits

[Dimas et al., 2009, Montgomery and Dermitzakis, 2011, Veyrieras et al., 2008]. Fur-

thermore, genome-wide association studies have also concluded the diversity of traits

enriched around the core promoter region [Kindt et al., 2013].
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It is clear that gene expression evolution is not a linear process, and varies depending

on species, organs, lineages and chromosomes [Brawand et al., 2011], and within the

genome a high turnover at regulatory elements is observed, providing a mechanism for

regulatory innovations and thus a rich source of variation in regulatory complexity.

1.8.1 The upper limit of complexity in the human genome

Studies on the evolution of regulatory complexity speculate on the so called ‘upper’

limit of complexity in the genome - how much regulation can a single gene potentially

undergo? For example, sequence constraints in the genome limit exactly how many cis-

binding regulatory elements can lie upstream of the gene, as well as how many splice

isoforms a single gene can incorporate and the number of different transcription factors

which could potentially bind to the DNA. A study by [Warnefors and Eyre-Walker,

2011b] attempt to characterise sources of regulation influencing genes according to their

age, suggesting that complexity is increasing in a continuous manner over evolutionary

time and has not yet evolved to its maximum possible level.

Evidence suggests that in practise, however, regulatory complexity does not evolve to

some kind of upper limit [Jay, 1996, McShea, 1996, Stewart, 2014], although it necessar-

ily must have some kind of lower limit [Jay, 1996]. There is also evidence that organism

complexity also involves phases of reduction and simplification [Wolf and Koonin, 2013],

although it does appear clear that the development of multicellular organism and dif-

ferent cell lineages has contritibuted to an overall increase in regulatory complexity

through time [Levine and Tjian, 2003, Moore, 2005]. Furthermore, pleiotrophic hetero-

geniety may causes differences in the evolvability of the genome [Wagner and Zhang,

2011]. For example, older genes (that is, present within highly diverged lineages) are

more highly conserved and on average more pleiotropic, whilst less pleiotropic genes

have a faster turnover and thus may represent the richest targets for regulatory inno-

vations.
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1.9 Towards a measure of regulatory complexity

1.9.1 Defining complexity

As demonstrated with the C-paradox and the G-paradox, genomic complexity is intu-

itively easy to define but notoriously difficult to quantify [Adami, 2002]. Furthermore,

it has been seen that a genome isn’t simply what is observed on the sequence, but an

orchestra of regulatory layers, both acting on and off-site from the sequence, which

interact in a precise and combinatorial manner and vary widely from cell-type to cell-

type. This combinatorial approach to the regulatory programming of genes and the

contributions of those programmes to their profile of expression output across the range

of cell types in the organism raises many questions of precisely where and how that

regulatory information is encoded, and whether different biological systems encode it

in the same way.

For this reason, the problem of how to accurately measure the regulatory information

for any given gene is something that has often been alluded to in genomics [Carninci

et al., 2005, González et al., 2015, Hume, 2012, Nagel and Kay, 2012, Schroder et al.,

2012]. Thinking of complexity in terms of ‘the amount of information an organism

stored in its genome’ then this is intuitively the information which can be thought of

as the accumulated regulation within the cell [Adami, 2002]. This allows us to ask the

question: what is the minimum genome that can ‘power’ an organism? This question is

naturally addressed by the concept of Kolmogorov complexity, which in this case is the

minimum set of rules, or the regulatory programme, required to achieve the observed

gene expression output. Whilst Kolmogorov complexity is believed to be the optimum

way of measuring regulatory complexity, it is computationally intractable in practical

situations [Kolmogorov, 1963]. Indeed, it is virtually impossible to combine together

all of the different regulatory processes into one single complexity measure which de-

scribes how regulated an individual gene is in relation to another gene. Furthermore,

the question of the exact mechanisms involved in explaining what causes the precise

differences in expression between genes and cell types is generally not fully understood,

let alone quantified.



Chapter 1. Introduction 31

Most studies focusing on measuring regulatory complexity in gene expression do so

by observing singular aspects of regulation, for example, [Warnefors and Eyre-Walker,

2011b] consider eight ‘measures’ of complexity: counting transcription factor bind-

ing sites, conservation upstream of the gene, the number of TSSs, splicing isoforms,

polyadenylation sites, miRNA sites, NMD proportion and RNA editing proportion.

Studies have looked at sequence complexity at the promoter [Jin et al., 2014], including

across chromosomes and multiple species [Tenreiro Machado, 2012]. A more recent

study attempts to connect to the cis regulatory landscape to complexity by assigning

DNASE I hypersensitive sites to their nearest gene in the context of understanding

expression state transitions in hematopoietic differentiation [González et al., 2015]. A

general disadvantage of these described studies in quantifying gene regulation is that

they often reflect a single cell type, limit the number of regulatory factors under investi-

gation, and on the whole it is unclear how each mode of regulation should be weighted.

This final point underlines the difficulty in summarising the regulation in total over

the gene and so reflects the difficulty in defining and measuring biological complexity

[Landauer, 1988].

Instead, we could look at how these regulatory processes as a whole impact on the

transcriptional initiation of a gene. This is reflected in the patterns of expression we

observe, over time and in each specific cell type in the organism. In this project, we

commonly refer to this as the output of the ‘regulatory programme’ acting on a given

gene.

1.9.2 Gene expression as a ‘regulatory programme’

As has been said, the regulation of gene expression is the key in understanding the

process of cell type differentiation in multicellular organisms, and underlies how cells

are able to adapt and respond to their environment, as well as precisely maintain their

homoeostasis. Despite having the same genetic information, each distinct cell type

in the body has its own unique gene expression profile, since each individual gene is

controlled by a set of regulatory factors which determine whether the gene is switched on

or off in a given cell type, the rate it is transcribed, and how its transcription responds
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to a range of biological conditions. This set of regulatory factors can be described as

constituting the regulatory programme for that gene.

For housekeeping genes, integral for the survival of the cell, this regulatory programme

is conceptually simple - switch on the gene and maintain its transcription at its required

level in all cell types; the abundance of mRNA produced is often controlled by the

basal strength of the gene’s core promoter, without requirement of further regulatory

information. The resultant gene expression profile will always appear uniform in its

distribution.

Some genes are highly restricted in their expression. For example, beta-globin genes

are specifically expressed in erythrocytes [Levings and Bungert, 2002]. Cell specificity

is generally determined by the presence of enhancer motifs, which are bound to by

required transcription factors in the expressed cell type, but left alone elsewhere. In

many such cases of highly specific expression, the complexity of the involved regulatory

programme is also theoretically simple - a core promoter and one or more enhancer

sequences to direct expression in the required cell type.

Whilst many studies attempt to classify genes according to the housekeeping to tissue

restricted axis [Forrest et al., 2014, Frith et al., 2014, Heintzman et al., 2009, Jacox

et al., 2010, Schug et al., 2005], the dichotomy of classifying genes in such a fashion is

naive, since most genes which are regulatory complex in their expression lie somewhere

in the intermediate scale [Jacox et al., 2010, Vinogradov, 2006] (Figure 1.7). Often

the required level and precision of regulatory control is much more involved and lends

to subtle changes in expression. Modular cis-regulatory elements such as enhancer se-

quences present in the proximity of the gene as well as at distal locations are responsible

for much of this regulation. These enhancers are bound to by a variety of transcrip-

tion factors which are themselves coded from genes, forming networks of interactions

between transcription factors acting in trans- on the target gene. The vast numbers of

possible combinations of cis and trans regulatory factors allows for an almost limitless

scope for regulatory control in the genome. Promoter architecture is associated with

classes of highly regulated genes, for example MHC class I promoter genes, known to

be regulatory complex, are associated with Inr and TATAA elements [Lee et al., 2010].
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Developmental regulators such as OCT4 and SOX2 in human are associated with Poly-

comb Repressive Complex 2 (PCR2) in ES cells [Lee et al., 2006]. In these cases the

regulatory program causes the repression of the genes in ES cells, but allows for devel-

opmental switches across specific cell lineages, resulting in a complex gene expression

profile across adult cell types.

An example of intuitively complex regulation is that of SHH through mammalian devel-

opment. This key developmental gene is expressed in an ontogenetically, spatially and

temporarily diverse set of cells and is crucial to the developmental patterning of limbs,

teeth and fore-brain amongst further structures [Lettice et al., 2003]. As with other key

developmental genes, the transcriptional regulation of SHH is mediated by a wealth of

cis-regulatory enhancers in proximity to the gene, that are highly conserved through

vertebrate evolution [Anderson and Hill, 2014, McEwen et al., 2009a]. If excised into

a gene expression reporter construct such enhancers can often partially recapitulate

the expression pattern of the endogenous gene [Visel et al., 2009], demonstrating the

modularity of such cis-regulatory control.

Capturing these expression patterns therefore gives us important information about

the overall contribution of the regulatory processes that make up the observed pattern

in any given gene. The ‘best’ expression output from which to measure from would be

every cell type at every state of development and in response to every possible biological

environment, since this would give a complete picture of how a gene’s expression at any

one time or location. However, practically, only a selection of cell types or a single time

course may be available. This project is concerned with such complexity measures.



Chapter 2. Aims 34

House Keeping Tissue Specific

Brain
Heart
Lung
Kidney
Bladder

on

on
on

on

Brain
Heart
Lung
Kidney
Bladder

on

on
off

on off

Brain
Heart
Lung
Kidney
Bladder

on

off
off

off

Figure 1.7: Housekeeping vs tissue restricted axis. Housekeeping genes are tissue
specific genes may be explained bi conceptually simple regulatory programmes by
observing the combinations of ‘on’ or ‘off’ switching through development. The current
project hypothesises that genes between these two extremes potentially have highly

complex regulatory programmes.
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Aims of the project and overview of

thesis

2.1 Aims

1. Develop a justifiable method to quantify the regulatory complexity of a transcrip-

tional programme.

2. Quantify regulatory complexity for all genes and promoters in the human genome.

3. Understand what makes a gene more or less complex.

2.1.1 Aim 1: Develop a justifiable method to quantify the regulatory com-

plexity of a transcriptional programme

• Current ways of measuring complexity do not encompass all of how the genes

regulatory program results in its gene expression output

• Aim to come up with a better information based measure on a gene level basis

as a way of capturing our defined idea of ‘complexity’

35
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2.1.2 Aim 2: Quantify regulatory complexity for all genes and promoters in

the human genome

• Calculate differential expression probabilities across FANTOM5 gene level data,

TSS level data

• Calculate complexity measures over datasets using calculated probabilities

• Calculate complexity over subsets of the data (monocytes, certain groups of pri-

mary cells)

2.1.3 Aim 3: Understand what makes a gene more or less complex

• What regulatory elements contribute the strongest towards complexity in gene

expression?

• How does the complexity of individual promoters relate to the complexity of the

expression of the gene as a whole?

• What biological interpretations can we deduce from our measure?

• Can we add anything to the ‘histone code hypothesis’ - do combinations of histone

modifications act in a predictive manner to regulatory complexity according to

our measures?

• Can we compare cis and trans effects on the complexity in gene expression?
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2.2 Brief overview of thesis

• Chapter 1 - Introduction to gene expression, regulation and their evolution

• Chapter 3 - Information theoretic methods which can be applied to gene expres-

sion data, introduction to graph theory and introduction to own measures used

to estimate gene regulatory complexity..

• Chapter 4 - Introduction to FANTOM5 CAGE data, explain how the data is

processed. Describe issues with the data, in particular exon painting and possible

strategies around in in downstream analysis. Describe methods for calculating

differential expression probabilities and the application to the current dataset.

• Chapter 5 - The analysis complexity scores for primary gene expression cell data,

covering large set of transient cell types, and another set containing differenti-

ated CD14+ monocytes. Correlate measures with genomic variables such as gene

length, exon count, and distance to nearest genes. Consider cis-regulatory ele-

ments such as dnase I hypersensitivity and how sites around the gene correlate

with complexity. Consider polycomb regulation by analysing the presence or ab-

sence of H3K27me3 marks in the promoter of the gene. Consider other histone

marks and what influence they have on the complexity scores.

• Chapter 6 - Discussion of results and further work
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Measuring complexity

3.1 Introduction

The aim of this project is to capture a measure of a gene’s regulatory information

content, through the quantification of the observed expression states and the state

switches that occur between the possible states. Simple stating measures that may be

readily applied to gene expression profiles include summary statistics such as mean,

median and maximum expression over a collection of cell types. However, it is clear

that a more detailed and comprehensive framework will be required, taking into account

the structured relationships between the measured cell types

The chapter begins by exploring information theoretic measures that have already been

applied to gene expression and explore how these could be applied or adapted to the

specific aims of this work. The next section then introduces relevant aspects of graph

theory and how measures of differential expression between cell types can be displayed

in the format of a graph from which regulatory metrics for a single gene could be

extracted. These measures of information form the basis for the rest of the project,

where we relate the regulatory complexity of a gene back to its observed regulatory

content.

39
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3.2 Information theoretic measures

For the purposes of this project let X = (x1, . . . , xn) represent a gene expression profile,

where xi represents the expression level recorded in sample i, which could represent

for example a given time point or time point or differentiation state. We can convert a

gene expression profile into a probability distribution:

pi = xi∑n
i=1 xi

(3.1)

where pi represents the ‘mass’ of expression in sample i. The entropy H of the profile

X is calculated as

H = −
n∑
i=1

pi log2 pi. (3.2)

Also known as the measure of uncertainty in the profile, H will be at a maximum in

the case of uniform expression (ubiquitious) and equal to log(n), and equal to 0 in the

case where all the expression is represented by a single sample (sample specific). In

this way genes are classified according to a linear axis between universally expressed

and those which are specific. Entropy scores are often normalised to fall between 0 and

1:

H = −
∑n
i=1 pi log2 pi
log(n) (3.3)

The classification of genes based on their tissue specificity has proven useful in identi-

fying distinct promoter types and associated regulatory strategies [Forrest et al., 2014,

Frith et al., 2014, Heintzman et al., 2009, Jacox et al., 2010, Schug et al., 2005]. For

example, housekeeping genes in mammals often have CpG island associated promot-

ers and exhibit considerable biological variability in the precise site of transcription

initiation. In contrast, tissue specific promoters are less CpG island enriched, often

associated with TATA-box transcription factor binding motifs and have less variability
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in the site of transcription initiation. Entropy is also used as a measure of structural

diversity in gene expression levels [Sherwin, 2010] and modifications of entropy used to

understand transcriptome diversity [Martínez and Reyes-Valdés, 2008].

Despite its usefulness in many settings, as a way of measuring transcription regulation

it is of less validity. For, the most highly regulated genes are potentially those which

are expressed in a range of cell types and in an unpredictable manner. Such genes most

often land somewhere arbitrary along the housekeeping - tissue restricted axis. For

example, [Jacox et al., 2010] comment that regulatory features appear to be maximised

in the central expression breadths as opposed to either end of the scale.

Figure 3.1 illustrates a limitation of the entropy in the context of ubiquitously expressed

genes. Whilst entropy is successfully capturing cell-specific vs broadly expressed genes,

around 35% of genes are ubiquitously expressed across at least one isoform (refer-

ence:analysis from Chapter 5). In Figure 3.1, it is clear that the entropy is not able

to distinguish strongly between ubiquitous genes which are potentially simple in their

expression, for example ACTB is highly uniform in its expression, and ubiquitous genes

which exhibit many changes in expression, for example FOS. It is postulated that with

the range of ubiquitous genes, many different regulatory mechanisms are at play and

therefore a study to capture this spectrum is warranted. For example, ubiquitously

expressed genes exhibiting profile changes could be under the control of ubiquitously

expressed enhancer elements [Zabidi et al., 2014].

A further limitation of the basic entropy is that all samples are consider equally related

to each other. This assumption does not hold in the case of biological cell types, as can

be observed from intricately derived hierarchical clustering algorithms which groups

together similar cell types. A way to overcome this issue may be to introduce some

kind of weight structure and redefine the entropy as a weighted entropy.

To account for sample structure a set of weights w1 . . . wn can be incorporated to give

a weighted version of the Shannon entropy

Hw = −
n∑
i=1

wipi log2 pi (3.4)
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Figure 3.1: Breadth of expression (number of expressed primary cell types) against
raw complexity scores. Darker blue regions represent regions containing many genes;
in particular the dark region at the top generally represents ubiquitously expressed

genes across all primary cell types.

The weights wi can be used to convey information about the structure of the samples

within the gene expression profile.

For example, one could attempt to down-weight over-represented samples and up-

weight those samples which are more unique in their expression profiles, thus down-

weighting similar over-represented sample types so that that resultant combined infor-

mation of two samples conveying similar information will reduced compared to what is

observed in the standard entropy function. Furthermore, weights could be applied to

weight for distance from time 0 in a stimulus based time course.

How to define weights is not generally clear in terms of the weighted Shannon entropy,

which is typically defined in terms of how samples relate to each other (for example,

pairwise correlations, a two dimensional structure), rather than a single weight per cell
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type. For example, the guassian kernal is often used to define structure between time

points:

wi,j = exp (−||ti − tj ||
2

σ2 ) (3.5)

where ti and tj are the times at points i and j and sigma2 is the variance.

How to define this weighting for a singular time point is more challenging and less

intuitive. One option for defining one dimensional weights per sample might be to

calculate the diversity in the transcriptome of each sample, as per [Martínez and Reyes-

Valdés, 2008].

3.2.1 Mutual information and KL-divergence

The Kullback-Libler divergence is a measure of the difference between two probability

distributions.

The mutual information between two discrete random variables X and Y is defined as

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log p(x, y)
p(x)p(y) (3.6)

where p(x, y) is the joint distribution between X and Y . X and Y could refer to the

probability distributions of expression across a given set of samples, with probability

mass defined as in the definition of entropy above. Mutual information measures the

level of dependence between the two given variables.

Mutual information is frequently referred to in gene expression studies when calculating

gene regulatory networks [Luo et al., 2008, Steuer et al., 2002, Zhang et al., 2012].

Looking at KL divergence where Pr=1/n looks at the departure from uniformity for

the gene expression profile, although this is the inverse of the Shannon entropy.
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3.2.2 Kolmogorov complexity

Kolmogorov complexity Kolmogorov [1963] is a measure which assigns an object a

complexity value equal to the length of the program needed to encode that object. The

length of the program is independent of the coding scheme.

As an example, one might code which samples a gene is switched on or off in as a

binary string, encoding a 0 if expression is not present in a sample or a 1 if expression

is present. E.g. 011001 for a set of 5 samples, with expression observed in the second,

third and sixth. Therefore, the Kolmogorov complexity is at most 6 (the number of

samples) in this case. Alternatively, it can be thought of as a way of encoding switches

in expression through time. For example, a gene expressed in ES cells might become

switched off through methylation in two studies cell types and activated in two other

cell types. such a scheme could be coded 10011 where the first digit represents ES

cells, the second and third digits represent the cell types with methylation and the

final two digits represent the active cell types (the labelling of the scheme is of course

permutable). Note that in general Kolmogorov complexity is thought of as the ’ideal’

complexity measure, but is NP-computable in most situations (Cannot be computed

in polynomial time).

3.2.3 Permutation entropy

The permutation entropy was introduced by [Bandt and Pompe, 2002] and is com-

monly applicable for measuring the complexity of time series data. This approach has

previously been applied to gene expression time series data from Arabidopsis and the

resulting complexity measures have been related to the underlying biology of the genes

[Sun et al., 2010]. This innovative work represents the closest approximation I am

aware of, to the generalised measure of gene regulatory complexity aimed for in this

work.

Permutation entropy considers subsets of consecutive time points of a given length

and fits the pattern they form (e.g. up, up, down for a subset of length 3, possible

combinations of three given in Figures 3.2 and 3.3). The permutation entropy score
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(PE) is then given by the Shannon entropy of the relative contributions of each possible

type of pattern.

Figure 3.2: The ordinal patterns for n = 3, assuming all states have their own
independent level of expression

For gene expression timecourse data one could add the following patterns

Figure 3.3: The ordinal patterns for n = 3 that could be added for gene expression
data, assuming at least two states have equal expression (no differential expression)

with regards to noise in the data

For a choice of n = 3, this gives 14 possible patterns, although Sun et al. [2010]

consider only 14; they do not distinguish between the case where there are no changes

and the gene is expressed and no changes and the gene is not expressed (this is not

an issue in time-course data but may be of interest in other data structures). Then,

the permutation entropy works be taking all the possible sets of d = 3 consecutive

time-points (for n = 7 as in Sun et al. [2010] this is 5 sets), adding up the number of

each ‘pattern type’ is observed, converting it into a probability distribution (diving the

observed number of each pattern by the total number of patterns, i.e. 5 in the n = 7

case), and then calculating the Shannon entropy over the possible patterns.

If all of the patterns are the same over all of the time course (e.g. in the case where the

gene is constantly expressed at the same level, or the case where expression in the gene

is constantly and only going up or down in a monotonic fashion), then the resulting

entropy is zero (this is similar to the tissue-specific case of the standard Shannon

entropy). If there is a different pattern in every consecutive set of points, then the

entropy is maximized (at logn = log 7), and suggests that the pattern formed by the

gene is ‘complex’.
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The only known study to apply the permutation entropy to gene expression data is

that of [Sun et al., 2010], who apply the method to a single 7-time-point Arabidopsis

time-course using d = 3. They introduced the idea of the ‘no-change’ pattern, where

the time-course remained flat for d time-points in a row. Because of the limited number

of time-points, the entropy takes only a few discrete values, making it impossible to

distinguish between two genes in the same category. However, as a measure of regula-

tory complexity, the they did demonstrate potential to capture regulatory information

in individual genes, as displayed by GO term analysis [Sun et al., 2010].

Although the permutation entropy is useful in capturing properties of complexity we

are looking for, it has a number of disadvantages in terms of describing gene expression

patterns across cell types.

1. For small numbers of samples, genes fall into a small, discrete set of categories,

making it difficult to distinguish between the relative complexities of genes within the

2. The up-up-up-x n time-points case receives the same score as the ‘no-change’

throughout the time course. A gene in a time course which is constantly going up

over all its time-points is likely to need more regulatory information to sustain up-

regulation, as opposed to the constant no-change scenario ‘switch on the gene and

leave it on at all times’.

3. The permutation entropy assumes a natural ordering of time points (although odes

not assume a constant separation between two time-points). This works for time course

data but will not necessarily work for primary cell data where the cell types are not

ordered in time. A way around this might be to classify each cell types in terms of

its euclidean distance from embryonic/stem cell lines. Or to group the cell types into

equivalence classes and work within and between the groups without alluding to the

idea of time.
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3.2.4 Statistical complexity

The concept of statistical complexity was introduced by Lopez-Ruiz et al. [1995] and

defines complexity as a trade off between disequilibrium and entropy (‘order and dis-

order’).

Define the disequilibrium D for a probability distribution as follows:

D =
N∑
i=1

(pi −
1
N

)2 (3.7)

where N is the length of the probability distribution. Intuitively, this is equal to zero

in the case of a uniform distribution. Combining disequilibrium with entropy gives a

quantity called statistical complexity C:

C = H ·D = −
(
K

N∑
i=1

pi log pi

)
·
(

N∑
i=1

(
pi −

1
N

)2
)

(3.8)

Intuitively, since the Shannon entropy is small for specific distributions and disequilib-

rium is small for uniform distributions, statistical complexity will be small for both of

those scenarios and maximised somewhere in between. Figure 3.4 illustrates this.

3.3 Improving upon current measures

Common disadvantages to all of these methods are follows

• Unclear how to apply the weight structure between samples in every method

• Unclear how to account for within-sample noise by use of replication

• Does not properly model ‘changes’ from sample to sample, which is essentially

what is being driving by gene regulatory mechanisms

• No method appears to be independent of sample structure (e.g. we’d like a

method that can be applied to time course as well as across sets of cell types)
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Figure 3.4: Statistical complexity example. On the right hand side is the case of a
uniform distribution, on the left hand side of the plot is the case where we have all
probability mass on one variable. H is entropy (red), D is disequilibrium (blue), C is

complexity (as defined by H.D) (green).

Moreover many of these methods are two dependent on the breadth of expression -

we are interested less in how many of the samples are actually expressed, more in the

regulation involved in forming their resultant expression pattern. Whilst it is likely that

sample-specificity is the result of more complex regulation than ubiquitous expression,

we would like to be able to deduce that as opposed to make assumptions regarding this.

Introducing the concept of modelling changes in expression (differential expression)

between samples changes the structure of the problem from one-dimensional to two-

dimensional. This is because instead of a single row of data representing a gene, we

are left with a matrix, with a measure of differential expression between a given pair

of samples filling the data of the matrix.

Changing the problem from one-dimensional to two-dimension also has the distinct

advantage of making it clear how apply the weights between the samples (since we are

now looking at the problem from the point of view of between samples now). This

concept is naturally covered in the field of graph theory.

In the next section we will introduce the basics required to understand graph theory.

We will then describe how it works for gene expression profiles and how measures of
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complexity can be extracted from the resulting graphs. We will then propose our own

methods of complexity, which we will apply to the FANTOM5 data in the next chapter.

3.4 Introduction to graph theory

A graph is a mathematical object made up of a set of edges and a set of vertices. It is a

tool for describing and visualising relationships between pairs of objects. For example,

Figure 3.5 shows a simple graph with four vertices, labelled from 1 to 4, with edges

between each pair but one.

1

2

3

4

Figure 3.5: Simple connected (but not complete) graph with 4 vertices, 5 edges.
The graph can be completed by the addition of an edge between vertex 1 and vertex

3.

For formally, the graph G is defined by the pair (V ,E) where V is the set of vertices

and E is the set of edges that make up the graph.

3.4.1 Adjacency matrix of a graph

Let u and v represent two vertices in the set of vertices V . The adjacency matrix A is

defined by

Au,v =


1 if u, v ∈ E

0 if u, v 6∈ E
(3.9)
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In other words, it is a matrix with rows and columns representing the vertices and

equal to 1 where there exists an edge in the graph connecting two given vertices, and

0 where there does not exist an edge between two given vertices (e.g. vertices 1 and 4

in Figure 3.5. The weighted adjacency matrix is given by

Au,v =


wu,v if u, v ∈ E

0 if u, v 6∈ E
(3.10)

Thus, the weighted adjacency is similar to the adjacency matrix but instead of allocating

a 1 between connected pairs of vertices, the edge is given a weight instead. For example,

if the vertices of the graph represented cities and the edges represented the existence of

a road between two given cities, the weight could represent the distance in km between

these two cities.

A graph G is connected if for every pair of vertices (u,v) ∈ V there exists a path between

them. A path means that it is possible to reach each vertex from another by drawing a

line through the available connections, which could involve other vertices in the graph.

Figure 3.5 is connected but not �complete, where every pair of vertices has a direct edge

between them.

3.4.2 Laplacian matrix of a graph

The Laplacian matrix of a graph G is defined by

Lu,v =


deg(u) if u = v

−1 if u 6= v, (u, v) ∈ E
(3.11)

where deg(u) is the �degree of the vertex u; the number of edges moving from u to any

other vertex. For example, in Figure 3.5, vertex 1 has degree 2 (edges connecting to

vertex 2 and vertex 4) and vertex 4 has degree three (edges connecting to all of the

other vertices).
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A more general weighted version of the Laplacian for a symmetric simple graph G may

be defined by

Lu,v =


∑
uwu,v − wu,u if u = v

−wu,v if u 6= v

where wu,u is the weight of the diagonal and the degree is approximated by the sum of

the weights over the appropriate row or column (since G is symmetric) of the matrix

representing the graph. For example, it is the sum of all of the distances to other cities

from Edinburgh, minus the distance of moving from Edinburgh to Edinburgh itself

(zero in this context).

3.4.3 Eigenvalues of graphs

The eigenvector of the n by n matrix A is the vector x such that

Ax = λx

where λ is known as the eigenvalue for A. The set of eigenvalues is calculated as the

roots of the equation |det(A−λI)|, where det refers to the determinant, of which there

are n. The sum of the eigenvalues is known as the trace of, denoted trace(A).

If the matrix A is symmetric then it is called positive semi definite if all of its eigenvalues

are non-negative.

3.4.4 Properties of eigenvalues of graphs

If the graph G is connected then it has a single largest eigenvalue, λmax. This value rep-

resents the average connectivity of G and is always less than or equal to the maximum

degree dmax of G.
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The chromatic number of a graph G is defined as the minimum number of colours

required such that every pair of connected vertices is coloured distinctly. For example,

a graph which is completely connected will need a separate colour for every vertex,

so its chromatic number will be the number of vertices n. A cycle of even number

of vertices will require only two colours, so its chromatic number would be n/2. The

chromatic number can be approximated using the Hoffman lower bound

χG ≤ 1 + λmax
−λmin

where λmin and λmax are the smallest and largest eigenvalues of the adjacency matrix

respectively.

The difference between the first and second largest eigenvalues is known as the spectral

gap and represents important information about the connectivity of the graph. For the

completely connected graph where there exists an edge between every pair of vertices,

as in the case of uniformly expressed genes, the spectral gap is equal to dmax−λ2 where

λ2 is the second largest eigenvalue. The eigenvalues of the Laplacian are commonly

used as indicators of graph connectivity. The smallest eigenvalue is always 0, the second

smallest is referred to as the algebraic connectivity.

3.5 Regulatory complexity in gene expression

In this section it is discussed how the graph theory defined above may be applied to

gene expression data. We begin by defining the appropriate matrices with respect to

gene expression and then looking at how their eigenvalue decomposition can be used

to relate to the regulatory information in that gene.

3.5.1 Definitions

Matrix of differential expression



Chapter 3. Measuring complexity 53

For a given gene g let pDi,j represent the probability that g is differentially expressed

between samples i and j.

For a set of n samples let A be the square n x n matrix with elements

Ai,j =


pDi,j if i 6= j

0 if i = j

D is clearly symmetric (since pDi,j = pDj,i) and satisfies the triangle inequality (pDi,j ≤

pDi,k + pDk,j for some i, j, k ≤ n). In matrix form it looks like

D =



sample1 sample2 · · · samplen

sample1 0 pD12 . . . pD1n

sample2 pD21 0 . . . pD2n
...

...
... . . . ...

samplen pDn1 pDn2 . . . 0



Graphical notations of differentially expressed states

We can define a graph G on the expressed states such that there exists an edge between

a pair of vertices i, j samples within the gene g if pDij > 0.

1

2

3

4

5

6

NE
E

Figure 3.6: Example graph for differential expression The set NE represents the
set of ‘off’ states and the set E represents the set of ‘on’ states. The graph is split,
referring to NE being an independent set of samples, with no possible connections
between them, and E, the set of ‘on’ states, have all possible connections between
them. In the above graph, everything is differentially expressed, suggesting maximum

complexity.

Such a graph may be generated for every gene or transcriptional element under study.
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Defining the weighted Adjacency matrix for differential expression

Ai,j =


0 if i = j

wi,jp
D
i,j if i 6= j, i ∈ E or j ∈ E

0 if i 6= j, i 6∈ E, j 6∈ E

where 0 ≤ wDi,j ≤ 1 is a weight reflecting the similarity between samples i and j.

Intuitively, we wish to up-weight highly correlated pairs of samples, under the assump-

tion that observed differences in expression between such samples would be a highly

significant occurrence. On the contrary, the observation of differential expression be-

tween distantly related samples are down-weighted. The matrix A.W then represents

the information between samples i and j with which we calculate complexity.

AW =



sample1 sample2 · · · samplen

sample1 0 pD12w12 . . . pD1nw1n

sample2 pD21w21 0 . . . pD2nw2n
...

...
... . . . ...

samplen pDn1wn1 pDn2wn2 . . . 0



In the case where all the expressed states are differentially expressed, we obtain the

following adjacency matrix

Ai,j =


0 if i = j

wDi,j if i 6= j, i ∈ E or j ∈ E

0 if i 6= j, i 6∈ E, j 6∈ E

This type of graph is referred to as a weighted split graph; a special type of graph

which contains a clique (maximally connected set) and an independent set of vertices.

In this case the independent set is the set of non-expressed states and the clique is the

set of expressed states, with the edges between them refer to the fact that they are
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differentially expressed. Since each non-expressed state is differentially expressed with

each expressed state, there exist all possible connections between the set of expressed

and the set of non-expressed states - say that this type of graph is a complete weighted

split graph, denoted CSwn,e, where n is the number of samples and e is the number of

samples in the clique, that is the number of expressed states.

3.5.2 Defining the Laplacian for differential expression

For the set of expressed states E define the weighted Laplacian as follows

LDi,j =



∑
iwi,jp

D
i,j i = j

−wi,jpDij if i 6= j, i ∈ E or j ∈ E

0 if i 6= j, i 6∈ E, j 6∈ E

Properties of LDi,j

The properties of LDi,j are as follows:

• LDi,j is symmetric.

• LDi,j is positive-semi definite.

• LDi,j represents a graph which is connected and simple.

• Unless the weight between two expressed vertices is zero LDi,j represents a split

graph on |E| vertices in its clique.

It follows that the eigenvalues of LDi,j are real and because LDi,j is connected, the set of

eigenvalues λ1 ≤ λ2 ≤ λ3 ≤ . . . λn are above 0 and λ1 = 0.

λ2 is commonly referred to as the algebraic connectivity of G and has many interesting

properties about the connectivity about the graph, relating to the diameter and mean

distance of G. There are many interesting theorems about how λ2 is bounded, included

Cheeger’s inequality.



Chapter 3. Measuring complexity 56

Example

A set of 5 cell types

1

2

3

4

5

Dissimilarity matrix



0 0.8 0.4 0.4 0.5

0.8 0 0.9 0.9 0.9

0.4 0.9 0.0 0.6 0.7

0.4 0.9 0.6 0 0.5

0.5 0.9 0.7 0.5 0


Differential expression probabilities example



0 1 1 1 1

1 0 1 0 1

1 1 0 0.1 0.1

1 0 0.1 0 0

1 1 0.1 0 0


Resulting weighted Laplacian
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2.1 −0.8 −0.4 −0.4 −0.5

−0.8 2.6 −0.9 0 −0.9

−0.4 −0.9 1.43 −0.06 −0.07

−0.4 0 −0.06 0.46 0

−0.5 −0.9 −0.07 0 1.47


Eigenvalues of the weighted Laplacian are

(
3.51 2.52 1.52 0.51 0.0

)

with corresponding eigenvectors



−0.31 0.83 0.06 0.07 −0.45

0.85 0.06 −0.01 0.26 −0.45

−0.30 −0.32 −0.74 0.25 −0.45

0.05 −0.15 0.02 −0.88 −0.45

−0.29 −0.42 0.67 0.30 −0.45



3.5.3 Regulatory complexity

In the previous section we introduced how graph theoretic concepts can be applied to

gene expression data, in particular in displaying information about differential expres-

sion between pairwise samples in a gene.

Uniform ubiquitous expression

ADi,j =
{

0 if i, j ∈ E

LDi,j =
{

0 if i, j ∈ E
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In this case the eigenvalue decomposition is trivial - they are all equal to 0. Since the set

of eigenvalues is positive we can see that in the case of completely uniform expression

across all samples the eigenvalues will be zero, the minimum achievable score.

Cell type specific expression

For a single expressed state i where |E| = 1.

ADi,j =


0 if i = j

wij if i 6= j, i ∈ E

0 if i 6= j, i, j 6∈ E

LDi,j =



∑
iwij if i = j

−wij if i 6= j, i ∈ E

0 if i 6= j, i, j 6∈ E

These graphs receive low connectivity scores since the single expressed state is connected

with each ‘off’ state, everywhere else contains no connections. It is dependent on

the weight, so its magnitude in relation to other specifically expressed transcription

elements depends on the structure of its weights to the other samples.

Differentially expressed everywhere

pDi,j = 1 for all i, j ∈ E:

ADi,j =


0 if i = j

wij if i 6= j, i ∈ E

0 if i 6= j, i and j 6∈ E
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LDi,j =



∑
iwij if i = j

−wij if i 6= j, i ∈ E

0 if i 6= j, i and j 6∈ E

For example, in the unweighted case for a ubiquitously expressed gene the differential

expression matrix for five samples will look like



0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0


The eigenvalues of the Laplacian, which will be the matrix containing −1 in the off

diagonal and the number of samples n in the diagonal (5 in the example above), will

be equal to n with multiplicity n− 1 (the smallest eigenvalue is equal to 0). Therefore

λ2 has the potential to vary between 0 and n. When weighted the maximum possible

value of λ2 is equal to
∑
i,j wi,j .

The eigenvalue decomposition of the Adjacency or Laplacian of the matrix of differential

expression can therefore be used as a description or measure of information of the overall

connectivity in differential expression between weighted samples for a given gene.

3.6 Graph theoretic measures based on eigenvalue decomposi-

tion of the differential expression Laplacian or adjacency ma-

trix

Graph theoretic connectivity based methods are generally split into two categories,

namely global based measures, returning a number for the whole graph, and local

connectivity measures, which returns a value for the connectivity of each node of the
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graph, namely the connectivity of each sample measured in the expression profile.

Eigenvector centrality is a commonly used method which gives a connectivity score for

each vertex.

3.6.1 Eigenvector centrality

For the matrix AW described above, eigenvector centrality is defined iteratively using

the equations

xi = 1
λ

∑
t∈M(i)

xi = 1
λ

∑
t∈G

wi,jαi,jxj (3.12)

where wi,j is the weight for sample i with sample j, αi,j is the (i, j)th value of the adja-

cency matrix A, xi is the centrality scores for the ith sample, M(i) is the neibourhood

of xi, referring to the set of nodes to which sample i is connected. It is based on the

equivalent matrix notation

DWx = λx (3.13)

where x is the vector of centralities, with one value per sample.

The algorithm to calculate eigenvector centrality starts by assigning a scores of 1 to all

samples, so that xi = 1 for all i. It then computes the above equations, the score for

sample i is the weighted sum of all of the centralities for the samples in the neighbour-

hood of sample i. It is then normalised by dividing each by the largest values, and the

above equations are again recomputed, in an iterative fashion until x has converged to

the required vector of centralities.
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3.6.2 Defining a family of complexity measures

Complexity measures may be defined as a family, whereby α and β may be varied

according to relative user defined contributions of state switching between ‘on’ and

‘off’, and changes in expression between pairs of ‘on’ states.

CR = α
∑

λon + β
∑

λoff (3.14)

where CR stands for the measure of complexity (regulatory), λon is the centrality scores

of the ‘on’ states, and λoff is the centrality scores of the ‘off’ states. The constants α and

β stand for the relative contributions of the ‘on’ and the ‘off’ states. These constants

make no different to ubiquitously expression complexity scores because there are no ‘off’

states but one might wish to, for example, up-weight the contribution of differential

expression in genes between pairs of samples as opposed to switching between on and

off (an ’off’ state measures a switch between all ‘on’ states).

3.7 Normalisation strategies

The most ‘complex’ genes are differentially expressed between every cell type. However

due to a finite, variable number of tags mapped to promoters across the cell types,

the power to detect differential expression between every pair substantially increases as

expression breadth increases. For example, in order to achieve a log2(fold-change) in

expression between every pair, the ordered expression levels must increase be a factor

of 4 from cell type to cell type. If there is, for example, 100 cell types then order to

have statistical power to detect changes everywhere, one would need a total of at least

5.35646e+ 59 tags. Even in this scenario, if independent regulatory mechanisms were

really causing independent expression levels from cell type to cell type, one would still

expect by chance to obtain similar numbers of tags between some cell types. Compare

this with expression across three cell types, now we only need 21 tags to see a pairwise

fold change greater than 4 between every pair (1 tag in the first, 4 tags in the second
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and 16 tags in the third). In order to normalise this, for each gene I simulated new gene

expression profiles by permuting tag mappings across expressed cell types according to

a multinomial distribution.

If I ask for at least a log2(fold-change) in expression between every pair then the number

of required tags for n cell types is

N theory = 1 +
n−1∑
i=1

4i

.

Substituting for Nactual and resolving for the number of possible unique expression

levels l gives

Nactual = 1 +
l−1∑
i=1

4i

.

Evaluating the sum and rearranging thus gives

l = log2(1 + 3Nactual)
2

.

Thus we can calculate the number of cells types over which it is statistically possible to

detect a log2(fold-change) in expression between every pair on a per gene basis given

its mapped tag count.

To generate a probability distribution for tag mapping we defined the probability of a

tag mapping to a given cell type according to an inverse power sum distribution:

αk = 1∑k−1
k=1 4k
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for k = 1 . . . l. Each cell type was allocated a αk at random together with a library

specific normalisation factor ψi:

θi = αkrandomψi

where krandom is a random integer from 1 to l.

To simulate permuted profiles we simulate sets of tags from a probability distribution

based on the multinomial distribution

P (X1 = x1, ..., Xn = xn) = (N !)
(
∏n
i=1 xi!)

∏n
i=1 θ

xi
i

where xi are integers represents simulated mapped tags to cell type i such that

n∑
i=1

xi = Nactual

and θi > 0 and

n∑
i=1

θi = 1

For each gene we simulated 100 new diversity focused tag distributions and re-calculated

complexity scores for that gene, generating a vector πg. The maximum achieved com-

plexity from these distributions acted as a normalisation factor for a each specific gene

qg = max(Cr(πg))

with normalised complexity scores given as

Cnorm
r (g) = Cr(g)/qg
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Thus, in order to discover the maximum practically possible complexity score for each

gene, tags mapped to this gene across cell types are randomly mapped back to the

same number of cell types (maintaining expression breadth, but not necessarily the

exact same set of cell types). Due to vast numbers of possible random mappings, I

derived a function to estimate the potential number of expression levels possible in

the data and to attempt to generate expression profiles with at least that number of

distinct levels in expression. Using this function allows for a much quicker maximal

estimation, as opposed to simple random distribution of tags, which would potentially

require huge numbers of iterations.

In order to estimate the maximum observable complexity for a given expression breadth,

the maximum complexity obtained by tag redistribution was calculated. Then, a

smooth curve may be fitted through the outside edge of the points. Therefore, by

applying this strategy, complexity scores may be normalised on a per-gene basis, but

also on a breadth level.

3.8 Overview of method

In this chapter, an overview of methods applied to gene expression profiles to capture

regulatory information was described. Then a novel approach of capturing information

from expression profiles was described by describing the problem in a graph theoretic

framework and applied graph theoretic connectivity measures. Whilst graphs are fre-

quently produced to attempt to understand gene-gene interactions, graph theory has

not been seen to be applied in the context of gene expression as a tool to understand

the regulatory complexity of an individual transcriptional element. An overview of the

steps are described and graph framework given in Figure 3.7 and are in general as

follows:

Select data

This could include transcriptional elements across

• Tissues across the body
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• Cell types or primary cell types across the body (to understand changes in ex-

pression of primary cell types within tissues)

• Time courses, to quantify patterns; this has been alluded to in [Sun et al., 2010]

but not applied extensively. Furthermore, the current approach allows for the

fine tuning of weights according to desired characteristics, for example example

late vs early response, sudden vs gradual change or more complex patterns which

mix all of these factors.

The data should ideally have replication in order to accurately detect differential ex-

pression between pairs of samples (next Chapter).

Measure potential regulatory output

Mine potential information from the expression profile which may explain the regulatory

control of that element:

• Pairwise differential expression probabilities

• Determine on/off states

• Determine sample structure

This information can then be used to generate a graph.

Generate weighted graph

Create weighted adjacency and/or Laplacian matrices as defined above.

Calculate graph based connectivity measures

Calculate eigenvector decomposition, eigenvector centrality.

Select α, β and calculate final measure

Or use overall graph connectivity

Inference on final scores
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Figure 3.7: Method overview: Reformulate the problem into a graph theoretic
framework and calculate connectivity based measures.

Connect the resulting single measure per transcriptional elements back to the regulatory

elements thought to control that elements - for example, cis regulatory sites surround

a gene transcription start site, histone modifications or disease SNPs analysis.

3.9 Overview of next chapter

In the next chapter the FANTOM5 project, which maps transcripts of active transcrip-

tion start sites on a genome wide level across a wide variety of samples, is introduced

and described. Methods of calculating differential expression are described. The data

used to generate the complexity scores for the inference in Chapter 5 is described and

how complexity measures have been applied to this data is given in detail.



Chapter 4

Applying complexity measures to

FANTOM5 CAGE

In this chapter the FANTOM5 project is introduced, which generated the wealth of

CAGE data analysed in this project. First, the range of samples sequenced and the

kinds of normalization and feature clustering procedures that have been applied to

quantify genome wide expression levels for transcription start sites and genes are dis-

cussed. Next it is explained why the data is particularly suitable for calculating reg-

ulatory complexity measures, as discussed in Chapter 3, and how these measures are

calculated from the data. Their calculation is highly dependent on accurately quanti-

fying changes in expression between samples for a given transcriptional elements, and

methods for calculating these changes are discussed.

4.1 Scope of the project

The FANTOM5 project maps active transcripts and promoters in mammalian genomes

[Forrest et al., 2014]. Officially, a total of 573 primary cell samples in human and 128

primary cell samples in mouse were collected. The primary cell data as a whole repre-

sents 72,964 peaks of size larger than 10 tags per million (tpm). Of these, 30,517 peaks

are unique to the primary cells, making them the largest resource in the FANTOM5

67
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data. Furthermore, there is, overall, at least one promoter covered for more than 95%

of annotated protein-coding genes, with only 1225 remaining uncharacterised [Forrest

et al., 2014]. Furthermore, of all the peaks unique to the primary cells, around three

quarters of them represent novel peaks. This makes this data an important resource

for discovering new biologies, although for the current analysis, many of these peaks

will not be considered, since only those in the ‘robust’ set are used, i.e those receiv-

ing some kind of additional support from expressed sequence tags (ESTs), H3K4Me3

histone methylation marks and DNase I hypersensitive sites.

In terms of promoter architecture we observed within the FANTOM5 data, it was

found that in the robust set of TSS, one or more TSS was annotated to 91% of all

protein coding genes, with an average number of TSS per gene of around 4 [Forrest

et al., 2014]. Using a threshold between the least and most expressed cell type, 6% of

promoters were recorded as housekeeping (>50% of samples with a less than 10 fold

change between median and maximum expression). 80% of promoters were found to

be cell type restricted and 14% were ubiquitous non-uniform [Forrest et al., 2014].

An accompanying manuscript generated an atlas of enhancers in FANTOM5 libraries

[Andersson et al., 2014b], identifying 43,011 putative enhancers based on bidirectional

transcription at transcriptional loci across 808 human FANTOM CAGE libraries. Fur-

ther analysis of phase II of the FANTOM5 project found that bidirectional eRNA-

defined enhancers are transcriptionally active before the promoter of a gene itself is

active [Arner et al., 2015], suggesting that enhancer RNAs represent the earliest re-

sponse in differentiation and post-stimulus.

4.2 Normalization, clustering and quality control

4.2.1 Normalization

The RAW sequencing data for the CAGE libraries vary in terms of the total number of

tags sequenced, according to the sequencing depth of the sample. The greater the se-

quencing depth, the more tags uniquely map to the genome. Thus, whilst transcription
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events are directly comparable based on the number of tags mapped to regions within

the same library, it is more difficult to compare the same transcription event between

libraries without first normalising the data.

The libraries for the FANTOM5 CAGE data are first normalized under the assumption

that the expected tag count ratio Kgj/Kgj′ for a given gene g between different samples

j and j′ should be equal to the size ratio Sj/Sj′ if gene g is not differentially expressed

between samples j and j′, or if j and j′ are not replicates. Assuming that tag read

counts are proportional to the expression level and sequencing depth, Anders and Huber

[Anders and Huber, 2010] correct for library size by using the median of the ratios of

observed counts in order to estimate size factors per library:

ŝj = median
i

kij
(
∏m
v=1 kiv)1/m (4.1)

4.2.2 Clustering

Tags mapped across the genome were clustered into groups representing TSS. The num-

ber of tags mapped to the location representing the TSS acts as a proxy for expression

levels at that location. For the FANTOM5 data, [Forrest et al., 2014] developed the DPI

(decomposition based peak identification) algorithm, illustrated in Figure 4.2. Briefly,

groups of tags are first found according to a distance cut off. Larger ‘clusters’ are

then decomposed into non-overlapping sub-clusters, according to compositions of tags

observed within it, thus breaking it up into distinct TSS. Whilst the technique allows

for the potential to observe multiple TSS within short range for the same gene, often

it is unclear whether two clusters of tags nearby too each other should be marked as

two distinct transcription start sites (Figure 4.3, top) or whether groups of tags should

be separated into two TSS or remain as a single TSS (Figure 4.3, bottom).

A further bias to accurately quantifying initiation events is a concept referred to as

exon painting, the subject of the next section.
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Figure 4.1: Example tag counts for TSS. In the top plot, there are two distinct TSS
visible, which may be captured by tag clustering techniques. In the second plot, it
is less clear whether there is a single TSS, or whether the tags should be split into

separate "clusters" representing two transcription start sites.
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Figure 4.2: DPI clustering algorithm used to detect CAGE peaks in the FANTOM5
data. Figure adapted from [Forrest et al., 2014]

Figure 4.3: Promoters captured through the DPI clustering algorithm. The DPI
peaks row shows the locations of the clustered perks and the top row shows the mapped
tag distributions to those locations, based on combined tag counts across all human

CAGE libraries. Figure adapted from [Forrest et al., 2014]
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4.3 Exon painting

An issue with the CAGE protocol, previously mentioned in Chapter 1, in determining

alternative transcription start sites, is the presence of ‘exon painting’ - whereby multiple

cage peaks are detected in exonic regions, adjacent to the location of TSS peaks of genes

(illustrated in Figure 4.4, with an example given in Figure 4.5).

Figure 4.4: Diagram illustrating exon painting artefacts. Red vertical lines represent
number of CAGE tags overlapping that specific nucleotide. Peaks of tags on the far
left represent TSS signal, tags on the exons represent painting signal. Tags within
the annotated first exon may represent TSS signal, due to different gene isoforms or
mis-defined annotation coordinates. Correcting TSS and Exon 1 signal depends on

accurately measuring degradation signal across the transcript.

Such tags often contaminate regions with mapped tags representing transcription start

sites in or near these genes. The bias was first alluded to in ENCODE [Gingeras,

2009] and expanded upon in the context of CAGE, where exon painting is particularly

an issue in the FANTOM5 dataset, due to the large library depths (medium depth

4 million mapped tags [Forrest et al., 2014]). Exon painting in CAGE is thought to

relate to the hCAGE protocol, due to the recapping of processed transcripts and is

often avoided by only considering TSS in intergenic regions.

An alternative explanation of why exon painting may occur is described in the next

section, and is backed up by an analysis of exon painting in the FANTOM5 libraries

carried out at the beginning of the current project, showing that levels of painting

observed in exons is directly proportional to the transcriptional activity of the core

promoter regulating that gene. The analysis also illustrates the power of CAGE in
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accurately detecting missed initiation events due to faults in the annotations of protein

coding genes.

4.3.1 Hypothesised protocol

The hCAGE capture protocol involves the biotinylation of molecules containing pairs

of hydroxide groups on adjacent bonded carbon atoms, which also occurs on the ribose

sugar (2’ and 3’ hyroxides). The 5’ cap structure and the 3’ end of RNA molecules

therefore both contain this same structure. cDNA synthesis using random primers will

lead to a mixed population of products since reverse transcription sometimes extends

right up to the 5’ cap, whilst in a huge number of cases reverse transcriptions prema-

turely terminates. The crucial step of hCAGE is the use of a ribonuclease that will

degrade single stranded RNA but not that in heteroduplex with DNA (the RNA is

protected by the DNA). Consequently, for any cDNA first strand synthesis reactions

that do not extend fully to the cap, the cDNA will be separated from the biotinylated

cap by RNase treatment, so not sequenced.

However, the 3’ end of RNA molecules will also have been biotinylated in the same

reaction. In the rare but possible case where a random primer has annealed and the

extreme 3’ end and has been extended, the cDNA will protect the 3’ RNA and remain

associated with a covalently attached biotin group (similar to the cap structure) and

thus captured. The 3’ end of such cDNAs are then a target for sequencing. As these

cDNAs are not then required to have reached the cap structure to enable capture, they

are likely to represent a heterogeneous population based on sampling positions along

the mRNA transcript where the reverse transcriptase dissociated at random points.

This population of tags is likely to be a key source of the exon painting signal and is

expected to be proportional to transcript expression level.

4.3.2 Quantifying exon painting

Detecting exon painting is important because it may cause expressin quantification

biases in algorithms designed to detect groups of tags representing TSS, where the
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Figure 4.5: Example of exon painting. Example of an exon painting gene with the
promoter showing (top). The TSS is the peak of tags in the left, exon painting tags can
be seen covering exonic regions. The same plot without the TSS, thus zooming in on
the levels of tags mapped to exonic regions. Visualisations are based on a screen-shot

from the ZENBU browser [Severin et al., 2014].
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algorithm may not be able to distinguish between tags which are representing the

genuine expression signal and those that are the result of exon painting across the 5’

exon, and therefore the resulting expression value of that TSS will be overstated. At

the beginning of the current project, when the FANTOM5 data was newly sequenced, it

was unclear how strong the exon painting effect was. Therefore, I began my analysis of

the data by conducting investigations into exon painting and how it could potentially be

corrected for in downstream analysis. In general, the idea that exon painting represents

random degradation suggests that exon painting should be broadly spread across a

transcript, whereas promoter signals are likely to peak at a given region where the

genuine TSS is. The greater the TSS peak, the more mRNA within the cell whereby

the degradation artefact could potentially occur. Thus, the hypothesis tested was

whether the larger the promoter signal, the larger the level of ‘broad’ painting signal

across the transcript body, forming a ratio of painting to promoter tags.

To test this hypothesis, tags mapping defined exons were counted together with tags

in the promoter region of the gene. Plotting the promoter signal against exon painting

(exon tags per nucleotide of transcript), it was seen that for many genes the exon

painting correlates pretty well with the promoter TSS signal (Figure 4.6, blue region)

and two fairly distinct categories appeared:

1. Genes where the promoter signal is correlated to the painting signal.

2. Genes where the promoter signal is much lower than expected from the painting

signal.

Hand-curating some of those genes where the promoter signal is much lower than ex-

pected, we find that the annotated gene structure (in this case RefSeq annotations)

excludes the obvious promoter for that library. Modifying the gene structure to include

the previously missed promoter moves the genes from category 2 above to category 1

(Figure 4.7).

To investigate this further, I removed the annotated 5’ exon from the gene structures

and re-ran the analysis to obtain a null distribution (Figure 4.6, red points), to rep-

resent painted genes but without their real promoters, and found that it overlapped
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the genes from category 2 above and excludes category 1 genes. Thus, it would seem

that exon painting may have some value as a per-library internal reference for tran-

script expression. If the promoter signal is weaker than expected for the observed exon

painting, it suggests that the correct promoter(s) for that CAGE library have not been

assigned to the gene (due to thresholding to find the promoter tags).

Figure 4.6: Exon painting in an example library (CNhs12057). x-axis is the recorded
log promoter signal based on gene annotations, y-axis is the log exon painting signal
based on averaging tags across non-5’ exons. Blue is the actual distribution and red is a
generated null distribution based on removing the annotated 5’exon. Cut-offs between
promoters which have an under-represented promoter signal are defined taking a 95%
threshold on the promoter signal of the null distribution (denoted by dashed green

line)
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Figure 4.7: Exon painting in an example library (CNhs10635), rescuing the pro-
moters of three genes. x-axis is the recorded log promoter signal based on gene
annotations, y-axis is the log exon painting signal based on averaging tags across
non-5’ exons. Blue is the actual distribution and red is a generated null distribution
based on removing the annotated 5’exon. Cut-offs between promoters which have an
under-represented promoter signal are defined taking a 95% threshold on the promoter
signal of the null distribution (denoted by dashed green line). Black points represent
the locations of three gene before and after ‘rescue’, these were identified as having
under-represented promoter signals, and manual curation found the ‘real’ promoter

based on changing the locations of the annotated 5’ exon coordinates.
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Gene name Mappability to 3 d.p.
RPS3 0.748
BTF3 0.748
SSR4 1
SELT 0.834
PPIA 0.629

Table 4.1: Mappability values for a sample of five genes with consistently low exon
painting values, based on UCSC tracks for 36nt windows. A mappability of 1 indicates
that all CAGE tags will map uniquely to the gene, whereas a mappability below 1
indicates the proportion of tags which will be expected to map unique to the gene,
with PPIA having the lowest mappability of this sample. Of the reference genome,
83% of genes had a mappability score of 0.95 or greater, and the sample above has
lower than expected mappability scores (p<0.004). Applying a mappability correction

to the exon painting estimations appears to recover some of these genes

4.3.3 Mappability of tags - a further confounding factor

A potential issue with many sequencing based methods is the problem of mapping tags

back to the genome. Mappability affects not only CAGE mappings but also for example

the mapping of DNase I hypersensitive sites or methylation marks. The average tag

size of hCAGE was 36 nt, which although provided sufficiently unique mappings across

most promoters, still left from for ambiguity in certain regions. These regions include

regions with high repetitivity, as well as regions containing pseudo genes. Whilst these

pseudo genes may be silenced epigenetic ally, it is difficult to determine computationally

whether a tag should map to the active gene or its pseudo counterpart due to similarities

in sequence. The result is that a gene with one or more pseudo-genes will have a lower

than expected tag count associated with its transcription start sites.

It was observed that genes with low mappability scores had lower than expected exon

painting signals, suggesting that this may be indeed the case - tags which should have

mapped onto the first exon of a gene and thus contributing to the painting signal may

have actually been mapped to the first exon of their pseudo counterpart. It was noted

that applying a mappability correction to the exon painting estimations appears to

recover some of these genes.
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4.3.4 Discussion

The above analysis suggests that if the promoter signal is weaker than expected for the

observed exon painting, then the correct promoter(s) for that CAGE library may not

been assigned to the gene. Thus, such analysis as presented above could be used in one

of two ways,

1. To identify genes where we may have missed the relevant promoter(s) and target

them for manual annotation/RACE.

2. It would be used as a quantitative measure of how well our complete promoterome

discovery is adding to current knowledge (i.e. how many genes move from category 2

to category 1 based on TSS finding algorithms).

Furthermore, it was seen that genes with recent processed pseudo-genes have lower than

expected exon painting signals, presumably as painting tags will have low mapping

scores and applying a mappablilty correction to the promoter region and transcript

region seems to recover the extreme outliers (e.g. PPIA and SELT).

In conclusion, the FANTOM consortium decided to get around the issue of exon paint-

ing by creating a threshold based on the ratio of exonic peaks to promoter peaks. For

ratios of 0.7 or above they assigned a TSS region as a ‘permissive’ peaks and a ratio

of above approximately 2.0 was assigned as a ‘robust’ peak, ‘corresponding to peaks

with a single CTSS in a single experiment supported by 11 or more observations and

1 or more TPM’ [Forrest et al., 2014]. Whilst this robust set of peaks provided a well

supported and high confidence set of peaks to work with, it was felt that such a thresh-

old removed many of the potential novel peaks, so in many analyses, the permissive

set was preferred and in more specific analysis, CAGE tags without thresholding were

considered.

4.3.5 Methods

The algorithm is based on a fixed size window at the 5’ end of an annotated gene

structure to define a promoter, where one TSS per gene is considered. Discrimination
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between category 1 and category 2 is based on taking a 95% threshold on the promoter

signal of the null distribution (denoted by dashed green line in the attached plots). The

presented work is based on RefSeq annotations.

4.4 How to calculate differential expression in CAGE

It is widely believed that changes in the regulation of a gene between samples are

reflected in changes in its expression, which observed through changes in its initiation

at the core promoter. Therefore, statistically measuring the information from the

output of the gene’s regulatory programme depends on the ability to accurately detect

these expression changes. In this section we discuss methods for detecting differentially

expressed genes between samples.

The existence of technical and biological replication allows for estimation of noise,

which allows for the estimation of the significance of changes. It has been shown that

next generation sequencing methods such as RNA-seq hold up very well in terms of

technical variability [Marioni et al., 2008], so studies of differential expression often

focus on accounting for biological variability. In the context of mRNA sequencing,

noise estimations can be improved in two main ways - one is by increasing the number

of replicates and the other is by increasing the depth of coverage at the sequencing level.

Although the costs of next generation sequencing are clearly falling, it is still expensive

and there is clearly a cost trade-off in terms of sequence depth, replication and the

number of different samples required (e.g. more time points with fewer replications per

time point, or fewer time points and more replication) [Liu et al., 2014].

A common standard in high throughput sequencing is around 3 biological replications

per sample, which is a low level of replication with which to calculate noise estimations.

The simplest and most naive way of testing for changes between samples for a specific

gene is to use the 2 sample t-test or a non-parametric equivalent. There are a number

of reasons why this is not the ideal solution; some of the samples do not have any

biological replicates, making it impossible to estimate the level of noise and compare

to other samples. However, one might expect the noise level between replicates to be



Chapter 4 FANTOM5 and application of complexity 81

very similar (with some difference) from one sample to another. So, extrapolating this

variance to those samples lacking in replication would be a useful approach since, in a

dataset with 20k+ genes and multiple samples, we are essentially discarding the vast

majority of the data when we conduct each test of difference [Law et al., 2014].

The presence of a small number of replicates per sample type, with some sample types

having a only single donor, together with a large number of TSSs implies that in order

to capture differential expression accurately, one could model the data in such a way

that noise estimations are shared between TSSs in the same libraries. This is commonly

achieved using a Bayesian hierarchical models, where each TSS is given its own noise

parameter, but the noise parameters across all TSS are drawn from a common, shared

distribution for that sample type [Chung et al., 2013, Law et al., 2014, Vavoulis et al.,

2015]. This means that effectively the entire dataset is used in the estimation of each

noise parameter and this ‘borrowing’ effect is particularly useful where only 1 or 2

biological replicates are available (this concept is shown in Figure 4.8).

4.4.1 Techniques of calculating differential expression

For data from microarray experiments, where differential expression analyses were com-

monly built on, log-transforming the values and assuming a normal distribution was a

standard approach [Hoyle et al., 2002]. Even though this log-normal assumption does

not hold in count based sequencing data, earlier techniques of calculating differentia-

tion expression in count based data nonetheless extended the log-normal approach in

modelling the data to work with counts (e.g. see [Smyth, 2004]). The first truly hierar-

chical model developed for count data was edgeR [Robinson et al., 2010], with is based

on a negative binomial distribution, a common distribution for modelling count data,

allowing for large variances in counts, referred to as over-dispersion, which is commonly

observing in gene expression data. The negative binomial distribution is given by:

Kij ∼ NB(µij , σ2
ij) (4.2)
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Figure 4.8: Comparing CAGE clusters across cell types and replicates. Each hori-
zontal line refers to a single CAGE library (e.g. the library for replicate j within cell
type i), with example detected TSSs marked along it. Red densities represent clusters
of mapped tags, which corresponds to the expression of its respective TSS within a
library. In the example labelled TSS1, differences occur but it is unclear whether dif-
ferential expression will be detected over noise. In the second example labelled TSS2,
there is a potential outlier which in Rep3 of Cell_Type_1 which may affect differen-
tial expression analysis. In the example labelled TSS3, a visual inspection of signal vs
noise suggests that each cell type may have a (steady state) distinct expression level.
The diagram further illustrates how information may be shared (within samples, but

also across TSS) in order to aid differential expression detection.

NB(K = k) =
(
k + r − 1
r − 1

)
pr(1− p)k (4.3)

where p ∈ [0, 1] and r ∼ {0, 1, 2, 3, . . .}. p can be thought of as the total number of read

counts for a given genomic elements.

The approach by Anders and Huber [Anders and Huber, 2010] models the mean count

for the jth element of the ith sample as

µij = qi,ρ(j)sj
(4.4)

where ρj refers to the replicates available for that sample. For the noise estimation,

they consider the shot noise, which is the variance observed in read counts assuming

equal technical conditions.
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σ2
ij = µij + s2

jvi,ρ(j) (4.5)

where vi,ρ(j) = vρ(qi,ρ(j)).

A further method called bayseq is based on an empirical Bayesian approach with the neg-

ative binomial distribution, combined with quasi methods, which effectively accounts

for over-dispersion and allows for highly conservative estimates (low false-positive rate)

[Hardcastle and Kelly, 2010]. Furthermore, it had an r package available which effi-

ciently allowed for the set of pair-wise differential expression between all of my samples.

I choose this approach due to the fact that I had need to compare many samples pair-

wise (149 samples in the primary cell set), and therefore a highly conservative approach

was required in order to limit the number of false positives.

To illustrate this method for the data used in the analysis differential expression prob-

abilities compared to fold-change for each of the 149 primary cell libraries compared

pairwise are given in Appendix D. Each plot is the cumulation of comparing a primary

cell type with all other primary cell types. As expected, all plots show high differential

expression probabilities for the highest fold change.

Finally, it should be noted that since this project ran many of the calculations for

differential expression, many other packages have been published, mostly based on

information sharing with the negative binomial distribution [Äijö et al., 2014, Chung

et al., 2013, Law et al., 2014, Lee et al., 2011, Vavoulis et al., 2015, Wang et al., 2010],

and some greatly improve on accuracy and reduction of false positives by allowing for

the down-weighting of observations from samples of poor quality [Law et al., 2014, Liu

et al., 2015].

4.5 Applying complexity measures to primary cells data

This section describes the procedure applied to the primary cell data, the focus of the

next Chapter.
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Select data

Primary cell types provide an excellent platform over which to calculate complexity,

since they have minimal ontological heterogeneity; whereas tissues contain mixed pri-

mary cell populations, across which differences in expression levels or state may be

observed as a result of differential regulation.

Of the primary cells from the FANTOM5 project, a set of 149 distinct cell types were

chosen. 138 of these represented normal cells from healthy adults. This was a deliberate

decision to understand regulatory complexity from a ‘standard’ perspective; how genes

behave in normal populations.

The remainder represented CD14+ monocytes under a variety of treatments. The aim

was to calculate complexity over these two sets separately, to distinguish genes which

respond to treatment within the same cell type to those which are observed to be

complex across distinct non-treated cells.

Figure 4.9: Distribution of biological replicates across the 149 primary cells used
in this analysis. Only two had just one replicate, whilst the most common number of

replicates was 3.

The distribution of the numbers of replicates per primary cell type is given in Figure 4.9.

The names of the primary cell types used in this analysis are given in Appendix C. They
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are split by ontological groupings, according to the FANTOM5 resource browser [For-

rest et al., 2014] and according to developmental stage - mesodermal or mensochymal.

The mesoderm is one of the three early embryonic tissues layers, which, through de-

velopmental processes, will differentiate into internal organs, such as the circulatory

system and muscles. Much of the mesenchyme is derived from this layer; the mes-

encymal layer develops into cell types relating to connective tissues, and mesencymal

tissues are are characterised by their large extracellular matrix and largely undifferen-

tiated cells [Uccelli et al., 2008]. It is hypothesised that one might expect to observe

different reguatory expression patterns in adult termanially differentiated cells. Thus,

in order to understand if there is an observed difference in complexity between meso-

dermal and mensochymal layers, complexity scores were also calculated across the cell

types split into these two developmental categories.



sample1 sample2 · · · samplep

gene1 N11 N12 . . . N1p

gene2 N21 N22 . . . N2p
...

...
... . . . ...

genen Nn1 Nn2 . . . Nnp



Measure potential regulatory output

The aim was to mine information of the expression profiles across the chosen set of

samples based on:

• Pairwise differential expression probabilities

• Determine on/off states

• Determine sample structure

In order to calculate differential expression, bayseq was run pairwise between all

samples, which returned the probability of differential expression pairwise for each
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gene. For 138 primary cells, this resulting in 15400 possible pairs to test. bayseq was

run parallel across 24 cores and total calculation time for gene level data took several

weeks. In terms of robust TSS level data, total calculation time took several months.

In terms of time course data, calculation general took less than a day for either gene

or TSS level (due to fewer pairs of libraries). The distribution of mean and median

differential expression probabilities is given in Figure 4.10.

Figure 4.10: Distribution of pairwise differential expression probabilities captured
used baySeq. The median change is often 0 since this includes ‘off-off’ probabilities.

Plots of differential expression probabilities against the log fold change in expression are

given in Appendix D for all cell types. In order to call whether a pair of states exhibited

no change in expression as a result of both states being off, bayseq had an option in

the code which calculates the probability that both states are null. Furthermore, it was

asked that at least two replicates must have a tag count in order to call the presence
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of transcription in a cell type. This threshold was used to determine genes which were

off in all cell types. These genes were filtered out of the analysis (lack of information

about their expression patterns) and not included in the calculations for differential

expression (to help speed up processing time). All isoforms for all genes were included

in the differential expression calculations, resulting in a total of 27407 rows in the

dataset for 138 primary cells, which ranged across 408 libraries (444 libraries for 149

primary cells for the full dataset).

Thus, pairs of states were either recorded as ‘off-off’, ‘on-off’ or ‘on-on’. In the cases

of ‘on-off’ the probability of differential expression should be 1, in the cases of ‘on-on’

the probability of differential expression is pD where pD is between 0 and 1. Due to

noise in the data and low tag counts, ‘on-off’ states do not always have a probability

of differential expression close to 1. These pairwise probabilities are represented in a

matrix A:

A =



celltype1 celltype2 · · · celltypem

celltype1 0 pD12 . . . pD1m

celltype2 pD21 0 . . . pD2m
...

...
... . . . ...

celltypem pDm1 pDm2 . . . 0



The decision was made to determine the samples structure from the data itself, by

observing pairwise correlations, as opposed to relying in a predetermined model. This

was done using a transformation of Pearson’s correlation on the log of the counts (plus

a pseudocount to account for log not being defined at zero). For two samples, sx and

sy, the median tag counts across replicates were correlated using the formula

ρsx,sy =
∑n
i=1(log(xi + 1)− x̄)(log(yi + 1)− ȳ)√∑n

i=1(log(xi + 1)− x̄)
√∑n

i=1(log(yi + 1)− ȳ)
(4.6)

where n is the number of transcriptional elements (genes or TSS), xi is the ith nor-

malised count for sample sx, yi is the ith normalised count for sample sy, x̄ = 1
n

∑
log(xi+

1), ȳ = 1
n

∑
log(yi + 1).
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Then the weight between the two samples is given as

wsx,sy = ρ3
sx,sy

(4.7)

This transformation allowed weights to be spread across the 0 to 1 range, making it

clearer to distinguish between similar samples in which differential expression occurs in

a gene with distantly related samples, which are down-weighted. The weights between

all pairs of samples can be put together into a weight matrix

W =



celltype1 celltype2 · · · celltypem

celltype1 1 w12 . . . w1m

celltype2 w21 1 . . . w2m
...

...
... . . . ...

celltypem wm1 wm2 . . . 1



Generate weighted graph and calculate graph based connectivity measures

The matrix WA is then used to create a weighted adjacency matrix over which eigen-

vector centrality was calculated

WAx = λx (4.8)

Create weighted adjacency and/or Laplacian matrices

Select α, β and calculate final measure

Or use overall graph connectivity λ.

Inference on final scores

Connect with biological information.
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4.6 Summary of chapter

First, the FANTOM5 data was described, which has the advantage of quantitatively

estimating steady state transcript levels at a single TSS resolution across the whole

genome and includes an extensive range of primary cell types, tissues and time courses,

with technical and biological replication.

Next, the normalisation and tag clustering (TSS identification) strategies applied across

libraries were described.

Following this, methods for estimating differential expression were discussed. I de-

scribed my own models for calculating differential expression, which are more applica-

ble to time course data (due to memory issues, amongst other things). The methods

used to calculate differential expression across genes and clusters in primary cell types

was then described.

Finally, the data used in the rest of this thesis was selecting and it was described how

it was used to generate the complexity scores and their normalised counterparts that

are interrogated extensively in the next chapter.





Chapter 5

Complexity applied to primary cell

types

The complexity scores described in Chapter 4 were applied as metrics to assess the

observed output of regulatory complexity in the gene expression data for primary cells

collected by the FANTOM5 consortium [Forrest et al., 2014]. The data consists of

138 primary distinct primary cells and the scores attempt to take into account both

the observed changes and structure of expression observed for a given gene. Details of

the method applied is given in Chapter 4. Primary cell types are highly desirable as

opposed to tissues or less refined cell types as these represent pure lineages, separating

out different cell lineages with the potential to be differentially expression within a

given tissue. The FANTOM5 dataset provides a unique selling point in this regard,

with its high throughput nature offering a wide variety of primary cells with a median

of three replicates.

Presented in the results of the analysis are three main scores; the first is the raw

complexity score without normalising, second is the normalised version of complexity

which adjusts for the complexity potential across different breadths of expression and

the third is the standard entropy score, generally used to measure sample restricted

vs ubiquitous expression. All of these scores results in a continuous distribution over

91
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which different categories and types of genes may be compared. Results and Figures

are presented, before being discussed in more detail in Chapter 6.

In the first instance, the distributions of scores are observed and compared with ex-

pression breadth. The top 10% and bottom 10% of each distribution are checked for

functional enrichment, in order to attempt to understand the biological relevance of

a gene achieving a low or a high scores. This is followed by an in-depth analysis of

the properties of a gene ‘complex’ in its regulation - including physical gene properties,

promoter annotations, hypersensitivity, histone modifications, protein age. Finally pre-

sented is an analysis of the kinds of diseases enriched in high complexity scores and

a discussion of the possible usefulness of having such a score for the identification of

candidate genes from a medical perspective.

5.1 Number of genes in this analysis

Breadth of expression

F
re

qu
en

cy

0 50 100 150

0
20

00
40

00
60

00

Figure 5.1: Histogram showing the breadth of expression across set of genes.
Breadth of expression runs from 1 (expressed in a single primary cell type) to 149
(expressed in all primary cell types considered in this study). Heights of bars repre-

sents the number of genes observed with the given breadth of expression.

This analysis is based on expression estimates for genes in the primary cell data from

the FANTOM5 project. Expression levels are captured through summing CAGE tags

in the promoter regions of genes based on coordinates from the refSeq database. The
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total number of coding transcripts covered in this analysis with expression present in at

least one primary cell type are 27407, corresponding to a total of 16111 distinct coding

genes, resulting in a mean of 1.7 transcripts per gene.

Genes not expressed in any cell type are not considered in the analysis, due to lack of

information of their expression profile - it is assumed that these genes are expressed in

at least some cell type under some given conditions, but the FANTOM5 dataset did

not capture this pattern of expression. Furthermore, in order to avoid bias from genes

which have a large number of isoforms, all highly correlated in their expression, much

of the analysis considers only the 16111 distinct genes which are expressed in at least

one cell type. When more than one isoform is present, the median complexity score is

observed for that gene.

A histogram of the breadth of gene expression, given as the proportion of expressed

primary cell types, is given in Figure 5.1. Of these 16111 genes, 5161 (32.0%) are

expressed ubiquitously - that is, a positive median expression across biological replicates

was observed in all primary cell types. In contrast there are 562 (3.5%) genes with

observed expression in just one cell type.

5.2 Distributions of complexity scores and entropy score

Histograms showing the structure of each of the three score distributions is given in

Figure 5.2. Both complexity and normalised complexity have a peak at zero for genes

which exhibited no complex behaviour. Both scores have a large peak - around 0.4 for

complexity and 0.3 for normalised complexity. Complexity has a smaller peak around

0.7 and normalised complexity is right skewed, with very few genes which are ‘highly

complex’. Entropy is highly concentrated around maximum, due to the large number

of ubiquitously expressed genes. Tissue restricted genes form a small peak around zero.

Complexity is plotted against the percentage of expressed cell types and displayed in

Figure 5.3. The distribution forms a ‘boomerang’ shape against breadth, with highly

restricted genes and ubiquitous gene achieving the lowest scores and maximised between
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Figure 5.2: Histograms displaying the distribution of each of the three scores -
complexity (red), normalised complexity (blue) and entropy (green).

60 and 100% - these are genes exhibiting complex behaviour of on-off switching, and/or

a lot of differential expression between expressed cell types.

Figure 5.4 shows the same plot of breadth of expression against raw complexity scores,

including the maximum practical (red) and theoretical (blue) bounds at each given

expression breadth, plotted as a smooth curve. The calculation for these bounds was

given in Chapter 2.

The complexity score is normalised by the practical complexity score on a per-gene ba-

sis and referred to as normalised complexity. Normalised complexity is plotted against

expression breadth in Figure 5.5. In the normalised version of the score, highly re-

stricted genes now have a much higher score; these genes form the right hand tail of
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Figure 5.3: Breadth of expression (percentage of expressed primary cell types)
against raw complexity scores. Darker blue regions represent regions containing many
genes; in particular the dark region on the right hand edge represents broadly/ubiq-

uitously expressed genes across the set of primary cell types.
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Figure 5.4: Breadth of expression (percentage of expressed primary cell types)
against complexity scores, illustrating possible normalisation strategies. The blue line
shows the theoretical maximum which may be achieved if all pairs were differentially
expressed, the red line shows the practical maximum, maximised across expression
breadths. Smooth curves are plotted based on the outside edge of maximum scores.
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the distribution observed in Figure 5.2.

Figure 5.5: Breadth of expression (percentage of expressed primary cell types)
against normalised complexity scores. Each gene is normalised by its own maxi-
mum possible level based on redistributions of tag counts across its own breadth of

expression, as described in Chapter 3.

Another score of interest, but considered less within the context of this analysis, is the

‘locally normalised complexity score’. Instead of normalising by all possible complexity

potentials, each gene is normalised by the maximum possible complexity for its given

range of expressed cell types; this score is essentially a measure of complexity observed
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through its differential expression distribution between expression cell types alone, since

it removes the effect of on-off switching.
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Figure 5.6: Breadth of expression (number of expressed primary cell types) against
locally normalised complexity scores. These are normalized accounting for changes
in expression between expressed cell types, but ignoring the patterns of on and off

switching occurring between cell types.

To compare the normalised complexity scores with the locally normalised complexity

scores, Figure 5.7 shows the two scores plotted against each other, with a line plotted

through the diagonal. Genes which are more strongly complex as a result of observed

differential expression as opposed to observed on-off switching are those towards the
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right of the plot. Note that ubiquitous genes form the dark patch on the diagonal, since

the scores are highly correlated for these genes.
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Figure 5.7: Complexity corrected globally vs complexity corrected locally. Global
scores are corrected by considering the possible combinations of on-off switching, local
scores are corrected by considering only the maximal possible differential expression
between on-on cell types. A skew towards locally corrected scores suggest that a gene

is complex as a result of differential expression between on-on cell-types.

From this section, we can observe that complexity clearly has a non-linear relationship

with entropy scores. However, the correlation between them is low, as observed by the

large range of complexity scores within each given breadth. Thus, complexity is able to



Chapter 5. Primary cell complexity 100

distinguish between genes of different regulatory capabilities but of the same breadth

of expression.

In the next section, an enrichment analysis is carried out, to understand which kinds

of genes are highly complex according to functional annotations.

5.3 Functional annotation enrichment and contour plots

The web service Gorilla [Eden et al., 2007, 2009] was used in order to carry out a GO

term analysis; a query of whether high or low complex genes were statistically enriched

in biological processes or function.

5.3.1 Enrichment for complexity scores

The top 20 GO terms for high scoring complexity genes are given in Table 5.1, using the

option ‘searching for enriched GO terms that appear densely at the top of a ranked list of

genes’. The most significant terms relate to developmental processes and the regulation

of developmental processes, including the development of anatomical structures. This

is expected, since expression changes observed in adult primary cell types are likely to

be highly correlated by developmental switches through development (reference).
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Table 5.1: Top 20 most significant GO terms from the output of Gorilla, for the
genes with the highest complexity scores, based on a single list of all expressed genes

ranked from high to low complexity.

GO Term Description P-value

GO:0032502 developmental process 1.50E-34
GO:0044767 single-organism developmental process 4.35E-32
GO:0051239 regulation of multicellular organismal process 1.98E-31
GO:2000026 regulation of multicellular organismal development 2.47E-30
GO:0030334 regulation of cell migration 6.95E-30
GO:0048856 anatomical structure development 6.95E-30
GO:0030198 extracellular matrix organization 2.04E-29
GO:0043062 extracellular structure organization 2.04E-29
GO:2000145 regulation of cell motility 6.26E-29
GO:0005615 extracellular space 1.45E-29
GO:0032501 multicellular organismal process 1.72E-28
GO:0051270 regulation of cellular component movement 1.93E-27
GO:0044707 single-multicellular organism process 2.02E-27
GO:0009653 anatomical structure morphogenesis 5.21E-27
GO:0040012 regulation of locomotion 5.77E-27
GO:0031012 extracellular matrix 2.42E-26
GO:0050793 regulation of developmental process 3.38E-25
GO:0016477 cell migration 3.78E-24
GO:0042127 regulation of cell proliferation 1.84E-23
GO:0007165 signal transduction 1.70E-22
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Table 5.2 shows the top 20 GO terms associated with the lowest rank complexity

genes. The highest term is ‘extracellular region’ and terms relating to plasma membrane

components and transporter activity are also high. Membranes function to protect the

interior of cells from their outside environment and contain proteins which contribute

to cell signalling, adhesion, cellular transport and various regulatory functions. This

suggest that genes coding for extracellular components act in a housekeeping type

manner, important to every cell.

Table 5.2: Top 20 most significant GO terms from the output of Gorilla, for the
genes with the lowest complexity scores, based on a single list of all expressed genes

ranked from low to high complexity.

GO Term Description P-value

GO:0005576 extracellular region 3.98E-28
GO:0031224 intrinsic component of membrane 2.59E-22
GO:0016021 integral component of membrane 4.09E-21
GO:0050907 detection of chemical stimulus involved in sensory perception 1.18E-21
GO:0005887 integral component of plasma membrane 3.65E-19
GO:0031226 intrinsic component of plasma membrane 9.14E-19
GO:0005215 transporter activity 1.54E-19
GO:0022892 substrate-specific transporter activity 5.60E-19
GO:0015075 ion transmembrane transporter activity 1.74E-18
GO:0038023 signaling receptor activity 1.16E-17
GO:0022891 substrate-specific transmembrane transporter activity 2.08E-17
GO:0022857 transmembrane transporter activity 6.03E-17
GO:0004930 G-protein coupled receptor activity 1.52E-16
GO:0004984 olfactory receptor activity 3.48E-16
GO:0007186 G-protein coupled receptor signaling pathway 4.25E-16
GO:0004872 receptor activity 1.66E-15
GO:0008324 cation transmembrane transporter activity 2.24E-15
GO:0044425 membrane part 2.77E-15
GO:0006811 ion transport 1.35E-15
GO:0098655 cation transmembrane transport 1.71E-14

Table 5.3 shows the top GO terms for the most complex genes according to the nor-

malised complexity score. Similar to the non-normalised complexity, the top terms

relate to multicellular processes and anatomical development, suggesting that the nor-

malisation strategy does not dramatically change the ranking of genes in terms of their

complexity.
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5.3.2 Enrichment for normalised complexity scores

Table 5.3: Top 20 most significant GO terms from the output of Gorilla, for the genes
with the highest normalised complexity scores, based on a single list of all expressed

genes ranked from high to low normalised complexity.

GO Term Description P-value

GO:0032501 multicellular organismal process 1.72E-49
GO:0044707 single-multicellular organism process 1.84E-45
GO:0003008 system process 2.64E-40
GO:0044459 plasma membrane part 1.70E-26
GO:0050877 neurological system process 3.64E-24
GO:0048856 anatomical structure development 8.41E-24
GO:0005886 plasma membrane 1.39E-24
GO:0007600 sensory perception 3.90E-21
GO:0044700 single organism signaling 1.15E-20
GO:0023052 signaling 1.60E-20
GO:0032502 developmental process 2.34E-20
GO:0007267 cell-cell signaling 5.45E-19
GO:0044057 regulation of system process 4.04E-18
GO:0031424 keratinization 1.30E-16
GO:0044767 single-organism developmental process 5.43E-16
GO:0005887 integral component of plasma membrane 2.88E-16
GO:0031224 intrinsic component of membrane 2.80E-15
GO:0007154 cell communication 1.54E-15
GO:0009888 tissue development 1.64E-15
GO:0048869 cellular developmental process 8.58E-15

Table 5.4 shows the top GO terms for the lowest ranked genes according to the

normalised complexity scores. Whilst not as overall significant in terms of their P-

values, the most significant GO terms relate to the membrane and ribosomal pro-

cesses. These processes are associated with translation and enriched in genes with

‘ultra-housekeeping’ type behaviour, as whilst translation itself is a highly regulated

process, the ribosome represents a key component of non-replicating cells.
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Table 5.4: Top 20 most significant GO terms from the output of Gorilla, for the genes
with the lowest normalised complexity scores, based on a single list of all expressed

genes ranked from low to high normalised complexity.

GO term Description P-value

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 3.73E-10
GO:0044391 ribosomal subunit 1.32E-10
GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 5.19E-10
GO:0006613 cotranslational protein targeting to membrane 6.68E-10
GO:0070972 protein localization to endoplasmic reticulum 9.25E-10
GO:0045047 protein targeting to ER 1.20E-09
GO:0050877 neurological system process 1.73E-09
GO:0072599 establishment of protein localization to endoplasmic reticulum 3.86E-09
GO:0016071 mRNA metabolic process 4.29E-09
GO:0003008 system process 9.17E-09
GO:0022627 cytosolic small ribosomal subunit 1.08E-08
GO:0016021 integral component of membrane 1.15E-08
GO:0030529 ribonucleoprotein complex 1.22E-08
GO:0044445 cytosolic part 1.79E-08
GO:0031224 intrinsic component of membrane 2.40E-08
GO:0006612 protein targeting to membrane 2.23E-08
GO:0051606 detection of stimulus 2.38E-08
GO:0006413 translational initiation 5.79E-08
GO:0006402 mRNA catabolic process 1.14E-07
GO:0007601 visual perception 4.95E-07
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5.3.3 Enrichment for entropy scores

Table 5.5 shows the top associated GO terms for genes with the highest entropy scores.

The top term is ‘poly(A) RNA binding’, followed closely by ‘RNA binding’. RNA

binding as been associated with significant and consistent expression across cell types

[Kechavarzi and Janga, 2014].

Table 5.5: Top 20 most significant GO terms from the output of Gorilla, for the
genes with the highest entropy scores, based on a single list of all expressed genes

ranked from high to low entropy.

GO Term Description P-value

GO:0044822 poly(A) RNA binding 5.25E-100
GO:0003723 RNA binding 2.60E-99
GO:0044446 intracellular organelle part 1.63E-93
GO:0044422 organelle part 2.79E-89
GO:0032991 macromolecular complex 1.06E-88
GO:0010467 gene expression 1.39E-82
GO:0016071 mRNA metabolic process 7.24E-82
GO:0030529 ribonucleoprotein complex 7.95E-71
GO:0044764 multi-organism cellular process 7.49E-56
GO:0016032 viral process 7.59E-56
GO:0044403 symbiosis, encompassing mutualism through parasitism 7.59E-56
GO:0044424 intracellular part 1.34E-56
GO:0044265 cellular macromolecule catabolic process 7.77E-55
GO:0016482 cytoplasmic transport 1.19E-53
GO:0044428 nuclear part 1.37E-53
GO:0046907 intracellular transport 8.62E-52
GO:0006397 mRNA processing 4.69E-51
GO:0044419 interspecies interaction between organisms 4.32E-50
GO:0008380 RNA splicing 2.24E-48
GO:1902582 single-organism intracellular transport 2.39E-47

Table 5.6 shows the GO terms associated with the lowest entropy scores. The top few

terms relate to extracellular region and membrane components. These terms are similar

to those observed in Table 5.3, for the highest normalised complexity scores, probably

because the normalisation up-weights genes highly restricted in their expression, which

have low entropy scores.

In summary, it appears that genes on either end of the complexity access are signifi-

cantly enriched in biological processes and capture distinct information from entropy
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Table 5.6: Top 20 most significant GO terms from the output of Gorilla, for the
genes with the lowest entropy scores, based on a single list of all expressed genes

ranked from low to high entropy.

GO Term Description P-value

GO:0005576 extracellular region 2.17E-40
GO:0031224 intrinsic component of membrane 1.00E-29
GO:0016021 integral component of membrane 3.17E-28
GO:0044425 membrane part 4.94E-23
GO:0032501 multicellular organismal process 2.64E-23
GO:0003008 system process 1.36E-22
GO:0044459 plasma membrane part 6.31E-22
GO:0031226 intrinsic component of plasma membrane 1.04E-21
GO:0005887 integral component of plasma membrane 1.39E-21
GO:0005215 transporter activity 2.17E-21
GO:0038023 signaling receptor activity 3.97E-20
GO:0022892 substrate-specific transporter activity 7.00E-20
GO:0015075 ion transmembrane transporter activity 7.71E-20
GO:0044707 single-multicellular organism process 4.68E-20
GO:0050907 detection of chemical stimulus involved in sensory perception 9.03E-20
GO:0007600 sensory perception 1.78E-19
GO:0006811 ion transport 4.03E-19
GO:0022891 substrate-specific transmembrane transporter activity 1.75E-19
GO:0022857 transmembrane transporter activity 7.96E-19
GO:0004872 receptor activity 2.16E-18

scores. In particular, a complex gene is associated with a range of ontology terms

relating to developmental processes, cell signaling and mobility.

Next, a similar analysis has been carried out, but focussing only on genes which are

ubiquitously expression across all the primary cell types included in the analysis.

5.3.4 Functional enrichment for high scoring ubiquitously expressed genes

In order to gain insight into the differences between genes with the same expression

breadth but different complexity scores ranked lists of ubiquitously expressed genes

according to their complexity scores were used to perform a GO term analysis. Since

these genes are always ‘on’, their complexity score is driven only by differential ex-

pression observed between ‘on’ states; therefore together with their large sample size
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(5161 distinct genes, not account for isoforms) and independence to entropy, they are

an interesting set to study.

Figure 5.8: Histogram of complexity scores for the ∼35% genes expressed in all
primary cell types (left) (ubiquitous genes). The location of the top and bottom 10% of
complex genes are marked in dark pink. Normalisation is generally not required within
given expression breadths, therefore only complexity scores are analysed. Entropy
scores against complexity scores for ubiquitous genes (right). Whilst complexity scores
are spread out across the full range (between 0 and 1), entropy scores are all within

0.975 and 1.000.

The scores for ubiquitous expression complexity form an approximate normal distribu-

tion (Figure 5.8), with the lowest 10% reaching around 0.3 and the highest 10% having

a complexity from around 0.57. The distribution of ubiquitous expression complexity

vs entropy (Figure 5.8) shows that entropy has a very tight range, between 0.975 and

1, whilst complexity covers a broad range, between almost the full potential of between

0 and 1. This implies that whilst entropy is not useful in distinguishing differences be-

tween ubiquitously expressed genes, complexity is able to rank them in terms of their

observed differential expression distribution.

The most significantly associated GO terms for the highest ranked ubiquitously ex-

pressed complex genes are given in Table 5.7. Similar to the complexity results, multi-

cellular organism processes appear at the top of the list. Response to chemical, external

stimulus and endogenous stimulus also appear near the top of the list, suggesting that



Chapter 5. Primary cell complexity 108

highly complex ubiquitously expressed genes exhibit up- and down- regulation of ex-

pression between cell types as a results of environmental and internal response signals.

Table 5.7: Top 20 most significant GO terms from the output of Gorilla, for the genes
with the highest complexity scores, based on a single list of ubiquitously expressed

genes ranked from high to low complexity.

GO Term Description P-value

GO:0032501 multicellular organismal process 2.40E-13
GO:0044707 single-multicellular organism process 3.20E-12
GO:0042221 response to chemical 5.27E-11
GO:0009605 response to external stimulus 3.06E-10
GO:0048523 negative regulation of cellular process 3.39E-10
GO:0009719 response to endogenous stimulus 4.08E-10
GO:0042127 regulation of cell proliferation 5.56E-10
GO:0005886 plasma membrane 2.54E-10
GO:0000786 nucleosome 1.51E-09
GO:0051239 regulation of multicellular organismal process 1.14E-09
GO:0014070 response to organic cyclic compound 1.20E-09
GO:0050896 response to stimulus 1.24E-09
GO:0010033 response to organic substance 1.35E-09
GO:0032502 developmental process 2.27E-09
GO:0044767 single-organism developmental process 2.93E-09
GO:0048856 anatomical structure development 3.46E-09
GO:1901700 response to oxygen-containing compound 3.59E-09
GO:0048518 positive regulation of biological process 7.36E-09
GO:0065007 biological regulation 8.98E-09
GO:0048519 negative regulation of biological process 9.35E-09

Table 5.8 shows the GO terms associated with the least complex ubiquitously expressed

genes. These terms involve highly conserved processes required by all cells within an

organism, such as translational initiation.

Taken together, we see that ubiquitous complex genes and complex genes are enriched

in different GO terms. In particular, developmental process genes are highly complex

overall, and genes associated with multicellular processes are enriched in ubiquitous

complexity scores. The latter may not be surprising, since these are genes expressed in

all cell types and thus would expected to be associated with multi-cellularity.
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Table 5.8: Top 20 most significant GO terms from the output of Gorilla, for the
genes with the lowest complexity scores, based on a single list of ubiquitously expressed

genes ranked from low to high complexity.

GO term Description P-value

GO:0006413 translational initiation 9.61E-14
GO:0016071 mRNA metabolic process 1.04E-13
GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 1.19E-13
GO:0019083 viral transcription 2.22E-13
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 2.29E-13
GO:0006613 cotranslational protein targeting to membrane 3.08E-13
GO:0045047 protein targeting to ER 4.15E-13
GO:0072599 establishment of protein localization to endoplasmic reticulum 1.01E-12
GO:0019058 viral life cycle 1.06E-12
GO:0070972 protein localization to endoplasmic reticulum 1.54E-12
GO:0006612 protein targeting to membrane 1.81E-12
GO:0006412 translation 8.21E-12
GO:0044391 ribosoma subunit 1.81E-14
GO:0030529 ribonucleoprotein complex 1.29E-13
GO:0044445 cytosolic part 9.89E-12
GO:0006412 translation 8.21E-12
GO:0010467 gene expression 1.39E-11
GO:0006414 translational elongation 6.08E-11
GO:0043624 cellular protein complex disassembly 7.99E-11
GO:0032984 macromolecular complex disassembly 8.53E-11

5.3.5 Contour plots

Next it was questioned where the genes related to significant GO terms fell on the

complexity vs expression breadth axis. To this end, contours were superimposed onto

the distribution (Figures 5.9 to 5.13). Curves are coloured according to the magnitude

of density of genes related to a specific GO term; regions within light red circles contain

a high density of GO term specific genes and dark regions contain cover locations where

they are present but more sparsely located .

Contours relating to the location of known housekeeping related genes (Figure 5.9), as

expected, were concentrated around the dense region (dark blue) of all genes with high

breadth of expression, although a small number of genes are concentrated around the

expression restricted, low complexity region.
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For comparison, contours for genes typically thought of as ‘master regulators’, including

the HOX, SOX and PAX gene families, were also generated (Figure 5.10). These genes

are known targets for regulation by polycomb, which when combined with activation

marks is linked to poised transcription [Stock et al., 2007], and thus exhibit highly

regulated gene expression profiles, and so these genes should be enriched in genes with

high complexity scores. Whilst master regulators are tightly regulated, some of these

genes are nonetheless appear highly concentrated in the ubiquitously expressed, very

low complexity region; suggesting that these genes are expressed with little variability

in all cell types. This could be due to the lack of sensitivity in the method to detect

changes between cell types, or due to the CAGE profiling of genes. Note however that

aside from these genes, contours for master regulators are generally accumulated on

the right hand edge of the distributions, suggesting that these master regulatory genes

are generally complex independent of breadth of expression. When plotting these same

contours substituting complexity scores for normalised complexity scores, these genes

heavily concentrated on the right hand, more complex, edge of the plot.
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Figure 5.9: Complexity vs breadth with contours for housekeeping genes (left)
and master regulatory genes (right). Complexity is plotted against the percentage
of expressed cell types. Contours showing regions enriched in genes associated with
housekeeping tasks or master regulatory genes (defined as HOX, SOX and PAX related
genes) are plotted in red. Yellow vertical line proportion areas of the plot according to
complexity scores - the highest and lowest 10% most complex genes on the right and
left sections respectively, and the centre two regions each containing 40% of the genes.
Note that the highest density contours relating to housekeeping genes are generally

concentrated within the 10% - 50% region of complexity scores.
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Figure 5.10: Complexity vs breadth with contours for GO terms GO:0030198 extra-
cellular matrix organization (left) and GO:0030334 regulation of cell migration (right).
Complexity is plotted against the percentage of expressed cell types. Contours show-
ing regions enriched in genes associated with respective GO terms are plotted in red.
Yellow vertical line proportion areas of the plot according to complexity scores - the
highest and lowest 10% most complex genes on the right and left sections respectively,

and the centre two regions each containing 40% of the genes.
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Figure 5.11: Complexity vs breadth with contours for GO terms
GO:0009653 anatomical structure morphogenesis (left) and GO:051094 positive
regulation of developmental process (right). Complexity is plotted against the per-
centage of expressed cell types. Contours showing regions enriched in genes associated
with respective GO terms are plotted in red. Yellow vertical line proportion areas of
the plot according to complexity scores - the highest and lowest 10% most complex
genes on the right and left sections respectively, and the centre two regions each

containing 40% of the genes.
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Figure 5.12: Complexity vs breadth with contours for GO terms GO:0005576 extra-
cellular region (left) and GO:0003008 system process (right). Complexity is plotted
against the percentage of expressed cell types. Contours showing regions enriched in
genes associated with respective GO terms are plotted in red. Yellow vertical line
proportion areas of the plot according to complexity scores - the highest and lowest
10% most complex genes on the right and left sections respectively, and the centre two

regions each containing 40% of the genes.

5.4 Relationship of scores with CpG and TATA

As introduced in Chapter 1, stretches of unmethylated CpG di-nucleotides called CpG

islands are often found overlapping the promoters of ubiquitously expressed genes and

some regulated genes. CpG island presence around the core promoter therefore holds

a natural relationship with expression breadth, so CpG presence is likely to correlate

with high entropy scores and CpG absence is likely to correlate with low entropy scores.

In this section CpG is correlated with complexity scores; in particular it is of interest

to see if CpG presence in non-ubiquitously expression genes are associated with higher

complexity than non-ubiquitous and CpG absent genes.

It was seen that the TATA box is a consensus sequence typically found in the core

promoter of polII genes; Transcription binding protein complexes bind to the TATA
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Figure 5.13: Complexity vs breadth with contours for GO terms GO:0005215 trans-
porter activity (left) and GO:0032501 multicellular organismal process (right). Com-
plexity is plotted against the percentage of expressed cell types. Contours showing
regions enriched in genes associated with respective GO terms are plotted in red.
Yellow vertical line proportion areas of the plot according to complexity scores - the
highest and lowest 10% most complex genes on the right and left sections respectively,

and the centre two regions each containing 40% of the genes.

box in the initiation of transcription. CpG island presence and absence is first analysed

in the context of complexity, followed by TATA and then whether the two interact or

correlate with scores independently of each other.

5.4.1 Relationships with CpG island presence

Of all genes under analysis, 65.6 % were found to have a CpG island overlapping

the core promoter region. Of genes with CAGE expression in every primary cell type

under analysis (the defined ubiquitous genes in this study), 85.6 % reported CpG island

presence. Of genes expressed in less than two thirds of the primary cell types, 67.1 %

report CpG island presence and 33 % of genes expressed in less than one third.

To see how CpG presence and absence changed with increasing complexity scores,

a moving average plot was generated (Figure 5.14). CpG (red line) closely follows
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expression breadth (entropy levels). A plot of the relative contributions of CpG and

TATA box presence to the variability of scores is also given in Figure 5.15

Figure 5.14: Proportions of genes with CpG presence, proportions of genes with
TATA presence and proportions of genes with CpG and TATA present together.
Genes are ranked in order of complexity and each data point for each variable is
calculated as its averaged values from the current gene and including up to the next
1000 genes. Background distributions are calculated by permuting the ranks of the
complexity scores and recalculating the proportions. Proportions of CpG present genes
are plotted in red with a pink background distribution, complexity is plotted in black
with a grey background distribution, TATA presence proportion is plotted in blue with
a light blue background distribution and TATA:CpG interaction is plotted in orange

with a yellow background distribution.

5.4.2 Explained variance in complexity scores for CpG and TATA

CpG changes non-linearly with complexity, by increasing from lower to mid- scores and

gradually decreasing from mid- to high scores. However, when adjusting for entropy
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Figure 5.15: Explained percentages of variance in complexity scores (complexity -
red bars, normalised complexity - blue bars and entropy - green bars) for separate
regressors: presence of TATA box in core promoter (TATA) and presence of CpG
island in core promoter (CpG). Metrics used are LMG (averaged contributions, e.g.
see [Chevan and Sutherland, 1991]), First (before other variables accounted for) and
Last (after other variables accounted for). Total explained variance from all regressors

is given in orange.

level, CpG is linearly decreasing with increasing complexity (p < 2e-16), suggesting

that highly complex genes are lacking in a CpG island, independent of expression

breadth. This is confirmed by considering the subset of genes which are ubiquitously

expressed, which shows that the odds of CpG island presence are much reduced in highly

complex genes compared to genes with minimal complexity (p<2e-16 based on logistic

regression, with log odds of -2.82 from minimum to maximum). This is illustrated

in Figure 5.16. The same relationship appears to be generally true when treating all

expression breadths individually (e.g. p = 2.24e-05, based on logistic regression for

gene restricted to expression in exactly one primary cell type), although sample size is
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Figure 5.16: Normalised complexity of genes with and without CpG presence (top),
and proportions with genes broken down into ubiquitous and non-ubiquitous (middle).
Blue bars indicate presence of a CpG island overlapping the core promoter of the gene
and red bars indicate the absence of a CpG island overlapping the core promoter. Ex-
plained variance in normalised complexity scores before and after expression breadth
adjustment (bottom). The relaimpo package was used with option "last" in order
to obtain explained variance for CpG after entropy had been accounted for, using lm

in R.

greatly reduced for many possible breadths of expression. The explained variance after

adjustment of entropy is given in (Figure 5.16) and suggests that around 2.5% of the

variance post adjustment of entropy is explained by a CpG effect.

5.4.3 Relationships with TATA box presence

Of the expressed genes under analysis, 7.5% were found to have a TATA box overlapping

the core promoter region. Only 3.9% of ubiquitously expressed genes had TATA box

presence, 12.7% of those genes expressed in under two thirds of primary cell types and

14.2% of genes expressed in less than one third. Figure 5.14 suggests that TATA box
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presence has an inverse relationship with entropy scores, as opposed to entropy which

approximately follows entropy scores.

Predicted TATA presence increasings with complexity after the adjustment of entropy

levels (p<2e-16, logistic regression, change in log odds of 2.07 from minimum to max-

imum) and within the subset of ubiquitously expressed genes, although the effect is

weaker than CpG island presence (p = 9.7e-10, logistic regression) and difficult to

detect with smaller sample sizes.

5.4.4 Interactions between CpG and TATA presence

Of the expressed genes used in this analysis, 29.8% contained neither a CpG island or

TATA box overlapping the core promoter, 67.4% contained exactly one but not the

other, and 2.9% contained both.

When adjusting for entropy and looking at the effects of CpG and TATA together,

CpG presence decreases complexity scores by 0.070, independently of TATA presence

(p < 2e-16, linear regression), TATA presence increases complexity scores by 0.015,

independently of CpG presence (p = 0.0208, linear regression). When TATA and CpG

are both present, complexity decreases by 0.019, due a significant interaction effect of

0.036 (p=0.0004, linear regression < 2e-16, linear regression). Therefore, when CpG

and TATA are present together, the predicted complexity of a gene is more complex

than what would be expected based on the sum of their individual effects.

In conclusion, most of the effect of CpG and TATA on complexity scores are as a re-

sult of expression breadth (reflected in entropy levels) and as a result neither associate

linearly with changing complexity scores. However, weaker but highly significant rela-

tionships do exist between CpG presence, TATA presence and complexity, independent

of expression breadth. This is an interesting result in that it answers questions about

the kinds of genes which contain these elements above and beyond what is explained

using entropy scores.
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5.4.5 Methods

CpG presence or absence was calculated using the cpgIslandExt downloaded from

UCSC [Gardiner-Garden and Frommer, 1987]. TheR package genomicRanges [Lawrence

et al., 2013] was used to determine the presence of an overlap between the promoter

region of genes with a CpG island in the table, based on RefSeq gene annotations

[Dreszer et al., 2012].

TATA presence or absence was estimated by using the JASPAR matrix MA0108.2 for

TATA applied to the whole genome [Bryne et al., 2008], in the same method used by

the FANTOM5 consortium [Forrest et al., 2014].

Figure 5.14 was calculated from ranked groups of 1000 genes according to lowest to

highest complexity scores. Proportions of variables across each set of 1000 genes for

CpG presence, TATA presence and CpG:TATA interaction were also plotted. Back-

ground distributions were calculated based on permutation ranks where the ranking

of the genes was randomly permuted and variables proportions were calculated in the

order based on the new ranking. Plots are based on 500 such permutations for each

variable. Variable proportions based on the true ranking were plotted over the top in

a darker colour. Regions where the true proportions cross outside of the background

distribution are potentially significantly associated with complexity scores.

Changes in CpG and TATA presence/absence across complexity was estimated using

quantile regression, confirming the observed relationship of decreasing TATA and in-

creasing CpG at lower quantiles, followed by the opposite relationship at the upper

quantiles.

To control for entropy in order to test for the effect of CpG and TATA independent

of their relationship with expression breadth, F-tests were applied to compare models

containing entropy as a covariate with models containing entropy and CpG/TATA.

Adjusting for expression breadth in this way is useful for teasing out properties captured

by complexity that are not captured by entropy scores (thus providing an argument

for choosing complexity over entropy). After adjusting for entropy, the effect of CpG

presence/absence become linear (decreasing over all quantiles of complexity with similar
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effect sizes). This is confirmed by adjusting for the effect of the entropy when correlating

complexity scores with CpG, with CpG significantly decreasing with entropy adjusted

complexity.

5.5 Genomic size constraints, isoforms and alternative promoters

5.5.1 Distances between genes and gene length is weakly correlated with com-

plexity scores

Next the physical attributes of genes was analysed;

Firstly the length of the gene and the length of the first intron were calculated (Fig-

ures 5.17, and correlated with complexity and entropy scores 5.18 and 5.19).
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Figure 5.17: Histograms of length of gene (left), including exons and introns, and
the length of the first intron of the gene (right) (0 for single exonic genes), with
values given in the log of the number of base pairs. Both distributions treated as

approximately normal.
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Increasing complexity scores were very weakly but significantly associated with a greater

length of the gene and a greater length of the first intron (explaining 1.55% and 1.32%

of the variation respectively).

Figure 5.18: Scatter plots of gene length vs complexity, and the length of the first
intron vs complexity. Length measurements are given in the log of the number of base
pairs. Red lines indicate best fit lines from linear model, with R2 values calculated
from the model. Significance is given as (***), which implies that the slope of the line

is highly significant.

A similar but even weaker relationship with observed with entropy scores (0.7% and

0.5% of the respective variation for gene length and first intron length), suggesting that

longer genes with longer first introns are more likely to be broadly expressed.
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Figure 5.19: Scatter plots of gene length vs entropy, and the length of the first
intron vs entropy. Length measurements are given in the log of the number of base
pairs. Red lines indicate best fit lines from linear model, with R2 values calculated
from the model. Significance is given as (***), which implies that the slope of the line

is highly significant.
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The distance to the nearest upstream gene and the distance to nearest downstream

gene were calculated (Figure 5.20) and correlated with complexity and entropy scores

(Figure 5.21 and 5.22).
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Figure 5.20: Histograms of distance to nearest upstream gene (left), and the dis-
tance to nearest downstream gene (right), with values given in the log of the number

of base pairs. Both distributions treated as approximately normal.
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Similar to gene length, the distance to the nearest upstream gene and the distance

to the nearest downstream gene were very weakly correlated with complexity (0.4%

and 0.2% of variation respectively). Whilst highly significant, this is not a particularly

strong finding because the effect size is extremely small.

Figure 5.21: Scatter plots of the distance to nearest upstream gene vs complexity
and distance to nearest downstream genes vs complexity. Length measurements are
given in the log of the number of base pairs. Red lines indicate best fit lines from
linear model, with R2 values calculated from the model. Significance is given as (***),

which implies that the slope of the line is highly significant.
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Entropy scores were associated with slightly shorter distances between genes (0.005%

and 0.4% of up and downstream length), suggesting that cell restricted genes have

a preference towards greater space around them. However this effect size is again

extremely small.

Figure 5.22: Scatter plots of the distance to nearest upstream gene vs entropy and
distance to nearest downstream genes vs entropy. Length measurements are given in
the log of the number of base pairs. Red lines indicate best fit lines from linear model,
with R2 values calculated from the model. Significance is given as (***), which implies

that the slope of the line is highly significant.

In conclusion, it is observed that whilst complex genes appear slightly longer, contain

more intronic sequence and space between genes, the effect sizes are very weak. Thus,

whilst these factors could be at play in regulating highly complex expression patterns,

i.e. through providing more surrounding space from which cis-regulatory elements may

act on the gene, they are far from explaining a large proportion of the complexity

observed in their expression profiles.
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5.5.2 Increased complexity correlates with number of promoters annotated to

the gene, exon count and isoforms per gene

The distribution of the number of exons, isoforms and annotated promoters across all

genes are given in Figure 5.23.

Figure 5.23: Distribution of number of exons per gene (left), number of isoforms
per gene (middle), number of annotated promoters per gene (right)

Complexity scores were group by promoter count and a boxplot drawn for each cat-

egory (Figure 5.24), clearly showing the significantly increasing relationship between

the number of annotated promoters and gene based complexity scores (p < 1e-16).

Figure ?? shows the total variance in complexity scores explained by the total combina-

tion of distances, isoforms, exon and promoter numbers. Notice that the total explained

variance by all factors is small, only around 1.9% for complexity and 0.9% for normalised

complexity scores. This suggests that these factors are not highly important in terms

of explaining what makes a gene complex. Notice however that explained percentage

for entropy is also low; tissue specificity neither appears to be highly associated with

its local physical constraints.

5.5.3 Method

Gene length, distance to nearest upstream and downstream genes, number of exons

and number of isoforms were estimated from the refSeq genome table downloaded from

UCSC [Dreszer et al., 2012] using the R package GenomicRanges [Lawrence et al.,

2013].
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Figure 5.24: Boxplots showing the distribution of complexity scores for each possi-
ble number of robust associated promoters per gene detected in FANTOM5 CAGE.
Brown lines represent best fit lines from applying linear model to each of three scores
- top: normalized complexity, middle: complexity, bottom: entropy score. Top and
middle slopes are highly significant (p<1e-16), entropy slope is weakly significant,
according to modelling using the lm function for the complexity and normalised com-

plexity, and the rq function from the quantreg package for the entropy scores
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Figure 5.25: Explained percentages of variance in complexity scores (complexity -
red bars, normalised complexity - blue bars and entropy - green bars) for separate
regressors: the number of isoforms (isoforms), distance to nearest upstream gene
(upstream), distance to nearest downstream gene (downstream), gene length (length)
and number of exons associated with the gene (exon no) . Metrics used are LMG
(averaged contributions, e.g. see [Chevan and Sutherland, 1991]), First (before other
variables accounted for) and Last (after other variables accounted for). Total explained

variance from all regressors is given in orange.

The number of promoters were estimated by counting the number of robust clusters

annotated to a given gene within the FANTOM5 dataset [Forrest et al., 2014]. Clusters

were filtered so that expression was present in at least one primary cell type over which

complexity was calculated, with a median of at least 1 over the replicates.

A linear model as used to estimate the slope of increase in complexity with increasing

promoters. Quantile regression was used to estimate slopes for entropy scores (due to

violation of normality assumptions) [Koenker, 2013]. Due to small numbers of genes
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in categories with large numbers of promoters, these categories were grouped together

into pseudo categories with larger numbers of genes.
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5.6 Increased complexity correlates with cis-regulation

As introduced in Chapter 1, cis-regulatory elements (CRE) act to control gene ex-

pression, through the recruitment of transcription factors (TF) to binding sites on the

sequence within the vicinity of a gene. CREs encompass a wide variety of sequence

elements, including promoters and short-range enhancers, and small changes in these

elements can have large and unpredictable effects on the resulting expression. Genes

under the control of a broad landscape of cis-regulation are on the whole potentially

subject to more fine tuned pattern of expression levels according to cell type and bio-

logical or environmental needs. Turning this idea around, genes which exhibit complex

patterns of expression across the spectrum of cell types are hypothesised to be targeted

by more CREs than those which are simple in their expression (which may require only

basal levels of transcription achievable through the core promoter alone). This section

tests this by correlating measures of DNAse I hypersensitivity and conservation and

predicted enhancers in and around the vicinity of genes with measures of complexity

and entropy.

Figure 5.26: Schematic of potential cis-regulatory regions, based on DNase I hy-
persensitive sites (DHS) (red), predicted enhancers (green) and conserved GERP++
elements (blue). These regions represent potential transcription factor binding sites
with may mediate with the core promoter to regulate the transcription of the gene.

The regions cis-regulatory elements were measured over as as follows

• Upstream - 10,000 bp upstream of the upstream core promoter region. Thus, the

effect of short-range cis-regulatory elements.

• Upstream core promoter region - 250 bp upstream of the transcription start site
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• First intron

• Rest of gene - all parts of gene not including the first intron and including exons

• Downstream core promoter region - 250 bp downstream of the end of the last

exon

DNAse I hypersensitivity sites indicate areas of open chromatin whereby the DNA is

accessible to DNAse I cleavage enzymes. Mapped sites in the vicinity of the body of

a gene, as well as within its exons or introns, may be representative of cis-regulatory

modules affecting the regulation and hence expression of the gene. Such sites have

been mapped extensively [Thurman et al., 2012] and correlated with other markers

of regulation e.g. H3K27me3 marks. The number of DNAse I sites acting in a given

gene is often used as a proxy for the cis-regulatory effect on the gene, making it a

perfect variable to correlate with complexity scores [Thurman et al., 2012]. In terms

of transcriptional output, gene expression levels have been liked to the number of

hypersensitive sites [Wang et al., 2012].

Conserved sequences in the genome are those which are highly similar or identical be-

tween species. Conserved sequence is often observed in genes which appear in multiple

species, whilst non-coding sequence is often associated with regulatory regions. Gene

expression levels and breadth have been found to be positively correlated with con-

servation, particularly conservation observed in the introns of the gene [Gorlova et al.,

2014, Park and Choi, 2010]. Whilst protein coding genes are generally highly conserved

between species, conservation is not necessarily correlated with DNase I hypersensitive

sites. However, there exists a significant correlation between the number of hypersensi-

tive sites and the number of GERP conserved elements observed over the same genomic

region. The numbers within the first intron are correlated with a Pearson’s correlation

score of 0.738 (p < 2.2e− 16). This suggests that many of the observed conserved sites

are hypersensitivity sites and vice versa.

Enhancers are short sequences which in general typically act on a gene in cis- , can

influence a gene from up or downstream of its promoter, can appear within other genes

and act in an orientation independent manner [Shlyueva et al., 2014]. In FANTOM5



Chapter 5. Primary cell complexity 133

CAGE enhancers atlas have been mapped based on the presence of bidirectional tran-

scription [Andersson et al., 2014b]. The enhancer atlas includes the same set of cell

types used to calculate complexity scores and therefore removes the issue of a complex

gene whereby enhancers are missed due to complexity being calculated over cell types

not present in the cell types used to capture the enhancers.

Further note that many regulatory elements affecting gene expression do so from a

distance greater than 10kb upstream or downstream of the core promoter region. Fur-

thermore, they do not necessarily act on the gene they are nearest to. In the FANTOM5

project, the presence of correlations between expression vectors across cell types be-

tween putative enhancers and promoters has been applied to call an interacting pair

[Andersson et al., 2014b]. However, due to the highly specific nature of enhancers, the

sensitivity of such an approach is limited. Thus, in the absence of further informa-

tion about inferred interactions between enhancers and promoters, a cut-off of 10kb is

applied.

Figure 5.27 and Figure 5.28 show the distributions of hypersensitivity sites against

complexity scores in more detail. The number of overlapping GERP conserved sites for

the upstream promoter region against complexity scores is given in Figure 5.29 and for

the first intron is given in Figure 5.30.
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Figure 5.27: Boxplots showing the distribution of scores (x-axis) vs number of
DNase I hypersensitive sites within the space of 10k bp upstream of the gene (y-
axis), excluding the core promoter region and overlap with other genes. Orange lines
represent best fit lines from applying loess() function to each of three scores - top:
complexity, middle: normalised complexity, bottom: entropy score. Orange numbers

represent model r2 values.
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Figure 5.28: Boxplots showing the distribution of complexity measures for each
possible number of hypersensitivity sites observed within the first intron of the gene.
Genes with a single exon are allocated a value of 0. Orange lines represent best fit lines
from applying loess() function to each of three scores - top: complexity, middle:
normalised complexity, bottom: entropy score. Orange numbers represent model r2

values.
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Figure 5.29: Boxplots showing the distribution of scores (x-axis) vs number of
GERP conserved elements (y-axis) overlapping the upstream promoter region of the
gene. Orange lines represent best fit lines from applying loess() function to each of
three scores - top: complexity, middle: normalised complexity, bottom: entropy score.

Orange numbers represent model R2 values.
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Figure 5.30: Boxplots showing the distribution of scores (x-axis) vs number of
GERP conserved elements (y-axis) overlapping the first intron of the gene. Orange
straight lines represent best fit lines from applying linear model (lm function) to each
of three scores - top: complexity, middle: normalised complexity, bottom: entropy

score. Orange numbers represent model R2 values.
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5.6.1 Variance explained by conservation, DNAse I hypersensitivity and pre-

dicted enhancers

Figures 5.31,5.32 and 5.33 show the proportion of the explained variance in complexity

scores, normalised complexity scores and entropy scores respectively, for each of the

three datasets based on counting elements across each of the five regions described.

Each variable is given as a singular effect in order to understand their contribution

independently of interactions and correlations with other variables.
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Figure 5.31: Explained percentages of variance in complexity across five regions
of the gene: upstream, promoter, first intron, gene other and downstream. Metric
used is First (before other variables accounted for), due to correlations between data

sources. Total explained variance from all regressors is given in orange.

Counts based on the three datasets appear consistent in the proportion of complexity

scores explained based on the first intron and the rest of the gene. In particular,

enhancers in the first intron had the strongest effect of all variables. In terms of

upstream of the TSS, DHSs in the promoter had a strong influence on complexity, and

upstream DHSs and enhancers were also significant.
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Including all main effects together in a single model, all of the 15 variables explained

6.97% of the variance in complexity scores. The model including all pairwise interac-

tions explained 8.2% of the variation in complexity scores. The most significant inter-

actions were conservation upstream and enhancers upstream (positive effect, p-value

= 0.00014), conservation upstream and conservation in the upstream promoter region

(positive effect, p-value = 0.0015), and conservation in the upstream with conservation

in the first intron (negative effect, p-value = 0.065). Furthermore, when restricting to

ubiquitous genes only, the model including pairwise interactions explained 8.6% of the

variation in complexity scores.
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Figure 5.32: Explained percentages of variance in normalised complexity across five
regions of the gene: upstream, promoter, first intron, gene other and downstream.
Metric used is First (before other variables accounted for), due to correlations between

data sources. Total explained variance from all regressors is given in orange.

All variables together in the same model explain 4.21% of the variation in normalised

complexity scores and including interactions this increases to 6.6%. When restrict-

ing to ubiquitous genes, 8.2% of the variance is explained by the interactions model.

Complexity and normalised complexity show similar results across the first intron of

the gene, but normalised complexity seems to be influenced to a greater extent by

upstream DHSs compared to the presence of DHSs in the core promoter region.
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Figure 5.33: Explained percentages of variance in entropy across five regions of the
gene: upstream, promoter, first intron, gene other and downstream. Metric used is
First (before other variables accounted for), due to correlations between data sources.

Total explained variance from all regressors is given in orange.

The all variables model explains 7.43% of the variance in entropy scores, but note this

is all based on the effect of DHSs in the promoter region, and none of the other terms

were comparatively strong. The interactions model explained 11.0% of the variation

In conclusion, it appears that complex genes (as per the complexity and normalised

complexity scores) are enriched in cis regulation in and surrounding the proximity of

the gene and first intron and upstream regions appear to be important potential drivers

of this. Expression breadth does not appear to be driven by proximal cis- effects (it

is not surprising the promoter effect was strong because the more cell types found in

ENCODE with accessible chromatin, the more broadly expressed the gene).

However, whilst these effects are highly significant, there is still a large proportion of

the variance that is not explained by proximal cis- elements. The results are interpreted

further in Chapter 6.
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5.6.2 Methods

We referred to ENCODE clustered data available from

http : //hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegDnaseClustered/,

covering a total of 125 cell types and clustered so that a given cluster covered the pres-

ence of any sites across those cell types [John et al., 2011, Thurman et al., 2012].

Enhancer elements were downloaded from the FANTOM5 resource pages, directing to

the enhancer atlas [Andersson et al., 2014b]. These enhancers included the same set of

cell types over which complexity scores were calculated.

GERP conserved elements were downloaded for each chromosome [Cooper et al., 2005].

Justifications for using these elements were that they were already pre-calculated over

appropriate whole genome alignments, and are a widely used dataset with a well es-

tablished methodology that deals well with gaps in sequence alignments. It is often

tricky to deal directly with measuring substitution rates, because when looking at com-

parisons in coding and non coding sequence (genic/non-genic), there is not necessarily

synonymous sites to compare against in non coding regions (makes KS ratios pointless),

because mainly interested in non-coding constraint, of which we do not well know the

spatial distribution, rather we are looking for clusters of constraint, which is what the

GERP constrained elements is measuring.

The R package GenomicRanges [Koenker, 2013] was used to count the number of

sites from each of the three datasets present in the upstream, downstream, upstream

promoter, downstream pseudo-promoter, first intron and rest of gene region of the

gene. Upstream and downstream distances were calculated at 1000, 10000 and 100000

from the defined ’core promoter’, i.e. 250 basepairs from the 3’ or 5’ of the gene.

10000 bp was used for the final analysis, as this provided the strongest correlation with

complexity. Captured genomic regions excluded the promoter regions and exons of

neighbouring genes for the DNAse I hypersensitive sites, to avoid bias of recorded sites

not necessarily associated with the gene under study. However, enhancers were taken

to include the exons of neighbouring genes, to include possible enhancers regulating

the given gene from inside other genes.
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Counts in the in promoter region is defined as presence or absence of an element,

conservation in the gene or first intron is defined as the number of elements overlapping

with the entire region. Sites in the first intron of the gene were left both as a raw count

and also normalised according to the log of the number of base pairs of the first intron.

Since little difference was observed between the two in terms of statistical correlation

with complexity, the raw counts were provided in Figure 5.28, but genes with sites above

around 60 were grouped into one category for calculating statistical relationships due

to sparse data.

Linear models were used to estimate the R2 effects of the number of sites as covariates

and complexity scores as the independent variable. Forward and backward selection

were run to find to the most significant two-way interactions.

In order to check for gene length as a confounding factor in the number of overlaps

across the gene body, a linear model was calculated, including log gene length as an

interaction term with the log of the number of conserved elements across the gene (plus

a pseudo count to allow for counts of zero). The interaction was not of significance

(p = 0.056), nor was the main effect for gene length (p = 0.079). This suggests that

using the raw number of conserved elements across the gene is better than correcting

for gene length. To test gene length correction, the number of conserved elements for

MB across the gene was calculated and a linear model calculated to estimate the effect

of the log corrected number of sites (plus a small pseudo count) on complexity scores.

This term was significant (p = 1.29e − 05), but much less so than the raw number of

counts (p < 2.2e − 16, adjusted R2 of 0.001 for the length corrected vs 0.021 for the

raw count).

5.7 Histone modifications correlate with complexity scores

As introduced in Chapter 1, histone modifications have been associated with patterns of

gene expression. Methylation of histone H3 (H3K4me3) is highly associated with gene

activation and is present at the promoters of large numbers of genes [Hussey et al.,

2015]. H3K4 tri-methylation is put down by the complex by the methyltransferase
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SET1, which associates to a CpG binding protein Cfp1, thus linking H3K4me3 to CpG

island associated genes, thus explaining why these genes typically exhibit widespread

activation across cell types [Lee et al., 2007, Thomson et al., 2010].

Polycomb proteins are epigenetic regulators of transcription, polycomb mediated methy-

lation of histone H3 (H3K27me3) marked promoters have been commonly associated

with repressive marks via the methylation of histones [Di Croce and Helin, 2013]. These

marks are generally laid down through development and differentiation but are not re-

quired for the initiation of silencing; they appear to have a role in the maintenance

of repression in the differential process [Riising et al., 2014]. Moreover, they are not

necessary permanent, appearing to act as repression marks in promoters ‘poised’ for

potential activation, particularly when H3K4me3 is also present at the same promoter

([Voigt et al., 2013]). Much evidence has accumulated that the relationships between

regulatory elements and expression defined are by histone modifications [Rhie et al.,

2014].

The Epigenetics Roadmap project presents large scale mappings of histone modifica-

tions across the genome across a variety of tissues and cell types, in what is referred

to as ‘epigenomes’ [Kundaje et al., 2015]. Presented in this section is an attempt to

associate signals for commonly studied histone marks in the promoters and across the

body of genes with the complexity scores we observed for those genes across the given

set of primary cell types.

5.7.1 Complexity in primary cells is highly predicted by combinations of H3K27me3

repressive marks and H3K4me3 activation marks

Figure 5.34 shows the relative distributions of complexity and entropy scores over

H3K4me3, H3K27me3 and combinations of cell types containing both marks

the nine combinations of low, medium and high H3K4me3 and H3k27me3 histone marks

observed within the core promoter region. As expected, high expression breadth (high

entropy) is related to low H3K27me3 marks and high H3K4me3 marks. The highest

complexity scores were observed in those genes with high H3K27me3 marks and low
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H3K4me3 marks. These genes correspond to the set with the lowest entropy, suggesting

that these complex genes are in general more restricted in their expression than other

combinations.
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Figure 5.34: Breadth of H3K4me3, H3K27me3 and bivalent marks against complex-
ity scores: complexity (red), normalised complexity (blue), entropy (green). Left of
scale: modifications present in no epigenomes of no tissues at gene promoter, right of
scale: modifications present in all epigenomes of all tissues at gene promoter. Orange
lines represent smooth best fit lines based on the loess function in R. Orange num-
bers represent explained proportion of variance from the lm function in R, treating

modification count as a factor dependent variable.

To observe how histone marks change over complexity scores, Figure 5.25 shows how

H3K27me3, H3K27ac and H3K4me3 marks in the core promoter region of genes change
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on average as complexity increases. Over the region with high activation signal (H3K4me3),

H3K27me3 marks increase with increasing complexity, suggesting that polycomb marks

may be a predictor of regulation as opposed to simply a predictor of expression breadth.

Both H3K27ac and H3K4me3 marks decrease in the region of high complexity, as a

result of highly complex sample restricted genes.

Figure 5.35: Proportion of genes associated with H3K27ac marks in their core pro-
moter, proportion of genes associated with H3K27me3 marks in their core promoter
and proportion associated with both H3K27me3 and H3K27ac. Genes are ranked in
order of complexity and each data point for each variables is calculated as its averaged
values from the current gene and including up to the next 1000 genes. Background
distributions are calculated by permuting the ranks of the complexity scores and recal-
culating the proportions. Proportions of H3K27ac present genes are plotted in red with
a pink background distribution, complexity is plotted in black with a grey background
distribution, H3K27me3 proportion is plotted in blue with a light blue background
distribution and H3K27ac:H3K27me3 interaction is plotted in orange with a yellow

background distribution.

To statistically quantify the effect of histone marks on complexity scores, quantile
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regression was run to estimate their effects on low complexity and high complexity

genes. As expected, H3K27me3 marks have a strongly increasing effect on complexity

overall and particularly in the upper quartiles, relating to high entropy genes.

Thus, it is observed that regulatory complexity scores highly associate with the chro-

matin signals H3K4me3 and H3K27me3. In particular, the relationship with H3K27me3

suggests that the high complexity scores in genes are due to the on-off switching ob-

served across cell types, potentially due to their poised, silenced state associated with

this modification.

5.7.2 Complexity in primary cells is weakly associated with H3K9me3 and

H3K36me3 signal recorded over the gene body

As well as histone promoter region marks, epigenetic signals across the gene body have

been associated with activation/inactivation across developmentally regulated genes

[Dambacher et al., 2010], two being H3K9me3 and H3K36me3. In particular, H3K36

histone residues are methylated co-transcriptionally by the RNA polymerase II SET2,

and appear to play a role in maintaining chromatin spacing in yeast during transcrip-

tional elongation [Venkatesh and Workman, 2013]. Thus, it is strongly associated with

gene activation and should correlate with entropy scores, although its association with

gene complexity scores is less clear.

Figure 5.36 shows the distribution of the the log signal of H3K9me3 and H3K36me3

recorded over the gene body and Figure 5.37 shows the correlation between the two

signals and complexity scores.

Complexity scores are significantly positively correlated with both H3K9me3 and H3K36me3

(Figure 5.37), with respective R2 values of 0.006 and 0.016, corresponding to explained

variance percentages of 0.6% and 1.6%. Thus, H3K36me3 is more highly correlated

with complexity, although the effect sizes themselves are very small, possibly having

small biological significance.
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Figure 5.36: Histograms of observed H3K9me3 and H3K36me3 over the body of
genes. Frequencies given in terms of the log of the signal.

Figure 5.37: Scatter plots of log signal of histone mark H3K9me3 vs complexity,
and the log signal of histone mark H3K36me3 vs complexity. Red lines indicate best
fit lines from linear model, with R2 values calculated from the model. Significance is

given as (***), which implies that the slope of the line is highly significant.
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Figure 5.38 shows the same plot but with entropy scores. Whilst H3K9me3 is weakly

correlated with entropy (R2 = 0.002), H3K36me3 is highly correlated (R2 = 0.1362),

suggesting that, as expected, H3K36me3 is a signal of activation; the more H3K36me3,

the broader the expression of the gene.

Figure 5.38: Scatter plots of log signal of histone mark H3K9me3 vs entropy, and
the log signal of histone mark H3K36me3 vs entropy. Red lines indicate best fit lines
from linear model, with R2 values calculated from the model. Significance is given as

(***), which implies that the slope of the line is highly significant.

In conclusion, genes associated with H3K36me3 over the gene body are broadly ex-

pressed but also show a moderate increase in complexity, suggesting that this mod-

ification associates with genes which undergo more dynamic changes in expression,

potentially through its regulatory mechanism of maintaining chromatin states at these

genes [Venkatesh and Workman, 2013].

5.7.3 Explained variance from epigenetic modifications

Figure 5.39 shows the percentage of the explained variance of each of 6 histone modifica-

tions for complexity scores: H3K4me3, H3K27me3, bivalent (H3K4me4 and H4K37me3
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together in the same tissue), H3K27ac, all overlapping the promoter region, and H3K9me3

and H3K36me3 overlapping the gene body.
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Figure 5.39: Explained percentages of variance in complexity scores for epigenetic
variables. Metrics used are LMG (averaged contributions, e.g. see [Chevan and Suther-
land, 1991]), First (before other variables accounted for) and Last (after other variables

accounted for). Total explained variance from all regressors is given in orange.
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Figure 5.40 shows the percentage of the explained variance of each of 6 histone modi-

fications for normalised complexity scores, based on three metrics (first in model, last

in model and LMG, balanced contributions).
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and Sutherland, 1991]), First (before other variables accounted for) and Last (after
other variables accounted for). Total explained variance from all regressors is given in

orange.
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Figure 5.41 shows the percentage of the explained variance of each of 6 histone mod-

ifications for entropy scores, based on three metrics (first in model, last in model and

lmg, balanced contributions). As was seen in the previous section, H3K4me3, associ-

ated with activation, dominates all three metrics. H3K27ac came second in the LMG

classifications, followed by H3K27me3. Almost all of the variables other than H3K4me3

are heavily reduced in ‘last’, suggesting that they are not as important once H3K4me3

has already been accounted for. H3K9me3 does not appear to be important for defining

breath of expression.
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Figure 5.41: Explained percentages of variance in entropy scores for epigenetic vari-
ables. Metrics used are LMG (averaged contributions, e.g. see [Chevan and Suther-
land, 1991]), First (before other variables accounted for) and Last (after other variables

accounted for). Total explained variance from all regressors is given in orange.

5.7.4 Interactions between CpG genes and histone modifications

The histone mark H3K27me3 interacts with the promoters of untranscribed genes as-

sociated with CpG islands, maintaining their silenced state and cell identity [Li et al.,

2014, Riising et al., 2014]. To more closely interrogate the strong relationship observed

between combinations of active and repressive histone promoter modifications and the
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normalised complexity scores, the histone modifications H3K27me3 and H3K4me3 were

compared with CpG effects, shown in Figures 5.42 and 5.43.
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Figure 5.42: (Left): Interactions between CpG, H3K4me3 and H3K27me3 pres-
ence/absence at the core promoter Numbers indicated in brackets are the numbers
of genes in each category. Genes containing either mark are broadly associated with
that mark in their promoter across all analysed epigenomes, genes with neither are all
those not broadly associated with either mark in their promoter. (Right): Explained
proportions of variance in CpG, H3K4me3 and H3K27me3 and CpG interactions.
Relative proportions of explained variance of normalised complexity scores are cal-
culated based on the lm (linear model) function in R. Total explained variance for

model is 22.44%.

Differences between the presence and absence of CpG island were the most prominent

in genes which did not display either modification in their promoters across all analysed

epigenomes (Figure 5.42, left), followed by those genes which displayed only activation

marks in their promoters. Genes not broadly exhibiting either mark and and not

associated with a CpG island were highly complex (p-value < 2.2e-16, t.test with

mean increase of 0.20 when compared with all other genes), with a mean of 0.70.

The least complex genes were those broadly exhibiting H3K4me3 but not H3K27me3
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and an associated CpG island. These genes are likely to be ubiquitously expressed

housekeeping type genes, which have been shown to have reduced complexity.

Genes exhibiting broad H3K27me3 marks but not H3K4me3, and genes broadly exhibit-

ing both marks showed very little difference between their CpG association (p-values

0.90 and 0.93 based t.test for differences in means,for each case respectively).

The CpG interaction with H3K4me3 and H3K27me3 explains 0.17% and 0.98% of the

variation in normalised complexity scores, respectively (Figure 5.42, right), suggesting

that CpG associations interact more strongly with H3k27me3 histone modifications

than H3K4me3.

Figure 5.43 shows in more detail the interactions between specifically bivalent genes

and those genes which exhibit no marks whatsoever in their core promoter across any of

the analysed epigenomes. As shown in Figure 5.42, genes exhibiting both marks in all

epigenomes showed no significant difference in CpG association, however genes with no

potential bivalent marks across any epigenome show dramatically different CpG island

presence; those without CpG islands are the least complex (p-value < 2.2e-16, t-test

compared with all other genes).

This suggests that not only are genes associated with bivalent marks are more complex,

but bivalent genes are complex independent of their CpG association. CpG islands only

appear to be influencing the complexity of the gene in those genes were bivalency is not

observed, more specific the bivalency marks, the stronger the effect of CpG presence.

5.7.5 Methods

Human ‘epigenomes’ were download from the Roadmap Epigenomics Consortium ([Kun-

daje et al., 2015]). A selection of 22 primary tissues were chosen incorporating a range of

different tissue groups; the selection of groups and associated IDS are given in Appendix

D. For each of these epigenomes, five datasets were downloaded, each containing lists

of broad domains enriched for histone ChIP-seq peaks. The five datasets corresponded

to five commonly studied histone modifications: H3K4me3, H3K27me3, H3K9me3,

H3K36me3 and H3K27ac.
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Figure 5.43: Interactions between CpG and bivalency breadth at the core promoter
(left) and Explained proportions of variance in CpG, bivalency and CpG:bivalent
interaction (right). "All bivalent" bivalency is defined here as a bivalent mark in all
22 tissues at a gene’s promoter, "None" is where none of the 22 tissues have a bivalent
mark at the gene’s promoter, and "some bivalent" is in between these two states.

Numbers indicated in brackets are the numbers of genes in each category.

For H3K4me3, H3K27me3 and H3K27ac modifications, the coordinates for the peaks

in each dataset was overlapped with the core promoter region of the gene according to

refseq (between 1 and 250 bp upstream of the TSS of the gene), and a count of 0 or

1 allocated to the gene corresponding to presence or absent of the modification in the

core promoter. A count from 0 to 22 was then achieved according to how many of the

22 datasets contained the signal in the core promoter for a gene. Due to large numbers

of genes in categories 0 and 22 and smaller number within categories 1 to 21 (figure

ref), these internal counts were compacted together to achieve a final count from 0 to

6, representing breadth of histone signal for the core promoter of the gene.

In order to determine the bi-valency status of the gene, binary vectors of presence or

absence of the modification H3K4me3 over the 22 primary tissues were multiplied with
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the corresponding binary vectors for H3K27me3. The result was then summed to give

a value from 0 to 22 of how many of the primary tissues contained both marks together

for a given gene. As before, these groups were then collapsed to give a breadth of

bi-valency from 0 to 6.

For H3K9me3 and H3K36me3 signals, overlaps were measured across the entripy gene

body based on gene start and gene end refseq coordinates.

5.8 Protein age

Older genes are more broadly expressed whilst younger genes tend to be restricted

in their expression [Hao et al., 2010]. In order to test for the effects of age on gene

expression scores, protein age was downloaded from ProteinHistorian [Capra et al.,

2012].

Figure 5.44 shows the distribution of complexity, normalised complexity and entropy

stratified by gene age (left) and the variance of scores across that gene age (right). In

all scores, the variance of the the set of genes generally increases with decreasing age;

the newer the gene, the more variety of gene expression patterns are observed.

Complexity scores stratified by protein age gave an approximate R2 value of 1.4% and

2.7% for the 0.2 and 0.8 quantile respectively. Complex genes increased dramatically in

their complexity from unicellular organisms, though the development of multicellularity

and peaking at Euteleostomi (p < 2e-16, quantile regression) before reducing to above

baseline at the Theria stage (p < 2e-16) and increasing modestly to Human.

Normalised complexity scores stratified by protein age gave an approximate R2 value

of 2.5% and 7.3% for the 0.2 and 0.8 quantile respectively. Complex genes increased

dramatically in their complexity from unicellular organisms, and in generally continued

to increase with newer genes, thus suggesting an upward trend of complexity as new

genes evolve.

For both complexity and normalised complexity, the upper quantile (0.8), or the highly

complex genes, is more significantly changing than the lower quantile (0.2), or the genes



Chapter 5. Primary cell complexity 156

of low complexity, suggesting that newer genes appear to evolve with regulation causing

more and more complex gene expression patterns, but newer genes also still evolve with

patterns of less complexity - for complexity scores, the drift is towards more complex

and less complex than older categories of genes evolving together. In normalised com-

plexity scores there is more of an active shift, with both quantiles shifting towards the

more complex, but the lower quantile less so than the upper. These findings contradict

[Warnefors and Eyre-Walker, 2011a], who find that older genes are more complex in

their regulatory mechanisms, since they have had more time to accumulate regulation.

Figures 5.45 and 5.46 agree with [Warnefors and Eyre-Walker, 2011a] - older genes

(newer than multicellularity but older than mammalia) have greater numbers of con-

served sites overlapping the gene, and greater numbers of DHSs in their first intron.

This suggests that newer genes might be undergoing different regulatory processes

than what is captured by DHSs or conservation; perhaps more recently evolved genes

are more involved in protein-protein interactions offsite of the DNA. This is discussed

further in Chapter 6.

In contrast the lower quantiles of entropy scores (approximate R2 of 0.11 for 0.2 quan-

tiles) dramatically decrease across time with the increase around the Theria stage

mirroring the decrease in complexity observed around the same time, before increasing

once again and decreasing slightly in Human. The upper quantile remains constant

through time (approximate R2 of 0.003 for 0.8 quantiles). The earliest genes (those

relating to Cellular organisms, Eukaryota and Opisthokonta) have extremely skewed

entropy distributions. High entropy corresponds to high expression breadth, suggesting

that the oldest genes were enriched in those with housekeeping function. Thus, newer

genes appear to evolve more and more specificity, but newer genes may also be broad

in their expression.
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Figure 5.44: Evolution of regulatory complexity: Complexity scores (top), nor-
malised complexity scores (centre) and entropy scores (bottom) across 16 time points
for age of related protein, from cellular organisms to human. Left and right orange
curves represent fitted estimates from a quantile regression model, fitted at the 0.2
and 0.8 quantiles respectively. Numbers next to the curves represent approximated
R2 values from the entire model. This value is 0.003 for the right hand curve of the

entropy score. Entropy normalized to a maximum of 1.
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Figure 5.45: Evolution of regulatory complexity: Conserved GERP sites across
gene (not including first intron) (top), conserved GERP sites in promoter region
(centre) and conserved GERP sites in first intron (bottom) across 16 time points for
age of related protein, from cellular organisms to human. Left and right orange curves
represent fitted estimates from a quantile regression model, fitted at the 0.2 and 0.8
quantiles respectively. Numbers next to the curves represent approximated R2 values
from the entire model. This value is 0.00 for the left hand curve of the centre plot.
GERP site counts are capped to a maximum of 50 for the whole gene and 20 for the

first intron.
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Figure 5.46: Evolution of regulatory complexity: Number of DHSs upstream of
gene (top), number of DHSs downstream of gene (centre) and number of DHSs in
the first intron (bottom) across 16 time points for age of related protein, from cellular
organisms to human. Left and right orange curves represent fitted estimates from a
quantile regression model, fitted at the 0.2 and 0.8 quantiles respectively. Numbers
next to the curves represent approximated R2 values from the entire model. This value
is 0.01 for the left hand curve of the bottom plot. DHS site counts are capped to a

maximum of 50 for the first intron.
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Figure 5.47: Evolution of regulatory complexity: Exon count (top), number of
isoforms (centre) and number of CAGE annotated TSS (bottom) across 16 time points
for age of related protein, from cellular organisms to human. Left and right orange
curves represent fitted estimates from a quantile regression model, fitted at the 0.2
and 0.8 quantiles respectively. Numbers next to the curves represent approximated
R2 values from the entire model. This value is approximately 0 for the left hand curve
of the bottom plot and centre plots. TSS and exon counts are capped to a maximum

of 50 for illustrative purposes.
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5.8.1 Methods

Protein age data was downloaded from ProteinHistorian ([Capra et al., 2012]), cate-

gorizing proteins into distinct phylogenetic ages. Data for human involves 16 states,

from cellular organisms to human. Protein ids were converted to associated gene ids

and compared to scores of gene expression.

Due to the unevenness in the shapes of the distributions across quantiles, quantile

regression was used to estimate the significance of changes in scores compared to cellular

organisms, with τ = 0.2 for the lower quantiles and τ = 0.8 for the upper quantiles.

Quantile regression was based on the rq function from the quantreg package in R.
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5.9 What proportion of variation in complexity scores can we

explain from our studied variables?

In previous sections, it has been concluded that genomic variables correlate significantly

with complexity scores. In particular, the number of hypersensitive sites upstream and

within the first intron of the gene, histone modifications in the gene promoter, the

number of associated TSS and protein age all appear to have the strongest predictive

effect on the regulatory expression complexity.

Figures 5.48 to 5.53 display the variance explained by the main effects of each variable

of the complexity scores. They show the variance explained by all of the single effects

together and the variance explained including all two-way interactions.

5.9.1 Total variance explained in complexity scores
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Figure 5.48: Contribution of the variance of the complexity scores explained by each
of the 29 variables, based on the "first" metric. Abbreviations: cons = conservation,
us = upstream, usp = upstream promoter, dhs = DNase I hypersensitive site, en =
enhancer, fi = first intron, gene = gene body minus the first intron, ds = downstream.
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Figure 5.48 shows the contributions of the effects of 29 variables on complexity, based

on the ’first’ metric (individual main effects ignoring the effects of all other variables).

As has been seen in previous sections, epigenetic modifications in the core promoter

had the strongest effect together with the effects of a CpG island in the core promoter.

Cis-regulatory elements also had significant effects and distance based parameters and

TSS count had weak but significant effects.

All of the variables together without interactions explain a total of 23.35% of the

variation in complexity. With all two way-interactions this increases to 39.93%.
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Figure 5.49: Contribution of the variance of the complexity scores explained by each
of the 29 variables, based on the "first" metric. Abbreviations: cons = conservation,
us = upstream, usp = upstream promoter, dhs = DNase I hypersensitive site, en =
enhancer, fi = first intron, gene = gene body minus the first intron, ds = downstream.

Overall, it appears that cis-regulation surrounding the gene are important indicators

of regulatory complexity, as well as H3K27me3 and H3K4me3, together with their

combinations, which appears to dominant the explained variance. Furthermore, a lot

variance is explained by two way interactions between the variables, which reiterates

that genes are not regulated by single processes alone; but a combination of multiple

factors.
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5.9.2 Total variance explained in normalised complexity scores

Figure 5.48 shows the contributions of the effects of 29 variables on normalised com-

plexity, based on the ’first’ metric (individual main effects ignoring the effects of all

other variables). As has been seen in previous sections, epigenetic modifications in the

core promoter had the strongest effect together with the effects of a CpG island in the

core promoter. Cis-regulatory elements also had significant effects and distance based

parameters and TSS count had weak but significant effects.
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Figure 5.50: Contribution of the variance of the normalised complexity scores ex-
plained by each of the 29 variables, based on the "first" metric. Abbreviations: cons =
conservation, us = upstream, usp = upstream promoter, dhs = DNase I hypersensitive
site, en = enhancer, fi = first intron, gene = gene body minus the first intron, ds =

downstream.

All of the variables together without interactions explain a total of 46.33% of the

variation in complexity. With all two way-interactions this increases to 57.36%.

Figure 5.49 shows the contributions of the effects of 29 variables on normalised com-

plexity, based on the ’last’ metric (individual main effects ignoring the effects of all

other variables).
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Figure 5.51: Contribution of the variance of the normalised complexity scores ex-
plained by each of the 29 variables, based on the "first" metric. Abbreviations: cons =
conservation, us = upstream, usp = upstream promoter, dhs = DNase I hypersensitive
site, en = enhancer, fi = first intron, gene = gene body minus the first intron, ds =

downstream.

It appears that more variation in total is explained by the normalised complexity scores

compared to complexity scores, especially when considering the variation explained by

the interaction effects. Looking closely, much of this extra variance is due to the added

explained variance due to CpG effects and chromatin modifications. It is hardly surpris-

ing that CpG effects would increase, since normalised complexity scores are, by design,

more tissue restricted, which is highly associated with CpG depletion. Furthermore,

since there is less overall activation due to tissue specificity, it is neither surprising

that these scores correlate more with H3K4me4. Thus, the added variance explained

compared to the complexity scores does not appear to present a case for their overall

significance over simply using complexity scores alone in analyses.
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5.9.3 Total variance explained in entropy scores

Figure 5.52 shows the contributions of the effects of 29 variables on normalised com-

plexity, based on the ’first’ metric (individual main effects ignoring the effects of all

other variables).
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Figure 5.52: Contribution of the variance of the entropy scores explained by each
of the 29 variables, based on the "first" metric. Abbreviations: cons = conservation,
us = upstream, usp = upstream promoter, dhs = DNase I hypersensitive site, en =
enhancer, fi = first intron, gene = gene body minus the first intron, ds = downstream.

All of the variables together without interactions explain a total of 60.1% of the varia-

tion in complexity. With all two way-interactions this increases to 76.91%.

Figure 5.53 shows the contributions of the effects of 29 variables on normalised com-

plexity, based on the ’last’ metric (individual main effects ignoring the effects of all

other variables).
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Figure 5.53: Contribution of the variance of the entropy scores explained by each
of the 29 variables, based on the "first" metric. Abbreviations: cons = conservation,
us = upstream, usp = upstream promoter, dhs = DNase I hypersensitive site, en =
enhancer, fi = first intron, gene = gene body minus the first intron, ds = downstream.

Overall, entropy scores are highly dominated by H3K4me3 effects; which is not surpris-

ing since they associate with activation and thus breadth of expression. However, the

variance explained by cis-regulation surrounding the gene and the effect of H3K27me3

has reduced here compared to complexity scores - these are factors we have defined as

important for regulatory complexity, and not a distinguishing property for specificity

of expression.

5.10 Disease analysis

Disease is associated with many forms of changes in regulatory mechanisms, including

point mutations, splicing regulatory variants and loss of function mutations. Disease

causing variants have been mapped to cis-regulatory sequences [Epstein, 2009], par-

ticularly in recent years in conjunction with the development of technologies allowing

for the screening of genome-wide regulatory elements, such as histone modifications
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Table 5.9: Primary cell types expressing HBB at tpm of at least 1 an their associated
tpm values

Primary cell type tpm

CD34 cells differentiated to erythrocyte lineage 217848.0
Peripheral Blood Mononuclear Cells 703.0
Neutrophils 676.0
chorionic membrane cells 139.0
amniotic membrane cells 122.0
Basophils 58.0
Hepatocyte 51.0
CD19 B Cells 34.0
Anulus Pulposus Cell 19.5
nasal epithelial cells 11.5
Tracheal Epithelial Cells 4.0
CD8 T Cells 3.0
Natural Killer Cells 1.0
CD4 T Cells 1.0

and DNAse I hypersensitivity. Mutations in cis regulatory sequence have been found

to cause changes in the expression levels of a gene, predisposing individuals to disease

through resulting phenotypic changes [VanderMeer and Ahituv, 2011]. This leads to

the question as to whether highly regulated genes affected by a broad cis-regulatory

landscape are more susceptible to mutational perturbations than less regulated genes

affected by fewer regulatory sequence.

A classic example of disease causing mutations is the beta-golbin (HBB) gene; hundreds

of mutations of the HBB gene are known to cause the disease beta thalassemia, including

single nucleotide polymorphisms in the promoter of the gene, resulting in a reduction

in beta-golbin production ([Ayub et al., 2010, Galanello and Origa, 2010]).

Of the 138 steady state primary cell types in the current analysis, HBB expression

appears within 14 at 1 tpm or greater; of which approximately 99.2% of the total tpm-

normalised expression levels are within erythrocytes, and the final 0.8% representing

low level expression in other cell types (Table 5.9). It receives a complexity score of

0.42 and a normalised complexity score of 1.00, suggesting that this gene may exhibit

a greater target for disease causing mutations.
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Not just proximal elements, but also distal enhancers represent an important source of

mutational targets in human disease ([Kleinjan and van Heyningen, 2005]). In partic-

ular, SHH enhancer mutations have been associated with preaxial polydactyly (PPD),

which has the phenotype of malformations in limb development. SHH has an expres-

sion breadth of 13% normalised complexity score of 0.72 (top 20%) and a complexity

score of 0.40 (top 40% for given expression breadth).

Attempting to link exact mutational processes and regulatory changes to disease phe-

notypes remains an important challenge. Changes are often pleiotropic (affecting one

or more genes) and do not necessarily affect the genes they are closest to. Furthermore,

diseases are often highly complex in nature, often caused by the accumulated effects

of thousands of small changes. Prioritising genes for further study of a disease has re-

ceived considerable attention and computational methodologies have been employed to

with emphasis on looking at gene function, linkage disequilibrium of SNPs and pathway

relationships, amongst other things.

Whilst the exact molecular mechanisms linking regulatory perturbation to disease phe-

notype is not well understood, using complexity and entropy scores as a proxy for the

size of the mutational landscape acting on a gene may aid in the selection of potential

target genes for closer examination. This section attempts to correlate groups of genes

associated with categories of disease with measures of complexity in order to test the

validity of this hypothesis.

5.10.1 Complexity and disease associated genes related to anatomical cate-

gories

In order to see if complex genes were associated with diseases specific to any anatomical

category, genes associated with disease were downloaded from malacards [Rappaport

et al., 2013] and odds ratios were modelled using logistic regression.

The results of the logistic regression models are given in Table 5.10 and the given

odds ratios are plotted with their 95% confidence bounds in Figure 5.54. Visual in-

spection shows that the normalised complexity scores are clearly the most predictive
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of disease status, with all diseases apart from ‘smell/taste’ significant, with 12 of the

categories ‘highly significant’. Complexity scores are highly significantly predictive of

bone, nephrological and skin diseases. Entropy is associated with an odds ratio smaller

than one for blood, cardiovascular gastrointestinal, immune and respiratory diseases,

suggesting that expression specific genes may be associated with these disease cate-

gories.

Table 5.10: Complexity odds ratios for anatomical categories from disease gene
database. Each point is the result from applying a binomial logistic repression model
with logit link and presence and absence of specific disease association as the dependent
variable. Results are report by taking the exponential of the resulting log odds ratio

from the model.
Key: ( ) = not significant, (.) = p-value<0.1, (*) = p-value<0.05, (**) = p-value <
0.01 and (***) = p-value < 0.001. Odds ratios with confidence bounds are given in

Figure 5.54.

Number of genes Complexity Complexity (normalised) Entropy (inverted)

blood 979 1.33 ( ) 2.81 (***) 1.59 (***)
bone 1089 2.72 (***) 1.69 (***) 0.82 ( )
cardio 842 1.43 (*) 2.06 (***) 1.82 (***)
ear 410 1.36 ( ) 1.27 ( ) 1.31 ( )
endocrine 877 0.995 ( ) 1.23 ( ) 1.49 (**)
eye 1428 1.19 ( ) 1.18 ( ) 1.06 ( )
gastrointestinal 862 1.03 ( ) 2.12 (***) 1.75 (***)
immune 933 1.4 (*) 3.93 (***) 1.62 (***)
liver 342 0.481 (**) 0.851 ( ) 1.54 (*)
mental 738 0.871 ( ) 1.03 ( ) 1.23 ( )
muscle 394 1.62 ( ) 0.899 ( ) 0.842 ( )
nephrological 808 1.55 (*) 1.23 ( ) 1.22 ( )
neural 2381 1.54 (***) 1.04 ( ) 0.846 ( )
oral 336 1.53 ( ) 1.34 ( ) 1.51 (*)
reproductive 721 1.42 ( ) 1.44 (*) 1.28 ( )
respiratory 558 1.18 ( ) 3.22 (***) 1.9 (***)
skin 1090 1.74 (***) 2.64 (***) 1.31 (*)
smell/taste 24 2.49 ( ) 1.19 ( ) 0.914 ( )

Next the gene list associated with ‘cancer’ was downloaded from malacards and odds

ratios were calculated using logistic regression. The category as a whole was found to

be highly associated with complexity scores (odds ratios of 3.19 and 3.15 for complexity

and normalised complexity scores, respectively, p < 0.05), and the same cancer category

queried for specific cancer types also find significant relationships (Figure 5.55 and
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Figure 5.54: Visual plot of odds ratios and 95% confidence intervals across anatom-
ical categories, for complexity (blue lines), normalised complexity (red) and entropy
scores (green), based on logistic regression analysis. Upper limit for entropy scores
lies above the top of the plot for eye, nephrological (neprho) and smell/taste (not

significant). Data is based on models described in Table 5.10

Table 5.11). The highest category observed was sarcoma (odds ratios of 6.11 (p <

0.001) for complexity scores and 2.24 (p < 0.05) for normalised complexity scores.

Interestingly, the odds ratio for the entropy was not significant for this cancer type (odds

ratio 1.34, not significant), suggesting that complexity scores, which were designed to

capture highly regulated genes, are able to capture potential cancer targets of genes

beyond their specificity.

5.10.2 Methods

Lists of diseases associated with anatomical categories were downloaded from malacards

[Rappaport et al., 2013]. Lists of disease associated genes and diseases were downloaded
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Table 5.11: Odds ratios for cancer categories. Each point is the result from apply-
ing a binomial logistic repression model with logit link and presence and absence of
specific disease association as the dependent variable. Results are report by taking

the exponential of the resulting log odds ratio from the model.
Key: ( ) = not significant, (.) = p-value<0.1, (*) = p-value<0.05, (**) = p-value <
0.01 and (***) = p-value < 0.001. Odds ratios with confidence bounds are given in

Figure 5.55.

Category Number of genes Complexity Complexity (normalised) Entropy

cancer 2204 1.99 (***) 1.96 (***) 0.784 (**)
lung cancer 95 3.19 (*) 3.15 (*) 0.892 ( )
carcinoma 414 2.13 (**) 1.64 (*) 0.713 ( )
sarcoma 155 6.11 (***) 2.24 (*) 1.34 ( )
breast cancer 185 2.52 (*) 1 ( ) 1.88 ( )
prostate cancer 105 1.96 ( ) 2.08 ( ) 0.402 (**)
ovarian cancer 70 2.43 ( ) 2.4 ( ) 0.577 ( )
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Figure 5.55: Visual plot of odds ratios and 95% confidence intervals across cancer
categories, for complexity (blue lines), normalised complexity (red) and entropy scores
(green), based on logistic regression analysis. Data is based on models described in

Table 5.11
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from genecards [Rebhan et al., 1998, Safran et al., 2010]. For each anatomical cate-

gories, diseases were cross-referenced with the disease genes list to see if there was an

an associated disease gene. Grouping by anatomical category as opposed to specific

diseases allows for greater statistical power in detecting statistical effects.

Cancer associated genes were found by using grep to find particular cancers from

the genecards disease list. Logistic regression was applied to test whether scores of

complexity were predictive of whether or not a given gene is associated with a particular

type of disease. Since some of the categories are subsets of other categories (for example,

neuronal diseases include the mental disease category), an association spotted within

one category may not be a distinct result from observing an association in another

category.

5.10.3 Complexity is associated with Alzheimer’s genes

Alzheimer’s is a neurological disease, most associated with ageing and which may affect

over 66 million people by 2030 [Wortmann, 2012]. Whilst ageing plays the largest role,

the disease has a variety of risk factors and is typically separated according to late and

early onset of symptoms. Scientists have not pinned down a single causative gene for

the disease, although classic studies of linkage analysis have revealed many genes with

weak associated effects and more recent genome-wide association studies have identified

vast numbers of candidate genetic variants in important risk genes, such as CLU and

PICALM [Harold et al., 2013].

It is thought that genetic factors could explain as much as 70% of the risk of developing

Alzheimer’s [Bettens et al., 2013]. The Alzgene database [Bertram et al., 2007] is a

table of genes based on a meta analysis of genetic studies linking genes to the risk of

developing Alzheimer’s through the detection of single nucleotide polymorphisms in or

around potential risk genes. The most commonly cited risk gene for Alzheimer’s is

APOE [Corder et al., 1993] which Alzgene lists as its number one gene, whereby having

the e2/3/4 allele increases the risk of developing Alzheimer’s by an odds of 3.685 (data

displayed as part of Table 5.12), compared to the next most significant gene, BIN1,
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with an odds ratio of 1.166. Thus, apart from APOE, these are genes with small but

significant effect sizes, and so provide an interesting set of targets for comparison with

complexity scores.

Table 5.12 gives the top Alzheimer’s risk genes from the Alzgene database together with

commonly associated polymorphisms and relative risk of Alzheimer’s development. The

APOE gene has a complexity score in the top 2% of scores (0.98 quantile) and nor-

malised complexity score in the top 33% (0.66 quantile). Out of the 9 genes in the table,

8 of them have a complexity score in the top 25% of scores, 5 of them have a complexity

score in the top 10% of scores, and 3 in the top 5% of scores. In order to formally gen-

eralise the hypothesis that Alzheimer’s risk genes are more complex, logistic regression

was applied to each score, based on 222 genes from the Alzgene database (Table 5.13

and displayed graphically in Figure 5.56). The odds of a maximally complex gene being

associated with Alzheimer’s is 3.18 greater than a non-complex gene for the complexity

scores and 2.91 greater for the normalised complexity scores (both highly significant,

p < 0.001). The consistent relationship between the two scores may be explained by

the lack of significant association between entropy and Alzheimer’s risk genes, since

normalised complexity is an attempt to correct for differences in expression breadth in

different genes. Taken together, these results suggest that genes previously associated

with Alzheimer’s are highly complex and thus complexity scores could potentially be

applied as a method for targeting other potential candidate genes for further analysis

of their potential link with Alzheimer’s.

5.10.4 HGDM, COSMIC and GWAS catalogue

The HGMD database is a catalogue of gene mutations linked to disease [Stenson et al.,

2003]. All disease references are manually entered from published studies linking muta-

tions in the germline with human associated diseases. The data includes mutations that

have occurred in regulatory regions as well as coding regions and relating to splicing

events, amongst other things, but does not include somatic mutations or those relating

to mitochondria.
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Table 5.12: Top Alzheimer’s risk associated genes with estimated size of effects
and related p-values, with associated complexity scores. Data is taken from on
http : //www.alzgene/org. Complexity, normalised complexity and entropy scores
are given for each gene, together with the quantile of each score in relation to the full

distribution.

Gene Polymorphism OR (95%
CI) P-value Complexity

(quantile)

Normalised
Complexity
(quantile)

Entropy
(quantile)

APOE APOE_e2/3/4 3.685
(3.30-4.12) <1E-50 0.84

(0.98)
0.64
(0.66)

0.92
(0.37)

BIN1 rs744373 1.166
(1.13-1.20) 1.59E-26 0.62

(0.75)
0.53
(0.52)

0.96
(0.45)

CLU rs11136000 0.879
(0.86-0.90) 3.37E-23 0.73

(0.87)
0.53
(0.52)

0.96
(0.46)

ABCA7 rs3764650 1.229
(1.18-1.28) 8.17E-22 0.78

(0.93)
0.65
(0.67)

0.97
(0.49)

CR1 rs3818361 1.174
(1.14-1.21) 4.72E-21 0.33

(0.23)
0.96
(0.96)

0.6
(0.18)

PICALM rs3851179 0.879
(0.86-0.9) 2.85E-20 0.74

(0.89)
0.41
(0.35)

1
(0.9)

MS4A6A rs610932 0.904
(0.88-0.93) 1.81E-11 0.37

(0.31)
0.86
(0.92)

0.63
(0.2)

CD33 rs3865444 0.893
(0.86-0.93) 2.04E-10 0.39

(0.36)
0.97
(0.97)

0.65
(0.21)

CD2AP rs9349407 1.117
(1.08-1.16) 2.75E-09 0.54

(0.63)
0.52
(0.52)

1
(0.77)

Table 5.13: Complexity odds ratios for Alzheimer’s. Each point is the result from
applying a binomial logistic repression model with logit link and presence and absence
of specific disease association as the dependent variable. Results are report by taking

the exponential of the resulting log odds ratio from the model.
Key: ( ) = not significant, (.) = p-value<0.1, (*) = p-value<0.05, (**) = p-value <
0.01 and (***) = p-value < 0.001. Odds ratios with confidence bounds are given in

Figure 5.56.

Category Number of genes Complexity Complexity (normalised) Entropy

Alzheimer’s 222 3.18 (***) 2.91 (***) 0.651 ( )

The GWAS catalogue [Welter et al., 2014], similar to the intentions of the HGMD

database, catalogues SNPS from the literature based on genome wide association studies

(GWAS). Gene associations are reported by the authors in the relevant literature; these

are used to associate relevant complexity scores.
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Figure 5.56: Odds ratios for genes associated with Alzheimer’s. Visual plot of odds
ratios and 95% confidence intervals across cancer categories, for complexity (blue
lines), normalised complexity (red) and entropy scores (green), based on logistic re-

gression analysis. Based on odds ratios from models described in Table 5.13

The catalogue of somatic mutations in cancer (COSMIC) from the Sanger Institute

([Forbes et al., 2009]) lists genes associated with somatic mutations which are implicated

in cancer based on published literature. At the time of the analysis the list contained

483 genes, including information on histology and tissues.

As a complementary analysis, genes from the three databases described above were

downloaded, linked with their appropriate complexity scores and logistic regression

applied to test for relative risk of disease associated with highly complex genes. Fig-

ure 5.57 shows the overlap in disease associated genes between the three dataset. All

three datasets had 128 genes in common. Furthermore, the GWAS catalogue and

HGMD database had 2084 genes in common, probably as a result of studies from the

GWAS catalogue also being included in the HGMD database. Figure 5.58 and Table 5.14
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show the separate odds ratios for each of the three databases (with large error bounds

for the cancer somatic as a result of a much smaller sample size).

Figure 5.57: Venn diagram illustrating the overlap in genes implicated in disease for
the HGMD database, GWAS catalog reported genes and cancer genes with somatic

mutations.

Genes from the GWAS catalogue were associated with high complexity (odds ratio

2.05 for complexity and 2.75 for normalised complexity scores, both highly significant

(p < 0.001), Table 5.14) and cell type restriction (odds 1.5 for inverted entropy, highly

significant (p < 0.001)). Genes with high expression breadth were the most highly

associated with cancer somatic mutations (odds 0.26 for entropy, highly significant

(p < 0.001)). Cancer somatic associated genes highly complex (odds 2.67, highly

significant (p < 0.001)), but not significant according to normalised complexity scores.

Taken together, it appears that genes in the GWAS catalogue are strongly associated
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Figure 5.58: Odds ratios for genes associated with cancer somatic mutations, GWAS
hits and HGMD genes. Visual plot of odds ratios and 95% confidence intervals across
cancer categories, for complexity (blue lines), normalised complexity (red) and entropy

scores (green), based on logistic regression analysis given in Table 5.14.

with both complexity scores and entropy, and genes in the Cancer Somatic and HGMD

databases were associated with one of the complexity scores and entropy.
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Table 5.14: Complexity odds ratios for cancer somatic, GWAS and HGMD asso-
ciated genes. Each point is the result from applying a binomial logistic repression
model with logit link and presence and absence of specific disease association as the
dependent variable. Results are report by taking the exponential of the resulting log

odds ratio from the model.
Key: ( ) = not significant, (.) = p-value<0.1, (*) = p-value<0.05, (**) = p-value <
0.01 and (***) = p-value < 0.001. Odds ratios with confidence bounds are given in

Figure 5.58.

Number of genes Complexity Complexity (normalised) Entropy (inverted)

Cancer Somatic 398 2.67 (***) 0.963 ( ) 0.29 (***)
GWAS 5499 2.05 (***) 2.75 (***) 1.52 (***)
HGMD 4955 1.08 ( ) 2.32 (***) 2.21 (***)
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Figure 5.59 shows the relationship between scores and the number of associated SNPs

from the GWAS catalogue associated with each reported gene (including all SNP lo-

cations). SNP number explains 1.5% of the variation in normalised complexity scores,

the strongest relationship of the three scores.
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Figure 5.59: Number of associated GWAS SNPs per gene. SNPs downloaded from
the GWAS catalogue and number of SNPs counted per gene, based on author reported
genes. Orange lines represent best fit straight line from lm function, orange numbers

represent associated R2.



Chapter 5. Primary cell complexity 181

SNPs from the GWAS catalogue were broken down by SNP location, based on intron,

intergenic, UTR or near gene region. A similar analysis was applied, with the results

given in Table 5.60 and Figure 5.60. Disease genes associated with intergenic and

intronic SNPs were significantly complexity, the highest being Intergenic complexity

(odds 3.13, highly significant, Table 5.60). These SNPs may for example lie in distal

enhancer regions which act on the gene. Indeed, disease SNPs have been shown to be

over-represented in enhancer regions [Andersson et al., 2014b].

Table 5.15: Odds ratios for reported genes associated with SNPs, broken down by
SNP location SNPs taken from GWAS catalogue with p-value<1.0e-08. Odds ratios
based on binomial logistic repression models with logit link and presence and absence
of specific disease association as the dependent variable. Results are reported by taking
the exponential of the resulting log odds ratio from the model. Inverted entropy is 1

- entropy, where entropy scores are between 0 and 1
Key: ( ) = not significant, (.) = p-value<0.1, (*) = p-value<0.05, (**) = p-value <
0.01 and (***) = p-value < 0.001. Odds ratios with confidence bounds are given in

Figure 5.60.

Number of genes Complexity Complexity (normalised) Entropy (Inverted)

Near gene 631 0.885 ( ) 2.09 (***) 1.95 (***)
Intergenic 2718 3.13 (***) 2.33 (***) 1.64 (***)
UTR 269 2.02 (**) 1.67 ( ) 1.32 ( )
Intron 3834 2.21 (***) 2.08 (***) 1.24 (**)

The SNPs from the GWAS catalogue are then broken down further according to specific

diseases. Odds ratios for complexity scores based on diseases with 40 or more genes

with associated SNPs are give in Table 5.16 and displayed visually in Figure 5.61.

In order to interrogate the HGMD database in more detail, HGMD genes were split

according to presence of mutation in the protein coding region of the gene, single

nucleotide polymorphisms in the regulatory region of the gene and frameshift or trun-

cating variant (FTV), according to the definitions given in the HGMD database. It was

hypothesised that polymorphisms might be associated with genes which are more com-

plex in their expression, due to a larger mutational target. Table 5.17 and Figure 5.62

show the odds ratios for the three categories of HGMD genes. Whilst raw complexity

scores were not significant for any category, the normalised complexity scores were sig-

nificant for all three, with the most significant being polymorphism (odds=4.18, highly

significant (p < 0.001). Entropy was also highly significant (odds ratio 3.62, p < 0.001),
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Figure 5.60: Odds ratios for reported genes associated with SNPs, broken down
by SNP location and plotted with 95% confidence intervals Odds based on logistic
regression models from Table 5.15. Scores are: complexity (blue lines), normalised
complexity (red lines) and inverted entropy scores (green lines), defined as 1 - entropy,

where entropy scores are normalised between 0 and 1.

suggesting that genes with these features are more cell-type restricted (odds are signif-

icantly less than 1). Since normalisation up-weights cell-type restricted scores, it is not

surprising that the normalised complexity scores are more significant. Taken together,

SNPs located within regulatory regions are associated with genes which are highly com-

plex according to both complexity scores, whilst genes associated with polymorphisms

are highly complex according to normalised complexity scores, as well as highly tissue

specific.
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Figure 5.61: Complexity Odds ratios for genes split according to recorded associated
SNP location from GWAS category. Genes are those reported by authors. Visual plot
of odds ratios and 95% confidence intervals across cancer categories, for complexity
(blue lines), normalised complexity (red) and reversed entropy scores (green), based
on logistic regression analysis. Based on results from models described in Table 5.16
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Table 5.16: Complexity odds ratios for genes split according to recorded associated
SNP location from GWAS category. Genes are those reported by authors. Each point
is the result from applying a binomial logistic repression model with logit link and
presence and absence of specific disease association as the dependent variable. Results
are report by taking the exponential of the resulting log odds ratio from the model.

Reversed entropy is 1 - entropy, where entropy scores are between 0 and 1
Key: ( ) = not significant, (.) = p-value<0.1, (*) = p-value<0.05, (**) = p-value <
0.01 and (***) = p-value < 0.001. Odds ratios with confidence bounds are given in

Figure 5.61.

Gene count Complexity Complexity
(normalised)

Entropy
(inverted)

Multiple sclerosis 102 10.5 (***) 3.58 (**) 1.18 ( )
Inflammatory bowel disease 129 10.2 (***) 3.6 (**) 0.986 ( )
Ulcerative colitis 44 6.39 (**) 2.77 ( ) 1.17 ( )
Systemic lupus erythematosus 44 5.74 (**) 1.97 ( ) 1.39 ( )
Blood pressure 60 4.21 (*) 6.99 (**) 1.48 ( )
Thiazide-induced adverse metabolic
effects in hypertensive patients 47 4.02 (*) 2.34 ( ) 1.48 ( )

Visceral adipose tissue/
subcutaneous adipose tissue ratio 43 2.54 ( ) 2.56 ( ) 1.7 ( )

Type 2 diabetes 48 2 ( ) 3.8 ( ) 1.58 ( )
Triglycerides 65 1.84 ( ) 1.03 ( ) 2.47 (*)
Menarche (age at onset) 124 1.54 ( ) 2.36 ( ) 0.875 ( )
Blood metabolite levels 118 1.47 ( ) 0.284 (**) 6.25 (***)
Cholesterol, total 88 1.46 ( ) 0.641 ( ) 3.23 (***)
LDL cholesterol 75 1.38 ( ) 0.878 ( ) 2.82 (**)
Bone mineral density 72 1.35 ( ) 4.13 (*) 0.72 ( )
Height 222 1.31 ( ) 3.36 (***) 0.641 ( )
HDL cholesterol 100 1.3 ( ) 2.6 ( ) 0.907 ( )
Major depressive disorder 61 1.25 ( ) 2.68 ( ) 0.923 ( )
Visceral adipose tissue
adjusted for BMI 43 1.12 ( ) 0.827 ( ) 2.56 ( )

Body mass index 64 1.08 ( ) 0.496 ( ) 2.04 ( )
Bipolar disorder 95 0.672 ( ) 0.534 ( ) 0.96 ( )
Acne (severe) 138 0.525 ( ) 1.18 ( ) 0.45 (*)

5.10.5 Method

Genes implicated in cancer with somatic mutations were downloaded from

http://cancer.sanger.ac.uk/cosmic/census and selecting the list of ’Somatic mutations’.

This list contained 483 genes at the time of the analysis.

GWAS reported genes were obtained by downloading the GWAS catalog from
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Table 5.17: Complexity odds ratios for HGMD genes according to presence of
mutation, polymorphism and frameshift or truncating variant (FTV). Each point is the
result from applying a binomial logistic repression model with logit link and presence
and absence of specific disease association as the dependent variable. Results are

report by taking the exponential of the resulting log odds ratio from the model.
Key: ( ) = not significant, (.) = p-value<0.1, (*) = p-value<0.05, (**) = p-value <
0.01 and (***) = p-value < 0.001. Odds ratios with confidence bounds are given in

Figure 5.62.

Number of genes Complexity Complexity (normalised) Entropy (reversed)

Mutation 4333 1.12 ( ) 1.59 (***) 1.62 (***)
Polymorphism 2491 0.943 ( ) 4.18 (***) 3.62 (***)
FTV 478 0.934 ( ) 1.84 (*) 2.13 (***)
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Figure 5.62: Visual plot of odds ratios for genes split according to presence of
mutation in the protein coding region of the gene (mutation), single nucleotide poly-
morphisms in the regulatory region of the gene (polymorphism) and frameshift or
truncating variant (FTV), according to the definitions given in the HGMD database,
including 95% confidence intervals, for complexity (blue lines), normalised complexity
(red) and entropy scores (green), based on logistic regression analysis from the models

described in Table 5.17.
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http://www.genome.gov/gwastudies/ and saving the list of genes from the column la-

belled ’Reported genes’. At the time of the analysis, a total of 5499 gene names were

included in the final calculations for odds ratios.

HGMD disease associated genes were downloaded from http://www.hgmd.cf.ac.uk, in-

cluding information about coding mutations, polymorphisms and rare variants. At the

time of the analysis, a total of 4955 genes were used in the final calculations of odds

ratios.

For each gene name in refSeq, a ’1’ is allocated if that gene is in the reported genes list,

and a ’0’ otherwise. The ’glm’ function in R was used to determine significance of the

log odds that a complex gene is a disease gene. Since complexity scores are between 0

and 1, odds ratios may be interpreted as the relative risk of a gene of complexity equal

to 1 being a disease gene compared to a gene of complexity equal to 0. Confidence

intervals were calculated from the same ’glm’ models, which were used to create visual

plots of the odds for each score.

5.10.6 Haploinsufficient genes

Haploinsufficient genes are those which cause disease as a result of monoallelic loss of

function mutations, whereby the single functioning allele of the gene is not sufficient

to maintain normal phenotype. Based on the list of 151 genes (see methods), logistic

regression was computed to test for association with complexity scores, with the results

displayed in Table 5.18 and Figure 5.63. Again, the odds of a haploinsufficient gene

being a highly complex gene are significant for both complexity scores (odds ratios

2.52 (p < 0.05) and 3.09 (p < 0.01) for complexity and normalised complexity scores,

respectively, and not significant according to entropy scores (odds ratio 0.579). Whilst

the effect is not highly significant due to a low number of tested genes, this suggests a

role in which genes exhibiting complex regulatory programmes may be more susceptible

to haploinsufficiency.

In all, it has been shown that genes associated with disease are statistically likely to

be complex genes. We discuss this section further in the next chapter.
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Figure 5.63: Odds ratios for haploinsufficient genes, displayed visually with 95%
confidence intervals, for complexity (blue lines), normalised complexity (red) and en-
tropy scores (green), based on logistic regression analysis from the models described

in Table 5.18.

5.10.7 Methods

Analysis based on list of 151 haploinsuffient genes provided by David Fitzpatrick at

the IGMM HGU, Edinburgh

Table 5.18: Complexity odds ratios for haploinsufficient genes. Each point is the
result from applying a binomial logistic repression model with logit link and presence
and absence of specific disease association as the dependent variable. Results are

report by taking the exponential of the resulting log odds ratio from the model.
Key: ( ) = not significant, (.) = p-value<0.1, (*) = p-value<0.05, (**) = p-value <
0.01 and (***) = p-value < 0.001. Odds ratios with confidence bounds are given in

Figure 5.63.

Category Number of genes Complexity Complexity (normalised) Entropy

Haploinsufficency 151 2.52 (*) 3.09 (**) 0.579 ( )





Chapter 6

Discussion

The premise of this project was to attempt to understand how the collective effects and

interactions of the regulatory architecture affecting a gene relates to its transcriptional

output. Transcription is controlled by a number of events, such as transcription fac-

tors binding to sequences in and around the gene, made accessible by regions of open

chromatin and through interactions with activators and cofactors. Currently, whilst it

is well known that transcriptional initiation is a highly regulated process, determining

exactly when, where and how a gene is expressed in different cell types, there is no

clear understanding of the exact mechanisms involved in this regulation for each gene.

Measuring properties of the effects of regulatory input on transcriptional levels across

multiple cell types, tissues or time points allows for the identification of genes poten-

tially controlled by more or less complex regulatory programmes. Measuring the results

of these regulatory programmes may in turn be connected back to individual regula-

tory mechanisms, raising important questions on cause and effect based on circular

hypotheses: what effect do different regulatory mechanisms have on gene expression

patterns, which are more important in explaining the patterns we observe and how can

we effectively measure these patterns based on the hypothesised causative effects of

regulatory programmes? Thus, a greater understanding of predicted effects of measur-

ing the information observed in expression can result in more accurate measures, which

189
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may then be fed-back to the biological understanding of gene regulation and how it

may affect transcription.

Whilst the concept of measuring gene expression profiles is not new - it has been

frequently alluded to in large scale gene expression projects where data exists across

multiple samples - the metrics that are frequently applied are not necessarily well

equipped for determining regulatory complexity. The most commonly used metric, the

Shannon entropy, is effective at capturing the axis between cell-specific and ubiquitous

expression and separating out either end of this scale into differences in regulation,

for example presence and absence of CpG islands associated with genes [Elango and

Soojin, 2011, Schug et al., 2005]. However, in the vast majority of cases the measure does

not capture regulatory information beyond this, neither does it relate the important

relationships between the samples, for example ontological relatedness. In large data

resources such as FANTOM5, such relatedness could readily be mined from the data

itself. Thus, a more comprehensive approach to measuring profiles was warranted and

presented a yet unexploited opportunity to develop novel metrics which could feed back

into the field of transcriptional complexity in multiple contexts.

This project has attempted to do just this, by capturing potential properties of a com-

plex regulatory programme which may be observed in a single transcriptional profile:

• Specificity of expression across samples

• Significant changes in expression observed between samples

• Combinations of on or off states observed across samples

• The above three properties related to the biological (ontological) structure of the

samples under study

Measuring biological regulation in this way, as opposed to simply observing sequence

information or specific modes of regulation (e.g. transcription factor binding around a

gene) has a number of distinct advantages:
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• Transcriptional output is capturing the effects of ALL regulatory processes acting

on that transcriptional unit and therefore captures regulatory information about

mechanisms which are not fully understood. This has the caveat that poor or

incomplete measurements of transcriptional levels may miss the effects of some

regulatory events.

• Such a metric makes no assumptions about specific regulatory events; whilst

it is based on the model of regulatory elements acting together to determine

output, it does not say what exactly this model is. For example, although one

might intuitively expect genes enriched in cis-regulatory elements to exhibit more

changes in expression across a profile, this cause and effect relationship is not

explicitly assumed and can therefore be tested.

• Adding in information about sample structure helps to alleviate problems of over-

representing certain cell types in studies and helps to pin-point which transcrip-

tional units behave similarly in similar cell types vs those which exhibit highly

diverse patterns whilst maintaining similar specificities.

With this in mind, Chapter 2 began by discussing common information theoretic mea-

sures for scoring gene expression profiles, their usefulness in the context of collecting

regulatory information and their limitations. It then described a novel approach not

yet explored in the context of gene expression; that is to convert the problem into a

two dimension context, by observing differences occurring between samples, allowing

for the inclusion of sample structure information and the exploration of possible metrics

in a graph theoretic framework. These metrics were then normalised according to the

difference between what can be potentially the upper limit of expression complexity for

a given breadth of expression, according to the metrics, and what is actually observed.

Chapter 3 described the FANTOM5 data and why it provides a near perfect platform

for such measures to be calculated and studied biologically:

• It quantitatively estimates steady-state transcript levels at a single TSS resolution

over the whole genome.
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• It includes a wide range of cell types, tissues and time-courses. In particular,

a wide range of primary cells sampled from healthy adults worked well in esti-

mating metrics of how a transcriptional elements behaves ‘normally’ (albeit as a

non-transient snap-shot) in a population of cells with minimal ontological hetero-

geneity. Primary cells allow for the capturing of potentially different regulatory

information occurring between cells which may otherwise be grouped together

within the same tissue.

• It includes extensive technical and biological replication; allowing for more accu-

rate estimations of differential expression.

This chapter described how the metric developed here was applied to the data and the

potential caveats in its application.

In Chapter 4 a subset of complexity scores were interrogated in detail; that is those

based on the expression profiles of genes applied across a large set of primary cells,

the intention being to capture some of the regulatory complexity of human cellular

differentiation. It was found that complex genes were depleted of CpG islands in

their core promoter, independent of expression specificity, and that complex genes

appear to weakly relate to physical genomic measures of size constraints, numbers of

isoforms, numbers of exons and presence of a TATA box sequences in the core promoter.

Furthermore, complex genes were significantly enriched in indicators of cis-regulation,

namely GERP conservation, DNAse I hypersensitive sites based in Chip-seq data and

predicted enhancers based on bidirectional marks in CAGE. Whilst these were found to

explain significant variation in complexity scores, supporting the prior hypothesis that

genes exhibited more complex regulatory patterns would be enriched for cis-regulatory

sequences relative to genes with less complex regulatory. However, searching for the

‘missing’ explained variance led to the consideration of associations with epigenetic

marks in the promoter region of genes. This, surprisingly, was seen to explain a large

amount of variation in scores, with putative bivalent promoters across multiple tissues

seen to be a highly significant predictor of regulatory complexity. In evolutionary terms,

newer genes were also found to be potentially more complex in their expression. Finally,
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genes associated with disease collected from a wide variety of sources were found to be

more complex than non-disease genes.

In the remainder of the current chapter, the results from Chapter 5 are discussed in

more detail, linking them to a biological context. The caveats of methodologies are

then explored and potential further work discussed.

6.1 Do complexity scores capture expression patterns in the way

we originally hypothesised?

Whilst the Shannon entropy achieves a maximum in the case of ubiquitous expression

and a minimum in the case of expression in a single sample, expression complexity was

conceived based on the idea that the regulatory programmes causing these two types

of expression profiles were conceptually simple. In the case of ubiquitous uniform ex-

pression, associated with housekeeping genes, few regulatory elements may be required

to achieve this output - switch on the gene in every cell type at a fixed level, remain

at that level. Regulatory elements such as enhancers may be present in order to boost

and maintain transcription at this level, but in principal the same regulatory elements

could be used in all cell types.

The complexity of ubiquitous uniform genes was expected to be zero, since no differen-

tial expression or combination of on and off switching between cell types is observed.

The result is an empty graph where there are no connections between cell types, which

therefore achieves a connectivity score of zero. This is achieved; genes known to be

associated with housekeeping tasks integral to cellular function are observed in a dense

low complexity, high expression breadth region on the complexity vs breadth scatter

plots. In the implemented complexity measure, these genes remain low-complex, in-

dependent of normalisation strategies, although normalization does reduce the relative

ranking of housekeeping genes due to the up-weighting of non-ubiquitous genes.

Also hypothesised was a separation between ubiquitous-uniform and ubiquitous-non

uniform genes. This is barely achieved on the entropy scale, with the 35% of all
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genes which were ubiquitous falling within the 0.97-1 range (out of a scale from 0

to 1). The profiles of genes such as, FOS, which appear to exhibit many different levels

of expression whilst maintaining at least some expression in every cell type appear

visually distinct from genes such as ACTB, which appears to have a much more uniform

profiles. One might suggest there is potential for more regulatory mechanisms involve

in the former case, controlling when and what level expression should be in each cell.

Complexity scores agree with this idea, as FOS achieves a distinctly higher score than

ACTB, due to detected differential expression between cell types.

The opposite end of the entropy scale, highly specific expression, may also be conceptu-

ally simple and one might hypothesis a scenario where a gene is repressed in every cell

type (perhaps through methylation laid down in development), apart from one where

a single promoter and/or enhancer is required to achieve transcription. Cell restricted

genes are more difficult to hypothesise in terms of their expected complexity than ubiq-

uitous uniform genes, due to a combination of factors leading to a wide variation in

regulatory mechanisms. It is often difficult to determine if a gene is truly restricted

to a single cell type, or whether it is co-expressed in another, non-sequenced cell type,

or whether it is simply off and poised to be triggered by a biological or environmental

stimulus, potentially creating a highly complex pattern of expression. Genes with very

low expression in cell types may not be detected as expressed due to filtering of CAGE

libraries or lack of sensitivity in detecting expression and/or differential expression.

Thus there is a distinct lack of information about the potential regulatory landscape

of genes where very few CAGE tags are observed in a restricted subset of samples.

For this reason, both complexity scores in their raw form and complexity scores nor-

malised by maximal complexity tag redistributions were presented for analysis. Nor-

malisation clearly up-weights genes which are restricted in the number of primary cell

types they are observed in, on the basis that the number of observed levels in expression

is potentially fewer than those with high expression breadths, a bias which should be

corrected for. This accounts for the lack of information observed when the gene is in an

‘off’ state in cell types. Using both sets of scores helps to attempt to avoid falling into

a circular cycle of corrected for the disparity of what is expected in terms of complex



Chapter 6. Discussion 195

expression output and what is actually observed in the scores when constructing an

informative measure; the measure is built around the idea of capturing regulatory po-

tential based on prior ideas about the effect regulatory mechanisms have on expression

output, but should also be usefully applied in inferring biological understandings.

In terms of the actual types of genes expected to be significantly complex, master

regulatory genes and genes associated with the regulation of development were expected

to score highly, since such genes are reported to be regulated by multiple and often

highly conserved enhancers and display temporal and spatially heterogeneous patterns

of expression, for example [Elgar, 2009, McEwen et al., 2009b]. GO term analysis

confirms this, with developmental regulation scoring as the most significant GO term

for the raw complexity scores. Thus, whilst making no explicit assumption about which

genes should or should not be complex, the kinds of genes functionally associated with

low and high complexity generally appears to match expectation.

6.2 Complexity scores provide useful information over and above

what is observed from entropy scores

Entropy scores are based on the first of four factors listed above to determine the

complexity of a gene. Since complex clearly encompasses more information than this,

it should be expected that one would be able to infer more information about the

potential regulatory landscape of the gene. As breadth of expression is often used as

a proxy ‘complexity’ measure for expression patterns, it is useful to measure the extra

information which may be observed in complexity scores, and how the two measures

differ and complement each other.

An interesting feature of the presented expression complexity metric, which avoids

discussion of normalisation strategies entirely, is that it is able to untangle genes within

a given breadth of expression by ranking their expression profiles in terms of observed

up- and down- regulation. This is particularly useful given the fact that many genes

are non-specific in their expression, but not necessarily uniform. The measure therefore
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provides a way of partitioning ubiquitously expressed genes between those relating to so

called ‘ultra-housekeeping’ categories on the low complexity end of the scale, and those

genes exhibiting more complex regulatory programmes as a result of observed changes

in levels of expression across cell types. Ultra-housekeeping has been an important

and insightful measure in recent studies ([Forrest et al., 2014, Young et al., tted] where

it was crudely calculated based on a simple threshold of the maximum to median

(normalised) expression ratio. Consequently, expression complexity represents a more

robust and information-richer method with which to define such genes.

6.3 High complexity genes are depleted in CpG islands in their

core promoter

Complexity scores and normalised complexity scores were first interrogated for their

differences between the presence or absence of a CpG island or TATA box overlapping

the core promoters of genes (Section 5.4) . The most complex genes were those depleted

of CpG island associations. The presence or absence of CpG island in the promoter is

strongly related to expression breadth, and given the relationship of CpG islands with

polycomb repression and ubiquitous expression, it is less surprising that complex genes

are less enriched in CpG islands [Riising et al., 2014]. However, in order to obtain the

extra information obtained by complexity scores, independent of this expression breadth

relationship, complexity was first adjusted for by entropy and the remained variation

in complexity observed. It was found that, independent of expression breadth, complex

genes are depleted of CpG islands in their core promoters. Thus, it would appear that

the lack of a CpG island at the core promoter in ubiquitous genes somehow allows for

flexible expression profiles which are detected by the complexity score methods.

Indeed, this hypothesis is supported by studies where it has been seen that promoters

with CpG depletion have transcription factor binding motifs which appear to be tissue

specific [Roider et al., 2009]. Furthermore, it has been seen that genes with and without

CpG islands contain different patterns of chromatin modifications associated with tran-

scription [Vavouri and Lehner, 2012]. Thus, since by definition complex genes exhibit
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tissue specific changes, it may be that these complex and ubiquitous genes depleted

of CpG islands contain a different signature of sequence based core promoter motifs

and chromatin organisation which allows them to regulate more changeable expression

profiles between different cell types.

6.4 Complexity scores are associated with measures of cis- reg-

ulation

Complexity scores were derived based on the idea that the greater the control of gene

expression through cis-regulatory binding events, the more likely a gene is to exhibit

more complex changes and/or switches between on or off states across the cell types in

its profile of transcriptional expression levels.

In order to test this hypothesis, measures of conservation (GERP) and DNase I hyper-

sensitivity in and around each gene were compared to its estimated complexity score

(Section 5.6). Whilst the two often overlap, DHS are often not conserved due to high

rates of regulatory turnover observed in the human genome [Meader et al., 2010, Villar

et al., 2015], hence there is merit in attempting to observe cis- regulation from a variety

of datasets.

6.4.1 Hypersensitive I marks at the upstream gene region and promoter re-

gion in the absence of conservation

Complexity scores show an enrichment for hypersensitive sites in the proximity of the

gene (Section 5.6), but these same regions are not necessarily enriched in conservation.

This suggests that whilst many hypersensitive sites overlap conserved regions, complex-

ity might be driven by hypersensitive sites not conserved across species. These sites

may be specific to human; or since promoter turnover is high due to a high mutation

rate [Taylor et al., 2006, Villar et al., 2015, Young et al., tted], a functionally equiva-

lent element might be present between species but not functionally constrained in its

sequence [Dermitzakis and Clark, 2002, Elnitski et al., 2003]. Indeed, the proportion
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of shared regulatory sequence between species dramatically decreases as phylogenetic

disease increases [Meader et al., 2010], thus it is unsurprising that most regulatory

elements acting upstream in cis- may not be under selective constraint over the phylo-

genetic range measured by GERP. This finding is in some part backed up by a significant

enrichment in enhancers in the upstream distance of the gene, suggesting that some of

these hypersensitive sites may function as enhancers but lack a conservation enrichment

signal.

Entropy scores show a large enrichment for DHSs in the promoter region of the gene

(Figures 5.31 and 5.31), suggesting that the presence of accessible chromatin at the

promoter is associated with broadly transcribed genes; this is not a surprise since

accessible chromatin is a mark of active transcription and the more cell types exhibiting

DHSs, the greater the chance of detecting such sites in ENCODE (and similar projects).

6.4.2 Hypersensitive I marks and conservation in first intron of the gene

Enhancers correlated particularly strongly with complexity scores in the first intron of

the gene, explaining almost 3% of the variation in non-normalised scores. Interestingly,

the same enrichment in first intronic cis-regulation is not observed in entropy scores,

suggesting that this source of cis-regulation is due to regulatory complexity but not

expression breadth. This effect seems to be most pronounced in genes that evolved

in the earlier stages of the evolution of multicellular life, when metazoan bauplans

were being defined (see gene age enrichments). Consequently, it is speculated that this

enrichment is primarily indicative of developmental regulatory genes.

6.4.3 How much variation is explained in total by cis-regulatory sources

In total, conservation scores, DHSs and predictive enhancers explain 7.0% of the vari-

ation in complexity scores and 4.21% of the variation in normalised complexity scores

(Figures 5.31 and 5.32). With the inclusion of interaction effects, this rises to 8.4% for

the complexity scores and 6.81% for the normalised complexity scores.
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Restricting to ubiquitously expressed genes, the explained variance proportion rises

to 10.0% (normalisation independent), and when restricted to non-ubiquitous genes

the explained variance drops to 3.2% for the normalised scores, and decreases for the

complexity scores as breadth is reduced (8.0% for genes expressed in fewer than two

thirds of primary cell types). Since ubiquitous genes are separated in terms of their

complexity only by their profile of differential expression in relation to their sample

structure, it is suggested that genes exhibiting high levels of differential expression

between multiple cell types are controlled to a greater extent than genes exhibiting

high complexity scores due to on and off switching between cell types. This provides

an interesting insight into how regulatory programmes differ according to types of genes.

6.4.4 Conclusions for cis- regulation

In conclusion, the results suggest that expression complexity is indeed associated with

proximal cis- regulatory elements surrounding the gene, although much of the vari-

ance in complexity scores is still explainable by other sources, which could perhaps

refer to long-range interactions, trans- regulatory interactions and chromatin struc-

ture, amongst other factors. It must be pointed out that whilst part of the premise

of the project was to attempt to understand how and where regulatory information

was encoded, it is convenient to attempt to group genes as either ‘cis-regulated’ or

‘trans-regulated’ according to their ‘preferred’ mode of regulation. Although genes are

generally regulated through a combination of the two sources and are not exclusive

towards one end of the cis- and trans- scale, there is merit in attempting to understand

the potential dominance of one mechanism vs another.

6.5 Complexity scores are highly associated with promoter his-

tone marks

It has been seen that histone modifications explain the largest amount of variance in

the complexity scores (Section 5.7). As might be expected, H3K4me3 marks, generally
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associated with activation, are closely associated with entropy scores, explaining up to

47% of the variance. This is because entropy is a measure of breadth, maximised in

ubiquitously expressed genes which are by definition actively expressed in all cell types.

Polycomb group proteins (PcG) catalyse H3K27me3 histone modifications, forming

repressive complexes PRC1 and PRC2. These have important functions in determining

the identity of stem cells and cellular differentiation. Whilst DNA methylation in

general silences the expression of a gene in a cell lineage, polycomb targeted genes

observed in somatic cells provide an important potential mechanism for state switching

in response to a range of conditions. Promoters of highly regulated genes poised for

potential expression are bivalent chromatin domains enriched for both the H3K27me3

mark associated with polycomb repression and the H3K4me3 mark associated with

gene activation. Bivalent chromatin at the promoters of genes are poised for potential

activation and are thought to be essential for defining cellular identity and function

[Lesch and Page, 2014]. Poised chromatin has been seen to be maintained at the

promoters of developmental genes at multiple stages of development. Hypotheses for

bivalent chromatin in mammalian germ-lines has been thought to act as a prevention

mechanism for the locking of the silencing genes by DNA methylation.

6.5.1 Associations with complexity scores and epigenetic marks

Whilst H3K4me3 activation mark was the main determinant of expression breadth, as

observed in entropy scores, complex genes exhibited profiles of varying H3K4me3 and

H3K27me3 marks. Non-normalised complexity scores showed a positive correlation

with H3K4me3 marks, since this score ranks highly genes which are expressed across

a broad range of cell types. In terms of repressive marks, raw scores increased with

complexity but dropped in the category where H3K27me3 was observed at all promoters

of the analysed tissues. Entropy scores suggest that these are relatively specific genes; it

could be that since these genes are broadly exhibiting repressive marks, the expression

output will suggest that the gene is cell-type restricted.
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The above reasoning is why normalised complexity scores, which up-weights restricted

genes, shows a strongly increasing relationship with H3K27me3 repressive marks and

highly significant relationship with bivalent marks. Genes which are bivalent every-

where generally had the highest complexity scores, an effect that is discussed further

in the next section.

6.5.2 Bivalent genes are highly complex

Integrative data from the Epigenetics Roadmap Project [Kundaje et al., 2015] suggest

that over 5000 genes from the 16111 under study may potential be associated with

bivalent chromatin domains in at least one cell type, and over 1300 may have bivalent

chromatin domains in the majority of cell types for a given gene. These values are only

potential bivalent genes as the numbers are unlikely to be accurate of true bivalency;

as whilst by definition both marks are observed at the same promoter in the same cell

type to suggest a promoter is bivalent, there is no indication of whether the marks

were observed together in the same cell, or separately in two different cells within the

sample taken from that cell type [Voigt et al., 2013].

Genes exhibiting potential for high breadth of bivalency across tissues were in general

more complex than those without; this result is highly prominent in complexity scores

normalised by expression breadth. In this measure, genes highly associated with acti-

vation (H3K3me4) were the least complex and genes highly associated with polycomb

repression (H3K27me3) were the most complex; however genes exhibiting these marks

together were highly complex. The results suggest a strong association based link be-

tween genes held in a poised repressed state, a mark thought to be present in highly

regulated developmental genes, and the complexity of its coupled expression pattern.

Since these marks were measured in adult somatic tissues, it suggests a model whereby

the more tissues where a gene exhibits a bivalent mark in its promoter, the more it

is retaining its on-off switching abilities further into development. Loss in bi valency

or methylation at this promoter would result in a more stable expression without the

flexibility to exhibit subsequent switches.
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6.5.3 Poised chromatin interacts with CpG island status

Regions where CpG di-nucleotides are overrepresented, referred to as CpG islands, are

seen to overlap a large proportion of promoter regions and are in particular associ-

ated with the promoter regions of housekeeping genes, which are expressed in every

cell type and maintain and active chromatin state [Bird, 2002]. They appear to play

an important role in establishing chromatin state, and are predictive of presence of

both H3K4me3 and H3K27me3 together [Deaton and Bird, 2011, Orlando et al., 2012].

Thus, bivalency associated genes which have CpG islands in their core promoter are

highly complex, as can be seen when observing interactions between CpG presence and

poised chromatin breadth (Figure 5.43). In this Figure, whilst non-cpg genes remain

similarly complex independent of epigenetic status at the promoter, genes associated

with promoter overlapping CpG islands are highly associated with poised chromatin

state, with CpG island associated genes with broad poised chromatin marks exhibiting

the highest complexity, together with non-CpG associated genes. Separating this out,

bivalency status (0,1 or 2) explains 28.3% of the variation in normalised complexity

scores in the subset of genes associated with a CpG island, and only 2.4% of the vari-

ation in complexity in genes not associated with a CpG island. Whilst bivalent marks

were measured across a set of 22 adult tissues, it appears that this association also

holds when measuring across ES cells (8 tissues, correlation of 0.75 in breadth of ob-

served bivalent promoter marks between adult and ES, and ES cell bivalency breadth

accounted for 22.9% of the variation in normalised complexity scores). Therefore, what

matters is an overall signal of bivalency acting on a gene’s promoter as opposed to the

developmental stage in which bivalent marks are observed.

Even specifically focussing on genes without CpG islands overlapping their core pro-

moter, combinations of H3K27me3 and H3K4me3 still accounted for 15.9% of the varia-

tion in normalised complexity scores, with repressive H3K27me3 status acting the most

strongly, suggesting that poised chromatin in absence of bivalency (since non-CpG over-

lapping promoters are not bivalent) is still associated with regulatory complexity.
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6.5.4 Conclusions for epigenetic modifications and their association with com-

plexity scores

The strong association with epigenetic promoter modifications leads to the question

of potential mechanisms which may possibly be driving this association.Two possible

models for polycomb regulation, suggested by [Voigt et al., 2013] could predominate.

The first is that through the differentiation of cell types, there are decision points

in which cell lineages diverge and the cell must decide the epigenetic architecture of

cells between the two diverged lineages. Genes not requiring expression in a group of

downstream differentiated cell types are often silenced through methylation, repressed

with polycomb signals or held in a poised bivalent state for future activations. Thus,

there is effectively a tree of switching states based on epigenetic modifications occurring

at the promoters of genes through development, whereby the cell is making decisions.

The final pattern across adult primary cell types is reflected in the final cellular states

at the leaves of this tree. Thus, patterns of on and off states in expression are observed

across a profile and these are captured using scores of complexity.

The second possible scenario is that the on and off switching observed across a cell type

is based on the polycomb-mediated fine-tuning of transcriptional activation based on

thresholds of activation and repression [Voigt et al., 2013]. Genes with poised chromatin

marks in their promoters may be tightly regulated whereby activation and repressive

signals act together to flip states between on or off according to the requirements of the

cell. When the signals pass a predetermined threshold, a switch occurs which causes ex-

pression changes in a binary manner as opposed to gradual changes in expression. Such

a model has been discussed by [Voigt et al., 2013] and it is postulated that bivalent pro-

moters acting in this manner generally exhibit reduced transcriptional noise (testable

as further work using CAGE library replicates). Such a model has been observed in

HOX clusters ([Montavon and Duboule, 2013]), and also when modelling developmental

gene expression patterns in Drosophila [Dupont et al., 2015]. This hypothesis is backed

up by observations with haploinsufficient genes; these genes are associated with disease

status when one copy of the gene is knocked out due to deletions, so are tightly con-

trolled in their expression levels with only small variation and it is deviations from these



Chapter 6. Discussion 204

finely tuned levels that are associated with disease. Indeed, disruptions in epigenetic

mechanisms have been seen to play a role in haploinsufficciency [Williams et al., 2010],

furthermore these genes were shown to be more complex than non-haploinsufficient

genes (Subsection 5.10.6).

A further point is that whilst bivalent marks are thought to be representative of poised

chromatin states, whereby removal of H3K27me3 repressive marks results in the sub-

sequent activation of the gene, these results are not necessarily fast; recent estimates

suggest that histone modifications acting on a given gene may be removed or estab-

lished within a few minutes [Anink-Groenen et al., 2014]. Thus, whilst poised chromatin

allows for expression switching and/or changing, as opposed to methylation patterns

which are in general permanent in somatic cells, it is unlikely that it is suitable for

genes requiring urgent response by stimulus, such as hypoxia, infection or heat stress

responses. Many of these genes scored highly in terms of their complexity scores for

ubiquitously expressed genes, suggesting that whilst complexity in regulation appears

to be highly associated with epigenetic activity acting on a gene’s promoter, other

mechanisms are clearly acting to generate expression changes in these sets of genes.

Indeed, many of these highly complex genes were seen be associated with a lack of

CpG island in their core promoter. Since CpG island mediates polycomb complexes,

this suggests that these CpG depleted complex genes may be acting under a variety of

protein-protein interactions under a different control to the interplay between H3K4me3

and H3K27me3 promoter modifications.

In conclusion, how the expression pattern of the gene across the range of cell types is

influenced by its chromatin structure, according to its pattern of histone modifications,

is generally not well understood, and the idea of a histone ‘code’ determining expression

largely debated. These results provide some insight into how combinations of H3K4me3

and H3K27me3 work together in order to generate diverse patterns of transcriptional

output. However, since H3K4me3 and H3K27me3 represent only a subset of possible

histone modifications, a further, more comprehensive analysis of histone modifications

could unravel more intricate relationships, especially as more information across large

ranges of cell types becomes more and more available in the future. In particular, whilst
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the aforementioned pair of modifications are highly effective in explaining the dynamics

of activation and repression in gene expression output, more dynamic modifications may

explain expression information not caused by activation and repression.

6.6 Age of gene is associated with complexity scores

The evolution of complexity is often thought of in a variety of terms, such as the mor-

phological complexity observed across different species through time, via the number of

cell types (e.g. used as an indicator of morphological complexity in [Chen et al., 2012])

or the size of the genome in an organism. In general, it is often highly debated whether

complexity increases in a linear fashion through time (e.g. whether it also includes

bursts or trends of simplification), whether it reaches an upper limit, and whether it

evolves in a passive or driven manner ([Yaeger et al., 2011]).

There is debate regarding how much non-coding regulatory sequence is functional and

how much of this sequence may be employed to the regulation of the expression of any

given gene. For example, the amount of available space immediately upstream of a gene

provides a physical limit to how many transcription factor binding sites or alternative

promoters may potentially fit. The evolution of regulatory complexity has been looked

at by [Warnefors and Eyre-Walker, 2011a] and [Lowe et al., 2011]. The former analyses

looks at eight separate aspects of regulatory complexity: namely transcription factor

binding sites around the gene, conserved bases upstream, the number of TSSs, splic-

ing isoforms, polyadenylation sites, miRNA sites, NMD proportion and RNA editing

proportion. In combination these measures actually capture estimates of transcript

diversity rather than transcriptional regulatory complexity as defined in this thesis.

Comparing the measures across genes divided into 18 age categories, [Warnefors and

Eyre-Walker, 2011a] found that older genes appeared to be more enriched in transcript

complexity, where genes in the oldest category, eukaryota - the earliest eukaryotes, was

in general between 1.3 - 3.1 times more likely to contain more of the mechanism under

study. The suggestion is that older genes have had more time to accumulate more

regulatory features, which leads to the evidence that complexity has not yet reached
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its upper limit as newer genes have not yet accumulated the same amount of features

as older genes.

The present study (Section 5.8) also sees high levels of non-coding sequence conservation

in older genes, particularly those around the time of the emergence of multicellularity,

according to conservation observed in the first intron and across the gene as a whole

(excluding the first intron). Whilst newer genes do not exhibit high levels of non-

coding constraint, genes associated with human (the newest category) do appear to

contain more conservation on the gene and in its first intron. The same pattern is

observed in first intron DNase I hypersensitivity sites (DHSs), suggesting that some or

all of these conserved regions are indeed regulatory, but also since the number of DHSs

generally outnumbers the observed GERP sites, particularly in older genes, there is

perhaps a signal of accumulated regulatory effects occurring over time. Exon count

was dramatically also greater in older genes, suggesting that these genes are prone to

greater exonization. This is supported by [Corvelo and Eyras, 2008], which suggests

that the creation of exons is related to the acquired ability to regulate splicing events.

The results for conservation and hypersensitivity (second and third links above) seem

to agree with the idea that older genes are more complex in sequence: older genes (from

multicellular organisms onwards) are highly conserved in their regulatory regions, and

contain more hypersensitive sites (particularly in their first intron, the results are very

similar for the two). In all these plots, human specific genes appear to be outliers -

they have are more proximal conserved non-coding sequence, more DHS sites and more

exons compared to the six evolutionary groups prior to them.

The present results observe genomic complexity from the perspective of the implied

transcriptional regulation of individual coding genes, based on the age of its encoded

protein. Entropy scores as a measure of expression breadth show a clear tread towards

cell-specificity in newer genes from the advent of multicellularity. The most complex

genes by the raw complexity scores coincide with the advent of multicellularity, which

includes genes associated with sequence specific DNA binding, allowing for diverse

cell types which are able to regulate expression to different levels. This key result is

of particular interest when combined with entropy scores; newer genes evolve in an
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increasingly cell-specific manner, although whilst providing highly specific functions to

an organism, they are not necessarily complex genes.

The evidence presented in Figure 5.44 suggests that entropy evolves in a passive manner,

with genes appearing at a variety of breadths at each stage, often accompanied by a

new minimum level of complexity and associated with a higher degree of specificity,

accompanied by variance levels increasing over time. This is observed by measuring

change across the quantiles of scores; the upper quantiles did not significantly change

whilst changes across the lower quantiles explained nearly 11% of the variance in entropy

scores.

As complexity scores are based on gene expression output rather than direct regulatory

information, there is an argument that changes in expression and patterns of on/off

switching can be more intricate in newer genes despite evidence that these genes have

not had time to evolve mechanisms (or accumulate, as per Warnefors and Eyre-Walker

[2011a]). It is possible that the regulatory mechanisms predominating over these newer

genes are somehow different those preferred by older genes, for example they may be

associated with more long-range interactions whilst having relatively few proximal cis-

regulatory elements, or they may be dominated by trans- regulatory effects. Indeed,

there is an argument that trans-regulatory processes appear to play a greater role

in mammals due to increases in miRNA targets regulating vertebrate genes [Chen

et al., 2013]. It was seen in Section 5.6 that genes complex in their expression are

enriched in first intronic conservation and DNAse I hypersensitive sites. It appears

from Figures 5.45 and 5.46 that these genes are likely to be older genes which may

associate with the time period where developmental regulating genes such as HOX,

SOX and PAX evolved. It would be of interest to potential future exploration to test

whether these newer complex genes are more dominated by trans- based effects.
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6.7 Complexity scores are predictive of a variety of categories of

disease states

Interruptions in regulatory mechanisms of genes often results in expression changes,

silencing or activation, leading to potential disease. Identifying lists of genes suscep-

tible to disease through their perturbation is a crucial step towards prioritization of

targets for specific cause/effect relationships. It was hypothesised that regulated genes

provided a larger mutational target through binding targets in cis- and the number of

trans- acting on the gene, concepts related to the ‘transmutational’ target size of a gene

[Landry et al., 2007]. The application of complexity scores allows for the comparison

between regulatory complexity and disease status without having to specify the partic-

ular regulatory mechanism involved as a causative factor for any potential associations.

Those complex genes highly associated with a specific disease may then be screened for

specific regulatory targets, such as mutations in enhancer binding sites or unexpected

changes in chromatin. It also makes no pre-assumption of disease status, since only

healthy adult primary cells were used to calculate the scores. An analysis of disease

associated genes was carried out in Section 5.10

Surprisingly, the scores were found to correlate significantly with a variety of disease

states. Grouping potential disease genes by anatomical categories found various signif-

icant relationships; in particular, bone, immune, cardiovascular and skin diseases were

all found to be highly significant in at least one of complexity or normalised complexity

and at least significant in the other. In particular, 1089 genes were associated with bone

related diseases and were significantly more complex than non bone disease genes (odds

ratios 1.67 for complexity, 2.72 for normalised complexity, both highly significant), but

not necessarily restricted to a given expression breadth (odds ratio 1.22 for entropy,

not significant). Cancer associated genes in general (2204 genes) were also found to be

significantly more complexity (odds ratios 1.99 and 1.96 for complexity and normalised

complexity, respectively). Breaking this down into smaller categories, lung cancer, car-

cinoma and sarcoma were significant, although small number of associated genes for
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these categories results in large error bounds and an do not all survive multiple testing

corrections.

Scores were highly associated with specific disease states, such as Alzheimer’s, cancers

and diseases as a results of haploinsufficiency. Genes which highly expression complex-

ity scores were enriched in SNPS associated with disease, in particular SNPs found in

the intergenic and intronic regions of the gene (Figure 5.60). Furthermore, effects accu-

mulate - the more associated disease SNPs, the more complex the gene (Figure 5.59).

This suggests that disruptions in the regulatory regions of genes with the potential for

intricate regulatory control as implied by transcription output are implicated in disease

and this can be observed through steady-state gene expression.

6.8 Limitations of the analysis

6.8.1 Technological limitations - speed of processing

In recent years next generation sequencing developments and continued reductions in

costs are allowing for the generation of large quantities of cellular states with increasing

amounts of biological replication. Furthermore advanced computational methods have

been published in recent years for easy and efficient determination of differential expres-

sion between states. In this study we have introduced and applied an alternative metric

to the Shannon entropy for measuring the complexity of a gene’s expression output,

which utilises this information and provides a convenient measure for each gene of the

observed patterns of state switches between on, off, up or down states. The measure

is easily interpretable; all scores lie between 0 and 1, where 1 represents state changes

between every pair of states in the study.
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6.8.2 The measures do not take into account magnitude or direction of differ-

ential expression

A point to make in this study regarding primary cell types is that it is not considered

whether there is a significant up or down regulation between pairs of cell types - mainly

because it is difficult to determine which cell type to assign as a reference. Thus, only

the significance of changes are considered. Whilst not presented in the previous chapter,

a more clear structure may be observed in, for example, time course data, or data where

there are treatments or controls. In the case of a time course dataset, time may be

considered to be based in reference to the lower time point of the pair and differential

expression could be reported as increased or decreased relatively. However, complexity

scores do not take this into account. Thus a different version may be warranted for

some datasets.

6.8.3 Best way to normalise scores

There is clearly a challenge in the normalisation of the data. That is, the complexity

scores appear to not work so well in the highly cell restricted cases; these give drastically

different scores between the normal score and the normalised score. Parameters like

conservation and first intron hypersensitive sites clearly follow aspects of both scores.

Therefore, a better way of normalised the tissue restricted cases could be warranted.

Although it is unclear on how this may be achieved, note that the normalisation strategy

is only an issue comparing across expression breadths, and not within.

6.8.4 The problem of unmatched cell types

There is a very strong relationship with histone modifications, and many complex genes

contain a variety of H3K4me3 and H3K3me27 marks in the core promoter region across

across tissues. The best way to measure the effects of polycomb regulation on the ob-

served patterns of expression is to measure the presence of polycomb marks in the

matching set of primary cells over which the complexity measure was calculated, and
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to measure expression over time in all the cell types (and potential all possible con-

ditions!) so that expression switches between poised and activated can be monitored.

Similarly, the ENCODE DNAse I hypersensitivity sites data did not use the matched

set of cell types with complexity scores, although many of the 125 used cell types po-

tentially overlap. Thus, highly restricted sites will have been missed, but the expression

based on its interactions included in the expression complexity scores. The predicted

enhancers based on bidirectional expression was useful in this regard, as enhancers were

inclusive of the same CAGE libraries used to calculate complexity. This may explain

why enhancers had good predictive power, particularly when counted in the first intron

of the gene where their effects were stronger than that of hypersensitive site counts.

6.9 Further work

6.9.1 Exploring different connectivity measures and weight structures

The flexibility of this approach is that different measures of connectivity and sample

structure can be used over the graph. Some aspects of the measure may be varied:

The connectivity measure used to calculate the final score. This was based on the eigen-

value decomposition of the graph which appeared to provide an average connectivity

over the graph which best matched the intuition of the kinds of genes expected to be

complex (i.e. developmental regulatory genes were the highest GO term). Some global

connectivity measures correlated well with the current approach, and others did not

necessarily measure the graph in the expected way and were not considered. However,

other measures may be used, for example some which capture more local properties of

the graph. Furthermore, the flexibility of applying a complexity measure which cap-

tures node connectivity as well as graph connectivity is that one can up or down weight

different properties of interest. For example, one could priorities on-on connections over

on-off connections, or vice-versa.

The weighting structure between the cell types can also be varied. Weights calculated

for the current results were based on a transformation of the Pearson’s correlation
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coefficient applied to the log of the tags per million (plus a pseudocount to avoid the

log of zero), which provided an even distribution of weights across all pairs of cell types.

However, other methods could be used, such as branch lengths based on a predicted

tree over the samples. In the case of time points, weights based on distance between

time points could be used. In the scores currently applied across time course data

(not presented in the current work), the weights between time points were varied to

distinguish between genes which varied dramatically between time points (for example,

a switch on from off to highly expressed between two adjacent time pints) and genes

which exhibited gradual change over a number of time points. This letter case was

useful in picking up genes whereby the data was perhaps too noisy to pick up a small

change between adjacent time points, but was able to pick up slightly larger changes

between two or three time points.

Accurately calculating differential expression between pairs of samples is an important

aspect of calculating measures of expression complexity. In this project bayseq was

chosen as it shared information about the variance between genes in samples, thereby

improving accuracy, particularly in cases where there were a very small number of

replicates (sometimes only one). Furthermore, bayseq returned probabilities, allowing

for the problem to be applied in a probabilistic framework without having to define

cutoffs. Furthermore, it was conservative, meaning that it gave fewer false positives

(although perhaps some false negatives), which appealed since there were 11026 possible

pairs of samples for ubiquitously expressed genes and many false positives may have

skewed the score. As protein coding genes are generally more highly expressed than for

example enhancers it was felt that this was a good approach. If one were to calculate

the scores across enhancer data then a less conservative method should be used, as with

fewer tags and a lot of noise a highly conservative method may pick up no differential

expression. This was observed from applying bayseq across some of the individual

TSS level data (not shown in the thesis). One’s own models may also be applied - for

example, as part of this project, JAGS was used to model time course expression data.
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6.9.2 Improving feedback between regulatory inputs and outputs

Understanding the regulatory architecture of the genome and how it relates to the

transcriptional output of specific genes aids in the measurement of gene expression

profiles to capture this regulatory information. In turn, complexity scores aid in the

understanding of these regulatory processes, potentially guiding researches to important

sources of regulation in subsets of genes.

6.9.3 Better understanding of cis- vs trans- effects and their relative contri-

bution to complexity scores

It is highly probable that most complex genes display a range of different mechanisms

that contain a variety of cis- and trans- based effects and much of the variation in scores

is probably occurring in protein-protein interactions occurring off site from the genome,

which were not measured as a parameter. A better understanding of trans- effects and

how the influence gene expression would be useful to correlate with complexity scores.

In terms of cis- regulation it was found that proximal elements were significantly cor-

related with complexity (Section 5.6), but as cis- regulation may potentially occur

anywhere on the chromosome, although 1MB is thought to be a potential limit ([Hill

and Lettice, 2013]) a stronger understanding of distal-interactions is required. This

generally done with Hi-C data, but such data is still very limited in cell types and

only measure specific cell lines (with few replications), therefore this was not done in

this project as there is not the opportunity to sample the diversity of interactions to

warrant a detailed investigation. However this missing data is beginning to be col-

lated and provides a future avenue for tying transcriptional regulation with long range

interactions.
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6.9.4 Obtain a stronger understanding of ubiquitously expressed genes in

terms of comparisons with cis-regulatory effects

It was seen that seen that when restricting to the set of ubiquitously expressed genes,

highly complexity genes appear to have a stronger surrounding landscape of cis-regulatory

element, furthermore they appeared to be slightly depleted in CpG islands in their core

promoter. Highly complex ubiquitous genes appeared to be associated with response

based effects (Table 5.7). It is unclear whether these response based genes which are

highly complex are those with broad cis-regulatory landscapes, or whether the set of

complex ubiquitous genes contain genes which these broad landscapes which are not

necessarily response-based (i.e. these complex genes contain a mixed repertoire of reg-

ulatory mechanisms).

A further test of this hypothesis could be to split up genes according to different GO

terms (associated with for example, signalling response or developmental processes) and

compare the architectures of regulatory elements (for example, DHSs or CpG/TATA

effects) between the different groups. Therefore, whilst it is generally understood that

ubiquitously expressed genes undergo different sets of regulatory mechanisms than ubiq-

uitous genes, it is possible that across the identical breadths of expression it is possible

to observe a wide range of regulatory control.

6.9.5 Single cell sequencing

Whilst primary cells are effective at providing a pure lineage to understand changes

in expression from cell type to cell type, single cell sequencing is the best way to

understand how expression changes on a cellular level. For example, tightly regulated

genes probably stay close in expression from cell to cell, others might exhibit a noisy

profile. Fully understanding the patterns between individual cells in a spatial and

temporal manner is a challenge which technology may make a realistic goal for the

future. This will help to fully capture the full extent of the regulatory mechanics

occurring within the cell [Levo and Segal, 2014].
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6.10 Work not included in this thesis and projects started

6.10.1 Analysis of time-course data

The complexity measure has been applied across the CAGE libraries for the human time

courses from the FANTOM5 project. These include a mixture of differentiation based

time-courses and some stimulus response based time courses. Patterns for this data

have been clustered to identify early response genes, and other patterns [Arner et al.,

2015]. Measures of expression complexity complement this data by picking out non-

standard patterns, such as multiple responses within a single time course, or responses

which exhibit gradual vs sudden changes. Genes which are known regulators such as

EGR1 and EGR2 appear to rate highly across all time-courses, suggesting merit in

continuing with the analysis.

6.10.2 TSS level data

Analysis of measures applied to TSS data. Scores have been applied to robustly defined

TSS associated with genes, with the aim of understanding how individual TSS influence

the overall transcription of the gene. From current analysis, the closest TSS to the

gene generally the most highly expressed and the subsequent ones more restricted,

often provided more complex patterns in expression. However this has not been fully

explored and has therefore not been included in this thesis.

6.10.3 Analysis of human-mouse matching cell types

Started an analysis of human-mouse matching cell types. This has been conducted in a

probabilistic frame work, measuring changes which appear between matched cell types

in either human or mouse across orthologous genes, vs changes which appear in both

human and mouse.





Appendix A

Samples used in this analysis

Below is a list of all of the primary cells included in the analysis, with their replicates

and the developmental stage (either mesodermal cell or mesenchymal if an annotation

exists). Reference: [Forrest et al., 2014]

217



Appendix C. Appendix C 218

Group 1 Reps Developmental

Smooth Muscle Cells - Airway
Asthmatic 6

Skeletal Muscle Satellite
Cells 3 CL:0000222 (mesodermal cell)

Smooth Muscle Cells - Colonic 3 CL:0000222 (mesodermal cell)
Smooth Muscle Cells - Uterine 2 CL:0000222 (mesodermal cell)
Smooth Muscle Cells - Prostate 3 CL:0000222 (mesodermal cell)
Smooth Muscle Cells -
Subclavian Artery 3 CL:0000222 (mesodermal cell)

Skeletal Muscle Cells
differentiated into Myotubes - multinucleated 3 CL:0000222 (mesodermal cell)

Smooth Muscle Cells - Aortic 4 CL:0000222 (mesodermal cell)
Smooth Muscle Cells - Brain
Vascular 3 CL:0000222 (mesodermal cell)

Smooth Muscle Cells -
Esophageal 2 CL:0000222 (mesodermal cell)

Skeletal Muscle Cells 6 CL:0000222 (mesodermal cell)
Smooth Muscle Cells - Airway
Control 4

smooth Muscle Cells -
Bronchial 2 CL:0000222 (mesodermal cell)

Cardiac Myocyte 3 CL:0000222 (mesodermal cell)
Smooth Muscle Cells -
Brachiocephalic 3 CL:0000222 (mesodermal cell)

Smooth Muscle Cells - Tracheal 3 CL:0000222 (mesodermal cell)
Smooth Muscle Cells - Carotid 3 CL:0000222 (mesodermal cell)
Smooth Muscle Cells -
Umbilical Artery 3 CL:0000222 (mesodermal cell)

Smooth Muscle Cells -
Umbilical Vein 3 CL:0000222 (mesodermal cell)

Smooth Muscle Cells -
Pulmonary Artery 3 CL:0000222 (mesodermal cell)

Smooth Muscle Cells - Internal
Thoracic Artery 3 CL:0000222 (mesodermal cell)

Smooth Muscle Cells - Coronary
Artery 3 CL:0000222 (mesodermal cell)
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Group 2

Placental Epithelial Cells 3
Retinal Pigment Epithelial
Cells 4

Tracheal Epithelial Cells 3
Corneal Epithelial Cells 3
Alveolar Epithelial Cells 3
Ciliary Epithelial Cells 3
Olfactory Epithelial Cells 4
Lens Epithelial Cells 3
Mammary Epithelial Cells 3
Small Airway Epithelial Cells 3
Nasal Epithelial Cells 2
Bronchial Epithelial Cells 7
Esophageal Epithelial Cells 3
Gingival Epithelial Cells 3 CL:0000134 (mesenchymal cell)
Mallassez-derived Cells 2
Prostate Epithelial Cells
polarized 3

Group 3

Hepatic Stellate Cells
Lipocyte 3 CL:0000134 (mesenchymal cell)

Preadipocyte - Omental 3 CL:0000134 (mesenchymal cell)
Preadipocyte - Visceral 3 CL:0000134 (mesenchymal cell)
Preadipocyte - Subcutaneous 3 CL:0000134 (mesenchymal cell)
Preadipocyte - Breast 2 CL:0000134 (mesenchymal cell)

Group 4

Endothelial Cells -
Microvascular 3 CL:0000222 (mesodermal cell)

Endothelial Cells - Aortic 4 CL:0000222 (mesodermal cell)
Endothelial Cells - Umbilical
Vein 3 CL:0000222 (mesodermal cell)

Enthothelial Cells - Lymphatic 3 CL:0000222 (mesodermal cell)
Endothelial Cells - Artery 3 CL:0000222 (mesodermal cell)
Endothelial Cells - Thoracic 2 CL:0000222 (mesodermal cell)
Endothelial Cells - Vein 3 CL:0000222 (mesodermal cell)
Hepatic Sinusoidal Endothelial
Cells 3
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Group 5

Melanocyte - Light 3
Mesothelial Cells 2 CL:0000222 (mesodermal cell)
Melanocyte - Dark 3

Group 6

CD8 T Cells 3 CL:0000134 (mesenchymal cell)
CD4 CD25 CD45RA Regulatory T
Cells expanded 3

Macrophage - monocyte derived 3 CL:0000134 (mesenchymal cell)
CD4 CD25 CD45RA Naïve Regulatory T Cells 1
Natural Killer Cells 3 CL:0000134 (mesenchymal cell)
Basophils 1 CL:0000134 (mesenchymal cell)
Mast Cells 4 CL:0000134 (mesenchymal cell)
CD4 CD25 CD45RA - Memory
Regulated T Cells expanded 3

CD34 Cells Differentiated to
Erythrocyte Lineage 2 CL:0000134 (mesenchymal cell)

CD4 CD25 CD45RA - Memory
Regulated T Cells 3 CL:0000134 (mesenchymal cell)

CD19 B Cells 3 CL:0000134 (mesenchymal cell)
CD14 Monocytes 3 CL:0000134 (mesenchymal cell)
Gamma Delta Positive T Cells 2
Migratory Langerhans cells 3 CL:0000134 (mesenchymal cell)
Neutrophils 3 CL:0000134 (mesenchymal cell)
CD4 T Cells 3 CL:0000134 (mesenchymal cell)
CD4 CD25-CD45RA Naïve
Conventional T Cells 3

CD4 CD25-CD45RA Naïve
Conventional T Cells expanded 3

CD4 CD25-CD45RA Memory
Conventional T Cells expanded 3

Immature Langerhans Cells 2 CL:0000134 (mesenchymal cell)
Dendritic Cells - Monocyte
Immature Derived 2 CL:0000134 (mesenchymal cell)
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Group 7

Renal Cortical Epithelial
Cells 2

Osteoblast 3 CL:0000134 (mesenchymal cell)
Osteoblast - Differentiated 3 CL:0000134 (mesenchymal cell)
Tenocyte 3 CL:0000134 (mesenchymal cell)
Synoviocyte 3 CL:0000134 (mesenchymal cell)
Renal Proximal Tubular
Epithelial Cells 3 CL:0000222 (mesodermal cell)

Renal Mesangial Cells 3 CL:0000134 (mesenchymal cell)
Pericytes 3
Hair Follicle Dermal Papilla
Cells 3 CL:0000134 (mesenchymal cell)

Trabecular Meshwork cells 3 CL:0000222 (mesodermal cell)
Renal Glomerular Endothelial
Cells 4 CL:0000222 (mesodermal cell)

Hepatocyte 3 CL:0000134 (mesenchymal cell)
Prostate Stromal Cells 3 CL:0000134 (mesenchymal cell)
Sertoli Cells 2 CL:0000134 (mesenchymal cell)
Renal Epithelial Cells 3

Group 8

Myoblast 3 CL:0000222 (mesodermal cell)
Fibroblast - Conjunctival 2 CL:0000134 (mesenchymal cell)
Fibroblast - Dermal 6 CL:0000134 (mesenchymal cell)
Fibroblast - Skin Spinal
Muscular Atrophy 3 CL:0000134 (mesenchymal cell)

Fibroblast - Aortic
Adventitial 3 CL:0000134 (mesenchymal cell)

Fibroblast - Skin Dystrophia
Myotonica 3 CL:0000134 (mesenchymal cell)

Fibroblast - Choroid Plexus 3 CL:0000134 (mesenchymal cell)
Fibroblast - Lymphatic 3 CL:0000134 (mesenchymal cell)
Fibroblast - Mammary 3 CL:0000134 (mesenchymal cell)
Peripheral Blood Mononuclear
Cells 3 CL:0000134 (mesenchymal cell)

Fibroblast - Villous
Mesenchymal 3 CL:0000134 (mesenchymal cell)

Fibroblast - Lung 3 CL:0000134 (mesenchymal cell)
Fibroblast - Skin Normal 3 CL:0000134 (mesenchymal cell)
Fibroblast - Cardiac 6 CL:0000134 (mesenchymal cell)
Fibroblast - Peridontal
Ligament 6 CL:0000134 (mesenchymal cell)

Keratocytes 3 CL:0000134 (mesenchymal cell)
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Group 9

Meningeal cells 3 CL:0000134 (mesenchymal cell)
Astrocyte - Cerebellum 3
Astrocyte - Cerebral Cortex 3
Anulus Pulposus Cells 2
Schwann Cells 3
Neurons 3
Neucleus Pulposus Cells 3

Group 10

Sebocyte 3

Group 11

Amniotic Epithelial Cells 3

Group 12

Mesenchymal Stem Cells -
Adipose 3 CL:0000134 (mesenchymal cell)

Mesenchymal Precursor Cells -
Adipose 3 CL:0000134 (mesenchymal cell)

Mesenchymal Precursor Cells -
Bone Marrow 3 CL:0000134 (mesenchymal cell)

Multipotent Cord Blood
Unrestricted Somatic Stem Cells 2 CL:0000134 (mesenchymal cell)

Mesenchymal Stem Cells - Bone
Marrow 4 CL:0000134 (mesenchymal cell)

Neural Stem Cells 2
Mesenchymal Stem Cells -
Hepatic 2 CL:0000134 (mesenchymal cell)

Mesenchymal Stem Cells -
Umbilical 3 CL:0000134 (mesenchymal cell)

Mesenchymal Precursor Cells -
Cardiac 4 CL:0000134 (mesenchymal cell)

Group 13

Urothelial Cells 3
Keratinocyte - Epidermal 3
Adipocyte - Breast 2 CL:0000134 (mesenchymal cell)
Adipocyte - Perirenal 1 CL:0000134 (mesenchymal cell)
Hair Follicle Outer Root
Sheath Cells 2

Adipocyte - Omental 3 CL:0000134 (mesenchymal cell)
Adipocyte - Subcutaneous 3 CL:0000134 (mesenchymal cell)



Appendix C. Appendix C 223

Group 14

Chorionic Membrane Cells 3 CL:0000134 (mesenchymal cell)
Mesenchymal Stem Cells -
Amniotic Membrane 2 CL:0000134 (mesenchymal cell)

Amniotic Membrane Cells 3 CL:0000134 (mesenchymal cell)

Group 15

Perineurial Cells 2

Group 16

Chrondrocyte - de diff 3 CL:0000134 (mesenchymal cell)
Chrondrocyte - re diff 2 CL:0000134 (mesenchymal cell)

Group 17

Salivary Acinar Cells 3

Group 18

CD14 Monocytes - treated with
Group A Streptococci 3 CL:0000134 (mesenchymal cell)

CD14 Monocytes derived
endothelial progenitor cells 3 CL:0000134 (mesenchymal cell)

CD14 Monocytes - treated with
Cryptococcus 3 CL:0000134 (mesenchymal cell)

CD14 Monocytes - treated with
BCG 3 CL:0000134 (mesenchymal cell)

CD14 Monocytes - mock treated 3 CL:0000134 (mesenchymal cell)
CD14 Monocytes - treated with
Trehalose Dimycolate TDM 3 CL:0000134 (mesenchymal cell)

CD14 Monocytes 3 CL:0000134 (mesenchymal cell)
CD14 Monocytes - treated with
B-glucan 3 CL:0000134 (mesenchymal cell)

CD14 Monocytes - treated with
Lipolysaccharide 3 CL:0000134 (mesenchymal cell)

CD14 Monocytes - treated with
IFN N-hexane 3

CD14 Monocytes - treated with
Salmonella 3 CL:0000134 (mesenchymal cell)

CD14 Monocytes - treated with
Candida 3 CL:0000134 (mesenchymal cell)
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A.0.1 Samples used from the epigenetics roadmap project

Cell type/ tissue
group EID Epigenome name

Brain E071 Brain hippocampus middle
Brain E068 Brain anterior caudate
Brain E070 Brain germal matrix
Adipose E063 Adipose nuclei
Muscle E108 Skeletal muscle female
Muscle E100 Psoas muscle
Heart E105 Right ventricle
Heart E065 Aorta
Smooth muscle E078 Duodenum smooth muscle
Smooth muscle E076 Colon smooth muscle
Smooth muscle E111 Stomach smooth muscle
Digestive E109 Small intestine
Digestive E101 Rectal mucosa donor 29
Digestive E077 Duodenum mucosa
Digestive E094 Gastric
Other E097 Ovary
Other E087 Pancreatic islets
Other E091 Placenta
Other E066 Liver
Other E098 Pancreas
Other E096 Lung
Other E113 Spleen

Table A.1: ‘Epigenomes’ used from the epigenetics roadmap project



Appendix B

Differential expression probabilities

Differential expression probabilities vs log fold change, for each of the 149 primary cell

types used in the analysis. The probabilities for each cell type gives are those based on

a change between that cell type and all genes of all other cell types.
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Figure B.1
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Figure B.2
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Figure B.3
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Figure B.4
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Figure B.5
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Figure B.6
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Figure B.7
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Figure B.8
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