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Lay Summary 

Trees are very important organisms in all global ecosystems, and also they are 

crucial and bring many benefits to society. There is need for planting more trees, and 

the British government have targets of increasing the woodland cover in Great 

Britain (GB). The current system for sourcing seed for new tree planting in GB 

divides the country in four regions of provenance (ROPs), and trees have to be 

planted within those regions. However, there is no evidence on this system reflecting 

the genetic pattern of differentiation of the native tree populations of GB. In this 

study we want to examine this seed-sourcing system with the insight of our data. 

Moreover, under rapid climate change there is concern of whether and how trees will 

be able to adapt. There are two mechanisms with which trees can cope with the 

change of the environment. The first one is by genetic change; trees have long-

generational changes for what selection of good genotypes will happen at the young 

seedlings which are growing currently. The other mechanism is with phenotypic 

plasticity, this allows the trees to change their phenotype without there any genetic 

change. Trees are long-lived organisms that have to endure the variable environment 

over their long lifetime, for what phenotypic plasticity is crucial for their survival. 

Common garden experiments are very useful to study genetic diversity and 

phenotypic plasticity, as they allow to separate the variation due to one and the other. 

In a common garden experiment trees grow under a common environment, for what 

the differences found across the experiment are due to genetic differences. Having 

replicated common garden experiments in distinct environments, allows to find the 

phenotypic plasticity when we compare trees from the same origin growing under 

different climates.  Common garden experiments were planted in early 2000s with 

seed from over 30 native forests of ash, rowan and silver birch across all GB. This 

experiments are replicated between 2 and 4 times per species in contrasting locations 

around GB. We assessed the trees growing in these experiments, measuring several 

traits which are relevant to understand tree fitness and their capacity to adapt to 

climate change. In many studies tree height is used as a proxy for tree fitness, 

however we show that tree height is a multifactorial trait with limitations to 

understand the suitability of a tree to the environment where it is growing. We 

assessed our tree populations for growth (survival, tree height, DBH), stem form 
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(number of forks), leaf phenology (leaf flushing and senescence) and leaf anatomical 

traits (leaf area, stomatal density and stomatal size). We analyse the levels of genetic 

diversity found for these traits and the phenotypic plasticity. GB has very distinct and 

heterogeneous environments and we have found that the patterns of differentiation of 

the trees for these traits has a geographical pattern following these environmental 

differences. There are differences along a latitudinal gradient and longitudinal, 

moreover, some traits are linked to specific water availability variables. Overall, we 

found that native populations of ash, rowan and silver birch are very diverse 

genetically and have high levels of phenotypic plasticity, which show that they are 

well adapted to the current diverse and oceanic climate of GB. The phenotypic 

plasticity they show will allow the current standing trees to survive the rapid climate 

change, and the high genetic diversity find across and within GB populations will 

allow natural selection to select the most suitable trees for the new climate. 
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Rapid climate change is a significant threat to the long-term persistence of native tree 

populations. Concern has been expressed that tree populations might fail to adapt due 

to rate of change, insufficient adaptive variation in tree populations and limits to 

dispersal. In contrast, others have contended that most tree species have high 

phenotypic plasticity, maintain high levels of within-population genetic variation and 

exhibit effective gene dispersal capability, all characteristics which should enable an 

adaptive response. To assess the potential adaptability of tree populations we need to 

understand their genetic diversity and phenotypic plasticity to build on the currently 

limited evidence base and guide decisions about seed sourcing for establishment of 

new woodlands desired to meet ambitious planting targets.  Currently the seed 

sourcing system divides the island in four regions of similar size although it is not 

based on any genetic or ecological information. We discuss the suitability of this 

system with the insight of the data collected from native tree populations growing in 

experimental trials. In this thesis we study genetic diversity and phenotypic plasticity 

patterns in over 30 native tree populations across all Great Britain for three 

broadleaved species: ash (Fraxinus excelsior), rowan (Sorbus aucuparia), and silver 

birch (Betula pendula). To obtain these data we assessed the variation in multiple 

traits in several common garden experiments for each species, which were grown in 

contrasting environments. There is a tendency in provenance experiments to consider 
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height as a proxy for fitness. We demonstrate that tree height is not enough to 

understand tree fitness and its adaptability capacity. We assessed our tree populations 

for growth (survival, tree height, DBH), stem form (number of forks), leaf phenology 

(leaf flushing and senescence) and leaf anatomical traits (leaf area, stomatal density 

and stomatal size).Great Britain has very distinct and heterogeneous environments 

likely to have given rise to adaptive differentiation. Knowing the geographical 

pattern of the genetic differences we can see the direction selective pressures have 

had on each of the traits studied, and we compare differences in patterns across the 

traits and species. Comparing populations growing in different environments we 

assessed the variation in phenotypic plasticity by trait and the direction of these 

plasticity. We found that tree populations across Great Britain are highly genetically 

variable and show genetic differences which have a geographical pattern, and that the 

patterns and size of the differences vary by species. Phenotypic plasticity varies 

across traits and interactions between genotype and environment make plasticity in 

some traits more unpredictable than others. We conclude that tree populations of ash, 

rowan and birch are well adapted to the diverse and oceanic climate of Great Britain, 

and that levels of genetic diversity and phenotypic plasticity provide a high capacity 

to respond to environmental change. 
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ROP (following inset map). 

Figure 4.10. Linear regression of JD50_F with Latitude per provenance at the Llandovery and North 

York Moors trial sites. Colour represents ROP (following inset map). 

Figure 4.11. Scatterplot of the mean number of forks and JD50_F by provenance. The colour 

corresponds to ROP. 

Figure 4.12. Aerial photograph of part of the ash trial at the North York Moors site taken from a drone 

during leaf senescence, October 2015. 

Figure 4.13. Mean JD50_S, with 95% confidence intervals for each provenance at each trial site. 

Colours correspond to ROP (following inset map). 

Figure 4.14. Plot of the interaction between JD50_S and trial site per provenance. Colours 

correspond to ROP (following inset map). 

Figure 4.15. Linear regression of JD50_S versus latitude. Each point represents a provenance mean. 

Colours correspond to ROP (following inset map). 
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Figure 5.1. The four regions of provenance and 24 seed zones in Great Britain (modified from erbert 

et al., 1999) 

Figure 5.2. Seed collection (black small dots) and trial sites locations for ash (green dots, left), rowan 

(red dots, centre) and birch (yellow triangles, right). 

Figure 5.3. Leaves of ash, rowan and birch (left to right). The red circles indicate the part of the leaf 

that was measured 

Figure 5.4. Two microscope stomatal observations at x40 magnification. Rowan (left) has smaller and 
shorter stomata than ash (right). 

Figure 5.5. Among site variation in mean leaf area for three species. All three species show 

significant differences amongst trials (p<0.001). 

Figure 5.6. Interaction plot for changes in mean provenance leaf area over sites for three tree 

species. Note that the y axes are different for each species. The colours correspond to the ROPs. 

Figure 5.7. Linear regressions for trial sites where there was a significant relationship of provenance 

LA with Annual precipitation (AP) or Consecutive dry days (CDD) at site of origin. Each dot is a 

provenance mean. Colour corresponds to the ROP: dark blue NW, pale blue NE, red SW and yellow 

SE. Significance of R2 ***p<0.001, **0.001>p<0.01, and *0.01>p<0.05. 
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Figure 5.8. Among site variation in mean stomatal density (SD) (above) and stomatal length (SL) 

(below) per species. Asterisks indicate the level of significance of the effect of trial in one-way 

ANOVAS for SD and SL within species *** p<0.001, ** 0.001>p<0.01, and *0.01>p<0.05). 

Figure 5.9. Regression of SD (number of stomata / mm2) with latitude, longitude and annual 

precipitation by species and trial site. Points correspond to provenance means and the colour 

corresponds to ROP.  

Figure 5.10. MetOffice average climatic data, mean maximum temperature and mean rainfall (1961-

2010). 

Chapter 6 

Figure 6.1. Scatterplot of PC1 vs. PC2 for the three species. Each dot is a provenance score for PC1 

and PC2. On the left we have the plots with the arrows of each trait in each trial, and on the right we 

have the polygons with the ROP of the provenances. The colour represents the ROPs (dark blue 

NW, pale blue NE, red SW and yellow SE). 

Figure 6.2. Values from the PC analysis by species, the provenance values of the PC1 (left) and PC2 

(right) are mapped in the provenance locations. 

Figure 6.3. Scatterplot of PCAb for the three species. Each dot is the score for PC1b and PC2b in the 

provenances at the different sites. The colour represents the ROPs (dark blue NW, pale blue NE, 

red SW and yellow SE). 
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1.1 Challenges in British forests 

1.1.1 The value increasing forest cover, and having healthy 

resilient forests 

With evidence of global warming and increasing observations of the biological 

responses to that warming (Parmesan, 2006; IPCC 2007), attention has turned to the 

fate of trees and forests. Forests in Europe will have to adapt not only to changes in 

mean climate variables but also to increased variability with greater risk of extreme 

weather events, such as prolonged drought, storms, winds and floods (Lindner, 

2010). Tree species are central to many ecosystems and play key roles in providing 

habitat, food or mutualisms with many organisms, in addition to other ecosystem 

services and resources for humans. There are three possible fates for forest tree 

populations in a rapidly changing environment: persistence through migration to 

track ecological niches spatially, persistence through adaptation to new conditions in 

current locations or extinction (Aitken et al., 2008). Climate-based species 

distribution models predict the necessity of redistributions of tree species over the 

next century (Malcolm et al., 2002), although these are usually calculated without 

any intrinsic consideration of the biological capacity of populations for local 

adaptation. Trees live a long time and they might be adapted to the current conditions 

(or to past conditions or to the conditions in which they were initially selected in a 

younger age) but the trees that are growing now may not be adapted to the climate in 

the relatively near future.   

It is often expected that evolutionary change occurs over long time scales and that 

the tolerance range of a species remains the same as it shifts its geographical range 

(Pearson & Dawson, 2003). However, studies have shown that climate induced range 

shifts can involve not only migration into newly suitable areas, but also selection 

against phenotypes that are poor dispersers or are poorly adapted to local conditions 

(Davis & Shaw, 2001). There is evidence of local adaptation of introduced tree 

species within one or two generations of introduction (Bennuah, 1992; Saxe et al., 

2001).  

It is vital to ensure that the species and genotypes that are being proposed for 

planting today will be able to cope with the coming changes in the climate. The 
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question that arises is whether native tree populations will be able to adapt or migrate 

sufficiently rapidly to keep pace with climate change, whether their levels of genetic 

diversity will be sufficient to allow a rapid adaptation despite long generation times. 

Some authors have suggested that the tree populations will fail to adapt because: the 

rate of climate change is likely to be too great compared to tree longevity, they do 

not maintain sufficient adaptive variation and the landscape is overly fragmented and 

impermeable to dispersal (Davis & Shaw, 2001; Jump & Peñuelas, 2005). In 

contrast, others take a different view and consider that most tree species will be able 

to adapt, as they have high phenotypic plasticity, high levels of within-population 

genetic variation and effective long distance gene dispersal capacity (Hamrick & 

Godt, 1996; Parmesan, 2006; Petit & Hampe, 2006).  

In Great Britain (GB) forest land cover represents 11.6% of the total land area 

(Forestry Commission, 2003). Even though this figure is very low compared to the 

average forest cover for most other European countries (the average of Europe forest 

cover is 45% of land area), Britain’s forests are of high importance for many 

environmental, social and economic reasons. There are governmental targets to 

increase this woodland cover during the coming decades, which means that new 

woodland planting will increase in the near future. The Scottish Forestry Strategy has 

set out a target of increasing forest cover from 17 per cent to 25 per cent of land area 

by 2050, Wales has a target to create 100,000ha new woodland over the next 20 

years although England has not yet set a target for woodland creation (Atkinson & 

Townsend 2011). High costs are involved in establishing and maintaining new native 

forests in GB, therefore it is important to have as much evidence and information 

available as possible in order to maximise the likely success of  planting by basing 

them on informed decisions from the outset.  Linking and expanding native woods 

using natural regeneration or planting with well adapted stock will increase gene 

flow and strengthen the capacity of tree populations to survive for sufficient time for 

natural selection and evolutionary adaptation to take place (Clark, 2013; Cavers & 

Cottrell, 2014). 

Management of broadleaved tree species has become increasingly important during 

recent decades and broadleaves now constitute 83 per cent of all new forest planting 
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in the UK (Forestry Facts and Figures, Forestry Commission 2014). It has been 

shown that continental provenances planted in northern and western Britain have 

very low performance. Inspection of seed catalogues showed that seeds of many 

British native tree species have been imported into Britain from east and south-east 

Europe; which has been shown not to be well adapted to British conditions (Worrell, 

1992; Hubert 2005). Many species which are frequently imported are widely planted 

for conservation purposes, but there is a risk that maladaptation could lead to 

problems in establishment (Whittet at al., 2016).  

1.1.2 Seed sourcing guidelines in GB 

In Britain, the UK Forestry Standard (Anon, 2004) encourages the use of local stock 

for planting of native tree species. These guidelines are based on the principle that 

locally sourced planting stock is likely to be the best adapted material available for a 

site (Hubert & Cottrell, 2007). The seed sourcing guidelines for native British trees, 

created by the Forestry Commission in 1999, are based on a system of four regions 

of provenance (NW, NE, SW and SE) which are subdivided into 24 seed zones. 

These regions of provenance (ROP) and seed zones (SZ), shown in Figure 1.1, were 

designed to encourage planting of local material, based on the assumption that local 

stock is more likely to be better adapted. Growers are encouraged to source their 

planting stock for planting schemes in ancient and semi-natural woodlands from 

within their local seed zone (UKWAS, 2013).  Seed zone boundaries were delimited 

by major geomorphological landform boundaries and watersheds, but can include 

considerable environmental variation within them (Salmela et al., 2010). 

This system has not been scientifically tested; therefore, it is not supported by a 

strong evidence base, which could show that the system is fit for its purpose, i.e. that 

the trees that are now being planted following these guidelines will be adapted to 

their new planting site. This is a key factor to have healthy forests which will have a 

better chance to cope with future climates. Concern has been raised regarding the use 

of the same seed-sourcing system for all the species and whether following the 

strategy of “local is best” is the most appropriate method of provenancing, especially 

when taking into account climate change (Ledig & Kitzmiller, 1992; Broadhurst et 

al., 2008; Aitken & Whitlock, 2013; Breed et al., 2013). Furthermore, it has been 
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shown that there are high levels of climatic variation within some of the seed zones 

(Ennos et al., 1998; Salmela et al., 2010). 

Elevation can vary within a seed zone, and there is adaptive variation due to 

elevation. An increase in elevation can be equated to an increase in latitude. 

Populations from high elevations tend to flush later than population from low 

elevations, but populations from lower elevations have high phenological plasticity. 

Seedlings from high elevation exhibited lower phenological plasticity to temperature 

than low-elevation provenances, which suggests they are under stronger selection 

pressures (Vitasse et al., 2009; 2013). For this reason, the seed sourcing guidelines 

also suggest to plant within similar altitude range, although it simplifies it to two 

categories (under and over 300 m) (Herbert, 1999). 

Increasing concern about climate change, in particular, the suspicion that tree 

populations might struggle to cope with the changing conditions suggests that 

revision of guidelines might be necessary.  

1.1.3 Climate change predictions in GB 

The current climate in Great Britain is temperate oceanic with prevailing south-

westerly winds from the Atlantic Ocean. These currents, known as the Gulf Stream, 

condition the climate and ensuring milder temperatures than would be expected for 

the latitude. In the western coastal region, where the moderating effects of the Gulf 

Stream are strongest, temperatures are milder and rainfall is greater than in the east. 

Therefore, the island has a climatic west – east gradient, with higher temperatures, 

precipitation and wind speeds in the west. The other stronger gradient in Great 

Britain is the north – south gradient, in the north of the country temperatures tend to 

be lower therefore there is a shorter growing season than in the south. The south east 

of the island can experience drought while in the north is uncommon. Another factor 

that affects the climate in GB is the topography. Areas in the west and north are more 

mountainous. The oceanic climate in GB has four distinct seasons. However, 

differences between these seasons are not as extreme and contrasting as those found 

in a continental climate (Barrow & Hulme, 1997). 
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Figure 1.1. The four regions of provenance and 24 seed zones in Great Britain (modified 

from Herbert et al., 1999) 

 

Temperature observations indicate that temperature in GB is increasing (Jones & 

Hulme, 1997). In the last 45 years, all parts of the UK have experienced increase in 

heavy precipitation events in winter; and most parts of the UK (except parts of the 

north of England and northern Scotland) have had dried summers, although annual 

precipitation sums have not shown clear change over time (Jenkins et al., 2008).  

Climate projections for the UK (UKCP09) indicate an increase in mean summer 

temperatures of 3 – 4 °C by the 2080s under the medium emissions scenario, with the 

increase being greater in the south and east. Although little change in total annual 

rainfall is predicted, the distribution of this rainfall throughout the year will change. 

It is expected that summers will have a lower precipitation and winters will have 

higher precipitation totals, with a larger contribution coming from intense 

precipitation events in winter. As a result, summer droughts may become more 
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frequent and severe. Furthermore, a larger proportion of the rainfall is projected to 

occur in shorter periods of time during extreme events. Cloud cover, particularly in 

summer, will decline. It is unlikely that an abrupt change to the Atlantic Ocean 

Circulation (Gulf Stream) will occur in the 21st century (Murphy et al., 2009). 

Despite that higher temperatures and levels of CO2 are expected to increase tree 

productivity and growth in areas which will not be limited by water availability 

(Saxe et al., 2001; Boisvenue & Running, 2006; Lindner et al., 2012); these 

projections of the climate changing in GB could have negative repercussions on 

forests. Warmer and drier summers will increase the risk of drought in some areas, 

mostly in the SE of England (Jerkins et al., 2010). Extreme drought events have been 

documented to lead to mortality in trees (McDowell et al., 2008), and examples of 

drought induced mortality events have been recorded in European forests (Allen et 

al., 2010). Furthermore, flooding might increase, due to the intense precipitation 

events which are expected to increase in winters. Trees can help mitigate flooding 

(Calder et al., 2003), however this is less effective when trees are dormant in winter. 

1.2 Adaptive capacity of trees 

To be able to understand how tree populations will react to climate change we first 

have to understand their past adaptive capacity and their current levels of adaptive 

genetic variation. Many species have wide geographical ranges, occupying very 

diverse environments which cause that selective pressures vary spatially (Kawecki & 

Ebert, 2004). The distribution of plant species is strongly influenced by climate and 

water regime (Woodward, 1987; Huntley, 1991). Plants have evolved in such a way 

that they are tuned to the seasonality of their environment. To respond to temporal 

environmental variation tree populations exhibit two mechanisms (Sultan, 1995): 

with phenotypic plasticity (which allows single genotypes to produce different 

phenotypes in different environments) or with adaptive genetic differentiation 

(differentiation due to different alleles; or different frequencies or allele 

combinations). Natural selection, genetic drift and mutations tend to increase genetic 

differentiation among populations, while phenotypic plasticity and gene flow tend to 

reduce it. 
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1.2.1 Genetic diversity in tree populations 

Natural selection requires a source of heritable variation upon which to act. Genetic 

diversity provides the raw material upon which natural selection works thereby 

allowing for adaptation to the novel environment, and thus has an important role in 

maintaining the resilience of forest ecosystems to threats associated with climate 

change. In a population these sources of genetic diversity can come from mutation, 

from migration or gene flow. Genetic variation observed between populations maybe 

not be the results of adaptive divergence but the result of drift, migration or other 

characteristics of the populations’ history (Kawecki & Ebert, 2004). When different 

populations in different locations experience different environmental conditions, 

natural selection causes populations to become adaptively different from one another 

(Kawecki & Ebert, 2004; Hereford, 2009), a process which can take place even in the 

absence of strong neutral genetic differentiation. This situation of local adaptation is 

common in trees (Savolainen et al., 2007) and has been demonstrated in many 

studies. Local adaptation is stronger in situations where selection pressures are 

intense, population sizes are large and where populations have been present in a 

given location for many generations (Savolainen et al., 2007).  

 

Gene flow can be extensive in forest trees (Savolainen et al., 2007). Gene flow can 

counteract genetic differentiation and adaptation, allowing an influx of genetic 

variation from sites with different natural selection pressures. This has been 

suggested as one factor that might cause range limits in different species: if 

peripheral populations receive high levels of gene flow from other parts of the 

distribution, they might not be able to reach their optimum level of adaptation 

(García-Ramos & Kirkpatrick, 1997). When environments are diverse and gene flow 

limited, local adaptation may be constrained by small population sizes (Savolainen et 

al., 2007), in such cases gene flow enhances adaptive potential, avoiding inbreeding 

depression (Kremer et al., 2012). In GB genetic variation observed (mainly 

selectively neutral variation) in tree populations is also due to the relative recent 

history, as tree species mostly recolonized GB since 10,000 years ago, coming from 

refugia mainly in the south of Europe (Birks, 1989). The high levels of genetic 

diversity in tree species (Hamrick et al., 1992) increase the probability that a 
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proportion of genotypes will survive in to the future by increasing the adaptability of 

that population (Hamrick, 2004). Linking and expanding native woods using natural 

regeneration or planting with well adapted stock will increase gene flow and 

strengthen the capacity of tree populations to adapt. This can then allow the time for 

natural selection and evolutionary adaptation to take place. Tree offspring can be 

very large and highly variable, and usually only a small proportion will survive to 

maturity. Natural selection is typically very strong at early life stages when trees are 

particularly sensitive to stress. (Persson & Stahl, 1990; Petit & Hampe, 2006). 

 

Evolutionary change is usually expected to occur over long time scales and that the 

tolerance range of a species remains the same as it shifts its geographical range 

(Pearson & Dawson, 2003). However, studies have shown that climate induced range 

shifts can involve not only migration into newly suitable areas, but also selection 

against phenotypes that are poor dispersers or poorly adapted to local conditions 

(Davis & Shaw, 2001). For example, rapid evolutionary change can and does occur 

as demonstrated by some plant species tolerance to heavy metals (Wu et al., 1975; 

Muller-Starck, 1985).  

1.2.2 Phenotypic plasticity  

Trees can respond to environmental change through acclimation within their own life 

time. The process by which individuals can alter their phenotype is known as 

phenotypic plasticity. Phenotypic plasticity involves non-heritable change in an 

individual’s physiology in the absence of changes in their genetic constitution 

(Nicotra et al., 2010). Since trees cannot move and have long life-spans which 

include exposure to a wide range of conditions, plastic responses are highly 

developed in trees (Jump & Peñuelas, 2005; Alberto et al., 2013). Plasticity is under 

some genetic control and can therefore be acted on by selection to fit the demands of 

different environments (Bradshaw 2006; Lindner et al., 2010). Highly variable 

environments are likely to select for phenotypic plasticity across a range of traits, 

plastic responses will be crucial to cope with the current climate change (Jump & 

Peñuelas, 2005; Botero et al., 2015). However, plastic responses are, on the other 

hand, associated with ontogenic costs, or trade-offs among traits (DeWitt et al., 1998; 
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Valladares et al., 2007; Richter et al., 2012). Selection for plasticity may conceal 

adaptive genetic responses to directional change, although phenotypic plasticity has 

to be considered as an adaptive trait in itself (Jump & Peñuelas, 2005). There is 

plenty of evidence of phenotypic plasticity as a response mechanism to 

environmental change in temperate tree species (Barnett and Farmer, 1980 (Prunus 

serotina); Kramer, 1995 (seven tree species); Grantani et al., 2003 (Quercus ilex); 

Rehfeldt et al., 1999 (Pinus contorta)).  

 

1.4. Measuring adaptive capacity of trees 

1.4.1. Common garden experiments 

To assess the potential for adaptive response in forest tree populations it is necessary 

to investigate current levels of phenotypic plasticity and patterns of adaptive genetic 

variation. To measure the sources of variation (genetic diversity or phenotypic 

plasticity) and the ways different populations have cope to adapt to environments we 

can use common garden experiments. These involve growing plants raised from seed 

together in a common environment. Because the environment is held constant, it is 

possible to observe the differences between tree populations which are determined by 

their genotype. Replicating the experiment in multiple environments allows 

comparison of trees from the same population growing in different environments; 

this enables assessment of phenotypic plasticity because responses of similar 

genotypes to different environments can be observed. Common garden experiments 

have revealed high among-population levels of genetic variation for quantitative 

traits related to adaptation, geographic structure of the variation along environmental 

gradients, and genotype-environment interactions, providing strong evidence of local 

adaptation of populations to climate (Howe et al., 2003; Savolainen et al., 2007).  

Common garden trials of species such as Scots pine (Perks & MacKay, 1997), birch 

and oak (Worrell, 1992) have already demonstrated that British material is better 

adapted than provenances from elsewhere in Europe to conditions in Britain. 

However, to develop an understanding of the pattern of distribution of adaptive 
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variation in our native tree species at a British, as opposed to a European scale, trials 

based on material collected from provenances throughout Britain are required. There 

is limited information on the distribution of adaptive variation and phenotypic 

plasticity for British tree populations. There are some results for Betula pendula 

(Blackburn & Brown, 1988; Billington & Pelham, 1991), Pinus sylvestris (Perks, 

1994; Perks & McKay, 1997; Perks & Ennos 1999; Salmela et al., 2013), Crataegus 

monogyna (Jones et al., 2001) and Fraxinus excelsior (Cundall et al., 2003; Boshier 

& Stewart, 2005; Clark, 2013), although they were obtained from young provenance 

and progeny trials and based only on a restricted number of provenances. Also, the 

studies focus mainly on few characters such as tree height and bud flush.  

Relatively little information is available about the genetic variability in native tree 

populations for the whole range of Great Britain. There is a need for research to 

provide information on the pattern of adaptation, the extent of the phenotypic 

plasticity and the extent of variation for adaptive characters in British range. An 

understanding of these is necessary to create proper guidelines for seed transfer. 

Different species behave in different ways, for that reason, the adaptive differences 

may occur at differing spatial scales (Ennos et al,. 1998; Vitasse et al., 2009). This 

may be related to the reproductive strategies of the species or the complexity of 

environment they inhabit. In some cases significant differences may exist over short 

distances, while other species might be relatively similar across large areas. By 

studying variation in more than one tree species, different patterns may emerge, 

which would be of significance for management of genetic resources. 

1.4.2. Measuring the relevant phenotypic traits 

It is important to measure appropriate traits when assessing a tree; the characteristics 

which will allow assessment of tree fitness and its adaptive variation are those related 

to tree performance, and those traits responsive to environmental change.  Such traits 

should include: 

a) Tree performance:  It is important that trees survive and grow well to achieve 

maturity and be able reproduce. The height of the trees and DBH are important traits 

as a measure of vegetative fitness. Also, tree height is related to the adaptation of the 
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length of the growing season (Chuine et al., 2006). Stem diameter is an important 

measure to understand tree growth, it complements the height measurement 

analysing height:diameter ratios. They are also relatively simple and quick 

measurements, especially DBH. Survival, is essential for trees to survive to assure 

the viability of the population. 

Stem form is also a very indicative trait. Excessive forking can indicate a 

maladaptation to the growing season (Park & Talbot, 2018) and stem inclination can 

be related with a weak root system (which can indicate lower tolerance to wind high 

intensity). Damage to terminal buds leads to outgrowth of other apical buds causing 

forking of trees. This can be considered a defect if the production of timber is an 

important objective. However, the cause of this forking gives interesting 

information. There is relation between early flushing and frost damage, which leads 

to poor stem form. Late spring frost causes damage to terminal buds, despite not 

being the only possible reason for forking (Morin & Chuine, 2014). For example in 

the case of ash trees in Britain, the main two causes of forking are frosts and ash bud 

moth (Kerr & Boswell, 2001). Seaman (2007) showed the relation between tree 

architecture and the timing of the bud burst in spring, using provenance trial of ash 

from different parts of Europe. Another important factor of stem form is apical 

dominance. A viable bud is needed in order for the tree to grow in upwardly 

direction. If a branch that is not the apical branch becomes dominant the tree will 

start to divide its resources into such new dominant branch(es), creating a bent trunk. 

There are different ways that stem form can be recorded. Some of the quantitative 

ways could be: number of forks, height to the first fork, number of branches, and 

distance of stem from the vertical at breast height. However, tree stems can be very 

variable and difficult to assess just with quantitative measures, for example, there are 

many types of forking, with loss or not of apical dominance (Figure 1.2). Counting 

the number of forks should theoretically be a wholly objective measure, although 

some trees can be difficult to assess due to other strange stem forms. To ensure 

consistency, the measurements should be done by one same person.  
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Figure 1.2. Several types of tree forking. Extracted from Seaman 2007. 

 

b) Adaptation to future climate change. The length of the growing season is 

expected to change with climate change due to higher average temperatures. 

Phenology measurements including the timing of bud flushing, leaf senescence and 

flowering reflect the adaptation to the environmental conditions where the tree 

grows. Furthermore, tree phenology can also be related with tree stress (e.g. Lindner 

et al., 2010). In addition to warmer temperatures, seasonal patterns of water 

availability are predicted to continue to change. Leaf anatomy and other functional 

traits, including leaf size and shape, stomata density, C-isotope discrimination 

analysis, hairiness, venation density; as an indication of adaptation to moisture 

availability and other environmental factors, competitive strength and water use 

efficiency (Pérez-Harguindeguy et al., 2013). In this thesis we will explain the 

analyses for the assessments of leaf phenology, leaf size and stomatal traits. 

Leaf Phenology 

For deciduous trees the timing of the bud burst (flushing) and leaf fall (senescence) 

define the duration of the canopy, determining the growing season of the tree and 

therefore the carbon assimilation (Baldocchi & Wilson, 2001); and also influence 

vegetative growth and fitness (Rathcke & Lacey, 1985; Lechowicz & Koike, 1995). 
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Leaf phenology has been mostly related to air temperatures, and it is expected that 

global warming will have an effect of extension of the growing season (Chmielewski 

& Rötzer, 2001). Especially for budburst, which is largely governed by temperature, 

is expected to occur earlier in the season (e.g. Cannell & Smith 1983; Murray et al., 

1989; Hänninen 1991). 

Leaf area 

Leaf traits provide a link between various environmental factors and leaf functions 

(Xu et al., 2009). Leaf size has important consequences for the leaf energy and water 

balance. The size of a leaf has been related with nutrient availability and competitive 

strength, and the size and shape related to drought and light conditions. Intraspecific 

variation in leaf size has been connected with climatic variation, geology, altitude or 

latitude where heat stress, cold stress, drought stress and high radiation stress all tend 

to select for relatively small leaves (Parkhurst & Loucks, 1972; Orians & Solbrig, 

1977; Box, 1996; Cornelissen, 2003). Phenotypic plasticity has been shown to be an 

important factor in many leaf traits that are environmentally affected (McLellan, 

2000; Barkoulas et al., 2007; Xu et al., 2008). Specific leaf area (SLA) is the one-

sided area of a fresh leaf, divided by its oven-dry mass. SLA is frequently used in 

growth analysis because it is often positively related to potential relative growth rate. 

SLA tends to scale positively with mass-based light-saturated photosynthetic rate and 

with leaf nitrogen concentration, and negatively with leaf longevity and carbon 

investment in quantitatively important secondary compound such as tannins and 

lignin (Pérez-Harguindeguy et al., 2013). Leaf area traits are important in plant 

ecology because they are associated with many critical aspects of plant growth and 

survival (Garnier et al., 2001b; Shipley & Vu, 2002) and also they play an important 

role in explaining variation in ecological behaviour in plants (Garnier et al., 2001a).  

Leaf area measurements are broadly used in the literature as a comparison between 

species, for functional traits ecology approaches or large-scale meta-analyses. 

However, within species variability for leaf traits has been shown to be high and is 

typically related to environmental variation. Plants adapted to drier environments 

tend to have smaller thicker leaves, with higher SLA, stomatal density and lower 

guard cell length than plants of the same species but from less dry areas (Carpenter & 
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Smith, 1975; Abrams, 1986; Abrams et al., 1990).  This was shown well with green 

ash (Fraxinus pennsylvanica) in common garden experiments, where grown in the 

same conditions, trees from drier areas had higher SLA, lower stomata densities and 

smaller leaf sizes (Abrams et al., 1990). 

Stomata density 

Plant stomata are a vital gate between the plant and atmosphere, and they play a 

central role in plant responses to environmental conditions. Many researchers have 

reported stomatal density responses to various environmental factors, such as 

elevated CO2 concentration (Woodward, 1987), heat stress (Beerling & Chaloner, 

1993), salt stress (Zhao et al., 2006), precipitation change (Yang et al., 2007), and 

plant density (Zhang et al., 2003) and water use and drought adaptation (Galmés et 

al., 2007; Xu & Zhou, 2008; Abrams 1990; Abrams et al., 1994).  

1.4.3 Tree species chosen 

The tree species which have been chosen for the current study are common ash 

(Fraxinus excelsior L.), rowan (Sorbus aucuparia L.) and silver birch (Betula 

pendula Roth). These three have been chosen for having distinct ecological 

requirements and life strategies (Table 1.1). Although they are native and distributed 

across all GB, as their distribution maps show (Figures 1.3, 1.4 and 1.5), their 

ecological niches are different. Rowan is the most similar in ecological distribution 

to birch, since both are relatively short-lived trees, most characteristic of acidic soil 

and extending to high altitudes. However, they differ very much in their reproductive 

biology, as birch is wind dispersed and vast number of seeds and colonize unshaded 

areas; a trait which ash and birch have in common. Rowan has a very distinct life 

history strategy compared with the other two species. Rowan is insect pollinated and 

produces fleshy fruits which are eaten by birds, the main seed dispersers (Snow & 

Snow, 1988). In many places (mainly at lower altitudes) it often behaves as a hardy 

pioneer or post-pioneer species (Kullman, 1986; Rameau et al., 1989), populations of 

which are later replaced by late-successional tree populations. At high altitude, 

however, it is one of the few species which can maintain the tree habit and its 

populations may be part of the late-successional vegetation. 
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Table 1.1. Comparison of ash, rowan & silver birch for their life strategy traits (Grime, 2007). 

Traits Fraxinus excelcior Sorbus aucuparia Betula pendula 

Flowers 

 
Wind-pollinated 
Flowers are variously male, 
female and hermaphrodite, 
and may occur in various 
combinations on each tree. 
The proportion of male and 
female flowers can vary 
from year to year 

 
Insect-pollinated or selfed.  
<100 flowers in a compound 
corymb. 
Hermaphrodite. 

 
Wind-pollinated, monoecious 
in catkins 

Phenology 

 
Flowers April to May before 
leaves and sets seed from 
September onwards. 
Leaves shed October to 
November. 

 
Bud breaks in early spring. 
Flowers in May to June and 
sets seed in September to 
October. Leaves shed in 
autumn. Buds of montane 
populations show a 
considerable resistance to 
desiccation. 

 
Flowers April and may 
before the leaves are 
expanded. Seeds shed from 
September onwards 

Established 
strategy 

Intermediate between 
competitor and stress-
tolerant competitor. 
Wind dispersed. 

Stress-tolerant competitor. 
Bird/mammal dispersed, 
also water. 

Intermediate between 
competitor and stress-
tolerant competitor. Wind 
dispersed. 

Regenerative 
strategies 

 
Regenerates by seeds, 
which germinate in spring 
usually in the second year 
after shedding. Immature 
embryo and germination 
chilling requirement. 
Seedlings and saplings, 
often in clumps, in shaded 
habit, frequently recorded 
from shaded slopes of both 
north and southern aspect, 
although only abundant on 
S-facing slopes.   

 
Regenerates entirely by 
seed, which germinates in 
spring. Dormancy of seed 
broken by chilling.  
Sparse. No bias detected in 
unshaded sites but in 
shaded sites juveniles 
recorded more frequently on 
N-facing slopes. 
Seedlings very much shade 
tolerants. 

 
Seed germinates in spring. 
Seedlings may occur at high 
densities. Germination may 
be inhibited by placement 
under leaf canopy. Seedlings 
very susceptible to drought. 
Root:shoot ratio never 
exceeds 1. 
 

Distribution & 
Habitat 

 
All British Isles, except for 
parts of the Scottish 
Highlands. 
A frequent constituent of 
hedgerows. Seedlings and 
saplings recorded or 
observed in all but aquatic 
habitats. Particularly 
frequent in woodlands and 
meadows, and on shaded 
river banks, lead-mine spoil 
and scree. 

 
All the British Isles, although 
rare and possibly not native 
in some lowland C and E 
counties in England. Absent 
from wetlands. 
Seedlings and saplings 
mainly restricted to wooded 
sites, particularly on non-
calcareous. Also recorded 
from skeletal habitats 
including lead mines and 
wasteland. 

 
All through British Isles (90% 
vice-counties) but more 
common in the N and W.  
Seedlings and young 
saplings common in shaded 
habitats, particularly scrub 
and woodland on acidic 
strata. Also rocky open 
habitats. Is the second most 
common broad-leaved tree 
of British woodland and the 
most common in Scotland 

pH 

 
Juveniles widely distributed 
with slightly greater 
abundance in pH 6-8. 
Virtually absent from acidic 
soil. 

 
Mainly restricted to soil of 
pH< 5.5, a few records up to 
7. 

 
Widely distributed, but 
mostly frequent and 
abundant below pH 5. 

Altitude 

 
Mostly 100-300m, 
observed to 400m (up to 
585m). 

 
Juveniles particularly 
frequent in gritstone 
(siliceous) woodlands over 
200m, and observed up to 
400m. Extends on rocky 
ground to over 900m.  

 
Juveniles observed from 0-
400, more abundant 200-
300m, up to 760m. 
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Figure 1.3. Common ash (Fraxinus excelsior L.) distribution in Europe (source: 

http://www.euforgen.org). 

 
Figure 1.4. Rowan (Sorbus aucuparia L.) distribution in Europe (Caudullo, 2017). 

 
Figure 1.5. Silver birch (Betula pendula Roth) distribution in Europe (source: 

http://www.euforgen.org). 
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Fossil pollen records since the end of the last ice age indicate that most temperate 

forest tree species spent the cold period in southern Europe (Heuertz et al., 2004) and 

from there recolonized GB. The tree species survived the last glacial maximum (c. 25 

000–16 000 year BP) in a range of geographically and ecologically different refugia 

and followed their own path during the postglacial recolonization of Europe. 

Thermophilous tree species were confined to refugia in southern Europe during the 

last glacial maciumym. Other species, such as birch, were able to survive at much 

higher latitudes (Willis et al., 2000).  

For ash, Sutherland et al. (2010) found that neutral genetic differentiation among 

populations in GB is limited and that British ash belongs to a single large European 

meta-population which expanded from the Iberian Peninsula (Heuertz et al., 2004), 

with the exception of some rare chloroplast haplotypes in eastern Scotland. These 

rare haplotypes could have be derived from relict populations which survived in 

glacial refugia c. 12000 years BP, however, ash pollen is present in the south of 

England from 7000 BP, and it is thought to have become common in GB after 5000 

years BP (Birks, 1989; Rackham, 2006). Studies investigating very small fragmented 

populations (n = 10-30) in southern Scotland showed that pollen flow among 

fragmented stands can be extensive, encouraging high levels of genetic diversity in 

seed crops, should conditions for natural regeneration exist (Bacles et al., 2005; 

Bacles & Ennos, 2008). 

Fossil records show that birch was spread in central Europe during the ice age (Willis 

et al., 2000). Palmé (2003) found two major birch chloroplast haplotypes in Europe 

(one west one east) plus a few local ones, from which two one of the major 

haplotypes and a rare one are found in British birch populations. Populations in the 

Iberian Peninsula and in Italy did not take part in the birch postglacial recolonization 

of Europe. In contrast to thermophilous species that exhibit higher levels of variation 

in southern areas, the highest levels of variation in Betula pendula are found at high 

latitudes (Palmé, 2003). The two native birch species in GB (Betula pubescens Ehrh. 

and B. pendula) were present in the British Isles from about 13,500 BP (Pennington, 

1981). Birks (1989) explains that before 10,000 BP birch was well established in 
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much of central and northern England, southern Scotland, and parts of Wales. By 

9750 BP birch spread (c. 250 m yr-1) and expanded in north Wales, Skye and the 

adjacent mainland, and by 9500 BP it expanded in parts of the Scottish Highlands, 

with the exception of the frozen areas.  

 

Boyd & Dickson (1987) and Fossitt (1996) found rowan pollen in lake sediments 

dating from the early Holocene, in Scotland, which showed that around 6500 BP, 

rowan was present in the area. A study of a few rowan populations of central Europe 

(Raspé, 2001), found low genetic differentiation among rowan populations compared 

to the other tree species studied. This discrepancy might be accounted for by the 

contrasting life history traits of rowan, including bird dispersal of seeds and pioneer 

habit. The same low genetic differentiation was found in a previous study of isozyme 

variation (Raspé & Jacquemart 1998), suggesting high levels of gene flow. In a study 

which investigated small fragmented populations of rowan in southern Scotland 

(Bacles et al., 2004) found that despite being fragmented for many generations the 

populations retained substantial genetic diversity. However the populations were 

significantly genetically different amongst them, which could be due to reduced 

pollen flow. 
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1.5 Purpose of Thesis 

The purpose of this thesis is to address the knowledge gap which exist regarding the 

understanding of the genetic diversity for adaptive traits in British tree populations.  

Information which is required to understand and address the challenges that tree 

populations in GB are facing and will continue to face in the future.  

The value of the current study is that analyses of tree populations from all the three 

species distribution in GB, contemplating the wide range of environments found in 

GB, are provided. Moreover, we investigate a range of different traits which have not 

been studied before in British tree populations. Most studies which have looked at 

variation amongst British provenances of trees do it from the point of view of timber 

production and wood quality, and therefore they focus mostly on tree height, and 

many times conflate tree fitness with greater height, using one as a proxy for the 

other. In the current thesis we have not made that assumption, and we have tried to 

address trees as a whole with all their trait diversity, trying to understand the 

complexity of local adaptation from different points of view. 

In each chapter we have addressed the following questions: 

- Is there genetic diversity in the tree species provenances for that particular 

trait?  

- Do these differences show a geographical pattern? Or are these associated 

more with a particular environmental variable? 

- Are the patterns of genetic variation amongst provenances the same for the 

three species? 

- Is there phenotypic plasticity for that particular trait? Is the site effect bigger 

than the provenance effect? 

- Are there any genotype by environment interactions for that trait? 

These questions are addressed at each of the data chapters (Chapter 3, 4 and 5) for 

several traits. Moreover, in Chapter 2 we address the diversity of environments found 

in GB, trying to understand the geographical patterns, as that diversity is the basis of 

the selective pressures which the tree populations are exposed to, and whether how 

our sampling has collected this diversity of environments in a representative way. 
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In the discussion (Chapter 6) we synthesise all the results from the traits to try to 

understand the adaptive variation as a whole, and its geographical distribution; also 

site effect and plasticity. We compare our results with the current seed system in GB. 

The general questions we want to answer with this thesis are: 

 

1- Do British populations of ash, rowan and silver birch show high levels of 

genetic diversity within the British populations for relevant traits? Would this 

diversity be enough to allow an adaptive response to climate change? 

2- Do these populations show high levels of phenotypic plasticity? Would this 

plasticity help trees cope with climate change? 

3- Is the current seed sourcing guidelines for British tree species fit for purpose? 
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Chapter 2: Environmental setting of 

Great Britain 

 

Abstract: The current seed sourcing system used in GB to plant new native 

woodlands divides the island into 4 large regions of provenance (NW, NE, SW, SE), 

and seed collected from within a region must be planted within its boundaries to 

receive grant funding. This system was set up in 1999, without any data on patterns of 

genetic diversity in actual tree populations to support the ROPs divisions. Given the 

substantial environmental variation across GB, it is important to gain an understanding 

of the patterns of climatic variation that are likely to have shaped the adaptive pressures 

across the island.  The populations of ash, birch and rowan, used in all the data chapters 

of the current thesis were systematically sampled and distributed more or less evenly 

within the four ROPs. To analyse the pattern of climatic variation within and among 

the ROPs we used 13 climatic variables taken from each of our sampling locations and 

subjected this to PC analysis. The first two principal components accounted for 58% 

and 28% of the variation and were roughly associated with variation in mean 

temperature and continentality of climate respectively. Variation in PC1 value was 

largely accounted for by latitude of provenance (R2 = 0.52 – 0.72), while PC2 was best 

explained by joint variation in latitude and longitude of provenance (R2 = 0.14 – 0.42). 

By plotting provenance locations according to their PC1 and PC2 scores, we 

demonstrated that the climatic variation covered by the three species in our samples 

was largely overlapping, and that the trial sites had climates within the core climatic 
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envelope within GB for the three species. The trials should therefore allow meaningful 

comparisons of patterns of variation in adaptation across species. Additionally, we 

found extensive climatic diversity within each ROP. This was not evenly distributed 

across the 4 ROPs, and there was considerable overlap in the climatic envelopes of the 

four ROPs. We conclude that there is therefore no justification for including ROP as a 

nesting fixed factor in the analyses of morphological and phenological traits in our 

data chapters. However analysis of provenance variation with respect to latitude and 

longitude is justified and likely to be useful because of their relationships with climatic 

variation across GB. 

2.1 Introduction  

Many countries, including the UK, have seed sourcing guidelines for the planting of 

new trees which involve defining the geographical regions within which seed may be 

moved, ensuring that the risk of maladaptation is minimised (Ying & Yanchuk, 2006). 

The current UK seed sourcing system (Herbert et al., 1999) was defined in the absence 

of comprehensive data on the adaptive genetic variation of British trees species, and 

was based on major watersheds and geomorphological landforms, therefore making it 

a provisional system. Great Britain was divided into 24 seed zones (SZ) nested in four 

regions of provenance (ROP) (Figure 2.1), and planting locally seed collected from 

within each ROP is mandatory to obtain grants for planting new native woodland.  

There are problems with this system because seed transfer guidelines should ideally 

be designed with information on genetic and phenotypic diversity of the tree 

populations across each species distribution. These data were not available but can be 

obtained from multi-site common garden experiments conducted in field conditions or 

fully reciprocal transplant experiments (Rehfeldt et al., 2002; Reich & Oleksyn, 2008; 

Wang et al., 2006b).  Moreover, in contrast to other countries (Alía et al., 2009), in 

Great Britain (GB) the geographical division for seed sourcing is applied to all native 

trees and shrubs, with the only exception of Pinus sylvestris (Scots pine), which in GB 

is only considered native in Scotland.  

Another shortcoming of this seed zone approach is that geographical proximity does 

not necessarily mean that environmental conditions are similar, as microclimate and 
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topography can increase the environmental difference over a small spatial scale 

(Linhart & Grant, 1996; Bischoff et al., 2006; Jump et al., 2009; Loarie et al., 2009). 

This was demonstrated by Salmela et al. (2010), who showed that the current seed 

zones for Scots pine in Scotland include large climatic variation within them; and that 

most climatically similar native Scots pine sites were often not within the same seed 

zone. 

In this thesis we bring evidence from replicated common garden experiments in three 

species to understand whether the current system of seed sourcing in GB based on 

large geographical regions is the appropriate one, and also whether it is fit for the three 

species studied. Before addressing the former question, we first analyse in this chapter: 

a) the seed sampling that composes our common garden experiments, to see the extent 

of environments in GB that these samples cover; and b) the diversity of environments 

within GB, which set the selective pressure for local adaptation of tree populations. In 

particular we aim to establish whether our sampling covers the full diversity of climatic 

conditions present in GB. In addition, we wish to determine whether our sampling 

covers similar range of climates for each species so that we can conduct species 

comparisons. 

Another objective of this chapter is to establish a clear understanding of the climate 

pattern across GB to underpin the interpretation of the results presented in the later 

data chapters. An understanding of the climatic diversity and structure of our sampling 

is key to designing the appropriate data analysis approaches. A key question is whether 

we are justified in including ROP as a nesting fixed factor when analysing patterns of 

adaptive variation across GB. We also need to identify the most important climate 

variables on a GB scale so that we have some idea of the likely drivers of adaptation. 

We can then use our data from trials to test which climatic factors may be responsible 

for adaptive differentiation.  

A final aspect covered by our analysis concerns the environments in which the trial 

sites are located. Trials for each species are situated in different locations, in a range 

of environments. We need to examine the climatic variables at these sites to see how 

different they are and to understand their relative suitability for the species being 

studied.  
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2.2 Material and Methods  

2.2.1 Sampling provenances 

The same sampling strategy was adopted for all three species; ash, Fraxinus excelsior 

L., rowan, Sorbus aucuparia L. and silver birch, Betula pendula Roth .This was based 

on the Forestry Commission seed zone map of Great Britain (Forestry Commission, 

1999; Figure 2.1). This divides the total area of Great Britain into 4 regions of 

provenance (North West NW, South West SW, North East NE and North West NW). 

These regions of provenance (ROPs) are further subdivided into a total of 24 seed 

zones based on natural topographical boundaries (Figure 2.1). Where possible two 

(three in a few cases for birch) self-sown semi-natural populations of each species 

(hereafter referred to as provenances) were sampled from each of the seed zones. 

Roughly equal numbers of seed were collected from a minimum of 20 (in birch a 

minimum of 30) maternal trees and combined together to constitute the provenance 

sample. Selection of mother trees was not deliberately biased towards superior 

phenotypes, and, where possible, mother trees were located at least 100m apart. For 

ash and rowan 42 provenances where sampled (Table 2.1 and 2.2, respectively) and 

for birch 32 provenances (Table 2.3). 

 
Figure 2.1. The four regions of provenance and 24 seed zones in Great Britain (modified 

from Herbert et al., 1999) 
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Table 2.1. Details of the ash provenance locations.  

ROP Ash provenances Lat Long Alt (m) 

NW Duisdale, Skye 57.176 -5.751 18 
Kilninian, Mull 56.530 -6.208 71 
Rassal Wood, Kishorn 57.426 -5.591 78 
Ardtornish,Morvern 56.560 -5.741 20 
Glasdrum Wood, Loch Creran 56.574 -5.232 33 
Add Valley, Kilmichael Glassary 56.106 -5.420 30 
Clyde Valley 55.680         -3.913 159 
Shielhill Glen 55.911 -4.825 107 
Penpont 55.235 -3.853 90 
Nith Valley 55.320 -3.829 141 
Crawick Water 55.381 -3.929 162 
Warks Burn 55.088 -2.222 90 

NE Erchite Wood, Dores 57.368 -4.345 56 
Craigellachie 57.484 -3.170 102 
Fearnan Forest, Kenmore 56.579 -4.037 142 
Glen Lyon 56.602 -4.248 183 
Den of Alyth 56.623 -3.258 152 
Pitcairns Glen, Dunning 56.300 -3.573 119 
Tweed Valley North Glen 55.588 -2.662 68 
Castle Eden Dene, Peterlee 54.743 -1.352 102 

SW Witherslack 54.264 -2.870 79 
Park Wood&Hutton Roof 54.182 -2.689 170 
Via Gellia Woods 53.104 -1.619 239 
Upper Wharfedale 54.203 -2.104 202 
Greta Wood, Purbeck Ridge 50.637 -2.136 126 
Horner Wood, Porlock 51.189 -3.583 102 
Cardiff Area 51.546 -3.234 158 
Aberystwyth Area 52.430 -4.059 90 
Betws-y-Coed 53.079 -3.799 57 
Talgarth 51.986 -3.213 198 

SE Forge Valley 54.274 -0.490 52 
Ashberry Woods 54.262 -1.133 142 
Treswell Woods 53.308 -0.861 54 
Hayley Wood 52.158 -0.110 79 
Tick Wood, Ironbridge 52.621 -2.523 99 
Forest Bank, Marchington 52.852 -1.820 142 
Wyndcliff, Wye Valley 51.678 -2.679 208 
Midger Wood 51.606 -2.285 160 
Pheasant Copse, Petworth 51.011 -0.628 60 
Bignor Hill  50.908 -0.616 194 
Groton Wood 52.050 0.883 66 
Out Wood 52.166 0.415 96 
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Table 2.2. Details of the rowan provenance locations. 

ROP Rowan provenances lat long Alt (m) 

SW 
 

Assynt 58.171 -5.261 27.48 

Inverpolly 58.093 -5.232 82.12 

Allt Volagir, South Uist 57.247 -7.310 68.76 

Salen, Isle of Mull 56.527 -5.961 5.80 

Tokavaig, Isle of Skye 57.139 -5.965 25.40 

Glen Loy 56.901 -5.071 61.96 

Add Valley 56.141 -5.486 33.72 

Strathlachlan 56.128 -5.152 70.32 

Falls of Clyde 55.653 -3.778 160.84 

Mugdock Country Park 55.971 -4.320 161.8 

Glenlee 55.088 -4.194 129.68 

Stroan Bridge 55.070 -4.545 66.72 

Lochwood 55.258 -3.443 180.2 

Ettrick Water 55.420 -3.133 234.16 

SE 
 

Bunchrew 57.471 -4.315 100.8 

Craigdarroch 57.574 -4.605 31.8 

Cleanhill Wood, Aberchirder 57.554 -2.636 158.76 

Birks of Aberfeldy 56.602 -3.872 285.96 

Pressmennan Wood 55.951 -2.589 149.84 

Castle Eden Dene 54.743 -1.351 107.64 

NW 
 

Horner Wood 51.194 -3.589 232.84 

Holford/Hodder’s Combe 51.158 -3.218 164.88 

Duddon Valley 54.316 -3.230 61.84 

Naddle Forest 54.511 -2.805 291.24 

Brignall Banks 54.496 -1.913 222.36 

Gelt Wood 54.903 -2.733 139.16 

Brechfa 51.993 -4.063 146.28 

Beddgelert 53.025 -4.138 257.76 

Mynydd Du 51.954 -3.105 532.12 

Ugly House 53.106 -3.868 231.32 

NE 
 

Forge Valley& Raincliffe Woods 54.275 -0.484 89.64 

Ashberry and Reins Woods 54.253 -1.128 106.24 

St. He len’s Wood, Coningsby 53.113 -0.123 6.24 

Moor Farm 53.156 -0.181 14.8 

Pepper Wood 52.368 -2.092 144.76 

The Ercall 52.687 -2.522 185.8 

King’s Bottom, Longleat 51.191 -2.241 219 

Chestnuts Wood, Forest of Dean 51.829 -2.470 161.72 

Saxonbury Hill 51.076 0.251 183.12 

Seal Chart 51.278 0.237 129.44 

Culter’s Wood, Freston, Ipswich 52.011 1.142 34.4 

Felbrigg great Wood, Cromer 52.913 1.264 83.24 
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Table 2.3. Details of the birch provenance locations. 

ROP Birch provenances lat long Alt (m) 

NW Affric 57.31 -4.80 118 
Loch Creran 56.55 -5.28 26 
Dumfries 55.11 -3.58 29 

NE Elgin 57.42 -3.38 140 
Great Glen 57.21 -4.62 68 
Glen Garry 57.07 -4.83 54 
Spinningdale 57.89 -4.26 38 
Dunkeld 56.56 -3.56 143 
Alford 57.24 -2.67 142 

SW Bovey Tracey 50.59 -3.71 120 
Bovington Camp 50.71 -2.21 50 
Penrith 54.7 -2.96 280 
Ambleside 54.4 -2.98 60 
Bolton Abbey 54.04 -1.95 220 
Hamsterley Forest 54.7 -1.86 200 
Sheffield 53.28 -1.56 240 
Machynlleth 52.58 -3.85 90 
Taffs Well 51.55 -3.27 100 
Llanidloes 52.46 -3.53 180 
Persteigne 52.24 -3.05 200 
Llangollen 52.98 -3.19 170 

SE Castle Howard 54.12 -0.92 76 
Sand Hutton 54.02 -0.95 25 
Leicester 52.73 -1.23 160 
Clumber park 53.26 -1.06 55 
Cannock Chase1 52.72 -2.04 180 
Cannock Chase 2 52.74 -2.05 140 
Monmouth 51.79 -2.69 170 
Tollard Royal 50.96 -2.21 130 
Godalming 51.14 -0.6 170 
Basingstoke 51.38 -1.02 50 
Braintree 51.91 0.54 80 
Dunwich 52.26 -1.61 20 

 

2.2.2 Trial sites locations  

The provenances were planted in multiple trial sites across the country (Figure 2.2), 

two trials for ash (Llandovery and North York Moors), four for rowan (Alice Holt, 

Llandovery, North York Moors, Dornoch) and four for birch (Llandovery, Thetford, 

Drummond and Dornoch). Most of these trial sites (Llandovery trial sites for the three 

species, Alice Holt, Thetford, North York Moors for ash) are established on fertile 

soils previously used as arable land where trees might not have been growing naturally. 

The other trial sites are in more demanding locations: steep hills, damp soils, locations 
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exposed to high winds, where some of the species will experience challenging growing 

conditions (North York Moors rowan: Drummond and Dornoch, rowan and birch).  

 

 

Figure 2.2. Seed collection (black small dots) and trial sites locations for ash (green dots, 

left), rowan (red dots, centre) and birch (yellow triangles, right) 

 

Table 2.4. Trial site locations and altitude, for the three species. 

Spp Trial Site 
 Planting 

Year 
County Lat Long Alt (m) 

Ash       

 NYM (North York Moors) 2007 East Yorkshire 54.3 -1.9 113 

 LLAN (Llandovery) 2007 Carmarthenshire 51.9 -3.8 215 

Rowan       

 DOR (Dornoch) 2006 Sutherland 58.1 -4.4 130 

 NYM (North York Moors) 2006 East Yorkshire 54.3 -0.5 197 

 LLAN (Llandovery) 2006 Carmarthenshire 51.9 -3.8 240 

 AH (Alice Holt) 2006 Surrey 51.2 -0.8 118 

Birch       

 DOR (Dornoch) 2003 Sutherland 57.9 -4.1 135 

 DRUM (Drummond) 2003 Perthshire 56.6 -4.1 218 

 THET (Thetford) 2003 Norfolk 52.4 0.6 54 

 LLAN (Llandovery) 2003 Carmarthenshire 52.6 -4.1 114 
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2.2.3 Environmental covariates  

Climatic data for each of the provenance and trial site locations were obtained from 

the Met Office. A total of 13 climatic variables (Table 2.5) were chosen that were 

considered relevant for plant growth. We acknowledge that there will be differences 

at the microclimatic level, which will not be reflected in the large scale extrapolated 

climatic data provided by the Met Office, in 5 by 5 km polygons (Perry & Hollis, 

2005). However, as the differences in these variables are very large across GB, we 

expect them to provide a good signal of climatic variation. 

 

Table 2.5. Environmental variables used in the PCA analysis. 

Variable 
Variable explained 

MetOffice (1970-2011), 5x5km 
AP Total precipitation (monthly mean) 
ConsDryDays Maximum number of consecutive dry days (annual mean) 
DaysSnowLying Days of snow lying (monthly mean) 
EXT Extreme temperature range (annual mean) 

GDD Growing degree days (annual mean) 

GFD Days of ground frost (monthly mean) 

GSL Growing season length (annual mean) 

MeanCC Mean cloud cover (monthly mean) 

MFT Mean air temperature February (coldest month) 

MJT Mean air temperature July (warmest month) 

MWSpeed Mean wind speed at 10 m (monthly mean) 

SunHours Sunshine duration (monthly mean) 

VAPPressure Mean vapour pressure (monthly mean) 

 

2.2.4 Analyses of principal components 

A principal component analysis (PCA) was carried out with the 13 climatic variables 

(Table 2.4) derived from the 116 provenance locations of all three species, which 

comprise 42 provenances of ash, 42 of rowan and 32 of birch planted in at least one of 

the trials (Tables 2.1 to 2.3). In order to determine where the trial sites fit climatically 

with respect to the provenances, a separate PCA was carried out which additionally 

included the climatic data from the trial sites for each of the three species (Table 2.4). 

Correlations were calculated amongst climatic variables, and with PC components and 

coordinates (latitude and longitude), using Pearson’s correlation coefficient. For the 

first two PCA components, linear regressions (single and multiple) were applied to test 

the relationship with latitude and longitude of the home site. Linear regression plots 
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were drawn.  Data analysis and visualisation were performed in the R statistical 

environment (R version 3.2.3, Core Team, 2015). 

 

2.3 Results  

2.3.1 PCA all species -Provenance locations climatic data vs. 

geographical pattern 

 

The first two components together account for 80% of the variation, 58% PC1 and 

22% PC2. The last 4.4% of the variance is explained between the 5th and 13th 

component (Table 2.6).  

 

 

Table 2.6. Proportion of the variance in the first 5 components of the PCA analysis. 

 Comp.1  Comp.2 Comp.3 Comp.4 Comp.5 

Proportion of variance 0.583 0.216 0.123 0.034 0.015 

Cumulative proportion 0.583 0.799 0.922 0.956 0.971 

 

 

Table 2.7. Loadings of each variable to PC1 and PC2. 
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The climatic variables which contribute over 30% of their loadings and over 0.8 on 

Pearson’s correlation coefficient to the first principal components (PC1) are the 

following: growing degree days (+36%, cor= 0.98), mean July temperature (+35%, 

cor= 0.97), vapour pressure (+34%, cor= 0.94), consecutive dry days (+33%, cor= 

0.90), sun hours (+32%, cor= 0.88), and growing season length (+0.30, cor= 0.83) are 

positively correlated; cloud cover (-34%, cor= -0.93) is negatively correlated with 

PC1.   

 

The climatic variables which contribute over 20% of their loadings and over 0.3 on 

Pearson’s correlation coefficient to the second principal components (PC2) are the 

following: extreme temperature range (+50%, cor= -0.84) and ground frost days 

(+0.42, cor= 0.70) are positively correlated with PC2; wind speed (-44%, cor= -0.74), 

days of snow lying (-44%, cor= -0.74), growing season length (-23%, cor= -0.38), 

annual precipitation (-21%, cor= -0.36), and February mean temperature (-21%, cor= 

-0.35) are negatively correlated with PC2.  

 

PC1 is positively correlated with parameters associated with to warmer and drier 

environments, and negatively correlated with cloud cover. In contrast, PC2 is 

positively correlated with extreme temperature range (which would be related to 

stronger continentality) and ground frost days; and it is negatively correlated with 

temperature, precipitation and wind. In the PCA plot (Figure 2.3) PC1 is on the x axis, 

and the provenances located towards the right of the plot will tend to have a warmer 

climate, with a longer growing season, higher vapour pressure and less cloud cover. 

PC2 provides the y axis; provenances in the lower part of the plot tend to be from sites 

which experience more precipitation, more wind and more days of snow lying; and 

provenances on the top part of the y axis will be more continental and have more frost 

days. 
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Figure 2.3. Scatterplot of the provenances’ PC1 and PC2 values. The three species: ash 

(round points and green polygon), rowan (square points and orange polygon), and birch 

(triangle points and purple polygon). The colour of the points corresponds to the ROP of the 

provenance. The arrows correspond to the direction and contribution in the plot of the 13 

climatic variables. 
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Figure 2.4. Correlation amongst all the 13 environmental variables, blue indicates a positive 

correlation and red indicates a negative correlation.  

 

Table 2.8. Pearson’s correlation coefficients between each variable and PC1 and PC2. 

Variable 

Pearson’s corr. 
coeff 

PC1 PC2 

MeanCC -0.9298 -0.0191 

GFD -0.6254 0.6958 

AP -0.4819 -0.3561 

MWSpeed -0.3834 -0.7428 

DaysSnowLying -0.3834 -0.7428 

EXT 0.3483 0.8370 

MFT 0.7696 -0.3461 

GSL 0.8288 -0.3844 

SunHours 0.8828 -0.0361 

ConsDryDays 0.9080 0.1319 

VAPPressure 0.9408 -0.2637 

MJT 0.9680 0.1727 

GDD 0.9841 -0.0381 
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The individual climatic variables used to calculate PC1 and PC2 are correlated with 

latitude and longitude. It is important therefore to determine the geographical patterns 

of variation for the more complex PCs. Within GB the latitude and longitude of sites 

are naturally correlated because of the orientation of GB on the globe (corr= -0.62); 

towards the north the island also goes towards the west. This means that longitudinal 

clines need to be understood in the context of latitude. Thus it is important to look not 

only at simple regression of PCs on latitude and longitude, but on multiple regression 

on latitude and longitude together. For PC1 latitude alone explains most of the 

variation, with a negative regression on latitude for all three species (ash R2: 68%, 

p<0.001; rowan R2: 52%, p<0.001; and birch R2: 70%, p<0.001) (Table 2.10). For PC1 

the three species show a very similar slope and intercept with PC1 values increasing 

to the south (Figure 2.5). For PC2 a multiple regression on latitude and longitude 

explains most of the variation, whereas simple linear regressions with either latitude 

or longitude, are not significant or explain very much less of the variation (Table 2.10). 

Multiple regression explains 23% (p<0.01) of variation in ash, 14% (p<0.05) in rowan 

and 42% (p<0.001) in birch.  

 

Table 2.9. Pearson’s correlation coefficients for each variable with latitude and longitude. 

Variable 

Pearson’s corr. 
coeff 

Lat Long 

Latitude 1 -0.6168 

Longitude -0.6168 1 

PC1 -0.8010 0.6027 

PC2 0.0912 0.3116 

MeanCC 0.8265 -0.7607 

GFD 0.4965 -0.1388 

AP 0.3731 -0.7263 

DaysSnowLying 0.0313 -0.2071 

MWSpeed  0.0313 -0.2071 

EXT  -0.3407 0.5145 

MFT  -0.4300 0.0518 

GSL  -0.5649 0.1695 

GDD  -0.7552 0.5448 

MJT -0.8008 0.6951 

VAPPressure -0.8337 0.4601 

SunHours -0.8626 0.7290 

ConsDryDays -0.8856 0.6818 
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Figure 2.5. Regression of PC1 with latitude (top) and longitude (below). Green line ash, 

orange rowan and purple birch. 
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Figure 2.6. Regression PC2 with latitude (top) and longitude (below). Green line ash, orange 

rowan and purple birch. 
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Table 2.10. Linear regressions (single & multiple) of PC1 and PC2 with latitude and 

longitude. 

  Ash Rowan  Birch 

PC1 

Latitude 

-Lat *** 

R2: 0.6794 

p-value: 1.204e-11 

-Lat *** 

R2:  0.5202 

p-value: 4.306e-08 

-Lat *** 

R2: 0.7018 

p-value: 1.355e-09 

Longitude 

+Long *** 

R2: 0.4486 

p-value: 7.406e-07 

+Long *** 

R2: 0.2898 

p-value: 0.0001401 

+Long *** 

R2: 0.3071 

p-value: 0.0005929 

Multiple 

regression 

-Lat *** + Long * 

R2:  0.7056 

p-value: 1.661e-11 

-Lat *** + Long ns 

R2:  0.523 

p-value: 2.029e-07 

-Lat *** + Long ns 

R2:  0.7168 

p-value: 4.315e-09 

PC2 

Latitude ns ns 

+Lat * 

R2: 0.2189 

p-value: 0.004056 

Longitude 

+Long * 

R2: 0.1001 

p-value: 0.02333 

R2: 0.06616 

p-value: 0.05507 (ns) 
ns 

Multiple 

regression 

+Lat ** + Long *** 

R2:  0.2337 

p-value: 0.002098 

+Lat * + Long** 

R2:  0.1377 

p-value: 0.021 

+Lat *** + Long ** 

R2:  0.4199 

p-value: 0.0001417 
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2.3.2 PCA all species - Provenance locations and differences across the 

four ROPs 

 

In the PC1 versus PC2 scatterplot we drew a polygon around the provenances for each 

ROP (Figure 2.7). The largest overlap of the ROPs’ areas is between the NW and SW 

ROPs, which have also the largest polygons, while the NE ROP has the smallest 

polygon.   

 

  
Figure 2.7. Scatterplot of the provenances’ PC1 and PC2 values. The three species: ash 

(round points), rowan (square points), and birch (triangle points). The colour of the points 

corresponds to the ROP where the provenance is from. The polygons correspond to the 4 

ROPs. 
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Figure 2.8. Scatterplot of the provenances’ PC1 and PC2 values, separated by ROP and 

polygons by species. Provenances separated by the four ROPs: NW (dark blue, top left), NE 

(pale blue, top right), SW (red, bottom left), and SE (yellow, bottom right). Each polygon is 

one species: ash (round points, green polygon-outline), rowan (square points, orange 

polygon-outline), and birch (triangle points, purple polygon-outline). 

 

We drew PC1 versus PC2 scatterplots for each ROP, to display the differences in the 

distribution of each species for each ROP (Figure 2.8). For the NW ROP, we see that 

the polygons for each of the three species only overlap over a small area, the ash 

provenances’ polygon being the largest. For the SW ROP, we find that the polygons 

are larger than for the other ROPs, but quite similar among tree species. For the eastern 

ROPs, the polygons are smaller than the ones of the western ROPs, but quite similar 

in size amongst species, except for birch in SE which is much smaller. Overall, we see 

that the birch provenances occupy a smaller climatic range than the other species for 
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the NW, NE and SE ROPs; while rowan and ash polygons overlap much more, except 

in the NW ROP. 

 

2.3.3. PCA all species -Provenance and trial site locations 

In the PCA which incorporated the trial sites locations in the scatterplot of PC1 and 

PC2 (Figure 2.9) the trial sites lie within the core overlapping area of all three species, 

with the rowan Dornoch and the Alice Holt sites being the most outlying. In the more 

detailed scatterplot (Figure 2.10) it is clear that the provenances closest, in terms of 

climatic environment, to each trial site, are in many cases from a different ROP. In the 

Dornoch birch trial site, which is in ROP NE, the closest birch provenances in the 

scatterplot are from ROP SW and NW. In the rowan trial site located in the North York 

Moors (ROP SE) the closest provenance is from ROP NE. In the ash site of North 

York Moors (ROP SW) the closest ash provenances are from ROP NW and NE.  
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Figure 2.9. Scatterplot of provenance and trial sites PC1 and PC2 values. The three 

species: ash (round points and green polygon), rowan (square points and orange polygon), 

and birch (triangle points and purple polygon). The colour of the symbol corresponds to the 

ROP where the provenance or trial site is located. The symbols for the trial sites have a 

black outline and are labelled with the name of the trial site. 
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2.4 Discussion  

This chapter explores the sampling locations to understand the variation of the climatic 

and geographic factors we start with and which we will use in the later chapter to 

explain the variation found in the results. Another reason that justifies the 

incorporation of this chapter is to explain why we had not included the seed zones or 

regions of provenance in the data analyses in the following chapters. It had been shown 

before (Salmela et al., 2010) how British seed zones, while they are geographically 

close by, it does not mean that they are climatically uniform and that provenances from 

different seed zones can be more climatically similar than others form the same seed 

zone. Also, topography is another factor that affects climate in a way that complicated 

defining seed zones (Campbell, 1978). 

We have seen that there is a large amount of climatic variation in Great Britain and 

that the current seed zones might not be good enough to help us understand the 

variation. We have found that latitude is a major factor which encompasses most 

important variation, however we see that longitude is also important as it incorporated 

other aspects that latitude cannot. For example, in Finland or other Nordic countries 

latitude is the key factor to explain the variation north to south of tree variation 

(Viherä-Aarnio and Velling, 2008), however in GB we have an east west gradient as 

well due to continentality and topography.  

Another thing to take into account is that latitude incorporates a very important non-

climatic variable: photoperiod. The photoperiod is a key variable for tree growth 

(Downs & Borthwick, 1956), and its gradient, which is very large in GB, is 

incorporated in latitude, as they are negatively correlated. 

With the analyses in this chapter we try to observe if our sampling is equilibrated 

within and between species, so that there we can interpret properly the results late on. 

The trial sites of the three species, we have found that the most different amongst them 

within a species are the rowan trial sites, they are the most extreme climatologically 

within the British climate. For this reason, we can expect that the phenotypic plasticity 

we might encounter could be larger in rowan because of the trial sites where trees are 

growing. 
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We have found that the provenances sampled come from a large range of 

environments, and that these are distributed across the three species in a similar 

pattern. The sampling locations for ash, rowan and birch share a core climatic 

envelope. There are also a few outlier provenances located out of the main core, 3 ash 

from NW provenances, 3 outliers of rowan from SW and NW, and 3 birch outliers of 

ROP NE and NW. Overall however the sampled provenances of the 3 species fall in 

the same range of environments, and this justifies across species comparison of 

patterns of adaptive variation with respect to environment in the following chapters. 

The main climatic variables which contributed to the first principal component of the 

analysis were related with temperature, PC1 being positively correlated with growing 

degree days, growing season length, mean temperature in July, vapour pressure and 

consecutive dry days. The second principal component was more related with extreme 

and cold temperature (aspects of continentality), being correlated with extreme 

temperature range, windiness, snow and frost. 

We found that latitude and longitude are highly correlated with PC1 and PC2. This 

justifies our use of longitude and latitude as a proxy for a combination of climate 

variables in the next chapters. In PC1 latitude explains a large component of the 

variation, between 50% and 70%, in the three species. In PC2 the variability is best 

explained by a multiple regression of latitude and longitude together. This 

geographical climatic structure of the sampling is very similar between the three 

species. Latitude explains the greatest variation for PC1 in rowan and birch for PC1, 

while in ash it is latitude together with longitude. For PC2 multiple regression of 

latitude and longitude best explains the variation for the three species. 

The ROPs do not form four discrete climatic clusters separated from one another. 

Sampling locations from the four ROPs overlap in the PC1-PC2 scatterplot, the NW 

and the SW ROPs overlapping the most. Moreover, the four ROPs show a great degree 

of variation within them climatologically, with the western NW and SW ROPs 

exhibiting the greatest climatic variation across the locations where the three species 

grow. For this reason, we will not use ROP as a fixed nesting factor for the analyses 

of the adaptive differentiation data in the subsequent chapters, and will instead restrict 
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ourselves to providing the colour coding for ROPs on figures to facilitate ease of 

results interpretation.  

We found that most of the trial sites locations fall in the core area of the provenances, 

and at least the trials from each species fall within the polygon of each species. The 

sites located more outside of the core area are the rowan trials of Dornoch and Alice 

Holt. Thus, the conditions under which the trials have been grown are appropriate for 

studying patterns of adaptive variation of the three species, since they do not fall 

outside the normal range of conditions that would be encountered by the species in 

GB. 

Finally, we found that in many cases the provenances more closely climatologically to 

the trial sites are not the most geographically proximate, and in some cases are from a 

different ROP altogether. These results therefore call into question the use of a seed 

zone systems with fixed boundaries such as that presently used in GB, because there 

is often a poor correlation between geographic and environmental differences between 

sites.  

For these reasons exposed we find we justify why the best option is to use latitude and 

longitude for our analyses and other individual variables if they are important in the 

hypothesis. To not constraint our data with artificial boundaries, we do not incorporate 

the seed zones or the regions of provenance in our analyses on the following chapters 

as we have shown they do not fit well the variability of climates found in GB. 
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Chapter 3: Variation in growth traits 

among British populations of Ash, 

Rowan and Birch. 

 

Abstract: In this chapter we study the variation in tree growth amongst British 

provenances of three broadleaved trees, the plasticity they show when growing in 

different environments, and correlations of growth traits with other relevant traits. We 

analysed tree height, DBH, survival and stem forking in over 30 native populations for 

3 different broadleaved species: ash (Fraxinus excelsior L.), rowan (Sorbus aucuparia 

L), and silver birch (Betula pendula Roth.). These were sampled throughout Great 

Britain and grown in common garden experiments, in contrasting environments. The 

results showed that tree height and DBH decreases with increasing latitude of the 

provenance origin site. Tree height however is positively correlated with stem forking, 

which can be due to frost damage. We found different geographic patterns amongst 

the three species in their genetic variation for these traits. We also found large site 

effects, which in the case of birch included change in height:DBH ratio. These results 

show that it is important to analyse tree height together with other traits to understand 

whether trees are well adapted to the conditions where they are growing. This is of 

special relevance for planting trees in locations further north than their sites of origin.  
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3.1 Introduction  

Understanding the distribution of genetic variation among tree populations is a crucial 

component of managing forest resources, in particular for the development of 

evidence-based policies for seed sourcing (Thomas et al. 2015; Whittet et al 2016). 

Knowledge of the genetic diversity, together with the variation in phenotypic 

plasticity, is needed to understand the capacity to adapt of tree populations. There are 

targets to increase the woodland cover in Great Britain (Scottish Executive, 2006; 

Forestry Commission, 2007; Welsh Assembly Government, 2009), which, will require 

planting of a large number of trees. Genetic resources in British native species are 

poorly characterised: most work has been done on non-native conifers, as they are the 

predominant timber production species (Lines, 1966, 1987, 1996 and 1967; Lee, 2002 

and 2003; Samuel et al., 2007; Lee & Connolly, 2010). In particular, despite recent 

efforts (Hubert et al, 2010), little is known about the genetic diversity of native 

broadleaved species (Boshier & Stewart, 2005; Cavers & Cottrell, 2015). 

To better understand how adaptive genetic variation is arranged in native broadleaved 

trees we can conduct and interpret results from long term common garden experiments. 

This type of experiment allows us to compare genetic origins within a trial site to 

measure the genetic component of variation (individual variation in genotype). It also 

allows comparison of the same genetic origin amongst trial sites to measure the 

environment component of variation (phenotypic plasticity). Assessments from well 

replicated common garden experiments established in multiple locations are of great 

practical value for management of genetic resources because they can be used both to 

determine patterns of genetic variation amongst populations of a focal species to guide 

seed transfer, and to gain an understanding of variation in phenotypic plasticity, which 

may be important in acclimatation to rapidly changing environments (Valladares et al., 

2007).   

In this study, we describe results from analysis of growth traits in a comprehensive 

series of field provenance tests of three British native broadleaf species, common ash 

(Fraxinus excelsior L.), rowan (Sorbus aucuparia L.) and silver birch (Betula pendula 

Roth). Since ash and silver birch have been used as sources of timber in Great Britain, 

a limited evidence base on provenance variation already exists (Worrell et al., 2000; 
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Cundall et al., 2003; Lee et al., 2015). In contrast, since rowan has been of lower 

silvicultural interest, knowledge of its genetic resources are extremely limited. 

Nevertheless these data are valuable because rowan is very frequently supplied in 

mixtures for new native woodland creation (Russell & Evans, 2003). Moreover its 

contrasting reproductive biology (animal pollination and dispersal) compared with ash 

and birch (which are wind pollinated and dispersed), may provide broader insights into 

patterns of variation across native GB tree species. 

Height growth is particularly frequently assessed in provenance trials, because it ought 

to reflect an individual’s ability to compete for resources, survive and grow (until the 

age of assessment) and, ultimately, height may confer an advantage in terms of pollen 

and seed dispersal (Ying & Yanchuk, 2006; Savolainen et al., 2007). Because it can 

be measured relatively easily and is of strong selective and silvicultural importance, it 

is a commonly measured trait in provenance trials. Tree height, in common with many 

other traits, is influenced by genetic factors, environmental factors and their interaction 

(Callaham, 1962; Morgenstern, 1996). Tree populations are likely to be subject to soft 

(i.e. non-lethal) directional selection on variation in height growth from generation to 

generation (Aitken et al., 2008), due to competition among neighbouring trees.  

If tree growth reflects the adaptation of that tree to the length of the growing season in 

its site of origin, deployment of non-local planting stock based on seed collected from 

a warmer environment than that of the planting site provides a way to make gains in 

productivity in the absence of improved planting stock (Zobel & Talbert; 1984, White 

et al., 2007). Because such gains are based on historical adaptation to longer growing 

season than that of the planting site, it is possible that non-local trees which grow faster 

will also be exposed to temperatures during their growing period much lower than 

those to which they are adapted. If this causes damage there may undesirable side 

effects of exploiting longer growing seasons to increase productivity. 

For this reason, differentiation among population means for height can be strong 

(Alberto et al., 2008; Aitken & Bemmels, 2016). However, considering variation in 

height as a proxy for fitness on its own can be problematic, for instance if height is 

only investigated at an early age, prior to the breakdown of age-age correlations 

(Mwase et al., 2008), or in the absence of severe climatic episodes (Worrell et al., 
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2000; Benito-Garzon et al., 2013). For these reasons, it is worthwhile considering 

covariance among other traits to add information about the trees’ performance. Height 

is considered in many studies a proxy for good adaptation. Being taller will confer a 

competitive advantage for light availability, but it is worthwhile to investigate which 

trade-offs come with greater growth.  

For this reason, measuring other traits such as stem form and survival can bring a better 

understanding of the tree response to the environment. Maladaptation to climate 

change can be measured by observing the overall shape and form of the tree. Tree 

shape variability can be due to different causes, but stem forking (as the loss of apical 

dominance in the main trunk or main branches) is due to the damage of the apical bud, 

which could be due to a poorly timed growth initiation in spring which can lead to 

frost damage of the bud (Kerr & Boswell, 2001). There are cases of tree mortality sue 

to frost damage (Park & Talbot, 2018). 

In this chapter, we will present results from a series of comprehensive multi-site 

provenance trials of ash, birch and rowan in Great Britain. The knowledge that is 

currently available is limited both in terms of the number of provenances and the 

geographical scope of the studies, or is mainly focused on tree height alone. There is 

need of more evidence of adaptive variation in native tree species. The objective of 

this study is to discover whether (a) native British populations show genetic diversity 

for growth and in the geographical pattern of this variation. This can be captured with 

tree growth measurements amongst British provenances growing in the same 

environment; (b) there is evidence of phenotypic plasticity for tree growth.This can be 

shown by comparing the same provenances across sites; (c) there are genotype by 

environment interactions, due to difference in the ranking of provenances between 

trials, or other reasons; and (d) there are correlations with other traits which will extend 

our understanding of the adaptedness of the trees to the environment in which they are 

growing. 

We expect that northern provenances will be shorter, as they adapted to shorter 

growing seasons, compared with southern provenances. We also expect that the 

environment of the planting site will affect the growth of the trees; growth will be 

overall lower in the most northern trial sites, due to the colder climatic conditions, but 
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greater height of southern provenances will be retained, though this may be 

accompanied by more damage by frost. We hypothesise that trees from northern 

provenances will have been under greater selective pressures due to harsher 

environment conditions, for what they will be more constrained in their phenotypic 

plasticity, compared with the southern provenances. Regarding tree form, our 

expectation is that taller trees will have higher number of forks, and provenances from 

more oceanic origins, which have over the long term experienced higher incidence of 

late frosts, will fork less. We also propose that low survival will be an indication of 

mal-adaptation. 

We expect to find differences amongst the three species, as they each have different 

ecological requirements. Ash grows primarily in fertile and more calcareous soils and 

prefers more benign climatic conditions; silver birch and rowan are much short lived 

trees which grow well in harsher environments.  The use of three tree species allows 

us to see whether the predicted patterns of genetic variation and their response to being 

moved across different environments, are the same amongst the three species.  

3.2 Materials and methods 

3.2.1 Sampling strategy 

The same sampling strategy was adopted for all three species; ash, Fraxinus excelsior 

L., rowan, Sorbus aucuparia L. and silver birch, Betula pendula Roth .This was based 

on the Forestry Commission seed zone map of Great Britain (Forestry Commission, 

1999; Figure 3.1). This divides the total area of Great Britain into 4 regions of 

provenance (North West NW, South West SW, North East NE and North West NW). 

These regions of provenance are further subdivided into a total of 24 seed zones based 

on natural topographical boundaries (Figure 3.1). Where possible two (three in a few 

cases for birch) self-sown semi-natural populations of each species (hereafter referred 

to as provenances) were sampled from each of the seed zones. Roughly equal numbers 

of seed were collected from a minimum of 20 (in birch a minimum of 30) maternal 

trees and combined together to constitute the provenance sample. Selection of mother 

trees was not deliberately biased towards superior phenotypes, and, where possible, 

mother trees were located at least 100m apart.  
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3.2.2 Trials and provenances by tree species 

After extraction, the seeds collected were sown in nurseries and the resulting seedlings 

were planted in common garden experiments, 2 for ash, 4 for rowan and 4 for birch 

(location in Figure 3.2). The sites represent a range of environmental conditions (as 

illustrated in Table 3.1).  

Ash (Fraxinus excelsior L.) 

Seed from a total of 42 provenances of ash was grown in nurseries located near the 

trial sites. Nurseries were located at Whixley (Yorkshire) and Carmarthen (South 

Wales). 

In 2007, one-year-old seedlings were planted in two common garden experiments 

(hereafter referred to as trials). The two trials are in South Wales (Llandovery - LLAN) 

and Yorkshire (North York Moors - NYM). The Llandovery trial contains trees from 

the 42 provenances, the one in the North York Moors has 40 provenances (Figure 3.2 

and Table 3.2).  

At each trial site the provenances were grown in a randomised block experiment. Each 

provenance was present as a single plot in each block, and there were three blocks. 

The plots consisted of 36 (6 x 6) trees in Llandovery and 30 (6 x 5) trees in North York 

Moors. Trees were planted at a distance of 2 metres apart. 

All measurements in the Llandovery trial were made before the trial was infected by 

ash dieback (Jo Clark, pers. comm.). In North York Moors nearly all the measurements 

were collected before the trees were infected with the exception of DBH and forking, 

which was done the same year when a few of the trees had started showing some signs 

of infection. Since then, both trial sites have shown high level of infection. 
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Figure 3.1. The four regions of provenance and 24 seed zones in Great Britain (modified 

from Herbert et al., 1999) 

 

Figure 3.2. Seed collection (black small dots) and trial sites locations for ash (green dots, 

left), rowan (red dots, centre) and birch (yellow triangles, right). 
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Rowan (Sorbus aucuparia L.) 

The rowan berries, from a total of 42 provenances, were sent to Forest Research’s 

Newton field station near Elgin for manual extraction of seed from the fruits. The seeds 

were sown and raised into seedlings at Forest Research’s nursery (Northern Research 

Station, south of Edinburgh). In 2006, when the seedlings were one year old they were 

planted in four trials around Great Britain. The trials sites (Figure 3.2) were in South 

Wales (Llandovery - LLAN), the South of England (Alice Holt - AH), East Yorkshire 

(North York Moors - NYM) and the North of Scotland (Dornoch - DOR). However, 

the number of provenances represented at each of the trial sites is not consistent due 

to shortage of plants raised from some provenances. Consequently, some provenances 

are absent from some of the trials (Table 3.3). From the 42 total provenances, only 29 

of them were planted in all four trials. 

The experiment is based on a randomized block design, and consists of three replicated 

blocks. Trees were planted at a distance of 2 metres. Each plot contains 9 (3 x 3) trees 

from the same provenance. 

Silver Birch (Betula pendula Roth) 

The silver birch seeds, from a total of 33 provenances, were grown in the Forest 

Research’s nursery (Northern Research Station, south of Edinburgh). Four trial sites 

were planted in 2003, two in Scotland at Drummond (DRUMM) and Dornoch (DOR), 

one in South Wales at Llandovery (LLAN) and one in Norfolk at Thetford(THET). 

The majority of the provenances are represented at Drummond, Llandovery and 

Thetford, however the Dornoch trial contains only 12 provenances (Table 3.4). 

A randomized block design was used based on three replicated blocks. Each plot 

consisted of 25 (5 x 5) to 36 (6 x 6) trees per provenance, depending on the site. Trees 

were planted at 2 m spacing.  
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Table 3.1. Details of the all the trial sites. 

 

Sp

p 
Trial Site 

Plantin

g Year 
County Lat Lon CT 

M

D 

Alt 

(m) 

AP 

(mm

) 

GD

D 
DAMS Soil Type 

Ash            

 NYM (North 

York Moors) 
2007 

East 

Yorkshire 
54.3 

-

1.9 

9.

0 

15

3 
113 960 

147

5 
10.0 

Riverine Floodplain. Clay to Sandy 

Loam. Freely draining floodplain 

soils.  

 LLAN 

(Llandovery) 
2007 

Carmarthe

nshire 
51.9 

-

3.8 

8.

1 

10

8 
215 1329 

147

0 
15.0 

Sandstone and Mudstone. Sand to 

Loam. Freely draining acid loamy 

soils over rock 

Rowan            

 DOR 

(Dornoch) 
2006 

Sutherlan

d 
58.1 

-

4.4 

4.

2 
91 130 1115 

107

0 
15.2 

Podzol. Clayey loam to sandy loam. 

Glacial till.   

 NYM (North 

York Moors) 
2006 

East 

Yorkshire 
54.3 

-

0.5 
8 

14

9 
197 759 

132

8 
14.8 

Very acid loamy upland soils with a 

wet peaty surface. Silty loam to 

sandy loam. Peaty. 

 LLAN 

(Llandovery) 
2006 

Carmarthe

nshire 
51.9 

-

3.8 

8.

1 

10

9 
240 1329 

147

4 
15.1 

Sandstone and Mudstone. Sand to 

Loam. Freely draining acid loamy 

soils over rock. 

 
AH (Alice 

Holt) 
2006 Surrey 51.2 

-

0.8 

10

.2 

18

6 
118 785 

177

2 
13.4 

Slowly permeable seasonally wet 

slightly acid but base-rich loamy and 

clayey. Claystone/mudstone. Loam 

to clay. 

Birch            

 DOR 

(Dornoch) 
2003 

Sutherlan

d 
57.9 

-

4.1 

4.

1 
99 135 745 

109

7 
15.2 Umbrisol.  Sand to loam. Peaty Gley.  

 DRUM 

(Drummond) 
2003 Perthshire 56.6 

-

4.1 

6.

1 
89 218 1262 

114

3 
11.0 

Umbrisol.  Clayey loam to sandy 

loam. Glacial till.  

 THET 

(Thetford) 
2003 Norfolk 52.4 0.6 

10

.8 

21

4 
54 608 

175

1 
12.4 

Chalk.  Chalky, sandy loam.  Freely 

draining sandy breckland soils.  

 LLAN 

(Llandovery) 
2003 

Carmarthe

nshire 
52.6 

-

4.1 

7.

1 

13

9. 
114 1503 

175

4 
13.8 

Glacial till.  Loam to clayey. Slowly 

permeable seasonally wet acid 

loamy and clayey soils.  

The information relating to the climatic conditions at each of the trial sites was obtained from ESC-Ecological 
Site Classification (Clare and Ray 2001). We focused on five parameters because we considered them likely to 
reflect elements of the climate that are key to tree growth: temperature, water availability, and other variables 
which are dependent on the geographical location of the site. The indices and their definitions are: 
 

CT: Continentality, corresponds to the Conrad Index (Conrad 1946). CT = 1.7 [A/sin (ᵩ +10)]- 14. Where 

A is the difference between the mean temperature of the warmest and coldest month in degrees Celsius and ᵩ 
is latitude in degrees. Lower values indicate more oceanic climates. 

MD: Moisture deficit (mm).To consider the effects of the dryness of the growing  season  moisture  
deficit  is calculated by  considering  the  potential  evaporation  and  precipitation.   Higher   values   indicate   
drier sites. 

AP: Annual precipitation. Average annual rainfall (mm) between 1961 and 1990. 
GDD: growing degree days, the cumulative sum of the number of degrees Celsius above 5 oC on 

each day of the year in which mean temperature exceeds 5 oC. Values expressed here are long term mean 
annual values for the years spanning from 1961 to 1990. 

DAMS: Wind exposure measured by Detailed Aspect Method of Scoring: This provides an indication 
of wind exposure, the higher the values the more exposed the site. Sites with values under 12 can be considered 
to be sheltered. 

Soil Type: the soil information data were obtained from different inventories, using the UK Soil 
Observatory (UKSO). The European Soil Bureau description (The European soil database, 2006) was used to 
assign a soil type for all British trial sites. The soil texture and soil group data were obtained from Soilscapes 
(Cranfield University, 2017) for Welsh and English locations, and from the national soil map of Scotland (Soil 
Survey of Scotland Staff, 1981) for the Scottish trials. 
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Table 3.2. Details of the ash provenances locations and the trial site they are planted in. The 

“X” indicates presence of a provenance at a given site.  

ROP Country Ash provenances Lat Long Alt 
(m) 

Site 
LLAN NYM 

NW Scotland 
 

Duisdale, Skye 57.176 -5.751 18 x x 
Kilninian, Mull 56.530 -6.208 71 x x 
Rassal Wood, Kishorn 57.426 -5.591 78 x x 
Ardtornish,Morvern 56.560 -5.741 20 x x 
Glasdrum Wood, Loch Creran 56.574 -5.232 33 x x 
Add Valley, Kilmichael Glassary 56.106 -5.420 30 x x 
Clyde Valley 55.680         -3.913 159 x x 
Shielhill Glen 55.911 -4.825 107 x x 
Penpont 55.235 -3.853 90 x x 
Nith Valley 55.320 -3.829 141 x x 
Crawick Water 55.381 -3.929 162 x x 

England Warks Burn 55.088 -2.222 90 x x 
NE Scotland 

 
Erchite Wood, Dores 57.368 -4.345 56 x x 
Craigellachie 57.484 -3.170 102 x x 
Fearnan Forest, Kenmore 56.579 -4.037 142 x x 
Glen Lyon 56.602 -4.248 183 x x 
Den of Alyth 56.623 -3.258 152 x  
Pitcairns Glen, Dunning 56.300 -3.573 119 x x 
Tweed Valley North Glen 55.588 -2.662 68 x x 

England Castle Eden Dene, Peterlee 54.743 -1.352 102 x x 
SW England 

 
Witherslack 54.264 -2.870 79 x x 
Park Wood&Hutton Roof 54.182 -2.689 170 x x 
Via Gellia Woods 53.104 -1.619 239 x x 
Upper Wharfedale 54.203 -2.104 202 x x 
Greta Wood, Purbeck Ridge 50.637 -2.136 126 x x 
Horner Wood, Porlock 51.189 -3.583 102 x x 

Wales 
 

Cardiff Area 51.546 -3.234 158 x x 
Aberystwyth Area 52.430 -4.059 90 x x 
Betws-y-Coed 53.079 -3.799 57 x x 
Talgarth 51.986 -3.213 198 x x 

SE England Forge Valley 54.274 -0.490 52 x x 
Ashberry Woods 54.262 -1.133 142 x x 
Treswell Woods 53.308 -0.861 54 x  
Hayley Wood 52.158 -0.110 79 x x 
Tick Wood, Ironbridge 52.621 -2.523 99 x x 
Forest Bank, Marchington 52.852 -1.820 142 x x 
Wyndcliff, Wye Valley 51.678 -2.679 208 x x 
Midger Wood 51.606 -2.285 160 x x 
Pheasant Copse, Petworth 51.011 -0.628 60 x x 
Bignor Hill  50.908 -0.616 194 x x 
Groton Wood 52.050 0.883 66 x x 
Out Wood 52.166 0.415 96  x x 
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Table 3.3. Details of the rowan provenances locations and the trial sites in which they are 

planted. The “X” indicates presence of a provenance at a given trial site. 

ROP Country Rowan provenances lat long Alt (m) Site 

AH DOR LLAN NYM 

SW 
 

Scotland 
 

Assynt 58.171 -5.261 27.48  x  x 

Inverpolly 58.093 -5.232 82.12  x   

Allt Volagir, South Uist 57.247 -7.310 68.76  x x x 

Salen, Isle of Mull 56.527 -5.961 5.80  x x x 

Tokavaig, Isle of Skye 57.139 -5.965 25.40  x x x 

Glen Loy 56.901 -5.071 61.96  x   

Add Valley 56.141 -5.486 33.72 x x x x 

Strathlachlan 56.128 -5.152 70.32 x x x x 

Falls of Clyde 55.653 -3.778 160.84 x x x x 

Mugdock Country Park 55.971 -4.320 161.8  x x x 

Glenlee 55.088 -4.194 129.68 x x x x 

Stroan Bridge 55.070 -4.545 66.72  x   

Lochwood 55.258 -3.443 180.2 x x x x 

Ettrick Water 55.420 -3.133 234.16 x x x x 

SE 
 

Scotland 
 

Bunchrew 57.471 -4.315 100.8  x  x 

Craigdarroch 57.574 -4.605 31.8  x  x 

Cleanhill Wood, Aberchirder 57.554 -2.636 158.76  x  x 

Birks of Aberfeldy 56.602 -3.872 285.96 x x  x 

Pressmennan Wood 55.951 -2.589 149.84 x x x x 

Castle Eden Dene 54.743 -1.351 107.64 x x x x 

NW 
 

England 
 

Horner Wood 51.194 -3.589 232.84 x x x x 

Holford/Hodder’s Combe 51.158 -3.218 164.88 x x x x 

Duddon Valley 54.316 -3.230 61.84 x x x x 

Naddle Forest 54.511 -2.805 291.24 x x x x 

Brignall Banks 54.496 -1.913 222.36 x x x x 

Gelt Wood 54.903 -2.733 139.16 x x x x 

Wales 
 

Brechfa 51.993 -4.063 146.28 x x x x 

Beddgelert 53.025 -4.138 257.76 x x x x 

Mynydd Du 51.954 -3.105 532.12 x x x x 

Ugly House 53.106 -3.868 231.32 x x x x 

NE 
 

England 
 

Forge Valley& Raincliffe Woods 54.275 -0.484 89.64 x x x x 

Ashberry and Reins Woods 54.253 -1.128 106.24 x x x x 

St. He len’s Wood, Coningsby 53.113 -0.123 6.24 x x x x 

Moor Farm 53.156 -0.181 14.8 x x x x 

Pepper Wood 52.368 -2.092 144.76 x x x x 

The Ercall 52.687 -2.522 185.8 x x x x 

King’s Bottom, Longleat 51.191 -2.241 219 x x x x 

Chestnuts Wood, Forest of Dean 51.829 -2.470 161.72 x x  x 

Saxonbury Hill 51.076 0.251 183.12 x x x x 

Seal Chart 51.278 0.237 129.44 x x x x 

Culter’s Wood, Freston, Ipswich 52.011 1.142 34.4 x x x x 

Felbrigg great Wood, Cromer 52.913 1.264 83.24 x x x x 
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Table 3.4. Details of the birch provenances locations and the trial sites in which they are 

planted .The “x” indicates presence of a provenance at a given trial site. 

ROP Country Birch 
provenances 

lat long Alt 
(m) 

Site 
DOR DRUMM LLAN THET 

NW Scotland 
 

Affric 57.31 -4.80 118 
 

x 
 

x 
Loch Creran 56.55 -5.28 26 x x x x 
Dumfried 55.11 -3.58 29 x x x x 

NE Scotland 
 

Elgin 57.42 -3.38 140 x x x x 
Great Glen 57.21 -4.62 68 

    

Glen Garry 57.07 -4.83 54 
 

x x x 
Spinningdale 57.89 -4.26 38 x x x x 
Dunkeld 56.56 -3.56 143 x x x x 
Alford 57.24 -2.67 142 

 
x x x 

SW England 
 

Bovey Tracey 50.59 -3.71 120   x x 
Bovington 
Camp 

50.71 -2.21 50  x x x 

Penrith 54.7 -2.96 280 
 

x x x 
Ambleside 54.4 -2.98 60 

 
x x x 

Bolton Abbey 54.04 1.95 220 
 

x x x 
Hamsterley 
Forest 

54.7 -1.86 200 x x x x 

Sheffield 53.28 -1.56 240 
  

x x 
Wales 

 
Machynlleth 52.58 -3.85 90 

  
x x 

Taffs Well 51.55 -3.27 100 
 

x x x 
Llanidloes 52.46 -3.53 180 

 
x x x 

Persteigne 52.24 -3.05 200 
 

x x x 
Llangollen 52.98 -3.19 170 

   
x 

SE England 
 

Castle Howard 54.12 -0.92 76 
 

x x x 
Sand Hutton 54.02 -0.95 25 x x x x 
Leicester 52.73 -1.23 160 

 
x x x 

Clumber park 53.26 -1.06 55 x x x x 
Cannock 
Chase1 

52.72 -2.04 180 
 

x x x 

Cannock 
Chase 2 

52.74 -2.05 140 x x x x 

Monmouth 51.79 -2.69 170 
 

x x x 
Tollard Royal 50.96 -2.21 130 x x x x 
Godalming 51.14 -0.6 170 

  
x x 

Baingstoke 51.38 -1.02 50 
 

x x x 
Braintree 51.91 0.54 80 x x x x 
Dunwich 52.26 -1.61 20 x x x x 
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3.2.3 Measurements 

Height 

The trees were assessed for height at different times (between ages 1 and 10) the last 

measurement of which was made between 2010 and 2015 in different trials (detailed 

in Table 3.5). Measurements were made for each individual tree, all trees per plot. 

Height was measured to the nearest centimetre in one of two ways, either with a 

measuring tape while trees were short and with extendable measuring rod to reach the 

top when the trees were taller. Missing and dead trees were excluded to calculate mean 

values. 

Diameter  

Stem diameter at 1.35 m (breast height) was measured with a diameter tape to the 

nearest half centimetre (5mm). Stem diameter was not measured in rowan trees 

because most were multi-stemmed from the ground level, especially at Dornoch and 

Llandovery where many trees had over 10 stems. In the ash and birch trials tree 

diameters were measured in 2015 (when trees were 8 and 12 years old, respectively 

Only the trees in the centre of the plot were measured, the number depending on the 

trial. For plots of 25 trees the 9 (3x3) central trees were measured, for plots of 30 trees 

the 12 (3x4) central trees were measured and for plots of 36 the inner 16 (4x4) trees 

were measured. Missing and dead trees were excluded to calculate mean values. 

Stem Forking 

Ash and birch trees were assessed for stem forking in the two trials of ash (Llandovery 

and North York Moors) and three of birch (Llandovery, Drummond and Dornoch). 

The number of forks was counted as the number of times the main stem lost apical 

dominance. This was assessed following the main stem from the ground up, including 

the subsequent branches originated from each fork up to the crown, excluding the small 

twigs. Only the trees at the centre of the plot were assessed and the exact number per 

plot differed depending on the trial. For plots of 25 trees, the 9 (3x3) central trees were 

assessed, for plots of 30 trees, the 12 (3x4) central trees were assessed and for plots of 

36, the inner 16 (4x4) trees were assessed. The average number of forks per plot was 
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used in subsequent analyses. Rowan was not assessed for forking, once again because 

of its multi-stem habit and the difficulty of identifying which the main stem. Missing 

and dead trees were excluded to calculate mean values. 

Survival 

Survival was measured as a percentage of the remaining living trees compared to the 

number of trees planted in each plot.  

 

 

Table 3.5. Data analysed by trial and species, the age of the trees and the date when each 

trait was measured are shown. 

 Height DBH Forking Survival 
Assessm

ent 
Age  Year  

Trial 
sites 

Age  Year  
Trial 
sites 

Age  Year  
Trial 
sites 

Age  Year  
Trial 
sites 

Ash 
5  2012 

All 2 
trials 

8 2015 
All 2 
trials 

8 2015 
All 2 
trials 

6 2013 
All 2 
trials 

Rowan 
9  2015 

All 4 
trials 

n/a n/a 9 2015 
All 4 
trials 

Birch 
8  2010 

All 4 
trials 

12  2015 
LLAN 
and 

DRUM 
12 2015 

LLAN 
and 

DRUM 
8 2010 

All 4 
trials 

 

3.2.4 Analysis  

Data analysis and visualisation were performed in the R statistical environment (R 

version 3.2.3, Core Team, 2015). 

Analysis of Sources of Variation 

To determine the effects of provenance, site and their interaction on each trait (Table 

3.5) the plot mean values were analysed in Analysis of variance (ANOVA) using a 

linear model. The different types of ANOVAs used were the following: 

i. Analyses by species, by trait and by trial site. In the ANOVA provenance 

was a fixed factor and block was a random factor. 

ii. Analysis by species and by trait across all trial sites. In the ANOVA site, 

provenance, and site by provenance interaction were fixed effects and 

block nested within site was a random factor. 
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Transformation was applied to the forking (logarithmic) and survival (arcsine) data 

to ensure that they fitted a normal distribution. For the analysis of variance across 

sites the provenances that were not present in all the trial sites were excluded. This 

gave 40 provenances for ash, 29 for rowan and 26 for birch (12 when including 

Doroch trial site). To visualize the site by trial interaction, interaction plots were 

undertaken.  

Relationship with Environmental Factors 

For each trait linear regressions were applied to test the relationship between 

provenance mean values and latitude and longitude of the home site. Linear 

regression plots were drawn.   

Relationship among traits 

To determine the relationships between provenance mean values for different 

traits, Pearson’s correlation coefficients were calculated using data from individual 

sites. 
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3.3 Results 

3.3.1 Ash 

3.3.1.1 Tree growth Ash 

i. Analysis of Variance 

Differences amongst provenances: In ash there were significant differences in tree 

height among provenances in Llandovery (p<0.001) and in North York Moors 

(p<0.05).  The differences amongst provenances were larger in Llandovery in absolute 

terms, however in both sites the tallest provenance was 45% taller than the shortest 

provenance. 

For stem diameter, there were only significant differences amongst provenances in the 

Llandovery trial (p<0.001), no significant differences in North York Moors. The 

difference between the provenance with the biggest and the smallest DBH was higher 

in North York Moors (52.72%) than Llandovery (33.95%). 

Site effect: There was a significant site effect (p<0.001) for ash height. There was also 

a significant site by provenance effect for height (p<0.05) (Figure 3.3). All the 

provenances were shorter in North York Moors than in Llandovery (Figure 3.3, Table 

3.7). The site average height was 50.17% greater at Llandovery than at North York 

Moors. There was a greater range of height in Llandovery, from 1.707 m – 4.068 m 

(2.361 m), while in North York Moors was 0.585m – 1.920m (1.335m). The site by 

provenance effect could be due to this larger range of height amongst provenances in 

the southern trial. 

For DBH there was a significant site effect (p<0.001), but no significant site by 

provenance interaction. DBH was on average 54.66% higher in Llandovery than in 

North York Moors. 
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Figure 3.3. Ash height yr 5 interaction plot. Provenance means of each trial site. Colour 

legend: yellow (ROP SE), red (ROP SW), dark blue (ROP NW) and pale blue (ROP NE). 

 

ii. Relationship of height with geographical location of seed origin 

The latitude of the provenance explained around 40% of the variance in height 

(Figure 3.4) and in DBH in both trial sites (p<0.001) (Table 3.10), but there was no 

effect of longitude. The more northerly the provenance, the shorter were the trees and 

the smaller their stem diameters.  

 
Figure 3.4. Ash trees height yr 5 in the two trial sites by latitude. Provenances means, 

arranged according to their latitude from more south (left on the x axis) to north (right). 

Regression Adj R2 and p value in Table 3.10. Colour legend: yellow (ROP SE), red (ROP 

SW), dark blue (ROP NW) and pale blue (ROP NE). Latitude degrees of the LLAN trial 

51.96 and NYM trial 54.3. 
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3.3.1.2 Stem forks Ash 

i. Analysis of Variance 

Differences amongst provenances: In ash, there were significant differences among 

provenances (p<0.05) in stem forking at North York Moors but not Llandovery. The 

difference between the most and least forked provenances were much higher in North 

York Moors (79.22%) than Llandovery (57.18%). 

Site effect: There was a significant site effect (p<0.01) but no significant provenance 

by site interaction. Incidence of forking was 18.82% higher in Llandovery (with 2.4 

forks on average) than at North York Moors (with 1.9 forks on average). All 

provenances forked less in North York Moors with the exception of six provenances 

(four from SE ROP, one from SW ROP and one from NW ROP) (Figure 3.3).  

 

Figure 3.5. Interaction plot on provenance forking means in the two ash trials. Colour 

legend: yellow (ROP SE), red (ROP SW), dark blue (ROP NW) and pale blue (ROP NE). 
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ii. Relationship of forking with the geographical location of seed 

origin 

There was a significant regression with latitude in North York Moors, where latitude 

explained 21% of the variation (p<0.001). Provenances from southern sites forked 

more than those from the north. In the case of Llandovery, latitude did not explain the 

variation. (Table 3.10 and Figure 3.6). Longitude had no effect. 

 
Figure 3.6. Regression of fork means by latitude, in both trial sites (LLAN left and NYM 

right). The regression in LLAN is not significant. Colour legend: yellow (ROP SE), red (ROP 

SW), dark blue (ROP NW) and pale blue (ROP NE). 
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3.3.1.3 Survival in Ash 

i. Analysis of Variance 

Differences amongst provenances: In ash there were no significant differences 

amongst provenances for survival in any of the sites.  

Site effect: There was a significant site effect (p<0.001), survival was 7.75% higher 

on average in Llandovery. Most provenances had lower survival in North York Moors, 

with some exceptions from western provenances (Figure 3.7). However there was no 

significant interaction between site and provenance.  

 
Figure 3.7. Interaction plot on provenance survival means in the two ash trials. Colour 

legend: yellow (ROP SE), red (ROP SW), dark blue (ROP NW) and pale blue (ROP NE). 

 

ii. Relationship of survival with the geographical location of seed 

origin 

There was no significant regression of survival with either latitude or longitude. 
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3.3.1.4 Relationships among traits in Ash 

There was a significant (p<0.001) positive correlation between tree height and number 

of forks in both trials of ash. The Pearson’s coefficient in Llandovery was 0.371 and 

North York Moors is 0.591.  The tallest trees had greater number of forks, although 

this relationship was much clearer in North York Moors (Figure 3.8).  

Height and DBH were strongly correlated at both sites, North York Moors (r = 0.89, 

p<0.001) and Llandovery (r= 0.81, p<0.001). 

There were significant positive correlations between survival and height in both trials, 

Llandovery (r=0.402, p<0.001) and North York Moors (r=0.730, p<0.001).  

 

 

Figure 3.8. Number of forks versus height in the two ash trials, LLAN left and NYM right. 

Colour legend: yellow (ROP SE), red (ROP SW), dark blue (ROP NW) and pale blue (ROP 

NE). 
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3.3.2 Rowan 

3.3.2.1 Tree height in Rowan 

i. Analysis of Variance 

Differences amongst provenances: In rowan there were significant differences 

amongst provenances at all trial sites (p<0.001 in Llandovery and Dornoch; p<0.05 in 

Alice Holt and North York Moors). The biggest difference between the tallest and 

shorts provenances were in Dornoch (65.94%) and the smallest difference in Alice 

Holt (24.03%). Despite the biggest difference in absolute terms being in Llandovery 

(2.8m of difference) compared with Dornoch (1.8m), in both cases this was because 

of one NW outlier provenance. 

Site effect: There was a significant site effect (p<0.001) on height but no significant 

interaction between provenance and trial (Figure 3.9). The trees grew taller in 

Llandovery (Table 3.6, Figure 3.9) followed, in this order, by Alice Holt, Dornoch and 

North York Moors. Trees in Llandovery were on average 72.96% taller than in North 

York Moors. 

 
Figure 3.9. Interaction plot of the provenance means of the rowan tree height measured at 

age 9, in the four sites. Colour legend: yellow (ROP SE), red (ROP SW), dark blue (ROP 

NW) and pale blue (ROP NE).  
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ii. Relationship of tree growth with the geographical location of seed 

origin 

In rowan, latitude explained height differences in the two southern trials (Llandovery 

and Alice Holt) where trees from northerly provenances were generally shorter (Table 

3.10, Figure 3.10). The linear regression with latitude was not significant in the two 

most northern trials. Longitude was significant but explained only 4% of the variation 

among provenances in North York Moors.  

 

 

Figure 3.10. Rowan trees height yr 9 in the two sites versus latitude. Provenances means 

arranged according to their latitude from more south (left on the x axis) to north (right). 

Regression Adj R2 and p value in Table 3.10. Colour legend: yellow (ROP SE), red (ROP 

SW), dark blue (ROP NW) and pale blue (ROP NE). Latitude of the AH 51.16, DOR 58.04, 

LLAN trial 51.96 and NYM trial 54.3. 
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3.3.2.2 Survival Rowan 

i. Analysis of Variance 

Differences amongst provenances: There were only significant differences on tree 

survival amongst provenances in the Llandovery (p<0.05) and North York Moors 

(p<0.001) trial sites. In these two trials the differences amongst survival provenance 

means were greater (22.22% in Llandovery and 83.33% in North York Moors).  

Site effect: In rowan, the survival mean in all trials was over 90% live trees, except in 

North York Moors. The North York Moors site had a very cold, windy and wet 

environment (Table 3.1) which resulted in the death of many trees during some very 

cold winters. There was a significant site effect (p<0.001) for the tree survival and a 

significant interaction (p<0.001) between provenance and site. Llandovery has the 

highest survival mean, 35.51% higher than North York Moors.  

 
Figure 3.11. Interaction plot of the provenance means of the rowan tree survival measured 

at age 9, in the four sites. Colour legend: yellow (ROP SE), red (ROP SW), dark blue (ROP 

NW) and pale blue (ROP NE).  

 

ii. Relationship with the geographical location of seed origin 

There were no significant regressions with latitude or longitude in the trials where 

significant differences across provenances were found: Llandovery or North York 
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Moors. There was a significant regression with longitude in Alice Holt (R2 = 11%, 

p<0.001), where the eastern provenances survived less. 

 

3.3.2.3 Relationships amongst traits 

The only significant (positive) correlations found were between height and survival in 

Dornoch (0.191, p<0.05) and North York Moors (0.415, p<0.001). However, in 

Dornoch it is mainly due to one single provenance, with an outlier short height 

measurement; and in North York Moors the trial had a badly designed block 

arrangement and the height measurement differences were more due to the soil 

differences than the tree genetics.   

3.3.3 Silver Birch 

3.3.3.1 Tree growth Birch 

i. Analysis of Variance 

Differences amongst provenances: There were significant differences among 

provenances for height (all p<0.001) and DBH (all p<0.001 except Dornoch p<0.05) 

in all trial sites. The biggest difference between the tallest and shortest provenances 

was in Llandovery (40.89%), then Thetford and then Drummond. The biggest 

difference between provenance DBH was in Dornoch (76.42%), then Llandovery and 

then Drummond. Dornoch is a very harsh trial site, very wet and cold (more suitable 

for downy birch) and that is why trees have hardly grown in comparison to the other 

trial sites. 

Site effect: Height was measured on the same year in Llandovery, Drummond and 

Thetford (not in Dornoch). There was a significant site effect (p<0.001) and a 

significant interaction between provenance and site (p<0.01) for birch height (Figure 

3.12). The interaction is caused by greater differences in height amongst provenances 

in the southern trials. Trees were taller on average in Llandovery, 6% shorter in 

Thetford and 21.4% shorter in Drummond. DBH was measured in the same year in 

Llandovery, Drummond and Dornoch (not in Thetford). There was a significant site 

effect (p<0.001) and a significant interaction between provenance and site (p<0.001) 
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(Figure 3.12). The DBH was higher in Drummond, 10% lower in Llandovery and 89% 

lower in Dornoch.  

 

Figure 3.12. Interaction plots for height (top) (Drummond, Llandoveyr and Thetford) and 

DBH (bottom) (Dornoch, Drummond and Llandovery). Note that the trials are different. 

Colour legend: yellow (ROP SE), red (ROP SW), dark blue (ROP NW) and pale blue (ROP 

NE). 

 

ii. Relationship of tree growth with the geographical location of seed 

origin 

In birch latitude explained the differences in height in the Llandovery trial (51% of the 

variation); longitude explained the variation in Drummond (29%) and Dornoch (52%); 

and in Thetford both latitude and longitude were important predictors of variation 

(60%) (Table 3.10, Figure 3.13). This demonstrated a difference between the northern 
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and southern trials: in the southern trials latitude accounts for a large proportion of the 

differences in height; and in the northern ones, variation in height is accounted by 

longitude. 

DBH variation was explained by latitude in Drummond and by latitude and longitude 

in Llandovery (Table 3.10). There was no clear geographical pattern for Dornoch.  

 
Figure 3.13. Birch height yr 8 in the three sites by latitude. Provenances means arranged 

according to their latitude from more south (left on the x axis) to north (right). Regression Adj 

R2 and p value in Table 3.10. Colour legend: yellow (ROP SE), red (ROP SW), dark blue 

(ROP NW) and pale blue (ROP NE). Latitude degrees of the trials: LLAN 51.96, DRUM 

56.57 and THET 52.41. 

 

3.3.3.2 Stem forks Birch 

i. Analysis of Variance 

Differences amongst provenances: In birch, there were only significant differences 

amongst provenances in forking in Llandovery (p<0.01). 
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Site effect: There was a significant site effect (p<0.001) and a significant provenance 

by site interaction (p<0.05). Nearly all the provenances (except one from SE region) 

had fewer forks in Llandovery than in Drummond (Figure 3.14). Drummond had the 

most forks on average (4.2 forks), Dornoch 47% less (2.2 forks) and Llandovery 44% 

less forks (2.3 forks). Trees in Dornoch had fewer forks, but correcting by the tree 

height, forking could be seen as high; considering that the trees are on average around 

6 meters shorter (over 75% shorter) than Llandovery and Drummond (Dornoch was 

measured 2 years earlier than the rest of trials). 

 

Figure 3.14. Interaction plot of number of forks for birch by trial, provenance means. 

Colour legend: yellow (ROP SE), red (ROP SW), dark blue (ROP NW) and pale blue 

(ROP NE). 

 

 

ii. Relationship of forks  with the geographical location of seed origin 

In Dornoch forking variation was explained by longitude, the eastern provenances 

being the ones with higher number of forks (Table 3.10). There was no relationship 

with longitude in the other two sites. No association was found between forking and 

latitude. 
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3.3.3.3 Survival Birch 

i. Analysis of Variance 

Differences amongst provenances: In birch, there were only significant differences 

in survival amongst provenances (p<0.05) in the Llandovery trial, where the 

provenance with the highest survival had 52.17% more survival than the lowest.  

Site effect: The average survival was the highest in Thetford (over 99%), followed by 

Drummond, then Dornoch and then Llandovery (30% less survival than Thetford). 

There is a significant site effect (p<0.01) but no significant interaction between 

provenance and site. (Figure 3.15). The interaction plot showed how most provenances 

had better survival in the Drummond trial (after Thetford), except for one provenance 

from SW ROP, which had the highest survival in Llandovery. For the common 

provenances between Llandovery and Dornoch, half have better survival in 

Llandovery and the other half in Dornoch.  

 

Figure 3.15. Interaction plot of survival data for birch by trial, provenance means. 

Thetford excluded because all provenances nearly zero mortality. Colour legend: yellow 

(ROP SE), red (ROP SW), dark blue (ROP NW) and pale blue (ROP NE). 
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ii. Relationship of survival with the geographical location of seed 

origin 

In birch, there was a significant regression of survival on longitude at the Drummond 

and Llandovery trials, in both cases the eastern provenances survived less (Figure 

3.16). In Llandovery longitude explains 10% of the variation and in Drummond 

explains 26% (Table 3.10). Overall the provenances from ROP SE had lower survival 

in the three trial sites, as the most eastern coincide with the most southern provenances.  

 

Figure 3.16. Birch survival means for Drummond (left) and Llandovery (right) by longitude. 

Provenances means arranged according to their latitude from more west (left on the x axis) 

to east (right). Regression Adj R2 and p value in Table 3.10. Colour legend: yellow (ROP 

SE), red (ROP SW), dark blue (ROP NW) and pale blue (ROP NE). Longitude degrees for 

DRUM -4.11 and LLAN -4.08. 

 

3.3.3.4 Relationship amongst traits  

There was a positive correlation between height and DBH in Llandovery (r=0.705 

p<0.001), Drummond (r=0.633, p<0.001) and Dornoch (r=0.602, p<0.001). There is a 

positive correlation between number of forks and height in Dornoch (r=0.409, p<0.05), 
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but not in the other sites. There were no significant correlations between height and 

survival in any trial site. 

 

Table 3.6. Height means by species, trial sites and ROPs (the values inside a square are 

significantly different amongst ROPs) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.7. DBH means by species, trial sites and ROPs (the values inside a square are 

significantly different amongst ROPs) 

 

 

 

 

 

HEIGHT 
 

Species Region Llandovery 

North 
York 

Moors 
Alice 
Holt Dornoch Drummond Thetford 

Ash trial 
mean 

256.475 127.798 
    

5 yr NW 226.796 119.779 
    

 
NE 236.488 115.866 

    
 

SW 262.246 130.704 
    

 
SE 294.669 141.107 

    

Rowan trial 
mean 

506.903 137.064 433.044 220.955 
  

9 yr NW 480.091 122.008 422.422 209.589 
  

 
NE 486.566 129.489 412.927 214.596 

  
 

SW 519.856 132.11 431.675 228.555 
  

 
SE 514.014 153.218 442.16 225.385 

  

Birch trial 
mean 

773.536 
  

177.538 608.026 728.978 

8 yr NW 745.218 
  

173.319 538.06 667.522  
NE 602.645 

  
156.381 561.93 607.743  

SW 787.385 
  

163.571 622.191 721.986  
SE 836.766 

  
205.955 632.919 801.849 

DBH 
 

Species Region Llandovery 

North 
York 

Moors Dornoch Drummond Thetford 
Ash trial 

mean 
7.247 3.286  

  

 
NW 6.801 2.962  

  

 
NE 6.814 2.961  

  

 
SW 7.410 3.481  

  
 

SE 7.846 3.659  
  

Birch trial 
mean 

10.251  1.249 11.374  

 
NW 9.485  1.667 10.257   
NE 6.694  1.012 10.190   
SW 10.867  0.625 11.706   
SE 11.446  1.470 11.902  
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Table 3.8. Forks means by species, trial sites and ROPs (the values inside a square are 

significantly different amongst ROPs) 

 

 

 

 

 

 

 

 

 

 

Table 3.9. Survival means (proportion of alive trees) by species, trial sites and ROPs (the 

values inside a square are significantly different amongst ROPs) 

SURVIVAL 
 

Species Region Llandovery 

North 
York 
Moors 

Alice 
Holt Dornoch Drummond Thetford 

Ash trial 
mean 

0.916 0.845 
    

2015 NW 0.882 0.821 
    

 
NE 0.917 0.794 

    
 

SW 0.917 0.833 
    

 
SE 0.950 0.914 

    

Rowan trial 
mean 

0.918 0.592 0.923 0.978 
  

2015 NW 0.906 0.595 0.932 0.974 
  

 
NE 0.970 0.604 0.949 0.961 

  
 

SW 0.954 0.665 0.933 0.988 
  

 
SE 0.887 0.527 0.905 0.978 

  

Birch trial 
mean 

0.701 
  

0.733 0.799 0.993 

2015 NW 0.729 
  

0.750 0.840 0.996  
NE 0.729 

  
0.768 0.846 0.995  

SW 0.710 
  

0.813 0.796 0.993  
SE 0.673 

  
0.674 0.771 0.988 

 

 

 

FORKS 
 

Species Region Llandovery 

North 
York 
Moors Drummond Dornoch 

Ash trial 
mean 

2.364 1.919 
 

 

8 yr NW 2.506 1.744 
 

  
NE 2.183 1.577 

 
  

SW 2.418 2.024 
 

  
SE 2.304 2.179 

 
 

Birch trial 
mean 

2.341  4.158 2.213 

 yr NW 2.889  3.721 2.008  
NE 1.951  4.032 1.939  
SW 2.429  4.726 2.536  
SE 2.332  3.913 2.546 
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Table 3.10. List of traits measured by species and sites, number of provenances, presence 

(y)/absence (n) of provenance effect and site effect, and linear regression variables and 

Adjusted R2 values. All coefficients were significant at P<0.01 (except the R2 values with (*) 

at P<0.05) 

Spp 
Trial 
site Trait 

No. of 
provenances 

Prov. 
effect 

Site 
effect 

Geographical 
variable R2 

Ash Llan Height 41 y y Latitude 0.46 
  DBH 41 y y Latitude 0.36 

  Forks 41 n y ns - 
  Survival 41 n y ns - 

 NYM Height 39 y y Latitude 0.40 
  DBH 39 n y Latitude  0.41 

  Forks 39 y y Latitude 0.21 
  Survival 39 n y ns - 

Rowan Llan Height 33 y y Latitude 0.17 
  Survival 33 y y ns - 

 NYM Height 38 y y Longitude 0.04 
  Survival 38 y y ns - 

 Dor Height 41 y y ns - 
  Survival 41 

n y 
Latitude   

0.02* 
 AH Height 30 y y Latitude 0.54 
  Survival 30 n y Longitude 0.11 

Birch Llan Height 29 y y Latitude 0.51 
  DBH 29 y y Lat +Long 0.51 

  Forks 29 y y ns - 
  Survival 29 y y Longitude 0.10 

 Drum Height 29 y y Longitude 0.29 
  DBH 26 y y Latitude 0.48 

  Forks 26 n y ns - 
  Survival 29 n y Longitude 0.26 

 Thet Height 31 y y Lat +Long 0.60 
  Survival 31 n y ns - 
 Dor Height 

(y6) 
13 

y - 
Longitude 0.52 

  DBH 13 y y ns - 
  Forks 13 

n y 
Longitude   

0.22* 
  Survival 13 n y   
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3.4  Discussion 

We have investigated variation in tree growth, stem forking and survival for three tree 

species. Although there is much variability among trials and provenances, the results 

of assessments in common garden experiments have enabled us to differentiate 

between the genetic and the environment components of the variation found. Our 

results have shown that there is: 1) phenotypic plasticity (growth is very dependent on 

the site where trees are growing), 2) genetic differentiation (there are clear differences 

in growth trait variation among British provenances), and 3) interaction between these 

two. Furthermore, we have shown that differences in height growth tend to be related 

to latitude of origin, although in the northern trial sites longitude also was important. 

Height variation was positively correlated with DBH and forking, but with differences 

amongst species. 

3.4.1 Phenotypic plasticity in tree growth 

It has been well studied how a single genotype can produce different phenotypes when 

grown in different environments (Bradshaw, 1965). For all three species, the largest 

proportion of the variation in height and DBH was explained by the environment (trial 

site).  

In general, our results showed that all provenances attained greater height when grown 

in southern locations and lower growth in northern locations. In all three species the 

tallest trees are found in the Llandovery site, which is the warmest and with lowest 

moisture deficit. Similar results were obtained by Cundall et al. (2003) who found that 

on average, tree height was greatest at the two Welsh trials sites. 

The ash provenances grew 50% taller in Llandovery than in North York Moors. The 

rowan provenances grew taller in Llandovery, on average 56% taller than in Dornoch 

and 73% taller than in North York Moors. Birch provenances also grew taller in the 

Llandovery site, 21% taller than in Drummond and 77% taller than in Dornoch. 

Moreover, we have found that the degree of plasticity is different. Not all provenances 

showed the same amount of plasticity when moved to a different environment (this is 

explained in section below 3.4.3). 
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For ash, DBH was smaller in northern trials. In contrast, DBH of birch was greater in 

a northern trial. In other studies of British ash and silver birch (Worrell, 2000; Cundall 

et al., 2003; Lee et al., 2015) these differences in growth due to the site effect have 

also been shown. For all species, the greatest height was observed at the Llandovery 

trials, which are situated in a warm and wet area.   

3.4.2 Genetic variation in tree growth 

There are clear differences in growth trait variation (height and DBH) among British 

provenances for all three species. Despite the large site effect, there were differences 

among provenances, which were significant for all species in all trial sites. As the 

environment at each trial site was uniform, these differences have to be accounted for 

by genetic differences, which suggests a degree of local adaptation has taken place in 

British tree populations of these three species. The difference between the tallest and 

the shortest provenance within each trial site varied across sites. In ash both trial sites 

showed the same differences amongst provenances, for both sites the tallest 

provenance was 45% tallest than the shortest. In rowan, the tallest provenance was 

24% taller than the shortest in Alice Holt, 48% taller in Llandovery, 64% in North 

York Moors and 66% in Dornoch. In birch, the tallest provenance within a trial was 

32% taller than the shortest in Drummond, 33% taller in Dornoch, 29% in Thetford 

and 41% in Llandovery. Overall, we see that the differences due to genetic variation 

within a trial are of the same magnitude or greater than the differences across trials. 

However, the differences between provenances are better shown in some trials than 

others, usually differences show better in southern trials. 

Other studies for ash and birch studied variation between British populations, but 

across a smaller geographical range or based on many less provenances; this may 

explain the inability of previous studies of British ash to detect clear provenance 

differences (Savill et. al, 1999; Cundall et al., 2003). In rowan, generic variation in 

British populations has not been studied before 

Out of our three study species, rowan showed the least differences in height among 

provenances. There are examples in the literature where genetic variance can be 

observed in some environments but not others (Thompson, 1991), and that is what we 
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can see in our height results for rowan, where the same provenances show very little 

differences amongst them in the most northern site while they show great differences 

amongst provenances in the two most southern sites. 

3.4.3 Genotype by environment interaction 

We found significant genotype by environment interactions for tree height in all 

species. The magnitude of differences among provenances varied by trial site and in 

other cases the ranking changed. Differences among provenances at southern trial sites 

were larger than at northern trials, both for height and DBH. Although the ranking of 

provenances for height was stable across sites (with the exception of a few 

provenances), there was a larger range of height means among provenances in the 

southern trials, which gave rise to significant provenance by site interactions. In some 

cases the proportional difference between the tallest and shortest provenance was 

greater in northern trials, although this was mainly due to one or a few outlier 

provenances for which growth was very limited at the northern sites. This trend is clear 

in all three species. 

Moreover, we have found differences in the amount of phenotypic plasticity between 

provenances. Genetic variation for phenotypic plasticity has been well documented 

(Schlichting, 1986). We hypothesised that the provenances from northern (harsher) 

environments would show less plasticity, due to having stronger selective pressures, a 

trend which has been recognised in deciduous trees for leaf phenology (Vitasse et al., 

2013), where provenances from higher altitude showed less phenotypic plasticity than 

provenances from lower altitude. Southern provenances have the ability to fully exploit 

the growing season when planted in the southern trials and will therefore show high 

plasticity among sites. Northern provenances are genetically adapted to grow only 

within a shorter growing season, so they cannot exploit the longer growing season in 

the southern trials, showing less plasticity. We, therefore, expect that northern 

provenances will show smaller differences in height when growing in different 

environments, compared with southern provenances. We have found differences in the 

relative height increase between trial sites, comparing the most northern trials with the 

trial which shows the greatest growth for all three species (Llandovery). In ash, relative 

height growth of northern provenances is 49% greater when growing in Llandovery 
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compared to North York Moors, while relative height growth of southern provenances 

is 51% (ROP SE the most with 52%). In rowan, the relative height growth at 

Llandovery compared to Dornoch is the same for northern and southern provenances 

(56.1% in both cases). In birch, the southern provenances change more between 

Drummond and Llandovery (southern provenances are 23% taller at Llandovery 

compared to Drummond, while the northern ones are 18% taller). The difference in 

absolute height increase between the northern provenances and the southern 

provenances was significant for both ash and birch, however the relative increase 

(Figure 3.17) was only significant in birch. These differences in relative height growth 

suggest that northern provenances have less phenotypic plasticity for height on average 

in birch. A degree of differences between northern and southern provenances were 

found in ash, but no differences in rowan. 

 
Figure 3.17. Percentage of increase of tree height in provenances grown at Llandovery 

compared to performance at northern sites (NYM in ash, DRUMM in birch and DOR in rowan). 

The bars represent the average increase for all the northern provenances in blue (ROPs NW 

and NE) and for all the southern provenances in orange (ROPs SE and SW). 

 

3.4.4 Geographical patterns of adaptive variation in tree growth 

It has been well studied that trees from warmer climates have a greater stem height 

than trees from colder climates, and these differences show when growing under 

common conditions (Aitken & Bemmels, 2016). Indeed, it is a well-established 

strategy in plantation forestry to plant trees from provenances south of the planting site 
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to gain faster growth by exploiting the adaptation of these non-local trees to longer 

growing seasons (Zobel & Talbert, 1984). Although this clinal latitudinal change is 

generally observed in common garden trials other climatic factors at the source site can also 

be very important, and, in some cases, longitude can be more important than latitude 

(Langhammer, 1982; Hubert, 2005). We found that in those trials in which there were 

clear differences among provenances for height growth, this tended to be related to 

latitude. However, in the northern trials, variations amongst provenances tended to be 

accounted for by longitude.   

Our results, based on a large number of provenances sourced from across Britain, show 

that this latitudinal cline in height and DBH is particularly clear among British ash 

populations, with southern provenances achieving greater growth. Other studies which 

included British ash provenances did not find a geographical pattern of variation in 

height growth within ash provenances in Britain, perhaps due to the inclusion of only 

a limited number of British provenances (Cundall et al., 2003; Clark, 2013), or 

provenances from a very restricted geographic area (Boshier & Stewart, 2005). 

Boshier & Stewart (2005) investigated variation in growth among 20 provenances 

from a small geographical range in England and Wales but found no clear geographical 

pattern. Other studies which included non-British provenances alongside British 

provenances, found that the non-British most southern provenances were the tallest 

(Cundall et al. 2003, Clark 2013) and northern British provenances in general were 

shorter that the non-British.  

Variation in growth traits in rowan has been far less studied, perhaps due to its lower 

economic value. The only study based on British rowan populations (Barclay & 

Crawford, 1984) studied the effect of altitude on the first few weeks of seedling growth 

and found that seedlings from a higher altitude origin had a higher relative growth. 

This is contrary to expectation, as the general trend is that temperature declines with 

higher altitude, in a similar way that it declines with increasing latitude (Jump et al., 

2009). However this study only compared seed of 15 trees in the same site growing at 

different altitude (from 0 to 600 m) and only looked at early seedling growth. In 

contrast, an experiment comparing populations of rowan from throughout its range in 

Sweden (Baliuckas et al., 2005) found that the populations from the highest altitude 
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had the poorest performance, which they described with the vague concept “health 

status” and height. Popov (1990) studied six Western-Russian populations along a 

latitudinal gradient and found that crown density was greater in provenances from the 

south. Our results, based on a large number of provenances from across the whole of 

Britain, show that significant height differences amongst British rowan provenances 

are only shown in the southern trials, where height declines with increasing latitude of 

origin. However, this was not observed at the northern trial sites, where differences 

among provenances were much smaller. Another consideration to take into account is 

that rowan displays different growth habits, from a single stemmed tree to a multi-

stemmed form. For this reason, the height measured as the tallest stem, might not be 

the best way to measure growth in rowan, as the same biomass can be in the form of 

one tall stem, or many shorter ones. These differences in habit might vary across 

environments and provenances. The number of stems should be a trait to taken into 

account when measuring rowan growth. Tanentzap et al. (2012) consider that the 

multi-stemmed architecture in temperate woodland trees species is an advantageous 

trait for shade tolerance and herbivory damage. However, the phenotypic plasticity as 

a response to different environments has not been studied. 

Geographic patterns of variation found in the growth of birch existed but were 

complex, different by site and different for height and DBH. Height differences in the 

southern trials were explained by latitude (decreasing with increasing latitude), but in 

the two northern trials variation was better explained by longitude. However in either 

case, the most southern provenances were the tallest - it has to be noted that latitude 

and longitude are themselves correlated in Britain, as the most eastern part of the 

country is also the most southern, and the most western parts are also the most 

northern. Previous work on silver birch in Great Britain largely supports our results 

for height in birch, where trees from southern provenances transferred to northern sites 

had greater relative height growth, compared to local or more northern provenances. 

Trials based on a more restricted geographical range of provenances which included 

only Scottish and northern-English provenances, showed a clear relationship with 

latitude, whereby provenances from the north were shorter than those from further 

south (Lee et al. 2015). Another study found that height was correlated with both 

latitude and longitude, where provenances from the south-west were the tallest 
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(Worrell 2000). In Finland, latitudinal transfer functions of growth (based on a larger 

geographical range) were curvilinear, where good height growth was found in local 

stock and in provenances originating from up to 2 degrees further south; bur 

provenances transferred from further south showed poor height growth (Vihera Aarnio 

& Velling, 2008; Vihera Aarnio et al., 2013).  

Overall, in ash and birch latitude has a great effect in tree growth, and in a lesser extent 

for rowan; while longitude is also important for tree growth in silver birch. Across all 

trial sites, the northern provenances in ash and birch are 15% shorter than the southern 

provenances for these two species, however, overall in rowan the northern 

provenances are 6% shorter than the northern ones.  

3.4.5 Correlations of Height with other traits 

Our results show that height is an informative trait, which reveals differences among 

provenances effectively. In general, we expect that height can provide a relatively good 

indication of tree fitness. However in the sections below we provide clear examples of 

situations in which consideration of trait covariance can result in different sets of 

conclusions, thereby improving our understanding of suitability for planting sites. 

Forking  

The tallest trees observed (in both trial sites for ash and in the most northern birch site) 

were those which also had the highest number of forks. This positive correlation 

between height and forking has also been found before in ash in Britain (Mwase et al., 

2008). However in another study the opposite trend was found (Foggo, 1996), which 

related forking with producing shorter shoots. Also, Kerr & Boswell (2001) consider 

that younger or shorter trees have greater risk of forking because damaging frosts occur 

near to the ground. The trend we have found which shows that the tallest, southern 

provenances have a higher rate of forking has also been shown in silver birch 

experiments in Finland (Viherä-Aarnio & Velling, 2008; Viherä-Aarnio et al., 2013), 

where forking represents the trade-off against height growth. A probable explanation 

for this relationship is that past adaptation to longer growing seasons in trees from 

southern provenances provides strong vegetative vigour but also results in the timing 

of growth initiation being inappropriately phased to avoid late spring or early autumn 
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frosts when these provenances are grown away from their home site; and thus, 

instances of frost damage (measured as number of forks) are more frequent (Wardle, 

1961; Ningre et al., 1992; and Kerr & Cahalan, 2004). Although frost events seem not 

to have been sufficiently severe to result in mortality in standing live trees (survival 

was generally high at all sites), overall stem form is compromised and the presence of 

forks is indicative of maladaptation to the length of the growing season at the trial site. 

Wind can also be a cause of forking by bud damage (Kerr and Boswell, 2001), and 

windiness increases in a northerly and westerly cline in Great Britain (Clare & Ray, 

2001). This possible maladaptation to growing season length and wind intensity, 

would have been concealed if height alone was taken as a single proxy for fitness. In 

contrast to our results Malcolm & Worrell (2001) found, in their silver birch progeny 

trial that the differences in forking amongst families was negatively rather than 

positively related to height, however this relationship was only just significant 

(p=0.048). 

We have also found a large site effect for forking. In ash, the frequency of forking was 

uniformly high at Llandovery, and lower overall in North York Moors but with 

differences amongst provenances. In the Llandovery ash trial we do not find significant 

differences amongst provenances for forking, while in North York Moors the southern 

provenances fork more. In birch, the number of stem forks also varied by trial, in an 

opposite trend to ash: forking being higher in the north (Drummond) rather than the 

south (Llandovery). In the most northern and western birch trial (Dornoch) the 

variation was explained by longitude, where the eastern provenances forked more. We 

see that the oceanic climate to which the western provenances will probably be better 

adapted, can have an effect as it has more late spring and early autumn frost. In the ash 

trials, Llandovery is more oceanic than North York Moors; in birch, Drummond is 

more oceanic that Llandovery (both have the same longitude, but Drummond is more 

northerly). 
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DBH 

Our results show a high correlation between height and DBH in ash and birch (DBH 

was not assessed in rowan), which agrees with findings in other studies (Malcolm & 

Worrel, 2001; and Mwase et al., 2008). However, when DBH is considered together 

with height measurements, the site effect on the height:DBH ratio revealed a 

physiological trade-off in birch trees, whereby trees in the southern trial were thinner 

and taller, while in the northern trial they were thicker and shorter. This shows a 

different resource allocation strategy when the same provenances grow in different 

environments. Height-DBH relationships have been recognized as one of the ways in 

which trees respond to changes in the environment (Körner, 1998). These allometric 

relationships in tree growth have been studied broadly in many tree species, and have 

been shown to change with planting site quality, temperature and water supply (Aiba 

& Kitayama, 1999; Martinez & López-Portillo, 2003). Height and diameter growth 

have been found to have different temperature sensitivities in conifers (Li et al, 2003; 

Li & Yan, 2004) and this may be an underlying reason for the difference in 

height;DBH ratio between trial sites. Wang et al (2006) found that a lower proportion 

of biomass is allocated to height growth than to DBH under conditions of intensified 

winter cold in Betula ermanii Cham.. Another study (Wang et al, 2017) on the same 

birch species found that height-DBH ratios were modulated by temperature and other 

environmental factors such as soil depth, water availability, wind speed and snow 

cover. In previous studies, other birch species (Betula nana L., Betula populifolia 

Marsh., Betula papyrifera Marsh., and Betula alleghaniensis Britt.) have been found 

to show a higher degree of plasticity than species from other genera co-existing in the 

same environment (Bretharte et al., 2001; Ellum et al., 2004). Neighbour-competition 

effects have also been found on height-DBH relationships, including in silver birch 

(Hanry & Aarseen, 1999; Ilomäki, 2003). At the time of planting, spacing between 

trees at both of our birch sites was the same, which ought to have minimised 

differences in the level of neighbour-competition between the sites and so we expect 

that the difference in height-DBH ratio we found in our birch trial sites could be due 

to the difference in site conditions. Drummond (north) was the colder, drier and 

windier of the two sites while Llandovery (south) had a much more oceanic climate. 
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Additionally, prevalence of competing vegetation was higher at Llandovery, which 

had a very high density of bramble bushes (Rubus fruticosus)).  

We have found this difference in height:DBH ratio due to environment of the planting 

site in birch but not in ash. In the northern site of ash (North York Moors) trees are 

much shorter and thinner than in the southern trial site. It is clear that this variability 

in height:DBH ration in birch is driven by the environment; why this resources 

allocation strategy gives survival advantage, has to be further studied. Wind damage 

could be a possible explanation, but greater stem diameter is discussed as being 

correlated with being more susceptible to wind damage, as it reduces the flexibility of 

the tree (King, 1986; Rich et al., 2007) and root system is more related to wind damage 

resistance (Nicoll & Ray, 1996). 

Survival 

In ash and, to a lesser extent, rowan, survival is positively correlated with height. A 

possible explanation is that fast early height growth confers an advantage in terms of 

access to light availability (King, 1990). Considering trials were planted with a 

uniform spacing of 1.8-2 m, it is unlikely that trees would experience much 

competition for light, at least for the first years. Ash seedlings have been shown to 

have a lower survival rate under low light and higher growth rate at high light exposure 

(Petritan et al, 2007). On the other hand, rowan seedlings are considered exceptionally 

shade-tolerant (Pigott, 1983; Zebre, 2001). Therefore, light competition in the ash trial 

could contribute to the higher mortality in shorter trees, but this is less likely to be in 

the case for rowan due to its greater shade tolerance. Another explanation for the higher 

mortality in shorter trees, could be severe damage by ground frosts (Kerr and Boswell, 

2001), but our results in forking do not suggest that would be a general trend. Yet 

another possible explanation for lower survival in ash and rowan northern 

provenances, could be explained by inbreeding in the most isolated populations in 

harsher environments. If the slower growing northern provenances of rowan have 

some level of historical inbreeding, amongst other things (such as harsh climatic 

conditions, which can affect pollinators as well) would influence a lower quality of 

seed in the populations from harsher environments, as it has been shown in other 

studies in rowan (Barclay & Crawford, 1984; Sperens, 1996; Sæbø & Johnsen, 2000). 
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However, studies carried out on isolated rowan and ash populations in the south of 

Scotland did not find inbreeding, despite being in a fragmented landscape (Bacles et 

al., 2004; Bacles et al., 2005); the high levels of genetic diversity could have been 

maintained by bird seed-dispersal in rowan, and by wind-dispersed pollen in ash. 

Lower seed quantity and quality (low germination) has also been found in higher 

altitude populations of silver birch in Sweden (Holm, 1994). However, in birch, despite 

the absence of a clear correlation between tree height and survival, we see an opposite 

trend: the trees from the SE ROP were the tallest in all trials but also showed the 

highest level of mortality, except when planted in the south-east. In birch we have 

shown a clear relationship between survival and longitude, the oceanic-continental 

cline in Great Britain is important for the survival of birch trees, showing an East-West 

split. In comparison, in silver birch provenance trials in Finland (Viherä-Aarnio et al., 

2013), there was a relationship between latitude and survival: the local and the 

provenances from locations further north than the planting site, had a higher survival 

rate than the southern provenances. Provenances transferred west also showed very 

poor survival in Finland (Viherä-Aarnio & Velling, 2008). 

3.4.6 Conclusion 

Our results confirm the existence of genetic differentiation between British 

populations of ash, rowan and birch for height, as well as high level of phenotypic 

plasticity. This local adaptation present in British populations and the effect of the 

planting site, have to be taken into account when planting new trees. 

In the literature, height alone is frequently used as a proxy for fitness on its own. 

However, it is important to consider other traits when assessing suitability for tree 

planting, both if the interests are commercial (where both tree height and form are 

valued quantity and quality of timber) or for conservation purposes (where tree 

survival and fitness is more important than yield). We have shown that trees with 

higher survival might be the tallest in ash, but not in birch for example Also, achieving 

greater height if it is as a result of being in leaf for longer can very often come with 

the associated risk of frost damage. We consider that the trees which grow taller are 

not necessarily the best adapted to a given site, and the concept of tallest trees being 
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best adapted is sometimes confused in the literature because of the desirability of tall 

trees for timber production objectives. 

In this chapter, we have shown that with easy and quick measurements of tree stem 

(height, DBH and forking) and tree survival we can find clear differences amongst 

British provenances, as well as the large effects of the planting site. We have clearly 

demonstrated the importance of considering height in relation to other traits in order 

to improve our understanding of how this trait impacts on adaptedness of provenances. 

With this and the subsequent two chapters, we will provide more insight into tree local 

adaptation, by moving forward from the basic tree height measure on to traits that are 

more demanding to assess. 

Our results show a large amount of variation (genetic differences and phenotypic 

variation) on tree height amongst British populations. We have shown that the genetic 

differences are mostly explained by latitude, which negatively correlates with the 

growing season length. Therefore, this genetic differentiation we have found in British 

populations of ash and birch on their growth would explain an adaptation of the tree 

populations to the different gradient of growing season length across GB. Tree height 

is not so differentiated in rowan populations as it is in ash and birch, we want to find 

out if rowan populations are genetically differentiated looking at other traits. We want 

to find out if the genetic differences amongst tree populations (of ash, rowan and birch) 

in GB are only due to different adaptation to growing season length, or whether there 

are other adaptive pressures which can explain genetic differences amongst 

populations. In the next chapters we address this issue, examining other traits a part 

form tree stem growth. 
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Chapter 4: Variation in spring and 

autumn leaf phenology in British Ash 
and Rowan populations. 
 

I. Variation in leaf phenology in ash populations across 
GB 

II. Comparison of leaf phenology in ash and rowan  
 

Abstract: In this chapter we address two main questions, a) are there genetic 

differences in leaf phenology amongst provenances of British ash and rowan trees? 

and b) are the patterns of adaptive variation in leaf phenology the same in different 

species? Our study focuses on native populations of ash (Fraxinus excelsior L.) (n=42) 

and rowan (Sorbus aucuparia L.) (n=40), sampled throughout Great Britain and grown 

in common garden experiments. Trees were assessed in the spring for leaf flushing and 

autumn for leaf senescence. We found that ash provenances differed in timing of leaf 

flushing following a latitudinal cline, while rowan provenances showed a longitudinal 

cline. Differences amongst provenances were smaller for leaf senescence, with a clear 

latitudinal cline in ash but no obvious geographic pattern in rowan. We also found that 

the differences amongst provenances were much larger than the plasticity shown in the 

differences between the trial sites. In ash, we also found a correlation between stem 

forking and timing of flushing, with early flushing provenances tending to be more 

forked indicating repeated frost damage. Our results suggest that, as their leaf 

phenology is strongly genetically determined, moving trees to locations with different 

growing season lengths could have consequences for fitness in the long term. 
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4.1 Introduction 

Phenology is the study of the relationship between timing of recurrent life-history 

events and seasonal and annual climatic changes. In deciduous trees, the predominant 

non-reproductive phenological cycle is the active growth period, which is defined by 

the timing of bud development and leaf expansion (flushing) in spring and leaf colour 

change and shed (senescence) in autumn. It is key because it determines the amount of 

time that the trees are actively photosynthesising, which in turn affects the annual 

amount of biomass produced (Häkkinen et al., 1998; Mezel & Fabian, 1999; Linkosalo 

et al., 2006). If the timing of leaf emergence or senescence is not in synchrony with 

key seasonal weather patterns the maladaptation can have serious impacts on tree 

health and fitness (Perry, 1971; Mezel & Fabian, 1999; Doi & Katano, 2008; Vitasse 

et al., 2018). For example, young buds and leaves are highly sensitive and can be 

completely destroyed by extreme frost during early development and emergence 

(Häkkinen et al., 1998; Inouye, 2000; Rodrigo, 2000). This can result in stem forking 

(Kerr & Boswell, 2001), which compromises timber quality and potentially 

reproductive output if flower development is also affected (Gardner, 1977; 

Augspurger, 2009). The timing of leaf flush and shed is thought to be determined by a 

trade-off between maximum use of resources for growth and avoidance of damage by 

frosts (Heide et al., 1985, Saxe et al., 2001; Aitken et al., 2008).  

It has also been shown that phenology plays a crucial role in the carbon balance of 

terrestrial ecosystems (Keeling et al., 1996), in plant competition (Rathcke & Lacey, 

1985), in pest and disease control (Penfound et al., 1945) and can have impacts across 

trophic levels (Crawley & Akhteruzzaman, 1988; Koenig et al., 2015; Sinclair et al., 

2015; Bucharova et al., 2016). Since phenological events often respond to temperature 

cues, there is also concern about the impact that climate change will have on their 

timing; and there are widespread reports of advances in spring phenology, not only in 

trees (Fu et al.,2015) but in many other groups (Thackeray et al., 2016). Trees can 

adapt to change in the environment in two ways: responding with acclimation, 

reversible plastic changes on the phenotype; or with genetic change. Phenotypic 

plasticity is an essential component of plants’ response to an ever-changing 

environment (Jump & Peñuelas, 2005, Nicotra et al., 2010), however it might drive a 
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mismatch with fitness consequences (DeWitt et al., 1998). Genetic variation for 

phenology would allow an adaptive response over time (Aitken et al., 2008).   

For these reason, is important to separate the two components of variability found in 

tree populations. It is very important to understand the relative extents of genetic and 

environmental control over the phenological variation of native tree populations to 

provide evidence of whether and how standing trees can acclimate to different 

environments, and whether populations have the capacity for evolutionary adaptation 

to the changing climate. 

Phenology in the wild has been observed and very well recorded in situ in the natural 

environment for many centuries. In Great Britain, where there is a very good tradition 

of phenological observation, some records go as far as 1736 (Sparks & Carey, 1995). 

These show that timing of spring events vary substantially across the country, typically 

being earlier in the warmer southern parts. In temperate regions, spring phenology is 

negatively correlated with temperature (Roy & Sparks, 2000; Fitter & Fitter, 2002, 

Schwartz et al., 2006). There are many examples that show large differences in timing 

of key phenological events across Great Britain as a whole (such as Phillimore et al, 

2010), however differences can also be found at smaller spatial scales (pollen shed in 

Scots pine in the Scottish Highlands, Whittet et al., 2017), and there may be also some 

levels of variation within single populations (Rousi et al., 2011). The in situ timing of 

the leaf flush has been well recorded in British trees, all over the country (Murray et 

al., 1989; Abernethy et al., 2017).  

However, in situ observations do not provide insights into the relative extents of 

genetic and environmental (plastic) contributions to phenological variability. Common 

garden experiments are used to estimate these two components of the variability (and 

their interaction), where trees from different provenances are grown in a common 

environment and phenotypic differences can be inferred to be due to genetic 

differences. 

Generally, there is a rather limited knowledge of forest genetic resources in Great 

Britain (Boshier & Stewart, 2005; Cavers & Cottrell, 2015). There has been little 

assessment of genetic variation in the leaf phenology of native tree populations. The 

few common garden experiments on tree phenology in British provenances include 
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ash (Clark, 2013), hawthorn (Jones et al. 2001), Scots pine (Perks & Ennos, 1998; 

Salmela et al., 2011), oak (Wilkinson et al, 2016) and silver birch (Pelham et al., 1988; 

Billington & Pelham, 1991; Worrell et al, 2000). However, these studies tended to 

involve a relatively small number of provenances from a limited region of the country, 

sometimes as part of larger scale experiments involving continental provenances. 

Moreover, there are no studies which look at autumn leaf phenology (except for 

Blackburn and Brown, 1998, which looked at a few progenies of silver birch assessed 

for evidence of autumn frost damage). This work has shown that climate in Britain is 

characterized by a variable but high incidence of frosts between the months of April 

and May (Blackburn and Brown, 1988; Pelham et al., 1988; Billington and Pelham, 

1991, Worrell et al., 2000). 

Spring phenology is advancing under climate change (Roberts et al., 2015; Fu et al., 

2015; Thackeray et al., 2016). However, Vitasse et al. (2017; 2018) have shown that, 

in Switzerland, advances in the timing of key spring phenological events are greater 

than the advance in the date of the latest spring frost. It is known that there is a genetic 

component to leaf phenology the timing of which is also modulated by the 

environment so that it exhibits inter-annual variation (Wilson & Baldocchi, 2000). 

Both temperature and photoperiod have a role in controlling the timing of bud burst, 

although there are differences between species and different hypotheses on the effect 

of these factors (Vitasse & Basler, 2013; Tansey et al., 2017). 

In this chapter, we describe results of assessments of spring and autumn leaf phenology 

in multi-site common garden field experiments of ash (Fraxinus excelsior L.) and 

rowan (Sorbus aucuparia L.), containing a comprehensive sampling of the British 

distributions of each species. Our overall objective was to evaluate the relative extent 

of genetic variation and phenotypic plasticity in leaf phenology in native British 

populations of both species. We studied two species, as differences between species in 

the timing of bud burst have been shown previously (Murray et al., 1989; Abernethy 

et al., 2017), and aim to discover whether patterns of variation are the same in the two 

species. 

In this chapter we addressed the following questions: 
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-Do native populations of ash and rowan show genetic differentiation for leaf 

phenology? i.e. do they show differences amongst provenances when grown in the 

same location? 

- Do native populations of ash and rowan show phenotypic plasticity for leaf 

phenology? i.e. do provenances perform differently at different locations? 

- To what extent does the site of origin of the provenance determine timing of leaf 

phenological events? Are the patterns of variation for leaf phenology different between 

ash and rowan?  

 

4.2 Materials and methods 

The study was based on measurements of the timing of bud burst and senescence 

carried out in multi-site common-garden provenance experiments (trials) of ash and 

rowan established by Forest Research. 

4.2.1 Sampling strategy for trials. 

To establish the trials, a common seed sampling strategy was adopted for both species 

based on the Forestry Commission seed zone map of Great Britain (Forestry 

Commission, 1999; Figure 4.1). The system of seed zones divides the total area of 

Great Britain into 4 regions of provenance (North West NW, South West SW, North 

East NE and North West NW). These regions of provenance are further subdivided 

into 24 seed zones based on natural topographical boundaries (Figure 4.1). Where 

possible, two self-sown semi-natural populations of each species (hereafter referred to 

as provenances) were sampled from each seed zone. Approximately equal numbers of 

seed were collected from a minimum of 20 maternal trees and mixed to constitute the 

provenance sample. Selection of mother trees was not biased towards individuals with 

superior phenotypic characteristics (e.g. size, form), and where possible, sampled 

mother trees were located at least 100 m apart.  
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Figure 4.1. The four regions of provenance (ROP, coloured areas, heavy black boundary, 

labelled as northwest - NW, northeast - NE, southwest - SW, southeast - SE) and 24 seed 
zones (fine black boundary, numbered using FC seed zone codes) in Great Britain (modified 

from Herbert et al., 1999) 
 

 

Figure 4.2. Seed collection sites (small black dots) and trial site locations for ash (green 

dots, left) and rowan (red dots, centre). Coloured areas show regions of provenance (Herbert 
et al., 1999). 
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4.2.2 Experimental design by tree species 

Trials were established in environmentally contrasting field sites, with two sites per 

species (Table 4.1, Figure 4.2). The trial sites named ‘Llandovery’ are in the same 

location for both species, and are adjacent to one another. The trial sites named ‘North 

York Moors’ are located 112 km apart (Figure 4.2) in different parts of East Yorkshire: 

the ash trial site is west of the rowan site, at lower elevation and in more continental 

conditions; the rowan trial is located at higher altitude but is near the coast (Table 4.1, 

Figure 4.2). 

 

Ash (Fraxinus excelsior L.) 

Seed from 42 provenances of ash was germinated and grown in nurseries located near 

the trial sites, at Whixley (Yorkshire) and Carmarthen (South Wales). 

In 2007, one-year-old seedlings were planted in two common garden experiments. The 

two trials are located in South Wales (Llandovery - LLAN) and East Yorkshire (North 

York Moors - NYM). The Llandovery trial contains trees from the 42 provenances, 

the one in the North York Moors has 40 provenances (Figure 4.2 and Table 4.2). There 

are 40 provenances common to both trials. 

At each site, the experiment followed a randomized block design, consisting of three 

replicated blocks with each provenance represented by a single plot in each block. The 

plots consisted of 36 (6 x 6) trees from the same provenance in Llandovery and 30 (6 

x 5) trees in North York Moors and were planted at 2 m spacing. 

Careful inspection of plants for symptoms of disease at the time of assessment 

confirmed that measurements from the Llandovery trial were completed before the 

trial was infected by ash dieback, Hymenoscyphus fraxineus. In North York Moors 

nearly all the measurements were collected before the trees were infected with the 

exception of DBH and forking, which were assessed in the year when trees began 

showing signs of infection. Since then, both trial sites have developed high levels of 

infection (J. Clark, pers. comm). 
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Table 4.1. Location and climate details for the ash and rowan trial sites. 

Spp Trial Site 
Planting 

Year 
County Lat 

Lon

g 
CT 

M

D 

Alt 

(m) 

AP 

(mm) 
GDD DAMS Soil Type 

Ash            

 
NYM (North 

York Moors) 
2007 

East 

Yorkshire 
54.3 -1.9 9.0 

15

3 
113 959.8 1475 10.0 

Riverine Floodplain. Clay to 

Sandy Loam. Freely draining 

floodplain soils.  

 
LLAN 

(Llandovery) 
2007 

Carmarth

enshire 
51.9 -3.8 8.1 

10

8.2 
240 1329 1474 15.1 

Sandstone and Mudstone. Sand 

to Loam. Freely draining acid 

loamy soils over rock 

Rowan            

 
NYM (North 

York Moors) 
2006 

East 

Yorkshire 
54.3 -0.5 8 

14

9 
197 759.2 1328 14.8 

Very acid loamy upland soils with 

a wet peaty surface. Silty loam to 

sandy loam. Peaty. 

 
LLAN 

(Llandovery) 
2006 

Carmarth

enshire 
51.9 -3.8 8.1 

10

8 
240 1329 1474 15.1 

Sandstone and Mudstone. Sand 

to Loam. Freely draining acid 

loamy soils over rock. 

  

 

 

 

 
 

           

 

 

 

 

 

 

Rowan (Sorbus aucuparia L.) 

Fruits from a total of 42 provenances were sent to Forest Research’s Newton field 

station near Elgin for manual extraction of seed, then sown and raised into seedlings 

at Forest Research’s nursery (Northern Research Station, Edinburgh, NT248639). In 

2006, when the seedlings were one year old they were planted in two field based 

common garden experiments. Due to a shortage of plants from some provenances, only 

33 were planted in both trials (Table 4.3). 

The trial sites (Figure 4.2) were in South Wales (Llandovery - LLAN) and East 

Yorkshire (North York Moors - NYM). At each site, the experiment followed a 

randomized block design consisting of three replicated blocks with each provenance 

The information relating to the climatic conditions at each of the trial sites was obtained from ESC-Ecological Site 

Classification (Clare and Ray 2001). We focused on five parameters because we considered them likely to reflect elements 

of the climate that are key to tree growth: temperature, water availability, and other variables which are dependent on 

the geographical location of the site. The indices and their definitions are: 
  

CT: Continentality, corresponds to the Conrad Index (Conrad 1946). CT = 1.7 [A/sin (ᵩ +10)]- 14. Where A is the difference 

between the mean temperature of the warmest and coldest month in degrees Celsius and ᵩ is latitude in degrees. Lower values 

indicate more oceanic climates. 
MD: Moisture deficit (mm).To consider the effects of the dryness of the growing  season  moisture  deficit  is calculated by  

considering  the  potential  evaporation  and  precipitation.   Higher   values   indicate   drier sites. 
AP: Annual precipitation. Average annual rainfall (mm) between 1961 and 1990. 
GDD: growing degree days, the cumulative sum of the number of degrees Celsius above 5 

o
C on each day of the year in 

which mean temperature exceeds 5 
o
C. Values are long term mean annual values for the years spanning from 1961 to 1990. 

DAMS: Wind exposure measured by Detailed Aspect Method of Scoring: This provides an indication of wind exposure, the 

higher the values the more exposed the site. Sites with values under 12 can be considered to be sheltered. 
Soil Type: the soil information data were obtained from different inventories, using the UK Soil Observatory (UKSO). The 

European Soil Bureau description (The European soil database, 2006) was used to assign a soil type for all British trial sites. The soil 

texture and soil group data were obtained from Soilscapes (Cranfield University, 2017) for Welsh and English locations, and from the 

national soil map of Scotland (Soil Survey of Scotland Staff, 1981) for the Scottish trials. 
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represented by a single plot in each block. The plots consisted of 9 (3 x 3) trees from 

the same provenance, planted at 2 m spacing. 

Table 4.2. Details of the ash provenance source locations and the trial site in which they 

were planted. X indicates presence of a provenance at a given site.  

ROP Country Ash provenances Lat Long Alt (m) Site 

LLAN NYM 

NW Scotland 
 

Duisdale, Skye 57.17551 -5.75117 18 x x 

Kilninian, Mull 56.52959 -6.20799 71 x x 

Rassal Wood, Kishorn 57.42572 -5.59116 78 x x 

Ardtornish, Morvern 56.55802 -5.74080 20 x x 

Glasdrum Wood, Loch Creran 56.57409 -5.23204 33 x x 

Add Valley, Kilmichael Glassary 56.10608 -5.42003 30 x x 

Clyde Valley 55.67987 -3.91378 159 x x 

Shielhill Glen 55.91098 -4.82460 107 x x 

Penpont 55.23484 -3.85285 90 x x 

Nith Valley 55.32013 -3.82903 141 x x 

Crawick Water 55.38070 -3.92901 162 x x 

England Warks Burn 55.08810 -2.22184 90 x x 

NE Scotland 
 

Erchite Wood, Dores 57.36812 -4.34520 56 x x 

Craigellachie 57.48392 -3.17014 102 x x 

Fearnan Forest, Kenmore 56.57883 -4.03655 142 x x 

Glen Lyon 56.60154 -4.24476 183 x x 

Den of Alyth 56.62334 -3.25773 152 x  

Pitcairns Glen, Dunning 56.29959 -3.57373 119 x x 

Tweed Valley North Glen 55.58841 -2.66224 68 x x 

England Castle Eden Dene, Peterlee 54.74302 -1.35233 102 x x 

SW England 
 

Witherslack 54.26362 -2.87015 79 x x 

Park Wood&Hutton Roof 54.18157 -2.68983 170 x x 

Via Gellia Woods 53.10412 -1.61940 239 x x 

Upper Wharfedale 54.20254 -2.10359 202 x x 

Greta Wood, Purbeck Ridge 50.63671 -2.13570 126 x x 

Horner Wood, Porlock 51.18901 -3.58257 102 x x 

Wales 
 

Cardiff Area 51.54568 -3.23397 158 x x 

Aberystwyth Area 52.43015 -4.05854 90 x x 

Betws-y-Coed 53.07863 -3.79924 57 x x 

Talgarth 51.98553 -3.21297 198 x x 

SE England Forge Valley 54.27437 -0.49037 52 x x 

Ashberry Woods 54.26218 -1.13339 142 x x 

Treswell Woods 53.30786 -0.86124 54 x  

Hayley Wood 52.15840 -0.10991 79 x x 

Tick Wood, Ironbridge 52.62181 -2.52287 99 x x 

Forest Bank, Marchington 52.85206 -1.82028 142 x x 

Wyndcliff, Wye Valley 51.67790 -2.67969 208 x x 

Midger Wood 51.60551 -2.28572 160 x x 

Pheasant Copse, Petworth 51.01113 -0.62770 60 x x 

Bignor Hill  50.90848 -0.61611 194 x x 

Groton Wood 52.04999 0.88313 66 x x 

Out Wood 52.16578 0.41539 96  x x 
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Table 4.3. Details of the rowan provenance source locations and the trial sites in which they 

were planted. X indicates presence of a provenance at a given trial site. 

ROP Country Rowan provenances lat long Alt (m) Site 

LLAN NYM 

SW 
 

Scotland 
 

Assynt 58.1707 -5.2616 27.48  X 

Allt Volagir, South Uist 57.2473 -7.3102 68.76 X X 

Salen, Isle of Mull 56.5270 -5.9606 5.80 X X 

Tokavaig, Isle of Skye 57.1387 -5.9650 25.40 X X 

Add Valley 56.1406 -5.4861 33.72 X X 

Strathlachlan 56.1284 -5.1529 70.32 X X 

Falls of Clyde 55.6528 -3.7777 160.84 X X 

Mugdock Country Park 55.9707 -4.3205 161.80 X X 

Glenlee 55.0884 -4.1935 129.68 X X 

Lochwood 55.2577 -3.4428 180.20 X X 

Ettrick Water 55.4201 -3.1327 234.16 X X 

Bunchrew 57.4713 -4.3153 100.80  X 

Craigdarroch 57.5742 -4.6051 31.80  X 

Cleanhill Wood, Aberchirder 57.5543 -2.6364 158.76  X 

SE 
 

Scotland 
 

Birks of Aberfeldy 56.6024 -3.8716 285.96  X 

Pressmennan Wood 55.9513 -2.5885 149.84 X X 

Castle Eden Dene 54.7433 -1.3507 107.64 X X 

Horner Wood 51.1943 -3.5885 232.84 X X 

Holford/Hodder’s Combe 51.1583 -3.2183 164.88 X X 

Duddon Valley 54.3164 -3.2298 61.84 X X 

NW 
 

England 
 

Naddle Forest 54.5114 -2.8047 291.24 X X 

Brignall Banks 54.4959 -1.9129 222.36 X X 

Gelt Wood 54.9028 -2.7329 139.16 X X 

Brechfa 51.9930 -4.0633 146.28 X X 

Beddgelert 53.0247 -4.1380 257.76 X X 

Mynydd Du 51.9544 -3.1046 532.12 X X 

Wales 
 

Ugly House 53.1057 -3.8683 231.32 X X 

Forge Valley& Raincliffe Woods 54.2748 -0.4837 89.64 X X 

Ashberry and Reins Woods 54.2533 -1.1284 106.24 X X 

St. He len’s Wood, Coningsby 53.1132 -0.1226 6.24 X X 

NE 
 

England 
 

Moor Farm 53.1562 -0.1814 14.80 X X 

Pepper Wood 52.3682 -2.0916 144.76 X X 

The Ercall 52.6865 -2.5223 185.80 X X 

King’s Bottom, Longleat 51.1909 -2.2406 219.00 X X 

Chestnuts Wood, Forest of Dean 51.8293 -2.4703 161.72  X 

Saxonbury Hill 51.0763 0.2509 183.12 X X 

Seal Chart 51.2778 0.2374 129.44 X X 

Culter’s Wood, Freston, Ipswich 52.0105 1.1419 34.40 X X 

Felbrigg great Wood, Cromer 52.9134 1.2639 83.24 X X 
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4.2.3. Measurements 

4.2.3.1 Phenology measurements 

The ash and rowan trials were assessed for leaf phenology, in spring and autumn. The 

different methods of assessment are explained below and the list of assessments are 

provided in Table 4.6. 

4.2.3.1.1 Spring phenology: 

Spring phenology was assessed using a six-stage ordinal morphological scale for both 

species. The top bud of each tree was visually assessed to determine which of the six 

stages best described the development stage of the leaf. In this scoring system stage 1 

corresponds to a dormant fully closed bud while stage 6 corresponds to a fully 

expanded bud (Table 4.4, Figure 4.3). 

The terminal bud of each tree was assessed and scored on each visit. If the terminal 

bud was damaged, missing or dead then the next highest bud on the main stem was 

assessed. If the tree had more than one leading stem (i.e., was forked), then the bud on 

the stem with the largest diameter was assessed. Where the two stems were found to 

be equal in diameter, the highest bud was assessed. If forks were equal in height and 

diameter then the bud giving the highest score was recorded. 

The ash trials were visited in late spring 2013, when the trees were 7 years old. They 

were assessed on 13 occasions in Llandovery and on 15 occasions in North York 

Moors, between April and June. Rowan sites were visited on three occasions in late 

March to early April of 2008, when the trees were 2 years old (Table 4.6). 

 

Table 4.4. Stages of bud flushing in both species 

species Flushing stages (scores) 

ASH 1. Bud closed, black, fully dormant winter state. 
2. Bud swollen but still closed, green-black in colour. 
3. Bud scales partially separated, some leaves visible. 
4. Bud scales completely separated, leaves visible but still furled and 

extending <1cm beyond scales. 
5. Leaves elongated >1cm from scales and spreading but leaflets still 

furled. 
6. All leaflets separated and shoot expanding. 
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ROWAN 1. Bud closed fully dormant winter state. 
2. Bud swollen and the bud scales just started to open, however the bud is 

still vertical. 
3. Bud scales separated and the tightly furled leaves visible. The bud is 

bent sideways and can appear “hooded”. 
4. Bud scales completely separated, leaves starting to unfurl and separate 

but the leaflets (pinnae) on each leaf still furled. The leaves appear 
brownish in colour since the underside is predominantly visible. 

5. Leaves elongated and leaflets starting to separate as well. The 
appearance is now much more green since the top side of the leaves is 
visible. 

6. All leaflets separated on lowest two leaves and shoot expanding. 

 

 

 
Figure 4.3. Stages of bud flushing in both species, ash above and rowan below. 

 

4.2.3.1.2 Autumn phenology: 

Assessments of autumn phenology were based on foliage throughout the entire crown 

rather than a single leaf or a sub-set of leaves. The crown of the tree was visually 

inspected and assessment was based on the proportion of the crown that was visible to 

the assessor standing on the south-facing side of each tree. In this case, different visual 

scales were used for each species. 
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For ash, senescence was measured as the percentage of the canopy which had shed its 

leaves (Table 4.5). This ranged from stage 1 (0% leaf loss) to stage 6 (100% leaf loss).  

For rowan, the scoring system was based on the proportion of crown that was still 

green rather than yellow, brown or absent due to leaf fall. Trees were ranked from 5 

(81-100% green) to 1 (0-20% green) (Table 4.5). All lost leaves were counted as “not 

green”, identifying the gaps in regular patterns of the leaves plus the leaf scars on the 

shoots. Where loss of colour had led to a patchy distribution of green on the leaves, 

the assessor estimated the proportion of total green colour in the crown, rather than by 

individual leaves.  

Both ash trials were assessed in autumn 2014, one year later than spring phenology 

measurements were made. In Llandovery trees were scored on 20 occasions and in 

North York Moors, trees were scored on 23 occasions (Table 4.6). For rowan, 

assessments were conducted in 2008, during the same year as spring phenology 

assessments were made. The trees were scored on 3 dates in early autumn, at different 

dates on each trial. Scoring schedules had to be planned in advance and prior 

knowledge of the most appropriate timing of assessments was lacking. In consequence 

the timing of assessments was rather too early in the season and scoring was done 

before most trees were in an advanced stage of leaf senescence. 

Table 4.5. Leaf senescence scale for ash and rowan. 

Ash Leaf senescence scale  Rowan Leaf senescence scale 

1 No leaf loss 1 0-20% green 

2 1-25% leaf loss 2 21-40% green 

3 26-50% leaf loss 3 41-60% green 

4 51-75% leaf loss 4 61-80% green 

5 76-99% leaf loss 5 81-100% green 

6 100% leaf loss   
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Table 4.6. Range and frequency of dates on which ash and rowan trials were assessed for 

spring and autumn leaf phenology. 

Species Trial Site Spring phenology Autumn phenology 

Ash 

Llandovery 
13 visits 

23rd Apr - 19th June 2013 
20 visits 

2nd of Sept - 11th of Nov 2014 

North York Moors 
15 visits 

22nd Apr - 18th June 2013 
23 visits 

26th of Aug - 10th of Nov 2014 

Rowan 

Llandovery 
3 visits 

18th Mar, 3rd & 10th Apr 2008 
3 visits 

8th, 18th Sept & 2nd Oct 2008 

North York Moors 
3 visits 

19th Mar, 3rd & 10th Apr 2008 
3 visits 

10th, 18th & 22nd Sept 2008 

 

4.2.4.2 Stem form 

Ash trees were assessed for stem form in both trial sites by counting the number of 

forks on the main stem. This metric represents the number of occasions upon which 

the main stem had lost apical dominance due to bud damage, resulting in the 

subsequent branches coming from these forks up to the crown. The average number of 

forks per plot was used as the measure of stem form. Data were log transformed prior 

to analysis to meet assumptions of normality. 

4.2.4 Climatic data 

Temperature is known to affect tree leaf phenology (Wielgolaski, 1999). Long-term 

average temperature data were obtained from the Met Office to compare the three 

years in which phenology data were collected. For the trial sites in Llandovery, data 

were obtained from the nearest Met Office meteorological station (Saron, N 52.01 

W4.31), which is approximately 32 km west of the trial site. For the two North York 

Moors trials, temperature data were based on regional averages obtained from the Met 

Office for North East England. The data obtained were data for those two areas 

between 1995 and 2015 as seasonal averages summaries: Winter (WIN, from the start 

of December to the end of February), Spring (SPR, start of March until the end of 

May), Summer (SUM, from the start of June until the end of August), and Autumn 

(AUT, from the start of September to the end of November). We compared the season 

average temperature of the years when phenological data was collected (2008 for 
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rowan spring and autumn phenology; 2013 for ash spring phenology; and 2015 for ash 

autumn phenology) with the long-term average temperatures over the past 25 years in 

the same location (Figure 4.5 for Llandovery and Figure 4.6 for North York Moors).  

 

Figure 4.5. Difference between the average temperature in years 2008, 2013 and 2015, and 

the average of the last 25 years, at the Saron climatic station. Temperature is the seasonal 
average (WIN=winter, SPR=spring, SUM=summer and AUT=autumn. Data from Met Office). 

 

Figure 4.6. Difference between the average temperature in years 2008, 2013 and 2015, and 

the average of the last 25 years in the North of England Region. Temperature is the 
seasonal average (WIN=winter, SPR=spring, SUM=summer and AUT=autumn. Data from 

Met Office). 
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4.2.5 Data analysis  

Estimating means of leaf flushing and senescence. 

For analysis, dates were transformed into Julian dates (JD), commencing from January 

1.  

For ash, due to the large numbers of observations of spring and autumn phenology it 

was possible to construct an accurate model of leaf phenology of the trees. To predict 

the timing of transition between ordinal stages, ordinal logistic regression was applied 

using ‘cumulative link models’. Using these models, estimates of the dates (expressed 

in Julian days) on which 50% of trees per plot were at the fully flushed stage (stage 6) 

(‘JD50_F’), and on which 50% of the trees in the plot reached full defoliation (100% 

leaf loss) (‘JD50_S’). For each plot, curves were modelled with a common slope, 

which mirrored the raw data distribution (Figure 4.7). For each trait, the mean JD50 

per provenance was the average of modelled JD50 from three plots per provenance. 

Confidence intervals (at 95% level) associated with mean provenance values were 

calculated (as the mean trait value ± 1.96 times the standard deviation). 

For rowan, as frequency of observations was lower, it was not possible to model 

phenology and the response variable used was a simple mean score per plot on the date 

when differences among provenances were greatest at each site.  

To enable direct comparison between ash and rowan, mean flushing score on the date 

on which there was the greatest variation amongst provenances was also calculated for 

both species.  
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Figure 4.7. Mean per plot of trees in fully flushed (staged 6) in Llandovery (left) versus the 

fitted model. Each plot is represented by a line in the ordinal logistic regression (right). 

 

Analysis of Sources of Variation 

Analysis of variance (ANOVA) based on linear models was used to determine the 

effects of provenance and site on the plot means for each trait. The different models of 

ANOVA used were as follows: 

i. By species, trait and trial site; provenance was a fixed factor and block 

was a random factor. 

ii. By species and trait across all trial sites; site, provenance, and site by 

provenance interaction were fixed effects, block nested within site was a 

random factor. 
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Relationship with site of origin 

For each trait, linear regressions were used to test the relationship between provenance 

means and latitude and longitude of the home site. Multiple linear regressions 

including both longitude and latitude were carried out; if the relationship with only 

one of the coordinates was significant then a single linear regression was done. Linear 

regression plots were drawn. 

Phenological variation in leaf flushing and senescence has been shown elsewhere to 

be driven by multiple environmental factors (White et al., 1997; Vitasse et al., 2009) 

which vary with location. In GB, the predominant axes of environmental variation are 

captured well by latitude and longitude, which summarise climatic variables (as shown 

in Chapter 2). Here we use latitude and longitude as proxies for local environmental 

variation. 

Trait covariation. 

In ash, to test for covariation between phenology and form, Pearson’s correlation 

coefficients were calculated using plot means for flushing and forking from individual 

sites. 

Statistical analyses were performed in R version 3.2.3 (R Core Team, 2015). The data 

packages for data management, analysis and visualisation used were “dplyr” 

(Wickham and Francois 2015) and “ggplot” (Wickham, 2009). Cumulative link 

models were processed using the ‘clm’ command in the ‘ordinal’ package in R 

(Christensen, 2015) 
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4.3 Results 

4.3.1 Leaf phenology in Ash 

4.3.1.1 Ash spring leaf phenology 

Significant differences were found among provenances for the timing of spring leaf 

flush (JD50_F) at both sites (Table 4.7; Figure 4.8). The mean JD50_F was earlier by 

three days in the northern trial site (NYM) (24th of May) than it was in southern trial 

site (Llandovery) (27th of May) (Table 4.8; Figure 4.9). In both trials, the means across 

provenances from each ROP showed a similar geographical pattern (Table 4.8). In 

general, provenances from the south east ROP flushed earliest, and provenances from 

the north-west ROP flushed latest, although there was variation among provenances 

from the same region (Figure 4.8). Latitude explained around 40% of the variation at 

both trial sites (Figure 4.10). The difference between JD50_F of the earliest and latest 

provenances was 18 days in Llandovery (from Julian date 129 to 157) and 11 days in 

North York Moors (140 to 151). No significant interaction was found between 

provenance and trial site for JD50_F. However there was a significant site effect (Table 

4.9). The interaction plot (Figure 4.9) shows how nearly all provenances flush earlier 

at the North York Moors site. The trees growing in the more northerly trial site were 

fully flushed slightly earlier.  

Table 4.7. Analysis of variance of JD50_F in ash at the two trial sites. 

  Df Sum Sq Mean Sq F value Pr(>F) 
Llandovery  

 
PROV 41 1267.69 30.9193 11.2493 <2e-16 *** 

BLOCK 2 5.29 2.6429 0.9615 0.3866 
Residuals 82 225.38 2.7485   

North York 
Moors  

 

PROV 39 631.46  16.1914   4.5148 2.496e-08 *** 
BLOCK 2 35.04  17.5223   4.8859    0.01036 *   

Residuals 69 247.46   3.5863                       

 

Table 4.8. Mean values of JD50_F by ROP and trial site 

Trial Site 
Llandovery (JD50_F) North York Moors (JD50_F) 

Difference LLAN 
- NYM 

Mean trial 147.26 Mean trial 144.70 2.55 

ROP 

NW 150.03 NW 146.94 3.00 

NE 148.79 NE 145.94 2.84 

SW 145.70 SW 143.42 2.32 

SE 144.78 SE 142.57 2.09 
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Figure 4.8. Mean provenance JD50_F, with 95% confidence intervals, with colours 

corresponding to ROP (following inset map). 
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Table 4.9. Analysis of variance table with interaction between provenance and site. 

  Df Sum Sq Mean Sq F value Pr(>F) 

JD50_F  
JD 50% trees 
Fully flushed 

PROV 41 1779.32 43.40 13.86 <2e-16 *** 
SITE 1 369.42 369.42 117.97 <2e-16 *** 

Prov x Site 39 142.38 3.63 1.16 0.2542 ns 
BLOCK 4 40.33 10.08 3.22 0.0144 * 

Residuals 151 472.84 3.13   

 

 

 

Figure 4.9. Plot of interaction between JD50_F and trial site per provenance. Colour 

represents the ROP (following inset map). 
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Figure 4.10. Linear regression of JD50_F with Latitude per provenance at the Llandovery 

and North York Moors trial sites. Colour represents ROP (following inset map). 

 
 

4.3.1.2 Ash stem forking and leaf flushing 

At each site, a significant negative correlation was found between number of forks and 

JD50_F (Llandovery, R = -0.18, p <0.05; North York Moors, R = -0.23, p < 0.05), 

whereby early flushing was related to higher number of stem forks (Figure 4.11). The 

effect was most pronounced at North York Moors, which exhibited greater variation 

in the number of stem forks, as forking at Llandovery was generally high for all 

provenances. 
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Figure 4.11. Scatterplot of the mean number of forks and JD50_F by provenance. The 

colour corresponds to ROP. 

4.3.1.3 Ash autumn leaf phenology 

For leaf senescence, there were significant differences amongst provenances in the 

North York Moors trial only (Table 4.10), which can be observed in the aerial 

photograph (Figure 4.12), taken at the time of investigation. The trial average JD50_S 

was 8 days earlier in North York Moors than in Llandovery, meaning that the trees lost 

all their leaves earlier in the North York Moors trial (Table 4.11). As with spring 

phenology, the order of provenances in both trials show a similar geographical pattern. 

Provenances from the north-west ROP lost their leaves earliest, whilst those from the 

south eastern ROP lost their leaves latest.  

The difference between the earliest and latest provenances was larger at Llandovery 

(37 days, from JD 278 to 315) than at North York Moors (24 days, from JD 279 to 

303). There was a large site effect (Table 4.12): in the interaction plot (Figure 4.14) all 

provenances except one (from north east region) lose their leaves earlier in the North 

York Moors trial than in Llandovery. There was no significant interaction between 
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provenance and trial site, although the ranking of provenances from the earliest to the 

latest to lose their leaves differed between sites (Figure 4.9). At Llandovery, the 

provenances show a clearer latitudinal cline than at North York Moors, when the 

provenances are ranked according to their JD50_S. Latitude explained 44% of the 

variation in North York Moors compared to only 32% in Llandovery (Figure 4.15).  

 

Figure 4.12. Aerial photograph of part of the ash trial at the North York Moors site taken 

from a drone during leaf senescence, October 2015. 
 
Table 4.10. Analysis of variance of JD50_S for ash at the two trial sites. 

  Df Sum Sq Mean Sq F value Pr(>F) 

Llandovery  
 
 

PROV 41 1718.10    41.90   1.4986   0.06074 NS 
BLOCK 2   748.43   374.21 13.3828 9.337e-06 *** 

Residuals 82 2292.90    27.96                        

North 
 York Moors  

  

PROV 39 1185.77    30.40   2.1599   0.002579 ** 
BLOCK 2 1153.86   576.93 40.9841 1.857e-12 *** 

Residuals 69   971.31    14.08                        

 
Table 4.11. Mean values of JD50_S by trial site and ROP. 

Trial Site 
Llandovery 
(JD50_S) 

North York Moors 
(JD50_S) 

Difference 
LLAN - NYM 

Mean trial 299.52 Mean trial 291.33 8.34 

ROP 

NW 296.78 NW 289.65 7.16 
NE 296.63 NE 291.12 5.79 
SW 301.87 SW 292.97 8.90 
SE 302.25 SE 291.80 10.77 

 
Table 4.12. Analysis of variance of JD50_S. 

  Df Sum Sq Mean Sq F value Pr(>F) 

JD50_S  
JD 50% 
leafless 

trees 

PROV 41 1835.7     44.8 1.7188 0.009971** 
SITE 1 3865.3 3865.3 148.3859 < 2.2e-16 *** 

Prov x Site 39 1083.7 27.8 1.0668 0.379841    ns 
BLOCK 2 1181.0 590.5 22.6698 2.383e-09 *** 

Residuals 153 3985.5 26.0   
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Figure 4.13. Mean JD50_S, with 95% confidence intervals for each provenance at each trial 

site. Colours correspond to ROP (following inset map). 
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Figure 4.14. Plot of the interaction between JD50_S and trial site per provenance. Colours 

correspond to ROP (following inset map). 

 

 

Figure 4.15. Linear regression of JD50_S versus latitude. Each point represents a 

provenance mean. Colours correspond to ROP (following inset map). 
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4.3.2 Comparison of Leaf phenology in Ash and Rowan 

4.3.2.1 Spring leaf phenology 

4.3.2.1.1 Genetic diversity and plasticity in both species 

Ash: There were significant differences amongst ash provenances at most of the 

scoring dates (apart from the earliest and latest dates, there were significant differences 

in Llandovery between JD113 and 163, and in North York Moors between JD119 and 

162). The dates when the differences amongst provenances where the greatest were 

JD136 for Llandovery and JD33 for North York Moors (Table 4.13). There was no 

significant interaction between provenance and site. In ash the differences amongst 

provenances were greater in Llandovery than in North York Moors (Figure 4.17). The 

trees from NW were the least flushed (Table 4.14). 

Rowan: For rowan, there were significant (p<0.001) differences amongst 

provenances at the three dates when trees were scored in both trial sites, the date when 

the differences were greater was JD101. There was also a significant interaction 

between provenance and site (p<0.001). The differences between provenances were 

much greater in Llandovery (Figure 4.16) than North York Moors. All provenances 

except a few from SW and NW ROPs were more advanced in Llandovery than in 

North York Moors. In both trial sites the eastern provenances were the most advanced 

in their flushing stage. 

Table 4.13. Analysis of variance of the flushing mean score on the dates when the 

differences amongst provenances were the greatest, for rowan and ash. 

Specie
s 

Mean Flushing Score   
ANOVA TABLE 

Df Sum Sq Mean Sq F-value Pr(>F) 

Ash 

Llandovery  
JD 136 

PROV 41  43.554  1.06229   8.2897 4.065e-16 *** 
BLOCK 2   0.131  0.06528   0.5095    0.6027 NS 

Residuals 82   10.508  0.12815       

North York 
Moors  
JD 133 

PROV 39  19.9163  0.51067   4.5461 2.176e-08 *** 
BLOCK 2  1.6489  0.82445   7.3393   0.001288 ** 

Residuals 69  7.7509  0.11233   

Rowan 

Llandovery  
JD 101 

PROV 33 199.894 6.0574 33.7205 < 2.2e-16 *** 
BLOCK 2 2.830  1.4150 7.8772  0.0006061 *** 

Residuals 122 21.916 0.1796    

North York 
Moors  
JD 101 

PROV 38 77.927 2.05071 10.5783 < 2.2e-16 *** 
BLOCK 2 2.924  1.46212 7.5421  0.0007851 *** 

Residuals 135 26.171  0.19386   
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Table 4.14. Mean flushing score by region of provenance (ROP), trial site and species for the 

date (expressed in Julian days, JD) on which there was most difference amongst provenances 

for the mean leaf flushing score. 

  Mean Flushing score 

 TRIAL SITE LLANDOVERY NORTH YORK MOORS 

 Species  
Ash  Rowan  Ash  Rowan  

Date of assessment 
(Julian days) 

136 101 133 101 

 Trial mean 3.13 3.47 3.34 3.10 

ROP 

NW 2.63 2.63 2.95 2.68 

NE 2.86 4.14 3.11 3.18 

SW 3.36 2.66 3.53 2.75 

SE 3.61 4.44 3.72 3.81 

 

 

 

Figure 4.16. Interaction plot for rowan, mean flushing score by provenance in each trial site 

on JD 101. Colours correspond to ROP (as indicated in the map). 
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4.3.2.1.2 Comparison of spring leaf phenology between species 

Spring leaf phenology was recorded at high frequency throughout the flushing period 

for ash, but at only three time points for rowan. In 2008, rowan trees started flushing 

in both trial sites over a month before the ash trees recorded in 2013 (Figure 4.16). In 

Llandovery where the two species grow adjacent to one another, at the last scoring 

date for rowan (Julian date 101) the average flushing score for the whole trial was 

3.5. This score was not reached in the ash Llandovery trial until over a month later 

(the average score at JD 136 is 3.1). In North York Moors, the ash trees also took 

over a month longer than the rowan trees to reach the same mean flushing score 

(rowan mean score is 3.2 in JD101, while ash mean score is 3.34 in JD133). 

On the date on which there was most difference amongst provenances for the mean 

leaf flushing score (Table 4.13), there were strong relationships between flushing 

scores and the locations of origin of the provenances. In ash there was a significant 

negative regression with latitude (for both trial sites, explaining over 35% of the 

variation), while in rowan there was a significant positive regression with longitude 

(for both trials, explaining over 45% of the variation) (Table 4.15, Figure 4.18). In 

ash the southern provenances flushed earlier, while in rowan the eastern provenances 

grew earlier. 

Table 4.15. Adjusted R2 values of the linear regressions of leaf phenology scores against 

latitude and longitude, by species and trials.  

Spp 
Trial 
site 

Trait 
Julian 
Days 

No. of 
provenances 

Geographical 
variable 

R2 p-value 

Ash LLAN Bud flush 136 41 Latitude 0.41 P<0.001 

  Leaf loss 294 41 Latitude 0.27 P<0.001 

 NYM Bud flush 133 39 Latitude 0.35 P<0.001 

  Leaf loss 293 39 Latitude  0.20 P<0.001 

Rowan LLAN Bud flush 101 33 Longitude 0.48 P<0.001 

  Leaf loss 276 33 Latitude 0.08 P<0.01 

 NYM Bud flush 101 38 Longitude 0.45 P<0.001 

  Leaf loss 262 38 Longitude 0.16 P<0.001 
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Figure 4.17. Mean flushing score value per provenance in each trial site (Llandovery left, North 

York Moors right) and both species (ash above, rowan below), on all the dates when the trees 
were scored. The x axis is time in Julian days, from 76 (16th March) to 170 (19th June). Very 
important, the ash data was recorded in 2013 and rowan data on 2008. The y axis is the 

flushing score (when 1 is dormant bud to 6 which is fully flushed). Colours correspond to ROP. 
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Figure 4.18. Linear regression of the mean flushing score per provenance with latitude in ash 

(left) and longitude in rowan (right), by trial site (North York Moors below and Llandovery 
above). The mean flushing score corresponds to the assessment date when differences 

amongst provenances were greatest (see Table 4.13). Colours correspond to ROP. 
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4.3.2.2 Autumn leaf phenology 

4.3.2.2.1 Genetic diversity and plasticity in both species 

Ash: For ash there were significant differences in timing of leaf senescence (mean 

provenance score) amongst provenances in both trials on most of the dates scored (the 

dates scored when differences among provenances are significant are in Llandovery 

between JD 294 and 315, and in North York Moors between JD 241 and 297). The 

dates on which there was the greatest range of mean leaf loss scores amongst 

provenances (and these were significant) were JD 294 in Llandovery and JD 293 in 

North York Moors (Table 4.16). There were no significant interaction between 

provenance and site. The greatest difference between provenances was found in 

Llandovery. In Llandovery SE provenances were the less senesced, while in North 

York Moors it was the SW provenances (Table 4.17). 

Rowan: There were significant differences amongst provenances at the three dates 

scored in Llandovery and on the first two dates in North York Moors. The date when 

the range of senescence across provenances was greater was JD 276 in Llandovery and 

JD 262 in North York Moors (Table 4.16). There was a significant (p<0.001) 

interaction between provenance and site. There was stronger differentiation between 

provenances for leaf senescence in the North York Moors than in Llandovery, and 

trees senesced earlier in the former. All provenances senesced earlier in North York 

Moors, with the exception of one provenance from the NW ROP (Figure 4.19). 

Table 4.16. Analysis of variance of the flushing mean score on the dates when the 

differences amongst provenances were the greatest, for rowan and ash. 

Spp Mean Senescence Score   
ANOVA TABLE 

Df Sum Sq Mean Sq F-value Pr(>F) 

Ash 

Llandovery  
JD 294 

PROV 41  26.9521 0.65737   1.9257 0.006007 ** 
BLOCK 2   4.2136 2.10681   6.1716 0.003186 ** 

Residuals 82  27.9924 0.34137   

North York 
Moors  
JD 293 

PROV 39  8.9092 0.22844   2.5304 0.0003716 *** 
BLOCK 2  2.5493 1.27466 14.1194 7.242e-06 *** 

Residuals 69  6.2291 0.09028   
 

Rowan 

Llandovery  
JD 276 

PROV 33  14.3486 0.43481   3.7619 5.178e-08 *** 
BLOCK 2   0.9819 0.49097   4.2478    0.01647 * 

Residuals 122  14.1009 0.11558      

North York 
Moors  
JD 262 

PROV 38  29.911   0.7871   1.7325 0.0118957 * 
BLOCK 2   6.704   3.3518   7.3775 0.0009105 *** 

Residuals 135  61.335   0.4543   
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Table 4.17. Mean senescence score by region of provenance (ROP), trial site and species. 

On a given date (expressed in Julian days, JD), which is the date when there are more 

differences amongst provenances for the mean leaf senescence score. 

  Mean senescence score 

 TRIAL SITE LLANDOVERY NORTH YORK MOORS 

 Species  Ash  Rowan  Ash  Rowan  

 Date of 
assessment 
Julian days 

294 276 293 262 

 Trial mean 4.37 2.58 5.40 2.40 

ROP 

NW 4.37 2.53 5.53 2.09 

NE 4.90 2.47 5.50 2.28 

SW 4.08 2.56 5.27 2.51 

SE 3.97 2.66 5.31 2.72 

 

 

Figure 4.19. Interaction plot for rowan, mean senescence score by provenance in each trial 

site on JD 101. Colours correspond to ROP (as indicated in the map).  
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4.3.2.2.2 Comparison of spring leaf phenology between species 

There was a much smaller time difference between species for leaf senescence than 

for leaf flushing, taking into consideration that they were assessed in different years 

(although 2008 and 2015 had similar average weather, Figure 4.5 and 4.6)  and 

different locations for North York Moors. For ash, the measured variable was leaf loss 

in ash, whilst for rowan the scale incorporates leaf colour change and leaf loss together. 

Although the scales were not equivalent and the senescence process of leaf colour 

change and leaf loss is different across species, both track leaf loss and can be 

compared. Leaf loss is the last stage in autumn leaf senescence, following a gradual 

leaf colour change. When rowan trees were changing colour, ash trees had already 

started to lose leaves for the years sampled (Figure 4.20).  

There were greater differences between provenances in Llandovery for ash but in 

North York Moors for rowan. On average, trees were more senesced in Llandovery in 

ash but more advanced in North York Moors in rowan. 

There were strong relationships between leaf senescence and the sites of origin of the 

provenances for the means at the dates when the greatest differences between 

provenances were observed (Table 4.17). In ash there was a positive significant 

(p<0.001) regression of leaf loss score on latitude (for both trial sites, explaining less 

than 10% of the variation, Table 4.15). In the Llandovery rowan trial there was a 

significant (p<0.01) negative regression of green crown score on latitude (8% 

explained variation), while in North York Moors there was a significant (p<0.001) 

positive regression of green crown score on longitude (16% explained variation). In 

ash in both trials the southern provenances were the fastest to senesce. In rowan there 

were differences between the two trials, in Llandovery the southern provenances lost 

their leaves later, while in North York Moors the eastern provenances lost their leaves 

the latest (Figure 4.21). 
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Figure 4.20. Mean leaf loss score per provenance in each trial site (Llandovery left, North 

York Moors right) and for both species (ash above, rowan below), on all the dates when the 

trees were scored. The x axis is time in Julian days, from 238 (26th August) to 315 (11th 
November). Note that the ash data was recorded in 2015 and rowan data in 2008. The y axis 
is the senescence score, note that the leaf loss scales are different between ash and rowan 

(table 2). The ash score increases as leaf loss progresses towards total leaf loss (stage 6), 
while rowan score decreases towards no green leaves left (stage 1). 
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Figure 4.21. Linear regression of the mean senescence score per provenance with latitude 

in ash in both trials and rowan in Llandovery, and with longitude in rowan in North York 
Moors, by trial site (North York Moors below and Llandovery above). R-sq values in Table 
15. The mean flushing score was taken on the date when the difference amongst 

provenances was greatest (see Table 4.17). 
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4.3.2.3 Summary differences amongst species for leaf phenology 

 

We found big differences between ash and rowan for timing of leaf flushing, but 

smaller differences for leaf senescence. We have to take into account the climatic 

differences experienced during the years in which the trees were assessed. However 

the same patterns are found in the 3 locations, which have distinct climates. Spring 

2013 was much colder (2 °C less on average) than spring 2008, when ash and rowan 

were respectively assessed for leaf flushing. Autumn 2008 and 2015 were much more 

similar in terms of average temperature (Figures 4.5 and 4.6). 

 

Southern provenances of ash tended to flush earlier and senesce later than those from 

more northern latitudes. In the case of rowan, the eastern provenances were inclined 

to flush earlier than those from the west.  The pattern of leaf senescence was less clear 

for rowan, although site had an effect: in North York Moors the provenances from the 

east senesced later than those from the west, whilst in Llandovery the populations from 

the south senesced earlier than those from the north.  

 

For both species the provenance effect was much greater for leaf flushing than for 

senescence. Also the provenance effect was greater than the trial effect for both 

species, especially for leaf flushing. There was more variation within trials than across 

trials. 
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4.4 Discussion 

We have found differences: 1) between species, 2) across trial sites, and 3) across 

provenances for leaf phenology in the two species investigated. Our results showed 

that differences between provenances in the timing of leafing and leaf shed persist 

when the trees are grown under the same conditions in a common garden trial; and this 

indicates that these phenological traits have a genetic basis. Within each of the trial 

sites analysed and for both species, we found genetic differentiation amongst native 

provenances for leaf flushing and senescence. Moreover, these differences amongst 

provenances were related to the location of the origin of the seed, which showed the 

geographical pattern of differentiation for leaf phenology across GB. Despite the large 

site effect, variation amongst provenances was greater than the plasticity individual 

provenances showed across the different trial sites. The patterns of geographical 

variation between ash and rowan were different.  We also found that stem forking is 

correlated with date of leaf flushing in ash. These results show that trees are adapted 

to a determinate growing season and transfer of material from its site of origin to 

another location can result in damage to the trees.  

 

 

4.4.1 Spring phenology  

 

In ash there was a clear latitudinal cline for spring phenology, where the provenances 

originating from the south flushed earlier than those from the north. Air temperature 

is the most important factor in regulating budburst and leaf-out in temperate and boreal 

woody plants (Linkosalo et al., 2006). This latitudinal cline effect is typical in in situ 

studies, where in temperate regions it has been observed that flushing begins in 

southern locations and that spring phenology of many tree species correlates 

negatively with temperature at the growing site (Polgar & Primack, 2011; Roberts et 

al., 2015). This pattern is also shown in common garden trials in which leaf phenology 

has been studied which have shown a latitudinal cline in the origin of provenances in 

several deciduous species including: oak (Kleinschmit, 1993; Liepe, 1993; Deans & 

Harvey, 1995; Ducousso et al., 1996; Vitasse et al., 2009a; Wilkinson et al., 2017) and 
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many other temperate broadleaf species (Kramer, 1995; Karlsson et al 2003), including 

British ash (Clark, 2013). In comparison to Clark (2013) our study extends the 

geographical area to the whole of GB with a larger number of provenances, which has 

allowed us to capture a greater scope of variation for leaf flushing phenology within 

British ash populations. 

Although this latitudinal cline was relatively clear at a British scale it became less so 

when the range of provenances was extended to include provenances from mainland 

Europe. Smith (2011) and Clark (2013) established common garden experiments in 

England with a range of both British and continental provenances and found that 

Eastern European provenances of ash flushed earlier than those of British origin from 

similar latitudes. Hence, whilst latitude may capture the primary sources of 

environmental variation, other factors are clearly important at larger geographic scales. 

For example, in this case it is likely that provenances from Eastern Europe are adapted 

to a continental climate where winters are cold, and once spring temperatures start to 

rise cold spells are not common and late frosts are less likely to occur. In provenance 

trials of oak, spring leaf phenology was found to be genetically determined and was 

strongly correlated with adaptive characters such as spring frost tolerance (Ducousso, 

1996). Provenances from northern locations and those which originated from locations 

close to sea level were the latest to flush and were more tolerant of exposure to late 

spring frost (Ducousso, 1996). Hence we would expect that trees from oceanic climates 

will have a higher chilling requirement before starting to flush to avoid frost damage. 

Chill temperatures in winter and spring release bud dormancy by lowering the thermal 

time required for the buds to develop to budburst (Cannell, 1997). This can explain 

why in our results for spring phenology in rowan, the eastern provenances flushed 

earlier than those from the west, so that we detected a longitudinal cline. Rowan 

flushes much earlier than ash (over a month before in our provenance trials and also 

in in situ observations of others (Abernethy et al., 2017) on average 20 days before), 

and for this reason rowan is more likely to be at risk of exposure to late spring frosts 

at the time of flushing than ash. Therefore, in response to the western climate in Great 

Britain being more oceanic than that in the east on average, the western provenances 

of rowan may have adapted to have a higher chilling requirement before flushing to 

avoid the more frequent late spring frosts.  
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It is well recognised that for traits such as bud burst, temperate perennial species respond 

differently to particular environmental cues (Murray et al., 1989), and the factors 

which trigger bud flush vary among species. Differences in factors such as; levels of 

chilling, thermal time after chilling or photoperiod affect species in different ways 

(Cannell & Smith, 1983; Cannell & Smith, 1986; Murray et al., 1989; Heide, 1993). 

The timing of bud burst in rowan and ash has been found to be unaffected by the 

photoperiod (Heide, 1993; Basler & Körner, 2012). Laube et al. (2014) found that 

chilling was an important factor in budburst in ash, and that the lack of chilling can 

delay budburst. Leaf spring phenology is a trade-off between minimizing the risk of 

freezing damage and maximizing the length of the growing season (Cannell, 1997). 

Ash is the latest native tree species to flush in Great Britain in the wild (Abernethy et 

al., 2017). This may be due to its lack of frost tolerance, so that its late flushing in the 

spring represents an avoidance strategy. Dormant trees are very cold hardy, but young 

shoots are frost sensitive (Hemery et al., 2009). However, late frosts can cause forking 

by damaging the flushed buds (Kerr and Boswell, 2001). In our ash experiments, there 

was a positive correlation between flushing earlier and higher number of forked stems, 

demonstrating the consequences of mismatch between local climate and spring leaf 

phenology. 

Our results in ash flushing showed greater differences amongst provenances than 

amongst trial sites. However, these differences amongst provenances varied across 

trial sites and genetic differences were more expressed in one trial than the other. We 

found greater differentiation for leaf flushing across provenances in Llandovery than 

in North York Moors. In Llandovery there were 15 days between the earliest and the 

latest provenance to flush (JD50-F), but only 10 days in North York Moors.  

 

4.4.2 Autumn phenology 

 

For ash, we showed that the southern provenances senesced later than those from more 

northern latitudes, suggesting they are adapted to a longer growing season. We found 

greater and more significant differences amongst provenances in leaf flushing than in 

leaf senescence, in both species, consistent with other studies (Vitasse, 2009c). It has 
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been shown that leaf phenology (Chmielewski and Rotzer 2001; Sparks and Menzel 

2002; Vitasse et al., 2009b), and for ash in particular, no relationship between 

temperature and time of senescence has been found (Vitasse et al., 2009b).  

We also found less marked differences amongst ash and rowan in the timing of 

senescence; again consistent with other studies (Menzel, 2000). In ash, latitude 

explained a very large part of the variation amongst provenances; however the 

relationship with rowan was less clear. In the rowan trial in North York Moors there 

was a clear longitudinal cline for rowan (where the eastern provenances senesced later) 

but, unexpectedly, in Llandovery northern provenances senesced later. Although 

autumn phenology and the climatic drivers that regulate this have been less studied 

(Estrella and Menzel, 2006), it has been documented that in many (but not all, (Heide 

and Prestrud, 2005) woody species, growth cessation and dormancy are induced by 

decreasing day length during late summer and autumn (Downs and Borthwick, 1956; 

Nitsch, 1957; Heide, 1974; Håbjørg, 1978). If, in rowan, day length is a more important 

driver of senescence, it could explain why most northern provenances in the southern 

trial (Llandovery) senesced later, as they experienced the biggest shift in day length. 

Autumn frosts are also a problem when planting trees adapted to a longer growing 

season than the planting site. Deans & Harvey (1995) found that oak provenances 

which senesced later than others were more badly damaged by autumnal frosts. 

Autumn frost damage increases the risk of incomplete nutrient remobilisations due to 

damage to functional leaves (Keskitalo et al., 2005).  

 

4.4.3 Phenotypic plasticity  

Leaf phenology has genetic and environmental components, as we have shown in our 

results; the replication of our trials allows assessing the plastic component of the 

variation. To look at plasticity we can compare results from the two different trial sites 

for each species. Temperate trees species possess considerable plasticity in their leaf 

phenology that allows them to respond to inter-annual changes in the climate (Kramer, 

1995; Vitasse, 2010 & 2013). Our results show greater variation within than amongst 

trial sites in ash for both spring and autumn phenology, which indicates that the genetic 

effect is greater than the site or environmental effect when considering phenological 
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traits. Kramer (1995) found differences amongst species in the levels of plasticity; 

some species exhibited plasticity in the timing of key events during both spring and 

autumn, whereas other species did not show any plasticity in autumn phenology.  

All provenances (except one from the southwest ROP) flushed earlier in the North 

York Moors trial site than in Llandovery, although in most cases this difference was 

very small, the average being 2.5 days and the largest being 7 days. The North York 

Moors site was more continental and colder than the Llandovery site, which may allow 

the chilling requirement for initiation of bud flush to be achieved earlier. However, 

despite a difference in the extent of variation among provenances at the two trial sites, 

the ranking of provenances was very similar and there was no significant interaction 

between provenance and site. 

For ash, the site effect was bigger for senescence than for flushing. The average 

difference in JD50_S between the trial sites was over 8 days, and the biggest difference 

of provenances between two sites is 22 days. The provenances with the largest 

differences in JD50_S between sites were from the southeast ROP. On the other hand, 

the difference amongst provenances was greater than for leaf flushing. The difference 

between the earliest and the latest provenance to reach JD50_S was 16 days at both 

North York Moors and Llandovery. All provenances (except one from the northeast 

ROP) senesced earlier in North York Moors than in Llandovery. For this trait, the 

ranking of provenances changed slightly more than for flushing across the trial sites, 

although there was still no significant interaction between provenance and site. At 

North York Moors the ranking of the provenances by their JD50_S shows a much less 

clear division between northern and southern provenances than it showed at 

Llandovery. We hypothesise that the differences between spring and autumn 

phenology could be explained because leaf flushing might be under stronger selective 

pressures; perhaps because it is much more damaging for a tree to have damage on the 

newly flushed leaves, which would compromise the growing season length, than the 

getting frost damage in the end of the growing season, when most of the photosynthesis 

would have already occurred. Some studies have shown that genetic control for 

autumn leaf phenology is not as strongly associated with climatic factors as spring leaf 

phenology (Chmielewski and Rotzer 2001; Sparks and Menzel 2002; Vitasse et al., 

2009b). However, other studies have found the opposite trend, that autumn phenology 
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was under stronger genetic control and showed less phenotypic plasticity than spring 

phenology (Howe et al. 2004; Savolainen et al. 2007; Alberto et al. 2013). Alberto et 

al. (2013) found higher levels of quantitative genetic differentiation (QST) among 

populations in a range of studies bud set (n=16) than bud flush (n = 36). Aitken & 

Bemmels (2016) also found that clinal variation for autumn phenology was more 

consistent than for spring phenology. We found more plasticity in autumn phenology 

than spring phenology for both rowan and ash, while other studies found the opposite. 

In rowan, spring phenology was more advanced, and differences amongst provenances 

were greater, at Llandovery than at North York Moors. The biggest difference between 

sites were found in provenances from eastern ROPs, which were more advanced in 

Llandovery. At North York Moors, which is a much colder site than Llandovery, 

flushing started later and senescence started earlier on average so that trees had a 

shorter growing season in the North York Moors. In leaf senescence however, we 

found greater differences amongst provenances in North York Moors than Llandovery. 

We found that some provenances seemed to have more plasticity than others; i.e. their 

phenology changed more across sites. Although no general pattern was very clear, 

provenances from the southeast ROP had more plasticity in leaf senescence. It has 

been found that provenances from higher altitudes have less plasticity for leaf flushing 

(Vitasse, 2013), which maybe could be comparable with the highest latitude 

provenances. The northern provenances will be under more selective pressure due to 

the harsher climatic conditions (colder springs and autumns) which can cause greater 

damage to the leaves than the climatic conditions in the most southern areas. 

Availability of phenological data collected over more than a single season would help 

to improve our understanding of temporal, rather than spatial variation in phenotypic 

plasticity in our study organisms. Another weakness in our data is that flushing and 

senescence are recorded in different years, with very different average temperatures. 

4.4.4 Practical implications 

Many studies show that leaf phenology is advancing with climate change (Morin et 

al., 2009; Lebourgeois et al., 2010), however frost damage in spring will continue to 

be a risk for bud burst (Vitasse et al., 2014). Studies suggest that with climate change 
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in Britain frequency of spring frosts is not going to decrease, as the average of spring 

frosts has not decreased in the last 40 years (Figure 4.20), despite springs on average 

having been warmer in the last decade. The earlier spring phenology that has already 

been observed accompanied by the lack of change predicted in frequency of spring 

frosts (Morison and Mathews, 2016) is likely to mean that late frosts will continue to 

cause damage to trees whose leaf emergence coincides with the occurrence of late 

frosts. 

It is assumed that it is beneficial for perennial deciduous plants to maximise leaf life 

span. As leaf life span increases, the potential carbon gain (Kikuzawa 1994) and 

efficiency of nutrient use increases (Eckstein et al. 1999). However, the risk of frost 

damage must be taken into account (Bennie et al., 2010). Vitra et al. (2017) shows that 

extreme cold events in winter are not critical for trees, as freezing resistance is 

enhanced in winter, but that the timing of budburst is a critical component for tree 

fitness.  

This has implications when planting trees in Great Britain from southern provenances 

which are adapted to warmer climates with longer growing seasons or more continental 

climates. Another thing to take into consideration when considering provenance 

movement for planting is the degree of unpredictability of how the trees will react to 

the new environment. This is especially of interest when there is a genotype by 

environment interaction. For spring and autumn phenology of rowan, we found 

significant provenance by site interactions, which show some provenances having an 

opposing response for timing of leaf flushing and leaf senescence at the two sites. This 

shows that acclimation does not always happen in the same direction and therefore it 

can be positive or negative, adding complexity to our capacity to predict change, and 

to predict the impacts of environmental change. Together, these considerations add to 

possible risks of northward transfer of provenances, as it could have damaging effects 

of the trees fitness due to asynchrony with the weather. 
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Figure 4.22. Number of days with ground frost in UK since 1961 in the month of March (blue 

line) and in Spring (red line), i.e. March, April and May. Met Office data. 
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Chapter 5: Do British tree 

populations show genetic differentiation 

in leaf traits? 
 

Abstract: Plant functional traits have been shown to determine how plants respond 

to environmental factors. These traits, however, are usually compared between rather 

than within species. Here, we present results on leaf anatomy traits (leaf area, stomatal 

density and stomatal length) measured across native provenances of ash, rowan and 

silver birch from all over Great Britain grown in several replicated common garden 

experiments. We show distinct genetic diversity for these traits across natural 

populations, which are related with environmental covariates. Trees from drier 

provenances have greater leaf area, lower stomatal density and greater stomatal length; 

while trees from origins with greater annual precipitation show lower leaf area, greater 

stomatal density and lower stomatal length.  Moreover, these traits show extensive 

phenotypic plasticity across the different environments. In the case of leaf area, there 

is a strong environment by genotype effect, which makes leaf area unpredictable when 

provenances are grown in novel environments. Stomatal density does not show 

interaction between site and provenance, and plasticity is in the same direction as the 

genetic pattern of variation. These results provide an understanding of the patterns of 

adaptation for these species in Great Britain, identifying key environmental drivers; 

they can also help to predict how these tree populations might react to climate change. 
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5.1 Introduction 

 
Plant functional traits have been described as the plant features (morphological, 

physiological, phenological) that represent ecological strategies and determine how 

plants respond to environmental factors, affect other trophic levels and influence 

ecosystem properties (Pérez-Harguindeguy et al., 2013). However, this is a description 

which is applied mainly at the taxon level: the main concept of plant functional type 

proposes that species can be grouped according to common responses to the 

environment (Lavorel & Garnier, 2002). The variation found in plant functional traits 

has been mainly used to study broad differences amongst species to tackle ecological 

questions, and as a tool for comparing distant ecosystems with very little taxonomic 

overlap (Reich et al. 1997; Díaz et al. 2004). The main goal is to build a big database 

with a predictive set of local, regional and global relationships between plants and 

environment, and represents a step towards understanding and predicting the 

distribution of species in present and future environments (Grime et al., 1988; Keddy, 

1992; Westoby, 1998, Grime et al., 2014).  

 

Leaf functional traits have been proposed to be of primary importance as leaves are 

the plant organs most relevant to the acquisition and use of resources (Westoby, 1998; 

Weiher et al., 1999). There are many functional leaf traits, such as leaf area which has 

been related to climatic variation, geology, altitude and latitude, where heat stress, cold 

stress, drought stress, nutrient stress and high-radiation stress all tend to select for 

relatively small leaves (Pérez-Harguindeguy et al., 2013).  

 

Leaves are the principal photosynthetic organs of plants, providing the supply of 

carbohydrates (Wright et al., 2004; Pallardy, 2008), and their growth is a compromise 

between maximal photosynthetic output and the constraints imposed by the 

environment (such as water availability). Leaf size has been found to reduce towards 

drier environments when water is a limiting factor (Battaglia et al., 1998, Bruschi et 

al., 2003; Gratani et al., 2003) and also has been found to decrease towards higher 

altitudes (Zhag & Marshall, 1995; Fonseca et al., 2000; Scheepens et al., 2010; Bresson 

et al., 2011; Milla & Reich, 2011). Species from colder sites display leaves which grow 
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slower and have lower cell numbers. Having similar cell size to species growing in 

warmer habitat, this results in a tendency for species which are cold-adapted to have 

small leaves. This is observed across both altitudinal and latitudinal gradients 

(Körneret al., 1989; Joelet al., 1994; Körner, 1999; Farrellet al., 2006; Sunet al., 2006). 

 

Stomata are the pores on the plant photosynthetic tissues which allow gas exchange 

and transpiration. They are composed of two guard cells which are responsible for the 

opening and closing of the stomata, the mechanism used to regulate the plant’s water 

loss. Stomatal traits have been shown to respond to many different environmental 

factors. However, clear patterns in these relationships have not been found as they vary 

depending on plant genus, species, families and genotypes (Dillen et al., 2008). It is 

considered that plants are able to control stomata development in new organs to adapt 

to environmental conditions (Casson & Gray, 2008; Hamanishi et al., 2012). Stomatal 

density is one of these functional traits which has usually been found to increase as an 

adaptation to drier environments (Carpenter and Smith, 1975; Abrams, 1994; Hogan 

et al., 1994). Water stress has been found to increase stomatal density, which is 

frequently accompanied by a decrease in stomatal size (Dunlap & Stettler, 2001; 

Pearce et al., 2005; Xu & Zhou, 2008; Fraser et al., 2009; Laajimi et al., 2011). 

However, the opposite trend has been found as well, where water reduction increased 

stomatal density (Salisbury, 1927; Quan&Jones, 1977). Another common trend which 

has been shown to alter stomatal density is altitude whereby stomatal densities have 

been reported to increase with altitude (Kouwenberg et al., 2007; Premoli & Brewerm 

2007; Bresson et al., 2011) but also to decrease (Hultine and Marshall 2000; Schoettle 

and Rochelle 2000). 

 

Leaf functional traits in plants have been mostly studied in situ, relating the 

measurements of those traits to the environment they grow, and, as mentioned earlier, 

studied at a species level. It is considered that the plasticity of these traits does not 

affect the ranking of species amongst different environments (Garnier et al., 2001). 

We, on the other hand, are interested in studying diversity within species. Within the 

range of a given species environments can vary substantially producing differential 

selection pressures across a species’ distribution. The importance of genetic variation 
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in traits of ecological significance has been raised before (Geber & Griffen, 2003). 

There are many examples which show that there are both genetic differences (Warren 

et al., 2005; Dillen et al., 2008; Marchin et al., 2008; Stojinic et al., 2015) and 

phenotypic plasticity (Abrams, 1994; Bresson et al., 2011; Thomas, 2011) related to 

environmental factors.  

 

Variation in leaf traits may be attributed to plasticity, genetic variation, or both.  Many 

of the studies on leaf functional traits look at plants in situ where variation due to 

genetic differences and plasticity cannot be separated. Also, in many cases plant 

species are studied in controlled environment conditions in which extreme treatments 

are imposed, such as water reduction levels which might not occur in normal 

circumstances in the natural distribution of the species. Moreover, most studies that 

have looked at differences within species have focused more on extreme climates such 

as very xeric, or drought tolerant species, or looking at a species across a steep 

altitudinal range. In contrast there are not many examples of studies performed in a 

temperate climate. Common garden experiments help to measure and differentiate the 

sources of variation observed. Differences among populations within a common 

garden will be due to genetic differences and differences across the replicated common 

garden experiments will be due to phenotypic plasticity, with the genotype by 

environment interaction also being estimated. This information is key to being able to 

understand how the studied populations will react to climate change.  

 

Here we use field based common garden experiments in trial sites located within the 

natural range of each species, and in different contrasting environments, to study 

genetic differences between provenances, phenotypic plasticity and genotype x 

environment interaction for leaf functional traits. Two leaf anatomy traits have been 

measured, leaf size and stomata leaf structure (stomatal density and length). We 

studied the variation of these two traits within three species with distinct ecological 

niches (ash, Fraxinus excelsior L.; rowan, Sorbus acuparia L.; and silver birch Betula 

pendula Roth), from which seed was collected in a systematic way across Great Britain 

and planted in multiple and contrasting sites. This enabled us to estimate; the genetic 

component of the variation, the plastic environmental response component and the 
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interaction between them. With this information we can have a better understanding 

of how future climate change will affect the British populations of these tree species. 

The populations we study are part of the most north-western part of the distribution of 

these three tree species, as all three grow across Europe in different environments. 

 

Both leaf size and stomata anatomy have been related with water availability. What 

we are interested to know is whether in GB these parameters also explain the variation 

in these traits. The particular questions we are going to address are: a) Is there any 

genetic diversity among provenances for these leaf traits?; b) Are these differences 

related to environmental factors related to water availability at the seed origin site?; c) 

Is there a geographical pattern across GB for these two traits?; d) Is there phenotypic 

plasticity?; e) Is the direction of the phenotypic plasticity likely to lead to tree 

acclimation? i.e. is the direction of plastic change the same as the direction of 

adaptation found in the pattern of genetic diversity?; and f) Are there any significant 

provenance by site (genotype by environment) interactions? 
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5.2 Materials and Methods 

5.2.1 Sampling strategy 

The same sampling strategy was adopted for all three species; ash, Fraxinus excelsior 

L., rowan, Sorbus aucuparia L. and silver birch, Betula pendula Roth .This was based 

on the Forestry Commission seed zone map of Great Britain (Forestry Commission, 

1999; Figure 5.1), which divides Great Britain into 4 regions of provenance (ROP: 

North West NW, South West SW, North East NE and North West NW). These ROPs 

are further subdivided into a total of 24 seed zones based on natural topographical 

boundaries (Figure 5.1). Where possible, two (three in a few cases for birch) self-sown, 

semi-natural populations of each species (hereafter referred to as provenances) were 

sampled from each of the seed zones. Roughly equal numbers of seed were collected 

from a minimum of 20 (in birch a minimum of 30) maternal trees and combined 

together to constitute the provenance sample. Selection of mother trees was not 

deliberately biased towards superior phenotypes, and, where possible, mother trees 

were located at least 100m apart.  

5.2.2 Trials and provenances by tree species 

After extraction, the collected seeds were sown in nurseries and the resulting seedlings 

were planted in a series of common garden experiments, 2 for ash, 4 for rowan and 4 

for birch (locations in Figure 5.2). The trial sites represent a range of environmental 

conditions (as illustrated in Table 5.1).  

Ash (Fraxinus excelsior L.) 

Seed from a total of 42 provenances of ash was grown in nurseries located near the 

trial sites. Nurseries were located at Whixley (Yorkshire) and Carmarthen (South 

Wales). 

In 2007, one-year-old seedlings were planted in two common garden experiments 

(hereafter referred to as trials). The two trials are in South Wales (Llandovery - LLAN) 

and Yorkshire (North York Moors - NYM). The Llandovery trial contains trees from 

42 provenances; the one in the North York Moors has 40 of these (Figure 5.2 and Table 

5.2).  
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At each trial site the provenances were grown in a randomised block experiment. Each 

provenance was present as a single plot in each block, and there were three blocks. 

The plots consisted of 36 (6 x 6) trees in Llandovery and 30 (6 x 5) trees in North York 

Moors. Trees were planted at a distance of 2 metres apart. 

All measurements in the Llandovery trial were carried out before there were any 

visible signs of infection by ash dieback. In North York Moors nearly all the 

measurements were collected before the trees showed any signs of the disease with the 

exception of DBH and forking assessments. For these characters trees started to show 

signs of infection during the year of assessment. Since then, both trial sites have shown 

high levels of infection (Jo Clark, pers. comm.). 

 

 
Figure 5.1. The four regions of provenance and 24 seed zones in Great Britain (modified 

from Herbert et al., 1999) 
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Figure 5.2. Seed collection (black small dots) and trial sites locations for ash (green dots, 

left), rowan (red dots, centre) and birch (yellow triangles, right). 

 

 

Rowan (Sorbus aucuparia L.) 

The rowan berries, from a total of 42 provenances, were sent to Forest Research’s 

Newton field station near Elgin in northeast Scotland for manual extraction of seed 

from the fruits. The seeds were sown and raised into seedlings at Forest Research’s 

nursery (Northern Research Station, south of Edinburgh). In 2006, when the seedlings 

were one year old they were planted out in trials in four locations across Great Britain. 

The trial sites (Figure 5.2) were located in; South Wales (Llandovery - LLAN), the 

South of England (Alice Holt - AH), East Yorkshire (North York Moors - NYM) and 

the North of Scotland (Dornoch - DOR). However, the number of provenances 

represented at each of the trial sites is not consistent due to shortage of plants raised 

from some of the provenances. Consequently, some provenances are absent from some 

of the trials (Table 5.3). From the 42 total provenances for which seed was collected, 

only 29 were planted in all four trials. 

The experiment is based on a randomized block design, and consists of three replicated 

blocks. Trees were planted at a distance of 2 metres. Each plot contains 9 (3 x 3) trees 

from the same provenance. 
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Table 5.1. Details of the three species trial sites. 

 

 

 

 

 

 

 

 

 

 

 

 

Sp
p 

Trial Site 
Planti

ng 
Year 

County Lat Long CT MD 
Alt 
(m) 

AP 
(mm) 

GDD 
DA
MS 

Soil Type 

Ash            

 
NYM (North 
York Moors) 

2007 
East 
Yorkshir
e 

54.3 -1.9 9.0 153 113 960 1475 10 
Riverine Floodplain. Clay to 
Sandy Loam. Freely draining 
floodplain soils.  

 
LLAN 

(Llandovery) 
2007 

Carmart
henshire 

51.9 -3.8 8.1 108 215 1329 1470 15 

Sandstone and Mudstone. 
Sand to Loam. Freely 
draining acid loamy soils 
over rock 

Rowan            

 DOR 

(Dornoch) 
2006 

Sutherla
nd 

58.1 -4.4 4.2 91 130 1115 1070 15 
Podzol. Clayey loam to 
sandy loam. Glacial till.   

 
NYM (North 

York Moors) 
2006 

East 
Yorkshir
e 

54.3 -0.5 8 149 197 759 1328 15 

Very acid loamy upland soils 
with a wet peaty surface. 
Silty loam to sandy loam. 
Peaty. 

 
LLAN 

(Llandovery) 
2006 

Carmart
henshire 

51.9 -3.8 8.1 109 240 1329 1474 15 

Sandstone and Mudstone. 
Sand to Loam. Freely 
draining acid loamy soils 
over rock. 

 

AH (Alice 

Holt) 
2006 Surrey 51.2 -0.8 

10.
2 

186 118 785 1772 13 

Slowly permeable 
seasonally wet slightly acid 
but base-rich loamy and 
clayey. Claystone/mudstone. 
Loam to clay. 

Birch            

 DRUM 
(Drummond) 

2003 
Perthshi
re 

56.6 -4.1 6.1 89 218 1262 1143 11 
Umbrisol.  Clayey loam to 
sandy loam. Glacial till.  

 
THET 
(Thetford) 

2003 Norfolk 52.4 0.6 
10.
8 

214 54 608 1751 12 
Chalk.  Chalky, sandy loam.  
Freely draining sandy 
breckland soils.  

 
LLAN 

(Llandovery) 
2003 

Carmart
henshire 

52.6 -4.1 7.1 139 114 1503 1754 14 

Glacial till.  Loam to clayey. 
Slowly permeable 
seasonally wet acid loamy 
and clayey soils.  

CT: Continentality, MD: Moisture deficit, AP: Annual precipitation, GDD: growing degree days, DAMS: Wind speed score (Details of variables in section 5.2.3) 
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Silver Birch (Betula pendula Roth) 

The silver birch seeds, collected from a total of 33 provenances, were grown in the 

Forest Research’s nursery (Northern Research Station, south of Edinburgh). Three trial 

sites were planted in 2003, one in Scotland at Drummond (DRUMM), one in South 

Wales at Llandovery (LLAN) and one in Norfolk at Thetford (THET) (Table 5.4). 

A randomized block design was used based on three replicated blocks. Each plot 

consisted of 25 (5 x 5) to 36 (6 x 6) trees per provenance, depending on the site. Trees 

were planted at 2 m spacing.  
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Table 5.2. Details of the ash provenances locations and the trial site they are planted in. The 

“X” indicates presence of a provenance at a given site.  

ROP Country Ash provenances Lat Long Alt 
(m) 

Site 

LLAN NYM 

NW Scotland 
 

Duisdale, Skye 57.176 -5.751 18 x x 

Kilninian, Mull 56.530 -6.208 71 x x 

Rassal Wood, Kishorn 57.426 -5.591 78 x x 

Ardtornish,Morvern 56.560 -5.741 20 x x 

Glasdrum Wood, Loch Creran 56.574 -5.232 33 x x 

Add Valley, Kilmichael Glassary 56.106 -5.420 30 x x 

Clyde Valley 55.680         -3.913 159 x x 

Shielhill Glen 55.911 -4.825 107 x x 

Penpont 55.235 -3.853 90 x x 

Nith Valley 55.320 -3.829 141 x x 

Crawick Water 55.381 -3.929 162 x x 

England Warks Burn 55.088 -2.222 90 x x 

NE Scotland 
 

Erchite Wood, Dores 57.368 -4.345 56 x x 

Craigellachie 57.484 -3.170 102 x x 

Fearnan Forest, Kenmore 56.579 -4.037 142 x x 

Glen Lyon 56.602 -4.248 183 x x 

Den of Alyth 56.623 -3.258 152 x  

Pitcairns Glen, Dunning 56.300 -3.573 119 x x 

Tweed Valley North Glen 55.588 -2.662 68 x x 

England Castle Eden Dene, Peterlee 54.743 -1.352 102 x x 

SW England 
 

Witherslack 54.264 -2.870 79 x x 

Park Wood&Hutton Roof 54.182 -2.689 170 x x 

Via Gellia Woods 53.104 -1.619 239 x x 

Upper Wharfedale 54.203 -2.104 202 x x 

Greta Wood, Purbeck Ridge 50.637 -2.136 126 x x 

Horner Wood, Porlock 51.189 -3.583 102 x x 

Wales 
 

Cardiff Area 51.546 -3.234 158 x x 

Aberystwyth Area 52.430 -4.059 90 x x 

Betws-y-Coed 53.079 -3.799 57 x x 

Talgarth 51.986 -3.213 198 x x 

SE England Forge Valley 54.274 -0.490 52 x x 

Ashberry Woods 54.262 -1.133 142 x x 

Treswell Woods 53.308 -0.861 54 x  

Hayley Wood 52.158 -0.110 79 x x 

Tick Wood, Ironbridge 52.621 -2.523 99 x x 

Forest Bank, Marchington 52.852 -1.820 142 x x 

Wyndcliff, Wye Valley 51.678 -2.679 208 x x 

Midger Wood 51.606 -2.285 160 x x 

Pheasant Copse, Petworth 51.011 -0.628 60 x x 

Bignor Hill  50.908 -0.616 194 x x 

Groton Wood 52.050 0.883 66 x x 

Out Wood 52.166 0.415 96  x x 
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Table 5.3. Details of the rowan provenance locations from which seed was collected and the 

trial sites in which the seedlings were planted. The “X” indicates presence of a provenance at 
a given trial site. 

ROP Country Rowan provenances Lat Long Alt (m) Site 

AH DOR LLAN NYM 

NW 
 

Scotland 
 

Assynt 58.171 -5.261 27.48  x  x 

Inverpolly 58.093 -5.232 82.12  x   

Allt Volagir, South Uist 57.247 -7.310 68.76  x x x 

Salen, Isle of Mull 56.527 -5.961 5.80  x x x 

Tokavaig, Isle of Skye 57.139 -5.965 25.40  x x x 

Glen Loy 56.901 -5.071 61.96  x   

Add Valley 56.141 -5.486 33.72 x x x x 

Strathlachlan 56.128 -5.152 70.32 x x x x 

Falls of Clyde 55.653 -3.778 160.84 x x x x 

Mugdock Country Park 55.971 -4.320 161.8  x x x 

Glenlee 55.088 -4.194 129.68 x x x x 

Stroan Bridge 55.070 -4.545 66.72  x   

Lochwood 55.258 -3.443 180.2 x x x x 

Ettrick Water 55.420 -3.133 234.16 x x x x 

NE 
 

Scotland 
 

Bunchrew 57.471 -4.315 100.8  x  x 

Craigdarroch 57.574 -4.605 31.8  x  x 

Cleanhill Wood, Aberchirder 57.554 -2.636 158.76  x  x 

Birks of Aberfeldy 56.602 -3.872 285.96 x x  x 

Pressmennan Wood 55.951 -2.589 149.84 x x x x 

Castle Eden Dene 54.743 -1.351 107.64 x x x x 

SW 
 

England 
 

Horner Wood 51.194 -3.589 232.84 x x x x 

Holford/Hodder’s Combe 51.158 -3.218 164.88 x x x x 

Duddon Valley 54.316 -3.230 61.84 x x x x 

Naddle Forest 54.511 -2.805 291.24 x x x x 

Brignall Banks 54.496 -1.913 222.36 x x x x 

Gelt Wood 54.903 -2.733 139.16 x x x x 

Wales 
 

Brechfa 51.993 -4.063 146.28 x x x x 

Beddgelert 53.025 -4.138 257.76 x x x x 

Mynydd Du 51.954 -3.105 532.12 x x x x 

Ugly House 53.106 -3.868 231.32 x x x x 

SE 
 

England 
 

Forge Valley& Raincliffe Woods 54.275 -0.484 89.64 x x x x 

Ashberry and Reins Woods 54.253 -1.128 106.24 x x x x 

St. Helen’s Wood, Coningsby 53.113 -0.123 6.24 x x x x 

Moor Farm 53.156 -0.181 14.8 x x x x 

Pepper Wood 52.368 -2.092 144.76 x x x x 

The Ercall 52.687 -2.522 185.8 x x x x 

King’s Bottom, Longleat 51.191 -2.241 219 x x x x 

Chestnuts Wood, Forest of Dean 51.829 -2.470 161.72 x x  x 

Saxonbury Hill 51.076 0.251 183.12 x x x x 

Seal Chart 51.278 0.237 129.44 x x x x 

Culter’s Wood, Freston, Ipswich 52.011 1.142 34.4 x x x x 

Felbrigg Great Wood, Cromer 52.913 1.264 83.24 x x x x 
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Table 5.4. Details of the birch provenance locations from which seed was collected and the 

trial sites in which the seedlings were planted .The “x” indicates presence of a provenance at 
a given trial site. 

ROP Country Birch provenances Lat Long Alt 
(m) 

Site 

DRUMM LLAN THET 

NW Scotland 
 

Affric 57.31 -4.80 118 x 
 

x 

Loch Creran 56.55 -5.28 26 x x x 

Dumfries 55.11 -3.58 29 x x x 

NE Scotland 
 

Elgin 57.42 -3.38 140 x x x 

Great Glen 57.21 -4.62 68 
   

Glen Garry 57.07 -4.83 54 x x x 

Spinningdale 57.89 -4.26 38 x x x 

Dunkeld 56.56 -3.56 143 x x x 

Alford 57.24 -2.67 142 x x x 

SW England 
 

Bovey Tracey 50.59 -3.71 120  x x 

Bovington Camp 50.71 -2.21 50 x x x 

Penrith 54.7 -2.96 280 x x x 

Ambleside 54.4 -2.98 60 x x x 

Bolton Abbey 54.04 -1.95 220 x x x 

Hamsterley Forest 54.7 -1.86 200 x x x 

Sheffield 53.28 -1.56 240 
 

x x 

Wales 
 

Machynlleth 52.58 -3.85 90 
 

x x 

Taffs Well 51.55 -3.27 100 x x x 

Llanidloes 52.46 -3.53 180 x x x 

Persteigne 52.24 -3.05 200 x x x 

Llangollen 52.98 -3.19 170 
  

x 

SE England 
 

Castle Howard 54.12 -0.92 76 x x x 

Sand Hutton 54.02 -0.95 25 x x x 

Leicester 52.73 -1.23 160 x x x 

Clumber park 53.26 -1.06 55 x x x 

Cannock Chase1 52.72 -2.04 180 x x x 

Cannock Chase 2 52.74 -2.05 140 x x x 

Monmouth 51.79 -2.69 170 x x x 

Tollard Royal 50.96 -2.21 130 x x x 

Godalming 51.14 -0.6 170 
 

x x 

Basingstoke 51.38 -1.02 50 x x x 

Braintree 51.91 0.54 80 x x x 

Dunwich 52.26 -1.61 20 x x x 

 

5.2.3. Environmental covariates 

Latitude, longitude, altitude and climatic data were obtained for each trial site and 

provenance origin site locations from which seed was collected. The interpolated long-

term average data relating to the climatic conditions at each of the trial and provenance 

sites were obtained from two sources. Continentality, Annual Precipitation, Moisture 

Deficit, Mean Wind speed were obtained from ESC-Ecological Site Classification 

(Clare and Ray 2001; Growing degree days and Consecutive Dry days were obtained 
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from the Met Office (methods of the interpolation used from the Met Office historic 

data: Perry & Hollis, 2005). We focused on five parameters for the trial sites 

(continentality, moisture deficit, annual precipitation, growing degree days and wind 

speed) because we considered them likely to reflect elements of the climate that are 

key to tree growth: temperature, water availability, and other variables which are 

dependent on the geographical location of the site. For the analyses of the provenance 

sites, we used environmental factors which are related to water use availability (annual 

precipitation and consecutive dry days), as the leaf area and stomatal traits are 

functional traits which have been found to be influential (Pérez-Harguindeguy et al., 

2013). The indices and their definitions of all the climatic parameters are the following:  

 

i. AP – Average annual rainfall (mm) between 1961 and 1990. 

ii. CDD – Consecutive Dry Days (days): Maximum number of consecutive 

dry days, meaning the longest spell of consecutive days with precipitation 

≤0.2 mm (annual mean). 

iii. CT – Continentality: corresponds to the Conrad Index (Conrad 1946). 

This is calculated as follows:  

 

 

Where A is the difference between the mean temperature of the warmest 

and coldest month in degrees Celsius and ᵩ is latitude in degrees. Lower 

values indicate more oceanic climates. 

iv. GDD - Growing degree days: This is quantified as the cumulative sum of 

the number of degrees Celsius above 5 oC on each day of the year in 

which mean temperature exceeds 5 oC. Values expressed here are long 

term mean annual values for the years spanning from 1961 to 1990.  

v. MD – Moisture deficit (mm): To consider the effects of the dryness of the 

growing  season  moisture  deficit  is calculated by  considering  the  

potential  evaporation  and  precipitation.   Higher   values   indicate   

drier sites. 

vi. Wind exposure measured by DAMS – Detailed Aspect Method of 

Scoring: This provides an indication of wind exposure, the higher the 

CT = 1.7 [A/sin (ᵩ +10)]- 14 
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values the more exposed the site. Sites with values under 12 can be 

considered to be sheltered. 

 

For each trial site, the soil information data were obtained from different inventories, 

using the UK Soil Observatory (UKSO). The European Soil Bureau description (The 

European soil database, 2006) was used to assign a soil type for all British trial sites. 

The soil texture and soil group data were obtained from Soilscapes (Cranfield 

University, 2017) for Welsh and English locations, and from the national soil map of 

Scotland (Soil Survey of Scotland Staff, 1981) for the Scottish trials. 

 

5.2.4 Measurements  

 

Leaf sampling 

Leaves were collected in June and July 2015 in the two ash (LLAN and NYM), four 

rowan (LLAN, AH, NYM and DORN), and three birch trials (LLAN, DRUM and 

THET). For each provenance 9 leaves were analysed: the leaves were collected from 

the three middle trees per plot, three plots per site, one leaf per tree. The leaves were 

collected from the south facing side of the tree. When possible, leaves were collected 

from a height of 1.5-2.0m from the ground in the canopy, although there were 

unavoidable exceptions. For example, nearly all trees in the birch trials and some ash 

trees were very tall and extendable loppers had to be used to reach even the lowest 

branches, and conversely, in the case of the northern rowan trials, some trees were 

shorter than 1.5m. The leaves sampled were on the basis of being in the largest size 

category, mature, and with a healthy appearance (i.e. no leaf discolouration, no visible 

infections or any other damage). These leaves were removed from the tree by cutting 

the petiole, and kept in a zip-sealed plastic bag inside a portable cool box and then 

stored in a fridge to stop them from drying. Processing was done as soon as possible 

(within the next 2-3 days) before any visible damage occurred to the leaves.  
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Figure 5.3. Leaves of ash, rowan and birch (left to right). The red circles indicate the 

part of the leaf that was measured. 

 

Sample processing  

To measure the stomatal traits, leaf surface imprints were obtained from fresh leaves 

as soon as possible following field collection (following the procedure described by 

Stojnić, 2015). Clear nail varnish was applied to a small area (approx. 5mm x 10mm) 

on the abaxial leaf epidermis and left to dry for 3 to 5 minutes. A small square of 

transparent adhesive tape (approx. 2 x 3 cm) was then pressed onto the varnished 

surface, gently peeled off along with the layer of nail varnish and attached to a 

microscope slide. This process was carried out for all the samples. For those species 

with compound leaves (ash and rowan) the procedure was applied to an area of a single 

leaflet from the middle part of the leaf (Fig. 3). Samples used to measure leaf shape 

were mounted in a plant press and dried in an oven at 90 °C for a minimum of 48hr. 

 

Leaf area 

To measure their area, pressed and dried leaves were scanned using a CanoScan LiDE 

220 Flatbed Scanner at its highest maximal resolution (4800 x 4800 dpi). The resulting 

images were analysed using the software Image J (version 1.49v, as downloaded in 

October 2015; Schneider et al., 2012) using the Bio-Formats package plugins (© 2005-

2015 University of Dundee & Open Microscopy Environment; Linkert et al, 2010). 

For birch, entire leaves were measured; whereas for ash and rowan, the largest central 

leaflet was measured (Figure 5.3). The software Image J was used to quantify leaf area 

(LA, cm2), described as the total surface area of the lamina. 



157 

 

 

Measurement of Stomata  

The leaf surface imprints were observed under a microscope (Nikon Phase Contrast 

1.25 Microscope Alphaphot-2 Ys2, Japan) to count all the stomata in the field of view 

(a circle of radius 225 µm). Usually around 30 stomata were found, but this could rise 

to more than 70 stomata in ash samples. The area observed was selected randomly, 

avoiding regions intersected by leaf nerves. Stomatal density (SD) was calculated as 

the number of stomata found per square millimetre of abaxial leaf surface. Stomata 

length (SL, µm) was measured on a single stoma in the centre of the microscope field 

of view. A microscope scale eye graticule was used at a magnification of x40 with a 

x10 objective (Figure 5.4). This procedure was conducted three times per sample for 

ash and once per sample for rowan and birch, giving a total of 9 observations per plot 

for ash and 3 per plot for rowan and birch. Mean values per plot were used for 

statistical analyses. 

 

  

Figure 5.4. Two microscope stomatal observations at x40 magnification. Rowan (left) 
has smaller and shorter stomata than ash (right). 
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5.2.5 Data analysis 

Statistical analyses were performed in R version 3.2.3 (R Core Team, 2015). The data 

packages for data management, analysis and visualisation used were “dplyr” 

(Wickham and Francois 2015) and “ggplot2” (Wickham, 2009).   

Analysis of sources of variation 

To determine the effects of provenance and site, the plot mean values were analysed 

in analysis of variance (ANOVA) using a linear model. The different models of 

ANOVA used were as follows: 

i. Separate analysis for each species, trait and trial site combination. In the 

ANOVA provenance was a fixed factor and block was a random factor. All 

the provenances were used. 

ii. Analysis for each species and trait combination across all trial sites. In the 

ANOVA trial site, provenance, and trial site by provenance interaction 

were fixed effects and block nested within site was a random factor. Only 

provenances common to all trials for each species were used. 

Relationship with environmental factors 

For each trait, linear regressions were used to test the relationship between provenance 

mean values and latitude (LAT), longitude (LON) together with the individual 

environmental variables annual precipitation (AP) and number of consecutive dry days 

at the home sire. These two individual variables were chosen because they are most 

closely related to water relations at the home site. Multiple linear regressions including 

both longitude and latitude were also carried out. If only one of these factors was 

significant then a single linear regression was reported.  

Relationship among traits 

To determine the existence and strength of covariance of LA, SD and SL over 

provenances, Pearson’s correlation coefficients were calculated using provenance 

means from individual sites. 
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5.3 Results 

5.3.1 Leaf Area 

- Ash 

Differences amongst provenances: There were significant differences in LA   

amongst provenances in both trial sites (LLAN p<0.05, NYM p<0.05). The ranges of 

LA provenance means were very similar between the two sites (LLAN 10.1-17.2 cm2 

and NYM 10.0-17.2 cm2) (Figure 5.5).  

Differences amongst trial sites: There were significant differences amongst the ash 

trials (Figure 5.5) for LA (p<0.05). On average, the leaves in Llandovery had a larger 

area (13.6 cm2) than in North York Moors (12.6 cm2).  

Provenance by site interaction: There was a significant interaction between 

provenance and trial site for LA (p<0.05). There were numerous crossing interactions, 

the ranking of provenances changing across the two sites (Figure 5.6). 

Relationship with environment at site of origin: At Llandovery there was a 

significant multiple regression of LA with latitude and longitude (R2: 26%, p<0.001), 

with LA of provenances increasing towards the south and east. At this site LA also had 

a significant negative regression on AP (R2: 24%, p<0.001), leaf area decreasing with 

increase in precipitation. There was no significant regression on CDD. In North York 

Moors there were no significant regressions of LA provenance means on any 

environmental variables (Table 5.5, Figure 5.7).  

 

- Rowan 

Differences amongst provenances: In the two southern trial sites there were 

significant differences in LA among provenances (Llandovery (p<0.001) and Alice 

Holt (p<0.05), but no significant provenance differences at the two northern trials. The 

range of provenance means for LA was much larger in Llandovery (5.5-10.0 cm2) than 

at Alice Holt (4.7-6.5 cm2). 

Differences amongst trial sites: There were significant differences amongst the trials 

for LA (p<0.001). The largest rowan leaves were in Llandovery (7.6 cm2), then Alice 

Holt (5.6 cm2), Dornoch (5.0 cm2) and North York Moors (3.7 cm2) (Figure 5.5). 
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Provenance by site interaction: There was a significant interaction between 

provenance and trial site (p<0.001). There were crossing interactions, the ranking of 

provenances changing across the four sites (Figure 5.6). 

Relationship with environment at site of origin: In the two southern sites 

provenance variation in LA was explained by Longitude (LLAN R2: 6% p<0.05, AH 

R2: 11% p<0.001), where LA declined towards the west. In contrast in the northern 

trial sites there were significant regressions of provenance mean LA on latitude with 

LA declining to the north, though these explained very little of the variation (NYM 

R2: 3% p<0.05, DOR R2: 10% p<0.001). The climatic variables AP and CDD also 

explained part of the provenance variation in LA. All the trial sites also showed a 

significant positive regression of LA on CDD. In all case LA was greater in 

provenances from drier sites, though again the amount of variation explained was 

small (Llandovery R2: 4%, p<0.05; Alice Holt R2: 12%, p<0.001; Dornoch R2: 6%, 

p<0.05; North York Moors R2: 5%, p<0.05 (Table 5.5, Figure 5.7). 

 

-Birch 

Differences amongst provenances: At Thetford, but not at other trial sites, there were 

significant differences amongst provenances for LA (p<0.001). The range of 

provenance means in Thetford was 9.4-19.8 cm2. 

Differences amongst trial sites: There were significant differences amongst the birch 

trials for LA (p<0.001). On average, leaves were smaller in the most northerly trial, 

Drummond (11.1 cm2), while mean LA values at Llandovery (13.3 cm2) and Thetford 

(13.5 cm2) were more similar (Figure 5.5).  

Interaction between provenance and site: There was a significant provenance by 

trial interaction for LA (p<0.05). There were crossing interactions, the ranking of 

provenances changing across the three sites (Figure 5.6). 

Relationship with environment at site of origin: At Thetford provenance LA 

variation was explained by longitude (R2: 6%, p<0.05) and CDD (R2: 9%, p<0.01). 

LA increased in provenances from eastern and drier sites. There were no significant 

regressions of provenance LA on environmental variables at Llandovery or 

Drummond (Table 5.5, Figure 5.7). 
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Figure 5.5. Among site variation in mean leaf area for three species. All three 

species show significant differences amongst trials (p<0.001). 

 

Figure 5.6. Interaction plot for changes in mean provenance leaf area over sites for 

three tree species. Note that the y axes are different for each species. The colours 

correspond to the ROPs. 
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Table 5.5. Significance of differences among provenance for leaf area, and the 

relationship with geographic and climatic variables for each species and trial site. All 

regressions were significant at p<0.01, except those indicated by ‘*’ where 

significance was p<0.05. (+) and (-) indicate slope of regression. 

Spp 
Trial 
site 

No. of 
prov. 

Prov. 
effect 

Geogr/Environmental variable 
Regression sign and R2 

Lat Long AP CDD 

Ash Llan 42 * (-) Lat (+) Long 0.26 (-) 0.24 ns 

 NYM 40 * ns ns ns ns 

Rowan Llan 34 *** ns (+) 0.06* (-) 0.22  (+) 0.04* 

 NYM 39 ns  (-) 0.03* ns ns  (+) 0.05* 

 Dor 42 ns (-) 0.10 ns ns (+) 0.06 

 AH 31 * ns (+) 0.11 ns (+) 0.12 

Birch Llan 30 ns ns ns ns ns 

 Drum 28 ns ns ns ns ns 

 Thet 32 *** ns (+) 0.06* ns (+) 0.08 

 

 

Figure 5.7. Linear regressions for trial sites where there was a significant 

relationship of provenance LA with Annual precipitation (AP) or Consecutive dry 

days (CDD) at site of origin. Each dot is a provenance mean. Colour corresponds to 

the ROP: dark blue NW, pale blue NE, red SW and yellow SE. Significance of R2 

***p<0.001, **0.001>p<0.01, and *0.01>p<0.05. 
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5.3.2 Stomatal results 

There were differences in stomata density (SD) and stomata length (SL) amongst 

species (Figure 5.5). Ash had the highest mean values for SD (315.8 stomata/mm2) 

and lowest mean value for SL (23.6 µm); rowan and birch had similar mean values of 

SD (rowan 160.0 and birch 161.5 stomata/mm2) and SL (rowan 27.5 and birch 28.2 

µm) (Figure 5.8).   

 

4.3.2.1 Stomatal Density (SD) 

- Ash 

Differences amongst provenances: In Llandovery there were significant differences 

in SD amongst provenances (F(41,81)=1.6554, p=0.027). No significant differences 

were found in North York Moors. The provenance means range for SD was greater in 

Llandovery (range 259-354 stomata/mm2) than in North York Moors (range 276-364 

stomata/mm2), but the coefficient of variation for SD was the same (13%) at both sites 

(Table 5.6). 

Differences amongst trial sites: There were significant (p<0.001) differences 

amongst trials for SD (Figure 5.8). The most northerly trial, North York Moors, had 

higher stomata density (mean SD: 326 stomata/mm2) than the Llandovery trial site 

(mean SD: 306 stomata/mm2).  

Interaction between provenance and site: There was no significant interaction 

between provenance and trial site for SD. 

Relationship with environment at site of origin: Provenance SD showed significant 

regressions on environmental factors at the site of origin at the Llandovery trial site, 

but not at the North York Moors site. In Llandovery there was a significant positive 

regression of SD on Latitude (R2: 16%, p<0.001), and significant negative regressions 

of SD on Consecutive Dry Days (CDD) (R2: 12%, p<0.01). SD was greater in northern 

provenances, and those from wetter sites (Figure 5.9). 

 

- Rowan 

Differences amongst provenances: In all the rowan trials sites except North York 

Moors there were significant differences in SD amongst provenances (Llandovery 

F(33,62)=2.08, p=0.0066; Alice Holt F(30,115)=2.20, p-value=0.0016; Dornoch 
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F(41,82)=1.89, p-value=0.0083). The range mean and coefficient of variation for 

provenance mean SD was similar among these sites (range 137-217 stomata/mm2, 

CV=15% Dornoch; range 130-202 stomata/mm2, CV=14% Llandovery; range 123-

183 stomata/mm2, CV = 17% Alice Holt).  

Differences amongst trial sites: There were significant (p<0.001) differences 

amongst the rowan trials (Figure 5.8), for provenance mean SD. The Llandovery trial 

had the highest mean SD (171.1 stomata/mm2), followed by Dornoch (SD 165.4 

stomata/mm2), Alice Holt (SD 153.9 stomata/mm2), and North York Moors (SD 153.2 

stomata/mm2). The western trial sites had greater SD than those in the east. 

Interaction between provenance and site: There was no significant interaction 

between provenance and trial site for provenance mean SD. 

Relationship with environment at site of origin: SD had significant negative 

regressions with longitude in Llandovery (R2: 17%, p<0.001), Alice Holt (R2: 16%, 

p<0.01), and Dornoch (R2: 4%, p<0.001); the eastern provenances have lower SD than 

those from the west. SD also showed a significant positive regression on AP in all the 

four trials (LLAN R2: 9 %, p<0.001; AH R2: 23%, p<0.001; DOR R2: 5%, p<0.001; 

NYM R2: 3%, p<0.001), the provenances with greater annual precipitation had greater 

SD. SD had a significant negative regression on CDD in Llandovery (R2: 12%, p<0.01) 

and Alice Holt (R2: 10%, p<0.01), where the provenances from origins with more CDD 

had lower SD (Table 5.7, Figure 5.9).  

 

- Birch 

Differences amongst provenances: There were no significant differences amongst 

provenances for SD at any of the birch trial sites. The coefficient of variation for SD 

in birch was similar to than in rowan and ash (Llandovery 12%, Thetford 12%, and 

Drummond 15%). 

Differences amongst trial sites: There were significant differences (p<0.05) amongst 

the birch trial sites (Figure 5.8). The trial with higher SD was the most northerly one, 

Drummond (SD 166.1 stomata/mm2); Llandovery and Thetford were more similar to 

each other (Llandovery SD 156.6 stomata/mm2; Thetford SD 158.2 stomata/mm2).  

Interaction between provenance and site: There was no significant interaction 

between provenance and trial site for either SD. 
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Relationship with environment at site of origin: The variation in SD showed a 

significant positive regression on Latitude (R2: 4%, p<0.05) in Llandovery, a negative 

regression on CDD (R2: 5%, p<0.05) in Llandovery, and a negative regression on AP 

(R2: 7%, p<0.001) in the Thetford trial site (Table 5.7, Figure 5.9). However these 

relationships explained very little of the variation in SD.  

 

Table 5.6. Coefficient of variation, standard variation and mean of SD, by trial site. 

spp 
trial SD sd SD mean 

Coeff. 
variation 

ash LLAN 39.03632 305.6506 12.77 %  
NYM 42.34146 325.6097 13.00 % 

rowan LLAN 23.13802 171.0859 13.52 %  
AH 25.78971 153.9118 16.76 %  

DOR 25.04954 165.4158 15.14 %  
NYM 22.47358 153.1943 14.67 % 

birch LLAN 19.35205 156.5828 12.36 %  
DRUM 25.0827 166.0662 15.10 %  
THET 19.41451 158.2439 12.27 % 

 

 

 

4.3.2.2 Stomata Length (SL) 

- Ash 

Differences amongst provenances: There were no significant differences amongst 

provenances for SL at any of the trial sites. 

Differences amongst trial sites: There were significant differences amongst trials for 

SL (p<0.001, Figure 5.8). The most northerly trial, North York Moors, had larger 

stomata (mean SL: 25 µm) than the Llandovery trial site (SL: 23 µm).  

Interaction between provenance and site: There was no significant interaction 

between provenance and trial site for SL. 

Relationship with environment at site of origin: SL showed significant regressions 

on environmental factors at the site of origin at the Llandovery trial site, but not at the 

North York Moors site. In Llandovery SL showed significant positive regressions on 

CDD (R2: 3%, p<0.05) (Table 5.7), SL increased towards drier provenances.  
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- Rowan 

Differences amongst provenances: There were significant differences for SL 

amongst provenances in the two southern trial sites (Llandovery F(33,62)= 1.65, p= 

0.0439; Alice Holt F(30,115)= 1.65, p= 0.0323), but not in the two northern ones. The 

range of SL provenance means was 10 µm in Llandovery (25-35 µm), and 4 µm in 

both Alice Holt (24-28 µm) and Dornoch (30-26 µm). 

Differences amongst trial sites: There were significant differences amongst the 

rowan trials (Figure 5.8) for SL. The Llandovery trial had the largest mean SL (28.0 

µm) together with North York Moors (28.0 µm), followed by Dornoch (SL 27.5 µm) 

and Alice Holt (SL 26.3 µm). 

Interaction between provenance and site: There was no significant interaction 

between provenance and trial site for SL. 

Relationship with environment at site of origin: SL in rowan showed significant 

regressions on environmental factors only at Alice Holt: a positive regression on CDD 

(R2: 12%, p<0.01) and on Longitude (R2: 7%, p<0.001), and a negative regression on 

AP (R2: 7%, p<0.001) (Table 5.7). SL increased in eastern and drier provenances. 

 

- Birch 

Differences amongst provenances: There were no significant differences amongst 

provenances for SL at any of the birch sites. 

Differences amongst trial sites: There were significant differences amongst the birch 

trial sites for SL (p<0.001, Figure 5.8). The trial with largest SL was the most northerly 

one, Drummond (SL 29.2 µm), Llandovery and Thetford were more similar 

(Llandovery SL 27.6 µm; Thetford SL 27.5 µm). 

Interaction between provenance and site: There was no significant interaction 

between provenance and trial site for SL. 

Relationship with environment at site of origin: There were no significant 

regressions of provenance mean SL on environmental variables in any trial site (Table 

5.7). 
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Figure 5.8. Among site variation in mean stomatal density (SD) (above) and stomatal 

length (SL) (below) per species. Asterisks indicate the level of significance of the 

effect of trial in one-way ANOVAS for SD and SL within species *** p<0.001, ** 

0.001>p<0.01, and *0.01>p<0.05). 
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Table 5.7. Significance of provenance effect and relationship with geographic and 

climatic variables for each species and trial site, for stomata density (SL) and stomata 

length (SL). All regressions were significant at p<0.01 except those with the R2 values 

indicated by ‘*’, where significance was p<0.05. (+) and (-) indicate slope of 

regression. 

Trait Spp 
Trial 
site 

No. 
of 

prov. 

Prov. 
effect 

Geogr/Environmental variable 
Regression sign and R2 

Lat Long AP CDD 

SD 
Ash 

Llan 42 * (+) 0.16 ns ns (-) 0.12 

 NYM 40 ns ns ns ns ns 
Rowan Llan 34 ** ns (-) 0.17 (+) 0.09 (-) 0.12 

NYM 39 ns ns ns  (+) 0.03* ns 
Dor 42 ** ns  (-) 0.04* (+) 0.05 ns 

AH 31 ** ns (-) 0.16 (+) 0.23 (-) 0.10 

Birch Llan 30 ns (+) 0.04* ns ns  (-) 0.05* 
Drum 28 ns ns ns ns ns 
Thet 32 ns ns ns (-) 0.07 ns 

SL Ash Lland 42 ns ns ns ns (+) 0.03* 
 NYM 40 ns ns ns ns ns 
 Rowan Llan 34 * ns ns ns ns 

 NYM 39 ns ns ns ns ns 
 Dor 42 ns ns ns ns ns 
 AH 31 * ns (+) 0.07 (-) 0.07 (+) 0.12 

 Birch Llan 30 ns ns ns ns ns 
 Drum 28 ns ns ns ns ns 
 Thet 32 ns ns ns ns ns 
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Figure 5.9. Regression of SD (number of stomata / mm2) with latitude, longitude 

and annual precipitation by species and trial site. Points correspond to provenance 

means and the colour corresponds to ROP.  
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5.3.2 Correlations between Provenance Means for Leaf Characters 

Correlation between SD and SL 

There were significant negative correlations between the provenance means of SD and 

SL (higher SD corresponds to lower SL) in the following trial sites: ash Llandovery (-

0.5, p<0.001), rowan Llandovery (-0.5, p<0.01), rowan Alice Holt (-0.7, p<0.001), 

rowan Dornoch (-0.4, p<0.05), and birch Thetford (-0.4, p<0.05). There were no 

significant correlations in the other trial sites (Table 5.8).  

 

Despite there being a negative correlation between SD and SL within many trial sites, 

when looking across different trials on average the trials which had the greatest SD 

also had the greatest SL, for all three species (Figure 5.8). 

 

Table 5.8. Correlation between SD and SL by species and trials. 

Spp trial SD vs SL Correlation stats 
Pearson’s 
coefficient 

ASH 
LLAN *** 

t = -3.7858, df = 40,  
p-value = 0.0005039 -0.514 

NYM ns 

ROWAN 
LLAN ** 

t = -3.1507, df = 32,  
p-value = 0.003522 

-0.487 

AH *** 
t = -5.0461, df = 29,  
p-value = 2.231e-05 

-0.684 

NYM ns 

DOR * 
t = -2.5738, df = 40,  
p-value = 0.01387 

-0.377 

BIRCH 
THET  * 

t = -2.5324, df = 30,  
p-value = 0.0168 

-0.420 

DRUM ns 

LLAN ns 

 

Correlation between SD and leaf Area 

Correlations between provenance means for LA and SD in each site showed only one 

significant correlation In the rowan Llandovery trial site a significant positive 

correlation was found, 0.39 was the Pearson’s coefficient (t = -2.4055, df = 32, p = 

0.02). 
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Correlation between SL and leaf Area 

Correlations between provenance means for LA and SL in each site showed positive 

significant correlations in tow trials of rowan (Dornoch 0.4, p<0.05; North York Moors 

0.3, p<0.05) and one of birch (Thetford 0.5, p<0.001) (Table 5.9). 

 

Table 5.9. Correlation between LA and SL by species and trials. 

Spp trial LA vs SL Correlation stats 
Pearson’s 
coefficient 

ASH LLAN ns 

NYM ns 

ROWAN LLAN ns 

AH ns 

NYM * 
t = 2.4229, df = 37, p-

value = 0.02041 
0.370 

DOR * 
t = 2.0422, df = 40, p-
value = 0.04777 

0.307 

BIRCH 
THET  ** 

t = 3.041, df = 27, p-
value = 0.005195 

0.505 

DRUM ns 

LLAN ns 
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5.4 Discussion 

 

Leaf functional traits such as leaf area, stomata density and stomatal length show great 

variability among populations of trees when measured in situ. Until now it has proved 

very difficult to understand either the causes of this variation or the patterns of 

variation that are found, and there is a lack of consensus across the literature (Dillen 

et al., 2008; Pallardy, 2008; Bresson et al, 2011). In order to analyse the underlying 

causes of the variation observed in situ (genetic, environmental, and an interaction 

between genotype and environment) and the environmental pressures that have 

affected these traits, it is essential to make measurements on these traits in common 

garden experiments at multiple sites. Here we have undertaken such analysis in 

common gardens for three native tree species sampled from across their natural ranges 

in Britain.  

 

5.4.1 Main findings 

 

1. All three species show significant provenance variation affecting leaf size, and this 

character is also affected by planting site environment. However, the most striking 

characteristic of the genetic variation in leaf size for all three species is that its 

expression is dependent on the environment in which the trees are grown. So 

differences in leaf size may be found in some planting sites and not in others, and the 

ranking of provenances may vary between sites in very unpredictable ways. In this 

situation it may not be easy to analyse in detail the relationship between leaf size and 

environmental variables because the pattern will not be consistent over experimental 

sites. 

 

2. Density of stomata is a character which shows variation among provenances in ash 

and rowan but not birch, and it is affected by environment in all three species. 

However, in contrast to leaf size there are no significant genotype x environment 

interactions in any species. In this situation it is therefore worth exploring the patterns 

of variation among provenances in ash and rowan which are more likely to be 

consistent over experimental sites. In ash SD increases with latitude of provenance 
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origin (greater SD towards the north), while in rowan SD decreases with longitude of 

provenance origin (greater SD towards the west). 

 

3. For SL there is evidence of provenance variation only in rowan, but of 

environmental variation in all three species. As for SD there is no G x E interaction. 

For rowan SL decreases with latitude (in opposite direction to SD). 

 

4. In all three species there is a negative correlation between provenances means for 

SD and SL.  

 

5. Differences across species were found for SD and SL. Ash has a much greater SD 

and lower SL than rowan and birch (which are more similar between them). The SD 

counts we reported are of very similar magnitude to other studies in ash (Hölscher et 

al. 2002) and silver birch (Kostina et al., 2001). 

5.4.2 Pattern of variation for leaf size 

 

For ash and rowan, leaves were smaller in some trials in provenances from the north-

west (towards colder and wetter sites of origin), and were larger towards the south-east 

(drier sites of origin). This same trend is found in Warret et al (2005), where in 

common garden experiments the eucalyptus provenances from greater rainfall areas 

had smaller leaves. Also, studies of an altitude gradient have found a reduction in leaf 

size reduced towards higher altitudes provenances in in situ observations (Bresson et 

al., 2011) and in common garden experiments (Stojnic et al, 2015).  

 

In other studies carried on in drier climates, leaves tend to be smaller in situ towards 

the equator as water is the limiting factor and leaf reduction is considered an adaptation 

to drought (Adams, 1994; Castro-Díez et al. 1997, Groom and Lamont 1997, Bussotti 

et al. 2000, Wright et al. 2001, Rowland, 2001; Lamont et al. 2002; Bruschi et al. 2003; 

Gratani et al. 2003). Some of these studies conducted in common gardens found 

genetic diversity in leaf size (Bussotti et al, 2000; Rowland, 2001), but patterns of 

variation were in the opposite direction to our results. In Bussotti et al. (2000), when 

leaf area was measured in common gardens of beech provenances from throughout 
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Italy, leaf area decreased towards the south. This was explained as an adaptation to the 

extreme drought from Mediterranean summers, which will be more acute in the most 

southern provenances. 

 

However these explanations for patterns of leaf size variation developed in xeric 

systems are not likely to be applicable to ash, rowan and birch in GB. This is because 

these populations are not at the southern edges of their species’ distributions, but 

towards the north and western edges where they have had to adapt to grow in the 

temperate and oceanic climate in GB. Despite there being some relative drought in 

summer in some areas and over long time cycles, this is not the major limiting factor 

for tree growth in GB. The limited or conservative leaf size found in northern and 

western provenances must be due to selection by an environmental factor other than 

drought. We hypothesis that the limiting factor which is driving genetic diversity 

towards having smaller leaves in northern and more oceanic provenances is the colder 

temperatures in those areas in GB, which reduce the growing season length towards 

the north with increasing risk of frost damage towards the north and west. As shown 

in Figure 4.10, there is a positive correlation between wet and cold areas in GB. That 

could be why we find significant relationships between leaf size and annual 

precipitation, as the wettest sites in GB are also the coldest. 

 

Although there is some signal from our common garden experiment that provenances 

from northern and western sites having reduced leaf size, the most striking result is 

that the provenances react differently in different environments. On average leaf size 

is greater in the western trial sites of Llandovery, for all three species, which are the 

wettest and warmest sites for all three species. We see an opposite pattern between 

genetic diversity and phenotypic plasticity: in relation to all trial sites the leaves grow 

bigger in the wettest site (Llandovery), but within trial sites the provenances from 

wettest origins have smaller leaves. 

 

There are significant genotype by environment interaction in all three species for leaf 

area. These include crossing interactions, where the ranking of provenances changes 

across sites. This shows that it is unpredictable how leaf size will react if provenances 
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are moved between different environments. There is genetic diversity within the 

species, but this expresses differently depending on the environment where the trees 

are grown. The southern trials show a greater range of leaf area and show more 

differences across provenances. The genetic diversity is expressed more in these 

southern trial sites in terms of phenotypic variation 

 

   

Figure 4.10. MetOffice average climatic data, mean maximum temperature and mean 

rainfall (1961-2010). 

 

5.4.3 Patterns of variation for stomatal density 

  

For the character of stomatal density, significant provenance differences were found 

in ash and rowan, and there were no genotype x environment interactions. The 

consistent pattern of variation for ash was that SD increased with latitude of origin. 

For rowan, in contrast, SD decreased with longitude of the provenance. We find again 

this same geographical pattern as previously found for growth and phenology traits, 

where the provenance differences across sites for rowan are explained by longitude, 

while for ash these are explained by latitude.  
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Another very interesting result was that the plastic response in SD found across trial 

sites, was in the same direction as the genetic differences across provenances. When 

looking at the differences across sites within species we found that in ash all 

provenances had greater SD when planted in the more northerly trial sites; while in 

rowan SD was greater in the western than in the eastern trial sites. For this trait 

phenotypic plasticity appears to operate in the same direction as adaptation, a 

phenomenon known as acclimation. This same direction of genetic diversity and 

phenotypic plasticity has been found in common garden experiments on riparian 

North-American poplars (Dunlap and Stettler 2001; Pearce et al. 2005). Here diverse 

poplar genotypes show genetic differences whereby individuals from drier locations 

have higher SD and smaller stomata, and respond to drier environments by producing 

leaves with a higher density of smaller stomata.  

 

No consensus has been reached on the factors determining patterns of SD among 

provenances and the reasons why SD changes under different environmental 

conditions (Bresson et al., 2011). Depending on the study opposite trends have also 

been found. Usually, high stomata density has been considered a drought adaptation; 

provenances from drier sites, and also modifications on water availability stress 

(increased drought), results in an increase in stomatal density (Gindel, 1969; Dunlap 

and Stettler 2001; Abrams, 1994; Pearce et al. 2005; Xu and Zhou 2008; Fraser et al. 

2009; Laajimi et al. 2011). This is the opposite of what we found in our results, where 

(for both genetic diversity and plasticity) SD decreased as site of origin or growth 

became drier. However, the studies in which SD increases with drier conditions tend 

to be conducted in semi-arid environments and on species which have adapted to cope 

with severe drought. These conditions do not hold for our study of temperate forest 

trees in an oceanic British climate. The selective pressures will be different in different 

climates. 

 

There are other studies (Salisbury, 1927; Quane & Jones, 1977; Bussotti et al., 2005) 

where the opposite trend has been found, parallel to our own results. A study of beech 

trees across Italy (Bussotti et al., 2005) found that stomata density declined towards 

the south of Italy. They hypothesised that increased SD in the northern stands was an 
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adaptation to the risk of physiological water stress (Flückinger et al., 1986), or an 

induction of increased SD by high ozone concentrations due to pollution (Pääkkönen 

et al., 1998). However, this is not an explanation that would be consistent with our 

findings, as the north-west of GB where we find the highest SD, is less polluted than 

the south of GB and moisture deficit is the lowest in GB. An alternative explanation is 

that higher SD can be an advantage when there is excess water availability but lower 

temperature, and flooding is a risk (Gomes and Kozlowski, 1980; Bradford and Hsiao, 

1982; Kozlowski, 1997; Yordanova et al., 2005). This explanation would be consistent 

with the results found in Scottish populations of Pinus sylvestris (Donnelly, 2015), 

where the number of stomata increased towards the west of Scotland where 

precipitation and waterlogging is higher. 

 

For our study based in GB the climate cline is more comparable to altitudinal changes 

than semiarid environments clines, as the latitude and altitude change in environmental 

clines are usually parallel (Randin et al., 2013). There are many studies which have 

documented the effect of altitude on stomata density. Both trends between altitude and 

SD have been found, the majority finding that SD increases towards higher altitude in 

in situ observations (Körner & Mayr 1981, Hovenden & Brodribb 2000, Hovenden & 

Vander Schoor 2006, Kouwenberg et al. 2007, Premoli & Brewer 2007, Bresson et 

al.,2011). However when common garden experiments were conducted, these did not 

find genetic differences among provenances across the altitude range. An exception 

was the work of Hover & Brodribb (2000), where population differentiation for 

stomata density was found. A possible explanation of why only phenotypic and not 

genetic differences were found for SD, is that the provenance sampling was done 

across a relative small geographic area, despite being in a very steep altitudinal and 

environmental gradient. Similar discrepancies have been found between the results 

from studies of comparable latitudinal and altitudinal gradients, due to the former 

involving sampling over a much greater geographic distance than the latter (Randin et 

al., 2013). For example, in Bresson et al. (2011), a study on sessile oak and beech 

progenies in the French Pyrenees, did not find differences in the common gardens but 

did find differences across the same progenies in situ. The progenies sampled in this 

study were quite close together in distance (most provenances collected within a 25 
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km radius, with only one beech provenance 100km further than the rest), which could 

mean that the populations could maintain high levels of gene flow between them.  

 

Attempts have been made to explain changes in SD with altitude in terms of many 

factors including change in CO2 air concentration, change in light, or decrease of air 

humidity (Bresson et al., 2011). There are also many factors which have been shown 

to influence SD: water availability, temperature, CO2 concentration, and light amongst 

others (Beerling & Chaloner, 1993; Kouwenberg, 2007; Casson & Gray, 2008). In 

some cases the change in SD shows a quadratic response curve. For example Xu & 

ZhoU (2008) found that moderate water deficits increased SD, but more severe deficits 

led to a reduction. However, it has not yet been possible to find a consistent explanation 

for the pattern of variation in SD across species and environments. In our results, 

however, we have found clear patterns of provenance variation for SD in both ash and 

rowan associated with latitude and longitude respectively.  

 

5.4.4 Patterns of variation for SL 
 
In this study we used SL as a proxy for stomatal size. For SL we found provenance 

differences in rowan, where longer stomata were found in provenances from the east. 

There were also significant differences across trial sites for SL for all three species. 

Again, as with SD, there is no consensus in the literature on the pattern variation in 

stomatal size to be expected across environments. Usually smaller stomata have been 

related to higher drought adaptation (Dunlap & Stettlet, 2001; Pearce et al., 2005), 

which is the opposite to what we have found but in accordance with other studies such 

as Bussotti et al., 2005). 

 

5.4.5 Relationship between leaf characters 

 

When looking at the relationship between leaf and stomatal characters we found a 

strong significant negative correlation between SD and SL for the mean provenance 

values, and this was maintained across the tree species and in most trial sites. 

Provenances with higher stomatal density tend to have shorter stomata and vice versa. 

This negative correlation between SD and SL is a well-known pattern across species 
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(Gindel 1969; Franks & Farquhar 2001; Uprety et al. 2002; Franks et al., 2009) and it 

is thought it allows for quick changes in the stomata conductance. Hetherington & 

Woodward (2003) proposed that small stomata have shorter response times, and that 

this, in combination with their usually high densities, allows the leaf to attain high 

stomatal conductance rapidly under favourable conditions, but then to rapidly reduce 

conductance when evaporative conditions are unfavourable. While this would be an 

advantage over larger, slower stomata, it is unclear why a plant should revert back to 

larger, slower stomata under less demanding conditions. 

 

It has been shown that SD is set in very early stage of leaf development (Casson & 

Gray, 2008). For this reason, it could be that leaf size and leaf development differences 

would affect SD variation, and the differences we have recorded on SD could be 

determined more by leaf development differences than genetically. However, we have 

rejected this hypothesis. We have not found significant correlations between SD and 

LA, except for one trial site of rowan. We found significant correlations between LA 

and SL in two sites for rowan (p=0.048 and p=0.021) and one in birch (p<0.01). 

Furthermore, the patterns of variation across sites were very different for leaf size and 

SD; while SD does not show significant site by provenance interactions and has a very 

predictable plasticity trend, leaf area shows a very strong interaction between site and 

provenance.  

 

5.4.6 Conclusion 

Our findings have revealed patterns which were previously unrecognised among 

populations of these 3 species in GB. The genetic variation and high levels of 

phenotypic plasticity indicate that leaf traits respond adaptively to environmental 

variation. Our results demonstrate that the leaf size, stomata density and stomata size 

are related to water availability environmental variables from their site of origin, and 

also the planting site. This is important as with climate change water availability is 

predicted to change in GB (IPPC, 2013).  

Northern provenances have smaller leaves as an adaptation possibly to colder and 

windier conditions. Currently the southern provenances have the largest leaves, which 
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are the provenances that are predicted to experience drought with climate change. This 

could be a problem as larger leaves have more evapotranspiration and therefore lose 

more water. However, we have shown that phenotypic plasticity in leaf size makes the 

same provenances have smaller leaves in the driest trial sites and larger leaves in the 

wettest trials. This plasticity could compensate and help the tree populations from the 

south east of GB cope with the future predicted drought. 

For the stomata density we have seen this trait is positively correlated with 

precipitation, and we hypothesis it is an adaptation to help increase evapotranspiration 

when dealing with waterlogging. It is predicted that waterlogging and flooding will 

increase in parts of GB with climate change. Phenotypic plasticity in stomata density 

has the same trend, it increases the density with wetter sites, this means that plasticity 

can help cope it.  However, we have not tested how drought will affect stomata density 

in GB tree populations, so we do not know if the current adaptation on stomata traits 

will be suitable for dealing with climate change. 

The important thing we have found is that within British populations of ash, rowan 

and birch there is a large amount of variability for leaf size and stomata traits, both 

genetically and phenotypic plasticity. This means tree populations have an adaptive 

capacity for when the climate conditions change, and the selective pressures act upon 

the tree populations. 
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Chapter 6: Discussion 

 

(Including multi-trait analyses as summary of 

all the results) 
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6.1Summary of key findings  

6.1.1 Summary by chapter  

The exploration of the climatic factors that was performed in Chapter 2 set the 

foundation of the analyses that were carried out in the subsequent chapters. We carried 

out a principal components analysis using 13 climate variables to characterize the 

environments of each of the provenances of the three broadleaved species which 

provided seed for the establishment of the common garden trials. By plotting 

provenance locations according to their PC1 and PC2 scores, we demonstrated that the 

climatic variation covered by the three species in our samples largely overlapped, 

which confirmed that it was valid to compare our results across species using the 

sampled provenances present in the trials. In addition, most of the trial sites had 

climates which lay within the core climatic envelope for the three species within GB. 

Therefore, the trial sites were likely to present conditions that were within the climatic 

range that British populations would normally experience and we could be confident 

that we were not exposing the material to extreme conditions that they were unlikely 

to experience naturally. Additionally, we found extensive climatic diversity within 

each region of provenance (ROP), with considerable overlap in the climatic envelopes 

of the four ROPs, for this reason we did not include ROP as a fixed factor in the 

subsequent analyses. We found that latitude and longitude explained and summarized 

the environmental diversity of GB effectively, justifying our use of these in the 

analyses. 

Chapter 3 explored the variation in growth traits, stem forking and survival in British 

provenances of ash, rowan and silver birch in the replicated common garden trials. 

Comparison of results within trials revealed genetic differentiation (there are clear 

differences in growth trait variation among British provenances), and comparison of 

results between replicated trials showed that these traits exhibit phenotypic plasticity 

(growth is very dependent on the site where trees are growing), There was also an 

interaction between the genetic and environmental components of variation. 

Differences in height growth tended to be related to latitude, although in the northern 

trial sites, longitude also was important. Rowan was the species which showed smaller 
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differences amongst provenances for tree height. Height variation was positively 

correlated with DBH and forking. 

Chapter 4 examined phenological traits in the common garden trials. There was 

differentiation amongst native provenances for leaf flushing and senescence in ash and 

rowan. The variation amongst provenances was greater than the phenotypic plasticity 

individual provenances showed across different environments. Stem forking was 

correlated with date of leaf flushing in ash. These results show that trees are adapted 

to a determinate growing season at their site of origin and transfer of material from its 

site of origin to another location can result in frost damage to the apical buds which 

results in forking and poor form in trees. We also found very significant differences 

between ash and rowan for their geographical patterns of both leaf flushing and leaf 

senescence: in ash, the southern provenances flushed earlier and senesced later, in 

rowan the eastern provenances flushed earlier and senesced later. 

Chapter 5 presented results on leaf anatomy traits (leaf area, stomatal density and 

stomatal length) measured across native provenances of ash, rowan and silver birch. 

We showed distinct genetic diversity for these traits, which are related with 

environmental covariates (consecutive dry days and annual precipitation). Trees from 

drier provenances had greater leaf area, lower stomatal density and greater stomatal 

length; while trees from origins with greater annual precipitation showed lower leaf 

area, greater stomatal density and lower stomatal length. Moreover, these traits showed 

extensive phenotypic plasticity across the different environments. In the case of leaf 

area, there was a strong environment by genotype effect, which makes leaf area 

unpredictable when provenances are grown in novel environments. Stomatal density 

did not show interaction between site and provenance. 

 6.1.2. Patterns of variation 

6.1.2.1 Patterns of genetic diversity across traits 

In the results chapters we have presented the analyses for nine traits of adaptive 

significance measured in the three species; all nine traits were measured in ash but 

only seven were assessed in the other two study species. A different complement of 

seven traits was measured in rowan and birch (Table 6.1). We found genetic 
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differences for most of these traits in most trial sites (Table 6.2). Height and DBH had 

clear differences across provenances, whereas for survival the difference between 

provenances was not so clear. The stem forking had a very clear provenance effect for 

ash but less so for birch. Flushing had very strong differences across provenances, 

which were greater than the differences found for senescence. The leaf anatomy traits 

showed fewer differences across provenances for birch, and the stomatal genetic 

differences were most clear in rowan. We carried out two different PCA analyses to 

look at the patterns of variation that arise with all the traits together. We carried out 

PCA, which had one value for PC1 and PC2 per provenance. Secondly, we carried out 

PCAb, which had the provenances scores replicated for each trial site, to address 

phenotypic plasticity. 

PCA of all traits by species 

We have combined these traits measured in the different trial sites into a principal 

component analysis by species, to understand the patterns of variation across 

provenances that arise when the data for traits are considered together. For the PCA 

we did not include all the trial sites but used data from: Llandovery and North York 

Moors for ash; Alice Holt, Llandovery and Dornoch for rowan; and Llandovery and 

Drummond for birch. This was because for the analysis there could not be more 

columns (traits) than row (provenances). 

Table 6.1. List of traits by species, ‘x’ indicates assessed and ‘-’ indicates not assessed. 
Trait Ash Rowan Birch 

Survival x x x 

Height x x x 

DBH x - x 

Forking x - x 

Flushing x x  - 

Senescence x x - 

Leaf area x x x 

Stomata density x x x 

Stomata length x x x 

 

Ash: The two first components account for 50% of the variation (38% PC1 and 12% 

PC2). PC1 corresponds mainly to growth (Height, DBH and survival) and leaf 

senescence, and separates provenances by taller and early flushers versus shorter and 

late flushers (Figure 6.1). PC1 is correlated positively with latitude (Pearson’s 
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correlation coefficient r=+0.75) and negatively with longitude (r=-0.48) (Figure 6.2). 

PC2 loadings are the greatest for leaf traits SD, SL and LA, separating between 

provenances with large SD versus provenances with small leaves and small SL (Figure 

6.1). PC2 is correlated negatively with latitude (r=-0.13) and positively with longitude 

(r=+0.18) (Figure 6.2). 

Rowan: The first two components of the PCA for rowan account for the 40% of the 

variation (PC1 26%, PC2 14%). PC1 separates provenances between the late flusher 

provenances with large SD from the provenances which flush earlier and have smaller 

SDs (Figure 6.1). PC1 is correlated positively with latitude (r=+0.47) and negatively 

with longitude (r=-0.76) (Figure 6.2). PC2 separates the tallest and latest to senesce 

from the other provenances (Figure 6.1). PC2 is positively correlated with both latitude 

(r=+0.45) and longitude (r=+0.24) (Figure 6.2). 

Birch: The first two components of the birch PCA explain 43% of the variation (28% 

PC1, 15% PC2). PC1 separates the provenances according to their height and DBH 

(Figure 6.1). PC1 is correlated positively with latitude (r=+0.71) and negatively with 

longitude (r=-0.38) (Figure 6.2). PC2 separated the provenances between trees with 

large leaves from provenances with more forks (Figure 6.1). PC2 is negatively 

correlated with latitude (r=-21) and positively with longitude (r=+0.15) (Figure 6.2). 

Differences across species in height vs other traits 

We find differences across species, different traits having more weight in determining 

the variation across provenances. For both ash and birch we find that most of the 

variation is explained by differences across provenances in growth (Height, DBH); 

while in rowan, most of the variation is explained by flushing time and SD. In the 

second PC2 (which in three species accounts for up to 15% of the variation) for rowan 

more weight is given to height and leaf senescence while in birch and ash leaf traits 

are more important. Overall, we see that for ash and birch, tree growth is what 

separated most the provenances and in secondary terms leaf traits; while in rowan SD 

and leaf phenology (both spring and autumn) are most important to explain the 

variation, with height being secondary. This could be explained by differences in the 

biology and life strategy of the different tree species. Rowan is a shorter tree usually 



188 
 

located in the understory and shade tolerant (Grime, 2007) while ash and birch are 

much taller trees which compete more for light. The importance of leaf phenology in 

rowan may be explained by the fact that it flushes very early in the season and senesces 

later (compared with ash and birch, Grime 2007), and is therefore under greater 

selective pressures to adapt to avoid early and late frosts.  

Geographical pattern of the trait variation 

When looking at how the traits are correlated with latitude and longitude we find 

differences across species and traits (Tables 6.2). Ash has mainly a latitudinal pattern, 

rowan a longitudinal pattern, and in birch latitude and longitude are both important 

depending on the trial site. We can see that ash has a very large latitudinal effect for 

all traits with the only exception in leaf area. As we have shown in chapter 5, leaf traits 

are more affected by climatic variables; in this case of leaf area for ash, annual 

precipitation explains the same amount of variation as latitude and longitude together, 

and precipitation in GB towards the North and West of the country. In rowan we find 

that leaf traits, phenology and stomata traits are mostly explained by longitude. 

However, variation in height in the southern trials (and leaf area in the northern trials, 

although very small part of the variation) is explained by latitude. In birch we find a 

mixture of latitude and longitude effects. Height is explained by latitude in the 

southern, and by longitude in the northern ones; DBH is always by latitude; forking 

by longitude in the most northern trial; and survival by longitude (Table 6.2).  

ROPs as a grouping system of trait variation 

This complex pattern that differs geographically depending on the trait (Table 6.2) and 

between the three species is well summarized by the PCA and visualized in Figure 6.2. 

Looking at the ROPs of each provenance in the scatterplots of PC1 vs. PC2 (Figure 

6.1), we see that in ash the PCA separates provenances by latitude,  a group of 

provenances from SW and SE together, and then a group with the NW and NE 

provenances which include two SW and two SE provenances. Rowan, on the other 

hand, in the PCA the NW and SW provenances come together in one group, separated 

from the SE provenances; the two NE provenances are one in each group. And finally 

in birch, we find that SE and SW provenances are together in one big group that 
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occupies most of the scatterplot, which means there is a lot of variation; variation 

which does not get separated by the two ROPs SW and SE. Then, we find a very 

distinct group of NE provenances, and the two NW provenances are one in each group. 
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Figure 6.1. Scatterplot of PC1 vs. PC2 for the three species. Each dot is a provenance score 

for PC1 and PC2. On the left we have the plots with the arrows of each trait in each trial, and 

on the right we have the polygons with the ROP of the provenances. The colour represents 

the ROPs (dark blue NW, pale blue NE, red SW and yellow SE). 
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Figure 6.2. Values from the PC analysis by species, the provenance values of the PC1 (left) 

and PC2 (right) are mapped in the provenance locations. 
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Table 6.2. Summary table of all the traits analysed in the thesis, by species and trial site. It 

includes if there are significant provenances for that trait in that trial site, and whether these 

differences are explained by latitude, longitude or both. The significance coding is the 

following of the p values is:  ‘***’ 0-0.001, ‘**’ 0.001- 0.01, ‘*’ 0.01-0.05, ‘ns’ >0.05. Not all the 

traits were sampled in all the trial sites, when that is the case it is identified with a hyphen (-). 

The R-squared values which represent less than 10% of the variation are in italics font. 

Spp Site Var. 

Trait 

GROWTH PHENOLOGY LEAF ANATOMY 

Surv Height DBH Forks Flush Senes LA SD SL 

A
s
h

 

LLAN 
 

~prov ns *** *** ns *** *** * * ns 

R2 ns 
-Lat 

46%*** 
-Lat 

36%*** 
ns 

Lat 
41%*** 

Lat 
27%*** 

+Lon 
-Lat 
27%*** 

+Lat 
16%**

* 
ns 

NYM 
 

~prov ns * ns *** *** ** * ns ns 

R2 ns 
-Lat 

40%*** 
-Lat 

39%*** 
-Lat 

21%*** 
Lat 

35%*** 
Lat 

20%*** 
ns ns ns 

R
o

w
a
n

 

AH 
 

~prov ns * - - *** ns * ** * 

R2 
-Lon 

11%*** 
-Lat 

54%*** 
- - 

Lon 
41%*** 

ns 
+Lon 
11%** 

-Lon 
16%** 

+Lon 
7%** 

LLAN 
 

~prov * *** - - *** *** *** ** * 

R2 ns 
-Lat 

17%*** 
- - 

Lon 
48%*** 

Lat 
8%** 

+Lon 
6%* 

-Lon 
17%** 

ns 

NYM 
 

~prov *** * - - *** *** ns ns ns 

R2 ns 
+Lon 
4%*** 

- - 
Lon 

45%*** 
Lon 

16%*** 
-Lat 
3%* 

ns ns 

DOR 
 

~prov ns *** - - *** * ns ** ns 

R2 
-Lat 
2%* 

ns - - 
Lon 

33%*** 
ns 

-Lat 
10%*** 

-Lon 
4%* 

ns 

B
ir

c
h

 

LLAN 
 

~prov *** *** *** *** - - ns ns ns 

R2 
+Lon 
10%** 

-Lat 
51%*** 

-Lat 
+Lon 
51%*** 

ns - - ns 
+Lat 
4%* 

ns 

THET 
 

~prov ns *** - - - - *** ns ns 

R2 ns 
-Lat 

51%*** 
- - - - 

+Lon 
6%* 

ns ns 

DRU
M 
 

~prov ns *** *** *** - - ns ns ns 

R2 
+Lon 
27%*** 

+Lon 
29%*** 

-Lat 
48%*** 

-Lat 
7%* 

- - ns ns ns 

DOR 
~prov ns *** * ns - - - - - 

R2 ns 
+Lon 
51%*** 

ns 
+Lon 
22%* 

- - - - - 

 

6.1.2.2 Phenotypic plasticity  

Having more than one common garden experiment by species has allowed us to see 

that the provenances behave very differently when growing in different environments, 

and that these differences vary across traits as well. Plasticity is a very important trait 

in itself which is determined genetically (Donohue et al., 2001), and that allows trees, 

being sessile organisms, to respond rapidly to changes to environmental changes in a 

shorter timescale than the life of a plant (Bradshaw, 1965).  
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We have shown in the results chapters that some provenances (especially the southern 

ones) vary more across sites than other provenances, meaning they have more 

plasticity, especially in some traits such as height and leaf phenology. Other cases of 

provenance effect on the levels of plasticity have been shown (Donohue et al., 2001; 

Vitasse et al., 2009). In our case, it could mean that the northern provenances are more 

conservative as they have adapted to stronger adaptive pressures. This could be parallel 

to the case explained in Vitasse et al (2009) of provenances from higher altitude 

showing less phenotypic plasticity. 

Phenotypic plasticity can be positive or negative, which can cause fitness problems. It 

is important for a species to be well adapted to the environment in which it grows to 

increase efficiency and therefore increase competitiveness. However, trees as being 

long lived sessile organisms have developed high levels of phenotypic plasticity to 

cope with changes in the environment (Jump & Peñuelas, 2005). Plastic responses for 

plants have been reported as adaptive (Poorter & Lambers, 1986; Dudley, 2004), but 

also examples of maladaptive plasticity have been shown (van Kleunen & Fischer, 

2005; Ghalambor et al., 2007). 

In our results we find cases where the direction of plasticity can be in the same 

direction as adaptive variation (such as SD, SL or tree height) and others which 

plasticity goes on the opposite direction to the genetic variation found across 

provenances (the case of leaf area). 

In our results we have shown that GB provenances for ash, rowan and silver birch have 

high levels of phenotypic plasticity, and that this degree of plasticity is different across 

provenances and across traits. For most traits however, we have found that there was 

more differentiation within a trial (due to genetic differences) than across trials, despite 

there being big differences.  
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PCAb for site effect 

We now will look at the direction of plasticity by species and traits. We carried out a 

second PCA (which we referred to as PCAb) which included the values for each trait, 

with all the provenance means for each trial site. This allowed us to understand the 

difference between trial sites for each trait and species, and the direction of plasticity 

between the sites. 

Ash: The first two components of PCAb (Figure 6.3) account for 64% of the variation 

(PC1b 48%, PC2b 16%). PC1b (which corresponds mainly to growth, survival, forking 

and senescence) separates the two trials clearly; there is only some overlap between 

the provenances of SE ROP from North York Moors with the provenances of NW 

from Llandovery. We see that all provenances are taller and thicker, fork more, plus 

senesce later in Llandovery than in North York Moors. PC2b separates the 

provenances by flushing time and leaf area, which splits within the two trials the 

provenances by north and south. 

Rowan: The first two components for rowan explain 63% of the variation (PC1b 38% 

and PC2b 25%). The first one separates the provenances growing in North York Moors 

from the rest as being with the lowest survival, height, LA and SD compared with the 

other trials. PC2b separates the trials the provenances by flushing and senescence time, 

leaf area and SL. The provenances growing in Llandovery are the ones flushing earlier 

and with greater SL. We find the most diversification of the provenances within the 

Llandovery trial site (Figure 6.3). 

Birch: In the birch PCAb the two first components explain 63% of the variation 

(PC1b 38% and PC2b 25%). PC1b separates the two trial sites by provenances growing 

taller and with bigger leaves in Llandovery than Drummond, and with greater SD and 

forking in Drummond. PC2b separates the provenances within their trial cluster by 

their DBH and SL (Figure 6.3). 
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Figure 6.3. Scatterplot of PCAb for the three species. Each dot is the score for PC1b and 

PC2b in the provenances at the different sites. The colour represents the ROPs (dark blue 

NW, pale blue NE, red SW and yellow SE). 
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6.1.2.3 Genotype by environment  

Genotype by environment interactions (GxE) exist when differences between 

genotypes are not consistent from one environment to another (Baker, 1988). GxE 

interactions have been well studied in plants using multi-environment trial as a 

methodology, especially by tree and crop breeders to test for their improved genotypes 

across different environments (Cooper & DeLacy, 1994). GxE interactions can express 

in many forms (Allard & Bradshaw, 1964), the two main ones being: a) interactions 

due to the heterogeneity of genotype variance amongst environments, and b) those due 

to the lack of correlation of the genotypic performance amongst the different 

environments (Cooper& DeLacy, 1994). The latter form of GxE interaction results in 

the re-ranking of the genotypes across the environments (which results in crossing 

provenance means in the interaction plots) (Baker, 1988) and these type of interactions 

are the most rejected by breeders as they impede good predictions of genotypes’ 

performance (Gregorius & Namkoong, 1986). 

 

In our results chapters we shown the two types of interactions, which in some cases 

were significant in the analyses of variance and others not. We found GxE interactions 

of the first type in the three species. In tree height for ash and birch due mainly to the 

greater differences in height amongst provenances in the southern trials. However in 

birch some change of ranking occurred across provenances from the same ROP. In 

rowan we found a significant GxE interaction due to the big range of survival 

differences across provenances in the North York Moors trial site, while in the other 

trial sites survival was over 90% for most provenances. 

We found crossing GxE interactions with great change of provenance ranking on leaf 

area for all three species, then for leaf phenology in rowan, and for forking in birch. 

We also found the provenance means ranking changed between the two sites for ash 

in forking, survival and leaf phenology, and for birch in survival, but the interactions 

proved not to be significant. Height in rowan also had ranking change of provenances 

across sites, but the interaction was not significant in the ANOVA. 
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Using the PCA and PCAb biplots to examine GxE 

GxE interactions vary across traits in our results, moreover the interactions we found 

of the first type (due to increased variance of genotypes due to the environment) have 

shown us the importance of having several trial sites. We have shown in the results 

chapters, how important is to have studied the provenances growing in different 

environments, as some of the genetic variation across provenances for some traits have 

arisen in some trial sites but not in others. This is especially true for the leaf traits, or 

for example in height for rowan. In PCAb we have shown that provenances are more 

different between each other (appear more scattered in the biplot) within some trials 

than in others. In the PCAb biplots (figure 6.3) we can see than in ash the provenances 

spread similarly within the two trial sites. In rowan, on the other hand, we find the 

most differentiation in Llandovery between sites, then in North York Moors, while in 

Alice Holt and Dornoch provenances overlap very much one cluster. In birch we see 

that the provenances in Llandovery are more spread across the PC2b and form a larger 

cluster than the provenances in Drummond. 

On the other hand, we can also learn from GxE interactions looking at the first PCA 

(Figure 6.1). The interesting result from the first PCA is that allows us to compare the 

direction of each trait in separating the provenances across the different trial sites, and 

that way observe the genotype by environment interactions. 

Ash: in ash we found significant interactions between provenance and site in height, 

and leaf area. There was no significant interaction for DBH, fork or survival. This is 

reflected in the PC2 of the first PCA, where height, DBH and survival for the two trials 

have opposite sign (Table 6.3). In PC1 SL pulls the provenances in opposite directions 

for the two trials, indicating the direction of plasticity. However, for most traits in ash, 

the two trials sites pull the provenances toward the same direction. In PC2 for height, 

DBH and survival the two trial sites separate the provenances in different directions. 
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Table 6.3. Loadings for PCA (figure 6.1), per trait and trial for PC1 and PC2 in ash. 

Trait 
Comp.1 Comp.2 

LLAN NYM LLAN NYM 

Height -0.3414 -0.3363 0.1496 -0.1427 

DBH -0.3006 -0.3121 0.2325 -0.1318 

Forks -0.1183 -0.2932 -0.0727 -0.1199 

Survival -0.1651 -0.2561 0.2795 -0.1763 

JD50_F 0.3263 0.3148 -0.2195 -0.1930 

JD50_S -0.2342 -0.1990 0.0265 -0.1247 

SL -0.1863 0.0854 -0.3469 -0.4196 

SD 0.1926 0.0805 0.3162 0.4022 

LA 0.0197 0.0584 -0.1072 -0.2920 

 

Rowan: we found significant interactions between provenance and site in survival, 

leaf flushing, leaf senescence, and leaf area. In the PCA we find that SL, survival, 

and leaf area are the traits which pull provenances in different directions depending 

on the trial site where they grow (Table 6.4). 

Table 6.4. Loadings for PCA (figure 6.1) per trait and trial for PC1 and PC2 in rowan. 

Trait 
Comp.1 Comp.2 

AH LLAN DOR AH LLAN DOR 
Height -0.1182 -0.1112 -0.109 -0.3666 -0.4284 -0.3975 

Survival 0.1220 0.1680 0.1012 -0.0481 0.2281 -0.0244 

Flush -0.3661 -0.3570 -0.3038 0.1456 0.1663 0.1606 

Senesce -0.1452 -0.1545 -0.1454 -0.1707 -0.3401 -0.3022 

SL -0.2527 -0.2122 0.0235 0.0189 0.1710 -0.0094 

SD 0.3261 0.2962 0.1333 -0.1009 -0.1302 -0.2011 

LA -0.2048 -0.2836 -0.2111 -0.0729 0.1393 -0.1901 

 

Birch: we found a significant interaction between provenance and site in tree 

height, DBH, forking and leaf area. However, in the PCA we see that survival SL 

and SD are the traits that separate provenances by trial site the most (Table 6.5). 

Table 6.5. Loadings for PCA (figure 6.1), per trait and trial for PC1 and PC2 in birch. 

Trait 
Comp.1 Comp.2 

LLAN DRUM LLAN DRUM 

Height -0.4225 -0.3923 0.0293 0.1026 

DBH -0.4740 -0.3948 -0.0325 0.1539 

Forks -0.1085 -0.0071 0.2247 0.3873 

Survival 0.2966 -0.046 -0.1622 0.1640 

SL -0.2136 0.1171 -0.3368 0.0258 

SD -0.1027 0.2725 -0.0219 0.2868 

LA -0.1488 -0.1365 -0.4105 -0.5870 
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6.2 Practical implications 

6.2.1 Is the current seed zone system supported by our data?  

We have shown that British populations of ash, rowan and silver birch have great 

genetic differentiation for the nine traits studied. They show genetic differences from 

each other for tree height, stem diameter, leaf phenology, leaf size, stomata size and 

density; and that such differences have consequences for survival and stem form. The 

observed differences tend to show a geographical pattern which varies among species. 

Variation in ash follows a clear latitudinal cline, in rowan a clear longitudinal cline 

and in birch tends to vary with both latitude and longitude. 

These phenotypic differences ought to be taken into account when considering 

strategies for seed sourcing for establishment of new native woodland in GB. 

However, provenances from within a single ROP show high levels of variability 

(Figure 6.1), which means that planting within ROPs does not mean necessarily than 

provenances will be well adapted to the planting site. Maps in the appendix (A.1, A.2 

and A.3), show that the provenances geographical difference does not agree with the 

similarities they show in the traits we have assessed. This is one clear shortcoming of 

the existing system of seed sourcing for native trees and shrubs.  

Based on the broad geographic patterns of variation identified, we suggest that ash 

trees should be planted within a similar latitude to their home site to ensure adaptation 

to the current conditions of their planting site, as latitudinal transfer has been shown 

to compromise stem form and the greatest differences for all traits are between 

northern and southern provenances. For birch we see that SE and SW provenances 

show very similar variation which overlap; however, within the northern provenances 

there is a clear longitudinal differentiation.  

Rowan shows a very different pattern from ash and birch and we have observed a clear 

longitudinal pattern in the genetic diversity. Rowan provenances from the SW and SE 

ROPs are very much differentiated, and so we consider that rowan should be planted 

within the same longitude as much as possible, advising against transfer from east to 

west, or west to east. We see also that multivariate trait values for the provenances 

from the NW overlap completely with the SW provenances (Figure 6.1) from which 
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we conclude that latitude is less important than longitude in determining the variation 

among rowan populations. 

Taken together, our results from three ecologically contrasting species demonstrate 

that the standardised series of seed zones currently applied to all tree species can 

oversimplify patterns of variation within and among tree species. Further research may 

help to determine whether a more sophisticated approach, involving separate sets of 

seed zones for different species, or groups of species is desirable. Such systems are in 

place elsewhere (e.g. Alìa et al., 2009; Pierangelo et al., 2017) and, given the 

complexity observed among the three species studied in this thesis, it would provide 

clear advantages in GB as well. Since the spatial scales at which traits have been found 

to vary are rather large, these do not need to be over-complicated, and indeed, may 

simplify current difficulties associated with sourcing planting stock for new woodland 

creation (O’ Neill et al., 2014; Whittet et al., 2016). 

 

6.2.2. Can the native populations of ash, rowan and birch adapt to 

climate change?  

We have shown that provenances for ash, rowan and silver birch possess great levels 

of genetic differentiation within their British distribution, which can be presumed to 

be due to past selection and genetic adaptation since they recolonized the British  Isles, 

due to the diversity of environments found in GB (as shown in Chapter 2). It is 

expected that the past and current selective pressures which have formed the current 

genetic pattern in tree populations will change with global warming and the effects it 

will have on many environmental variables. It is unclear whether adaptive genetic 

change will be quick enough to allow native populations of trees to regenerate and 

survive among increasingly changing conditions. As trees are long lived organisms 

(especially ash, which lives longer than rowan and birch), changes in the genomes of 

the populations might take longer to achieve the best adapted genotype for the new 

and changing environments.  However, in addition to high levels of genetic variation, 

we have shown that British populations of these tree species exhibit high levels of 

phenotypic plasticity, which would allow existing generations of trees, and those 

which are newly grown to cope with a degree of environmental change. We consider 
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that if levels of gene flow (which might be greater for ash and birch as they are wind 

pollinated) are maintained between the southern provenances towards the northern 

ones; and natural regeneration is allowed, which would permit that adaptive pressures 

select the seedlings with the best genotypes to the new climate, native populations of 

these trees should thrive under the new environmental change. Since all of the species 

studies also occupy large ranges throughout other parts of Eurasia, and have 

demonstrated adaptation to the environment in regions which are considerably warmer 

than GB, a lagged adaptive response is a realistic expectation. Phenotypic plasticity as 

it is a much quicker mechanism, could buffer the needed adaptive change during the 

generations required for genetic adaptation to take place. 

 

Moreover, it has been shown that genetic variation that is selectively neutral in one 

environment can become adaptively significant in another (Hall et al., 2010; Anderson 

et al., 2013). There is probably more genetic variation within British tree provenances 

which in our study has not appeared as the environmental pressures were not there to 

express it. In the absence of a particular selective pressure (for example extreme 

drought which is predicted to increase in frequency in parts of GB), genetic variation 

for these traits present in the tree populations is carried as neutral variation. Exposure 

to such extremes may expose cryptic genetic variation, which would enable an 

adaptive response (Donnelly, 2015).  

 

Leaf functional traits and phenology 

 

Leaf phenology is one trait which has awaken a great deal of concern in the context of 

climate change (e.g. Cleland et al., 2007; Körner & Basler, 2010), as it is a trait which 

is very sensitive to climate and one which shows high levels of plasticity, as it varies 

inter-annually according to climatic variability (Delpierre et al., 2009). We have shown 

that (ash and rowan) provenances have high genetic differentiation for this trait, the 

pattern of which corresponds to the current climate in GB. We have seen that for rowan 

the longitudinal cline is very important, showing a cline that is probably driven by the 

difference between the continental (east) and oceanic (west) climate, an adaptation 

which is particularly important in order to avoid the higher rate of frost on the western 
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part of the country. We have seen different directions in plasticity between species and 

between spring and autumn phenology. Moreover, with the GxE interactions and 

because it is such a plastic trait, it is difficult to predict how the different provenances 

would react in a change of climate, as we have seen that the rankings change across 

sites. This unpredictability increases the concern of the already shown effects of tree 

phenology changes with climate change and its impacts in the trophic levels of the 

ecosystems (Both et al., 2009). However, we have shown that the British provenances 

for ash and rowan show very strong genetic differences which are related to the 

climatic pattern in GB; so potentially tree populations could eventually adapt to the 

new climatic conditions. In the meantime, phenotypic plasticity will help trees cope, 

but as we see the unpredictability factor might create big consequences for the 

ecosystems, for tree herbivores and the rest of the trophic levels. 

 

We have seen in our results for ash that early flushing provenances have more forking 

incidence. There is concern that with the changes in leaf phenology will increase frost 

damage in temperate zones and therefore increase stem forking. Morin & Chuine 

(2014) modeled 22 species and found that risk of frost injury changed for with climate 

change for all tree species (mostly decreasing). However other views (Vitasse, 2017), 

suggest that the risk the spring damage might be maintained, especially with the 

incorporation of provenances adapted to warmer climes. 

 

Our results demonstrated that the leaf traits measured in our study are related to water 

availability environment variables at the provenance site of origin. This is an important 

finding as water availability is predicted to change with climate change in GB (IPCC, 

2013; Morison and Mathews, 2016). Variation in leaf size exhibits a strong interaction 

between genotype and environment, and several climatic factors seem to play an 

important role in determining expressed variation in this trait. It is likely that adaptive 

change has occurred to allow provenances to cope with colder conditions towards the 

north and west, as low temperature represent a major source of physiological stress 

trees have experienced since recolonising GB. This could be a problem if severe 

droughts increase in GB with climate change, as trees have rarely been exposed to 

extreme drought pressure in the recent past, and with their current genetic pattern 
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leaves are bigger in the areas where drought is expected to increase most (IPCC, 2013). 

Having bigger leaves means that there is more evapotranspiration, and therefore lower 

water use efficiency, which would be a disadvantage to cope with drought.  

 

Phenotypic plasticity for leaf size exhibits trends which are opposed to the pattern of 

genetic variation. Leaf sizes in our results increases towards the wettest-warmest trial 

sites. This could indicate with the overall increase of temperature with climate change, 

leaf size might increase in trees growing in locations where there is no shortage of 

water but where cold temperatures currently limit leaf size. Such an increase in leaf 

area in response to warmer future conditions would help increase photosynthesis and 

growth in these trees (Saxe et al., 2001; Boisvenue and Running, 2006). However, we 

have not been able to directly observe whether plasticity in leaf size reacts in drier trial 

sites, to know how drought increase in GB might affect tree leaf size. 

 

The provenances which had lower SD were from areas of GB where drought is 

predicted to increase with climate change. Higher SD is recognised as an adaptation to 

severe drought, as it helps trees to have a quick response, and more efficient gas 

exchange, in the periods when conditions are optimum (Hetherington & Woodward, 

2003). The genetic diversity we found has not been exposed to drought pressure, a 

feature that is reflected in the different pattern we observe in GB, where high SD seems 

to represent an adaptation to the high precipitation and lower temperatures experienced 

in the NW of GB. These two factors which are likely to lead to waterlogging plus 

drought might occur in different seasons in the same locations in GB in the future 

(IPCC, 2013). 

 

SD acclimation (phenotypic plasticity) happened in the same direction as genetic 

adaptation in our trial sites. For SD plasticity currently helps the individual tree move 

towards the required phenotype for the selective pressures found in different locations 

in GB. However we do not know how SD would react if trees were growing in a much 

drier conditions predicted for the future, as we have not exposed the trees to that water 

stress. 
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If currently we move provenances within GB, the leaf size change is very 

unpredictable, while SD acclimation to the new climate will change following the 

same geographical pattern found in the genetic diversity geographical pattern. For SD, 

the phenotypic plasticity found in British provenances shows acclimation in the right 

direction, towards increasing fitness. However, with the future climate changing the 

outcomes both for leaf area and stomata traits are unpredictable. 

 

Our results for leaf functional traits show that genetic diversity of ash, rowan and birch 

in GB for these two functional leaf traits, seem to show the opposite trend to other 

environments where drought is already a major limiting factors. It has been suggested 

(Jump et al., 2006 & 2010; Cavin & Jump, 2017) that populations which have not yet 

been under drought selection might be harder hit by climate change where drought will 

be a selective pressure. If summer droughts increase in GB, especially towards the SE 

and our data do not inform this contention as British populations have not yet been 

subjected to severe droughts. To determine how the natural populations of GB trees 

will react to drought, they would have to be studied under drought conditions, so that 

the genetic diversity and the plasticity for drought tolerance are expressed. 

 

6.2.3 Summary of practical implications 

In this thesis we have found new results that help us understand tree populations 

variation and their capacity to future adaptability. The most important finding in the 

thesis are the following: 

- The British populations of ash, rowan and birch show high levels of variability 

in genetic differences for growth, phenology and functional leaf traits. They 

also show high levels of phenotypic plasticity for these traits. This degree of 

variation found within species shows that these species have adaptive capacity 

and enough plasticity to cope with climate change. 

 

- We have found that the variation between tree populations tends to show some 

geographical structure but that it does not correspond to the configuration of 

existing seed zones and ROPs. Furthermore, some provenances show 
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differentiation over environmental or climatic distances, rather than simply 

geographic distance and this is something that could be considered in the 

development of alternative systems for seed sourcing.  

 

- The three species do not show the same geographical pattern of genetic 

variation and so the common seed zones for all species are not fit for purpose. 

Levels of variation among populations of ash show a clear latitudinal cline, 

where the southern provenances are more similar amongst them and the 

northern ones are more differentiated between them. Variation in rowan shows 

a very clear longitudinal differentiation, where the NW and the SW 

provenances cluster together. Variation in birch shows a latitudinal cline, 

where the SE provenances are very similar amongst them and form a cluster 

within the SW cluster; while among the northern provenances there is a clear 

differentiation by longitude. 

 

To finalise we will address the question in the title of the thesis: “Can native woodlands 

cope with climate change?”. Our answer is: mostly, yes. With the current climate 

change predictions for GB, we consider that British tree populations will be able to 

adapt and cope with the change of environment. In most of GB the increase of 

temperatures will increase the growing season length and in many cases this will result 

in a climate which is more benign. We have shown that all provenances and species 

trees grow taller when planted in a warmer trial site. Plasticity will help trees use the 

longer growing season and there will probably be a natural succession process whereby 

the southern provenances will move north as they show higher growth and could out-

compete the local ones. However, because it is uncertain whether the frequency or 

severity of late spring and early autumn frosts rate will change, conservative growth 

of the northern provenances might prove to have an advantage to cope with the oceanic 

frosts events and the extreme weather events (such as winter flooding) that are also 

predicted to occur. The only cases when we cannot answer whether tree populations 

might be able to adapt and cope with the climate changing is in the cases where severe 

drought is predicted to occur. This is predicted to happened mostly in the south east of 

GB. However, as we have not put the pressure of drought to our trial sites we do not 
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know how much variation is already present (dormant) for this trait, whether there is 

any at all or whether there is some phenotypic plasticity mechanism that could help 

the trees that are growing currently there buffer the drought stress.  

 

6.3. Opportunities for further research 

6.3.1 Ideas to improve the research 

To study local adaptation in the strictest sense and gain a greater understanding, the 

best methodology would be to use reciprocal transplant experiments (Kawecki & 

Ebert, 2004) in which seed from multiple environments is raised reciprocally in each 

source environment. Reciprocal transplant experiments allow to determine more 

precisely the environmental factors associated with the diversity found. Another 

methodology which would enable stronger inferences to be made about the levels of 

genetic diversity found within provenances is to conduct progeny tests, which maintain 

family structure, in which the identity of parent trees is retained throughout the course 

of the experiment. Provenance-progeny tests enable calculation of quantitative genetic 

parameters (e.g. heritability, selection gradients), and enable variation among families 

within populations to be calculated. Such an experimental configuration, although 

harder to scale than the provenance tests we have assessed would provide the best 

evidence of the ability of trees to adapt to specific changes in the environment. 

In the view of climate change there are new climatic pressures predicted to appear onto 

which will affect GB tree populations. The effects of these should be examined to see 

the amount of variation for these particular traits that exists already in GB, and to be 

able to assess the possible damage that these pressures could cause to tree fitness. 

We have seen that forking is often positively associated with height growth, 

presumably as a consequence of frost damage on early flushing genotypes. Whilst this 

is indicative of maladaptation, we do not see higher levels of mortality in early flushing 

genotypes. On the contrary, provenances which show higher levels of mortality tend 

to be those from harsher home environments (e.g. cold, wet and windy sites). More 

detailed study on the effect of leaf spring phenology, height and stem form may help 
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to determine which levels of stem forking truly compromise a trees’ potential to 

survive and reproduce.  

To understand better the plasticity in leaf phenology and the climatic variables which 

affect it, assessments over multiple years in the same sites would be a key data to try 

to understand how climate change might affect leaf phenology. 

 

6.3.2 What we need to know next: New questions which have 

arisen from this thesis 

a) Are extreme events likely to exert stronger selection than directionally changing 

climate? Do trees show genetic variation in their tolerance to, or recovery from 

extreme events? 

Alongside directional change in the values of average climatic variables, extreme 

events such as flooding, droughts and heatwaves are expected to increase in frequency 

and severity in the future (IPCC, 2013). While exposure of tree populations rapid 

directional climate change will incur an adaptive lag, the selective pressure upon trees 

from extremes are stronger and more immediate. To explore whether tree populations 

show variation in resistance to extremes, and whether this can be used in deployment 

of seed for new planting sites, experiments could be conducted as pot-based studies to 

look at the variation existing in the resistance to 

drought/flooding/heatwaves/outbreaks; or alternatively some treatments could be done 

in the trials sites that already exist.  

 

b) Has the environment during nursery production a significant effect later in tree 

performance? Are these effects reversible? Is there potential in treating early tree 

seedlings growth conditions to enhance phenotypic plasticity due to epigenentics? 

How much of the phenotypic plasticity could be due to epigenetics, could some of it be 

hereditable? 

Epigenetics is still a topic not well understood, many questions remain about the 

mechanisms and roles of epigenetic processes in enabling rapid adaptation of plants to 

their environment, especially in forest trees (Bräutigam et al., 2013). However, it can 
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be the reason for some of the variation we cannot explain and also something that it 

should be understood to be able to use in forestry and maybe help adaptation of trees 

to a changing environment. Forest trees offer excellent opportunities to examine some 

of the most compelling questions of ecological epigenetics (Bossdorf et al. 2008), 

particularly those related to the interplay  between epigenetic variation and phenotypic 

plasticity in natural populations, and the role of epigenetic variation in evolutionary  

processes. There is still a lot to understand about the maternal effects, and the effect of 

environmental conditions during embryogenesis. For example, Dewan et al. (2018) 

have found that the maternal temperature during seed maturation affects seed 

germination and timing of bud set in seedlings of European black poplar. It is a field 

which needs more research and it has great potential. Also, it has to be taken into 

account the importance of how the nursery practises and the way new forests are 

created (sometimes seeds in orchards far from the planting site and seedlings grown in 

mainland Europe or artificial climatic conditions (Whittet et al., 2017)) affect later on 

the performance or suitability of trees to the environment they are planted. Natural 

regeneration could possibly be the best way to enhance acclimation to the new climate? 

 

c) With climate change how will tree populations be affected forest pests and diseases? 

Are there genetic differences regarding resistance? 

Physiological stress imposed by changes in climate is likely to weaken the defences of 

trees to herbivores, pests and pathogens (Telford et al., 2015), many of which are 

exotic and are expanding their ranges due to climate change (e.g. Battisti et al., 2005) 

or increased levels of international trade in live plants (Brasier, 2008). 

Since the interaction between climate change and exposure to new pests and pathogens 

will be critical in the ongoing resilience of forests, provenance trials offer a unique 

opportunity to study genetic variation in resistance to these challenges.. For ash 

dieback, differences among provenances for resistance have been shown (Pliura et al., 

2012; Stocks et al., 2017). Central and eastern Scottish provenances were found to be 

more resistant than those from further south, maybe it could be explained by leaf 

phenology. However, another theory is that resistance is greater in these populations 
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due to some rare chloroplast haplotypes from refugial populations in the Forth and 

Clyde valley (Sutherland et al., 2010). Emerald ash borer LATIN NAME is a possible 

emerging threat to ash in the future and there is some weak evidence that there is a 

negative genetic correlation between susceptibility to the two systems (Sollars et al., 

2017). Birch dieback, associated with Anisogramma virgultorum and Marssonnina 

betulae found to show differences among provenances at Drummond trial (De Silva, 

2008).  

 

6.4 Concluding remarks 

Climate change is a challenge for ecosystems around the world. With this thesis we 

provided data that adds evidence towards the understanding of this topic and which 

may lead to improvements in policy and woodland management decision making. 

Large knowledge gaps exist in many aspects of this important issue. We have 

particularly focused on the measurement of the variation in genetic diversity and 

phenotypic plasticity in British populations of three native tree species. We have 

broadened the range of traits which are usually measured, and taken steps to release 

the restrictions of the timber quality approach. We have compared the behavior of 

traits such as height with that of more functional traits, in the end we have seen that 

for ash and birch (not so much for rowan) height remains an appropriate trait for 

demonstrating large genetic differences between provenances and between trial sites. 

However, we have shown that height is not necessarily an indicator of good adaptation 

to the planting site environment, as mismatch in the leaf phenology with the local 

conditions can cause damage to the tree, which can be reflected in the stem form. 

Moreover, leaf functional traits link to water availability have proven to show genetic 

differentiation and phenotypic plasticity. We have seen that seed sourcing rules need 

to be modified, tailored to individual species. These new rules need not be complex if 

we understand the most important environmental variables to which each native tree 

species is adapted across GB. We have found than British native populations of ash, 

rowan and silver birch show large genetic differences amongst them in several traits 

and also with high levels of phenotypic plasticity; both things which we consider that 

will help these populations cope with climate change. 
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Appendix 

 

Provenance maps by species. Provenances located in the GB map and in the 

biplot according to their PC1 and PC2 scores, from the PCA (Figure 6.1). Outliers 

from the core group of provenances in the biplot have been pointed in the maps as 

well. 
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