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Abstract

Publicly-available microarray data constitutes a huge resource for researchers in biological

science. A wealth of microarray data is available for the model organism – the mouse. Pluripotent

embryonic stem (ES) cells are able to give rise to all of the adult tissues of the organism and, as

such, are much-studied for their myriad applications in regenerative medicine. Fully differentiated,

somatic  cells  can also be reprogrammed to pluripotency to  give induced pluripotent  stem cells

(iPSCs). ES cells progress through a range of cellular states between ground state pluripotent stem

cells, through the primed state ready for differentiation, to actual differentiation.

Microarray data available in public, online repositories is annotated with several important

fields, although this accompanying annotation often contains issues which can impact its usefulness

to human and / or programmatic interpretation for downstream analysis. This thesis assembles and

makes available to the research community the largest-to-date pluripotent mouse ES cell (mESC)

microarray dataset and details the manual annotation of those samples for several key fields to

allow further investigation of the pluripotent state in mESCs.

Microarray samples from a given laboratory or experiment are known to be similar to each

other due to batch effects. The same has been postulated about samples which use the same cell

line.  This work therefore precedes the investigation of transcriptional events in mESCs with an

investigation into whether a sample's cell line or source laboratory is a greater contributor to the

similarity between samples in this collected pluripotent mESC dataset using a method employing

Random Submatrix Total Variability, and so named RaSToVa. Further, an extension of the same

permutation and analysis  method is  developed to enable Discovery of Annotation-Linked Gene

Expression Signatures (DALGES), and this is applied to the gathered data to provide the first large-

scale analysis of transcriptional profiles and biological pathway activity of three commonly-used

mESC  cell  lines  and  a  selection  of  iPSC  samples,  seeking  insight  into  potential  biological

differences that may result from these.

This  work  then  goes  on  to  re-order  the  pluripotent  mESC  data  by  markers  of  known

pluripotency  states,  from  ground  state  pluripotency  through  primed  pluripotency  to  earliest

differentiation and analyses changes in gene expression and biological pathway activity across this

spectrum, using  differential expression and a window-scanning approach, seeking to recapitulate

transcriptional patterns known to occur in mESCs, revealing the existence of putative “early” and

“late” naïve pluripotent  states and thereby identifying several  lines of enquiry for in-laboratory

investigation.
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Lay Summary

Humans are living organisms made of much smaller sub-units called cells. These cells come

in different types, depending on their function, for example cells of the liver are involved in energy

storage, detoxification and even immunity. Among the many different subtypes of cells, stem cells

have important properties that make them of great interest to biomedical research. Stem cells can

provide a supply of other cell types, almost indefinitely. For example, skin cells are constantly shed

from the body but are replaced from a small number of stem cells residing in the deeper skin.

Embryonic stem cells (ESCs) are the stem cells present in the early embryo that create all of

the cells of the adult, so are called “pluripotent”. A great deal of research has been carried out on

mouse ESCs (mESCs) to pick apart their properties of self-renewal and creating child cells to build

and maintain an entire mouse. Looking at the genes that are “on or off” is a common way to do this,

and microarrays give simultaneous measurements of the average levels of gene activity of millions

of cells at a time, this forming one “sample”. Much microarray data is available in public, online

locations,  but  the  way  in  which  information  about  individual  mESC  samples  is  sometimes

confusing  or  obscure  to  both  humans  and  computers  trying  to  analyse  it.  This  thesis  brought

together the largest-to-date pluripotent mESC microarray dataset and the samples within it were all

manually  annotated  to  make  analysis  much  easier,  and  also  created  a  simple  way  to  record

experimental details that humans and computers can work with and understand easily.

Samples from the same lab or cell line are known to be similar to each other, which can get

in the way of looking for patterns in the data that explain the biology we are researching. This work

created  two  new  tools,  called  RaSToVa  (Random  Submatrix  Total  Variability)  and  DALGES

(Discovery of Annotation-Linked Gene Expression Signatures). RaSToVa measures how much one

annotation (e.g. cell line) makes samples more similar to each other. The tool does this in a way that

allows researchers to compare this increase in similarity of samples due to different annotations.

DALGES takes this further by showing researchers which individual genes appear to be more “on”

or “off” in samples that share the same annotation (e.g. being from the same lab.)

Finally,  this  work  devises  a  way to  sort  all  of  the  samples  in  this  large  mESC dataset

between their earliest known stage of the pluripotent state, to the state right before the development

of the mouse truly begins, finding new steps that the cells go through on the way, and showing

patterns of which genes turn on and off, and by how much, as the cells go across these states. This

approach holds a lot of promise for using the large amounts of data already out there and publicly

available  to  do  similar  things  to  gain  new insights  about  other  biological  processes,  including

repeating this in human ESCs, which would be of great use to medical science indeed.
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“The true sign of intelligence is not knowledge but imagination” 

- Albert Einstein

“If a path to the better there be, it begins with a full look at the worst.”

- Thomas Hardy,

“An expert is someone who has made all the mistakes which can be made, in a narrow field”

- attributed to Niels Bohr by Edward Teller

“Start  by  doing  what's  necessary;  then  do  what's  possible;  and  suddenly  you  are  doing  the

impossible”

 - Francis of Assisi 
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1.1 Embryonic Stem Cells

Before discussing the motivation driving the study of embryonic stem (ES) cells, it is first necessary

to define the embryonic stem cell. Again, prior to this, the definition of the “stem cell” is required. A

stem cell is a cell which is capable of both self-renewal and differentiation. The terminology applied

to stem cells has, over recent years, required ever more careful use. For example, it is not equivalent

to say that a stem cell is any cell capable of self-renewal and  proliferation,  as these properties

combined would not facilitate the function of the stem cell; to renewably create new or replace old

tissue under strict control. The existence of the “cancer stem cell”, for example, is reason enough to

stress the judicious use of such terminology, in that a stem cell capable only of creating copies of

itself and a mass of differentiation-incompetent progenitors which fail to respond to cues is a very

different cell indeed.

The term “embryonic stem cell” was coined when they were first cultured through the use of media

conditioned by mouse teratocarcinoma cells  (Martin, 1981). The first experiments in culturing ES

cells took place this same year (Evans and Kaufman, 1981). Mouse ES cells (mESCs), specifically,

are those cells which, in the in vivo case, populate the inner cell mass (ICM) region of a developing

mouse embryo and eventually give rise to the tissues of the three canonical germ layers of the adult

organism: the endoderm, mesoderm and ectoderm. The etymology of the prefix “embryonic” is

therefore  obvious.  These  cells  occur  at  around  day  E3.5  (see  1.2 for  more  detail  on  the

developmental context.)

However, given that techniques now exist to generate and manipulate these cells  in vitro, there is

sometimes usage of the term “embryonic stem cell” when, in actuality, the cells in question are not

taken  directly  from an  embryo  at  all  (e.g.  they  may  be  cells  long-passaged  from  an  original

isolation), or may be generated by nuclear transfer methods or, particularly in the case of much of

the  data  compiled  in  this  thesis,  maintained  in  an  ES-like state  in  vitro  for  the  purposes  of

manipulation and study.

It is of fundamental interest to present stem cell science in general as well as, consequently, this

thesis, what the true identity of an ES cell is, if such a thing can be said to exist. This question, like

so many in biological science, has had to be qualified and redefined time and time again. It is now

accepted, although perhaps not always stated or stressed sufficiently for accuracy, that the ES cell is
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only a transient cell state in the development of certain organisms (including mouse and human),

and that our attempts, as scientists, to maintain this ES cell state likely actually removes that cell

considerably from any naturally-occurring in vivo state. This is, however, necessary for the study of

and subsequent harnessing of the abilities of the ES cell. Therefore, throughout the course of this

thesis, for convenience, the term mESC may be used when referring to samples when, in the great

majority of cases, these cells are removed from their original  in vivo  state of being true mESCs,

however convention in the literature still has them referred to as mESCs rather than mESC-like or

mESC-derived.

The mouse ES cell has historically been, and currently still is, the most widely-available and best

understood ES cell and forms a great part of the basis for translating our understanding of stem cell

maintenance, differentiation and pluripotency to the human, for ultimate use (see 1.7). It is for this

reason that mouse data was chosen for use in this thesis; in order to amass as large-scale an analysis

as possible, given the amounts of data publicly available for different organisms.

1.2 Developmental Origins

The mESC is a cell of the ICM of the developing mouse embryo which is to be found around the

day E3.5 time point and is defined as a cell which can self-renew (that is, give rise to identical

progeny) and differentiate, that is, generate daughter cells which are fated to give rise to the main

three germ layers of endoderm, mesoderm and ectoderm. This means that the mESC is, ultimately,

what gives rise to the entire adult animal. A detailed review of the developmental events related to

mESCs can be found in  (Nichols and Smith, 2012).

Starting as the fertilised egg, the diploid zygote, division of this cell occurs repeatedly into several

cells known as blastomeres, but no real increase in volume occurs. Being binary in nature, these cell

divisions proceed to generate first 2, then 4, then 8 cells and so on. The next stage of development

of the mammalian embryo is compaction, involving the maturation of cell adhesion complexes to

bind the cells together. At this stage, the 16-cell stage, the whole entity is referred to as the morula,

with the innermost cells fated to become the ICM.

Division proceeds in doubling cell numbers as the outer cells (distinct now from the ICM) begin to

form into  the  trophectoderm (TE);  the  support  tissue  for  the  embryo  proper.  Fluid  is  actively
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produced  by  the  trophectoderm and  pumped  into  the  centre  of  what  is  rapidly  becoming  the

blastocyst  stage,  forming  a  cavity  on  one  side,  giving  rise  to  the  easily-recognised  shape

distinguishing between the areas of the ICM and the TE. This, in the mouse, occurs at the E3.5 time

point and it is here that we find our bona fide mESCs in the ICM.

It is crucial to appreciate at this point that the state of the mESC, derived from the ICM at this time,

is, being a developmental stage, therefore, by definition, a transient state in vivo.

Following this stage of development, the ICM proceeds to both proliferate and differentiate into the

three aforementioned germ layers, with ectoderm to the nervous system and the skin, its “opposite”,

the  endoderm,  to  the  gastrointestinal  tract  and  other  viscera,  and  the  intermediary  layer,  the

mesoderm, to the bone, muscle, cartilage and the haematopoietic system. At any stage following on

from the undifferentiated ICM stage, our mESCs essentially cease to exist in the pluripotent state as

their progeny begin to restrict their possible fates and progress towards final cellular identities. This

work concentrates on mESCs, their maintenance and early exit from pluripotency, and thus any

development beyond this ICM stage is outside the scope of this thesis.

From this  explanation  of  the  earliest  developmental  events  is  made  apparent  the  definition  of

“pluripotent” for our purposes, being the ability to give rise to the 3 major germ layers defined

above. It is therefore not necessary for a “pluripotent” cell to be able to give rise to trophectoderm,

although this is a matter of convention in stem cell biology, not in keeping with the meaning of the

prefix  itself,  where  “pluri”  simply  means  “many”,  as  does  “multi”  from  “multipotent”.

Multipotency, by convention, however, refers to the ability of a stem cell to give rise to multiple

types of more differentiated progeny, but further towards adult stem cells than the pluripotency of

mESCs.  Cells  capable  of  giving  rise  to  all  3  germ layers  and  also  trophectodermal  tissue  are

referred to as “totipotent”, where the prefix “toti-” refers to “all.”

1.3 Embryonic Stem Cell Transcriptional Machinery

The ESC transcriptome is required to be able to perform three major functions. The first is the

universal  requirement  for  the  so-called  “housekeeping”  processes  of  cellular  life,  such  as

metabolism, repair and maintenance of cell structures and cellular homeostasis. The second is the

driving  of  the  undifferentiated  self-renewal  program,  providing  replicatively-vigorous  identical
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progeny  with  their  genetic  material  intact.  The  third  is  to  detect  and  respond  correctly  to

developmental cues which instruct the cell to exit from the self-renewal program and start down a

differentiation pathway. This makes the mESC a highly-specialised cell in its own right. Given the

complexity of internal and external  signalling events  constantly processed and responded to by

mESCs, it is inaccurate and misleading to describe mESCs as “unspecialised” cells.

The study of the state of, and mechanisms underlying, ES cell transcriptional machinery is central

to the area of basic stem cell research. Transcriptional “networks” in ES cells have therefore been

the subject of intense research in recent years. This brief overview of the transcriptional workings of

mESCs is given to provide context and background understanding of the major factors currently

known to be involved in the maintenance of pluripotency and exit from it.

1.3.1 Oct4, Sox2 and Nanog Core Transcriptional Circuitry

Agreement has been present in the literature for some years now concerning three transcription

factors, octamer-binding transcription factor 4 (Oct4) (also known as Oct4), sex-determining-region

Y box 2 (Sox2) and Nanog (pronounced “nanOg”),  named after  the mythical  Irish land of  the

forever young, as forming the core transcriptional circuitry underpinning pluripotency in mESCs

(Young RA, 2011), (Nichols and Smith, 2012), (Yeo and Ng, 2013) (Hackett and Surani 2014).

In the context of mESCs, Oct4 expression is closely associated with the identity of true ICM cells,

and is  downregulated  in  the  TE,  concomitant  with  the  expression  of  Cdx2 and eomesodermin

(Eomes), driven by expression of TEA domain family member 4 (Tead4) in the TE. This is due to

Hippo  signalling  being  activated  in  cells  that  are  surrounded  by  other  cells  at  this  point  in

development. Those cells on the surface of the developing blastocyst, not being surrounded, do not

have  active  Hippo  signalling,  helping  to  partition  the  TE  from  the  ICM  (Wada  et  al.  2011).

Furthermore, knockdown of Oct4 causes a failure to generate an ICM, favouring TE generation

instead (Nichols et al. 1998). In this same work it was also demonstrated that a lack of Oct4 caused

a near-total failure of transcription of FGF4, a transcription factor required for the generation of the

hypoblast  through  paracrine  signalling  and  also  known  to  be  required  for  later  exit  from

pluripotency by way of its activation of MAPK/ERK signalling (Kunath et al. 2007). Whilst it may

be expected that  underexpression of Oct4 would cause a  loss  of  pluripotency,  it  has also been

demonstrated firstly that overexpression by 50% of Oct4 does not reinforce pluripotency, but in fact
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promotes  differentiation  towards  mesodermal  and  endodermal  lineages  (Niwa  et  al.  2000).

Secondly, the level of expression of Oct4 in stably-pluripotent mESCs was further explored in work

by  (Karwacki-Neisius  et  al.  2013),  and  this  work  identified  a  level  of  Oct4  expression  which

coincided with both robust pluripotency and greatest enhancer occupancy by Oct4 and Nanog.

Oct4 has also been conclusively shown to act as a heterodimer in conjunction with the next of the

three  canonical  pluripotency  factors:  Sox2.  The  initial  work  that  found  co-operative  binding

between Oct4 and Sox2 was by (Yuan et al. 1995) in the case of co-operative binding to the FGF4

enhancer. Indeed, there is such overlap in the targets of Oct4 and Sox2  (Chew et al. 2005) that

expression of Oct4 from a transgene is capable of rescuing pluripotency in Sox2-null embryos. The

use of a transgene in this work by (Masui et al. 2007) to express Oct4 was necessary in that Sox2

and Oct4 promote each other's expression, and therefore it would be expected that Oct4 expression

would decrease considerably in the absence of Sox2. Sox2-null embryos are, however, capable of

forming normal blastocysts, but die shortly after implantation due to a failure to generate a true

epiblast,  with development  only progressing as  far  as  implantation by the grace of  maternally-

derived Sox2 from the initial zygote  (Avilion et al. 2003). This co-operative binding of Oct4 and

Sox2 has been shown to take place at  a great many pluripotency-related genes  (Chambers and

Tomlinson 2009).

The  third  of  these  three  canonical  pluripotency  factors,  Nanog,  initially  known as  Ecat4,  was

initially  identified in  a  cDNA screen for  factors  which could confer  self-renewal  to  leukaemia

inhibitory factor (LIF) receptor (LIFR) knockout (Lifr-/-) mESCs, dubbed LRK1 cells (Chambers et

al. 2003). In this work, both of the pools of transfected cells which gained self-renewal capability

contained  cDNA for  Nanog.  Parallel  work  in  which  the  name  Nanog  was  first  coined  also

demonstrated Nanog's ability to sustain mESCs in the absence of LIF (Mitsui et al. 2003). Loss of

Nanog results in embryos which do not have a pluripotent ICM and is embryonic lethal (Chambers

et al. 2007). However, this work also demonstrated that it is possible to delete Nanog from self-

renewing  mESCs in  vitro,  and  that  whilst  there  is  a  greatly  increased  propensity  towards

differentiation, loss of Nanog does not prevent continued passage of self-renewing mESCs. Nanog

is said, therefore, to be required for the development of pluripotency, but is not strictly required for

its maintenance (Chambers et al. 2007). This same work also demonstrated that Nanog fluctuates in

its  expression  in  individual  cells,  from  a  Nanoghigh state  to  a  Nanoglow state,  cyclically.  This

correlates with a cycle of robust self-renewal and increased propensity to differentiate, respectively.

Furthermore, work by (Navarro et al. 2012) demonstrated that the fluctuation of Nanog is the result
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of autorepression and that Nanog does not self-promote, being dependent instead on Oct4/Sox2.

Nanog has also been shown to be both required for and capable of reprogramming EpiSCs to naïve

pluripotency (Silva et al. 2009) (see section 1.5 for details on EpiSCs.)

A further indication of the pluripotent ICM-specific nature of Nanog is in the initial specification of

epiblast  versus  hypoblast  in  the  developing embryo.  From an initial  stochastic  mosaic  of  cells

positive for either Nanog or Gata6 in the ICM, the centre of the ICM remains Nanog positive while

Gata6 positive cells that find themselves on the periphery of the forming hypoblast continue to

express Gata6 and progress toward hypoblast differentiation. This differentiation towards hypoblast

specification appears, again, to be dependent on FGF signalling through the MAPK/ERK pathway,

as prevention of MAPK/ERK signalling (through deletion of the downstream growth factor receptor

bound protein 2 (Grb2) gene) results in a failure to form hypoblast with all ICM cells becoming

stably  positive  for  Nanog  and  a  concomitant  elimination  of  Gata6  positive  cells  destined  for

hypoblast formation (Chazaud et al. 2006). Conversely, the addition of sufficient exogenous FGF4

directs all would-be ICM cells to form hypoblast (Yamanaka et al. 2010). This again indicates that

paracrine signalling through the fibroblast growth factor receptor and MAPK/ERK pathways are

key signals in the developing mouse embryo at this stage.

1.3.2 The role of c-Myc

Whilst the transcription factors Oct4, Sox2 and Nanog (OSN) form what is agreed upon as the core

pluripotency  network,  transcription  of  OSN  target  genes  is  affected  by  the  c-Myc.  Whilst

transcription factors are responsible for facilitating the binding of RNA polymerase II (RNApol II)

to the OSN target gene loci, transcription has been shown to only proceed a short distance from the

transcription start site (TSS) (around 35 base pairs (bp))  (Rahl et al. 2010). c-Myc functions by

permitting  this  short  transcription  event  to  proceed  beyond  terminating  at  around  35bp,  to

completion of a full transcript. Work by groups such as (Nie et al. 2012) confirmed c-Myc's general

transcription-promoting activity.  This general transcription-promoting activity of c-Myc explains

why it is associated both with ES cells and with cancer stem cells ((Lin et al. 2012),  (Kim et al.

2010),  (Rothenberg et al. 2010)) and also explains its ability to reinforce pluripotency and/or the

efficiency of reprogramming of somatic cells to pluripotency (Takahashi and Yamanaka 2006) (see

section 1.6 on induced pluripotent stem cells.))
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In a review of transcriptional workings of mESCs, (Young RA, 2011) demonstrated that of a total of

9355 genes found to be active in mESCs, 3497 (37%) were targets of both c-Myc and the OSN

factors. 2504 (27%) of active genes were targets of the OSN factors but not c-Myc and 1847 (20%)

of active genes were targets of c-Myc but not all of the OSN factors (figure 3A of  (Young RA,

2011).)

1.3.3 External factors and signalling pathways involved in mESC biology

Whilst an in-depth review of all molecular processes involved in individual signalling pathways is

not necessary for the interpretation of the work presented in this thesis, mESC biology cannot be

discussed in any meaningful manner without at least understanding the relevance of those signalling

pathways  known to  be  involved in  the  maintenance  of  pluripotency  and/or  exit  from it.  More

information on the mechanisms involved in some of the pathways mentioned here can be found in

the review by (Dreesen and Brivanlou 2007).

Initial  efforts  to  culture  mESCs  used  mitotically-inactivated  feeder  cells  and  culture  media

containing serum (Martin, 1981), (Evans and Kaufman, 1981) . At this time it was not known what

factor(s) in the added serum were responsible for maintenance of the cells. Work by (Williams et al.

1988) and by (Smith et al. 1988) identified LIF as one of the factors involved. Typical signalling in

this  pathway  involves  the  binding  of  LIF  to  it's  heterodimeric  receptor,  consisting  of  the  LIF

receptor (LIFR) and glycoprotein 130 (gp130). This results in the downstream phosphorylation of

Janus  kinase  (JAK) and the  subsequent  activation  of  the  Janus  kinase  /  Signal  transducer  and

acitvator  of  transcription  (JAK/STAT) pathway.  From this  it  is  already clear  to  see that  active

JAK/STAT signalling is implicated in the maintenance of pluripotency. STAT3, in particular, has

been shown to be highly important for the maintenance of self-renewal in mESCs  (Niwa et al.

1998), which demonstrated, amongst other things, that inhibition of STAT3 presents a block to self-

renewal and promotes differentiation. Conversely, work by (Matsuda et al. 1999) demonstrated that

mESCs were maintained in the pluripotent state when a doxycycline (DOX)-inducible STAT3 was

expressed,  by  using  a  STAT3-estrogen  receptor  fusion  protein.  One  mechanism  behind  this

requirement  for  STAT3  was  shown  in  work  by  (Cartwright  et  al.  2005) in  that  STAT3  was

demonstrated to promote expression of Myc (see section 1.3.2 for the importance of Myc), and, in

the absence  of  LIF (read:  JAK/STAT signalling),  Myc is  targeted for  degradation  by glycogen

synthase kinase beta (GSK3β), one of the best-known antagonists of Wnt signalling (discussed later
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in this section.) Work was also being carried out at this time by (Sekkai et al. 2005) in identifying

downstream targets of LIF/STAT3 signalling, by either removing LIF or by expression of inactive

Stat3 to observe which genes changed their expression as cells progressed towards differentiation.

This revealed a connection to the transforming growth factor beta (TGFβ) signalling pathway as

well as the Id family of proteins (discussed later in this section as being downstream also of BMP

signalling.)

It was work by (Ying et al. 2003) which identified BMP4 as the other major factor in serum which,

when coupled with LIF, could substitute for serum entirely in the culture of mESCs. It therefore

follows that signalling through both the LIF and BMP pathways are involved in mESC biology.

BMP4 was subsequently found to inhibit MAPK/ERK signalling in mESCs by (Qi et al. 2004), with

small molecule inhibitors of MAPK/ERK allowing the maintenance of mESCs even in the absence

of bone morphogenetic protein receptor 1 alpha (BmprIa), confirming that the relevant function of

BMP4 in maintenance of mESC self-renewal is to inhibit MAPK/ERK signalling. In mESCs, the

BMP signalling pathway acts through SMADs (named as a combination of “sma” - small body type

gene in  C. elegans, and “mothers against decapentaplegic” (MAD)). In the case of mESCs, BMP

signalling acts through SMADs and is responsible for the expression of inhibitor of differentiation

(Id) genes (Ying et al. 2003). In fact, this work also neatly demonstrated that culture of mESCs with

LIF, but not BMP4, results in cells proceeding towards neural differentiation. It is the action of

BMP/SMAD signalling and particularly the expression of these Id genes that prevents this when

culturing with both LIF and BMP, as induced expression of Id genes could compensate for a lack of

added BMP when cells were cultured with only LIF. 

As  regards  TGFβ signalling,  including BMP and Nodal  signalling,  which  are  part  of  the  TGF

family, an excellent review of the effects of these inter-related pathways can be found in (Watabe

and  Miyazono  2009) and,  more  recently  at  great  length  in  (Sakaki-Yumoto  et  al.  2013).  To

summarise a couple of relevant facts as regards the work in this thesis, however, Activin/Nodal

(which are extracellular signalling molecules) signal primarily through phosphorylation of Smad2,

and Smad2 was shown by (Lee et al. 2011) to be phosphorylated to different levels in mESCs by

differing levels of Activin/Nodal signalling. This, in turn, changed the sets of genes targeted by the

phosphorylated Smad2, including Oct4. These differing levels of Nodal signalling ranged in their

effects from the maintenance of pluripotency (middling level of Activin/Nodal) to promotion of

mesoderm / endoderm differentiation (high Activin/Nodal) (Lee et al. 2011). As overexpression of

Oct4  is  also  associated  with  mesoendodermal  differentiation,  this  may  be  therefore  how  high
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Activin/Nodal signalling causes mesoendodermal differentiation. This work also showed that total

blockade of Nodal signalling surprisingly resulted in differentiation to the trophectoderm fate, again

reinforcing the importance of close titration of signalling to maintain mESC self-renewal. Work by

(Vallier et al. 2009) showed that Nodal signalling, particularly in the case of primed pluripotent

(EpiSC) mESCs,  is  linked to  the expression of  Nanog,  which,  in  turn,  prevents  differentiation.

Taken together,  this  explains,  although far from fully,  how a basal level  of Nodal  signalling is

required  in  naïvely-pluripotent  mESCs  for  self-renewal,  but  this  changes  to  a  more  definite

requirement for strong Nodal signalling in primed mESCs for their maintenance in culture.

As regards MAPK/ERK signalling, with the aforementioned discovery that MAPK/ERK inhibition

promotes self renewal, it follows that activation of MAPK/ERK must be involved in the exit from

pluripotency. This is indeed the case, as shown in pivotal work by (Kunath et al. 2007). This work

also links mESC expression of autocrine FGF4 to the cells' ability to differentiate, with inhibition of

FGF signalling causing a resistance to differentiation, which can be restored by the administration

of exogenous FGF4. In turn, this begins to give an overview of how mESCs can self-renew in the

appropriate  environment  (read:  activation  of  LIF  and  BMP signalling),  but  remain  poised  to

differentiate when MAPK/ERK signalling is uninhibited when BMP signalling is deactivated. Work

by  (Lanner et al. 2010) demonstrated the autocrine nature of FGF signalling and its relevance to

mESCs biology  by demonstrating  that  mESC differentiation  was  prevented  by  the  removal  of

mESCs ability to sulphate proteoglycans on their cell surface which are critical for FGF signalling.

This could be mimicked by treatment with NaClO3, which blocks the same sulphation from taking

place and pushes mESCs towards naïve pluripotency. A review of MAPK/ERK signalling in the

context of mESCs produced by the same group is available in (Lanner and Rossant 2010). Recent

work by (Hamilton et al. 2013), however, demonstrated that deletion of ERK2 from mESCs was not

sufficient as a block to differentiation, as functioning ERK1 granted the MAPK/ERK signalling

pathway redundancy. However, this work did also show that deletion of ERK2 (the primary ERK in

mESCs) did reinforce markers of pluripotency and reduced heterogeneity in the cells, in agreement

with discoveries such as the ability of the “2i” culture condition to promote naïve pluripotency

(discussed later in this section.) Even more recently, (Yeo et al. 2014) demonstrated that inhibition

of  Klf2  is  downstream  of  MAPK/ERK  and  explains  another  way  in  which  inhibition  of

MAPK/ERK (e.g. in 2i culture) facilitates the maintenance of the ground state of pluripotency in

mESCs.
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Another pathway intricately involved in mESC biology is the Wnt signalling pathway. Named as a

portmanteau of “Wingless” and “integration” genes investigated in  D. melanogaster and mouse

respectively, Wnt signalling occurs through, with present knowledge, three ways. A review of these

can be found in (van Es et al. 2003). A recent review with an excellent section on Wnt signalling in

ES cells can be found in (Munoz-Descalzo et al. 2015), also.

Briefly, “canonical” Wnt signalling involves the release of  β-catenin from its usual state of being

bound to a complex involving Axin and adenomatous polyposis coli (APC), which target β-catenin

for ubiquitin-mediated proteasomal destruction. Binding of Wnt ligand to the Frizzled receptor acts

through intermediary factors such as Dishevelled and Frat to cause inhibition of GSK3β. In the

absence  of  active  GSK3β,  β-catenin  is  not  targeted  for  destruction  and  can  accumulate  in  the

cytoplasm and be translocated to the nucleus, where it interacts with TCF/LEF to alter transcription

of target genes (van Es et al. 2003). 

Following on from work comparing hESCs and mESCs  (Sato et al. 2003), which identified Wnt

genes as being important  in hESC biology, further work by  (Sato et  al.  2004),  used a specific

inhibitor of GSK3β, a derivative of the naturally-occurring compound indirubin, 6-bromoindirubin-

3′-oxime (BIO), to maintain self-renewing mESCs, keeping levels of Oct4, Nanog and the naïve

pluripotency (not described until 2008 in (Ying et al. 2008)) marker Rex1 (Zfp42) in a high state of

expression. Wnt signalling was also found by (Ogawa et al. 2006) to complement, but be unable to

replace LIF as concerns the maintenance of mESCs in their self-renewing state, whether by the

addition of exogenous Wnt3a, or the use of constitutively-active β-catenin, Wnt signalling could

only reinforce, but not replace, LIF. The use of the specific Wnt ligand in this work, Wnt3a, is

significant in that not all Wnts are capable of contributing to self renewal in mESCs, for example as

demonstrated by (Singla et al. 2006). Wnt5a and Wnt6 were also found to be able to contribute to

self-renewal of mESCs by (Hao et al. 2006), and were identified as factors in serum generated by

feeder cells in their work. (Hao et al. 2006) went on to recapitulate the actions of Wnt5a and Wnt6

through  the  activation  of  β-catenin  and  demonstrate  a  link  between  Wnt  signalling  and  the

expression of STAT3, again linking LIF and Wnt signalling. This is not the only link that Wnt has

into the heart of pluripotency, as the core transcription factor Oct4 is linked to Wnt signalling also,

as demonstrated by (Takao et al. 2007), who showed that not only does LIF signalling itself increase

the nuclear localisation of β-catenin, but that constitutively-active β-catenin could maintain mESCs

in the absence of LIF. In this work, constitutively-active β-catenin upregulated Nanog, although this

upregulation was dependent on Oct4. The interaction of β-catenin with Oct4 was shown in this
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work also. This work is therefore at odds with the findings of (Ogawa et al. 2006), who were unable

to maintain mESCs through their activation of β-catenin in the absence of LIF, although the reason

for the difference in findings may be the choice of cell line, as (Takao et al. 2007) were not able to

repeat their maintenance of mESCs with mutant β-catenin alone in another cell line. This may in

turn suggest that the ability to maintain mESCs in the absence of LIF, using only mutant β-catenin

could be an artefact  of the use of a  cell  line which produces  its  own LIF.  (Takao et  al.  2007)

attempted to address this through the use of an antibody for LIF, although even their experiments

which  successfully  gave  self-renewal  to  mESCs in  the  absence  of  LIF  showed  that  their  self-

renewal and maintenance of an undifferentiated state was not complete, lending support again to the

idea that Wnt signalling cannot, at least fully, replace LIF.

The aforementioned work identifying the ground state of pluripotency (Ying et al. 2008) was also

the first time that the culture condition, 2-inhibitor, “2i”, was invented. In this work it was found

that dual inhibition of MAPK/ERK signalling and inhibition of GSK3β was capable of maintaining

mESCs in a  highly-homogeneous,  self-renewing state.  For example,  whilst  Nanog is  known to

fluctuate between high and low expression in mESCs (Chambers et al. 2007), the low-Nanog state

being highly permissive to differentiation, “ground state” (naïve pluripotent) mESCs cultured in 2i

are maintained in a homogeneous Nanoghigh state.

With these results in mind, it is somewhat unsurprising that Wnt signalling has also been shown to

be involved in the naïve to primed pluripotency transition (ten Berge et al. 2011). This work also

showed that activation of Wnt signalling through the use of exogenous Wnts could allow for the

derivation of mESCs from a strain normally considered to be non-permissive, the inbred FVB/N

strain (normally used in transgenics due to their large litter numbers). (ten Berge et al. 2011) further

demonstrate that some ESC cell lines, such as CGR8 and E14 produce their own Wnts, this suggests

that production of Wnt ligands (and, consequently, self-activation of Wnt signalling) may be behind

some observed differences in the permissivity of different strains to ESC derivation.

Whilst the activation of Wnt signalling through the inhibition of GSK3β may provide a way to

maintain  mESCs  in  their  naïve  pluripotent  state,  the  role  of  Wnt  signalling  in  mESC biology

through naïve pluripotency through to differentiation is highly complex, not fully understood and

current opinion is that Wnt signalling is a highly context-dependent factor in mESC transcriptional

regulation  (Sokol 2011). Amongst other findings, work by  (Wray et al. 2011) interestingly found

knockout of the downstream target of canonical Wnt signalling, Tcf3, made mESCs able to self-
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renew robustly in the presence of either LIF or a MAPK/ERK inhibitor without the requirement for

both. This suggests that a crucial role of Wnt signalling is to inhibit the actions of Tcf3, which, in

turn plays its part in promoting differentiation through the repression of the pluripotency network,

although it is likely that there is a lot more to the story.

The most current opinions surrounding Wnt pathway signalling in mESCs centre on the activity of

β-catenin in the context of ground state mESCs and EpiSCs, wherein it has been demonstrated that

activity  of  β-catenin  in  mESCs  is  associated  with  the  reinforcement  of  self-renewal  and

pluripotency, this is reversed in the case of EpiSCs, where activation of β-catenin drives these cells

towards differentiation, as shown by (Kurek et al. 2015). This work demonstrated not only that Wnt

signalling in EpiSCs drives them to differentiation, but also that the inhibition of Wnt stabilises the

EpiSC state  and allows  for  these  EpiSCs  to  contribute  to  mouse  chimera,  when EpiSCs  were

previously found to not be able to do this (see section  1.5.) Finally, as regards EpiSCs and Wnt

signalling,  it  has  very recently  been demonstrated  that  prevention  of  nuclear  localisation  of  β-

catenin is capable of reprogramming EpiSCs to the ground state (Murayama et al. 2015).

In summary, the actions of TCF/LEF and Wnt signalling are far from fully elucidated in the context

of mESCs, and further research is required.

The  Notch  pathway  is  also  active  in  mESCs,  although  with  a  role  much  less  defined  and

investigated compared to other signalling pathways, it is known to participate in stem-cell related

phenomena such as  proliferation  (Androutsellis-Theotokis  et  al.  2006).  Notch signalling  occurs

through one of four subtypes (Notch1 to Notch4)  which are transmembrane receptors,  but  also

using primarily transmembrane ligands for those receptors,  meaning that Notch signalling is an

overwhelmingly  cell-cell-contact-dependent  process.  Binding  of  a  Notch  ligand  causes  the

proteolytic  cleavage  of  the  intracellular  part  of  the  Notch  receptor,  which  then  interacts  with

recombining  binding  protein  suppressor  of  hairless  (RBPJ)  and  mastermind-like  protein  1

(MAML1)  to  affect  gene  expression.  Work  by  (Lowell  et  al.  2006) notes  that  mESCs  with

constitutively active Notch signalling were not noticeably different from wild-type until withdrawal

of differentiation inhibitors, whereupon there was mass conversion to a neural phenotype. Their

work hypothesises, therefore, that a cell-cell interaction-dependent mechanism is responsible for the

observed conversion of mESCs to neural fate on removal of external factors designed to maintain

self-renewal.
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Phosphoinositide 3-kinase (PI3K) signalling has been demonstrated in mESCs also. Initially, PI3K

signalling was found to be involved in the survival and proliferation of mESCs (Burdon et al. 2002).

Later,  (Paling et al. 2004) found that whilst the inhibition of PI3K did not interfere with STAT3

signalling,  it  actually  enhanced  LIF-induced  activation  of  the  MAPK/ERK pathway.  This  may

suggest that a role for PI3K exists in inhibiting MAPK/ERK, as inhibition of MAPK/ERK reversed

the effects of inhibiting the PI3K pathway. Later work by (Watanabe et al. 2006) demonstrated, in

fact, that constitutively active Akt could maintain mESCs in a self-renewing, undifferentiated state

in the absence of LIF signalling, again suggesting that PI3K/Akt signalling acts downstream of LIF.

Counter-intuitively,  this  work also found that  constitutively active Akt  seemed to activate  ERK

signalling without causing differentiation, supporting the notion that other mechanisms are active

downstream of Akt signalling that prevent ERK signalling from driving differentiation. Nanog has

also been directly found (by (Storm et al. 2007)) to be downstream of PI3K signalling, through a

GSK3β-dependent mechanism. This was shown by observing the reduction of Nanog expression

when  PI3K  was  inhibited,  which  was  mimicked  by  GSK3β inhibition.  Blockade  of  GSK3β

mimicked PI3K signalling when PI3K was inhibited, and Nanog expression was restored, strongly

suggesting that  Nanog expression was reduced by a  lack of  Wnt  signalling,  and that  this  Wnt

signalling was itself promoted by PI3K signalling. Lastly, this work demonstrated that while PI3K

inhibition was sufficient for the inhibition of Nanog expression and a loss of self-renewal, forced

expression of Nanog, even while PI3K was inhibited rescued this phenotype, cementing the link

between PI3K to Nanog promotion, very likely via GSK3β inhibition (Storm et al. 2007).

The  interconnectedness  of  the  JAK/STAT3,  MAPK/ERK  and  PI3K  pathways  is  investigated

elegantly in work by  (Niwa et al. 2009), who demonstrated that all three pathways are activated

downstream of LIF/gp130 dimerisation and signalling. Here it was shown that JAK/STAT signalling

stimulates the expression of Klf4, while PI3K signalling stimulates Tbx3 expression. MAPK/ERK

signalling, however, plays its role by inhibiting the expression of Tbx3, downstream of which is

Nanog. Klf4's role was found to be mainly to promote the expression of Sox2, but also to promote

Nanog. Tbx3's main role was found to be the promotion of Nanog, with a lesser role in promoting

Sox2. Sox2 and Nanog can then promote the expression of Oct4. However, Tbx3 and Klf4 are

unlikely to be the only members of their respective families capable of maintaining mESCs in an

undifferentiated state, as Oct4 expression can be maintained without Tbx3 and Klf4, suggesting

built-in redundancy from other factors such as Klf2 and/or Tbx4; this has not yet been investigated.

A more recent review of PI3K signalling in ES cells can be found in  (Welham et al. 2011).
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As  a  last  note  on  signalling  pathways  in  the  context  of  the  work  presented  in  this  thesis,

unfortunately, whilst  microarray analyses such as those used in this thesis  can (and indeed, do)

repeatedly find enrichment of signalling pathways in changing genes across the spectrum between

naïve pluripotency and differentiation,  precious little can be inferred about signalling pathways'

activities as they most often involve actions such as phosphorylation, nuclear translocation, protein-

protein interaction, protein-protein-DNA binding et cetera that do not necessarily change the level

of mRNA expression of their constituent factors and thusly do not allow microarray analysis to find

these interactions / activities. The exact functions and cross-interactions of signalling pathways are

therefore unfortunately beyond the scope of purely microarray-based methods such as the ones in

this work and remain as future laboratory-based work.

1.4 Epigenetic regulation in mESCs 

Whilst  epigenetic  regulation  is  known  to  play  a  significant  role  in  mESC  biology,  the  only

technology used in  this  thesis  is  the Affymetrix Mouse 430 v2 microarray,  which only detects

mRNA transcripts. Therefore this work does not seek to investigate epigenetic markers or regulation

as it is beyond the scope of the technology used. The most that epigenetics enters into this work is

in the form of chromatin modification / organisation biological pathway enrichments which result

from  gene  lists  investigating  transcriptional  events  between  naïve  pluripotency  and  early

differentiation. For a recent review of epigenetics in mESC biology, see (Morey et al. 2015).

1.5 Primed pluripotency / Epi-Stem Cells (EpiSCs)

Aside from specific mention in relevant genes in section  1.3.3, most of the this introduction has

concentrated on naïvely pluripotent mESCs, said to be in the “ground state” (Ying et al. 2008). The

“ground state” was actually named after the discovery of mouse epi-stem cells (EpiSCs), as, in

seminal work by (Tesar et al. 2007), cells were taken from post-implantation (E5.5) mouse epiblasts

and it was found that they could be cultured in conditions similar to those used for human ES cells

(hESCs), requiring activation of Activin/Nodal signalling and FGF signalling, and this was also

demonstrated by (Brons et al. 2007). The usual culture condition for mESCs (mitotically-inactivated

feeder cells plus LIF) did not sustain these EpiSC cells in culture. Furthermore, whilst teratoma

formation  could  be  successful  on  injection  with  these  EpiSCs,  all  early  attempts  to  generate
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chimeric mice from EpiSCs failed, and were noted to even impair development of the embryos into

which they were injected (Tesar et al. 2007). 

Other features of these cells found at the time included that they expressed similar levels of key

pluripotency factors such as Nanog, Oct4, Sox2, but a low level of Rex1, compared to mESCs, was

found, along with high levels of Otx2, Brachyury and Fgf5 were found, among others, in addition to

the aforementioned differences in signalling pathways required to maintain them (Tesar et al. 2007),

(Brons et  al.  2007).  Rex1 is  a  marker  of  naïve pluripotency that  is  often used to  mark mESC

samples that have not yet even progressed towards a post-implantation epiblast, EpiSC-like state

(Pelton et al. 2002) Work by (Hayashi et al. 2008) noted that in mESC cultures, it was possible to

observe difference cellular states that ranged between the ICM-like state towards and epiblast like

state  (read:  naïve  to  primed  pluripotency),  with  individual  cells  fluctuating  between  the  two

extremes, and highlighted the epigenetic differences between EpiSC-like and more naïve-mESC-

like cells in culture. In addition to differences in the level of expression of pluripotency factors, the

regulation of transcription was found to be different, including a change in the linkage of enhancers

to Oct4 expression, with a distal enhancer of Oct4 associated with Oct4 transcription in mESCs, but

there was a pronounced change towards the driving of Oct4 expression from a proximal enhancer in

EpiSCs (Tesar et al. 2007).

Crucially, EpiSCs, being reminiscent of a more advanced state of development in the mouse, are

also different in that they have undergone (in the case of cells derived from females) X-inactivation,

being XaXi, instead of XaXa, as mESCs are (Nichols and Smith 2009). 

Later work on EpiSCs by  (Acampora et al.  2013) demonstrated the role Otx2 in EpiSCs. Otx2

expression is present in mESCs and opposes self-renewal as it is not only one of the first genes that

responds to LIF withdrawal, but also knockout of Otx2 generated a Nanog-homogeneous state in

mESCs, as seen in mESCs maintained in the ground state by 2i. Otx2 knockout was even shown to

be able to maintain this homogeneous state in the absence of LIF and in the presence of STAT3

inhibition. Conversely, constitutive activity of Otx2 generated a strikingly EpiSC-like state, with

high expression of canonical EpiSC markers Fgf5 and Brachyury.

While conversion from mESC to EpiSC can be spontaneous or driven (e.g. by culture in FGF2 and

Activin),  or  by overexpression  of  Otx2,  reversion  to  the  mESC (ground,  naïve)  state  from the

EpiSC (primed) state is more problematic. Work by  (Guo et al. 2009) used culture in 2i and the
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introduction of Klf4 as a transgene to attempt this, although conversion rates were low (around 1%).

Klf4 was also used by (Hanna et al. 2009), but this work also found success in reverting EpiSCs to

mESC-like state in nonobese diabetic (NOD) mice, known to be refractory to mESC derivation.

Klf2 can also revert EpiSCs to mESCs  (Hall et al. 2009) and a later screen by  (Guo and Smith

2010) identified Nr5a1 and 2 as able to revert EpiSCs to mESCs with greater potency than the other

single factors here. Work by  (Silva et  al.  2009) demonstrated that ectopic expression of Nanog

could revert EpiSCs to ground state mESCs in the presence of 2i + LIF (known to kill off EpiSCs),

but also in LIF/BMP4 without 2i. The use of more than one factor can reprogram EpiSCs to mESCs

with higher efficiency still, as shown by the synergistic action of Klf2 and Prdm14 by (Gillich et al.

2012),  wherein  Prdm14,  although  not  capable  of  reversion  on  its  own,  greatly  enhanced  the

reprogramming capability of Klf2.

(Bao et al. 2009) also had success in reversion of EpiSCs to an mESC-like state, simply through

prolonged culture  in  the presence of  LIF to  activate  STAT3.  Despite  taking multiple  weeks of

culture, mESC-like cells were recoverable which demonstrated all the hallmarks of reprogramming

to mESCs, with reactivated X (XaXa), the use of the distal enhancer to drive expression of Oct4

and, crucially, these cells regained the ability to contribute extensively to chimeras.

Very  recently,  this  change to  the  use  of  the  distal  enhancer  in  the  ground state  has  also  been

investigated in mESCs cultured in serum + LIF, with the change to homogeneous ground state

mESCs being accompanied by the switch to the use of the distal enhancer for Oct4 by 2i conditions

(Galonska et al. 2015).

Finally, recently, it has been demonstrated that it is indeed possible to generate chimeric mice using

EpiSCs that have been stabilised through the inhibition of Wnt signalling, suggesting that earlier

failures to generate chimeric mice may have been down to the production of Wnts by the EpiSCs

used in those experiments (Kurek et al. 2015).

1.6 Induced Pluripotent Stem Cells (iPSCs)

One of the fundamental goals of stem cell research is to gain control over cell state to the point

where it becomes possible to generate any and all cell types in the laboratory, with a view to their

use  in  a  myriad  of  basic  (research)  and  applied  (e.g.  clinical)  roles.  Cells  that  have  been
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reprogrammed from a later developmental state,  be it  fully differentiated somatic cells, or even

reprogramming of EpiSCs to mESCs, results in cells dubbed induced pluripotent stem (iPS) cells.

Whilst these extremely useful cells are one of the most prized promises of stem cell research, with

great advances in both understanding and generating them being made, they are not at all a focus of

this work. They are mentioned here, therefore, only briefly, for both completeness, and because

there are some iPS samples in the data in this work, and these samples were analysed separately, if

only briefly, in chapter 3.

The seminal paper associated with the generation of iPS cells from somatic cells is (Takahashi and

Yamanaka 2006), who generated iPS cells from mouse embryonic fibroblasts through the ectopic

expression  of  the  now-canonical  “Yamanaka  factors”  Oct4,  Sox2,  Klf4  and  c-Myc.  However,

extremely  important  work  was  done  leading  up to  this,  wherein  work  by  (Mitsui  et  al.  2003)

identified  24  transcripts  which  appeared  to  be  found  abundantly  specifically  in  mESCs,  by

comparing available online data from mESCs to data from more adult tissues. It was from this set of

24 that the groundbreaking work by  (Takahashi and Yamanaka 2006) drew its inspiration, by a

process of elimination determining that combination of four of these factors (Oct4, Sox2, Klf4 and

c-Myc) generated (albeit seldomly) colonies which survived selection. Selection here was obtained

by linking the expression of an mESC-specific gene (Fbx15) to a geomycin resistance gene.

Later, however, it was found that such selection does not necessarily select for cells that are truly

mESCs by the definition that they can contribute to chimeras, as was demonstrated by (Okita et al.

2007). This work changed the selection criterion from the previous Fbx15 to Nanog, which resulted

in the recovery of cells that had improved doubling time and where at least some clones contributed

to chimeras. Furthermore, DNA methylation was closer to that of mESCs than the Fbx15-selected

cells, with promoter regions of Fbx15, Nanog and Oct4 lacking methylation.

The full history of iPS generation technology is not relevant to this work, and yet, no comment on

induced pluripotent stem cells would be complete without the mention of non-transgenic methods

for creating iPSCs, as a critical barrier to clinical application is that the use of viral vectors and,

indeed, any method of iPSC generation that modifies the genome will face extremely stiff resistance

to being used in any downstream application. Therefore brief mention is made here that there have

been successful generations of iPSCs without the use of viral vectors or modifying the genome in

any way. The use of non-integrating viruses to generate iPSCs was shown by (Stadtfeld et al. 2008)

and, on the very next page of the same journal, a non-viral approach using an inserted plasmid by
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(Okita et al. 2008). Totally transfection-free reprogramming has been achieved even in human cells

by appending cell penetrating peptides (arginine repeats) to reprogramming factors by (Kim et al.

2009). A somewhat recent review of advances in iPS generation and application is available in

(Robinton and Daley 2012).

1.7 The Promises of Stem Cell Research

Stem cells  have the capacity  to  self-renew and give rise to  more differentiated progeny.  When

considering that embryonic stem cells have the capacity to generate all of the tissues of the adult

organism  (Evans  and  Kaufman,  1981),  it  becomes  clear  that  the  applications  of  mastery  over

embryonic stem cells are varied and exciting, with great promise for several areas of biomedical

research  (Robinton  and  Daley  2012).  Some  of  these  areas,  with  selected  examples  from  the

literature,  are  mentioned  here  to  give  frame  of  reference  to  why  improving  understanding  of

transcriptional events in mESCs, such as is the focus of the larger, biology-oriented part of this

work, contributes to the wider advancement of stem cell research. 

Regeneration of tissue

Regeneration is an ongoing process to counter general accumulation of damage / wear; even part of

aging  itself  is  the  simple  slowdown  in  cellular  turnover  and  accumulation  of  senescent  cells

(Jeyapalan et  al.  2007). As tissue becomes damaged / old or otherwise in a state of disrepair  /

reduced homeostatic resilience or otherwise reduced functionality, pathology is the natural result.

Understanding of the mechanisms of stem cell biology can grant the ability to induce regeneration

in muscle where normally stagnation or deterioration would occur (Conboy and Rando 2005). With

improved understanding of events in regenerative processes also comes the ability to induce that

regeneration. In this vein, even adult tissue also demonstrates a remarkable ability to undergo a

form of reprogramming and re-differentiation, but only when given appropriate signals, such as was

demonstrated with wound-induced induction of Wnt signalling to generate skin appendages (hair)

de novo (Ito et al. 2007), (Celso et al. 2004).
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Generation of replacement tissue

Possibly one of the most exciting promises of embryonic stem cell research is the ability to generate

tissues and / or organs for use in clinical settings  (Yoshida and Yamanaka 2010),  (Taylor 2009).

With the demand for organ donations outstripping available supply, the ability to generate both

organs and even just  functional tissues brings with it  the promise of alleviating and eventually

eliminating the need for donor organs. Organ transplantation also carries with it the risk of rejection,

often requiring organ recipients to adhere to regimens of immunosuppressant drugs, which carry

their  own inherent  risks of increased susceptibility to infection.  Through the reprogramming of

somatic cells, the generation of iPS cells offers hope for the replacement of tissues, and eventually

whole organs as technology and technique improves (Nishikawa et al. 2008). All of these medical

marvels begin with basic research and are sped by developments in understanding the mechanisms

that drive pluripotency, exit from pluripotency and differentiation to desired lineages.

Applications to drug testing / discovery

The ability to generate tissues / organs in the laboratory does not only have direct implications for

the implantation of those tissues for the purposes of replacing lost or damaged tissue. Generation of

specific cell  types from iPS cells could provide an effectively limitless supply of differentiated

model  organism (e.g.  mouse,  rat)  or  human  cells  pertaining  to  the  tissue  /  organ  in  question,

speeding testing of drug testing and / or discovery. For a recent, comprehensive review, see (Inoue

and Yamanaka 2011).

Applications in cancer

Embryonic stem cells have been noted to share similarity with cancer cells, particularly with their

replicative capacity and proliferative vigour, to the point where the field of cancer research has

taken on board, as well as found the existence of, “cancer stem cells”, which, with their defining

trait  of  immortality,  appear  to  maintain  cancers  (Clevers  2011).  Bringing  the  fields  of  cancer

research and basic stem cell research together is already opening promising avenues in advancing

understanding of, and thus expediting improved treatments for, cancer (Scatena et al. 2011).

Disease modelling
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The promise of iPS cells to grant researchers the ability to generate differentiated cells mimicking

somatic tissues of the adult  body presents opportunity to generate cells  / tissues specifically to

model  disease processes,  such as through genetic modification of the resulting cells  /  chemical

insult et cetera (Tiscornia et al. 2011), (Bellin et al. 2012). iPS cells are already being harnessed to

provide models and enhance understanding of diseases such as Miyoshi myopathy  (Tanaka et al.

2013) and vitelliform macular dystrophy (Best disease) (Singh et al. 2012). 

1.8 Brief Overview of Transcriptomics

The analysis of the mRNA content of a cell or population of cells is transcriptomics. Following on

from  the  sequencing  of  an  organism's  genome,  transcriptomics  can  give  us  large  amounts  of

biologically-relevant knowledge by determining the amount of mRNA for a particular product, be

that a protein or be it so that the mRNA is the product itself,  in the case of untranslated “non-

coding” mRNAs. This, in turn, is used to study the state of the cell or cell population by taking a

snapshot  of  the  overall  transcriptome  (literally,  the  quantities  of  which mRNA transcripts  are

present.)  Experiments  can  therefore  be  designed  to  investigate  the  effect  of  a  plethora  of

combinatorial  factors  (e.g.  cell  type,  cell  state,  timepoint,  treatment,  disease  state)  on  gene

expression, which is usually predicted by, but not identical to, mRNA expression (Gygi et al. 1999).

1.8.1 The Microarray

There are many technologies used for the study of transcriptomics, however the only technology

relevant to this thesis is the microarray. Microarrays have the ability to provide information about

the  transcriptional  profile  of  a  sample  of  cells,  a  function  of  great  utility  in  a  wide  range  of

biological research roles (Ekins and Chu 1999), (Brown and Botstein 1999).

For being able to carry out, in greatly multiplexed fashion, simultaneous analysis of thousands of

genes’ expression,  microarrays  are  considered  to  be  lab-on-a-chip  technologies.  Physically,  a

microarray is a chip synthesised by methods such as photolithography onto a quartz glass base (in

the case of Affymetrix arrays), onto which many thousands of oligonucleotide probes are attached.

These probes are designed to be complimentary to parts of mRNA sequences expected to be found

in the cells of the organism for which the chip is designed to be used.
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Following reverse transcription of mRNA from the biological sample and subsequent biotin labeling

to give biotinylated cDNA. These biotinylated cDNAs then undergo in-vitro transcription (IVT) in

order to convert these into biotinylated cRNAs. It is these biotinylated cRNAs (which are anti-sense

compared to those original mRNAs from which they were generated) that therefore are able to bind

by complimentary  base-pairing to  their  matching oligonucleotide probes  on the chip.  Antibody

staining is then used to complete the microarray preparation steps before they can be scanned by

confocal laser to quantify binding. Quantification of the fluorescence resulting from laser excitation

is analysed by proprietary computer imaging software to estimate the amount of matching mRNA

present at each particular probe.

For  a  given  region  of  the  genome  (read:  expected  mRNA  transcript), several  (25mer)

oligonucleotide probes are designed which map to regions in close proximity of one another. These

probes are grouped together in a single “probe set” which is then, at a higher level of abstraction,

often connected to a particular gene or microRNA. For example, there may be 11 oligonucleotide

sequences which map to locations all in the first exon of a gene. This probeset would be associated

with that  gene,  but  there  may be  other  probes  which are  also associated with that  same gene.

Therefore it is not only possible to test for the presence of mRNAs coding for a certain gene or

untranslated genomic region, but we may have several probesets, of many oligonucleotide probes

each. This can give rise to improved detection, for example in the case of a probeset which may

later become known to not give adequate detection or may be prone to binding cRNAs from another

gene.

In the case of the microarray type used in this work, the Affymetrix Mouse 430v2 array (see section

1.8.2), there are both perfect match (PM) and a mismatch (MM) probes for each oligonucleotide

sequence. This is not a feature of all microarrays. The MM probe has a single nucleotide in the

middle of the oligonucleotide sequence replaced with its complimentary base. This MM probe is

included in order to test for the aforementioned cross-hybridisation (non-specific binding) which

may occur as a technical issue and thus provides us with a measurement of “background” against

which actual mRNA binding signals may be contrasted. 

The choice of microarray for this work (the Affymetrix Mouse 430 v2 chip) was guided by the

numbers of mouse microarray samples available in public, online repositories for download (see

section  1.8.2). Consulting the GEO website and sorting the available data in mouse by platform

(read: chip type), showed that the Affymetrix Mouse430v2 array (platform code GPL1261) was the
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dominant platform, being the most widely-used array for the mouse, with 34,037 uploaded samples

at time of writing, this being more than 3 times the number of samples in the next most-used mouse

chip (MoGene 1.0 ST Array, platform code GPL6246), with only 10,275 uploaded samples. This

made platform GPL1261 a clear choice for this work.

1.8.2 Online Repositories of Microarray Data

Two prominent repositories of microarray data are the European Bioinformatics Institute (EBI)'s

ArrayExpress (https://www.ebi.ac.uk/arrayexpress) (Brazma et al 2003), (Parkinson et al. 2007) and

the US National Centre for Biotechnology Information (NCBI)'s Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo) (Edgar et al. 2002).

These repositories came into existence in response to the burgeoning amounts of microarray data

being generated by research groups worldwide in an effort to both store, catalogue and make them

available for other groups’ use (Edgar et al. 2002), (Brazma et al 2003). 

These repositories offer both graphical, manual browsing and downloading via their websites, but

also provide programmatic access for search and download (e.g. by file transfer protocol (FTP))

directly. These repositories hold many thousands of microarray samples from a plethora of species

and different microarray technologies. Users can browse by organism, platform (read: individual

microarray chip design) or enter search terms to look for samples of interest to them. Programmatic

access and scripted FTP download was used in this work.

In  the  case  of  GEO,  a  system of  platforms,  samples,  and  series  is  used.  The term “platform”

describes the specific subtype of microarray chip used (GEO uses “GPL1261” as the platform code

for the Affymetrix Mouse 430v2 chip used in this work), and “sample” intuitively refers to one

specific instance of that platform, with an actual biological sample’s cRNAs hybridised to it and

subsequently quantified. The term “series” needs a little more explanation; in GEO, a “series” is a

set of samples which are grouped together as forming a particular experiment and so concerning a

particular  question  (e.g.  the  response  of  mESCs  to  a  particular  agent  in  culture  at  varying

concentrations.) Individual samples begin with the code “GSM”, while series begin with the code

“GSE”. It is worthy of note that different samples may fall under the umbrella of more than one

series,  if  that  sample  pertains  to  more  than  one  experiment  or  question.  Programmatically
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downloading large amounts of data, such as in this work, must take this into account, for example

by removing duplicate samples that may otherwise result from retrieval of experiments of interest,

given that different experiments (“series”) may contain overlaps of samples.

ArrayExpress is similar in that individual arrays are grouped under experiment numbers (albeit in a

different naming format) and platforms are also categorised (again, with different codes such as “A-

AFFY-45” for the Affymetrix Mouse 430 v2 chip.) ArrayExpress codes begin with “A” for array

designs  and “E” for  experiments.  A hyphen and four  character  descriptor  follows these  codes,

detailing the source of the data (other database and certain institutes) or its annotation standard.

There  is  such  acknowledged  overlap  in  the  samples  between  GEO  and  ArrayExpress,  that

ArrayExpress has a code “E-GEOD” for data that is outrightly imported from GEO itself.  One

notable, difference, however, is that with ArrayExpress, protocols are given accession numbers also.

Full details of these codes and their meanings are given and kept up-to-date at:

 http://www.ebi.ac.uk/arrayexpress/help/accession_codes.html

It is worth noting here that some of the codes (e.g. “E-MEXP-” codes) are used to denote the way in

which annotations were given to ArrayExpress, and as annotations are crucial to the work carried

out in this thesis, special mention is given to the MIAME / MAGE-ML standards in section 1.8.3. 

Both the GEO and ArrayExpress samples are annotated in different ways,  to individual sample

level, and several different formats and stages of analysis are available for download. Annotations

from GEO are given in files in SOFT format, detailed on the GEO website. These files provide both

summarised  expression  values,  but  also  contain  fields  to  detail  experimental  summaries  and

associated  publications.  These  fields,  as  can  be  seen  from sections  2.1.2 and  2.1.3,  are  often

incomplete, missing, ambiguous or otherwise do not facilitate retrieval of full experimental details.

Crucially,  certain  experimental  details  such  as  genetic  modification  of  cells  as  well  as  culture

condition are not explicitly present in current annotation systems, including MIAME (see section

1.8.3), necessitating the manual search carried out in chapter 2.

ArrayExpress annotations are available for each experiment as text (.txt) files. These include an

“investigation description”, “sample and data relationship” and “array design.” The array design is a

brief description of the array technology itself and a list of Ensembl transcript identifiers that this

platform probes for.
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The sample and data relationship file provides basic information on experimental design, such as

which samples form a treatment or control group, protocol codes and details which samples occur in

which data archives.

The investigation  description has  space  for  a  written summary of  the experimental  design  and

objectives,  associated  literature,  upload and update  dates,  and protocol  codes  that  apply  to  the

experiment. ArrayExpress’ protocol codes are a noticeable departure from the formatting of GEO,

in that every sample in an experiment can have several protocol codes attached to it. These codes

are  prefixed  with  a  “P-”,  e.g.  “P-MTAB-53395”.  This  example  was  chosen  as  it  is  from  an

experiment which dealt  with human pluripotent stem cells  (E-MTAB-5367) to demonstrate that

even  experiments  uploaded  in  2015  (and  further  updated  in  2017),  many  years  after  the

establishment of standards such as MIAME (see section 1.8.3), microarray experiment annotations

often still  do not  contain  usable details  of  experimental  details  such as  culture condition.  This

protocol code is, in fact, the chosen experiment’s “growth protocol”, and simply informs the reader

that the “Cellartis® Definitive Endoderm Differentiation Kit with DEF-CS™” system was used.

This  does  not  contain  information  on  actual  culture  conditions  and  still,  therefore,  requires

researchers to perform significant manual work to obtain culture condition information.

1.8.3 Microarray Annotation Standard MIAME and MAGE-ML

With the volume of microarray data being produced by laboratories around the world, the problem

of  ensuring  a  meaningful,  standardised  way of  annotating  microarray  data  arose.  A group,  the

Microarray and Gene Expression Data society (MGED) came together in 1999 in response to this

and, in 2001, a proposal was put forward to ensure that publicly-available microarray data would

contain certain minimum information,  and have that  information provided in  such a way as to

facilitate its cataloguing in repositories  (Brazma et al.  2001). This standard was named after its

intended  purpose;  to  ensure  the  provision  of  the  minimum  information  about  a  microarray

experiment (MIAME.) The initial standards put forward in this initial publication were very much

up  for  discussion  and,  in  fact,  the  publication  itself  threw  the  question  out  to  the  research

community as a whole, but suggested six core fields.
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These  six  fields  were  1)  experimental  design,  2)  array  design,  3)  sample  information,  4)

hybridization information, 5) the measurements themselves and 6) information on control methods

used. Briefly, experimental design is a description of the experiment itself, with its aims and overall

structure. Array design details all arrays used in an experiment and, for each array, gives the layout

of the chip and locations of features upon it. Whilst this may seem to warrant the inclusion of a

huge amount of information, MIAME allows, and indeed suggests, that this be done by way of

naming commercial manufacturers, so long as there is provision for retrieving the full details of the

array from the manufacturer. Custom arrays would still need to be detailed fully. Thirdly, the sample

information itself should contain the details of each biological sample, including its source / cell

line with any treatments / modifications applied to it, nucleic acid extraction and labeling. Fourth is

a section detailing the method / conditions used to perform the hybridisation. Fifth come the actual

measurements themselves, and MIAME divided these originally into raw image scans of the arrays,

detail on image quantification and then the gene expression matrix itself. Finally, MIAME specifies

its sixth section as details of normalisation controls. This includes information about the use of

inter-array normalisation methods such as normalising to the expression of housekeeping genes or

the use of spike-in data.

Whilst MIAME, as a proposal, suggested these data fields as being required and pushed for their

adoption and requirement for acceptance of microarray data submission as well as for publication /

funding, MIAME did not intend to specify in what format those details should be provided. This

was instead left up to future discussion and refinement based on observing the trends in submission

formats as they came in.  A term used by the authors refers to “controlled vocabularies”,  being

defined sets of accepted, standard words or tags used to describe data annotation features. As the

area of microarray annotation was young at the time, it was likely wise to postulate the utility of

controlled vocabularies without trying to define any with the limited data submissions that were

available at the time.

An update to the use of MIAME occurred just a year later, in 2002, (Spellman et al. 2002) with the

advent of microarray gene expression markup language (MAGE-ML) which took the concepts of

MIAME  and  sought  to  create  an  extensible  markup  language  (XML)-based  document  type

definition  (DTD),  setting  out  both  classes  and  child  structures  within  those  classes  to  hold

information on microarray experiments to satisfy MIAME standards. MAGE-ML itself is based on

the MAGE object model (MAGE-OM), which is the underlying structure that was designed to store

relevant experimental details to MIAME standards. These data fields would then be populated by
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end-users  performing  microarray  experiments,  ensuring  a  standardised  set  of  informative

annotations, sufficient to communicate, re-analyse and repeat investigations. 

The syntax of the MAGE-ML adheres to a limited set of rules. The main packages defined my the

MAGE-OM contain  sets  of  related  classes.  An  exhaustive  list  of  these  is  given  as  table  1  in

(Spellman et al. 2002). A class can be either a physical entity (such as a microarray) or a process

(such as hybridization). Every class has a list of attributes attached to it. MAGE-OM classes also

contain relationships to other classes. (Spellman et al. 2002) provide an example of a class of type

“Person”. This given example makes MAGE-OM's complex abstraction clearer:

<Person identifier=”Person1” name=”John Doe”>

<Affiliation_assnref>

<Organization_ref identifier=”ABC Inc.” />

</Affiliation_assnref>

</Person>

This defines a person, an instance of the class “Person”, and assigns the property of “name”, setting

it to “John Doe”. This person has the attribute of their “Affiliation”. MAGE-OM rigidly enforces

that tags sugs as a suffixing “assn” for something that is an association of that class (in this case it

can be read that a person is literally associated with a given organization.) The further, concatenated

suffix “ref” denotes that the association itself is by reference. From the above example it can be

seen that what is “referred” to is in fact given here as “ABC Inc.” . Each tag, as is the format of

UML-based languages such as XML, enclosed in inequality symbols “<” and “>”, with the opening

of a section given just a name (e.g. “<Affiliation_assnref”) and the end of this section denoted with

the same name, preceded by a terminating slash (e.g. “</Affiliation_assnref>”) common to other

markup-style languages such as the ubiquitous HTML. The complexity of MAGE-ML is therefore

considerable, given that there are 132 classes organised into 17 packages.

A noteworthy mention should be given, however, to the package “BioAssayData”, which holds the

results of the microarray experiement(s). In this package, the class “BioDataCube”, said to be a
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cube as this  class has three dimensions: 1) an axis for what is  being measured (e.g.  individual

probes) called (DesignElements), 2) an axis (“QuantitationTypes”) for the types of value measured /

calculated for that probe such as intensities and error values and 3) an axis made up of all of the

microarrays (each being a 2D slice of the cube).

Whilst  MIAME  only  stated  required  information  and  gained  acceptance  in  the  microarray

community for setting out these provisions, MAGE-ML, with its 132 classes in 17 packages was

acknowledged to be prohibitively complex for laboratories without dedicated informatics support

able to decipher their meanings, intended contents and the methods to populate the data fields for

submission  (Rayner  et  al.  2006).  Thus  was  created  MAGE-TAB,  a  simple,  spreadsheet-based

method of compiling and exchanging microarray information to MIAME standards  (Rayner et al.

2006). This work even candidly puts forward in it’s abstract that “the complexity of MAGE-ML

format has made its use impractical for laboratories lacking dedicated bioinformatics support”. 

One of the many acknowledged weaknesses of the MAGE-OM / MAGE-ML concept was that it

was entirely possible to encode the same information several different ways using MAGE-ML , and

required the creators of MAGE-ML to begin releasing advisory documents on how to avoid such

issues (Rayner et al. 2006). This work also acknowledged the greatest weakness of the MAGE-ML

system was the “complexity of the MAGE-ML files, making it difficult to interpret or produce

MAGE-ML files in the absence of a dedicated software development effort.” The same update that

brought  MAGE-TAB  also  admits  that  MAGE-ML would  still  require  as-yet-undeveloped  text

mining approaches in order to facilitate any kind of automatic analysis of microarray annotations.

Having seen the simpler, tab-delimited SOFT format (used by GEO at the time), MAGE-TAB was

clearly easier to use and adoption of this was far greater. MAGE-TAB has four types of files, 1) the

investigation  description  format  (IDF),  2)  array  design  format  (ADF),  3)  sample  and  data

relationship format (SDRF) and 4) raw and processed data files. These tab-delimited descriptor files

are easily interpretable by eye, even without reading (Rayner et al. 2006) and are easy to read into

spreadsheet software packages (e.g. Microsoft Excel, LibreOffice Calc) used by non-specialists, as

well as not requiring and special packages / proprietary code in order to be easily read into more

complex software such as  R.  With  the increasing  focus  on “big data” and large meta-analyses

coming to the biosciences, this removes a vast barrier to the effective use of microarray annotation

information.
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Finally, relating this to the present work, despite repeated mention in the literature from the time of

MIAME to MAGE-TAB, of the crucial importance of recording detailed experimental conditions,

there is (including currently) no specification in MIAME that stresses the need for a “controlled

vocabulary” for data tags such as genetic modification, presence of reporter constructs, cell lines'

constitutive expression / knockout / knockdown of particular genes. Neither is there requirement for

such  a  controlled  vocabulary  or  data-mineable  syntax  to  chronologically  record  experimental,

detailed in-vitro culture conditions and exposure times. This puts crippling constraints that this puts

upon automated meta-analysis (and, often, manual attempts at meta-analysis) of microarray data.

Comment on this and details of this work's creation of a simple, spreadsheet-style annotation syntax

to include and make mineable all of this information is given at length, therefore, in chapter 2. 

1.8.4 Microarray Data Processing Overview

The  microarray  chip  itself  presents  fluorescence  as  its  quantification  of  mRNA  detection.

Fluorescence Is first measured through proprietary scanning machines (in the case of this work,

mostly an Affymetrix device), and this is output as a raw image as a computer file given a “.DAT”

extension  (suffix).  This  is  then  processed  by  proprietary  Affymetrix  software  into  a  “.CEL”

extension  file.  The processing  here  is  primarily  to  quantify  the  detection  of  fluorescences  into

numerical format with some further information relevant to downstream processing (for example

the number of pixels of image data used to calculate that individual probe's intensity.)

This  is  the  point  at  which  data  was retrieved for  this  work.  A CEL file  contains  all  raw data

necessary for the analysis of microarray data and, given that it is a standard format for each type of

Affymetrix  microarray,  it  was  possible  to  simply  compile  relevant  samples  from  large  online

repositories of microarray data in order to make comparisons, observations and useful inferences.

Further downstream, however, processing is still required to combine individual oligonucleotides

into their probe sets and summarise them and further processing again required in order to render

comparable different individual samples (each comprising, in the case of the Affymetrix Mouse

430v2 array, the most commonly used array in this work, 45,101 individual probe sets).

The processing for this task is neatly encapsulated in the tools provided by the Bioconductor project

(Huber  et  al.  2015),  which,  in  turn,  is  based  on the  highly-flexible  and widely-used statistical

programming language, R (R Team, 2015).
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Using the R language and the Bioconductor packages, data used in this work was processed into a

final, usable form by combining the desired microarrays (as their CEL files) and using the robust

multi-chip average (RMA) (Irizarry et al. 2003) method of generating a matrix of numerical outputs

for each probeset in each sample. RMA is a widely-used technique which has become something of

a  gold-standard  to  compare  to  in  the  area  of  microarray  analysis.  RMA makes  microarrays

comparable in a meaningful manner by first subtracting out background from each sample (without

actual  resort  to  the  mismatch  probe  data),  then  ensuring  that  the  intensity  ranges  of  the

measurements  across  all  samples  are  brought  into  line  by  quantile  normalisation  and  finally,

summarisation and log2 transformation (Irizarry et al. 2003). This deals with technical issues that

could otherwise cloud biological signals. Dealing with such technical issues is imperative as, for

example, in the case of a specific experiment yielding slightly more or less mRNA for use on the

chip, a  generalised change in all probe intensities would be observed, which would, in turn, be

entirely  misleading  if  treated  as  directly-comparable  intensities  (this  is  fixed  by  quantile

normalisation.)

1.8.5 Meta Analysis / Multidimensional Analysis of Microarray Data

With  the  explosion  of  available  microarray  data  that  has  occurred  in  biological  research,  the

possibility of large-scale meta-analyses became a reality. Meta-analysis refers to the combination of

multiple  datasets  in  order  to  attempt  to  gain  extra  insight  that  could  not  be  seen  (or  was  not

robustly-observed enough) from the smaller datasets that make it up. Meta-analyses also, by their

definition, can be used to observe differences between different datasets. Meta-analysis is therefore

a large, umbrella term and requires defining in the scope of this work. In the case of this work, the

focus was on the potential for finding transcriptional signatures that may or may not exist between

cell lines represented in the data amassed. 

When attempting to discover patterns in complex, high-dimensional gene expression data, analysis

approaches are often built by starting from simple distance metrics or variability scores and then

applying these in dimensionality reduction methods (discussed later in this section.)

One such simple distance metric used in this  analysis  is euclidean distance.  Euclidean distance

measures the distance between any two datapoints in euclidean space. In the case of microarray
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data, each array can be thought of as a vector of datapoints. To compare one array's intensity values

to another's by way of euclidean distance is simply to compare one vector to another. As each probe

is present in each microarray (in this work, at least, which uses only the one array design), euclidean

distance can be calculated between two arrays X and Y by:

d (X ,Y )=√( X1 –Y 1)
2+(X2 – Y 2)

2+…( Xn−Y n)
2

Here, X1 and Y1 refer to the first feature (read: probe) of the arrays X and Y respectively. A simple

subtraction of the values between corresponding datapoints is performed for all probes of X versus

all probes of Y. These values are squared and summed and the root of this sum taken.

This is a distance measure commonly used in simple pattern-visualisation / data grouping analyses

such as the ubiquitous hierarchical clustering used in bioscience today. Euclidean distance is used in

this  work  as  a  way to  quantify  dissimilarity  /  similarity  between  groups  of  microarrays  taken

together,  where  euclidean  distance  was  used  pairwise;  an  all-against-all  comparison  of  every

microarray in a group versus all others in that group, then normalised to the size of the group of

microarrays by dividing the summed pairwise euclidean distance by the number of microarrays, to

give a result which expressed a general dissimilarity measure of the microarrays in the group.

In  addition  to  measures  of  distance,  a  measure  of  variability  is  often  used  in  meta-analyses,

quantifying the amount by which a given variable varies. This measure, and the related measure of

covariance,  are  not  used  per  se in  this  work,  but  are  often  used  as  the  basis  for  techniques

mentioned later in this section for dimensionality reduction. Briefly, variance is calculated by first

centring all values in a vector to their mean by dividing every value of the vector by the mean. The

difference (literally a subtraction) between the new values and the mean is squared, and the mean of

these squared numbers is the variance. Covariance expands this to examine how two variables vary

together using the same method, but combining corresponding datapoints of each vector to quantify

how one variable varies with another. Variance is mentioned here as it is a simple metric that is used

as part of principal component analysis (PCA) mentioned later in this section.

Meta-analyses become ever more complex when the datasets  collected have a large number of

variables (alternately called “features”), taking such analyses into the realm of large-scale, high-

dimensional analyses.
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A microarray is, itself, a high-dimensional entity, with a large number (45,101 in the case of this

work)  of  probes  providing simultaneous  measurements  (see  section  1.8.1).  As  each microarray

contains a snapshot of a transcriptional profile of a sample, the simultaneous intercomparison of a

great  many  transcriptional  profiles  has  been  an  approach  that  has  generated  valuable  insights,

particularly in the case of highly-complex conditions such as cancer  (Rhodes et  al.  2004),  (De

Cecco et al. 2014), (Clarke et al. 2008). 

Current,  prominent  methods  that  can  find  and  attempt  to  meaningfully  display  patterns  and

groupings in such data do so by literally reducing this extreme dimensionality of the data and so are

duly  called  “dimensionality  reduction”  methods.  Briefly  put,  dimensionality  reduction  methods

reduce the number of variables in data  by generating a  few new, summarising variables  which

capture the variation in  the data whilst  keeping any information loss to a minimum. One such

dimensionality reduction method, used widely in meta-analysis of gene expression data, is principle

component analysis (PCA) (Massy et al. 1965).

PCA functions  by  finding  the  eponymous  “principle  components”  of  the  data.  Briefly,  PCA

considers all variables to be features. In the case of microarray data, these features will be the

probes  themselves  representing  cRNA detection.   Principal  components  (PC)  are  essentially

orthogonal mathematical vectors with specific geometric direction and magnitude which explain the

variance within data, considering all features simultaneously. Typically, the first PC explains the

most variation in data and last PC explains the least. A PC can be traced back to original influencing

features  by  representing  their  contribution  (called  “loadings”).  PCA analysis  has  proven  to  be

extremely useful in biological data for summarising and visualising large numbers of samples and

PCA plots are a common sight in publications dealing with, for example, visualising groupings of

samples (including microarrays) together without prejudicing the algorithm towards and kind of

“desired” correct answer.

However, PCA has its drawbacks with respect to particular kinds of analysis. Despite its excellent

utility in grouping datasets such as microarrays, the complex nature of the algorithm means that the

principle components it identifies cannot be directly translated back to meaningful variables such as

gene expression values. That is to say that whilst PCA may well confirm to the user the groups that

appear to exist in their data, PCA is not designed to, particularly in the case of gene expression data,

give the user a meaningful list of genes and relative expression values which define and separate the
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groups in their data. This is the most fundamental drawback of the PCA method which prevents its

use in this work. This work specifically desires to extract and quantify changes in gene expression

between groups as part  of its  objectives (see section 1.9).  PCA can provide only “loadings” of

different  variables  used  to  define  its  principle  components,  and  therefore  is  unsuitable.  Other

dimensionality reduction algorithms similar to PCA also are unsuitable for this work for the same

reason and are thus excluded from discussion here. In fact, this relative inability to derive biological

meaning  from the  results  of  dimensionality  reduction,  particularly  PCA has  been  noted  in  the

literature (Hibbs et al. 2007). This is not to say that dimensionality reduction is not without merit

for biological meaning at all; far from it, in fact PCA analysis has been the driving method behind

several  efforts  in  the  stem  cell  field  and  include  work  which  concerned  cell  lineage  along

differentiation  paths  (Aiba  et  al.  2009).  However,  again,  PCA is  not  designed  to  answer  the

transcriptomic signature questions posed in this work.

Though  other  methods  for  finding  patterns  in  high-dimensional  data  exist,  ranging  from older

methods  such  as  multidimensional  scaling  (Torgerson  1952),  which  is  a  linear  transformation

method  like  PCA,  to  newer,  more  complex,  machine-learning  based  approaches  such  as  t-

distributed stochastic neighbour embedding (t-SNE) (van der Maaten & Hinton), an exhaustive list

outlining their mathematical methods would not serve this work, as the same drawback applies.

This is not a failing of these methods at all; they simply are not designed to answer the question put

forth in this work.

In summary, whilst it may be possible to efficiently observe gross patterning of high-dimensional

data using methods such as PCA and others that are based on similar principles these methods are

not  able  to  fulfill  the  objectives  of  this  work,  specifically  regarding  the  assessment  of  an

annotation’s “contribution to sample similarity”. Also, these methods do not perform or facilitate

measurement  of  amplitudes  of  changes  in  expression  of  specific  genes  which  can  be,  with

quantified statistical significance at the gene level, attributed to a specific annotation, such as a

particular cell line. As one of the core objectives of this work is to attempt to discern transcriptional

signatures of mESC cell lines, methods which share core approaches were developed to answer

both the “annotation contribution to samples similarity” and “annotation-linked gene expression

signature” questions.
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1.9 Research Objectives Overview

The work presented in this thesis is motivated by several questions concerning mouse embryonic

stem  cell  (mESC)  biology,  in  conjunction  with  the  availability  of  large  amounts  of  public

microarray data.

Briefly, the work in this thesis addresses first the feasibility of conducting large-scale analysis of

publicly available mESC microarray data. As pluripotency is an extremely promising property of

mESCs (with a view to eventual translation to human work) (Nishikawa et al. 2008), (Robinton and

Daley 2012) (and see section  1.7), this work assembles the largest to-date number of microarray

samples selected for annotation as mESCs that also show the highest levels of expression of three

canonical markers of pluripotency, Oct4, Sox2 and Nanog.

Whilst  such large  and heterogeneous  datasets  are  known to  be  useful  in  and of  themselves  in

biological research (Quakenbush 2001), (Ramasamy et al. 2008), this work improves the utility of

this  dataset  by  developing  an  informative,  easy-to-use  annotation  system  for  recording  vital

information about every microarray that makes up this dataset. Full, manual annotation of every

sample is then carried out in order to maximise utility of this new dataset of high-pluripotency-

marker  (HPM)  mESC  microarray  samples.  The  existence  of  this  dataset  immediately  makes

possible the two avenues of investigation which are carried out in this work in chapters 3 and 4.

The first avenue of investigation concerns whether or not it becomes possible, using the manual

annotations of the generated HPM matrix to ask questions of the contribution to sample similarity

of two key annotations – those of cell line and source laboratory. Laboratory-specific transcriptional

profiles have already been found to exist in mESC data (Newman and Cooper 2010). Other work

has shown differences in human iPS lines appearing to represent what may be “memory” of the

donor material  (Marchetto et al. 2009). This dataset, and therefore the work presented herein, can

therefore offer the first attempt on this scale at analysing relative contributions to sample similarity

of cell line annotations and source laboratory annotations. This work does not seek to remove the

effects on transcriptional profile of a samples being from one laboratory / cell line or another, but

offers a first comparison of the relative contribution of these annotations to sample similarity using

a method that has three key features. The method devised for this is named RaSToVa, as it uses

Random  Submatrix  Total  Variability.  The  first  of  this  method's  key  features  is  the  lack  of

requirement of advanced statistical understanding on the part of any researcher using or interpreting
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the results of this method. Secondly, the method devised uses publicly-available data in a format

that  is  available  to  biological  researchers  without  the  need  for  any  preprocessing  other  than

annotation. Thirdly, the method devised uses only freely-available software and the use of scripting,

meaning that this method can be carried out by any laboratory with sufficient computing power

without needing to pay for any proprietary software, and using a method that is understandable to

non-statisticians / bioinformaticians.

An additional possibility that arises further to the completion of full manual annotation of the HPM

matrix is  the ability to mine deeper than “sample similarity” in this data to attempt to identify

transcriptional profiles that appear to be associated with specific cell lines. No microarray analysis

of public data has yet investigated the differences between commonly-used mESC cell lines on this

scale,  while  the  work  presented  here  attempts  this  using  a  novel  method  dubbed  DALGES –

Discovery of Annotation Linked Gene Expression Signatures.

Another  major  question  that  is  asked in  this  work is  whether  or  not  it  is  possible  to  use  this

manually-annotated HPM matrix to investigate potential changes, at a transcriptional level, in high-

pluripotency-marker mESCs between naïve pluripotency, primed pluripotency and exit from primed

pluripotency. No analysis on this scale of these transcriptional profiles across these cellular states

has yet been carried out on mESC microarray data.

As this work progressed, it became clear that such an analysis was a very real possibility, given that

the data matrix was found to contain samples which, by both annotation and by transcriptional

marker profile, appeared to cover this broad spectrum of cellular state from naïve pluripotency to

the  exit  toward  differentiation  from primed pluripotency.  In  order  to  investigate  transcriptional

events,  as  well  as  higher-order  biological  pathway  activities  across  these  cellular  states,  it  is

necessary to, in some way, meaningfully arrange the data in such a way as to provide a progression

between the cellular states of interest. This was achieved in this work through the careful selection

of a candidate gene for sorting the data. After confirming the successful broad sorting of the data

between  naïve  pluripotency  and  exit  from primed  pluripotency  toward  differentiation,  both  by

marker profile and by ranked annotation referencing, it became possible to interrogate the data as to

both the transcriptional and biological pathway changes between these cellular states so crucial to

the utility of mESCs.
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This thesis therefore asked what major changes can be seen between these cellular states using a

purely informatic approach. Two approaches were used, the first being the common “differential

expression”  method  between  different  sections  of  the  data  found  to  be,  by  marker  profile,

representative  of  the aforementioned cellular  states,  but  also a  scanning window approach was

devised,  calibrated  to  the  data  and  used  to  attempt  to  improve  upon  the  results  of  standard

differential expression analysis. This greatly improved the detection of transcriptional changes and

biological pathway enrichments, most strikingly across the region of the data whose samples bore

markers  of  naïve pluripotency,  identifying signalling  pathways and changes  in  gene expression

which may indeed be able to separate “early” and “late” naïve pluripotency. Whilst the use of a

purely informatic approach prevents the findings from this work being taken as direct proof of

biological reality, a set  of novel markers of this putative “late naïve pluripotent state” which is

proposed to exist immediately prior to the switch from naïve to primed pluripotency, are reported.

The scanning of the data for transcriptional changes and biological pathway enrichments culminated

in a  full-matrix  scan using the scanning window approach which successfully  identified nearly

every other biological pathway enrichment of interest to mESCs found by the smaller analyses in

this work, warranting the use of this method in other datasets that can be broadly sorted across a

biological phenomenon of choice.

Finally,  proof-of-concept  is  demonstrated  in  this  work  wherein  the  scanning  window method's

results  can  be used  to  visually  mark  changes  in  expression  of  significantly-enriched biological

pathway genes across the sorted data matrix, with intent for use in guiding future work on the

chronology of transcriptional events in mESC (and, later translation to hESC) pluripotency and

differentiation.
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Chapter 2 – 

Assembly  and  Annotation  of  a
Matrix of High-Pluripotency-Marker
mESC Microarrays

2 Assembly and Annotation of a Matrix of High-Pluripotency-Marker mESC 
Microarrays
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2.1 Research Questions

2.1.1 Do sufficient numbers of publicly-available mESC-annotated microarray samples have
high Oct4, Sox2 and Nanog for the generation of an HPM matrix?

Within this first research question here to be answered is whether or not it is possible to amass a

large number of mESC / mESC-like microarray samples from public data sources prior to even

filtering for high levels of expression of pluripotency markers.

The ability to source data is not in question, as the use of public data is a commonplace affair.

However, whether or not a sufficiently-large number of mESC samples exist to enable truly large-

scale analysis is not certain. The second part of this question to be addressed in this chapter is

whether or not, of those samples which may contain online annotation for the terms “embryonic

stem cell”, do a sufficient number of those samples will carry a pluripotent signature, as marked by

highest expression of the pluripotency markers Oct4,  Sox2 and Nanog (see section  1.3.1)? The

reason behind the filtering for these pluripotency markers was two-fold.

First and most obviously is the desire to study the pluripotent state which, in the absence of the

ability  to  test  for  functional  pluripotency,  pluripotency  markers  are  the  closest  way  that  a

bioinformatic approach has (in conjunction with checking sample annotations) of ensuring that the

samples gathered do in fact pertain to the pluripotent state.

Secondly, but no less importantly, it is expected that an automated search of the online repositories

for microarray data will undoubtedly retrieve some samples which contain the appropriate search

term (being “embryonic stem cell”) but may not in fact be ES cells at all. It may be, for example,

that the description of the uploaded samples mentions that phrase in a secondary manner, such as

“these cells are known to have a slow turnover and were used to investigate the influence of gene X

on proliferation rate, as this is known to be involved in the proliferative vigour of other cell types

such as the embryonic stem cell.”. It may also be that the annotations are simply incorrect, or copied

wholesale across all samples of an experiment, some samples of which are embryonic stem cells

and others are cells to which the ESCs are being compared. Filtering for highest Oct4, Sox2 and

Nanog should go a long way to eliminating these samples from the analysis in this work as the

transcriptional profile of the sample, not its annotation, is the ultimate indicator of its state.
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After observing the number of samples downloaded prior to filtering for pluripotency markers,

distributions of the expression of each of the chosen pluripotency markers (Oct4, Sox2 and Nanog)

can be ascertained. From these can be derived a reasonable cutoff / threshold for filtering for only

those samples which are highest in the expression of all three. This filtering can then answer the

second question: whether or not there are sufficient samples within the first dataset which are high

for the selected markers of pluripotency (Oct4, Sox2 and Nanog.)

As one of the main advantages of a large-scale analysis is to piece together sufficient samples so as

to observe subtle phenomena which would not otherwise be necessarily found, it is imperative that

enough samples meet this high Oct/Sox/Nanog requirement. There was no preconceived idea as to

what  would  constitute  “enough”  samples,  however,  a  brief  look  in  the  literature  of  mESC

microarray analyses found that considerable efforts into large scale analyses had indeed already

been undertaken, with larger projects such as the FunGenES project  (Schulz et al.  2009) which

amassed a total of 258 microarrays from a consortium of 20 research groups. Therefore, it is hoped

that at least around this number of samples would be found to contain the search term “embryonic

stem cell” as well as be found to have high expression of Oct4, Sox2 and Nanog. In an ideal world,

the number of “high pluripotency marker samples” would exceed the number of samples found in

studies such as this.

2.1.2 Generation of a set of manually-curated annotations for all HPM mESC microarray 
samples currently publicly available for the Affymetrix Mouse 430v2 Array

By far the greater amount of work in this chapter, however, was dedicated to the second research

outcome; providing manual annotation of the data matrix generated in the first part of this chapter.

In order to make meaningful connections between annotations and sample similarity, it was decided

that this annotation effort would trace sample annotations to the online repository and then, further,

to any available literature, taking the accompanying literature as the highest (most accurate) source

of information about each sample.

It was decided to include information pertaining to the sample's source laboratory, cell line, any

genetic modification made to the cell, any interference with gene expression (knockdown / siRNA

et cetera), any reporter constructs and expression / inhibition of genes under control of an external
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factor. Furthermore, rather than try to find a simple, representative culture condition which detailed

what culture condition the cells were exposed to for the longest,  and in preference to trying to

deduce which culture condition the cells were immediately prior to submission for microarray, all

information  found  in  the  online  annotations  /  source  literature  pertaining  to  culture  conditions

would be included for completeness and, where available,  time spent in  each culture condition

would be recorded. Further details of the annotation system are given in section 2.2.2.

Quite possibly the greatest challenge when annotating this data was (apart from its sheer size, which

turned  out  unexpectedly  to  contain  1,101  high-pluripotency  marker  samples)  having  to  invent

annotation syntax whilst “going in blind”, as the format, quality and conventions of the available

online annotations were entirely unknown and proved to be highly inconsistent. The annotation

system therefore had to be developed as each sample was added, sometimes requiring restructuring

of previous data fields or formats.

However, this task was seen as a necessary step, particularly as the planned downstream analyses

for  this  thesis  included investigation  of  transcriptional  events  from naïve  pluripotency to  early

differentiation. A crucial reason for performing these manual annotations, therefore, was to be able

to trace back to individual samples any later result. This allows for quick reference to what any

given sample is, its culture condition, genetic modification etc., in case an effect of one of these

annotations may be responsible for a given result, rather than being an interesting discovery about

mESC biology per se.

Finally, despite its inherent utility to the work carried out in the preparation of this thesis, one of the

most  tangible  outcomes  of  this  chapter  is,  in  fact,  the  simple  existence  of  both  the  high-

pluripotency-marker matrix of mESC microarrays and full, manual annotation of this data. These

combined may make for a highly-useful resource for other researchers to go data mining with. It is

essentially impossible for the work of one PhD student, let alone one discrete thesis, to mine all

possible useful information from a resource such as this, making the generation of the data and its

full annotation extremely useful beyond the scope of this work, hopefully for others to use to make

further discoveries in the field of mESC biology.
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2.1.3 Collation of a list of examples of discovered errors / omissions in available annotations 
for high-pluripotency-marker mESC microarrays

The final research outcome from this chapter is a detailed description of selected examples of the

sorts  of  errors,  omissions  and  /  or  confusing  annotations  that  were  found when  attempting  to

perform the manual annotation. It is to the highly likely detriment of wet-lab biological science

investigators, bioinformaticians and their automated systems that there is currently no immediate,

tangible  incentive  for  the  uploading  of  standardised,  accurate,  intuitive,  human  and  machine-

friendly annotations for microarray data. Therefore, time spent on accurate, intuitive reporting of

sample annotations may come to be seen as a time burden, rather than a priority for the betterment

of science in general.

The presence of errors / omissions / confusing issues in both online annotations and sometimes even

the literature referenced by online annotations is somewhat more understandable when this lack of

incentive is borne in mind. Scientists, with often very limited time and manpower, can be expected

to only naturally prioritise those tasks which further their work and allow them to meet their hard,

enforced  targets.  This  section  of  this  work  therefore  is  intended  to  provide  some  insight  into

commonly-made but quite easily-avoided mistakes that were picked up while manually annotating

every sample in the high-pluripotency-marker matrix. This can be used to inform researchers who

quite  likely  have  the  best  of  intentions  while  completing  online  annotations  for  their  data,  or

referencing where to find their methodologies, as to which parts of their annotations require that

extra care for them to be usable by others.

Stress is also given in the results section of this part of the work as to how automated searches /

analyses may well be affected severely by the common mistakes encountered during this work. It is

intended, therefore, that drawing examples of these errors / omissions / confusing issues may allow

data uploaders to provide better annotations for their data through increased understanding of which

errors cause the most human / machine frustrations and why.

54



2.2 Methods

2.2.1 Automated assembly of mESC microarray sample dataset

In order to maximise the chance of successfully delineating the effects  on sample similarity of

source laboratory and cell line, it was necessary to assemble the largest-possible matrix of mESC

microarray data. By using as many samples as are available, the number of laboratories and cell

lines is maximised, which, by definition, includes as much information about the transcriptional

state associated with samples from different annotations as possible. However, manually assembling

such a matrix from publicly-available repositories would be prohibitively-time consuming. Thence

it was decided to use programmatic, scripted access to both GEO and ArrayExpress. 

A scripted search was performed on all GPL1261 platform samples, requiring the term “embryonic

stem cell” to be found. It was noteworthy, also, that performing this search using the standard web-

browser user interface returned a fluctuating number of results, depending on the syntax used, but

always below 1000 in number, while the scripted access consistently found the same number over

2500. Manual reading of a selection of the annotations of samples found using the scripted approach

which  were  not  found  through the  website's  “advanced  search”  page  confirmed  that  the  extra

samples found using scripted access did indeed contain the required term.

Further to this issue, GEO itself contains an admission that, due to the issues involved in placing

large volumes of files in the same directory (a limit is imposed by some filesystems), a certain

syntax of directory structure is used in order to provide for programmatic access to files, based on

their experimental accession number. This syntax had to be dynamically mimicked in order to allow

for automatic download of the data and, even so, came across pathing issues due to inconsistent

truncation and padding of the directory names. ArrayExpress did not have these issues, although a

smaller number of samples were downloaded from here as only those which were labelled as being

unique to ArrayExpress were included in the final results passed to the download scripts.

One last issue was found during test runs of automatic download of data from the GEO repository,

in that initial attempts at automatic download returned multiple failure messages. This was traced to

an issue regarding the extensions of the files, wherein there was no accepted standard in the GEO

repository as to whether or not file extensions should be capitalised or not. Without a way to predict

which samples would have their file extensions in either lower or upper case (“.cel” or “.CEL”), it
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was decided to simply use two simultaneous download scripts which both attempted to pull  all

desired .CEL files, with one script with all uppercase extensions, the other all lowercase, and to

combine the results. No desired files failed to download after both of these scripts were run.

2.2.2 Manual annotation of matrix N1101

In  order  to  allow  for  the  interrogation  of  matrix  N1101  for  the  purposes  of  delineating  the

contributions to sample similarity of source laboratory and cell line, annotation of matrix N1101

would, technically, have only required each sample to be annotated as to the status of those factors

under investigation, those of source laboratory and cell line. However, the scope of work in this

thesis was always intended to go beyond that, fulfilling other objectives such as the production of

the first manually-annotated high-pluripotency-marker mESC microarray dataset and investigation

of the transcriptional effects of other annotations, such as presence or absence of serum or other

culture conditions. Therefore, a far more detailed annotation process was undertaken, including full,

chronological  culture  conditions,  control/treatment  status,  cell  sorting  status  of  the  sample  and

genetic modification flags. This comprehensive annotation is provided in full on the included DVD

in the “Chapter  2/N1101 Annotations” folder.  The annotation system developed records sample

details as follows:

Laboratory Group

This field was completed by using only the last author on any published paper associated with the

sample. If no paper was linked to or cited by the annotations available online, usually one could be

found by searching for terms included in the brief descriptions included in the online annotations.

Failing  this,  further  searching  for  the  experimental  details  was  done until  a  paper  was  found.

Confirmation of the paper's link to the samples in question was ascertained by linking treatment

conditions, culture conditions, cell type and experimental design before an author was assigned to

the annotation.

This resulted in nearly all samples having a clearly-associated “group”. It was decided to use the

last author, rather than the first, to keep samples true to the overall lab group, rather than trying to

piece together later which lab group a particular first author worked in.
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Finally, those few samples which did not specify a paper, could not be found by lengthy, intuitive

searching online and/or whose annotations were totally obscure or contradictory were assigned to

the name of the individual chosen for correspondence on that sample's summary page online.

Date

Date  of  original  upload  of  the  data  is  detailed  here  in  YYYY.MM.DD  format,  for  example,

2006.04.26 for April 26th, 2006.

Cell Line

Information regarding cell lines was identified in the same per-sample manner as was annotated by

the contributing authors. This labels those samples which are using common cell lines (for example

the standard CGR8 cells, E14 cells, ES-D3 cells) but also maintains the names given to other lines

by individual authors for comparison. Often the name given to a line is  an abbreviation of the

genetic background (where direct sampling is done from a live donor). This information is included

in order to observe not only patterns which may arise from the use of less common cell types, but

also to capture any relationships that may be due to cell origin. Of course, the opposite is also true

in that any annotated property may prove to be unimportant, or linked to another. This is the driving

reason behind maintaining such detail when annotating cell line. 

Furthermore,  cell line names are sometimes standard lines and sometimes not.  In the case of a

standard cell line from a catalogue, its details are provided  without  inverted commas ( “” ), for

example the commonly-used ES-D3 cell line, which is available, standardised from the American

Type Culture Collection (ATCC), catalogue reference number CRL-1934. In this case, cell name is

provided  as:  ES-D3,  ATCC:  CRL-1934.  Other  cell  lines  from  catalogues  follow  the  same

convention.

However, in many cases, cell lines are simply provided with names given by authors, particularly in

the case of freshly-sampled cells from donor mice. Here, often authors name their cells after the

genetic background, such as “C57BL/6”. Where such names are given, they are quoted directly and

no attempt to standardise them is made in order to preserve uniqueness; clustering and similarity

grants insight into which cell types may well be highly similar or even identical, but individual
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names  must  be  preserved for  fairness.  Some names  are  altogether  uninformative  as  to  genetic

background, however, and it remains to be seen as to what they resemble most. An example of this

kind of naming is found in the annotations for sample with filename “GSM258655.CEL”, which

bears the cell line annotation of “embryonic_stem_line_Bruce4_p13”.

In addition, a condition most pertinent to the area of ES cell culture is the use of feeder cells. Whilst

methods of ES cell culture may have largely moved on from the unnecessary complication of feeder

cells,  many  samples  in  the  data  used  in  this  work  were  cultured  with  the  use  of  feeders.

Unfortunately, the annotation of the use of feeders is not always clear. Therefore, like other data

fields, it is possible to infer from the manual annotation whether or not feeders cells were definitely

used. It is not, possible, however, to always infer the reverse; that samples that do not include the

annotation or feeders are truly without their presence. This is only likely a very small minority of

cases in this data, however, both due to the progression towards feeder-free culture and because

authors, unlike with culture condition where components are often omitted from annotation due to

their prevalence, the use of feeders is unlikely to be so commonly assumed.

Combined with the cell line annotation, an example of the syntax of the manual annotation when

feeders were used is as follows, for the sample with filename “GSM747184.CEL”, cell line:

“KH2”, FEEDERS

Following the described syntax, it is therefore clear that KH2 is a name given by the authors only, in

that inverted commas surround the KH2 name, and the experiment involved the use of feeder cells.

Annotation here of “N/C”, as in other fields, indicates that the cell line used is not clear from the

uploaded annotations or accompanying literature. Contradictory, obscure or unreliable annotations

in any way result  in  the use  of  this  annotation,  where  “N/G” is  where  cell  line  is  simply not

specified at all (from “Not Given”). This latter annotation is somewhat rare and usually is attached

to samples wherein no annotations are uploaded and no paper can reasonably be attributed to the

sample at all, for example with unique filename “affs447.4.201005.CEL”.

Finally, other annotations are sometimes provided here in the event that samples should confuse any

downstream analysis, such as “haploid” for cells said to be as such, or “parthenogenetic”. These are

included only for completeness of annotation and are extremely few in number.
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Genetic Modification

An extremely important field, genetic modification details, in a general sense, what changes have

been  made  to  the  cell's  genetic  makeup,  but  also  some  information  as  to  the  technique  and

implications.  This field also contains any information about  markers,  the engineered driving of

certain genes by culture condition, constitutive expression and so on.

For samples with a relatively simple over-expression of a gene or other product, the name of this

product  is  included  without  any  further  syntax. For  example,  in  sample  with  file  name

“IPK.1_4_Pax4_ESC.CEL” are modified for constitutive expression of paired box gene 4 (Pax4).

This is therefore annotated only with “Pax4”. This type of annotation is particularly important in the

case of iPS cells included in the data, where the factors used to generate them are recorded. If more

than one name for the same product is used, or where one is used commonly in the ES cell field,

both are provided, separated with only a slash “/” and no spaces (e.g. “Rex1/Zfp42” .)

Syntax here, as with all of these annotations, is crucial. In the case of simple genetic modification

resulting in either a heterozygous or homozygous state for a particular gene, the usual convention is

followed, with “Oct4 +/-” for heterozygous Oct4 and “Oct4 -/-” for Oct4 homozygous knockout.

Convention  is  followed  as  regards  the  placement  of  the  positive  “+”  sign  before  negative  “-”

always, so heterozygosity will never be marked as “-/+”.

This annotation also includes important details regarding linkages between gene expression and

culture condition.  Conditional expression cell lines, for example,  tie the expression of a certain

product to components added to culture for the purposes of experimental manipulation. In this case,

such as the example of sample with filename “GSM739488.CEL”, annotation of this is given in the

following manner:

DOX|Msgn1

This details that the mesogenin-1 (Msgn1) product is driven by the addition of doxycycline (DOX)

to the culture condition. Annotation in this manner provides extra resolution of information when

querying  the  data  in  that  it  is  possible  to  separate  this  experiment's  controls  from  treatment

conditions, as both the culture condition components and modification are detailed, it can be seen
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whether or not Msgn1 would be induced in these samples. This annotation is interchangeable with a

similar case where distinction is made between activation and repression of a given product. This is

annotated by simply adding “_ON” or “_OFF” to the driven gene. If neither is provided, the product

is turned on. Lists never follow pipe characters, in that if a sample has multiple factors induced by

the same factor, these will still be listed as separate modifications, separated by a comma and a

space, as is convention here.

The pipe character “|” is used in a consistent manner in this way, always implying that what follows

the pipe is driven or activated by what precedes it.  This is therefore the way in which another

common cell modification is recorded; the use of reporters. Reporters are intended, for example, to

confirm the expression of a gene and are tagged onto the end of that gene; a common technique in

biological  research.  Whilst  reporters  may not  be apparent  in  microarray data,  in  that  the green

fluorescent protein (GFP), for example, a commonly-used reporter, will not be assayed for by the

microarray,  it  is  still  necessary  to  record  two  facts,  however;  firstly,  that  the  cell  has  been

genetically-modified and, secondly, what this modification is.

Another important piece of information recorded here is whether or not the cells in the sample have

been sorted  in  any way.  Cell  sorting  is  a  common way of  purifying  a  sample,  selecting  for  a

particular trait. For example, cells may be sorted for markers in order to purify cells for further use,

or, indeed, to test the validity of a proposed marker for a given cell type / cell capability. Coupled

with  the  above  information  on  reporters  driven  by  certain  factors,  this  allows  combinatorial

querying of the data as it is known whether or not a certain reporter is present, what drives this

reporter as well as whether or not the conditions for the expression of this reporter are met by the

culture conditions. This provides much more information than the sum of its parts when it comes to

interpreting the microarray data.

Cell sorting information is included with simple syntax, for example in the case of sample with

filename “UKOE.5_sc5_CGR8.es_06.CEL”, sorted for the presence of CD31, written as “CD31+”.

This is to differentiate cell sorting from any heterozygosity annotation (which would be marked

“CD31 +/-”.) Cell  sorting is done while selecting both for and against a particular marker and,

following convention, cells sorted for the absence of CD31 would be annotated “CD31-”.
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Information is also to be found here concerning other techniques such as RNA interference (RNAi),

the usage of small-hairpin RNAs (shRNAs), endoribonuclease-prepared siRNAs (esiRNAs) and, of

particular relevance to stem cell science, microRNA (miRNA) expression.

In the  case  of  RNA interference,  the  pipe syntax  is  again  followed,  for  example,  sample with

filename “GSM210974.CEL” has a small, interfering RNA (siRNA) for Renilla luciferase. Counter-

intuitive as this may sound, this is, in effect, a control sample compared to others in this experiment

(accession number  GSE8503) where the  siRNA was designed to  interfere  with microRNA-290

cluster (miR-290), known to be involved in the control of pluripotency in mESCs. Renilla luciferase

is not present in the cells used at all, making the “siRNA|Renilla luciferase”-annotated samples the

siRNA controls, to control for the effect of using any RNAi technique. Again, inclusion of these

allows  more  accurate  interrogation  of  the  data  than  simply  “genetically-modified  or  not”  and

allowing for the teasing apart of individual effects (in this case, of miR-290) and of any observable

effects of RNAi technique in general.

The same syntax is followed for shRNAs, esiRNAs, and miRNA (which is modification for the

expression of a given miRNA) and so this needs no further elaboration. Controls for any of these

techniques are detailed in the same syntax with “CONTROL” after the pipe if no control product is

detailed.

Finally, the use of the Cre/LoxP system is detailed here as it was commonly found while annotating

the data. In this case, flanking a given region with locus of X-over P1 (LoxP) sites allows for the

later use of the Cre recombinase to delete the region contained within the LoxP sites. Linking the

expression of Cre recombinase to a particular component given in culture (commonly agents such

as 4OHT or DOX), allows for conditional knockouts to be made. In the data used in this work, the

flanking of a given gene or product with LoxP sites is denoted as follows, using the example of

sample with file name “GSM648807.CEL”:

Rbp2 fl/fl

It is crucial to note that, in this case, the retinol-binding protein 2 (Rbp2) gene gas been “floxed”,

but is  still active. The annotation of such samples is to provide the knowledge that some genetic

modification has taken place (in the insertion of the LoxP sites), but that Cre recombination has yet

to take place. When recombination has taken place, the standard annotation for knockout will apply:
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“Rbp2 -/- ” in this case. It should also be taken into consideration that, where possible, the factor

responsible for the expression of Cre (when not a culture component) are listed, for example, in the

case of sample with filename “GSM338367.CEL”, Cre recombinase is under the control of Mox2.

This,  in  the  case  of  this  experiment,  was  achieved by replacing  one  allele  of  Mox2 with  Cre

recombinase. Three products are mentioned in the experiment's accompanying literature as being

floxed for deletion in this experiment, resulting in the annotation:

Mox2|Cre, Rb fl/fl, p107 fl/fl, p130 fl/fl

In this case, it is more problematic, by definition, to tell from the manual annotations whether or not

Cre recombination has taken place in these samples, as Cre recombinase is expressed when Mox2 is

expressed, not when a specific action was carried out by the experimenters. This is, in fact, the only

example of endogenously-controlled Cre recombinase expression in the data that were gathered,

however, and would therefore require confirmation in the microarray data to predict the likelihood

of Cre recombination having taken place.

Culture Condition

Culture condition annotation is required in order to detail the milieu of factors to which cells in a

sample are  exposed.  This,  by definition,  can have profound effects  on the cells  themselves,  as

evidenced by the very existence of the science of maintaining ES cells (not only of the mouse) by

small molecule inhibitors or other factors. This is in addition to the fundamental biological fact that

cells can, do and indeed must respond to external cues.

Culture condition thereby provides both solution and problem. Culture of cells is a fundamental

technique throughout biological science and is thus of immeasurable utility, but the effect of cell

culture condition is often overlooked when considering results and inter-experimental comparisons.

As is true of the design of any experiment, maintaining all factors constant except for the factor(s)

being tested is implicit with good scientific method. This therefore applies to culture condition as

much as any other factor. However, this is profoundly different from implying that the cell culture

condition is having no effect at all, merely that that effect is applied across all samples, effectively

masking any effect it may have.
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Given the wide range of culture conditions used when culturing mESCs, there exists, therefore, a lot

of potential for effects, masked within individual experiments, becoming apparent when comparing

across large amounts of data. This, coupled with the nature of the area of stem cell research, where

culture  conditions  for  stem cell  manipulation  often  take  centre  stage,  makes  it  clear  that  such

detailed cataloguing of culture condition is highly necessary as well as desirable.

To this end, as much detail as possible for each sample's culture condition was included in the

manual  annotation  process,  often  consuming  the  majority  of  the  time  taken  to  annotate  each.

Indeed, with the vast majority of samples used, in this work, culture condition manipulation was the

only change made between control and treatment. This is further complicated by the quality of the

annotations available online. For example, it is most common, as observed from the compilation of

the matrix used in this work, for uploaded annotations to only contain the culture condition that was

used at the time of harvesting of mRNA. This does not provide the full story or “history” of the cell

as previous culture conditions can reasonably be expected to have had considerable effects on cell

state.

To  this  end,  annotation  syntax  was  developed  which  allows  for  the  accurate,  exhaustive  and

chronological recording of all components stated to be present in each sample's culture condition(s).

However, there is still issue with this approach which must be elaborated upon. The key word with

this is that every effort has been made to include every  stated  component. It must therefore be

emphasised that the manual annotations, whilst  exhaustive,  must be considered to be somewhat

incomplete in this regard.

Early in the process of annotating all samples, it was noticed that some cell culture components

were omitted from sample annotations online which were clearly stated in the associated paper. For

example, the inclusion of sodium pyruvate (a carbon source) is not always mentioned either in the

literature or annotations. It is likely that this component is simply so ubiquitous that many authors

do not feel the need to report its inclusion. However, this is the case for many culture components,

including, but not limited to, non-essential amino acids (NEAA), β-mercaptoethanol and antibiotics,

particularly in the cases of penicillin and streptomycin. These components, by their very presence,

will have an effect on the transcriptome of the cells in the sample, to a greater or lesser degree.

Annotation  of  the  culture  conditions  is  formatted  in  chronological  order  by  the  use  of  square

brackets “[ ]”. All components listed within a set of such brackets are present at the same time. All
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components in the culture conditions during that time are listed in no particular order (although

usually listed in the same order as listed in the given annotations online or in attached literature,

following that convention to a large degree.)

Each component is formed of both the concentration and the component name. These are separated

by  an  underscore  “_”,  in  an  attempt  to  avoid  confusion  between  termination  of  concentration

information and beginning of component name. Components are separated with a comma and a

space “,  ”.  Wherever a duration of time spent in a particular culture condition is given, this is

denoted after the square brackets containing the details of that condition, and a period “.” . There is

no space between the square brackets of culture conditions for a given sample. 

In the case of the use of Greek characters such as those for “micro” and for “beta”, the regular

Roman characters “u” and “b” are used, as is convention in the absence of advanced character

typesets, as the annotations aim to be query-able by simple plaintext searching. Capitalisation is

unimportant and provided for user-readability only, except in the case of units, for example “molar”

requiring the use of the capital, and so on.

Crucially, culture conditions are annotated  in full. That is, components are carried over from one

culture condition to its successor for that sample when this is the description in the accompanying

paper or online description. This is included for completeness so that every component present is

annotated as being such, without the need for any guesswork or assumption as to what is carried

over from one time point to the next. Furthermore, this is one of the many reasons why exhaustive

reading was required of all accompanying literature. 

The first culture condition that a sample is in does not carry with it a duration and, indeed, many

subsequent  culture  conditions  are  not  given a  timepoint  if  this  is  ambiguous in  any way from

reading the associated literature.

As  an  example  of  all  of  this  syntax,  the  annotations  provided  for  sample  file

“E.MTAB.300.100_.Mouse430_2..CEL” (from Array  Express  experiment  E-MTAB-300),  are  as

follows:

[NC_DMEM, 20%_FBS, 1%_NEAA, 1%_Penicillin/Streptomycin, 2mM_L-Glutamine, 0.1mM_b-

mercaptoethanol,  0.2%_DMSO],[NC_DMEM,  20%_FBS,  1%_NEAA,
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1%_Penicillin/Streptomycin,  2mM_L-Glutamine,  0.1mM_b-mercaptoethanol,  0.2%_DMSO,

1.1mM_warfarin].24H

This  represents  all  the  information  that  was  available  for  this  sample  compiled  from both  the

uploaded annotations to ArrayExpress (observed as being more often the less-complete annotations)

and from reading the methods sections of the attached paper(s).  Quite often,  attached literature

simply quotes the use of method from another paper. Where accessible,  these papers were also

consulted until a culture condition was found.

In the event of discrepancy between the two (or indeed any whole culture condition that is unclear),

the entire culture condition field is marked with “N/C” (not clear). In some cases, it is still possible

to draw some information from unclear annotations in order to have made all reasonable effort. For

example, in the case of sample with filename “HOXB4.ERT2.tmxf.pls.A4.cel”, it  is clear that a

treatment condition involving 4-hydroxytamoxifen (4OHT) was used after a control condition, so

this annotation simply becomes:

[N/C],[NC_OHT]

It is still necessary to annotate in this manner as it can at least be inferred from this that the sample

is not a “control” sample, but most definitely a “treatment” sample from an experiment. In addition,

this may leave intact the ability to interrogate the data for any associated effects of 4OHT, given

enough samples.

In the case of components such as Dulbecco's Modified Eagle's Medium (DMEM) or non-essential

amino acids (NEAA) abbreviation is used and, particularly in the case of media, this is always

accompanied by “NC” as the “concentration”. This is the “not clear” annotation to prevent potential

confusion regarding the “concentration” of base media, but not annotating as “NG” for “not given”,

as this is not the case. “NC” therefore simply provides any interrogation of the manual annotations

with the idea of “concentration of this cannot be discerned for analysis.” In the case of the “NG”

annotation, the entire field is changed to “N/G” if no annotation is given whatsoever.

Furthermore, manual annotations can be found in this work which include “N/C” for “not clear”,

where excessively-confusing,  contradictory,  obscure or  otherwise poor annotations  are  found in

either a sample's accompanying paper or the annotations uploaded with the sample. It is also the

65



case  that  some samples  have  no  clear  culture  condition  associated  with  them in  the  uploaded

annotations, and several culture conditions are mentioned in the attached paper, with insufficient

link between them for confident reporting of cell culture condition for that sample (or, indeed, entire

experiment.)  In  this  case,  the  choice  to  use  “N/C”  was  preferred  to  risking  damaging  real

relationships found in our data for the sake of completeness. Nevertheless, even where “N/C” is

sometimes used,  a  change of  culture  condition to  definitely  add a  certain factor  has  still  been

annotated. For example, in the case where culture condition is unclear,  but the experiment was

clearly to assess the effects of adding LIF at a particular timepoint, this has still been recorded. This

is necessary for downstream flagging of samples as having had components added to or removed

from culture before harvesting.

A clearer annotation is found when “N/G” or “not given” is used, where it has proven impossible, to

locate any given annotation. This often arose as a result of having no attached paper as well as no

solid ground on which to base any manual attempt to link a paper to the experiment in question.
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2.3 Results

2.3.1 A large number of publicly-available Affymetrix Mouse 430v2 microarray samples 
contain the search term “embryonic stem cell”

The  initial  download  scripts  for  both  repositories  (GEO  and  ArrayExpress)  obtained  3,321

individual .CEL files, after decompression of all archives. It was assumed at the time that these

.CEL files contained unique samples, as the options used while searching ArrayExpress included the

option to omit all samples which were hosted by GEO. This was mostly true, although during the

manual  annotation  of  the  data,  one  duplicated  experiment  (ArrayExpress  accession  number  E-

GEOD-3653)  (n = 16  samples)  was  identified  as  having identical  annotation  to  a  set  of  GEO

samples and these were subsequently removed. This left 3,305 samples downloaded from GEO and

ArrayExpress.  To  these  were  added  7  microarrays  from  the  Prof.  Ian  Chambers' lab's  own

investigation of Nanog-related genes (for a total of n = 3312 samples), including 3 Nanog knockout

samples, 2 Nanog-overexpressing samples and 2 Nanog-wild-type samples. These samples were

added as there was initial discussion of observing where within the rest of the data these samples

would cluster. This investigation was not taken forward, and the samples remain in matrix N3312,

although as soon as it was decided that the aforementioned investigation would not proceed, these

samples were restricted from being included in the high-pluripotency marker (HPM) matrix. These

samples therefore contribute nothing to downstream analyses and do not affect the work in this

thesis which almost exclusively uses the high-pluripotency marker matrix. All of the conclusions

from this thesis are therefore based only on the automatically-downloaded publicly-available data.

A list of all filenames that made up matrix N3312 is available as “Chapter 2/N3312 Filenames

List/N3312.Filenames.List.csv” on the accompanying DVD, while all filenames which made it into

the HPM matrix can be found in the manual annotation file, provided as both the commonly-used

spreadsheet  format  (.xlsx)  and  as  a  plaintext  tab-delimited  file  (commonly  called  (though  a

misnomer  in  this  case)  a  “comma-separated  value”  (.CSV)  file)  under  “Chapter  2/N1101

Annotations” on the accompanying DVD. The 7 samples in matrix N3312 which were from Prof.

Ian Chambers' lab are clearly visible in here as beginning with the string “Chambers”. The order of

the  filenames  in  the  file  list  for  matrix  N3312  corresponds  to  their  column  indexes  in  the

compressed  R  object  version  of  matrix  N3312  provided  on  the  DVD  as  “Chapter  2/Matrix

N3312/N3312.RObject”.
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2.3.2 Distribution of levels of gene expression of matrix N3312

Taking mRNA detection to be representative of gene expression, figure 2.1 shows the distribution of

all probes' mRNA detection across all samples in matrix N3312. This clearly shows that, as would

be expected,  the  highest  frequency peaks  occur  toward  the  lower  end of  the  mRNA detection

spectrum. These values represent genes that are likely to be off or, at the very most, expressed at

levels  that  are  indistinguishable from background noise.  As the RMA values  increase to  about

around the 5 mark, genes are now in the “lowly expressed” range and, at around the 8 mark, the

histogram tails off as gene expression becomes very strong. This is in keeping with the phenomenon

that most genes in any cell are either off of lowly expressed, and that only a fraction of the total

potential compliment of genes that can be expressed are actually very highly expressed. It should be

further noted that, given that the RMA values used in such plots are log2 values, an increase of 1

along the x-axis represents a doubling of mRNA detection. This makes clearer the interpretation

that at the very highest levels of expression, around the 14 mark, representing a (2(14-5)) =  512-fold

upregulation compared to those around the 5 mark, one expects very few genes to be in this region

(figure 2.1).

Concerning three of the canonical pluripotency markers, Oct4, Sox2 and Nanog, the distributions of

these genes is shown in figure 2.2. Vertical lines here represent the thresholds chosen to represent

the very highest levels of expression of these three pluripotency markers in the later filtering of

matrix N3312 in an effort to leave only pluripotent ES samples for further analysis. In the case of

these 3 pluripotency factors, a clear bimodal-like distribution is seen across all the data. In the case

of  Oct4,  however,  there  is  another  peak  of  expression  lower  than  the  highest  peak.  When

thresholding for the highest pluripotency markers, it was decided to include at least a little of the

shoulder of this  peak for interest's  sake,  to observe how these samples might be related and/or

different  to those highest  in expression for Oct4.  The fourth canonical Yamanaka factor,  Klf4's

expression distribution is also shown here. Klf4 was not used in the filtering for pluripotent ES

samples as it does not have a clearly-visible bimodal-like distribution amenable to such filtering.

Klf4 instead shows a distribution which appears to be three peaks, the central of which is much

larger than the two at either side of it.
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Figure 2.1: Distributions of all robust multichip average (RMA) values as both histograms (a) and 
(c) and as boxplots (b) and (d) for matrices N3312 (top panels) and the HPM matrix (bottom 
panels.)
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Figure  2.2: Distribution of expression of canonical Yamanaka factors Oct4, Sox2 and Nanog in
matrix  N3312 (a,  b  and c  respectively),  with vertical  black  lines  denoting  selected  cutoffs  for
making  matrix  N1101  (except  in  the  case  of  Kl4  (figure  d),  which,  in  the  absence  of  clear
"low/high" states, was not used for filtering.)



2.3.3 Filtering of matrix N3312 for high-pluripotency-marker-only samples

The pluripotency markers Oct4, Sox2 and Nanog are well-accepted markers of the pluripotent state.

The automated assembly of matrix N3312, whilst the requirement for the search term “embryonic

stem cell” being satisfied was indeed enforced, this  automated search cannot be relied upon to

guarantee  that  only  bona  fide embryonic  stem  cell  samples  were  retrieved.  Furthermore,  as

pluripotency and the point of immediate exit from pluripotency are the foci of this work, it therefore

stands to reason to retain only those samples which are  bone fide ES cells, as evidenced by high

Oct4, Sox2 and Nanog expression. Thresholds for log2 RMA values were set for Oct4 at 11, Sox2

and Nanog at 10.5, again, marked by vertical lines on figure 2.2 and only samples which satisfied

all three of these thresholds were kept to form the high-pluripotency-marker matrix, leaving behind

1101 samples. This matrix was therefore named N1101. A copy of matrix N1101 is available as an

R object on the DVD as “Chapter 2/Matrix N1101/N1101.RObject”. 

2.3.4 Distribution of levels of gene expression of matrix N1101

This is mentioned mostly as it would be hoped that filtering for high Oct4, Sox2 and Nanog should

not majorly alter the distribution of mRNA detection from that which was observed across matrix

N3312.  This  is  indeed the case,  as  can  be seen in  figure  2.1,  bottom 2 panels,  which  show a

histogram and boxplot showing the distribution of detection of all probes across matrix N1101 (the

HPM matrix). The same comments apply to this distribution as applied to the upper panel plots, as

mentioned in section 2.3.2.

2.3.5 Examples of each type of issue encountered in online microarray data annotations / 
accompanying literature

The assessment of the state of available annotations for microarray data was carried out during the

manual annotation of matrix N1101. A variety of issues were identified and are detailed below. Not

every incidence of a certain kind of issue is elaborated upon and only issues which can interfere

with  downstream  analysis  or  otherwise  prove  problematic  were  considered  to  be  issues.

Furthermore, the list of issues here should not be taken to be exhaustive, in that those samples in

matrix N1101 not linked with any issues in this section should not be assumed to be free of any

issues. This is because the primary objective of generating the manual annotation was to analyse the
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effect of source laboratory and cell line on sample similarity; recording every occurrence of every

issue along with the details of the efforts made to retrieve accurate annotations from the source

literature would have proven prohibitively time-consuming as well as generating an unacceptably

large amount of text / tables for inclusion in a thesis. Formatting, quality of English and other issues

which may be bothersome, but are unlikely to have any significant effect on the ability to use /

analyse the data (including by a machine) are considered to be irrelevant for the purposes of this

work and so are also omitted. The discovery of these issues and detailing them on as large a scale

(n=1101) as has been done here is, to the author's knowledge, the first attempt to provide both an

assessment of the quality of mouse ES cell microarray data annotations, and also provide example

reasons why any observed failings of these annotations affects downstream usage of the data in

order to underscore need for more thorough, thoughtful, accurate and standardised annotation of

microarray samples, although this section can also inform future practice of annotating other cell

culture samples not destined for use only in microarrays. It is also the objective of highlighting

specific types of error relevant to the use of mESC microarray annotations to allow authors to

concentrate on ensuring accuracy where it is most relevant and saves the most frustration for other

researchers.

Spelling

Whilst spelling may not seem initially to be a major issue with microarray annotation and can,

indeed, often be overlooked in the case of non-mission-critical words, spelling was often found to

be  incorrect  in  important  terms  during  the  manual  annotation  of  N1101.  In  E-TABM-562,  for

example,  an ArrayExpress  experiment,  a  crucial  term “STAT3” was  mis-spelled  as  “STATA3”.

Whilst a researcher in the embryonic stem cell field may well recognise this as a mistake, as STAT3

is a critical pathway in ES cell biology, any attempt at automated use of online sample annotations

would not be able to make such a judgement and would miss this sample. Spelling mistakes in such

crucial terms may well have an even more deleterious effect, were STATA3 to be some other, valid

signalling pathway. This spelling mistake occurs in the experiment description wherein a cell line is

labeled as being “E14-STATA3-CTL”, and so would interfere with looking for cell line names as

well as the “STAT3” string being broken with the erroneous “A.”

Sample naming such as this is not the worst area to be affected as regards annotation spelling, as

there are errors present in actual compound names when details of culture conditions are recorded.

This  is  evidenced,  for  example,  in  GSE20575  which  incorrectly  spells  “l-glutamine”  as  “l-
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glutamin”, which will, again, disrupt searches performed on the annotations as they are. In the case

of this work, for example, where a method was envisaged for the investigation of the relationship

between culture conditions, source laboratories etc. with a transcriptional profile, there is scope to

look deeper into the data (although beyond the scope of a PhD thesis), at a very high resolution,

down to individual culture components, something which would require errors such as these to be

corrected in the available annotation. It was the observation of the issues in the annotations that

fuelled  the decision not  to  attempt to  analyse culture condition  effects  on sample  similarity  in

chapter 3, as the annotations could not be completed to a satisfactory level.

Issues concerning the general  spelling /  checking over of annotations  also came to notice with

experiments such as from ArrayExpress, accession number E-TABM-674, wherein the description

contains markup language, such as chevrons and markup codes for formatting. It would appear,

therefore  that  these  have  been  hastily  copy-pasted  from another  source.  Worse,  the  failure  of

superscript formatting in this copy-paste effort lead to the inclusion of claims that the cells were

“then stimulated with 103U/ml mLIF”. This is extremely likely to have been intended to read “103”.

Without checking on the annotations, the uploader has left this highly incorrect concentration on

their online annotation, which will need to be manually detected by anyone re-using this data. Such

problems continue in the next subsection of examples with units:

Units

Critical to the annotation of cell culture samples are the culture medium details. Mistakes in units

can be, at best, confusing to manual readers and, at worst, mis-informative to attempts at automated

processing  of  annotations.  For  example,  ArrayExpress  experiment  P-TABM-4268  contains  an

annotation in the cell culture details wherein an abbreviated unit “nanomolar”, correctly written as

“nM”, is written as “nm”. Far from being an issue solely for the pedant, this unit, the nanometre is

not only inapplicable to the subject, but is mis-informative. Case-sensitivity is not optional when

recording units.

An  example  from  GEO  sample  GSM185513  further  demonstrates  the  point  concerning  unit

annotations as here a culture condition is labeled as having 15M mercaptoethanol present. This is

clearly a concentration which is highly unlikely and likely the annotation meant to read a smaller

unit, probably “15mM”, common in other annotations. Whilst this may seem inconsequential to the

manual reader, again, automated attempts to marry annotation to effect will incorrectly generate a
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sample assumed to have this “15M” concentration of mercaptoethanol in the culture condition. This

may, at best, waste a great deal of time at a later date, combing through an analysis to find the

mistakes in the annotation that have generated anomalous or impossible results, or, at worst, the

error goes unnoticed and affects all other results, leading to false conclusions, at even greater cost as

regards time and trustworthiness of results. Similar issues regarding units were found wherein 5

micro- and 5 milli- molar concentrations of LY294002 (PI3K signalling inhibitor) were reported in

ArrayExpress experiment with accession number E-TABM-673 in the accompanying paper and the

online annotations respectively, leaving uncertainty as to which should be treated as true.

Some online annotations also differ from a standard format of expressing a concentration of a given

factor as a simple “number per unit”, instead adding a number to the unit as well, such as the case

with  GSE27341,  which  mentions  “5μl/500ml  β-mercaptoethanol”.  Whilst  this  is  at  least

informative, the use of a standard “number per unit” annotation here would remove the need for

either  a  manual  researcher  or  automatic  search  to  perform  calculations  in  order  to  render

concentrations comparable.

Annotation access issues

Whilst referencing previous or other work for in order to detail a method is not an inaccuracy per

se, it costs a great deal of time to chase down individual culture conditions or methods when a

reference to another paper is given. This is another jump which would be highly problematic, if not

impossible, to automate. This applies, for example, to an experiment found from GEO: GSE8128.

The online annotation for the culture protocol simply states “ES cells grown as per protocol as

described at  the UCSF Bay Genomics website”.  Aside from, again,  the extra work involved in

tracking this down and, again, preventing any automated retrieval of samples and their annotations,

there is no link whatsoever provided with the online annotations in order to ease manual searching.

Going  to  the  source  literature  for  this  sample  and  looking  up  the  reference  manually  gives

“http://www.baygenomics.ucsf.edu”. Aside from simply being unhelpful in that this link does not go

directly to any protocol (as can be discerned simply by looking at the link; it's a homepage, not a

specific page), the link simply does not work and searching manually for a “Bay genomics ES cell

protocol” or other permutations of this looking for the protocol were entirely unfruitful. This has

remained the case for at least a year at time of writing. The use of internet links for methodology is

therefore a practice which not only renders futile any attempt to automate annotation retrieval or
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meta-analysis, but is also highly vulnerable to dynamic changes in webpage addresses. Whilst it

may be understandable to have methodology written in the accompanying literature and therefore a

simple reference to this put on the online annotations, two major issues arise from this. First and

foremost  is  that  there  are  specific  spaces  in  the  online  annotation  forms  for  both  GEO  and

ArrayExpress which request cell culture condition details. It can only be assumed, therefore, that

authors choosing to reference only their literature, rather than provide the details in the appropriate

forms simply do not  wish to  take the time to fill  these forms out,  again,  rendering large-scale

automated analysis impossible or severely hampered were this practice to be replicated across all

samples. Secondly, the use of data from publicly-available repositories should  not presuppose the

availability of the source literature as this is not always the case, even in academic institutions with

seemingly-comprehensive  journal  subscriptions.  Ideally,  the  online  annotations  should  be

completed to the point wherein they are sufficient to inform the reader to the extent that they are

able to replicate the experiment and attempt to reproduce the results without recourse to other (often

several) sources.

Another, more common issue concerning access to annotations is where seemingly the “trail runs

cold”  wherein  a  sample's  annotation  is  first  missing  in  the  online  annotations,  and  on  further

investigation of the sample by tracing to the source literature, there is no direct mention of that

sample, or even the cell type which that sample purports to be in the online literature. An example

of this can be seen with sample GSM258655, part of experiment with accession number GSE10246,

with  accompanying  literature  apparently  as  (Lattin  et  al.  2008).  Even  tracing  through  the

accompanying paper, there was no mention of the sample by accession number or even a reference

to the cell line used, being annotated online only as “embryonic_stem_line_Bruce4_p13”. A search

therefore  had to  be  done of  all  accompanying supplementary  files  from the  paper  to  find  one

solitary reference to this cell line, in the third available supplementary file, which only detailed that

this was “sample number 37, of unknown gender, a technical replicate, using 2000ng of RNA, and

single amplification.” None of this effort, in the end, provided any information that could prove

enlightening in the manual annotations. This sort of access issue, wherein annotations are missing

or sometimes simply paraphrased (e.g. with GSE30561, where the culture condition is described as

“standard conditions maintaining the undifferentiated state, i.e. KO-EM supplemented with LIF”,

allows only the most rudimentary reconstruction of what the cells were exposed to), occurred many

times in  other  uploaded experiments  not  listed here in  the interests  of  space.  Furthermore this

section is to provide examples, rather than be an exhaustive list.
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Contradiction

One  of  the  most  confusing  and  potentially-disruptive  errors  to  make  in  annotation  is  that  of

contradiction. A stark example can be found in sample GSM266063 from experiment GSE10553.

Whilst to a human reader, it is possible to discern the meaning of the contradictory sample name

“BAF250 knock-out ES cells, wild type”, this presents severe problems to any attempt to retrieve

annotations for certain kinds of cells/experiments automatically. The suggestions from the name is

that these are BAF250 knockout cells, but with “wild type” appended to it, which is an impossible

cell  type;  a  wild-type knockout.  The rest  of the sample description for  this  sample later  states

“knock-out ES cell  lines are derived in vitro from wild type E14g ES cell line”.  Therefore the

annotation should simply detail the knockout status of the cell line, rather than confusingly adding

the “wild-type” marker to it as well. These are clearly not  wild-type cells. Contradictions such as

this pose possibly one of the greatest hurdles to larger-scale analysis, whether automated or not, as

contradictory annotations not only mean that both mutually-exclusive states must be considered to

have no annotation, but this calls into question the accuracy of the rest of that sample / experiment's

annotation. Direct contradiction such as this was a relatively rare occurrence, however, compared to

issues of spelling, access and units, but compared to the next issue mentioned, simply obscurity:

Obscurity

An example of this is prominent in experiments such as GEO experiment GSE10210. GEO accepts

(and, indeed, requires) sample names to be uploaded for each microarray. In order to make some

sense of the samples present in the data, either the experimental description or the sample name best

make clear which sample pertains to what condition. In the case of GSE10210, sample names such

as “HB1” and “HP2” are used. Details of individual samples contain a little more information, and

these appear to change along with the abbreviations, but not in any meaningful manner. Here, HB =

VEGFR2+, day 2.5, HP = CD41+, day 3.5. The sample names are only referred to in the full text of

the  source  literature  ((Nikolova-Krstevski  et  al.  2008)),  whereas  using  the  description  of  the

samples by their cell line, sorting and timepoint is far more common in other uploaded experiments

and is far more helpful to the reader.

Another form of obscurity no less frustrating to both manual and automated annotation retrieval is

exemplified perfectly by an experiment with accession number GSE3653, where, for each sample
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uploaded  (n  =  16),  the  uploader  has  simply  “copy-pasted”  the  same  paragraph  under  the

“description” field for every sample. This paragraph describes all 16 uploaded samples and contains

a  description  of  the  overview  of  the  entire  experiment.  With  all  samples  described  in  every

“description” field, any automated search is going to be frustrated at this point and require manual

intervention. In fact, the experiment's summary page has this same paragraph under the “Overall

design” field, where it is helpful, and this should not have been simply appended to every sample.

Missing literature

Both  GEO  and  ArrayExpress  clearly  have  sections  demarcated  for  uploading  experimenters  /

authors  to  detail  the  published  literature  associated  with  their  samples.  However,  associated

literature is often missing or incorrect papers are cited, even when correct literature both exists and

is searchable by other means. This is noted in order to distinguish between any experiments which

may not have generated any published literature, and those which have. In the case of those with

associated published literature, it is imperative that the literature be cited here, in order to facilitate

any further interrogation of the data and also to simply inform the reader. In the case of samples

from GSE10574 (such as GSM266837), for example, it is even recorded (at time of writing) that the

citation is missing. For this sample, only an author list exists. Manual searching for this author list

has an exact match with a published paper by (Endoh et al. 2008), which, in fact, references only a

similarly-numbered  experimental  accession  number,  GSE10573,  which  doesn't  actually  contain

sample accession GSM266837 at all.

ArrayExpress also had examples of missing literature, such as with E-MEXP-2238, which has no

associated paper (although under the “citation” field, there is a sentence which reads like the title of

a possible article, there is no such article, even when corrected for the presence of a question-mark

in this line, likely the result of a failure to process a non-standard character, as also happened with

the contact e-mail address.) By downloading the experimental details, using the author name and

sub-parts  of  this  possible  article  title  along  with  the  experimental  accession  number,  a  paper

matching this data could eventually be found, however, in (Caillier et al. 2010).
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A special mention on the presence / absence of feeder cells

As the first forays into ES cell culture required the use of mitomycin-C-inactivated fibroblasts as a

feeder layer (Evans & Kaufman 1981), the presence or absence of feeder cells is a culture condition

annotation worthy of special mention. As knowledge of ES cell culture improved and alternatives to

feeder cell culture became available (Williams et al. 1988), it is understandable that a tendency to

avoid feeder cell culture would arise in that this removes one more “undefined” presence in the

culture medium, much in the same way that a move from fetal calf serum (an undefined medium) to

only  defined  media  (id  est  with  known  constituents  at  known  concentrations)  would  reduce

variations in cell culture. However, the presence or absence of feeders is not always mentioned in

the samples annotated in N1101. As mentioned in the section dealing with “cell line” annotations,

absence or presence of feeders was annotated only where such information was available. It is not

strictly a criticism of the available annotation that the presence or absence of feeders cells is not

always given. Some experimenters clearly are aware of this issue and make special mention of the

fact that no feeder cells were used (e.g. experiment GSE22637 on GEO makes this very clear.) This

is why, despite the recording of any available information of presence/absence of feeders in the

manual annotations, it was decided not to try to investigate any effect of the absence or presence of

feeder cells from this data and why special  mention of this case is made here; it  simply is not

possible to, with enough confidence, place the samples from matrix N1101 into clear “feeders”/ “no

feeders” categories.

2.3.6 Summary of Research Outcomes

2.3.7 Assembly of a large dataset of mouse embryonic stem cell microarrays

This chapter details  the assembly of a large (n = 3,312 samples) dataset of mouse microarrays

which were annotated online in the public repositories GEO and ArrayExpress as containing the

string “embryonic stem cell”  (and 7 microarrays  from the  Ian  Chambers'  lab.)  Whilst  the  vast

majority of samples downloaded were, in fact, unique, there was one instance of duplication and

other minor issues concerning complex paths for file download from GEO, and capitalisation of file

extensions. These minor issues were overcome and the duplicate samples removed. As previously

mentioned,  detailed annotation of  the large,  unfiltered N3312 matrix was not  carried out,  as it
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cannot  be  ruled  out,  and  is  indeed  likely  that,  several  samples  within  this  data  matrix  were

downloaded due to the phrase “embryonic stem cell” being detected in online annotations, rather

than every downloaded microarray being a  bona fide mESC sample. This was part of the reason

behind downstream filtering for pluripotency factors Oct4, Sox2 and Nanog.

2.3.8 Generation of a high-pluripotency-marker (HPM) mESC microarray matrix

Following a brief check that the distribution of probe detection values made intuitive sense (see

figure 2.1) the large matrix of all 3,312 microarrays was filtered in such a way as to leave behind

only samples which had the highest expression of all of three core pluripotency factors Oct4, Sox2

and Nanog (see figure  2.2).  This  left  1,101 high-pluripotency-marker  (HPM) samples,  forming

matrix N1101, which retained a similar distribution of expression values as did matrix N3312 from

which it was made (figure figure 2.1.)

2.3.9 Full manual annotation of the HPM matrix

The vast majority of work in this chapter was in the generation of manual annotations for the HPM

matrix,  providing details  of  source  laboratory,  cell  line,  upload date,  genetic  modification,  cell

sorting  of  sample,  experimental  accession  number,  sample  file  name  and  details  of  culture

conditions to which the samples were exposed, attempting to list as many factors in the culture as

could  be  gleaned  from  the  online  annotation  or,  failing  that,  accompanying  literature.  The

combination of the HPM matrix and the annotation of all samples within it makes for a powerful

tool for investigating transcriptional events in mESCs, as chapter 3 and particularly chapter 4 go on

to  demonstrate.  An  example  screenshot  of  these  annotations  loaded  into  the  freely-available

spreadsheet editor LibreOffice Calc (available at https://www.libreoffice.org )is given in figure 2.3.

These manual annotations also confirm that the combination of using the search string “embryonic

stem cell” and downstream filtering for highest expression of Oc4, Sox2 and Nanog left behind only

mESC and mESC-like samples. That is, all samples in this matrix are annotated as being mESCs or

iPSCs at various degrees of pluripotency / early differentiation. The fact that all of these samples

still exhibit the highest levels of expression of Oct4, Sox2 and Nanog allows this matrix to be said

to contain only pluripotent samples, with a qualifying remark that these are markers, rather than

functional confirmations, of pluripotency.
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The  availability  of  this  data  matrix  and  accompanying  manual  annotation  is,  to  the  author's

knowledge, the largest manually-annotated dataset of high-pluripotency-marker mESC microarrays

to date, enabling detailed analyses of transcriptional profiles and events in mESCs, with some first

steps on both of these paths being taken in the later chapters of this work.
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81Figure 2.3: Example screenshot of manual annotations of
matrix N1101.



Chapter 3 – 

Investigation  of  Links  Between
Annotations,  Sample  Similarity  and
Transcriptional Profiles in the HPM
Matrix  Using  RaSToVa  and
DALGES

3 Investigation of Links Between Annotations, Sample Similarity and 
Transcriptional Profiles in the HPM Matrix Using RaSToVa and DALGES
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3.1 Research questions

The “batch  effect”  is  already known to  have  a  potentially  large impact  on the  results  of,  and,

consequently,  inferences drawn from microarray data  (Leek et  al.  2010).  The batch effect,  as a

phenomenon, primarily affects samples that come from the same laboratory and experiment and are

processed, therefore, in “batches” sent for processing either at the same time or within a short space

of time of each other  (Leek et  al.  2010).  Potential  sources of this  batch effect have been both

demonstrated and others hypothesised in the literature (for a recent review, see (Lazar et al. 2012),

particularly  figure  1).  As  batch  effects  are  primarily  a  within-experiment  phenomenon,  the

performing of large-scale analyses may be one way to mitigate its effects, as the combination of

many samples may “smooth out” effects which occur within one experiment.

With the assembly of the HPM matrix in chapter 2, the first question of this chapter is whether or

not, in this data, similarity between samples appears to be more strongly linked to one annotation or

another.  The  term  “annotation”  here  is  similar  to  the  use  of  this  term  in  chapter  2,  where

“annotation” pertains to the available annotations of a given microarray sample, for example as to

the cell line used. For example, whilst samples from the same laboratory may well be more similar

to each other due to said batch effects, these samples may share a given amount of similarity as they

all used the same cell line in their analyses, or simply were from the same experiment. Calculation

of a metric which both quantifies and allows for the direct intercomparison between the amounts of

sample similarity that any annotation is responsible for in a given data matrix would be a very

useful tool, particularly in the field of ES cell biology as considerable interest exists in the field of

mESC biology regarding differences between mESC cell lines (Schulz et al. 2009). It is critical to

note that this work is not directed at all towards correcting for batch effects, as this is already the

subject of much competing work by teams of bioinformaticians (Lazar et al. 2012). This exploratory

work rather attempts to ask which of two annotations, those of “cell line” or “source laboratory”

appears to be responsible for more sample similarity in the HPM matrix generated in chapter 2, as

lab-specific signatures of microarray samples in mESC biology are already a known phenomenon

(Newman and Cooper 2010).

This chapter then goes on to ask whether or not this methodology (described in section 3.2.2) can be

extended in order to link transcriptional profiles to samples annotated as being from three mESC

cell lines (ESD3, E14, CGR8), that are highly represented in the HPM matrix, as well as for iPS cell
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lines all generated by forced expression of the canonical Yamanaka factors Oct4, Sox2, Klf4 and c-

Myc (Takahashi and Yamanaka 2006). The relevance to mESC biology behind including this iPS

cell line, as exploratory work, is apparent when considering that in an analysis of 2 human iPS lines,

work by (Marchetto et al. 2009) suggested that “memory” may exist in iPS cell lines due to donor

cell type and, crucially, reprogramming method. It is quite likely that such differences exist between

mouse iPS cell lines also, although insufficient numbers of different iPS lines were in the HPM

matrix to compare multiple mouse iPS lines, and this therefore remains as future work, following

proof-of-concept in this work. Finally, using the resulting lists of genes which appear to be linked,

in their expression, to these four selected cell lines, this chapter analyses these lists for enrichment

for biological pathways which may therefore be suggested to be also linked to these chosen cell

lines in this data. Should this prove possible in this dataset, this methodology could therefore be

applied in larger datasets with a view to investigating whether these genes and / or enrichments for

biological pathways translate into functional differences between mESC cell lines, as differences

between  cell  lines  are  already  known to  have  significant  effects  on  their  biology,  such  as  the

endogenous production of Wnts by some mESC lines rendering them more permissive to derivation

(ten Berge et al. 2011).
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3.2 Methods

3.2.1 Development of RaSToVa: a method to quantify contribution to sample similarity of 
annotations in microarray data

In  order  to  ascertain  the  extent  to  which  source  laboratory  and  cell  line  contribute  to  sample

similarity, a method was required which directly quantified these effects in a manner which allowed

intercomparison of contribution to sample similarity of different annotations. That is to say that

whilst it may prove trivial to demonstrate that the annotations of source laboratory or chosen cell

line somewhat unsurprisingly have an effect on the transcriptional profile of any given sample, it is

considerably more difficult,  and therefore the objective of developing this  method, to ascribe a

relative “strength” of those effects in any meaningful manner.

The method first requires the provision of full, manual annotation of the data, as was carried out in

2.2.2. Whilst the approach taken in annotating the HPM matrix was done with best effort using

available online literature, this need not be done to ask questions of large-scale data such as those in

this chapter. For example, the manual annotations developed in chapter 2 included all information

available about each culture condition(s) that could be found to which the cells had been exposed.

This took up the vast majority of the time in performing the manual annotation, but would not need

to be done to ask simpler questions of the data regarding source laboratory or choice of cell line, as

in this chapter. Therefore the method need not be as costly in terms of the prior manual groundwork

necessary as the manual annotations in chapter 2 would suggest.

In the case of this work, it came to light as the annotations were being completed, that some source

laboratories / cell lines are more represented than others, sometimes greatly so. This is an integral

problem when  dealing  with  the  problem of  investigating  the  effect  of  different  annotations  to

transcriptional profiles; the data that is publicly available is not generated for this purpose and thus

does  not  come  in  neat,  controlled,  equally-sized  groups  which  would  facilitate  easy

intercomparison.  It  was  therefore  decided  to  use  a  resampling  and  random  permutation-based

method in order to ask questions of the link between annotation and sample similarity.
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The  method  which  was  developed  was  named  RaSToVa,  as  the  method  involves  the  use  of

submatrices  of  the  data  being  assessed  for  their  total  variability,  giving  the  name  Random

Submatrix Total Variability (RaSToVa.)

3.2.2 RaSToVa methodology overview

The methodology of RaSToVa begins with the selection of a single annotation field (e.g. source

laboratory) which is chosen for the first analysis. In this  case,  a list of source laboratories that

contributed which samples to the data is generated from the full annotations.

For each laboratory, a submatrix consisting of all the samples from this laboratory is copied from

the full matrix. Next, a metric is calculated to quantify the amount of dissimilarity/variability in this

submatrix. It was decided to use two different metrics here in order to ascertain the behaviour of

RaSToVa when different metrics were used. This was done with a view to demonstrating that the

method does not return different conclusions when different metrics are applied. The two metrics

chosen were firstly  one of  total  dissimilarity  (summed Euclidean distances),  and another,  more

complex-to-calculate metric of information content / variability (as quantified by a normalised form

of  Shannon  entropy  (Shannon  1948)).  Euclidean  distance  was  chosen  as  the  first  metric  as

Euclidean  distance  is  already  a  common  metric  used  in  grouping  similar  microarray  samples

together for analysis (Quakenbush 2001). Shannon entropy was chosen as the other metric to test as

it is a direct measure of variability which lends itself to being expressed in a meaningful manner, id

est,  scaled between 0 (no information content,  no unpredictability) and 1 (maximal information

content, maximum unpredictability.) For how this normalisation is carried out, see section 3.2.4.

This calculated metric (whether Euclidean distance or normalised Shannon entropy) serves as an

indicator of how much variability there is in a submatrix made up entirely of samples from this one

laboratory. The process is then repeated by sourcing samples from the whole matrix at random,

allowing  for  the  choosing  of  samples  more  than  once,  id  est  with  replacement,  until  another

submatrix is created containing the same number of samples as the first submatrix which contained

only the samples from the current laboratory of interest.  These randomly-permuted submatrices

have  the  same  calculations  for  normalised  Shannon  entropy  and  summed  Euclidean  distance

performed on them. All of the results from these randomly-permuted submatrices come together to

form an array of results referred to as the “expecteds”. By “expected” is meant the resulting total
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Euclidean distances / normalised Shannon entropies of the randomly-permuted submatrices. The

word  “expected”  is  used  as  the  distance  /  variability  metrics  calculated  from these  randomly-

permuted submatrices represent the expected amount of total distance / variability likely to be found

if the annotations (as to source laboratory) were to be randomised. This is equivalent to asking the

question  “If  there  were  no  effect  on  transcriptional  profile  due  to  the  source  laboratory,  what

variability would we expect to see in a matrix with the same distribution as our entire dataset, given

x number of samples, where x is equal to the number of samples in that one laboratory?”

This results in a set of values, each representative of the amount of variability / distance present

within submatrices of the data. As the numbers of samples contributed by any one source laboratory

are likely to be different, these numbers may vary in their magnitude considerably. To address this,

each “expected” value is expressed as a ratio to the “observed”, where the observed value is the

total Euclidean distance or Shannon entropy of the submatrix wherein the samples are all from the

same laboratory (the first submatrix that was made.) This brings all of the resulting values into line

for direct comparability.

It would be expected that if, in this case dealing with source laboratory as the annotation of interest,

the source laboratory has an effect on the transcriptional profile wherein samples from the same

laboratory  are  more  similar  than  those  from different  laboratories,  that  we would  observe  that

submatrices  generated  from  randomly-selected  samples  would  have  a  larger  variability  than

observed in the submatrix made of only samples from that laboratory. Conversely, we would reject

this idea of laboratory increasing sample similarity if the randomly-permuted submatrices are of

similar (or, indeed, less) total Euclidean distance / normalised Shannon entropy to the “observed”

values for their associated laboratories.

This analysis can be performed for any annotation, with identical methodology. In the case of this

work, comparisons of contributions to transcriptional profile were carried out for the annotations of

source laboratory and sample cell line. A graphical representation of this methodology is provided

in figure  3.1.

3.2.3 Discretisation of the HPM matrix for use with RaSToVa

As RaSToVa uses Shannon entropy as one of its metrics for quantifying variation in a submatrix of

a dataset, the HPM matrix required discretisation. Calculation of Shannon entropy as a measure of 
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Figure 3.1: RaSToVa methodology overview. From a complete dataset of many microarray samples
(a), a single annotation (e.g. all samples from one cell line) submatrix is copied (b) and a variability
metric calculated (c). Randomly-permuted submatrices of equal size to (b) are also drawn from (a)
and variability calculated for each of these (e). These are combined into a results table (f) for each
annotation (e.g. cell lines). All results are then expressed as ratios of the total variability of the
random submatrices chosen in (d), to the intact annotation matrix chosen in (b).



information content or variability requires the discretisation of continuous data into bins. It is usual

to have these bins as being of equal size between the minimum value and maximum value of the

data. The selection of an appropriate number of “bins” into which the data is divided essentially is a

balancing act between two extremes. At one extreme, where all data is in one bin, there can be no

variability to report; all data falls into this one bin and thus provides no informative result. As the

number of bins increases, the resolution of the data which is captured increases, providing an ever

more accurate picture of the variability of the data. Low numbers of bins, however, may group

datapoints crudely, failing to reflect subtler patterns. At the opposite extreme, Shannon entropy may

return  meaningless  results  as  the  bins  are  extremely  small  in  size,  effectively  causing  every

datapoint to reside in its own bin. This would result in great amounts of entropy being reported,

tempered only by the large number of bins which would remain empty. In this case, however, all

entropies would appear to be the same, uniform values, where there would be a number (where this

number is equal to the number of datapoints) of bins with a single datapoint each and all other bins

would be empty. Between these extremes must, therefore, reside a point which we can estimate to

be an acceptable number of bins wherein the data's variation is captured sufficiently, but where

increasing the number of bins beyond this point begins to suffer from diminishing returns as regards

added  information  /  variability  detection  in  the  data.  Therefore,  looking  for  this  point  avoids

arbitrarily choosing a number of bins which may suffer from a milder form of one of the above

issues.

Practical issues also bring to light the need to optimise the number of bins used in calculating

Shannon entropy in this work. As more bins are added, the computational power and computational

memory required increases greatly, as the discretisation of datapoints is done on a per-probe basis,

meaning that an increase of only one extra bin translates to a further 45,101 bins (given that the

Affymetrix  Mouse  430  v2  microarray  contains  45,101  probes)  potentially  filled  by  some  data

points. This can make discretisation of a whole matrix with a large number of bins a very memory-

intensive  task.  This  computational  memory  issue  was  greatly  lessened  by  not  performing

discretisation of the entire matrix, but one probe at a time. This is important if this method is to be

used outside of specialist bioinformatic computing facilities. The processing time remains an issue

which cannot be bypassed (although some mitigation of it is possible as was necessary in section

3.5.3) and greater numbers of bins will increase processing time. Therefore it is of great importance,

particularly if these methods are to be applied to ever larger datasets beyond the scope of this work,

and  even  as  more  annotations  are  analysed  from the  same matrix,  to  optimise  the  number  of

necessary calculations. Given that this work also uses approaches involving random permutations,
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the  problems of  performing  unnecessary  calculations  is  compounded multiplicatively  for  every

random permutation carried out.

3.2.4 Normalisation of Shannon entropy

Normalisation of the results of calculating Shannon entropy was also carried out. This normalisation

is necessary in order to render results  for entropy calculation comparable when using differing

numbers of bins. This was therefore necessary in order to make sense of the values generated when

looking for the optimum number of bins for discretisation of the HPM matrix (see  3.2.5.) In this

normalisation, a maximum value for entropy ( H(X)max ) is calculated wherein it is assumed that

every bin contains a single datapoint. This reflects the maximum possible entropy (for this number

of  bins)  as  the  distribution  is  perfectly  spread  across  all  bins  with  no  bins  empty;  effectively

maximum variability where,  from an information theoretic point of view, there is no greater or

lesser likelihood of a datapoint from the given distribution occurring in one bin or another. By

having this as a set maximum, it is trivial to then express any result of calculating Shannon entropy

as a fraction of this maximum possible entropy:

H(X)observed / H(X)max

This gives an easy-to-compare and considerably more human-friendly metric which ranges from 0

(for no variability at all, perfect predictability) to 1 (maximum variability, no predictability) and

means that entropies can now be directly compared even when bins numbers are different. This is

crucial for the following steps wherein the results of performing entropy calculations, searching for

the “ideal” number of bins, must be compared to one another.

3.2.5 Justification of number of bins into which the HPM matrix should be divided for 
entropy measurement

In order to estimate the optimal number of bins into which the HPM matrix's mRNA detection data

should  be  divided,  many runthroughs of  normalised  Shannon entropy calculation for  the  HPM

matrix were required. For each runthrough, each probe is discretised into the test number of bins

and its entropy calculated. When a list of the entropies of all probes is complete, they are totalled

and divided by the number of probes on the microarray (in this case,  45,101.)  This represents,
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therefore, the mean amount of variability found in probes of the HPM matrix when this number of

bins is used. The mean entropy of probes in the HPM matrix when different bin numbers were used

is plotted against these test numbers of bins in figure  3.2. This figure shows that it is around the

110-bin mark that increasing the number of bins begins to result in far less noticeable increases in

mean probe entropy. This was therefore chosen as an acceptable balance between the two extremes

mentioned earlier in section 3.2.3.

3.2.6 Justification of the number of permutations required for RaSToVa analysing the HPM 
matrix

With  any  resampling  or  random  permutation-based  method,  a  question  arises  concerning  the

number  of  permutations  which  may  be  deemed  sufficient  in  order  for  the  method  to  make

reasonable,  defensible  inferences  (some  of  which  can  have  levels  of  statistical  significance

attributed  to  them)  about  the  patterning  of  the  data.  With  too  few  permutations,  the  data's

distribution will not be adequately captured or assessed, leaving its conclusions weak and of little

use. However, it is not feasible, or indeed desirable, to simply choose an arbitrary, and very large,

number of permutations for the reasons of time constraints,  computing power and, importantly,

extension  to  future,  larger  data  matrices.  By  justifying  the  choice  of  an  appropriate  (id  est

sufficient), but not excessive, number of permutations, computational resources are used efficiently.

When planning the use of this method on other / larger matrices in future work (see end-of-chapter

discussion), it  will likely prove very useful to have this clearly-defined way of ascertaining the

number of permutations which is sufficient, rather than the aforementioned, misguided “as many as

possible”  approach.  As  the  size  and  distribution  of  the  data  changes  in  other  analyses,  the

“acceptable” number of permutations will likely change also.

In the case of RaSToVa's analysis of the HPM matrix, an acceptable number of permutations was

chosen by mimicking the core functionality of RaSToVa by randomly selecting submatrices (of size

n = 5  samples  and then  size  n  = 20 samples)  from the  HPM matrix  and calculating  the  total

Euclidean  distance  of  each  one.  For  each  set  of  total  Euclidean  distances  for  one  number  of

permutations,  the  standard  deviation  of  these  values  was  calculated.  By  plotting  the  standard

deviations of each runthrough (being for a different number of permutations), a point could be

chosen at which there was stability in the standard deviations calculated. This point would suggest 
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Figure 3.2: Relationship between the number of bins into which the HPM matrix was
divided, and the mean normalised Shannon entropy of each probe.  The vertical  line
denotes the number of bins that was chosen wherein the mean normalised Shannon
entropy of each probe began to show progressively less increase when increasing the
number of bins used for discretisation, being 110 bins.



that the number of permutations was sufficient to capture the overall pattern of the data. The results

of this test are shown in figure 3.3.

The chosen number  of  permutations  which  results  from this  test  can  then  be  used  in  running

RaSToVa either with another distance metric, or when using RaSToVa to analyse the same matrix

for the contribution to  sample similarity  of  other  annotations.  If  the same annotations  (“source

laboratory”) is to be analysed in this matrix in any other way, the same number of permutations can

be used in order to capture the patterning of the HPM matrix, such as was done in sections 3.5 and

after.

3.3 RaSToVa results investigating cell line versus source laboratory annotations
in the HPM matrix

To quantify the contribution to sample similarity of the “source laboratory” annotation in the HPM

matrix, RaSToVa was run using the accompanying annotations for all source laboratories which

contributed to the HPM matrix, but did not attempt to quantify the contribution to sample similarity

for any source laboratories with fewer than 5 samples contributed by that laboratory to the data.

This was due to the fact that RaSToVa compares the “intact annotation matrix”,  id est the set of

samples which make up that source laboratory, and compares it repeatedly to randomly-permuted

submatrices of the same size. As the number of microarray samples included in these submatrices,

both intact and randomised, decreases, the distance metrics calculated, and, consequently, the ratios

of total distance between them, become less and less able to capture the distribution of the data. The

nature of the data,  in this  case the HPM matrix,  will  dictate  the minimum number of samples

required  in  order  for  RaSToVa  to  deliver  meaningful  results.  With  a  minimum  of  5  samples

contributed to the HPM matrix in order for a source laboratory to qualify for inclusion, it would still

be possible, at a later time, to exclude those laboratories which contributed the lowest numbers of

samples to the HPM matrix if this was necessary. The number 5 was therefore simply chosen to

save RaSToVa from spending a great deal of time generating results which were extremely likely to

be excluded.
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Figure  3.3:  Standard deviations of total euclidean distances of randomly-
chosen submatrices drawn from the HPM matrix plotted against the number
of  submatrices generated,  showing that  after  around the 200-permutation
mark,  the  standard  deviation  of  the  lists  of  total  euclidean  distances
stabilises.  This  was  true  both  when  using  5  samples  in  each  random
submatrix  (upper  plot)  and  when  using  20  samples  in  each  random
submatrix (lower plot.)



3.3.1 More than 200 permutations captures patterning in the HPM matrix for cell line and 
source laboratory analyses

The standard deviations which result from the testing of RaSToVa as detailed in 3.2.6 are shown in

figure 3.3. Here it is clear to see that at the lower numbers of permutations, the standard deviation

of all total Euclidean distances of the submatrices selected fluctuates greatly. This large variation in

the standard deviations continues up until around the 200-permutation mark. These lower numbers

of permutations are therefore not likely to capture the pattern of the data sufficiently for RaSToVa's

purposes.

As the number of permutations increases past the 200 mark in figure  3.3, this fluctuation greatly

reduces and the large fluctuations do not recur. This suggests that the number of permutations is

now  adequately  capturing  the  patterning  of  the  HPM  matrix  such  that  further  increases  in

permutation numbers do not noticeably affect the ability of RaSToVa to capture the “lay of the

land”  of  the  data,  at  least  with  respect  to  the  distribution  of  source  laboratories.  With  this

observation in mind, 500 permutations was deemed more than sufficient for RaSToVa to use when

analysing the HPM matrix for the contribution to sample similarity of the two annotations analysed.

The number of permutations carried out in this section was actually slightly over 500 at 504. This

was due to the way in which RaSToVa was run on a large, multi-core bioinformatics server. This

machine was capable of running 7 concurrent instances of RaSToVa, allowing for faster completion.

As the development of RaSToVa took place over a long period of time, it was, at time of coming to

the final runs, most efficient to keep this  practice of dividing the total  number of permutations

desired (in this case, 500) divided over multiple CPU cores in separate instances, and then later

combining all of the calculated intact / random ratios into one results table for final plotting and

analysis. In order to achieve 500 permutations, each run was performed 72 times, making for the

total of (7 instances x 72 permutations = 504 permutations total).

The exact same methodology was applied for both the running of RaSToVa with Euclidean distance

as the variation metric and with normalised Shannon entropy (see methodology section 3.2.2) as the

variation metric. For the running of RaSToVa to investigate the same phenomenon using “cell line”

as the annotation of interest, the same number of permutations (504) was run and the minimum

number of samples contributed to the HPM matrix for any given cell line was kept at 5.
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3.3.2 RaSToVa results overview

The results of running RaSToVa (504 permutations, minimum of 5 samples contributed from an

annotation for inclusion) for the “source laboratory” annotation, using Euclidean distance as the

variability metric, can be seen in figures 3.4 and 3.5. This was repeated using normalised Shannon

entropy, using the recommended 110 bins from section 3.2.5, and the results of this are shown in

figures  3.6 and  3.7.  For  the investigation of  the “cell  line” annotation's  contribution to  sample

similarity  as  detectable  in  the  HPM matrix  by  RaSToVa,  the  results  are  plotted  for  Euclidean

distance as the variability metric in figure 3.8 and with normalised Shannon entropy in figure 3.9. 

These boxplots represent the ratio of measured total variability (whether by normalised Shannon

entropy or euclidean distance), of individual laboratories / cell lines whose samples contributed to

the  HPM  matrix.  For  “source  laboratory”  and  “cell  line”,  and  both  Euclidean  distance  and

normalised Shannon entropy, the boxplots in all RaSToVa results figures are ordered for each of

these experiments by increasing order of the mean of the boxplot, for clarity, trend observation and

intercomparison.

In  all  of  RaSToVa's  boxplots,  the  y-axis  depicts  the  ratio  of  the  intact  (that  is,  all  from one

laboratory) submatrix divided by the randomly-permuted submatrices of the same size as the intact

matrix. Each boxplot is generated from 504 points, corresponding to the number of permutations

that RaSToVa was run with in this work. There is a line provided across the x-axis of RaSToVa plots

where the ratio (intact / random) would be 1. Any point in any boxplot falling below this ratio line

indicates that the intact matrix for the denoted source laboratory / cell line contains less variability

than would be expected by randomly resampling samples from the HPM matrix. These randomly

permuted matrices were made of samples outwith those which make up the laboratory / cell line in

question.  However,  selecting the same sample more than once (but,  again,  not from the source

laboratory / cell line in question) is allowed, id est, sampling was done with replacement. Therefore,

given the distribution of the HPM matrix outwith the source laboratory / cell line in question, a data

point falling below the ratio line supports the hypothesis that samples which are from the same

group of the annotation in question are more similar to each other than would be expected if the

sample  labels  were  randomised,  with  the  magnitude  of  that  increased  similarity  related  to  the

distance below the ratio line. This, in turn, can be taken to mean that any data point falling below

the ratio line supports the notion that the annotation (“source laboratory” or “cell line”) is definitely 
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Figure 3.4: Results of running RaSToVa on the HPM matrix (504 total permutations), analysing
contribution to sample similarity of the “source laboratory” annotation. Boxplots are made up of
ratios  between  randomly-permuted  submatrices  to  each  intact,  single-laboratory  submatrix
(laboratory name provided along with the number of samples this laboratory contributed to the
HPM matrix.) Similarity metric: euclidean distance. Plot 1 of 2.
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Figure 3.5: Results of running RaSToVa on the HPM matrix (504 total permutations), analysing
contribution to sample similarity of the “source laboratory” annotation. Boxplots are made up of
ratios  between  randomly-permuted  submatrices  to  each  intact,  single-laboratory  submatrix
(laboratory name provided along with the number of samples this laboratory contributed to the
HPM matrix.) Similarity metric: euclidean distance. Plot 2 of 2.
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Figure 3.6: Results of running RaSToVa on the HPM matrix (504 total permutations), analysing
contribution to sample similarity of the “source laboratory” annotation. Boxplots are made up of
ratios  between  randomly-permuted  submatrices  to  each  intact,  single-laboratory  submatrix
(laboratory name provided along with the number of samples this laboratory contributed to the
HPM matrix.) Similarity metric: normalised Shannon entropy. Plot 1 of 2.
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Figure 3.7: Results of running RaSToVa on the HPM matrix (504 total permutations), analysing
contribution to sample similarity of the “source laboratory” annotation. Boxplots are made up of
ratios  between  randomly-permuted  submatrices  to  each  intact,  single-laboratory  submatrix
(laboratory name provided along with the number of samples this laboratory contributed to the
HPM matrix.) Similarity metric: normalised Shannon entropy. Plot 2 of 2.
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Figure 3.8: Results of running RaSToVa on the HPM matrix (504 total permutations), analysing
contribution to sample similarity of the “cell line” annotation. Boxplots are made up of ratios
between randomly-permuted submatrices to each intact, single-laboratory submatrix (cell line
name provided along with the number of samples this cell line contributed to the HPM matrix.)
Similarity metric: euclidean distance.
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Figure 3.9: Results of running RaSToVa on the HPM matrix (504 total permutations), analysing
contribution to sample similarity of the “cell line” annotation. Boxplots are made up of ratios
between randomly-permuted submatrices to each intact, single-laboratory submatrix (cell line
name provided along with the number of samples this cell line contributed to the HPM matrix.)
Similarity metric: normalised Shannon entropy.



associated  with  samples  in  the  intact  matrix  being  more  similar  to  each  other  than  would  be

expected if there was no effect on similarity arising from sharing the queried annotation.

The inverse is also true, wherein any data point which rises above the ratio line suggests that being

from the same source laboratory / cell line is actually cause for more variability than would be

expected  if  all  samples  in  the  HPM matrix  had their  “source  laboratory”  or  “cell  line”  labels

reassigned randomly.

It  was  expected  that,  due  to  the  nature  of  random  permutation,  RaSToVa  boxplots  would

occasionally have outlying datapoints generated as a consequence of RaSToVa having compared an

annotation-intact submatrix to a randomly-permuted submatrix which included one or more samples

with a high similarity or high dissimilarity to the rest of the randomly-permuted submatrix. This

would manifest itself as an outlying datapoint on the RaSToVa boxplot results, but would likely, for

reasons discussed in section 3.3.3, preferentially affect laboratories or cell lines with lower levels of

representation in the HPM matrix. A perfect example of these random occurrences can be seen as

wildly-deviant points in the results for the “Larsen E” laboratory in figure  3.4 and “Fehling HJ”

laboratory in figure 3.6. Were these random occurrences not chance results due to the assembly of

different randomly-permuted submatrices, and due to the distribution of the intact matrix, it would

be expected that such outliers would occur regardless of the variability metric chosen. This, as can

be seen from the lack of outlying points for the these laboratories when the variability metric is

switched, is not the case.

Two important properties of each boxplot should be taken into account when viewing RaSToVa

outputs. Firstly and most importantly is the distance between the mean of the boxplot to the ratio

line.  The  larger  this  distance  (if  the  boxplot  mean  lies  below the  ratio  line),  the  stronger  the

evidence for an “effect” RaSToVa found for the annotation of “source laboratory” or “cell line”

increasing the similarity between samples. The opposite is also true, where a mean line noticeably

above the ratio line would be a potential cause for concern, with regards to the hypothesis in this

work,  implying  that  a  contributing  laboratory's  samples  were,  in  fact,  so  widely  different  to

everything  else  in  the  HPM matrix,  that  randomly-permuted  submatrices  of  equal  size  to  this

hypothetical  laboratory  actually  would  be  less  variable  than  the  submatrix  which  had  that

annotation (one laboratory or one cell line) intact. As can be seen from figures  3.4 to  3.9, this,

reassuringly, is not in any way the trend amongst laboratories or cell lines.
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The second important property of the boxplots that RaSToVa generates is their spread. The more

spread a  given boxplot  has,  the more  variation  there  was when comparing randomly-permuted

submatrices to the intact matrix  of only the samples from that one laboratory or cell  line.  The

behaviour of these two properties, and RaSToVa in general is discussed in section 3.3.3.

3.3.3 Assessment of the behaviour of RaSToVa

The behaviour  of  RaSToVa was investigated  by determining any relationships  present  between

several input and output values.

The first behaviour that was investigated, on viewing the layout of results in figures 3.4 to 3.9, was

whether or not a relationship existed between the mean and the standard deviations of the boxplots

which RaSToVa generated.  This  essentially  investigated whether  or  not  RaSToVa finding more

evidence for an effect of an annotation was related to the spread of the boxplot. There is something

of a relationship between the means and standard deviations of the boxplots in both the Euclidean

distance and normalised Shannon entropy runs of RaSToVa, with Pearson correlations of (r = 0.645)

and (r = 0.576) respectively for these two variability metrics. This relationship between mean and

standard deviation of boxplots did not hold for the investigation of “cell  line”'s  contribution to

sample similarity. The scatterplots from which these two correlations derive are shown in figure

3.10 for the investigation of “source laboratory” and in figure  3.11 for the investigation of “cell

line”. It is not known whether or not a relationship would emerge between means and standard

deviations  of  the  boxplots  were  the  “cell  line”  annotation  to  have  been divided  into  a  similar

number of subgroups as “source laboratory” was (27 cell lines vs 72 laboratories respectively.)

The second behaviour of RaSToVa that was investigated was possibly the most crucial; whether or

not  RaSToVa  found  different  “strengths”  of  the  effect  on  sample  similarity  dependent  on  the

number  of  samples  that  a  given  laboratory  or  cell  line  contributed  to  the  HPM  matrix.  It  is

reassuring to see that, regardless of variability metric employed, and across the investigations of

both “source laboratory” and “cell line”, there is no discernible relationship between the mean of a

boxplot and the number of samples in the HPM matrix bearing that annotation. This is visualised in

the scatterplots of boxplot mean versus number of samples, middle two plots of figure 3.10 for the

“source  laboratory”  investigation,  and  middle  two  plots  of  figure  3.11 for  the  “cell  line”

investigation. This was reassuring as any relationship between the number of samples contributed to
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Figure 3.10:  Behaviour of the RaSToVa method when using Euclidean distance as the variability
metric (left plots) and Shannon entropy metric (right plots) investigating the contribution to sample
similarity  of  the  source  laboratory  annotation.  The  top  two  scatterplots  show  the  relationship
between boxplot means and standard deviations. The middle two scatterplots show the relationship
between the number of samples that a given laboratory contributes to the HPM matrix, and the
mean of the boxplot generated for that laboratory. Finally, the lowest two scatterplots show the
inverse relationship between the number of samples contributed by laboratory and the standard
deviation (spread) of the boxplot which RaSToVa generates for that laboratory.
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Figure 3.11:  Behaviour of the RaSToVa method when using Euclidean distance as the variability
metric (left plots) and Shannon entropy metric (right plots) investigating the contribution to sample
similarity of the cell line annotation. The top two scatterplots show the relationship between boxplot
means and standard deviations.  The middle  two scatterplots  show the relationship  between the
number of samples that a given cell line contributes to the HPM matrix, and the mean of the boxplot
generated  for  that  cell  line.  Finally,  the  lowest  two  scatterplots  show  the  inverse  relationship
between the number of samples contributed by cell line and the standard deviation (spread) of the
boxplot which RaSToVa generates for that cell line.



the  HPM  matrix  and  the  resulting  mean  of  the  boxplot  (read:  evidence  for  effect  on  sample

similarity) would have made real an initial concern that perhaps only larger numbers of samples

with the same annotation would generate evidence for an effect on sample similarity, with less-

represented annotations being attributed either very little evidence for any effect on similarity, or,

worse, an inverse relationship between sample number and similarity may have rendered RaSToVa

all but meaningless, at least with regard to the distribution of the HPM matrix.

For example, the laboratory which contributed the greatest number of samples to the HPM matrix

was the “Piersma AH” laboratory (n = 249 samples). However, this source laboratory does not by

any means have the lowest mean. The mean of the boxplot for the Piersma laboratory is 0.535 (3

dp.). This is actually the 17th lowest mean, rather than the lowest. It is the boxplot for the “Stewart

AF” laboratory which holds the lowest mean of 0.320 (3 dp.) here, and this laboratory contributed

only 18 samples to the HPM matrix. This also holds true when normalised Shannon entropy is used

as the variability metric, again with the “Piersma AH” laboratory having a mean of 0.781 (3 dp.), 4th

lowest, and the “Stewart AF” laboratory having the mean of 0.712 (3 dp.).

This lack of a relationship between number of samples and boxplot mean is maintained in the “cell

line” investigation. Here, in the case of Euclidean distance used as the variability metric, the lowest

boxplot mean (0.391 (3 dp.)) is had by the “KH2” cell line, with only 12 samples contributed to the

HPM matrix, but a mean of 0.689 (3 dp.) (14th lowest) found for the ES-D3 cell line, with the

largest (n = 295) number of samples contributed to the HPM matrix.

When normalised Shannon entropy is used, the ES-D3 cell line has only the 6 th lowest mean (0.842

(3 dp.)). The lowest mean, again, is found for the “KH2” cell line, at 0.782 (3 dp.). In addition, it is

reassuring to see that the subgroup of cell lines labeled as “UNKNOWN” (therefore likely of mixed

actual cell line), has the highest mean here of 1.061 (3 dp.). Being around the 1 mark, this ratio

indicates that the samples in the HPM matrix annotated as “UNKNOWN” for the cell line field are

roughly as similar to each other as other submatrices randomly pulled from the HPM matrix of an

equal size (where size here is n = 45.) This is exactly in accordance with what would be expected.

The next highest mean was found for the “C57BL/6” cell line (n = 16 samples), also around the 1

mark  (1.200  (3  dp.)),  with  a  similar  inference  as  to  their  similarity  as  was  inferred  for  the

“UNKNOWN” cell line.
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These ranks for “UNKNOWN” and “C57BL/6” are swapped when Euclidean distance is used as the

variability  metric,  however.  It  is  reassuring  to  see  that  there  is  agreement  between  the  two

variability metrics tested, as to which cell lines appear at this end of the list. 

The  third  behaviour  of  RaSToVa  which  was  investigated  was  any  link  between  the  standard

deviation  of  the  resulting  boxplots  and  the  number  of  samples  which  a  particular  cell  line  or

laboratory contributed to the HPM matrix. Here it was hoped that a relationship would emerge, with

higher numbers of samples contributed resulting in less of a spread of that cell line / laboratory's

boxplot. Indeed this is the case, as can be seen from the bottom two scatterplots in figure 3.10 for

the “source laboratory” investigation and in the bottom two scatterplots of figure 3.11 for the “cell

line” investigation. As the number of samples increases, it follows that RaSToVa will be comparing

an  intact  matrix  to  ever-larger  randomly-permuted  submatrices.  As  these  randomly-permuted

submatrices grow in size, it will be less and less likely that RaSToVa may choose a greater number

of similar samples by chance, or a greater number of dissimilar samples by chance. As such, even

when an outlying (read: very similar or dissimilar to a sample already chosen) sample is added to a

larger  randomly-permuted  submatrix,  this  will  have  less  of  an  effect  on  the  variability  metric

calculated for that random submatrix.

An extreme of this is clearly visible when observing the boxplots for the “Piersma AH” laboratory

and the “ES-D3” cell line in figures  3.4 to  3.9, with both having extremely tight boxplots with

hardly any, if any, outlying datapoints. The “Oettgen P” laboratory has the widest spread, with a

standard deviation of 0.0940 (4 dp.) when Euclidean distance is used, and has only 6 samples to its

name. The same laboratory is 4th from top of the largest standard deviations when Shannon entropy

is used, with a standard deviation of 0.0297 (4 dp.). The source laboratory with the largest standard

deviation when Shannon entropy is  used,  however,  is  the “Xiaohua S” laboratory,  with only 5

samples to its name and a standard deviation of 0.0319 (4 dp.). Interestingly,  there is a clearer

relationship between standard deviation of boxplots and the number of contributed samples when

using Shannon entropy than when using Euclidean distance, arguing that perhaps Shannon entropy

is  better  capturing  the  variability  present  in  these  submatrices.  This  can  be  seen  from  the

smoothness and lack of noise enjoyed by the Shannon entropy method compared to  Euclidean

distance in the bottom two plots of figures 3.10 for “source laboratory” and 3.11 for “cell line”.

The final assessment of the behaviour  of RaSToVa looks at  the agreement between means and

standard deviations  of  all  boxplots  in  all  four  runs  of  RaSToVa (2x annotations,  2x variability
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metrics).  Scatterplots  depicting  these  agreements  are  shown in figure  3.12.  This  indicates  that,

despite  any differences  in  the  ranks of  means  or  standard  deviations  of  boxplots  generated  by

RaSTOvA when investigating either “source laboratory” or “cell line”, there is overall very good

agreement  whether  RaSToVa  uses  Euclidean  distance  or  normalised  Shannon  entropy  as  the

variability metric. 

Full lists of boxplot means and standard deviations for all 4 runs of RaSToVa (2x annotations, 2x

variability metrics) are available electronically in “Chapter 3/Tables/RaSToVa/Boxplot Summaries”.

3.3.4 “Source laboratory” annotation effect on HPM matrix sample similarity

The results of RaSToVa in figures 3.4 to 3.7 unequivocally confirm that being from the same source

laboratory is most definitely having an effect on sample similarity. When using Euclidean distance

as the distance metric for the “source laboratory” analysis (figures 3.4 and 3.5), this is easily seen as

the vast majority (all but one, 98.1% (1 dp.)) of the boxplots having their mean lines below the ratio

line. Only the “Saitou M” laboratory had its mean above the ratio line. Some other contributing

laboratories approached this  ratio  line,  however,  such as the Lund AH, Tapia R and Orkin SH

laboratories.  Potential  reasons  for  this  are  discussed  in  section  3.3.3.  When  using  normalised

Shannon entropy as the variability metric, the results of RaSToVa are as presented in figures 3.6 and

3.7.

With  normalised  Shannon  entropy  as  the  chosen  variability  metric,  the  overall  result  is  still

overwhelmingly in favour of source laboratory greatly increasing sample similarity (again, with the

caveats put forward in section 3.4 and 3.10.5.) However, there are some notable differences. Firstly,

when using Euclidean distance as the distance metric, the “Saitou M” laboratory analysis resulted in

a boxplot whose mean lay above the ratio line, whereas when normalised Shannon entropy is used

as the variability metric, the mean of the boxplot for this source laboratory is comfortably below the

ratio line. This peculiarity, however, does not change the extremely strong evidence for “source

laboratory”'s effect being overwhelmingly to increase sample similarity. The “Lund AH” laboratory,

however, when normalised Shannon entropy is used, is now the one source laboratory found to be

over the ratio line. It is highly unlikely that this is simply a result of differences in the random

resampling of the HPM matrix.
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Figure 3.12: Agreement between means and standard deviations of boxplots generated as results of
RaSToVa analysis.  Good agreement is  found with the means and boxplots,  whether normalised
Shannon entropy or Euclidean distance is used, as shown by the strong positive Pearson correlations
found between these metrics. This good agreement was found in both the “source laboratory” (2
leftmost plots) and “cell line” investigations (2 rightmost plots.)



3.3.5 “Cell line” annotation effect on HPM matrix sample similarity

The  same  overwhelming  trend  of  increasing  sample  similarity  as  was  found  with  “source

laboratory” is found for cell line, as was expected. From figures  3.8 and  3.9, it can be seen that,

again, regardless of variability metric employed, the vast majority of samples grouped by “cell line”

show  that  sharing  this  cell  line  annotation  increases  sample  similarity.  In  the  case  of  using

Euclidean distance as a distance metric (figure  3.8), out of 27 cell lines which met the minimum

number of 5 contributed samples to the HPM matrix, only 4 of these resulted in a RaSToVa boxplot

whose mean fell above the ratio line and only 3 fell above the ratio line when using normalised

Shannon entropy (figure  3.8), for majorities of 85.2% (1 dp.) and 88.9% (1 dp.) of boxplots in

support of a tendency for the “cell line” annotation to increase sample similarity.

The contributions to sample similarity are further summarised by taking all of the means of the

boxplots for the “source laboratory” analysis, and plotting a further boxplot of these means. The

result of this is shown in the comparative plots in figure 3.13. Here it can, again, be seen that the

evidence is clearly in favour of source laboratory having a greater effect on sample similarity as the

boxplots (both when using Euclidean distance or normalised Shannon entropy), are overwhelmingly

beneath the ratio line. The same is true of the analysis investigating the “cell line” annotation (see

figures  3.8 and 3.9 for Euclidean distance and Shannon entropy analyses respectively).

In order  to  have accepted a  null  hypothesis  here,  for either  annotation,  in  which case samples

sharing an annotation would not have increased their similarity, the boxplots for both individual

laboratories / cell lines and then when plotting all of these boxplots' means as one boxplot would

have needed to centre about the ratio line, indicating that there would be no difference in sample

similarity in submatrices chosen from within “source laboratory” or “cell line” groups compared to

just randomly picking submatrices of the same size. Limitations and caveats of this approach are to

be found in the discussion (5.1.4).

As was the intention from the outset, as all of the boxplots for both laboratory and cell line are

expressed as variability ratios between intact annotations and randomly-permuted submatrices, it

becomes  possible  to  directly  compare  these  two  annotations'  contribution  to  sample  similarity,

which enabled them to be put on figures opposite each other (figure 3.13) for easy intercomparison. 
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From this comparative figure, it is suggested that source laboratory has a marginally stronger effect

on sample similarity than cell line does. When Euclidean distance is used as the variability metric, a

simple  Mann-Whitney  U  test  between  the  values  which  make  up  the  boxplots  in  3.13,  the

laboratory-versus-cell-line comparison gives a p-value of 0.04895 (when using Euclidean distance

to  estimate  similarity),  suggesting  that  there  is  a  significant  different  difference  in  these  two

annotations'  effect on sample similarity. When using normalised Shannon entropy, however,  the

same Mann-Whitney U test gives a p-value of 0.06065. This second method falls only marginally

short  of  a  p  <  0.05  significance  test.  Whilst  both  annotations  clearly  affect  sample  similarity,

therefore, it is strongly suggested that source laboratory is the factor which has a stronger effect on

sample similarity.

This is  not as clear cut  as it  may first  appear,  however,  as the division of the dataset into the

annotations of “cell line” and “source laboratory” does not divide the matrix an equal number of

times and so this must be taken into account when interpreting these results. For example, there are

72 source laboratories which were selected by RaSToVa for contributing more than 5 samples. On

the other  hand, only 27 cell  lines were included in the analysis  by RaSToVa.  These 72 source

laboratories represented 1009 total samples, and the 27 cell lines represented 1052 total samples.

Despite, therefore, including a similar number of samples in their analyses, and including 91.6% (1

dp.) and 95.5% (1 dp.) of the HPM matrix respectively, an important concept here is the number of

times the HPM matrix was divided during these analyses by the different annotations.

If the “cell line” annotation, when performing the RaSToVa analysis, is only dividing the matrix 27

times, compared to “source laboratory”'s ability to divide the matrix 72 times, it stands to reason

that an annotation which divides the HPM matrix into smaller submatrices would appear better able

to explain variation in that data. Taken to its logical extreme, an annotation which only has two

different values, and thus only partitions the data into two sets will most likely have no chance of

explaining the data as well as an annotation that is a unique identifier for every sample. Therefore,

as the “cell line” annotation is only able to divide the matrix 0.375 the number of times that “source

laboratory”  is  able  to,  “cell  line”  may  require  further  investigation  in  other  data  where  these

“division  numbers”  are  not  so  different.  This,  and other  issues  regarding data  distribution  and

interpretation of RaSToVa's results here are discussed in section 3.4 and 5.1.4.
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Figure 3.13 Summary of RaSToVa results using both total
Euclidean distance (upper plot) and normalised Shannon
entropy (lower plot.) Source laboratory, in both instances,
therefore is  found by RaSToVa to contribute marginally
more to sample similarity in the HPM matrix than the cell
line annotation, with a p-value of 0.049 for the differential
expression analysis,  and a  tendency toward  significance
for the entropy change method with p = 0.061.



3.4 Discussion of RaSToVa results

RaSToVa was designed with the intention of ascribing inter-comparable “strengths” to the effects on

sample similarity of annotations in a given data matrix. Whilst it has been shown to be able to do

this, the results which it generates must be taken along with an understanding of what these results

mean and, critically, what these results do not mean, particularly in the case of the HPM matrix used

in this work.

Through the use of the RaSToVa method on the HPM matrix, the “source laboratory” annotation

was shown to have a stronger effect on sample similarity than the “cell line” annotation did. This

was somewhat expected, for two reasons. Firstly, the source laboratory annotation is likely very

close to being a surrogate, in any data, for individual experiments, in which batch effects are likely

to  exist,  increasing  sample  similarity.  Experiments,  and  therefore,  to  a  large  extent,  source

laboratories,  are  likely  to  have  certain  interests  and  perform  similar  experiments,  similar

manipulations  and  therefore  have  highly  similar  samples.  Secondly,  the  “source  laboratory”

annotation, in the data used here, breaks the matrix into a greater number of subgroups than the

“cell line” annotation does, giving it the edge in explaining the patterning of the data. Despite this,

and despite the “cell line” annotation dividing the matrix into roughly only a third of the number of

groups that  “source laboratory” does,  similar  contributions  to  sample similarity  were found,  as

pointed out at the end of section 3.3.5.

RaSToVa cannot change the layout of the data that it is given, and the distribution of annotations in

the data that it is given largely determines how the results of RaSToVa should be interpreted. In this

case, with the disparity in the numbers of groups attributed to source laboratory and cell line, it may

be tempting to declare the cell line annotation effectively more responsible for sample similarity

than source laboratory, as it has only a third the number of divisions in the matrix to work with. As

intuitive as this may sound, it is the conclusion of this half of the chapter that “source laboratory” is

to be taken as the annotation which is responsible for more sample similarity. There are two major

reasons for this.

First is the clear difference between the metrics calculated for the contribution to sample similarity

of both of the investigated annotations, which, when Euclidean distance was used as the variability

metric, satisfied a stringent p <= 0.05 threshold.  With normalised Shannon entropy used as the

variability metric, the result tended towards satisfying this threshold, with a p-value of 0.06065.
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Secondly,  the  only  potential  cause  for  uncertainty  as  to  which  annotation  contributes  more  to

sample similarity is the issue of the disparity between the number of subgroups into which the two

annotations investigated divide the HPM matrix. Whether or not the “cell line” annotation is at a

perceived disadvantage when assessed for contribution to sample similarity, this does not affect the

basic question as to “which annotation explains the patterning in the data best”. The answer to this

question is clearly “source laboratory”. An annotation which divides data into more subgroups does

not necessarily affect the transcriptional profile of the samples, however. Simply put, biological

experiment annotations will likely include a range of fields, and nothing can be done about the way

in which they divide the data.

Finally,  it  was  discovered after  the design of  RaSToVa was nearing finalisation,  that  the HPM

matrix's annotations for cell line and laboratory were highly confounded (see 3.9.) This may explain

why similar levels of evidence were found for effects on sample similarity for both annotations. It is

to RaSToVa's credit, therefore, that despite a near 3-fold difference in the number of times each

annotation divided the matrix, the contribution to patterning of the data was still robustly detected in

both cases. Final discussion on the implications of the confounded annotations of the HPM matrix

are to be found in the final chapter conclusion in 3.10.5. The datapoints that make up every boxplot

in  figures  3.4 to  3.9 are  provided  on  the  accompanying  DVD  under  “Chapter

3/RaSToVa/Permutation Results”.

3.5 Development of DALGES

A question which naturally follows on from ascribing an effect on sample similarity to any given

experimental annotation is whether or not it is possible to go a step further and investigate the

effects of an experimental annotation at the level of individual genes.

To investigate this possibility, a method was developed using some of the core methods which were

used in RaSToVa. By using random permutation and resampling, the construction of a profile for an

individual annotation can be built  over the course of many permutations until  a distinct profile

emerges.  When  a  sufficient  number  of  permutations  has  been  run  for  any  one  annotation,  a

transcriptional profile should emerge which, given the data from which it was generated, gives an

annotation-linked gene expression signature; hence the name DALGES – Discovery of Annotation-
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Linked Gene Expression Signatures. As with RaSToVa, the methodology that DALGES employs

was chosen in such a way as to allow for the method to be extended to larger datasets and to other

technologies such as the recent explosion in interest in RNAseq. The method was also conceived

with a view to keeping it able to be carried out using only the data itself and the freely-available R

statistical programming language and the Bioconductor suite of R-related tools.

3.5.1 Methodology overview

DALGES'  methodology  was  originally  intended  to  find  annotation-linked  gene  expression

signatures  by  way  of  differential  expression.  However,  as  this  branched  into  two  separate

methodologies, first using the differential expression approach as detailed in section 3.5.2, and then

using normalised Shannon entropy (see section  3.5.3) for the purposes of building up annotation-

linked gene  expression signatures  for  cell  lines  in  the  HPM matrix.  The methodology remains

essentially the same between them, and so is  described only once in section  3.5.2.  The use of

Shannon entropy in building up a cell line's gene expression profile in this data requires only the

changing of differential expression for Shannon entropy, but, critically, particular modifications are

made to the normal pipeline for calculation of Shannon entropy in the interests of speed (see section

3.5.3).

3.5.2 Differential expression approach

The method starts, again, with a fully-annotated dataset. In the case of this section of chapter 3, the

only required annotations from the manual annotation of the HPM matrix are the annotations for

cell line. Firstly, DALGES copies a single-annotation submatrix from the whole matrix (e.g. all

samples of the CGR8 cell line) and treats this as the “intact” submatrix (id est, where the annotation

is left intact). The next step is to copy another, randomly-selected (with replacement) submatrix

from the dataset of equal size to the aforementioned annotation intact submatrix. Rather than, as

was  the  case  with  RaSToVa,  simply  calculating  one  metric  for  both  the  intact  and  random

submatrices,  differential  expression  analysis  is  performed between the intact  submatrix and the

randomly-permuted submatrix. This is done by calculating the means for all probes in both of these

submatrices and then subtracting the randomly-permuted submatrix probe means from the intact

submatrix's probe means. The resulting values, therefore, show the relative expression of each probe

in the intact matrix as compared to randomly-permuted matrices. These numbers can have their
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signs inverted (negative to positive and vice versa) to ask the question “what is the rest of the data

like,  compared to  the samples  sharing  this  annotation?”,  although this  chapter  uses  the former

method, as it is concerned with finding transcriptional signatures of cell lines.

In addition to the calculation of the change in expression expected when a certain annotation is

considered,  DALGES seeks  to  ascribe  a  level  of  statistical  significance  to  these  measures.  An

advantage of using random permutation and resampling methods such as this is that p-values can be

calculated which do not use any external model (such as the expectation of a normal distribution)

and the distribution of the data itself is directly used when generating these p-values. Quantifying

the  change  in  gene  expression  between  the  intact  annotation  matrix  and  randomly-permuted

submatrices is important as not all changes in gene expression need be large in order to be part of

the signature of a cell line. If, for example, a cell line in the HPM matrix is only marginally lower in

its expression of Gene X, if Gene X is consistently lower in this given cell line when compared to

other cell lines, then this ought to be included. P-values allow for this. Therefore, in addition to

calculating the means of each probe in both matrices, every time that a differential expression value

is calculated (intact minus random), a running tally is kept, for each probe separately, as to whether

or  not  the  randomly-permuted  mean expression  level  is  higher,  lower or  identical  to  the  mean

expression of that probe in the intact matrix. This therefore allows DALGES to build up a profile,

on  a  per-probe  basis,  of  whether  or  not  the  intact  mean  expression  level  for  that  probe  is

consistently higher or lower than when considering the rest of the HPM matrix.

As it is the intention of this chapter to design analysis methods to be taken forward in future work,

and on other genomics technologies, it was important to avoid unnecessary use of large amounts of

compute resources. DALGES, therefore, does not store each individual differential expression value

as  calculated  between  intact  and  randomly-permuted  submatrices,  but  rather  simply  keeps

arithmetically adding the next differential expression value to a single list of running differential

expression for all probes. These running totals of differential expression are then divided by the

number of permutations performed. This, therefore, provides exactly the same result as would have

been found by storing each differential expression result individually and taking a mean at the end

of all permutations, but allows for a much smaller working memory footprint. This is particularly

useful when considering that when DALGES is, as is the intention, used on much larger datasets,

the number of permutations required for clear results may increase, multiplicatively increasing the

amount of memory which would be required in these future cases.
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A graphical summary of the DALGES method overview is provided in figure 3.14.

3.5.3 Normalised Shannon entropy approach

Whilst DALGES uses differential expression as the means to identify whether or not a given gene is

associated with a particular annotation (e.g. a particular cell  line or source laboratory),  there is

always the possibility that simple differential expression may miss the linkage between a gene's

expression level and a particular annotation if the level of expression of that gene is to be found

somewhat in the middle of other expression levels found for that gene. For example, if Gene X is

consistently higher in the intact annotation matrix than in all other annotations, then Gene X will be

given a p-value of zero and its mean differential expression when compared to randomly-permuted

submatrices will be shown. This is clearly also the case for genes that are consistently lower in their

expression when compared to all other annotations; DALGES will have no problem assigning it a

mean differential expression value and zero p-value. As the distinction becomes less clear, and Gene

X is  not  always above or not  always below the level  of  expression found in other,  randomly-

permuted submatrices,  the p-value will increase and the mean differential expression value will

reduce  in  magnitude.  However,  in  the  hypothetical  case  of  Gene  Y,  where  Gene  Y is  usually

expressed at a middle level when the cell line is “Cell Line A”, while all other cell lines have Gene

Y expressed to a greater or lesser degree, there is still a distinct signature of Cell Line A, potentially,

in that Gene Y is at this middle level. However, as DALGES performs comparisons between intact

(Cell Line A – only) and randomly-permuted submatrices, there will tend to be a mix of greater and

lesser means for Gene Y in the randomly-permuted submatrices. This will result in a very high p-

value, causing the results outputted by DALGES to essentially advise the disregarding of Gene Y as

potentially part of a signature of Cell Line A. This is particularly true if, for example, the randomly-

permuted  submatrices  contain  a  somewhat  equal  mix  of  higher  and  lower  values  for  Gene  Y,

causing their mean to average out somewhere quite close to, or possibly within, the spread of values

for  Gene  Y found  within  Cell  Line  A itself!  This  would  again  result  in  DALGES essentially

“writing off” Gene Y as uninteresting, or at least as not being linked to Cell Line A.

To  ask  whether  or  not  these  scenarios  can  be  avoided,  a  second  method  of  linking  a  gene's

expression  to  a  given  annotation  was  added.  By  observing  changes  in  the  predictability  of

expression values, DALGES seeks to detect a more predictable level of expression for any given

gene, once the annotation is known. That is, that if the aforementioned Cell Line A's Gene Y was 
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Figure  3.14:  Methodology overview for DALGES. A submatrix comprised of all samples of one
cell line is copied from the whole matrix. A randomly-permuted submatrix of the same size as the
first  submatrix is  also copied.  Differential  expression analysis  is  carried out  between the intact
annotation submatrix and the random submatrix using means of each probe. When all permutations
are complete, each differential expression result's positive and negative changes are tallied and used
to generate p-values for each probe. Summed differential expression is then divided by the number
of permutations for a final result for that probe.



consistently  at  any  level,  then  the  observance  of  that  consistency  versus  the  wider  spread  of

expression values observed for Gene Y in randomly-permuted submatrices, DALGES would report

this gene as being potentially linked to Cell Line A as its entropy is lower in the intact matrix of Cell

Line A samples when compared to randomly-permuted submatrices. Normalised Shannon entropy

was used to measure the amount by which either keeping the annotation intact or randomising it

made any one probe more or less predictable. Again, the same method of calculating p-values can

be applied where greater and lesser values for normalised Shannon entropy (between intact and

randomly-permuted  submatrices)  are  tallied  as  the  permutations  are  completed.  This  was  also

intended to mitigate the issue that DALGES (using differential expression only) may encounter

when assessing whether or not a gene is linked to an annotation if that gene is mostly higher or

mostly lower than the expression found in any other annotation.

A combination of these two methods should, therefore, allow for both the assessment of whether or

not a particular gene is, given the distribution of the matrix provided to DALGES, a particular gene

appears to be related to any given annotation and, if so, pull out genes which are consistently higher

or lower in expression than those of other annotations. In the case of those genes whose entropy

greatly  decreases  when  only  samples  of  a  certain  cell  line  are  used,  but  whose  differential

expression analysis is somewhat inconclusive from the differential expression method of running

DALGES (due to being of intermediate expression compared to random submatrices), this may also

imply that changes in variability (entropy) of genes may be of interest (subject to downstream gene

ontology analyses.)

As the calculation of normalised Shannon entropy is quite complex, involving the discretisation of

the HPM matrix, at a per-probe level, DALGES' analyses can be sped up with some modifications

away from simply performing these calculations when they are needed. For example, for every

randomly-permuted submatrix that DALGES uses, each probe is discretised into the chosen 110

bins and then entropy calculated and then normalised to the maximum entropy possible for this

number of bins. This step will be performed 45,101 times for each new submatrix. With 1,001

permutations, this results in the sorting of a given number of values for each probe (dependent on

the number of samples gathered into the random submatrix) into 110 bins, for 45,101 probes, 1001

times. An obvious solution when dealing with these issues of repetition in calculation would be to

use pre-calculated entropies for all probes. This is of no help here as DALGES uses submatrices in

its method, not the whole matrix at a time. Further, the samples which make up each submatrix

change each time, forcing the recalculation of entropy each time. In addition, simply precalculating
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the occurrences in each bin for all probes cannot help as there would be no way to include only

those occurrences  in  the discretised bins  which belong to the samples  which  are  used in  each

submatrix. A solution, however, is possible, by precalculating bin numbers for each value in the

HPM matrix. Where normally an expression value is found, a bin number is instead. By running

through each probe of the HPM matrix and, for each sample, calculating which bin this expression

value  falls  in  (given  the  equally-spaced  110  bins  that  DALGES  is  using  for  this  matrix),  a

precalculated  matrix  of  bin  numbers  can  be  made.  This  allows  for  later  steps  of  DALGES to

completely avoid discretising up to 4,966,071,110 numbers into bins, and simply fill the bins using

the bin numbers directly from this precalculated matrix, leaving only the entropy calculation still to

do. As with other speed or memory improvements worked into the development of RaSToVa and

DALGES, these were not necessarily required for the successful running of these methods in the

scope of this work, but allow for a much easier and more timely application of these methods to

larger matrices outwith this thesis, or to facilitate another aim of the project; making the method

work on lower-end systems available to more researchers.

DALGES (Shannon entropy mode) was run on the HPM matrix with a total of 1001 permutations

for both cell line (the main focus of the work) and source laboratory. These permutations were

divided over 7 running instances of DALGES, each performing 143 permutations of each cell line

or source laboratory. The results of these, being the summed entropies and the summed tallies for

generating p-values were then pulled together into one instance of R and the p-values recalculated

using all of these tallies. This confounding in the data only emerged late in the development of the

methodologies of both RaSToVa and DALGES as the manual annotations in section 2.2.2 were still

being  completed.  More  discussion  on  the  implications  of  the  confounded  nature  of  these  two

annotations is forthcoming in section 3.10.5.

3.6 Cell line specific gene expression signatures using DALGES – differential 
expression mode

An  R  object  is  provided  on  the  accompanying  DVD  under  “Chapter  3/DALGES/Differential

Expression Method/Results  R Object”,  containing summed differential  expressions as DALGES

was run, along with p-values for all genes.
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Further, a summary of the differential expression values for all 4 analysed cell lines can be found on

the  accompanying  DVD  in  “Chapter  3/DALGES/Differential  Expression  Method/Differential

Expressions Summary”

3.6.1 ES-D3 cell line

With the ES-D3 cell line, of which there are 295 samples in the HPM matrix, there were 468 probes

which were found to have a greater than 1.5 log2 fold increase (2.83 (2 dp.) absolute fold increase)

in  expression  compared  to  randomly-permuted  submatrices  of  the  same  size.  Enrichment  for

biological pathways was assessed using DAVID  (Dennis et al. 2003), and the results of this are

given  in  full  on  the  accompanying  DVD  as  “Chapter  3/DALGES/Differential  Expression

Method/ES-D3/Chapter.3.DALGES.ES.D3.POSITIVE.1.5.LOG2.FC.Genes.csv”. A similar naming

convention is given for the results of all other DALGES analyses. The top of these was the generic

“pattern specification process” GO term, (n = 33 probes, q-value 1.9x10-13. The same 33 genes also

contribute to the GO pathway “embryonic morphogenesis” with a q-value here of 1.1x10 -10. The

list, as a whole, contains a great number of developmental processes. However, enrichment was also

found for “regulation of Wnt receptor signalling pathway” (n = 9 probes, q-value 4.6x10 -5) and

“Wnt receptor signalling pathway” in general, this time with (n = 13 probes, q-value 3.2x10-4).

Genes which satisfied a threshold of a greater than 1.5 log2 fold lower expression in the ES-D3 cell

line,  compared  to  randomly-permuted  submatrices,  numbered  only  180.  There  was  also  no

enrichment for any non-generic pathways here, according to DAVID. The only pathways achieving

a q-value of <= 0.05 were the three “stem cell” related pathways of “stem cell development”, “stem

cell  maintenance” and “stem cell  differentiation” with the same 5 genes counted towards all of

these,  but  respective  q-values  of  7.2x10-3,  1.2x10-2 and  1.6x10-2.  The  full  list  of  pathway

enrichments is available on the accompanying DVD. 

Relaxing the threshold from the stringent +/- 1.5 log2 fold change to +/- 0.585 log2 (1.5 absolute)

fold change generated lists of enriched pathways which showed a strikingly opposing signature to

the CGR8 and E14 cell lines as analysed below. Using those genes found to be more than 0.585

log2 fold higher in ES-D3 cells, compared to random, a long list of developmental pathways is

found to be enriched, available in full as on the accompanying DVD. 3,698 probes make up this list,

implying that just under 8.2% of all probes on the microarray were found by DALGES to be more
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highly expressed in ES-D3 samples compared to the distribution of the rest of the data. Despite this

large number of probes, the pathway enrichments are very similar to those generated by using gene

lists from the CGR8 and E14 lists of genes which tend to be more lowly expressed in those cell

lines (see following sections.) The most significantly-enriched pathway whose genes are found to

be more highly expressed in ES-D3 cells is the generic “embryonic morphogenesis” pathway (n =

109 probes, q-value 1.6x10-14). As generic as such terms may be, there are many more specific

pathway GO terms are in this list such as “Wnt receptor signalling pathway” (n = 43 probes, q-

value 1.9x10-6), “Notch signalling pathway” (n = 20 probes, q-value 1.4x10-3), “MAPKK cascade”

(n = 29 probes, q-value 1.8x10-2), “death” (n = 92 probes, q-value 4.3x10-2). This may be indicative

of the ES-D3 cell line having enhanced signalling in these pathways, compared to the other cell

lines in the HPM matrix, but these may also be due to confounding of the data, as discussed in

5.1.4. It is interesting that there is an apparent increase in expression of 92 “death” related genes in

the ES-D3 pathway. This would suggest that the ES-D3 cell line has modified apoptotic signalling /

processes, particularly when it is considered that the other well-represented cell lines in the HPM

matrix appear to have enrichments for pathways such as “death”, “programmed cell death” in their

lists of genes found to be more lowly expressed, compared to “randoms”. 

As these analyses of cell lines are comparative (that is, best thought of as showing signatures of cell

lines relative to each other in a given dataset),  it  may also be that the patterning of the data is

responsible  for  these  enrichments  (see  3.10.5).  Substantiation  through running of  DALGES,  in

future  work,  on  larger  datasets,  may  answer  this.  In  the  meantime,  however,  there  is  clear

suggestion from this data  that  the ES-D3 cell  line appears  to  have altered apoptotic  processes,

compared to the CGR8 and E14 cell lines, with the usual caveats as given in 3.10.5 and 5.1.4. 

There were 1,934 probes found to be more lowly expressed (threshold: -0.585 log2 fold change),

compared to randomly-permuted submatrices, in the ES-D3 cell  line.  Enrichment for biological

pathways in this list is provided on the accompanying DVD. This list, again, has highly-generic

terms listed as the most significantly enriched, such as “regulation of transcription” (n = 232 probes,

q-value 1.9x10-8). The more specific GO terms found to be significantly enriched in this list include

“regulation of cell proliferation” (n = 76 probes, q-value 7.0x10-7, “cell cycle” (n = 74 probes, q-

value 4.0x10-4), “negative regulation of cell differentiation” (n = 30 probes, q-value 2.0x10 -3) and

“cellular response to stress” (n = 50 probes, q-value 5.7x10-3). These pathways are of interest as

they suggest at potential peculiarities of the ES-D3 cell line. The relatively-lower expression of cell

cycle and proliferative genes may indicate that the ES-D3 cell line is inherently less vigorous than
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other  cell  lines  represented in  the HPM matrix.  Relatively-lower expression of genes  linked to

“negative  regulation  of  differentiation”  may  be  indicative  of  the  ES-D3 line  having  relatively

increased propensity for differentiation. It is also highly interesting that the “cellular response to

stress”  pathway genes  found here  are  comparatively  more  lowly  expressed  in  the  ES-D3 line.

Cellular stressors are being shown to promote cellular reprogramming in cancer, for example, in the

case of nutrient stress (Ma et al. 2013) or inflammation (Song and Balmain 2015), it is interesting to

find with this method that 50 genes involved in this pathway are comparatively lower in this cell

line. With the usual caveats concerning distribution of data and random permutation methods (see

sections  3.10.5 and  5.1.4),  this  suggests that  there may be a  relationship between an increased

propensity to differentiate, and a dampened stress response. It would logically follow that “response

to stress” genes may well be linked to a less-differentiated, naïve state in mESCs. This would be in

agreement with literature which suggests that the induction of a stress response, such as hypoxia

renders cells more amenable to reprogramming (Yoshida et al. 2009).

Finally, other pathways such as several chromatin reorganisation pathways were found in this list of

relatively-lower expressed genes in ES-D3 samples, but these were of a generic nature and as such

did not present opportunity for speculation as to their biological relevance.

3.6.2 CGR8 cell line

This cell line is represented 110 times in the HPM matrix. Interestingly, the results of DALGES

(differential expression mode) on the CGR8 cell line did not result in many genes (n = 3) being

more than 1.5 log2 fold more highly expressed in this line, when compared to randomly-permuted

submatrices.  Only  Mid1  and  two  probes  for  the  Ddx3y  genes  were  found  to  be  more  highly

expressed in this cell line by this threshold. At the other end of the scale, however, considering

those genes found to be more than 1.5 log2 fold lower expressed in the CGR8 line, 47 probes

achieve this level of fold change, but are mostly unnamed (40 of 47) and those which are annotated

being Rian (3 probes), D7Ertd715e, Plalg1, Meg3 and Rbp1. As 1.5 log2 fold change corresponds

to an absolute change of 2.83 (2 dp.), relaxing this threshold to 1.5 absolute fold change in either

direction allows for some enrichment analysis using DAVID.

For those genes found to be 0.585 log2 fold higher expressed in CGR8 cells, of which there are 266

probes,  an enrichment  was found for  quite  high-level  pathway names.  These very broad terms
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include “transcription” (n = 43 probes, q-value 2.4x10-3) and “cell cycle” (n = 21 probes, q-value

1.2x10-2). The full table is available on the accompanying DVD, but is very generic and rapidly

loses statistical significance for enrichment, failing the q-value < 0.05 test after the third entry,

being “regulation  of  transcription”  (n =  46 probes,  q-value  2.1x10-2).  It  was  not  expected  that

DALGES would generate lists with necessarily any striking enrichment for biological pathways, as

the  goal  of  DALGES  was  simply  to  ascertain  whether  or  not  it  is  possible  to  ascribe  gene

expression levels to annotations with a useful degree of certainty. This is an objective which it still

definitely achieves, with certain important caveats (see section 3.10.5.)

At the other  end of the mean fold change scale,  being those genes found to be more than 1.5

absolute (0.585 log2) fold more lowly expressed in the CGR8 line, 894 probes meet this criterion.

Enrichment for biological pathways here reveals some more specific pathways. Here, a striking

enrichment is seen for the “epithelium development” pathway (n = 31 probes, q-value 4.5x10-5).

The biological  significance  of  this  is  unclear,  however  this  result  opens up the possibility  that

certain cell lines (in this case CGR8) may be found have less aptitude for developing into certain

tissue types. These sorts of signatures in cell lines, if substantiated using larger datasets, can be used

to  drive  experimental  investigations  concerning  a  cell  line's  efficiency  in  generating  certain

lineages. Other pathways found here are quite generic and are of no real surprise in our data, as our

data concerns progression toward differentiation of embryonic stem cells. These pathways are given

hierarchical names such as “tissue morphogenesis” (n = 28 probes, q-value 6.9x10-5). Several other

development-related pathways are to be found here however, mixed in amongst these, however, is

“negative regulation of cell proliferation” with (n = 25 probes, q-value 7.2x10 -4). These genes being

downregulated would imply that there is a signature here consistent with a pro-proliferative state.

This may warrant substantiation of this pro-proliferation signature in larger datasets to test whether

or not the CGR8 cell line tends to be more highly proliferative. This may confer the CGR8 an

advantage in stem cell-related manipulations. Any putative proliferative tendency, if confirmed in

larger data, would need to be taken into account by researchers working with the CGR8 line. In

addition to this one pro-proliferative pathway, enrichments are also found for the downregulation of

genes involved in “programmed cell death” (n = 37 probes, q-value 1.4x10-3) and “regulation of

programmed cell death” (n = 40 probes, q-value 3.1x10-3). Interestingly, however, a pathway also

found to be enriched here is “positive regulation of cell death” (n = 23 probes, q-value 5.9x10-3).

“Wnt  receptor  signalling  pathway” (n = 14 probes,  q-value 3.1x10-2)  is  also to  be  found here,

although the hierarchical nature of the database which DAVID uses to name pathways renders this

somewhat inconclusive. In-depth analyses of all of the potential implications, at a phenotypic level,
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of these differentially-expressed genes is outside the scope of this work, as this chapter only seeks

to find whether or not these signatures can be found, and comment on the behaviour of the method

used to find them.

3.6.3 E14 cell line

The E14 cell line is represented 112 times in the HPM matrix. Similar to the CGR8 cell line, very

few genes achieve the 1.5 log2 fold change increase compared to randomly-permuted submatrices.

In fact, only 8 genes make this threshold, including Mid1, a gene also found to be 1.5 log2 fold

higher in CGR8 cells, compared to random. The use of the 1.5 absolute fold (0.585 log2 fold)

threshold for being more highly expressed in the E14 cell line results in a list of 234 probes with

absolutely no significant enrichment for any GO pathways. The most significant result in this list is

“regulation of transcription”, a term which is highly generic. However, this is still an interesting

result when considering the results of investigating the higher-expressed genes in the CGR8 cell

line, which were similar to this. A first suspicion here may be that DALGES is finding identical

results as both E14 and CGR8 contribute a similar number of samples to the data, which, if the

distribution of the data is obscuring DALGES from seeing gene-by-gene signatures of different cell

lines, would be the case. However, DALGES is very unlikely to be being swayed, in this instance at

least, by the distribution of the data in confidently ascribing these signatures to these two cell lines.

This can be demonstrated by observing the lists of genes which DALGES finds to be likely higher

in both the CGR8 and E14 cell lines. When sorting the data to bring those genes most likely more

highly expressed in E14 cells, for example, the 13th rank gene is Fbxo15, which is found to be,

when compared to random submatrices, 1.27 log2 fold (2.41 fold absolute) higher in E14 samples,

with a p-value of zero (quite likely rounded when processed by R.) This same gene, in the case of

CGR8 cells is, when compared to random submatrices, found to be -0.04 log2 (0.972 absolute) fold

less expressed, and has a p-value of 0.38 (2 dp.). Other examples are present, even in this top list,

such as Aass, which is found to be 1.17 (2 dp.) log2 (2.25 absolute) fold higher in E14 samples,

with a p-value of another rounded-to-zero. In CGR8 samples, this is found to be, when compared to

random submatrices, -0.02 log2 (0.986 absolute) fold lower, with a p-value of 0.428, indicating no

real  relationship  between  the  Aass  gene  and  the  CGR8  annotation.  If  DALGES  was  simply

displaying results that are, in fact, a surrogate of the distribution of the data, this could not happen.

However, the distribution of the data is still highly important, as discussed in 3.10.5 and 5.1.4.
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Similarity is also found between the E14 signature and the CGR8 signature when considering the

list of genes found to be more lowly expressed in E14 cells. Passing the -0.585 log2 fold change (-

1.5  absolute  fold  change)  mark  were  819  probes.  Whilst  the  full  list  is  provided  on  the

accompanying DVD, it is largely comprised of developmental pathways, with the generic pathway

“pattern specification process” (n = 41 probes, q-value 3.1x10-12) as the most significantly-enriched

pathway.  Genes are downregulated also for the “Wnt receptor pathway” with (n = 17 probes, q-

value 3.9x10-4). The “cell death” pathway makes an appearance in this list, similar to the situation in

CGR8 cells, this time with (n = 32 probes, q-value 1.6x10-2). Seeing this similarity between CGR8

and E14 cell lines is interesting as it may imply that both of these cell lines have an increased

propensity for proliferation in that the transcriptional networks involved in apoptosis appear to be,

from these results, somewhat muted when compared to the HPM matrix's distribution as a whole.

This warrants further investigation in larger datasets for substantiation and suggests sets of genes

that  can  be  shortlisted  for  analysis  in  experimental  settings  to  further  confirm  the  differences

between these cell lines. The implications of finding the downregulation of these apoptotic genes in

CGR8 and E14 samples are discussed more in 3.10.4. 

3.6.4 iPS (OSKM) cell line samples

These samples,  induced pluripotent  cells  transfected with the 4 Yamanaka factors  Oct4 (Oct4),

Sox2,  Klf4  and  c-myc,  are  mentioned  here  from  the  DALGES  results  as  they  satisfy  (when

grouped) the inclusion criteria of having more than 50 samples contributed to the HPM matrix (with

59 samples). In addition, the inclusion of iPS samples in the DALGES analysis is of interest as the

signatures of iPS lines, as compared to other mESC lines, is an area of great interest in the area of

mESC biology, as this may impact on their utility, but also, critically, on their safety (Miura et al.

2009). It must be noted here that the iPS samples grouped together for this analysis are from more

than  one  experiment,  although  all  were  generated  through  forced  expression  of  the  canonical

Yamanaka factors (Oct4, Sox2, Klf4, c-Myc). These samples are labeled in the annotations file for

the HPM matrix under the column “Cell Line Name (Simple)” as “IPS_Oct4_Klf4_Sox2_c-myc”.

This  is  therefore  not  an  attempt  to  investigate  the  characteristics  of  an  individual  cell  line

contributed by one laboratory and that laboratory's individual methodology, but a first look at a

whether a more general OctSoxKlfMyc (OSKM) iPS signature emerges at  all  in this  data.  If  a

distinctive signature is found for these iPS using this method, even in this somewhat limited dataset

(in that it is limited to only the highest levels of Oct4, Sox2 and Nanog, rather than how said iPS
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cells would behave when differentiating), then this would merit the use of the DALGES method in

larger datasets to find signatures of individual iPS lines for intercomparison. In the interests of ease

of reading, these grouped iPS samples are referred to as a “cell line” hereafter.

Using  those  genes  found  to  be,  compared  to  randomly-permuted  submatrices,  0.585  log2 fold

higher expressed in these iPS samples, a strikingly-different picture emerges from the other cell

lines analysed in this chapter. 1,457 probes pass this threshold. First and foremost, there is a strong

enrichment for the “chromosome organisation” pathway (n = 48 probes, q-value 1.1x10-3). This is

unlike the enrichments for any other cell line analysed here. The second most significantly-enriched

pathway is along a similar theme, being “meiosis 1” (n = 11 probes, q-value 1.3x10 -2), and the third

again, named “chromosome organisation involved in meiosis” (n = 8 probes, q-value 1.3x10-2.) This

is of interest as this enrichment suggests that there is an upregulation of genes involved in meiosis

in these  iPS samples,  which may be indicative of  altered  cell  division machinery  in  these  iPS

samples. The other three cell lines (CGR8, E14 and ES-D3) analysed in detail in this chapter are

commonly-used mESC lines. It was therefore expected that these cell lines would share a great deal

of similarity, possibly hampering DALGES' ability to find any difference in the signatures found

between  them.  By  extension,  there  was  concern  that  DALGES,  in  the  absence  of  a  suitably

contrasting cell line occurring in the HPM matrix, may have been rather unfairly seen to be unable

to find useful transcriptional, and, potentially, functional differences between cell lines. With the

analysis of this iPSC group of samples, however, a clear and distinct signature separates this cell

line, both at a transcriptional and possibly at a functional level, with these enrichments. Another

enrichment  which  occurs  only  in  this  line,  out  of  the  four  analysed,  is  “extracellular  matrix

organisation” (n = 18 probes, q-value 1.2x10-2). There also appears to be an enrichment here for

pathways involved in gametogenesis, such as “spermatogenesis” (n = 30 probes, q-value 2.7x10 -2).

These same 30 genes are also counted toward the “male gamete generation” pathway. DALGES

also may have captured the fact that these iPS samples have had their differentiation machinery

suppressed as a likely possible of their having forced expression of the four Yamanaka factors. This

is demonstrated by the enrichment for “negative regulation of cell differentiation” (n = 24 probes, q-

value 2.6x10-2.) Enrichment is also found for the upregulation of genes involved in the “cell cycle”

pathway  (n = 58 probes, q-value 1.2x10-2.) This may be indicative of a propensity for increased

cellular turnover in iPSCs generated by OSKM factors, although this requires further investigation.

Those genes which DALGES finds to be at least 0.585 log2 fold less expressed (n = 944) in these

iPS samples were expected, given the previous strikingly-different signature for those found to be
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more expressed, very different again to the signatures found for the other cell lines. Interestingly,

this was not the case, with a very similar list of generic “development” pathways emerging and the

familiar “pattern specification process” (n = 42 probes, q-value 1.1x10-10) making its way to the top

of  the  list  with  the  most  significant  enrichment.  Even  the  familiar  “Wnt  receptor  signalling

pathway” (n = 17 probes, q-value 1.0x10-3) is found here, similar to the signature found for the other

analysed cell types. The full table is available on the accompanying DVD. The fact that the list is

quite  so  similar  to  other  cell  lines  for  the  “downregulated”  genes,  yet  so  different  for  the

“upregulated”  genes,  is  encouraging  as  this  shows that  DALGES is  indeed capable  of  finding

unique signatures for the annotations that are queried. Had the enrichment list for those genes found

to be “downregulated” in the iPS samples been very different to those of other cell lines, there may

have remained a possibility that there was some effect of either the number of samples (where the

iPS line has only 59, compared to the greater numbers of samples found in the other cell lines

analysed) or some other systematic problem with DALGES. Therefore, it is ideal that DALGES has

given a similar list of enrichments for the “downregulated” genes, while demonstrating its ability to

find a unique list of enrichments for those “upregulated” in this cell line. Further discussion of the

results of DALGES can be found in 5.1.4

3.7 Cell line specific gene expression signatures using DALGES – normalised 
Shannon entropy mode

An R object is provided on the accompanying DVD under “Chapter 3/DALGES/Entropy Change

Method/Results R Object”, containing summed differential expressions as DALGES was run, along

with p-values for all genes.

Further, a summary of the summed entropy change values for all 4 analysed cell lines can be found

on  the  accompanying  DVD  in  “Chapter  3/DALGES/Differential  Expression  Method/Entropy

Changes Summary”

Distributions of entropy changes found by DALGES for all probes are sorted into ascending order

for each cell line and displayed in figure  3.15 with accompanying red horizontal lines depicting

thresholds chosen for entropy reduction and entropy increase analysis.
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Figure 3.15: S-plots of all changes in probe entropy as calculated by DALGES for all 4 analysed
cell lines (ESD3, CGR8, E14 and OSKM/OSKC_iPS) (OSKM and OSKC are equivalent, the last
letter standing for c-Myc), red horizontal lines show cutoffs used for considering genes to show
either  strong  positive  or  negative  entropy  change.  Datapoints  signify  the  normalised  Shannon
entropies of probes in each cell type.



3.7.1 ES-D3 cell line

There were 811 probes which pass the threshold of an entropy change of at least less than -0.2.

Contrary to the findings when DALGES used the differential expression method, DALGES finds a

different signature here, being strongly enriched for oxidative and metabolic pathways. Here, the

generic term “generation of precursor metabolites and energy” pathway (n = 30 probes, q-value

3.1x10-5) is the most significantly enriched. Following on from this are more specific pathways such

as “electron transport chain” (n = 19 probes, q-value 2.2x10-5), “cellular respiration” (n = 13 probes,

q-value 3.2x10-4)  and “oxidation reduction” (n = 46 probes, q-value 3.9x01-3).  The full  table is

available on the accompanying DVD. This respiration / oxidation enrichment is strikingly different

to the enrichment found when using the differential expression method, suggesting that entropy

change captures a different set of phenomena than differential expression.

It was expected also that those genes which increase in their entropy within one annotation would

be uninteresting. After all, genes which become less predictable within a given annotation should

intuitively  be  considered  to  be  unrelated  to  that  annotation.  For  completeness,  however,  those

probes with a larger than 0.05 positive entropy change in the ES-D3 samples, compared to random

submatrices, were assessed for any pathway enrichments. The aforementioned assumption that there

would be no interesting enrichments was dispelled by the extremely significant enrichments found

in the list of 532 probes which passed the entropy threshold of >= 0.05. These enrichments are

detailed in full on the accompanying DVD. These enrichments include a long list of developmental

pathways, with an extremely low q-value given to the generic “pattern specification process” (n =

47 probes, q-value 6x10-25). Aside from the long list of developmental pathways which make up the

vast majority of the significantly-enriched pathways, the “Wnt receptor signalling pathway” (n = 11

probes, q-value 7x10-3) is to be found, along with “cell adhesion” (n = 25 probes, q-value 1x10 -2)

and “regulation of BMP signalling pathway” (n = 5 probes, q-value 1.3x10-2). An increase in the

entropy of the genes which contribute to these pathway enrichments suggests that those samples in

the HPM matrix which use the ES-D3 cell line may be from experiments in which these signalling

pathways are changing activation states and the changing in state of developmental pathways in the

ES-D3 samples would be parallel to this. Indeed, the increased entropy enrichments are logical

when it is considered that the majority (n = 249 or 295) of ES-D3 samples are from the “Piersma

AH” laboratory, and the experiments contributed from this laboratory to the HPM matrix were from

investigations of embryoid body cultures during differentiation  (van Dartel et al. 2011). This, in

fact, was one of the first and strongest suggestions in this work that the use of normalised Shannon
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entropy in large-scale microarray data such as the HPM matrix may well be a method which can, in

and of itself, indicate the activity of signalling pathways and / or transcriptional networks across the

data.

3.7.2 CGR8 cell line

Probes  which  satisfied  a  threshold  of  a  change  in  entropy  of  -0.1  numbered  n  =  1149.  The

enrichments found here are given in full in on the accompanying DVD. The most significantly-

enriched pathway here was found to be “blood vessel development” (n = 38 probes, q-value 7.8x10 -

7) Other developmental pathways occur in this set of genes found to be less entropic in the CGR8

cell  line,  including  “skeletal  system development”  (n  =  32  genes,  4.4x10-3),  “neural  crest  cell

development”  (n  = 9  probes,  q-value  1.2x10-2),   “heart  development”  (n  =  23  probes,  q-value

4.0x10-2) and “cartilage development” (n = 12 probes, q-value 4.1x10-2). The implications of this are

not  clear  simply  from a  decrease  in  entropy,  but  warrant  future  analysis  of  the  differences  in

developmental pathway genes between this and other mESC lines.

The CGR8 cell line's less entropic genes also contain enrichment for cell-cycle related pathways,

being “cell division” (n = 33 probes, q-value 2.8x10-3), “cell cycle process” (n = 38 probes, q-value

9.2x10-3), “cell cycle phase” (n = 34 probes, q-value 9.6x10-3) and others (see accompanying DVD.)

These enrichments suggest that the CGR8 cell line may have altered propensity for proliferation

when  compared  to  other  cell  lines  in  the  HPM matrix.  This  is  in  accordance  with  DALGES'

findings for this cell line when using the differential expression method, which found cell cycle-

related genes to be upregulated, compared to randomly-permuted submatrices. There is also a signal

detected here for the MAPKK pathway (n = 13 probes, q-value 4.8x10 -2), a pathway known to be

involved in mESC differentiation. There is also an enrichment for “cell response to stress” (n = 41

probes, q-value 4.7x10-3). Just as the ES-D3 cell line was found to have a potentially dampened

response to stress, it is equally possible that, as this analysis compares cell lines to each other, the

CGR8 cell line may have an increased tendency toward the activation of stress-related pathways.

This may simply be present in samples in this matrix due to the conditions to which the CGR8

samples herein were exposed.
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Those probes which increased their normalised Shannon entropy by a mean of +0.05 (n= 752),

when analysed for pathway enrichments, contained no enrichments at all which passed a threshold

of significance of q <= 0.05. The full table is available on the accompanying DVD.

3.7.3 E14 cell line

There were 597 probes which appear to reduce in entropy in the E14 cell line, compared to the

distribution of the HPM matrix as a whole, by at least -0.1. Pathway enrichments for this gene list

included a great many developmental pathways. The “Wnt receptor signalling pathway” (n = 15

probes, q-value 8.2x10-4) was enriched along with “negative regulation of cell proliferation” (n = 17

probes,  q-value  7.9x10-3),  “negative  regulation  of  cell  differentiation”  (n  =  18  probes,  q-value

6.4x10-4) and “cell fate commitment” (n = 15 probes, q-value 1.7x10-3). Together these pathways

suggest that the E14 cell line (or the samples using it which are included in the HPM matrix at least)

should  be  looked  at  more  closely  regarding  their  propensity  for  proliferation  and  tendency  to

differentiate. The fact that the Wnt pathway is the only obvious, named signal transduction pathway

here to pass the q-value threshold of q <= 0.05 may link these two phenomena, in that the E14 cell

line  may  have  this  altered  proliferation  /  differentiation  behaviour  due  to  differences  in  Wnt

signalling. This possibility may apply to the other cell lines here found to have signatures involving

the Wnt signalling pathway, apoptosis, proliferation and cell cycle phenomena. After all, differences

in endogenous Wnts between different cell lines are a known phenomenon in mESCs (ten Berge et

al. 2011).

Probes which satisfied a threshold of an apparent change in entropy of at least +0.05 (n = 1,552),

when analysed for pathway enrichments, similar to the case for CGR8, contain no enrichments at all

which satisfy the q-value threshold of q <= 0.05. The full table is available on the accompanying

DVD.

3.7.4 iPS (OSKM) line

1,078 probes satisfied the threshold of a decrease in normalised Shannon entropy of -0.125. In stark

contrast  to  the  enrichments  found when using  the  differential  expression  analysis  method (see

3.6.4), a drop in entropy is observed in genes which contribute to pathways much more in line with

those pathways commonly linked to the other cell lines analysed here. Pathway enrichments for

“stem cell  maintenance”  (n = 11  probes,  q-value  8.5x10-6),  “stem cell  differentiation”  (n  = 12
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genes , q-value 2.3x10-5), “stem cell development” (n = 12 probes, q-value 1.1x10-6) are included

here.  As  these  iPS  cells  have  forced  expression  of  Oct4  (Oct4),  Sox2,  Klf4  and  c-myc,  it  is

encouraging to see DALGES finding enrichments for these three pathways with greater levels of

significance than in any of the other 3 cell  lines analysed (see full  enrichment tables for exact

figures.) There is also an extremely strong enrichment for “regulation of cell proliferation” (n = 62

probes, q-value 3.7x10-7), which dwarfs the enrichments found for this pathway in the other cell

lines  analysed,  in  terms  of  significance.  This  may  suggest  a  proliferative  /  stem  cell  identity

“overdrive” induced by forced expression of the Yamanaka factors. Enrichment also exists for the

BMP pathway (n = 7 probes, q-value 2.2x10-2), “Wnt receptor signalling pathway” (n = 17 probes,

q-value 1.6x10-2), “cell fate commitment” (n = 19 probes, q-value 9.0x10-3) and “cell adhesion” (n =

49 probes, q-value 3.9x10-3). Much like the results for other cell lines, differences in Wnt signalling

appear to be part of the signature of this iPS line's samples.

1,062 probes satisfied the threshold of an increase in normalised Shannon entropy of +0.05. Despite

such a large number of probes increasing in entropy with this cell line, there were, as with the

CGR8 and E14 cell lines, no biological pathways enriched at all to the required threshold of q <=

0.05.

A summary of the selected pathways mentioned in the search for pathway enrichment signatures for

these four cell lines is presented in figure 3.16.

3.8 Behaviour of the DALGES method

3.8.1 Behaviour of DALGES - differential expression mode

In the previous analyses using RaSToVa, certain metrics were found to be affected by the number of

samples that the annotation in question contributed to the HPM matrix (see section  3.3.3). It was

expected that, much like with RaSToVa, this would not affect the overall message to be derived

from the  results,  but  confirmation  was  nonetheless  required  that  DALGES'  results  would  fare

similarly well. A relationship was expected to be found between the p-values found for individual

genes and the number of samples that the annotation in question contributed to the HPM matrix, in

that statistical significance of the differential expression of any given gene should become clearer

the more samples that DALGES has to work with for that annotation.  Conversely,  it  would be

highly detrimental to DALGES' ability to meaningfully link gene expression levels (or, later, 
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Figure 3.16
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entropy signatures) of genes to annotations if both of those metrics (differential expression and

entropy change) were also related to the number of samples a given cell line contributed to the

HPM matrix. Observation of the relationship between these parameters confirmed the presence of

the desired relationship between “number of samples contributed” and the resulting p-values (see

figure  3.17, topmost plots).From this initial analysis, it is clear to see that those annotations with

larger numbers of samples generate results with much lower p-values (see figure 3.17.) This is an

encouraging sign as one would expect those annotations which have a larger number of samples

available to be most amenable to having their gene expression signature determined.

A relationship is  also  observed between the p-values  for  differential  expression  values  and the

differential  expression  values  themselves.  This  again  is  indicative  of  DALGES  behaving  as

intended as it would be expected that those genes which consistently are found to be much more

highly expressed in the intact matrix when compared to randomly-permuted matrices would have an

accompanying zero p-value, as no permutation performed ever resulted in a randomly-permuted

mean for this gene which was greater than that mean found in the intact annotation submatrix. The

same is  true  for  genes  which  are  always  more  lowly  expressed  in  the  intact  submatrix  when

compared to randomly-permuted ones. This can be seen by the shapes of the plots in figures 3.18

and  3.19 when using the differential expression mode and figure  3.20 when using the change in

normalised Shannon entropy.

Support is also given to DALGES performing as intended by these same figures by the fact that

around the 0 mark for differential expression and entropy change, there is a gap where the p-value is

also 0. This shows that DALGES does not ascribe any significance (read: no way in which that gene

is linked to the cell  line in question) for those genes which are not differentially expressed (or

differently entropic) in the intact matrix compared to randomly-permuted ones. It is interesting to

note the difference in the relative sizes of these around the 0 mark on the x-axis, where in figures

3.18 and 3.19 this space is considerably smaller than the space in figure 3.20, indicating that larger

changes in normalised Shannon entropy between intact and random submatrices are required before

significance  is  attributed  to  any gene,  potentially  making  entropy  change  more  conservative  a

method than differential expression, although this requires further investigation.

These basic tests of DALGES' functionality aside, it was surprising to find that out of 1,217,727

total p-values calculated (27 cell lines x 45101 probes),  nearly 40% (n = 479,391) of these were

equal to or less than the stringent threshold of p <= 0.01. Relaxing this threshold to p <= 0.05 
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Figure 3.17 Behaviour of the DALGES method for different numbers of samples contributed by the
different cell lines present in the HPM matrix when using both differential expression (leftmost
plots) and normalised Shannon entropy (rightmost plots). Pearson correlations shown in the top
right  of  each  plot  demonstrate  the  existence  of  the  expected  effect  of  a  greater  number  of
contributed samples for a given cell line having an overall effect of increasing the statistical power
with  which  genes  are  ascribed  differential  expression  or  entropy  change  values.  Reassuringly,
however, no such relationship, exists between number of samples contributed for a given cell line
and the magnitudes of the changes in either expression or entropy themselves.
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Figure 3.18: Behaviour of DALGES when analysing ES-D3 and E14 cell lines in the HPM matrix.
Relationship between differential expression (x-axis) and p-value (y-axis) is shown. Leftmost plots
include the full range of values while, for clarity of the centre of the plots, the rightmost plots show
the data only between limits of -1 and 1 on the x-axis, for detail.
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Figure 3.19: Behaviour of DALGES when analysing CGR8 and iPS (OSKM) cell lines in the HPM
matrix.  Relationship  between  differential  expression  (x-axis)  and  p-value  (y-axis)  is  shown.
Leftmost plots  include the full  range of values while,  for clarity of the centre of the plots,  the
rightmost plots show the data only between limits of -1 and 1 on the x-axis, for detail.
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Figure 3.20: Behaviour of DALGES when analysing all four cell lines which contributed at least (n
>= 50) samples to the HPM matrix. Relationship between observed entropy change change (x-axis)
and p-value (y-axis) is shown. 



increases this further to 650,532 p-values satisfying this threshold, representing over 53% of all p-

values calculated. Initially this was cause for suspicion as to DALGES' performance. However, the

reason for this is that a gene need not have its level of expression conclusively linked to only one 

cell line. Indeed, it would be highly unlikely for there to be a gene which is only ever elevated or

depressed in one cell line, with respect to the entirety of the rest of the data. If cell line-specific

signatures can be detected with these sorts of methods, it is far more likely that different levels of

expression of the same gene may be associated with different cell lines. The p-values retain their

inherent utility, however, in giving any researchers using this methodology the ability to discard

mean fold changes which may arise due to chance.

3.8.2 Behaviour of DALGES – Normalised Shannon entropy mode

The running of DALGES using Shannon entropy was carried out in exactly the same manner as was

done for the differential expression runthrough, using a total of 1,001 permutations over 7 separate

instances, each carrying out 143 permutations using the precalculated bin matrix. The results of this

are given in full, including all entropy changes and p-values on the accompanying DVD, as an R

object,  under  “Chapter  3/DALGES/Entropy  Change  Method/Results  R  Object”.  In  the  case  of

differential expression, commonly-used fold changes may be used for the selection of interesting

genes. In order to select potentially interesting entropy changes in this data, however, the number of

genes chosen for each cell line's analysis was chosen by plotting all entropy changes in ascending

order and observing the two “tails” that form in each case, as can be seen in 3.15. These tails were

used as a guide for selecting an appropriate cutoff to select genes with strong (negative or positive)

entropy changes.

The cutoffs chosen for the four cell lines (ES-D3, CGR8, E14 and iPS (OSKM)) were -0.2, -0.1,

-0.1  and  -0.125  respectively  for  decreases  in  probe  entropy,  and  +0.05  for  increases  in  probe

entropy all cell lines analysed. These cutoffs are shown as horizontal red lines on the plots in 3.15. 

It  was expected that  there would be a  relationship between the values  obtained for differential

expression  and  entropy,  in  a  way not  unlike  that  found  for  RaSToVa.  However,  an  altogether

different relationship is apparent between the values calculated for normalised Shannon entropy and

differential expression when DALGES was run on these four cell lines. The relationship between

these two metrics is depicted for all four analysed cell lines across figures 3.21 and 3.22. From 
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Figure 3.21: Relationship between differential expression and 
entropy change analyses for all probes in analyses by DALGES 
for ES-D3 and CGR8 cell lines.
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Figure 3.22: Relationship between differential expression and 
entropy change analyses for all probes in analyses by DALGES 
for E14 and iPS samples



these, it is clear to see that differential expression and Shannon entropy appear to agree about a

majority of the genes being unrelated to any one annotation, as can be seen from the dense centres

of the plots for E14, CGR8 and OSKM_IPS cell lines. A crucial observation, therefore, to make

from the results of the ES-D3 plot in figure 3.21, is that the cloud of datapoints is not centred near

the 0,0 mark on the x and y axes, whereas the results for other cell lines are generally a lot closer to

this. This is likely to be due to the fact that the ES-D3 cell line is used mostly by the one laboratory,

the “Piersma AH” laboratory (see the data confounding assessments in figures 3.23 and 3.24.) This

explains why the vast majority of probes were found to be less entropic in the ES-D3 cell line in

figure  3.21;  the  ES-D3 samples  are  likely  to  be  more  homogeneous  than  the  other  cell  lines

analysed here, as they are mostly from the same source laboratory. Comment on this is made in

5.1.4.

However, what is also clear from these plots is that there are a large number of genes which occupy

areas of the plots indicative of having a large negative entropy change (that is, a gene becoming

much more predictable  within a cell  line),  yet  differential  expression analysis  suggests that  the

mean  expression  of  this  gene  is  close  to  that  which  would  be  expected  in  this  matrix,  given

randomly-permuted  submatrices.  These genes  occur  at  the zero mark of  the  x-axis,  but  stretch

below the y-axis' zero mark. Conversely, there are those genes on which the two methods disagree

wherein  there  is  a  large  apparent  change  in  mean  expression,  according  to  the  differential

expression  method,  but  no  real  change  in  entropy,  implying  that  the  gene  becomes  no  more

predictable (or, at least, stays quite variable within the cell line), but the mean expression of that

gene changes with respect to what would be expected, given the distribution of the HPM matrix.

These genes occur toward the zero mark on the y-axis, but occur away from the zero mark on the x-

axis.

Shannon  entropy  and  differential  expression  methodologies,  as  used  here,  may  be  capturing

different aspects of the data, as Shannon entropy also finds in the data many gene lists which are

significantly-enriched for biological pathways, for different cell lines, as seen below. Regardless,

the ability to demonstrate upregulated or downregulated genes as associated with a cell line by

using the differential expression mode of DALGES is believed by the author to be the more useful

methodology here, as it more directly suggests differences in cellular function for investigation in

the laboratory. The entropy measure may prove useful, however, in detecting confounded analyses,

perhaps, as is discussed in 5.1.4.
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3.9 The HPM matrix's annotations of source laboratory and cell line are highly 
confounded

As the development of RaSToVa and DALGES were done in parallel with the annotation of the

HPM matrix in chapter 2, it could not be foreseen that there was a high degree of confounding in

the HPM matrix which may bring the different effects on transcriptional profile of both source

laboratory and cell line so close together that they may not be able be strikingly different. Despite

this, RaSToVa still found a conclusive, significant result in that the source laboratory annotation

affects sample similarity more than the cell line annotation does, in this matrix. The caveat that the

results in this chapter pertain only to and are affected by the distribution of the annotations and

samples in this matrix is something which has been mentioned throughout the chapter for emphasis.

However,  it  is  difficult  to  visualise  the  extent  to  which  the  source  laboratory  and  cell  line

annotations are, in fact, confounded.

To  show  this  in  a  meaningful  manner,  a  heatmap  was  generated  in  which  all  cell  lines  and

laboratories were shown (figure  3.23). This heatmap represents every sample in the HPM matrix

and the annotations for cell line and source laboratory that are attached to them. This is an important

point  as  both  RaSToVa  and  DALGES  eliminated  some  laboratories  and  cell  lines  from  their

analyses for not being represented sufficiently in the HPM matrix, and this is the reason for the

occurrence of hitherto unmentioned cell lines and contributing laboratories. For each laboratory, cell

lines  which  its  samples  used were  counted.  Then,  for  each  laboratory  again,  these numbers  of

samples,  as  they  spread across  cell  line  annotations,  were  converted  into  percentages  for  easy

intercomparison (and to enable meaningful colour coding on a heatmap). This heatmap is therefore

a “source-laboratory”-centric view of the distribution of annotations. This can be seen by looking at

the vertical axis of, for example, the ES-D3 cell line. Some laboratories contributions to the HPM

matrix are made up entirely of samples bearing the “ES-D3” cell line annotation. Therefore these

are shown in red. Were the heatmap to be “cell line”-centric, then the vertical row of red boxes

shown for  the  ES-D3 line  would  not  be  red,  as  these  “cell  lines”  would  be  divided  amongst

“laboratories”, and thus not red. The heatmap was clustered by the default settings of the R function

which was used to generate it (the “pheatmap” package) (Euclidean distance, complete linkage), but

the dendrograms were removed as they do not represent anything relevant here; clustering was

performed simply to improve readability of the heatmap.
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Figure 3.23: Heatmap assessing confounding of the annotations of source laboratory (vertical axis)
and  cell  line  (horizontal  axis).  Values  are  representative  of  the  percentage  of  a  given  source
laboratory's samples that are annotated as being from a given cell line.



147

Figure 3.24: Heatmap assessing confounding of the annotations of source laboratory (vertical
axis) and cell line (horizontal axis). Values are representative of the percentage of a given cell
line's samples that are annotated as being from a given source laboratory. For example the E14
cell line is spread among many laboratories, while the ESD3 cell line is mostly used by the
Piersma AH laboratory. At the extreme, cell lines only used by one laboratory are in dark red
(100% confounding.)



This process was repeated, although this time with a “cell-line”-centric view of the confounded

nature of the annotations. Here it is shown how cell lines are distributed between laboratories, as a

percentage 3.24.

It can also be observed from this heatmap that there are those contributing laboratories which not

only use only one cell line, but where this cell line is never used by any other laboratory. These can

be seen as red squares (where 100% of the samples from the laboratory occur in this one cell line),

but where there are no other non-zero (read: non-deep-blue) squares in any of the four cardinal

directions from the single square of red.

A final note on the confounded nature of the HPM matrix, as regards source laboratory and cell line

annotations, is mentioned in 3.10.5. 

3.10 Summary of Research Outcomes

3.10.1 Summary of RaSToVa and DALGES methodologies

The  two  methods,  RaSToVa  and  DALGES were  developed  with  differing  objectives  in  mind,

although DALGES can be seen as an outgrowth of the RaSToVa method. Here an intercomparison

is given as to their objectives, strengths and weaknesses. Pseudocode scripts are given for both

RaSToVa and DALGES in appendix A.

Objectives

RaSToVa  was  developed  first,  and  is  a  novel  method  for  quantifying  how  much  a  specific

annotation in a given dataset appears to affect the similarity of samples within that dataset.

In the context  of this  work,  RaSToVa was used to investigate  whether  the annotation fields of

“source laboratory” or “cell line” appeared to cause samples to be more similar to each other. This it

achieves by a combination of random resampling of subsets of the data, and comparing these to the

samples which bear the annotation (e.g. a specific cell line) in question, observing how the samples

from the annotation in question are either more or less similar when compared to these randomly-

resampled subsets. The final result of RaSToVa is therefore indicative of which annotation appears

to make samples most similar. Whilst RaSToVa runs across all of one kind of annotation (e.g. all

cell lines) and then another (e.g. all source laboratories) in order to compare cell line and source

laboratory, DALGES’ objectives are much more specific.
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DALGES, developed second, extends the methodology of RaSToVa by taking the same random-

resampling idea and calculates differential expression between the samples that bear one annotation

of interest, and all of the other samples, at each iteration. This asks a totally different question to

RaSToVa and is their major defining difference. DALGES builds up, over many permutations, a

transcriptomic  (read:  gene  expression)  signature  that  appears  to  be  linked  with  the  specific

annotation (e.g. the “ES-D3” cell line) in question. In the case of this work, the chosen annotations

were specific cell lines chosen for being sufficiently represented in the assembled data. This work

therefore investigated whether or not DALGES could find transcriptomic (read: gene expression)

differences  between  the  aforementioned  cell  lines.  This  it  achieved  and  these  gene  expression

signatures were then successfully mined for GO pathway enrichment.

Strengths

One of the primary, greatest strengths that these two methods share is their fitting to the specific

data given to them. As the number of permutations (resamplings and comparisons) increases, both

methods gain increasingly-accurate pictures of the patterns within the data. Therefore, the exact

distribution of the data is  what is  taken into account  when results  are generated.  There are no

assumptions  of  distributions,  no  fitting  models  applied  and  no  information  is  lost  due  to

dimensionality reduction.

With both methods, the resampling part uses randomly-resampled subsets of the data which are

equal in size to the subset which contain the annotation of interest.  This is  an approach which

therefore  is  able  to  contextually  assess  the  statistical  significance  of  the  results,  which  is  of

particular relevance with DALGES, by repeatedly comparing the subset of interest (e.g. “ES-D3”

cells)  only ever  against  a  random subset  of  the  data  of  the same size.  This  is  reflected  in  the

statistical power reported, where comparing a very small number of samples to that same very small

number of samples is less informative compared to a larger number of samples. Methods which

compare a small subset of the data to a bulk statistic calculated over the rest of the entire dataset

have issues concerning the statistical inferences which can be drawn.

A second strength of both methods is the ease of understanding of their results. One does not need

an  advanced  understanding  of  machine  learning,  model-fitting  or  the  complex  mathematics  of

dimensionality  reduction.  In  the case of  RaSToVa,  the  measures  of  inter-sample  variability  are

commonly-used and easy to understand (Euclidean distance and Shannon entropy). In the case of

DALGES, which returns gene expression signatures and significances, there is no need for any
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deconvolution or reprocessing of the results to attempt to tease out an estimate of a gene expression

signature; a signature is provided and statistical significance provided on a probe-by-probe basis.

This  makes  both  methods  easy  to  use  without  the  need  for  a  dedicated  bioinformatician  or

statistician and the results are not affected by the method of choice for deconvolution.

A further strength of both RaSToVa and DALGES is that they can be applied to other types of data,

not  just  microarrays,  for  example  NGS technologies  such as  RNAseq.  The  flexibility  of  these

methods is another strength, in that the annotations which are fed into the method are in plain text

format. This makes it easy for researchers to modify these annotations and even create their own

that  may  not  have  been  in  the  original  dataset,  be  these  derived  variables  or  simply  new

information. For example, researchers can add new knowledge or test new hypotheses as to what

may be driving the patterning in the data. This is as simple as adding a new line of annotations to

the annotation matrix. 

For  example,  in  the  case  of  stem cell  research,  the  DALGES methodology  could  be  used  to

investigate the changes in gene expression which appear to accompany certain methods of cellular

reprogramming. This is where the use of large datasets becomes integral to the utility of DALGES,

where a researcher need not perform a large number of their own experiments to investigate such a

phenomenon;  they  can  perform  their  own  treatment  /  control-paired  experiment  for  their

reprogramming method of interest, and then use DALGES to place the gene expression signature of

their chosen reprogramming method in the context of however much public data concerning other

reprogramming methods that they wish (or can handle.)

Weaknesses

Both  RaSToVA and  DALGES  deliver  results  based  on  the  exact  distribution  of  the  datasets

provided to them. Whilst this is a great strength of the methods for the aforementioned reasons, this

also brings with it certain limitations.

First and foremost is that RaSToVa will only provide the user with the “relative contribution to

sample similarity” for the specific dataset used. It may be that in the data used in this work, there

was no clear difference in whether “source laboratory” or “cell line” annotations seemed to make

samples more similar to each other. Another, hypothetical dataset may show a clear advantage to

one or the other annotation. This does not invalidate RaSToVa’s utility or results, but it does require

that any researcher using it be aware of this limitation. Very small datasets would be highly likely to

give results that do not hold up to more general analysis. Therefore, RaSToVa results must not be
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taken as absolutes across all data. In this hypothetical situation, RaSToVa must be re-run on an

expanded  dataset  which  brings  together  sufficient  numbers  of  samples  from those  annotations

which the researcher wants to interrogate. RaSToVa is therefore limited in that the conclusions that

it comes to are only true for the data upon which it is run.

One simple way to potentially mitigate this weakness, or at least make the results applicable to

more  general  datasets,  is  to  include  relatively  transcriptionally-diverse  samples  when  running

RaSToVa, something which should be easy to do with so much public data available. This is still

limited, however, by the fact that the available annotations for public data suffer from a myriad of

inadequacies and inaccuracies, potentially requiring the user to perform laborious curation, as was

necessary  in  this  work.  With  simpler  annotations  such  as  “cell  line”  or  “source  laboratory”,

however,  this  should  not  be  a  prohibitive  time  cost  (compared  to  annotations  such  as  culture

conditions as were gathered for this work.)

DALGES carries a similar weakness, in that the signatures that it builds are, by definition, relative

to the distribution of the data that it  is given. The same mitigation strategy could be applied to

DALGES as to RaSToVa, by including transcriptionally-diverse samples in a larger dataset. This is

the intended method of application of both DALGES and RaSToVa.

Similarly, a weakness, not of the methods per se, but of their interpretation, concerns confounded

data.  If  the  annotations  investigated  by  the  user  are  highly  confounded  with  one  another,  this

presents a problem for RaSToVa particularly. 

When one annotation (e.g. cell line) is largely overlapped by at least one other, it is not possible for

RaSToVa to discern which of these two annotations mechanistically is driving sample similarity.

Whilst it is well known in the biological research community that “correlation is not causation”, an

extra level of caution is required here, where multiple annotations may overlap and appear to be

driving sample similarity. This is why RaSToVa should be run on multiple annotations in a given

dataset and the contribution to sample similarity compared between these annotations. In the case of

this work, where there wasn’t a clear advantage to either “cell line” or “source laboratory”, further

investigation  was  required  to  reveal  the  levels  of  confounding  present  in  this  data.  More

heterogeneous data, again, would be the way to address this issue.

RaSToVa has another weakness, which is that there is no clear, acceptable way to address the fact

that the annotations may partition the data into different numbers of subsets. For example, if there

are 100 laboratories represented in the data, but only 30 cell lines, then it stands to reason that

“laboratory” will appear to be responsible for greater sample similarity than “cell line” would, as
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dividing the data into 100 subsets is likely to create more homogeneous subsets than splitting the

data only 30 ways (as would be done to split it into subsets for “cell line.”) So is it really true, in the

case of  this  work,  that  “cell  line”  and “source laboratory” didn’t  contribute strikingly-different

amounts to sample similarity, given that “source laboratory” had the advantage of dividing the data

many more times?

This limitation of RaSToVa must also inform user’s interpretations of the method as it stands now.

Ways to try to control for this kind of effect are considered as future work and will require advanced

statistical approaches and substantial testing.

3.10.2 RaSToVa can quantify and make directly comparable the contribution to sample 
similarity of annotations in microarray data

An  important  advance  of  RaSToVa  is  the  ability  to  directly  and  meaningfully  compare  the

contribution of different annotations to sample similarity. Obviously, this would not be possible

without metrics  that  are directly  comparable,  which is  exactly  what this  method is  designed to

deliver.  Furthermore,  this  method's  metrics are  calculated in a  manner  which is  intended to be

understandable by audiences without expert knowledge of statistics. The method can also be readily

used without the need for proprietary software or great knowledge of computer programming. Only

basic file manipulation, knowledge of statistics and information theory and some advanced scripting

are required in order to use Bioconductor and the statistical programming language R and repeat

this analysis on other data.

Limitations  of this  approach which must  be declared boil  down,  unavoidably,  to  complications

arising from the data and the nature of the samples themselves. For example, it stands to reason that

samples  from a certain  laboratory  may well  be  more  similar  to  each other  than  samples  from

without  that  laboratory  simply  because  the  samples  from one  laboratory  are  likely  to  include

samples in similar conditions being manipulated in similar manners. If all of the samples from one

laboratory are a single experiment investigating the effects of a certain treatment, then it would be

expected that these samples would bear great similarity to one another, certainly when compared to

other  samples  not  from this  experiment.  Conversely,  if  one  source  laboratory  has  contributed

several different experiments to the gathered data, then more variability would be introduced simply

because multiple experiments are present. However, it also stands to reason that the effect of such
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sampling issues is diminished the more data is gathered, in the case of this work, 1,101 individual

samples.

Another potential issue arises from the overlap between different annotations. That is to say that

certain laboratories will use many cell lines, whereas other laboratories may well only use a couple,

or  even just  one.  At  first  appearance,  this  may seem to be  greatly  disruptive  to  our  efforts  to

delineate the effects of the two. However, this is not the case as the limits seemingly imposed on our

ability to ask our questions of the data are actually controlled for within the method. If it is the case

that a large laboratory only uses one cell line (a worst-case scenario for trying to delineate the

effects of laboratory vs cell line), this will actually be “subtracted out” in the final conclusion as,

when the analysis is run for laboratory and then for cell line, highly-similar (they are extremely

unlikely to reach being identical due to the random sampling steps) values would be produced for

these samples,  meaning that,  exactly  as  intended,  the  contribution  to  sample  similarity  of  both

laboratory and cell line for these samples would result  in a “draw”, which may actually reflect

perfectly the issues surrounding our fundamental question when it comes to the field of microarray

data analysis. That is to say that precisely because of the inherent complexities of the annotations of

microarray experiments, it is extremely difficult to ascribe a greater or lesser effect to annotations

such as laboratories or cell lines without specifically-designed experiments for that purpose, as the

distribution of data available simply does not allow for the unambiguous and definite delineation of

these  effects.  This  is  what  urges  caution  against  drawing  conclusions  regarding  the  important

sources of sample similarity before large-scale analysis such as this has been carried out, such as

has been done in the case of suggesting source laboratory as the primary factor in  (Newman &

Cooper 2010). Our analysis' conclusions are therefore robust in the face of the complex nature of

the data as the statistics calculated by it  show, without bias, whether or not annotations can be

observed to be associated with more or less of the similarity in that data. To summarise – if the

nature of the data masks the relative effects of source laboratory / cell line etc., then this will be

reflected in the results and no false positive will be found, whereas if the data is capable of showing

it, delineation of the effects will be successful.
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3.10.3 Source laboratory contributes marginally more sample similarity to samples in the 
HPM matrix than the cell line annotation

It was found during this chapter that, given the distribution of the data in the HPM matrix and

particularly,  with  respect  to  the  distribution  of  the  annotations  that  accompany  this  data,  the

contribution to sample similarity of the “source laboratory” and “cell line” annotations were similar,

as can be seen from the final comparison figure  3.13, although source laboratory was found to

contribute marginally more sample similarity. In euclidean distance mode, a significant difference

was found between the contributions to sample similarity of the “cell line” and “source laboratory”

annotation with p = 0.049, whereas the entropy change method tended towards significance with a

p-value of p = 0.061.)

This suggests that, from this data, being from the same laboratory makes samples more similar to

each other than does simply being of the same cell line. The confounded nature of the data used was

not apparent during the development of the methods in this chapter as the annotations were still

being completed. Special notes on the confounded nature of the data are given in 3.10.5. After all,

RaSToVa can only ask questions about annotations and their contribution to sample similarity given

the distribution of the data that it is given.

3.10.4 The DALGES methodology finds transcriptional profiles which may be linked to cell 
lines

This chapter also details the use of the DALGES methodology (see section 3.5) to investigate the

possibility of linking cell lines with transcriptional profiles. Again, despite the development and

assessment of the behaviour of a method which is suited to this function, it must be stressed that all

methods in this chapter were developed and made ready while the annotations of the data were still

being completed and, therefore, the level of confounding between source laboratory and cell line

was not known at the time. This chapter therefore contains a first  attempt at  the assignment of

transcriptional profiles to cell  line annotations in this  data,  but the points set  out regarding the

confounded nature of the data in section 3.10.5 must be stressed.

Regardless,  some  interesting  results  are  obtained  through  the  use  of  random permutation  and

differential  expression  /  entropy change  analyses  here,  as  are  summarised  in  figure  3.16.  This

chapter does not attempt to infer too much about the biology which may be behind the finding of
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the biological pathway enrichments that resulted from the use of DALGES in investigating these

four different cell  lines,  for two reasons.  Firstly is the aforementioned issue of the confounded

nature of the data (see section 3.10.5), but also because the goal of this chapter was more to test the

possibility of using a method such as random permutation followed by differential  expression /

entropy change to such a question. The method itself showed its utility in this chapter, but it was

decided not to concentrate on making likely premature statements about the biological differences

between these cell types in this data due to the confounded data issue.

Even so, it is interesting to see that the Wnt receptor signalling pathway is so prevalent among these

enrichments,  possibly suggesting that  there are  indeed differences in  endogeneous Wnt activity

between these cell lines. This would be in agreement with (ten Berge et al. 2011) who found that

certain cell lines, including CGR8 and E14, produce their own Wnts. 

Other potential differences were found in this analysis and so brief comment is offered here on what

enrichment for different pathways may mean, to underscore the utility of investigating using this

same  methodology  in  more  heterogeneous  data:  Cell  lines  found  with  upregulation  of

developmental pathway genes may suggest that these cell lines are  more prone to differentiation

than  others.  Likewise,  those  found  with  increased  expression  of  proliferative  genes  may  have

advantages  in  cell  proliferation and turn  over  more  quickly than other  cell  lines.  Other  named

signalling pathways occur  in  this  summary figure  also,  such as  BMP,  VEGF and MAPK/ERK

signalling. Inherent differences in these signalling pathways would be very interesting to investigate

and could prove most informative in future work when choosing different cell lines to investigate

phenomena  that  may  be  affected  by  such  signalling  pathways.  Interestingly,  there  was  also

enrichment found in this summary figure for “stress response”. Enrichment for the stress response

biological pathway here may suggest that some cell lines have decreased DNA repair, antioxidant or

other  defences.  As  a  reduction  in  DNA repair  may be  concomitant  with  a  general  increase  in

replicative vigour, the finding of an enrichment for stress response warrants future investigations of

the differing capacities of commonly-used cell lines in mESC research for their relative levels of

DNA repair enzymes, antioxidant capacity et cetera. The presence of an enrichment for apoptosis-

related pathways, for example, may indicate that a given cell type is more prone to cell death, which

may be of particular interest when, for example, comparing data contributed by groups generating

iPS cells using different methods, which neatly brings about the last point in this summary:
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One final and extremely interesting use of this methodology may be in comparing the efforts of

groups involved in generating iPS cells. Intercomparison of the transcriptional profiles of iPS cells

from different groups, along with ground state mESCs may offer new insight into the effects of

different iPS generation technologies, and how they affect different pathways. For example it may

be found that iPS generation methods that are harsher on the cells in question may select for and

subsequently recover and multiply cells with enhanced DNA repair capabilities and resistances to

other  stresses,  but  these  may  be  compromised  in  their  ability  to,  for  example,  proliferate.  A

methodology such as DALGES may be able to use transcriptomic data (whether microarray or, as is

rapidly becoming the fashion, RNAseq) to make testable predictions about these cells which could,

in  turn,  provide  early  warning to  laboratory  groups  in  the  form of  seemingly  upregulated  and

downregulated pathways in their iPS cells, as compared to mESCs and other groups iPS generation

efforts.  With  increasing  amounts  of  public  data  available,  methodologies  such  as  DALGES,

designed to be easily understandable by non-bioinformaticians and, indeed, which do not require

any non-free software, would ideally allow groups in future to rapidly compare their own efforts to

this  rapidly-expanding amount  of  public  data,  increasing  robustness  and providing  insight  into

which  methodologies  /  cell  lines  et  cetera appear  to  be  associated  with  which  biological

phenomena. Again, it was decided to treat only as a suggestion, at this point, the results summarised

in figure 3.16, due to the confounding of the data, which can be visualised in figure 3.23.

3.10.5 Special addendum on the confounded nature of the HPM matrix

The most important caveat to take into consideration when interpreting all of the results from this

chapter, as has been repeatedly pointed out in the previous text, is the confounded nature of the

annotations in the HPM matrix. In brief, the manual annotations took a great deal of time to reliably

complete and the methodologies in this chapter were being tested out informally, during that time,

on small  subsections  of  the data.  Randomised data  with spiked-in “similarities”  or  “annotation

associated levels of gene expression” were also sometimes used to test whether or not RaSToVa /

DALGES were successful in finding these spiked-in phenomena. Therefore, the methodology of

RaSToVa, in its entirety, and most of the functionality of DALGES (excepting only the use of pre-

calculated matrices) were in place at about the same time as the annotations were coming to an end.

After final checking of the annotations, it became clear the level of lab / cell line confounding that

was present in the annotations (see figure 3.23).
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Therefore it must be said of both RaSToVa and DALGES, crucially, that these methods both have

performed their tasks to the letter for the data and annotations that were available. To the author's

knowledge, this is still the largest to-date analysis of high-pluripotency-marker mESC microarray

data. There was initial concern that this confounding would result in absolutely no difference being

found between the contribution to sample similarity of lab or cell line, and worse, that there would

be wholly uninteresting pathway enrichments found when applying DALGES to the analysis of

transcriptional profiles associated with cell lines. Luckily this was not the case and both methods

have generated very interesting initial results; RaSToVa found that “lab” contributes slightly, but

significantly (p = 0.049, by euclidean distance method), more sample similarity than “cell line”

does, and also there were pathway enrichments assigned to the different cell lines (E14, CGR8,

ESD3 and an iPS cell  line for interest's sake).  These pathways appear to be relevant to mESC

biology,  being  concerned  with  signalling  pathways,  proliferation,  stem  cell-related  pathways,

apoptosis, stress response et cetera. This caveat is placed here simply as a precaution against taking

these results to be reproducible in larger data as it is the authors wish to carry out both the RaSToVa

and DALGES methods on much larger data with far less confounding between crucial annotations.
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Chapter 4 – 

Investigation  of  Transcriptional
Events  Associated  with  Progression
from  Pluripotency  to  Early
Differentiation

4 Investigation of Transcriptional Events Associated with Progression from Pluripotency to 
Early Differentiation
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4.1 Research Questions

4.1.1 Overview

Mouse embryonic stem cells are not one particular cell type in one particular state. In vivo, mESCs

progress from a naïve, ground state  (Ying et al. 2008) through to a primed state of pluripotency

(Brons et al. 2007), (Tesar et al. 2007). The objective of this chapter as a whole is to leverage the

large (n = 1,101) high-pluripotency-marker matrix of microarrays in an attempt to investigate the

transition between these two states.  An overview of  and details  of  the  experiments  behind the

characterisation of the primed pluripotent state are already given in this work (see section 1.5). For

completeness,  however,  a  section  in  this  introduction  is  given  over  to  summarising  the  key

differences which define the naïve and pluripotent mESC states (see section 4.1.7).

Whilst the pluripotent state and the transcriptional networks that underpin it have been the subject

of much focussed research already (see (Nichols and Smith, 2012), (Yeo and Ng, 2013), (Chambers

and Tomlinson 2009), (Young RA, 2011) for excellent reviews and the relevant parts of chapter 1

for a brief overview), there remains comparatively less understanding of the exit from pluripotency

(Young RA, 2011), particularly regarding the very earliest transcriptional events which may occur

as  naïve  pluripotency  starts  to  progress  towards  primed  pluripotency.  Most  experimental

observations of the initiation of differentiation and the beginning of the collapse of pluripotency are

made alongside a drop in known pluripotency markers such as Oct4, Nanog or especially in naïve

pluripotency markers such as falling Rex1 and rising FGF5 (Sene et al. 2007). 

The work undertaken in this chapter can be summarised into the essential steps given below.

4.1.2 The presence of sufficient and relevant information in the HPM matrix for useful 
interrogation

As the HPM matrix has been filtered for only the highest levels of Oct4, Sox2 and Nanog, there was

a  risk  that  such  filtering  rendered  the  dataset  too  homogeneous  for  meaningful  interrogation,

perhaps losing vital information concerning progression between naïve and primed pluripotency.

Two questions required answering to address this potential pitfall. Firstly, a general assessment of

the loss of information as a result  of the aforementioned filtering was undertaken. It  would be

expected that the matrix would become significantly (but not drastically) more homogeneous than if

samples were only removed at random, as the intention of the filtering is to leave only  bona fide
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pluripotent samples. This was also tested (and found to be true), see section  4.2.1 for methods.

Secondly,  even  if  the  information  content  lost  was  not  deemed  to  be  excessive,  meaningful

relationships between genes relevant  to  mESC biology should still  exist.  This  was assessed by

investigating whether canonical pluripotency factors maintained strong, expected relationships with

other genes in the data relevant to both maintenance of mESC pluripotency and mESC priming /

differentiation.

4.1.3 Determination of a suitable gene for ordering the HPM matrix between pluripotency 
and early differentiation

To  interrogate  the  HPM  matrix  for  information  regarding  progression  from  naïve  to  primed

pluripotency, the data required sorting broadly between samples bearing the transcriptional profile

of naïve pluripotency, to those of primed pluripotency and beyond. As experimental annotations

could not be easily used or relied upon to achieve this, the approach taken to order the HPM matrix

was to identify a single gene whose expression broadly sorted the HPM matrix between naïve and

primed pluripotency. Details on the criteria for the selection of this gene are given in the appropriate

methods section, section 4.2.2.

4.1.4 Assessment of the ordering of the HPM matrix between naïve and primed pluripotency

The success of the broad ordering of the HPM matrix between naïve and primed pluripotency was

gauged through a combination of methods, given in more detail in section  4.2.3. These methods

used  both  known  naïve  /  primed  pluripotency  markers  and  experimental  annotation  cross-

referencing to  confirm that  the  desired  broad sorting  of  the  HPM matrix  was  successful.  This

assessment was entered into without the unreasonable expectation that a single sorting gene (or

even a  set  of genes) would or could create  a  perfect  spectrum between pluripotency and early

differentiation (see method section 4.2.3 and results section 4.3.4).

4.1.5 Use of the ordered HPM matrix to observe transcriptomic changes between naïve and 
primed pluripotency by differential expression analysis

With matrix N1101 broadly sorted between naïve to primed pluripotency and beyond, interrogation

of this matrix for transcriptional events occurring between these states was undertaken. Differential

expression analysis is ubiquitous in gene expression research throughout the biological sciences,

and involves calculating differences in the level of expression of genes in one group of samples

versus  another,  where  a  particular  biological  phenomena  of  interest  separates  the  two  groups.
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associating the resulting changes in gene expression with the biological event. In this case, four

areas of interest exist: “early” naïve pluripotency, “late” naïve pluripotency, primed pluripotency

and early exit from primed pluripotency. 

As the matrix’s samples were broadly sorted into a progression of these cellular states,  marker

profiles for those cellular states were used to identify groups of samples in each cellular state for the

differential expression analysis (e.g. low levels of Rex1 and high levels of brachyury (T), Otx2  and

FGF5 are known to define the primed pluripotent state (see sections  1.5 and  4.1.7)). Using these

different regions, several differential expression analyses were performed and finally, to investigate

the relevance of the resulting lists  of differentially-expressed genes  to  mESC biology,  pathway

enrichment analysis was carried out. For further details of the methodology, see 4.2.4. 

4.1.6 Potential of a scanning window approach for investigation of transcriptional events, 
states and pathway enrichments across the Klf4-ordered HPM matrix

Following the differential expression analysis approach, the final work in this chapter asks the most

crucial question: can the HPM matrix, ordered broadly by cellular state, reveal novel genes which

change their expression significantly at any given point between these cellular states, specifically

the “early” to “late” naïve pluripotency transition? Whilst differential expression will likely capture

transcriptional profiles pertaining to the beginning and end points of any cell state transition as the

expression of the ordering gene decreases, there is great interest in mapping which changes take

place at which times / in what order, between early and late naïve pluripotency. There may well be

genes  whose  expression  changes  only  transiently  from  early  naïve  to  late  naïve  /  primed

pluripotency, and therefore may be missed by a more simplistic “start-versus-end-point” analysis.

To scan across the change from naïve to primed pluripotency as a process, rather than a switch, is

precisely the utility of such an ordered matrix.

Therefore the final approach taken in this chapter is a scanning-window approach to ask: which

genes significantly change their expression at any time as these cellular states change, particularly

between early naïve and late naïve pluripotency? Does a scanning window approach across the

whole matrix find all of the pathways enrichments that other analyses found? Which of these genes

were not already known in the literature? These genes can be further investigated experimentally as

potentially  sensitive  markers  of  different  stages  of  the  transition  between  naïve  to  primed

puripotency in mESCs. The specifics of the methodology are given in section 4.1.6.
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4.1.7 Summary of defining attributes of naïve versus primed mESCs

Several  good  markers  are  already  known  in  the  literature  which  signal  the  exit  from  naïve

pluripotency and are used to effectively separate naïve and primed mESCs. Most canonically of

these are the moderate drop in pluripotency markers Oct4 and Nanog, but large drop in Rex1, along

with a concomitant large rise in expression of Otx2, FGF5 and brachyury (T)  (Sene et al. 2007).

These markers are the ones used in this work to definitively draw a line between the two states as

these are amenable to easy quantification in microarray data. The objective of this chapter is to view

the transition between these two states as a gradual change, and look for any as-yet unknown factors

which may accompany this transition.  This is one of the advantages of using large numbers of

samples which span a biological phenomenon of interest (Ramasamy et al. 2008).

Though a detailed literature review is beyond the scope of this thesis, here is given a brief summary

of several crucial, defining differences between the naïve and primed mESC states. naïve mESCs

are not dependent on MEK-ERK signalling, FGF2 or TGFβ/Activin A signalling , while primed

mESCs are.  There  is  also  a  pronounced  switch  between  the  use  of  the  distal  to  the  proximal

enhancer of Oct4 as primed pluripotency arises. Another defining point of ground-state mESCs is

their  globally  hypomethylated  state,  which  gives  way  to  increasing  methylation  and  therefore

transcriptional restriction as the primed state comes about. naïve mESCs have not undergone X-

inactivation, while primed mESCs have (XaXa vs XaXi respectively). Nanog, Oct4 and Sox2 drop

moderately from naïve to primed pluripotency, as do the Klfs and Esrrb. The Prdm14/Nanog-based

maintenance of pluripotency is  also lost  from naïve to  primed pluripotency.  Further,  there is  a

switch from the expression of E-cadherin molecules to N-cadherin molecules. The cells also change

their  metabolic activities as a whole,  moving from a mixture of oxidative phosphorylation to a

glycolytic state. Finally, another property that is striking between these two states is that whilst

naïve  mESCs  are  readily  capable  of  being  coaxed  towards  primordial  germ  cell-like  cells

(PGCLCs), whilst, in contrast, primed mESCs are notoriously refractory to this.
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4.2 Methods

4.2.1 Confirmation that the HPM matrix retains transcriptional information relevant to 
pluripotency

For  the  general  information  loss  assessment,  a  measure  of  the  overall  information  content  in

matrices N3312 and N1101 (the HPM matrix) was taken. This was done by simply calculating the

normalised Shannon entropy of all probes in both matrices.

The distribution of entropies within both matrices was then compared with a view to demonstrating

that there was not a drastic reduction in the amount of information in the HPM matrix after filtering

all samples for the highest levels of OSN. Means of probe entropies were calculated for both the

N3312 matrix and the filtered N1101 matrix.

Furthermore, as touched upon in section 4.1.2, the purpose of the filtering was to leave behind only

bona fide pluripotent  samples,  and so it  would be  expected that,  now representing  only a  few

cellular states and the transition between them, the HPM matrix would be more homogeneous than

if samples were simply removed at random, but not drastically so. This was confirmed using a

random permutation  approach  to  ask  what  the  expected  remaining  information  content  of  the

dataset would be if samples were removed at random, rather than in a targeted manner by filtering

for the highest expression of pluripotency factors Oct4, Sox2 and Nanog.

Datasets were therefore generated by randomly sampling 1,101 samples from the N3312 matrix

(without replacement) and the same calculation of all probe entropies was performed on these. A

mean probe entropy was calculated for each randomly resampled matrix. This was repeated for 50

random resamplings. The mean probe entropies of the 50 randomly-resampled matrices (n = 1,101)

were then shown in comparison to the observed mean probe entropy of the Oct4, Sox2, Nanog-

filtered matrix.

To confirm that the filtered dataset still contained information pertaining to mESC pluripotency,

Pearson correlation of all  three pluripotency factors was calculated for each OSN factor,  to  all

45,100 other probes. This resulted in 3 lists of correlations that were then, for enrichment analysis,

separated into positive and negative correlations to each of the OSN factors. Lists of genes found to

have  absolute  Pearson  correlations  stronger  than  +/-0.5  for  each  pluripotency  factor  were

considered to have strong relationships with the OSN factors. Pathway enrichment analysis was
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then carried out on these lists separately to ascertain whether or not the OSN factors still maintained

detectable transcriptional relationships with genes enriched for pathways related pluripotency and

exit from it. Pathway enrichment analysis was carried out using the DAVID bioinformatics tool and

pathways found to have a q-value of less than 0.05 were considered to be significantly enriched.

4.2.2 Selection of a suitable guide gene for ordering the HPM matrix

The method for selection of a suitable ordering gene involved four criteria:

Firstly, the ordering gene should have a wide range of expression in the data; this larger range in a

guide gene providing for gradation between one cellular state and another. This was calculated, per

probe, as that probe’s maximum expression in the HPM matrix, minus the minimum expression.

Secondly, the ordering gene should occupy a maximal number of states between its minimum and

maximum value and thus provide for a spectrum of values from high to low, again providing for as

smooth a high-to-low transition as possible across the data.

Thirdly,  the ordering gene must change its  expression in direct correlation to pluripotency as a

biological  phenomenon.  This  was  scored  by  Pearson  correlation  to  one  of  the  canonical

pluripotency factors  Oct4,  Sox2 or  Nanog,  whichever  retained the greatest  information content

(read: entropy) in the HPM matrix (see section 4.3.3 for details.)

Fourth, the ordering gene should ideally, when chosen by the above scoring methods, pass a final

criterion of having a known, publsihed role in mESC pluripotency / exit from it.

To score and rank genes for both their correlation to one of the canonical OSN pluripotency factors

as well as their information content in the data, a multiplicative score was calculated as the product

of the absolute Pearson correlation to the pluripotency factor and the normalised Shannon entropy

of that gene (absolute correlation multiplied by entropy.) A candidate list of the top scoring genes

was generated and then the best candidate gene with a role in mESC pluripotency was selected.
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4.2.3 Confirmation of the broad sorting of samples between naïve and primed  pluripotency 
by the selected ordering gene

To verify  that  ordering  the  HPM matrix  using  the  selected  ordering  gene  (Klf4)  does  indeed

generate a matrix broadly sorted between naïve and primed pluripotent samples, observation of

known marker patterns was undertaken.  Known markers  which differentiate between naïve and

primed pluripotency (FGF5, Rex1 and brachyury (T)) were observed across the ordered matrix, to

confirm progression from FGF5low Brachurylow Rex1high (naïve) samples to FGF5high, Brachyuryhigh

Rex1low samples (primed). The chosen markers were therefore plotted as smoothed lines alongside

the decreasing values of gene expression of Klf4.

To confirm that this desired progression of change in known naïve / primed marker genes is, in fact,

due to the choice of Klf4 as the ordering gene, this same method of plotting the expression of these

marker genes was performed when ordered instead by a housekeeping gene, GAPDH. Conversely,

to demonstrate that a gene correlated to, but with higher information content than, the pluripotency

marker with the highest information content (Nanog), achieves a smoother progression of change in

naïve / primed pluripotency marker profiles, the same plot was repeated, but this time ordering the

matrix by Nanog.

To demonstrate the validity of using the multiplicative (entropy x correlation) scoring method, and

rule out that Klf4 was only coincidentally useful for matrix ordering purposes, another gene from

the candidate list of ordering genes was chosen (Jam2) and the same progression of markers plot

generated.

Experimental annotations were checked across several regions of the Klf4-ordered matrix as further

verification of the broad sorting of samples between naïve and primed pluripotency. Regions where

Klf4  was  notably  changing  expression  were  chosen,  and  annotations  cross-referenced  for  a

randomly-chosen sample that falls in this area. In addition to the individual sample, if other samples

from the same experiment are to be found in the HPM matrix, these were cross-referenced as well

and annotations checked.

Results of this (detailed in  4.3.4) were generated both as a table and graph for visualisation. The

table  consists  of  a  Klf4-rank-ordered  list  of  experimental  accession  numbers,  sample  accession

numbers, and summary of sample annotations, a Klf4-rank (where 1 is the highest expression of
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Klf4)  and  a  colour  code  on  a  scale  of  green  to  dark  red  between  naïve  pluripotency  and

differentiation respectively (see section 4.3.4 for details).

For the graphical form and to represent the progression of naïve pluripotency to early differentiation

as being concomitant with decreasing Klf4, the marker method and the annotation method were

combined into a single figure. Here, the same colour coding from the aforementioned table was

superimposed (as vertical  lines at  their  corresponding Klf4-rank positions) over smoothed lines

showing the Klf4-ordered changes in FGF5, Brachyury (T) and Rex1 (Zfp42).

4.2.4 Gross differential expression analysis of guide-gene ordered HPM matrix

For  the  differential  expression  analysis  between  regions  of  the  Klf4-ordered  HPM  matrix

representing different cellular states, four such regions of interest were defined using both Klf4

decrease and the aforementioned published markers that differentiate between naïve and primed

pluripotency, these being FGF5, brachyury (T), and Rex1. See results section (4.3.5) to see these

regions along the Klf4 spectrum.

Between each region, differential expression was calculated by subtraction of the mean of the log2-

transformed RMA values of one block of samples from another. A 50-sample wide region of the

Klf4-ordered  HPM  matrix  was  used  to  represent  each  region  /  cellular  state  (early  naïve

pluripotency, late naïve pluripotency, primed pluripotency and early exit from primed pluripotency.)

Differential expression was calculated in this manner and coupled to a test of statistical significance

using a Mann-Whitney U test, on a probe-by-probe basis. A threshold of significance was set at p <

0.05. The relationship between the observed fold change in gene expression and the p-value was

also plotted for the first analysis (highest-Klf4 region vs lowest-Klf4 region) to ensure expected

behaviour of such an analysis.

Specific attention was focused on the region between early and late naïve pluripotency, as this was

the primary research question of interest in this chapter. Manual interrogation of the genes which

changed their expression significantly between these two defined regions of the Klf4-ordered HPM

matrix was carried out. Full lists of those genes which significantly changed expression across this

region of the matrix were retained for this thesis, and both a heatmap of selected changes and a
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barplot  summarising  good  candidate  genes  was  plotted.  Details  of  these  are  found  in  the

corresponding results section, section 4.3.7.

As  with  previous  analyses,  pathway  enrichment  analysis  was  carried  out  using  the  DAVID

bioinformatics tool for further interrogation of the meaning of the groups of genes found to be

significantly changing their expression (p < 0.05). For these pathway analyses, a q-value of < 0.05

was considered to be significant.

4.2.5 Development and calibration of a scanning window approach for the detection of 
transcriptional events across the Klf4-ordered HPM matrix

Whilst this method is referred to as a “window-scanning” approach, the method actually involves

two separate windows; a “start”  window and a “moving” window. These two windows can be

thought  of  as  being analogous to  the “from” and “to”  comparisons  of  a  traditional  differential

expression analysis.

The “from” window encompasses the first group of adjacent samples (at the high Klf4 side of the

spectrum) and the moving,  “to” window starts  also at  the high Klf4 side of  the spectrum, but

incremented by one sample towards the lower Klf4 end. Effectively, if 50 was chosen as the number

of samples in each window, then the “from” window would be comprised of samples 1 to 50 along

the  Klf4  spectrum  (where  1  is  highest  Klf4)  and  the  moving,  “to”  window  would  begin  by

containing samples 2 to 51.

A mean expression value for the current probe in each of the two currently selected groups of

samples  is  calculated,  and  differential  expression  analysis  performed  between  them.  If  mean

expression of that gene (probe) has passed a set threshold (e.g. 1 log2 fold change), then the same

statistical test as in the previous analyses (section 4.2.4) is performed, the Mann-Whitney U test, to

assess the statistical significance of this change.

The “from” window then is moved to the current position where the change was found (essentially,

the “from” window now references exactly the same group of samples as the moving, “to” window

does, and then the moving, “to” window is moved along again by one sample, to start looking for

the next significant change in the expression of the current probe (if any.)
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The results of the scanning window analysis are stored in two matrices. In both matrices, each row

represents a probe on the microarray (in this case, 45,101 probes.) The second dimension has a size

of:

s – (w-1)

Here  s is the number of samples in the data, being 1,101 microarrays, and  w is the width of the

scanning window. This corresponds to the number of windows that will actually be scanned by the

method before the moving window iterates its way to hitting the end of the matrix (in this case, the

lower end of Klf4 expression.) A graphical representation of this method is given in figure 4.1.

To arrive at satisfactory values for both the scanning window widths and the threshold of expression

change which should be used, it was decided to run the scanner over the whole matrix with different

values  for  each,  as  a  form of  calibration.  In  order  to  render  this  section  of  the  work  directly

comparable to the previous, differential expression analysis section (see ), the 1 log2 fold change

was one of the thresholds used, although tests of the method were also run with the threshold set at

1.5, 2 and 2.5 log2 fold change. As concerns the scanning window width, tests were carried out

using 3, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50-sample-wide windows. 

The number of genes significantly changing their expression at any given scanning window was

also recorded, as a way to observe which regions along the Klf4 expression spectrum the most

interesting changes may be taking place.  As a  mean is  calculated in both the “from” and “to”

windows, these means may be affected by outliers as the scanning window width is made smaller.

The scanning window size tests therefore sought to find the smallest window that could be used

before the plots of “number of genes changing expression in this scanning window” appeared to

become noisy, see results section 4.3.9 for detail on these plots.

With an acceptable scanning window width and an expression change threshold set, the scanning

window analysis was performed on the ordered HPM matrix between the same regions detailed

previously: the transition of greatest interest (early to late naïve pluripotency), but also late naïve to

primed pluripotency, primed pluripotency to early differentiation, and a full run across all of the

data. For each of these, the total number of genes that changed expression by more than 1 log2 fold

and that also passed the significance threshold (p < 0.05) were recorded. Pathway enrichment 
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Figure  4.1: Graphical overview of the window scanning approach to analysis of transcriptional
events in the Klf4-ordered HPM matrix. For this description, a window width of 25 samples and a
threshold of 1 log2 fold change is used. From the whole data matrix (a), for each probe in turn, a
starting window is drawn across the 25 highest-Klf4 values for this probe. A scanning window is
also drawn, but offset by one value towards the lower Klf4 end of the matrix from the starting
window  (b). This scanning window is moved towards the low-Klf4 values for this probe and, at
each increment, the mean expression (mean of values in the window) of the scanning window is
compared to the start window (c). If the scanning window has hit the end of this probe (h), then that
ends the analysis of this probe, and the next probe is analysed, with scanning and starting windows
returned to their initial positions from (b). If the observed fold change (mean of scanning window
minus mean of starting window) does not satisfy the threshold of 1 log2 fold change in either
direction, the scanning window is moved towards the low-Klf4 end of this probe (h), then (i), then
(b). However, if the fold change is found to be greater (in either positive or negative direction) from
the starting window (c), then a p-value is calculated for this change by Mann-Whitney U test (d).
These results are then recorded for this scanning window for this probe (e) and the starting window
is moved to the current position of the scanning window (f). The scanning window is then moved
along (g) and the process repeated from (c), unless this was the last scanning window (h), in which
case the process starts from the next probe (j), with scanning and starting windows returned to their
initial positions from (b).



analyses  were  carried  out  on  those  genes  for  each  of  the  4  analyses  for  comparison  to  the

differential expression analysis described in section 4.2.4.

Finally, a summary comparison between the total numbers of genes found to significantly change

their  expression,  as  well  as  the  total  numbers  of  pathways  found  to  be  significantly  enriched

between the different regions of the Klf4-ordered HPM matrix, for both the differential expression

analysis and scanning window analysis were computed and are discussed in results section 4.3.13.
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4.3 Results

4.3.1 The HPM matrix retains substantial information content post-filtering

Normalised Shannon entropy was calculated on a per-probe basis for both the HPM matrix and for

the matrix from which is was made, the N3312 matrix. A histogram showing the distribution of

probe  entropies  for  both  of  these  matrices  is  given  in  the  left  side  panels  of  figure  4.2.  The

distribution of entropies of probes in both matrices is also shown as “s-plots” provided in the right

hand panels of figure 4.2 Here, the entropies of all probes for each matrix are sorted into ascending

order. The mean probe entropy for both matrices was 0.629 (3 d.p.) and 0.565 (3 d.p.) for N3312

and the HPM matrix respectively. These means are marked on both the histograms and the “s-plots”

by black lines (figure 4.2).

Comparing the mean probe entropy of the HPM matrix (0.565 (3.d.p.)) to the distribution of mean

probe entropies from the randomly-permuted (n = 1101 sample) submatrices from N3312, it is clear

that a larger reduction in mean probe entropy has occurred than that which would be expected by

simply drawing 1101 samples at random from matrix N3312 (see figure 4.3). A direct comparison is

shown between the distribution of probe entropies in these two matrices in the form of the final part

of figure 4.4 in the form of boxplots.

This preliminary look at the variability of the unfiltered (N3312) and filtered high-pluripotency-

marker (HPM) matrices shows that there is a small overall reduction in the amount of variability

present. Mean probe entropy reduces by 11.317% (3 d.p.) (0.064 (3 d.p.)). 

Between matrix N3312 and the HPM matrix, there is a reduction of 2211 samples, reducing the

number of  samples  by two-thirds  (66.757% (3 d.p.)),  it  might  be expected that  entropy would

decrease considerably.

The mean of the mean probe entropies of the randomly permuted submatrices was 0.627 (3 d.p.),

providing a benchmark of the amount of entropy expected to remain in a matrix of size n = 1,101 if

the samples remaining were no more homogeneous than those removed. The reduction in mean

probe entropy in the HPM matrix due to the specific nature of samples removed from matrix N3312
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is therefore estimated as (0.0627 – 0.0565 = 0.062 (3 d.p.)). This confirms that the HPM matrix has

become more homogeneous as a result of the specific samples remaining, rather than simply as an 
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Figure  4.2: Distribution of  individual  probe entropies in  matrices N3312 and the HPM matrix
(N1101). Upper panels pertain to matrix N3312 (grey) and lower panels to N1101 (blue). Mean
probe entropy for both matrices is denoted by vertical black lines in the case of histograms and
horizontal black lines in the case of the accompanying “s-plots”. S-plots are generated by ordering
all  probe entropies  into ascending order  and plotting.  X axes  in  “S-plots” are  therefore simple
numeric indices indicating normalised entropy rank. Mean normalised probe entropy was 0.629 (3
d.p.) and 0.565 (3 d.p.) for N3312 and the HPM matrix respectively, a very small, but significant (p
< 0.01) decrease of 0.064 (Mann-Whitney U test .) 
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Figure 4.3 Upper panel: Histogram (blue) showing the distribution of mean probe entropies of 50
randomly-permuted submatrices (size: n=1101 samples) drawn, without replacement, from matrix
N3312. Red vertical line shows mean probe entropy of intact matrix N3312. Green line shows mean
probe entropy of intact HPM matrix, showing reduction of mean probe entropy in the HPM matrix
below what would be expected were 1101 samples randomly selected from matrix N3312. Lower
panel shows the same data as upper panel, but with x-axis scaled between 0 and 1, to put mean
probe  entropy  difference  between  matrices  N3312  and  N1101  (HPM matrix)  into  perspective,
relative to minimum and maximum possible values for mean probe entropy. N1101 mean probe
entropy: 0.565 (3 d.p.). N3312 mean probe entropy: 0.629 (3 d.p.). Mean of mean probe entropies
(randomly permuted submatrices):  0.627 (3 d.p.).  Difference between mean randomly-permuted
mean probe entropy and observed mean probe entropy of HPM matrix: 0.062 (3 d.p.)
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Figure 4.4: Boxplots showing distribution of all individual probe entropies in matrices 
N3312 (grey) and N1101 (blue.) Mean normalised probe entropy was 0.629 (3 d.p.) and 
0.565 (3 d.p.) for N3312 and the HPM matrix respectively, a very small, but significant 
(p < 0.01) decrease of 0.064 (Mann-Whitney U test .)



effect of reducing the number of samples. This is as expected, given the fact that the filtering was

carried out to leave only samples in the pluripotent state in the data.

It is reassuring to see, however, that the distribution of probe entropies in the HPM matrix still

extends towards a similar maximum as that found in N3312, as can be seen in the histograms as the

upper parts of the “s-plots” and the outlier datapoints in the boxplot for the HPM matrix. 

4.3.2 Genes correlated to pluripotency factors Oct4, Sox2 and Nanog are enriched for 
pluripotency and developmental pathways in the HPM matrix

Nanog

A total of 374 probes were strongly (>= 0.5) correlated to Nanog. Analysis of these using DAVID

revealed “stem cell differentiation”, “stem cell maintenance” and “stem cell development” at the top

of the enrichment list, confirming that Nanog is still strongly related to pluripotency genes in the

HPM matrix. See table 4.5 for the top 20 pathways positively correlated to Nanog and their q-values

for significance testing.

Other  pathways  in  this  list  are  somewhat  generic,  however,  the  “negative  regulation  of  cell

differentiation”  is  good  to  see  here  as  it  reinforces  the  notion  that  Nanog  remains  positively

correlated with the maintenance of pluripotency in the HPM matrix.

281 probes were found to be strongly negatively (<= -0.5) correlated to Nanog. Only 3 biological

pathways were  significantly  enriched on analysis  of  this  list,  and these  were  again  relevant  to

development with “pattern specification” and “embryonic morphogenesis” as the top 2 pathways,

although these are also still generic in nature (see table 4.6).  

These observations confirm that  enough variability  does indeed remain in  the HPM matrix for

Nanog to maintain strong positive transcriptional relationships with pluripotency-related genes and

negative transcriptional relationships with genes involved in development. This also suggests that

the HPM matrix contains samples which occupy various states of pluripotency.
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Table  4.5: Top  20  pathway  enrichments  to  be  found  in  those  genes  with  strong  (>=  0.5)
correlation to Nanog (1429388_at) in the HPM matrix. Green shaded items satisfy the q-value of
<= 0.05, red shaded items fall short of this threshold.

GO Identifier GO Term Probe Count Q-Value
GO:0048863 stem cell differentiation 8 0.0003666531
GO:0019827 stem cell maintenance 7 0.0004074534
GO:0048864 stem cell development 7 0.0003630761
GO:0045596 negative regulation of cell differentiation 14 0.0009710921
GO:0010605 negative regulation of macromolecule metabolic process 23 0.0013858654
GO:0010558 negative regulation of macromolecule biosynthetic proce 19 0.0100389704
GO:0031327 negative regulation of cellular biosynthetic process 19 0.0123903548
GO:0009890 negative regulation of biosynthetic process 19 0.0122127128
GO:0010629 negative regulation of gene expression 18 0.0175203962
GO:0045934 negative regulation of nucleobase, nucleoside, nucleotid 17 0.0341304401
GO:0051172 negative regulation of nitrogen compound metabolic proc 17 0.0349265405
GO:0016481 negative regulation of transcription 16 0.0448353961
GO:0045449 regulation of transcription 52 0.0534723809
GO:0006357 regulation of transcription from RNA polymerase II promo 21 0.0695225272
GO:0051252 regulation of RNA metabolic process 38 0.0752671583
GO:0006355 regulation of transcription, DNA-dependent 37 0.1024060666
GO:0045892 negative regulation of transcription, DNA-dependent 13 0.1527650631
GO:0051253 negative regulation of RNA metabolic process 13 0.1528982041
GO:0006020 inositol metabolic process 4 0.1535277825

Table  4.6: Top 20 pathway enrichments to be found in those genes with strong (<= -0.5) 
anticorrelation to Nanog (1429388_at) in the HPM matrix. Green shaded items satisfy the q-
value of <= 0.05, red shaded items fall short of this threshold.

GO Identifier GO Term Probe Count Q-Value
GO:0007389 pattern specification process 15 0.0024415436
GO:0048598 embryonic morphogenesis 15 0.017354873
GO:0006928 cell motion 15 0.0147399277
GO:0001944 vasculature development 11 0.0950920398
GO:0003002 regionalization 10 0.1039757003
GO:0030326 embryonic limb morphogenesis 7 0.1053291318
GO:0035113 embryonic appendage morphogenesis 7 0.1053291318
GO:0007167 enzyme linked receptor protein signaling pathwa 11 0.1072771416
GO:0007169 transmembrane receptor protein tyrosine kinase 9 0.1387809296
GO:0016477 cell migration 10 0.1288570923
GO:0001568 blood vessel development 10 0.1300514974
GO:0035108 limb morphogenesis 7 0.1373425752
GO:0035107 appendage morphogenesis 7 0.1373425752
GO:0060173 limb development 7 0.1489690888
GO:0048736 appendage development 7 0.1489690888
GO:0001763 morphogenesis of a branching structure 7 0.173909216
GO:0060429 epithelium development 10 0.1843859941
GO:0016055 Wnt receptor signaling pathway 7 0.1825593299
GO:0051674 localization of cell 10 0.2161113282



Oct4

In the case of probes positively correlated to Oct4,  surprisingly,  only 39 achieved the required

threshold of a Pearson correlation of +0.5 or greater. No pathway enrichments resulted from this

list, however, in that they did not pass the threshold of a q-value of <= 0.05. Significance aside, the

strongest enrichment was for “ncRNA metabolic process”, not clearly related to mESC pluripotency

whatsoever. This unexpected result is in stark contrast to the enrichments found when using a list of

probes strongly correlated to Nanog.

As for those probes strongly negatively correlated to Oct4 in the HPM matrix, there are only 29.

These probes, however, do contain significant (q <= 0.05) biological pathway enrichments, but only

7 (see table 4.7). These pathways include a clear developmental signal, with “pattern specification

process”, “anterior / posterior pattern formation” and “regionalization”. As generic as they are, it

still appears that Oct4 is negatively-correlated with progression towards organismal development in

the HPM matrix. Given that the genes strongly anticorrelated to Nanog were found to be enriched

for “pattern specification process”, it is reassuring to see that genes anticorrelated to another core

pluripotency factor, Oct4, would, if anything, show similar kinds of enrichment.

Sox2

The probes found to be positively correlated to Sox2 are much more numerous than those found for

Nanog and Oct4, with 763 probes passing the threshold of a Pearson correlation of >= +0.5. The

topmost  27  of  these  pathways  are  shown in  table  4.8,  truncated  after  the  emergence  of  those

pathways which began to fail the q-value threshold of (q <= 0.05).

Reinforcing the notion that the HPM matrix contains information relating to pluripotency and exit

from it, Sox2's role as a transcriptional regulator is clearly apparent, based on this set of biological

pathways enrichments, despite Sox2 being filtered for expression only at its highest levels. The top

two pathway enrichments “transcription” and “regulation of transcription” achieve two orders of

magnitude of significance greater than the next most significant pathways, being the “stem cell

maintenance”, “stem cell differentiation” and “stem cell development” pathways. Interestingly, the

“cellular response to stress” pathway is enriched here, which would imply that the stress response

may be involved in pluripotency maintenance or exit from it. This is supported by the literature 

which shows that such a link exists already (reviewed in (Tower 2012)). The presence here of an 
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Table 4.7: Top 20 pathway enrichments to be found in those genes with strong (<= -0.5) 
anticorrelation to Oct4 (1429388_at) in the HPM matrix. Green shaded items satisfy the q-
value of <= 0.05, red shaded items fall short of this threshold. 

GO Identifier GO Term Probe Count Q-Value
GO:0007389 pattern specification process 6 0.0052354157
GO:0009952 anterior/posterior pattern formation 5 0.0047607001
GO:0003002 regionalization 5 0.0117232144
GO:0016477 cell migration 5 0.0136827644
GO:0048870 cell motility 5 0.0208080411
GO:0051674 localization of cell 5 0.0208080411
GO:0006928 cell motion 5 0.0452314654
GO:0048514 blood vessel morphogenesis 4 0.0768528769
GO:0001568 blood vessel development 4 0.1193766609
GO:0001944 vasculature development 4 0.1140253971
GO:0007423 sensory organ development 4 0.111152388
GO:0006355 regulation of transcription, DNA-depende 7 0.1517592812
GO:0051252 regulation of RNA metabolic process 7 0.1505307221
GO:0014855 striated muscle cell proliferation 2 0.2127647374
GO:0055017 cardiac muscle tissue growth 2 0.2127647374
GO:0060038 cardiac muscle cell proliferation 2 0.2127647374
GO:0060419 heart growth 2 0.2127647374
GO:0045449 regulation of transcription 8 0.2190172779
GO:0014706 striated muscle tissue development 3 0.2142271474

Table 4.8: Top 27 most significantly-enriched pathways to be found in those genes with 
strong (>= 0.5) correlation to Sox2 (1416967_at) in the HPM matrix. Green shaded items 
satisfy the q-value of <= 0.05, red shaded items fall short of this threshold.

GO Identifier GO Term Probe Count Q-value
GO:0006350 transcription 93 0.000033215
GO:0045449 regulation of transcription 107 9.86625029713029E-005
GO:0048863 stem cell differentiation 9 0.0010954051
GO:0048864 stem cell development 8 0.0011390779
GO:0019827 stem cell maintenance 8 0.0013544643
GO:0010558 negative regulation of macromolecule biosy 31 0.0016365935
GO:0010605 negative regulation of macromolecule metab 35 0.0019067664
GO:0031327 negative regulation of cellular biosynthetic 31 0.0024922886
GO:0009890 negative regulation of biosynthetic process 31 0.0027153538
GO:0045934 negative regulation of nucleobase, nucleosi 29 0.0032687432
GO:0051172 negative regulation of nitrogen compound m 29 0.0035589491
GO:0010629 negative regulation of gene expression 29 0.0048987656
GO:0016481 negative regulation of transcription 27 0.0058369992
GO:0042127 regulation of cell proliferation 34 0.0070531874
GO:0006357 regulation of transcription from RNA polyme 37 0.0082153588
GO:0045892 negative regulation of transcription, DNA-d 23 0.0136753938
GO:0051253 negative regulation of RNA metabolic proce 23 0.0140807971
GO:0045596 negative regulation of cell differentiation 16 0.0328496834
GO:0051252 regulation of RNA metabolic process 67 0.0355069218
GO:0033554 cellular response to stress 26 0.0373216472
GO:0006355 regulation of transcription, DNA-dependent 66 0.0379339181
GO:0007093 mitotic cell cycle checkpoint 6 0.0496997581
GO:0007049 cell cycle 33 0.0882390692
GO:0016570 histone modification 10 0.1150521012
GO:0016568 chromatin modification 17 0.1206253269
GO:0031328 positive regulation of cellular biosynthetic p 30 0.124343158
GO:0006974 response to DNA damage stimulus 19 0.1259572895



enrichment for the stress response pathway informed later decisions to check for stress response

enrichments in downstream analyses of the HPM matrix.

Probes strongly negatively correlated to Sox2 in the HPM matrix were more numerous again, at n =

1559.  This  extensive  list  contains  a  large  number  (n  =  411)  of  pathways  which  satisfy  the

requirement for statistical significance of q <= 0.05. This therefore would be wastefully large to

include as a figure, and so only selected pathways, including all of those discussed in the text, from

the  full  list  are  shown  in  table  4.9.  The  majority  of  the  full  list  reads  like  a  catalogue  of

developmental processes, which is extremely encouraging as regards the nature of the HPM matrix. 

However, it is not only enrichments for developmental pathways to be found in genes negatively

correlated to Sox2. Excitingly, other enrichments found here pertain to specific signalling pathways,

namely  the  Wnt,  Notch,  vascular  endothelial  growth  factor  (VEGF)  and  BMP  pathways.

Enrichment also exists for the MAPKKK cascade, which is downstream of FGF signalling required

for exit from pluripotency in mESCs. The TGFβ pathway is listed, but did not achieve significance.

It is highly interesting that this initial analysis of the pluripotency factors Oct4, Sox2 and Nanog in

the HPM matrix has already shown signs of pointing towards the activity of specific signalling

pathways. 

In summary, the HPM matrix appears to be fit for purpose and seems to have captured a range of

pluripotency-related  processes  in  mESCs  which  can  be  interrogated  for  meaningful  biological

information,  at  a  minimum,  providing potential  transcriptional  relationships  and the  activity  of

signalling pathways before a large drop in Oct4, Sox2 or Nanog has occurred, meaning that the

samples, and therefore the phenomena found in this data, can therefore be reasonably assumed to

still be occurring pre-differentiation.

4.3.3 Klf4 satisfies all criteria for use as an ordering gene of the HPM matrix

The choice of guide gene was ultimately made when considering those genes which ranked highest

for their multiplicative score for normalised entropy and correlation to Nanog. The multiplicative

score using Nanog was preferred over those of Oct4 and Sox2 as it was found that Nanog, of the

pluripotency factors for which the HPM matrix was filtered (OSN), maintained the greatest
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Table 4.9: Selected significantly-enriched pathways to be found in those genes with 
strong (< 0.5) anticorrelation to Sox2 (1416967_at) in the HPM matrix. Green shaded 
items satisfy the q-value of <= 0.05, red shaded items fall short of this threshold.

GO Identifier GO Term Probe Count Q-Value
GO:0007389 pattern specification process 63 9.18790E-018
GO:0048598 embryonic morphogenesis 68 8.18795E-016
GO:0048729 tissue morphogenesis 53 5.02522E-015
GO:0016055 Wnt receptor signaling pathway 32 1.18817E-009
GO:0007167 enzyme linked receptor protein signaling pathway 45 3.39466E-008
GO:0030111 regulation of Wnt receptor signaling pathway 14 7.50321E-006
GO:0042127 regulation of cell proliferation 61 1.40663E-005
GO:0007169 transmembrane receptor protein tyrosine kinase 30 5.29017E-005
GO:0045944 positive regulation of transcription from RNA pol 43 0.0001908645
GO:0045165 cell fate commitment 24 0.0003038948
GO:0045596 negative regulation of cell differentiation 27 0.0004050975
GO:0007178 transmembrane receptor protein serine/threonine 16 0.0008064064
GO:0007219 Notch signaling pathway 13 0.001052487
GO:0048010 vascular endothelial growth factor receptor signa 7 0.0018177997
GO:0000165 MAPKKK cascade 18 0.004665708
GO:0030509 BMP signaling pathway 8 0.0059278705
GO:0006916 anti-apoptosis 14 0.0211733329
GO:0043406 positive regulation of MAP kinase activity 11 0.02603797

GO:0001945 lymph vessel development 4 0.0502856697
GO:0060284 regulation of cell development 19 0.0534004272
GO:0009100 glycoprotein metabolic process 18 0.0545471968
GO:0051347 positive regulation of transferase activity 17 0.0551778307
GO:0051338 regulation of transferase activity 22 0.0582013598



information content (as measured by normalised entropy), with a normalised entropy of 0.646 (3

d.p.), versus 0.550 (3 d.p.) and 0.618 (3 d.p.) for Oct4 and Sox2 respectively. For the purposes of

deciding  on  the  ordering  gene,  the  absolute  correlation  to  Nanog  was  used  to  generate  the

multiplicative  scores.  This  was  to  allow for  selection  of  genes  with  a  strong relationship  with

Nanog, regardless of whether or not that relationship was positive or negative. A truncated list of the

top candidates found by this method is given in table  4.10.

This list of multiplicative scores included, as its 8h rank candidate (when excluding Nanog itself),

Klf4 (probe ID 1417394_at). With a normalised entropy of 0.816 (3 dp.), this gene is considerably

more information-rich than Nanog. This Klf4 probe also has a Pearson correlation to Nanog of

0.646 (3 dp.),  for  a  multiplicative  score  of  5.527 (3 dp.).  This  score gives  this  Klf4 probe an

extremely high rank, when considering that there are 45,101 probes. This gene fulfils all of the ideal

requirements for a guide gene as set out in 4.1.3.

The  distribution  of  correlations  to  Nanog  and  normalised  entropies  was  investigated  and  is

displayed in a scatterplot as the top panel of figure 4.11. Black crosshairs in this figure depict the

location of the Klf4 probe chosen as the ordering gene. As can be seen from this figure, this Klf4

probe is near the maximum correlation to Nanog and also has one of the highest of all entropies in

the HPM matrix. The distribution of multiplicative entropy and correlation scores themselves are

presented as a histogram in figure 4.11, with the score of the chosen Klf4 probe evidenced by the

vertical black line.

In  addition  to  information  content,  Klf4  retains  a  large  difference  between  its  minimum  and

maximum expression, between a minimum log2 RMA value of 5.005 (3 dp.) to a maximum of

13.344 (3 dp.), a fold change across the data of 323.781 (3 dp.) absolute (non-log2) fold difference

between the minimum and maximum values. This large range of expression, combined with high

information content (entropy), implies that Klf4 has a desirable “progression” of expression values.

This, therefore suggested this Klf4 probe to be a potentially highly-sensitive marker of cellular state

between naïve pluripotency and early differentiation, subject marker gene / annotation confirmation

(performed in section 4.3.4).

Finally, much like was done with the OSN factors, verification of the relationship to pluripotency /

development pathways was carried out for this Klf4 probe, through the same pathway enrichment 
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Table 4.10: Normalised Shannon entropies and correlations-to-Nanog of top scoring genes in multiplicative 
score test. Probes for Klf4 are highlighted in green, and the higher scoring Klf4 probe was the one chosen for
ordering of the HPM matrix.

Probe ID Gene Name Normalised Entropy Absolute correlation to Nanog Multiplicative score
1429388_at Nanog 0.64568093 1 0.64568093

1431416_a_at Jam2 0.8324310469 0.6851375067 0.570329732
1422458_at Tcl1 0.8508280959 0.6565661202 0.5586249019
1449408_at Jam2 0.8328247603 0.6655813748 0.554312649
1444390_at Prdm14 0.8373711493 0.6539618911 0.5476088203
1429366_at Lrrc34 0.8259522731 0.6575799162 0.5431296265
1460471_at Ooep 0.7977445058 0.6633949245 0.5292196562
1418091_at Tcfcp2l1 0.8040440933 0.6558461683 0.5273292377
1417395_at Klf4 0.8155173858 0.6459001784 0.5267428249
1456329_at Prtg 0.8421412726 0.6239222722 0.5254306963
1455300_at Tet2 0.8038035484 0.6522767651 0.5243023783
1426858_atInhbb /// LOC100046802 0.8426430779 0.6214739275 0.5236807031
1456521_at --- 0.8126907923 0.6432830201 0.5227901873
1436926_at Esrrb 0.8071064897 0.6442316482 0.5199635441

1424719_a_at Mapt 0.789057297 0.652032107 0.5144906919
1438410_at Prtg 0.8416658286 0.6105755654 0.5139005892
1449434_at Car3 0.843895808 0.6086631895 0.5136483141
1436568_at Jam2 0.8586770998 0.5964507084 0.5121585644
1435374_at Cdyl2 0.7944764435 0.6427694777 0.5106652086
1431417_at Jam2 0.7983050266 0.6382490939 0.5095174599
1436030_at Cachd1 0.8040339697 0.6309788744 0.5073284492
1448949_at Car4 0.8671082343 0.5842002473 0.5065648449
1456326_atFndc3c1 /// LOC676436 0.8438414497 0.5969705016 0.5037484535

1418533_s_at Fzd2 0.7832908466 0.6400561185 0.5013500989
1453628_s_at Lrrc2 0.8003404435 0.6255568764 0.5006584679
1429377_at 2410004A20Rik 0.800821543 0.6237676516 0.4995265732
1417394_at Klf4 0.8153679382 0.6119460916 0.498961223

1418094_s_at Car4 0.8389928857 0.5928739524 0.4974170281
1434917_at Cobl 0.791536874 0.6280735598 0.4971433822
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Figure  4.11: Relationship  between  correlations-to-Nanog  and  normalised  Shannon
entropies of all probes in the HPM matrix (upper plot). Distribution of all multiplicative
scores (correlation-to-Nanog x normalised Shannon entropy), with vertical black line
indicating the location of the score for the chosen Klf4 probe for the ordering of the
HPM matrix (1417395_at), with a multiplicative score of 0.5627 (4 d.p.)



analysis  using  DAVID  for  those  genes  highly  correlated  (>=  0.5  Pearson  correlation)  and

anticorrelated (<= -0.5 Pearson correlation) to this Klf4 probe.

Probes strongly positively correlated (>= 0.5) to Klf4 numbered n = 918. A truncated list of the top

enrichments is given in table 4.12. The enrichments found here include the three “stem cell”-related

pathways  previously  seen  (stem  cell  differentiation,  maintenance  and  development).  Other

pathways given in this figure show Klf4’s transcriptional regulatory properties. This is reassuring in

that  it  can  be  expected  that  ordering  by  Klf4  gene  would  reveal  much  information  about  the

transcriptional events involved in mESC pluripotency and exit from it. 

Those genes strongly anticorrelated (<= -0.5 Pearson correlation) to Klf4 numbered n = 1045. For

space reasons, only selected pathways discussed in the text, along with some generic developmental

pathways and some examples of the first pathways which fail the significance threshold are given in

table 4.13. The Wnt signalling pathway is at the top of this list, and other pathways enriched here,

much like with Sox2 (see section 4.3.2), include a great many developmental pathways. 

In  summary,  Klf4  is,  in  this  data,  primarily  linked  strongly  to  the  Wnt  signalling  pathway by

pathway  enrichment  analysis,  as  well  as  cellular  proliferation,  a  large  role  in  transcriptional

regulation and also a linked to developmental pathways, as was hoped. The differences in pathway

enrichments for the factors Nanog, Oct4, Sox2 and  Klf4 supports the idea that the methods being

employed in  this  work  do not  simply  find  the  same enrichments  for  any gene  correlated  with

pluripotency. This, in turn, reinforces the notion that this data matrix contains useful information on

pluripotency and exit from it. See the following section (4.3.4) for the further marker profile and

annotation cross-referencing confirmation of the utility of the HPM matrix.
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Table 4.12: Selected biological pathway enrichments resulting from the gene list of strong 
positive (Pearson correlation > 0.5) Klf4 correlations in the HPM matrix.

GO Identifier GO Term Probe Count Q-Value
GO:0010605 negative regulation of macromolecule metabolic pro 42 0.0003036769
GO:0006350 transcription 97 0.0003148161
GO:0045934 negative regulation of nucleobase, nucleoside, nucl 34 0.0003769537
GO:0042127 regulation of cell proliferation 42 0.0003853392
GO:0031327 negative regulation of cellular biosynthetic process 36 0.0003943944
GO:0010558 negative regulation of macromolecule biosynthetic p 36 0.0004035138
GO:0009890 negative regulation of biosynthetic process 36 0.0004107856
GO:0051172 negative regulation of nitrogen compound metabolic 34 0.0004158772
GO:0045449 regulation of transcription 116 0.0005410792
GO:0045892 negative regulation of transcription, DNA-dependent 28 0.0010445504
GO:0051253 negative regulation of RNA metabolic process 28 0.0010741086
GO:0016481 negative regulation of transcription 31 0.0012874656
GO:0010629 negative regulation of gene expression 33 0.0013647003
GO:0010604 positive regulation of macromolecule metabolic proc 43 0.0026551132
GO:0006357 regulation of transcription from RNA polymerase II p 41 0.0063920651
GO:0048863 stem cell differentiation 8 0.0078314242
GO:0019827 stem cell maintenance 7 0.0080669518
GO:0048864 stem cell development 7 0.0094849968
GO:0051173 positive regulation of nitrogen compound metabolic 36 0.0099834391
GO:0031328 positive regulation of cellular biosynthetic process 37 0.01065359
GO:0009891 positive regulation of biosynthetic process 37 0.0121559661
GO:0045596 negative regulation of cell differentiation 18 0.0125879407
GO:0051252 regulation of RNA metabolic process 76 0.0158188834
GO:0008284 positive regulation of cell proliferation 23 0.0185360787
GO:0010557 positive regulation of macromolecule biosynthetic p 35 0.0187811475
GO:0045935 positive regulation of nucleobase, nucleoside, nucle 34 0.0191335533
GO:0019953 sexual reproduction 28 0.0194699867
GO:0006355 regulation of transcription, DNA-dependent 74 0.0227974051
GO:0010628 positive regulation of gene expression 32 0.0344479432
GO:0045941 positive regulation of transcription 31 0.0450794752
GO:0048232 male gamete generation 20 0.0634587725
GO:0007283 spermatogenesis 20 0.0634587725
GO:0051276 chromosome organization 27 0.0718824783

Table 4.13: Selected biological pathway enrichments resulting from the gene list of 
strong negative (Pearson correlation <= -0.5) Klf4 correlations.

GO Identifier GO Term Probe Count Q-Value
GO:0016055 Wnt receptor signaling pathway 21 9.988553E-05
GO:0007389 pattern specification process 30 0.0003907111
GO:0048729 tissue morphogenesis 26 0.0007079068

GO:0007167 27 0.0014958646
GO:0048598 embryonic morphogenesis 32 0.0014013296

GO:0000904 23 0.0016245322
GO:0003002 regionalization 23 0.0016354609

GO:0007169 20 0.0066669491
GO:0043434 response to peptide hormone stimulus 13 0.0120239916
GO:0042127 regulation of cell proliferation 37 0.0190228592
GO:0030879 mammary gland development 11 0.0579037154
GO:0021511 spinal cord patterning 5 0.065308208
GO:0009952 anterior/posterior pattern formation 15 0.0695084286

enzyme linked receptor protein signaling 
pathway

cell morphogenesis involved in 
differentiation

transmembrane receptor protein tyrosine 
kinase signaling pathway



4.3.4 Ordering the HPM matrix by Klf4 expression broadly sorts samples from naïve 
pluripotency toward early differentiation

Now ordered by decreasing Klf4, patterns of expression of 3 markers (FGF5, Rex1, Brachyury (T))

were observed across the Klf4-ordered matrix and compared to the patterning of these same crucial

markers when ordered by GAPDH (see figure  4.14). Ordering the matrix by a the housekeeping

gene GAPDH shows no patterning or progression from one state to another of any of the three

chosen markers. FGF5 and Brachyury (T) increase as naïve pluripotency progresses toward primed

pluripotency, while Rex1 decreases across this same phenomenon (Ying et al. 2008) (Nichols and

Smith 2009) (Yamaji et al. 2013). This is precisely what is seen in the rightmost panels of figure

4.14. 

Figure 4.15 puts the two other concerns identified in section 4.2.3 conclusively to rest. Firstly, Klf4

ordering is not simply a surrogate for Nanog ordering, even though Klf4 was partly chosen for its

correlation to Nanog. This can be seen from the top three plots in 4.15, where Nanog ordering of the

matrix actually results in quite woeful patterning of FGF5 and Brachyury and a much less clear line

of progression of a drop in Rex1 (Zfp42), although a trend is still somewhat visible, it is nothing

like as clear as when sorting by Klf4.

This second concern was that the choice of Klf4 by the fourth criterion in section  4.2.3, being to

choose a gene with known pluripotency-related activity, might be the only criterion that mattered,

and that were another gene with only a high multiplicative (entropy x correlation to Nanog) score

chosen, no such impressive sorting of the data would have occurred. This would imply that the

scoring method presented in this work was largely irrelevant.

To address this, the gene with the best multiplicative entropy and correlation-to-Nanog score was

tested for its  ability to generate  the desired smooth progression of the FGF5, Brachyury,  Rex1

markers. Jam2 (“1431416_a_at”) was this best scoring probe had a multiplicative score of 0.570 (3

d.p.), higher than Klf4's score of 0.527 (3 d.p.).

This probe’s ability to generate the desired marker progression across the data is demonstrated in

the bottom-most plots of figure  4.15. If anything, Jam2 appears slightly superior to Klf4 (middle

panels of figure 4.15) in its ability to sort these canonical markers between naïve pluripotency and 
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Figure 4.14: Matrix N1101 ordered by housekeeping gene GAPDH (leftmost panels) or the chosen
ordering gene Klf4 (rightmost panels.) Canonical markers of the naïve versus primed pluripotent
state, Rex1 (Zfp42) (top panels), FGF5 (middle panels) and Brachyury (T) (bottom panels) are also
shown for both ordered matrices. Smoothed lines are used for clarity and clearly demonstrate Klf4s
ability to sort the matrix between naïve to primed pluripotency, while the negative control ordering
by GAPDH shows no such patterning.
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Figure  4.15: Patterning of the naïve pluripotency marker Rex1 and primed pluripotency markers
Brachyury and FGF5 when all  1101 samples of N1101 are ordered by Nanog (top plots),  Klf4
(middle plots) or Jam2 (bottom plots). Klf4 was plotted in the middle panels again here for easy by-
eye comparison, but are identical plots to the rightmost panels of figure 4.14.



early differentiation. This manifests as Jam2-sorting resulting in a smoother line for FGF5 towards

the rightmost side of the plot, and this is more pronounced when Brachyury (T) is ordered by Jam2. 

It was decided to remain with the choice of Klf4 as the ordering gene as this is in keeping with the

prescribed fourth criterion as laid down in section 4.2.3. That said, a novel finding from this work is

that Jam2 is suggested by this methodology to be a highly-sensitive marker for where a particular

high OSN sample may lie between naïve pluripotency and early differentiation.

In addition to verifying the utility of ordering by Klf4 using naïve vs primed pluripotency markers,

the annotations associated with samples at different parts of the Klf4 order were investigated. Klf4-

order ranks of all samples mentioned in this section and their accompanying annotations are all

summarised  in  tables  4.16 and  4.17 while  all  annotations  for  all  samples  are  given  on  the

accompanying DVD in  “Chapter  2/N1101 Annotations”.  Comment  is  now given on randomly-

selected samples from a spread of regions across the decreasing-Klf4 gradient.

At the highest levels of Klf4, represented at the leftmost side of 4.18, samples such as GSM381301

occur (as 4th highest for Klf4), from experiment GSE15267, from work by (Chen et al. 2010), an

investigation of culture conditions for the generation of mouse iPSCs. Sample GSM381301 itself is

a control culture of CGR8 cells. Another sample at the leftmost side of 4.18 is GSM277757 (second

highest rank for Klf4), which is part of experiment GSE10970. This experiment concerns mESC

differentiation to cardiac lineages (Miller et al. 2008). Sample GSM277757 itself is a day 0 control.

It should be noted that these samples are genetically modified with a GFP reporter for Nkx2-5.

Other samples  from GSE10970 are present  in the HPM matrix,  such as at  ranks 6 and 9 with

GSM277758 and GSM277759 respectively. 

As is visible in figure 4.18 there is a noticeable spike on the far left where Klf4 is at its highest. The

samples mentioned above are from this very high level of Klf4. In case this spike was a group of

outlying samples, a random group of samples was chosen from near the 100th rank mark, where the

Klf4 line first settles into a lower-gradient decline (see figure 4.18). Sample GSM241847 is at rank

83 for Klf4 expression and is annotated as being “ESC, Undifferentiated, Pool-1, Biological Rep-1”

from experiment GSE9563 by  (Sampath et al.  2008) whose work specifically concerned mESC

differentiation and had 12 undifferentiated samples and 12 embryoid body samples. It would be

expected that any of the undifferentiated samples samples from this experiment that occur in the

HPM matrix should occur toward the left side of the plot in  4.18 and those that are EBs would
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group together, but further to the right where markers Rex1, Fgf5, and Brachyury have changed to

low, high and high expression respectively. This is indeed the case, as can be seen from tables 4.16

and 4.17 and figure 4.18. 

It is also important to note that samples from the same experiment do not appear so close to each

other in Klf4 ranking that they are essentially consecutive, which would have suggested that those

samples  are  grouping  simply  due  to  being  from  the  same  lab  /  experiment.  Samples  from

experiment GSE9563 do group by their progress toward differentiation and clear separation is seen,

with naïve pluripotent samples between ranks 33 to 183 and primed pluripotent samples between

ranks 550 to 813, interspersed with samples from other experiments (see tables 4.16 and 4.17.) This

puts to rest the concern that perhaps samples grouped by experiment / lab across the Klf4-ordered

matrix.

Annotations were also drawn from the HPM matrix to verify the middle-to-lower end of the Klf4

spectrum. Here, samples such as GSM597445, GSM597446 and GSM597448 occur, which are part

of experiment GSE24289. This experiment, carried out by (Gill et al. 2011), was an investigation

into the induction of differentiation in mESCs through the forced expression of miR-200c/miR-141,

driven  by  the  addition  of  tamoxifen.  Sample  GSM597446  involved  3  days  of  induction  with

tamoxifen  and  GSM597448  was  induced  for  4  days.  Sample  GSM597445  however,  whilst

annotated as an untreated control sample, was actually differentiated for 3 days. Furthermore, the

untreated  control  sample  had  a  lower  level  of  Klf4  expression  than  the  two  tamoxifen-treated

samples.  This  is  not  unexpected,  however,  as  all  of  these samples  are  the results  of culture of

mESCs  as  embryoid  bodies  (Gill  et  al.  2011) and  would  therefore  be  expected  to  exhibit  a

transcriptional  state  close  to  early  differentiation.  This  underscores  the  need  for  detailed

annotations, without which an “untreated control” sample may have seemed out of place, rather

than supportive of Klf4-ordering.

Another  experiment,  GSE12982,  carried  out  by  (Shen  et  al.  2008),  investigated  the  effects  of

knocking out both Ezh2, the catalytic subunit of polycomb-repressive-complex 2 (Prc2), and Eed

(embryonic ectoderm development). This experiment has 53 total microarrays uploaded and 28 of

these appear in the HPM matrix. As can be seen from the spread of GSE12982 samples across the

tables in tables 4.16 and 4.17 and figure 4.18, strong support is given that Klf4-ordering is not only

broadly sorting the samples appropriately between naïve pluripotency and primed pluripotency / 
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Table  4.16: Part 1 of 2 of table detailing samples mentioned in the  main text (section
4.3.4). Pluripotent, undifferentiated samples are in green highlight, early differentiation 
samples in yellow highlight, progressing to orange for those differentiated for 2 days, red 
for 3 days and dark red for later than 3 days. All sorted by decreasing Klf4.

Description
Klf4 Rank

GSE10970 GSM277757 Day 0 control pluripotent cells (Nkx2-5-GFP) 2
GSE15267 GSM381301 Pluripotent CGR8 cells 4
GSE10970 GSM277758 Day 0 control pluripotent cells (Nkx2-5-GFP) 6
GSE10970 GSM277759 Day 0 control pluripotent cells (Nkx2-5-GFP) 9
GSE9563 GSM241853 ESC, Undifferentiated, Pool-3, Biological Rep-1 33
GSE9563 GSM241856 ESC, Undifferentiated, Pool-4, Biological Rep-1 36
GSE9563 GSM241848 ESC, Undifferentiated, Pool-1, Biological Rep-2 49
GSE9563 GSM241855 ESC, Undifferentiated, Pool-3, Biological Rep-3 63
GSE9563 GSM241858 ESC, Undifferentiated, Pool-4, Biological Rep-3 64
GSE9563 GSM241872 Total_RNA_ESC, Undifferentiated, Biological Rep-2 75
GSE9563 GSM241847 ESC, Undifferentiated, Pool-1, Biological Rep-1 83
GSE9563 GSM241857 ESC, Undifferentiated, Pool-4, Biological Rep-2 86
GSE9563 GSM241854 ESC, Undifferentiated, Pool-3, Biological Rep-2 89
GSE9563 GSM241871 Total_RNA_ESC, Undifferentiated, Biological Rep-1 97
GSE9563 GSM241873 Total_RNA_ESC, Undifferentiated, Biological Rep-3 108
GSE9563 GSM241849 ESC, Undifferentiated, Pool-1, Biological Rep-3 117
GSE9563 GSM241851 ESC, Undifferentiated, Pool-2, Biological Rep-2 120

GSE12982
GSM325396 141

GSE12982
GSM325407 163

GSE9563 GSM241850 ESC, Undifferentiated, Pool-2, Biological Rep-1 165
GSE9563 GSM241852 ESC, Undifferentiated, Pool-2, Biological Rep-3 183

GSE12982
GSM325405 196

GSE12982
GSM325406 268

GSE12982
GSM325399 281

GSE12982
GSM325398 299

GSE12982
GSM325404 328

GSE12982
GSM325403 354

GSE12982
GSM325395 403

GSE12982
GSM325394 405

GSE12982
GSM325397 409

GSE12982
GSM325392 466

GSE12982
GSM325393 485

GSE12982
GSM325402 490

Experiment 
accession

Sample 
accession

E14tg1 wild-type ES cells at day 0 (undifferentiated), 
biological rep 7
Eed-null ES cells at day 0 (undifferentiated), biological 
rep 5

Eed-null ES cells at day 0 (undifferentiated), biological 
rep 3
Eed-null ES cells at day 0 (undifferentiated), biological 
rep 4
Ezh2-null ES cells at day 0 (undifferentiated), biological 
rep 3
Ezh2-null ES cells at day 0 (undifferentiated), biological 
rep 2
Eed-null ES cells at day 0 (undifferentiated), biological 
rep 2
Eed-null ES cells at day 0 (undifferentiated), biological 
rep 1
E14tg1 wild-type ES cells at day 0 (undifferentiated), 
biological rep 6
E14tg1 wild-type ES cells at day 0 (undifferentiated), 
biological rep 5
Ezh2-null ES cells at day 0 (undifferentiated), biological 
rep 1
CJ7 wild-type ES cells at day 0 (undifferentiated), 
biological rep 3
CJ7 wild-type ES cells at day 0 (undifferentiated), 
biological rep 4
Ezh2-null ES cells at day 0 (undifferentiated), biological 
rep 6
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Table 4.17: Part 2 of 2 of table detailing samples mentioned in the  main text (section
4.3.4). Pluripotent, undifferentiated samples are in green highlight, early differentiation 
samples in yellow highlight, progressing to orange for those differentiated for 2 days, red 
for 3 days and dark red for later than 3 days. All sorted by decreasing Klf4.

Description
Klf4 Rank

GSE12982
GSM325401 495

GSE12982
GSM325400 513

GSE9563 GSM241875 Total_RNA_EB, Biological Rep-2 550

GSE12982
GSM325390 563

GSE9563 GSM241874 Total_RNA_EB, Biological Rep-1 577

GSE12982
GSM325391 587

GSE9563 GSM241876 Total_RNA_EB, Biological Rep-3 611
GSE9563 GSM241867 EB, Pool-3, Biological Rep-3 668
GSE9563 GSM241865 EB, Pool-3, Biological Rep-1 670
GSE9563 GSM241868 EB, Pool-4, Biological Rep-1 673
GSE9563 GSM241866 EB, Pool-3, Biological Rep-2 681

GSE12982
GSM325429 686

GSE9563 GSM241862 EB, Pool-2, Biological Rep-1 692
GSE9563 GSM241870 EB, Pool-4, Biological Rep-3 701
GSE9563 GSM241863 EB, Pool-2, Biological Rep-2 709
GSE9563 GSM241859 EB, Pool-1, Biological Rep-1 734

GSE12982
GSM325428 743

GSE9563 GSM241860 EB, Pool-1, Biological Rep-2 745
GSE9563 GSM241864 EB, Pool-2, Biological Rep-3 810
GSE9563 GSM241861 EB, Pool-1, Biological Rep-3 813

GSE12982
GSM325422 959

GSE12982
GSM325420 974

GSE12982
GSM325411 1025

GSE12982
GSM325419 1039

GSE12982
GSM325410 1042

GSE12982
GSM325421 1043

GSE12982
GSM325430 1053

GSE24289 GSM597448 EB, 3 day differentiated 1054
GSE24289 GSM597445 EB, 3 day differentiated 1058
GSE24289 GSM597446 EB, 3 day differentiated 1059

GSE12982
GSM325431 1062

Experiment 
accession

Sample 
accession

Ezh2-null ES cells at day 0 (undifferentiated), biological 
rep 5
Ezh2-null ES cells at day 0 (undifferentiated), biological 
rep 4

J1 wild-type ES cells at day 0 (undifferentiated), 
biological rep 1

J1 wild-type ES cells at day 0 (undifferentiated), 
biological rep 2

Ezh2-null ES cells at day 8 of LIF withdrawal, biological 
rep 2

Ezh2-null ES cells at day 8 of LIF withdrawal, biological 
rep 1

Ezh2-null ES cells at day 2 of LIF withdrawal, biological 
rep 4
Ezh2-null ES cells at day 2 of LIF withdrawal, biological 
rep 2
CJ7 wild-type ES cells at day 2 of LIF withdrawal, 
biological rep 4
Ezh2-null ES cells at day 2 of LIF withdrawal, biological 
rep 1
CJ7 wild-type ES cells at day 2 of LIF withdrawal, 
biological rep 3
Ezh2-null ES cells at day 2 of LIF withdrawal, biological 
rep 3
Eed-null ES cells at day 2 of LIF withdrawal, biological 
rep 1

Eed-null ES cells at day 2 of LIF withdrawal, biological 
rep 2
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Figure 4.18: Combined plot showing and overview of the HPM matrix, as ordered by
Klf4 (black line), with smoothed lines shown for naïve pluripotency marker Rex1 (light
purple  line),  FGF5 (dark  green line),  Brachyury  (dark blue  line).  This  overview of
progression from naïve pluripotency to exit from it is overlaid with the locations (by
Klf4  rank)  and  cellular  states  (see  figures  4.16 and  4.17),  with  undifferentiated
annotations represented with green lines, early differentiation / embryoid body samples
in yellow, and differentiating samples thereafter in orange (2 day differentiated), red (3
day differentiated) and aubergine colour (8 days of differentiation.)  Note that whilst
there is excellent agreement as a general trend, as seen by the intact progression of
green  →  yellow  →  orange  →  red,  there  are  two  samples  (GSM325429  and
GSM325428, dark red vertical lines) which are found earlier in the Klf4 ranking than
would be expected, showing that the ordering by Klf4 is, as predicted, not perfect.



beyond, but also strongly refutes the concern that perhaps samples may group by experiment in this

sorted dataset.

The sorting  was  not  expected  to  be  perfect,  and in  table  4.17,  two samples,  GSM325429 and

GSM325428 occur at a lower Klf4 rank than would have been ideal. A perfect ordering is not to be

expected nor is it required, as the ability to broadly sort samples in this manner is still likely to

allow for the analysis presented in this chapter to draw inferences from the trends visible across the

data as regards the activities of known signalling pathways.  Furthermore,  as this  chapter's later

objectives focus on the finding of genes related to those signalling pathways found to be of interest

across this ordered data, these can be found by observing any apparent relationship between genes

identified in known pathways as being “of  interest”  and potential  candidate  genes.  This  would

remain  mostly  unaffected  by  any  samples  not  being  in  a  “perfect  order”  of  pluripotency/pre-

differentiation status.

In summary, tables  4.16 and  4.17 and figure 4.18 show that ordering by Klf4 broadly sorts the

samples  between  naïve  pluripotency  (lower  Klf4  rank)  through  primed  pluripotency  to  early

differentiation  (high  Klf4  ranks).  It  must  be  stressed,  however,  even  whilst  mentioning  “early

differentiation” that all of these samples still have the highest levels of Oct4, Sox2 and Nanog, and

so it is reasonable to assert that they all likely remain pluripotent.

4.3.5 Gross differential expression analysis of the highest-Klf4 state versus the lowest-Klf4 
state shows enrichment for generalised differentiation

In this analysis, the selected highest 50-Klf4 and lowest 50 Klf4 samples were used (see the green

and red vertical  sections  of  figure  4.19 respectively for  a  representation  of  where on the  Klf4

spectrum these samples  were chosen from).  Differential  expression analysis  was carried out  as

detailed in 4.2.4.

Brief verification of the behaviour of this approach was undertaken by observing the relationship

between the p-values and fold changes generated. This relationship is shown in the top panel of

figure 4.20. The bottom panel zooms in on the plot in the upper panel, close to where the observed

fold change is close to zero. Here it can be seen that whilst there is a strong tendency for probes

with a very low fold-change to be shown to be insignificant (only visible in the zoomed, lower 
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Figure  4.19:  Markers  of  the  change  between  naïve  and  primed  pluripotency  Fgf5,
Brachyury and Rex1 plotted as smoothed lines across the Klf4-ordered HPM matrix.
Vertical highlights demonstrate areas of the matrix which were selected to represent
early naïve pluripotency (green), late naïve pluripotency (yellow), primed pluripotency
(orange) and early differentiation (red).



panel of figure 4.20), there are yet some probes found to have a small fold change, but for that fold

change to be found to be statistically significant. This confirms the sensitivity of the method, but

that the general trend is as expected, that probes with very small fold-changes tend not to be called

as significant. Conversely, those genes with large fold changes do not get called as insignificant.

The behaviour  of  the  approach confirmed,  this  type  of  plot  will  not  be  repeated  for  the  other

differential expression analyses, as mentioned in section 4.2.4.

Of all 45,101 probes, 1,141 probes were found to have significantly (p < 0.05) increased in their

expression in the low-Klf4 group by at least 1 log2 fold (2 absolute fold), compared to the high-

Klf4 group. 1,108 of these were found in DAVID's mouse database. Conversely, there were 870

probes found to have a fold change of -1 or larger for the investigation of genes whose expression

drops between highest Klf4 and lowest Klf4. The pathways enrichments resulting from the list of

upregulated  genes  contains  many strong enrichments  for  developmental  processes  and also the

crucial  Wnt  signalling  pathway  (see  section  1.3.3).  Selected,  mESC  pluripotency  /  signalling-

relevant pathways resulting from significantly upregulated genes in this analysis are given in table

4.21, and similar pathways resulting from significantly downregulated genes given in table  4.22.

With the confirmation of the utility of the Klf4-ordered matrix in section 4.2.3, results such as these

become unsurprising and predictable, and so will not be discussed at length.

In the following analyses across the Klf4-ordered matrix, both using differential expression and the

scanning window approach described in  section  4.2.5,  similar  pathway enrichment  tables  were

generated, but are not reproduced exhaustively in this thesis, nor is exhaustive description of the

observed pathways given in the main text, to avoid expounding repetitive, predictable results. In

place of exhaustive listing / discussion of pathway enrichments, the final figures of this chapter’s

results section (figures 4.34 to 4.36) neatly summarise significantly up/downregulated gene counts

and  the  resulting  categories  of  developmental,  stem cell  signalling,  stress,  apoptosis  and  gene

expression  control  pathways  significantly  enriched  in  each  analysis  carried  out.  Any  detailed

discussion in the main text is, therefore, limited to the biological interpretation of selected pathways

for each analysis.

Of the three “stem cell” pathways (stem cell differentiation, development and maintenance) that

often appear in DAVID outputs of pluripotency factors (see section 4.3.2), none of them achieved

significance here. This is mentioned as being of particular interest as it an objective of this work to
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Figure  4.20:  Scatterplots  depicting  the  relationship  between  significance (Mann-
Whitney U test) and observed fold change between the 50 highest-Klf4 samples and the
50 selected low-Klf4 samples in the Klf4-ordered HPM matrix. Red lines show the p =
0.05 mark, dark green lines show the log2 fold change = 1 mark, light green lines show
the log2 fold change = 1.5 mark. Top panel is all datapoints, bottom panel is a zoomed
version.
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Table  4.21:  Selected biological pathway enrichments resulting from a gene list made of
those genes found to be upregulated (increase of 1 log2 fold expression) between 50 highest
vs 50 lowest Klf4 samples.

GO Identifier GO Term Q-value

GO:0007389 pattern specification process 36 0.00000682
GO:0048729 tissue morphogenesis 33 7.24994103484811E-006
GO:0000904 cell morphogenesis involved in differentiation 28 0.0001291903
GO:0016055 Wnt receptor signaling pathway 21 0.0001496236
GO:0031175 neuron projection development 26 0.0007089474
GO:0035239 tube morphogenesis 22 0.0012429839
GO:0060429 epithelium development 29 0.0013163323
GO:0030182 neuron differentiation 37 0.0013235519
GO:0007409 axonogenesis 21 0.0015842651
GO:0045449 regulation of transcription 131 0.0016816584
GO:0048667 cell morphogenesis involved in neuron differentiatio 22 0.0023617706
GO:0030111 regulation of Wnt receptor signaling pathway 10 0.0024675237
GO:0035295 tube development 27 0.0033344299
GO:0021915 neural tube development 14 0.0033427498
GO:0006350 transcription 107 0.0034410031
GO:0048812 neuron projection morphogenesis 21 0.0034720254
GO:0007411 axon guidance 15 0.0040551067
GO:0007507 heart development 24 0.0040689781
GO:0007167 enzyme linked receptor protein signaling pathway 27 0.0046893564
GO:0048666 neuron development 28 0.0054659545
GO:0051094 positive regulation of developmental process 22 0.0118156897
GO:0045941 positive regulation of transcription 37 0.0160137907
GO:0030178 negative regulation of Wnt receptor signaling pathw 7 0.0251371982
GO:0042127 regulation of cell proliferation 39 0.0356556346
GO:0045944 positive regulation of transcription from RNA polyme 29 0.0364865899
GO:0006357 regulation of transcription from RNA polymerase II 43 0.0371580925
GO:0043405 regulation of MAP kinase activity 11 0.0684411563
GO:0000165 MAPKKK cascade 12 0.1538194186
GO:0030509 BMP signaling pathway 5 0.2611128572
GO:0043408 regulation of MAPKKK cascade 9 0.4285691743
GO:0000187 activation of MAPK activity 6 0.5189439491
GO:0043409 negative regulation of MAPKKK cascade 3 0.6726345067

Probe 
Count
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Table 4.22: Selected biological pathway enrichments resulting from a gene list made 
of those genes found to be downregulated (decrease of 1 log2 fold expression) 
between 50 highest vs 50 lowest Klf4 samples.

GO Identifier GO Term Q-value

GO:0042127 regulation of cell proliferation 51 1.52228E-008
GO:0006357 regulation of transcription from RNA polymerase II prom 45 0.0002874579
GO:0010629 negative regulation of gene expression 34 0.0004960271
GO:0045596 negative regulation of cell differentiation 20 0.0009700733
GO:0010628 positive regulation of gene expression 36 0.0009870139
GO:0006355 regulation of transcription, DNA-dependent 77 0.0012405369
GO:0008285 negative regulation of cell proliferation 22 0.0012902969
GO:0045941 positive regulation of transcription 35 0.0013077032
GO:0001568 blood vessel development 23 0.0013089926
GO:0001944 vasculature development 23 0.0016453912
GO:0045892 negative regulation of transcription, DNA-dependent 26 0.0016926587
GO:0008284 positive regulation of cell proliferation 24 0.0033558614
GO:0016481 negative regulation of transcription 28 0.0047964846
GO:0045449 regulation of transcription 102 0.0059009418
GO:0045944 positive regulation of transcription from RNA polymerase 27 0.0060337084
GO:0001525 angiogenesis 15 0.0061080122
GO:0045893 positive regulation of transcription, DNA-dependent 29 0.0107934924
GO:0035295 tube development 21 0.018984997
GO:0048514 blood vessel morphogenesis 17 0.0332051926
GO:0001763 morphogenesis of a branching structure 13 0.0343960781
GO:0048863 stem cell differentiation 6 0.1172494743
GO:0019827 stem cell maintenance 5 0.1578286883
GO:0048864 stem cell development 5 0.1782723857
GO:0017015 regulation of transforming growth factor beta receptor s 5 0.318268833

Probe 
Count



demonstrate the increased utility of scanning over a large, ordered dataset rather than doing more

traditional  differential  expression analyses  between defined start  and end points  of  a  biological

phenomenon of interest. This is borne out in later sections where the scanning window method is

applied across the entire dataset in section 4.3.13.

In summary, it would appear that differential expression analysis between the highest and lowest

Klf4 states finds a strong developmental signal, but does not reveal much of the internal workings

(pathways or processes) known to operate in mESCs that other analyses in this work have much

greater success with.

4.3.6 Gene expression changes between naïve pluripotency and primed pluripotency show a 
preference for gene activation of developmental and signalling pathways

This analysis was carried out as described in section  4.2.4, by calculating the fold changes of all

probes between a first set of samples between Klf4 rank 1 and 50 (see figure 4.19, green vertical

bar.), to a second set of samples between Klf4 ranks 800 and 849 (see figure 4.19, orange vertical

bar.)  Of  all  45,101  probes,  2,254  were  found  to  have  significantly  (p  <  0.05)  increased  their

expression  by at  least  1  log2 fold.  This  number  of  significantly  changing  genes  is  in  striking

contrast to the differential expression analysis between the highest and lowest Klf4 states (n = ).

This, again, supports the notion that more focussed methods are necessary to draw out the detailed

transcriptional events occurring in the data.

From all  153 significantly-enriched pathways,  this  analysis  returned significant  enrichments  for

pathways  concerning  development,  proliferation,  transcription,  and  activity  of  the  Wnt,  VEGF,

Notch and MAPK pathways. An appearance here of enrichment for “negative regulation cell death”

was unexpected, but makes sense in that increased expression of anti-apoptosis markers implies a

pro-survival signal.

Finally, there was enrichment here for “chromatin organization”. Chromatin remodeling is known to

take place between naïve and primed pluripotency (see sections 1.4 and 4.1.7) and so it is good to

see this  enrichment occurring here,  again lending support to the idea that  events known in the

literature are recapitulated here.
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Only 874 probes were significantly (p < 0.05) downregulated by at least 1 log2 fold. Only four

pathways achieved enrichment here, all concerning cell proliferation and transcription. 

Therefore it appears that, compared to the “highest versus lowest Klf4” analysis, this more focussed

analysis on naïve to primed pluripotency reinforced the importance of Wnt signalling, but added the

aforementioned  VEGF,  Notch  and  MAPK  pathways  and  found  implied  changes  to  chromatin

organisation. This recapitulates what is known about the naïve to primed switch (see sections 1.3.3,

1.4, 1.5 and 4.1.7), and reinforces the utility of combining wider and more focussed analyses across

ordered datasets.

4.3.7 Differential expression analysis of “early” to “late” naïve pluripotency suggests 
separate cellular states and markers defining these states

Fold changes for all probes were calculated between “early” naïve pluripotent (Klf4 rank 1 to 50

(figure  4.19, green vertical bar.)) and “late” naïve pluripotent (Klf4 ranks 600 to 649 (see figure

4.19, yellow vertical bar)).

This  returned far  fewer differentially-expressed genes than the previous  analyses,  with only 44

genes significantly (p < 0.05) upregulated, and 61 genes significantly (p < 0.05) downregulated by

at least 1 log2 fold.

There were no pathways found to be enriched in the 44 upregulated genes list  but 6 pathways

significantly enriched in the list  of downregulated genes.  These 6 pathways concerned positive

regulation  of  gene  expression,  cell  proliferation,  positive  regulation  of  transcription.  The

downregulation of positive regulators of gene expression implies shutting down of gene expression,

which is  in line with the trend of restricting expression as mESCs move away from the naïve

pluripotent state.

Despite this lacklustre showing of GO term enrichment in this data, one of this investigation's most

exciting objectives was to test the ability to use this data and method to identify early responding

genes that change their level of expression at the earliest stages of mESCs moving away from naïve

pluripotency, ideally before the “usual suspects” such as FGF5, Brachyury (T) and Rex1 (Zfp42)

do. This section will not exhaustively discuss each candidate gene, but rather some of the more
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striking  /  novel  ones  as  well  as  those  with  known parts  to  play  in  mESC biology.  Tables  are

provided of the full lists of upregulated and downregulated genes across this region, in tables 4.23

and 4.24 respectively. Together, these form a list of candidate genes that this work puts forward for

further investigation as useful markers to differentiate between, and monitor the change between,

early  and late  naïve  pluripotency.  Probes  for  genes  with  no  clear  /  mechanistic  link  to  mESC

pluripotency in the literature to date are highlighted in cyan.

Of particular interest is the identification of Tbx3 (fold change -2.23, p-value 2.8x10 -13) as one of

the  earliest  responders  before  the  drop in  Rex1 (Zfp42)  or  the  rise  of  FGF5 /  Brachyury  (T),

although FGF5 does also make the list with a fold change of 1.004, just over the threshold of 1 log2

fold  change.  Tbx3  is  a  known factor  which  both  confers  LIF  independence  and  promotes  the

expression of Nanog (Niwa et al. 2009), (Ivanova et al. 2006). This data suggests that Tbx3 can also

be used as a sensitive marker for the early naïve pluripotent state, and its expression used to gauge

progress towards “late” naïve pluripotency. A plot showing a smoothed line for denoting the level of

Tbx3 across the Klf4-ordered matrix is given in figure 4.25, along with the next gene of interest,

carbonic anhydrase 4 (Car4.)

The  first  wholly-novel  marker  of  early  to  late  naïve  pluripotency  transition  is  Car4.  Car4  is

differentially expressed between early and late naïve pluripotency, being found to be significantly (p

= 2.3x10-5) increased in its expression by 1.45 log2 fold, 2.74 absolute fold change. This is depicted

across the Klf4 scale in figure  4.25 upper panel. It's function in mESC biology is not known at

present,  so  the  significance  of  the  rise  of  carbonic  anhydrase  4  before  the  onset  of  primed

pluripotency is  unclear,  although it  may be that Car4's  function of catalysing the production of

bicarbonate and protons from carbon dioxide may be related to the hypoxic environment normally

experienced by the ICM. Indeed, the hypoxic environment at the centre of some cancers has been

cause for the linkage of the expression of other carbonic anhydrases to cancer, though carbonic

anhydrases  have  no defined function in  mESC biology as  yet.  Further,  the  fact  that  there  is  a

crossover point between Car4 and the aforementioned Tbx3 in figure 4.25 suggests that there are

indeed changes in trancriptional profiles occurring as naïve pluripotency moves from an earlier to

later stage, but before the pronounced flip in currently-known markers occurs.

Two further  examples  are  given,  with keratin  18 (Krt18)  and inhibin  beta  B (Inhbb) changing

expression across early to late naïve pluripotency, with Krt18 increasing, Inhbb decreasing. These 
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Table  4.23: Fold  changes  (upregulated  >=  1  log2  fold)  and  p-values  of
probes  resulting  from differential  expression  analysis  across  early  to  late
naïve pluripotency areas of the Klf4-ordered HPM matrix. Probes with cyan
highlight are for genes with little current known link to mESC pluripotency
states.

Probe.ID Gene.Name log2.Fold.change Wilcox.p.val
1448169_at Krt18 1.70619744555863 5.657095E-07
1448949_at Car4 1.45481134948046 2.285171E-05
1417845_at Cldn6 1.42338901304833 6.794322E-08

1423691_x_at Krt8 1.40631203723095 5.877428E-05
1420647_a_at Krt8 1.40606935857179 3.178046E-05
1421749_at Lin28 1.38599996255796 1.904623E-05
1454681_at Esrp1 1.37852863496619 7.307903E-09
1415938_at Spink3 1.37116062786202 3.372524E-05

1435989_x_at Krt8 1.34653357563372 3.08485E-05
1415801_at Gja1 1.26345644596243 4.798612E-05

1418094_s_at Car4 1.21773604943889 9.942155E-06
1456326_at Fndc3c1 /// LOC676436 1.21625572927056 2.217082E-05
1443961_at Gm4340 1.21200891025453 0.0060050036
1419086_at Fgfbp1 1.20886099641398 1.904623E-05
1417061_at Slc40a1 1.19054606181714 5.979713E-06
1417210_at Eif2s3y 1.1790582391476 0.0019753194
1443256_at --- 1.15389869845337 2.150926E-05
1419018_at Rhox6 1.11857431796383 2.217082E-05
1416034_at Cd24a 1.11329572656806 1.096297E-06
1416832_at Slc39a8 1.11294196492785 1.444936E-05

1423506_a_at Nnat 1.09246430550637 0.0016810507
1448182_a_at Cd24a 1.08697840112459 5.859907E-07
1450947_at 2610528J11Rik 1.07871647296722 4.770126E-06
1417156_at Krt19 1.07679967619988 0.0016424719
1460330_at Anxa3 1.07624810731618 2.820595E-05
1452320_at Lrp2 1.07014038804717 6.069718E-07
1418240_at Gbp2 1.06221805908015 0.0001948455

1417895_a_at Tmem54 1.0554327943264 4.415401E-07
1418320_at Prss8 1.05473264359882 1.027393E-07
1448566_at Slc40a1 1.05174935329999 3.317481E-07
1418449_at Lad1 1.0477123054772 2.173491E-11

1423049_a_at Tpm1 1.04331593961162 4.326893E-06
1423523_at Aass 1.03876121794039 0.0006421448

1435906_x_at Gbp2 1.03599915145107 0.0002683301
1448612_at Gm5279 /// Gm7850 /// Sfn 1.03572561500568 8.491997E-06

1437502_x_at Cd24a 1.03332469484237 2.355247E-05
1450285_at Gm2098 /// LOC100040390 1.02936416547357 0.0001702063
1420549_at Gbp1 1.02566587187393 0.0023162129
1416242_at Klhl13 1.022969318529 0.0014961643
1428804_at Mfap3l 1.00867473617806 5.389606E-05

1427133_s_at Lrp2 1.00634251007976 3.923276E-06
1438883_at Fgf5 1.00439138529978 2.502053E-08
1418984_at Inadl 1.00359614768412 2.728031E-10
1448690_at Kcnk1 1.00176065252548 1.954765E-06
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Table 4.24: Fold changes (downregulated <= -1 log2 fold) and p-values of probes 
resulting from differential expression analysis across early to late naïve pluripotency 
areas of the Klf4-ordered HPM matrix. Probes with cyan highlight are for genes with 
little current known link to mESC pluripotency states.

Probe.ID Gene.Name log2.Fold.change Wilcox.p.val
1437479_x_at Tbx3 -2.23209985334726 2.7689788261102E-13
1417395_at Klf4 -2.19800162299615 6.927101010008E-18
1423100_at Fos -2.02078735099522 1.8567735828441E-07

1448736_a_at Hprt1 -1.87663785136869 6.0639879169026E-08
1426858_at Inhbb /// LOC100046802 -1.87273421200587 1.6901455185834E-08
1429524_at Myo1f -1.63373751222366 7.4009233345763E-10

1456735_x_at Acpl2 -1.47815313384944 3.7969473410994E-06
1438781_at Tet2 -1.44766984596176 1.0269695341346E-10
1422573_at Ampd3 -1.44150705044951 3.111517548242E-10
1435204_at Prmt8 -1.41713574280224 7.7548052082484E-07
1452142_at Slc6a1 -1.33537267708939 1.7254533088917E-07
1416529_at Emp1 -1.30671110697855 8.9114032776548E-07
1434917_at Cobl -1.29723938183136 3.0248910619924E-14
1422134_at Fosb -1.27369270480431 0.004769185865005

1427680_a_at Nfib -1.2642365121661 2.0575672042341E-08
1447831_s_at Mtmr7 -1.26018913055295 9.0107426513298E-05
1449344_s_at 2210409E12Rik -1.2544994434373 0.00447470462253
1418538_at Kdelr3 -1.25351096493834 4.5751260451588E-07

1436742_a_at Accsl -1.23560531378227 4.1119336940054E-07
1452514_a_at Kit -1.23090581298702 4.5430634833731E-11
1434719_at A2m /// LOC677369 -1.22979091489677 3.3725236443779E-05

1456182_x_at Mela -1.21770003464296 0.00090643077033
1424719_a_at Mapt -1.20209505400727 7.2321443408402E-07
1422937_at Fzd5 -1.19083795328054 1.4047170982152E-10
1456887_at Cmklr1 -1.1890268105006 9.8049555324702E-12
1420909_at Vegfa -1.17390042129202 2.7048121746121E-08
1456242_at Gm7325 -1.17032238258192 5.0710890714306E-09
1444390_at Prdm14 -1.15144164955731 6.0697182900748E-07
1454901_at Ypel2 -1.14633127703364 1.4892190702711E-07
1423584_at Igfbp7 -1.14630988366945 0.000109620683021

1431416_a_at Jam2 -1.14022878332974 1.0592036229165E-06
1456609_at Camk2n1 -1.14018141611979 6.5834852301104E-06
1416488_at Ccng2 -1.13955235083266 0.000148520147157
1418645_at Hal -1.13800404134284 1.2339990476428E-09
1423176_at Tob1 -1.12923136797559 1.058605497535E-05
1449146_at Notch4 -1.12751803154829 1.9021315709154E-08
1436546_at Lix1l -1.12393836507941 3.4134309067322E-08
1418345_at Tnfsf12 /// Tnfsf12-tnfsf -1.1139943632653 1.9604968432006E-09

1456250_x_at Tgfbi -1.11023379929702 6.9837088366052E-07
1439881_at C030013E06Rik -1.1061325341709 3.7969473410994E-06
1417065_at Egr1 -1.0966725915392 0.000184612660062
1448228_at Lox -1.09602322631905 0.202816995116694
1440692_at Gm364 -1.09162835659487 0.005881775416865
1416121_at Lox -1.08666138172084 0.111203380460296

1436970_a_at Pdgfrb -1.08075528591853 0.000512206838224
1416405_at Bgn -1.08051178721812 0.02751593710251
1424037_at Itpka -1.07810148085244 4.4099926809132E-10
1418467_at Smarcd3 -1.05816959845663 4.8095935680966E-10
1450297_at Il6 -1.05796830416683 1.1627071063197E-05
1441045_at Ddx43 -1.0284460269016 4.3268928067173E-06
1442489_at D1Ertd564e -1.02822404265232 0.001126223170162

1450857_a_at Col1a2 -1.02232602907735 0.067169235475786
1442018_at Btg1 -1.02055151880666 3.5558878054356E-06

1434624_x_at Rps9 -1.00732187451079 0.060369337764021
1437188_at Gabbr1 -1.00064475351948 1.9783678247906E-08
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Figure  4.25:  Expression  of  Car4,  Tbx3  (upper  plot),  Inhbb and Krt18 (lower  plot)  as
smoothed  line  plots  across  the  Klf4-ordered  HPM  matrix  demonstrating  expression
changes in these genes across early to late naïve pluripotency, see section  4.3.7. Vertical
coloured highlight areas of lower plot match those from figure 4.19, grey area of lower plot
draws attention to divergent changes in expression of Krt18 and Inhbb as examples of “late
naïve pluripotency” changes.



changes are plotted across the Klf4 spectrum in figure  4.25's lower panel. The function of these

genes in the context of naïvely-pluripotent mESCs is not discernible from this data, although Inhbb

has been found to be downregulated upon LIF withdrawal and has therefore been hypothesised to

be downstream of STAT3 signalling (Sekkai et al. 2005).

As can be seen from table  4.23, Krt18 was not the only keratin to follow this pattern; two other

keratins, keratins 8 and 19, (fold changes of all three being 1.71, 1.41 and 1.08 log2 fold change

respectively), which are markers of ectodermal / epithelial tissue, also follow this pattern. All three

of these genes appear to remain somewhat steady in their expression at the earliest parts of naïve

pluripotency, but then there is a marked rise in the expression of all three at around the 425 index

mark (see figure 4.26, grey vertical line), long before the change point from naïve pluripotency to

primed pluripotency, which occurs at around the 600 index mark (yellow vertical highlight bar.) 

Lin28 also makes an appearance in this analysis, which is of interest given its role in suppressing

the  maturation  of  Let7  pri-miRNAs  and  its  connection  to  cell  cycle  machinery  in  mESCs

(Viswanathan et al. 2008), (Xu et al. 2009), (Hagan et al. 2009). This work suggests Its novel use as

a marker of transition between early to late naïve pluripotency.

Claudin 6 (Cldn6) shows a fold change of 1.42 log2 (2.68 absolute) and a p-value of 6.8x10-8.

Claudin 6 is a tight junction protein which, in agreement with the findings presented here, has been

linked to the expression of keratin 8 (Krt8) in mouse embryonic endothelium / embryoid bodies

(Turksen et al. 2001). Claudin 6 is worthy of specific mention as  (Tesar et al. 2007) shows high

Claudin  6  as  a  marker  of  the  EpiSC /  primed state.  Increasing  expression  of  Krt8  and Cldn6

therefore recapitulates what is found in the literature. What is novel from this work, however, is

now the knowledge that Cldn6 begins its increase in expression long before the flip in expression of

the canonical naïve / primed pluripotency markers.

206



207

Figure 4.26: Expression of Krt8 and Krt19  as smoothed line plots across the Klf4-ordered HPM
matrix  demonstrating  expression  changes  in  these  genes  found  in  the  putative  “late  naïve
pluripotent” state identified in section  4.3.7. Vertical coloured highlight areas match those from
figure  4.19.  Grey  vertical  lines  are  drawn  around  this  putative  late  naïve  pluripotent  state  to
highlight divergent changes in expression of the genes selected here. Full gene lists are given in
figures 4.23 and 4.24.



Despite a lack of enrichment for any GO terms involving FGF signalling between early and late

naïve pluripotency, epithelial splicing regulatory protein 1 (Esrp1) was found increase its expression

1.38 fold  (p-value  7.3x10-9)  across  this  period.  Esrp1 is  involved in  the  alternative  splicing  of

fibroblast  growth  factor  receptor  2  during  the  epithelial-to-mesenchymal  transition  (EMT)

(Warzecha et al.  2009). A novel implication from this work, therefore is that a changing of the

subtype of  FGF receptor  2  may be occurring  during the  early  to  late  naïve pluripotency state,

although this would require experimental confirmation.

Furthermore, fibroblast growth factor binding protein 1 (Fgfbp1) occurs in table  4.23 with a 1.21

fold increase in its expression across the same period (p-value 1.9x10-5), which piqued interest in

that analysis of the whole early to late naïve pluripotency region may find more to do with FGF

signalling (see section 4.3.10.)

Tet methylcytosine dioxygenase 2 (Tet2)  also made this  list,  and was shown to decrease in its

expression  -1.45  log2  fold  (p  =  1.03x10-10).  Tet2  is  of  interest  to  this  work  given  it's  role  in

maintenance of 5-methylcytosine epigenetic markers. Tet2 has been shown to interact directly with

Nanog  (Costa  et  al.  2013) and  be  regulated  by  Oct4,  although  is  ultimately  dispensable  for

pluripotency (Koh et al. 2011). It is interesting to see a marked drop in Tet2 as being associated with

this putative novel cellular state, although microarray data can unfortunately provide no information

on any epigenetic changes which may also identify this state.

Prdm14, a known pluripotency factor (Yamaji et al. 2013), is confirmed to drop towards late naïve

pluripotency, with a fold change of -1.15 (p = 6.07x10-7). This is worthy of mention here as Prdm14

may is known to promote the naïve pluripotent state through inhibition of both FGF signalling and

epigenetic changes. Taken together with the concomitant increase seen in Fgfbp1 mentioned above,

this  suggests  that,  in  accordance  with  the  literature,  FGF-related  genes  are  involved  in  the

progression from early to late naïve pluripotency, although this differential expression approach did

not find an enrichment for the FGF signalling pathway. It will prove interesting, in future work, to

experimentally manipulate genes identified in this section to observe effects on naïve pluripotency

(see section 5.1.7). The expression pattern of the genes mentioned in this section are given in figure

4.27, except for those already in figure 4.26, to avoid repetition.

One of the most exciting results from this analysis came from simultaneous display of selected

candidate genes as a heatmap generated from tables  4.23 and  4.24. This heatmap is provided as

figure 4.28, with expression values from all 50 samples from each of early and late naïve regions of
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the Klf4-ordered matrix (ranks 1 to 50 and 600 to 649 respectively). For clarity, this heatmap is

row-scaled to demonstrate relative upregulation or downregulation of each gene. A final summary

bar plot of the differential expression values of selected genes, including all of those mentioned in

the text above is given in figure 4.29, representing the change in expression of those genes as early

naïve  pluripotency  changes  to  late  naïve  pluripotency,  but  before  the  canonical  flip  in  FGF5,

Brachyury and Rex1 occur.

In summary of this section, it was interesting to find no significant enrichments across this part of

the data when using differential expression. Regardless of there being no GO enrichments of any

major significance in this section of the data, the Klf4-ordered matrix has, as was desired, proven

useful in splitting the data into distinct “early” and “late” naïve pluripotent states (also see section

4.3.4).  Furthermore  it  has  allowed  the  successful  identification  of  early  responding  genes  and

markers of these early and late naïve pluripotent states. A number of interesting future experiments

are called for on the back of these findings (see section 5.1.7).
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Figure 4.27: Smoothed line plots of selected genes identified in section 4.3.7 as 
potential markers of an identified late naïve pluripotent state prior to the change to
primed pluripotency. Early naïve pluripotency is defined in this work as the area 
of highest Klf4-expression, which coincides with strongest expression of known 
naïve pluripotency markers (see figure 4.30) and late naïve pluripotency is defined
here as the region on the Klf4 spectrum just prior to the reversal of the FGF5low, 
Brachyury (T)low, Rex1high state.
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Figure 4.28: Heatmap of early vs late naïve selected genes
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Figure  4.29:  Barplot displaying change in expression of selected genes shortlisted as
candidates for markers identifying a late naïve pluripotency state as being distinct from
the early naïve pluripotent state. For details, see section 4.3.7. Numbers used in this plot
can be found, along with changes in expression of other genes, in figures 4.23 and 4.24.
Numbers were generated by the observation of significant (p < 0.05) changes in mean
expression of these genes between groups of 50 consecutive samples from the early
naïve pluripotent region and the late naïve pluripotent region of the Klf4 ordered data,
subtracting the mean expression of the lower-Klf4 group from the higher-Klf4 group.
Samples from the early and late naïve pluripotent region of the Klf4-ordered matrix can
be seen as the green and yellow vertical bars in figure 4.19 respectively.



4.3.8 Differential expression analysis between primed pluripotency and early differentiation 
shows shutdown of transcription of developmental genes and activation of survival genes

This analysis was carried out by calculating the fold changes of all probes between a first set of

samples between Klf4 rank 800 and 849 (see figure 4.19, orange vertical bar.), and a second set of

samples between Klf4 ranks 970 and 1,019 (see figure 4.19, red vertical bar.) Only 106 probes were

found to have significantly (p < 0.05) increased their expression by 1 log2 fold (2 absolute fold

change.) Only 5 pathway enrichments were found in this list, pertaining to negative regulation of

apoptosis (3 pathways), filament bundle assembly and “cellular component morphogenesis”).

Those probes found to have significantly decreased their  expression by 1 log2 fold across this

region numbered 385, and gave 199 GO biological pathway enrichments. The signalling pathways

found to be enriched in this list were Wnt, BMP, and VEGF pathways. Proliferation and regulation

of gene expression pathways were also enriched and entered into the summary figures  4.35 and

4.36. Development of vasculature, skeletal system, urogenital system, heart, kidney, nerve, lung,

gland, limb, pancreas, eye, gut and lymph system were found here, which is interesting to see, given

that this region of the matrix was hypothesised to represent exit from primed pluripotency towards

differentiation  /  devlopment.  The  earlier  analysis  of  genes  changing  between  naïve  to  primed

pluripotency uncovered a large list of developmental pathway genes being upregulated, while here a

great number of downregulated genes are developmental in nature.

One possible explanation for a large increase in the expression of developmental genes between

naïve and primed pluripotency was offered in work by  (Turner 2008) and particularly work by

(Efroni  et  al.  2008),  who  put  forward  that  the  ES  state  has  open  chromatin  and  exhibits

transcriptional hyperactivity. If this effect was strengthened during naïve to primed transition, it

would explain why so many developmental pathways are upregulated between naïve pluripotency

and primed pluripotency (section  4.3.6) and thus, later, as Klf4 drops and differentiation starts to

proceed,  a  relative large downregulation of these developmental  genes  would become apparent

here.

However, this explanation is unsatisfactory for two reasons. Firstly, it has not been shown in the

literature  that  there  is  any  increase  in  transcriptional  hyperactivity  across  the  naïve  to  primed

pluripotency transition.  In  fact,  chromatin  is,  if  anything,  already becoming  less  permissive  to

transcription at  the primed pluripotency point,  arguing against  transcriptional  hyperactivity,  and
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secondly, the very idea of transcriptional hyperactivity in ES cells has also failed to gather evidence

(Marks et al. 2012). This caused concern when taking the results of this analysis together with those

from  across  the  naïve  to  primed  pluripotent  state,  as  the  number  of  significantly  enriched

developmental pathways is so large across both of these analyses. However, an explanation for this

phenomenon becomes apparent when it is considered that transcriptional pausing is an important

transcriptional regulation method in mESCs (see the functions of Myc in mESCs in section 1.3.2).

Given that autocrine FGF signalling is pronounced during naïve pluripotency, and that MAPK/Erk

signalling is the downstream effect of this, it is far more likely that, during the naïve pluripotent

state,  transcriptional pausing is, if anything, increased compared to the primed state, when it is

considered that ERK1/2 has been found in recent work to promote promoter proximal pausing in

mESCs (Hackett and Surani 2014) (Tee et al. 2014).

This neatly ties together the idea of the pluripotent state as being “poised” for the transcription of

many genes, particularly developmental pathways, in that RNApolII is able to access many of these

sites, but FGF/MAPK/ERK signalling prevents the transcription of full-length mRNA transcripts

from  these  genes.  With  these  recent  advances  in  understanding  in  mind,  the  data  appears  to

elegantly recapitulate these phenomena, with a distinct increase in the number of upregulated genes

associated with developmental pathways occurring at exactly the time of the switch-over to primed

pluripotency which also coincides with the data where there is the only observable major drop in the

detection of mRNA for FGF4, as shown in figure 4.30. The later observation of a large drop in the

expression of developmentally-related genes can now be understood to be a natural progression

towards a more differentiated cell state wherein there will be a progressive switching off of different

developmental lineages as differentiation progresses.  This  last  phenomena (the switching off of

many developmental lineages) is, it must be said, may also be affected by the makeup of samples

which form the lower Klf4 part of the data.
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Figure  4.30: Smoothed  line  plots  of  naïve  pluripotency  marker  Rex1,  primed
pluripotency  marker  Brachyury  (T)  and  FGF4,  demonstrating  the  drop  in  FGF5
occurring concurrently with the reversal of expression of the aforementioned Brachyury
/ Rex1 markers, suggesting, therefore, relief of proximal promoter pausing when FGF4
drops (see section 4.3.8.)



4.3.9 A scanning window method for detecting significant changes in gene expression 
captures the patterning of the Klf4-ordered matrix with a 25 sample window and 
threshold of 1 log2 fold change

The scanning window method detailed in section 4.2.5 and described graphically in figure 4.1 was

run a total  of 15 times.  The first 12 runs were to investigate the influence of the width of the

scanning window (read: the number of adjacent samples used to calculate a mean level of gene

expression  in  each  comparison.)  Each  time  the  method  was  run,  the  number  of  significant

expression changes over 1 log2 fold (either up or down) in each scanning window was recorded. 11

of 12 runs investigating a suitable window width for the later analysis are shown in figures 4.31 and

4.32.

When the number of samples used in the scanning window was set at 3, there were no fold changes

of more than 1 log2 fold in magnitude that were significant in any window. As such there is no plot

of the expression changes across the Klf4-ordered matrix with a window width of 3 samples.

As can be seen from  the plots in figure 4.31 when window widths of 5 and 10 were used, there was

little discernible pattern in the data, particularly compared to when the window width was increased

to 15 samples.

Now with the window width at 15 samples, an overall pattern becomes visible in figure 4.31. As the

width of the scanning window is increased beyond 15, that pattern that emerged continues to be

seen, albeit with a reduction in noise. The peak at around the 750-th scanning window remains

while significant expression changes are still seen across other regions.

This represents, therefore, the first pattern to become apparent in the data when using the scanning

window method; that a large number of changes in gene expression occur around the 750th window.

This was expected and shows that this approach is capturing patterning of the data, with a majority

of changes in gene expression around the point which coincides with the change from naïve to

primed pluripotency in the previous analyses. The change from a scanning window of 10 samples to

a scanning window of 15 samples represents the single largest drop in the total number of observed

significant gene expression changes, as can be seen from the last plot of figure 4.32, which depicts

the relationship between this total number of expression changes and scanning window width.
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Figure  4.31: Assessment  of  the  suitability  of  different  scanning window widths
using plots depicting the total number of genes found to change their expression by
a minimum of 1 log2 fold (either upward or downward) in all scanning windows
across the Klf4-ordered HPM matrix. Note the differences in scales on the y-axes.
Plot 1 of 2.



218

Figure  4.32: Assessment  of  the  suitability  of  different  scanning  window widths
using plots depicting the total number of genes found to change their expression by a
minimum of  1 log2 fold  (either  upward  or  downward)  in  all  scanning windows
across the Klf4-ordered HPM matrix. Note the differences in scales on the y-axes.
Lowermost plot shows the grand total (across all scanning windows) of how many
genes significantly (p <= 0.05) change their expression, given each scanning window
width, justifying the use of the 25-sample window width as having likely removed
“noise”. Panel 2 of 2.
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Figure  4.33: Filled curve of all significant (p <= 0.05) changes in mean expression of
genes across the Klf4-ordered matrix when using window scanner with window width 25,
threshold 1 log2 fold.



Increase  of  the  scanning window width  to  20  samples  brings  with  it  the  first  visually-striking

reduction of “noise” in this scan, compared to the scanning window width of 15.

As can be seen from the last panel of figure 4.32, it is when the scanning window width is set to 25

or above, that the curve of the line flattens off. Taken together with the previous observations in this

figure, a window width of 20 has removed most noise, while 25 or above begins to slowly lose the

number of detected significant changes. It was therefore decided that this, the 25-wide scanning

window  mark,  was  an  appropriate  balance  of  reduction  of  noise,  but  retention  of  as  many

significantly-changing genes as possible. 

Concerning  an  appropriate  threshold  to  use  when  scanning  the  data,  the  previous  differential

expression analyses' biological pathway enrichments contained pathways that would be expected of

a dataset capturing pluripotency and exit from it (see sections 4.3.5 to 4.3.8). This suggests that the

use of a similar threshold (1 log2 fold) should be acceptable here. Indeed, fair comparison between

the differential  expression approach and the scanning window approach is  only possible if  this

threshold is kept the same.

4.3.10 Scanning window analysis of early to late naïve pluripotency reveals a plethora of 
significantly-enriched biological pathways

As one of the most striking results in this thesis, the scanning window approach to investigating

transcriptional events between early and late naïve pluripotency must be held in direct comparison

to  the  results  of  using  differential  expression  analysis  between  these  two  regions  of  the  Klf4

spectrum (see section 4.3.7).

The differential expression analysis (see section 4.3.7) found a potential novel cellular state before

the  change  to  primed  pluripotency  and  identified  markers  of  this  possible  state  change  for

downstream experimental investigation. However, there were only a total of 105 genes significantly

changing their expression by at least 1 log2 fold between early and late naïve pluripotency and only

6, highly-generic pathway enrichments. The author's suspicion that a great many other changes may

be  missed  by  traditional  differential  expression  analyses  investigating  such  subtle  changes  in

cellular  state  would  appear  to  be  justified,  as  between  scanning  windows  1  and  625  (which

corresponds to all changes that occur between Klf4 ranks 1 and 650, given a scanning window
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width of 25) 1,212 probes were found to have have a significant fold change of at least 1 log2 fold

at some point.

Concerning pathway enrichments, these 1,212 probes resulted in a list of 187 biological pathway

enrichments  which  satisfied  a  q-value  of  q  < 0.05.  This  is  a  vast  increase  on the  6  found by

differential  expression. Prior to examining these enrichments, there were initially two concerns.

First, that the scanning window not been wide enough to sufficiently reduce “noise”. Secondly, that

the  central  hypothesis  of  there  being  meaningful  transcriptional  events  occurring  between  the

putative “early” and “late” naïve pluripotent states was false. Had either of those concerns been

true, then this would have generated a list of enrichments approaching that which would occur by

choosing genes at  random (id est “noise”),  returning little to no statistical  significance and / or

pathways with no relevance to mESC biology.

These  significantly-enriched  pathways  included  cell  proliferation,  transcriptional  regulation,

developmental pathways (vasculature, muscle, epithelium, eye, skeletal, kidney and others). 

An excellent result was to see that the FGF signalling pathway achieved a q-value of  4.7x10 -2  here.

From the  prior  disappointment  that  this  pathway,  known to  be so critical  in  naïve and primed

pluripotency  (see  section  1.3.3),  was  not  found  by  differential  expression  analysis  across  this

region,  this  greatly  supported  the  utility  of  the  scanning  window  approach.  As  for  the  other

signalling pathways previously found in this chapter, none of VEGF, Notch, BMP, Wnt or MAPK

passed the significance threshold of q < 0.05.

Naturally, this result begged the use of the window scanning method across the other areas of the

Klf4 spectrum for comparison to the differential expression method. (see figure 4.19). These other

window scanning runs were also to demonstrate  agreement between differential  expression and

window scanning in areas of the Klf4-ordered data where changes in expression would likely be

more pronounced, simply to validate that the window scanning method finds  bona fide  signals in

the data. A large discrepancy in what the window scanning and differential expression approaches

find in these areas of the Klf4-ordered data might suggest that there is issue with the methodology

of the window scanner.

The significantly-enriched pathways here were added to summary figures 4.35 and 4.36, which also

provide the direct comparison between the differential expression and window scanning approach.
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4.3.11 Scanning window analysis of late naïve to primed pluripotency reveals strong 
enrichment for transcriptional, developmental, PDGF signalling, post-transcriptional 
gene expression regulation, stress response and stem cell pathways

Window scanning between windows 600 and 825 gives the window scanner chance to look for

genes which change their expression significantly between late naïve and primed pluripotency, seen

as the yellow and orange vertical bars respectively in figure  4.19.) This was carried out with a

window width  of  25 samples  and thresholds  of  1  log2 fold  change,  p  < 0.05 for  genes  to  be

included, as defined in section 4.3.9.

This scan found 4,796 genes to change their mean expression significantly at some point between

these areas of the Klf4 spectrum by at least +/- 1 log2 fold.

The  list  of  pathway  enrichments  resulting  from  this  extensive  list  included  regulation  of

transcription  and  proliferation,  differentiation,  chromatin  organisation  and  a  long  list  of

developmental pathways. In addition, the Wnt, VEGF, MAPK signalling pathways are significantly

enriched  in  this  list,  but  it  is  the  appearance  of  the  PDGF  signalling  pathway  here  that  was

unexpected. Some enlightenment from the literature may yet be found in that PDGF signalling is

known to be relevant to the maintenance of human ES cells  (Pebay et al. 2005), although PDGF

signalling does not appear to be functionally characterised in mESCs as yet.

One other pathway to make a first appearance in this work here is “cellular response to stress”. The

finding of an enrichment for stress response genes in the change between late naïve and primed

pluripotency is interesting as it is already known that mESCs have considerably enhanced defences

against stressors such as reactive oxygen species (ROS), DNA damage and heat shock (Saretzki et

al. 2004).

Interestingly,  this  is  also  the  first  time  in  which  the  biological  pathway  “posttranscriptional

regulation of gene expression” pathway has been found to be significantly enriched, although, this

work is not well placed to observe post-transcriptional changes, being microarray-based.

Finally, there was enruchment found for stem maintenance, differentiation and development in this

analysis, when none of these pathways achieved statistical significance when using the differential

expression method across the same region.
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4.3.12 Scanning window analysis of primed pluripotency toward early differentiation shows 
complete agreement with differential expression analysis of the same regions of the Klf4 
spectrum

This window scan ran from Klf4 ranks 800 to 995 and, with a window width of 25 samples, this

corresponds to observing changes between Klf4 ranks 800 and 1020.

The enrichments found here agree with those found by differential expression across the same part

of  the  Klf4-ordered  data  (see  figure  4.19,  orange  and  red  vertical  bars,  see  section  4.3.8)

Enrichments are found for the regulation of transcription and proliferation, apoptosis, differentiation

and a large number of developmental pathways  including vasculature, lung, gland, neuron, skeletal,

urogenital, heart, eye, kidney and germ cell

As the  directionality  of  these changes  was not  taken from the results  of  the  window scanning

analysis, it is not proven here that these developmental genes were found to change in broadly the

same direction (downregulated) as was found in the differential expression analysis as conducted in

section, although future work may involve bringing directionality to the window scanning results

(see chapter 5.)

Exact agreement is also to be found concerning the signalling pathways found to be significantly

enriched across this  part  of the Klf4 spectrum, with Wnt,  BMP, and VEGF being significantly

enriched.

All of the above-mentioned pathways are summarised and compared with those that occur in other

analyses in this chapter in the summary figures 4.35 and 4.36.

4.3.13 Scanning window analysis across all of the Klf4-ordered data shows enrichment for 
nearly all pathways identified in previous analyses and adds others

As an interesting test of the functionality and capability of the window scanning approach, scanning

across all of the data, from highest Klf4 to lowest Klf4 was carried out to check for its ability to

recapitulate  the  results  of  all  of  the  analyses  across  sub-regions  of  the  data,  with  a  view  to

recommending this  approach for the interrogation of large,  ordered datasets  detailing biological

phenomena of interest.
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Across the entire matrix, 1,077 scanning windows were observed for significant changes in mean

expression. Full results of this scan are provided in the accompanying R Object file, with filename

“HPM.Matrix.In.Klf4.Order.Significant.WindowScan,Results.W25.T1.RObject”,  on  the

accompanying DVD in the “Chapter 4/WindowScanResults” folder. A total of 6,460 probes were

found to significantly change their mean expression by at least 1 log2 fold in at least one scanning

window across the Klf4 spectrum.

Enrichments across the entire matrix overwhelmingly met the expectation that the scanning window

approach would be capable of finding the results of the other analyses performed across smaller

regions  of the matrix.  Here,  significant  enrichments were found for regulation of  transcription,

proliferation,  apoptosis,  differentiation,  post-transcriptional  regulation,  chromatin  modification,

cellular response to stress and the three stem cell  pathways of differentiation,  maintenance and

development.  The  Wnt,  BMP,  MAPK  and  VEGF  pathways  were  successfully  identified  as

significantly enriched, but not the Notch or FGF pathways, which came close to but did not achieve

statistical significance.

Two pathways which did not achieve significance in the other analyses in this chapter now appear,

being the epithelial to mesenchymal transition (EMT) pathway and a previously-unseen signalling

pathway;  the  TGFβ receptor  signalling  pathway.  It  is  interesting  to  see  that  these  enrichments

appear for the first time in the same analysis, as the TGFβ pathway is known to play a role in the

epithelial  to  mesenchymal transition  (EMT) (for  an excellent  review on the pathways that  can

stimulate EMT, and the relevance of EMT to the cancer / stem cell phenotype, see  (Polyak and

Weinberg 2009)). For more information on the role of TGFβ signalling in mESCs, see section 1.3.3.

The  ability  of  the  scanning  window  approach  to  find  so  many  of  the  significantly-enriched

pathways  from  other  analyses,  using  only  one  run,  is  a  striking  result.  From  other  analyses’

combined lists of pathway enrichments, only the Notch pathway and the FGF pathway did not make

the final list of enriched pathways for the full matrix window scan (see summary figures 4.35 and

4.36).

Even then, the Notch pathway only barely failed the significance threshold (q = 0.06) and the FGF

pathway was still detected, albeit with a clearly unacceptable q-value (q = 0.22). Whether or not this
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argues for the relaxing of significance thresholds in the case of such a large window scan analysis,

the introduction of some pruning / filtering method for the final list of genes which significantly

change their expression, or suggests that the sheer number of probes / genes making it in to the final

lists of the window scan results does not mesh best with enrichment tools such as DAVID remains

to be determined in future work. These points are discussed in the summary of research outcomes in

section 4.3.14.

A summary of the numbers of genes found to be significantly upregulated or downregulated (in the

case  of  differential  expression  analyses)  or  those  found  to  significantly  change  their  mean

expression during a window scan (for the window scanning approach) can be found, along with the

numbers of pathway enrichments that these genes generated in figure 4.34. Further, a final summary

result  of these analyses is  available displaying the most interesting enrichments found by all  4

differential expression analyses and all 4 window scanning analyses is provided in figures 4.35 and

4.36. This can be used to much more easily visualise the gist of the results discussed in the text.
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Figure 4.34: Summary table of all 8 analyses (4 differential
expression, 4 scanning-window) of the Klf4-ordered HPM
matrix,  showing  totals  for  genes  found  upregulated,
downregulated  (in  the  case  of  differential  expression),
changed expression (in the case of window-scanning), and
the  numbers  of  pathway  enrichments  these  analyses
generated.
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Figure 4.35: Table summarising biological pathway enrichment findings of all 8
analyses  (4  differential  expression,  4  scanning-window)  on  the  Klf4-ordered
HPM matrix. Table 1 of 2.
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Figure  4.36:  Table summarising biological pathway enrichment findings
of all 8 analyses (4 differential expression, 4 window-scan) on the Klf4-
ordered HPM matrix. Table 2 of 2.



4.3.14 Summary of Research Outcomes

This chapter demonstrates that the amount of information lost by selecting samples for only the

highest  levels  of  Nanog,  Oct4  and  Sox2  was  significantly  higher  than  if  the  same number  of

samples had been filtered at random, indicating that Oct4, Sox2, Nanog filtering has not removed

heterogeneity,  but  has likely reduced the types of samples  that  remain to fewer than originally

captured in the larger matrix, N3312. Further, the remaining information was proven to include

information relevant to pluripotency, as assessed by the existence of relevant relationships between

pluripotency  factors  Oct4,  Sox2  and  Nanog  to  other  genes,  resulting  in  pathway  enrichments

strongly associated with pluripotency / differentiation.

A novel approach was taken to ordering these high-pluripotency-marker (HPM) samples from naïve

pluripotency to primed pluripotency and beyond, identifying Klf4 as an ordering gene with known

pluripotency  function  and  scoring  8th overall  among  all  genes  with  a  novel  scoring  system of

(absolute correlation to Nanog x normalised Shannon entropy.) Ordering by Klf4 sorted the samples

appropriately,  observed  as  appropriate,  progressive  changes  in  canonical  naïve  and  primed

pluripotency  markers  FGF5,  Brachyury  (T)  and  Rex1  (Zfp42).  Further  confirmation  was

demonstrated  by  cross-referencing  samples  from  across  the  newly-ordered  matrix  with  their

experimental annotation, showing the annotated state of pluripotency / priming / differentiation was

overwhelmingly in agreement with the ordering by Klf4. Thus an overall transcriptional progression

between naïve pluripotency to early differentiation was achieved and, furthermore, samples from

the  same  experiment  and/or  laboratory  were  found  split  across  the  Klf4  ordering  by  their

pluripotency  status,  which  allayed  concerns  that  perhaps  laboratory  and  cell  line  confounding,

found to be unfortunately present in the data in the course of chapter 3

The choice of correlation-to-Nanog as part of the multiplicative scoring method used in this part of

the  work  does  not  mean  that  the  choice  of  Klf4  is  simply  a  surrogate  for  Nanog,  as  it  is

demonstrated in this chapter that ordering the data by Nanog would not have so smoothly sorted

Fgf5, Brachyury (T) and Rex1 either, while another gene given a high multiplicative score (Jam2)

was  shown  to  do  so,  demonstrating  the  utility  of  this  multiplicative  scoring  method  and  that

therefore the good ordering performance of Klf4 was not simply by chance.

With the utility of the data confirmed, analysis was then carried out using differential expression of

groups (n = 50) of  consecutive samples selected from representative areas of  the Klf4-ordered
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matrix.  Four  areas  were  chosen,  being  the  highest-Klf4  samples  (referred  to  as  “early  naïve

pluripotency”), 50 samples taken from just before the switch from Fgf5 low, Brachyurylow, Rex1high,

representing samples that were deemed to be in a “late naïve pluripotenct” state, an area of 50

samples  taken  from  the  highest  Fgf5,  Brachyury  (T)  part  of  the  Klf4-spectrum,  representing

“primed” (EpiSC) pluripotency, and then a final 50 samples chosen from the last Klf4 plateau to

represent the “earliest differentiation” available in this data while OSN factors are still high.

These differential expression analyses identified genes that change their expression between these

different points along the Klf4-spectrum and biological pathways that these genes enrich for. These

pathways  included  significant  enrichments  for  developmental,  transcriptional,  proliferative,

chromatin-related,  stress  response,  stem-cell  related,  differentiation-related,  posttranscriptional-

regulative and 8 defined signalling pathways, all of which were entered into the summary figures of

the chapter for clarity.

This work then went on to calibrate a scanning window approach to discovery of enriched pathways

across the Klf4-ordered matrix. Having devised the method, thresholds for the scanning window

were investigated in order to remove noise but retain sensitivity. The window width decided upon

which performed in this manner was a window of 25 consecutive samples.

This window scanning method was then used to carry out comparisons between the same cellular

states as were done by differential expression. An astounding improvement in the number of genes

found to change their expression significantly between early and naïve late pluripotency was found,

with a concomitant massive increase in the number of biological pathways found to be enriched

across this  area of the data,  including an enrichment  for  the FGF signalling pathway,  amongst

others. The window scanning method is in near-total agreement with the differential  expression

analyses in all other analysed parts of the matrix, and this method is therefore recommended by this

work  as  an  excellent  approach  to  analysing  transcriptional  datasets  which  have,  as  here,  been

ordered as a biological phenomenon of interest takes place.

Bringing the results of this work into the context of current knowledge, the most important result of

this chapter is the addressing of the current lack of detailed knowledge of transcriptional events

which drive naïve pluripotent mESCs toward primed pluripotency. To that end, both the ordered

dataset seeks to fill this gap in knowledge, especially in that the analysis of it returned a putative set

of markers was identified between “early” and “late” naïve pluripotency. These may now be used to
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define / investigate the changes between the early and late naïve pluripotent states immediately

prior to the change to primed pluripotency. A comprehensive list of these putative marker genes is

provided  and  genes  unknown  for  any  clear  function  in  mESC  pluripotency  at  present  are

highlighted. Those non-highlighted genes are not to be ignored, however, as the presence of so

many mESC-pluripotency-related genes is very reassuring to see here and lends credence to the

notion that the analysis across this point of the data is, in fact, showing  bona fide  transcriptional

events that take place in mESCs. Selected genes clearly showing the divergence of upregulated and

downregulated genes between early and late naïve pluripotency given as a heatmap and simplified

bar plot.

This work therefore makes several contributions to the area of mESC biology. Firstly, this work has

assembled the largest to-date set of pluripotent (HPM) mESC microarrays and provided detailed

annotation of them. Another contribution is the method of verifiably, meaningfully ordering this

matrix to investigate progression from naïve through primed pluripotency.

Next, there is demonstration that the in silico methods detailed herein can be successfully used to

probe for transcriptional events and novel cellular states existing between those documented in the

literature, even when none of the experiments making up the data matrix are specifically designed

to identify or investigate these states, and originate from a plethora of different studies.

Further,  there is  no known mESC-related  function  of  many of  the  candidate  late  /  early  naïve

pluripotency markers found in this work. This work therefore contributes to the literature these

candidate markers for further interrogation, ideally experimentally. These markers themselves may

be linked to biological processes which can provide information on novel events which drive the

changes between naïve and primed pluripotency (e.g. Car4 suggests that oxygen / bicarbonate levels

may be involved). The ordered dataset itself is a result which brings the potential for investigation

of ever more detailed events that take place during this critical transition process in mESCs; a task

which  will  require  future  work  and  hopefully  contribute  many  hypotheses  for  experimental

validation.

As for those genes  which were already known to the literature to be related directly to  mESC

pluripotency, this work now updates that knowledge by showing which of those genes can be used

as sensitive markers of where along the transition between “early naïve”, “late naïve” and primed
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pluripotency any given sample is,  improving upon the use of only the current known markers,

canonically being FGF5, Brachyury (T) and Rex1 (Zfp42).

In  order  to  maximise  the  likelihood  that  what  was  predicted  in  this  work  in  silico reflected

biological reality, great effort was undertaken throughout this chapter to ensure that the expected

events (read: expected naïve / primed marker changes, enrichment of relevant biological pathways)

were detected across this ordered dataset, in strong agreement with what is known in the literature.

Further discussion of these results and future work to be carried out on the back of these findings to

improve  our  knowledge  of  the  transcriptional  workings  of  mESCs,  as  well  as  to  improve  the

methods put forward in this chapter, are given in future work sections 5.1.6 and 5.1.7.
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Chapter 5 – 

Discussion and Future Work

5 Discussion and Future Work
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5.1.1 Overview

This final part of the thesis provides discussion of the most salient points arising from each chapter,

while  keeping  the  repetition  of  specific  results  to  a  minimum,  as  each  previous  chapter  has

appended to it its own summary of research outcomes. This section is given, therefore, to provide a

very brief recap of the work in this thesis and for the author to criticise this work and identify areas

for future work.

5.1.2 Chapter 2 Discussion

The assembly and annotation of the high pluripotency marker (HPM) matrix carried out in this

work enabled the downstream work in this thesis in chapters 3 and 4. In addition, the generation of

a  matrix  of  mESC microarray  data  with  full  manual  annotations  of  all  samples  is  a  valuable

resource and outcome of this work in that many more analyses (some alluded to in the future work

sections of this chapter) can be carried out on this data that were outwith the scope of this thesis.

Online annotations and often even the annotations in the accompanying literature were found to be

wanting or frustrating for a variety of reasons, examples of which were discussed along with their

relevance to researchers attempting to re-use and re-analyse public data. Particularly in the case of

any attempts at automated retrieval and interpretation of available annotations, several key areas

were identified as requiring attention. The identification of these key areas wherein occur the most

potentially-deleterious effects on automated retrieval highlights the data fields and content to which

time and effort on the part of uploaders could be most productively directed.

An annotation system which uses only plaintext characters was also developed and presented. This

syntax can provide users of public data with quick reference to key information about sample cell

line,  origin,  genetic  modification,  sorting  and  a  chronology  of  exposure  to  detailed  culture

conditions.

There are some issues concerning this work that deserve comment here. The first of these is that the

annotations were carried out by just one researcher; the author. It is therefore possible that some

degree of human error has found its  way into even this careful manual annotation of the HPM

matrix, despite the repeat checking of these annotations by the author.
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Secondly, the thresholds chosen for the filtering of the HPM matrix by high Oct/Sox/Nanog, were

chosen by eye. Whilst this filtering did result in a useful dataset, as evidenced by the findings of

chapters 3 and particularly of chapter 4, there remain questions as to which samples would have

made it into the HPM matrix were these thresholds even marginally different. In retrospect, writing

this discussion immediately prior to the submission of this thesis, other approaches than selection

by eye could have been attempted,  such as clustering of the data to identify high-pluripotency-

marker samples may have gone some way to justifying and specifying thresholds which would be

less open to questioning.

5.1.3 Chapter 2 Future work

There are several areas of work which the author would like to see undertaken that arise from the

work presented in chapter 2, aside from any attempts to address the potential criticisms identified in

the preceding discussion.

First among these would be the full annotation of the larger matrix, N3312, using the annotations of

the HPM matrix as a starting point. This would identify non-mESC samples in that matrix and

facilitate their removal. Downstream of this, analyses could begin to be carried out into identifying

molecular signatures and transcriptional events that are associated with mESC-like samples that are

not only highest in their expression for the pluripotency factors Oct4, Sox2 and Nanog, as was the

selection criteria for inclusion in the HPM matrix. This would possibly involve the insertion of an

additional field into the annotations for quick reference of cell type, as well as cell line. This would

require a great deal of time, however, to make an educated judgement call on the state of individual

samples.

Secondly, the HPM matrix and its accompanying annotations can be made available to the wider

research community, enabling other groups with considerably more man-hours to contribute than

the author had available to interrogate this data for other phenomena that lay outside the scope of

one PhD thesis. Some investigations are immediately suggested by the work in this thesis, however,

and are mentioned in the following future work sections of this chapter.

Third, a similar approach to the generation and annotation of mESC data as was detailed here can

be  carried  out  with  human  data.  An  advanced  search  on  the  GEO website  at  time  of  writing
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(September 2015) returns 1,118 samples on the GPL570 platform (Affymetrix Human Genome

U133 Plus 2.0 Array) which contain the string “embryonic stem cell”. The investigations carried out

in later chapters 3 and 4 could then be carried out on this data, with particular emphasis and the

author's own personal excitement concerning repeating the analyses from chapter 4 on human data

to elucidate molecular signatures and investigation of biological pathway activities of hESCs.

5.1.4 Chapter 3 Discussion

The methods conceived in chapter 3 concern the comparison of contribution to sample similarity of

two annotations in the HPM matrix assembled in chapter 2. Here, the annotations of “cell line” and

“source laboratory” are evaluated for their apparent contribution to sample similarity in the HPM

matrix and these quantified contributions are then compared, with the result that samples sharing a

“source  laboratory”  are  made  more  similar  to  each  other  than  those  which  share  a  “cell  line”

annotation (p < 0.05, in the case of analysis using Euclidean distance as the similarity metric).

Previous work in mESCs has shown that source laboratories do indeed have their  own, similar

signature (Newman and Cooper 2010), while other work has demonstrated similarities arising from

the choice of cell  line in human iPS cells,  proposed as being “memory” of the donor cell  line

(Marchetto et al. 2009). This exploratory analysis in this chapter of mESCs using the HPM matrix

constitutes a first attempt at direct comparison between the effects of source laboratory and cell line

on sample similarity in pluripotent mESC microarray data.

This chapter then goes on to propose a method for investigating the linkage between an annotation

of interest  (in the case of this  work,  “cell  line”)  and transcriptional signatures.  The differences

between mESC lines, and a group of miPSCs all generated by the same method; forced expression

of the Yamanaka reprogramming factors Oct4, Sox2, Klf4 and c-Myc  (Takahashi and Yamanaka

2006),  are  investigated  using  this  proposed  method.  The  resulting  lists  of  genes  found  to  be

associated with these 4 different groups (ESD3, E14, CGR8 and the OSKM-iPSC group) were

further analysed for biological pathway enrichment using the DAVID bioinformatics tool (Dennis et

al. 2003).

The resulting enrichments reveal potential differences in those genes found to be comparatively

upregulated or downregulated when compared to all other cell lines present in the HPM matrix,

summarised in figure 3.16. Significant enrichment was found for signalling pathways known to be
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involved in  mESC biology,  such as  Wnt,  Notch,  MAPK/ERK and VEGF (figure  3.16 and see

section 1.3.3 on signalling in mESCs). Differences were also found in expression of genes related to

stress response, apoptosis-related and proliferation-related pathways. These initial results suggest

that there may be phenotypic differences between these cell lines as regards (among others listed in

figure  3.16 and in greater detail in sections  3.6 and  3.7) their endogeneous signalling activities,

proliferative vigour and resilience to stressors. Interestingly, the OSKM-iPS group of samples was

found to have comparative upregulation of cell cycle related genes, possibly suggesting that they

had, during the course of their generation, been autoselected for a proliferative advantage.

Differences in entropy of genes associated with biological pathways are also reported here, although

the  implications  of  changing  entropy  of  groups  of  genes  between  cell  lines  requires  further

investigation, it remains of interest that similar pathways emerged, being mostly concerned with

signalling pathways, redox homeostasis and proliferation. As may have been expected, it was more

likely to find, using DALGES, pathways whose constituent genes decreased in entropy, as opposed

to increased, although there were some enrichments for the ESD3 cell line, which neatly brings

about mention of the main criticisms the author has about chapter 3's work.

The first criticism of this chapter is the confounded nature of the annotations. The large amount of

confounding  between  laboratory  and  cell  line  will  likely  be  behind  the  similar  results  for

contribution  to  sample  similarity  of  the  cell  line  and  source  laboratory  annotations.  The

methodologies of both RaSToVa and DALGES were developed and tested concurrently with the

annotation of the HPM matrix and took considerable time. It could therefore not be predicted that

the (then future) analysis by RaSToVa would likely be so largely affected by this confounding.

RaSToVa can only work with the data that it is given, and there was still a significant (p < 0.05,

using  Euclidean  distance  as  the  similarity  metric)  difference  between  the  two  annotations'

contribution to sample similarity, with “source laboratory” being the stronger of the two. However,

repeating this analysis with normalised Shannon entropy as the similarity metric did not meet this

significance threshold, despite a tendency. Euclidean distance may simply be amplifying differences

between samples, as Euclidean distance uses the square of differences between each probe. It is the

author's suspicion that this is the case, as whilst there is general agreement between the boxplots for

both Euclidean distance and Shannon entropy metrics being used by RaSToVa, the boxplots are

considerably more spread out when using Euclidean distance. This leads the author to suspect that

when  comparing  more  pronouncedly-dissimilar  samples,  Euclidean  distance  assigns  a
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disproportionately higher number to that difference than Shannon entropy would when comparing

those same samples.

DALGES was used in this chapter as a method proposed for the investigation of transcriptional

profiles and their potential linkage to a cell line. It is tempting to declare that DALGES is wholly

unaffected by the confounded nature of the annotations of cell line and laboratory, as DALGES is

only comparing between cell lines. This freedom from confounding is not quite so, however. The

author's major criticism of DALGES' investigation of transcriptional profiles of different cell lines

is that if cell line can be considered at all to be simply a surrogate for a source laboratory, then there

exists  the  likelihood that  what  DALGES is  really  finding and reporting  to  be a  transcriptional

profile of a cell line, is influenced more by the experiments / source laboratory that used that cell

line, rather than a transcriptional signature of the cell line itself. Whilst this is not a fault at all of the

methodology's conception or implementation,  the results  of the investigation into transcriptional

profiles of cell lines must take this into consideration. 

Fortunately, as can be seen in figure 3.24, however, the cell lines that were chosen for the analysis

of  transcriptional  profile  (CGR8,  E14,  ESD3 and  OSKM_iPS  group),  have  different  levels  of

confounding with the “source laboratory” annotation. The E14 cell line is dispersed across different

laboratories, as can be seen by the different shades of deep blue across multiple named laboratories.

The CGR8 cell line also is mostly in the blue, with samples distributed across multiple (albeit less

than with E14) laboratories. The ESD3 cell  line, however, is considerably confounded with the

“Piersma AH” laboratory.  The OSKM_iPS group has some spread across laboratories,  with the

“Zhou Q” laboratory being more represented. This makes for an interesting take on the results of

this part of chapter 3, in that the results of searching for cell-line specific transcriptional signatures

may have found some success in the case of E14, CGR8 and even OSKM_iPS lines, in that these

cell lines were used by multiple source laboratories. It is the results from the ESD3 analysis here

that  must  be  treated  as  highly  likely  confounded with  the  source  laboratory,  and therefore  the

transcriptional signature found by DALGES is likely to be heavily influenced by the experiments

that make up the data. It is therefore interesting to see that, as can be seen in figure 3.16, only the

ESD3 cell line analysis found genes related to biological pathways to increase their entropy in this

cell line. This means that DALGES, when comparing ESD3 samples to non-ESD3 samples, found

increased variability with genes associated with developmental pathways, and signalling pathways

(VEGF, BMP and Wnt). It would normally be expected that if a cell line had a particular signature,

pathway  enrichments  would  result  from  those  genes  which  were  more  predictable  (decreased
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entropy), rather than those that were less predictable (more entropy) within a given cell line. The

question then becomes whether or not the increased entropy of genes in the ESD3 cell line is the

result of the “Piersma AH” samples being highly varied, or whether this increased entropy signature

would occur in other highly-confounded annotations. This is an open question which remains for

future work.

The signatures from the CGR8 and E14 cell lines are far less confounded with source laboratory

(see figure  3.24) and offer a first insight into potential differences between these two mESC cell

lines. A suggestion is also given from this analysis that iPS cells generated using all four OSKM

factors may be predisposed towards upregulation of cell cycle genes and a downregulation of Wnt-

related genes.  This  is  not,  however,  the  same as  decreased Wnt  activity,  as  this  would  require

pulling from the data the exact Wnt-related genes found to be downregulated. Even then, only an

educated guess could be made as to whether this truly meant reduced Wnt signalling; the future

testing of Wnt activity in these iPS samples would be far better served in the wet-lab, but would be

of interest to the field of mESC biology.

As a final note on the ES-D3 cell line, it is interesting to note that it is the most confounded with

“source laboratory” and also shows a movement of all probes, in figure  3.21 towards being less

entropic, while the other plots for the less-confounded cell lines E14, CGR8 and the OSKM_iPS

group are far closer to being centred on the 0,0 mark of the axes (see figures 3.21 and 3.22). It may

be, therefore, that such a displacement may be a useful way of detecting issues of confounding

when running DALGES in future analyses, although this requires more investigation to confirm.

An issue which should be raised regarding the RaSToVa and DALGES methods as described in this

work is that they do not currently apply multiple hypothesis correction to their output p-values. This

was a choice made by the author as not all analyses for which these methods are used will use

groups of genes together. Whilst adjustment of the p-values is merited when using groups of these

genes together to generate hypotheses, this was only done in this work when looking for biological

pathway enrichment, which, given that DAVID was used, already  applies the Benjamini-Hochberg

q-value (Benjamini and Hochberg 1995) downstream. However, it can be argued that the grouped

genes passed to the DAVID tool should have their p-values revised using such correction also, even

with downstream multiple  hypothesis  correction being applied.  Given the exploratory nature of

these analyses, however,  it  was decided to report  observations in this  work without performing
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multiple  rounds of multiple hypothesis correction. Addition of this functionality is mentioned at the

end of the following section.

5.1.5 Chapter 3 Future work

Some future work for chapter 3 is directly aimed at correcting for the aforementioned criticisms.

This would most certainly include the re-running of RaSToVa on less-confounded data, annotated

purely for cell line and source laboratory in a larger matrix, such as the full N3312 matrix. This is

absolutely  necessary  before  RaSToVa  could  contribute  results  to  an  acceptable  standard  of

robustness.

Concerning the  method of  RaSToVa itself,  rather  than  the  unfortunate  case  of  the  confounded

annotations, there is merit to be had in assessing the behaviour of the method even further than was

done in  this  work.  Specifically,  even though there  was  only  a  little  difference  in  the  p-values

between  the  outcomes  of  RaSToVa  when  using  Euclidean  distance  and  normalised  Shannon

entropy, these values frustratingly sat either side of the threshold of p = 0.05. It is therefore of

interest to go back to the method and systematically observe calculation of both metrics (Euclidean

distance and normalised Shannon entropy) and observe how much actual changes in individual data

points between two samples affects the resulting Euclidean distance and Shannon entropy ratios.

This  would  likely  provide  definitive  explanation  of  the  different  spreads  of  the  boxplots  from

chapter 3. Neither metric can be considered to be “right” or “wrong” as a result of this, however, but

the most intricate understanding of their behaviour may influence the choice of one over the other in

future  work.  Whilst  development  did  involve  testing  both  RaSToVa  and  DALGES  on  small,

synthetic datasets, this was entirely for debugging purposes while the author was learning to script

in R to develop these systems. With the attained experience of using R throughout the course of this

work, future efforts  could be undertaken quite rapidly to assess the behaviour of both of these

metrics using much larger synthetic datasets with spiked-in differences.

Future work remains  to  be carried out  using  the DALGES methodology also,  despite  its  early

successes in investigating transcriptional signatures of E14, CGR8 cell lines and the OSKM_iPS

group of samples. Extension of the method to larger data is a primary desire for future work, but

also confirmation of the findings of DALGES in the wet-lab would provide vital confirmation of

the utility  of  the  method in linking  in  silico  observations  to  in  vitro  truth.  Also,  re-running of

DALGES on other confounded groups (as occurred with the ES-D3 group of samples), to observe
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any possible repeat of the skewing of all probes towards a reduction in entropy, as was seen in

figure 3.21 for the ESD3 plot, remains as future work to characterise this behaviour of DALGES. If

this skewing occurs when data is too homogeneous for comparison to the rest of a dataset, then such

a shift towards most probes showing entropy reduction would be a useful quality control method for

DALGES results.

The development of an R package for the DALGES method is planned and in early stages as it

could be useful for the wider research community, enabling other groups to investigate annotation-

linked gene expression signatures by any annotation of choice, not just cell line. Concerning the

continued use of DALGES in investigating mESC cell lines, however, future work would include

more mouse ES cell lines, human ES cell lines, and the application of the same methodology to

non-microarray data  such as  the explosion  in  the amount  of  RNAseq data  being  generated.  In

particular, future work comparing the signatures of iPSC lines generated by different methods and

from different donor material could be an extremely useful contribution to stem cell research that

DALGES may be able to fulfil. As was mentioned in the preceding discussion section, options for

multiple hypothesis correction will be added to the DALGES method, so that it reports both p and q

values for researchers to use, depending on which is appropriate.

5.1.6 Chapter 4 Discussion

The work in this chapter first seeks to take the HPM matrix and order it in a manner which allows

for the broad sorting of all samples between naïve pluripotency and early differentiation. One of the

potential pitfalls when attempting to do this comes from the facts which were the reasons behind

much of the work in chapter 3, being that samples from the same experiment may well be so similar

that ordering the matrix just orders experiments, rather than cellular states. It was therefore decided

to not use any collection of genes to order the matrix, but to look for the possibility of using only

one. It was the author's belief that if the expression level of many genes is slightly affected by

samples being from the same experiment, then using only one gene should be far less prone to this.

Indeed, genes which make samples from the same experiment more similar to each other need not

necessarily even be genes of any real biological relevance to this work; those experimentally-related

genes may be collections of housekeeping genes, unused probesets et cetera, although confirmation

of this may form part of possible future work for chapter 3.
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Choosing one gene to order the matrix was therefore undertaken through the use of four major

selection criteria. The first was a large range of expression, being simply the difference between the

maximum any minimum expression value found in the matrix. The second was a good “spread” of

values between this minimum and maximum, which was assessed using the normalised Shannon

entropy metric detailed in 3.2.4. The third was correlation to Nanog (Nanog was chosen over Oct4

and Sox2 as Nanog had higher information content (read: entropy) in the HPM matrix.) Fourth and

finally, it would be best if this selected gene were to be a known pluripotency factor. To avoid

lengthy repetition, these criteria are detailed, along with reasons for their choosing, in section 4.2.2.

Surprisingly, an excellent candidate for all 4 of these criteria was found in Klf4 (see section 4.3.3).

The utility of ordering by this gene was confirmed in section 4.3.4, as Klf4 is able to broadly sort

the samples of the HPM matrix between naïve pluripotency and early differentiation, with primed

pluripotency markers occurring in the middle. Further, the markers chosen to observe progression

from naïve to primed pluripotency (being Rex1, Fgf5 and Brachyury (T)) had only the one major

change-point across the matrix, implying successful sorting. The annotations provided in chapter 2

were  also  cross-referenced  with  Klf4  ranks  as  the  major  way  to  confirm  that,  in  addition  to

observation of marker profiles, experimental annotation supported the notion that Klf4 had broadly

sorted the samples by their cellular state from naïve pluripotency, to primed pluripotency, to exit

from  primed  pluripotency  (see  figures  4.16 to  4.18).  It  was  also  this  cross-referencing  with

annotations that  confirmed that  using only a  single gene for the sorting of the data  did indeed

prevent samples from different states of pluripotency grouping together simply by virtue of being

from the same experiment (see figures 4.16 to 4.18 and section 4.3.4).

Coupled with the annotations generated in chapter 2, this Klf4-ordered HPM matrix makes for a

highly-useful  resource,  which  this  chapter  goes  on  to  use  in  a  first  effort  at  identifying

transcriptional  changes  between  the  states  captured  by  the  data,  along  with  analysing  these

transcriptional changes for biological pathway enrichments. Two methods were used, the first being

a “differential expression” approach between each identified area of interest (see figure 4.19). The

second method was devised as a scanning window approach (detailed in section  4.2.5 and figure

4.1). The scanning window approach was then calibrated to this data to reduce the possible effects

of noise (section 4.3.9).

The biological pathway enrichments found by the differential expression analyses and the scanning

window analyses were in overwhelming agreement, as can be seen in the text and the many figures
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depicting  biological  pathway  enrichments,  but  neatly  in  the  summary  figures  4.35 and  4.36 .

However,  there  was  one  striking  difference  between  these  two  analysis  methods.  Whilst  the

differential expression analysis between “early naïve pluripotency” and “late naïve pluripotency”

(both of these terms referring to areas of the Klf4-ordered HPM matrix, rather than a biological

property of the samples referred to, without future investigation) identified hardly any (a total of 6)

pathway enrichments, the window scanning method across the early to late naïve parts of the data

returned a plethora of enrichments (n = 187), including a host of developmental pathways and,

crucially, identifying changes in genes related to the FGF signalling pathway, known to be crucial to

the progression to the primed state  (Kunath et  al.  2007) and also upstream of the MAPK/ERK

signalling pathway, whose inhibition contributes to the maintenance of the very definition of the

naïve, ground state (Ying et al. 2008). This is an extremely interesting outcome of this work in that

the use of the window scanner across this part of the Klf4-ordered data was able to find so many

pathway enrichments and genes significantly changing their expression, but that simply looking at a

“start” and “end” point in such data may be missing out on a vast amount of information. This is

also the first attempt at analysing, on a large scale, changes in gene expression / transcriptional

profile which may be going on as the naïve / ground state progresses towards exit from that state

towards primed pluripotency, as canonical markers of naïve and primed pluripotency (Rex1, Fgf5,

Brachyury (T)) remained level throughout this part  of the Klf4 spectrum. Other naïve / primed

markers, such as Nr0b1, did change but were not plotted in the course of this work so as to avoid

cluttering the plots, although their patterning can clearly be seen with a simple smoothed line plot

across the HPM matrix, which is available on the accompanying DVD.

The differential expression analysis was not without its use, however, as the major advantage it has

over the window-scanning method (in its current form, at least), is that it provides information on

the  directionality  of  the  changes  in  gene  expression  which  it  finds.  This  allowed this  work  to

observe the existence of changes in transcriptional profile as naïve pluripotency moves towards exit

to primed pluripotency (see section  4.3.7), identifying markers of this state that appears to occur

immediately prior to the exit from naïve pluripotency (see figures 4.28 4.29 for summary). This was

cause for considerable excitement, as a great deal of future work can be spawned from this (see

following section.)

The  pathway  enrichments  found in  this  part  of  the  work  also  included  enrichments  for  genes

involved in the stress response. Cellular reprogramming towards a cancer state has already been

linked with the stressing of cells, such as by inflammation  (Song and Balmain 2015) or nutrient
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stress (Ma et al. 2013), and other stress, particularly hypoxia, has already been identified as being

beneficial for the reprogramming of cells to iPS cells (Yoshida et al. 2009). This demonstrates that

the  approach  taken  in  this  work,  even  though  a  preliminary  effort,  not  only  finds  signalling

pathways which recapitulate knowledge about mESCs in the literature (e.g. Wnt, BMP, TGF, Notch,

FGF), but also shows enrichment for pathways given less attention in the literature, such as PDGF

and VEGF (see results  sections of chapter 4 and also section  1.3.3 for details  on signalling in

mESCs).

Whilst  this  discussion  has  greatly  truncated  the  findings  from  the  analyses  in  chapter  4,  the

recapitulation of known phenomena in mESC biology from this data is highly exciting and opens

the door to more analysis of this useful dataset and its annotations. See the following section on

future work for more details on the directions of investigation warranted and enabled by the work in

this chapter.

There are some areas of this work which the author wishes to comment on critically, however.

Firstly, proof was offered in this work that the sorting by Klf4 was not simply a lucky choice, as

other genes which scored highly on the multiplicative score method devised in 4.3.3, also ordered

marker profiles in a similar (or sometimes smoother) manner to Klf4 (see  4.14 and  4.15 for the

demonstration of ordering the matrix using Jam2, which scored more highly than Klf4.) Whilst this

method proved useful in identifying a gene to order the HPM matrix by, evidence is not given in

this chapter that ordering by other high-scoring genes would have performed just as well as (or

better than) Klf4 when it comes to the downstream analyses of chapter 4. Repeat of this analysis

using other genes from the high-multiplicative scoring genes would have been interesting, as this

would confirm that other genes identified here would have performed the same (or better.) As it was

not known at the time whether  or not the choice of Klf4 would provide good results,  no such

alternative analyses were performed. Particularly, the use of a gene with good correlation to Nanog,

but a much lower entropy, would reinforce the case for the utility of the multiplicative score system.

Secondly, there are potential issues to note about the window scanning method. Whilst differential

expression through the use of mean expression is typical, the window scanning method was run on

data that had been sorted in such a way as to broadly sort samples across markers of cellular states.

It  could therefore improve this  work to attempt to identify and remove outliers as the window

scanner progresses. Whilst it  is unlikely that outliers in the window scanning method could, by

chance, have given rise to a sufficient number of false significant changes in gene expression so as
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to, again, by chance, provide enrichments for biological pathways that made a great deal of intuitive

sense in the context of mESC biology, the question of outliers could be addressed through either a

specific modification to the methodology of the window scanner, or perhaps more simply through

the use of an alternative metric such as a median.

In addition to the window scanner's own inner workings, one potential issue was identified when

observing the pathway enrichments that result from the window scanner's results. The summary

figure  4.35 and  4.36 demonstrate that the full matrix window essentially found every biological

pathway enrichment found by all other analyses, with the exception of FGF signalling and Notch

signalling, as although these were found in the list of biological pathway enrichments, they did not

achieve the required q-value of (q <= 0.05). However, without in-depth understanding of the exact

methodology  that  DAVID  employs,  it  remains  possible  that  this  lack  of  enrichment  for  these

pathways could be simply due to the sheer number of probes that DAVID was given in the case of

the full  matrix scan (over  6000.)  This is  suspected by the author  when considering that in the

analysis of differentially-expressed genes between naïve pluripotency to primed pluripotency, the

Notch signalling pathway has 14 probes associated with it, giving a q-value of 0.01. However, the

full matrix scan found 22 Notch-related probes, yet DAVID returned a q-value of 0.06 for this

pathway. It would make sense that DAVID takes into account the number of probes given to it, as,

at the extreme, providing DAVID with every known gene would show enrichment for every single

biological pathway, even though such a list would not be “enriched” for one pathway over another.

The same issue may be responsible for the window scanner's failure to find enrichment for the FGF

pathway across the whole matrix, when a window scan of early to late naïve pluripotency found 7

probes associated with FGF signalling to be deserving of a q-value of 0.04, while the full matrix

scan's improvement on 7 probes by finding 13 probes associated with FGF signalling was only

worthy  of  a  q-value  of  0.22.  Regardless,  the  findings  of  the  analyses  in  chapter  4  are

overwhelmingly in agreement with both the literature and with each other, demonstrating the utility

of both methods, but these observations imply that more work need be done before either method

should be generalised to larger datasets, or perhaps the limiting of the window scanner to use only

across a certain number of genes that change expression at a time.

Finally, and with the same reasoning behind its mention in the discussion and future work sections

of  chapter  3,  multiple  hypothesis  correction  was  not  applied  to  groups of  genes  passed  to  the

DAVID bioinformatics tool for pathway enrichment as DAVID applies the Benjaminj-Hochberg

multiple hypothesis correction (Benjamini and Hochberg 1995). The application of another round of
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multiple hypothesis correction prior to this correction may be overly conservative in the case of the

initial hypotheses generated in this work, although an option for this is to be added to the window

scanner's functionality.

5.1.7 Chapter 4 Future work

First  and foremost,  for future work,  are  the exciting directions that  this  work points to  for  in-

laboratory  investigation.  These  suggestions  for  in-laboratory  work  were a  major  reason behind

undertaking the work in this chapter (and thesis as a whole) in the first place. With a marker profile

now available of cellular states which may pertain to “early” and “late” naïve pluripotency, a host of

experiments to confirm the existence of these cellular states become warranted. Confirmation of a

progression  from early  to  late  naïve  pluripotency  is  warranted,  most  simply  by  observing  the

predicted changes in marker profiles.

Investigation can also be undertaken through the use of techniques such as conditional knockouts of

markers for early / late naïve pluripotency to observe any effects on the progression from “early” to

“late” naïve pluripotency. siRNA experiments could be carried out against sets of these markers to

test the possibility of reversion from late to early naïve pluripotency. Finely-tuned inhibition or

stabilisation  signalling  pathways  named  in  figures  4.35 and  4.36 may  be  able  to  do  this.

Alternatively, it would be of great interest if it were found that something altogether different was

driving this change from “early” to “late” naïve pluripotency. As the overwhelming majority of the

annotations for the HPM matrix detail the use of some form of serum (read: non-2i conditions), it

would be also interesting to directly compare these transcriptional profiles of “early” and “late”

naïve pluripotency with cells that were cultured in 2i. Perhaps 2i cultured cells exist at one end or in

the middle of these two putative states identified in this work?

The stress response genes identified in this work are also deserving of in-laboratory investigation.

Experiments can be devised wherein these genes are experimentally manipulated and the effect on

cellular proliferation / survival can be ascertained, but also it would be of interest to observe any

effect on cells'  tendency or, in fact, ability to differentiate / remain undifferentiated. The author

suspects that there would indeed be effects on cells' fate decisions when manipulating these stress

response genes, as cellular stress is already known to be relevant to cellular reprogramming (Ma et

al. 2013), (Song and Balmain 2015), as well as improving reprogramming in iPS cells (Yoshida et
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al. 2009). This may lead to both improved understanding of mESC biology, but also to improved

methods for iPS generation / mESC maintenance and manipulation.

The creation of the Klf4-ordered HPM matrix also begs its use in more focussed bioinformatic

analyses, such as data mining for correlated genes. Indeed, every list of pathway enrichments, every

list of differentially expressed genes in this work has the potential for further investigation. So many

analyses  are  beyond the scope of one person, particularly as these lists  are  likely to  pique the

interest of stem cell biologists working in other subsections of the field who may recognise patterns

or  single  genes  of  interest  to  themselves.  Therefore,  the  Klf4-ordered  HPM  matrix  and  its

annotations are in the process of being prepared for publication so that other researchers might be

able to mine this data generally, but also so that researchers with more specialised questions, but

unfortunately a lack of pluripotent mESC data, might ask those questions of this matrix. Another

benefit  for  other  researchers  of  the  use  of  this  fully-annotated,  ordered  matrix  is  the ability  to

observe where their own would sort within it, or simply to compare their own mESC / iPSC data to

it. By downloading the same files which make up this matrix (possible through using the accession

numbers in the annotations file provided), the same processing can be carried out (running RMA on

all files, including those contributed by the aforementioned researcher), followed by Klf4-ordering.

With full annotations available, researchers can compare their own data directly to samples from a

wealth of other samples from varied laboratories, cell lines and culture conditions.

The window scanner itself also has potential for improvement and expansion, in addition to adding

options new metrics and / or parameter-based outlier elimination. The window scanner as used in

this work did not provide indication as to a gene's direction of change at any given changepoint.

Towards the end of this work, beginning efforts were underway to add to the window scanner the

ability to use directionality information so that pathway enrichment analyses could again be given

directionality similar to those generated by differential expression results. The publication of the

window scanner as an R package for use by other biological researchers, complete with a vignette

explaining its behaviour, is planned as a future outcome of this work also.

Another possibility that arises from this work is the potential to analyse the changing expression of

genes from the point  of view of ChIP targets.  Analysis  is  already underway using the window

scanner results, observing the chronology of significant changes in gene expression and looking for

enrichment  of  known  transcription  factors  which  may  be  behind  these  grouped  changes  in

expression, with some initial hypotheses already generated.
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Possibly the largest bioinformatic effort that the author intends to undertake following on from the

findings of this work is to take the improved methods from this work and apply them to a large

dataset of curated human ES cell data, whether that data be generated by microarray, or, possibly

more excitingly, using the explosion in the amounts of RNAseq data being generated. After all, it is

the eventual translation of knowledge from mESCs, miPSCs to human ES cells and, finally, that

knowledge's application to human disease, lifespan and healthspan that all  embryonic stem cell

research ultimately promises. 
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Appendix A

RaSToVA and DALGES pseudocode scripts

RaSToVa pseudocode script summary

Load data matrix

Load annotations file

Get unique annotations of interest (e.g. all different cell lines in the matrix)

Loop for each unique annotation (e.g. each cell line):

{

Retrieve samples from matrix matching annotation

Calculate variability metric of annotation-intact matrix

Loop for the total number of permutations:

{

Resample matrix using any samples that do not match current annotation of interest

Calculate variability of randomly-resampled matrix

Express random matrix’s variability as index of intact matrix’s variability

Store this index alongside that unique annotation (e.g. that specific cell line)

}

}

Return  a  list  of  all  unique  annotations  (e.g.  cell  lines)  and  their  calculated  (random  matrix

variability / intact matrix variability) scores

Plot these as separate boxplots, named by annotation (e.g. one for each cell line)
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DALGES pseudocode script summary

Load data matrix

Load annotations file

Get unique annotations of interest (e.g. all different cell lines in the matrix)

Loop for each unique annotation (e.g. each cell line):

{

Retrieve samples from matrix matching annotation (e.g. ES-D3 line)

Calculate mean expression value for all probes

Loop for the total number of permutations:

{

Resample matrix using any samples that do not match current annotation of interest

Calculate mean expression values for all probes in randomly-resampled matrix

Calculate differential expression between intact and random matrix for all probes

Store all differential expression changes for this permutation

Store higher than intact / lower than intact flags for all probes

}

Use higher than / lower than intact flags to calculate significance per probe

Store results for all probes’ differential-expression-to-random, with significance

}

Return a list of all unique annotations (e.g. cell lines), each one having a list of all probes with their

differential-expression-compared-to-random fold changes and significances. 

Write out data matrix of these values for all annotations (e.g. cell lines) and append gene names to

probe IDs
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List of Abbreviations

List of abbreviations
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Acronym Meaning
ChIP Chromatin immunoprecipitation

DALGES Discovery of Annotation-Linked Gene Expression Signatures

DAVID Database for Annotation Visualisation and Integrated Discovery

DMEM Dulbecco's Modified Eagle's Medium
DMSO Dimethylsulphoxide

DOX Doxycycline
EB Embryoid Body
EMT Epithelial-Mesenchymal Transition

EpiSC Epi-Stem Cell

ES Embryonic Stem
ESC Embryonic Stem Cell
FBS Fetal Bovine Serum

GEO Gene Expression Omnibus
GO Gene Ontology

hESC human Embryonic Stem Cell
hiPSC human Induced Pluripotent Stem Cell
HPM High Pluripotency Marker
ICM Inner Cell Mass
iPSC induced Pluripotent Stem Cell

KOSR / KSR Knockout Serum Replacement

mESC mouse Embryonic Stem Cell
NEAA Non-Essential Amino Acids

OHT 4-Hydrotamoxifen

OSKM Oct4/Sox2/Klf4/cMyc
OSN Oct4/Sox2/Nanog

RaSToVa Random Submatrix Total Variability
RMA Robust Multichip Average

TE Trophectoderm
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