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Abstract 
The haematopoietic phosphatase PTPN22 is a key regulator in balancing immune 

responses between self-reactivity and tolerance. PTPN22 downregulates T cell 

signaling and harbors the non-HLA genetic variation most strongly associated with 

autoimmune disease in humans, the single nucleotide polymorphism R620W. The 

effect of this mutation is currently controversial due to confounding results in mouse 

and human models. The polymorphism is linked to increased susceptibility to 

autoimmunity in both human and mouse models, although the latter does depend on 

genetic background. However, mouse data clearly shows that the polymorphism has 

a loss-of-function effect on T cell signalling, whereas studies in human models 

largely demonstrate a gain-of-function effect for R620W. A confounding issue in 

human studies is that they depend on comparison of T cells from distinct individuals, 

on protein over-expression, or on RNA interference, techniques for which it is 

difficult to control for genetic and environmental variables, changes in stoichiometry, 

and off-target effects or incomplete knockdown, respectively. We aimed to create 

isogenic human cell lines with mutations in PTPN22 at the genomic level to alleviate 

the complications inherent in analysing human data. 

 

In addition to autoimmune pathogenesis, we are interested in the role of PTPN22 in 

a cancer setting. Because PTPN22 has a strong suppressive effect on T cell 

responses to weak affinity antigen, which encompass most tumour antigens, we 

postulated that knocking out PTPN22 may better enable T cells to kill tumour cells. 

Furthermore, we have shown that PTPN22 knockout (KO) leads to increased IL-2 

expression in mouse T cells, and that this effect is protective against TGF-β 

mediated suppression, a common driver of T cell inhibition in the tumour 

microenvironment. T cell transfer experiments in mice showed that PTPN22 KO T 

cells are indeed more effective at reducing tumour size. Based on these findings, we 

aim to determine whether PTPN22 KO in human cells confers a similar effect on 

signaling. 

 

To investigate the effects of PTPN22 KO on human T cell signaling, we used 

CRISPR gene-editing to target PTPN22 in a Jurkat cell line. By combining this 

technique with lentiviral transduction of a specific T cell receptor, we generated 
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human cell lines which are genetically identical, save for specific alterations to 

PTPN22, and which can be stimulated with strong or weak cognate antigen. We 

found that PTPN22 KO Jurkat cells develop an enhanced activation phenotype upon 

stimulation, including increased IL-2 expression. Additionally, PTPN22 KO Jurkat 

cells show enhanced Erk signalling following stimulation with weak affinity antigen, 

but this difference is lost as stimulus strength increases.  

 

CRISPR technology has presented the opportunity to create novel models of 

PTPN22 signalling in the context of human T cell lines. The data from these lines 

suggests that, unlike the R620W mutation, complete loss of PTPN22 has a 

comparable effect in human and mouse T cells. In conjunction with our previous 

findings, these results suggest that knocking out PTPN22 may lead to signalling 

alterations that improve adoptive T cell cancer therapy. 
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Lay summary 
 
The immune system evolved to protect the body against invasion by microbes. 

Autoimmune disease occurs when the immune system becomes activated to cause 

inflammation and destruction of tissues in the absence of infection. T cells are 

master controllers of the immune system and are thought to play an important role in 

development of autoimmune disease. To better understand why some people 

develop autoimmunity, scientists have analysed the genomes of individuals with and 

without autoimmune disease. A mutation affecting protein called PTPN22 was 

identified as one of the strongest predisposing factors for autoimmunity in humans, 

however it is not clear how the function of PTPN22 is changed by this mutation to 

lead to autoimmune disease. 

 

Scientists have used lab mice and human cells to study PTPN22 and understand its 

role in T cells and autoimmunity. Unfortunately, studies from mice do not always 

correspond with what we observe in humans, and in the case of PTPN22 the data is 

particularly contradictory. Mice that have the autoimmune-predisposing PTPN22 

mutation have stronger T cell responses, which is also what is observed when 

PTPN22 is absent. On the other hand, T cells from human individuals with the 

autoimmune-predisposing PTPN22 mutation have weaker responses. There are no 

humans that lack PTPN22, so it is challenging to understand the role of PTPN22 in 

human T cells, and how it may differ from mice. 

 

My project addresses the controversy in PTPN22 research by genetically editing 

human T cells to lack PTPN22, allowing us to compare human cells with and without 

the protein and to directly analyse the effect it has on T cell activity. My results 

showed for the first time that human T cells that lack PTPN22 have stronger 

responses, which is similar to the findings in mice. This suggests that the differences 

we observe between mouse and human are not due to a fundamentally distinct role 

for PTPN22 between the species, and lays the groundwork for fully understanding 

the function of PTPN22 in human T cells. 
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1. Introduction 
	
The vertebrate immune system is composed of innate and adaptive branches which 

cooperate to protect an organism against pathogenic infection. The innate immune 

system serves as the first line of defense against an invading pathogen, able to 

recognise a broad spectrum of microbial pathogens and to rapidly initiate an 

immunological response1. Innate immune responses are also capable of activating 

and shaping the adaptive immune response. In contrast to innate immunity, adaptive 

immunity takes several days to mount a response, but adaptive responses are 

highly specific to the infecting pathogen. Adaptive immunity is also capable of 

immunological memory, allowing for rapid, specific responses upon detection of a 

previously encountered pathogen. T cells are key drivers of the adaptive immune 

response, and are able to respond to environmental signals to fill a variety of 

immunological roles2. Because of the importance of T cells in health and disease, 

the mechanisms that regulate T cell responses are of great interest to the 

immunological community. 

 

1.1 Development and function of T cells 
T cells differ from cells of the innate immune system in that their activating receptor 

is highly specific. In contrast to innate receptors that recognise common elements of 

infection, the T cell receptor (TCR) is expressed from genes that have undergone 

VDJ recombination of their variable (V), diversity (D) and joining (J) genes. The 

reassortment of receptor gene elements occurs independently in each immature cell 

and results in a unique sequence3. Mature T cells that have not been presented with 

their specific cognate antigen are considered to be naive, and maintain a state of 

homeostasis. The differentiation of a naïve T cell into an effector cell requires 

ligation of the TCR with an antigen of sufficient specificity as well as costimulatory 

signals, the cumulative effect of which must overcome the threshold of factors 

operating to maintain homeostasis in a naïve T cell. 

 

However, upon ligation of the receptor with an antigen of sufficient specificity in the 

context of inflammation, these cells can become activated to have potent effector 

functions. 
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1.1.1 Thymic positive selection 

Due to the highly destructive potential of adaptive immune responses, the repertoire 

of available T cell receptors is strictly controlled. The T cell receptors that exist 

within the periphery must be able to interact with healthy cells of the body without 

becoming activated to destroy them. This balance is achieved through the process 

of thymic selection, which requires thymocytes to express a TCR capable of low 

affinity interactions with self-peptide:major histocompatibility complex (MHC) in order 

to receive survival signals, but not high affinity interactions, which result in clonal 

deletion4. The seemingly paradoxical outcomes of TCR signalling (survival or 

deletion) are determined by many factors, including TCR expression level, levels of 

signalling molecules, APC interactions, and spatial and temporal distribution within 

the thymus and selection process. The progression of thymocytes through the 

thymus is summarized in Figure 1.  

 

Lymphoid progenitors arise in the bone marrow. Upon migration to the thymus, 

thymus settling progenitor cells become early thymic progenitors. At this point in 

their development, the cells express no TCR or co-receptors, and are therefore 

considered double negative5. These cells undergo massive proliferation, and retain 

the potential to differentiate into B cells if they are experimentally transferred out of 

the thymus6,7. This expansion is important because fewer then 5% of thymocytes 

are estimated to survive thymic selection and become mature T cells8. The 

thymocytes receive T cell differentiation signals from thymic stromal cells. 

 

As they move through the cortex of the thymus, double negative cells are signalled 

to undergo VDJ recombination and express a T cell receptor. The process of VDJ 

recombination randomly combines the genes of the TCR locus resulting in millions 

of possible variations of the TCR protein. The TCR β chain is rearranged first, and is 

expressed with a pre-α chain. Thymocytes with functional β chains start to 

proliferate, so that a successful β chain arrangement is repeated in multiple 

individual cells. At this stage thymocytes cease proliferation and begin to express 

both CD4 and CD8 co-receptors, being referred to as double positive. These cells 

then rearrange the genes of the TCR α chain to express a true αβ TCR. At this 

point, the cells are prepared to undergo positive selection. Cells that fail positive
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 selection undergo further revision of the TCR α chain to until successful positive 

selection is achieved, increasing the likelihood that a successfully generated β chain 

will be paired with an α chain that allows it to interact with self-MHC 9. Incomplete 

allelic exclusion in this process may lead to expression of two different α chains by a 

single cell, thereby retaining two TCRs of different affinities in an estimated 8% of 

peripheral T cells 10, which is a potential risk factor for autoimmunity. 

 

Positive selection depends on the ability of a T cell to bind to a cortical thymic 

epithelial cell (cTEC) to receive survival signals; cells that fail to do so die by 

neglect. cTECs express MHC-peptide complexes to interact with the thymocyte TCR 

with relatively weak affinity. This step ensures that the recombined TCR has 

retained the ability to interact with self-MHC. Survival induced by TCR ligation 

appears to depend on low level, but sustained, Ca2+ signalling11, and Erk 

signalling12; the latter possibly regulated in part by induction of pErk in a cytoplasmic 

compartment in response to low ligand affinity instead of at the plasma membrane 

as observed in negative selection13. Importantly, the strength of the TCR signal is 

critical, as inducing small increases in the affinity of the TCR can lead to negative 

selection13, while partially inhibiting Zap-70 can convert a negatively selecting signal 

into a positive one 14. It has been suggested that a mechanism in determining the 

strength of the signalling pathway in response to TCR ligation is the co-ligation of 

the TCR and its coreceptor: positive selecting ligands induce much less association 

of TCR and CD8 than negatively selecting ligands, meaning that Lck molecules 

associated with CD8 would be less able to interact with CD3 ITAMS in positive 

selection, thereby limiting the amplification of the TCR signal15. One possible way by 

which TCR signaling may be limited in positive selection is that thymocyte motility 

promotes positively-selecting transient interactions with cTECs11. Additionally, 

cTECs express relatively low levels of costimulatory molecules CD80/CD86 

compared to medullary APCs involved in negative selection11. 

 

 The protein Themis was recently identified to be critical in positive selection, but its 

precise role has yet to be clarified16. Themis appears to be important in modulating 

the response to weak TCR stimulation by recruitment of the negative regulator Src-

homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1), leading to 

enhanced cell survival17,18. During positive selection, cTECs express both MHCI and 
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MHCII, and present an array of peptides. cTECs express proteasomal subunit β5t, 

which replaces the β5i unit found in IFNγ induced immunoproteasome. β5t was found 

to be exclusive to cTECs in mice, and to cTECs and thymic cortex dendritic cells 

(DCs) in humans19,20. While the β5 of standard proteasomes and β5i of the 

immunoproteasome have activity promoting generation of peptides with hydrophobic 

C-terminal residues that bind MHCI with high affinity, β5t instead has weak 

chymotrypsin-like activity and is believed to produce peptides with weak affinity to 

MHCI	 20. β5t was shown to be important for positively selecting a diverse range of 

MHC class I-restricted TCRs, with β5t-deficient mice unable to mount a CD8 T cell 

response against influenza virus and experiencing severe lethality21. Thymocytes 

whose TCR that successfully binds to antigen presented by a cTEC receive survival 

signals through TCR signalling. Whether the thymocyte binds antigen presented in 

an MHCI or II context determines whether it retains the CD8 or CD4 co-receptor, 

respectively, through the single-positive stage.  

 

It is not clear exactly how the decision to commit to CD4 or CD8 is made, but one 

attractive hypothesis is the kinetic signalling model. This model is based on the 

observation that CD8 transcription is downregulated upon TCR signalling, but that 

these cells are not yet committed. The model postulates that if signalling is 

maintained upon downregulation of CD8, the cells commit to the CD4 lineage; 

otherwise they revert to CD8 expression instead of CD4, in a process that may be 

interleukin (IL)-7 receptor dependent22. Selection of a single co-receptor following 

positive selection coincides roughly with the migration of the thymocyte into the 

medulla, though it appears that thymocytes take 1-2 more days to commit to be CD8 

single positive than to be CD4 single positive11. 

 

1.1.2 Thymic negative selection 

Single positive cells must survive negative selection. As single positive cells enter 

the medulla, a process dependent on upregulation of CCR7 by the thymocyte23, they 

are again presented with antigen by medullary thymic epithelial cells (mTECs). It 

has been shown that impaired migration through the medulla results in spontaneous 

autoimmunity in mice4 In contrast to the positive selection step cells that bind 

strongly to presented antigen receive apoptotic signals. It is not entirely clear how 

the signals of positive and negative selection produce such divergent results, though 
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experiments in different mouse strains suggested that there is a clearly defined 

threshold for signal strength required for negative selection24. mTECs and medullary 

DCs express much higher levels of costimulatory molecules CD80/CD86 than 

cTECs, which would enable them to induce stronger responses in T cells11. mTECs 

are also able to present antigen that is normally tissue-restricted through the 

process of promiscuous gene expression, thus exposing the thymocytes to an 

extensive repertoire of peripheral antigen. Promiscuous gene expression in mTECs 

is regulated in part by the transcription factor autoimmune regulator (AIRE), 

mutations or absence of which leads to autoimmunity in humans and mice25. Instead 

of binding directly to DNA like many transcription factors, AIRE promotes 

transcription by promoting activity of RNA polymerases that had stalled in the 

promoter region of genes, meaning its specificity is not to the gene itself but to the 

accessibility of the gene to polymerases, thus allowing AIRE to promote expression 

of a wide range of genes26. Promiscuous gene expression in mTECs during negative 

selection provides a thorough screen for highly auto-reactive TCRs, thereby 

removing cells that are likely to mediate autoimmunity. mTECs are particularly 

dense at the corticomedullary junction and are therefore the rare self-antigens they 

present are likely among the first to be encountered by thymocytes progressing from 

positive selection; as maturation in single positive cells was shown to lead to 

resistance to apoptosis via TCR stimulation, the positioning of mTECs to interact 

with less mature single-positive thymocytes may be important in maintaining 

tolerance to rare self-antigen11. 

 

Most dendritic cells of the thymus are found in the medulla, and make up about 

0.5% of cells in the thymus4. Conventional DCs may be resident or migratory, with 

the former being somewhat more likely to reside the medulla than the latter (notably, 

negative selection does appear to be inducible by DCs in the cortex4). DCs express 

ICAM-1 which enables them to induce thymocyte arrest for sustained stimulation27. 

Resident cDCs tend to present antigen acquired from the thymic environment, 

including mTEC derived antigen, while migratory cDCs may specialise in presenting 

antigen from peripheral tissues and blood; although the functional consequences of 

these differences on thymocyte development is still open to speculation 4. 

Plasmacytoid DCs have relatively poor antigen presentation, thus their role in central 

tolerance is only beginning to be explored, and may play a role in inducing 
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thymocytes to differentiate into regulatory T cells28. Thymic B cells are also able to 

induce negative selection. Although as of yet is in unclear how the contribution of B 

cells to central tolerance compares to that of mTECs and DCs4, their participation in 

negative selection introduces a possible mechanism by which the B cell repertoire 

may influence the T cell repertoire. 

 

Cells that survive both steps of thymic selection enter the periphery and are 

considered to be naive mature T cells. It is important to note that self-reactivity is 

necessary for TCR selection, and therefore T cells that react to self-antigen may be 

reduced by negative selection, but are not removed entirely, as self-reactive T cells 

are consistently detected in the periphery of healthy individuals29. In fact, the weak 

TCR:pMHC interactions required for positive selection continue to be vital to the 

survival of the mature T cell in the periphery, as TCR interactions with MHC promote 

expression of the receptors for survival-promoting cytokines, such as IL-7 and IL-

1530-33. Self-reactivity is therefore not a mere artifact of T cell development but an 

element critical to their survival and function. Despite the presence of self-reactive T 

cells, peripheral tolerance may be maintained by a small proportion of thymocytes 

that become natural regulatory T (Treg) cells. The development of Treg cells specific 

to a given antigen was shown to depend on the tissue specificity of that antigen, as 

expression in organs with a role in immune defense, such as lung and intestinal 

tissue, was better able to elicit natural Tregs than expression of the antigen in the 

pancreas34. γδ T cells also arise from thymic development; these cells are distinct 

from the αβ T cells we discussed and occupy a more innate-like niche in the tissues. 

Thymic development also gives rise to natural killer (NK) T cells, a rare innate-like 

cell that may have immunoregulatory function through cytokine production. While 

these alternative T cell play critical roles in health and disease, the work presented 

here will focus on alpha-beta T cells.  

 

1.1.3 T cell subsets 

T cells encompass many subsets and thus a range of functions. Classically, T cells 

were differentiated by possession of a CD4 or CD8 co-receptor2. Upon activation the 

latter group differentiates into cytotoxic T cells, which are able to identify and destroy 

cells of the body that have been infected with virus, or which express tumour 

antigen. The CD8 co-receptor enables the T cell to bind to cells expressing MHC 
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class I (nearly all cells in the body), which presents antigen processed intracellularly. 

Thus, a cell that contains viral proteins presents viral antigenic peptides on the 

surface, which identify them to cytotoxic T cells specific to that antigen. Upon 

ligation of their TCR, cytotoxic T cells induce apoptosis in the target cell by releasing 

highly targeted granules containing granzyme B and perforin, or by engaging the 

Fas receptor on the target cell’s surface with Fas ligand. Driving efficient killing of 

infected cells prevents the spread of the virus. Cytotoxic T cells also express 

antiviral cytokines, notably tumour necrosis factor (TNF)α and interferon (IFN)γ, 

which promote inflammation and activate other immune cells. 

 

CD4 T cells are not thought to have such a direct role in cell killing. Originally 

dubbed “T-helper cells,” these cells express dozens of different cytokines to help 

direct the immune response, and are also crucial in fully activating B cells. The types 

of cytokine expressed are highly variable depending on the microenvironmental 

context of the T cell’s activation. For example, IL-12 and IFNγ are expressed by 

innate immune cells in response to intracellular pathogens35; these cytokines can 

induce a CD4 T cell to differentiate into a T helper type 1 (Th1) cell through induction 

of the transcription factors T-bet, signal transducer and activator of transcription 

(STAT)1 and STAT436. Th1 cells support the cytotoxic response of CD8 T cells and 

macrophages by secreting IL-2, IFNγ and TNFα and β. Alternatively, the presence 

of IL-4 and IL-6 triggers the transcription factors STAT6 and GATA-3, leading to 

differentiation of the T cell towards a Th2 phenotype36. T helper type 2 (Th2) cells 

are most useful in defending against extracellular pathogens, especially by 

enhancing the humoural response. B cells are capable of expressing their specific 

antibody as IgM or IgD upon activation, but with T cell help they are able to undergo 

class switching and somatic hypermutation. These processes enhance the effector 

function of antibodies and increase their specific affinity, respectively. T follicular 

helper (TFH) cells also help support B cell responses. TFH cells express IL-21 and IL-

4 and appear to be distinct from Th2 cells. Their differentiation depends on 

signalling by inducible T-cell costimulator (ICOS) and B cell lymphoma protein (Bcl)-

6, and they migrate to the B cell follicle by upregulating C-X-C chemokine receptor 

type (CXCR)5 37,38. Finally, Th17 cells have been more recently described as a 

distinct T-helper cell lineage. Named for their production of IL-17, these cells 

develop in the presence of TGFβ, IL-6, and IL-23. Their differentiation is driven by 
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the transcription factor retinoic acid receptor-related orphan receptor (ROR)γt, and 

they are thought to be particularly important in defense against extracellular 

pathogens, particularly at mucosal surfaces39. Th17 cells are also pro-inflammatory, 

and have been implicated in autoimmune pathogenesis in a number of models40,41.  

 

Treg cells play a vital role in determining the T cell response. They can create a 

suppressive environment through expression of cytokines, such as IL-10 and TGF-

β, and may limit the availability of stimulatory cytokines, such as IL-2, through high 

receptor expression42. Treg cells have also been reported to directly induce cytolysis 

in effector T cells via granzymes and perforin in a mouse tumour model, and to 

induce DCs to downregulate activating costimulatory molecules in vitro43,44. 

Regulatory T cells can arise naturally during T cell development or be induced by 

stimulation in a suppressive microenvironment or in the absence of sufficient 

costimulation45. The suppressive capabilities of Treg cells is dependent on the 

transcription factor forkhead box (FOX)P3. 

 

It is likely that a variety of T cell subsets would be present in a given infection. Many 

of these subsets release cytokines to reinforce commitment of neighbouring T cells 

to the same phenotype, thereby polarising the immune response to be optimised 

towards a given type of infection. Upon clearance of an infection, or if an infection 

proves impossible to clear, the acute phase of the adaptive immune response must 

be downregulated. It is detrimental to maintain an environment of heightened 

inflammation for longer than necessary, so there exist mechanisms to downregulate 

the immune response and return to homeostasis. The majority of expanded T and B 

cells undergo apoptosis, mediated by anti-inflammatory cytokines IL-10 and TGFβ. 

However, a population of cells remain, forming immunological memory. These cells 

are characterised by long-term survival, possibly mediated by IL-7 and/or tonic TCR 

signaling46,47, and the ability to rapidly produce effector cytokines upon re-exposure 

to their cognate antigen48. 

 

1.2 T cell activation 
Activation of T cells is a critical event in the initiation of the adaptive immune 

response. Because T cells only recognise antigen in the context of MHC 
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presentation, their activation relies on interactions with antigen-presenting cells 

(APCs). An activated dendritic cell is one of the most efficient APCs, but T cells can 

also be activated by peptide presented by macrophages and B cells. Antigen 

presentation consists of a specific molecular epitope expressed in conjunction with 

an MHC molecule on the presenting cell’s surface to be recognised by a T cell. 

Dendritic cells take up antigen from the periphery, but only when the 

microenvironment contains infection-associated signals does the cell become 

mature and able to express the migratory and costimulatory molecules needed to 

access the lymph node and fully activate T cells, such as CD80/86, interacting with 

CD28 on T cells, as well as TNF/TNF receptor family members49,50. APCs that lack 

the activating costimulatory molecules may instead induce an anergic state in naive 

T cells or even trigger differentiation into regulatory T cells, thus reinforcing immune 

tolerance to the given antigen51. Soluble peripheral antigen can also be transported 

into the lymph node by reticular fibers to be picked up and presentated by resident 

DCs located in the lymphatic sinus, a more rapid process that exposes T cells to 

antigen without relying on migration of DCs from the periphery, thereby initiating the 

T cell priming process sooner than previously believed52,53. 

 

T cell responses are initiated by binding of the T cell receptor to a cognate antigen 

peptide presented by MHC. Ligation of the T cell receptor triggers branching 

signalling pathways that lead to metabolic activation, proliferation, differentiation, 

and upregulation of effector functions (Figure 2). The outcome of T cell stimulation 

varies based on combinations of signals that include the strength of the activating 

stimulus, costimulation interactions with the antigen-presenting cell, and 

environmental cytokines. The integration of these signals into a phenotype 

appropriate to the context of activation relies on many finely regulated signalling 

components, the disruption of which may lead to immune dysfunction.  

 

1.2.1 TCR binding 

The T cell receptor itself is comprised of a paired alpha and beta chain which is able 

to bind specific antigenic peptide in the context of MHC. The TCR itself has no 

inherent signalling activity, but it associates with membrane-spanning CD3 

molecules and dimeric ζ-chains. These associated molecules are critical for 

expression of the TCR complex and signalling intracellularly upon antigen binding to 
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the TCR. It is not entirely clear how binding of the TCR leads to signalling.. One 

hypothesis, the kinetic segregation model, proposes that size difference of surface 

molecules prevents larger negative regulators, such as the phosphatase CD45, from 

accessing the TCR complex when it is interacting with an APC54. TCR signalling 

molecules form clusters at the immunological synapse between the T cell and the 

APC55. These clusters are called supramolecular activation clusters (SMAC), and 

consist of TCR, co-receptors and co-stimulatory molecules gathered in the center of 

the cluster with additional signaling molecules (such as lymphocyte-specific protein 

tyrosine kinase [Lck] and protein kinase C [PKC]θ) surrounding them. CD45 is 

excluded from these structures, and is found in a surrounding outer region, unable to 

interact with the signaling molecules56. However, this idea is challenged by the 

finding that resting T cells show evidence of constitutive signalling that does not 

result in activation57; as the constitutive signal does not lead to TCR phosphorylation 

in a resting cell, it suggests that the ligands are hidden, thus supporting the model of 

conformational change upon TCR ligation being required to expose CD3 motifs to 

intracellular signalling machinery. The conformational change model suggests that 

binding exerts a physical force, pushing the signalling motifs of CD3 molecules 

further into the cytoplasm and exposing them for interaction with intracellular 

signalling molecules58. Further evidence for the conformational change model has 

come from detection of ligand-induced changes in the AB loop of the TCRα subunit 

and the H3 helis of the β subunit of specific TCRs; mutation of these regions 

abrogated signal transduction	 59. Xu et al. showed a close association of CD3 

tyrosine residues with lipids of the plasma membrane in resting T cells using nuclear 

magnetic resonance, meaning that the residues involved in intracellular signalling 

are embedded in the membrane in the absence of TCR ligation	60. Furthermore, Kim 

et al demonstrated that application of force upon the TCR can trigger stimulation 

using a non-agonist CD3 antibody or specific pMHC, suggesting that the TCR can 

act as a mechanosensor, translating  
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Figure2. O
verview

 of T cell signalling. Arrow
s indicate activation, blunt ends indicate inhibition. D

ashed lines indicate 
translocation.	
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mechanical force into signalling output61. While the contribution of kinetic 

segregation is not precluded by the conformational change model, the evidence is 

convincing that mechanical forces and biochemical changes are important for 

initiation of TCR signalling.  

 

The result of TCR ligation is phosphorylation of immunoreceptor tyrosine activation 

motifs (ITAMs) on the cytoplasmic tails of the CD3 molecules. Phosphorylation is 

carried out by Src-family kinases (SFKs), notably Lck, which associates with CD4 

and CD8 coreceptors, and Fyn, which associates with CD3 chains62. Lck contains a 

tyrosine residue, Y505, that inhibits the protein when phosphorylated. In the 

absence of Y505 phosphorylation, Lck undergoes auto-phosphorylation of Y394, 

which enhances its activity in phosphorylating ITAMs and downstream targets. 

 

Phosphorylated ITAMs serve as docking sites not only for Lck and Fyn, but also for 

Zeta-chain-associated protein kinase (Zap)-70, which, upon phosphorylation by Lck, 

triggers the assembly of the proximal signalling complex by phosphorylating linker 

for activation of T cells (LAT) and SH2 domain containing leukocyte protein of 76kDa 

(SLP-76) 63-66. LAT contains many tyrosine resides, enabling it to recruit key 

signalling proteins such as GRB2-related adaptor downstream of Shc (GADS) 

(associated with SLP-76), PLCy, and Grb2 (associated with SOS)66,67. SLP-76 in 

turn recruits Vav1, interleukin-2-inducible T-cell kinase (Itk), Nck, and adhesion and 

degranulation-promoting adapter protein (ADAP). Recruitment of these molecules to 

the signalling complex leads to their activation by other molecules in the complex, 

which in turn drives the propagation of the activating signal throughout the cell. 

 

1.2.2 Distal T cell signalling pathways 

Proximal TCR signalling leads to downstream effects via a number of branching 

distal signalling pathways. One of the key drivers of downstream signalling is 

Phospholipase C (PLC)Υ, which cleaves membrane-bound phosphatidylinositol 4, 5-

bisphosphate (PIP2) into inositol-3-phosphate (IP3) and diacylglycerol (DAG). IP3 

binds to channels in the endoplasmic reticulum and triggers the release of 

intracellular calcium stores, depletion of which triggers the influx of extracellular 

calcium through Ca2+ release-activated Ca2+	 (CRAC) channels in the plasma 

membrane, enabling intracellular calcium levels to remain elevated for 1-2 hours68. 
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Calcium depletion in the ER is sensed by STIM1, which multimerises upon loss of its 

bound Ca2+ and translocates to be proximal to the plasma membrane. STIM 1 

facilitates clustering of Orai1 to form the pore of the CRAC channel69. The influx of 

calcium ions activates calmodulin, leading to activation of calcineurin, which 

dephosphorylates the transcription factor NFAT, enabling NFAT to enter the 

nucleus66.  

 

DAG is able to activate PKCθ and RAS guanyl-releasing protein (RasGRP). 

RasGRP is the critical activator of Ras, and is itself activated through 

phosphorylation by PKCθ following its recruitment to the plasma membrane by 

DAG70. The Ras/Extracellular Signal-regulated Kinase (Erk) pathway may also be 

activated by son of sevenless homologue (SOS), although SOS signalling cannot 

compensate for RasGRP deficiency70,71. Ras activation of Raf-1 leads to activation 

of Mitogen-activated protein kinases (MAPK1/2), which activates Erk1/2. This 

pathway leads to the phosphorylation of the transcription factor Elk, which induces 

expression of cFos, a constituent of the critical transcription factor Activator Protein-

1 (AP-1). Activated PKCθ also triggers the formation of the CBM complex 

(consisting of CARD- and membrane-associated guanylate kinase-like domain-

containing protein [CARMA]1, Bcl10, and Mucosa-associated lymphoid tissue 

lymphoma translocation protein [MALT]1), which activates TNF receptor associated 

factor (TRAF)-6. This leads to the ubiquitination of IκB by releasing inhibition of the 

IκB kinase (IKK) complex. IκB is normally in complex with NFκB; its degradation 

releases NFκB and allows it to translocate to the nucleus66.  

 

Another indispensable pathway in T cell activation is mechanistic target of 

rapamycin (mTOR) signalling, a key regulator of cell growth, metabolism, and 

proliferation72. mTOR deletion in mouse CD4 T cells reduced their ability to 

differentiate into Th1, Th2, or Th17 cells when stimulated in the appropriate 

conditions. The cells instead gained Treg markers, thereby demonstrating a role for 

mTOR in integrating environmental cues into the T cell signalling pathway73. mTOR 

activation in stimulated T cells was shown to be enhanced by the presence of the 

cytokines IL-1, IL-2, IL-4, IL-12, and IFNγ74. mTOR signalling is accomplished via 

two mTOR complexes, mTORC1 and mTORC2. mTORC1 activity is downstream of 

Phosphoinositide 3-kinase (PI3K), which activates phosphoinositide-dependent 
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kinase (PDK)1 and leads to phosphorylation and activation of Akt. Notably, two 

regulators of PI3K, phosphatase and tensin homolog (PTEN) and SH2-containing 

inositol 5’-phosphatase (SHIP1), are absent in Jurkat cells, meaning the threshold 

for PI3K activity is lowered and PI3K-Akt pathway is dysregulated in these cell 

lines56,75. There is evidence that Akt activity may not be required for mTORC1 

activation, suggesting some redundancy in mTORC1-activating kinases activated by 

PDK176. The specific signals upstream of mTORC2 are still being actively 

investigated, with one group showing that mTORC2 is activated upon association 

with ribosomes77, and another demonstrating its inhibition by cell stress via GSK-3β, 

which also inhibits Akt78. The best described substrates for mTORC1 are ribosomal 

S6 kinase and 4 elongation factor-binding protein 1, enabling it to promote protein 

translation, while mTORC2 modulates cytoskeletal organisation and survival by 

phosphorylating the signalling proteins PKCα and Akt79. 

 

1.2.3 T cell costimulation 

The outcome of TCR stimulation depends on the strength of signalling through the 

TCR as well as the presence of costimulatory factors and cytokine signals in the 

environment. Information from each of these signals is interpreted and integrated 

into an appropriate response.  

 

One of the best characterised costimulatory pathways is that of signalling through 

CD28. Costimulation is required for TCR ligation to produce an effector response; in 

the absence of costimulation, stimulated T cells may die or become anergic and 

unresponsive80. CD28 signalling is important for production of IL-2, the survival 

factor Bcl-x, and promotes signalling throughout other TCR pathways. CD28 on 

resting T cells binds to CD80 or CD86 on activated dendritic cells, which triggers 

phosphorylation of the cytoplasmic tail of CD28. These phosphorylation events allow 

for the subsequent steps of CD28 signalling, including the binding of PI3K, and 

enhancement of the PI3K-driven pathways described above, and recruitment of Akt, 

which has been shown to promote both NFκB and NFAT transcription factor 

activation, resulting in pro-survival factors and IL-2 expression70. The intracellular tail 

of CD28 can also bind other adaptor proteins involved in T cell signalling, such as 

GADS and GRB2, which leads to activation of JNK and cJun activity via Vav, a 

GRB2 binding partner56. By modulating interactions with key molecules of TCR 
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signalling, CD28 has a profound effect on the outcomes of T cell stimulation. 

 

Activated CD28 enhances TCR signalling past the threshold needed for the cell to 

gain effector functions, but is not sufficient for differentiation into different T cell 

subsets. This process depends on specific cytokines produced in response to 

different types of infection, as described above. 

 

1.3 Autoimmune disease 
Autoimmunity occurs as a result of the adaptive immune system becoming 

inappropriately activated to attack healthy tissues of the body. Autoimmune 

diseases can affect a wide range of organs and cell types, and can vary dramatically 

in effect and severity in affected individuals. Progression of autoimmune disease 

often requires a number of steps and different cell types. It is believed that 

autoimmune responses require an environmental trigger to break tolerance on a 

predisposing genetic background. Diseases of autoimmune classification affect 

roughly 3-5% of people in the US, but, worryingly, incidence of autoimmune 

diseases may also be increasing in the Western world81. Autoimmune diseases 

represent a significant societal burden and understanding their pathogenesis is 

critical for preventing their development and improving treatments. 

 

1.3.1 Pathogenesis of autoimmune disease 

Similar to protective immune responses, autoimmune responses are thought to be 

driven by T cells. Thymic selection deletes the TCRs that interact too strongly with 

self-antigen, however weakly interacting TCRs may escape. In fact, all individuals 

harbour T cell receptors with self-reactive capacity within their repertoire, however 

peripheral tolerance mechanisms typically prevent these from becoming activated. 

In autoimmune disease, this tolerance is lost and the destructive power of the 

immune system is directed towards antigens of the self. 

 

Overcoming peripheral tolerance mechanisms may occur through a combination of 

various specific circumstances. One suggested triggering event is infection: the 

normal course of response to infection involves increased inflammation and the 

activation of dendritic cells to better stimulate T cells. Without activation, DCs 
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instead trigger anergy or tolerance in T cells. It is possible that DCs present not only 

antigen of the pathogen, but also self-antigen from the infection site, thereby 

inadvertently stimulating self-reactive T cells in the context of inflammation. T cells 

may also respond to a foreign antigen that is similar to a self-antigen, in a 

phenomenon known as molecular mimicry. Infection can also lead to tissue injury, 

which, in the case of immune privileged sites, may expose self-antigen for which no 

tolerising events have occurred82. It has also been suggested that the expression of 

multiple TCRs on a single cell (which may occur if two alpha chains are positively 

selected during thymic development10) may enable a cell to be activated to fight 

infection while also bearing a receptor that recognises self-antigen. In addition to 

infection, man-made interventions may be associated with autoimmune disease, 

such as certain vaccinations, although this occurrence is exceedingly rare83. B cells 

may also play a role in induction of autoimmunity. Development of experimental 

allergic encephalomyelitis (EAE) in a mouse model required the presence of B cells 

when mice were vaccinated with myelin oligodendrocyte glycoprotein (MOG) 

protein, but B cells were dispensable upon vaccination with MOG peptide; B cells 

may therefore have a capacity to stimulate autoreactive T cells in the context of 

certain antigens84. Further evidence for the critical role of B cells in autoimmunity is 

found in the efficacy of Rituximab, an antibody directed against CD20 which 

depletes naive and memory B cells, and has been approved for treatment of 

rheumatoid arthritis, with efficacy demonstrated in a number of other autoimmune 

diseases85. 

 

In any case, self-antigen is unlikely to be able to be cleared, and normal down-

regulation of the immune response cannot occur (except in specific cases, such as 

pancreatic islet cell destruction in T1D). This situation leads to chronic inflammation 

and tissue destruction as the immune system attempts in vain to destroy the 

offending antigen. Progression to full autoimmune disease severity typically takes 

time. One way the disease state may be exacerbated is through epitope spreading 

to recruit additional T cells distinct from those already active86. Epitope spreading 

may be mediated by B cells presenting new peptide from native antigen to T cells87. 

B cells can also contribute to the exacerbation of autoimmunity through somatic 

hypermutation and isotype switching of autoantibodies. 
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1.3.2 Role of the microbiome in autoimmune disease 

Clearly environmental triggers cannot bear sole responsibility for autoimmune 

disease, or the prevalence would be far higher. The currently accepted model is that 

environmental triggers will lead to autoimmune disease only in individuals with 

certain predisposing traits. Traditionally, the alternative to environmental factors 

were genetic factors, and while these still make a major contribution to autoimmune 

susceptibility, we must also consider the possible role of the microbiome, which 

straddles the border between extrinsic and intrinsic factors. 

 

The population of commensal bacteria that make up an individual’s gut microbiome 

are proving to be vital in regulating the development and homeostasis of the immune 

system88. Germ-free mice showed accumulation of NKT cells and increased 

inflammatory disease, which was mitigated when the mice were colonised with 

conventional bacteria at a young age, but not when colonised as adults89. Similarly, 

germ-free mice have been shown to have reduced lymphoid organ development in 

the intestinal mucosa90. Segmented filamentous bacteria (SFB) were shown to be 

crucial for the development of Th17 and Th1 versus Treg cells in the gut91. The 

microbiome is likely to have a role in both protection by and regulation of the 

immune system, which means dysbiosis has the potential to contribute to 

autoimmune disease. For example, a significant reduction in specific phyla of 

commensals was observed in Crohn’s disease and ulcerative colitis patients, though 

it is unknown whether this effect is causative92. Murine rheumatoid arthritis models 

showed reduced pathology in germ free mice, which increased in severity upon 

introduction of SFBs, an effect which correlated with increased TH17 activity93. 

While the field is still very new, evidence is rapidly accumulating to support the 

importance of commensal bacteria in regulating functions of the immune system. 

 

1.3.3 HLA associations with autoimmune disease 

Twin studies provided early evidence that autoimmune diseases have a genetic 

component, with disease concordance at least four times higher in monozygotic 

twins than dizygotic twins94, although the degree of inheritability varies considerably 

between specific diseases95. More recently, genome-wide association studies 

(GWAS) have enabled us to identify individual alleles which may contribute to 

autoimmune susceptibility. These genes provide important clues to the mechanisms 
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underlying autoimmunity. 

 

By far the clearest genetic contribution to autoimmune disease is in the human 

leukocyte antigen (HLA) genes, with nearly every autoimmune disease having an 

association with certain HLA genes96. The human gene pool contains thousands of 

different alleles for the HLA gene complex. HLA genes determine the specific MHC 

molecules expressed on an individual’s cells, and therefore the type of peptide 

antigens that can be presented on their surface. Different MHC molecules are able  

to bind and present different ranges of peptides, meaning that the adaptive immune 

systems of different individuals may recognise and respond to wholly diverse 

antigens, even from the same pathogen. The HLA gene complex contains three 

major loci encoding MHC class I genes (called A, B and C) and three pairs of genes 

encoding MHC class II (DR, DP, DQ). There are also a number of MHC II chaperone 

genes, DM, DOα and DOβ, which are important in epitope selection for peptide 

binding to MHC II. An analogous role is carried out for MHC I by the proteins TAP, 

tapasin, and ER folding factors ERp57 and ERAAP, which load MHC I molecules 

with peptides derived from the 26S proteasome	 97.	Variations in the genes involved 

in antigen presentation can have a vital role in autoimmune susceptibility.	

	

The degree of redundancy in MHC presenting genes enables individuals’ MHC to 

bind to a wider range of peptides than if our genes encoded only one type of MHC 

class I or II, and increased heterozygosity may lead to stronger cellular immune 

responses, as HLA homozygosity was found to correlate with reduced lymphocyte 

proliferation in response to vaccination compared to heterozygotes98,99. The number 

of loci also allows plenty of room for diversity between individuals, as it is extremely 

unlikely for unrelated individuals to share an identical HLA genotype. This 

heterogeneity is valuable not only for the individual, but also for the fitness of the 

species as a whole in resisting infection by pathogens100. Maintaining HLA diversity 

has even been suggested to be a key factor in human sexual selection. Such 

behaviour has been reported in other vertebrates, but human studies have yet to 

reach a consensus101-103. Regardless of how the diversity is maintained, it is clear 

that HLA genes have a significant impact on determining immune responses. 

 

The antigens that have been found to drive autoimmunity are relatively restricted. 
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They must be presented somewhat rarely, possibly found at immune-privileged 

sites, or responsive T cells would be clonally deleted during thymic development. At 

the same time, they must be presented sufficiently to trigger T cell effector functions. 

In keeping with this idea, distinct individuals with a given autoimmune condition may 

have mounted immune responses against the same self-antigen, as observed in 

Celiac disease104. The antigenic self-peptide must be able to be presented in the 

context of an MHC molecule, so an individual’s HLA genes highly affect the 

likelihood of their T cells ever encountering such an antigen. Alternatively, it is 

possible that certain MHC molecules can bind an autoimmune-associated antigen 

weakly, allowing for positive selection but not sufficient for negative selection. In this 

case, an individual might have a disproportionate number of self-reactive T cell 

receptors in their periphery. Another possibility is that certain MHC molecules are 

less adept at producing Treg populations during thymic selection, thereby 

weakening peripheral tolerance mechanisms96. 

 

It can be difficult to disentangle the individual contributions of MHC class I and class 

II genes because of linkage disequilibrium throughout the HLA region, but some 

associations have been identified96. Type 1 diabetes (T1D)-associated HLA alleles 

include DRB1*03, DRB1*04, and B*39, with variations in the DQB1 and HLA-A loci 

being associated with either protection or increased susceptibility. RA and Graves’ 

Disease (GD) have been linked to a number of DRB1 alleles, with the latter also 

having shown associations with certain HLA-C and -B alleles. Multiple sclerosis 

(MS) is associated with DR15, as well as A*0301, with A*0201 apparently conferring 

a protective effect. The complexity of the HLA region makes it challenging to 

disentangle the effects of individual alleles on autoimmune susceptibility, but the 

associations identified may help inform the mechanisms of disease progression. 

 

1.3.4 Non-HLA genes in autoimmune disease 

HLA genes undoubtedly play an important role in shaping our immune systems, but 

they are far from the sole genetic player in autoimmune susceptibility. Monozygotic 

twins have more similar incidences of autoimmunity than HLA-matched siblings, so 

other elements of the genetic landscape must play a role.  

 

Single-gene autoimmune diseases are rare, but do exist within the human gene 
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pool. One classic example is mutations in the AIRE gene, which was identified to be 

the cause of autoimmune polyglandular syndrome (APS) type 1. This syndrome is 

characterised by hypoparathyroidism, adrenal failure, and chronic mucocutaneous 

candidiasis105. An investigation into how mutations in AIRE lead to mutli-organ 

autoimmunity revealed that the protein is crucial in presentation of tissue-restricted 

self-antigens during thymic selection. The lack of presentation of self-antigens 

means that negative selection against these antigens cannot occur, and thus mature 

T cells are able to enter into the periphery which then mediate autoimmunity, with 

symptoms of APS type 1 typically arising in infancy106. 

 

Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked (IPEX) is a 

very rare, severe autoimmune disorder which was linked to mutations in the gene 

FOXP3, which is critical for Treg function. The disease manifests in infancy and is 

lethal if untreated, with symptoms characteristic of over-activation of the immune 

system, including dermatitis, diabetes mellitus, thyroiditis, hemolytic anemia, 

diarrhea, and severe responses to viral infection106.  

 

Patients with autoimmune lymphoproliferative syndrome (ALPS) were found to 

harbor mutations in Fas, Fas-ligand, or the associated apoptosis pathway. 

Symptoms of ALPS include lymphadenopathy, splenomegaly, 

hypergammaglobulinemia, and frequently hemolytic anemia and thrombocytopenia. 

It is not yet clear precisely how disruption of apoptosis leads to these symptoms, but 

current hypotheses suggest aberrant regulation of self-reactive lymphocytes106. 

 

While study of monogenic autoimmune diseases can provide valuable insights into 

normal and disrupted immune function, they account for a very small proportion of 

all autoimmune diseases. The vast majority of autoimmune diseases are thought to 

be multifactorial, which makes it much more difficult to identify the individual 

causative factors. GWAS are a tool to identify the gene alleles shared by patients 

with autoimmune disease by screening large cohorts of individuals. It is important to 

note that only those alleles that are frequent enough in the population to achieve 

significance will be reported by these studies. GWAS studies are also only recently 

beginning to consider copy number variants, which may contribute to disease 

heritability107. Nonetheless, the genes that have been identified by GWAS studies 
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provide useful information in understanding complex autoimmune pathogenesis. 

 

Perhaps unsurprisingly, many of the genes indicated by GWAS studies are involved 

in T cell and B cell signalling. In most cases, individual genes make only a minor 

contribution to risk of autoimmune disease, with all but the strongest associations 

conferring an odds ratio between 1.1 and 1.5108. The odds ratio refers to how likely a 

carrier of a risk allele is to develop a disease compared to someone who does not 

carry the allele. For rare diseases, such as autoimmune diseases, the odds ratio can 

be interpreted as an approximation of the relative risk that the allele confers109. For 

example, an odds ratio of 1.5 for a gene associated with a disease with a global 

incidence of 1% suggests that the disease incidence among carriers of that gene 

increases to 1.5%. The immune system contains many redundant checks to reduce 

risk of autoimmunity, so a combination of factors are likely to be required to break 

tolerance. Many of the genes identified are linked to multiple—but not all—

autoimmune diseases, suggesting that certain autoimmune diseases share 

mechanisms of pathogenesis, but that these mechanisms are not necessarily 

conserved across every disease. Roughly half of the >40 genome regions linked to 

autoimmunity are associated with more than one disease. A number of genes 

reported to have associations with autoimmune diseases are listed in Table 1110. 
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Table 1. Non HLA genetic markers of autoimmune diseases. AD: Addison’s disease, GD: Graves’ 
disease, HD: Hashimoto disease, JIA: juvenile idiopathic arthritis, MS: multiple sclerosis, RA: Rheumatoid 
arthritis, SLE: systemic lupus erythematosus, T1D Type 1 diabetes. Adapted from Sjakste et al110. 

 

 

Gene Protein function  Associated diseases 

PTPN22 Inhibits T-cell activation, contributes to TCR, B cell receptor, 
and toll-like receptor signalling in immune cells, 

 RA, SLE, T1D, HD,  GD, 
vitiligo111  

STAT 4 Involved in JAK-STAT signalling in spermatozoa, myeloid 
cells, and T cells. STAT 4 is activated by tyrosine 
phosphorylation in response to IL-12 treatment of T cells, 

 RA, SLE, Sjögren’s 
syndrome, JIA, GD, 
myasthenia gravis112,113  

CTLA-4 Cell surface molecule involved in regulating TCR signalling  RA, SLE, T1D, AD, Vitiligo, 
MS, HD114  

TRAF1/C5 Involved in TNF signalling. TRAF1 is implicated in cell growth, 
proliferation, apoptosis, bone turnover, cytokine activation. 

 RA115,116  

PADI4 Mediates the citrullination of histones in T cells, B cells, 
neutrophils, eosinophils, monocytes. Targeted by RA 
autoantibodies. 

 RA115,117  

MIF T cell cytokine, inhibits migration of macrophages and 
promotes macrophage accumulation in delayed-type 
hypersensitivity reactions. 

 T1D, RA118  

UBASH3A Involved in growth factor withdrawal-induced apoptosis in T 
cells. A suppressor of TCR signalling. 

 T1D119,120  

STAT3 Activated in response to IFNs, EGF, IL5, IL6, HGF, LIF and 
BMP2. Acts as transcription activator and plays a key role in 
many cellular processes such as cell growth and apoptosis. 

 MS121  

CLEC16A A transmembrane calcium- dependent (C-type) lectin-like 
receptor 

 MS, RA, T1D122  

CAPSL Calcium sensor and calcium signal modulator.  T1D123  

RGS1 Regulator of G protein signalling  T1D, MS123 

ZMIZ1 Regulates the activity of various transcription factors, 
including Smad3/4, and p53. May also play a role in 
sumoylation. 

 T1D, MS123  

TNFSF14 Costimulatory factor for the activation of lymphoid cells, 
stimulates the proliferation of T cells, and apoptosis of various 
tumour cells. 

 T1D, MS123 

VCAM1 Cell surface sialoglycoprotein expressed by cytokine-
activated endothelium. Mediates leukocyte-endothelial cell 
adhesion and signal transduction. 

 T1D, RA123  

SOXB Transcription factor involved in the regulation of embryonic 
development and in the determination of the cell fate. 

 T1D, MS123 

Pvt1  
oncogene 

Oncogene, associated with several types of cancer and renal 
diseases. 

 T1D, RA123,122  
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1.4 Negative regulators establishing TCR signalling 

thresholds 
T cells are potent drivers of autoimmune responses. To limit the possibility of their 

inappropriate activation, T cells express many negative regulators of TCR signalling, 

which maintain a threshold of signalling required to overcome homeostasis.  

 

CD45 is a highly abundant trans-membrane phosphatase that is critical in 

determining T cell responses to TCR stimulation. CD45 regulates SFKs directly, 

though there is evidence that it has both positive and negative regulatory capacity, 

and has been shown to dephosphorylate both Lck Y394 and Y505124,125. CD45 has 

an important role in determining the signalling threshold required for T cell activation 

by downregulating the Y394 on constitutively active Lck in resting T cells. Thus T 

cells are able to maintain a state of signalling readiness with a baseline level of 

active Lck without pushing the cell into a stimulated state. It has been hypothesised 

that CD45 is essential as a positive regulator in early T cell signalling, but may act 

as a negative regulator at later timepoints126. Another feature of CD45 is that it has 

several isoforms that vary upon T cell stimulation, but the function of these remains 

unclear. 

 

In addition to CD45, Lck and other early signalling molecules are regulated by a 

number of intracellular kinases and phosphatases, such as C-terminal Src kinase 

(Csk), protein tyrosine phosphatase, non-receptor type 22 (PTPN22), and SHP-1.  

 

The intracellular phosphatases SHP-1 (PTPN6) and SHP-2 (PTPN11) contribute to 

T cell signalling regulation. SHP-1 acts predominately as a negative regulator and is 

thought to act on SFKs, and in vitro studies have shown that SFKs are efficient 

substrates for SHP-1127,128. THEMIS was shown by Paster et al to bind constitutively 

to either SHP-1 or SHP-2 in T cells and thymocytes, in a complex mediated by 

GRB2. Furthermore, knockdown of THEMIS resulted in a similar phenotype to SHP-

1 knockdown, including increased CD3 phosphorylation, Erk activation, and CD69 

upregulation in response to TCR stimulation. SHP-1 knockout cells were also 

demonstrated to be resistant to proliferation suppression by Tregs, and to have 

enhanced Akt signalling. These data suggest that SHP-1 plays an important role in 
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regulating T cell signalling thresholds in a THEMIS-dependent manner. 

 

In contrast to the widely accepted role of SHP-1 as a negative regulator, the role of 

SHP-2 in T cells is unclear. SHP-2 forms associations with ITAMs of activated T 

cells129, suggesting it plays a role in the TCR signalling pathway, however studies in 

transgenic mice lacking SHP-2 have produced contradictory results. Mice which lack 

SHP-2 in T cell lineages showed reduced TCR-driven proliferation, and reductions in 

expression of IL-2, CD25, and CD69 upon stimulation with anti-CD3130, which 

supports the hypothesis that SHP-2 promotes TCR signalling. However, Zhang et al 

showed that CD4 tumour-associated T cells that lacked SHP-2 had elevated 

expression of inflammatory cytokines IL-6, TNFα, and IFNγ, suggesting that SHP-2 

has a role in negative regulation of these cytokines131. While the effects that SHP-2 

has on T cell signalling have yet to be fully understood, these studies underline the 

complex roles of intracellular phosphatases in TCR regulation and T cell function. 

 

Csk is a kinase thought to act antagonistically to CD45 by phosphorylating Y505 on 

Lck on resting T cells. Manz et al. developed a mutant version of mouse Csk that is 

susceptible to small molecule inhibition132. Their data showed that inhibition of Csk 

reduced phosphorylation of Lck Y505 in mouse T cells at rest and upon stimulation 

with anti-CD3. This reduction correlated with increased Lck Y394 phosphorylation 

and, to a lesser degree, phosphorylation of Zap-70 Y319, a target of active Lck. 

Zap-70 phosphorylation did not appear to have significant downstream effects at 

rest, as measured by LAT, PI3K, and Erk phosphorylation, but upon stimulation 

these proteins were significantly more phosphorylated at early timepoints in cells 

with inhibited Csk compared to active Csk. These data suggests that Csk has a role 

in resting T cells, but that other negative regulators contribute to maintaining the 

resting state. Strikingly, Manz et al observed that activation (as measured by CD69 

expression) is particularly enhanced by Csk inhibition when the cells were 

stimulated with weak peptide, suggesting that, like PTPN22, Csk is important in 

regulating T cell responses to weak peptide132. 

 

The final class of negative regulators are ubiquitin ligases. The Cbl family proteins 

are E3 ubiquitin ligases which play a role in regulating T cell responses through 

degradation of targets, including the TCRζ chain, Zap-70, LAT, and Vav66. 
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Knockouts of c-Cbl or Cbl-b demonstrated increased proliferation and IL-2 

expression, and, as well as a failure to down-regulate surface expression of 

TCR133,134, demonstrating the importance of ubiquitin ligases in the regulation of 

TCR signalling.  

 

1.4.1 PTPN22 

The non-HLA genetic factor most strongly associated with autoimmune disease is 

the single nucleotide polymorphism (SNP) in the protein PTPN22, which changes 

arginine 620 to tryptophan, PTPN22 R620W. This polymorphism was one of the first 

genes to be convincingly linked to autoimmunity, and indeed it has the strongest 

genetic association with autoimmune disease outside of HLA. The odds ratio for RA 

and T1D in individuals homozygous for PTPN22 R620W is 3-4, with heterozygotes 

still having a two-fold risk of disease108. 

 

In 2004 interest in PTPN22 increased manyfold, following the discovery that a 

human polymorphism resulting in a single amino acid substitution in the protein is 

associated with Type I Diabetes135. Following this finding, the polymorphism was 

soon investigated in the context of other human autoimmune diseases, and was 

found to have strong associations with rheumatoid arthritis136, systemic lupus 

erythematosus137, and Graves’ disease138. Further association studies soon 

revealed that the polymorphism is strongly implicated in multiple autoimmune 

diseases affecting varied organs, but has no association with certain other diseases, 

notably multiple sclerosis, and psoriasis139-141. It has even been suggested that 

PTPN22-R620W may have a protective effect in context of Behcet’s disease and 

Crohn’s disease142,143. The degree to which PTPN22-R620W varies in its 

contribution to different diseases suggests that rather than enacting widespread and 

constant changes, such as globally increasing inflammatory responses, PTPN22 

plays a complex role in different immune landscapes, likely by influencing certain 

cell types important in different disease contexts. 

 

1.4.2 PTPN22 structure 

24 exons make up the PTPN22 gene in humans. Full-length PTPN22 in humans is 

807 amino acids long and 91.7 kDa. The protein consists of three broad domains: 

the catalytic domain, the interdomain, and C-terminal domain, which contains four 
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proline-rich regions that mediate protein-protein interactions (Figure 3). Mouse 

PTPN22 shares roughly 80% homology with the human protein, with the majority of 

the differences located in the interdomain (Figure 4). The crystal structure of the 

catalytic domain of PTPN22 has been solved, revealing that the catalytic loop has 

an atypical open state, which must be closed for phosphatase activity144.  

 

Six isoforms of PTPN22 have been reported and the functions of these are largely 

unknown, with the notable exception of isoform 6, reported to be a negative 

regulator of the full-length protein145. Different ratios of isoform 2 to full-length protein 

were also reported in RA patients compared to healthy controls146. Another group 

reported differences in both splice ratios and total protein levels in SLE patients147. 

The different isoforms may well have important implications for the function of 

PTPN22, unfortunately the varied isoforms of PTPN22 appear to be a species-

specific feature of the human protein; making mouse models of little use in this 

capacity.  

 

The proline-rich regions garner much attention because it is the site of the R620W 

mutation, a C to T transition in Exon 14, which leads to a substitution of arginine to 

tryptophan in the first of four proline-rich regions. These regions mediate the 

interactions of PTPN22 with other proteins, most notably Csk. Normally, 5% of Csk 

is reported to interact with up to 50% of PTPN22 in T cells; the SNP significantly 

reduces the association of PTPN22 with Csk, with PTPN22-R620 pulling down with 

nearly 3 times as much Csk as PTPN22-W620 by immunoprecipitation136. The 

functional significance of this interaction and its reduction is still under study. 

 

1.4.3 Biochemistry, function and signalling of PTPN22  

PTPN22 is an intracellular phosphatase that negatively regulates signalling by 

dephosphorylating tyrosine residues of signalling proteins, chiefly Lck, Fyn, and 

Zap-70, but also possibly the CD3 chains, Vav, c-Cbl, and others. Csk associates 

with PTPN22; as they both negatively regulate Lck, it was initially suggested that 

their complexing allowed them to act synergistically 141,148 but the significance of the 

association between Csk and PTPN22 remains controversial. Vang et al. found that 

PTPN22 association with Csk was reduced upon TCR stimulation, and that PTPN22 

was found in lipid rafts, where SKFs are localised, only after TCR stimulation, 
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independently of Csk149. They proposed that the Csk-PTPN22 complex sequesters 

PTPN22 away from target proteins, and that only disassociation of the proteins upon 

stimulation allows PTPN22 to access its substrates. These observations were made 

using human cells, however no such compartmentalisation was found in mouse 

cells150. Other groups also did not confirm that TCR ligation reduced PTPN22-Csk 

interaction, finding that it was either unchanged or increased151,152. Burn et al used 

superresolution imaging to show that PTPN22 existed in clusters in resting human 

primary T cells, which then dispersed upon LFA-1 stimulation to localise at the 

plasma membrane. They found that PTPN22 co-precipitated with Csk in resting 

cells, and that the association was increased upon LFA-1 stimulation153. Other 

effects of Csk-PTPN22 interaction have also been suggested, including that Csk 

and PTPN22 mediate positive or negative regulation of each other when 

complexed151,154 or that association with Csk protects PTPN22 from degradation by 

calpain155, although the latter hypothesis seems unlikely as other groups do not 

report changes in PTPN22 levels correlated with Csk binding156. Distinct activities by 

different splice forms of PTPN22 could explain some of the discrepancies in the 

data, as little is known about the six isoforms, save for one that appears to act as a 

negative regulator of full-length PTPN22145, and none have been reported in mice.  

 

 

 

Figure 3. Structure of PTPN22. 
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1.4.4 Understanding the link between PTPN22 and autoimmunity 

PTPN22 was first characterised in haematopoietic cells in 1992 by Matthews, et 

al157. In subsequent years, studies by Andre Veillette’s lab showed PTPN22 to 

associate with the negative T lymphocyte regulator Csk158, and that this complex 

has a negative regulatory function in T cell signalling through inhibition of Src-family 

kinases Lck, Fyn, and Zap-70154. Mice with PTPN22 knocked out (KO) showed 

enhanced T cell activation accompanied by increased antibody production159. 

Knockout mice also exhibited increased disease on autoimmune-predisposed 

backgrounds, but PTPN22 KO alone appeared insufficient to cause spontaneous 

autoimmunity without additional predisposing genetic factors159-161. It has also been 

reported that regulatory T cells are enriched in PTPN22 KO animals, but data 

conflicts on whether this difference stems from altered thymic signalling, and also 

does not agree on whether peripheral Treg cells are more potent suppressors of 

effector functions162-164. Genetic background of the animals may contribute to this 

disagreement, and additional work is required to reach a consensus on how 

PTPN22 is affecting T cell tolerance. 

 

PTPN22 is known to be a negative regulator of T cell receptor signalling, however 

the specific role of the polymorphism in autoimmune susceptibility is still elusive, due 

in no small part to a divergence in results between mouse and human models. A 

major challenge in PTPN22 research is the fact that mouse models of the 

polymorphism have differed significantly from human models. In fact, while most 

mouse models report the polymorphism to have a loss-of-function effect, many 

human studies conclude the exact opposite. A comparison of the polymorphism data 

generated in mouse and human models is discussed in more detail in Chapter 3. A 

possible confounding factor may be the apparent difference in splice variants 

expressed between the species, as it has been suggested that one variant found in 

humans but not in mice has a direct negative regulatory effect on PTPN22 itself, and 

its activity was altered by the R620W polymorphism145. It is also possible that the 

contribution of PTPN22 to autoimmunity lies not in its activity in a single effector cell, 

but in altering the interactions between cells; for example a reduction in the 

effectiveness of Treg cells could promote autoimmunity by reducing the signalling 

threshold required to activate effector cells. 
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One possible explanation for the increased susceptibility to autoimmune disease is 

that PTPN22-R620W affects central tolerance to allow more autoreactive T and B 

cells to survive. Such an effect could explain the increased susceptibility to only 

select diseases, as PTPN22-R620W could expand the lymphocyte repertoire in a 

non-random manner, however studies on this topic have produced conflicting 

results. Increased numbers of CD4/CD8 cells in the periphery have been reported in 

knockout mice, however the role of PTPN22 in thymic selection in mice varies 

depending on the genetic background, from no observed effects to enhanced 

positive selection159,165,166. In contrast, B cell positive selection does appear to be 

enhanced in a B cell-intrinsic manner in mice and humans carrying the risk variant, 

leading to a greater proportion of polyreactive B cells167-169. Given the similarities 

between B and T cell signalling and development, it seems likely that T cell selection 

is affected by PTPN22 R620W, but perhaps is not detectable by current assays, 

whereas B cell receptor affinity can be assessed using antibody assays such as 

ELISA. The fact that no changes in peripheral B cell numbers were observed in 

variant mice159,160 suggests that increased selection does not necessarily disrupt 

homeostatic numbers of lymphocytes in mice less than six months of age156, 

therefore detection of changes to T cell selection may require more precise assays 

to be developed to analyse the T cell repertoire. As B cells are unable to express 

high affinity class-switched antibody without T cell help, the expansion of the 

peripheral B cell repertoire would have limited autoimmune potential without a 

similar expansion in the T cell compartment. 

 

The story of PTPN22 R620W in B cell signalling is similar to that of T cell signalling. 

Arechiga et al showed that B cells from human individuals who were heterozygous 

for PTPN22 R620W had reduced proliferative capacity and reduced phosphorylation 

of the activating kinase, Syk170. In contrast, Dai et al showed a slight increase in 

proliferation in B cells derived from mice carrying the analogous polymorphism and 

found that even restricting the polymorphism to the B cell lineage was sufficient to 

cause splenomegaly in aged mice156. In addition, greater numbers of germinal 

centre B cells have been reported in PTPN22-/- mice155, and Metzler et al found that 

among mouse B cells homozygous for the variant of PTPN22, those with self-

reactive BCRs were selectively shuttled into the follicular zone, potentially increasing 
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the likelihood of the development of autoimmune germinal centres167. Taken 

together, these reports indicate that B cell immunity is regulated by PTPN22 from 

development to activation, and that PTPN22 R620W leads not only to a more 

autoreactive B cell repertoire, but also to an increased likelihood of autoreactive B 

cells receiving T cell help. However, the specific signalling events that lead to such 

predispositions in mice are still unknown, and may differ from humans.  

 

PTPN22 is expressed in other haematopoietic cells, and innate immune responses 

may be critical in establishing environmental signals that promote autoimmunity. In 

innate myeloid cells PTPN22 is reported to promote signalling by pathogen 

recognition receptor pathways that lead to expression of type I interferons, 

suppressors of inflammation171. PTPN22 R620W was unable to upregulate type I 

interferons, and the polymorphism was linked to greater arthritis scores in mice. 

PTPN22 R620W could therefore lead to enhanced inflammatory responses, 

potentially promoting autoimmunity. Dendritic cells are also intrinsically tied to T cell 

function. Zhang et al found that expression of costimulatory molecules was 

increased in mice carrying the polymorphism155, but Clarke et al recently reported no 

changes in the ability of PTPN22-/- or PTPN22 R619W DCs to uptake antigen or 

stimulate T cells172. Based, on these results it is impossible to conclude whether or 

not PTPN22 R620W contributes to autoimmunity through regulation of DCs. Further 

studies investigating the role of PTPN22 in non-T cells are needed to fully elucidate 

their role in autoimmune pathogenesis. 

 

1.4.5 Population genetics of PTPN22 

Although the PTPN22 R620W polymorphism was identified as a factor of disease 

predisposition, the prevalence of the allele suggests that there is selective pressure 

to maintain it within the population. The incidence of the autoimmune-predisposing 

PTPN22 allele varies between populations, found in up to 17% of individuals with 

Northern European heritage108, but with a greatly reduced frequency in Asian and 

African populations. Lins et al reported an allele frequency of only 0.014 in African 

American populations, while it was nearly ten times as common in European 

Americans, with an allele frequency of 0.133173. Given the importance of allele 

frequency in GWAS data, as well as the complex impact of genetic background on 

immunity, it is unsurprising that different populations also report differences in 
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degree of association of PTPN22 R620W with various autoimmune diseases. One 

possible explanation for the frequency of the PTPN22 R620W allele is that the 

enhanced immune signalling increases protection from infectious diseases95. An 

analysis of genes associated with Crohn's Disease demonstrated that PTPN22-

R620W correlates with reduced susceptibility to protozoa174, although it is unlikely 

for such infections to be the source of significant selective pressure in Northern 

European populations. PTPN22 R620W has also been reported to reduce the risk of 

pulmonary tuberculosis in a Colombian population175, however no such link was 

found in Iranian or Brazilian populations176,177. Thus, the reason for maintenance of 

the PTPN22 R620W allele in certain populations is still an open question. 

 

Other SNPs of PTPN22 have also been reported, although they are rarer than 

PTPN22 R620W across different populations, which makes associations more 

difficult to determine conclusively. PTPN22-R263Q is a loss-of-function variant that 

affects the catalytic domain of the protein, and has been reported to be protective 

against RA and SLE178-180, but may also increase susceptibility to pulmonary 

tuberculosis181.  

 

1.5 Project aims 
Many of the difficulties in describing the mechanisms of PTPN22 function are rooted 

in inherent variation between mouse and human studies. A major challenge in 

reconciling human and mouse studies is that human individuals are highly 

genetically varied compared to lab mice, and are affected by different disease 

states, environments, and lifestyles. Thus, there is inherent difficulty in comparing 

results generated in genetically diverse human individuals to findings from inbred lab 

mice, which have a restricted range of genetic variance; this important difference 

alone may account for the discrepancies between mouse and human data. There 

are also some differences in the immune systems of mice compared to humans, 

such as an increase in the percentage of lymphocytes compared to neutrophils in 

the blood, significantly higher proportion of CD28+ T cells, altered mechanics of 

calcium flux, and an array of chemotactic and signaling molecules that are absent in 

mice yet expressed in humans182. Furthermore, evidence is accumulating that the 

function of the immune system—including development of autoimmune disease—is 
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highly affected by commensal bacteria in the gut micro-biome and by bystander 

chronic infections, factors which are highly divergent between laboratory mice and 

human subjects183. It is therefore unsurprising that complex immunological 

phenomena like the development of allergy or autoimmune disease are found to be 

divergent between mice and humans. While mouse models have undoubtedly 

contributed enormously to our understanding of the immune system as a whole, it is 

hardly straightforward to convert findings in mice into discoveries in man. 

 

Therefore, to address the controversy surrounding the role of PTPN22 in human T 

cell signalling, we decided to create a novel human PTPN22 KO model. The 

development of CRISPR technology allowed us to induce specific mutations at the 

genome level, enabling the creation of isogenic human T cell lines, genetically 

identical save for mutations in PTPN22. These models also eliminate the need to 

overexpress the protein of interest or attempt to inhibit it through siRNA or chemical 

drugs, eliminating other confounding factors that have limited previous human 

studies. These cell line models could provide valuable insight into the cell-intrinsic 

signalling effects of PTPN22 in human T cells.  
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2. Materials and methods 
 
2.1 Cell lines 
TCR- Jurkat cells and Phoenix Ampho cells were obtained from Hans Stauss, 

University College London. T2 cells were obtained from Paul Travers, at the MRC 

Centre for Regenerative Medicine, Edinburgh.  

 

2.2 Cell Culture 
Complete Iscove’s Modified Dulbecco’s Medium (IMDM) (Sigma Aldrich, 
I3390) 
+ 5% Heat inactivated Fetal Calf Serum (FCS) (Gibco, 10500-064, Lot 
08G3560K) 
+ 100U/mL Streptomycin (Gibco, 15140-122)  
+ 100μg/mL Penicillin (Gibco, 15140-122)  
+ 2x10-3 M L-Glutamine (Gibco, 25030081)  
+ 5x10-5 M β-2-Mercaptoethanol (Fluka BioChemika, 63689)  

 
Dulbecco’s Phosphate Buffered Saline (Sigma Aldrich, D8537) 
 
Trypsin EDTA 1x (Phoenix Ampho cells only) (Gibco, 25200056) 

 
Cells were maintained in complete IMDM. Cells were incubated in a Thermo 

Scientific Hera Cell 150 CO2 incubator at at 37ºC, 5% CO2 unless otherwise 

specified. Cell cultures were split 3 times per week, and maintained between 2x105 

and 2x106 cells/mL. Unless otherwise specified, cells were centrifuged at 310 x g for 

3min. 

 

2.2.1 Mycoplasma 

Screening for mycoplasma was carried out every six months using MycoAlert 

Mycoplasma Detection Kit (Lonza). Infected lines were isolated and treated using 

complete IMDM supplemented with 100 μg/mL Plasmocure (Invivogen) for two 

weeks. 

 

2.3 Transduction of Jurkat cells 
2.3.1 Phoenix Ampho cell transfection 

Complete Roswell Park Memorial Institute (RPMI) medium 
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+ 5% Heat inactivated Fetal Calf Serum (FCS) 
+ 100U mL-1 Streptomycin  
+ 100μg mL-1 Penicillin  
+ 2x10-3 M L-Glutamine 

 

2x106 Phoenix ampho cells were plated in 8 mL of IMDM media in 10 cm Petri 

dishes and incubated overnight. The following day media was exchanged with 5 mL 

complete IMDM 30 minutes prior to transfection. Transfection was carried out using 

Fugene HD transfection reagent (Promega).  

Fugene Transfection mix 
Solution A: 
10 μl FuGENE HD Transfection Reagent (Promega, E2311) 
150 μl OPTI-MEM 1x medium (Gibco, 31985-062) 
 
Solution B 
1.5 μg pCL Ampho Retrovirus Packaging Vector (Novus Biologicals, NBP2-
29541) 
2.6 μg DNA 
made up to to 50 μL with dH2O 

 

Solution A and B were mixed and incubated at room temperature for 20 minutes. 

The transfection mix was subsequently added dropwise to the prepared Phoenix 

Ampho cells, with gentle agitation. Cell culture media was replaced with 5 mL 

complete RPMI after one day and further incubated for 24 hours. Virus supernatent 

was prepared by removing media from Phoenix Ampho cells and centrifuging it at 

485 x g for 5 minutes to remove cells and debris for use in Jurkat cell transduction.  

 

2.3.2 Jurkat cell transduction 

To prepare for transduction, 24-well not treated tissue culture plates (Corning 

CLS3738) were coated with 750 μl/well RetroNectin Recombinant Human 

Fibronectin Fragment (100 μg/mL, Takara Bio, T100B) suspension and incubated at 

room temperature for 3 hours. Excess retronectin was removed and wells were 

blocked with 500ul/well filter sterilised PBS containing 2% BSA for 30 minutes at 

room temperature. Following blocking, BSA solution was removed and wells were 

washed twice with 1 mL PBS.  

 

5x105 Jurkat cells were pelleted and resuspended in 1 mL virus supernatant, then 

plated onto retronectin-coated wells. The plate was then centrifuged at 860 x g for 



	

	 37 

90 minutes at 32ºC with no brake. After centrifugation, virus supernatant was 

removed and replaced with 1 mL complete RPMI. Cells were cultured for 3 days 

before analysis of TCR expression by flow cytometery. 

 

2.4 CRISPR gene editing of Jurkat cells 
2.4.1 Ligation of guide sequences into Cas9 expression vector 

Guide sequence single-strand DNA oligos were purchased from Invitrogen (see 

Table 1 for sequences) and Cas9 plasmids Px330 and Px461 were purchased from 

Addgene (plasmid #42230 and 48140, respectively).  

Plasmid Bbs1 restriction digestion was carried out in a solution of: 

2 μL Bbs1 (5000 U/mL) (New England Biolabs, R0539) 
2 μL plasmid (2 μg/μL) 
4 μL NEB Restriction Buffer 1.1 (10x) (New England Biolabs) 
36 μL dH2O 

 
The restriction digest was incubated for two hours at 37ºC. 

Single strand DNA oligo pairs were annealed in a PCR tube containing: 

1 μL forward oligo (100 μM) 
1 μL reverse oligo (100 μM) 
1 μL 10x T4 ligation buffer (New England Biolabs) 
0.4 μL T4 PNK (New England Biolabs) 
6.5 μL dH2O 

 
Tubes were incubated in a PCR machine for 30 minutes at 37ºC, 5 minutes at 95ºC, 

and reduced to 25ºC at a rate of 5ºC/minute. 

 

Plasmid DNA was purified from restriction digest reaction using Geneclean II kit 

(Fisher Scientific) according to manufacturer protocol for purifying DNA from 

solutions. Plasmid DNA concentration was measured using a Nanodrop 1000 

spectrophotometer (Thermo Scientific).  

 

Ligation reaction of the plasmids and guide oligos contained: 

1 μg digested plasmid 
1 μL oligo duplex (diluted 1:200) 
5 μL 2x Quickligation buffer (New England Biolabs) 
1 μL Quick ligase (New England Biolabs) 
made up to 11 μL with dH2O 

 
Ligation reaction was incubated for 15 minutes at room temperature. 
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2.4.2 Bacterial transformation with Cas9 expression vector 

100 μL competent XL1 E. coli were thawed on ice. 10 μL of ligation reaction from 

section 2.4.1 was added. Bacteria were incubated on ice in the presence of ligation 

reaction for 75 minutes before being heat shocked for 3 minutes in a waterbath at 

42ºC, then were transferred back to ice for a further 3 minutes. Subsequently 500 μL 

of lysogeny broth (LB) was added to each culture and incubated for 40 min at 37ºC. 

Cultures were then spread on plates with agar and ampicillin (Sigma-Aldrich) and 

incubated overnight. 

 

Bacterial colonies were picked and expanded in 10 mL LB overnight at 37ºC with 

shaking at 240 rpm. DNA preps from colonies were carried out the following day 

using the QIAprep Spin Miniprep Kit (QIAGEN, 27104). Correct oligo insertion into 

plasmid was screened for by restriction digest before being confirmed by both PCR 

and Sanger sequencing. 

Restriction digest 
1 μL BbsI 
1 μL AgeI 
2 μL New England Biolabs buffer 1 
1 μL plasmid 
15 μL dH2O 

 

Tubes were incubated for 50 minutes at 37ºC and run on a 0.8% agarose gel at 80 

V for 70 minutes. 

PCR reaction 
1 μL plasmid reverse primer (10 μM) (Invitrogen) 
1 μL single-strand sense guide oligo 
2 μL 10x PCR reaction buffer (Invitrogen) 
1 μL MgCl2 (Invitrogen) 
1 μL Deoxynucleotide Solution Mix (Promega) 
0.4 μL Taq DNA polymerase recombinant (5 U/μl) (Invitrogen) 
13.6 μL dH2O 
1 μL plasmid template 
 
PCR programme (BIO-RAD T100 Thermal Cycler) 
94ºC for 3 minutes 
34 cycles of: 

94ºC for 1 minute 
56ºC for 30 seconds 
72ºC for 1 minute 

72ºC for 10 minutes 
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Hold at 4ºC 
 

Products were resolved on a 2% agarose gel run at 120 V for 30 minutes. 

 

2.4.3 Amaxa transfection 

In accordance with manufacturer recommendations, 1x106 Jurkat cells were 

electroporated with 2 μg total plasmid in 100 μL Cell Line Nucleofector Solution V 

(Lonza). Cells were electroporated using the Amaxa Biosystems Nucleofector II 

(Lonza) set to programme X-001 to maximise viability and then gently transferred by 

Pasteur pipette onto a 12-well plate containing 1 mL warm culture media without 

antibiotics for incubation for 48 hours before sorting. 

 

2.4.4 Neon transfection 

1x106 Jurkat cells were electroporated with 10 μg total plasmid in 100 μL buffer R 

(ThermoFisher Scientific, MPK10096). The electroporation station was prepared 

with buffer E2, and cells were electroporated with 3 pulses of 1350 volts for 10 

milliseconds. Cells were then immediately transferred onto a 6-well plate containing 

2 mL warm culture media without antibiotics. Cells were incubated for 48 hours 

before sorting. 

 

2.4.5. Sorting of transfected cells 

Transfected Jurkat cells were sorted using a BD FACS Aria IIu with BD FACSDIVA 

v6 software (BD Biosciences). Cells were transferred from cell culture wells into a 15 

mL centrifuge tube and washed twice with PBS before resuspension in IMDM 

supplemented with 1% FCS. Cells were either bulk sorted into centrifuge tubes or 

single cell sorted onto round bottom 96-well plates, both containing FCS + 10% 

penicillin and streptomycin. After sorting, 3x volume complete IMDM without 

antibiotics was added to wells, and cells in tubes were centrifuged at 140 x g and 

resuspended in 2 mL complete IMDM and seeded onto a 6-well plate for incubation.  

 

2.5 Human PTPN22 knockout screening 
2.5.1 PTPN22 Exon 1 PCR AvaII digestion 

DNA lysis buffer 
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30mM Tris HCl (Fisher Scientific) 
10mM EDTA (Sigma Aldrich) 
0.1% SDS (Fisher Scientific) 
0.5% Tween 20 (Scientific Laboratories Supplies) 

 

2x106 cells were pelleted and resuspended in 200 μL DNA lysis buffer + 0.2 μL 

Proteinase K (800 U/mL, New England Biolabs). Samples were incubated for 15 

minutes at room temperature, followed by 5 minutes at 55ºC and 10 minutes at 

98ºC.  

 

0.1 volumes 3M Na Acetate were added to each tube, followed by 2.5 volumes ice 

cold 100% ethanol (VWR Chemicals). Tubes were stored overnight at -20ºC, then 

centrifuged at 17,000 x g for 10 minutes in a benchtop centrifuge at 4ºC. 

Supernatant was removed, and pellets were washed twice in 500 μL 70% ethanol. 

After the final wash, ethanol was fully removed and pellets were allowed to air dry 

before resuspension in water.  PTPN22 Exon 1 primers were chosen using the 

NCBI/Primer Blast tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

 

PCR reaction 
1 μL forward PTPN22 Exon 1 primer (10 μM) (Table 1) 
1 μL reverse PTPN22 Exon 1 primer (10 μM) (Table 1) 
2.5 μL 10x PCR reaction buffer 
1 μL MgCl2  
1 μL Deoxynucleotide Solution Mix  
0.5 μL Taq DNA polymerase recombinant (5 U/μl) 
17 μL dH2O 
1 μL DNA template 
 
PCR programme 
94ºC for 3 minutes 
34 cycles of: 

94ºC for 1 minute 
60ºC for 30 seconds 
72ºC for 2 minute 

72ºC for 10 minutes 
Hold at 4ºC 
 

To each tube of PCR product, 0.5 μL of AvaII restriction enzyme (10,000 U/mL, New 

England Biolabs) was added directly and incubated at 37ºC for two hours. Products 

of PCR and digestion were run on a 2% agarose gel at 120 V for 30 minutes. 
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2.5.2 TOPO Sequencing of PTPN22 Exon 1 

TOPO Cloning reaction  
1 μL TOPO vector (ThermoFisher Scientific) 
1 μL salt solution (ThermoFisher Scientific) 
1 μL PCR reaction 
3 μL H2O 

 

The TOPO TA Cloning Kit with PCR 2.1-TOPO (ThermoFisher Scientific) was used 

to separate alleles of Jurkat clones for sequencing. The PTPN22 Exon 1 region of 

each clone was amplified by PCR using Taq polymerase (as described in section 

2.5.1), of which 5 μL was reserved for TOPO cloning and the remainder was 

resolved on an agarose gel to confirm that the expected PCR product was amplified. 

XLI E. coli were transformed and plasmid DNA was isolated from bacterial colonies 

as described in section 2.5.2. 

 

Sanger sequencing was carried out by Edinburgh Genomics. Sequence of each 

TOPO cloning colony was verified using both M13 forward and M13 reverse 

sequencing primers (Thermo Fisher Scientific). Sequencing mixes consisted of 1 μL 

primer (3.2 μM) and 5 μL plasmid miniprep (100-200 ng).  

 

2.5.3 Western Blotting 

Protein lysis buffer 
0.15 M NaCl (Sigma-Aldrich) 
50 mM Tris HcL (pH 7.5) 
2 mM EDTA  
1% Triton X-100 (Fluka BioChemikal) 
0.5% n-Dodecyl β-D-Maltoside (Merck Millipore) 
Added fresh before use: 

1 mM Sodium Orthovanadate (Sigma-Aldrich) 
1x Protease Inhibitors (Sigma-Aldrich P8340) 
1 mM Sodium Fluoride (Sigma-Aldrich) 

 
Transfer Buffer: 
24 mM Tris base pH 7.5 (Fisher Scientific) 
192 mM glycine (Fisher Scientific) 
20% methanol (Fisher Chemical) 
Made up to 1 L with H2O 

 
 Blocking Buffer: 
 5 mL Odyssey Blocking Buffer (LI-COR Biosciences) 
 5 mL PBS 
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To create cell lysate for Western blotting, Jurkat cells were counted and washed 

twice in PBS. 5x106 cells were lysed in 50 μL of protein lysis buffer and incubated on 

ice for 20 minutes. Lysed cells were centrifuged at 13,000 RPM for 5 minutes to 

pellet nuclei, and supernatant was transferred into a fresh tube. 15 μL of protein 

lysate was combined with 5 μL NuPAGE LDS Sample Buffer (ThermoFisher 

Scientific) + 10% β-2-Mercaptoethanol, and tubes were boiled for 10 minutes at 

95ºC.  

 

Protein lysate was resolved by migration on a 10 or 15 1.0 mm well 4-12% Bis-Tris 

gels (Novex, NP0321BOX, NP0323 BOX) in 1x NuPAGE MOPS SDS Running 

Buffer (Novex, NP0001) using an Invitrogen Mini Gel Tank (ThermoFisher 

Scientific). Running Buffer (Novex, NP0001) was used to thoroughly wash wells of 

the gel and 3 μL Precision Plus Protein Standards (Biorad 161-0373) was loaded 

into the first well. 15-18 μL of sample was loaded into the remaining wells, 

depending on well size used. Protein migration was run at 4ºC at 70 V for 15 

minutes, followed by 140 V for 60 minutes.  

 

Protein transfer onto a polyvinylidene difluoride (PVDF) membrane (Immobilon 

IPFL00010) used the Mini Trans-Blot Cell transfer system (Biorad Laboratories). 

The PVDF membrane was first activated by soaking in 100% methanol for several 

minutes, and transfer of proteins from migration gel onto the PVDF membrane was 

carried out using and sponges and Whatman filter paper was soaked in transfer 

buffer prior to assembly of the transfer sandwich: 

Negative plate  
Sponge 
Whatman 
Protein gel 
PVDF membrane 
Whatman 
Sponge 
Positive plate 

Transfer was carried out at 4ºC with stirring at 100 V for 105 minutes. After transfer 

was complete, membrane was transferred into a 50 mL centrifuge tube and 

incubated in blocking buffer for 30 minutes at room temperature with gentle 

agitation. Primary antibodies (Table 2) were diluted 1:1000 in Odyssey Blocking 

Buffer + PBS containing 0.1% Tween 20 and incubated with membrane overnight at 
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4ºC with agitation. The following day, membranes were washed in four times in 50ml 

PBS containing 0.4% Tween 20 for at least 5 minutes per wash at room temperature 

with agitation. Secondary antibodies (Table 2) were diluted 1:20,000 in Odyssey 

Blocking Buffer + PBS containing 0.1% Tween 20 and 0.01% SDS and incubated 

with membrane for 30 minutes at room temperature with agitation. After incubation 

with secondary antibodies, membranes were washed four times in PBS containing 

0.4% Tween 20 before scanning on a LI-COR Odyssey CLx (LI-COR Biosciences). 

Blot analysis annotation was performed using Image Studio Lite software (LI-COR 

Biosciences).  

 

2.6 Tax TCR Jurkat cell stimulation 
2.6.1 Peptides 

pTax: LLFGYPVYV 
pHuD: LGYGFVNYI 
 
Stimulating peptides were purchased from ThermoFisher Scientific at >96% purity. 

Peptides were dissolved in DMSO, then diluted 1:1 in PBS to a final concentration of 

2 mM. Peptide aliquots were prepared to prevent excessive freeze/thaw cycles, and 

stored at -20ºC. 

 

2.6.2 T2 loading 

Exogenous peptide bound to surface HLA of cultured T2 cells were stripped by 

washing cells in serum-free IMDM and incubating in 0.13 M citric acid prepared in 

PBS184. Cells were incubated in acid for 2 minutes on ice, then 10 mL of serum-free 

IMDM were added. Cells were pelleted and washed twice in 5 mL serum-free IMDM 

before peptide pulse. 

 

T2 cells were subsequently incubated with 100 μM peptide for 2 hours at 37ºC. 

Peptide loaded T2 cells were then washed in PBS to remove excess peptide and 

plated with Jurkat cells on a 96-well plate. 2x104 - 3x106 T2 cells were cultured with 

2x105 Jurkat cells, and plates were incubated at 37ºC for the period of stimulation. 

 

2.6.3 Plate-bound DimerX 
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DimerX I (BD Biosciences) was incubated with 160 molar excess of peptide, in 

accordance with BD Biosciences recommendation. DimerX and peptide were 

incubated overnight at 37ºC before being bound to tissue culture plate. 

 

After initial titration to ascertain maximal CD69 expression after 24 hours (Chapter 4, 

Figure 1) 20μg/ml was used as the highest concentration of DimerX+peptide 

conjugate stimulations. 50 μL of 20 μg/mL DimerX+peptide diluted in PBS was 

distributed into each well of a flat-bottom 96-well tissue culture plate and incubated 

overnight at 4ºC. Excess DimerX+peptide conjugate was removed prior to 

stimulation, and 3x105 Jurkat cells suspended in complete IMDM containing 2μg/mL 

anti-CD28 were seeded into a single well, centrifuged for 10 seconds, and incubated 

at 37ºC for the period of stimulation. For periods of stimulation shorter than 30 

minutes, cells were incubated in a 37ºC water bath; for longer periods plates were 

placed in a tissue culture incubator. 

 

2.6.4 Plate-bound anti-CD3 antibody 

50 μL of 20 μg/mL anti-CD3ε antibody (clone OKT3, Biolegend) diluted in PBS was 

distributed into each well of a flat bottom 96-well tissue culture plate and incubated 

overnight at 4ºC. The concentration of anti-CD3 was chosen to match the 

concentration of DimerX that was found to give maximum stimulation. Unbound 

antibody was removed immediately prior to stimulation, and 3x105 Jurkat cells 

suspended in complete IMDM containing 2 μg/mL anti-CD28 were seeded into each 

well. Plates were centrifuged for 10 seconds, and incubated at 37ºC for the period of 

stimulation. For periods of stimulation shorter than 30 minutes, cells were incubated 

in a 37ºC water bath; for longer periods plates were placed in a tissue culture 

incubator. 

 

2.7 Flow cytometry 
2.7.1 Surface staining of whole cells 

FACS buffer 
1x PBS 
2% FCS 
0.2% Sodium azide 
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Analysis of cell surface markers by flow cytometry was carried out in non-sterile 

round bottom 96-well plates. Cells were washed in 200 μl FACS buffers before 

staining with relevant antibodies (listed in Table 2) in a total volume of 30 μl at 4ºC 

for 20 minutes. After the incubation period, plates were centrifuged and excess 

antibody removed. Cells were subsequently washed in 200 μl FACS buffer before 

being resuspended in 100 μl for acquisition on MACSQUANT Analyzer 10 flow 

cytometer (Miltyeni Biotec). 
 

To assess cell viability, a LIVE/DEAD Fixable Dead Cells Stain (ThermoFisher 

Scientific) reconstituted in DMSO was diluted 1:1000 in PBS. Cells that had been 

stained with surface antibody and washed were resuspended in diluted LIVE/DEAD 

stain and incubated for 10 minutes at room temperature. The stain was then 

removed by centrifugation and resuspended in PBS for flow analysis. 

 

Plates were kept on an ice block for the duration of their acquisition using the 

MACSQuant Analyzer. Calibration of the machine was performed prior to acquisition 

using MACSQuant Calibration Beads (Miltenyi Biotech, 130-093-607), and 

fluorescence compensation was carried out using single stain controls. Acquisition 

data was analysed using FlowJo version 8.7 (Becton, Dickinson and Company). 

 

2.7.2 Annexin V staining 

Cells in a round bottom 96-well plate were washed once in PBS, then once in 1X 

eBioscience Binding Buffer for Annexin V (Thermo Fisher, BMS500BB), and 

resuspended in 100 μL Binding Buffer. 5 μL fluorochrome-conjugated Annexin V 

was added to each well, and the plate was incubated for 15 minutes at room 

temperature. Cells were then washed once in Binding Buffer resuspended in 190 μL 

Binding Buffer. 10 μL Propidium Iodide (20 μg/mL) was added to each well 

immediately before acquisition for flow analysis. 

 

2.7.3 CellTrace Violet/CFSE staining 

5 mM Stock solutions of CellTrace Violet or CFSE were created by dilution in 

DMSO. Cells were counted and 1x106 cells were centrifuged in 15 mL centrifuge 

tubes and washed 4x in 5 mL of PBS. Cells were subsequently resuspended in 1 mL 
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PBS. CellTrace Violet or CFSE dilutions were made up at 1000x working 

concentration, with additional serial dilutions as needed, and 1 μL was added to cell 

suspensions. The highest working concentration used in any experiment was 50 nM. 

Cells were incubated for 20 minutes at 37ºC, then 5 mL complete IMDM was added 

to each tube. Tubes were kept on ice for 10 minutes before centrifugation and 

removal of media. Cells were washed twice in PBS before differently stained lines 

were combined into groups for use in experiments. 

 

2.7.4 Intracellular staining 

All cell surface stains were performed prior to starting this protocol. Cells in 96-well 

plates were washed twice in 100 μL FACS buffer. Remaining FACS buffer was 

removed by centrifugation, before fixation and permeabilisation in 100 μL BD 

Cytofix/Cytoperm (BD554722) was added to each well. Plates were incubated for 15 

minutes at 4ºC and wells were subsequently washed in 1x BD perm wash buffer. 

Antibodies (Table 2) were diluted in 1xBD perm wash buffer and incubated with cells 

for 20 minutes at 4ºC. After staining, wells were washed in Perm/Wash and cells 

were resuspended in FACS buffer for flow analysis. 

 

2.7.5 Phosphoprotein flow cytometry  

To analyse phosphoproteins by flow cytometry, cells on 96-well plates were fixed in 

2% PFA and incubated for 15 minutes at 37ºC. Cells were pelleted by centrifugation 

and PFA removed, then 100 μL prewarmed BD Phosflow Lyse/Fix (BD558049) was 

added to each well and plates were incubated for 10 minutes at 37ºC. Plates were 

centrifuged again to remove Lyse/Fix, and 200 μL BD Phosflow Perm I (BD557885) 

was added to each well. Plates were incubated for 20 minutes at room temperature, 

then Perm I buffer was removed by centrifugation. Flow cytometry antibodies were 

diluted in Perm I. Primary antibody was added to wells, and incubated for 20 

minutes at 4ºC. Primary antibody was removed by centrifugation, and secondary 

antibody was added and incubated for 20 minutes at 4ºC. After staining, wells were 

washed with 150 μL Perm I and resuspended in FACS buffer for flow analysis. 

 

2.7.6 Nucleus flow cytometry 

Sucrose Buffer A 
10mM HEPES pH 7.8 
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8 mM MgCl2 
320 mM Sucrose 
0.1% Triton-X 100 
1x Protease Inhibitor 
 
Sucrose Buffer B 
10mM HEPES pH 7.8 
8 mM MgCl2 
320 mM Sucrose 
1x Protease Inhibitor 
 
FACS Buffer+MgCl2 
1X PBS 
2% FCS 
8mM MgCl2 
 
PERM buffer 
1X PBS 
2% FCS 
8mM MgCl2 
0.3% Triton-X 100 

 

Sucrose Buffer A and B were prepared fresh. Cells used for nuclear flow cytometry 

were transferred into 1.5 mL Eppendorf tubes and pelleted by centrifugation. 

Samples were kept on ice unless otherwise noted for the remainder of the process. 

Cell pellets were resuspended in 250 μL chilled Sucrose Buffer A and incubated for 

15 minutes. Samples were then centrifuged at 2000 x g for 10 minutes at 4ºC. 

Supernatant was removed, and cells were washed in 250 μL chilled Sucrose Buffer 

B and centrifuged at 2000 g for 10 minutes at 4ºC. After two 250 μL washes in 

Sucrose Buffer B, nuclei were fixed by resuspending sucrose buffer B containing 4% 

paraformaldehyde. Resuspended samples were incubated for 25 minutes at room 

temperature, protected from light. 

 

Fixed nuclei were washed once with FACS buffer supplemented with MgCl2 and 

centrifuged at 1000 x g for 5 minutes at 4ºC, then washed once with PERM buffer 

and centrifuged at 1000 x g for 5 minutes at 4ºC. Nuclei were stained with flow 

cytometry antibodies diluted in PERM buffer for 20 minutes. PERM wash was 

repeated before staining with secondary antibodies, when necessary. After staining, 

samples were washed once in FACS buffer containing MgCl2 and resuspended in 

FACS buffer containing MgCl2 for flow analysis. 
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2.8 Calcium flux measurement 
2.8.1 Indo-1 loading 

1x106 cells were stained with CFSE as described in section 2.7.3 prior to loading 

with Indo-1, AM, cell permeant (ThermoFisher Scientific). Indo-1 was initially 

reconstituted in DMSO to a final concentration of 1 mM. Cells were resuspended in 

1 mL of warm PBS and 1 μL of 1 mM Indo-1 was added. Cells were incubated with 

Indo-1 for 30 minutes at 37ºC. Loading was quenched by adding 5 mL IMDM + 1% 

FCS to each tube. Cells were washed once in 5 mL IMDM + 1% FCS before being 

resuspended in 800 μL RPMI + 1% FCS supplemented with Ca2+ for acquisition. 

 

2.8.2 Acquisition 

Indo-1 loaded cells were acquired using a BD LSR II Special Order System with BD 

FACSDIVA v8 software (BD Biosciences). The violet:blue emission ratio of 

unstimulated samples were adjusted to 50,000, in accordance with manufacturer 

recommendations (BD LSR II user guide, BD Biosciences). Unstimulated samples 

were acquired for 45 seconds, then a 15 second break in acquisition was taken to 

add 16 μL anti-CD3 (clone OKT3, Biolegend) to stimulate cells. The remaining 

sample was allowed to run for 14 minutes and 45 seconds. At this point, a further 15 

second break was taken to add 10 μL ionomycin (1 μg/mL, Sigma-Aldrich) and the 

remaining sample was run for and additional 60 seconds. Acquisition data was 

analysed using FlowJo version 8.7.  

 

2.9 Quantitative PCR 
2.9.1 RNA isolation 

Cells were transferred to 1.5 mL Eppendorf tubes and pelleted by centrifugation and 

media was removed. Pellets were resuspended in 500 μL Trizol and vortexed for 10 

seconds. 100 μL chloroform was added and tubes were vortexed again for 10 

seconds, then incubated at room temperature for 3 minutes. Tubes were then 

centrifuged at 17,000 x g in a benchtop centrifuge at 4ºC for 10 minutes. 

Centrifugation caused separation of the samples into organic and aqueous phases, 

and the aqueous phase was removed into a fresh tube (approx 200-250 μL). An 

equal volume of RNase-free isopropanol (VWR chemicals) and 1 μL of Glycoblue 

was added to each tube. Samples were kept at -20ºC for 1 hour, then centrifuged at 
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17,000 x g at 4ºC for 20 minutes. Isopropanol was removed, and pellets were 

washed once with RNase-free 70% ethanol. Pellets were air dried before 

resuspension in 20 μL RNase-free water and RNA concentration was checked by 

Nanodrop. 

 

2.9.2 cDNA synthesis 

Pre-Reverse Transcription reaction 
1 μL oligo (dT)20 Primer (ThermoFisher Scientific) 
1 μL Deoxynucleotide Solution Mix (Promega) 
1 μg RNA 
made up to 11 μL with H2O 
 
 
Reverse Transcription reaction 
4 μL 5X first-strand buffer (ThermoFisher Scientific) 
1 μL 0.1 M Dithiothreitol (ThermoFisher Scientific) 
1 μL RNase inhibitor (ThermoFisher Scientific) 
1 μL SuperScript III Reverse Transcriptase (ThermoFisher Scientific) 

 

1 μg of RNA was used for each reverse transcription reaction. Pre-reverse 

transcription reactions were prepared in PCR tubes and incubated for 6 minutes at 

at 65ºC, and then left on ice for one minute before addition of reverse transcription 

reagents. Tubes were then incubated for 50 minutes at 50ºC, then 15 minutes at 

70ºC, and finally 5 minutes at 4ºC. After completion of reverse transcription, 0.5 μL 

of RNAse H (5,000 U/mL, New England Biolabs) was added to each tube. 

 

2.9.3 SYBR Green qPCR 

SYBR Green reagent mixture 
10 μL 2x SYBR Green QPCR master mix (Agilent) 
0.4 μL Forward Primer (10 μM) (Table 1) 
0.4 μL Reverse Primer (10 μM) (Table 1) 
4.2 μL H2O 
5 μL cDNA template 

 

180 μL of RNase-free water was added to each 20 μL cDNA product before use as 

qPCR template. SYBR Green reagents were aliquoted across a 96-well qPCR plate 

(Roche Molecular Diagnostics) and an adherent film was applied to make wells 

airtight. Roche LightCycler 480 II (Roche Molecular Diagnostics) was programmed 

to perform 40 cycles after an initial 3 minute incubation at 95ºC. Each cycle included 
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5 seconds at 95ºC followed immediately by 10 seconds at 60ºC, with a ramp rate of 

4.4ºC/second. Cp values were exported from Light Cycler 480 Software 1.5 (Roche 

Molecular Diagnostics) and analysed using Microsoft Excel 2011 (Microsoft Office). 

Where applicable, qPCR products were run on a 10 well Novex 6% TBE Gel 

(ThermoFisher Scientific, EC6265BOX). 

 

2.10 Statistical analysis 
Statistical analyses were performed in Prism 7 (Graphpad Software Inc). 

Comparisons of two samples used unpaired T tests with Holm-Sidak multiple 

comparisons correction. A p-value less than 0.05 was considered significant. 

Significance was denoted in figures as follows: ns = not significant, *p < 0.05, **p < 

0.01, ***p < 0.001. 

  

Table 1. Primer and oligo sequences 

 

CRISPR guide 
oligos 

Ex 1-6  CACCG ACTTCTGCAGAATTTCTCTT TGG 

  AAAC AAGAGAAATTCTGCAGAAGT C 

Ex 1-7  CACC GGAGTTTGCCAATGAATTTC TGG 

  AAAC GAAATTCATTGGCAAACTCC 

Ex 1-8  CACCG ACCCTGAGAGGGTCACATAC AGG 

   AAAC GTATGTGACCCTCTCAGGGT C  

PCR primers PTPN22 
Exon 1 

 TTTGCTGAGAAGGAAGGCACT 

  GCAAACCACTCAGAGAAGTCAAA 

qPCR primers GAPDH  ATGACATCAAGAAGGTGGTGAAG 

   CTGTTGAAGTCAGAGGAGACCAC 

 7SK  CATCCCCGATAGAGGAGGAC 

   GCGCAGCTACTCGTATACCC 

 SDHA  GAGGCAGGGTTTAATACAGCA 

   CCAGTTGTCCTCCTCCATGT 

 EGR-1  CTTCAACCCTCAGGCGGACA 
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Table 2. Antibodies. Working concentrations are given in μg/ml when manufacturer 
reports antibody concentration, otherwise concentrations are given as dilution factor 
used. 
 

Specificity Clone Host Application 
Working 
concentration 

Catalogue 
Number 

α-tubulin TU-02 Mouse Western blot 0.4 μg/ml Santa Cruz 
Biotechnology 
sc8035 

β-actin 13E5 Rabbit Western blot 1:1000 Cell Signalling 
Technology 
4970 

CD3 OKT3 Mouse T cell stimulation plate: 20 
μg/mL 
Ca2+ flux: 10 
μg/ml 

BioLegend 
317302 

CD3 OKT3 Mouse Flow cytometry  0.25 μg/ml eBioscience  
45-0037-41 

CD69 FN50 Mouse Flow cytometry  1:200 BD Biosciences 
560711 

cFos 2G2 Mouse Flow cytometry 1:100 Novus Biologicals 
NBP2-37492 

DimerX I Human HLA-
A2:Ig Fusion 
Protein 

(Mouse) T cell stimulation 20 μg/mL BD Biosciences 
551263 

Erk1/2 polyclonal Rabbit Flow cytometry 1:200 Cell Signalling 
Technology 
9102 

Erk 1/2 
pY204 

197G2 Rabbit Flow cytometry 1:200 Cell Signalling 
Technology 
4377 

IL-2 MQ1-17H12 Rabbit Flow cytometry 0.25 μg/ml Biolegend 
500328 

   GGAAAAGCGGCCAGTATAGGT 

 cJun  CCTTGAAAGCTCAGAACTCGGAG 

   TGCTGCGTTAGCATGAGTTGGC 

 cFos  CCGGGGATAGCCTCTCTTACT 

   CCAGGTCCGTGCAGAAGTC 
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Specificity Clone Host Application 
Working 
concentration 

Catalogue 
Number 

Lck polyclonal Rabbit Flow cytometry,  
Western blot 

1:200 Cell Signalling 
Technology 
2752 

Lck pY394 
(p-Src 
Family 
Y416) 

polyclonal Rabbit Flow cytometry 1:200 Cell Signalling 
Technology 
2101 

Lck pY505 polyclonal Rabbit Flow cytometry 1:200 Cell Signalling 
Technology 
2751 

NFAT D43B1 Rabbit Flow cytometry 1:50 Cell Signalling 
Technology 
14324 

NFkB E379 Rabbit Flow cytometry 0.625 μg/ml Abcam 
ab190589 

PTPN22 polyclonal Goat Western blot 0.2 μg/ml R&D Systems 
AF3428 

PTPN22 D6D1H Rabbit Western blot 1:1000 Cell Signalling 
Technology 
14693 

TCR 
Vβ13.1 

IMMU 222 Mouse Flow cytometry 1:200 Beckman Coulter 
IM2292  

zap-70 D1C10E Rabbit Flow cytometry,  
Western blot 

1:200 
 

Cell Signalling 
Technology 
3165 

Zap-70 
pY493 

polyclonal Rabbit Flow cytometry,  
Western blot 

1:200 Cell Signalling 
Technology 
2704 

Secondary 
Antibodies 

     

Goat  
secondary 

polyclonal Donkey Western blot 0.1 μg/ml Life Technologies  
A21084 

Mouse 
secondary 

polyclonal Goat Flow cytometry 5 μg/ml Life Technologies  
A11001 

Mouse 
secondary 

polyclonal Goat Western blot 0.05 μg/ml LI-COR 
926-32210 

Rabbit 
secondary 

polyclonal Goat Flow cytometry 4 μg/ml Invitrogen  
A21245 

Rabbit 
secondary 

polyclonal Goat Western blot 0.1 μg/ml Life Technologies  
A21109 
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3. Development of isogenic human cell lines with 
mutated PTPN22 
 

3.1 Introduction 
The haematopoeitic phosphatase PTPN22 has one of the strongest associations 

with autoimmune disease of any human gene outside of HLA185,186. The single-

nucleotide polymorphism R620W has been linked to increased susceptibility to 

autoantibody-driven autoimmunity, such as type 1 diabetes, rheumatoid arthritis, 

systemic lupus erythematosus, and Graves’ Disease135-138. The fact that HLA has 

the strongest genetic association with these diseases indicates that T cells are 

critical in pathogenesis of autoimmunity187, most likely because the development of 

high-affinity autoantibodies by B cells requires T cell help188.  

 

In T cell signalling, PTPN22 is considered to be a negative regulator, 

dephosphorylating activating residues on the signalling molecules most proximal to 

the T cell receptor. It associates with another negative regulator, the kinase Csk158, 

but the consequences of this interaction are still under debate149. What is known is 

that the PTPN22 R620W SNP affects the region of PTPN22 that mediates 

interaction with Csk, and reduces the interaction significantly. 

 

3.1.1 PTPN22 in mice and men 

One of the most challenging aspects of PTPN22 R620W research is a lack of 

consensus between data generated in different models. Mouse models consistently 

show that the equivalent mutation, R619W, is a loss-of-function mutation in T cells; 

in contrast a gain-of-function effect was reported in most studies using human T 

cells. In both cases, the SNP was associated with increased susceptibility to 

autoimmune disease, although this varied in mice depending on the genetic 

background155,156, and on the ethnic population studied in humans.  

 

Zhang et al. found that T cells from C57 Black 6 (B6) mice with the analogous 

R619W polymorphism exhibited enhanced T cell activation, as expected from a 

loss-of-function mutation in a negative regulator of T cell activation155. They 
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observed greater T cell numbers in spleen and thymus in R619W mice, higher ratios 

of effector/memory to naive as measured by CD62L/CD44 surface staining, and 

increased expression of CD69 and CD25 compared to wild-type (WT) mice. They 

were also able to detect prolonged phosphorylation of PTPN22 targets Lck Y394 

and Zap-70 Y319 after stimulation with CD3/CD28. They explained these findings by 

showing an increase in calpain-mediated degradation of PTPN22 with the SNP, and 

showed a similar effect in Jurkat cells transfected with expression vectors of WT or 

R620W PTPN22.  

 

Dai et al. released a study several years later using independently-generated knock-

in mice on a B6x129/sV genetic background, a background which is prone to 

developing spontaneous autoimmunity156. While they corroborated the findings of 

Zhang et al. such as expanded T cell populations and enhanced signalling, including 

increased calcium flux and IL-2 expression, they found that the variant protein was 

not subject to increased rates of degradation compared to the wild-type. Importantly, 

they also reported higher levels of autoantibodies, and increased rates of 

spontaneous and induced autoimmunity. These mouse models, while demonstrating 

some variation, clearly show the R619W polymorphism to be a loss-of-function 

mutation, resulting in enhanced T cell signalling in mice. 

 

Human individuals carrying the R620W allele have some similarities with R619W 

mice, including a susceptibility to autoimmune disease and accumulation of 

effector/memory T cells in the periphery, as well as autoreactive B cells. However, a 

closer look at T cell signalling revealed a more complicated landscape.  Contrary to 

the mouse results, CD4 cells isolated from humans with the polymorphism were 

found to have reduced proliferation and calcium flux in response to CD3/CD28 

stimulation189,190. They were also reported to have reduced CD25 expression, as 

well as a trend towards reduced cytokine production, including IL-2 and IL-4, with 

the most significant difference in IL-10. In contrast, loss of PTPN22 by siRNA 

knockdown of PTPN22 in human PBMCs and Jurkat cells was reported to lead to an 

increase in IL-2 production relative to untargeted cells191. Taken together, these 

studies suggested that the R620W polymorphism constitutes a gain-of-function, with 

T cells exhibiting reduced activation when the polymorphism is present, which is the 

opposite effect from when the protein is reduced.  
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Further evidence for R620W as a gain-of-function polymorphism is found in 

overexpression studies. Human primary cells and Jurkat cells showed PTPN22-

R620W to be more effective at downregulating the NFAT/AP-1 pathway192, and to 

have reduced Lck phosphorylation151 (although the latter did not correlate with 

reduced Zap70 phosphorylation). However, conclusions are further complicated by 

the fact that in certain circumstances the human polymorphism mimics the mouse 

polymorphism or the protein knockout. Metzler et al found that in both human and 

mouse, B cell selection was similarly affected to generate more autoreactive B 

cells167. Burn et al found that the human polymorphism appeared to have a loss-of-

function effect, associated with stronger signalling in primary T cells stimulated with 

LFA-1153. Evidence from these studies shows that although PTPN22 R620W 

autoimmune susceptibility is consistent between mouse and human models, the 

specific biochemical mechanisms driving it are distinct and complex. 

 

A significant challenge in understanding the relation between mouse and human 

models is that human studies have thus far been conducted either in genetically 

distinct individuals, used overexpression vectors, or achieved knockdown through 

siRNA complexes. These techniques present unique difficulties compared to studies 

in lab-bred mice. Using cells from humans inevitably carries the complication of 

genetic variation between individuals, as well as uncontrollable environmental 

effects accumulated over years. At the same time, overexpression of a protein in a 

cell alters the normal stoichiometry of the protein relative to its binding partners and 

other members of the signalling pathway, and can change protein:protein 

interactions. Interpreting results from siRNA studies also brings with it the caveats of 

possible off-target effects and of incomplete reduction of the target protein, as well 

as the confounding factor of Toll-like receptor stimulation193. The aim of this thesis is 

to address the controversy between mouse and human data by generating isogenic 

human cell lines with mutations in PTPN22. 

 

3.1.2 CRISPR technology 

The advent of CRISPR technology offers a rapid, inexpensive route for genetic 

engineering194. The technique uses bacterial endonucleases, most commonly Cas9 

from Streptococcus pyogenes, to introduce breaks in DNA strands. The enzyme is 

targeted to a specific DNA sequence by an associated single-guide RNA (sgRNA) 
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consisting of a scaffold and a 20-nucleotide guide RNA sequence. The purpose of 

the enzyme in nature is to provide bacterial adaptive immunity by recognising and 

digesting foreign DNA sequences present in the cell, such as those derived from 

bacteriophages. The guide sequence is variable, and will direct the enzyme to bind 

to a sequence of complementary DNA. In order for the endonuclease to bind and 

cleave the DNA molecule, the recognised DNA sequence must be followed by a 

protospacer adjacent motif (PAM) sequence. In the case of Cas9, the required PAM 

sequence is -NGG, meaning Cas9 can theoretically be directed to any site in a 

genome that contains -NGG. In the human genome, this means that Cas9 can be 

targeted to every 8 base pairs (bp) of the human genome, on average195. Thus, a 

PAM site is rarely far from a given region of interest. 

 

Upon binding to a DNA molecule, Cas9 creates a double-strand break. The cut is 

made three bp upstream of the PAM sequence, and exposes the ends of the DNA 

strands, triggering DNA repair. DNA damage can be repaired by non-homologous 

end joining (NHEJ) or homology-directed repair (HDR) in the presence of a 

homologous DNA template. NHEJ results in deletions or insertions, whereas HDR is 

a much more precise, yet infrequent, event, and has been used to achieve specific 

gene edits. Compared to HDR, NHEJ is much more likely, and can lead to knock out 

of a protein, as the random insertions/deletions (indels) may cause frameshift 

mutations and premature stop codons. 

 

3.1.3 Jurkat T cells 

Jurkat T cells were selected for this project due to the relative ease of handling them 

compared to primary human T cells196. Isolated in 1977 from an ALL patient, much 

of our knowledge of T cell signalling is based on work in Jurkat cells197. While Jurkat 

cells may not exactly recapitulate human T cell signalling, they are very well-

characterised, to the point that their entire genome has been analysed for 

abnormalities198. Notably, they lack PTEN and SHIP and may have altered levels of 

other signalling molecules compared to primary cells75. However, they are diploid 

and relatively stable, are homozygous for the major allele of PTPN22, and express it 

along with all of its known interactors199. These facts, coupled with the significant 

differences in cost and challenge compared with primary cells, made Jurkat cells an 

appropriate choice for this work. 
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The vast majority of human T cell models use superantigen (SAg) stimulation, such 

as CD3/CD28 antibodies. These stimuli produce responses through the same 

pathways as cognate antigen stimulation, but are fundamentally different in binding 

behaviour. Importantly for PTPN22 investigations, our lab has demonstrated that 

PTPN22 is most important in discriminating responses to weak antigens200, a type of 

interaction which cannot be replicated by SAgs and instead requires a known 

cognate antigen. Based on this observation, we decided to transduce our cell line 

model with a known TCR that can be stimulated with cognate antigen of varying 

specificity, which has not previously been possible in a human model of PTPN22 

mutation. 

 

GWAS studies have identified PTPN22 as a critical phosphatase in regulating 

immune responses. Due to the lack of human PTPN22 knockout data, we used 

CRISPR to produce isogenic Jurkat cell lines with the PTPN22 gene disrupted or 

intact at the genome level. The lines can also be stimulated specifically with cognate 

antigen with different degrees of affinity. These lines represent a novel method to 

investigate the role of PTPN22 in human T cell signalling. 

 

Our recent work with mouse knockout cells has also demonstrated that the absence 

of PTPN22 in T cells improves tumour killing201. Given that adoptive T cell therapy 

has recently been approved for treating human cancers202, PTPN22 could prove a 

valuable target in enhancing cancer therapy. Human PTPN22 KO cell lines are the 

first step in validating such a method. 

 

3.2 Results 
3.2.1 Genotyping and verification of Jurkat PTPN22 expression 

Before beginning work with CRISPR, I had to establish a suitable parent cell line. I 

first needed to confirm that Jurkat cells are homozygous for the major allele of 

PTPN22. The R620W SNP has a phenotype even in the heterozygote state, so it 

was important to ensure that the unaltered control cell lines would have normal 

PTPN22 function.  
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Genetic screening for the R620W SNP is carried out by PCR of the R620W region 

followed by restriction digest with XCMI. The SNP introduces an XCMI cut site, 

which allows XCMI to cleave the 215 bp polymerase chain reaction (PCR) product 

into segments of 170 and 45 bp. These segments can be visualised by gel 

electrophoresis and are distinct from the uncut product, which remains if there is at 

least one allele which lacks the R620W SNP. XCMI screening showed that Jurkat 

cells are indeed homozygous for the major allele of PTPN22 (Figure 1a). The 215 bp 

product remains completely intact after incubation with XCMI, so neither allele 

contains an XCMI cut site. The heterozygous control on the same gel shows XCMI 

digestion of one allele, while the other remains uncut, confirming that the XCMI 

enzyme is able to cleave the PCR product only when the SNP is present.  

 

I next performed a Western blot to verify that Jurkat cells express PTPN22 protein 

(Figure 1b). A band was detected at the appropriate molecular weight of 97kD in the 

lane containing Jurkat cell lysate. The band was absent in the negative control lane 

containing lysate from an equal number of 293T cells, which are human embryonic 

kidney cells not expected to express PTPN22, suggesting that the 97kD band is 

indeed PTPN22 and not a result of non-specific binding. Both lanes do contain a 

non-specific band that is detectable just under the molecular weight of PTPN22. 

While detection by Western blot is not a requisite for a protein to have a biological 

effect, sufficient expression of a protein by the parent cell line makes it much easier 

to later confirm protein knockout in daughter lines by directly checking for loss of 

protein expression. 
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Figure 1. Jurkat cells express the major variant of PTPN22. (a) Jurkat 
genotyping was done by PCR followed by XCMI digest. The major allele produces 
a 215 bp band, while the R620W polymorphism produces 170 and 45 bp bands. 
(b) PTPN22 expression was tested by Western Blot. Whole cell lysates from 
Jurkat cells or non-haematopoeitic 293T cells were probed for PTPN22 and B-
actin. 
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3.2.2 Transduction of Jurkat cells with Tax TCR 

The cognate antigen of the endogenous Jurkat TCR is unknown. Most publications 

circumvent this issue by using (SAg) stimulation, such as anti-CD3/anti-CD28, 

PHA/PMA, or PDBU/ionomycin. However, these types of stimulus operate through 

different mechanisms than peptide/MHC, and may not be truly representative of 

physiological signalling mechanisms. Furthermore, we have previously reported that 

the involvement of PTPN22 varies with strength of antigen stimulation, a distinction 

that could be lost with stimulation by SAgs. 

 

Because we are interested in the role of PTPN22 in weak cognate interactions, we 

decided to transduce our cell line with a known TCR of that could be stimulated with 

weak or strong peptides. We used a line of Jurkat cells that lacks endogenous TCR 

expression to eliminate any possible effects of an additional TCR on signalling 

stoichiometry, and avoid the possibility of incorrect alpha/beta chain pairings.  

 

We transduced JRT3-T3.5	 Jurkat cells, which lack the TCR beta chain, with a 

specific T cell receptor that recognises pTax, an HLA-A2 restricted peptide derived 

from human T-cell lymphotropic virus. The Tax TCR also recognises with weaker 

affinity the peptide pHuD (from Hu-antibody associated paraneoplastic neurological 

syndromes). The TCR transduction was carried out in collaboration with Hans 

Stauss, as described203. Cells were bulk sorted for TCR expression by flow 

cytometry (Figure 2a), and then the sorted population was cloned by limiting dilution 

and each clonal population expanded. Using a line isolated from a single cell 

reduces the genetic variability between subsequent daughter lines, including the 

possibility of highly varied CD3 expression following TCR transduction.	

 

In order to select which TCR-transduced clone to use as a parent line, I tested each 

of them for surface CD3 expression as well as responsiveness to pTax stimulation. 

CD3 and TCR can only be stably expressed on the cell surface when they are 

present together in a complex, so levels of CD3 on a cell surface can be considered 

equivalent to TCR expression. For this experiment, Jurkat cells were co-cultured 

with T2 cells pulsed with pTax peptide. T2 cells are a lymphoblast line that 

expresses HLA-A2, but lacks a peptide transporter involved in antigen processing 
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Figure 2. Selection of Tax TCR Jurkat line. (a) Tax TCR-transduced Jurkat cells were 
sorted by flow cytometry based on expression of Vβ13 TCR chain and CD3. Sorting 
was performed 72 hours after transduction. (b) CD69 and CD3 expression was 
evaluated by flow cytometry. CD3 expression of unstimulated cells is compared to 
unstained controls (grey). Numbers indicate MFI of stained samples. CD69 expression 
of cells stimulated for 24 hours with pTax peptide is compared to unstimulated controls 
(grey). Numbers indicate percentage of cells that are CD69 positive. Three 
representative clonal cell lines are shown. (c) MFI of CD3 expression and CD69 
upregulation were found to correlate across eight cell lines tested. The blue square 
indicates Jurkat Tax TCR clone C11.	
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and is thus unable to load endogenous protein for MHC class I presentation204. This 

means the surface HLA-A2 is able to pick up the pTax peptide when it is present in 

the culture media, and to present it in MHC:peptide complexes to Jurkat cells. Jurkat 

and pTax-loaded T2 cells were co-cultured for 24 hours before antibody staining for 

flow cytometry. 

 

When analysing CD69 surface expression by flow cytometry, I observed that Jurkat 

clones with higher CD3 expression showed correspondingly increased upregulation 

of CD69 (illustrated for three clones in Figure 2b). This correlation was found to give 

a linear relationship for each of the clones I tested (n=8) (Figure 2c). The capacity 

for a cell line to produce a strong response to cognate peptide is important when 

trying to detect subtle signalling effects or to analyse responses to much weaker 

peptides. Thus, clone C11 (blue square, Figure 2c) was selected to continue with 

CRISPR work because it had the highest MFI of CD3 surface expression as well as 

the greatest degree of CD69 upregulation in response to pTax. 

 

3.2.3 Exon 1 PCR screen design 

CRISPR knockout efficiency varies, but is almost never affects 100% of a 

transfected population. Because I would be trying to choose mutated cell lines from 

potentially hundreds of clones, I needed a rapid, simple way to screen for indels at 

the genomic level. Following genomic screening, clones would be selected for lower 

throughput Western blot screening to check for loss of protein expression. Genomic 

screening would be useful as a first step to analyse many clones to estimate gene 

editing efficiency and select likely candidates for further study. 

 

I opted for a PCR screen with restriction digest because PCR is simple, cheap, and 

well-established. I used NCBI/Primer-BLAST to select primers that would create a 

PCR product longer than 400 base pairs. The size of the product would reduce the 

likelihood that a large deletion could knock out a primer site or reduce the product to 

<100 bp, which becomes difficult to detect on a gel or read by Sanger sequencing. 

The PCR product spans PTPN22 exon 1 as well as two restriction sites for AvaII, 

which create products differing in length by at least 40 base pairs (240, 
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Figure 3. PCR screen development. (a) 485 bp product spanning 
human PTPN22 Exon 1 contains two AvaII restriction sites. (b) Uncut PCR 
product and AvaII digested PCR product were run on an agarose gel.	
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144, 101 bp) (Figure 3a), and are thus easily distinguishable on a gel (Figure 3b). 

One AvaII restriction site involves the start codon, thus loss of that site could be a 

good indicator that the cell line would no longer be able to express PTPN22. 

 

3.2.4 CRISPR guide RNA design 

Guide design is an important determinant in maximising Cas9 efficiency and 

minimising off-target effects205,206. I selected four guides that had “green” quality 

scores from the Zheng Lab off-target prediction tool (http://crispr.mit.edu/) to reduce 

the likelihood of introducing insertions or deletions in the genome outside of our 

region of interest. The guides were selected in pairs with cut sites within 15 bp of 

each other for potential use with the nickase version of Cas9. The nickase was 

created to further reduce off-target editing by creating cuts on only one DNA strand, 

so that only when two guide sequences are recognised in the same region of DNA 

does a double-strand DNA break occur. As double-strand breaks are needed to 

expose the DNA strand to loss or addition of nucleotides, this method reduces the 

likelihood of creating off-target indels. Use of the nickases effectively doubles the 

specificity of Cas9, but requires two sgRNAs with high activity to create indels 

efficiently207. 

 

We targeted exon 1 in order to mimic the mouse Ptpn22 KO used in our lab, in 

which exon 1 has been excised. The guide pairs I selected targeted either the start 

codon at the beginning of exon 1 or the region within 10 bp downstream from the 

end of exon 1 (Figure 4). Exon 1 of human PTPN22 spans only 87 bp, which is short 

enough that most or all of it could be deleted by CRISPR targeting. 

 

At the time of performing these experiments, plasmid CRISPR transfections were 

better optimised than protein or RNA transfections, and there were readily available 

and affordable reagents from Addgene in a number of formats, including plasmids 

encoding antibiotic resistance cassettes or fluorescence markers. We purchased 

DNA oligonucleotides based on our guide sequences to clone into the plasmids, 

allowing our sgRNA to be expressed from the same promoter as the Cas9 protein. I 

followed the protocol described by Ran, et al194 to anneal the guide sequence DNA 

oligos into plasmids from Addgene, and performed a bacterial transformation into 
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XLI E. coli with the resulting plasmids. Single colonies were expanded and screened 

by restriction digest; if the guide sequence is inserted, it disrupts a BbsI site (data 

not shown). 

 

Different guide sequences have varying on-target efficiency205. To test which of the 

guides we selected had efficient Cas9 cutting activity, I transfected each of them into 

293T cells, human cells which can be transfected more easily than Jurkat cells. Due 

to the relative difficulty of transfecting Jurkat cells by electroporation, screening 

Jurkat populations is labor intensive and time consuming: populations must be 

enriched or even grown up from single cells because the resolution of our bulk 

population screens is not clear enough to evaluate cutting efficiency. However, 293T 

cells can be transfected with highly efficient Fugene transfection, and bulk 

populations screened directly by PCR and restriction digest within a couple of days 

of transfection. 293T screening allowed me to verify whether or not each sgRNA 

was capable of directing any endonuclease activity in human cells (Figure 5).  

 

I observed changes in the band pattern of the PCR product and the AvaII restriction 

digest following transfection of 293T cells with CRISPR plasmids. Interestingly, I did 

not observe any consistent large, uncut bands following AvaII digest, suggesting 

that small deletions around the AvaII restriction sites were not a common 

occurrence. Larger bands can be seen in the heavily loaded lanes 6, 7, and 8. As 

lane 6 was not transfected with any CRISPR plasmids, any residual uncut product 

may be due to incomplete digestion by AvaII over the two hour incubation. Another 

possible explanation could be that the band is a weak, nonspecific PCR product, but 

as no such band is visible in the corresponding uncut PCR lanes, this seems 

unlikely. Lanes 7 and 8 show the larger band of similar intensity to the mock 

transfection group, despite less DNA being loaded, so it is possible that the 

reduction of the 144 bp band in those lanes can be attributed to loss of the AvaII site 

located near the start codon. If this is the case, however, it is a relatively uncommon 

occurrence, as the larger band is weak compared to the other bands. 

 

The most common result from transfection with different guides was shifts or 
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Figure 5. CRISPR guide sequence efficiency testing. Jurkat cells 
underwent Amaxa transfection under one of the following conditions: No 
exogenous DNA added (mock), plasmid containing guide Ex1-5, plasmid 
containing Ex1-6, two plasmids containing Ex1-7 and Ex1-8, three plasmids 
containing Ex1-6, Ex1-7 and Ex1-8. Lanes 1-5: Uncut PCR product. Lanes 6-
10: PCR product digested by AvaII restriction enzyme.	
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changes in intensity of the 144 bp band upon AvaII digestion, evident to some 

degree across all CRISPR conditions (lanes 7-10). This consistency was reassuring, 

as the 144 bp band represents the exon 1 region. CRISPR-driven indels would 

cause the length of that region to vary between the different cells of the transfected 

population, meaning that we would expect to see the intensity of the single wild-type 

band reduced. In lane 9, the 144 bp band appears to be slightly larger, suggesting 

that the region may be subject to insertions more commonly than deletions under 

those transfection conditions. In lane 10, the 144 bp band is no longer visible. There 

is also no larger uncut band visible, suggesting that the loss of the 144 bp band is 

not due to loss of the restriction site, but instead to sufficient deletions in the exon 1 

region that a band of the expected size can no longer by detected. This hypothesis 

is supported by the corresponding uncut PCR product in lane 5, which is the only 

lane to show evidence of consistent and large enough deletions to create a shifted 

band without AvaII digestion. 

 

Based on the fact that lanes 5 and 10 showed the most striking changes, I decided 

to use guide Ex1-6 in combination with 1-7 and 1-8. Ex1-5 showed the least amount 

of difference to the mock transfected group, so I elected not to use it. Instead I used 

Ex1-6 with the wild-type version of Cas9, plasmid Px330, and Ex1-7 and 1-8 each in 

the nickase version, plasmid Px461. The latter plasmid also carries an enhanced 

green fluorescent protein (eGFP) reporter construct on the same promoter as the 

gRNA and Cas9 (Figure 6). 

 

3.2.5 CRISPR plasmid transfection and indel screening 

Electroporation is a widely used method of T cell transfection. We initially used 

Amaxa electroporation, but later switched to Neon electroporation due to its reported 

efficacy in Jurkat transfections208. In our hands, the Neon system produced much 

higher rates of cell survival 48-hours following transfection, increasing from 10% 

(Figure 7a) to 60-80% survival (Figure 7b). Additionally, Neon transfection with the 

CRISPR plasmids alone led to greatly increased GFP expression compared to 

Amaxa transfection with the same constructs. Cell number, concentration of 

plasmid, and electroporation settings all followed manufacturer recommendations as 

described in Chapter 2. These transfections are transient, so that Cas9 and GFP 
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Figure 6. Addgene CRISPR plasmid maps. Guide sequences were ligated into 
plasmids px330 and px461 for transfection in Jurkat cells.	
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expression begins to decline 2-3 days following transfection (data not shown). 

 

48-hours following transfection, cells were sorted based on GFP expression from a 

reporter construct either coded within the CRISPR plasmids or on an independent 

plasmid which was co-transfected. Upon PCR/AvaII screening, I observed that co-

transfections led to greater numbers of GFP-positive cells, but that this GFP 

expression did not correlate with an increased rate of indels; out of 50 tested clones, 

none of them showed any changes at the PCR level (Figure 7c). However, GFP 

expression following transfection with Px461 and no additional reporters did 

correlate with increased indel formation, although many fewer cells were recovered; 

from three clones tested, two of them showed loss of an AvaII restriction site (Figure 

7d). Based on this finding I repeated the transfection using the Neon system without 

using co-transfection with a GFP vector. 

 

GFP-positive cells were sorted as single cells or as bulk populations to be frozen 

and cloned using limiting dilution in order to expand genetically homogenous 

daughter cell lines derived from a single cell. The Neon system gave far better 

transfection efficiency than the Amaxa protocol, allowing me to sort three different 

populations based on levels of GFP expression (Figure 7b). I also sorted cells that 

had been transfected with only a GFP vector, designated the “mock” group. Like the 

CRISPR lines, this group had undergone Neon electroporation, expression of a 

foreign construct, cell sorting and growing from a single clone, but never expressed 

Cas9, and therefore was expected to be as genetically identical as possible to the 

untransfected parent line. 

 

CRISPR and mock-transfected Jurkat cell lines were grown from single cell clones 

over a period of 3-4 weeks before undergoing screening and further selection. 

CRISPR populations were checked for indel formation by PCR screen, and cell lines 

with clear shifts were chosen to undergo further screens. Similarly to the tests in 

293T cells, a significant number of clones showed large shifts in the exon 1 PCR 

product even before digestion with AvaII. I found that high and medium levels of 

GFP expression correlated with increased rate of large indels on at least one allele 
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Figure 7. Cell sorting following PTPN22 Exon 1 CRISPR of Jurkat cells. 
Cells were sorted 48-hours after transfection using (a) Amaxa or (b) Neon 
electroporation. Forward and side scatter plots of cells transfected without DNA 
are shown. Blue events on the FSC/SSC plotes are included in the “intact” gate 
for further analysis. GFP expression is shown for transfection with a GFP 
reporter plasmid only, CRISPR plasmids only, or both a GFP reporter and 
CRISPR plasmids together. Events considered GFP negative are blue. GFP 
positive cells were sorted as a single group (Amaxa) or separated into high, 
intermediate, and low GFP expressing groups (Neon). (c and d) After sorting, 
clones transfected by Amaxa with (c) CRISPR plasmids and a GFP reporter or 
(d) CRISPR plasmids only were screened for indels by exon 1 PCR and AvaII 
digestion.	
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Figure 8. PCR screen of PTPN22 Exon 1 CRISPR Jurkat clones. C11 Jurkat 
cells were transfected with CRISPR plasmids using Neon electroporation and 
sorted by high, intermediate, and low GFP expression. Clonal populations were 
expanded and screened for indels by PCR. One representative gel is shown for 
each sorted group. Large indels were detected by shifts in the main band size 
compared to wild-type control (WT). Frequency of large indels was determined 
by dividing the number of clones with shifted bands by the total number of 
clones screened for each sorted group.	
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(>60%) compared to low levels of GFP (<20%) (Figure 8). A recently developed 

technique that could be used to more accurately assess indel frequency is droplet 

digital qPCR, which uses duplexed primer probes to distinguish WT amplicon 

product from product containing a deletion. Using this technique yields accurate 

indel frequency information from small amounts of DNA, reducing the amount of 

time needed to grow up large volumes of cells merely for screening purposes 209. 

 

Because we previously observed that large differences in Tax TCR expression 

correlate with changes in activation readouts (Figure 2), I took steps to ensure that 

the clones chosen to undergo further screening expressed similar CD3 levels to the 

parent line. Both the mock clones and the CRISPR clones were tested for CD3 

surface expression levels by flow cytometry and compared to CD3 expression of the 

parent line. CD3 median fluorescence intensity (MFI) values were normalised by 

forward scatter MFI to account for differences in cell size, and only cell lines for 

which normalised values were within 10% of the parent line were kept for further 

screening (Figure 9a). The range of CD3 expression of selected clones is shown in 

Figure 9b. 

 

Cell lines were then subjected to Sanger sequencing to more accurately analyse the 

mutations introduced by CRISPR. We used the TOPO cloning technique to separate 

alleles for individual sequencing. In this method, PCR product is annealed into the 

TOPO 2.1 bacterial vector. The open vector contains a 3’ T-overhangs, which 

enable ligation of PCR products carrying non-template adenosines on the 3’ end due 

to amplification by Taq polymerase. The closed plasmid carries an ampicillin 

resistance gene, allowing for selection and expansion of E.coli colonies that contain 

a plasmid with a PCR product. For each cell line I sequenced, I selected six bacterial 

colonies in order to increase likelihood of both alleles being represented. 

 

The sequencing data (Figure 10) shows that deletions of >50 bp are well-

represented, with short sequence alterations often found near the deletion site. 

Deletions frequently span the latter 75% of exon 1, with only a few instances of a 

disrupted start codon. Occasionally, deletions occurred in the centre region of exon 

1, with both Cas9 cut sites remaining intact; this is likely due to more accurate repair 

of the damaged region by homologous recombination using the other allele.  



	

	74 

 

To confirm protein expression was lost due to the genomic changes, Western 

blotting was carried out (Figure 11). PBMCs were restimulated for 24 hours to 

increase PTPN22 expression, five days after initial isolation and expansion, at which 

Figure 9. Selection of Jurkat clones by CD3 expression. (a) Clonal lines of C11 Jurkat 
cells that had been transfected with CRISPR plasmids or with a GFP reporter plasmid 
were checked for CD3 expression by flow cytometry and compared to the parent line 
(yellow bar, indicated by arrow). Clones with an MFI within 10% of the parent line were 
selected. (b) Histogram demonstrating the range of CD3 expression of selected clones. 
The C11 parent line is shown in grey, with the highest selected CRISPR clone in red and 
the lowest selected clone in blue.	
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point they express both more PTPN22 and more protein in general per cell than 

resting Jurkat cells. The membrane was probed with an antibody against the central 

region of PTPN22 and with an antibody against the housekeeping gene α-tubulin as 

a loading control. I later also probed the membrane using another antibody against 

PTPN22 that recognises the N-terminal region to check for truncated forms of 

PTPN22 (data not shown). The additional antibody did not lead to any new bands 

detected in lanes lacking full-size PTPN22, suggesting that the genomic deletions 

occur early enough in the protein sequence that no truncations of PTPN22 are being 

expressed. Based on the Western blot results, I selected six PTPN22 knockout 

clonal lines (KO) and five mock transfected wild-type clonal lines (WT) for use in 

further experiments with the untransfected parent line. 

 

3.2.6 Characterisation of clones in the steady state 

Importantly, PTPN22 WT and KO cell lines in the steady state were morphologically 

indistinguishable by microscope and flow cytometry (Figure 12a). Baghbani, et al 

reported that suppression of PTPN22 by siRNA led to apoptosis in Jurkat cells210, 

but the viability of my PTPN22 KO cell lines was unchanged, suggesting that their 

observations were due to a confounding factor unrelated to PTPN22 expression. As 

Jurkat cells do not rely on TCR signalling for normal growth, we did not expect loss 

of PTPN22 to have any impact on their behaviour in culture.  I observed similar 

levels of cell death, and the rate of cell growth was identical between WT and KO 

lines under normal culture conditions, when measured by daily counts (Figure 12b).  

 

I also found that abundance of the TCR proximal signalling molecules Lck and Zap-

70 was consistent between mock and CRISPR lines (Figure 12). These proteins are 

involved in some of the earliest steps of TCR signalling, and are also known to be 

direct targets of PTPN22. The similar levels of these proteins between WT and KO 

lines means that any differences observed should be due to the presence or 

absence of PTPN22, and not to changes in the stoichiometry of other signalling 

molecules. 

 

These observations were reassuring that PTPN22 was not impacting the cells in 

their normal state, and that any changes in response to stimulation would be due to 
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Figure 12. Steady state analysis of PTPN22 Exon 1 CRISPR Jurkat clones. (a) Size 
and granularity of cells in culture was observed by flow cytometry by foward scatter and 
side scatter, respectively. Plots are representative of more than 10 experiments. (b) 
Growth of cells was monitored by daily counting using a Casy Cell Counter. Three lines 
per group were grown in 24-well plates in triplicate wells. (c) Western blot of PTPN22 and 
early T cell signalling molecules. Whole cell lysate from 1x106 cells of each clonal line was 
loaded per well.	
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alterations in TCR signalling, rather than differences in the condition of the cells prior 

to the experiment. 

 

3.3 Discussion 
We created isogenic PTPN22 KO human T cell lines in order to address the 

complications contributing to the controversy between mouse and human studies of 

PTPN22 function. The CRISPR technique enabled the introduction of genome 

mutations, so that we did not need to rely upon siRNA or protein overexpression to 

identify the role of our protein of interest. Also we could ensure that our cell lines 

were clonally derived, eliminating confounding genetic or environmental factors.  

 

Jurkat cells are a single cell type and are not subject to interactions with Tregs or 

other cells. It is possible that the phosphatase has different roles in specific cell 

lineages. They also lack the capacity to differentiate into specialised effector cells. 

However, many of our outstanding questions about PTPN22 pertain to the TCR 

signalling pathway itself, which has been very well characterised in Jurkat cells. 

PTPN22 KO Jurkat lines are well-suited to address the discrepancies observed in 

mouse and human signalling studies. 

 

One concern about using gene-editing technology is the possibility of off-target 

effects. We reduced the impact of potential CRISPR off-targets on our results in 

three ways: (1) we used an off-target prediction tool to ensure that our guides had 

low homology with other regions of the genome, (2) we used the Cas9 nickase along 

with the wild-type to reduce the likelihood of non-specific double-strand breaks, and 

(3) we selected six different clonal cell lines for each genotype, so that it would be 

unlikely that the same off-target effect would be present in every line across the 

group. A control group that had been through the same procedures for transfection 

and selection was also developed. The cell lines were grown from single cell clonal 

populations and were screened by PCR and Western blot. Each line was also 

selected to have similar levels of CD3 expression relative to the parent line, and the 

lines demonstrated identical growth rates and expression of Lck and Zap-70 while at 

rest. These steps give me confidence that the results reported in chapters 4 and 5 

can be attributed to loss of PTPN22 expression. 
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CRISPR technology has advanced considerably since the inception of this project 

three years ago. Were I to begin today, I would transfect with protein instead of 

plasmids, as the former has been shown to be more efficient in primary cells, our 

eventual targets208. There are also a number of databases now with predesigned 

guide RNAs that are optimised according to more recent knowledge about off-target 

tendencies and optimising efficiency, and many kits exist that expedite the process 

from design to selection, from the several months experienced here to a number of 

days or weeks. 

 

Nonetheless, I was able to achieve an indel frequency of >60%, which enabled me 

to select a number of clones with the PTPN22 KO genotype and which were carried 

forward for biochemical and functional analysis as described in the following 

chapters. This protocol has also informed work using CRISPR to knock out PTPN22 

in primary cells which is now an ongoing technique in the lab and which we aim to 

use to augment adoptive T cell therapy. The PTPN22 KO Jurkat cell lines developed 

here represent a novel and powerful tool in understanding the role of PTPN22 in 

human T cell signalling. 
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4. Effect of PTPN22 on T cell effector molecules 
 
4.1 Introduction 
The development of PTPN22 KO Jurkat clones presented a novel opportunity to 

investigate the effects of loss of PTPN22 on human T cell signalling. In order to 

determine how PTPN22 influences T cell responses to antigen, we stimulated 

PTPN22 WT and KO Jurkat clones with cognate peptide and evaluated their 

upregulation of CD69 and production of IL-2, and their susceptibility to activation-

induced cell death (AICD). 

 

4.1.1 Effector functions of Jurkat T cells 

Jurkat cells were derived from an acute lymphoblastic leukemia patient in 1977211. 

They have been widely used since then as a model of T cell signalling, a role they 

continue to occupy today despite well-known divergences in growth and cytokine 

production upon stimulation compared to normal human primary cells. They offer 

several advantages over primary cells: because of their historical widespread use, 

characteristics of Jurkat cells are well documented in literature197, and immortalised 

cell lines in general are much simpler to work with compared to primary cells, as 

they grow continuously without cytokines, are easier to transfect, do not require 

isolation from other haematopoetic cells, and are not subject to the heterogeneity 

observed in cells isolated from human donors212.  

 

As with all scientific models, however, there is a trade-off for the convenience 

offered by Jurkat cell lines: they differ considerably from primary human T cells in 

terms of steady-state activity and protein expression upon stimulation. For example, 

the fact that Jurkat cells divide independently of TCR stimulation means they cannot 

be used to study the proliferation response to TCR signalling. Another very 

important distinction between Jurkat cell signalling and that of primary cells is that 

Jurkat cells do not differentiate upon stimulation the way we expect of normal T 

cells: although their lineage is from a CD4 T cell, they frequently lack CD4 

expression and do not adopt typical activation phenotypes in the form of T helper 

cell cytokine profiles. There is significant variation in the behaviour of Jurkat lines 

used by different groups, with some groups reporting cytokine production upon 
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stimulation including IL-6, IL-8, IL-10, or IFNγ, and others reporting no detection of 

any of these75,213,214. Despite this variability, IL-2 is a consistently reproducible 

cytokine readout for Jurkat cell activation75, reflective of the fact that high IL-2 

production was the factor for which the line was originally selected215.  

 

4.1.2 Interleukin-2 

The cytokine now known as IL-2 was initially described as a “T cell growth factor,” 
216,217 but is now known to have additional crucial functions besides promoting 

expansion of T cells218. For example, in the 1980s IL-2 was shown to also act as a 

growth factor for NK cells and B cells215,219. Paradoxical roles for IL-2 were later 

discovered in its ability to promote AICD in murine T cells upon subsequent 

stimulation220, and in the phenotype of IL-2 KO mice, which develop lymphoid 

hyperplasia and autoimmune disease 221,222. An explanation for the unexpected 

result that loss of IL-2 in vivo enhanced T cell activity was found in the discovery that 

IL-2 also promotes activity and homeostasis of Treg cells in the periphery; 

reintroduction of IL-2 into IL-2 KO mice re-established the absent population of CD4 

Treg cells and rescued the autoimmune phenotype223. IL-2 is a critical component of 

the immune system, not only for promoting immune cell responses to infection but 

also in the maintenance of immune homeostasis. 

 

4.1.3 CD69 

CD69 is a surface molecule commonly used as an early marker for activation in T 

cells, as it is detectable on the cell surface within 2-3 hours of stimulation224. 

Constitutive expression of CD69 was reported in lymphoid precursors and mature 

thymocytes225, but it does not appear to be critical for T cell maturation, as CD69 KO 

mice did not exhibit any aberrations in T cell development226. CD69 is present on 

tissue-infiltrating T cells, and may have a role in promoting tissue retention by 

participating in a complex that negatively regulates S1P1, a surface molecule that 

mediates T cell tissue egress227. However, Esplugues et al showed that CD69 

deficiency in a mouse tumour model led to increased accumulation of T and NK cells 

in the tumour compartment, suggesting CD69 may have a negative regulatory role 

on T cell activity which the authors attributed to a loss of TGF-β signalling, normally 

initiated by CD69 engagement228. Further evidence of the negative regulatory 

functions of CD69 is that lack of CD69 has also been shown to enhance 
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inflammation in several mouse models of disease229-232. A possible mechanism for 

negative regulation by CD69 became apparent with the recent discovery of Galectin-

1 as a counter receptor for CD69; the interaction of Galectin-1 (expressed by 

dendritic cells) and CD69 appears to inhibit Th17 polarisation233. As Th17 cells 

contribute to tissue inflammation, their lack of inhibition could account for the 

increased inflammation observed in the absence of CD69. Additional ligands for 

CD69 have yet to be described, but recent evidence has made it clear that despite 

the historical role for CD69 as a marker for activated T cells, CD69 has a negative 

regulatory effect on T cell functions. 

 

4.1.4 AICD 

AICD is a regulatory mechanism by which stimulated T cells undergo apoptosis, and 

plays a role in maintaining both central tolerance and peripheral tolerance, as well 

as controlling lymphocyte numbers in response to a pathogen. In peripheral T cells, 

AICD is largely dependent on Fas/Fas ligand interactions. Binding of Fas by FasL 

on a neighbouring cell (or from the same cell234) triggers recruitment of the Fas-

associated death domain, which leads to activation of caspase-8 and the caspase 

cascade235. Mice with defects in Fas or FasL suffer from lymphoproliferation and 

autoimmune disorders, as do humans with defects in Fas signalling machinery, 

underlining the importance of these interactions to immune regulation236-238.  

 

Both Fas and FasL are expressed at low or undetectable levels on resting T cells, 

but are upregulated upon stimulation239, meaning activated T cells have a self-

limiting mechanism. Norian et al showed that FasL expression in primary mouse 

cells increased upon prolonged exposure to antigen, up to 72 hours240, suggesting 

that AICD becomes a more prevalent mechanism as stimulation time increases. 

However, it was shown in mouse T cell hybridomas that both Fas and FasL are 

upregulated within a few hours of stimulation, with peak Fas and FasL expression 

detected at 2 and 4 hours post-stimulation, respectively; this data suggested that 

transformed T cells may be more susceptible to AICD than primary cells234.  

 

Selecting an appropriate readout for any scientific model requires an understanding 

of the characteristics and limitations of that model. In order to study the effects of 

PTPN22 KO on T cell signalling using Jurkat cells, I assayed the T cell responses 
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that are reliably consistent across all Jurkat clones: IL-2 upregulation, CD69 

expression, and AICD. These experiments laid the groundwork to understanding 

how loss of PTPN22 influences T cell signalling. 

 

4.2 Results 
4.2.1 Development of pTax stimulation protocol 

I initially used the lymphoblast T2 cell line to present pTax to my TCR transduced 

Jurkat lines, however results were complicated to analyse due to the fact that it was 

challenging to distinguish between the stimulator and responder cells during 

analysis by flow cytometry. I therefore developed a method of stimulation with the 

pTax peptide in the context of HLA-A2 that did not require presentation by another 

cell line.  

 

DimerX is comprised of two human HLA-A2 molecules fused to mouse IgG (Figure 

1a). I followed manufacturer instructions (described in Chapter 2) to load pTax, an 

HLA-A2-restricted peptide, into the binding groove of DimerX. To test whether 

DimerX loaded with pTax was able to stimulate Jurkat T cells carrying the Tax TCR, 

I used a standard plate-coating protocol to bind either anti-CD3 or DimerX+pTax to 

the bottom of 96-well plates. Cells were cultured in wells containing anti-CD3, 

DimerX+pTax, or PHA for 24 hours, then analysed by flow cytometry. We observed 

no significant differences in FSC/SSC profiles from cells stimulated with CD3 or with 

DimerX+pTax, and CD69 upregulation was similar in all three groups (Figure 1b). 
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Figure 1. Stimulatory pTax peptide can be presented by DimerX. (a) Structure 
of DimerX, fusion molecule of mouse IgG and human HLA-A2 (b) Jurkat cells 
were analysed by flow cytometry for CD69 upregulation after 24-hour stimulation 
with DimerX loaded with pTax, with anti-CD3/anti-CD28, or with PHA. Grey fill: 
unstimulated cells, blue line: stimulated cells. Numbers indicate population 
frequency within the gates shown.	



	

	86 

Based on these findings I concluded that the stimulus provided by DimerX+pTax 

was appropriate to analyse T cell responses in the Tax TCR-transduced Jurkat 

lines. 

 

4.2.2 Increased IL-2 expression in PTPN22 KO clones 

Studies from our lab comparing the responses of primary mouse CD8 T cells from 

WT and PTPN22 KO mice showed that there was increased IL-2 expression in cells 

lacking PTPN22, and was even found to contribute to the increased resistance of 

these cells to downregulation driven by TGF-β, an important factor in the tumour 

microenvironment201. I was therefore interested in testing whether IL-2 expression 

would be increased in human T cells lacking PTPN22. 

 

I stimulated cells in a 96-well plate coated with a titration of DimerX+pTax for 6 

hours in the presence of anti-CD28, or treated for the same time with PHA+PMA. 

Each clone was stimulated in an individual well, with six KO and six WT clones 

represented. Cells were treated with Brefeldin A within 10 minutes of plating to 

prevent secretion of IL-2 during the experiment. After the stimulation period, cells 

were stained with antibodies for surface CD3 and for intracellular CD69 and IL-2. 

Intracellular CD69 was measured intracellularly because Brefeldin A was also 

shown to completely inhibit export of CD69 to the surface241. IL-2 production was 

detectable by flow cytometry in a discrete subpopulation of cells, that was only seen 

in the presence of stimulus (Figure 2). This population was also positive for CD69, 

confirming that they were cells that had been activated in response to pTax 

stimulation.  

 

In both WT and KO lines, a higher concentration of DimerX+pTax correlated with 

increased IL-2 production, however a significantly higher percentage of cells were 

positive for IL-2 in the PTPN22 KO clones compared to the WT lines in all 

stimulation conditions (Figure 3a). The MFI of the IL-2 positive populations allowed 

us to focus on the cells that have been activated to express IL-2, and compare the 

amount of IL-2 produced by these cells. We found that IL-2 positive PTPN22 KO 

cells expressed significantly more IL-2 than IL-2 positive PTPN22 WT cells (Figure 

3b). Therefore, not only did a greater proportion of PTPN22 KO cells become 
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Figure 2. Gating strategy for intracellular staining by flow cytometry. 
Unstimulated Jurkat cells and Jurkat cells stimulated for 6 hours with 
DimerX+pTax were stained intracellularly for IL2 and CD69 expression 
and examined by flow cytometry. Numbers indicate population frequency 
within a gate.	
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Figure 3. PTPN22 KO Jurkat clones express more IL-2 upon stimulation. IL-2 
expression of Jurkat clones was determined by intracellular staining after 6 hours of 
stimulation in the presence of Brefeldin A with different concentrations of DimerX+pTax 
and anti-CD28, or with PHA/PMA. (a) Percentage of IL-2 positive cells among the 
population of intact cells. (b) MFI of IL-2 positive cells. Statistical significance for each 
condition was determined by unpaired T test and Holm-Sidak multiple comparisons 
correction. A p-value less than 0.05 was considered significant. ns = not significant, *p 
< 0.05, **p < 0.01, ***p < 0.001 (c-f) IL-2 expression was determined after 0-6 hours of 
stimulation with (c,d) 1 μg DimerX+pTax or (e,f) 1 μg aCD3. Anti-CD28 was always 
included in stimulation cultures. (d) and (f) show the change in IL-2 expression 
between time points.	
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activated to produce IL-2, on average these cells also produced more IL-2 than 

activated PTPN22 WT cells. These findings were repeated in three separate 

experiments with consistent results, each symbol on the graph represents a single 

well in an experiment. 

 

To further investigate the timing of the increase in IL-2 expression PTPN22 KO cells, 

I conducted a time course using the highest concentration of DimerX+pTax 

stimulation (Figure 3c). I observed that for both PTPN22 WT and KO cells, IL-2 

expression peaked between 2-4 hours, and the greatest increase in the percentage 

of IL-2 positive cells in PTPN22 KO populations over WT populations was found at 

this time period. There was also a slight increase in IL-2 positive cells in PTPN22 

KO cells over WT cells prior to two hours, and between 4-6 hours (Figure 3d). 

 

Interestingly, the same time course conducted using anti-CD3 showed slightly 

different timing in the maximum response from DimerX+pTax (Figure 3e). While the 

magnitude of IL-2 production in response to anti-CD3 was less across all cell lines 

compared to DimerX+pTax stimulation, the peak was still between 2-4 hours (Figure 

3f). However, I observed that CD3-stimulated cells began producing IL-2 sooner, 

with more cells producing IL-2 within two hours of CD3 stimulation than in the same 

time period following DimerX+pTax stimulation. CD3-stimulated cells also 

downregulated IL-2 expression sooner: by 4-6 hours following CD3 stimulation, the 

percentage of IL-2 positive cells had fallen to be similar to 1-2 hours following CD3 

stimulation, while cells stimulated for 4-6 hours with DimerX+pTax still had more IL-2 

positive cells relative to the 1-2 hour time point. In summary, compared to CD3 

stimulation, cells stimulated with DimerX produced IL-2 later but sustained 

production for longer, and more total cells produced IL-2 by 6 hours of stimulation. 

This pattern suggests that the timing of receptor stimulation like anti-CD3 is 

considerably different from that of cognate antigen stimulation, which is important 

when considering the context of many studies of T cell signalling. 

 

4.2.3 Increased CD69 expression in PTPN22 KO clones 

The readout of CD69 in the experiments described above revealed a significant 

effect of PTPN22 on CD69 expression. CD69 is an early indicator of activation, 

typically upregulated in the first four hours of stimulation. In contrast to IL-2, no 
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distinct CD69 positive population was formed; instead a shift in the population as a 

whole was observed (Figure 2). Compared to IL-2, more cells in both groups 

upregulated CD69 in response to all tested concentrations of DimerX+pTax, 

suggesting a lower threshold of activation was required for CD69 expression 

compared to IL-2. We observed a significant increase in the percentage of CD69 

positive cells in PTPN22 KO clones compared to WT clones in all stimulation 

conditions (Figure 4a). Notably, there was also a slight increase in CD69 expression 

in resting PTPN22 KO cells, suggesting a small population of PTPN22 KO cells 

slightly upregulate CD69 in the absence of stimulation. We also observed an 

increase in the MFI of CD69 positive cells in PTPN22 KO cells, indicating that a lack 

of PTPN22 leads not only to more cells being activated to express CD69, but also to 

elevated CD69 expression on activated cells (Figure 4b). 

 

We also looked at CD69 over a 6-hour time course. Similarly to IL-2 expression, the 

timing of peak CD69 expression did not vary much between PTPN22 WT and KO 

cells stimulated with DimerX+pTax (Figure 4c). Both upregulated the most CD69 

between 2-4 hours, with similar low-level expression from 0-2 and 4-6 hours (Figure 

4d). The 2-4 hour period was also the time period when the increase in CD69 

expression in KO cells compared to WT cells was the greatest, with only a small 

increase at 0-2 hours and with KO cells having slightly fewer CD69 positive cells 

than WT cells after 4 hours. These data show that WT and KO cells follow a similar 

pattern of CD69 timing, but that KO cells produce more CD69 at the peak of 

expression. 

 

Monitoring CD69 expression every 2 hours for 6 hours showed a markedly different 

pattern of CD69 upregulation between anti-CD3 and DimerX+pTax stimulation 

(Figure 4e). In contrast to more cells expressing CD69 between 2-4 hours than at 0-

2 hours, as observed with DimerX+pTax stimulation, CD3 stimulated cells 

upregulated CD69 expression similarly in the 0-2 hours and 2-4 hours time points 

(Figure 4f). By 4-6 hours, the number of CD3-stimulated cells newly expressing 

CD69 had dropped below to nearly zero, while about 5% of DimerX+pTax-stimulated 

cells were still upregulating CD69. Again, these findings suggest a 
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Figure 4. PTPN22 KO Jurkat clones express more CD69 upon stimulation. 
CD69 expression of Jurkat clones was determined by intracellular staining after 6 
hours of stimulation in the presence of Brefeldin A with different concentrations of 
DimerX+pTax and anti-CD28, or with PHA+PMA. (a) Percentage of CD69 positive 
cells among population of intact cells. (b) MFI of CD69 positive cells. Data is 
representative of three experiments. Statistical significance for each condition was 
determined by unpaired T test and Holm-Sidak multiple comparisons correction. A 
p-value less than 0.05 was considered significant.  ns = not significant, *p < 0.05, 
**p < 0.01, ***p < 0.001 (c-f) CD69 expression was determined after 0-6 hours of 
stimulation with (c,d) 1 μg DimerX+pTax or (e,f) 1 μg anti-CD3. Anti-CD28 was 
always included in stimulation cultures. (d) and (f) show the change in CD69 
expression between time points.	
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different mechanism of response timing between CD3 and cognate antigen 

stimulation, in which the response to cognate antigen produces is delayed but 

sustained compared to CD3 stimulation. 

 

While few new cells were upregulating CD69 after 6 hours, the cells that expressed 

CD69 maintained their expression through 6 hours. I also looked at CD69 after 24 

hours to determine whether the relatively elevated CD69 levels in PTPN22 KO cells 

would be lost over time. Despite CD69 acting as an early activation marker, it 

remained easily detectable on the surface of cells after 24 hours of stimulation, and 

its expression was highly correlated with cells undergoing AICD, which were 

reduced in size (FSC) but still live/dead negative (Figure 5a and Figure 6a, blue 

population). Therefore dying cells could not be excluded from analysis, as 

responding cells were apoptotic after 24 hours, likely due to the strength of 

stimulation induced by plate-bound antigen. PTPN22 KO cells still had higher levels 

of CD69 expression after 24 hours of stimulation with the two lower concentrations 

of DimerX+pTax, as well as no stimulation (Figure 5b). However, 24 hours of 

stimulation with the higher concentrations of DimerX+pTax resulted in no significant 

differences, although PTPN22 KO cells still tended to have higher levels of CD69 

expression. These findings indicate that loss of PTPN22 on CD69 observed in the 

hours immediately following activation continue to influence the cell by 24 hours, but 

that stronger stimulation may mask these effects. 

 

4.2.4 Increased AICD after weak stimulation in PTPN22 KO clones 

I observed massive cell death after stimulating Jurkat cells for 24 hours with anti-

CD3 or DimerX+pTax. AICD is a well-established dose-dependent effect of 

stimulation in Jurkat cells242, and can be considered a readout of activation. I used a 

live/dead marker to identify dead cells by flow cytometry (Figure 5a). Stimulated 

cells showed three populations when stained with the Live/Dead marker: a “live” 

population of larger cells that were live/dead negative, an “apoptotic” population of 

smaller cells that were live/dead negative, and a “dead” population of smaller cells 

that were live/dead positive. Live/Dead negative cells were included in the analysis 

of CD69 staining because the apoptotic population comprised the bulk of CD69 

positive cells (Figure 6a). Dead cells, which were live/dead positive and susceptible 

to non-specific binding by fluorescent antibody, were excluded from CD69 analysis. 
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Figure 5. PTPN22 KO Jurkat clones express more CD69 after 24 hours of weak 
stimulation. (a) Gating strategy for Live/Dead staining after 24 hours of stimulation 
with DimerX+pTax. Jurkat cells were analysed by flow cytometry after surface 
staining and Live/Dead staining. Live/Dead negative cells were analysed for surface 
markers. Numbers indicate population frequency within a gate. (b) MFI of CD69 
expression of Live/Dead population in PTPN22 WT and KO Jurkat cells after 24 hours 
of stimulation with DimerX+pTax. Statistical significance for each condition was 
determined by unpaired T test and Holm-Sidak multiple comparisons correction. A p-
value less than 0.05 was considered significant.  ns = not significant, *p < 0.05, **p 
< 0.01, ***p < 0.001	
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Figure 6. PTPN22 KO Jurkat clones experience more AICD after 24 hours of 
weak stimulation. (a) Jurkat cells were stimulated with DimerX+pTax for 24 hours, 
stained with aCD69 and a Live/Dead marker, and analysed by flow cytometry. Grey 
fill: all intact events, gated on singlets; red line: large, Live/Dead negative cells; 
blue line: small, Live/Dead negative cells; green line: Live/Dead positive cells. (b) 
Jurkat cell death following activation for 24 hours with DimerX+pTax was measured 
by the percentage of cells outside of the “Live” gate (panel a, red population). No 
significant differences between PTPN22 WT and KO clones were found. Statistical 
significance for each condition was determined by unpaired T test and Holm-Sidak 
multiple comparisons correction. A p-value less than 0.05 was considered 
significant.	
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PTPN22 KO Jurkat cells tended to have greater amounts of cell death than WT cells 

when stimulated for 24 hours with low concentrations of peptide, but this difference 

was not significant in any stimulation condition (Figure 6b). Dead cells were 

identified as cells outside the “live cell” gate, defined in red based on FSC and 

Live/Dead stain in Figure 6a, and therefore included smaller apoptotic cells as well 

as dead cells. 

 

I used Annexin V/propidium iodide (PI) staining to more closely analyse the stages 

of apoptosis in 24-hour stimulated Jurkat clones. The Annexin V/PI staining protocol 

allows for differentiation of live cells from early apoptotic, late apoptotic, and dead 

cells (Figure 7). Annexin V/PI staining showed that PTPN22 WT cells had a greater 

proportion of live cells (Figure 8), and that PTPN22 KO cells tended to have a 

greater proportion of cells in early and late apoptosis, as well as dead cells. Notably, 

the strongest stimulation condition showed PTPN22 WT and KO clones to have the 

same proportion of live cells, suggesting that the negative regulatory role of PTPN22 

has less of an effect under strong stimulation conditions, as has been shown in 

mice200. However, while the differences in number of live cells between stimulated 

PTPN22 WT and KO was significant (Figure 8c), the differences in the other groups 

were not. This is likely due to the fact that the non-live cells are distributed evenly 

through the other three groups, thus reducing the magnitude of the difference 

between PTPN22 WT and KO cells in each group. The trend for more cells in early 

apoptosis in PTPN22 KO clones was strongest (p = 0.06) (Figure 8d). In both 

PTPN22 WT and KO clones, the groups most strongly affected by stimulation were 

late apoptosis (increased as stimulation strength increased) and live cells (reduced 

as stimulation strength increased) (Figure 8b,c). Dead cells and early apoptotic cells 

were only slightly increased by stronger stimulation relative to the other groups 

(Figure 8a,d). Thus, stimulated Jurkat cells move quickly through the early apoptosis 

stage into the late apoptosis stage, but tend not to advance to dead cells from late 

apoptosis by 24 hours of stimulation. PTPN22 KO cells initiate the apoptotic process 

more readily than PTPN22 WT cells, resulting in slightly more cells in all stages of 

apoptosis. 
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Figure 7. Gating strategy for Annexin V/Priopidium Iodide staining. 
(a) Annexin V/Propidium Iodide staining gating to differentiate between 
live cells, early apoptosis, late apoptosis, and dead cells. (b) Examples 
of dot plots of Jurkat cells stained with Annexin V and Propidium Iodide 
after 24 hours of stimulation with DimerX+pTax, and analysed by flow 
cytometry. All intact (colored) events were included in the analysis.	
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Figure 8. PTPN22 KO Jurkat clones have fewer live cells after 24 
hours of weak stimulation. Annexin V/Propidium Iodide staining was 
used to determine the states of apoptosis in PTPN22 WT and KO Jurkat 
cells stimulated with DimerX+pTax for 24 hours. Cells were designated as 
(a) dead, (b) late apoptosis, (c) live, or (d) early apoptosis. Statistical 
significance for each condition was determined by unpaired T test and 
Holm-Sidak multiple comparisons correction. A p-value less than 0.05 
was considered significant.  ns = not significant, *p < 0.05, **p < 0.01, 
***p < 0.001	
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4.3 Discussion 
 

The purpose of the work presented in this chapter was to investigate the impact of 

loss of PTPN22 on human T cell responses to antigen. We found that more PTPN22 

KO clones became activated in response to stimulus, and that the activated 

PTPN22 KO cells produced more IL-2 and CD69 than activated PTPN22 WT cells. 

In addition, we found that certain effects of loss of PTPN22 on 24-hour stimulations 

were strongest when cells were stimulated with reduced concentration of stimulus, 

and that differences PTPN22 WT and KO cells could be reduced with high 

concentrations of stimulus. These results show that, like PTPN22 KO mouse T cells, 

PTPN22 KO human T cells are more responsive to weak antigen. 

 

Notably, plate-bound antigen is distinct from the way antigen is likely to be 

encountered by presentation by APCs under physiological conditions. Although it is 

a common method of in vitro stimulation, some artificialities of plate-bound 

stimulation include a broad surface of antigen interaction, as opposed to the tight 

synapse formed upon interaction with an APC, greatly altering the morphology of the 

T cell as it binds to antigen and the plasma-membrane proximal signalling 

environment. Plate-bound antigens are therefore relatively potent, and can lead to 

excessive stimulation, which may account for the high rates of cell death observed 

after 24 hours in a cell type already susceptible to AICD234 

 

When stimulating equivalent numbers of cells with a titration of antigen, a 

significantly greater proportion of PTPN22 KO clones upregulated IL-2 (Figure 3a) 

and CD69 (Figure 4a), and induced apoptosis (Figure 8c). Given that the entire 

population of cells was exposed to the same peptide stimulus, the decision in an 

individual cell to commit to activation or not was likely due to degree of exposure to 

the peptide, or how many DimerX+pTax molecules the cell came into contact with. A 

number of cells were settled onto the bottom of a cell culture plate coated with 

DimerX+pTax such that a single layer of cells could not cover the entire bottom of 

the well, so that amount of stimulus, not cell number, limited interactions. However, 

cells would not necessarily distribute evenly across the bottom, and therefore it was 

likely that certain cells within the population would have reduced access to stimulus, 
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creating heterogeneity across the population. Additional heterogeneity in responses 

may be due to the fact that Jurkat cells cycle continuously, as it has been suggested 

that cell cycle phase could influence susceptibility to AICD; however this hypothesis 

remains controversial243,244.  

 

While cell distribution and cell cycle phase possibly introduced differences to how 

individual cells within a population experienced stimulation, they are unlikely to 

account for the differences observed between PTPN22 WT and KO Jurkat cell 

responses. All clones were counted using a CASY counter and were seeded 

simultaneously on the same plate, meaning any effects that would influence the 

ability of the cells to access stimulus would be shared by all clones. Furthermore, I 

observed no changes to cell growth upon loss of PTPN22 (Chapter 3, Figure 12b), 

meaning it is unlikely that the greater proportion of responsive PTPN22 KO cells 

was due to the cells being in significantly different cell cycle phases from PTPN22 

WT cells.  

 

Given that the observation that more PTPN22 KO cells respond to stimulus than WT 

cells was reproducible across biological and technical replicates, as well as different 

stimulation conditions, the result most likely attributable to the effect of PTPN22 on 

regulating the decision of the T cell to respond to stimulus. Low concentrations of 

peptide molecules was insufficient stimulation for PTPN22 WT cells to express 

effector molecules, whereas PTPN22 KO cells exposed to the same interactions 

experienced a stronger signalling response, resulting in increased effector molecule 

expression. The stimulation threshold required for expression of IL-2 or CD69 varied 

for these two molecules; the greatest proportion of IL-2 expressing cells achieved 

was 30% (in the most responsive cell lines stimulated with PHA/PMA stimulation), 

whereas CD69 expression was recorded in up to 80% of cells in the same condition. 

Therefore, cells that were stimulated sufficiently to express CD69 did not necessarily 

reach the greater stimulation threshold needed to express IL-2245. For both IL-2 and 

CD69, as well as AICD, lack of PTPN22 reduced the stimulation threshold required 

by the cell, enabling more cells to be activated by the same amount of stimulus. The 

role of increasing the stimulation threshold required for effector function helps 

explain the role of PTPN22 in regulating T cell responses to self-antigen and 

preventing autoimmune disease. 
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In addition to a greater number of responsive cells, I found that PTPN22 KO cells 

expressed more IL-2 and CD69 than responsive PTPN22 WT cells (Figure 3b, 4b). 

PTPN22 therefore not only plays a role in the decision of the cell to respond, but 

also in the magnitude of the response. 

 

The effect of lack of PTPN22 on the response of the cell was likely due to 

enhancement of the TCR signalling pathways initiated by pTax ligation; TCR 

pathways are dependent on the early Lck, Fyn, and Zap-70 phosphorylation events 

known to be regulated by PTPN22, and result in activation of transcription factors to 

upregulate effector molecules. The specific TCR pathways affected by loss of 

PTPN22 are investigated in Chapter 5. PTPN22 is shown here to play a role in 

downregulating the magnitude of T cell responses to a given antigen; dysregulation 

of this role could therefore contribute to the development of autoimmune responses 

to harmless self-antigen. 

 

PTPN22 was shown to affect murine OT-1 T cell responses to weak peptide, but not 

strong peptide200, but the effects of PTPN22 loss on human T cell responses to 

peptide have not previously been studied, as stimulating human cell lines or primary 

cells is typically done using antibodies to CD3 and CD28 and, as shown in Figures 3 

and 4c-f, T cell responses to CD3 are not necessarily comparable to responses to 

peptide. The effects of peptide affinity and concentration on the role of PTPN22 in 

human T cells is therefore not yet clear. I observed that the difference between 

PTPN22 WT and KO cells at higher stimulation concentrations was lower after 24 

hours of stimulation compared to 6 hours (Figures 4b and 5b). In the case of cell 

survival, it is likely that PTPN22 KO and WT cells behaved similarly after 24 hours of 

strong stimulation due to very few living cells remaining in either population (Figure 

8c), in essence reaching a plateau for the readout. It is possible that a similar 

explanation may apply to the readout of CD69 expression (Figure 5b): as cells 

approach their maximum level of CD69 upregulation, the differences between 

populations become indistinguishable. These interpretations suggest that the 

negative regulatory activity of PTPN22 is simply overwhelmed by increasing signal 

strength, so that responses to strong stimulation are no longer susceptible to 

regulation by PTPN22. Alternatively, it is possible that PTPN22 activity itself is 
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negatively regulated in the context of strong stimulation, perhaps by interactions with 

other proteins that affect its localisation or phosphatase activity. Regardless of the 

mechanism, my data shows that PTPN22 has a more critical effect on regulating 

outcome of cell responses to weaker stimulus, and that absence of PTPN22 

becomes less impactful as stimulatory signal increases. 

 

My work in PTPN22 KO human T cells generally agrees with published data 

regarding mouse T cells lacking PTPN22. I observed an increase in IL-2 expression 

in PTPN22 KO cells, which was previously reported in T cells PTPN22 KO 

mice165,201. My data also reports increased CD69 expression in stimulated PTPN22 

KO cells, similarly reported in both T and B cells derived from mice lacking 

PTPN22164,200. Taken together with previous studies in mouse, my results suggest 

that the effects of loss of PTPN22 are similar in human and mouse T cells. 

 

The results I generated using PTPN22 KO human T cells provide a point of 

comparison for understanding the conflicting reports describing the effects of the 

PTPN22 R620W polymorphism in humans. I found that loss of PTPN22 increased 

CD69 expression, however Fiorillo et al’s work on Jurkat cells transfected with R620 

or W620 vector and stimulated with anti-CD3 showed minimal differences in the 

percentage of CD69-positive cells151. Whether the lack of effect of PTPN22 on CD69 

was due to the overexpression of PTPN22, the confounding presence of both WT 

and variant proteins, or because the polymorphism indeed does not influence the 

CD69 pathway the same manner as the knockout remains to be seen.  

 

I found that PTPN22 KO Jurkat cells had increased expression of IL-2. Vang et al 

reported a reduction in IL-2 response in human primary cells derived from T1D 

patients carrying the W620 polymorphism compared to those with R620, as well as 

a reduction when primary cells were transfected with a vector containing W620 

PTPN22 instead of R620 PTPN22192. Their conclusion that R620W is a gain-of-

function polymorphism is therefore consistent with my data showing that loss of 

PTPN22 increases IL-2 expression. However, the effect of the polymorphism in 

autoimmune disease is not as clear. Two groups studying the effects of PTPN22 

polymorphism on IL-2 expression in myesthenia gravis (MG) reached divergent 

conclusions: a group studying thymocytes from MG thymoma reported reduced IL-2 
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production in patients carrying the W620246, while another group studying PBMCs 

derived from MG patients showed an increase in IL-2-producing cells in patients 

carrying W620 compared to those with R620247. These studies are complicated by 

the fact that they are concerned with different cell types (thymocytes compared to 

PBMCs) derived from genetically diverse individuals in a disease setting. My work in 

PTPN22 KO Jurkats circumvents such challenges and clearly shows that loss of 

PTPN22 upregulates IL-2 production, but further work is needed to confirm the 

effects of the R620W polymorphism on the IL-2 pathway in human T cells. 

 

The experiments presented in this chapter represent the first attempts to study the 

impact of loss of PTPN22 on human T cells. I found that PTPN22 KO Jurkat clones 

displayed enhanced responses to peptide stimulation, as evidenced by increased IL-

2 and CD69 expression, and greater susceptibility to AICD than PTPN22 WT Jurkat 

clones. The following chapter describes subsequent work to investigate the specific 

T cell signalling pathways affected by PTPN22 KO to elicit increased IL-2 

expression in response to stimulation. 
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5. Effect of PTPN22 on T cell signalling pathways 
 
5.1 Introduction 
My findings in Chapter 4 showed that PTPN22 knockout increased Jurkat T cell IL-2 

production in response to antigen (Chapter 4, Figure 2). The work presented in this 

chapter attempts to identify the specific signalling pathways influenced by PTPN22 

that lead to increases in IL-2 production.  

 

The promoter region of the IL-2 gene contains binding sites for a number of 

transcription factors (Figure 1), and is highly conserved between human and mice 

(greater than 80% homology)248. Three well studied transcription factors that drive 

the IL-2 response are NFAT, AP-1, and NFκB; and cooperation between all three is 

required for optimal transcription of IL-2 in response to T cell stimulation248.The 

activity of NFAT, AP-1, and NFκB is regulated by different pathways of TCR 

signalling, as well as by binding of additional transcription factors, and by epigenetic 

remodelling. The multitude of regulators involved in IL-2 transcription ensures that 

the IL-2 response depends on integration of information from various signalling 

pathways. 

 

 

 

 

 

 

Figure 1. Regulatory elements and associated transcription factors 

of the human IL-2 promoter. Region shown spans -300 to -60 bp 

upstream of the IL2 start codon. Adapted from Kim et al228. 
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5.1.1 NFAT 

NFAT is constitutively expressed but maintained in the cytoplasm in resting T cells. 

Calcium flux following TCR ligation leads to calcium ions binding to calmodulin, 

which activates the phosphatase calcineurin, which in turn dephosphorylates NFAT 

and exposes its nuclear-localisation signal, enabling NFAT to translocate into the 

nucleus249. NFAT translocation is inhibited by kinases such as GSK3, which is itself 

negatively regulated by Akt following CD28 costimulation. 

 

Five members of the NFAT protein family have been identified, with NFAT1 and 

NFAT2 expressed primarily in T cells and corresponding to IL-2 expression250. T 

cells from NFAT1 or NFAT2 knockout mice showed either normal or increased 

expression of IL-2251,252, suggesting that there may be compensatory mechanisms 

between NFAT proteins. Complete impairment of NFAT has a more dramatic effect: 

mice lacking both NFAT1 and 2 have severely impaired T cell cytokine production253, 

a dominant-negative form of NFAT (able to inhibit four NFAT proteins) expressed in 

Jurkat cells significantly reduced IL-2 production250, and studies of individuals within 

human families with deficient NFAT translocation suffered from severe 

immunodeficiency254. 

 

NFAT has been reported to interact synergistically with a number of transcriptional 

binding partners to drive IL-2 transcription, namely AP-1 (described below). 

Additionally, NFAT has been reported to cooperate with early growth response 

protein (EGR)1 in activated T cells to enhance IL-2 transcription255. The zinc-finger 

transcription factor EGR1 is upregulated upon TCR stimulation and displaces the 

constitutively-expressed SP-1 at a binding site on the IL-2 promoter adjacent to an 

NFAT binding site. In Jurkat cells, EGR1 showed little transactivating activity for IL-

2, but its binding greatly enhanced transactivation by NFAT2255. The upregulation of 

IL-2 transcription by EGR1 has also been reported to be enhanced by CD28 

costimulation through the activity of NGFI-A binding protein 2256. The cooperative 

effects of these proteins in IL-2 transcription highlight the integration of TCR 

pathways leading to IL-2 production. 

 

5.1.2 AP-1 

AP-1 is a heterodimer comprised of Fos and Jun family proteins and plays a role in 
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many cell types. Two well-described AP-1 genes, c-fos and c-jun, act as immediate 

early genes in T cells, transcription of which is rapidly induced by cell stimulation 

and activation of the PKC and calcium pathways257. Transcription of c-fos is also 

modulated by the MAP kinase ERK2 whereas the JNK family of MAP kinases 

enhances c-jun transcription258. The upregulation of transcription of both c-fos and c-

jun promotes dimer formation, thus enhancing AP-1 DNA-binding activity257.  

 

The activity of c-Fos and c-Jun is also regulated post-transcriptionally through 

phosphorylation. JNK has been shown to potentiate the transactivation ability of c-

Jun259, while another MAPK called FRK serves a similar role for c-Fos260. There is 

also potential for negative regulation via phosphorylation; Erk was shown to 

phosphorylate a negative regulatory residue on c-Jun in vitro261. 

 

AP-1 cooperation with NFAT is critical for IL-2 transcription. Macián et al showed 

that mutating NFAT1 to prevent it from binding to AP-1 greatly reduced IL-2 

promoter activity upon stimulation of Jurkat cells262. Of the four NFAT binding sites 

in the murine IL-2 promoter, at least two are composite NFAT:AP-1 sites, with 

binding by both NFAT and AP-1 improving stability of the interaction263. Cooperation 

between NFAT and AP-1 molecules integrates signalling through two main 

pathways of TCR signalling, calcium and MAPK signalling, to induce IL-2 gene 

transcription. 

 

Oct-1 and Oct-2 are also reported to cooperate with AP-1 to enhance IL-2 

transcription264. Oct-1 is constitutively active transcription factor, while Oct-2 is 

upregulated upon T cell stimulation, and shows greater transactivator activity for the 

IL-2 promoter than Oct-1265. However, Oct-2 has been reported to be absent in 

Jurkat cells, so it is not critical for transcription of IL-2265. 

 

5.1.3 NFκB 

NFκB is present in an inactive form in the cytoplasm of resting cells while bound to 

an inhibitor IκB. Release of NFκB from IκB is mediated by IκB kinase complex, 

which phosphorylates IκB, resulting in ubiquitination of IκB and release of NFκB to 

enter the nucleus. Activation of the IκB kinase complex depends on the CBM 

complex, assembly of which is induced by PKCθ266. 
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It has been shown that mutations to the NFκB binding sites in the IL-2 promoter 

have a less dramatic effect compared to those of other sites, but the inducible 

binding of NFκB to the IL-2 promoter in activated T cells indicates that it still has a 

role in IL-2 transcription265. The NFκB family contains five members: NFκB1, 

NFκB2, RelA, RelB, and c-Rel. The precise roles of each of these proteins are still 

being described. Binding different NFκB proteins to the IL-2 promoter may be time-

dependent, as RelA was found to be the major component one hour after stimulation 

but was replaced by c-Rel by 6-hours following stimulation267. NFκB1 knockout mice 

were demonstrated to have elevated T cell IL-2 production, which would suggest 

that NFκB1 is a negative regulator of IL-2 signalling268. RelA knockout mice did not 

exhibit any change in T cell IL-2 levels269, indicating that RelA is not critical for IL-2 

expression, possibly due to redundancy with other NFκB members. Loss of RelB, 

normally constitutively expressed in the nucleus, also did not impair IL-2 

transcription270. c-Rel knockout mice, however, did show deficiencies in IL-2 

expression271. 

 

5.1.4 Epigenetics 

In addition to the presence or absence of transcription factors, epigenetic regulation 

of the IL-2 gene was also shown to be necessary for IL-2 transcription in mouse and 

human T cells272,273. Attema et al. showed that the IL-2 promoter in resting Jurkat 

cells was assembled into a nucleosome that prevented binding of AP-1 and NFAT, 

but that activation of the cells caused the nucleosome to be remodelled274. The 

same group later showed this process to be dependent on c-Rel269. The IL-2 gene 

promoter was found to contain 15 CpG sites in mouse cells, all of which were 

methylated in both naive T cells and non-T cells. Upon stimulation of the T cells, 

CpG sites proximal to the IL-2 start codon were demethylated, which corresponded 

with IL-2 transcription. The state of demethylation was preserved after nine days, 

and blocking demethylation of the CpG sites prevented activity of the promoter in 

activated T cells272. Murayama et al identified a specific CpG site in the promoter-

enhancer region of the human IL-2 gene which was demethylated upon T cell 

stimulation. Jurkat cells were shown to have reduced methylation of this site (20% of 

cells) compared to resting human CD4 cells (80% of cells). Methylation of the site in 

Jurkats was not changed by stimulation, however in human CD4 cells methylation of 
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the site was reduced to only 15% of cells. A transient reporter assay showed that 

methylation of the site reduced IL-2 promoter activity by 95%. Taken together, these 

studies demonstrate that epigenetics play an important role in control of IL-2 

transcription, possibly by regulating the ability of activated transcription factors to 

access the IL-2 promoter. 

 

The multitude of transcription factors that impact IL-2 transcription reflect the need to 

integrate the various TCR signalling pathways into an appropriate response. 

PTPN22 dephosphorylates targets involved in early TCR signalling events (Figure 

2), so its effect on IL-2 signalling could be propogated via one or more of several 

branching paths of TCR signalling. To identify which pathways are being affected by 

loss of PTPN22, I assayed a number of different readouts of TCR signalling, 

including proximal phosphorylation events, calcium flux, immediate early gene 

transcription, transcription factor translocation, and Erk activation. These 

experiments are the first investigations of the effects of loss of PTPN22 on TCR 

signalling pathways in human T cells. 

 

5.2 Results 
5.2.1 Phosphorylation of Lck and Zap-70 is unchanged in PTPN22 KO Jurkat 

clones 

The known substrates of PTPN22 are largely associated with early T cell signalling 

events. Lck, Fyn, and Zap-70 are particularly interesting targets of PTPN22 because 

of their vital role in initiating the phosphorylation events that drive early signalling. 

We expected PTPN22 KO Jurkat cells to have increased rates of phosphorylation 

on the activating residues of these proximal T cell signalling molecules. 

 

To test the hypothesis that PTPN22 KO Jurkat cells would have increased 

phosphorylation of proximal T cell signalling molecules, I used phosphoprotein flow 

cytometry after stimulation (described in Chapter 2). This method was selected over 

traditional Western blotting for several reasons: (1) fewer cells for each condition 

were required, greatly reducing the quantity of DimerX required to stimulate the 

cells, (2) data allows us to see responses of individual cells, revealing variance 

within a population, percentage of responding cells, and the magnitude of individual 
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cell responses, and (3) flow cytometry has higher throughput than Western blotting, 

allowing many cell lines and conditions to be included in the same experiment. 

 
Individual clones were labeled with different concentrations of CellTrace Violet so  

 

 

Figure 2. T cell substrates of PTPN22. Fyn Y420, Lck Y394, and Zap-70 Y495 
are established substrates of PTPN22. TCR-CD3ζ and CD3ε are putative 
substrates. Adapted from Bottini et al {Bottini:2014kg} 
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that they could be distinguished after pooling for stimulation and processing. 

Stimulating and staining different clones in the same well greatly reduced potential 

technical variance in the treatment of the clones. The twelve clones (six WT and six 

KO) were split into three groups for stimulation and staining, with each group 

containing two WT and two KO clones. The grouping of the clones was randomised 

for each experiment. CD3 stimulation was used for these assays, because no 

phosphorylation could be detected within 30 minutes of DimerX+pTax stimulation, 

even at the highest concentrations. This may be due to the altered dynamics of 

signalling between anti-CD3 stimulation and peptide.   

 

After stimulation, cells were divided into multiple wells and stained with antibody. I 

stained with antibodies that indicated the total amount of Lck and Zap-70 protein, as 

well as with antibodies specific for phosphorylated tyrosine residues Lck Y394, Lck 

Y505, and Zap-70 Y493. The primary antibodies were not directly conjugated, and 

thus required a secondary detection antibody. As each primary antibody had been 

raised in a rabbit, each staining was performed separately. An example of a flow 

cytometry plot and the gating strategy used in these experiments is shown in Figure 

3a.  

 

Using this assay, I was able to detect a trend of increased in phosphorylation of all 

three sites following stimulation relative to unstimulated phosphorylation levels 

(Figure 3b and c). The total abundance of protein appeared to change slightly upon 

stimulation (Figure 3b and c). I was unable to find any report of increased 

expression of these proteins in the literature, perhaps because protein 

phosphorylation is often detected by Western blot, which may not be sensitive 

enough to detect these subtle changes. It is also possible that the binding of 

antibody I used to detect total Lck levels is affected by phosphorylation of the 

protein. The total Lck antibody is polyclonal and recognises residues at the c-

terminus, so phosphorylation of Lck Y505 could change the conformation of the 

protein in a way that affects the antibody's binding affinity. Another explanation could 

be that certain clones have elevated background binding, however Figure 3d shows 

that the clones which had a higher total protein signal did not necessarily also show 

elevated phosphorylation signal, indicating that the total protein signal is specific to 
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Figure 3. No changes in Lck or Zap-70 phosphorylation in PTPN22 KO T cells 
upon stimulation. (a) Gating strategy for detection of phosphorylation by flow 
cytometry. (b) Lck and (c) Zap-70 phosphorylatyion or total protein was measured 
in Jurkat cells treated with PP2, unstimulated, or stimulated with anti-CD3 for the 
indicated times. Each dot represents a single well in an experiment, data 
represents four independent experiments. (d) Example plot of relation between 
MFI of total Lck and Lck Y394 for individual cell lines stimulated with in anti-CD3 
for 15 minutes in one experiment. No significant differences between PTPN22 WT 
and KO clones were found. Statistical significance for each condition was 
determined by unpaired T test and Bonferroni multiple comparisons correction. A 
p-value less than 0.05 was considered significant.	
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the primary total protein antibody. 

 

Changes to Lck phosphorylation is notoriously difficult to detect consistently due to 

the highly transient nature of the phosphorylation events. Lck phosphorylation is a 

critical step in T cell signalling and is dynamically regulated by a number of 

phosphatases and kinases, therefore we would not expect to see dramatic global 

shifts in Lck phosphorylation upon T cell stimulation57. In accordance with this, I 

observed that the average phosphorylation of Lck increased only slightly upon 

stimulation (Figure 3b), but that there was a great deal of variance due to differences 

between the individual wells, potentially obscuring changes. Both residues Y394 and 

Y505 followed similar patterns of increasing stimulation upon activation, despite 

Y394 being an activating residue and Y505 being inhibitory. The average amount of 

phosphorylation for Y505 did peak earlier, perhaps reflecting the commitment of the 

cell to activation by 30 minutes. Y394, on the other hand, showed reduced 

phosphorylation on average after 5 minutes of stimulation, but continued to increase 

up to 30 minutes. The role of Lck appears to be less important after one hour of 

stimulation, as phosphorylation of both residues returned to near baseline by this 

point. 

 

No significant difference in Zap-70 phosphorylation was detected between PTPN22 

WT and KO clones, however the trend of elevated phosphorylation of Zap-70 Y493 

in PTPN22 KO cells was more distinct than for either Lck tyrosine residue. Greater 

levels of phosphorylation of Zap-70 in PTPN22 KO cells may be due to the fact that 

Zap-70 is a downstream target of Lck, so subtly increased Lck activity could result in 

proportionally greater increases in Zap-70 phosphorylation, and that Zap-70 itself is 

also a target of dephosphorylation by PTPN22. Differences in Zap-70 

phosphorylation between PTPN22 WT and KO cells were not statistically significant, 

but they may be indicative of the subtle biological effect of PTPN22 on early 

signalling molecules. 

 

5.2.2 Calcium flux is unchanged in PTPN22 KO Jurkat clones 

Given that only very subtle changes in the phosphorylation of early signalling 

molecules Lck and Zap-70 were detectable, I decided to check if any downstream 

effects of enhanced signalling could be detected in my PTPN22 KO clones. 
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Overexpression studies and experiments in primary cells have reported that the 

human R620W polymorphism decreases the magnitude of calcium flux in human T 

cells192. These results suggest that human PTPN22 plays a role in regulating 

calcium flux, so I tested whether the pathway was affected by removal of PTPN22 

from Jurkat cells. 

 

Indo-1 staining was used to measure calcium flux in real time. The blue Indo-1 stain 

is converted into a violet colour in the presence of calcium ions, so the ratio of 

violet:blue emission is an indicator of the amount of calcium present at any given 

point in time (a ratio is used to control for variances in the amount of dye taken up by 

the cells). After stimulation with anti-CD3, I added a saturating amount of 

ionomycin165 to check that each cell line had a similar maximum potential for calcium 

flux (Figure 4b). 

 

Similarly to the phosflow setup, each sample contained two independent clones 

differentially stained with a cell dye (Figure 4a,c,d). In this case I used CFSE, as the 

CellTrace Violet channel was needed for the Indo-1 stain. I tested different 

concentrations of CFSE on the same cell line to check for any effects of CFSE on 

calcium flux (Figure 4e). I detected a very slight increase in violet:blue ratio when 

using 50nM CFSE but not when using 5 nM, so I opted to use only two lines in each 

sample tube, one unstained and the other stained with CFSE at 5nM. For each 

experiment, I randomised the KO and WT lines that were paired together, as well as 

which line would be stained in each tube (either the WT or KO line could be CFSE+). 

These steps ensured that CFSE staining would have a minimal overall effect on the 

results. 

 

The amount of calcium in the cell reached its peak within 1-2 minutes of adding anti-

CD3, and then gradually declined back to baseline over the course of 10-60 

minutes. I stimulated cells in 600 μL media and ran samples for 16 minutes on the 

flow cytometer before adding ionomycin. We followed a strict timing protocol for 

each tube that allowed 15 seconds without data recording for the addition of 

reagents (Figure 5a). 

 

I used three different values from each sample analysis plot: peak value, the 



	

	 113 

Figure 4. Calcium flux experimental set-up (a) Gating strategy for Indo-1 
detection of CFSE-labelled cells by flow cytometry. (b) Example of shift of cell 
population from Indo-1 signal to violet signal upon addition of ionomycin. (c) 
Example dot blots of Indo-1 loaded, CFSE-labelled Jurkat cells without stimulus 
(0-60 seconds), upon anti-CD3 stimulation (60-1200 seconds) and subsequent 
ionomycin stimulation (1200 seconds) (d) Graphical representation of data in (c) 
overlayed onto one graph. (e) The effect of CFSE labelling on flux signal was 
determined by labelling a single clone with different concentrations of CFSE. 
Green: 50 nM CFSE, blue: 5 nM CFSE, red: 0 nM CFSE.	
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Figure 5. No significant changes in calcium flux in PTPN22 KO (a) Schematic of 
stimulation timing protocol. (b) Example of values represented in (d) and (e). (c) 
Examples of additional WT/KO pairings for calcium flux. (d) Calcium flux was 
recorded in PTPN22 WT and KO Jurkat cells stimulated with saturating amounts of 
αCD3. Data represents two independent experiments. (e) Calcium flux was 
recorded in Jurkat cells stimulated with titrated amounts of anti-CD3. Data 
represents two independent experiments. No significant differences between 
PTPN22 WT and KO clones were found. Statistical significance for each condition 
was determined by unpaired T test and Bonferroni multiple comparisons correction. 
A p-value less than 0.05 was considered significant.	
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numerical ratio of violet signal to blue; peak time, the number of seconds since 

beginning of data collection that the peak value was reached; and slope, the rate of 

decrease in the value of the violet:blue ratio from the peak time to the end of the 

experiment (Figure 5b). The slope is negative, so a greater absolute value indicates 

a faster return to baseline. The violet:blue ratio is given in arbitrary units, and the 

starting ratio for each sample was adjusted to 50,000 on the flow cytometry software 

before recording data, in accordance with the flow cytometer manufacturer 

recommendations. All six cell lines for each group were represented in each 

experiment, and the experiment was repeated twice. 

 

There was a clear increase of intracellular calcium upon CD3 stimulation, but no 

consistent difference was found between the PTPN22 KO clones and the WT 

clones. There was variance between individual clones, so in any given pairing either 

the KO or the WT sample might have showed slightly greater Ca2+ flux as illustrated 

in Figure 3c, but the experiments as a whole showed no significant difference 

between the groups in any parameter measured (Figure 5d). In fact, when using low 

concentrations of anti-CD3 stimulation, there was a trend that PTPN22 KO cells took 

longer to reach the same peak flux value, and returned more quickly to baseline 

than PTPN22 WT cells did (Figure 5e). However, these differences were not 

significant. Notably, each individual clone was very consistent between the 

experiments, indicating that the Ca2+ flux characteristics of a given cell line was 

intrinsic to the clone and unlikely to change day to day. Based on my findings, I 

concluded that PTPN22 KO did not have an affect on calcium flux in Jurkat cells.  

 

5.2.3 Transcription of early activation genes is unchanged in PTPN22 KO 

Jurkat clones 

No effects of loss of PTPN22 on upstream signalling were detected to explain the 

increase in IL-2 production in PTPN22 KO clones (Chapter 4, Figure 2). To check for 

downstream effects of PTPN22 KO signalling in the form of altered gene expression, 

I investigated the transcription of early activation genes. I selected the genes cFos, 

cJun, and EGR 1 because they are highly upregulated within 30 minutes of TCR 

stimulation	 275. A number of housekeeping genes were also tested. I used qPCR to 

measure mRNA transcript levels after stimulation with anti-CD3, and ran the qPCR 

products of my primer pairs for each mRNA on a gel to ensure that a single product 
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Figure 6. No significant changes in immediate early gene transcription in 
PTPN22 KO (a) qPCR products from each primer pair used were run on a DNA 
gel. Each gene is represented in triplicate. qPCR was performed using mRNA 
isolated from Jurkat cell lines stimulated with anti-CD3 or PMA+Ionomycin 
stimulation. Primers amplified (b) housekeeping or (c) immediate early gene 
transcripts. No significant differences between PTPN22 WT and KO clones were 
found. Statistical significance for each condition was determined by unpaired T test 
and Bonferroni multiple comparisons correction. A p-value less than 0.05 was 
considered significant.	
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was being detected (Figure 6a). 

 

I stimulated cells with PMA/Ionomycin or anti-CD3 for 0, 15, and 30 minutes. RNA 

was immediately isolated after the stimulation period using trizol chloroform 

extraction, followed by isopropanol precipitation. I measured the concentration of the 

RNA preparations by Nanodrop, and loaded 1 μg of RNA for the cDNA reactions. 

qPCR was carried out on these samples using SYBR green mastermix. Three 

clones of each group were tested in each experiment, and the experiment was 

repeated four times. 

 

It is standard practice when using qPCR to normalise crossing point-PCR-cycle (Cp) 

values of genes of interest to the Cp values of a housekeeping gene to account for 

variance in the amount of cDNA in each sample. It is assumed that the expression 

of house keeping genes remains constant under various treatment conditions. 

However, in my testing of commonly used and recommended housekeeping genes 

for T cells, I found that each of them was highly upregulated, i.e. showed lower Cp 

value, upon CD3 stimulation in Jurkat cells (Figure 6b). Attempting to normalise 

other upregulated genes based on these changing control values could potentially 

mask any differences in gene expression from baseline. Based on this finding, I 

decided not to use housekeeping genes in my analysis, and to instead load a 

consistent amount of RNA in each cDNA reaction. 

 

The results of these experiments showed clear upregulation of mRNA expression of 

the early activating genes upon stimulation, but there were no significant differences 

observed between PTPN22 WT and KO cell lines at any time points (Figure 6c). 

There was a very slight trend for PTPN22 KO cells to have higher levels of mRNA 

for cJun, cFos and EGR1 upon CD3 stimulation, but it is unclear if such a slight 

difference would have a biological effect. Based on these findings, I concluded that 

PTPN22 had no readily detectable affect on the up-regulation of the immediate early 

activation genes cFos, cJun, or EGR1. 

 

5.2.4 Nuclear translocation of transcription factors is unchanged in PTPN22 

KO Jurkat clones 

Having been thus far unable to identify the pathways that explained the increased 
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IL-2 production in PTPN22 KO cells (Chapter 4, Figure 2), I investigated changes in 

the transcription factors relevant for IL-2 expression: NFAT, NFκB, and AP-1 (cFos). 

If a single factor could be identified as changing, it could help indicate the nature of 

the specific molecular pathways regulated by PTPN22 signalling. Alternatively, 

upregulation of all three transcription factors could indicate that PTPN22 KO has an 

effect on an early signalling event, which influences a number of downstream 

pathways. 

 

I used flow cytometry to address the question of whether or not NFAT, cFos, or 

NFκB were more active in PTPN22 WT or KO clones. Berg et al. describe a protocol 

to isolate nuclei from cells and stain them for flow cytometric analysis (unpublished). 

The advantage of looking at the isolated nuclei themselves is that NFAT, cFos and 

NFκB are only translocated into the nucleus upon activation, at which point they are 

able to affect transcription. Flow cytometry of nulcei allowed us to detect active 

NFAT, cFos, and NFκB on an individual cell basis across large populations. 

 

I used DimerX+pTax stimulation combined with anti-CD28, the same stimulation 

conditions used to induce IL-2 expression (Chapter 4, Figure 2). The peak of IL-2 

expression after DimerX+pTax stimulation was between 2 and 4 hours, so I chose 

the time points 0.5, 1, and 3 hours to capture the change in transcriptional activity. 

Each experiment was performed using three clones from each group, and was 

repeated three times (except for NFκB, which was excluded from one experiment). 

 

The protocol to isolate nuclei results in loss of 90% of nuclei when lysing 1x106 cells, 

and this percentage yield is further reduced with even less starting material. The 

number of cells used (3x105) for the stimulated samples was limited by the 

availability of DimerX reagent, whereas 1.8x106 cells were used in staining controls. 

Thus the nuclei yields of the stimulated samples were lower than nuclei yields of 

control samples. Control samples were therefore used to set the Forward/Side-

scatter gate, and the same gate was applied to the stimulated samples (Figure 7a). 

 

Fig 5b and c shows that in unstimulated cells nuclei were negative for cFos and 

NFAT, however there was a substantial population that was positive for NFκB 

(Figure 7b). This population was present in every clone tested, although the 
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Figure 7. Gating strategy for nuclear flow cytometry (a) Nuclei 
gates were drawn on controls and applied to samples. Nuclei were 
isolated from Jurkat cells that were (b) unstimulated or (c) stimulated 
with DimerX+pTax, and stained for NFAT, cFos, or NFkB. (d) 
Histograms of data shown in (b) and (c). Grey = unstimulated cells, 
red = pTax stimulated cells.	



	

	120 

frequency of positive cells varied from 16-90%. Interestingly, the population that was 

NFκB positive before stimulation was the same population that became positive for 

cFos and NFAT upon stimulation (Figure 7c). In samples with CD3 stimulation, 

NFκB negative populations did not upegulate cFos or NFAT. It is possible that some 

nuclei were simply constitutively positive for NFκB, although this result has not been 

reported in Jurkat cells previously. Alternatively, the NFκB negative population could 

not be nuclei at all, but be comprised of debris, or it could be nuclei from cells within 

the population that are resistant to activation for an unknown reason. It’s also 

possible that the NFκB antibody, although it has been verified by the manufacturer 

as negative for staining on NFκB knockout cells, is binding non-specifically to an 

unknown nuclear marker; however the strong correlation between NFκB signal and 

NFAT and cFos signal upon stimulation makes this possibility seem unlikely. The 

histograms in Figure 5d show the gating used to generate the graphs in Figure 6. 

 

NFκB notwithstanding, we observed an increase in nuclear translocation of NFAT 

and cFos upon stimulation with DimerX+pTax (Figure 8a and b). Both MFI and 

frequency of NFAT and cFos were reduced slightly from their peak by 3 hours, but 

remained elevated compared to baseline. I did not observe any significant 

differences between PTPN22 WT and KO cells. There is a slight trend for KO cells 

to have fewer cells positive for each transcription factor (Figure 8a), and for the 

fluorescence of those positive cells to be reduced (Figure 8b) compared to WT. 

These findings suggest that the increase in IL-2 in KO Jurkat cells compared to WT 

cells cannot be attributed to differences in the translocation of transcription factors. It 

is possible that regulation of IL-2 translation is more relevant in this effect. 

 

5.2.5 Erk phosphorylation is increased upon weak stimulation in PTPN22 KO 

Jurkat clones 

Erk phosphorylation is one of the most sensitive readouts of T cell activation that I 

tested, giving signal well above background even under weak conditions of 

stimulation. It is also shown to be elevated under certain stimulation conditions in T 

cells isolated from PTPN22 KO mice200. I was therefore interested in determining 

whether the Erk pathway was affected in my PTPN22 KO Jurkat clones. 

 

Using phosflow as described above, I found that CD3 stimulation did produce a 
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Figure 8. No significant difference in nuclear localisation of transcription 
factors in PTPN22 KO. Isolated nuclei from Jurkat cells stimulated with 
DimerX+pTax for the indicated number of hours, and presence of NFAT, cFos, 
and NFkB was detected by flow cytometry. (a) Percentage of nuclei positive for 
indicated transcription factor, (b) MFI of population positive for indicated 
transcription factor. No significant differences between PTPN22 WT and KO 
clones were found. Statistical significance for each condition was determined 
by unpaired T test and Bonferroni multiple comparisons correction. A p-value 
less than 0.05 was considered significant.	
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 trend of increased Erk phosphorylation in PTPN22 KO cells. However this result 

was only significant after 30 minutes of stimulation, as phosphorylated Erk (pErk) in 

WT cells was dephosphorylated more quickly than KO cells (Figure 9a). Because 

pErk had not returned to baseline by two hours, I extended the experiment to six 

hours to observe whether pErk in PTPN22 KO cells would remain elevated over the 

entire period (Figure 9b). Using saturating concentrations of plate-bound CD3 

showed a greater trend for PTPN22 KO clones to have higher pErk at one and two 

hours, though this difference was reduced by later time points. However, saturating 

concentrations of plate-bound DimerX+pTax showed no difference between the 

groups at any of the time points (Figure 9c). Additionally, the percent of pErk positive 

cells had decreased from its peak after one hour of CD3 stimulation, whereas with 

DimerX+pTax the percentage of pErk positive cells both higher than with anti-CD3 

and sustained up to two hours. This once again reflects the inherent differences 

between CD3 and peptide stimulation, and also suggests that the effect of PTPN22 

on pErk depends on the type of stimulation used. 

 

To further test the effects of PTPN22 on pErk upregulation after stimulations with 

different strengths of ligand, I titrated DimerX+pTax for stimulation and also tested 

saturating amounts of DimerX+pHuD, the weaker affinity peptide (Figure 9d). I found 

that the percentage of pErk positive cells corresponded with stimulation strength, but 

also that a greater proportion of PTPN22 KO cells upregulated pErk than WT cells at 

weaker stimulations, and that this difference was reduced as signal strength 

increased (Figure 9e). This result is in line with the findings from PTPN22 KO mice, 

and also suggests an explanation for why many of my previous assays have 

produced negative results: when a strong stimulus is necessary to obtain a readout, 

the role of PTPN22 may be overshadowed. pErk is a sufficiently sensitive readout 

that, even though pHuD stimulation had never elicited a response significantly above 

baseline in any other assay I tested, pHuD caused upregulation of pErk detectable 

to sufficient levels for analysis of subtle differences. Based on these findings, I 

conclude that PTPN22 does affect Erk signalling in human T cells upon stimulation 

with weak affinity peptide, but that the strength of this effect is reduced upon 

increased activating signal strength. Further investigations into the role of PTPN22 

on T cell signalling should employ highly sensitive assays that are able to detect the 

more subtle signal changes elicited by weaker stimulation conditions.
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Figure 9. PTPN22 KO enhances Erk signalling upon weak stimulation. (a) 
and (b) Jurkat cells were stimulated with saturating anti-CD3 for the indicated 
time periods, or treated with PP2 or pervanadate, and pErk phosphorylation 
was measured by flow cytometry. (c) pErk levels were measured in Jurkat cells 
stimulated with saturating DimerX+pTax for the indicated time periods. (d) pErk 
levels were measured in Jurkat cells stimulated for one hour with DimerX+pHuD 
or different concentrations of DimerX+pTax or treated with PP2 or pervanadate. 
(e) Difference between average levels of pErk in PTPN22 WT and KO cells for 
each stimulation condition. Data represents two independent experiments. 
Statistical significance for each condition was determined by unpaired T test 
and Bonferroni multiple comparisons correction. A p-value less than 0.05 was 
considered significant.  ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001	
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5.3 Discussion 
The work presented in this chapter aimed to identify the pathways affected by loss 

of PTPN22 that lead to increased IL-2 and CD69 expression in Jurkat cells (Chapter 

4, Figure 2 and 3). To this end, I compared PTPN22 WT and PTPN22 KO Jurkat 

clones in phosphorylation of Lck and Zap-70, calcium flux, early activation gene 

transcription, transcription factor nuclear localisation, and Erk phosphorylation.  

 

PTPN22 is largely considered to have a role in TCR-proximal signalling, however we 

found no effect of loss of PTPN22 on early phosphorylation events (Figure 3). This 

may be due to the challenge of detecting subtle differences in phosphorylation using 

traditionally available signalling assays. For this reason, we expanded the readouts 

to include downstream effects at later time points (>15 minutes); while PTPN22 may 

not have a direct effect on these readouts, their increase may reflect slightly stronger 

proximal signalling made more pronounced by signal amplification. However, 

expanding our view of the signalling pathway not only complicates the system 

observed but also includes activity of additional signalling regulators, and results 

may no longer by directly attributable to PTPN22 activity. Future studies wishing to 

isolate the role of PTPN22 on TCR-proximal signalling may use techniques such as 

immunoprecipitation detected by flow cytometry276 which has much improved 

sensitivity of phosphorylation events compared to phosphoprotein flow cytometry. 

Additionally, it is possible that PTPN22 KO Jurkat cells maintained in culture may 

have reduced differences to PTPN22 WT cells over just a few cell cycles, as tonic 

signalling effects may lead to adjustments to internal stoichiometry of TCR signalling 

regulators to maintain homeostasis. In this case, differences between the genotypes 

would be more readily detected if the period between transfection and assay is 

reduced as much as possible by eliminating the selection steps and simply 

performing the assays on the bulk transfected population. 

 

Strong TCR:self-antigen interactions are selected against in the thymus, thus 

autoimmune responses in peripheral T cells are driven by weak self-antigens. A 

study using PTPN22 KO OT-1 mice showed that loss of PTPN22 had an impact on 

several readouts of T cell signalling, including Erk phosphorylation, under conditions 
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of weak peptide stimulation, but that loss of PTPN22 had less of an effect on T cell 

responses to high affinity peptide200. Similarly, in PTPN22 KO Jurkat clones, Erk 

phosphorylation was enhanced compared to WT clones under conditions of weak 

peptide stimulation, and the enhancement was reduced as peptide strength 

increased. These data demonstrated that the effect of human PTPN22 on regulating 

T cell signalling was greater in the context of weak antigen stimulation, such as may 

lead to autoimmune responses. The autoimmune-associated PTPN22 SNP may 

confer autoimmune susceptibility by inhibiting the ability of PTPN22 to regulate 

responses to weak self-antigen. Current literature suggests that human PTPN22 

R620W acts as a gain-of-function mutation which inhibits T cell responses in 

response to CD3 or SAg (further described in Chapter 3), however the work 

presented here shows that the role of PTPN22 on T cell signalling is different in 

response to weak antigen, suggesting that the effects of the polymorphism might 

also be dependent on the type of stimulus. The observation that IL-2 production is 

increased in PTPN22 KO Jurkat clones (Chapter 4, Figure 2) was made following 

strong peptide stimulation, suggesting that even subtle signalling changes can lead 

to differences in effector molecule production. Further study is needed to fully 

understand the role of PTPN22 in different contexts of stimulation. 

 

Using CD3 or strong peptide stimulation may have limited the role of PTPN22 in the 

pathways analysed by the other assays described in this chapter. We observed 

trends of PTPN22 KO clones having increased Lck and Zap-70 phosphorylation and 

immediate early gene transcription after stimulation with CD3, but the difference 

between PTPN22 KO and WT clones was not significant. It is possible that weaker 

stimulation would produce a greater difference between the PTPN22 KO and WT 

clone Lck and Zap-70 phosphorylation, however this difference could be difficult to 

detect using phosflow because the change in MFI from unstimulated cells, which is 

already less than two-fold on average when using strong stimulation, may be 

reduced to the point that it is indiscernible from background noise. The increase in 

immediate early gene transcription in activated cells compared to unstimulated cells 

is clearer, however if the difference in transcription of immediate early genes 

between PTPN22 WT and KO clones was less than two-fold, it would be difficult to 

detect by qPCR; a two-fold increase in transcript number only reduced the Cp value 

by one, so subtle changes could be easily masked by variance noise resulting from 



	

	126 

analysis of numerous independent clones. Therefore, only a difference in 

transcription greater than two-fold would be likely to produce a significant result 

using this assay. 

 

Calcium flux in response to stimulation had been shown previously to be dampened 

when PTPN22 R620W was overexpressed in human cell lines192, and to be 

enhanced in thymocytes from PTPN22-/- mice on several different genetic 

backgrounds160,162,165. However, Rieck et al found a reduction in calcium flux in 

memory B cells of PTPN22 R620W homozygous individuals, but not in naive B 

cells189, and Maine et al found that calcium flux in B cells was unaffected by PTPN22 

in transgenic mice161. Taken together with the fact that lab mice are raised in a clean 

environment, these studies in B cells suggest that antigen experience may be 

important to observe the effect of PTPN22 on calcium signalling. If B cells 

experience a similar upregulation of PTPN22 upon antigen engagement to T cells186, 

this phenomenon could be explained by differing amounts of PTPN22 expressed by 

naive lymphocytes compared to memory lymphocytes or thymocytes. In this model, 

the amount of PTPN22 expressed by naive lymphocytes is insufficient to 

downregulate calcium signalling. Therefore, as Jurkat cells are antigen-naive, they 

may simply not express enough PTPN22 to affect calcium signaling, as Chapter 3, 

Figure 11 showed that restimulated PBMCs express much more PTPN22 than 

unstimulated Jurkat cells. If this is the case, we would expect to see no difference 

between calcium flux in PTPN22 WT and KO Jurkat clones, which fits the results 

presented in this chapter. Regardless, the lack of difference in calcium flux indicates 

that the observed increase in IL-2 production in PTPN22 KO clones (Chapter 4, 

figure 2) was not due to enhanced calcium signalling.  

 

Vang et al showed that increasing expression of PTPN22 in Jurkat cells lead to 

reductions of NFAT and AP-1 driven luciferase upon stimulation with anti-CD3, 

indicating that PTPN22 was able to inhibit activity of those transcription factors149. In 

addition, Brownlie et al showed a correlation between increased NFAT translocation 

and IL-2 production in PTPN22 KO mouse T cells in the context of TGFβ 

downregulation 201. However, my data showed no significant changes in detection of 

NFAT, AP-1, and NFκB in the nucleus between PTPN22 KO Jurkat cells stimulated 

with strong peptide compared to PTPN22 WT cells, indicating that increased IL-2 
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production in PTPN22 KO clones was not due to increased activation and 

translocation of these factors. There are a few possible causes for this discrepancy: 

(1) I detected only one member of each transcription factor family (NFAT1, cFos, 

and RelA), so any differences mediated by related proteins would not be observed; 

(2) the presence of these transcription factors in the nucleus does not guarantee 

that they will drive transcription, which also depends on cooperative interactions 

between these and additional transcription factors, phosphorylation of transcription 

factors for full transactivation capacity, and epigenetic remodelling277; and (3) the 

assays did not account for activity of the transcriptional activity over time, due either 

to stabilizing phosphorylation or to targeted degradation of the proteins, either of 

which could significantly impact the transcriptional activity of the factors beyond their 

presence in the nucleus. Furthermore, Vang et al made their observations in the 

context of overexpression of PTPN22. By their description, overexpression of either 

variant of PTPN22 “blocked TCR signalling,” thereby showing a clear divergence 

from the function of normal levels of PTPN22 in Jurkat cells. Overexpression of 

PTPN22 alters its stoichiometry relative to other proteins of TCR signalling, and may 

greatly overemphasize its negative regulatory abilities compared to physiological 

expression levels. In this case, we would expect to observe negative regulation by 

overexpressed PTPN22 that does not occur with normal expression of PTPN22. As 

my experiments are comparing the loss of PTPN22 to its normal expression, it is not 

surprising that I did not observe the loss of negative regulation of transcription 

factors since such negative regulation required more PTPN22 than was expressed 

in my PTPN22 WT cells. 

 

It was recently shown that IL-2 is regulated nearly exclusively at the transcriptional 

level in mouse T cells278, however there is evidence that IL-2 mRNA does not 

inevitably correlate with IL-2 protein expression, and polysome fractionation showed 

that TCR stimulated human peripheral blood T cells lacking co-stimulation failed to 

load IL-2 mRNA with high numbers of ribosome279. Ragheb et al found CD28 

responsive elements in IL-2 mRNA that contributed to stabilisation of the transcript 

in a mouse T cell line280. It is therefore possible that the increase in IL-2 production 

in PTPN22 KO clones was due to differential translational regulation of IL-2, rather 

than changes to IL-2 transcription. Comparison of IL-2 transcript levels in PTPN22 

WT and KO clones after stimulation would help identify how PTPN22 affects 
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transcriptional and translational regulations of IL-2. 

 

Although I observed a clear increase of IL-2 expression by PTPN22 KO Jurkat cells, 

the data presented in this chapter showed little significant difference in many of the 

signalling molecules I assayed, although there was consistently a slight trend 

towards increased signalling in PTPN22 KO lines (Figures 3-8). This finding 

suggests that the effect of PTPN22 on individual signalling molecules is often too 

subtle to be detected using the methods described, but that the small differences 

culminate in a clear phenotype downstream. The assertion that PTPN22 has a 

subtle effect on T cell signalling is logical given the context in which PTPN22 was 

indicated as a gene important in autoimmunity: in GWAS studies, hundreds of 

individuals are needed in order for a significant gene to be identified due to the small 

contribution of each gene to the disease landscape. For example, a given individual 

homozygous for PTPN22 has a roughly 3-4% chance of developing rheumatoid 

arthritis108, compared to 1% in the normal population. Thus PTPN22 R620W does 

not have a dramatic enough effect on TCR signalling to trigger autoimmunity on its 

own, but instead significantly contributes to a susceptible genetic background that, 

given certain environmental triggers, is more likely to lead to autoimmune disease. 

 

Further study of T cell signalling pathways in PTPN22 WT and KO Jurkat cells is 

needed to conclusively identify the mechanisms by which loss of PTPN22 effects 

increased IL-2 production. Future work should focus on the effects of weak peptide 

stimulation, as PTPN22 may play a more significant role under conditions of weak 

stimulation. Erk phosphorylation was increased in PTPN22 KO cells (Figure 9), thus 

further investigation of pathways leading to Erk phosphorylation could explain how 

the increase is mediated by PTPN22. The data presented here and in the preceding 

chapters indicate that the effects of PTPN22 on signalling are subtle, but can lead to 

changes in effector molecule expression that may be biologically relevant. 
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6. Discussion 
 
The advent of CRISPR technology has made it easier than ever to genetically 

engineer cells and organisms to address scientific questions. My work used CRISPR 

to create the first example of human T cells that lacked the phosphatase PTPN22. 

The ability to explore the effects of PTPN22 knockout in human T cells has helped 

elucidate the role of PTPN22 in human T cell signalling, which is of great interest 

due to the association of mutations in PTPN22 with human autoimmune disease. 

Additionally, studies in mouse models have demonstrated that loss of PTPN22 in T 

cells can increase the ability of those T cells to limit tumour growth; my work 

represents the first steps towards investigating CRISPR knockout of PTPN22 as a 

possible method to enhance adoptive T cell therapy in human cancers.  

 

6.1 Effects of PTPN22 on T cell signalling 
Knocking out PTPN22 in a Jurkat cell line provided a novel opportunity to 

understand the role of human PTPN22. My findings regarding human PTPN22 

agree with the characterisation of PTPN22 in mice as a negative regulator of T 

cells159, as its absence in Jurkat cells results in increased expression of the cytokine 

IL-2 and the marker for activation CD69 (Chapter 4, Figures 2 and 3). My data 

corroborates a previous report in which IL-2 production was increased reported in 

Jurkat cells in which PTPN22 expression was knocked down using siRNA191. The 

unabated growth of the PTPN22 KO lines (Chapter 3, Figure 12) also indicates that 

Baghbani et al’s finding that PTPN22 knockdown in Jurkat cells caused apoptosis 

was likely due to off-target siRNA effects or experimental artefact210. My findings 

indicate that PTPN22 serves a similar negative regulatory function in human T cells 

as it does in mouse. 

 

Many overexpression and primary cell studies indicate that human PTPN22 R620W 

dampens T cell responses more effectively than the major variant, including reduced 

IL-2 expression and Erk phosphorylation149,189,190,192. I found that loss of PTPN22 

had the opposite effect in Jurkat cells, thereby supporting the classification of the 

R620W polymorphism as a gain-of-function effect. However, forcing PTPN22 
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R620W to fit into such a dichotomy ignores substantial data from mouse models as 

well as certain human studies that indicate it may have a gain-of-function effect in 

some contexts155,247. There exist a number of variables that have yet to be fully 

understood and may have a substantial effect on the interpretation of results, 

including how the role of PTPN22 may change in naive and memory cells, and 

before and after development of autoimmunity. For example, numerous splice 

variants described in humans have no defined function yet281,282, and the one variant 

that has been described was reported to be a dominant negative isoform, 

overexpression of which increased IL-2 expression in Jurkat cells145. In addition, 

differences in splice form variant expression have been reported in individuals with 

including RA and SLE compared to healthy controls146,147. It is not clear whether 

these changes are a cause or effect of disease, and what role the polymorphism 

may play in the respective functions of variants of PTPN22. Splice variants are not 

reported in mouse PTPN22, and were not observed in PTPN22 WT Jurkat cells, 

although they seem to appear consistently in human primary T cells (unpublished 

observation). Splice variants may therefore someday explain some of the 

discrepancies between observations of PTPN22 made in human PBMCs and in 

other sources of T cells. 

 

Another possible variable inhibiting the clear classification of PTPN22 R620W as 

gain-of-function is the fact that the role of the interaction between PTPN22 and Csk 

remains controversial. The SNP is known to reduce the interaction of these proteins, 

which was initially reported to involve 35-50% of PTPN22 and 5% of Csk in mouse T 

cells158, to weak or undetectable levels152. Mouse and human Csk share 99% 

homology, however regulation of the interactions of Csk and PTPN22 appears to 

differ between the species: their interaction was reported to be constitutive in mouse 

T cells 154, but inducible by stimulation in human T cells152,153. Furthermore, the 

interaction was reported to correlate with inhibitory phosphorylation of PTPN22 in a 

Csk-dependent manner in human cells, but not in mouse cells151. The source of this 

possible discrepancy between mouse and human cells is yet unknown, but could 

help explain why the disassociation from Csk leads to an increase in PTPN22 

function in humans but not in mice. My data demonstrates that the basic 

functionality of PTPN22 is similar between mouse and humans, so the difference in 

the effect of the polymorphism between the species may be due to additional 
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interactors, splice variants, or more subtle differences in PTPN22 localisation or 

regulation that have not yet been detected. 

 

The driving question behind all PTPN22 research is of how the R620W 

polymorphism leads to autoimmunity. My work supports the hypothesis that the 

polymorphism leads to enhanced PTPN22 activity, and thus suppresses T cell 

functions; given the critical role T cells play in autoimmune responses, this 

conclusion seems counterintuitive. However, a single triggering event may be less 

important in autoimmunity than a constitutive dampening of peripheral tolerance 

mechanisms, and PTPN22 R620W may lead to the latter condition through the 

suppression of Treg cells. In addition, PTPN22 R620W may be associated with 

increased inflammation from immune responses by reduction of the expression of 

inflammation-limiting type-I interferons,171 as well as with a B cell repertoire more 

likely to contain self-reactive BCRs168. It is likely a combination of these factors that 

increases autoimmune susceptibility.  

 

To illustrate how these mechanisms may cooperate in a human individual with gain-

of-function PTPN22 R620W mutation, consider first prolonged inflammation at the 

site of an innate response to pathogen. DCs are more likely to be activated and pick 

up environmental antigen, and a DC happens to process a self-antigen from 

surrounding damaged cells. Upon traveling to the lymph node, the DC encounters a 

naive T cell which recognises the self-antigen. Normally Treg cells maintain 

homeostasis despite the constant presence of self-reactive T cells, however, as the 

human PTPN22 R620W mutation leads to downregulation of T cell activity, Tregs 

have reduced functionality, and are less able to maintain suppression of self-

reactive T cells. As a result, the naive self-reactive T cell receives sufficient 

stimulation to become activated and proliferate. Depending on whether it is a CD4 or 

CD8 T cell it may begin to express additional pro-inflammatory cytokines, become 

cytotoxic and begin to induce tissue damage, or directly stimulate B cell help. 

Additional T and B cell recruitment is likely in any scenario incurring ongoing 

inflammation, and in this case there are a greater number of self-reactive naive B 

cells, which begin to produce antibody directed against self-antigen derived from the 

site of inflammation. Thus, a full-blown immune response has been triggered, subtly 

circumventing different points of control to become activated against the self. 
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6.2 PTPN22 as a target in cancer therapy 
In addition to the prevention of infectious disease, a function of the immune system 

is to prevent neoplastic growths from developing into cancer. In fact, many of the 

characteristics of auto-immune cells described above become desirable when 

considered in the context of fighting cancer. For this reason, we are interested in the 

possible enhancement PTPN22 may represent to immune therapy. 

 

Recently, a number of therapeutic options have been explored to combat immune 

evasion and promote clearance of a tumour by the immune system, including 

cytokine treatment, therapeutic vaccines, checkpoint inhibition, and adoptive T cell 

therapy, with multiple treatment strategies able to be combined to produce promising 

results 283-286. Cancer immunotherapy is still young, but the potential of this field has 

garnered a great deal of excitement and hope for future developments. 

 

In recent developments of immune therapy, T cells are isolated from a patient or 

donor and modified to express a chimeric antigen receptor (CAR), which is an 

engineered antigen-recognition extracellular domain specific to a cancer antigen 

associated with intracellular T cell receptor signalling molecules286. CARs enable T 

cells to receive strong activating signals from tumour cells expressing the target 

antigen, increasing their cytotoxicity against tumour cells. However, CARs also 

result in severe side effects, including death, when CARs cross-react with non-

tumour tissues286,287.  

 

We believe that knocking out PTPN22 may enhance the effectiveness of adoptively 

transferred T cells without the requirement of very strong CAR interactions, thereby 

limiting the severity of side effects. The same characteristics that predispose a T cell 

towards autoimmunity may also predispose it towards cancer immunity: enhanced 

responsiveness to weak antigen, increased cytokine production, and decreased 

sensitivity to negative regulation. Each of these traits has been demonstrated in 

PTPN22 KO mouse T cells, which were also shown to have improved tumour-killing 

capabilities in mice200,201. The work presented in this thesis also provides the first 

evidence that PTPN22 KO human T cells may also show enhanced responsiveness 
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to weak antigen and increased cytokine production (Chapter 5, Figure 9; Chapter 4, 

Figure 2). Increased IL-2 in particular has been shown to protect T cells against 

downregulation by TGF-β, commonly expressed in the tumour microenvironment, 

which may explain the ability of IL-2 to promote survival of adoptively transferred T 

cells and to regress melanomas and renal cell carcinomas201,284. PTPN22 KO mouse 

and human T cells have now been shown to display a similar phenotype; if these 

similarities remain consistent in the context of anti-tumour responses then knock out 

of PTPN22 could prove a useful tool in enhancing adoptive T cell therapy. 

 

6.3 Future work 
To further test whether or not PTPN22 R620W has a gain-of-function effect in a 

controlled cell line, CRISPR could be used to knock in the R620W polymorphism 

using the same Jurkat parent line as used in this project. The effects of the 

polymorphism would thus be directly comparable to the effects of the knockout, and 

could be tested in response to both weak and strong cognate peptide stimulation, 

thus potentially providing valuable insight into the role of the polymorphism in T cell 

signalling. More ambitiously, the functions of individual splice variants could by 

analysed by using CRISPR to replace the whole of the PTPN22 gene with a version 

of the gene containing only exons of the variant of interest, or selected exons could 

be targeted for deletion. If desired, clones could be chosen in which the splice 

variant is introduced on only one allele to investigate its interaction with the full-

length protein.  

 

The application of PTPN22 KO as a potential cancer therapy in humans would first 

need to be explored more thoroughly in animal models of disease, such as a 

humanised mouse tumour model. These studies would require the refinement of the 

CRISPR and TCR transduction protocols to suit a clinical setting, and would test 

whether human T cells that have had PTPN22 knocked out are better able to kill 

tumour cells when transferred into the physiological setting of a live animal. 
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