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Abstract

Every cell contains several millions of diffusing and reacting biological molecules. The inter-
actions between these molecules ultimately manifest themselves in all aspects of life, from the
smallest bacterium to the largest whale. One of the greatest open scientific challenges is to
understand how the microscopic chemistry determines the macroscopic biology.

Key to this challenge is the development of mathematical and computational models of
biochemistry with molecule-level detail, but which are sufficiently coarse to enable the study
of large systems at the cell or organism scale. Two such models are in common usage: the
reaction-diffusion master equation, and Brownian dynamics. These models are utterly different
in both their history and in their approaches to chemical reactions and diffusion, but they both
seek to address the same reaction-diffusion question.

Here we make an in-depth study into the physical validity of these models under various
biological conditions, determining when they can reliably be used. Taking each model in turn,
we propose modifications to the models to better model the realities of the cellular environment,
and to enable more efficient computational implementations. We use the models to make pre-
dictions about how and why cells behave the way they do, from mechanisms of self-organisation
to noise reduction. We conclude that both models are extremely powerful tools for clarifying
the details of the mysterious relationship between chemistry and biology.
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Lay Summary

Chemical reactions inside cells are influenced both by the diffusion of the reactants (spatial
effects) and the random timing of reactions (stochastic effects). Spatial stochastic mathematical
models of biochemistry are consequently an important research area for understanding what
goes on inside cells.

In this thesis, we perform an in-depth study of the two most popular spatial stochastic
models: the reaction-diffusion master equation (RDME), and Brownian dynamics (BD). We ask
questions about when it is appropriate to use these models, and what the relative advantages
of each model are. We use both models to make testable predictions about real biology, and
test them with experimental data and computer simulations.

We conclude that both RDME and BD are extremely useful approaches for understanding
biology, and will grow in popularity as computational power increases.
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Chapter 1

Introduction

Chemical reactions are the building blocks of biology. Substrates bind to enzymes, messenger
RNA binds to ribosomes, proteins bind to DNA, amino acids bind to each other – the cumulative
effect is ultimately life as we know it. It is perhaps unintuitive to think in these terms, but
any observable behaviour of a living organism (e.g. a human reading this sentence) can be
understood as a series of interactions between molecules. The question of how microscopic
chemistry gives rise to macroscopic biology is one of the greatest open scientific problems.
Modelling is key to answering this question: our understanding of the underlying chemistry
is good, as is our knowledge of the observable biology; what is missing is a model linking the
distinct scales together.

A system can be modelled in a great variety of ways, but not all models are equally useful.
It is theoretically possible to model the biochemistry in an entire cell using Schrödinger’s
equation, but it would not be appropriate. The challenge is to select a model incorporating the
salient details of a system, while leaving out the extraneous ones.

For instance, consider a simple molecule like carbon dioxide, CO2. At the coarsest level,
we could model the concentration of CO2, which refers to the total number of carbon dioxide
molecules divided by the volume of whatever container the molecules are in (such as a cell, or
a test tube). The numerical value which we assign to the concentration will depend on the
concentrations of other chemical species in the container, and the rates of any reactions which
involve these species. For instance, there might be some molecules of carbon monoxide, CO,
and some molecules of oxygen, O, and there might be a reaction of the form:

CO +O
k−→ CO2, (1.1)

where k denotes the rate at which CO and O are converted into CO2. The basic model which
describes chemical kinetics at this level of complexity is the rate equations (REs) [1].

Alternatively at a considerably more complex level we could model each atom of each
molecule individually, by considering the forces exerted by each atom in the volume on ev-
ery other atom. The three atoms which make up any single CO2 molecule are bonded together
and so will exert very strong forces on each other (these forces are traditionally modelled as
springs), but they will also experience weaker forces from the rest of the atoms (e.g. electro-
static forces). This is a more complex model because if our container contains, say, 1000 C
atoms and 2000 O atoms we will need to keep track of 9000 distinct quantities (the locations
of each atom in 3 spatial dimensions) as well as physical properties of the system (the volume
of the container, the nature of its boundaries, the temperature, etc.) rather than 3 in the REs
(the concentrations of each species). The basic model which describes chemical kinetics at this
level of complexity is molecular dynamics (MD) [2].

There are a huge variety of models spanning the range of complexity from the REs to MD.
We can imagine these models as points on a “complexity scale”, ranging from the coarsest (the
REs) to the extremely complex (the Schrödinger equation), as shown in Fig. 1.1. On the left,
we find the REs. As we move up the complexity scale, we gain microscopic detail at the cost
of more difficult mathematics or longer computation times, ultimately resulting in MD. For
example, one of the main assumptions behind the REs is that the diffusion coefficients of all
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Figure 1.1: The scale of model complexity, ranging from coarse to extremely complex. Between
the extremes are the models of interest in chemical kinetics, ranging from the rate equations
(red) to molecular dynamics (violet). Reviews of the models not studied in-depth in this thesis
can be found in Refs. [3, 4, 5].

molecules are infinitely fast – relaxing this assumption pushes us up the complexity scale to a
model known as the reaction-diffusion equations (RDEs) [3], which is always going to be more
accurate than the REs, but correspondingly will always incur a greater computational cost.

The two models which are the subject of this thesis are at an intermediate level of complexity:
the reaction-diffusion master equation (RDME) [6] and Brownian dynamics (BD) [7]. As we
will go on to show, these models are very different, though they both model the same kinds
of processes at roughly the same level of detail. Unlike the REs, the RDME and BD both
acknowledge that molecules are discrete entities, but they do not go down to atomic-level
resolution like MD. The RDME and BD do not explicitly model water molecules (unlike MD),
but they do model the effect of water molecules (diffusion) which is beyond the scope of the
REs.

The reason for focussing on the RDME and BD is that they are likely to be the appropriate
level of modelling detail for understanding the link between microscopic chemistry and macro-
scopic biology [8]. They are the simplest models which explicitly model individual reactions
and the diffusion of individual molecules, and so are not too distant from chemistry as we
understand it intuitively. Yet they are not too computationally intensive: both models have
already been used to study systems on the scale of an entire cell [9, 10, 11, 12], and it is surely
only a matter of time until multicellular organisms are within their scope.

In the remainder of this introduction, we lay out the the derivations of the RDME and BD
starting from basic physical principles, setting the groundwork for the main sections to follow.

1.1 The reaction-diffusion master equation

Consider the following chemical reaction system:

A+B
k1−⇀↽−
k2

C. (1.2)

This denotes that a molecule of type A can bind to a molecule of type B to create a molecule
of type C, and that this process occurs with rate k1. Furthermore, a molecule of type C can
spontaneously unbind into one molecule of type A and one molecule of type B, a process which
occurs with rate k2. As already mentioned, the simplest method of modelling systems like
(1.2) is to describe the concentrations (number of molecules per unit volume) of A, B, and C
as differentiable functions of time, denoted [A], [B], and [C] respectively. These functions are

12
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implictly defined as the solutions to a set of ordinary differential equations, the REs:

d[A]

dt
= −k1[A][B] + k2[C], (1.3)

d[B]

dt
= −k1[A][B] + k2[C],

d[C]

dt
= k1[A][B]− k2[C].

The equation for d[A]
dt , for example, states that the rate of change of [A] is equal to minus the

rate at which A molecules are removed from the system (the rate of the binding reaction, k1,
multiplied by the product of concentrations of the reactants, [A][B]) plus the rate at which
A molecules are added to the system (the rate of the unbinding reaction, k2, multiplied by
the concentration of the reactant, [C]). The functional form of these rates follows from the
principle of mass action kinetics [13], which states that the rate of a reaction is proportional to
the product of concentrations of the reactants.

Eq. (1.3) can be solved exactly, given initial concentrations of species A, B, and C, say,
[A]0, [B]0, and [C]0 respectively. The solution proceeds by noting that two quantities are
conserved, no matter which reactions take place. First, [A] − [B] must remain constant, since
any change in [A] can occur when and only when [B] changes by an identical amount; therefore
[A]− [B] = [A]0− [B]0. Second, [A] + [B] + 2[C] must remain constant, since any change in [A]
and [B] occurs when and only when an opposite change occurs in [C]; therefore [A]+[B]+2[C] =
[A]0 + [B]0 + 2[C]0. Substituting these conservation laws into Eq. (1.3), leads to a simplified
ODE for [A] alone:

d[A]

dt
= −k1[A]2 + (k1[A]0 − k1[B]0 − k2)[A] + k2([A]0 + [C]0). (1.4)

The solution to Eq. (1.4)is:

[A] =
−1

2k1

(
−[A]0k1 + [B]0k1 + k2 +K tan

[
1

2
Kt− arctan

[
([A]0 + [B]0)k1 + k2

K

]])
, (1.5)

where K =
√
−([A]0 − [B]0)2k2

1 − 2([A]0 + [B]0 + 2[C]0)k1k2 − k2
2. Eq. (1.5) gives the value

of [A] at any point in the future, and simple manipulation with the conservation laws gives
equivalent expressions for [B] and [C]. These, or more difficult ODEs, can also be solved using
a numerical ODE solver [14].

The REs are simple to derive for any system, simple to understand, and easy to solve with
a computer, and therefore they remain by far the most common model of chemical kinetics in
use today, in fields ranging from physical chemistry [15] to cell biology [16].

However, the RE model relies heavily on the assumption that concentrations are differen-
tiable functions of time, which is clearly untrue since numbers of molecules must be integer-
valued, and therefore discrete. This assumption becomes particularly egregious when the con-
centrations are small, so that a system may contain only a few tens or hundreds of molecules
of each species. In addition to this, it must be noted that chemical kinetics is inherently prob-
abilistic, for a variety of reasons. For one, chemical reactions are quantum mechanical events
[17], though the details of this are beyond the scope of this thesis. Another reason is that
bimolecular reactions occur only when the two reactants diffuse close enough together to react,
and diffusion (the cumulative effect of huge numbers of collisions with water molecules) is such
a complex process that it is typically modelled as random [18].

Thinking along the lines of discreteness and randomness leads us to consider not concen-
trations [A], [B] and [C], but rather the joint probability mass function P (nA, nB , nC ; t), the
probability that the system contains exactly nA molecules of A, nB molecules of B and nC
molecules of C at time t. Though this quantity may seem hopelessly complicated, it turns out
that we can say quite a lot about it.

Consider a very short time period ∆t, so short that at most one reaction can happen in
it, then consider what we can say about P (nA, nB , nC ; t + ∆t) in terms of P (nA, nB , nC ; t).

13
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We can end up with exactly nA, nB , nC molecules at time t + ∆t in three different ways: (I)
if there were nA + 1, nB + 1, nC − 1 molecules at time t and a binding reaction happened in
the interval [t, t + ∆t); (II) if there were nA − 1, nB − 1, nC + 1 molecules at time t and an
unbinding reaction happened in [t, t + ∆t); (III) if there were nA, nB , nC molecules at time t
and no reactions happened in [t, t+ ∆t). So we can write:

P (nA, nB , nC ; t+ ∆t) = P (I) + P (II) + P (III), (1.6)

where P (i) represents the probability that scenario (i) happened. By the definition of condi-
tional probability [19], we can write the following for P (I):

P (I) = P (nA + 1, nB + 1, nC − 1 molecules at time t and a binding reaction happened) (1.7)

= P (nA + 1, nB + 1, nC − 1; t)× P (a binding reaction happened in time ∆t

| nA + 1, nB + 1, nC − 1 molecules at time t),

where the conditional symbol | means “given that”.

At this point in the analysis we need to make an assumption, namely that the waiting
times between chemical reactions are exponentially distributed. For unimolecular reactions
(i.e. unbinding), Fermi’s golden rule implies that waiting times are very close to exponential
[20, 21]. For bimolecular reactions (i.e. binding) the reality is more complicated: reacting
molecules must diffuse close together, then collide with a sufficiently high energy, at the correct
orientation [17]. Although the underlying processes involved here are ultimately deterministic
(at least at the level we go to in this thesis), they are so complex that they appear to be
random, and the overall waiting time will appear to follow some probability distribution. The
exponential distribution is chosen because of the assumption of memorylessness, meaning that
the future of the system depends only on the current state (i.e. molecule numbers) and not
on the states which preceded it. Exponential waiting times are a direct consequence of this
assumption.

Though it is a straightforward assumption, it is not strictly true, for instance imagine that a
system is currently in the state (nA = 10, nB = 10, nC = 10). According to the memorylessness
assumption, the probability that a binding reaction happens next is independent of how the
system got into its current state, whether from state (nA = 11, nB = 11, nC = 9) and a
binding reaction, or from state (nA = 9, nB = 9, nC = 11) and an unbinding reaction. Yet if an
unbinding reaction happened very recently, then we know that the products of that reaction will
be close together, and so will be significantly more likely to bind than a typical pair of reactants.
In other words, binding reactions are more likely in the immediate aftermath of an unbinding,
violating the memorylessness assumption. Choosing the exponential distribution essentially
amounts to ignoring this rather subtle effect, but in its favour the exponential distribution has
very useful mathematical properties.

One of the nice mathematical properties of exponentially distributed events is that the
probability of the event happening in a short interval ∆t is proportional to ∆t. By the
principle of mass action, this probability is also proportional to the number of molecules of the
reactants. It follows that we can write:

P (binding in time ∆t | nA + 1, nB + 1, nC − 1 molecules at t) =
k1

V
(nA + 1)(nB + 1)∆t, (1.8)

where V is the reaction volume.

Why do we write k1/V instead of just k1? This is quite a subtle point of statistical physics
[22], but it can be intuitively justified by a dimensional argument. Concentrations have units
of inverse volume, so in order for Eq. (1.3) to be dimensionally consistent, k1 must have
units of volume per time, whereas k2 simply has units of inverse time. The extra V is thus
required to make Eq. (1.8) dimensionally consistent. It can generally be shown that reactions
with n reactants will have their rates scaled by V 1−n [22]. This can be intuitively justified
by observing that bimolecular reactions will tend to happen less frequently in larger volumes,
since it is harder for particles to find each other.

Applying the same arguments to scenarios (II) and (III), we find that we can write Eq.

14
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(1.6) as:

P (nA, nB , nC ; t+ ∆t) =
k1

V
(nA + 1)(nB + 1)∆tP (nA + 1, nB + 1, nC − 1; t) (1.9)

+ k2(nC + 1)∆tP (nA − 1, nB − 1, nC + 1; t)

+

(
1− k1

V
nAnB∆t− k2nC∆t

)
P (nA, nB , nC ; t).

This equation simplifies very nicely to give:

P (nA, nB , nC ; t+ ∆t)− P (nA, nB , nC ; t)

∆t
= (1.10)

k1

V
[(nA + 1)(nB + 1)P (nA + 1, nB + 1, nC − 1; t)− nAnBP (nA, nB , nC ; t)]

+ k2 [(nC + 1)P (nA − 1, nB − 1, nC + 1; t)− nCP (nA, nB , nC ; t)] .

The left-hand side of Eq. (1.10), in the limit of small ∆t, is the definition of a derivative, and
the right-hand side has no ∆t dependence, so we get:

d

dt
P (nA, nB , nC ; t) = (1.11)

k1

V
[(nA + 1)(nB + 1)P (nA + 1, nB + 1, nC − 1; t)− nAnBP (nA, nB , nC ; t)]

+ k2 [(nC + 1)P (nA − 1, nB − 1, nC + 1; t)− nCP (nA, nB , nC ; t)] ,

which is known as the chemical master equation (CME) [22].

As with the REs, Eq. (1.3), Eq. (1.11) can be solved analytically, given initial molecule

numbers of species A, B, and C, say, n
(0)
A , n

(0)
B , and n

(0)
C respectively. Again, the solution

proceeds by noting the presence of the same two conservation laws as were used in solving Eq.

(1.3): nA − nB = n
(0)
A − n

(0)
B , and nA + nB + 2nC = n

(0)
A + n

(0)
B + 2n

(0)
C . Substituting these

conservation laws into Eq. (1.11), leads to a simplified CME for nA alone:

d

dt
P (nA; t) =

k1

V

[
(nA + 1)(nA − n(0)

A + n
(0)
B + 1)P (nA + 1; t)− nA(nA − n(0)

A + n
(0)
B )P (nA; t)

]
+ k2

[
(n

(0)
A + n

(0)
C − (nA − 1))P (nA − 1; t)− (n

(0)
A + n

(0)
C − nA)P (nA; t)

]
.

(1.12)

The time-dependent solution to Eq. (1.12) can be obtained using a matrix exponential method,
such as Ref. [23], however, this does not admit a neat analytical expression, so we will leave it out
here. However, the steady-state solution to Eq. (1.12) can be written relatively straighforwardly,
using the method outlined in Ref. [24] :

P (nA) =
knA2 (n

(0)
A + n

(0)
C )!(−n(0)

A + n
(0)
B )!

(k1/V )nAnA!(nA − n(0)
A + n

(0)
B )!(n

(0)
A + n

(0)
C − nA)!

(1.13)

In general, CMEs can be solved numerically using a variety of methods, the most well-known
being the finite-state projection method (FSP) [23] in which the problem of solving the CME
is mapped on the evaluation of a (typically very large) matrix exponential. Since this approach
can become computationally expensive for systems with more than one or two species, simplifi-
cations have been developed, such as those based on tensor trains, an analogue of the singular
value deocompostion (SVD) for matrices [25]. The CME can also be mapped onto a drift-
diffusion equation called the Chemical Fokker Planck Equation (CFPE), for which standard
PDE solvers can be used. More recently tensor-based methods [26] and adaptive finite-element
methods [27] have been developed to improve speed and accuracy of the solutions.

In special case, simple CMEs can be solved analytically [28, 29, 30, 31, 32, 24, 28, 33, 34]. A
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Figure 1.2: Stochastic simulations and analytical solutions of Eq. (1.11). The 5 multicoloured
trajectories are independent simulations made using the SSA. Marginal distributions of the
exact probability distributions solving Eq. (1.11) are shown as perpendicular grey histograms
at t = 0.02, 0.05 and 0.08. This makes clear that at each time point t the numerical value of
each trajectory is a sample from the probability distribution solving the CME.

less intensive appoach is to approximate either the distribution [35, 36, 37, 38], or the moments
(e.g. the mean or variance) of P (nA, nB , nC ; t), and a variety of methods are popular such as
the Van Kampen approximation [22, 39], moment-closure approximations [40, 41, 42, 43, 44],
or the chemical Langevin equation [45, 46]. For a recent review see Ref. [47].

There is an alternative (and much more popular) approach to the CME, which has no
analog corresponding to the REs. This approach notes that P (nA, nB , nC ; t) is not just any
function, but is a probability distribution, and therefore pseudo-random samples can be drawn
from it exactly as one might sample from a Gaussian or a Poisson distribution [48]. In fact,
P (nA, nB , nC ; t) is actually an infinite set of related probability distributions indexed by t,
and so a sample will be an entire trajectory of molecule numbers over time. Such trajectories
are much more intuitive than the CME itself, because each trajectory represents a particular
realisation of what we might actually see if we observed a system in real time. Furthermore,
it turns out it is typically computationally much easier to sample from the CME than to solve
the CME, and if we take a large number of sample trajectories we can use them to estimate
P (nA, nB , nC ; t). The reason for this computational difference is that the cost of numerical
solution of the CME scales with the number of possible system states (i.e. the number of
permissible combinations of molecule numbers), while the cost of sampling scales with the
frequency of reactions. Numerically solving the CME will typically only be worthwhile for
systems with a small number of states and fast reaction rates.

Sampling trajectories of the CME is typically referred to as “simulating” the underlying
system, for obvious reasons. The most common way to simulate is to use Gillespie’s stochastic
simulation algorithm (SSA) [49], because this algorithm gives statistically exact trajectories,
by taking advantage of the fact that the waiting times between reactions are exponentially
distributed. The SSA can be quite slow, because it explicitly simulates every reaction, so a huge
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(a) (b) (c)

Figure 1.3: The rationale behind dividing a volume into subvolumes. (a) The principle of mass
action claims that every reacting pair of molecules is equally likely to react in any time period,
including pairs which might be very distant (blue dotted line). (b) One solution is to divide
the volume into M subvolumes, and only allow molecules in the same subvolume to react, so
reacting pairs are now close together (blue dotted line). (c) If M is too large, then there will
very rarely be pairs in the same subvolume, and bimolecular reactions will tend not to happen
at all.

number of approximate simulation algorithms has been developed. The most popular is a time-
discretised algorithm called τ -leaping, also by Gillespie [50], but new algorithms are proposed
every year that typically sacrifice a degree of accuracy for an increase in speed. These include
timescale-separation algorithms which simulate “fast” species with the SSA and “slow” species
with a CFPE solver [51], or abundance separation algorithms which treat low-concentration
species using the SSA, and high-concentration species using the CLE [52], amongst many others
[53, 54, 55]. For a recent review see Ref. [56].

The relationship between individual sample trajectories and the CME solution is quite unin-
tuitive, so we have shown an example in Fig. 1.2. The main graph shows 5 independent sample
trajectories of the CME Eq. (1.11), showing the number of A molecules nA over a short time
period. Perpendicular to the main graph are three histograms showing the marginal probability
distribution P (nA; t) at three time points t = 0.02, 0.05, and 0.08. This representation makes it
clear that the values of the trajectories of nA at t = 0.02 (for example) are independent samples
of the distribution P (nA; 0.02). There is a one-to-one correspondence between the distributions
P (nA, nB , nC ; t) and the sample trajectories: if we know the distributions then we can sample
trajectories; if we have enough independent trajectories we can approximate the distributions
to an arbitrarily high degree of accuracy.

One point that we have not satisfactorily addressed so far is the validity of the principle of
mass action, the principle which underpins fundamental equations such as (1.8). The principle
of mass action is based on combinatorial arguments: if a reaction has two reactants, A and B
say, then the probability of a reaction must be proportional to the number of ways a reacting
pair can be made up, i.e. nAnB different ways; similarly, if a reaction involves two molecules of A
reacting with each other, then we would expect the reaction probability to scale as nA(nA−1)/2.

These arguments are not particularly satisfactory when considered from a microscopic point
of view: if no pair of molecules is sufficiently close together to collide and react in a short time
∆t, then a reaction will not happen, no matter how many molecules there are over all; or if
only 2 (or 3 or 4 or...) pairs is sufficiently close together, then the probability of reaction will be
roughly proportional to 2 (or 3 or 4 or...) rather than the total number of pairs. The principle
of mass action surely amounts to assuming (nonsensically) that all the pairs are sufficiently
close together to potentially react in a short time ∆t. The absurdity of this assumption is
demonstrated graphically in Fig. 1.3 (a). A counter-argument to this is that we have no way
of knowing how many pairs are close together, so we stick to assuming that a fixed proportion
of them are close together, and absorb the proportionality constant into the reaction rate. But
this again is not truly satisfactory because the true proportion of pairs that are close together
is itself a random variable and not a constant.
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It turns out that the principle of mass action is closely related to the diffusion of the reacting
molecules. The diffusion coefficient is essentially a measure of the rate at which a randomly
diffusing particle moves around the reaction volume. A particle with a very high diffusion
coefficient could have diffused all over the volume in a short time ∆t, whereas a particle with a
small diffusion coefficient may only have covered a small region of space (the average distance
covered by a diffusing molecule before it reacts is known as the Kuramoto length, see Ref. [57]).
It follows that the principle of mass action could plausibly apply if particles have very high
diffusion coefficients, so that any pair could potentially collide in a short time ∆t. This idea
can actually be proved from a microscopic point-of-view (and we will demonstrate this later),
but only if we assume all particles have infinite (or practically infinite) diffusion coefficients.
(Of course the concept of an “infinite diffusion coefficient” is physically impossible, and we will
address this point shortly.) Doubting the principle of mass action is then essentially equivalent
to believing that the diffusion coefficients might not be high enough for the reaction volume
to be well-mixed, and this is a sensible belief as far as cell biology is concerned [58]. Clearly
an alternative approach is needed: in particular, we want a model which can tell us how many
pairs of particles are “close together” at any given time.

The simplest way to go about this is to subdivide the entire reaction volume into small
subvolumes, with the implication that we will consider molecules in the same subvolume to be
“close together”, while molecules in different subvolumes are not. Suppose we have chosen to
divide our volume into M subvolumes, which for simplicity we assume are equally-sized; then

the probability of a reaction involving A and B in subvolume i will be proportional to n
(i)
A n

(i)
B ,

where n
(i)
X denotes the number of molecules of species X is subvolume i. This idea is shown in

Fig. 1.3 (b).

While superficially satisfying, this description actually raises more questions than it answers,
at least at first. Principally, how should we choose M? Clearly we should choose M > 1,
otherwise the description is identical to the CME, and generally if M is small we will tend to
have the same issues with the principle of mass action that the CME had, and which drove us
to seek a new model. On the other hand, if we make M very large, the subvolumes will become
very small (possibly smaller than the physical size of a molecule) and the probability of two
reacting molecules being in the same subvolume at a given time becomes negligible. As shown
in Fig. 1.3 (c), this results in bimolecular reactions simply not happening, which is clearly
something we would like to avoid.

Choosing the correct partition of the volume into subvolumes requires us to be more specific
about what we truly mean by “close together”, a phrase about which we have thus far been
deliberately vague. To do this we would need to propose a physical model for how chemical
reactions occur, including molecular sizes and shapes, how they diffuse, whether they react
immediately upon collision or whether they need a sufficiently large kinetic energy, and how
electrostatic and hydrodynamic interactions impact on the reaction. These are questions that go
far beyond the scope of our models, and which would significantly detract from their simplicity.
As a result, the standard response is to be vague about the value of M , suggesting that it
should be neither too small nor too large. Though this is not a very satisfying answer, it
highlights that there is no value of M which can be pre-specified for all situations: the correct
M will depend on a number of factors and will likely be different for different situations, such
as different diffusion coefficients.

Another significant issue with this model is how we decide how many molecules are in the
ith subvolume. This is an issue because molecules, in reality, do not remain in the same location
forever, but diffuse throughout the reaction volume – indeed, it was the issue of diffusion which
led us to seek out a new model. To address this issue, drawing on the argument in Ref. [6],
we will consider a simplified one-dimensional volume and a single diffusing molecule currently
located at a point x. It is well known that the probability density functions of diffusing point-
particles obey a partial differential equation (PDE) called the diffusion equation:

∂

∂t
p(x, t) = D

∂

∂x2
p(x, t), (1.14)

where p(x, t) is the probability density of finding the particle at location x at time t, and D is
the particle’s diffusion coefficient. We can rewrite Eq. (1.14) in terms of small increments ∆t
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and ∆x, and rearrange to get:

p(x, t+ ∆t) = p(x, t) +
D∆t

∆x2
[p(x+ ∆x, t)− 2p(x, t) + p(x−∆x, t)] + o(∆t). (1.15)

Now, consider a partition of the total volume into M subvolumes of incremental width ∆x, and
let subvolume k be centered around the point x. If we denote by q(k, t) the probability that
the molecule is in subvolume k at time t, then we will have that:

q(k, t) =

∫ x+∆x/2

x−∆x/2

p(y, t)dy ≈ p(x, t)∆x, (1.16)

where the approximation will tend to hold when ∆x is small. It follows that we can write:

q(k, t+ ∆t) = q(k, t) +
D∆t

∆x2
[q(k + 1, t)− 2q(k, t) + q(k − 1, t)] . (1.17)

In other words, in a short time ∆t, the probability that the molecule moves from subvolume k
to subvolume k + 1 is equal to D∆t/∆x2, provided that ∆t is sufficiently small to make this
expression a strict probability. Eq. (1.17) has the form of a master equation, which implies
that the waiting time for a molecule diffusing between subvolumes is approximately exponential,
at least when the subvolumes are small, but it is a reasonable approximation even when the
subvolumes are quite large.

This leads us to a model in which particles “hop” between neighbouring subvolumes at
random times, and the waiting times between hoppings are exponentially distributed. This
means that we can represent hopping events as just another type of reaction event. This seems
a little counter-intuitive, but makes sense when studied in detail. Let us consider the system
(1.2) again under this model. We can write X(i) to denote the species X in subvolume i. Then
we can write the new system in the following way:

A(i) +B(i) k1−⇀↽−
k2

C(i) for i = 1, ...,M, (1.18)

A(i)
k
(A,i,j)
D−−−−−⇀↽−−−−−
k
(A,j,i)
D

A(j) for i, j = 1, ...,M,

B(i)
k
(B,i,j)
D−−−−−⇀↽−−−−−
k
(B,j,i)
D

B(j) for i, j = 1, ...,M,

C(i)
k
(C,i,j)
D−−−−⇀↽−−−−
k
(C,j,i)
D

C(j) for i, j = 1, ...,M,

where k
(X,i,j)
D is the “hopping rate”at which a molecule of type X in subvolume i will hop into

subvolume j, which will be equal to zero if i and j are not neighbouring subvolumes. Note that
we do not use the specific rate obtained in Eq. (1.17), because that rate is derived assuming
that the subvolumes are arranged in a particular regular manner, and we would like to retain
generality for the time being. Clearly system (1.18) is much more complicated than (1.2), but
there is little actual difference in principle. Both systems comprise species, reactions and rates
– it just happens that the “species” in system (1.18) are not just the types of molecules (A,
B, C) but the types of molecules in a particular subvolume (A(i), B(i), C(i)). This might be
unintuitive, but it makes no difference mathematically. It follows, then, that any technique
which can be applied to system (1.2), can also be applied to system (1.18).

For example, analogously to the REs (1.3), we can write equations for the concentrations

19



20 Stephen Smith

[A(i)], [B(i)] and [C(i)] (intuitively, the local concentrations of A, B and C in subvolume i):

d[A(i)]

dt
= −k1[A(i)][B(i)] + k2[C(i)] +

M∑
j=1

[
−k(A,i,j)

D [A(i)] + k
(A,j,i)
D [A(j)]

]
, (1.19)

d[B(i)]

dt
= −k1[A(i)][B(i)] + k2[C(i)] +

M∑
j=1

[
−k(B,i,j)

D [B(i)] + k
(B,j,i)
D [B(j)]

]
,

d[C(i)]

dt
= k1[A(i)][B(i)]− k2[C(i)] +

M∑
j=1

[
−k(C,i,j)

D [C(i)] + k
(C,j,i)
D [C(j)]

]
,

where, as before, M is the number of subvolumes. Eq. (1.19) is the analogue of the REs
with spatial resolution, but it would be helpful if we had a better idea of the form of the

hopping rates k
(X,i,j)
D . Calculating the hopping rates from microscopic principles is an extremely

challenging problem, and in fact is still an open research question. In the simplest case, where
each subvolume is an equally-sized cube (or square, or line segment) of side-length h arranged
in a cartesian grid, then we have already seen that there is a simple expression:

k
(X,i,j)
D =

{
DX
h2 if i neighbours j,
0 otherwise,

(1.20)

where DX is the diffusion coefficient associated with particles of type X.

If we imagine a one-dimensional array of subvolumes of equal size arranged in a line of
length L, such that subvolume 1 neighbours subvolume 2, subvolume 2 neighbours subvolumes
1 and 3, subvolume 3 neighbours 2 and 4, etc, then Eq. (1.19) becomes:

d[A(i)]

dt
= −k1[A(i)][B(i)] + k2[C(i)] +

DA

(L/M)2

[
[A(i−1)]− 2[A(i)] + [A(i+1)]

]
, (1.21)

d[B(i)]

dt
= −k1[A(i)][B(i)] + k2[C(i)] +

DB

(L/M)2

[
[B(i−1)]− 2[B(i)] + [B(i+1)]

]
,

d[C(i)]

dt
= k1[A(i)][B(i)]− k2[C(i)] +

DC

(L/M)2

[
[C(i−1)]− 2[C(i)] + [C(i+1)]

]
,

for i = 2, ...,M − 1 with small modifications for the end subvolumes 1 and M depending on
the boundary conditions. We can now imagine taking the limit M → ∞. There are a couple
of issues with this. First, we already noted that choosing subvolumes too small could be a
problem because the probability of two molecules being in the same subvolume would become
negligibly small, thus making bimolecular reactions unsually rare events. We will bypass this
issue by saying that the limit M → ∞ is simply an approximation, which we expect to be
accurate when concentrations are high. The second issue is that the notation [A(i)] becomes
meaningless when M is infinite. This we will solve by replacing [A(i)] with [A] which we
consider to be a function of location x = iL

M as well as time. In the limit M →∞, x approaches
a continuous quantity, so that differentiation with respect to x becomes valid. For example,
DA

(L/M)2

[
[A(i−1)]− 2[A(i)] + [A(i+1)]

]
converges to DA

∂2[A]
∂x2 in the limit M → ∞. As a result,

we get the following PDEs:

∂[A]

∂t
= −k1[A][B] + k2[C] +DA

∂2[A]

∂x2
, (1.22)

∂[B]

∂t
= −k1[A][B] + k2[C] +DB

∂2[B]

∂x2
,

∂[C]

∂t
= k1[A][B]− k2[C] +DC

∂2[C]

∂x2
.

These PDEs are the well-known reaction-diffusion equations (RDEs), ubiquitous in mathemati-
cal biology [3], and popularised by Alan Turing in his seminal paper Ref. [59]. Turing famously
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demonstrated that certain systems [60] could be unstable when modelled with the RDEs, but
stable when modelled with the REs: this kind of instability manifests itself as visual patterns
(e.g. spots, stripes) in an RDE simulation. The Turing instability (as it is now known) is
believed by some to be the cause of biological patterns such as zebrafish stripes [61] or the
regular spacing between mammalian digits (fingers and toes) [62, 63], but there is still con-
troversy around whether the Turing mechanism is really behind these phenomena [64]. One
of the biggest current challenges in synthetic biology is therefore to synthesise a Turing pat-
terning network in living cells [65, 66, 67, 68, 69, 70], which would provide convincing evidence
of Turing’s theory. Furthermore, recent theoretical work has suggested that stochasticity may
be important to Turing pattern formation, allowing for patterns in regions of parameter space
where the RDEs predict homogeneous concentrations [71], though the choice of subvolume size
in these stochastic models remains an important question [72].

As well as the REs, we can also apply the CME methodology to system (1.18). Instead
of the probability mass function P (nA, nB , nC ; t), we now consider a new probability mass

function P (~nA, ~nB , ~nC ; t), where ~nX = (n
(1)
X , ..., n

(M)
X ) is a vector of molecule numbers, with

one entry for each subvolume. Because of the complexity of the RDME, we have to introduce
some new notation to be able to write it down compactly: we let E(X,i) be the shift operator

which replaces any instance of n
(i)
X with n

(i)
X + 1. For example: E(X,i)n

(i)
X = n

(i)
X + 1, and,

E−1
(X,i)n

(i)
X = n

(i)
X − 1, and for any function f(·), E(X,i)f(n

(i)
X ) = f(n

(i)
X + 1).

Following the argument for the CME, we consider a time step ∆t, sufficiently short that at
most one reaction (including hopping events) can occur. Then, we consider the ways we can
end up with ~nA, ~nB , ~nC molecules at time t + ∆t. This can happen if: (I) a binding reaction
happens in subvolume i, for some i = 1, ...,M , in the time interval [t, t+ ∆t); (II) an unbinding
reaction happens in subvolume i, for some i = 1, ...,M , in [t, t+ ∆t); (III) a particle of type X
hops from subvolume i to subvolume j, for some i, j = 1, ...,M and X ∈ {A,B,C}, in [t, t+∆t);
(IV) no reactions happen in the time interval [t, t+ ∆t). Clearly this is much more complicated
than for the CME, but exactly the same principles apply, and after some simplification we
obtain the following equation:

d

dt
P (~nA, ~nB , ~nC ; t) =

M∑
i=1

k1M

V

[
E(A,i)E(B,i)E

−1
(C,i) − 1

]
n

(i)
A n

(i)
B P (~nA, ~nB , ~nC ; t) (1.23)

+

M∑
i=1

k2

[
E−1

(A,i)E
−1
(B,i)E(C,i) − 1

]
n

(i)
C P (~nA, ~nB , ~nC ; t)

+

M∑
i=1

M∑
j=1

k
(A,i,j)
D

[
E(A,i)E

−1
(A,j) − 1

]
n

(i)
A P (~nA, ~nB , ~nC ; t)

+

M∑
i=1

M∑
j=1

k
(B,i,j)
D

[
E(B,i)E

−1
(B,j) − 1

]
n

(i)
B P (~nA, ~nB , ~nC ; t)

+

M∑
i=1

M∑
j=1

k
(C,i,j)
D

[
E(C,i)E

−1
(C,j) − 1

]
n

(i)
C P (~nA, ~nB , ~nC ; t),

noting the correct volume scaling k1M
V for the bimolecular reaction. This equation is known

as the reaction-diffusion master equation (RDME). The first two lines correspond to the two
reactions in each subvolume, while the final three lines correspond to the hopping of particles
of type A, B and C respectively between neighbouring subvolumes.

Now that we have the RDME (which is really just a special type of CME) we can do to it
anything that we could do to the CME. For instance, it is possible to solve RDMEs analytically,
if they are composed exclusively of certain types of linear reactions [30, 29] or purely reversible
reactions [34]. The example (1.18) is actually solvable, as long as the hopping events are

reversible (i.e. as long as k
(X,i,j)
D = k

(X,j,i)
D , for all X = A,B,C and i, j = 1, ...,M). Other

analytical approximation techniques for the CME (e.g. the van Kampen approximation [22],
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Figure 1.4: (a) If subvolumes are arranged in a grid, all hopping rates are straightforwadly given
by Eq. (1.20). (b) If subvolumes are irregular shapes, and boundaries between subvolumes are
different sizes, it is not clear how to best choose hopping rates.

and the chemical Langevin equation [45]) can also be applied to the RDME, and have been,
with interesting results [73, 74], as we will see in chapter 3.

Any stochastic simulation algorithm designed for the CME can also naturally be applied to
the RDME [75, 76, 77, 78]. Several new issues arise when simulating the RDME however. For
example, stochastic simulation algorithms tend to have computation time proportional to the
frequency of reaction events [49]. If the hopping rates are quite large, then an RDME simulation
may take substantially longer than an equivalent CME simulation – it is not uncommon for
upwards of 99% of the simulation time to be spent simulating hopping events rather than
chemical reactions. This issue in particular has driven a huge amount of research into fast and
accurate simulation of the RDME [79, 80, 81, 82].

It is worth going into a little more detail now about the hopping rates k
(X,i,j)
D . In the

simplest case where each subvolume is the same size, Eq. (1.20) can be used. This case is
demonstrated in Fig. 1.4 (a): neighbouring subvolumes (such as 1 and 3) all have the same
hopping rates between them, whereas non-neighbouring subvolumes (such as 1 and 2) have
zero hopping rates. More generally, subvolumes can be any shape and size, and the size of the
boundaries where two neighbouring subvolumes join can vary greatly as well. Such a case is
shown in Fig. 1.4 (b): neighbouring subvolumes (such as 1 and 2) tend to be different sizes, so
the hopping rate in one direction will generally be different from the other; moreover, boundaries
between neighbours are not necessarily the same length (such as the boundaries between 2 and
4, and 2 and 5), and shorter boundaries will tend to be crossed by fewer molecules, and so
should have correspondingly lower hopping rates. In these cases, the hopping rate should (in
principle) be calculated using a first passage time approach with the diffusion equation [83], but
this is often computationally unfeasible and in practice there is no easy answer. Some authors
have proposed techniques for choosing these rates in a manner which agrees optimally with
Brownian diffusion [84, 85, 86, 87, 88, 89, 90], but these are typically simulation-based and not
analytically straightforward.

For the time being, we assume that molecules do not occupy any volume themselves (i.e. they
are point-particles), but relaxing this assumption leads to even more complex hopping rates,
and we will discuss this further in chapters 3, 5 and 6. These rates typically depend on the
concentrations of the various species in the destination subvolume j, so that a subvolume with a
high concentration of molecules is less likely to be able to accomodate a new molecule hopping
into it [91, 92, 93, 34]. Writing the hopping rate as a linear function of the concentrations is a
popular choice, but when concentrations are very high certain non-linear functions have been
shown to be more accurate [94, 95, 96].

When diffusion coefficients are large, simulations of the RDME can become very slow (be-
cause molecules will hop around many times between reactions) [80], and significant modifi-
cations to the hopping rates have been introduced to address this issue. In particular, it is
common to allow particles to hop between non-neighbouring subvolumes i and j [97]. The
implication is that the particle did in fact follow a neighbour-to-neighbour path from i to j,
but the intermediate steps are eliminated for speed: a very careful choice of the hopping rates
is required in these cases to correctly model diffusion.

We have seen how the RDME was obtained as an extension of the CME, to address the
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problem of mass action kinetics. In this sense, the RDME is a top-down model, since it is not
a simplification of a more detailed microscopic model like Brownian dynamics. The risk with
top-down models is that the new components (the hopping rates, in the case of the RDME)
could be added in a flawed manner, making the model inconsistent with other well-established
models. In short, the RDME is just the CME with some additional terms to explicitly model
diffusion, but how do we know that these additional terms are correct?

This question has plagued users of the RDME for decades. A whole subgenre of the reaction-
diffusion field is dedicated to comparing the RDME with microscopic models, including various
types of Brownian dynamics and molecular dynamics, which are taken to be the “ground truth”.
Almost invariably, because of the complexities of the models involved, it is stochastic simulations
of models which are compared, rather than the actual equations which make up the models
[98, 99, 100]. As a result, the outcome of these comparisons is typically to suggest optimal
values of the various RDME model parameters (reaction rates, hopping rates, number and size
of subvolumes) to get best agreement with the “ground truth” model, for a particular reaction-
diffusion system. Such comparisons are therefore very limited in their applicability: there is no
reason to believe that the optimal hopping rates (for example) for one system will be the same
for another system, even if they are quite similar.

An alternative (though much trickier) approach is to directly compare the RDME with
the “ground truth” model by writing out equations for both and discerning to what extent
they agree [101, 100, 102]. This kind of comparison will provide general rules about when
models agree, and will not generally be limited by system specifics. The challenge is that
“ground truth” models tend to be very hard to write down, since they are very complex and
are usually conceived as models for simulation rather than mathematical analysis. A pioneer in
this kind of comparison is Isaacson, who has published several articles analytically comparing
the RDME with a variety of “ground truth” models [103, 104, 105]. Two principal results
emerge from Isaacson’s work. First, the RDME can be thought of as an approximation to a
particular BD model known as the Smoluchowski model [106] (more on this later), but there
is no limit in which one converges to the other [104]. It can be rigorously proved that as M
increases, the approximation first gets better, then gets worse (while never actually showing
perfect agreement), and it is hard to know in general which M is the optimal one. In a similar
vein, Hellander et. al. have shown that there exists a hard upper limit on M , above which the
RDME cannot agree with the Smoluchowski model because the subvolumes become unphysically
smaller than the size of a molecule [107]. Isaacson’s second principal result is that the RDME
can be modified to create a new model (known as the “convergent RDME”, or CRDME) in
which molecules can react with molecules in different subvolumes, according to certain strict
rules [105]. The CRDME was shown to converge precisely to another BD model known as
the λ − ρ model [108] (more on this later). Over all, it seems that the RDME never quite
sits comfortably with BD, and potentially this could call its accuracy into question. However,
as well will see in chapters 3 and 4, the RDME provides an elment of analytical tractability
which is absent from BD, and furthermore may be the appropriate description for modelling
multicellular systems, such as tissues and biofilms, as we will see in chapter 5.

We have seen how the RDME was derived as an extension of the CME, allowing stochastic
models to incorporate diffusion in a logical manner. BD achieves the same goal, but addresses
the problem from a completely different point-of-view. While the RDME is a top-down model
(formed by systematically adding features to a simple model), BD is a bottom-up model (ob-
tained by systematically simplifying a complex model). In the next section, we study the
derivation of BD to understand its assumptions and properties.

1.2 Brownian dynamics

The theory of molecular dynamics (MD) considers systems consisting of particles, each of which
exerts forces on the surrounding space, including Van der Waals and electrostatic forces [2, 17].
Imagining a system of N particles, and a particle i with position xi, we can add up the forces
at that point caused by all other particles in the system to get Fi(xi), which is the force that
would be felt by particle i.

It is worth going into some detail about what is meant by “particle” in MD. In the most
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complex forms of MD, “particle” means “atom” [109, 110, 111]. Atoms which are bonded
together into molecules experience spring-like forces between each other, ensuring that their
average separation is equal to the empirically calculated bond-length. Alternatively, at the
simplest level, each molecule is considered a single particle, and so forces act on the centre of
mass of the molecule rather than its constituent atoms [112, 113]. Naturally there are no spring-
like forces in this description since there are no chemical bonds between particles. In between
these two extremes are descriptions of intermediate complexity, where each particle represents a
handful of atoms. For instance, one or more water molecules could be treated as a single particle
[114, 115], or a protein molecule could be treated as a chain of particles (up to amino acids)
connected by spring-like forces (bonds) [116, 117, 118]. In the remainder of this discussion we
will, for simplicity, assume the simplest form of MD: “particle” means “molecule”. Since all
forces act on molecule centres of mass, issues such as molecular shape, molecular orientation
and rotation are all absorbed into the force term Fi(xi). It may be simpler henceforth to think
of molecules as spheres.

It is also worth saying something initially about how chemical reactions occur in MD. Reac-
tions are typically beyond the capabilities of MD simulators: the reasons for this are complex
but fundamentally it is because reactions are quantum mechanical [17] while MD uses classical
mechanics. There are quantum mechanical versions of MD but they are well beyond the scope
of this thesis, and besides, are extremely computationally intensive [119]. We will therefore
postpone discussion of chemical reactions until a later point in this section.

We will now consider what we can say about the dynamics of our system of N particles.
By Newton’s second law, the change in momentum of particle i is equal to Fi(xi). We can
therefore write:

mi
∂2xi
∂t2

= Fi(xi), (1.24)

where mi is particle i’s mass. This model is perfectly good in theory, but there is an issue of
scale. A system of N particles consists of N coupled versions of Eq. (1.24), each of which is
really 3 equations (assuming a 3 dimensional system volume), so we end up with 3N coupled
equations. In the vast majority of systems of interest to biologists, water molecules are by far
the most numerous particles: a simple calculation shows that a typical 1µm3 Eschericia coli
cell contains upwards of 1010 molecules of water alone. Trying to solve Eq. (1.24) with N
on that kind of scale is simply impossible, even for the best computers. One solution to this
is to study only a very small subvolume, much smaller than a cell, possibly containing only
one protein [120]. But unfortunately the most interesting biochemistry concerns interactions
between several different biological molecules, possibly located in several different parts of the
cell, and systems of this kind are beyond the capabilities of molecular dynamics. An alternative
approach is to use a multi-resolution approach with detailed molecular dynamics simulations
in some regions of space, and more coarse-grained models in others [121]: such methods have
recently been applied to solutions of ions [122] and DNA [123].

The issue, in essence, is that in order to simulate a useful number of interesting molecules
a much greater number of water molecules must also be simulated. It was realised that a way
around this problem might be to not simulate the water molecules explicitly, but rather to
approximate the effect of water molecules on the other molecules by adding terms to Eq. (1.24)
[124]. This would dramatically reduce N , and so dramatically increase the size of systems we
could plausibly simulate.

The approximation of the water molecules has three components, which have an intuitive
justification. We will use the word “collide” to refer to a steric (Van der Waals) interaction
between particles, this can be thought of as a usual collision between hard objects (or, for
simplicity, hard spheres). A graphical explanation of these effects is shown in Fig. 1.5

(I) When water molecules collide with a larger molecule, X, they will apply a force and
thereby induce a change in X’s velocity. This is simply due to the conservation of momentum
and the conservation of energy. The direction and magnitude of this change are highly variable,
and are well-approximated by a random quantity. If X is much larger in diameter than the
water molecules there will be a huge number of collisions even in a very short time, and so
irrespective of the actual distributions of the individual collisions (as long as they have finite
variance), the central limit theorem implies that their sum (and thus the over all random force)
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(I) (II) (III)

Figure 1.5: Three effects of water molecules (blue) on the motion of a large particle X (orange).
(I) Water molecules collide on all sides of the large particle apparently at random (black
arrows). If X is stationary, there is no directional bias to the random collisions. (II) If X is
moving right, water molecules will collide more frequently on the particle’s right side and
less frequently on its left. There will be a deterministic force opposing X’s velocity. (III) The
arrows show how the water molecules might move in the time it would have taken them to
collide with X had X been stationary (dotted circle). The water molecules on the left have not
yet collided with anything, while the molecules on the right have collided and reflected away
with higher speeds. They are all further to the right than they would have been otherwise,
causing a net flow of water to the right.

will be approximately Gaussian [19, 125]. See Fig. 1.5 (I).

(II) When X moves with some non-zero velocity, it will tend to collide more frequently
with water molecules in its direction of travel. That is, if X is moving to the right, it will
tend to experience more collisions on its right side, and fewer on its left side, than the average
predicted by (I). The number of collisions will scale with the magnitude of X’s velocity (since
faster moving particles will experience more such collisions in a fixed time period). See Fig. 1.5
(II).

(III) This component is much more subtle and takes some explaining. Let’s say X is initially
stationary, and is hit on the left by a water molecule. Now X starts to move to the right with a
fixed speed. After a short time, before it collides with anything else, it will have moved a short
distance. Now we think about a potential water molecule which might be about to collide with
X. If it is about to collide from above, below, the front or the back, then the fact that X has
moved makes essentially no difference to its behaviour. If it is about to collide from the left,
it will have to travel slightly further before it collides than it would have if X had not moved.
If it is about to collide from the right, it will have to travel slightly less far before it collides.
Now suppose the water molecule has collided, and been reflected, and is now travelling away
from X. On average, the water molecule will be slightly further to the right than it would
have been if X had been stationary. Furthermore, a post-collision water molecule moving right
will be moving faster than it otherwise would have been, thanks to the extra energy from the
moving X; similarly a post-collision left-moving water molecule will be moving more slowly.
Now imagine another large stationary molecule, Y , to the right of X. It is now slightly more
likely to be hit on the left and by a faster-moving water molecule. Another large stationary
molecule, Z, to the left of X, is slightly less likely to be hit on the right, and if it is hit it will
likely be by a slower-moving water molecule. These two molecules will now both be slightly
more likely to move right. Large molecules above, below, in front of and behind X will tend to
be unaffected.

Perhaps a more intuitive – though less microscopic – way to think of this is in terms of
pressure. If X moves slightly to the right, it will vacate some volume to its left, so there will
be a slightly lower water pressure to its left, and water molecules will rush to fill the void. It
will also occupy some volume to its right, so there will be a slightly higher water pressure to
its right, and water molecules will be pushed out. There will therefore be a net flow of water
molecules to the right in the vicinity of X, and so Y and Z will tend to be moved slightly right
by the flow.
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Mathematically, this manifests itself in a peculiar way: when effects (I) or (II) induce a
force on a particle j, effect (III) ensures that all other particles in the system also experience a
small force as a result. These forces will be separation dependent, so that two nearby particles
will experience strongly correlated forces, while distant particles are weakly correlated. This
effect is known as a “hydrodynamic” interaction between particles, because it is really a fluid
dynamical effect [126].

(I), (II) and (III) all refer to forces induced by steric interactions (collisions) between water
molecules and the larger molecule i, but (I) is a random component, (II) is a deterministic
component, and (III) is the consequence experienced by molecule i of components (I) and (II)
acting on all other molecules in the system. The new version of Eq. (1.24), implementing all
the components, is known as the Langevin equation, and it has the following form:

mi
∂2xi
∂t2

= Fi(xi) +

N∑
j=1

√
2kBT

(
Γ

1
2

)
ij
ξj −

N∑
j=1

Γij
∂xj
∂t

, (1.25)

where kB is the Boltzmann constant, T is the temperature, ξi is a standard Gaussian random
vector, and Γ is a 3N × 3N matrix known as the “friction tensor”. The matrix Γ can be split
into 3 × 3 blocks: the term Γij refers to the 3 × 3 submatrix corresponding to the effect of

particle j’s motion on particle i. The matrix Γ
1
2 is the square-root of the friction tensor. Note

that, strictly speaking, Eq. (1.25) will consist of time integrals rather than Gaussian random
vectors, due to the short-time correlations between the force terms. The Gaussians arise from
assuming the timescale of interest to be significantly larger than the the timescale over which
the correlations exist. See [127] for a nice summary.

Effect (I) is described by the term
√

2kBT
(

Γ
1
2

)
ii
ξi, i.e. the component of the square-root

friction tensor for the effect of particle i on itself. Similarly, effect (II) is described by −Γii
∂xi
∂t .

Effect (III) is incorporated in two distinct ways: first, any random force felt by any particle j,
ξj , has a hydrodynamic effect on particle i – this is the reason for the first sum in Eq. (1.25);
secondly the velocity of any particle j induces a hydrodynamic force on particle i – this is the
reason for the second sum in Eq. (1.25). The hydrodynamic friction tensor Γ mediates these
two hydrodynamic contributions, and it is a complicated function of the relative positions of all
the particles in the system. The details of the hydrodynamic implementations are well beyond
the scope of this thesis; for a nice summary see Ref. [126] which gives examples of the Oseen
[128] and Rotne-Prager [129] implementations. For more recent discussions of hydrodynamic
implementations, using a variety of approximations to speed-up the computation time, see e.g.
Refs. [130, 131, 132, 133, 134].

The hydrodynamic effect (III) is often left out of the Langevin equation, because it is subtle
and complicated to implement. In that case, instead of Eq. (1.25) we get the much simpler
form:

mi
∂2xi
∂t2

= Fi(xi) +
√

2γikBTξi − γi
∂xi
∂t

, (1.26)

where ξi is now an uncorrelated Gaussian random vector, and the scalar γi = Γii is the “friction
coefficient”. It is easy to see the differential contributions of effects (I) and (II) in Eq. (1.26).
However, there is no physically valid reason to eliminate the hydrodynamic effects at this stage,
so we will leave it in for now, and discuss when it may be appropriate to remove it later.

Eq. (1.25) is a significant improvement on Eq. (1.24), and for computational simulations
it does well, but the presence of second derivatives makes it somewhat difficult to study ana-
lytically. However, a simplification can be made due to the fact that molecules in water exist
in low Reynolds number conditions, which implies that viscous effects dominate and inertial

forces are negligible [135]. The result is that ∂2xi
∂t2 = 0 and so Eq. (1.25) is simplified.

This is quite complicated so it worth exploring what is actually happening. Let us tem-
porarily ignore the random collisions with water molecules and think about what happens to a
molecule moving through water at a constant velocity. Intuition is not very helpful here, since
we are used to thinking about water from a human point-of-view: if a human is swimming in
water at a constant speed, then stops swimming, their motion will slow until they stop com-
pletely, i.e. there is a (relatively) lengthy period of decreasing speed (acceleration). This is
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not what happens to a molecule (e.g. a protein) in water. A closer analogy would be a human
swimming though a viscous fluid, such as treacle: when the human stops swimming, they simply
stop moving instantly, there is no notable period of decreasing speed (of course, there is one,
but it happens over such a short timescale that it is negligible). Water from the point-of-view
of a protein is just like this: it stops moving instantly, there is no protracted period of slowing
down. This is the intuitive reason why we can set the acceleration term to zero in Eq. (1.25).
See Ref. [135] for an interesting discussion of this effect.

It follows that Eq. (1.25) becomes:

0 = Fi(xi) +

N∑
j=1

√
2kBT

(
Γ

1
2

)
ij
ξj −

N∑
j=1

Γij
∂xj
∂t

. (1.27)

Using linear algebra techniques, this set of equations (for i = 1, ..., N) can be rearranged to give
expressions for the velocity of each particle:

∂xi
∂t

=

N∑
j=1

(
Γ−1

)
ij

Fj(xj) +

√
2kBT

γi
ζi, (1.28)

where Γ−1 is the matrix inverse of the hydrodynamic friction tensor Γ, and ζi is a standard
Gaussian random vector which (unlike ξi) is correlated with ζj (for all j = 1, ..., N) according
to a complicated hydrodynamic function [126]. The effect of the linear algebraic rearrangement
is to replace the sum of velocities in Eq. (1.27) with a sum of forces in Eq. (1.28). The
implication is that any force between two particles (such as a steric repulsion) will induce a
(typically miniscule) change in the velocity of every other particle in the system, even if the
force does not affect them directly.

Eq. (1.28) is known as Brownian dynamics [136], and in essence it says that the large
molecule’s velocity has a deterministic component (due to the forces between each pair of large
molecules) and a random component due to random collisions with the water molecules. It is
tempting to think that individual collisions with the water molecules induce a random change
in the large molecule’s position, and that is what Eq. (1.28) seems to imply, but this is not
quite correct. The individual water molecules actually induce random changes in the large
molecule’s velocity, and these changes will tend to happen extremely frequently, so in reality
several water molecules contribute to each substantive change in the large molecule’s position.
This may seem like a semantic distinction, but it is worth bearing in mind that each random
position increment corresponds to a large number of actual collisions.

The next simplifying step we can make is to assume that Fi(xi) = 0 everywhere and
to decorrelate the random vectors ζi, which essentially amounts to ignoring steric (Van der
Waals), electrostatic and hydrodynamic interactions. This may seem to be a preposterous
approximation to make , given that Eq. (1.28) is already quite simple, but there is a logic
behind it. If we were trying to simulate (i.e. solve) Eq. (1.28) on a computer, we would most
likely use an Euler scheme such as the one used in Ref. [126]. To do this, we would pick a small
time step ∆t and apply the update rule:

x(t+ ∆t) = x(t) +

N∑
j=1

(
Γ−1

)
ij

Fj(xj)∆t+

√
2kBT

γi
ζi∆t (1.29)

to each particle at each time-step. This is not too computationally intensive in itself, but the
problem is that for each particle both the associated force function Fi(·), the matrix Γ−1, and
the size of the correlation in ζi depends on the relative locations of all the other particles in the
system. All the different Fi’s,

(
Γ−1

)
ij

’s and correlations must be re-evaluated at every time-

step, and this is what seriously slows down the computation. So it is clearly going to be useful
to assume Fi(xi) = 0, and that the ζi’s are uncorrelated, but how can we justify this physically?
If the concentrations of molecules are quite dilute, so that pairs of molecules rarely come close
enough to interact sterically, electrostatically or hydrodynamically, then Fi(xi) would genuinely
be equal to zero and ζi’s would be genuinely uncorrelated, for the vast majority of particles,
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the vast majority of the time.

We can then use the following equation for BD:

xi =
√

2DiWt, (1.30)

where Wt is a 3-dimensional Wiener process (confusingly also known as Brownian motion) and

Di = kBT
γi

is the diffusion coefficient of particle i. The Wiener process, Wt = (W
(1)
t ,W

(2)
t ,W

(3)
t )T ,

is a stochastic process defined by making W
(i)
t+∆t a Normal

(
W

(i)
t ,∆t

)
random variable, for

i = 1, 2, 3. Mathematically, Wt is the time integral of ξ [137].

It is worth considering the assumption of diluteness that lies behind Eq. (1.30). Until very
recently, and to a large extent currently, diluteness was the sine qua non of modelling biochem-
istry. This was partly due to the modeller’s preference for simple models like the REs and the
RDEs, which implicitly assume diluteness, but also due to cell biologists’ incomplete knowledge
about the cellular environment. Then seminal work by Zimmerman and coworkers [138, 139]
introduced both modellers and cell biologists to the idea of “macromolecular crowding” [140],
an idea which has since become extremely fashionable in fields ranging from computational
physics [141, 142] to bioengineering [143, 144].

The basic idea is that the cell contains high concentrations of large molecules. Zimmerman
estimated that up to 30% of the internal volume of an Eschericia coli cell could actually be
occupied by large molecules rather than water [138]. Under these conditions, the behaviour of
an individual molecule will be seriously affected by the other large molecules in its vicinity, even
if they do not interact chemically. There is an open question of how we might accurately modify
Eq. (1.30) to account for this effect. Perhaps the obvious answer is to take a step backwards
and bring the F(·) back into the equation, and this is a common approach [145, 146, 147], but
then we again have the problem of computational efficiency.

There are two other modifications to Eq. (1.30) which are currently in common usage. The
first is to replace the diffusion coefficient D with a modified diffusion coefficient D̃, typically
D̃ = D(1 − αφ) where φ is the local fraction of volume occupied by large molecules and α is
a constant [148, 149, 93, 150, 96], an approach which we discuss in detail in chapter 6. The
rationale is that diffusing through a crowded medium might be analogous to diffusing through
a viscous medium, and so reducing the diffusion coefficient accounts for an increase in viscosity.
There is some computational evidence to back this up, but insufficient for the matter to be
considered solved [151, 152].

Many scientists believe the effect of crowding is more complex than a modification of the
diffusion coefficient, and so the second modification is correspondingly less simple. The idea is
to replace the Wiener process Wt with another process with non-Gaussian increments. The
rationale is that the variance of a Wiener process is proportional to t, and some experiments
appear to show that the variance of diffusion in a crowded environment is proportional more
generally to tα, an effect known as “anomalous diffusion”. Generally it is observed that α < 1
inside cells, which is known as “subdiffusion” [153, 154], however α ≈ 1 (“diffusion”) [155] and
α > 1 (“superdiffusion”) [156] have also been observed. Variants of the Wiener process for pre-
specified values of α are commonly used in simulations [157, 158], but the idea behind this is not
uncontroversial and it raises questions [159]. For example, how do we know which value of α to
pick in any given simulation? The debate around anomalous diffusion in the cytoplasm is still
very much open, and much more experimental evidence will be needed to reach a satisfactory
conclusion.

The question of how to modify Eq. (1.30) to include hydrodynamic effects is a difficult one,
and has not been studied in significant detail. It is common to either just use Eq. (1.28) and live
with the computational cost [126], or else to simply ignore hydrodynamic effects [160, 161, 145].
There is some evidence that steric effects and hydrodynamic effects could simply cancel each
other out [162] – so potentially including both or neither in a model might be OK, while
including just one might be a bad idea – but much more evidence is needed for this to be
a practical solution. Alternatively, some authors have attempted to calculate the effect of
hydrodynamic interactions on diffusion coefficients [162, 163] and reaction rates [164] – then it
might be possible to modify them accordingly and claim that hydrodynamics have been taken
into account. This is probably the most plausible approach, but again considerably more work
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is needed to make this method practical.

To bring the discussion back to Brownian dynamics, there is still something missing from
our model Eq. (1.30): how do reactions happen? Reactions with 1 reactant (i.e. unbinding
reactions) are easy: each molecule which can unbind has an internal clock, and the time until
unbinding is generated as an exponentially distibuted random time in the future – when the
clock exceeds this time, the reaction occurs. There is a question of where the daughter molecules
(i.e. the products of the unbinding) should be placed, and several different methods are in use.
Perhaps the simplest method is to place them both at the same location, where the parent
particle was before it unbound: this is unphysical but straightforward and requires no new
parameters [7]. An alternative is to propose an “unbinding distance”, σ, and place them
randomly opposite each other on a sphere of diameter σ centered around the location of the
parent particle [165].

On the other hand, modelling bimolecular reactions is a complicated question with a very
long history. The original method, still popular today, was devised by Marian Smoluchowski
[106], who incidentally was one of the originators of the physical theory of Brownian motion,
along with Albert Einstein [166, 136]. Smoluchowski’s idea was a simple one: each molecule
is assigned a “reaction radius”, and two reacting particles will react immediately if they are
brought close enough together that their reaction radii overlap (see Fig. 1.6). This model has
advantages and disadvantages.

The advantages are that it is simple to understand, and computationally and mathematically
very straightforward. The most popular Brownian dynamics software, Smoldyn [165], uses the
Smoluchowski model because it is so much faster than the alternatives. Mathematically, it is
possible to write down the expected time until a reaction between two particles, µ, as a simple
function of their reaction radii (r1, r2), their diffusion coefficients (D1, D2), and the reaction
volume V :

µ =
V

4π(r1 + r2)(D1 +D2)
. (1.31)

Eq. (1.31) is obtained from the diffusion equation, and a derivation can be found in Ref. [167].
In principle µ−1 could be put into the CME as the rate of a reaction, although this would be an
approximation because the actual waiting time for Brownian collisions is not exponential [83].

The disadvantages of Smoluchowski’s approach are slightly more complicated. Principally,
the Smoluchowski model is not a particularly accurate model of how bimolecular reactions
actually happen. Reacting molecules must approach each other in the correct orientation and
with sufficient combined kinetic energy to exceed the activation energy of the reaction, otherwise
they will simply collide without reacting [17]. Smoluchowski does not allow for these kinds of
collisions, which can occur much more frequently than successful reactions.

The second issue is a modelling issue rather than a physical one. In the limiting case where
diffusion is very fast relative to reactions, we would ideally like our BD model to converge to
the CME. In the Smoluchowski model, the expected time until a reaction scales as the inverse
of the diffusion coefficient, and so when diffusion is infinitely fast bimolecular reactions happen
infinitely quickly. It may appear that Smoluchowski has it right here because we know from
basic chemistry that if we increase the temperature of a system (and therefore the diffusion
coefficients) the reactions will tend to occur more quickly [17]. But the reality is not quite so
simple.

A significant source of confusion arises from the fact that a generalised bimolecular reaction
rate k (such as the rate in the REs) really incorporates two distinct processes: a diffusive process
which brings two molecules together; and a reactive process which causes them to react with
some probability. Collins and Kimball go into considerable detail on this subject in Ref. [101],
as well as Gillespie later in Ref. [167]. They consider a physically plausible system in which
hard sphere particles diffuse by Brownian motion, but over very short timescales (shorter than
the time between collisions with solvent molecules) they have instantaneous random velocities
given by the Maxwell-Boltzmann distribution. In this description, a reaction occurs when
the instantaneous velocities of a very close pair of particles combine in such a way that they
collide with an energy greater than the intrinsic activation energy of the reaction. Under these
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Smoluchowski Doi/λ-ρ

Figure 1.6: Two methods of implementing bimolecular reactions in BD. The Smoluchowski
model allows particles to react immediately when the distance between the particle centres
equals the sum of the particles’ reaction radii. This radius of certain interaction is shown as a
solid black circle. The Doi/λ − ρ model allows particles to react with probability λ per unit
time when the distance between the particle centres is less than a distance ρ. This radius
of probabilistic interaction is shown as a solid grey circle. Note that the particle centres are
denoted in red.

conditions, Collins and Kimball observe that the reaction rate k satisfies:

1

k
=

1

kd
+

1

kb
, (1.32)

where kd is the diffusive rate and kb is the ballistic rate. In other words, the expected time
until a reaction between a given pair of particles is the sum of the expected time until they
are brought together by diffusion and the expected time until they subsequently collide with
sufficient energy.

According to Collins’ and Kimball’s model [101], the role of diffusion is to bring reactive
molecules together, whereupon they can react according to some diffusion-independent process.
In other words, the probability of a reaction between a sufficiently close pair of particles (in a
sufficiently short time that they cannot diffuse away again) is not a function of the diffusion co-
efficient. When the diffusion coefficient is infinitely fast the time until a reaction, 1

k , approaches
1
kb

rather than 0, and so infinite diffusion seems not to pose a problem. Unfortunately, again,
it is not so simple.

Since Collins’ and Kimball’s kd is a linear fuction of the diffusion coefficient D, while kb has
no D-dependence, our assumption may seem to be straightforwardly valid. However, both D
and kb are functions of temperature, via the Stokes-Einstein relation and the Arrhenius equation
respectively [17]. It follows that kb has an implicit D-dependence - e.g. if D is large, there is
a possibility that this may be due to the temperature being large, so kb may also be large. In
biology (unlike chemistry) this is not a serious problem, since temperature is essentially constant
for living beings. Our assumption amounts to ignoring this subtle implicit dependence, and
thereby restricting our models to biological systems. We assume that it is possible to freely
vary D without affecting the reactive component of the bimolecular reaction rate – we can
think of this as varying D by tuning the viscosity of the solvent, which does not directly affect
the reaction rate.

In this spirit, a popular alternative to the Smoluchowski model was proposed by Doi [168],
building on the work of Teramoto and Shigesada [169]. He suggests that we should associate
with each pair of reacting particles a reaction rate λ and a reaction distance ρ, then we assume
again that waiting times between reactions are exponential, so that two particles will react in
a short timestep ∆t with a probability λ∆t if they are separated by a distance less than ρ.
In other words, if two particles are sufficiently close they react with a rate λ, otherwise they
do not react (see Fig. 1.6). In practice, at each timestep ∆t particle positions are updated
according to Eq. (1.29) (typically minus the force term), whereupon the distances between each
pair of potentially-reacting particles is calculated. For each pair, if this distance is less than the
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ρ associated with the reaction, then the reaction occurs with probability λ∆t, the particles are
removed from the system, and the product particles (if there are any) are put in their place.

Doi’s model, which has come to be known as the λ − ρ model [108], is actually a general-
isation of the Smoluchowski model, which would have λ = ∞ and ρ equal to the sum of the
reactants’ reaction radii [170]. Overall, the λ−ρ model seems to be an optimal trade-off between
model simplicity and physical accuracy. The process we want to model explicitly (diffusion) is
modelled explicitly, while more complex processes (reactant orientation, kinetic energy, etc) are
lumped into the rate λ. The main disadvantage is that we are assuming exponential waiting
times between reactions, but this cannot really be helped without going into significantly more
modelling detail and thereby incurring a significantly higher computational cost.

One alternative to both Smoluchowski and Doi is to use a Robin boundary condition where
a reaction occurs immediately upon collision with a finite rate: such a model has been shown to
agree with finer-grained Langevin dynamics with a reaction potential, though is correspondingly
more analytically complex [171].

1.3 Summary

We have seen how the two most common stochastic reaction diffusion models (RDME and BD)
originated, and how they attempt to model both reactions and diffusion. In the ensuing sections
we will go into much greater detail to analyse these models, propose fast algorithms for them,
and make biological predictions using them. The remainder of this thesis will have the following
form.

In chapter 2, we study the validity of the RDME, and the extent to which it agrees with
the CME. In chapter 3, we derive analytical approximations for the RDME, allowing fast
computation of relevant statistics beyond the CME level. In chapter 4 we study the RDME
as a model for multicellular dynamics, an alternative usage which solves many of the RDME’s
problems. In chapter 5 we propose a fast algorithm for BD in the presence of crowder molecules,
allowing large-scale simulation of realistic, detailed biochemical systems. In chapter 6, we derive
partial differential equations to describe BD at the macroscopic level, incorporating crowding
effects, which leads to interesting testable predictions about real biological behaviour. We
conclude with a discussion in chapter 7.
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Chapter 2

The validity of the
reaction-diffusion master
equation

As discussed in chapter 1, the CME describes the fluctuations of molecule numbers in reactive
chemical systems which are dilute and well-mixed. In particular, it assumes that the probability
of two particles reacting with each other is independent of their relative positions in space, which
is strictly true only if diffusion rates are infinitely large, i.e., well-mixed conditions. The CME
has in fact been derived from a microscopic physical description under these conditions, if mass-
action kinetics are assumed [172], and is also known to be correct for non-elementary reaction
in quasi-equilibrium conditions [173, 174]. When diffusion coefficients are not fast, the RDME
is a natural extension allowing us to treat diffusion explicitly.

The RDME and the CME describe the same systems, but the RDME claims greater accuracy
in the sense that it contains all the information of the CME while incorporating local spatial
effects which are beyond its scope. Since we know the CME to be valid if diffusion rates are
fast [172], a useful test of the validity of the RDME is that it should converge to the CME in
the limit of infinite diffusion rates. This convergence seems intuitively likely: if diffusion rates
are fast then particles hop between subvolumes much more frequently than they react, and so
the well-mixedness assumption of the CME should be recovered.

In this chapter, we show that the RDME converges to a master equation in the limit of
fast diffusion, but remarkably, under certain conditions, this master equation is not the CME.
The accuracy of the RDME under these conditions is therefore called into question. The
chapter is organised in the following way. In section 2.1 we derive an expression for the master
equation to which the RDME converges in the limit of fast diffusion. We subsequently define a
class of reaction types (and their corresponding propensity functions) which we call convergent
propensity functions with the following property: if a chemical system has exclusively convergent
propensity functions, then the RDME will converge to the CME of the same system in the limit
of fast diffusion. If a chemical system has any non-convergent propensity functions, then it
will almost surely not converge to the correct CME. In section 2.2 we show that elementary
reactions (including zero, first and second-order reactions) are in the convergent class, while
more complex reactions (including Michaelis-Menten and Hill-type) are of the non-convergent
class. In section 2.3 we illustrate our results by applying them to two simple systems: one
convergent and one non-convergent. We conclude with a summary in section 2.4.

2.1 Convergence of the RDME

In chapter 1 we defined the CME and RDME for the specific system A+B −⇀↽− C (Eqs. (1.11)

and (1.23) respectively). In this section we define the CME and the RDME in general, and
prove that the latter may or may not converge to the former in the limit of fast diffusion. We
further prove that independent of the type of propensity, the RDME still converges to the CME
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in the limit of fast diffusion and of large volumes, taken simultaneously.

2.1.1 The CME

The CME defined in Eq. (1.11) can be generalised for any chemical system of N species
X1, ..., XN and R reactions, where the jth reaction has the form:

s1jX1 + ...+ sNjXN −→ r1jX1 + ...+ rNjXN , (2.1)

where rij and sij are known as the stoichiometric coefficients. The CME then has the form

d

dt
P (~n, t) =

R∑
j=1

(
N∏
i=1

E
sij−rij
i − 1

)
âj(~n, V )P (~n, t), (2.2)

where we recall that V is the reaction volume, ~n = (n1, ..., nN )
T

is the vector of molecule
numbers of species X1, ..., XN respectively, P (~n, t) is the probability that the system is in the
state ~n at time t, and Exi is again the shift operator. Finally, the notation âj(~n, V ) denotes
the propensity function of reaction j. Note that we do not use the mass-action propensities
based on rates kj , since we would like to retain generality about the functional form of the
propensities for the time being, though it should noted that all biological reactions are in fact
bimolecular, yet may be better described by other propensity functions.

The propensity function is formally defined as follows: given that the system is in state ~n,
then âj(~n, V )∆t is the probability that a reaction of index j occurs somewhere in the volume
V in the next infinitesimal time interval [t, t+ ∆t) [175].

2.1.2 The RDME

Just as with the CME, the RDME defined in Eq. (1.23) can be generalised for the chemical
system (2.1). For simplicity, we divide the volume V into M equally-sized subvolumes. The jth

chemical reaction in subvolume k will now have the form:

s1jX
(k)
1 + ...sNjX

(k)
N −→ r1jX

(k)
1 + ...+ rNjX

(k)
N , (2.3)

where we recall that X
(k)
i refers to species Xi locally in subvolume k. As explained in Eq.

(1.18), the diffusive interchange of chemicals between neighbouring subvolumes is modelled by
the reactions:

X
(k)
i

k
(i,k,k′)
D−−−−−⇀↽−−−−−
k
(i,k′,k)
D

X
(k′)
i , k′ ∈ N (k), (2.4)

where we recall that k
(i,k,k′)
D is the hopping rate of species Xi from subvolume k to subvolume k′,

and N (k) is the set of indices of subvolumes neighbouring subvolume k. The specific neighbours
of a subvolume depend on the topology of the lattice, though for the purposes of this chapter
it does not matter what this is, as long as every subvolume is indirectly connected to every
other by some path. For simplicity, we will assume that the hopping rates do not vary between
subvolumes, that is:

k
(i,k,k′)
D =

{
k

(i)
D if k′ ∈ N (k),
0 otherwise,

(2.5)

for some k
(i)
D . Since all subvolumes are equally-sized and hopping rates are constant across

space, the set of reactions (2.4) accurately models unbiased diffusion.
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The stochastic dynamics of this system is then described by the RDME:

d

dt
P (~n(1), ..., ~n(M), t) =

M∑
k=1

R∑
j=1

(
N∏
i=1

E
sij−rij
i,k − 1

)
âj(~n

(k), V/M)P (~n(1), ..., ~n(M), t)

+

M∑
k=1

∑
k′∈Ne(k)

N∑
i=1

(
E1
i,kE

−1
i,k′ − 1

)
k

(i)
D n

(k)
i P (~n(1), ..., ~n(M), t), (2.6)

where we recall n
(k)
i is the number of molecules of species X

(k)
i , ~n(k) = (n

(k)
1 , ..., n

(k)
N )T ,

P (~n(1), ..., ~n(M), t) is the probability of the system being in state (~n(1), ..., ~n(M)) at time t,

and Exi,k is the shift operator which replaces n
(k)
i with n

(k)
i + x. Note that the first line of

Eq. (2.6) refers to the chemical reactions while the second line refers to the diffusive reactions.
The local propensity function is defined as: given that the state of subvolume k is ~n(k), then
âj(~n

(k), V/M)∆t is the probability that one reaction of index j occurs somewhere inside this
subvolume in the next infinitesimal time interval [t, t+ ∆t).

2.1.3 The RDME in the limit of fast diffusion

We now investigate what happens to the RDME in the limit where k
(i)
D →∞ for all i = 1, ..., N .

Suppose that the system is in state (~n(1), ..., ~n(M)) at time t, and define ni = n
(1)
i + ...+n

(M)
i as

the global molecule number of the species Xi. Each time a chemical reaction occurs somewhere
in space, the local molecule number of one or more species changes leading to a corresponding
change in the global number of molecules of the concerned species. Before the next chemical
reaction occurs, diffusive reactions will happen a very large number of times such that the
system will approach the steady-state of the purely diffusive system (2.4). Specifically suppose
that a chemical reaction just occurred somewhere in space and that the global state vector is
(n1, n2, ..., nN ). Then it follows that due to the effect of infinitely fast diffusion, the probability

of having n
(k)
i molecules of species Xi in subvolume k, conditional on the fact that there are ni

molecules of the same species in all of space, is given by the binomial distribution:

P (n
(k)
i |ni) =

ni!

n
(k)
i !(ni − n(k)

i )!

( 1

M

)n(k)
i
(

1− 1

M

)ni−n(k)
i

, i = 1, ..., N. (2.7)

It also follows that the distribution of molecule numbers of all chemical species in subvolume
k, conditional on the global state vector, is given by:

P (~n(k)|~n) =

N∏
i=1

P (n
(k)
i |ni). (2.8)

Now starting from the RDME, we want to calculate the probability aj(~n, V )dt, in the limit
of fast diffusion, that the jth chemical reaction occurs somewhere in the space of volume
V in the next infinitesimal time interval [t, t + dt), conditional on the global state vector,
~n = (n1, n2, ..., nN ). This reaction can occur in either subvolume 1 or subvolume 2 or ... or
subvolume M and hence we must sum the propensities of the jth chemical reaction in each
subvolume. Furthermore we must also sum over all possible different states in each subvolume
which are compatible with the global state vector, ~n. Hence it follows that:

aj(~n, V ) =

M∑
k=1

n1∑
n
(k)
1 =0

...

nN∑
n
(k)
N =0

âj(~n
(k), V/M)P (~n(k)|~n). (2.9)

In the limit of fast diffusion, the average propensity of the jth chemical reaction in a given
subvolume is the same as that in any other subvolume and hence Eq. (2.9) further simplifies
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to:

aj(~n, V ) = M

n1∑
n
(k)
1 =0

...

nN∑
n
(k)
N =0

âj(~n
(k), V/M)P (~n(k)|~n), (2.10)

for some k = 1, ...,M . This can be written conveniently as an expected value under the Binomial
distribution defined by Eq. (2.8):

aj(~n, V ) = ME
[
âj(~n

(k), V/M)
]
. (2.11)

By the definition of the propensity function aj(~n, V ), it follows immediately from the laws of
probability that the master equation to which the RDME converges to, in the limit of fast
diffusion, is:

d

dt
P (~n, t) =

R∑
j=1

(
N∏
i=1

E
sij−rij
i − 1

)
aj(~n, V )P (~n, t). (2.12)

Note that this equation is identical to Eq. (2.2) except that âj is replaced with aj . The main
result follows: The RDME converges to the CME in the limit of fast diffusion if aj(~n, V ) =
âj(~n, V ) for all j = 1, ..., R (note that this limit is taken with the volume V and all rate constants
held constant).

With this in mind, we can define a class of propensities which we call convergent propensi-
ties. A propensity function âj(~n, V ) is convergent if aj(~n, V ) = âj(~n, V ). A system consisting
exclusively of convergent propensities will have the satisfying property of convergence of the
RDME to the CME, in the fast diffusion limit. A system with at least one non-convergent
propensity will almost surely not have this property, though this possibility cannot be gener-
ally excluded. For instance there could exist two non-convergent propensity functions which
perfectly cancel out each others’ effects, leading to convergence over all.

2.1.4 The RDME and the CME in the limits of fast diffusion and
large volumes

We now briefly show that a non-convergent RDME can still converge to the correct CME in the
limit of fast diffusion, if we also take the macroscopic limit of large volumes. The proof is based
on the fact that in the macroscopic limit, the solution of a master equation is approximated by
the chemical Langevin equation whose solution has sharp peaks centred on the solution of the
corresponding REs [176].

The REs have already been defined for the specific system A + B −⇀↽− C in Eq. (1.2), but

they too can be written for the general system Eq. (2.1):

d

dt
~φ =

R∑
j=1

(rij − sij)fj(~φ), (2.13)

where ~φ = 〈~n〉/V is the vector of deterministic concentrations of species X1, ..., XN (the angled

brackets signify the average taken in the macroscopic limit), and fj(~φ) is the macroscopic
propensity function of reaction j defined as:

fj(~φ) = limV→∞
âj(~n = V ~φ, V )

V
. (2.14)

Similary, the REs of the system given by Eqs. (2.3) and (2.4), described stochastically by the
RDME, are given by:

d

dt
φ

(k)
i =

R∑
j=1

(rij − sij)fj(~φ(k)) + k
(i)
D

( ∑
k′∈N (k)

φ
(k′)
i − zφ(k)

i

)
, (2.15)
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where ~φk = 〈~nk〉/(V/M) is the vector of deterministic concentrations in subvolume k, fj is
the same fj as defined in Eq. (2.14), and z is the number of neighbours of a subvolume for a
particular RDME topology. Clearly in the limit of fast diffusion, the deterministic concentration

of each species is the same in all subvolumes, i.e., φ
(k)
i = φ

(k′)
i at all times. Hence the second

term on the right hand side of Eq. (2.15) equals zero and the rate equations of the RDME
simplify to:

d

dt
φ

(k)
i =

R∑
j=1

(rij − sij)fj(~φ(k)). (2.16)

Now to compare with the REs of the CME, we need to use Eq. (2.16) derive the REs for the
global concentration φi, which follows from the definition of the global molecule numbers and

is given by φi = 1
M (φ

(1)
i + ...+ φ

(M)
i ). These are given by:

d

dt
φi =

1

M

d

dt

M∑
k=1

φ
(k)
i =

1

M

M∑
k=1

R∑
j=1

(rij − sij)fj(~φ(k)) =

R∑
j=1

(rij − sij)fj(~φ), (2.17)

where the last equation follows from the fact that in the fast diffusion limit, φ
(k)
i = φi at all

times. The RE of the global concentrations of the RDME given by Eq. (2.17) is therefore equal
to Eq. (2.13), the RE of the global concentrations of the CME. In summary, in the combined
limits of fast diffusion and large volumes, the RDME of a system converges to the CME of the
same system, regardless of whether the propensities are convergent.

It can also be straightforwardly shown using the linear noise approximation (LNA) that for
deterministically monostable systems, the solution of the RDME and CME, in the macroscopic
and fast diffusion limits, tends to the same Gaussian centred on the RE solution [22]. This
follows from the fact that the variance and covariance of the Gaussian are functions of the RE
solution and which, as we have shown, is one and the same for the RDME and CME.

2.2 Examples of convergent and non-convergent propen-
sities

In this section we test whether some commonly-used propensities are in the convergent or
non-convergent class.

2.2.1 Convergent propensities

Consider mass-action kinetics, as discussed at length in chapter 1. It then follows [22] that
the propensity of the jth chemical reaction in the CME and of the jth chemical reaction in
subvolume k of the RDME are respectively given by:

âj(~n, V ) = V kj

N∏
z=1

V −szj
nz!

(nz − szj)!
, (2.18)

âj(~n
k, V/M) = (V/M)kj

N∏
z=1

(V/M)−szj
n

(k)
z !

(n
(k)
z − szj)!

. (2.19)

The most commonly used types of reactions following mass-action kinetics are the zero order
reaction, first order reaction, second-order reactions between similar reactants and second-
order reaction with different reactants which have CME propensities âj(~n, V ) equal to kjV ,
kjni, (kj/V )ni(ni − 1) and (kj/V )ninj respectively, for some integers i and j.

Substituting Eq. (2.19) in Eq. (2.10), we have that in the fast diffusion limit, the RDME
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converges to a master equation with a propensity for the jth chemical reaction equal to:

aj(~n, V ) = M

N∏
z=1

nz∑
n
(k)
z =0

âj(~n
(k), V/M)P (n(k)

z |nz), (2.20)

= M(V/M)kj

N∏
z=1

(V/M)−szj
nz∑

n
(k)
z =0

n
(k)
z !

(n
(k)
z − szj)!

P (n(k)
z |nz). (2.21)

Now the quantity:

nz∑
n
(k)
z =0

n
(k)
z !

(n
(k)
z − szj)!

P (n(k)
z |nz), (2.22)

is by definition the szj-th factorial moment of the binomial distribution P (n
(k)
z |nz) with success

probability 1/M and number of trials nz. This factorial moment is a standard result (see for
example [177]) and is given by:

nz∑
n
(k)
z =0

n
(k)
z !

(n
(k)
z − szj)!

P (n(k)
z |nz) =

nz!

(nz − szj)!

(
1

M

)szj
. (2.23)

Substituting the above equation in Eq. (2.21) we obtain:

aj(~n, V ) = V kj

N∏
z=1

V −szj
nz!

(nz − szj)!
= âj(~n, V ). (2.24)

It follows that the propensities of reactions following mass-action are convergent; this applies
to all reaction orders. The convergence of the RDME to the CME in the fast diffusion limit,
for reactions up to second-order, has been previously also shown by Gardiner [178] using a
completely different method.

2.2.2 Non-convergent propensities

It is common practice to use effective propensities which lump a number of elementary reactions
together. One of the most popular of such propensities is the Michaelis-Menten propensity. This
can model various processes such as nonlinear degradation of a protein, enzyme catalysis of a
protein into a product or the activation of a gene by a protein. Let this protein species be
Xi. If the jth reaction is of the Michaelis-Menten type, then it can be described by a term
in the deterministic rate equations of the form fj(~φ) = kjφi/(K + φi). Using Eq. (2.14),
one can deduce that a corresponding effective propensity in the CME would be âj(~n, V ) =
kjni/(K +ni/V ) [179, 180]. The corresponding propensity in the kth subvolume of the RDME

would be âj(~n
(k), V/M) = kjn

(k)
i /(K +Mn

(k)
i /V ) [181].

Substituting the latter propensity of the RDME in Eq. (2.10), we have that in the fast
diffusion limit, the RDME converges to a master equation with a propensity for the jth chemical
reaction equal to:

aj(~n, V ) = Mkj

ni∑
n
(k)
i =0

n
(k)
i

K +Mn
(k)
i /V

P (n
(k)
i |ni),

=
kjV (M − 1)ni−1ni 2F1 (KV/M + 1, 1− ni;KV/M + 2;−1/(M − 1))

Mni(KV/M + 1)

6= kjni
K + ni/V

= âj(~n, V ), (2.25)

where 2F1(a, b; c; d) is a hypergeometric function.
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Since aj(~n, V ) 6= âj(~n, V ), it follows that Michaelis-Menten propensities are non-convergent.

However note in the limits of very small or very large n
(k)
i , âj(~n

(k), V/M) reduces to kjn
(k)
i /K

and kjV/M respectively; these are special cases of mass-action kinetics Eq. (2.19) and hence in
these limits, the Michaelis-Menten propensity can be considered convergent. The largest devi-

ations from mass-action occur when n
(k)
i /V is roughly equal to the constant K (the Michaelis-

Menten constant); this is the case where the non-convergence of the Michaelis-Menten propen-
sity becomes most apparent.

A generalisation of the Michaelis-Menten propensity, which is sometimes used, is given by
the Hill propensity. For the CME this is given by:

âj(~n, V ) =
V kj(ni)

θ

(V K)θ + (ni)θ
, (2.26)

for some i. The Hill coefficient θ is an integer greater or equal to 1. The corresponding
propensity in subvolume k of the RDME is:

âj(~n
(k), V/M) =

(V/M)kj(n
(k)
i )θ

(V K/M)θ + (n
(k)
i )θ

. (2.27)

For general θ it is not possible to evaluate Eq. (2.10) analytically. However, if we can find a
set of parameters for which aj and âj do not agree, then we can be certain that they are not
the same function. Choose, for instance, k1 = K = V = 1, M = ni = 2. For these parameters,
âj = 2θ/(1 + 2θ). On the other hand:

aj =
1

2

(
1

2
+

1

(1/2)θ + 1
+

1

2

2θ

(1/2)θ + 2θ

)
. (2.28)

There are no real values of θ for which âj = aj , and therefore it follows that Hill-type propen-
sities are non-convergent.

2.3 Simple convergent and non-convergent example sys-
tems

To illustrate the results of this chapter, we briefly apply them to some simple example systems
in this section. For simplicity we will use systems consisting of only one species.

2.3.1 A convergent example

A simple convergent example is given by the open dimerisation reaction:

∅ → X, X +X → ∅. (2.29)

The propensity functions of the CME are:

â1(n, V ) = k1V, â2(n, V ) =
k2

V
n(n− 1), (2.30)

where n is the number of X molecules. The corresponding propensity functions in subvolume k
of the RDME are obtained by replacing n by n(k) and V by V/M . These propensity functions
can be non-dimensionalised by dividing by k1V . Then we will have dimensionless propensities:

â1 = 1, â2 = Kn(n− 1), (2.31)

where K = k2/k1V
2 is a dimensionless parameter. In the RDME description, the diffusion rate

parameter kD will be replaced by a dimensionless parameter k0
D = kD/k1V , and the RDME
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Figure 2.1: Steady state solution of the CME for system (2.29) (blue histogram) compared with
the steady-state solutions of the global molecule numbers calculated using the RDME for very
slow diffusion (green dashed line) and for very fast diffusion (red dash-dotted line), all obtained
with the SSA. Note that the RDME converges to the CME in the limit of fast diffusion, as
predicted by our theory. The parameter values are K = 0.03, M = 10. Note that k0

D is varied
through kD whilst all other parameters are constant.

propensities in subvolume k will be:

a1 =
1

M
, a2 = KMn(k)(n(k) − 1), (2.32)

Since both propensities are of the mass-action type, they are convergent. Note that the
convergence here is obtained in the limit of large kD at constant values of the volume and of
the rate constants, i.e., the limit that k0

D tends to infinity at constant K. In Fig. 2.1 we show
that the the steady-state distribution of global molecule numbers (sum of molecule number over
all subvolumes) calculated using the RDME with very slow diffusion (k0

D = 10−9) disagrees with
the CME while the same computed with very fast diffusion (k0

D = 103) agrees exactly with the
CME. The plots are obtained using the stochastic simulation algorithm (SSA) for both the CME
[49] and RDME [75]. For the RDME, the simulation consisted of 10 subvolumes connected in
a line with reflecting boundaries. The agreement of the CME and RDME in the limit of fast
diffusion is in agreement with the theoretical result that both propensities are convergent. Note
that the change in the mode of the distribution occurs because the bimolecular reaction happens
more frequently when diffusion is fast, thereby reducing the overall molecule number.

2.3.2 A non-convergent example

A simple non-convergent example is given by a protein production and nonlinear protein degra-
dation system:

∅ → X, X → ∅. (2.33)

The propensity functions in the CME are:

â1(n, V ) = k1V, â2(n, V ) =
k2n

K + n/V
. (2.34)

The corresponding propensity functions in subvolume k of the RDME are obtained by replacing
n by n(k) and V by V/M . These propensity functions can be non-dimensionalised by dividing
by k1V . Then we will have dimensionless propensities:

â1 = 1, â2 =
K1n

K2 + n
, (2.35)
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Figure 2.2: Steady state solution of the CME for system (2.33) (blue histogram) compared with
the RDME solutions for slow diffusion (green dashed line) and for fast diffusion (red dash-dotted
line), all obtained with the SSA, and the exact RDME solution for infinite diffusion given by Eq.
(2.38) (blue circles).Parameter values are K1 = 1.15, M = 10. The non-dimensional volume is
K2 = 0.01. k0

D is varied through the diffusion rate kD.

where K1 = k2
k1

and K2 = KV are dimensionless parameters. In the RDME description, the

diffusion rate parameter kD will be replaced by a dimensionless parameter k0
D = kD

k1V
, and the

RDME propensities in subvolume k will be:

a1 =
1

M
, a2 =

K1n
(k)

K2 +Mn(k)
, (2.36)

The first propensity is convergent but the second is not. Note that the convergence of the
first propensity here is obtained in the limit of large kD at constant values of the volume and
of the rate constants, i.e., the limit that k0

D tends to infinity at constant K1 and K2. It follows
that the RDME will not converge to the CME in the fast diffusion limit. In particular, using
the method derived in Ref. [24] for general one variable, one step-processes, one can show that
the exact steady-state analytical solutions of the CME (Eq. (2.2) with the propensities given
by Eq. (2.34)) and of the master equation to which the RDME converges in the fast diffusion
limit (Eq. (2.12) with a1(n, V ) = k1V and a2(n, V ) given by Eq. (2.25)) are given by:

P (0) = C1, P (n) = C1

n∏
i=1

K2 + i

K1i
, (2.37)

and

P (0) = C2, P (n) = C2

n∏
i=1

M i(K2/M + 1)

K1(M − 1)i−1i 2F1 (K2/M + 1, 1− i;K2/M + 2;−1/(M − 1))
,

(2.38)
respectively, where C1 and C2 are normalisation constants.

In Fig. 2.2 we verify using the SSA that for a small volume ( K2 = 0.01) the RDME disagrees
with the CME for both very slow and very fast diffusion, i.e., the RDME does not converge to
the CME in limit of fast diffusion. Note also that the exact solution of the master equation to
which the RDME converges in the fast diffusion limit as given by Eq. (2.38) agrees very well
with that obtained using stochastic simulations of the RDME for large diffusion k0

D = 3.8×102;
this agreement is an independent verification of our theory.

In Fig. 2.3 we show that for large volumes (K2 = 200) the stochastic simulations agree very
well with the exact RDME solution Eq. (2.38) at k0

D = ∞ and with the exact CME solution
Eq. (2.37). In this case the RDME and CME are the Gaussian distribution centred on the
solution of the rate equations which is predicted by the LNA. This is in agreement with the
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Figure 2.3: Steady state exact solution of the CME given by Eq. (2.37) compared with the
steady state exact solution of the RDME for infinite diffusion given by Eq. (2.38) and the LNA
for system (2.33). Parameter values are K1 = 1.15, M = 10. The non-dimensional volume is
K2 = 200 in (b). k0

D is varied through the diffusion rate kD.

results of Section 2.1.4 and shows that the non-convergence problems of the RDME are mostly
relevant at small volumes (or equivalently small molecule numbers).

The non-convergence shown in this section makes intuitive sense, since the Michealis-Menten
propensity effectively models the enzyme-catalysed degradation of a protein, assuming that the
enzyme and protein substrate in each subvolume are in quasi-equilibrium which necessarily
requires that the diffusion between neighbouring subvolumes is sufficiently slow. This point is
also discussed in in Ref. [181]. Note, however, that our non-convergence results apply to any
non-elementary propensity, not just those of the Michaelis-Menten type.

2.4 Summary

In this chapter we have proved a remarkable and counter-intuitive fact, namely that the RDME
does not necessarily converge to the CME in the limit of fast diffusion. Conversely, in the
limit of slow diffusion the RDME decomposes into a set of non-communicating subvolumes
with a CME description in each subvolume: the RDME will then be accurate, provided that
the subvolume sizes are sufficiently small that they can be assumed to be well-mixed. The
RDME with non-elementary reactions can therefore be considered accurate for slow diffusion
(and small subvolume sizes) and inaccurate for fast diffusion. We can interpret this as implying
that the error of the RDME increases as diffusion rates increase. Intuitively, this occurs because
non-elementary systems typically arise from assuming that the fastest timescale is a reaction
timescale, an assumption which we violate by increasing the diffusion coefficient.

The consequences of this fact for the RDME as a model are numerous. The class of non-
convergent propensities includes Michaelis-Menten-type rates, which are frequently used to
model metabolic systems, and Hill-type rates, which describe transcription factor binding. The
results in this chapter suggest that the RDME cannot be a consistently accurate spatial model of
genetic or metabolic networks, unless they are modelled in complete detail (with all elementary
reactions which is often impossible). For the case when the non-elementary reactions are known
to effectively model a system of elementary reactions under quasi-equilibrium conditions in well-
mixed conditions, the RDME is valid if it can be ascertained that the diffusion is slow enough
such that one has chemical quasi-equilibrium in each subvolume.

This chapter could be regarded as an argument against the RDME, however we stress that
non-elementary rates make even less sense in BD, where it is utterly unclear how to implement
them, or whether it would even be wise to do so. In other words, this chapter does not present
a problem with the RDME specifically, but rather a problem with spatial stochastic models in
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general. In the next section, we focus on one clear advantage of the RDME over BD: the ability
to derive analytical expressions for important statistics.
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Chapter 3

Analytical approaches to the
reaction-diffusion master
equation

The principle advantage of deterministic models (such as the REs or RDEs) over their stochastic
counterparts is that they provide quick and easy estimates of mean concentrations. Though
these estimates may be systematically incorrect, and though stochastic models provide much
more information beyond the mean, the attractiveness of describing chemical kinetics by a single
quantity often gives deterministic models the edge.

To counteract this, researchers have attempted to derive simple equations describing the
time evolution of the mean of the CME, analogous to the REs [182, 183, 184, 185, 186, 44].
This can be achieved in a number of ways, including moment-closure approximations [182], and
the van Kampen expansion [22, 185]. The van Kampen expansion is particularly useful as it
is a rigorous perturbative expansion in the inverse square-root of the reaction volume, V −1/2,
and can therefore be tuned a priori to an appropriate level of accuracy for a given system [22].

To zeroth order, the van Kampen expansion of the mean of the CME is simply the REs,
which is intuitive since the REs are a large-volume description. To first order, the mean of
the CME is described by the effective mesoscopic rate equations (EMREs), which tend to be
accurate down to very small numbers of molecules [185].

In this chapter, we show how the EMREs can be derived for the RDME as well as the
CME, leading to spatial effective mesoscopic rate equations (sEMRE) [73]. Since the RDME is
orders of magnitude more complex than the CME, the sEMRE typically cannot be expressed in
simple terms, however we find simple expressions in the case of single-species systems under the
assumption of spatial homogeneity. Comparison with λ − ρ simulations provides confirmation
that our sEMRE is an accurate model.

3.1 Effective mesoscopic rate equations (EMRE)

The REs have already been discussed in great detail, for the specific example A+B −⇀↽− C in Eq.

(1.2), and in the general case in Eq. (2.13). For our general system of N species X1, ..., XN ,
(Eq. (2.1)) they can be expressed neatly as:

d

dt
~φ = S ~f(~φ), (3.1)

where ~φ = (φ1, ..., φN )T , S ∈ RN×N is a matrix defined by Sij = rij−sij , and ~f = (f1, ..., fN )T .
In this section, however, we are interested in estimating the mean of the CME, which will not
necessarily agree with the REs. The mean number of molecules of Xi according to the CME is
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given by:

〈ni〉 =

∞∑
n1=0

...

∞∑
nN=0

niP (~n, t), (3.2)

where P (~n, t) is the solution of the CME, Eq. (2.2). The van Kampen expansion [22] states
that ~n can be written in the form:

~n = V ~φ+ V 1/2~ε, (3.3)

where ~ε is a vector of error terms. This implies that the CME mean Eq. (3.2) can be written:

〈ni〉 = V φi + V 1/2〈εi〉, (3.4)

so that the question of finding the mean molecule numbers is reformulated in terms of finding
the expected errors 〈εi〉.

It has been shown that 〈~ε〉 = ~0 for systems with at most first-order reactions (
∑N
i=1 sij ≤

1 ∀j) [187] and for a subset of reversible systems (including those with bimolecular reactions)

in detailed balance [188]. It follows that the RE solution ~φ is exactly equal to the mean
concentrations 〈~n〉/V for these systems. For other systems, 〈εi〉 6= ~0 and so estimating the
expected value is essential to computing accurate mean concentrations.

The first order approximation to 〈~ε〉 is given by the EMREs (originally derived in Ref.
[185]). The time-evolution equation for 〈~ε〉 is:

d

dt
〈~ε〉 = J〈~ε〉+ V −1/2~∆, (3.5)

where J = S ∂
~f(~φ)

∂~φ
is the Jacobian of the REs, and ~∆ ∈ RN is a vector whose ith element is

defined as:

∆i =
1

2

 N∑
j,k=1

∂Jij
∂φk
〈εjεk〉 −

N∑
j=1

φj
∂Jij
∂φj

 . (3.6)

The covariance 〈εjεk〉 can be computed as the (j, k)th element of the matrix C ∈ RN×N which
solves the Lyapunov equation:

d

dt
C = JC + CJT +D, (3.7)

where D = S diag
(
~f(~φ)

)
ST is the diffusion matrix. Note that the covariance of fluctuations

in molecule numbers of two species Xi and Xj is V 〈εiεj〉. Hence the estimate of the mean

concentration using the EMRE takes into account, via the vector ~∆, the coupling between the
mean and the covariance of fluctuations. Note that the vector ~∆ is only non-zero if the Hessian
of the rate equations is non-zero and hence a necessary (but not sufficient) condition for ~ε to be
non-zero is that the system is composed of at least one reaction with a nonlinear reaction law,
such as a bimolecular reaction. Also note that Eq. (3.6) is only valid for a system obeying mass-
action kinetics; a generalisation to the case where some of the reactions are non-elementary can
be found in [189], though since the RDME is not well-defined for such systems (see chapter 2)
we will not go into the subject in this thesis.

The EMRE itself is a time-evolution equation for the approximate mean concentrations ~ψ,
which is defined as ~ψ = ~φ + V −1/2〈~ε〉, which when substituted into Eq. (3.5) leads to the
defining equation of the EMREs:

d

dt
~ψ =

d

dt
~φ+ J(~ψ − ~φ) + V −1~∆. (3.8)

In steady-state, all time derivatives are zero, so we recover the simpler equations for the EMRE:

~ψ = ~φ− V −1J−1~∆, (3.9)
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and the steady-state Lyapunov equation,

JC + CJT +D = 0. (3.10)

For a system consisting of only one chemical species X, the EMRE simplifies dramatically. The
reaction system can be written as:

sjX
kj−→ rjX, (3.11)

for j = 1, ..., R, for stoichiometric coefficients sj and rj . The stoichiometrix matrix S will
in this case be a stoichiometric vector with entries Sj = rj − sj , and the mass-action rate

vector ~f ∈ RR will have elements defined as fj(φ) = kjφ
sj , where φ is now the steady-state

deterministic concentration of X.
Because this is a single-species system, the Jacobian and diffusion matrices will simply be

real numbers, J = α and D = β respectively. These are defined as:

α = S
∂ ~f(φ)

∂φ
=

R∑
j=1

kjsj(rj − sj)φsj−1, β = S diag
(
~f(φ)

)
ST =

R∑
j=1

kj(rj − sj)2φsj . (3.12)

Note that stable systems must have α < 0, since α is the eigenvalue of the Jacobian, while
β > 0 is guaranteed by its definition. The matrix of covariances, C, is now simply a real number
corresponding to 〈ε2〉 and its value can be found by solving Eq. (3.10) to find 〈ε2〉 = − β

2α .

Similarly, the vector ~∆ is now a scalar defined as ∆ = 1
2
∂α
∂φ

(
〈ε2〉 − φ

)
. The single-species EMRE

in steady-state conditions is therefore given by inserting these values into Eq. (3.9):

ψ = φ+

(
β

2α
+ φ

)
1

2V α

∂α

∂φ
. (3.13)

Note that the EMRE solution is given by a sum of the RE solution φ and a correction which is
inversely proportional to the system size V . This result can be shown to be accurate to order
V −1; higher-order corrections can also be calculated using the system-size expansion and have
been done [35] but we shall not consider them here.

3.2 The spatial EMRE (sEMRE)

Just as the REs provide a deterministic approximation of the CME, one can write spatial rate
equations which are a deterministic approximation of the RDME. These equations have been
mentioned already, for the example A+B −⇀↽− C, in Eq. (1.19), but for our general system they

take the form:

d

dt
φ

(k)
i =

R∑
j=1

(rij − sij)fj(~φ(k))− |N (k)|k(i)
D φ

(k)
i + k

(i)
D

∑
k′∈N (k)

φ
(k′)
i , i = 1, ..., N, k = 1, ...,M,

(3.14)
where the first term denotes reactions, the second denotes diffusion out of subvolume k, and
the third denotes diffusion into subvolume k from neighbouring subvolumes. The number
of neighbouring subvolumes of subvolume k is |N (k)|, which will typically be 2 times the
dimensionality of the space. For the remainder of this section we assume a 2-dimensional space,
though the calculation can be done for 1 and 3 dimensions [73]. Our 2-dimensional space will
consist of a grid of

√
M ×

√
M subvolumes, where M is a square number and each subvolume

is connected to exactly 4 neighbours, thus taking place on the surface of a torus (periodic
boundaries). This assumption enables us to assume each subvolume to be statistically identical.

We can represent Eq. (3.14) in the more compact form:

d

dt
~̃
φ = S̃

~̃
φ, (3.15)

where
~̃
φ ∈ RNM is a vector of allM local concentrations of allN species, and S̃ ∈ RNM×M(R+4N)
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is a stoichiometric matrix obtained by treating each diffusion event as an additional reaction
– note that there are NM effective species in total (N species in each of M subvolumes) and
M(R + 4N) effective reactions (R reactions in each of M subvolumes, and a diffusion in each
of 4 directions for each of N species in each of M subvolumes). By rewriting the spatial REs in
this way, we can subsequently apply the EMRE method to them, but for analytical tractability
we will hereafter assume as system of the form (3.11), i.e. N = 1. By analogy with the EMRE
approach, we need to first determine the S̃, J̃ and D̃ matrices for the spatial REs before we
can obtain the sEMRE. Next we consider in detail the construction of these matrices.

First, we consider what we can say about the Jacobian of the spatial REs of this system,
J̃ ∈ RM×M . Consider the diagonal element J̃ii, which by definition is:

J̃ii =

M(R+4)∑
k=1

S̃ik
∂f̃k(

~̃
φ)

∂φ̃(i)
. (3.16)

Note the lack of subscript because we only consider a single species. For the vast majority
of values of k, S̃ik = 0; the only non-zero values are those corresponding to reactions inside
subvolume i, or diffusion into and out of subvolume i. The contribution to J̃ii of the internal
reactions has already been calculated: it is simply α as defined in Eq. (3.12) (the symmetry of
the system implies that in steady-state conditions φ̃(i) = φ, i = 1, ...,M , where φ is the steady-

state RE solution). For diffusion into subvolume i, S̃ik = 1 and f̃k(
~̃
φ) = kDφ̃

(j), where j is the

index of a subvolume neighbouring i. It follows that ∂f̃k(
~̃
φ)

∂φ̃(i)
= 0, so there is no contribution

to J̃ii. For diffusion out of subvolume i, S̃ik = −1 and f̃k(
~̃
φ) = kDφ̃

(i). It follows that

S̃ik
∂f̃k(

~̃
φ)

∂φ̃(i)
= −kD is the contribution to J̃ii. Since there are 4 distinct diffusion fluxes out

of i (one into each neighbouring subvolume), this contribution is multiplied by 4, so that
J̃ii = α− 4kD. Now consider the element J̃ij where i and j are neighbouring subvolumes:

J̃ij =

M(R+4)∑
k=1

S̃ik
∂f̃k(

~̃
φ)

∂φ̃(j)
. (3.17)

The only non-zero contributions to J̃ij will correspond to reactions that change the number of

molecules of Xi (otherwise S̃ik = 0) and which involve Xj (otherwise ∂f̃k(
~̃
φ)

∂φ̃(j)
= 0), and the only

reactions with this property are those describing diffusion between subvolumes i and j. For

diffusion from i to j, f̃k(
~̃
φ) = kDφ̃

(i), so ∂f̃k(
~̃
φ)

∂φ̃(j)
= 0 and there is no contribution to J̃ij . For

diffusion from j to i, S̃ik = 1 and f̃k(
~̃
φ) = kDφ̃

(j), so the contribution to J̃ij is S̃ik
∂f̃k(

~̃
φ)

∂φ̃(j)
= kD.

These are the only reactions contributing to J̃ij , so, for j neighbouring i, J̃ij = kD.

Finally, if subvolumes i and j are not neighbours, there are no reactions which involve both
Xi and Xj , so the Jacobian elements are zero for these entries. In summary:

J̃ij =

{ α− 4kD if j = i.
kD if j ∈ N (i).
0 otherwise.

(3.18)

A similar argument can be used to compute the entries of the diffusion matrix D̃, which is given
by:

D̃ij =

{ β + 8kDφ if j = i.
−2kDφ if j ∈ N (i).

0 otherwise.
(3.19)

If the subvolumes are numbered from left to right and top to bottom, the matrices J̃ and D̃
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are block-circulant matrices, with the following structure:

J̃ =



RJ kDI 0 ... 0 kDI
kDI RJ kDI ... 0 0

0 kDI RJ ... 0 0
...

...
...

...
...

...
0 0 ... kDI RJ kDI
kDI 0 ... 0 kDI RJ


, (3.20)

D̃ =



RD −2kDφI 0 ... 0 −2kDφI
−2kDφI RD −2kDφI ... 0 0

0 −2kDφI RD ... 0 0
...

...
...

...
...

...
0 0 ... −2kDφI RD −2kDφI

−2kDφI 0 ... 0 −2kDφI RD


, (3.21)

where,

RJ =



α− 4kD kD 0 ... 0 kD
kD α− 4kD kD ... 0 0
0 kD α− 4kD ... 0 0
...

...
...

...
...

...
0 0 ... kD α− 4kD kD
kD 0 ... 0 kD α− 4kD


, (3.22)

RD =



β + 8kDφ −2kDφ 0 ... 0 −2kDφ
−2kDφ β + 8kDφ −2kDφ ... 0 0

0 −2kDφ β + 8kDφ ... 0 0
...

...
...

...
...

...
0 0 ... −2kDφ β + 8kDφ −2kDφ

−2kDφ 0 ... 0 −2kDφ β + 8kDφ


, (3.23)

and I ∈ R
√
M×
√
M is the identity matrix.

By analogy with the EMRE Eq. (3.9), from J̃ and D̃ determined above, it is possible to
derive the sEMRE:

~̃
ψ =

~̃
φ− M

V
J̃−1 ~̃∆. (3.24)

The factor M
V appears because each species now exists in a subvolume of size V

M . The ith entry

of ~̃∆ is defined as in Eq. (3.6) (with tildes on all symbols, and N replaced by M since the latter
is the number of effective species), but since the only entries of J̃ which have any φ-dependence
are the diagonal entries, this can be simplified to ∆̃i = 1

2
∂α
∂φ

(
〈ε̃2
i 〉 − φ

)
. By the condition of

spatial symmetry, all the 〈ε̃2
i 〉 must be the same, say, 〈ε̃2〉, which implies that the vector ~̃∆ can

be simplified to ~∆ = 1
2
∂α
∂φ

(
〈ε̃2〉 − φ

)
1, where 1 ∈ RM is a column vector of 1s.

The sEMRE is then given by
~̃
ψ = φ1− M

2V
∂α
∂φ

(
〈ε̃2〉 − φ

)
J̃−11. Notice now that the vector

1 is an eigenvector of J̃ with eigenvalue α. It follows that 1 is also an eigenvector of J̃−1 with
eigenvalue 1

α , and we can therefore simplify J̃−11 to 1
α1. The sEMRE then becomes a vector

with every entry the same, so we write the scalar ψ̃ as:

ψ̃ = φ− M

2V α

∂α

∂φ

(
〈ε̃2〉 − φ

)
. (3.25)

It remains therefore only to find the value of the quantity 〈ε̃2〉. This is given by the first entry
of the matrix C̃ which is defined by the Lyapunov equation given in Eq. (3.10) (with tildes).
We notice that by the symmetries of the system, both J̃ and C̃ must be symmetric, circulant
matrices [190], which implies that J̃ C̃ = C̃J̃T , and therefore the Lyapunov equation can be
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simplified to C̃ = − 1
2 J̃
−1D̃.

Since J̃ is block circulant, its inverse is also, and we can write it as:

J̃−1 =


B1 B2 B3 ...
B√M B1 B2 ...
B√M−1 B√M B1 ...

...
...

...
. . .

 . (3.26)

Then C̃ will be given by:

C̃ = −1

2
(B1RD +B2(−2kDφI) +BN (−2kDφI)) . (3.27)

The defining equations for the relevant Bi are [191]:

B1 =
1√
M

√
M∑

k=1

(
RJ + 2kDcos

(
2πk√
M

)
I

)−1

,

B2 =
1√
M

√
M∑

k=1

e
2πik√
M

(
RJ + 2kDcos

(
2πk√
M

)
I

)−1

, (3.28)

BN =
1√
M

√
M∑

k=1

e
2πik(

√
M−1)√
M

(
RJ + 2kDcos

(
2πk√
M

)
I

)−1

.

Since RJ + 2kDcos
(

2πk√
M

)
I is a circulant matrix, we can write its inverse as:

(
RJ + 2kDcos

(
2πk√
M

)
I

)−1

= F−1√
M

ΛkF√M , (3.29)

where
(
F√M

)
j,w

= e
− 2πijw√

M . Λk is diagonal such that:

(Λk)j,j =
1

α− 4kD + 2kDcos
(

2πk√
M

)
+ 2kDcos

(
2πj√
M

) . (3.30)

Therefore,

B1 =
1√
M
F−1√

M
Λ̃1F√M , (3.31)

where (
Λ̃1

)
j,j

=

√
M∑

k=1

1

α− 4kD + 2kDcos
(

2πk√
M

)
+ 2kDcos

(
2πj√
M

) . (3.32)

Similarly, B2 = 1√
M
F−1√

M
Λ̃2F√M and B√M = 1√

M
F−1√

M
Λ̃√MF

√
M , where

(
Λ̃2

)
j,j

=

√
M∑

k=1

e
− 2πik√

M

α− 4kD + 2kDcos
(

2πk√
M

)
+ 2kDcos

(
2πj√
M

) , (3.33)

and (
Λ̃√M

)
j,j

=

√
M∑

k=1

e
− 2πik(

√
M−1)√
M

α− 4kD + 2kDcos
(

2πk√
M

)
+ 2kDcos

(
2πj√
M

) . (3.34)
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F√M has the structure:

F√M =



1 1 1 1 ...

1 e
−2πi√
M e

−4πi√
M e

−6πi√
M ...

1 e
−4πi√
M e

−8πi√
M e

−12πi√
M ...

1 e
−6πi√
M e

−12πi√
M e

−18πi√
M ...

...
...

...
...

. . .

 . (3.35)

So the contributions to 〈ε̃2〉, which is the first entry of the matrix C̃, will be obtained by
substituting Eq. (3.28) into Eq. (3.27). The first contribution will be proportional to:

(
1 0 ... 0

)
B1RD


1
0
...
0

 , (3.36)

=
(

1 0 ... 0
)
F−1√

M
Λ̃1F√M



β + 8kDφ
−2kDφ

0
...
0

−2kDφ


,

=
(

1 1 ... 1
)

Λ̃1



β + 8kDφ− 4kDφ

β + 8kDφ− 4kDφcos
(

2π√
M

)
β + 8kDφ− 4kDφcos

(
4π√
M

)
...

β + 8kDφ− 4kDφcos
(

2π(
√
M−1)√
M

)


,

=
1

M

√
M∑

j=1

(
β + 8kDφ− 4kDφcos

(
2π(j − 1)√

M

))√M∑
k=1

1

α− 4kD + 2kDcos
(

2πk√
M

)
+ 2kDcos

(
2πj√
M

) .
The second contribution will be proportional to:

(
1 0 ... 0

)
B2(−2kDφI)


1
0
...
0

 , (3.37)

=
(

1 1 ... 1
)

Λ̃2F√M


−2kDφ

0
...
0

 ,

=− 2kDφ

M

√
M∑

j=1

√
M∑

k=1

e
− 2πik√

M

α− 4kD + 2kDcos
(

2πk√
M

)
+ 2kDcos

(
2πj√
M

) .
Similarly, the third contribution will be proportional to:

− 2kDφ

M

√
M∑

j=1

√
M∑

k=1

e
− 2πik(

√
M−1)√
M

α− 4kD + 2kDcos
(

2πk√
M

)
+ 2kDcos

(
2πj√
M

) . (3.38)
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We can combine the second and third contribution into:

− 2kDφ

M

√
M∑

j=1

√
M∑

k=1

2cos
(

2πk√
M

)
α− 4kD + 2kDcos

(
2πk√
M

)
+ 2kDcos

(
2πj√
M

) . (3.39)

The final result is that:

〈ε̃2〉 = − 1

2M

√
M−1∑
j=0

√
M−1∑
k=0

β + 8kDφ− 4kDφcos
(

2πj√
M

)
− 4kDφcos

(
2πk√
M

)
α− 4kD + 2kDcos

(
2πk√
M

)
+ 2kDcos

(
2πj√
M

) . (3.40)

Therefore, combining Eq. (3.40) with Eq. (3.25), we can explicitly write a formula for ψ̃:

ψ̃ = φ+
2αφ+ β

4V α

∂α

∂φ

√
M−1∑
j=0

√
M−1∑
k=0

1

α− 4kD

(
1− 1

2cos
(

2πj√
M

)
− 1

2cos
(

2πk√
M

)) . (3.41)

Eq. (3.41) can be greatly simplified when M � 1. The sum can be separated into two
parts:

ψ = φ+
2αφ+ β

4V α2

∂α

∂φ
+

2αφ+ β

4V α

∂α

∂φ

√
M−1∑
j=0

√
M−1∑
k=0∗

1

α− 4kD

(
1− 1

2cos
(

2πj√
M

)
− 1

2cos
(

2πk√
M

)) .
(3.42)

The first part corresponds to the term j = 0, k = 0. The second part covers all the terms other
than j = k = 0 (this is denoted by 0∗). Now we consider what happens in the limit of large M .
The double sum can be approximated by an integral:

√
M−1∑
j=0

√
M−1∑
k=0∗

1

α− 4kD

(
1− 1

2cos
(

2πj√
M

)
− 1

2cos
(

2πk√
M

)) (3.43)

≈ (M − 1)

∫ 1

0

∫ 1

0

dx dy

α− 4kD
(
1− 1

2cos (2πx)− 1
2cos (2πy)

) .
This is equal to the expected value of the integrand under the Uniform distribution:∫ 1

0

∫ 1

0

dx dy

α− 4kD
(
1− 1

2cos (2πx)− 1
2cos (2πy)

) = E

[
1

α− 4kD
(
1− 1

2cos (2πX)− 1
2cos (2πY )

)] ,
(3.44)

for independent identically distributed Uniform random variables X,Y . By Jensen’s inequality,
we have:

E

[
1

α− 4kD
(
1− 1

2cos (2πX)− 1
2cos (2πY )

)] ≥ 1

α− 4kDE
[
1− 1

2cos (2πX)− 1
2cos (2πY )

]
(3.45)

=
1

α− 4kD
.

We therefore have a lower bound for the sEMRE:

ψ̃ ≥ φ+
2αφ+ β

4V α2

∂α

∂φ
+

2αφ+ β

4V α

∂α

∂φ

M − 1

α− 4kD
= φ+

(
φ+

β

2α

)
1

2V α

∂α

∂φ

(
Mα− 4kD
α− 4kD

)
. (3.46)

This leads to an approximate form for Eq. (3.41):

ψ̃ ≈ φ+

(
φ+

β

2α

)
1

2V α

∂α

∂φ

(
Mα− 4kD
α− 4kD

)
. (3.47)
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Figure 3.1: Schematic diagram of protein dimerisation model (3.49). Uniformly distributed
ribosomes (green) translate proteins (red). These diffuse in the cytosol until a pair combines
to form a dimer (blue).

Eq. (3.47) can be written in a particularly informative way to distinguish the contributions
from the EMRE and the sEMRE:

ψ̃ ≈ φ︸︷︷︸
RE

+

(
φ+

β

2α

)
1

2V α

∂α

∂φ︸ ︷︷ ︸
EMRE correction

+

(
φ+

β

2α

)
(M − 1)

2V α

∂α

∂φ

|α|
|α|+ 4kD︸ ︷︷ ︸

sEMRE correction

. (3.48)

Note that the sign of the sEMRE correction is guaranteed to be the same as that of the EMRE
correction, since the former is a positive multiple of the latter. Note also that the spatial

correction term is proportional to a Michaelis-Menten term, |α|
|α|+4kD

, with the absolute values

arising from the guaranteed negativity of α. This term monotonically increases from 0 to 1 as
the diffusion rate kD decreases implying that the absolute difference between the stochastic and
deterministic solutions |ψ̃ − φ| increases with decreasing diffusion coefficients. Note also that
the difference is proportional to the Hessian of the rate equations ∂α

∂φ and hence it is non-zero
only if there is at least one bimolecular reaction. Note also that the sEMRE term diminishes to
zero in the limit of large kD: in light of the results in chapter 2, this implies that the distinction
between convergent and non-convergent propensities does not exist at the sEMRE level, since
even a notionally non-convergent sEMRE will converge.

Hence summarising, our result shows that the steady-state mean concentrations for a spatially-
homogeneous one-species system generally depend on the diffusion coefficients. In contrast the
spatial deterministic solution φ, and the RDEs, have no such dependence. This diffusion de-
pendence is therefore a stochastic effect. In the rest of this chapter, we apply our results to a
simple network under the condition of spatial symmetry. We confirm our results by comparison
λ− ρ simulations.

3.3 Application

In this section we apply the sEMRE to a simple model of protein production and dimerisation
in a single cell, shown schematically in Fig. 3.1. Ribosomes (green) translate proteins (red)
which diffuse through the cytosol until a pair meets and they dimerise into a product. We
do not model the ribosomes explicitly, rather knowing that ribosomes are numerous (in the
thousands per cell) and known to be uniformly distributed for some types of cells (for example
for E. Coli in the exponential phase, ribosomes are spread uniformly around the cytosol [192]).
We therefore roughly model the translation of proteins by ribosomes via a zeroth order reaction
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at all points inside a cell. Hence the system in Fig. 3.1 is approximated by the reaction scheme:

∅ k0−→ X, X +X
k1−→ Y, (3.49)

where X is the protein and Y is the dimer.

To test the sEMRE, we perform λ − ρ simulations of system (3.49). In order to compute
mean concentrations from λ− ρ, one long simulation is performed (much longer than the time
to reach equilibrium), and the mean number of particles is simply the average number over
that time. Particles have a diffusion coefficient, D. The area of space is V . The steps of the
algorithm are then as follows:

1. Choose a reaction probability per unit time, λ and a time interval ∆t. Set time counter

t = 0. Generate an Exponential
(

1
k0V

)
random number τ .

2. Add a Normal random number with zero mean and variance 2D∆t to each particle coor-
dinate. Add ∆t to t.

3. For each pair of intersecting particles (when the distance between the particle centres
is less than ρ), generate a uniform random number. If it is less that λ∆t, remove both
particles.

4. If t > τ , add a new particle at a uniformly distributed point in space. Generate an

Exponential
(

1
k0V

)
random number and add it to τ .

5. Repeat steps 2-4 until the desired time has elapsed.

To compare the sEMRE with BD we will need to relate the various parameters used by
each of them. This can be done by comparing the two models when diffusion is fast. We
expect the sEMRE to emulate the RDME, which (when diffusion is fast) converges to the
CME (see chapter 2). Generally, at each BD time step, particle positions are updated by a
Normal random number with mean zero and variance 2D∆t; but in the limit of fast diffusion,
this Normal distribution will have infinite width. Since our topology has periodic boundary
conditions, particles will be uniformly distributed at each time step. Particles collide if they
are within ρ of each other. The probability of a collision between two particles in a single time
step is therefore the probability that a uniformly distributed point falls within a circle of radius
ρ. That is,

P (collision) =
πρ2

V
. (3.50)

If the number of X molecules is equal to n, there are n(n − 1)/2 possible pairings of reacting

particles. In a given time step ∆t, the probability that a given pair collides is πρ2

V , and in BD,
the probability that a reaction results in a collision is λ∆t. The probability that a given pair
reacts is therefore:

P (reaction) =
πρ2λ∆t

V
. (3.51)

Assuming independent collisions, the total number of reactions that occur in a given time step

is then given by a Binomial
(
n(n− 1)/2, πρ

2λ∆t
V

)
distribution. By definition, the probability of

m reactions occuring a ∆t is then given by:

P (m reactions) =
(n(n− 1)/2)!

m!(n(n− 1)/2−m)!

(
πρ2λ∆t

Ω

)m(
1− πρ2λ∆t

V

)n(n−1)/2−m

. (3.52)

The probability of 0 reactions is then:

P (0 reactions) =

(
1− πρ2λ∆t

Ω

)n(n−1)/2

= 1− n(n− 1)

2

πρ2λ∆t

V
+O((∆t)2), (3.53)
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Figure 3.2: The mean steady-state molecule number of protein X in system (3.49) as a function
of the diffusion coefficient D. (a) We compare the result of two dimensional BD simulations
in steady-state conditions (dashed red) with the sEMRE, RE and EMRE approximations of
the RDME on a two dimensional grid with M = 82. The RE corresponds to the deterministic
spatial approximation of the RDME, the EMRE corresponds to the deterministic approximation
of the CME plus a correction to take into account a finite system size V , while the sEMRE
corresponds to the EMRE plus a correction to take into account finite diffusion coefficients D.
The RE is given by the first term in Eq. (3.58), the EMRE by Eq. (3.58) with D → ∞, the
sEMRE by Eq. (3.57) and the approximate sEMRE by Eq. (3.58). (b) Comparison of BD
simulations (red) with sEMRE Eq. (3.57) with M = 42 (purple), M = 62 (green), M = 82

(pink) and M = 102 (blue). Parameter values are k0 = 1000, k1 = 30, V = 1, molecule
diameter= 1

20 , and ∆t = 10−5. Error bars are the standard deviation of 10 estimates of the
mean protein number, each computed from a time average of a BD trajectory of length 104

iterations.
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and the probability of 1 reaction is:

P (1 reaction) = (n(n− 1)/2)

(
πρ2λ∆t

V

)(
1− πρ2λ∆t

V

)n(n−1)/2−1

(3.54)

= (n(n− 1)/2)
πρ2λ∆t

V
+O((∆t)2).

All further terms are O((∆t)2). If ∆t is chosen small enough we can ignore terms of O((∆t)2).
Although many collisions may occur in a single time step, ∆t is chosen small enough so that

at most one of these can result in a collision. At the CME level, the reaction X + X
k1−→ ...

occurs with a rate k1n(n− 1)/V , which implies that the probability that the reaction occurs in
a time step ∆t is P (1 reaction) = k1n(n− 1)∆t/V . Equating this expression with Eq. (3.54),
it follows that:

(n(n− 1)/2)
πρ2λ∆t

V
=
k1n(n− 1)∆t

V
=⇒ k1 = πρ2λ/2. (3.55)

The rate of the birth process, k0, is the same in all models.

The choice of relation between D and kD is given by Eq. (1.20), corresponding here to
kD = DM/V .

The final choice of parameters for comparison is the number of subvolumes M , given that
we choose our system size V to be 1 and effective particle diameter to be ρ. There is no obvious
choice of subvolume size, except that the subvolume should be larger than a molecule, that is,
M < ρ−2. Several authors have proposed bounds for a correct choice of M , see Ref. [18] for a
summary.

3.3.1 Comparison of BD with sEMRE

Under the RDME, the reaction system (3.49) takes the form:

∅ k0−→ X(i), X(i) +X(i) k1−→ ∅, X(i) kD−−→ X(j), j ∈ N (i), i = 1, ...,M. (3.56)

The sEMRE formula given by Eq. (3.41) can be applied specifically to the system (3.49). We
find that it gives the formula:

ψ =

√
k0

2k1
+

√
2k0k1

8

√
M−1∑
j=0

√
M−1∑
k=0

1

V
√

2k0k1 + 2DM
(

1− 1
2cos

(
2πj√
M

)
− 1

2cos
(

2πk√
M

)) . (3.57)

Alternatively we can use the approximate formula given by Eq. (3.47):

ψ ≈
√

k0

2k1
+
M

8V

V
√

2k0k1 + 2D

V
√

2k0k1 + 2DM
. (3.58)

In Fig. 3.2(a) we compare the steady-state mean concentrations obtained from BD simulations
with the sEMRE formula for M = 82. The sEMRE agrees well over the whole range of diffusion
coefficients, and the approximate formula is also an excellent approximation. The RE and
EMRE cease to be good estimates at roughly D = 100. In Fig. 3.2(b) we show that, for small
enough diffusion coefficients, the choice of M is fundamental to the accuracy of the sEMRE.
When D < 10 only the sEMRE with M = 82 gives an accurate estimate of the mean values
of BD, however the sEMRE for any M gives good estimates for D > 10. This is in agreement
with the fact that the RDME agrees with BD only for intermediate subvolume sizes (not too
big and not too small); detailed discussions of this fact can be found in Refs. [104, 18]. Note
that the dependence of the accuracy of sEMRE with the choice of M stems from the RDME
which sEMRE approximates. However this is not of much concern because for all M , sEMRE
captures the correct qualitative behaviour (the monotonic increase of the steady-state mean
concentrations with decreasing diffusion coefficient) that we observe from BD simulations.
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Figure 3.3: The sEMRE of the vRDME system defined in Eq. (3.64) as a function of diffusion
coefficient D. The natural choice of M is the total area of space divided by the area of one
(circular) particle, in this case M = 222 (pink line) which passes through every error bar of
the BD simulations (red line). Small changes in the choice of M (blue and green lines) do not
significantly affect the predictions of the sEMRE. Parameter values are k0 = 1000, k1 = 30,
V = 1, molecule diameter= 1

20 , and ∆t = 10−5. The parameters k̃0 and k̃1 are chosen so that
the vRDME and RDME agree in the limit of fast diffusion.

3.3.2 sEMRE of the volume-excluded RDME

The sEMRE is derived for the standard RDME, but can equally be applied to alternative
RDMEs. One example is the recently-introduced volume-excluded RDME (vRDME) [34]. The
vRDME is a crude model of molecular crowding (as discussed in chapter 1) which is known to
agree well with BD, and which assumes that each particle occupies a fixed, non-zero volume,
and thereby places an upper bound on the number of particles in the system. This is done
by shrinking the subvolume size to be approximately equal to the size of a single particle.
subvolumes can then either be empty, or else contain exactly one particle. Bimolecular reactions
take place between neighbouring subvolumes, and a particle can diffuse only if a neighbouring
subvolume is empty. This is achieved by a introducing an “empty space particle”, a dummy
species which occupies a subvolume if it is empty. For the dimerisation example, the vRDME
replaces the reaction system given by (3.56), with the following:

E(i) k̃0−→ X(i), X(i) +X(j) k̃1−→ E(i) +E(j), X(i) +E(j) k̃D−−⇀↽−−
k̃D

E(i) +X(j), i = 1, ...,M, j ∈ N (i),

(3.59)
where E(i) represents an empty space particle in subvolume i. Note that reaction rates are
given as k̃j , since they will in general take a different numerical value to the kj used in the
RDME.

The sEMRE for the vRDME is derived as follows. We can write down the rate equation for
X(i) in the system (3.59):

dφ̃(i)

dt
=k̃0

(
M

V
− φ̃(i)

)
−
∑

j∈N (i)

k̃1

4
φ̃(i)φ̃(j) (3.60)

+
∑

j∈N (i)

k̃D

(
M

V
− φ̃(i)

)
φ̃(j) −

∑
j∈N (i)

k̃Dφ̃
(i)

(
M

V
− φ̃(j)

)
,

where the first term corresponds to the birth reaction, the second term to the four possible
dimerisations (each with a different neighbouring subvolume), and the third and fourth to

diffusions into and out of subvolume i respectively. Note that
(
M/V − φ̃(i)

)
corresponds to

the concentration of empty space in subvolume i, E(i). This is since each subvolume can contain
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either E or X, and hence there exists a conservation law in each subvolume. Also note that the
factor of k̃1/4 is due to the fact that the dimerisation can occur between X(i) and four distinct
neighbours; by dividing by 4, we ensure that the total dimerisation rate for a given X(i) is k̃1.
By the spatial symmetry of the system, all the φ̃(i) are equal, say, φ. Since the diffusion terms
in Eq. (3.60) cancel under this assumption, φ is simply the solution of a quadratic:

φ =

√
k̃2

0 + 4k̃1k̃0
M
V − k̃0

2k̃1

. (3.61)

We can then write down the entries for the Jacobian matrix J̃ and diffusion matrix D̃, analo-
gously to the method used for the original sEMRE. For the Jacobian, we have:

J̃ij =

{ −k̃0 − k̃1φ− 4kD
M
V if j = i.

− k̃14 φ+ kD
M
V if j ∈ N (i).

0 otherwise.

(3.62)

For the diffusion matrix, we have:

D̃ij =

{ k̃0

(
M
V − φ

)
+ k̃1φ

2 + 8kD
(
M
V − φ

)
φ if j = i.

k̃1
4 φ

2 − 2kD
(
M
V − φ

)
φ if j ∈ N (i).

0 otherwise.

(3.63)

The method of computing the sEMRE of the vRDME is now identical to the sEMRE of the
RDME, albeit with different values of J̃ and D̃. Following the same method, we obtain the
analytical expression for the sEMRE:

ψ̃ = φ− k̃1

2V
(
k̃0 + 2k̃1φ

) √M−1∑
j=0

√
M−1∑
k=0

e2πij/
√
M
(
Dd + 2Dn

(
cos
(

2πj√
M

)
+ cos

(
2πk√
M

)))
Jd + 2Jn

(
cos
(

2πj√
M

)
+ cos

(
2πk√
M

)) ,

(3.64)
where Dd and Dn are the diagonal and neighbouring elements of D̃ respectively, and similarly
for Jd and Jn. In other words, Jd = −k̃0 − k̃1φ − 4kDM/V , Jn = −(k̃1/4)φ + kDM/V ,
Dd = k̃0 (M/V − φ) + k̃1φ

2 + 8kD (M/V − φ)φ, Dn = (k̃1/4)φ2 − 2kD (M/V − φ)φ.

The relationship between the parameters k̃j of the vRDME and the parameters kj of BD
and the RDME requires careful attention. A detailed discussion can be found in Ref. [34].
Here, we choose parameters such that the vRDME and BD generally agree when diffusion is
fast. To do this, we compare the RE of the vRDME with the RE of the CME (or equivalently
the RDME) which we know is the fast-diffusion limit of BD. The RE are convenient, since
neither of them depend on the diffusion rate k̃D or kD. It follows that we do not need to worry
about rescaling this parameter, therefore we set k̃D = kD. The steady-state RE solution of
the CME is given by φr =

√
k0/(2k1), while the RE solution of the vRDME is φV given by

Eq. (3.61). We therefore need to choose values of k̃0 and k̃1 which allow the concentrations to
agree. In this paper, we have chosen:

k̃0 = k0, k̃1 = 2k1

(
M

V
−
√

k0

2k1

)
. (3.65)

A significant advantage of the vRDME over the conventional RDME is that the choice of M
is automatic in the former case: we simply choose an integer M such that 1/M is approximately
the volume fraction occupied by a single (circular) particle. The benefits of this can be seen
in Fig. 3.3, where we plot the sEMRE in Eq. (3.64) against BD simulations. The particle
diameter used in BD is 1/20, which suggests choosing M ≈ 222, and indeed the sEMRE for
this M passes through every error bar down to D = 10−1, which is an order of magnitude lower
than that plotted in Fig. 3.2. We also show the sEMRE with M = 202 and M = 242, which
both give good approximations to the BD simulations, demonstrating that M only needs to be
approximately correct to give accurate results.
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Note that the BD simulations for this example are slightly different, since we are trying to
model volume exclusion. We use a version of the Cichocki-Hinsen algorithm, which is closely
based on the Doi model (see chapter 5 for a detailed discussion). The only difference between
this BD and the algorithm described earlier is in point 3 of the algorithm. In this case we would
add “If the Uniform random number is greater than p∆t, subtract ∆t from t and return to 2.”

3.4 Summary

In this chapter we have derived an analytical expression for the mean concentrations in the
RDME, the sEMRE. This concentration is generally different from that predicted by the REs,
EMREs, or the RDEs, and is therefore caused by a combined stochastic and spatial effect. The
work in this chapter highlights a clear advantage of the RDME over BD: the ability to derive
analytical approximations. By comparing the sEMRE with BD simulations, we have been able
to analytically quantify a real effect, something we would not have been able to do with BD
alone.

We also demonstrated that using a crude model of crowding, the vRDME, enables us to lose
the principle problem of the RDME: how to choose M . In the vRDME, M is automatically
given to us by the size of molecules. Other creative methods of fixing the problem of M include
treating each subvolume as an actual compartment of the cell (e.g. nucleus, cytosol) [193] or
as a single cell in a tissue [194], the latter of which is the subject of the next chapter.
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Chapter 4

The reaction-diffusion master
equation as a tissue model

Tissues are typically comprised of genetically identical cells which are physically joined together
and act collectively. In order to do this effectively, cells in tissues must communicate with other
cells in the tissue. Several mechanisms of cell-cell communication exist: long-range endocrine
signalling enables cells to communicate with other cells which are relatively far away, short-
range paracrine signalling connects nearby cells, and direct communication via diffusion or
active-transport allows neighbouring cells to communicate [195].

Direct communication can occur through small watertight passages such as gap junctions in
animals, and plasmodesmata in plants. In plant cells, molecules up to and including proteins
are known to move through plasmodesmata by pure diffusion [196, 197], while those as large as
mRNA are actively transported [198]. In animal cells, peptides diffuse through gap junctions
[199], while larger molecules have been shown to be transported across cytoplasmic bridges
[200] or tunnelling nanotubes [201]. In essence, a single cell in a tissue is partially dependent
on its neighbour cells, but also partially independent of them. This partial-dependence makes
tissue modelling awkward: a tissue is not well-mixed, so the CME or REs cannot be used
to model it; but a single cell is not a closed system, and so again the CME or REs are not
appropriate. In this chapter, we suggest the RDME as a natural model to describe tissue
systems. Each subvolume of the RDME corresponds to a single cell in the tissue, and hopping
between neighbouring subvolumes models communication between neighbour cells.

This description leads to surprising and counterintuitive analytical predictions about noise
control in tissues: depending on the statistics of the biochemical network, transport of molecules
between neighbour cells can either increase or decrease the single-cell variability, and equiva-
lently the heterogeneity of the tissue. The work in this chapter suggests that cells may actively
modify the rate of transport between neighbours in order to control noise [194]. We note that
several other computational tissue models exist in the literature, such as Refs. [202, 203]. The
framework in this chapter differs from these in that it covers stochastic biochemistry down to
the single-molecule level, rather than relatively macroscopic phenomena such as cell adhesion
and tumour growth.

4.1 Illustratory examples

Modelling approaches to genetic networks such as the CME assume that the cell is an isolated
volume with no molecules entering or leaving the system from outside (Fig. 4.1 (a)). Tissues
of cells violate this assumption: each cell is connected to a number of neighbour cells (Fig.
4.1 (b)), and molecules involved in the genetic network can be transported from cell to cell.
The differences between a population of identical independent cells and a tissue of identical
connected cells can be seen with stochastic simulations of a simple genetic network.

In Fig. 4.1 (c) we plot three independent realisations of the SSA for the well-known two-stage
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Figure 4.1: Differences between a population of isolated cells and a tissue of cells. (a) A
population of isolated cells: each cell contains an identical genetic network. (b) A tissue of
cells: each cell contains an identical genetic network and some molecules can be transported
between neighbouring cells (dotted lines). (c) Typical single-cell protein trajectories of system
(4.1) in isolated cells. (d) Typical single-cell protein trajectories of system (4.1) in a tissue
of connected cells: noise is clearly reduced compared to (c). (e) Typical single-cell protein
trajectories of system (4.3) in isolated cells. (f) Typical single-cell protein trajectories of syfstem
(4.3) in a tissue of connected cells: noise is clearly increased compared to (e). Parameter values
are v0 = 4, d0 = 1, v1 = 10, d1 = 1, kt = 10, M = 100, VC = 1 for system (4.1) and
k1 = 32, k2 = 0.01, t = 10, M = 100, VC = 1 for system (4.3).
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gene expression network [31]:

∅ v0−⇀↽−
d0

M, M
v1−→M + P, P

d1−→ ∅, (4.1)

in which a molecule of mRNA (M) is transcribed with rate v0 and decays with rate d0. The
mRNA can translate a protein (P ) with rate v1 which in turn decays with rate d1. The
trajectories in Fig. 4.1 (c) correspond to the number of protein molecules in three independent
cells.

To model a tissue, we imagine a grid of M cells (Fig. 4.1 (b)) with the genetic network (4.1)
inside each cell. In addition, we couple neighbouring pairs of cells by allowing the protein P to
be transported between them with a rate kt. To model this, we think of protein transport from
cell i to cell j as analogous to diffusion between subvolumes i and j in the RDME. Specifically,
we can write the system in cell i as:

∅ v0−⇀↽−
d0

Mi, Mi
v1−→Mi + Pi, Pi

d1−→ ∅, Pi
kt−⇀↽−
kt
Pj , (4.2)

where Mi and Pi denote the mRNA and protein respectively in cell i, and the reaction Pi
kt−⇀↽−
kt
Pj

denotes the transport of protein from cell i to cell j if i and j are neighbouring cells. We note
that this model of transport implies exponentially distributed waiting times between successive
transport events, an assumption that has previously been used when modelling active transport
in tissues [204, 73], and of course in modelling reaction-diffusion systems (chapters 1-3). The
main results of this chapter do not depend on the exponential assumption since we only analyse
the fast limit of transport, though it is convenient for simulations at finite transport rates.
Naturally, this model also imples exponentially distributed reaction times, as discussed in detail
in Chapter 1.

We simulated system (4.2) with a version of the SSA [75] with M = 100 cells, giving 100
trajectories of protein number, one for each cell. Three typical trajectories are plotted in Fig.
4.1 (d). Notably, the tissue trajectories in Fig. 4.1 (d) are considerably less variable (more
homogeneous) than the isolated cell trajectories in Fig. 4.1 (c).

This apparent increase in homogeneity is perhaps unsurprising, and may be thought of as
the obvious consequence of increasing coupling. However, remarkably, coupling can also reduce
the homogeneity in a tissue. For example, a simple system representing the synthesis of a
protein P , and its consequent dimerisation into a homodimer D, is defined by the reactions:

∅ k1−→ P, P + P
k2−→ D. (4.3)

In a tissue, this system involves the transport of P between neighbouring cells i and j, with
the reactions:

∅ k1−→ Pi, Pi + Pi
k2−→ Di, Pi

kt−⇀↽−
kt
Pj . (4.4)

We simulated system (4.3) both without and with transport using the same version of the
SSA, and three typical single-cell trajectories of the protein P are plotted in Fig. 4.1 (e) &
(f) respectively. The independent cell trajectories are relatively homogeneous, while the tissue-
bound cell trajectories are substantially more variable (more heterogeneous).

An intuitive explanation can be made for these initially surprising observations. The trans-
port of molecules between cells has two distinct effects on the single-cell variability: (1) by
moving molecules into and out of cells, it allows for greater cell-cell variation; (2) by smoothing
out concentration gradients between neighbouring cells, it homogenises concentrations across
the tissue.

The effect of transport on single-cell variability is determined by the trade-off between effects
(1) and (2). In Fig. 4.1 (c), the cells have large fluctuations in molecule number which will
be reduced by effect (2), but new fluctuations will be induced by effect (1). In Fig. 4.1 (d)
new fluctuations have been added, but these are not large enough to offset the reduction in the
original fluctuations, and so, overall, homogeneity is increased by transport. Meanwhile, for
system (4.3), effect (2) is much less significant because the single-cell variability in Fig. 4.1 (e)
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is already small, so effect (1) dominates and there is an overall increase in heterogeneity in Fig.
4.1 (f).

4.2 Theory

To make this intuition mathematically precise, we consider a generalised system of N species
X1, ..., XN and any number of reactions, a tissue with volume VT , and a cell of volume VC .
Further, we let ni be the number of molecules of Xi in the tissue, while mi is the number of
molecules of Xi in the cell. Note that because each cell contains the same genetic network,
the variance of fluctuations in a single cell, 〈m2

i 〉 − 〈mi〉2, is a non-normalised measure of the
single-cell variability. For a given species Xi, we define our measure of single-cell variability, L,
to be:

L =
VT
(
〈m2

i 〉 − 〈mi〉2
)

VC (〈n2
i 〉 − 〈ni〉2)

, (4.5)

i.e., the ratio of the variance of fluctuations in a single cell to the variance of fluctuations in the
entire tissue, scaled by volume. The reason for this definition becomes clear when we consider
the limiting case of weak cell-cell coupling (i.e. isolated cells).

Let P (~n;VT ) be the probability that there are ~n = (n1, ..., nN ) molecules in the entire
tissue. Now, let ~m = (m1, ...,mN ) be the number of molecules in the single cell, and let the
corresponding probability distribution be Q(~m;VC).

If transport is slow, the system in each cell is independent of the rest of the population, and
so, by the Bienaymé formula [19], the sum of the variances in each cell is equal to the variance
in the tissue. The variance in a single cell is then given by:

〈m2
i 〉 − 〈mi〉2 =

[
〈n2
i 〉 − 〈ni〉2

]
/M = (VC/VT )

[
〈n2
i 〉 − 〈ni〉2

]
. (4.6)

Furthermore since all cells are statistically identical the mean concentration in each cell is
the same and equal to that of tissue, 〈mi〉/VC = 〈ni〉/VT . It follows immediately from these
considerations that L = 1.

That is, if L = 1, then the cell-to-cell variability is at the level we would expect if the cells
were completely independent of each other. This can be considered as a neutral state, neither
particularly heterogeneous, nor especially homogeneous.

If L < 1, then the single-cell variability is lower than we would expect from the Bienaymé
formula, given the tissue-level variance. It follows that the cells are more homogeneous than
decoupled cells. On the other hand, if L > 1, then the cell-to-cell variability is higher than we
would expect from the Bienaymé formula, given the tissue-level variance. It follows that the
cells are more heterogeneous than decoupled cells. L is therefore a non-dimensional statistical
measure of single-cell variability (or equivalently, population heterogeneity).

With this in mind, we next consider what happens to a tissue of cells with cell-cell coupling.
At zero coupling, we will naturally have L = 1. As the coupling strength increases, L will
change, but the magnitude of the change will depend on a number of system-specific factors
including the topology of the tissue (which cells are coupled to which), the structure of the
genetic network, and the rates of the reactions involved. To bypass these issues, we consider
the special case of infinitely fast cell-cell transport, and we reason that the behaviour at finite
transport rates will lie between the zero-coupling and infinite-coupling cases.

For the fast transport limit we can relate the local solution Q to the global solution P using
the theorem of total probability:

Q(~m;VC) =

∞∑
~n=0

Pr(~m|~n;VC , VT )P (~n;VT ), (4.7)

where the notation
∑∞
~n=0(·) is shorthand for

∑∞
n1=0 ...

∑∞
nN=0(·), and Pr(~m|~n;VC , VT ) is the

probability of finding ~m molecules in VC given that there are ~n molecules in VT .
As discussed for the RDME in chapter 2, the limit of fast transport implies that molecules

move into and out of the the cell much more frequently than they are involved in reactions.
The molecules are uniformly distributed in VT under these conditions, so that the probability
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that a randomly chosen molecule is in VC is simply VC
VT

. It follows from combinatorics that
the probability of finding mi molecules of species Xi in VC given that there are ni in VT is
(ni!/(mi!(ni−mi)!)(VC/VT )mi(1−VC/VT )ni−mi , that is, a Binomial distribution. It follows that
Pr(~m|~n;VC , VT ) is the product of the mass functions of N Binomial(ni, VC/VT ) distributions
for each species Xi. An expression for the single-cell distribution Q in terms of the global
distribution P can then be written:

Q(~m;VC) =

∞∑
~n=0

P (~n;VT )

N∏
i=1

[(
ni
mi

)(
VC
VT

)mi (
1− VC

VT

)ni−mi
1~m≤~n

]
. (4.8)

The indicator function 1~m≤~n prevents the expression from evaluating the impossible prob-
abilities of finding more molecules in VC than in VT , and therefore permits us to sum from
zero to infinity without worry. Since this equation gives the single-cell distribution Q, we can
use it to evaluate the single-cell second moment which is given by 〈m2

i 〉 =
∑∞

~m=0m
2
iQ(~m, VC).

Swapping the summations over ~n and ~m, and absorbing the indicator function into the latter
summations, gives:

〈m2
i 〉 =

∞∑
~n=0

P (~n;VT )

[
n1∑

m1=0

...

nM∑
mM=0

m2
i

N∏
k=1

(
nk
mk

)(
VC
VT

)mk (
1− VC

VT

)nk−mk]
. (4.9)

The local second moment is therefore the expected value of the quantity in square brackets under
the global distribution P . The quantity in square brackets, however, is merely the expected
value of m2

i under the M independent Binomial(ni, VC/VT ) distributions, and is therefore equal

to ni

(
VC
VT

)(
1− VC

VT

)
+ n2

i
V 2
C

VT
. It follows that the second moment is given by:

〈m2
i 〉 − 〈mi〉2 =

VC
VT
〈ni〉+

V 2
C

V 2
T

(
〈n2
i 〉 − 〈ni〉 − 〈ni〉2

)
. (4.10)

Combining Eqs. (4.5) and (4.10), and defining the Fano factor (FF ) as the ratio of tissue-

level variance to the mean, FF =
〈n2
i 〉−〈ni〉

2

〈ni〉 , we find that the single-cell variability at infinite

coupling is given by:

L =
VC
VT

+
1− VC

VT

FF
. (4.11)

We note now that FF is a standard statistical measure of the size of fluctuations. Probability
distributions with FF = 1 are said to have Poissonian fluctations, while FF < 1 corresponds
to sub-Poissonian and FF > 1 to super-Poissonian. Our earlier intuition suggested that
systems with large fluctuations would tend to see a reduction in cell-to-cell variability as coupling
strength increases. Now we see that this is indeed the case: combining FF > 1 with Eq. (4.11),
we find that L < 1 at infinite coupling strength, suggesting that coupling tends to decrease
single-cell variability for super-Poissonian systems. Alternatively, choosing FF < 1 we find that
L > 1 at infinite coupling strength, implying that coupling will increase single-cell variability
for sub-Poissonian systems.

For system (4.1), the Fano factor can be computed exactly since the moment equations for
the corresponding CME are closed [42]. In particular, we have that FF = 1 + v1

d0+d1
> 1,

implying that increasing the transport rate will reduce the single-cell variability, as shown in
Fig. 4.1 (c-d).

For system (4.3), the presence of a bimolecular reaction prevents the moment equations
from closing, and so the moments are instead obtained from the steady-state distribution of
molecule numbers. The mean and variance are given in Ref. [108], but we will not state them
here since they are complicated expressions. Instead we note that FF < 1 for all parameter
values, suggesting that the single-cell variability will increase as cell-cell transport increases.
See the next section for more details of these calculations.

For these examples the qualitative changes in single-cell variability are independent of pa-
rameter values, though this would not be the case for systems with Fano factors which can
vary from sub-Poissonian to super-Poissonian. We note that these results are independent of
the spatial structure of the tissue: they apply equally to neighbour-neighbour and long-range

65



66 Stephen Smith

Transport rate, kt

10-2 100 102

L

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Slow transport
Fast transport
Simulation

Gene mRNA Protein

Transcription Translation

Degradation Degradation

Figure 4.2: L as a function of protein transport rate for the two-stage gene expression system
(4.1). Theoretical values for the fast transport limit (red), and slow transport limit (green)
are shown as solid lines. Simulation data is shown for the average single-cell variability (blue
squares) for a variety of protein transport rates. Parameter values are v0 = 3, d0 = 1, v1 =
10; d1 = 1, VC = 1, VT = 100. Inset: schematic diagram of system (4.1).

interactions, and indeed any kind of coupling provided no cells in the tissue are disconnected
from the population. We also stress that these results apply equally to systems out of equil-
brium, including oscillatory systems and systems far from steady-state, since no assumptions
have been made on the type of biochemical network inside each cell.

We note here that a similar prediction for the dependence of local noise on diffusion relative
to Fano factor was made in Ref. [205], for an approximate model of a particular gene system.
According to our model, the local noise is only guaranteed to be Fano factor-dependent if the
statistics at the whole-tissue level are diffusion-independent, a requirement which is contradicted
by our work in chapter 3, where diffusion was shown to affect statistics at the global level. As
a result, only a ratio of local to global statistics (such as L) has a clear dependence on diffusion
and Fano factor.

4.3 Verification of theory using stochastic simulations

Our theory predicts that the single-cell variability L should move from 1 to the value given in
Eq. (4.11) as cell-cell transport increases. In this section we test the accuracy of this prediction
on data from detailed stochastic simulations using a version of the SSA [75] that is well-suited
to simulating tissues.

First, we again consider the two-stage gene expression system (4.1) as shown in Fig. 4.1
(c-d) and Fig. 4.2 inset. Since the moments of the CME are closed for this system [42] we can
find exact expressions for the tissue-level mean, VT v0v1/(d0d1), and the tissue-level variance,
(VT v0v1/(d0d1)) (1 + v1/(d0 + d1)). It follows that FF = 1 + v1/(d0 + d1), and so Eq (4.11)
implies that L will decrease from 1 to (d0 +d1 +v1VC/VT )/(d0 +d1 +v1) as transport increases.

As a second example we consider the protein synthesis and dimerisation system (4.3) as
shown in Fig. 4.1 (e-f) and Fig. 4.3 inset. The mean and variance are given in Ref. [108],
and they imply that FF = 3/4 − φI ′1(4φ)/I1(4φ) + φ/(1/(4φ) + I ′1(4φ)/I1(4φ)), where φ =
VT
√
k1/(2k2) and I1(x) is the modified Bessel function of the first kind [206] and I ′1(x) is its

derivative. Numerical analysis confirms that FF < 1 for all values of φ, suggesting that L will
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Figure 4.3: L as a function of protein transport rate for the dimerisation system (4.3). Theo-
retical values for the fast transport limit (red) and slow transport limit (green) are shown as
solid lines. Simulation data is shown for the average single-cell variability L (blue squares) for a
variety of protein transport rates. Parameter values are k1 = 32, k2 = 0.01, VC = 1, VT = 100.
Inset: schematic diagram of system (4.3).
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Figure 4.4: L as a function of protein transport rate for the three-stage gene expression system
(4.12). Theoretical values for the fast transport limit (red), and slow transport limit (green)
are shown as solid lines. Simulation data is shown for the average single-cell variability (blue
squares) for a variety of protein transport rates. Parameter values are kon = 0.1, koff =
0.1, von

0 = 3, voff
0 = 1, d0 = 1, v1 = 1, d1 = 1, VC = 1, VT = 25. Inset: schematic diagram of

system (4.12).
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increase from 1 as cell-cell transport increases.
For our third example we consider the bimodal three-stage gene expression network studied

in Refs. [31, 207] (Fig. 4.4 inset):

Gon
koff−−⇀↽−−
kon

Goff, Gon
von0−−→ Gon +M, Goff

voff0−−→ Goff +M,

M
d0−→ ∅, M v1−→M + P, P

d1−→ ∅, (4.12)

in which a gene can be in an active state (Gon) or an inactive state (Goff). The active gene
transcribes mRNA (M) with a rate von

0 , while the inactive gene transcribes mRNA with a rate
voff

0 . The protein is translated as in the earlier system (4.1). We again calculate the mean
and variance of fluctuations for the protein P from the moment equations, as for the previous
examples, and we find that the Fano factor is larger than 1 so Eq. (4.11) again implies that L
will decrease as cell transport increases.

In summary, in Figs. 4.2, 4.3 and 4.4 we compare the analytical expressions for fast trans-
port, Eq. (4.11), with the simulation data for systems (4.1), (4.3) and (4.12) respectively. It is
clear that in every case our theoretical predictions are correct. For each example the single-cell
variability, L, from simulations (blue squares) moves from the slow limit, 1, (green line) to the
predicted fast-transport limit (red line). As predicted by the Fano factor criterion, for systems
(4.1) and (4.12) L decreases with transport rate, while L increases for system (4.3).

4.4 Application to experimental data

Testing our predictions on simulations is useful, because by varying the rate of transport we
can confirm that increasing it leads to the predicted change in single-cell variability, but with
experimental data the transport rate is both fixed and completely unknown. However, we know
that L lies between 1 and the value given by Eq. (4.11), and that the parameters of Eq. (4.11)
are either tissue-level quantities (FF ), or easily calculable (VT and VC). It follows that we
can use tissue-level timecourse data to estimate L, without any knowledge of the underlying
genetic network. In general, the corresponding single-cell data would not be available, however
we specifically choose examples with both tissue-level and single-cell data so as to check that
our estimates are correct.

We first apply our method to fluorescence data of GFP concentration in two distinct rat
pituitary tissues [208] in which cells communicate both via paracrine signalling and active
transport across gap junctions. The fluorescence data is available at the single-cell level, so the
tissue-level data is obtained simply by summing up the single-cell fluorescence. We apply our
method to this tissue-level data, and subsequently check its accuracy using single cells.

The first tissue is taken from a day 18.5 embryonic rat (E18.5), where cell-cell junctions are
rare and their related proteins (E-, N-cadherin and β-catenin) and paracrine signalling proteins
are expressed at a low level; while the second tissue is taken from a day 1.5 post-natal rat
(P1.5) where junctions are considerably more common, and there is a high level of expression
of related proteins [208]. The authors of Ref. [208] note that the P1.5 tissue, while clearly more
mature than the E18.5 tissue, has not yet reached the level of connectivity of the adult tissue
for which the number of gap junctions is likely to be even higher. With this in mind, we expect
L in the E18.5 cells to be noticeably closer to 1 than the P1.5 cells, but the P1.5 cells should
not be too close to (4.11) since they still are not fully mature.

In Fig. 4.5 (a) and (b) we plot the fast and slow transport limits (green and red lines), and
L averaged over each cell (blue squares) and bars representing one standard deviation above the
mean (blue bars) for the E18.5 and P1.5 tissues respectively. As expected, L remains between
the two in both cases, but is noticeably closer to 1 in Fig. 4.5 (a) than in (b).

The above dataset is further confirmation of our theory, but both it and the simulated
systems are either in equilibrium or approaching it. Since this is frequently not the case in
reality, we now apply our method to two oscillating datasets, one which we expect to have fast
transport and one with slow transport. We stress that our method should apply to oscillatory
systems since we have made no assumptions about the underlying genetic networks – only that
the same genetic networks should be present in each cell, with the same reaction rates.
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Figure 4.5: Comparison of fast (red) and slow (green) transport limits with single-cell data (blue
squares: mean; blue bars: 1 standard deviation above mean) for (a) a tissue of 117 E18.5 rat
pituitary cells, (b) a tissue of 114 P1.5 rat pituitary cells. Insets: typical single-cell trajectories
from the raw data. Data is taken from Ref. [208].
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Figure 4.6: Comparison of fast (red) and slow (green) transport limits with single-pixel data
(blue squares: mean; blue bars: 1 standard deviation above mean) for (a) a single leaf of
Arabidopsis thaliana, (b) a population of 30 mouse fibroblast cells. Insets: typical single-cell
trajectories from the raw data. Data is taken from (a) Ref. [209], (b) Ref. [210].
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The second dataset corresponds to luminescence data of an oscillating protein concentration
in a single leaf of Arabidopsis thaliana [209]. The luminescence data is available in image form,
in which each pixel is close to single-cell resolution, so we can apply our method to the whole-leaf
protein trajectory and subsequently check its accuracy with the single-pixel data.

In Fig. 4.6 (a) we plot the slow and fast transport limits (green and red lines respectively)
over time, and also L averaged over each pixel of the leaf image (blue squares) and bars rep-
resenting one standard deviation above the mean (blue bars). Since proteins are frequently
transferred between cells in a plant tissue, we might expect L to remain between the two limits
but close to the fast limit, and such proves to be the case.

The third dataset consists of luminescence data of an oscillating protein concentration in
a small population of mouse fibroblast cells [210]. The cells were imaged on the same plate
for a period of over a month, and were sufficiently far apart that single-cell resolution is easily
possible. The cells therefore do not exactly form a tissue (though we might expect some very
low-level exchange of material) so we expect L to be close to 1.

In Fig. 4.6 (b) we plot the limits (green and red lines), and L averaged over each cell
(blue squares) and bars representing one standard deviation above the mean (blue bars). As
expected, L remains between the two, but is significantly closer to 1 than to the fast limit.

4.5 Summary

In this chapter, we have treated the RDME as a model of a tissue, thus providing a natural def-
inition of M : the number of cells in the tissue. This model allowed us to make counterintuitive
predictions about multicellular biology, namely that single-cell variability can either increase or
decrease depending on the rate of direct cell-cell transport. This claim is not purely theoretical:
we confirmed its validity with three different experimental datasets from plants and animals.

The work in this chapter highlights the value of mathematical models like the RDME in real
biological discovery. Beyond merely explaining phenomena already known to experimentalists,
modelling can illuminate new behaviours in advance of their observation in the laboratory. In
chapter 6 we will see another example of modelling predicting new biochemical behaviour, but
first in the next chapter we focus on fast algorithms for BD.
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Chapter 5

Accelerated Brownian dynamics
using implicit crowder molecules

In chapter 1 we discussed how BD was obtained by systematically simplifying Newtonian molec-
ular dynamics, and adding in reactive behaviour. One of the necessary simplifications was the
removal of the force term in Eq. (1.28), using the argument the intermolecular forces are neg-
ligible if concentrations are dilute. As already mentioned, the diluteness assumption typically
breaks down inside cells [139, 140], which is the environment to which we would like to apply
our models. As a result, BD models which incorporate the force term (thereby emulating the
crowded cytoplasmic conditions) are a necessary tool for simulating biochemical networks.

Though crowding was only recognised as an important biological effect relatively recently,
algorithms to accurately study the behaviour of hard sphere colloids (uniform suspensions of
insoluble particles) was a popular problem in chemical physics long before the biochemical
implications of volume exclusion were fully appreciated [211, 212, 213]. One such algorithm
was proposed by Cichocki and Hinsen [160]. The idea behind the Cichocki-Hinsen algorithm is
simple to state: only one particle is moved at a time, and if the attempted move results in a
collision the particle is simply placed back in its previous position, thereby crudely modelling a
steric repulsion. Despite its relative simplicity, the Cichocki-Hinsen algorithm has been proved
to converge to the Smoluchowski equation in the limit of short simulation time-steps [160].
Furthermore, it has been shown to agree perfectly with far more detailed algorithms which
incorporate particle velocity and momentum [214]. It is therefore commonly used to simulate
Brownian diffusion of hard spheres in the study of both physical chemistry [215, 216, 217]
and cell biology [218, 219, 220]. However because of its fine-grained detail each simulation
is computationally expensive, and many independent simulations are required to get good
statistical samples.

In this chapter, we propose a modification to the Cichocki-Hinsen algorithm for reaction-
diffusion systems. Our simplification arises from distinguishing between reactive particles
(which may either be point particles or have a finite volume) and hard sphere crowders. Assum-
ing that the crowder particles are uniformly distributed, we rigorously derive the probability
that a reactive particle will collide with a crowder in a single time step, and use this to write
a modified Cichocki-Hinsen algorithm which does not explicitly simulate crowders: we call this
the crowder-free algorithm. We show that the crowder-free algorithm results in a dramatic
speed increase over the original Cichocki-Hinsen algorithm of up to three orders of magnitude.
Perhaps more surprisingly, the output data of the two algorithms is near-indistinguishable in
terms of short-time diffusion coefficients, long-time diffusion coefficients and reaction dynamics
for each example that we test.

5.1 Point particles in a crowded environment

We first describe the Cichocki-Hinsen algorithm as applied to a system of reactive point particles
in a sea of inert spherical crowders of radius R. The boundaries of the reaction volume can
be of any type (periodic, reflective etc) as long as the number of crowder particles remains
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constant in time (i.e. no absorbing boundaries). Since the original Cichocki-Hinsen algorithm
was written for purely diffusive systems, we have added some steps for reactive systems using
the λ− ρ model.

If reaction j is a bimolecular reaction, it is assigned a reaction distance ρj . Bimolecular
reaction j occurs with a rate λj when two reactive particles of the relevant type come within
a distance ρj of each other. Particles created by bimolecular reactions are typically placed
midway between the two parent particles (this is the method we employ in our examples),
though different placement may be appropriate for different examples. Unbinding reactions
are assigned a rate λj and an unbinding distance σj . These reactions occur with rate λj and
normally the daughter particles are placed diametrically opposite each other on a sphere of
diameter σj centered around the parent particle, at a uniformly distributed angle (this again is
the method we employ in our examples). Other standards exist for unbinding reactions (includ-
ing those with more than two daughter particles) and choice of which to implement is up to the
user. Other monomolecular and zero-order reactions are simply assigned a rate λj . Note that re-
action distances and unbinding distances are not physical radii, and do not exclude any volume.

Cichocki-Hinsen algorithm with reactive point particles

1. Uniformly distribute the reactive particles and the crowders in the volume, such that no
crowders are intersecting each other and no reactive particles lie inside a crowder. Let
N be the total number of particles (reactive and crowders), and randomly assign each
particle a unique index 1, ..., N .

2. For each i = 1, ..., N , propose a new position for particle i at a random Normal(0,
√

2Di∆t)
displacement in each spatial dimension, where Di is the diffusion coefficient of particle i
and ∆t is the simulation time step. If this new position causes an intersection between
any particles (reactive and crowder), place particle i back in its original position. If not,
place particle i in the new position.

3. For each reactive particle involved in a bimolecular reaction j, check if any reactive par-
ticles of the appropriate types lie inside a sphere of radius ρj around the particle. For
each appropriate reactive particle inside this sphere, propose a reaction with probability
λj∆t. If successful, check if any daughter particles would intersect a crowder. If so, skip
the reaction; if not, allow the reaction to proceed.

4. For each reactive particle of a type involved in a unimolecular reaction j, propose a reac-
tion with probability λj∆t. If successful, check if any daughter particles would intersect
a crowder. If so, skip the reaction; if not, allow the reaction to proceed.

5. For each zero-order reaction, propose a reaction with probability λj∆t. If successful,
check if any of the new particles would intersect a crowder. If so, skip the reaction; if not,
allow the reaction to proceed.

6. Advance time by ∆t. Let N be the new total number of particles and randomly reassign
each particle a unique index 1, ..., N . Return to (2) and repeat until a target time has
elapsed.

The overwhelmingly time-consuming step of this algorithm is step (2), in which potential
particle overlaps must be checked N times. The reaction steps (3)-(5) also involve potential
overlaps, but as ∆t should typically be taken small enough that at most one reaction could
plausibly happen per time step, these should not be particularly time-consuming. Our aim
in the next subsection is therefore to reduce the time taken by step (2). Note that step (1)
can also be particularly time-consuming: although our simplification does not particularly aim
to fix that problem, it happens that by increasing the speed of step (2) we also dramatically
shorten step (1).

5.1.1 Derivation

We first make two observations which form the basis of our method of reducing the time
taken by the Cichocki-Hinsen algorithm. Firstly, the crowders are inert and contribute little
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to the actual reactive behaviour of the system; their only function is to occasionally prevent a
reactive particle from moving or reaction from happening. Secondly, the crowders are uniformly
distributed in space: this implies that each proposed reactive particle movement has roughly
the same chance of being impeded by a crowder.

One common method of modelling diffusion in a crowded environment, based on the crowder
uniformity assumption, is to simply replace the diffusion coefficient D with D(1− φ), where φ
is the proportion of the total volume occupied by crowders [93]. The idea is that if a particle
attempts to move to a new location, there is a 1 − φ probability of that location not being
occupied by a crowder. This is a valid assumption if the random particle displacement at a
time step δx � R, that is, if the particle moves by a distance much greater than the crowder
size, such that its new location can be roughly considered a uniform random variable. However,
it makes little sense to permit δx � R, because that would allow particles to pass through
crowders with a single jump.

On the other hand, permitting δx� R makes physical sense, because the tiny perturbations
which make up Brownian motion are much smaller than any particle radius. Furthermore, this
is precisely the limit in which Cichocki and Hinsen proved their algorithm to be exact [160]. In
that limit, however, we cannot use the 1−φ assumption. To understand why not, consider that
the particle is already in a permitted location: this implies that with probability 1 there is a
small sphere with radius ε > 0 around the particle which does not intersect any crowders. This
local effect implies that the particle’s new position cannot be treated as uniformly distributed:
if δx is small enough (δx < ε), the particle’s new position is guaranteed to not intersect any
crowders. In summary, if we require that δx� R, then the probability that the particle’s new
position is illegal (intersects a crowder) is not given by 1 − φ but by some function of δx. We
now attempt to derive that function.

R

R

Particle

Crowder

δx

δx

Figure 5.1: Diagram of a point particle attempting to move near a crowder of radius R. The
particle attempts to displace itself a distance δx, such that its future position is on the surface
of sphere of radius δx around its current position. There may be crowders with their centres in
the spherical shell of radius R+δx (grey region), which could prevent the particle displacement.
The proposed position will be illegal if it is on the dotted segment of the sphere of radius δx.

Consider what happens when a point-particle proposes to move by a displacement δx. This
is illustrated in Fig. 5.1. The particle’s proposed new position will be on the surface of a sphere
of radius δx around its current position. There will be no crowders with their centres in a
sphere of radius R around the particle (otherwise the point particle could not be where it is
currently), however there is a non-zero probability that there are crowders with their centres
inside the spherical shell between the sphere of radius R + δx and the sphere of radius R (the
grey region in Fig. 5.1). If there are crowders in this region, then there is some probability
that the point particle’s proposed new position is illegal: this is precisely the probability that
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the proposed position intersects the crowder (the dotted line segment in Fig. 5.1).
Now, suppose that there are NC crowders of radius R inside a volume V . Assuming a

uniform crowder distribution, the probability that a given crowder could collide with the point
particle in a single time-step is simply the ratio of the volume of the grey region to the total
volume:

p =
4
3π(R+ δx)3 − 4

3πR
3

V
=

4πR2δx

V
+ o

(
δx

R

)
. (5.1)

The probability of finding n crowders in the grey region is then given by the Binomial distri-
bution:

P (n crowders) =
NC !

n!(NC − n)!
pn(1− p)NC−n. (5.2)

Of course, Eq. (5.2) is only valid for small n, because there is a physical limit to how many
crowders can fit in the relevant region. However, this is of little concern, since we are only
concerned with the probabilities up to o (δx/R), which turns out to correspond only to n = 0
and n = 1.

P (0 crowders) = 1− 4πNCR
2δx

V
+ o

(
δx

R

)
, (5.3)

P (1 crowder) =
4πNCR

2δx

V
+ o

(
δx

R

)
. (5.4)

We now consider the probability that the proposed new point particle position intersects the
crowder. This is given by the surface area of the spherical cap of the sphere of radius δx which
lies inside the sphere of radius R around the crowder (represented in two dimensions by the
dotted line segment in Fig. 5.1) divided by the total surface area of the sphere of radius δx.
This is given by:

P (intersect) =
2πδx (R−δx+d)(R+δx−d)

2d

4πδx2
, (5.5)

where d is the separation between the centres of the point particle and the crowder [206]. The
expected value of d admits no straightforward solution, so we use the approximation R + δx

2
which is accurate to o(δx/R). Inserting this into Eq. (5.5) gives:

P (intersect) =
1

4
− 3δx

16R
+ o

(
δx

R

)
. (5.6)

Combining Eq. (5.4) with Eq. (5.6) gives the probability that the proposed move is illegal:

P (illegal) =
4πNCR

2δx

V

(
1

4
− 3δx

16R

)
=
πNCR

2δx

V
+ o

(
δx

R

)
. (5.7)

Writing this in terms of the proportion of occupied volume, φ =
4
3πNCR

3

V , leads to the simplified
expression:

P (illegal) =
3φδx

4R
+ o

(
δx

R

)
. (5.8)

We can therefore write a much faster version of Cichocki-Hinsen algorithm which does not
include any crowders. Only point particles need to be modelled explicitly in our algorithm,
while the effect of crowders is incorporated by denying a point particle’s proposed movement
with probability P (illegal). For obvious reasons, we call this a crowder-free algorithm. This idea
is shown in Fig. 5.2. The left panel shows the Cichocki-Hinsen algorithm with crowders (red)
and point particles (blue, purple). The points are not allowed to intersect the crowders, but
the reaction radii are. The right panel shows the crowder-free algorithm, which looks identical
to Cichocki-Hinsen without crowders. It is clear that the crowder-free algorithm will be easier
to simulate.

Since none of the remaining particles in the crowder-free algorithm occupy any volume,
we can move all particles simultaneously. The algorithm therefore essentially reduces to the
classical Doi algorithm, with an extra clause for preventing particle movement. Some minor
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Figure 5.2: Cartoons of the Cichocki-Hinsen algorithm (left) and the crowder-free algorithm
(right) for reactive point particles. The point particles (blue, purple) may have a reaction
radius (translucent circle) which does not exclude any volume and is therefore permitted to
intersect crowders (red) or other particles. The centres of the point particles (solid dots) are
not permitted to intersect crowders.

changes must also be made to the reaction parts of the algorithm (steps (3)-(5)), which orig-
inally prevented a reaction if a newly created particle would intersect a crowder. Since we no
longer explicitly model crowders, we must modify this step. If the reaction is either bimolec-
ular or unbinding, the new particle will be placed at a small displacement σ from a previous
particle location. (In the case of bimolecular reactions, the new particle will typically be a
short distance from the location of both parent particles: the shorter of these two distances
should be considered σ for the purposes of the ensuing considerations.) If σ/R � 1, then
we can simply modify the diffusion formula to become P (illegal) = 3φσ/(4R). Can we as-
sume that σ/R � 1? In some cases, such as monomolecular conversion reaction of the type
A → B, we will have σ = 0, and it would be absurd to prevent such reactions due to crowd-
ing. However, some reactions may have quite a large unbinding distance, and the diffusion
formula may prove to be invalid. At each such reaction, we therefore check if σ/R < 0.1. If
this condition is true, we use the formula P (illegal) = 3φσ/(4R), otherwise we use the formula
P (illegal) = 4

3πNCR
3/V , which is the probability that a uniformly distributed point particle

would intersect a crowder. The choice of 0.1 arises from the notion of at least an order of
magnitude difference in size between σ and R, since this was the requirement for the validity of
Eq. (5.8) when it was originally derived. For zero-order reactions, we always use the formula
P (illegal) = (4/3)πNCR

3/V , since particles created by these reactions have no parent particles.

Crowder-free algorithm with reactive point particles

1. Uniformly distribute the reactive particles in the volume.

2. Propose new positions for all particles at a random Normal(0,
√

2Di∆t) displacement in
each spatial dimension, where Di is the diffusion coefficient of particle i and ∆t is the
simulation time step. Calculate δx, the length of the displacement, for each particle.
With probability 3φδx

4R reject the proposed move, otherwise accept it.

3. For each particle of a type involved in a bimolecular reaction j, check if any particles
of the appropriate types lie inside a sphere of radius ρj around the particle, where ρj
is the reaction distance for the relevant reaction. For each appropriate particle inside
this sphere, propose the reaction with probability λj∆t, where λj is the corresponding
reaction rate. For each daughter particle, calculate σ, the length of the displacement from
the nearest parent particle. If σ

R < 0.1, with probability 3φσ
4R reject the proposed reaction,

otherwise accept it. Otherwise if σ
R ≥ 0.1, with probability

4
3πNCR

3

V (where NC is the
number of crowders) reject the proposed reaction, otherwise accept it.

4. For each reactive particle of a type involved in a unimolecular reaction, propose a reaction
with probability λj∆t, where λj is the reaction rate. For each daughter particle, calculate
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Figure 5.3: Time taken for 100 time steps of both the Cichocki-Hinsen algorithm (blue) and
the crowder-free algorithm (red), for a single point particle diffusing in space. With only 10
crowders, the crowder-free algorithm is over 10 times faster. With 500 crowders, the crowder-
free algorithm is over 103 times faster. Parameter values are V = 1, R = 0.05, ∆t = 10−5,
D = 0.1 for the point particle, D = 0.01 for the crowders.

σ, the length of the displacement from the parent particle. If σR < 0.1, with probability 3φσ
4R

reject the proposed reaction, otherwise accept it. Otherwise if σ
R ≥ 0.1, with probability

4
3πNCR

3

V reject the proposed reaction, otherwise accept it.

5. For each zero-order reaction, propose a reaction with probability λj∆t, where λj is the

reaction rate. With probability
4
3πNCR

3

V reject the proposed reaction, otherwise accept it.

6. Advance time by ∆t. Return to (2) and repeat until a target time has elapsed.

In the next section, we confirm that the crowder-free algorithm is orders of magnitude faster
than Cichocki-Hinsen, while retaining its accuracy.

5.1.2 Comparative tests

In our first test of the crowder-free algorithm, we consider a single point particle diffusing in
space, surrounded by a uniform distribution of crowders. In this scenario, the crowder-free
algorithm should show a dramatic improvement over the original Cichocki-Hinsen algorithm in
terms of computation time.

Indeed, as shown in Fig. 5.3, we find that the crowder-free algorithm is at least an order of
magnitude faster than the standard algorithm when there are only 10 crowders, this increases
to three orders of magnitude when there are 500 crowders. A significant advantage is that the
crowder-free algorithm does not scale with number of crowders, making it particularly useful
for studying high levels of crowding.

Note that the computation speed for the crowder-free algorithm is slightly faster for higher
crowding levels. The reason for this is that as the number of crowders increases, the probability
that the diffusing particle does not move on a given time step increases. It takes marginally
less computational time to not move a particle than it does to move one (since we do not need
to update the particle position).

Of course, fast simulation is of little use if the results of the algorithm are inaccurate. In
our second test, we therefore use sample paths from both algorithms to compute the effective
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Figure 5.4: Relative reduction in short-time diffusion coefficient for both the Cichocki-Hinsen
algorithm (blue) and the crowder-free algorithm (red), for a single point particle diffusing in
space, as a function of the proportion of occupied volume φ. All data points are an average of
10 simulations, error bars are 1 standard deviation. Parameter values are V = 1, R = 0.05,
∆t = 10−5, D = 0.1 for the point particle, D = 0.01 for the crowders.
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Figure 5.5: Measured long-time diffusion coefficient for both the Cichocki-Hinsen algorithm
(blue) and the crowder-free algorithm (red), for a single point particle diffusing in space, as a
function of the proportion of occupied volume φ. All data points are an average of 3 simulations,
error bars are 1 standard deviation. Parameter values are V = 1, R = 0.1, ∆t = 10−4, D = 1
for the point particle, D = 0.01 for the crowders. Diffusion coefficients were estimated using
the method described in Ref. [221].
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Figure 5.6: (a) Λ for a zero-order reaction ∅ → X. (b) Λ for an unbinding (first order) reaction
X → Y + Z, for different unbinding distance σ = 0.001 and σ = 0.05. (c) Λ for a binding
(second order) reaction X + Y → Z. For all plots, R = 0.05, D = 1, ∆t = 10−4, V = 1. All
data points are an average of 100 independent simulations, error bars are 1 standard deviation.
The quantity Λ is the ratio between the actual frequency of the reaction and the rate specified
in the algorithm; thus Λ = 1 corresponds to crowding having no effect on reaction frequency.
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short-time diffusion coefficient D∗ of a single point particle in crowded space [151]. This is
done by performing a simulation with input diffusion coefficient D, computing the squared
displacement of the particle at each time step and taking the mean of that value over the entire
simulation. This value is equated to 6D∗∆t to find an estimate for the effective short-time
diffusion coefficient D∗.

The non-dimensional parameter D∗

D is the effective reduction in short-time diffusion coeffi-

cient due to crowding. For no crowding, we expect D∗

D = 1, and the value should decrease as
crowding increases. This is because large jumps are more likely to result in a collision with a
crowder than small jumps, so the effective diffusion coefficient appears to be reduced. In Fig.
5.4 we plot D∗

D as a function of the proportion of occupied volume φ. As expected, both algo-
rithms show a reduction in the effective short-time diffusion coefficient as crowding increases,
and both algorithms give very similar results, with their error bars always intersecting. Each
data point is an average of 10 simulations, each simulation ran until the point particle, initially
located at ( 1

2 ,
1
2 ,

1
2 ), left the unit cube with corners at (0, 0, 0) and (1, 1, 1).

It has been shown, however, that short-time diffusion coefficients can differ strongly from
long-time diffusion coefficients measured over a whole trajectory [151]. In Fig. 5.5, therefore,
we also plot the long-time diffusion coefficients estimated using the unbiased diffusion estimator
developed in Ref. [221]. Each point in Fig. 5.5 is the mean of 3 independent simulations of
length 103 time-steps, and each error bar corresponds to the standard deviation.

We have confirmed that the crowder-free algorithm simulates diffusion as accurately as the
original Cichocki-Hinsen algorithm, but we have not tested whether it accurately simulates
reactions. In our next test, we check that some basic reactions happen with the same frequency
for both algorithms. In Fig. 5.6 we show the results of these tests. In Fig. 5.6 (a) we compare
the Cichocki-Hinsen algorithm with the crowder-free algorithm for a zero-order reaction under
a variety of crowding levels. The quantity Λ on the y-axis is the ratio between the actual
frequency of the reaction and the rate specified in the algorithm, Λ = 1 therefore corresponds
to no effect of crowding. We observe that both algorithms show the same linear reduction in
effective rate as crowding increases. In Fig. 5.6 (b) we perform the same comparison for an
unbinding reaction of the form X → Y + Z, for two different unbinding distances σ = 0.001
and σ = 0.05. The σ = 0.001 case corresponds to a short distance (as defined in the algorithm)
and so we would use Eq. (5.8) in the crowder-free algorithm, wherease σ = 0.05 corresponds to
a large distance, and so we would use φ, the volume occupied, in the crowder-free algorithm.
For both parameter sets, the crowder-free algorithm agrees well with Cichocki-Hinsen. The
unbinding reaction with a larger unbinding distance is naturally more affected by crowding
than the reaction with a smaller unbinding distance, since large jumps are more likely to be
impeded by a crowder. In Fig. 5.6 (c) we perform the same test for a binding reaction of the
form X + Y → Z, again both algorithms agree well, though because these are point-particles
there does not appear to be a significant effect of crowding on the binding rate. This differs
from the finite-size particle case shown in Fig. 5.11.

To confirm the above test, we finally use both algorithms to compute the equilibrium dis-
tribution of the reaction A + B −⇀↽− C in the presence of low and high levels of crowding. We

expect the typical number of C molecules to be higher for high crowding, because the unbinding
reaction will occur less frequently.

For each algorithm, we simulated two long trajectories of a system initially consisting of 30
uniformly distributed A molecules and 30 uniformly distributed B molecules, in a sea of 10 (low
crowding) and 700 (high crowding) crowders. The simulation time was much longer than the
time for the system to reach equilibrium. In Fig. 5.7 we show the equilibrium distribution for
the number of C molecules. The mean number of C molecules shifts from around 6 with low
crowding to around 11 with high crowding. The crowder-free algorithm agrees almost perfectly
with the Cichocki-Hinsen algorithm for both examples, thus confirming that the crowder-free
algorithm accurately imitates the Cichocki-Hinsen algorithm, but with a dramatic reduction in
computation time.
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Figure 5.7: Equilibrium distribution of the number of C molecules for A + B −→ C, C −→
A+B. Each distribution is a time average over single long trajectory of length 105 iterations.
Parameter values are V = 1, R = 0.05, ∆t = 10−4, D0 = 0.1 for the point particle, D0 = 0.01
for the crowders, reaction radius ρ1 = 0.025, forward reaction rate λ1 = 9 × 103, backward
reaction rate λ2 = 1, unbinding distance σ = 0.025.

5.1.3 A note on more complex systems

The crowder-free algorithm proposed above specifically concerns a uniform distribution of crow-
ders with the same radius, however the results can equally be applied to more complex systems.

For sets of crowders with different radii, say N
(i)
C crowders of radius Ri for i = 1, ..., k, we

can simply use the formula:

P (illegal) =

k∑
i=1

N
(i)
C πR2

i δx

V
, (5.9)

which will give the probability of a move δx resulting in a collision. Of course, this formula
relies on the assumption that δx� Ri for all i = 1, ..., k.

For systems with a non-uniform distribution of crowders of radius R, the algorithm can
still be used if the crowder distribution is locally uniform. In that case, we can divide the

volume up into k subvolumes Vi with N
(i)
C crowders for i = 1, ..., k, whre V1 + ...+ Vk = V and

N
(1)
C + ...+N

(k)
C = NC . Then we can apply the formula:

P (illegal) =
N

(i)
C πR2δx

Vi
, (5.10)

for a point particle in the ith subvolume. However, this method will only work if the crowder
distribution remains roughly constant in time. If the crowders are diffusing fast enough that
the overall distribution flattens on the timescale of the simulation, then subvolume i will not

always contain N
(i)
C crowders. Since we do not know how N

(i)
C will change a priori, we cannot

use the crowder-free algorithm for such examples.
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5.2 Finite-size particles in a crowded environment

Studying the behaviour of reactive point particles in the presence of crowders provides useful in-
formation about real biochemical systems in which the reactive particles are much smaller than
the crowders they encounter. This is an accurate description of, for example, small proteins
or amino acids diffusing in the vicinity of ribosomes or large enzymes. However, biochemical
particles also encounter crowders with a similar size to themselves. In order to study these ex-
amples effectively, we must also be able to simulate reactive particles which occupy a non-zero
volume. A version of the Cichocki-Hinsen algorithm for which the reactive particles occupy
a non-zero volume is given below. Since reactive particles now have a physical radius, we no
longer need to define a reaction distance for bimolecular reactions: particles react with a rate
λj if they physically intersect. This is known as partial-absorption Smoluchowski binding [170].

Cichocki-Hinsen algorithm with finite-size reactive particles

1. Uniformly distribute the reactive particles and the crowders in the volume, such that no
particles (reactive or crowder) are intersecting each other. Let N be the total number of
particles, and randomly assign each particle a unique index 1, ..., N .

2. Uniformly sample an integer i from 1, ..., N . Propose a new position for particle i at
a random Normal(0,

√
2Di∆t) displacement in each spatial dimension, where Di is the

diffusion coefficient of particle i and ∆t is the simulation time step. If particle i is a
crowder, check if this new position causes an intersection between any particles. If so,
place particle i back in its original position, if not, place particle i in the new position.
Otherwise if particle i is a reactive particle, check if this new position causes an intersection
between i and exactly one other reactive particle and no crowders. If so, and if that particle
can react with i, proceed to (3). Otherwise, if the new position causes any other type of
intersection, place the particle back in its original position, if not, place the particle in its
new position. Proceed to (4).

3. Propose a bimolecular reaction j with probability λj∆t, where λj is the corresponding
reaction rate. If unsuccessful, place particle i back in its previous position and proceed
to (4). Otherwise if successful, check if any daughter particles would intersect another
particle. If so, skip the reaction, place particle i back in its original position; if not, allow
the reaction to proceed.

4. For each reactive particle of a type involved in a unimolecular reaction j, propose a
reaction with probability λj∆t/N , where λj is the reaction rate. If successful, check if
any daughter particles would intersect any other particles. If so, skip the reaction; if not,
allow the reaction to proceed.

5. For each zero-order reaction j, propose a reaction with probability λj∆t/N , where λj is
the reaction rate. If successful, check if any of the new particles would intersect another
particle. If so, skip the reaction; if not, allow the reaction to proceed.

6. Advance time by ∆t/N . Let N be the new total number of particles and randomly
reassign each particle a unique index 1, ..., N . Return to (2) and repeat until a target
time has elapsed.

Note that this algorithm is distinct from the Cichocki-Hinsen algorithm in Section 5.1 in
several ways, mainly because in this algorithm time is advanced by ∆t

N at each time step. This is
because here step (3) is nested inside step (2). The reason for this is that bimolecular reactions
occur in this algorithm when two reactive particles physically intersect. This is an illegal move,
and if the particles do not react then they must not be allowed to remain in that position,
but rather revert to the previous position, hence bimolecular reactions and diffusion are closely
coupled in this algorithm. It follows that N can change during steps (2)-(3), and so it does not
make sense to place step (2) inside a for-loop over i = 1, ..., N .

Again, step (2) is the overwhelmingly time consuming step for this algorithm, so as before we
will attempt to find an expression giving the probability that a given jump causes an intersection
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with a crowder. However, we will not be able to get substantial speed gains on the same scale
that we obtained with point-particles, because now even a crowder-free algorithm will contain
finite-size reactive particles. Our speed increase will arise from removing a subset of the volume-
occupying particles (the crowders) rather than all of them, as before. Obviously, our method
will work best if there are many more crowders than reactive particles, though it will always
be faster than the standard algorithm.

5.2.1 Derivation

To derive an analogous formula to Eq. (5.8) for the finite-volume case, consider a reactive
particle with radius r > 0 attempting to move a distance δx in a sea of NC uniformly distributed
crowders of radius R. In Section 5.1, we observed that, to first order in δx

R , the probability
of a reactive particle performing an illegal move depends only on its behaviour in the vicinity
of a single crowder. However, a particle of radius r moving near a single crowder of radius R
is identical to a point-particle moving near a crowder of radius R + r: in both cases, the two
particle centres are forbidden from being nearer than R + r from each other. It follows that
Eq. (5.7) can be easily adapted for use in this section, but with R replaced by R+ r. In other
words, we can simply write:

P (illegal) =
πNC(R+ r)2δx

V
+ o

(
δx

R+ r

)
. (5.11)

Observe that we do not need to consider the probability of intersecting reactive particles here.
This is because the reactive particles will all be simulated explicitly, so a collision between
reactive particles in the crowder-free algorithm will be simulated identically to the original
algorithm.

As before, we will also need to moderately adapt the reaction part of our algorithm. Again,
if a daughter particle is created a small distance σ from a parent particle, and σ � R+ r, then

we can use the formula P (illegal) = πNC(R+r)2σ
V . Note, however, that this is much less likely to

occur with finite-size particles, since σ will typically be a similar order of magnitude to r, which
is in turn typically a similar order of magnitude to R. We could alternatively use the probability
that a uniformly distributed point in space can accomodate a particle of radius r. Users may

wish to simulate reactions where it makes more sense to use P (illegal) = πNC(R+r)2σ
V as the

probability that a new particle is obstructed by a crowder (for instance, an enzyme releasing
a much smaller substrate). Since these matters are system-specific, we leave it up to the user
to decide which formula is more appropriate. However, for almost all reactions we will use the
probability that a uniformly distributed point in space can accomodate a particle of radius r.

This probability is not the simple expression used in Section 5.1, rather it derives from
scaled particle theory (SPT). The reason for this is that there are unoccupied points in space
which are inaccessible to the particle of radius r. These are the points which do not lie inside
a crowder but do lie within a distance R + r from a crowder’s centre. SPT has been used to
obtain analytical expressions for the effect of crowding on intrinsic noise in two-dimensional
systems, and was observed to give very accurate results [222]. In three dimensions, it offers
an expression for the probability that a uniformly distributed point in space of volume V can
accomodate a particle of radius r, given that the space contains NC crowders of radius R [138]:

log [P (legal)] = log(1− φ)− Br

1− φ
− 4πAr2

1− φ
− B2r2

2(1− φ)2

− 4π

3

[
NC

V (1− φ)
+

B2C

3(1− φ)3
+

AB

(1− φ)2

]
r3, (5.12)

where A = NCR
V , B = 4πNCR

2

V , and C = NCR
2

V . The crowder-free algorithm for finite-size
reactive particles is then as follows:

Crowder-free algorithm with finite-size reactive particles

1. Uniformly distribute the reactive particles in the volume, such that no particles are in-
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tersecting each other. Let N be the total number of particles, and randomly assign each
particle a unique index 1, ..., N .

2. Uniformly sample an integer i from 1, ..., N . Propose a new position for particle i at
a random Normal(0,

√
2Di∆t) displacement in each spatial dimension, where Di is the

diffusion coefficient of particle i and ∆t is the simulation time step. With probability
πNC(R+r)2δx

V , where r is the radius of particle i, put the particle back in its original
position. Otherwise, check if this new position causes an intersection between i and
exactly one other particle. If so, and if that particle can react with i, proceed to (3).
Otherwise, if the new position causes any other type of intersection, place the particle
back in its original position, if not, place the particle in its new position. Proceed to (4).

3. Propose a bimolecular reaction j with probability λj∆t, where λj is the corresponding
reaction rate. If unsuccessful, place particle i back in its previous position and proceed to
(4). Otherwise if successful, evaluate P (legal) according to Eq. (5.12) for each daughter
particle. Let p be the product of each P (legal). With probability 1− p, skip the reaction,
place particle i back in its original position. Otherwise check if any daughter particles
would intersect another particle. If so, skip the reaction, place particle i back in its
original position; if not, allow the reaction to proceed.

4. For each reactive particle of a type involved in a unimolecular reaction j, propose a
reaction with probability λj∆t/N , where λj is the reaction rate. If the reaction is of the
type A −→ B and the radius of B is less than or equal to that of A, allow the reaction to
proceed. Otherwise, evaluate P (legal) according to Eq. (5.12) for each daughter particle.
Let p be the product of each P (legal). With probability 1−p, skip the reaction. Otherwise,
check if any daughter particles would intersect any other particles. If so, skip the reaction;
if not, allow the reaction to proceed.

5. For each zero-order reaction j, propose a reaction with probability λj∆t/N , where λj is the
reaction rate. If successful, evaluate P (legal) according to Eq. (5.12). With probability
1−P (legal), skip the reaction. Otherwise check if any of the new particles would intersect
another particle. If so, skip the reaction; if not, allow the reaction to proceed.

6. Advance time by ∆t/N . Let N be the new total number of particles and randomly
reassign each particle a unique index 1, ..., N . Return to (2) and repeat until a target
time has elapsed.

There is one significant case for which our crowder-free algorithm will not give accurate
results, namely if the crowders are stationary and the level of crowding is high. Simulating
such systems with Cichocki-Hinsen reveals that reactive particles can get trapped in regions
surrounded by stationary crowders, and simply stay there for the entirety of the simulation
without reacting or moving significantly. Obviously, these cases cannot be covered by the
crowder-free algorithm because all reactive particles (of the same radius) have the same prob-
ability of diffusing at any time. We therefore recommend not using the crowder-free algorithm
for systems with stationary crowders unless the level of crowding is sufficiently low that no
trapping regions could exist. Note that this is not a problem if the reactive particles are point-
particles, because they occupy no volume and will always be able to escape from a trapping
region eventually.

5.2.2 Comparative tests

In this section we perform similar tests on the crowder-free algorithm for finite-size particles
to those we performed in section 5.1.2. We initially test the time taken for both methods to
simulate pure diffusion in the presence of an increasing number of crowders. To ensure that
the results are different from those in section 5.1.2, we now simulate 50 diffusing “reactive”
particles (so-called even though they do not react in this example) in a sea of crowders. Of
course, we do not expect to get anywhere near the 1000-fold speed increase that we achieved
for the point-particle case: even with no crowders, we have to simulate 50 volume-occupying
molecules, constantly ensuring that they do not intersect.
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Figure 5.8: Time taken for 100 time steps of both the Cichocki-Hinsen algorithm (blue) and the
crowder-free algorithm (red), for 50 finite-size particles diffusing in crowded space. With only
10 crowders, the crowder-free algorithm is more than twice as fast. With 400 crowders, the
crowder-free algorithm is over 20 times faster. Parameter values are V = 1, R = 0.05, r = 0.02,
∆t = 10−5, D = 0.1 for the point particle, D = 0.1 for the crowders.

The results of this test are plotted in Fig. 5.8. With 10 crowders, the crowder-free algorithm
takes half the time of the Cichocki-Hinsen algorithm, while with 400 crowders, the crowder-
free algorithm has a speed increase of over 20 times. Even for finite-size particles, therefore,
the crowder-free algorithm offers a considerable speed increase, and its lack of dependence on
crowder number makes it especially useful for studying high levels of crowding. The next test
we perform compares estimates of short-time diffusion coefficients from the two algorithms. In
both cases, we simulate 20 finite-size particles diffusing in a sea of crowders. Because of this, a
single simulation gives 20 different estimates of the diffusion coefficient. In Fig. 5.9 we plot the
mean (points) and standard deviation (error bars) of this sample of 20, for a variety of levels
of crowding. Since the “reactive” particles themselves occupy a volume, we incorporate this
into our calculation of the proportion of occupied volume φ. As in Fig. 5.4, the two algorithms
agree, with errorbars intersecting for each data point. Note that, compared to Fig. 5.4, the
diffusion coefficient is reduced more for the same level of crowding. This confirms the intuitive
hypothesis that finite-size particles are more influenced by crowding than point particles.

As in the point-particle case, we also study the long-time diffusion coefficients of finite-
sized particles. In Fig. 5.10 we plot the long-time diffusion coefficients estimated using the
unbiased diffusion estimator developed in Ref. [221]. We calculated the diffusion coefficient for
three different particle sizes, ranging from the same size as the crowders to several orders of
magnitude smaller than the crowders. Both algorithms agree well, and we observed that, as we
might expect, the diffusion of smaller particles is less affected by crowding than larger particles.
Each point in Fig. 5.10 is the mean of 10 independent simulations of length 103 time-steps, and
each error bar corresponds to the standard deviation.

In our next test, we check that zero, first, and second-order reactions happen with the same
frequency for both the Cichocki-Hinsen algorithm and our crowder-free algorithm for a variety
of particle sizes. In Fig. 5.11 we show the results of these tests. In Fig. 5.11 (a) we compare
the Cichocki-Hinsen algorithm with the crowder-free algorithm for a zero-order reaction under
a variety of crowding levels, and for two particle sizes. As before, the quantity Λ on the y-axis
is the ratio between the actual frequency of the reaction and the rate specified in the algorithm,
Λ = 1 therefore corresponds to no effect of crowding. We observe that both algorithms show
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Figure 5.9: Relative reduction in short-time diffusion coefficient for both the Cichocki-Hinsen
algorithm (blue) and the crowder-free algorithm (red), for a single finite-sized particle diffusing
in space, as a function of the proportion of occupied volume φ. All data points are an average
of 20 particles from a single simulation, error bars are 1 standard deviation. Parameter values
are V = 1, R = 0.05, r = 0.02, ∆t = 10−5, D = 0.1 for the point particle, D = 0.1 for the
crowders.
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Figure 5.10: Measured long-time diffusion coefficient for both the Cichocki-Hinsen algorithm
and the crowder-free algorithm, for a variety of sizes of tracer particles, as a function of the
proportion of occupied volume φ. All data points are an average of 10 independent simulations,
error bars are 1 standard deviation. Parameter values are V = 1, R = 0.05, ∆t = 10−3, D = 1.
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Figure 5.11: (a) Λ for a zero-order reaction ∅ → X, for different particle radii r = 0.05 and
r = 0.005. (b) Λ for an unbinding (first-oder) reaction X → Y +Z, for different Y radii r = 0.05
and r = 0.005. (c) Λ for a binding (second-order) reaction X + Y → Z, for different X and
Y radii, r = 0.05 and r = 0.02. For all plots, R = 0.05, D = 1, ∆t = 10−4, V = 1. All data
points are an average of 100 independent simulations, error bars are 1 standard deviation. The
quantity Λ is the ratio between the actual frequency of the reaction and the rate specified in
the algorithm; thus Λ = 1 corresponds to crowding having no effect on reaction frequency.
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Figure 5.12: Equilibrium distributions of the reaction ∅ −→ X, X + X −→ ∅ for both crowder-
free algorithm (histograms) and Cichocki-Hinsen algorithm (lines) for low (blue, yellow) and
high (green, red) crowding conditions. Each distribution is a time average over single long
trajectory of length 105 − 107 iterations. The crowder-free algorithm generally requires many
fewer iterations than Cichocki-Hinsen, because the total number of particles is lower. Parameter
values are V = 1, R = 0.05, r = 0.05, ∆t = 3 × 10−5, D = 0.1 for the point particle, D = 0.1
for the crowders. For the zero-order reaction, λ1 = 2 × 102, for the bimolecular reaction,
λ2 = 3× 104.

the same linear reduction in effective rate as crowding increases, and the rate is reduced more
for large particles than for small ones. In Fig. 5.11 (b) we perform the same comparison for
an unbinding reaction of the form X → Y + Z, for two different parameter sets. First for X
unbinding into equal sized Y and Z with radius 0.05 and unbinding distance 0.1, and second for
X unbinding into different sized Y and Z, with radii 0.01 and 0.005 respectively, and unbinding
distance 0.015. For both parameter sets, the crowder-free algorithm agrees well with Cichocki-
Hinsen. In Fig. 5.11 (c) we perform the same test for a binding reaction of the form X+Y → Z,
for two different parameter sets. First for X and Y with radius 0.05, and second for X and
Y with radius 0.02. Again both algorithms agree well for both parameter sets, and we note
that higher crowding reduces the binding rate, because it takes longer for particles to find each
other.

Finally, we compare the algorithms’ performance at estimating an equilibrium distribution of
a chemical reaction. This time we simulate the reaction ∅ −→ X, X +X −→ ∅, in which particles
are created at uniformly distributed points in space and react with a fixed rate when they
collide. This system has previously been studied spatially as an example of protein synthesis
and degradation [73]. We expect that, contrary to the example in Fig. 5.7, crowding will reduce
the mean number of X, since the creation of X will be less likely in crowded conditions.

In Fig. 5.12 we plot the equilbrium distribution of the number of X molecules for both
algorithms in both low and high crowding conditions. Each distribution is calculated as a
time average over a single long trajectory, of between 105 and 107 iterations. The crowder-free
algorithm clearly requires fewer iterations than Cichocki-Hinsen because each iteration of both
algorithms advances time by ∆t

N where N is the total number of particles, and Cichocki-Hinsen
generally has many more particles to simulate. As predicted, the mean of the distribution is
much lower in the high crowding example than the low crowding example. As with all previous
tests, the crowder-free algorithm agrees almost perfectly with the Cichocki-Hinsen algorithm,
confirming that our algorithm suffers little apparent loss of accuracy compared to the Cichocki-
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Hinsen algorithm, despite its considerable speed increases. Note that the value of φ for these
examples, because the number of reactive particles fluctuates over time, and therefore so does
φ.

5.3 Summary

In this chapter, we proposed a modification to the commonly used Cichocki-Hinsen BD algo-
rithm for simulating reaction-diffusion systems in a crowded environment. We call our modified
algorithm a crowder-free algorithm because we do not simulate crowders explicitly. Instead, we
rigorously derive the probability that a small displacement of size δx would result in a collision
with a crowder. This implies that, instead of simulating crowders, we can simply reject each
attempted particle displacement with precisely that probability. We tested our algorithm in
terms of both speed and accuracy, both for cases with reactive point particles and with finite-
size reactive particles. The crowder-free algorithm always provides a speed increase over the
underlying Cichocki-Hinsen algorithm: this speed increase varied from 2 to over 1000 for the
set of examples studied in this paper. Furthermore, the crowder-free algorithm provides data
which is near-indistinguishable from the data extracted from the corresponding Cichocki-Hinsen
algorithm: this was shown to be true for both diffusive and reactive information. The crowder-
free algorithm therefore shows no apparent loss of accuracy compared to the Cichocki-Hinsen
algorithm, which, coupled with the clear speed increases, makes it a very attractive algorithm
for simulating chemical reactions in a crowded environment.

The work in this chapter goes a significant way to alleviating the cost of simulating bio-
chemistry with realistic conditions. In the next chapter we take this idea further to show how
we can apply analytical techniques to BD, to obtain PDEs describing particle motion under
crowded conditions.
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Chapter 6

Analytical approaches to
Brownian dynamics

In chapter 5 we proposed an algorithm for simulating BD in a crowded environment, without
the large computational cost typically associated with such simulations. In this chapter we go
a step further, and attempt to obtain analytical expressions describing the diffusion of particles
in a crowded environment. These expressions take the form of advection-diffusion equations
describing the evolution of the probability density function of a particle’s position.

At the heart of the method derived in this chapter is the idea that crowders may not be
uniformly distributed in space. The uniformity assumption (which we employed in chapter 5)
is common and useful for deriving equations and algorithms, but may not be strictly true in
biology. Even in prokaryotes, where the cell interior is completely membrane free, distinct sub-
cellular compartments exist. Firstly, there is a clear demarcation between the cytoplasm and
the nucleoid owing to a significant difference in the concentration of macromolecules [223, 224].
Secondly, macromolecules are actively transported to opposite ends of the cell in preparation
for cell division, leading to a bimodal crowder distribution [225, 226]. Thirdly, phase separation
is known to occur in the cytoplasm owing to hydrophobic and elecrostatic interactions between
different macromolecular species, leading to distinct regions of high and low crowder density
[227]. These effects imply that the cell interior consists of a highly non-uniform distribution of
crowders which is maintained over long timescales.

The work in this chapter demonstrates that heterogeneous crowding leads to highly irregular
behaviour for diffusing particles, including multimodal and assymetric probability distributions
for their spatial positions. We suggest that heterogeneous crowding could be one of the methods
cells use to organise their constituent molecules. We note that heterogeneous crowding is already
a feature of some spatial simulation algorithms [228], but our interest is in the analytical
treatment of heterogeneous crowding.

6.1 Diffusion equations with macromolecular crowding

Mathematical models of macromolecular crowding tend to assume that macromolecules are ho-
mogeneously (uniformly) distributed throughout the cell, but in reality the local concentration
of macromolecules can vary widely on a subcellular length-scale (see above). The consequences
of this discrepancy are demonstrated in Fig. 6.1. The top cartoon shows a typical trajectory
of a small Brownian particle (red) in a homogeneous distribution of macromolecules (blue) at
a moderate level of crowding. The trajectory, starting in the centre of the volume (red circle),
is essentially Brownian, although frequent collisions with macromolecules will tend to reduce
the small particle’s diffusion coefficient. The bottom cartoon shows a typical trajectory of a
small Brownian particle (red) in a heterogeneous distribution of macromolecules (blue), with
alternating regions of high and low crowding. In this case the small particle, again starting
from the centre (red circle), is directed preferentially towards a region of low crowding, and -
since it is then trapped between regions of high crowding - it will tend to remain there much
longer than is predicted by a standard diffusion equation. Although both cases in Fig. 6.1 have
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Figure 6.1: Cartoons showing the difference between homogeneous and heterogeneous crowding.
TOP: a uniform distribution of large particles (blue) corresponds to homogeneous crowding. A
small particle (red) will tend to exhibit Brownian diffusion, with a reduced diffusion coefficient.
BOTTOM: a non-uniform distribution of large particles (blue) corresponds to heterogeneous
crowding. A small particle (red) will tend to be directed towards less-crowded regions.

the same overall level of crowding, the behaviour of a small particle varies greatly between the
two. In this section, we therefore attempt to derive a diffusion equation for the small particle
which can capture the irregular motion induced by heterogeneous macromolecular crowding.

We consider the three dimensional space (−∞,∞)× [0, L]× [0, L] with reflective boundaries,
in which particles can diffuse in all dimensions, but we are only interested in the first dimension.
We consider two species of spherical particles, X1 and X2, with radii r1 and r2 respectively and
intrinsic diffusion coefficients D1 and D2 respectively. Let θji be the concentration of Xi particles

in the region [jh, (j+ 1)h)× [0, L]× [0, L], for some grid-spacing h > 0 and integer j, and let pji
be the probability that a random point in [jh, (j+ 1)h)× [0, L]× [0, L] can accomodate a single
particle of species Xi. Then, as discussed in chapter 1, we can approximately model diffusion
of particles as a hopping between neighbouring grid points, and this approximation will tend to
be better for smaller grid-spacings h. A particle of Xi can hop from [jh, (j+1)h)× [0, L]× [0, L]
to [(j + 1)h, (j + 2)h) × [0, L] × [0, L] with rate Di

h2 p
j+1
i . Incorporating pji into the hopping

rate accounts for the probability that a particle is blocked by crowders. Taking a mean-field
approach to this description (analogously to Eq. (1.17)) leads to a spatially-discrete diffusion
equation for the concentration of Xi:

∂θji
∂t

=
Di

h2

[
pji (θ

j−1
i + θj+1

i )− (pj−1
i + pj+1

i )θji

]
. (6.1)

Similar mean-field equations have been derived for equal-sized particles, such as in Refs. [93,
150]. The equations for θj1 and θj2 are not independent, but are rather coupled via the quantity

pji which is naturally a function of both θj1 and θj2. The quantity pji is the probability that
a random point in [jh, (j + 1)h) × [0, L] × [0, L] can accommodate a particle of Xi, which, as
discussed in chapter 5 (specifically Eq. (5.12)), is approximately given by scaled particle theory
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(SPT) [138, 139]:

pji = (1− φj)exp

[
− ri

1− φj

(
Bj +

(
4πAj +

B2
j

2(1− φj)

)
ri (6.2)

+
4πr2

i

3

dj +
B3
j

12π(1− φj)2 +
AjBj
1−φj

 ,
where dj =

∑
i θ
j
i , Aj =

∑
i riθ

j
i , Bj =

∑
i 4πr2

i θ
j
i , and φj =

∑
i

4
3πr

3
i θ
j
i . Note that we are

using the SPT formula for pji rather than the more usual 1−φj = 1−
∑
i

4
3πr

3
i θ
j
i [150]. This is

because we require pji to be the probability that a random point is surrounded by a sufficiently
large empty region to at least accomodate a whole particle of radius ri. This probability is
given by SPT, whereas 1− φj is merely the probability that a random point can accomodate a
point-particle, and is therefore an overestimate of the required quantity. For more information,
see Ref. [95].

Defining θi(x) = θ
j=bx/hc
i and pi(θ1(x), θ2(x)) = p

j=bx/hc
i , and taking the limit h → 0, we

use Eq. (6.1) to obtain continuous PDEs for the concentrations θi:

∂θi
∂t

= Di

[
pi
∂2

∂x2
θi − θi

∂2

∂x2
pi

]
. (6.3)

Again the PDEs for θ1 and θ2 are coupled via the functions pi. We now consider the case where
θ2(x, t) � θ1(x, t) for all x and t. It follows that pi(θ1, θ2) ≈ pi(θ1, 0). Intuitively, this means
that the X2 concentration is so low that it does not affect the diffusion of any particles, but
the X1 concentration affects the diffusion of both species. We therefore simply write pi(θ1).
It follows that the diffusion equation for X1 is completely self-contained, while the diffusion
equation for X2 depends on X1. We can write the two equations as:

∂θ1

∂t
=

∂

∂x

[
D1

(
p1 − θ1

∂p1

∂θ1

)
∂

∂x
θ1

]
, (6.4)

∂θ2

∂t
=

∂

∂x

[
D2p2

∂

∂x
θ2

]
− ∂

∂x

[
D2θ2

∂p2

∂θ1

∂θ1

∂x

]
. (6.5)

In other words, X1 obeys a nonlinear diffusion equation with diffusion coefficientD1

(
p1 − θ1

∂p1
∂θ1

)
,

while X2 obeys a nonlinear advection-diffusion equation with diffusion coefficient D2p2 and ve-
locity D2

∂p2
∂θ1

∂θ1
∂x in the positive x direction. For more details on deriving nonlinear PDEs from

lattice models, see Refs. [229, 95]. Note that identical advection-diffusion equations have been
derived in the context of chemotaxis [230, 231], though naturally the form of pi in that context
will be quite different, and not based on SPT.

We now further consider the case where r2 � r1. Combining this with the earlier assumption
that θ2(x, t) � θ1(x, t), it follows that we are now considering a single small particle of type
X2 diffusing amongst several large particles of type X1. Let ε = r2

r1
. Perturbatively expanding

Eq. (6.2) in small ε gives the following:

p2(θ1) = 1− (1 + 3ε)
4

3
πr3

1θ1 + o(ε2). (6.6)

Furthermore, from the Stokes-Einstein relation, we have that D1

D2
= ε. It follows that the

timescale on which θ1 changes is much slower than that of θ2. We can therefore make a quasi-
stationarity assumption about θ1 on the timescale of θ2: we say θ1 = θ1(x). Note that this
stationarity is consistent with our earlier biological observations that heterogeneous crowder
distributions are maintained over long timescales. Finally, letting φ(x) = 4

3πr
3
1θ1(x) be the

proportion of volume occupied by X1 at x, and writing θ(x, t) = θ2(x, t) and D = D2, we have
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a linear advection-diffusion equation for X2:

∂θ

∂t
=

∂

∂x

[
D(1− (1 + 3ε)φ)

∂θ

∂x

]
+

∂

∂x

[
D(1 + 3ε)

∂φ

∂x
θ

]
. (6.7)

We therefore have a rigorously derived advection-diffusion equation for the concentration of
small molecules diffusing in a completely generic crowder distribution φ(x). This PDE shows
that particle motion is affected in two distinct ways. (i) The particle’s local diffusion coefficient
is rescaled by a factor of 1− (1+3ε)φ(x), where ε is the ratio of small to large particle radii and
φ(x) is the local proportion of volume occupied by crowders. This recovers the classical 1− φ
scaling in the case of point-particle diffusion (ε = 0). (ii) The particle moves with a velocity
−D(1 + 3ε)∂φ∂x in the positive x direction, that is, a velocity directed towards less crowded
regions and proportional to the gradient of the crowder distribution. If φ is constant (i.e.
a uniform crowder density), this velocity becomes zero, and the particle will obey a standard
diffusion equation (albeit with a reduced diffusion coefficient). Particle motion will generally be
governed by the interplay between effects (i) and (ii), since particles will tend to move towards
more dilute regions of space but will tend to move faster in those regions.

6.2 Applications

Using Eq. (6.7), we can investigate the motion of small molecules in a variety of crowder
distributions. Of particular interest are the mean and variance (mean squared displacement)
of θ as function of time. In particular, whether the variance is superlinear or sublinear, which
would correspond to super- and subdiffusion respectively (see chapter 1).

The mean and variance of θ cannot be obtained directly from Eq. (6.7), so instead we write
the solution of the advection-diffusion equation as a Taylor series in time:

θ(x, t) =

∞∑
i=0

θ(i)(x)
ti

i!
, (6.8)

where θ(i)(x) = ∂iθ
∂ti |t=0. The time derivatives can be immediately obtained from Eq. (6.7) by

thinking of the right-hand side as a differential operator acting on θ:

θ(i) =

[
D

(
(1 + 3ε)φ′′ + (1− (1 + 3ε)φ)

∂2

∂x2

)]i
δ(x), (6.9)

where we have assumed θ(x, 0) = δ(x), and φ′′ denotes the second derivative of φ(x). Each θ(i)

is then a sum of products of derivatives of φ(x) and δ(x).

The nth moment of θ is defined as:

µ(n)(t) =

∫ ∞
−∞

xnθ(x, t)dx =

∞∑
i=0

ti

i!

∫ ∞
−∞

xnθ(i)(x)dx, (6.10)

so that the variance is given by µ(2)(t) − (µ(1)(t))2. At very short times, the t term of the
variance will dominate, so the particle motion will be diffusive. We can then investigate the
transition to subsequent anomalous diffusion at short times by looking at the t2 term of the
variance. If the coefficient of this term is positive, then the variance will be initially superlinear,
and so the motion will be initially superdiffusive. Similarly, if the t2 term is negative, the motion
will be initially subdiffusive. A zero coefficient for the t2 term denotes normal diffusion.

By squaring the expression for µ(1)(t), and observing that
∫∞
−∞ xδ(x)dx = 0, we find the

coefficient of the t2 term in the expansion of the variance:

γ =
1

2

∫ ∞
−∞

x2θ(2)(x)dx−
[∫ ∞
−∞

xθ(1)(x)dx

]2

. (6.11)
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The initial anomalous diffusion follows immediately:

γ < 0 =⇒ subdiffusion

γ = 0 =⇒ normal diffusion (6.12)

γ > 0 =⇒ superdiffusion

We now apply the advection-diffusion equation to a variety of physically-plausible heterogeneous
crowder distributions. Since our PDE is (i) derived from a lattice description, (ii) uses a mean-
field assumption, and (iii) uses the approximate SPT theory, it is not clear how accurate its
predictions will be. We therefore also compare our PDE with hard-sphere BD simulations using
the Cichocki-Hinsen algorithm [160], which suffer from none of these limitations (see chapter
5).

First, we study a Gaussian crowder distribution φ(x) = ke−x
2

, where k is the maximum
volume occupied. (Note that k must be less than 0.74, the densest sphere packing). This could
represent a local distribution of ribosomes, which are known to assemble near individual strands
of mRNA [232, 233]. The symmetry of this example implies that the mean of θ is zero for all
times, but the variance may vary. Using this φ in Eq. (6.11) gives γ = 10D2k(1 + 3ε)(1−k(1 +
3ε)). Since k < 0.74 and ε is “small”, say ε ≤ 0.1, it follows that k(1+3ε) < 1, and hence γ > 0.
Therefore a small particle in a Gaussian crowder distribution will transition from diffusive to
superdiffusive motion at short times. In Fig. 6.2 we confirm this with BD simulations. In the
inset, we plot MSD against time, and it is clear that our analytical theory is correct initially,
and our PDE is correct for all times shown. In the main figure we plot a snapshot of the
distribution at a fixed time, where the PDE and BD both exhibit bimodal behaviour, clearly
distinct from normal diffusion. The bimodal distribution arises because the small particle is
directed (by the advection term in Eq. (6.7)) down one or other of the slopes of the Gaussian
distribution.

Next, we study a bimodal Gaussian crowder distribution φ(x) = kx2e1−x2

, where again k
is the maximum volume occupied. This could represent the bimodal distribution of macro-
molecules characteristic of cells undergoing division [225, 226]. The symmetry of this example
again implies that the mean of θ is zero for all times, but the variance may vary. Using this φ
in Eq. (6.11) gives γ = −10D2ek(1 + 3ε) < 0. Therefore a small particle in a bimodal Gaus-
sian crowder distribution will transition from diffusive to subdiffusive motion at short times.
In Fig. 6.3 we confirm this with BD simulations. In the plot of MSD against time (inset),
we observe that the particle motion transitions from diffusive to subdiffusive at short times,
as predicted, but later becomes superdiffusive. In the main figure we plot a snapshot of the
distribution at a fixed time (t = 10), where the PDE and BD both exhibit trimodal behaviour,
clearly distinct from normal diffusion. A number of effects give rise to this irregular behaviour:
the small particle is initially trapped (by the advection term in Eq. (6.7)) between the two
peaks of the bimodal crowder distribution - hence subdiffusion - but eventually it will move
past one of these peaks and be directed (by the advection term) down the outer slope - hence
superdiffusion. At t = 10, for the parameter set chosen, there is a significant chance that the
particle is still trapped in the central region, but also a significant chance that the particle has
moved past one or other of the peaks, hence the trimodal behaviour.

Finally, we study a step-like crowder distribution φ = k
π

(
arctan(s(x+ w)) + π

2

)
, where

again k is the maximum volume occupied, s is a measure of the sharpness of the step, and w is
the distance between the step and the initial particle. This could represent a phase boundary
such as the point where nucleoid meets cytosol. This example is asymmetric, so we expect the
mean particle position to change with time, as well as the particle variance. We find that, at

short times, the mean particle position is given by µ(1)(t) = − 2Dks(1+3ε)
π(1+s2w2) t + o(t2), so that the

particle performs directed motion towards the left (less crowded half) of the space. We also
find that γ = 2

π2D
2k2s2(1 + 3ε)2 > 0, so the motion will initially transition from diffusive to

superdiffusive. In Fig. 6.4 we confirm the change in mean position with BD simulations (inset).
It is clear that our analytical theory is qualitatively correct, and our PDE is correct for all times
shown. In the main figure we plot a snapshot of the distribution at a fixed time, where the
PDE and BD both exhibit non-Gaussian asymmetric behaviour, clearly distinct from normal
diffusion. The steep slope of the crowder distribution causes the particle to be directed to the
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Figure 6.2: Inset: Mean-squared displacement against time for a small particle diffusing in a
Gaussian distribution of crowders φ(x) = ke−x

2

. Main: Probability density of small particle
location for the same system at time t = 3. Crowder distribution not to scale. Parameter
values: k = 0.52, ε = 0.1, D = 1, L = 1, ∆t = 10−5. BD averaged over 105 simulations.
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Parameter values: s = 100, w = 0.1, k = 0.52, ε = 0.1, D = 1, L = 1, ∆t = 10−5. BD averaged
over 105 simulations.

left (by the advection term in Eq. (6.7)) with high speed: this causes the particle to outrun
normal diffusion in the negative half of the space. There is a small chance that the particle will
diffuse into the right half of the space, but the diffusion coefficient here is significantly reduced
so that normal diffusion is considerably faster.

6.3 Summary

In this chapter, we derived an analytical PDE to describe the motion of a small particle in the
presence of a heterogeneous distribution of crowder molecules, a realistic scenario for cellular
biochemistry. We found that diffusion coefficients are reduced in the presence of crowders, in
a manner which depends on both the density of crowders and the size of the diffusing particle.
Furthermore, particles experience a net velocity directed towards more dilute regions of space.

The work in this chapter shows, on the one hand, that analytical expressions can be de-
rived which match excellently with BD, and show perfect agreement with simulations even in
highly non-linear situations. On the other hand, as with the work in chapter 4, the chapter
demonstrates that modelling can predict real biological effects (the directed motion of small
molecules) before they are demonstrated in the laboratory, thus providing valuable directions
for future biological research.
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Chapter 7

Discussion

In this thesis, we have studied in detail the two most popular models of spatial stochastic
chemical kinetics: the reaction-diffusion master equation (RDME) and Brownian dynamics
(BD). These models can be used to simulate real biochemical systems, such as genetic or
metabolic networks. However, open questions remain about the validty of these models, and
when it is appropriate to use them.

In chapter 1, we showed how the two models are derived. The RDME is obtained by starting
at the simplest model possible in chemical kinetics (the REs) and systematically adding in
stochasticity and diffusion. In contrast, BD is obtained by starting from a highly complex MD
model and systematically simplifying out negligible effects. Owing to their utterly different
derivations, we do not typically expect the RDME and BD to agree, yet they are both attempts
to model the same kinds of processes. Owing to its origin in a more physical MD model, we
might typically expect BD to be the “better” model. However, over the course of the subsequent
chapters, we found that the reality is not so simple.

In chapter 2, we found that the RDME can be considered an accurate model of chemical
kinetics, but only if the reactions are of the elementary form. Non-elementary reactions (such
as those with Hill or Michaelis-Menten rates) lead to internal contradictions, where the RDME
predicts different behaviour from the CME even when diffusion is infinitely fast. This fact could
be construed as an argument against the RDME and in favour of BD. However, BD has no
method of implementing non-elementary reaction kinetics (although methods of implementing
elementary reactions of any order have been developed [234]), and so the work in chapter
2 merely highlights a significant problem for spatial modelling in general. To model spatial
systems correctly, all relevant species and reactions must be explicitly incorporated.

In chapter 3, we approached the RDME from an analytical perspective. We applied the
EMRE method (originally intended to obtain approximations to the mean of the CME) to the
RDME, obtaining relatively simple expressions for mean spatial concentrations in the case of
single-species systems. This chapter highlighted a clear advantage of the RDME over BD: the
RDME has an analytical form to which any method which applies to the CME can equally
be applied. Thus we found that mean concentrations depend on diffusion coefficients in a
non-trivial manner, a phenomenon not predicted by the deterministic RDEs but demonstrated
to be true using BD simulations. Without the RDME, this behaviour could not have been
analytically quantified. Nonetheless, we were still faced with the most pressing problem of the
RDME: choosing M , the number of subvolumes.

In chapter 4, we proposed an application of the RDME which eliminates the problem of M .
In this application, the RDME is treated as a model of a tissue, and each subvolume represents a
cell in that tissue. Using this model, we predicted that the rate of transport between neighbour
cells could seriously impact on the single-cell variability, and thus the heterogeneity of the tissue.
We found that systems with intrinsically sub-Poissonian fluctuations tend to induce greater
heterogeneity in tissues when transport rates increase, contrasted with greater homogeneity for
super-Poissonian systems. These predictions were confirmed with real experimental data from
animal and plant tissues, highlighting again the value of the RDME as a model for making real,
testable predictions.

In chapter 5 we moved to studying BD in detail. A significant problem of BD is the issue of
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crowding, since BD typically uses point-particles which exclude no volume, but biomolecules can
be very large and in high concentrations. Yet incorporating crowding in BD simulations is time
consuming, since a huge number of collisions between particles must be explicitly simulated. We
proposed a “crowder-free” algorithm which treats the crowders implicitly (under the assumption
that they are uniformly distributed in space), allowing us to eliminate them from the explicit
simulation steps. The resulting algorithm was several orders of magnitude faster the traditional
algorithms, thus enabling BD simulations with biochemical realism on a large scale.

In chapter 6 we took a different approach and addressed BD from an analytical perspective.
We derived an advection-diffusion equation describing the motion of a small particle in the
presence of a spatially heterogeneous distribution of crowder molecules. This equation predicted
that diffusing molecules would be slowed in the presence of crowders, but would also experience
a force directing them towards more dilute regions of space. This chapter therefore shows not
only the analytical possibilities of BD, but also that BD can make testable predictions about
biological behaviour.

Over all, the work in this thesis does not definitively favour RDME over BD, or vice-versa.
As we have shown, the reality is more complicated. While BD certainly has a claim to greater
physical accuracy, nonetheless the RDME is significantly more analytically tractable. Similarly,
while the RDME has the advantage of being a generic model (we can apply it equally well to
cells or tissues), BD provides substantially finer-grained spatial resolution without extreme
computational costs.

The work in this thesis principally highlights the value of mathematical modelling of biology,
beyond simply explaining what is already known. In chapters 4 and 6, we made testable
predictions about real biological behaviour, which can be tested experimentally (indeed, in
chapter 4 we did test our predictions on experimental data). This use of modelling in advance
of experimentation is a highly attractive application of mathematical techniques to biology,
which will likely only grow in popularity as computational power improves.
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