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ABSTRACT

ROUTE CHOICE BEHAVIOR IN RISKY NETWORKS
WITH REAL-TIME INFORMATION

FEBRUARY 2010

MICHAEL D. RAZO

S.B., MASSACHUSETTS INSTITUTE OF TECHNOLOGY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Song Gao

This research investigates route choice behavior in networks with risky travel

times and real-time information. A stated preference survey is conducted in which

subjects use a PC-based interactive maps to choose routes link-by-link in various

scenarios. The scenarios include two types of maps: the first presenting a choice

between one stochastic route and one deterministic route, and the second with real-

time information and an available detour. The first type measures the basic risk

attitude of the subject. The second type allows for strategic planning, and measures

the effect of this opportunity on subjects’ choice behavior.

Results from each subject are analyzed to determine whether subjects planned

strategically for the en route information or simply selected fixed paths from origin

to destination. The full data set is used to estimate route choice models that account

for both risk attitude and strategic thinking. Estimation results are used to assess

whether models that incorporate strategic behavior more accurately reflect route

choice than do simpler path-based models.
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CHAPTER 1

INTRODUCTION

New technologies have opened the door to innovative congestion mitigation strate-

gies such as Advanced Traveler Information Systems (ATIS), which update travelers

on current network conditions to help them plan their travel around congestion and

other delays [19].

In order to predict the effectiveness of ATIS implementations, it is necessary to ac-

curately model traveler behavior in ATIS-equipped networks. Most models for route

choice behavior assume that travelers choose fixed paths from origin to destination,

and do not account for changes in network conditions that may occur during their

trip [12]. Such models are inadequate for predicting the effects of ATIS implementa-

tions, since they cannot model the effects of information travelers receive en route to

their destinations.

Recent research has investigated more sophisticated models that do account for

en route information [2]. Adaptive path models assess route choice as a series of path

choices, with the traveler reevaluating at every stage. While such models can account

for diversions from an initial path, they assume that the traveler has not planned in

advance for information that will become available during the trip.

Routing policy models employ choice sets that consist not of fixed paths, but of sets

of decision rules (routing policies) that map network states to routing decisions [12].

Each routing policy in a choice set can be viewed as a distinct strategy for traversing

the network.
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While a number of studies have addressed the problem of optimal routing policies

[14, 23, 18, 25, 20, 21, 30, 10, 11], econometric modeling of routing policy choice is

a relatively unexplored topic [12]. A model is proposed in [10] and estimated using

synthetic data in [12], but no estimation has yet been performed using empirical data.

This research analyzes choice observations from real human subjects. A stated

preference approach is used since it enables experimental control and accuracy that

is unavailable with field data. In the interests of context and clarity, an interactive

graphical map is the chosen medium for the experiment.

A study using stated-preference data for route choice modeling in stochastic net-

works can be found in [16]. The study found that the subjects’ risk behavior under

the cognitive load of a simulated driving task was significantly different from their

risk behavior under the relatively low load of a paper-and-pencil stated preference

survey. Specifically, subjects under high cognitive load (in the simulator) weighted

expected travel time far more heavily than travel time variability in making route

decisions.

While the findings from [16] would seem troublesome for a stated-preference ap-

proach to route choice modeling, this research focuses mainly on the strategic aspect

of route choice behavior, which can occur without cognitive load. For example, a

regular commuter has already perceived and internalized the travel times and risks

associated with the various links on the traffic network. In this study, travel time

ranges are shown to subjects a priori, to indicate general characteristics of a roadway.

This simulates a commuter’s pre-existing knowledge of the roadway, along with any

traffic reports or other information he may have acquired before departing. En route

information is presented as specific travel times, which greatly reduces cognitive load

and minimizes errors in perception of variability.

Many studies have investigated route choice in networks with real-time informa-

tion, including adaptive behavior, which describes a subject switching from a previ-

2



ously chosen or experienced route [24, 1, 17, 27], while others use choice sets comprised

of fixed paths [8, 22, 2].

The primary objective of this research is to determine whether drivers plan strate-

gically when making routing decisions. For the purposes of this research, “strategic”

is defined as accounting for the future availability of information and for any detours

that might be taken based on such information. Strategic drivers choose routes ac-

cording to routing policies, sets of decision rules based on information available at

the time of each decision.

The specific questions being addressed are:

1. Do drivers think strategically when planning routes in uncertain networks with

real-time, en route information?

2. Can observations of route choice be used to estimate a model which accounts

for strategic drivers?

Since strategic choice is only distinguishable in networks with risky travel times,

it is necessary to account for the effects of risk on route choice. This research there-

fore includes a thorough analysis of risk behavior, and assesses the effect of delay

probability on risk attitude.
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CHAPTER 2

EXPERIMENTAL DESIGN

The experiment was conducted as an interactive survey, using graphical maps

with a point-and-click interface. Subjects attended guided survey sessions, during

which up to 15 subjects were each stationed at a PC. A study coordinator introduced

each session with a presentation outlining the nature and purpose of the study, and

providing instructions for completing the survey. After completing several warm-up

scenarios, subjects completed six groups of scenarios, with breaks between each. The

study coordinator introduced each warm-up secnario and scenario group to provide

context and highlight any changes.

Results from each subject were automatically stored by the software. A result file

for each user records the details of every scenario and the routes chosen by the user.

These data are used in the analysis detailed in Chapter 3.

2.1 Interface

The survey is presented to subjects as a graphical map. This approach is chosen

because of the simplicity and clarity as compared to describing the scenarios in written

or verbal form. The visual format provides an easily comprehensible representation

of each scenario, and helps the user relate to the intended context.

The graphical map interface (shown in Figure 2.1) is an online application designed

specifically for this experiment and implemented using Adobe Flash and PHP. The

interface consists of a map of the Boston area, with green arrows overlaid to indicate

4



usable links. The user’s current position is represented by a large red dot labeled

“You”. When the user places the cursor over a link that is accessible from the current

position, the link will glow bright green. Clicking on a usable link causes the position

marker to travel across the link to the destination node of the link. When the final

destination is reached, the user is unable to make any other movements, and a button

will appear to allow advancement to the next map.

Figure 2.1. Example map interface, with information and detour

Directly adjacent to each link is a white label indicating the usual travel time of

the link. Each map has one stochastic link, which has an additional yellow label to

indicate the chance of a delay and the full travel time of the link in the event of a delay.

If the user travels across this link, the realized travel time will be revealed in the white

label, and the yellow label will disappear. This scheme, which is similar to a weather

forecast, was deemed a simple and familiar way to present discrete distributions with

varying degrees of probability.

For maps that include real-time information, a blue “i” icon is shown at the node

where the user will receive the information. When the user arrives at that node, the

5



actual travel time of the stochastic link is revealed, and the yellow label disappears.

Due to the location of the information node, this simulates travelers being informed

of conditions on the stochastic link before they actually traverse it.

At all times, an accumulated travel time counter is displayed at the top-right of

the screen. This counter indicates the travel time spent so far on the current map.

It updates after every link traversal, and resets to zero after each map is completed.

Since each map is considered as an independent trip, no measure of accumulated travel

time over multiple maps is displayed, nor is any long term “score” kept. Subjects

were

2.2 Map Types

Two different map types are used in the survey: simple risk maps and strategy

maps. Each risk scenario is presented once in both map types (though not in the same

order), so that differences in choice behavior can be observed by direct comparison.

2.2.1 Simple Risk

The simple risk maps are aimed at determining a subject’s risk attitude without

the influence of real-time information or detours. The subject decides between two

routes, one with a deterministic travel time, and the other with a stochatic travel

time. The form of this network type is represented in Figure 2.2.

6



Figure 2.2. Abstract network for simple risk map type

The exact travel time of the deterministic route (route B) is shown to the user

before the trip begins. The stochatic travel time on A has two possible outcomes, tL

and tH , with the probability of the high travel time, Pdelay = P (ta = tH) indicated to

the user before the trip begins. The realized travel time of route A is revealed to the

subject only if and when he uses the stochastic link.

Risk scenarios are generated by a factorial design, with tH , tb, and Pdelay as the

design factors. tL is fixed at 30 minutes throughout all scenarios. tH can take the

values 40, 50 and 60; tb can take values from 35 to tH −5, such that the deterministic

route is not dominated by the stochastic route; Pdelay can take the values 0.2, 0.5

and 0.8. In the strategy map scenarios, the high time on the stochastic link, tM , is

fixed at 120 minutes. Figure 2.1 shows travel times for several example scenarios.

E[ta] represents the expected travel time of the stochastic alternative, and E[tb − ta]

represents expected time savings of the stochastic alternative over the deterministic

alternative.

7



tb tL tH Pdelay E[ta] E[tb − ta]

35 30 40 0.2 32 3
40 30 60 0.5 45 -5
45 30 50 0.2 34 9
50 30 60 0.5 45 5
55 30 60 0.8 54 1

Table 2.1. A sample of scenario travel times

2.2.2 Strategy Maps

The strategy maps measure the extent to which a subject recognizes and utilizes

strategically advantageous real-time information. In these scenarios, subjects choose

between a deterministic route and a route which branches into a stochastic link and

a deterministic detour. Subjects who choose the latter will learn the realized travel

time of the stochastic link before they must decide whether to use it. This allows the

subject to choose the faster of the two links.

Figure 2.3. Abstract network for routing strategy tests

Subjects who do not plan in advance for this informed choice will view the stochas-

tic branch as two individual paths, with expected travel times E[tc] and td. Subjects

who recognize the strategic advantage of the provided information, however, will as-
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sess the stochastic branch based on the expected minimum travel time of the two

options available (links C and D). That is, they plan in advance for the informed

choice they will make later in the trip.

Each set of travel times tL and tH used in a simple risk map is also used a corre-

sponding strategy map. tL, however, appears as the low travel time for link C, while

tH is the deterministic travel time for link D. Since the travel time of link C is shown

while the opportunity to detour to link D is still available, subjects who make use of

this information will avoid any delay on link C and instead use link D, with travel

time tH . Strategic-thinking subjects will therefore assess the stochastic branch in the

strategy map as equivalent to the stochastic path in the corresponding simple risk

map. Such subjects are expected to exhibit very similar risk attitudes between the

two map types.

The high travel time tM for link C is chosen such that E[tc] always exceeds tb.

The value of tM is further inflated to ensure that, if a subject directly compares link

C and and link B (i.e., does NOT account in advance for the information or detour),

the perceived risk on link C is unreasonably high. Since the travel time of link D (tH)

is deterministic and always higher than tb, it is extremely unlikely that non-strategic

users will choose the stochastic branch, and such users are expected to consistently

choose the deterministic branch.
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CHAPTER 3

ANALYSIS OF RESULTS

In total, the dataset includes over 3400 observations from 74 individual subjects.

Subjects were recruited from the University of Massachusetts student and staff com-

munity, as well as the surrounding area. The mean age of subjects is 24.2 years and

mean driving experience is 6.9 years. 40 (or 54%) of the subjects are male, and 34

(or 46%) female. In an exit questionnaire taken after all maps were completed, sub-

jects answered a free-response question regarding strategic behavior. Each response

was read carefully and categorized as strategic, non-strategic, or indeterminate. 46

responses (62%) were considered clearly strategic, while 18 responses (24%) were

considered clearly non-strategic. 10 responses (14%) were indeterminate.

3.1 Risk Attitude Analysis

Strategic behavior is only identifiable in networks with risky alternatives. There-

fore, in order to accurately measure strategic thinking, it is necessary to control for

the effects of risk attitude. The simple risk maps are designed to measure subjects’

risk attitudes without the complication of strategic alternatives. The findings from

these maps are used to develop a risk attitude model form that is used in the strategic

thinking analysis to account for the effects of risk.

Before estimating a risk model, a less formal analysis is used to develop an intuitive

understanding of the results. Reasonable measures of benefit and risk are defined and
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applied to the results to analyze individual risk behavior. This qualitative analysis

seeks to address two important questions:

1. What proportions of subjects exhibited risk prone, risk averse, and risk neutral

behavior?

2. Did subjects’ risk attitudes vary with Pd, the probability of delay?

The measure of benefit is here defined as Ben = E[tb − ta], which represents

the expected savings in travel time by choosing the stochastic alternative in a given

scenario. A positive value of Ben indicates that the stochastic alternative has a lower

expected travel time than that of the deterministic alternative.

The measure of risk used here is the standard deviation of outcomes for the

stochastic alternative ta, defined as Risk = σta . The ratio of benefit to risk BR =

Ben/Risk is therefore used to measure risk attitude. We are primarly concerned with

the sign of BR, which determines risk attitude. A subject who accepts a stochastic

alternative with BR < 0 exhibits risk-prone behavior. A subject who refuses any

BR ≤ 0 exhibits risk-averse behavior. A subject who refuses all BR < 0 and accepts

all BR > 0 exhibits risk-neutral behavior.

The scenarios presented to subjects represented a range of BR values from -1.38

to 1.38. Ideally, if BR is indeed the sole criterion in subject’s decision-making, all

subjects would exhibit a clear threshold BR value. They would always choose a

stochastic alternative with a BR value above the threshold, and always refuse a

stochastic alternative with a BR value below the threshold. Most subjects did not

exhibit a perfect threshold, but did exhibit a relatively small “ambivalent range”. The

bounds of this range, BRhigh and BRlow, are determined by the highest BR for which

the subject did not choose the stochastic alternative, and the lowest BR for which

the subject did choose the stochastic alternative. A subject with a positive BRlow is

risk averse, since he never chose the stochastic alternative unless there was a positive

11



expected benefit. A subject with a negative BRhigh is risk prone, since he would

accept the risk of the stochastic option even if the expected benefit is negative. For

a subject whose ambivalent range includes both positive and negative BR values, no

definite assessment can be made regarding risk attitude. Changes in each subject’s

range across different values of Pd, however, are still meaningful in evaluating the

effect of Pd on risk attitude.

Figures 3.1, 3.2, and 3.3 illustrate these ranges for each of the 74 individual sub-

jects. It is clear that the probability of delay on the stochastic alternative, Pd, has

a strong effect on risk attitude. The vast majority (88%) of subjects exhibit per-

fectly risk-averse behavior when Pd = 0.2, with only 12% of subjects ever choosing

the stochastic alternative when BR ≤ 0. Subjects are mainly risk-neutral or risk-

averse when Pd = 0.5, with 86% of subjects choosing the stochastic alternative when

BR = 0, but only 12% accepting BR < 0. For Pd = 0.8, the majority of subjects

(80%) exhibit perfectly risk-prone behavior, with only 7% of subjects never choosing

the stochastic alternative when BR ≤ 0.
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Figure 3.1. Ambivalent range for each user, for scenarios with Pd = 0.2
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Figure 3.2. Ambivalent range for each user, for scenarios with Pd = 0.5
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Figure 3.3. Ambivalent range for each user, for scenarios with Pd = 0.8

These results strongly support the findings of Kahneman and Tversky [15], namely

the certainty effect and the overweighting of low probabilities. The lower travel time

tL on the stochastic alternative can be viewed as a reference point, and delays are

assessed relative to this reference point. The subject risks a relatively large delay when
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choosing the stochastic alternative, but is guaranteed a relatively small delay when

choosing the deterministic alternative. The certainty effect is observed when a subject

underweights an outcome that is merely probable (e.g. an 80% chance of being delayed

on the stochastic alternative) relative to an alternative with a certain outcome (e.g.

a 100% certain delay on the deterministic alternative). This effect tends to increase

risk proneness at high probabilities. For low probabilities, subjects overweight the

possible delay on the stochastic alternative, and thus exhibit risk-averse behavior.

Avineri and Prashker [3] confirm the two phenomena in a stated-preference route

choice context, via a series of experiments similar to those in [15].

The appearance of these effects is likely due in part to the description-based ap-

proach used in the experiment. Since the subjects’ only knowledge of traffic conditions

is derived from the travel times and probabilities shown on the map, their perception

is dependent on their interpretation of the information provided, rather than on pre-

vious experience. Earlier research, such as that of Ben-Elia, et al. [6], and Barron

and Erev [4] [9], has shown that the effects can be diminished or even reversed when

subjects have repeated experience with the particular situation(s) presented.

3.2 Strategic Behavior Analysis

Since each travel time scenario is adapted for both simple and strategy map types,

it is possible to directly compare a subject’s results for each map type in a given

scenario to classify behavior as strategic, non-strategic, and/or detour-biased.

The strategy maps are designed such that only two reasonable routing policies

are available, hereafter called the “deterministic policy” and the “stochastic policy”.

The deterministic policy involves simply taking Link B as shown in Figure 2.3. The

stochastic policy involves taking Link A to Node 2, learning the actual travel time of

link C, and choosing the faster of links C and D. The arrangement of the travel times

ensures that the distribution of outcomes for the stochastic policy is identical to that
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of the stochastic path in the corresponding simple map. The fixed-path stochastic

alternative (link A to link C ), however, is clearly worse than that in simple map.

The inflated high outcome tM ensures that the expected travel time of the stochastic

link is much higher – and thus the expected benefit much lower. A non-strategic

subject would only choose this alternative if he/she were extremely risk-prone. The

other fixed-path alternative of the stochastic branch, the deterministic detour, always

has a higher travel time than the deterministic branch, and the deterministic branch

dominates.

If a subject’s choices differ between the two map types for a given scenario, it

is likely that he/she perceived the risk differently between the two map types. For

example, a subject who chooses the stochastic path in the simple map and the de-

terministic branch in the strategy map may be perceiving a decreased benefit and/or

higher risk in the strategy map. This is consistent with a non-strategic assessment of

the network, and the number of such choice mismatches provides some indicator of

whether a subject is thinking strategically.

Table 3.1 enumerates the possible inferences from choice discrepancies. The first

two columns indicate the subject’s recorded choice in the two map types of a particular

scenario. Subjects who accept the the same risk in the strategy map that they

accepted in the simple risk map are deemed “strategic”, meaning they recognize the

potential advantage of future information. Users who are unwilling to accept the

risk in the strategy map are deemed “non-strategic”, as they are assumed not to be

recognizing the future detour availability, but rather assessing the network in terms

of fixed paths.

The third row addresses subjects who accept greater risk in a strategy map than

they do in a simple risk map. Such behavior would suggest the effect of a “detour

bias”, or preference for routes with information and opportunities for delay-mitigating

detours. Such subjects are also likely strategic thinkers, since it is very unlikely
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Simple Risk Strategy Inference

Stoch. Stoch. Strategic
Stoch. Determ. Non-Strat.

Determ. Stoch. Detour Bias
Determ. Determ. N/A

Table 3.1. Inference table for qualitative analysis of strategic behavior

that the detour bias would outweigh the perceived extreme risk in a non-strategic

evaluation of the stochastic branch.

Lastly, no inference can be made from cases in which the subject chooses the

deterministic alternative in both map types. Such a subject has not accepted the

simple risk presented, and is not expected to accept the perceived risk associated

with either a strategic or non-strategic assessment of the strategy map.

Since it is unreasonable to expect perfectly consistent behavior from any subject,

qualitative analysis of strategic behavior is carried out by counting the number of

each mismatch type for each subject. The histograms in Figure 3.4 show proportions

of strategy map choices which matched the choice in the corresponding strategy map.

Subjects with a higher percentage exhibited more conistent choice behavior between

map types than those with a lower percentage.
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Figure 3.4. Frequency of choice consistency proportions.

The percentages in Figure 3.4(a) measure how closely subjects’ choices correspond

to a strategic outlook. Each scenario for which the subject chose the stochastic alter-

native in both map types is considered a strategic choice. The percentages in Figure

3.4(b) measure any detour bias subjects may have, favoring the stochastic branch in

the strategy map. Users with low percentages frequently chose the stochastic branch

in the strategy map even when they had chosen the deterministic alternative in the

corresponding simple map.

Since very few subjects are entirely consistent or entirely inconsistent, a threshold

of 75% consistency is used to informally assess subjects as strategic or detour-biased.

A subject who is consistent in choices of the stochastic branch (Figure 3.4(a)) at least

75% of the time is assessed as strategic. A subject who is consistent in choices of the

deterministic branch (Figure 3.4(b)) at most 75% of the time is assessed as detour-

biased. Note that a subject may be assessed as both strategic and detour-biased.

Applying this threshold, approximately 39% of subjects are found to be strategic

thinkers, and approximately 32% are found to be detour-biased.
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A more general way to measure strategic behavior is to classify choice observa-

tions rather than subjects. Since the models presented in Section 4.1 distinguish

strategic behavior on a per-observation basis rather than a per-user basis, it is useful

to calculate per-observation percentages for comparison. By this measure, 31% of

all observations are distinguishably strategic (though not necessarily detour-biased),

while 15% are distinguishably non-strategic. 11% are distinguishably detour biased,

and 43% are indistinguishable.
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CHAPTER 4

MODELS

Several model specifications under the discrete choice modeling framework [5] are

estimated using the data collected in the experiment. Two main types of simple risk

model are estimated, both of mixed Logit [28] form. The first type uses expected travel

time ETTx and risk as explanatory attributes. For these models, risk is measured by

the standard deviation of outcomes, σx. The second type is a non-expected-utility

model based on Cumulative Prospect Theory (CPT). This model calculates utilties

based on the potential outcomes for each alternative.

The strategy models are latent-class logit models, with classes for strategic and

non-strategic choice. Each class has a distinct utility function. While both functions

are of the same form for a given latent-class model, the explanatory attributes are

changed to reflect differeng perceptions of the alternatives.

All estimation is performed using BIOGEME [7], with latent-class estimation

making use of the DONLP2 [26] algorithm.

The risk models treat the data as panel data, since multiple observations are col-

lected for each subject. Since risk attitudes are expected to vary across subjects,

parameters measuring risk attitude (e.g. travel time standard deviation) are esti-

mated as random parameters distributed across subjects. Independent normal (or

log-normal, where appropriate) distributions are assumed.

The mixed logit model is defined as follows:
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Consider a single subject’s sequence of chosen alternatives, one for each scenario,

x = {x1, . . . , xS}, where S is the number of scenarios. If the utility random errors are

assumed to be i.i.d. extreme value type I over scenarios, subjects and alternatives,

the probability conditional on B that a subject n makes this sequence of choices is

the product of logit functions:

Ln(X|B) =

S
∏

s=1

exp(Vxsns|B)
∑

j exp(Vjns|B)
(4.1)

Ln(X|B) : Conditional probability of individual n selecting the set of alternatives X

B : Vector of model parameters to be estimated

f(B) : probability density function of random parameters B

Vxsns : Systematic utility of alternative xs, for individual n in scenario s

The unconditional probability of individual n selecting the set of alternatives X

is the integral of this product over the entire distribution of B:

Pn(X) =

∫

Ln(x|B)f(B)dB (4.2)

4.1 Simple Risk Models

In order to verify and quantify the findings from the qualitative analysis, a model

is developed to measure the effects of travel time and risk, in the absence of any

strategic alternatives. The model is estimated using data from the simple risk maps

only, so no distinction is necessary between strategic and non-strategic behavior.

4.1.1 Benefit/Risk Models

The simplest form of the model, named SR1, uses the utility functions specified

below. Vdtm (Equation 4.3) and Vstc (Equation 4.4) are the systematic utilities of the

deterministic and stochastic alternatives, repsectively.
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Vdtm = βettETTdtm (4.3)

Vstc = βettETTstc + βstdσstc + ASCstc (4.4)

ETTx : Expected travel time of alternative x

σstc : standard deviation of possible outcomes for the stochastic alternative

ASCstc : Alternative-specific constant for the stochastic alternative

Estimation for this model predicts negative mean values for βett and βstd, which

are sensible since both increased travel time and increased risk are generally expected

to diminish the utility of the alternative. However, since the results of the quan-

titative analysis suggest that the probability of delay (Pd) affects risk attitude, an

expanded model SR2 is estimated, which includes separate parameters for each level

of probability (0.2, 0.5, and 0.8). Equations 4.5 and 4.6 define the systematic utility

functions for model SR2.

Vdtm = βettETTdtm (4.5)

Vstc = βettETTstc +θp02σstc ∗ (P02)+θp05σstc ∗ (P05)+θp08σstc ∗ (P08)+ASCstc (4.6)

P02 : 1 if Pd = 0.2; 0 otherwise

P05 : 1 if Pd = 0.5; 0 otherwise

P08 : 1 if Pd = 0.8; 0 otherwise

Results from models SR1 and SR2 are compared in Table 4.1. While estimates

for both models are reasonable, a likelihood-ratio test shows that SR2 is significantly

better than SR1 at a 1% significance level. The effect of Pd is therefore included

in all subsequent models presented. The values of the estimates also agree very well

with the findings from the quantitative analysis, specifically that higher-probability

risks are underweighted and lower-probability risks are overweighted. The results also
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suggest a general risk proneness when Pd = 0.8. Note that all t-statistics presented

with estimation results are robust.

SR1 SR2

βett (t-stat) -0.242 (-17.89) -0.439 (-15.07)
βstd

mean (t-stat) -0.0549 (-5.80)
stdev (t-stat) 0.0014 (1.47*)

θp02

mean (t-stat) -0.0637 (-2.46)
stdev (t-stat) 0.0861 (3.71)

θp05

mean (t-stat) -0.0286 (-1.41*)
stdev (t-stat) 0.0006 (0.19*)

θp08

mean (t-stat) 0.235 (8.26)
stdev (t-stat) 0.0794 (3.58)

ASCstc

mean (t-stat) -0.0452 (-0.48) -0.621 (-2.66)
stdev (t-stat) 0.447 (3.93) 0.563 (4.24)
Total Param. 5 9
Observations 1767 1767
Individuals 74 74

No. of Draws 1000 1000
Adj. ρ2 0.252 0.345
Final LL -922.498 -793.533

LR Test Stat. 257.93

Table 4.1. Comparison of estimates and statistics for models SR1 and SR2.

Also notable are the estimates for the standard devations of θp02 , θp05, and θp08.

The standard deviations of θp02 and θp08 are significantly different from 0, suggesting

that there is variation in risk attitude between subjects. The standard devation of

θp05 is not significant, suggesting that subjects are more uniform in their risk attitudes

when Pd = 0.5.
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4.1.2 Cumulative Prospect Theory (CPT) Model

While model SR2 is capable of accounting for the 3 levels of delay probability

presented in this study, it is of limited use in explaining or predicting general choice

behavior. In reality, a single link or route can have any number of possible outcomes,

with any level of probability. Model SR2 is incapable of predicting behavior in these

cases, since it accounts for 2 outcomes at most per alternative, and only at the

probability levels specified.

The model results and the findings from the direct analysis suggest that subjects’

risk attitudes change according to the delay probability. In order to more generally

explain this behavior, a parameterized functional form must be employed.

The Cumulative Prospect Theory (CPT) developed by Tversky and Kahneman

[29], and applied to strategic route choice by Gao et al. [13], proposes a functional

form that accounts for weighted perceptions of probabilities. The CPT choice model

rates each alternative based on its set of potential outcomes and the probability of

each. Under CPT, subjects evaluate outcomes in reference to a “status quo”, viewing

some outcomes as gains and others as losses. Subjects’ sensitivity to these gains and

losses diminishes as the difference from the status quo increases. In other words,

the difference between a 10-minute delay and an 11-minute delay would weigh more

heavily in a subject’s mind than the difference between a 100-minute delay and 101-

minute delay.

Each outcome is transformed by a value function v(∆t), where ∆t represents the

difference between the outcome and the reference point. The value function models

the subject’s diminishing sensitivity to more extreme outcomes, and is defined as

follows:
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v(∆t) =











∆tα, if ∆t > 0

−λ(−∆t)β , if ∆t ≤ 0
(4.7)

α : Value parameter for gain outcomes

β : Value parameter for loss outcomes

The probabilities for each prospect are also transformed by a weighting function

w(Pj) – where Pj is the objective probability of outcome j – to account for the

subject’s perception.

w+(Pj) =
P ρ

j
(

P ρ
j + (1 − Pj)ρ

)1/ρ
, w−(Pj) =

P δ
j

(

P δ
j + (1 − Pj)δ

)1/δ
(4.8)

ρ : Probability weighting parameter for gain outcomes

δ : Probability weighting parameter for loss outcomes
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Figure 4.1. Weighting Function w−(p) with δ = 0.69

The loss-domain weighting function w−(Pj) defined in figure 4.8 is illustrated in

figure 4.1. The dotted line represents a perfectly objective perception of probability
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(w−(Pj) = Pj). The solid curve represents a more realistic perception, in which low

probabilities are overweighted and high probabilities are underweighted.

The CPT model is rank-dependent, which means that the weighted probability

of each outcome also accounts for all outcomes worse than the reference point. The

utility of a prospect f− with m + 1 loss outcomes is defined as

Y (f−) =

0
∑

j=−m

π−

j v(xj), (4.9)

where π−

j is the decision weight for loss outcome j. The outcomes are arranged in

increasing order and the negative subscripts indicate negative (loss) outcomes. π−

j is

calculated from the weighting functions of cumulative probabilities:

π−

j = w−(p
−m + · · ·+ pj) − w−(p

−m + · · · + pj−1), −m + 1 ≤ j ≤ 0, (4.10)

and π−

−m = w−(p
−m).

Since subjects in this experiment have no prior experience with the network, and

thus no “usual” route, the shortest possible travel time, tL, is chosen as the reference

point for the CPT model. As presented to subjects, this is the usual travel time of

the stochastic alternative, with tH presented as a potential delay. With tL as the

reference, all other travel times are considered delays, or losses. The utility functions

for the alternatives are:

Ydeterm = −λ(tD − tL)βw−(1)

= −λ(tD − tL)β (4.11)

Ystoch = −λ(tH − tL)βw−(Pd) − λ(tL − tL)β(w−(1) − w−(Pd)) + ASCstoch

= −λ(tH − tL)β P δ
d

(

P δ
d + (1 − Pd)δ

)1/δ
+ ASCstoch (4.12)
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The CPT model is estimated assuming that all parameters are random variables

across subjects. The parameters λ and ASCstoch are distributed normally, while β

and δ are distributed log-normally.

Estimate

λ

mean (t-stat w.r.t. 0) 0.386 (5.61)
stdev (t-stat w.r.t. 0) 0.0447 (0.84*)

β

mean (t-stat w.r.t. 1) 1.000 (0.00*)
stdev (t-stat w.r.t. 0) 0.1213 (4.41)

δ

mean (t-stat w.r.t. 1) 0.628 (-10.15)
stdev (t-stat w.r.t. 0) 0.212 (5.44)

ASCstoch

mean (t-stat w.r.t. 0) -0.682 (-3.40)
stdev (t-stat w.r.t. 0) 0.390 (1.08*)

Observations 1767
Individuals 74

Total Param. 8
Adj. ρ2 0.307
Final LL -840.586

Table 4.2. Estimation results for the CPT simple risk model

The estimates for the mean and standard devation of δ support the finding that

subjects have varying perceptions of probability, but generally follow the pattern of

overweighting low probabilities and underweighting high probabilities. While this

finding was already well-supported by model SR2, the CPT model offers a functional

form for describing this behavior.

Curiously, the estimate for the mean of β suggests that, on average, subjects’

sensitivity to loss remains fairly constant for all magnitude of loss. The estimate for

the standard deviation of β, however, suggests that a considerable portion of subjects

did exhibit some level of increasing or decreasing sensitivity.
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The overall fit of the model, while not strictly comparable with that of model

SR2, suggests that subjects’ thinking largely matched the expectations of CPT.

4.2 Strategic Choice Model

In analyzing choice behavior in the strategy maps, it must be recognized that

subjects may be perceiving different choice sets. Specifically, subjects viewing the

network strategically will choose from a set of routing policies, while subjects viewing

the network non-strategically will choose from a set of fixed paths.

Model SR2 can be applied to the data from the strategy maps, if it is assumed

momentarily that all users uniformly think either strategically or non-strategically.

The difference between the two assumptions is in the utility function for the stochastic

branch. Referring to the network shown in Figure 2.3, a strategic subject would see

the expected travel time of the stochastic branch as ETTstc,strat = Pd∗tH +(1−Pd)∗tL,

since the worst-case travel time is the detour on link D. A non-strategic subject, on

the other hand, would view the stochastic branch as two separate paths. One path

(link A - link D)is deterministic with travel time tD. Since tD is always greater than

tB, the route using link B dominates and the link A - link D path is not likely to be

chosen. The other path on the stochastic branch (link A - link C ) is stochastic, with

expected travel time ETTstc,path = Pd ∗ tM + (1 − Pd) ∗ tL, and standard deviation

σstc,path = (tH − tL)
√

Pd(1 − Pd). Since the non-strategic subject does not recognize

the availability of the detour, the perceived worst-case travel time is tM , which is

always much greater than tD.

The systematic utility of the stochastic branch is therefore

Vstc = βettETTstc,strat +θp02σstc,strat ∗ (P02)+θp05σstc,strat ∗ (P05)+θp08σstc,strat ∗ (P08)

(4.13)

for strategic subjects, and
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Vstc = βettETTstc,path + θp02σstc,path ∗ (P02)+ θp05σstc,path ∗ (P05)+ θp08σstc,path ∗ (P08)

(4.14)

for non-strategic subjects.

Model SR2 is estimated once using the utility function in Equation 4.13, implicitly

assuming all subjects are strategic, and again using the utility function in Equation

4.14, implicitly assuming all users are non-strategic. Estimation results are presented

in Table 4.3. Note that the term ASCstoch has been removed for the purpose of this

comparison. Due to the particular travel times used in this experiment, ASCstoch is

not estimable for non-strategic users when using only observations from the strategic

maps.

Strat. Non-Strat.

βett (t-stat) -0.467 (-18.19) -0.237 (-17.95)
θp02

mean (t-stat) -0.324 (-12.26) 0.0432 (9.31)
stdev (t-stat) 0.132 (6.50) 0.0228 (5.23)

θp05

mean (t-stat) -0.0261 (-2.01) 0.169 (16.93)
stdev (t-stat) 0.0712 (4.33) 0.0108 (2.50)

θp08

mean (t-stat) 0.190 (8.04) 0.365 (16.93)
stdev (t-stat) 0.139 (6.47) 0.0273 (5.62)
Total Param. 7 7
Observations 1699 1699
Individuals 74 74

Adj. ρ2 0.329 0.225
Final LL -783.670 -905.991

Table 4.3. Comparison of estimates and statistics for strategic and non-strategic
models

While the fit of the strategy-only model is better, it is not possible to conclude

that the non-strategic model is entirely inaccurate. Rather, it is expected that the

most accurate model would recognize both strategic and non-strategic behavior. This

hypothesis can be tested by a J-test, a specification test which measures the signif-
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icance of a designated subset of variables. The test is performed by first estimating

the non-strategic model, obtaining V̂stc,path, then estimating a mixed model and evalu-

ating the mixing parameter γ for signficance. The systematic utility of the stochastic

branch is therefore expanded to that shown in Equation 4.15.

Vstc = (1 − γ)(Vstc,strat) + γ(V̂stc,path) (4.15)

The estimate obtained for γ is 0.0778, with a robust standard error of 0.0212.

The estimate is therefore significantly different from both 0 and 1 at the 1% level.

This suggests that both Vstc,strat and Vstc,path are significant components of the true

model. A latent-class model is therefore desirable, as it can be used to estimate

both utility functions, as well as the probability that each function applies to any

given observation. The formulation used for estimation is a mixed logit model with

discrete mixing distribution. This is equivalent to a latent-class model since the

class membership function is a non-conditional probability. The model is specified in

Equation 4.16. κ is a binary variable with distribution {1 w.p. W , 0 w.p. (1 − W )}

Vstc = (1 − κ)(Vstc,strat) + κ(Vstc,path) (4.16)

The choice probability is then

Pn(xs|B) = W

(

exp(Vstc,strat|B)

exp(Vstc,strat|B) + exp(Vdet|B)

)

+(1 − W )

(

exp(Vstc,path|B)

exp(Vstc,path|B) + exp(Vdet|B)

)

(4.17)

Estimation results are presented in Table 4.4. For the latent-class models, the

utility function parameters are estimated as fixed values rather than random variables.

The estimates very closely match the estimated means in the simple risk model,
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however, so model accuracy is still sufficient. The latent-class model is estimated

using the entire dataset, including simple risk and strategy maps.

Estimate

βett (t-stat) -0.390 (-24.70)
ASCstc (t-stat) -1.02 (-8.79)

θp02 (t-stat) -0.0338 (-3.73)
θp05 (t-stat) 0.0458 (3.98)
θp08 (t-stat) 0.275 (15.02)
W (t-stat) 0.873 (40.80)

1 − W (t-stat) 0.127 (5.93)
Total Param. 7
Observations 3466

Adj. ρ2 0.299
Final LL -1676.313

Table 4.4. Estimation results for latent-class model

The estimate for W , the probability of a strategic choice, suggests that 87.3% of

observations were likely to have resulted from strategic assessment of the alternatives.

Conversely, 12.7% are estimated to have resulted from non-strategic behavior. This

is not far from the assessment from the quantitative analysis, that 15% of observed

choices were distinguishably non-strategic. The t-statistics for W and 1 − W show

that the number of both strategic and non-strategic choices are statistically significant

at the 1% level. Furthermore, the latent-class model closely reproduces the estimates

of risk attitude obtained from estimation on the simple risk maps. This suggests

that the latent-class model is capabable of measuring both risk attitude and strategic

behavior in the simple networks used in this study.

A more generally applicable strategic choice model incorporates the CPT model

rather than the benefit/risk model used above. The latent-class structure is identical

to that described in equation 4.16, but the systematic utility functions are of the CPT

form defined in equations 4.11 and 4.12. Estimation results are shown in table 4.5
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Estimate

λ (t-stat w.r.t. 0) 0.451 (9.54)
ASCstoch (t-stat w.r.t. 0) -1.21 (-9.25)

β (t-stat w.r.t. 1) 0.939 (2.27)
δ (t-stat w.r.t. 1) 0.543 (35.70)

W (t-stat w.r.t. 0) 0.893 (39.73)
1 − W (t-stat w.r.t 0) 0.107 (4.77)

Total Param. 6
Observations 3466

Adj. ρ2 0.289
Final LL -1702.765

Table 4.5. Estimation results for the CPT latent-class model

While the fit of the latent-class CPT model is not as good as that of the latent-

class benefit/risk model, the estimate of strategic behavior probability, 89.3%, is in

line with the estimate of 87.3% from the benefit/risk model. As in the simple risk

CPT model, the estimate for the value parameter β is close to 1 and the estimate for

the probability weighting parameter δ indicates a substantial distortion of percieved

probability. These results show that a reasonable latent-class CPT model is estimable,

but further research into the form of the model, including the choice of reference point,

may be necessary to improve accuracy in future applications.
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CHAPTER 5

CONCLUSIONS

The qualitative and quantitative analyses performed in this work have made sig-

nificant progress in answering the reasearch questions:

Do drivers think strategically when planning routes in uncertain net-

works with real-time, en route information?

The per-scenario comparison of choice behavior between the two map types indi-

cated that many subjects (63%) frequently rejected risks in the strategy maps that

they accepted in the simple risk maps. This is likely due to an exaggerated percep-

tion of the risk as presented in the strategy map, which is expected from a fixed-path

assessment of the network.

The significance tests and comparisons of the several models estimated show sta-

tistically significant portions of both strategic and non-strategic behavior. While users

may not be easily classified by behavior type, the modeling results show that both

types of behavior are likely present, and should be considered in future modeling work.

Can observations of route choice be used to estimate a model which

accounts for strategic behavior?

The latent-class models succeed at accounting for both risk attitude and strategic

behavior simultaneously. The close agreement with the qualitative measurement of

risk attitude provides strong support for this finding.
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The latent-class CPT model is the most useful, since it is capable of discerning

strategic behavior and predicting a generally applicable model for risk attitude.

Another important aspect of risk in route choice is addressed in this research:

Do drivers’ risk attitudes change according to the probability of delay?

The qualitative analysis shows clearly that subjects are more risk-prone as the

value of Pd increases. These results emphasize the importance of accounting for Pd

in the quantitative models.

Modeling results agree well with the qualitative findings. The simple risk model

which accounts for Pd performed significantly better than the model which neglected

this variable. In addition, the estimates for each probability level support the finding

that subjects are generally risk prone for Pd = 0.8

The fit of the CPT model further supports this finding by establishing a functional

form with a significant probability weighting factor. This model also provides a more

general way to measure and predict this effect in applications beyond this experiment.

5.1 Future Work

The purpose of this research is to use a controlled experiment to investigate strate-

gic thinking and risk attitudes in route choice. The careful design and limited context

of the experiment allow for the identification of statistically significant factors, which

can guide future research involving more complex networks and real-world choices.

One key challenge in working with real-world data from complex networks is that

strategic choices are not directly observable. In a given trip, a driver’s routing policy

will be manifested as a single path from origin to destination. Usually, there are

multiple policies that would result in the same observed path. A latent-choice model

has been developed by Gao et al. in [12], and experimental validation of such model

is a necessary step toward reliably analyzing real-world data.
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Another critical avenue of investigation is more general and accurate modeling of

risk attitude. While the estimation results in this research establish some validity

for CPT-based models, data from more diverse networks with wider ranges of delay

probabilities and travel times is needed to generate more realistic estimates.

Of major importance in every aspect of this topic is the practical applicability of

the findings. This research is designed to identify important factors in route choice.

While stated preference results are not ideal for direct practical application, these

results will guide future research efforts, including driving simulator experiments and

analysis of real-world data.

The Regional Traveler Information Center (RTIC) at the University of Mas-

sachusetts is one important example of a platform well-suited to real-world exper-

imentation and data collection. The RTIC currently collects real-time information

regarding traffic conditions on area roads. With expansion of the center currently

under way, there is great opportunity for development of research-minded projects

involving new methods of communicating information to drivers en route to their

destinations.

Future findings from this research area will have direct impact on new and existing

ATIS implementations, by offering more advanced and accurate predictions of the

effectiveness of specific treatments or entire systems. This will eventually accelerate

and improve the design process and allow for low-cost development of advanced ATIS

designs.
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