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Abstract 

 

1. Insect pollinators have been shown to alter their foraging patterns in 

response to habitat and landscape composition, particularly in relation 

to changes in the availability of floral resources which provide essential 

pollen and nectar provisions. Changes to pollinator behaviour and 

community composition, may alter the distance, directness and 

frequency of pollen movement and thus, the compatibility and genetic 

relatedness of pollen transferred between plants. We still lack good 

understanding of how variation in the spatial and temporal availability of 

floral resources drives pollinator responses and in turn, affects the 

fitness of outcrossing plants. Knowledge in this area could contribute to 

improved management interventions to enhance pollination services for 

plant conservation. 

2. Through a combination of habitat and landscape scale field 

experiments, I explored how the availability of floral resources at 

different spatial scales affected plant-pollinator interactions, pollen 

transfer and mating success in plant populations, particularly those 

isolated from conspecifics. This involved introducing different species 

of plants in experimental arrays across a range of study systems that 

varied in structure and floral availability. Over the course of the thesis, I 

measured the community composition and behaviour of pollinators 

visiting experimental arrays; focusing on traits considered important for 

pollen transfer (e.g. Inter-tegular (‘IT’) span). Pollen movement was 

quantified within and between populations (5-150m) and the resulting 

plant outcrossing rates were measured using different methods 

including paternity analysis and the use of a dominance inheritance 

system. In addition, the implications of variations in pollinator foraging 

and pollination services can be attributed to pollen and gene flow and 

subsequently the reproduction and fitness of plants were assessed as 

a means of predicting the impacts on longer-term plant survival. 



 
 

3. Findings from this thesis demonstrate reductions in the activity density 

(the abundance of actively foraging pollinators) and richness of 

pollinators and thus, the potential for plant visitation in response to a 

high abundance of floral resources within a habitat. This led to 

disruptions in pollen transfer, illustrated through a lower incidence of 

intra and inter-population pollen movement, and ultimately, reduced 

plant outcrossing rates. In parallel, plant seed set and germination rates 

were also reduced in habitats with high resource availability. Changes 

to pollinator communities and pollination services varied with the spatial 

scale at which floral resources were measured. Pollinator communities 

(activity density, richness and IT span) were most affected by floral 

resource abundance at a local scale (1-50m), particularly within a 20m 

radius of a plant population. Intra-population pollen movement was 

similarly affected by floral resources at a local spatial scale (within a 1m 

radius of a plant population). In contrast, no effect was observed on 

pollinator communities, intra-population pollen movement or plant 

reproduction when floral resources were measured at a landscape 

scale (within a 100-1500m radius of a plant population). However, 

findings were variable across different experiments at the same scale 

of measurement. For instance, the availability of floral resources at a 

local scale did not always elicit an effect on plant reproduction. This 

reflects differences in plant species identity and the effects of breeding 

system and floral traits, illustrated through variations in visitation rates 

between plant species. Inconsistencies were further observed with 

pollinator activity density and richness, which were not related to floral 

resources at a habitat scale in one chapter. 

4. This thesis highlights the importance of the availability of floral 

resources at a local scale on plant-pollinator interactions and pollination 

services to plants. Co-flowering plants within florally rich habitats 

compete for pollinators and subsequently, visitation and pollen transfer 

between individuals of low density plant populations is diluted rather 

than facilitated. This suggests that although pollinator abundance and 



 
 

diversity may be enhanced through florally rich habitats (e.g. habitats 

implemented under the agri-environment scheme), pollination services 

are not automatically improved for plants which are present at low 

frequency in the landscape. This needs to be considered when 

designing and implementing management for threatened or isolated 

plants where plants may instead benefit from focused interventions. For 

instance, pollination services may be increased by efforts to maximise 

the facilitative effect of surrounding habitats, while increasing the ability 

of threatened or isolated plants to withstand competition from co-

flowering plants. 

 

Lay summary 

Insect pollinators (including bees, butterflies and hoverflies) play a vital role in 

the sexual reproduction of flowering plants, inadvertently transferring pollen 

from male to female flowers, as they forage between plants in their search for 

an energy and nutrient rich reward of nectar and/or pollen. From an individual 

plant’s perspective, successful sexual reproduction depends on pollen being 

delivered to or from another plant of the same species. How far a pollinator 

travels between two plants of the same species is also significant; greater 

distance travelled tends to lead to sexual reproduction between less closely 

related parent plants and therefore greater exchange of unique genes. 

However, pollinators are not trying to help plants; where, how far, how often 

and from which plants they choose to forage is based on a cost/benefit analysis 

of the energy they stand to gain compared to the energy they stand to lose 

during each foraging bout. These decisions are in turn shaped by the diversity 

and quantity of flowering plants within a particular patch of habitat, the distance 

to the next patch of flowering plants and the difficulty or danger a pollinator 

may face in flying in between them. While changes to the extent, distribution 

and diversity of wildflower habitats has been shown to have a profound impact 

on pollinator foraging behaviour, it is still relatively unclear however what the 

implications of these changes are for the reproductive success and long-term 



 
 

survival of individual plant species. These implications may be particularly 

relevant for wildflower species which have become rare in nature and which 

may already be struggling to attract necessary pollinators. 

 

In my research, I introduced different species of flowering plant, separated 

from each other by a range of different distances, into several farms across 

Oxfordshire, Buckinghamshire and Hertfordshire. The plants I introduced were 

not naturally present in the study area and were positioned in a way that would 

mimic a naturally rare wildflower species. I placed the introduced plants in 

fields which varied in the numbers of other wildflowers and wildflower species. 

I observed which and how many pollinator species visited the introduced 

species or were active within the vicinity and worked out how far pollinators 

were moving between individual plants by carrying out paternity analysis on 

the seeds produced by each plant. I also measured the reproductive success 

of individual plants based on the weight and number of the seed they produced 

and the percentage of seed that successfully germinated. 

 

Results from my research showed that greater numbers of co-flowering plant 

species at a local scale (i.e. within a 50m radius of the introduced plants) led 

to fewer potential pollinator visitors at a plant level. The high number of co-

flowering plant species meant that pollinators were less likely to successfully 

transfer pollen between two plants of the introduced species, particularly when 

separated by large distances. Ultimately, higher numbers of co-flowering plant 

species led to the introduced plants producing less seed with lower rates of 

germination. In contrast, in habitats with fewer co-flowering plants, the 

introduced species attracted a greater number of potential pollinator visitors, 

were more successful in moving pollen from one plant to another and produced 

more seeds with greater levels of germination. However, the quantity of florally 

rich habitat found within the larger landscape (e.g. a 100-1500m radius around 

a group of introduced plants) had no affect at all on the number of potential 

pollinators visiting the plant species, the amount of pollen movement, seed set 

or germination. 



 
 

 

This thesis showed that the reproductive success of rare plant species can be 

negatively affected by a high abundance of co-flowering plant species found 

in the area immediately surrounding a given population. Even though greater 

numbers of wildflowers attract more pollinators into an area, higher numbers 

of co-flowering plants tend to outcompete rarer species which may either be 

overlooked or avoided by the visiting pollinators. Creation of wildflower habitats 

(e.g. the use of wildflower mixes in the agri-environment scheme) can increase 

the abundance and diversity of pollinator species and promote greater 

pollination services across the landscape, yet they may not automatically lead 

to an improved outcome for rare plant species. Rather, rare plants may require 

additional measures at the local scale that increase their ability to compete for 

pollinators and reproduce. This may include planting other wildflower species 

which, due to differences in their size, colour or structure, complement rather 

than compete with a target species, or it may involve directly increasing the 

size of the target species population through reintroduction planting, increasing 

the likelihood of pollen exchange between individuals. 
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  Chapter one 
 

1 
 

1.1 The value of plants and pollinators 
 

Pollinating insects play an important role in the reproduction of flowers and 

agricultural crops and thus have a considerable environmental, economic and 

cultural value (Senapathi et al. 2015b). Indeed, pollinators have been shown 

to increase seed or fruit quality in 39 of 57 major crops worldwide (Klein et al. 

2007), with contributions to global crop production valued at $235 billion-$577 

billion United States dollars in 2015 (Potts et al. 2016a, Potts et al. 2016b). 

Along with the benefit to global food security, pollinating insects offer a 

valuable service to wider biodiversity by maintaining populations of wild and 

cultivated flowers which are important for ecosystem functioning (Hooper et al. 

2005, Senapathi et al. 2015b, Potts et al. 2016b). These services in recent 

years have faced pressure from land-use change and management 

intensification; urbanisation; invasive alien species; the spread of pathogens 

and parasites and climate change (Potts et al. 2010a, Vanbergen et al. 2013, 

Potts et al. 2016b). The additive and synergistic effects of such pressures are 

likely to have culminated in reductions in the diversity and occurrence of 

pollinators at a global scale (Biesmeijer et al. 2006, Carvalheiro et al. 2013, 

Lebuhn et al. 2013, Ollerton et al. 2014, Senapathi et al. 2017). With 

approximately 90% of flowering plants characterised as reliant at least in part 

on pollinators for reproduction (Ollerton et al. 2011), plants are particularly 

vulnerable to reductions in pollinator availability (Burd 1994). Despite these 

acknowledged anthropogenic threats and evidence of declines, there remains 

a need to investigate the direct and indirect effects of anthropogenic changes 

to the structure and behaviour of pollinator communities and the implications 

for plant reproduction. Such research will provide understanding of how to 

maintain stable pollination services and mitigate the risks to them.  

 

1.2 Plant-pollinator interactions 

 

Plants and pollinators often exhibit a mutualistic relationship, where plants 

offer rewards in return for the transference of male gametes (pollen) between 
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conspecific plants and thus, the fertilisation of a plant’s ovules (Proctor et al. 

1996). Plant rewards predominantly come in the form of pollen and nectar 

which offer essential provisions (e.g. carbohydrates, proteins and amino 

acids); important for the sustenance and survival of pollinators (Proctor et al. 

1996). Nectar, comprised of sugars (i.e. sucrose, fructose and glucose), water, 

and to a lesser extent, amino acids and lipids (Corbet 2003, González-Teuber 

and Heil 2009), is the main source of energy and the principal food requirement 

of winged adults (Proctor et al. 1996). Pollen, alternatively, provides an 

essential source of protein and nutrients necessary for production and 

utilisation of moulting hormones (Somme et al. 2015, Vaudo et al. 2016) and 

is thus important for larval development and growth (Behmer and Nes 2003). 

The nutritional value of these floral provisions is determined by the mixture of 

constituent carbohydrates, amino acids and micronutrients (Cnaani et al. 2006, 

González-Teuber and Heil 2009, Stevenson et al. 2017), which varies greatly 

between plant species and cultivars (González-Teuber and Heil 2009, 

Carruthers et al. 2017).  

 

Pollinators differ in their metabolic needs (Sedivy et al. 2011) and nutritive 

requirements (Archer et al. 2014, Paoli et al. 2014, Stabler et al. 2015). For 

instance, some pollinators only require nectar while others require a 

combination of pollen and nectar (Proctor et al. 1996). These nutritive 

requirements can further vary depending on the insect’s life stage (Paoli et al. 

2014, Stabler et al. 2015), with honeybees observed to shift from a diet of 

essential amino acids to one of primarily carbohydrates when transitioning 

from young bees to foragers (Paoli et al. 2014). Given this, pollinators have 

the capacity to discriminate between plants based on their nectar sugar 

concentration (Elisens and Freeman 1988) and pollen quality; adjusting their 

foraging decisions accordingly (Vaudo et al. 2016). Indeed, some bumblebee 

species preferentially visit plants comprising pollen with high amino acid 

concentration, while other bumblebee species can extend their diet breadth to 

plants comprising pollen with low amino acid concentration (Somme et al. 

2015). Floral preferences may also be determined by adaptations to a plant’s 



  Chapter one 
 

3 
 

physical structures, for example flowers with long corollas may only be visited 

by species possessing a long proboscis (Stang et al. 2006). Trait 

complementarity (i.e. the similarity between the reward that the plant offers 

and the reward that the pollinator requires; Santamaria and Rodriguez-Girones 

2007) can lead to non-random relationships between pollinators and their 

preferred plant species (Brosi 2016). These relationships can lead to 

ecological, phenotypical or evolutionary specialisation, in which insects visit a 

small number of flowers or flower types (Armbruster 2017). Specialism is 

however recognised to be asymmetric in mutualistic networks (Vázquez and 

Aizen 2004), where specialist pollinator species tend to interact with a subset 

of the plant species network that interacts strongly with more generalised 

pollinator species (so called ‘nestedness’; James et al. 2012, Nicolson and 

Wright 2017). Although there remains much debate, at community scales this 

is thought to provide stability by decreasing the likelihood of cascades of 

species extinctions and the vulnerability of the network and pollination function 

to collapse (Thebault and Fontaine 2010, Ramos-Jiliberto et al. 2012, Rohr et 

al. 2014, Vieira and Almeida-Neto 2015, Valdovinos et al. 2016, Vanbergen et 

al. 2017).   

 

The benefits of the mutualistic relationship between plants and pollinators can 

however be disrupted by exploitation from food deceptive plants (Internicola 

and Harder, 2011) or indeed, from nectar robbing pollinators, who bypass a 

plant’s reproductive parts (Leonard et al. 2013). Pollinator visitation therefore 

does not constitute effective pollen transfer. Instead, this varies considerably 

depending upon the composition and foraging behaviour of visiting pollinator 

communities (Barrios et al. 2016), which has been observed to change in 

response to ecological context (Ivey et al. 2003). These factors and the 

implications for pollen transfer are discussed throughout this chapter. 
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1.3 The effects of pollinator foraging behaviour on successful 

pollen transfer 

 

1.3.1 Pollinator movement 

The movement of pollinators between conspecific plants, and thus pollen 

transfer, depends upon the behaviour and dispersal distance of pollinators. 

Indeed, pollinator movement is governed by energetics whereby foraging is 

‘optimised’ to maximise energy gain (Charnov 1976, Goulson 1999). This 

involves a process of non-random, systematic searching in order to enhance 

foraging efficiency by avoiding recently exploited flowers (Dreisig 1995), 

minimising flight distance (Carvell et al. 2012) and reducing search and 

handling times (Richards 1997, Goulson 1999, Spaethe et al. 2001). In some 

cases, foraging efficiency has further been demonstrated to be enhanced 

through collective foraging (Senior et al. 2016). Collective foraging refers to 

the ability of a pollinator to alter foraging decisions based on social interactions 

and positive feedback mechanisms. This is demonstrated in honeybees, 

where information regarding pollen and nectar sources is acquired through 

interactions between foragers (the waggle dance) (Biesmeijer and Seeley 

2005). Collective foraging has further been shown to alter the probability of an 

organism visiting a resource, where visits increase non-linearly with the 

number of other organisms using that resource (Sumpter and Pratt 2009). This 

reduces search time and movement between nutritionally imbalanced foods 

(Senior et al. 2016). Moreover, efficient foraging behaviour will also affect the 

movement between resource patches. Indeed, the number of pollinators and 

the time spent within a patch has been observed to be proportional to a patch’s 

productivity (Dreisig 1995) and optimal foraging theory predicts that pollinators 

will move from a patch when the advantage of leaving exceeds that of staying 

(marginal value theorem). Upon leaving, pollinators are predicted to travel 

large distances in order to locate subsequent optimal patches (Charnov 1976). 

Efficient foraging may thus affect dispersal distances and visitation rates to 

plant species. 
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Given that efficient foraging is expected to be dependent upon the availability 

of floral resources, pollinator movement and behaviour is recognised as being 

extremely plastic (Spaethe et al. 2001, Jha and Kremen 2013, Geslin et al. 

2014). For instance, foraging distance has been shown to be affected by the 

spatial arrangement of floral resources (Lander et al. 2011, Lihoreau et al. 

2012, Jha and Kremen 2013, Lander et al. 2013). This has been illustrated by 

Bombus spp., where shorter foraging trips were made in landscapes where 

coverage of semi natural habitats was high (Carvell et al. 2012, Redhead et al. 

2016). This has resulted in variations in pollination probability over different 

habitats (Jha and Kremen 2013, Lander et al. 2013). Previous research looked 

to categorise changing pollinator movement in response to different landscape 

scenarios using a resource model (Lander et al. 2013). This hypothesises that 

pollinators will adapt their foraging path depending upon resource 

heterogeneity, choosing between straight line paths, weighted linear 

distances, least cost paths, or pair-wise resistance distances (Lander et al. 

2013). When demonstrated experimentally, pollinators were observed to abide 

by weighted linear or straight line paths (i.e. Euclidean distance either 

accounting for the resistance value of a habitat or not respectively) where 

landscapes were comprised of resource rich habitats (Lander et al. 2013). 

Changes to pollinator foraging paths can affect the incidence and distance of 

pollen movement and in turn, alter gene flow between conspecific plant 

populations (Lihoreau et al. 2012). Moreover, pollinator foraging paths can 

affect the directness of pollen movement and thus, the compatibility of pollen 

transferred (discussed in section 1.4.1; Plant fitness).  

 

Studies of pollen movement are widespread in the literature and offer an 

indirect means of analysing pollinator foraging behaviour. Methods span from 

the use of fluorescent dyes applied to pollen (Van Rossum and Triest 2010); 

examination of a pollinator’s load or pollen on a plant’s stigma (Schulke and 

Waser 2001); the use of a plant’s sexual or morphological traits (e.g. 

dominance of hilum colour; Bishop et al. 2016) and parentage analysis using 



  Chapter one 
 

6 
 

genetic markers (Matter et al. 2013). Of the genetic methods, plant nuclear 

microsatellites are most commonly used (Barbara et al. 2007, Vanbergen et 

al. 2014b). Microsatellites are short tandem repeats in DNA sequences (2-5 

base pairs, typically repeated 5-50 times) and have been discovered in high 

numbers throughout the genome (often in non-coding regions) of all organisms 

studied to date (Goldstein and Schlötterer 1999). They have high mutation 

rates (caused by slippage and point mutations; Goldstein and Schlötterer 

1999). This results in a high degree of polymorphism between individuals at 

these points in the genome, thus allowing for intra-species discrimination 

(Goldstein and Schlötterer 1999). Such markers can provide a relatively cheap 

and highly effective method for population genetic analysis and use only small 

amounts of DNA (Ashley and Dow 1994). They have been used to inform 

paternity analysis (Dyer et al. 2004, Smouse and Robledo-Arnuncio 2005, 

Jones et al. 2008, Dyer et al. 2012, Jolivet et al. 2012) and mating analysis 

(i.e. the incidence of self-fertilisation; Vandepitte et al. 2010). These studies 

have progressed our knowledge of the likelihood and distance of pollen 

movement over changing landscapes (Jones et al. 2008) as well as the 

contribution of pollinator species to this pollen transfer (Matsuki et al. 2008). 

 

1.3.2 Pollinator constancy 

The transference of compatible pollen between conspecific plants is governed 

by a pollinator’s constancy. This is characterised as successive visits by a 

pollinator to individuals from the same plant species (Raine and Chittka 

2007b); a behaviour which is frequently observed among pollinators (Waser 

1986, Gegear and Laverty 2005, Fontaine et al. 2006). A pollinator’s ability to 

exhibit constancy has been argued to be driven by memory constraints and an 

inability to perceive multicomponent floral signals (Gegear 2005) and is 

explained by the ‘inference hypothesis’ and the ‘search image hypothesis’. The 

former assumes that pollinators are unable to hold two sensory stimuli in the 

brain simultaneously and therefore switching between plant species results in 

an initial increase in handling time. The latter alternatively assumes that 

retention of more than one image is neurologically unfeasible (Chittka et al. 
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1999, Goulson 1999). With this in mind, pollinators may be expected to 

demonstrate constancy based on flower complexity, only moving between 

plant species with similar floral structures (Darwin 1876). Although these 

implications have been demonstrated experimentally (Laverty 1994, Slaa et al. 

1998), the inferred benefit of reduced handling time has been shown to be 

minimal (Gegear and Laverty 1995). Alternatively, it has been argued that 

pollinator constancy arises from a combination of learnt experiences and 

innate sensory biases, where visual, olfactory and mechanical cues are used 

to distinguish plants based on rewards (Raine and Chittka 2007a, Simcock et 

al. 2014, Ruedenauer et al. 2015). This was illustrated by controlled 

behavioural experiments, where Bombus terrestris was observed to exhibit an 

innate preference for violet flowers (Raine and Chittka 2007a). Furthermore, 

Bombus spp. demonstrated the ability to associate floral colour with rewards 

through learning (Gumbert 2000, Nicholls and de Ibarra 2014), even when 

colour associations represented different rewards (i.e. one colour for nectar 

and one for pollen; Muth et al. 2015). 

 

Despite the learnt and innate associations between floral traits and rewards, 

pollinator constancy has been demonstrated to be a plastic foraging strategy 

(Kawaguchi et al. 2007), with pollinators observed to exhibit ‘minoring’ 

behaviour, whereby other plant species are sampled at low rates (Goulson 

1999). Two of the main drivers of plasticity in pollinator constancy are changes 

in resource availability and interactions with other pollinators (Brosi 2016). 

Changes to resource availability can lead to a trade-off between reduced 

handling time and the bypassing of other potentially rewarding plant species 

(Sanderson et al. 2006, Cakmak et al. 2009, Gruter and Ratnieks 2011). 

Indeed, where preferred plant species are scarce, pollinators have been 

observed to expand their diet breadth to utilise other rewarding plant species 

within close range (Kunin and Iwasa 1996). This can be explained by the 

increased time taken for a pollinator to encounter a flower from the same plant 

species and the duration of the working memory (Marden and Waddington 
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1981, Chittka et al. 1997). For example, controlled behavioural experiments 

have demonstrated constancy among pollinators if a flower from the preferred 

plant species was encountered within a pollinator’s working memory (<2 

seconds); if however, a flower of the preferred plant species was not reached 

within this time period, the pollinator was likely to switch to an alternative plant 

species (Raine and Chittka 2007b). Therefore, as the distance between 

preferred flowers increases, the trade-off between reduced flight and handling 

time renders it advantageous to explore new floral resources (Goulson 1999). 

Similarly, as interactions between pollinator species change, so does the 

competition for resources and thus, the ability of a pollinator to exhibit 

constancy. This has been illustrated by reductions in constancy in response to 

increases in the density of conspecific pollinators (e.g. Bombus terrestris: 

Fontaine et al. 2008) as well as reductions in heterospecific pollinators (e.g. by 

removal of the most abundant Bombus spp.; Brosi and Briggs 2013), both of 

which affect the availability of resources. These changes in pollinator 

constancy will have considerable implications for the transference of pollen 

between conspecific plants, where reduced constancy may lead to a loss of 

conspecific pollen to co-flowering, heterospecific plants along with increased 

heterospecific pollen deposition (Morales and Traveset 2008) (discussed in 

section 1.41: Plant seed set). 

 

1.3.3 Pollen transfer effectiveness 

The capacity of a pollinator to make contact with a plant’s anthers and stigmas 

is further recognised to influence the successful transference of pollen 

between conspecific plants. Pollen transfer can therefore vary in relation to 

characteristics of a flower (e.g. position of anthers and/or stigma) or of a 

pollinator (e.g. tongue length, foraging behaviour, body size and covering) 

(Campbell et al. 1991, Harder and Barrett 1993, Kobayashi et al. 1997, Adler 

and Irwin 2006, Willcox et al. 2017). Even if contact is possible, the 

transference of pollen can further vary depending upon the species-specific 

nature of pollen and nectar collection. For instance, many pollinators seek to 

optimise nectar collection efficiency during a visit which may reduce the 
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probability for pollen transfer to conspecifics. This is illustrated by Apis 

mellifera workers which have been shown to exhibit ‘sideworking’ behaviour, 

where positioning of the head below the anthers and the proboscis directly into 

the filament bases to reach the nectary minimises contact with a plant’s sexual 

parts (Thomson and Goodell 2001). This will affect rates of pollen removal and 

deposition. 

 

Pollen removal will vary between foraging visits, with pollinators unlikely to 

remove all of a flower’s resources. Instead, optimal foraging theory 

hypothesises that individuals will leave a flower when the rate of return falls 

below that of the cost of moving to another flower (Charnov 1976). The amount 

of pollen removed by a pollinator during a visit can differ markedly between 

pollinator species depending, in part, upon whether pollen is collected through 

passive or active means (Barrios et al. 2016). Passive pollen removal can 

involve electrostatic attraction, where a plant and insect exhibit an electric 

charge of opposite polarities (Jones and Little 1983). Upon contact with a 

flower, the force of attraction results in pollen detachment (Vaknin et al. 2001, 

Clarke et al. 2013). This can lead to enhanced pollen transfer (Vaknin et al. 

2001). In contrast, active pollen removal can involve the intentional collection 

of pollen for sustenance using morphological adaptations such as hairs on the 

hind leg (scopa). By reducing the accessibility of pollen, this negatively affects 

pollen transfer (Thorp 2000). Pollen removal may further be affected by 

whether a pollinator is pollen or nectar collecting (Thomson and Goodell 2001) 

or by the physical attributes of a pollinator, such as the structure of body hairs 

(e.g. branching; Thorp 1979), body size (Larsen et al. 2005) and the width and 

length of a pollinator’s proboscis or tongue (Barrios et al. 2016). This will affect 

the surface area available for pollen collection and, by determining how deep 

within the flower structure pollinators are active, the likelihood of contact with 

a plant’s anthers (Simon-Porcar et al. 2014, Barrios et al. 2016). 

 

High pollen removal however does not imply increased pollen transfer between 

conspecific plants. Instead, the fate of removed pollen, and thus successful 
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pollen transfer, is determined, in part, by a pollinator’s behaviour between 

flower visits. Many bees use morphological adaptations to groom pollen from 

their bodies during foraging bouts, resulting in pollen loss during flight (e.g. 

basitarsal combs in Colletes bees; Jander 1976). The end amount of pollen 

available for subsequent plant reproduction is thus influenced by the efficiency 

of grooming mechanisms and the way pollen is stored on the body (Freitas 

1997, Thorp 2000). Indeed, pollen storage in specialised structures can reduce 

the rates of pollen deposition as well as the viability of removed pollen. For 

instance, the corbicula (pollen basket) found on the hind tarsi of bumblebees, 

can capture up to 50% of the pollen removed from a flower visit (Rademaker 

et al. 1997) and often involves the addition of nectar and salivary secretions 

(Keularts and Linskens 1968, Vaissiere et al. 1996). Given this, pollinator 

species can be characterised as efficient pollen removers but poor pollen 

depositors and vice versa (Young et al. 2007, Barrios et al. 2016). For instance, 

in some cases long tongued Lepidoptera are considered to be more efficient 

pollinators than short tongue Diptera (e.g. syrphids) because, although both 

remove small amounts of pollen, Lepidoptera deposit a large amount during 

flower visits (Simon-Porcar et al. 2014). Variations in the efficiency of pollen 

removal and deposition will affect pollen transfer and indeed, pollen carry-over, 

where pollen is deposited on successive flower visits (Thomson and Plowright 

1980). This will have implications for the distance of dispersal and the genetic 

relatedness of pollen (discussed in section 1.4.1: Plant fitness). 

 

1.4 The importance of pollen transfer for plants 

 

1.4.1 Plant reproduction 

1.4.1.1 The role of a plant’s mating system 

Plants exhibit a wide range of mating systems from asexual reproduction 

(where the need for fertilisation is overcome (e.g. apomixis)) to sexual 

reproduction (reproduction involving meiosis and the production and fusion of 

male and female gametes). Sexual reproduction is widespread in flowering 
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plants and offers the benefit of allele exchange and thus the production of 

genetically varied offspring, together with an ability to purge deleterious alleles 

through selection (Smith and Maynard-Smith 1978). In sexually reproducing 

plants, some species have developed the ability to self-fertilise (referred to as 

self-compatible plants; Pannell 2001). However, this is largely dependent upon 

whether male and female reproductive structures occur on the same or 

separate plants (i.e. whether a plant has access to its own (“self”) pollen (e.g. 

hermaphrodite plants)). Plants exhibiting a hermaphroditic system (the most 

widely adopted sex system in flowering plants; Silvertown and Charlesworth 

2009) and self-compatibility can reproduce by self-fertilisation either from the 

transference of pollen within a flower (e.g. autogamy) or between flowers on 

the same plant (e.g. geitonogamy) (Richards 1997). Self-fertilisation is 

advantageous in terms of providing reproductive assurance at times of 

reduced pollinator availability, reducing expenditure on pollinator attraction 

which instead could be directed at ovule and seed production (Ornduff 1969), 

and allowing locally adapted genotypes to persist (Silvertown and 

Charlesworth 2009). In contrast, self-fertilisation has been associated with 

negative implications for plant fitness, both through an increased incidence of 

inbreeding depression (Barrett 1998) and pollen discounting, where pollen is 

used for self-fertilisation at the expense of outcrossing (Fishman 2000). In 

addition, as plants associated with self-fertilisation invest fewer resources in 

pollinator attraction, visitation may be lower and visiting pollinators may be less 

effective (Lloyd 1979).  

 

Self-fertilisation is typically controlled by morphological, phenological or 

genetic mechanisms. Of these, morphological and phenological mechanisms 

include the separation of sexual parts, either in time (i.e. where anther 

dehiscence occurs before the stigma becomes receptive (protoandry); Sargent 

and Otto 2004), or space (e.g. where anthers and stigmas are separated on a 

flower (dicliny), or between individual plants (dioecy); Richards 1997). In 

response to these controls, plants can adopt self-fertilisation at different stages 
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of stigma receptivity, which can lead to prior, competing or delayed selfing. 

Examples of this can be seen in species within the genus Campanula, where 

anthers are separated from stigmas in space and only fold over to contact 

stigmas in the absence of outcrossed pollen deposition (Willmer 2011). This 

delayed selfing is associated with increased reproductive efficiency by 

ensuring seed production during low pollinator availability, while reducing 

pollen discounting (Lloyd 1992). Other adaptations to prevent self-fertilisation 

are expressed at a genetic level and are characterised by self-incompatibility 

systems. These are adopted by 60% of flowering plant species and involve an 

ability to discriminate between self and non-self or related pollen, thus 

preventing self-fertilisation and mating between closely related individuals 

(Hiscock and McInnis 2003). This mechanism, in most species, is controlled 

for by a single multi-allelic locus known as the S-locus (Pannell 2001, 

Takayama and Isogai 2005). The self-incompatible response can occur at the 

stigma surface or in the style and is elicited when proteins from the male 

gamete and the female gamete come from the same S-haplotype (i.e. they 

share a common allele at the S locus). This system has evolved a number of 

different genetic forms (e.g. sporophytic and gametophytic self-incompatibility) 

which differ in the basis by which pollen is rejected (Richards 1997). In 

gametophytic systems (the most widely distributed self-incompatibility 

system), self-incompatibility is controlled by the haploid genome of the pollen 

(Hiscock and McInnis 2003). In this system, alleles at the S-locus are 

expressed co-dominantly in the pistil and pollen is rejected if the allele 

expressed in the male haplotype matches either of those expressed in the 

female haplotype (Silvertown and Charlesworth 2009). Conversely, in 

sporophytic systems, self-incompatibility is controlled by the diploid genome of 

the anther (Hiscock and McInnis 2003). In this system, a dominance structure 

exists in the pollen and pistil and therefore pollen will be rejected if the 

dominant allele expressed in the male haplotype matches the dominant allele 

expressed in the female haplotype (Hiscock and McInnis 2003). This can result 

in mating between plants which share a recessive allele, leading to progeny 

which are homozygous at the S-locus (i.e. recessive alleles are masked and 
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therefore do not elicit a self-incompatibility response) (Silvertown and 

Charlesworth 2009). While break-downs in self-incompatibility do occur 

through ‘leaky’ systems or mutations, this is considered effective at reducing 

mating between related or closely related plants (Richards 1997). The 

compatibility of pollen and thus, the success of pollen transfer, will therefore 

vary depending upon a plant’s mating system. 

 

1.4.1.2 Plant seed set 

Depending upon whether male and female reproductive structures occur on 

the same or separate plant, or indeed flower, sexual reproductive output 

constitutes the number of seeds produced (maternal fitness), the number of 

seeds sired (paternal fitness), or a combination of both. In plants expressing 

both male and female reproductive structures (e.g. hermaphrodite or 

monoecious plants), reproduction is thus influenced by the allocation of 

resources to male and female gametes (pollen and ovules respectively) and 

traits that impact their fitness. To maximise reproductive output some plant 

species have the ability to alter resource allocation. For instance, Aquilegia 

caerulea plants have been shown to promote maternal success in early flowers 

and paternal success in late flowers to meet the requirements of their pollinator 

visitors (Brunet 1996).  

 

A plant’s reproductive output is a function of the quantity of pollen received by 

a plant, where plants adopting sexual reproduction require a sufficient supply 

of compatible pollen (Bernhardt et al. 2008). Indeed, seed set has been 

demonstrated to exhibit a saturating positive relationship with pollen receipt 

(Shore and Barrett 1984, Spigler and Chang 2008, Briggs et al. 2016) and 

where pollen supply is limited, plants have been observed to rarely set seed 

(Groom 1998). Changes to a pollinator’s behaviour such as their constancy to 

a single plant species (see section 1.3.2. Constancy), can alter the quantity 

and quality of this pollen receipt. For instance, reductions in constancy can 

result in pollen loss to heterospecific plants (Morales and Traveset 2008). This 

will have negative implications for a plant’s paternal success through 
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reductions in seed siring. Moreover, reductions in constancy can also lead to 

heterospecific pollen deposition. Indeed, the deposition of heterospecific 

pollen has been shown capable of clogging a plant’s stigma and style (Shore 

and Barrett 1984, Brown and Mitchell 2001) leading to premature closing of 

stigmas (Waser 1986). In addition, heterospecific pollen deposition can also 

lead to hybridisation (Brown and Brown 1996) and pollen alleleopathy (Murphy 

and Aarssen 1995), where heterospecific pollen releases growth inhibitors, 

leading to competition and repression of conspecific pollen growth (Char 

1977). This can therefore have negative implications for a plant’s maternal 

fitness through reductions in seed set. The implications of heterospecific pollen 

deposition for seed production however are inconsistent (Tscheulin et al. 2009) 

and research has shown effects to be dependent upon the timing of 

incompatible relative to compatible pollen deposition, together with the amount 

of incompatible relative to conspecific pollen deposition (Shore and Barrett 

1984). 

 

1.4.1.3 Plant fitness 

The fitness of a plant can be attributed to environmental and genetic conditions 

and the interaction between them (Walisch et al. 2012). Environmental 

conditions such as resource availability have been shown to affect plant 

development rates (Agren et al. 2012, Skalova et al. 2015) and seed 

production (Herrera 2000). This is due to trade-offs between the number of 

seeds produced and the size and quality of these seeds (Herrera 2000), 

together with the plasticity of allocation to vegetation and roots in response to 

resource limitation  (Müller et al. 2000).  

 

Genetic conditions alternatively can influence the compatibility of pollen, where 

genetic variation between parent plants is observed as having a positive 

relationship with plant fitness (Thiele et al. 2010). Reductions in genetic 

variation between parent plants caused by inbreeding, can occur as a result of 

self-fertilisation or through mating between closely related individuals and 

biparental inbreeding (Coutellec-Vreto et al. 1997). This has been shown to 
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reduce allelic diversity, with self-fertilisation in particular observed to decrease 

the heterozygosity of alleles at a locus by 50% each generation (Richards 

1997). Indeed, given that self-incompatible plants require variation at the S-

locus for reproduction, a loss of genetic variation will result in a reduction in 

the effective population size (i.e. the number of compatible mates) (Byers and 

Meagher 1992). Moreover, inbreeding can lead to an increase in the 

expression of deleterious recessive alleles which would otherwise be selected 

against and is therefore considered generally detrimental to plant fitness 

(Silvertown and Charlesworth 2009, Eckert et al. 2010, Bellanger et al. 2015). 

The negative implications of inbreeding depression have been explained by 

the over dominance and the partial dominance hypotheses. While the former 

supposes that the reduction in fitness through inbreeding is a consequence of 

the superiority of heterozygotes, the latter attributes it to increases in 

homozygosity and the subsequent accumulation of deleterious recessive 

alleles (Charlesworth and Charlesworth 1987).  

 

A plant’s fitness can be characterised by a number of traits (e.g. size, growth 

rate, number of flowers and plant biomass) expressed at different life stages 

(e.g. seed, seedling or adult) (Younginger et al. 2017). Indeed, inbreeding can 

be expressed in both early stage fitness traits (e.g. seed mass and germination 

rate) and late stage fitness traits (e.g. number of flowers on stalks) (Thiele et 

al. 2010, Walisch et al. 2012). This can vary with a plant’s mating system, 

where predominantly selfing plants tend to express inbreeding at later stages 

whereas outcrossing plants tend to express the effects of inbreeding 

throughout their life cycle (Husband and Schemske 1996). The effect of 

inbreeding on plants depends upon the functional trait affected and how it 

corresponds to plant fitness. For instance, inbreeding in Echinacea angustifolia 

was associated with reduced photosynthetic rates, which is correlated with the 

capture and use of resources and thus, plant performance and fitness 

(Kittelson et al. 2015).  
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Plants however have been shown to be capable of discriminating pollen 

compatibility based on genetic relatedness. This was illustrated by a study 

which observed faster pollen tube growth when recipient and donor plants are 

separated by a distance of 10m (i.e. inbred and outbred pollen will reach the 

ovules after optimal pollen) (Price and Waser 1979, Souto et al. 2002). In doing 

so, plants demonstrate the ability to optimise the genetic variation between 

parent plants and therefore the fitness of progeny. This is fundamental for a 

plant given the positive association with progeny fitness and the survival and 

reproduction of plants (Reed and Frankham 2003). Moreover, in some plants, 

the negative effects of inbreeding may be alleviated through purging, whereby 

deleterious recessive alleles are selectively removed (Ferriol et al. 2011, 

Lopez-Cortegano et al. 2016). Purging has been demonstrated as being 

particularly efficient at selecting against deleterious alleles, especially when 

plants are heterozygotes at these loci (Charlesworth and Charlesworth 1987, 

Husband and Schemske 1996). While this process is inconsistent and 

dependent upon a plant’s life history and the fitness trait to which the allele 

corresponds to, it implies a capacity of plants to recover or withstand 

inbreeding through selfing or mating between close relatives (Husband and 

Schemske 1996, Thiele et al. 2010).  

 

1.4.2 Long-term plant population survival 

Fitness in outcrossing plant populations is highly dependent upon gene 

dispersal and the exchange of novel alleles (Mannouris and Byers 2013). Plant 

populations commonly exhibit spatial autocorrelation (fine-scale spatial 

genetic structure), where relatedness declines with increasing distance 

(Loveless and Hamrick 1984) at a scale reflecting local mean pollen and seed 

dispersal as well as recruitment distances (Levin and Kerster 1974). 

Individuals that are closer together are thus more likely to be closely related. 

The spatial scale of pollinator movement may therefore alter the probability of 

mating between close relatives (Millar et al. 2014). Reductions in pollinator 

dispersal distance can lead to genetic divergence between plant populations 

as well as reduced genetic variation within populations (Silvertown and 
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Charlesworth 2009). These patterns are further exaggerated by the process of 

genetic drift (random fluctuations in allele frequencies over time; Silvertown 

and Charlesworth 2009). In the absence of the introduction of novel alleles into 

a population, common alleles can become more prevalent over time and are 

at an increased likelihood of becoming fixed (i.e. if an allele achieves a 100% 

frequency, other alleles will be lost from a population; Silvertown and 

Charlesworth 2009). This process is particularly exaggerated in small 

populations, where allelic diversity is typically low (Campbell 2007, Mannouris 

and Byers 2013). The fixation of alleles leads to a reduction of heterozygosity 

within a population and a subsequent departure from the Hardy-Weinberg 

principle (‘the Wahlund effect’; Silvertown and Charlesworth 2009). This in turn 

reduces polymorphism and subsequently leads to genetic uniformity within a 

population (Silvertown and Charlesworth 2009). Consequently, mate 

availability is reduced, particularly for self-incompatible plants which require 

genetic variation at the S-locus, resulting in a low effective population size. 

Once the effective population size falls below the threshold for a minimum 

viable population, plants face an Allee effect (i.e. a reduction in fitness with 

population size; Wagenius et al. 2007) and an elevated risk of extinction (Gilpin 

and Soule 1986, Brook et al. 2006, Schleuning and Matthies 2009, Silvertown 

and Charlesworth 2009).  

 

1.5 Anthropogenic threats facing pollinators and insect-pollinated 

plants 

 

1.5.1 Plant and pollinator declines 

Since the mid-20th century the occurrence and diversity of pollinators has 

declined globally (Biesmeijer et al. 2006, Vanengelsdorp et al. 2008, 

Carvalheiro et al. 2013, Vanbergen et al. 2014a, Senapathi et al. 2015b, Potts 

et al. 2016b). These declines have affected honeybees (Potts et al. 2010b, 

Potts et al. 2016b), bumblebees, other wild bees, wasps (Biesmeijer et al. 

2006, Goulson et al. 2008, Ollerton et al. 2014) and butterflies (Warren et al. 
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2001), though hoverflies, while declining at some local scales, have exhibited 

no consistent trend at a national scale (Keil et al. 2011). The declines in 

pollinators have been linked with parallel declines observed in the diversity and 

occurrence of plant species (Biesmeijer et al. 2006, Carvell et al. 2006, 

Carvalheiro et al. 2013, Albrecht et al. 2016). In Britain alone, 19% of all 

terrestrial and freshwater plant species are now classified as at risk of 

extinction under the IUCN Red List criteria (Burns et al. 2013), with those 

requiring insects for reproduction considered particularly threatened by range 

contractions and decreases in frequency (Biesmeijer et al. 2006, Vanbergen 

et al. 2014a).  Patterns of decline vary between plant and pollinator species in 

relation to variations in key species traits. For instance, reduced dispersal 

capabilities (i.e. poor ability to migrate), longer development times (i.e. the 

duration from egg to adult) and specialised habitat and a narrow range of 

foraging requirements (e.g. oligolectic species) are all demonstrated to 

increase pollinator vulnerability (Biesmeijer et al. 2006). The loss of pollinator 

trait diversity at a community level can lead to functional homogenisation 

(Baude et al. 2016). In turn, plants that rely on pollinators for reproduction may 

become overly dependent on a few abundant pollinator species (Pradervand 

et al. 2014), with negative implications for plant species which require more 

rare pollinator species (e.g. long-tongued bees) (Fontaine et al. 2006, 

Vanbergen et al. 2014a).  

 

1.5.2 The primary drivers of declines  

Comprehensive literature reviews and international evidence assessments 

have identified the key threats driving pollinator declines, which include land-

use change and management intensification; urbanisation; invasive alien 

species, the spread of pathogens and parasites, and climate change (Potts et 

al. 2010a, Vanbergen et al. 2013, Potts et al. 2016a, Potts et al. 2016b). Of 

these, land-use modification and the subsequent fragmentation and loss of 

habitats, has been implicated as one of the primary drivers (Aguirre-Gutierrez 

et al. 2015, Corlett 2016). Through altering the supply and diversity of floral 

and nesting resources (Scheper et al. 2014, Baude et al. 2016), this has led to 
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malnutrition of individuals and colony stress (Vanbergen et al. 2013, Baude et 

al. 2016). Further threats include: pesticides and other agricultural chemicals, 

which lead to lethal and sub-lethal effects (Gill et al. 2012, Godfray et al. 2015); 

climate change, which imposes range shifts and changes to seasonal activity 

(Hegland et al. 2009b, Potts et al. 2016a); pests and pathogens, whose 

frequency are exacerbated by the large-scale commercial management and 

transportation of bees (Dohzono and Yokoyama 2010, Traveset and 

Richardson 2014, Potts et al. 2016a); and invasive species, which modify plant 

and pollinator networks (Morales and Traveset 2009, Dohzono and Yokoyama 

2010, Potts et al. 2016a). Furthermore, concerns have been expressed about 

the potential for different anthropogenic pressures to combine, additively or 

synergistically, to elevate the threat to pollinators (Gonzalez-Varo et al. 2013, 

Vanbergen et al. 2013). Similarly, reviews combining spatially extensive 

monitoring networks, experimental work, remotely sensed data and historical 

records have identified key drivers of plant declines. From these, emphasis 

has been put on the contribution of climate change, which alters conditions 

such as water and nutrient availability and land-use change, which can alter 

plant population dynamics to plant declines (Franklin et al. 2016).  

 

Plant and pollinator declines have been particularly severe within agricultural 

systems (Kovacs-Hostyanszki et al. 2017). Since the 1920’s, improvements 

and enhancement in technology has led to the intensification of agriculture and 

a subsequent homogenisation of landscapes (Robinson and Sutherland 2002, 

Hodgson et al. 2005, Storkey et al. 2012). As a consequence, the yield of wind-

pollinated crops has increased at the expense of pollinator-reliant crops 

(Deguines et al. 2014). This drive for greater yield in turn introduced pressures 

from increased use of agro-chemicals and the abandonment of marginal land, 

resulting in fewer floral and nesting resources (Storkey et al. 2012). This has 

directly been associated with declines in pollinators and indeed, plants, with 

60% of plant species declines in the late 20th century associated with arable 

habitats (Preston et al. 2002a, Carvalheiro et al. 2013).  
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1.6 The implications of anthropogenic threats to pollen transfer 

 

1.6.1 Pollination failure 

The reproductive success of a plant is a function of the number of fruits 

produced (which is controlled by flower production), the number of seeds sired 

and the number of seeds produced (which is controlled by ovule production), 

together with subsequent seed recruitment (Stephenson 1981). For plants that 

rely on pollinating insects for pollen transfer, achieving their potential 

reproductive success requires sufficient pollinator activity to fertilise all ovules, 

together with adequate nutrients to ensure seed provisioning. In nature, plants 

have been shown to suffer a high degree of pollination failure (Larson and 

Barrett 2000, Cunningham 2000a, Wilcock and Neiland 2002, Ashman et al. 

2004, Newman et al. 2013). This may occur at fertilisation stage (i.e. through 

low seed:ovule and flower:fruit ratios) or at the post-fertilisation stage (i.e. 

through low seedling survival) (Holland and Chamberlain 2007). Both 

proximate (e.g. pollen and resource limitation) and evolutionary (e.g. selection 

for addition flowers to increase pollinator attractiveness) factors have been 

implicated as drivers, though these are not mutually exclusive (Holland and 

Chamberlain 2007). 

 

1.6.1.1 Proximate hypotheses 

The Pollen limitation hypothesis has been argued to be one of the main causes 

of pollination failure. This supposes that failure of a plant to achieve its potential 

seed or fruit set is driven by an insufficient deposition of viable, compatible 

pollen, either in terms of quantity or quality (Waites and Agren 2004, Campbell 

2007). This may be driven by changes to pollen availability or composition at 

the pre-dispersal (on the source flower), dispersal (in transit) and post-

dispersal (at the destination flower) stage. Indeed, at the dispersal stage, the 

behaviour of pollinators can directly affect pollen quantity through grooming 

and pollen storage, along with pollen quality through visitation to non-

compatible plants (increasing heterospecific pollen deposition). Furthermore, 
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pollen age, which is influenced by the time taken for a pollinator to move 

between conspecific plants, affects both quality and quantity since pollen is 

generally short lived; maintaining viability up to 48-72 hours after anther 

dehiscence (Pacini et al. 1997, Wilcock and Neiland 2002). Supplementation 

experiments have demonstrated pollen limitation to be ubiquitous among 

plants and a primary contributor to reduced seed production (Ashman et al. 

2004, Knight et al. 2005, Wagenius et al. 2007, Jakobsson et al. 2009). 

 

It has however been argued that the pressures faced by the individual flower 

(i.e. insufficient pollen deposition) may not pair with those faced by the whole 

plant (Holland and Chamberlain 2007). The production of seeds is costly and 

in the case of hermaphrodite plants, the allocation of resources has to be 

divided between male (pollen) and female (ovule) functions as well as between 

flowers. This highlights the importance of resource availability (i.e. sufficient 

supplies of nutrients and water) for the maturation of all of a plant’s ovules and 

the subsequent maximisation of plant reproduction and survival (Stephenson 

1981, Haig and Westoby 1988). This forms the basis of the resource limitation 

hypothesis (Ashman et al. 2004). If the supply of resources is inadequate, 

plants have been shown to release growth inhibitors which promote fruit 

abortion (Tamas et al. 1979); a condition observed frequently in plants (e.g. 

some species produce thousands of flowers for every fruit that they mature; 

Stephenson 1981). Indeed, Haig and Westoby (1988) argued that plants will 

evolve to be in equilibrium between resource and pollen limitation. If this 

equilibrium becomes unbalanced then the plant will shift its allocation towards 

seed production or seed siring accordingly (Haig and Westoby 1988). 

However, while there is growing consensus about the contribution of both 

pollen and resource limitation, the extent to which each drive pollination failure 

is still unclear (Holland and Chamberlain 2007). A greater understanding of 

why pollination failure occurs under different conditions will help decipher the 

underlying causes and could have applied implications for plant breeding, crop 

production and conservation management efforts. 
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1.6.1.2 Evolutionary hypotheses 

Alternative hypotheses of pollination failure instead recognise low seed:ovule 

or fruit:flower ratios to be a by-product of evolutionary adaptations to increase 

the likelihood of reproduction. These include selection for: greater floral 

displays to enhance pollinator attraction; greater pollen reserves to heighten 

siring success; prezygotic or postzygotic selection based on the pollen source 

or the number of seeds in a fruit; lessening the effects of pre-dispersal seed 

predators or bet hedging (Holland and Chamberlain 2007). Of these, particular 

attention has been given to the theory of bet hedging, which suggests that 

plants have evolved to produce an excess number of ovules in response to 

stochasticity in the availability of pollinators and therefore, pollen receipt 

(Knight et al. 2005). Under this hypothesis, fertilisation of all of a plant’s ovules 

is not expected and thus ‘pollination failure’ is destined. From an evolutionary 

perspective, this represents an advantageous strategy so long as the relative 

costs of flower production are low (Burd 1995). Any benefit associated with the 

production of surplus flowers and ovules must exceed the loss in reproductive 

potential associated with the wastage of resources on abscised flowers and 

fruits (Stephenson 1981). However, research into the role of evolutionary 

adaptations as drivers of pollination failure has demonstrated mean ovule 

production to not exceed mean pollen deposition, casting doubt on 

evolutionary hypotheses (i.e. if a plant was producing excess ovules as an 

evolutionary strategy, the ovule number would exceed pollen loads; Holland 

and Chamberlain 2007). 

 

1.6.2 The extent of pollination failure 

The extent of pollination failure experienced by a plant has been shown to vary 

depending upon intrinsic factors including a plant’s mating system, life history 

and phenology (Vamosi et al. 2013). For example, plants exhibiting a perennial 

life cycle have a higher vulnerability to pollination failure (i.e. seed:ovule ratios 

are ~0.5 for perennial plants and ~0.85 for annual plants; Wiens 1984). In 
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addition, extrinsic factors, including a plant’s population dynamics (e.g. size, 

density and degree of isolation from conspecifics; Groom 1998) have similarly 

been shown to impact the extent of pollination failure faced by a plant. Each of 

these factors can be seen to impact the attractiveness of a plant, which affects 

the pollinator visitation and thus pollen deposition (Jakobsson et al. 2009). 

 

Specifically, plant attractiveness depends upon population dynamics (e.g. 

population size and density) and phenological traits, together with the 

environmental context in which plants occurs, for instance as defined by the 

neighbourhood of conspecific and heterospecific plants in the local community. 

Neighbouring plants can facilitate pollinator visitation to conspecific plants (i.e. 

where conspecific plants receive higher visitation at no extra cost to the 

neighbouring plants) (Feldman et al. 2004). This can be a result of local floral 

communities supporting pollinator communities (i.e. by offering an abundance 

of floral resources) or through offering shared pollinators (Rathcke 1983). 

Facilitation may therefore be based on the sampling effect, where an increased 

pollinator community enhances the probability of pollinators showing 

preference for plant species at low frequency (Ghazoul 2006). This is argued 

to be particularly beneficial to rare plants, where the recruitment of pollinators 

is a function of the number of pollinator species in an area (Ghazoul 2006). 

Indeed, facilitation has been shown to be particularly effective when habitats 

are comprised of low-intermediate floral densities and flowers vary in colour 

morphs (Ghazoul 2006, Montero-Castano and Vila 2015). If, alternatively, 

flower densities increase beyond a low-intermediate density, neighbouring 

plants may instead compete with conspecific plants for pollinator visitation (i.e. 

where conspecific plants receive reduced visitation because of a preference 

for neighbouring plants; Rathcke 1983) (Ghazoul 2006, Montero-Castano and 

Vila 2015). This has been illustrated by greater heterospecific pollen deposition 

when the number of plant species within neighbouring communities increase 

(Bartomeus et al. 2008, Jakobsson et al. 2009, Arceo-Gomez and Ashman 

2011). Indeed, facilitation and competition for pollinator recruitment are 

opposite ends of a continuum that is a function of the ecological context, such 
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as the size, density or isolation of a population in relation to the neighbouring 

community (Rathcke 1983, Mitchell et al. 2009).  

 

At a wider scale, plant attractiveness is also affected by landscape composition 

(i.e. regional plant diversity; Vamosi et al. 2013). This is illustrated by altered 

pollinator visitation in response to landscape composition and is explained by 

the landscape-moderated concentration and dilution hypothesis. This 

hypothesis proposes that, in landscapes characterised by an abundance of 

floral resources, plants will receive lower per ‘floral unit’ visitation (Tscharntke 

et al. 2012), despite higher pollinator densities (Root 1973, Totland and 

Matthews 1998). This can be a result of competition avoidance (i.e. pollinators 

choose habitats characterised by a scarcity of resources to avoid inter- and 

intra- species competition), or alternatively, because of a saturation effect 

where resources within florally rich landscapes are in surplus and therefore 

visitation is diluted (Wenninger et al. 2016). Indeed, effects on pollinator 

visitation can be interpreted differently depending upon the spatial scale at 

which it is recorded. For instance, visitation has been shown to exhibit a 

concentration effect at wider, landscape scales, whereas a dilution effect exists 

at fine, habitat scales (Veddeler et al. 2006, Hegland et al. 2009a). At these 

finer scales, landscape composition may also result in a spill-over effect 

(Tscharntke et al. 2012). This refers to movement from one distinct habitat to 

another and in doing so, reflects the permeability of the neighbouring matrix, 

which is recognised to be a function of its attributes (e.g. structural and 

functional features such as floral cover; Tischendorf 2001). This effect has 

been demonstrated with seed set decreasing at increasing distances from a 

nature reserve (Kohler et al. 2008). The drivers of pollination failure are often 

studied independently, but with research supporting impacts of intrinsic, 

extrinsic and landscape factors, it is more likely to be a complex of interacting, 

interdependent factors affecting plant attractiveness and thus, pollinator 

recruitment and behaviour.  
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1.7 Reversing negative anthropogenic effects in agricultural 

systems: Agri-environment schemes 

 

Since the 1980s, policy in Europe has looked to reverse and mitigate the 

damaging effects of agricultural practises on biodiversity (Bignal 1998). These 

can be broadly characterised as ‘land sharing’ practices (e.g. organic and more 

extensive farming) and ‘land sparing’ practices (e.g. conservation, restoration 

and management of semi-natural habitats) (Albrecht et al. 2016). Both 

approaches have been supported by so-called Agri-environment schemes 

(AES) which pay compensation to landowners in return for modification of 

damaging farming practices and/or removal of land from agricultural 

production (Kleijn and Sutherland 2003). These schemes have been 

introduced throughout Europe, although the specific objectives vary depending 

upon a country’s priorities (e.g. reduction in chemical input, protection and 

enhancement of biodiversity and restoration of landscapes; Kleijn and 

Sutherland 2003).  

  

Pollinator declines have been a focus of AES with the creation of flower rich 

habitats including pollen and nectar mixes, which are predominantly comprised 

of leguminous plant species (e.g. Trifolium pratense, Lotus corniculatus). The 

main target of this latter option has been the conservation of long-tongued 

bees, especially bumblebees, which depend on longer corolla flowers (Carvell 

et al. 2011). Experimentally these habitats have demonstrated high success 

rates in terms of increased diversity, abundance and reproductive rates of the 

pollinators they target (Pywell et al. 2006, Heard et al. 2007, Carvell et al. 

2015). The success of AES however has been observed to depend, in part, on 

the ecological contrast of the surrounding landscape (Heard et al. 2007). For 

example, while the diversity of pollinators has been demonstrated to increase 

in sown patches within simple landscapes, the pattern in complex landscapes 

is less clear (Batary et al. 2011, Scheper et al. 2013). The success of AES has 

also depended upon the habitat at which the schemes have targed, where 
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management of ‘out of production’ habitats (e.g. hedges) has demonstrated 

greater success at enhancing species diversity than management of 

productive habitats (e.g. grasslands) (Batary et al. 2015). Increases in 

pollinator abundance and diversity associated with these schemes however 

have been shown to apply to a small suite of pollinator species (e.g. the 

targeted long-tongued bumblebees) (Wood et al. 2015) which are shown to 

account for the majority of crop pollination (Kleijn et al. 2015). The diversity of 

other wild bees in contrast was not affected by AES (Kleijn et al. 2015). 

Although argued to not contribute significantly to pollination services to 

agricultural crops (Kleijn et al. 2015), supporting a diversity of bees is 

fundamental for ecosystem resilience and functional heterogeneity (Senapathi 

et al. 2015a). Therefore, reassessment of mixes is required to include more 

bee forage plant species in order to enhance ecosystem services whilst 

providing support for pollinator diversity (Scheper et al. 2015, Wood et al. 

2015).  

 

For plants, AES options have included conservation headlands (i.e. areas with 

a modified chemical regime) and uncropped, cultivated margins (i.e. 

uncropped margins where the chemical regime is minimal) (Byfield and Wilson 

2005). These options, particularly uncropped, cultivated margins have been 

demonstrated to be particularly effective at increasing plant species richness 

and supporting a higher incidence of rare plants (Albrecht et al. 2016). This is 

illustrated by the occurrence of rare plants in 39% of AES margins (Walker et 

al. 2007, Romero et al. 2008, Fried et al. 2009). While we have an 

understanding of the effect of management interventions through AES on 

plants and pollinators, the effect on pollinator behaviour, and thus pollen 

transfer, has received little attention. Changes in plant-pollinator interactions 

are fundamental for the reproduction and long-term survival of insect-

pollinated plant populations and thus require further investigation. 
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1.8 Project outline 

 

1.8.1 Knowledge gaps 

Changes to plant and pollinator interactions, and the mediators of these 

changes, have received a great deal of attention in recent years. Research in 

this field has highlighted a plant’s attributes and population dynamics (e.g. 

size, density and isolation) as key drivers of changes to plant-pollinator 

interactions, and thus plant reproductive success (Brys et al. 2007, Spigler and 

Chang 2008, Nattero et al. 2011). However, in nature these factors are 

confounded with ecological context: a plant’s population does not function 

independently from its surroundings. Ecological context can be influential at a 

local, habitat scale, through altering the balance between competition and 

facilitation (Ghazoul 2006) or at a wider scale, where landscapes can vary in 

their heterogeneity and thus, their attractiveness to pollinators (Steffan-

Dewenter et al. 2002). The effect on pollinators has been observed to be a 

function of a species’ dispersal capability, where pollinators with greater 

foraging ranges perceive ecological context at larger scales (Steffan-Dewenter 

et al. 2002). Given this, ecological context at different spatial scales is 

expected to govern the composition of pollinator communities (Bennett and 

Isaacs 2014, Cusser et al. 2016, Joshi et al. 2016, Senapathi et al. 2017). 

Moreover, optimal foraging theory hypothesises that pollinators will alter their 

movement and behaviour in response to ecological context in terms of forage 

availability (Charnov 1976), thus driving behavioural change (Jha and Kremen 

2013). This has been studied in the context of pollen movement within specific 

landscape settings. Such work has illustrated the avoidance of pollinators to 

particular habitats, leading to disruptions to pollen transfer (Hadley and Betts 

2009, Lander et al. 2011). However, by not quantifying the specific composition 

of a habitat (e.g. the availability of floral resources), this research has not 

demonstrated how pollinator behaviour, and thus pollen movement, varies in 

relation to the habitat type and landscape context. 
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Although research on pollinator communities and behaviour in response to 

local and landscape composition is an emerging field, the implications for 

pollen transfer and plant reproductive success have largely been neglected. 

Where the implications of changes to plant and pollinator interactions have 

been studied, research tends to focus on a plant’s maternal success (e.g. seed 

set). In doing so, the important interactions between pollinator behaviour and 

a plant’s paternal success are missed. A greater understanding of a plant’s 

paternal success in relation to ecological context can be gained by studying 

pollen movement (Hopley et al. 2015). Moreover, studies often do not extend 

beyond direct reproductive measures (e.g. seed set) and thus fail to determine 

the short and long-term fitness implications of changes to plant-pollinator 

interactions. Given the positive association between pollen dispersal distance 

and the fitness of a plant’s progeny (Mannouris and Byers 2013, Millar et al. 

2014), an understanding of these interactions is essential when considering a 

long-term view of plant population persistence. 

 

1.8.2 Study objective 

The overarching objective of this thesis was to determine the effects of 

variations in the availability of floral resources at different spatial scales on 

plant-pollinator interactions and the implications for the long-term survival of 

plant populations. This was approached through two main research questions: 

1. How do variations in the availability of floral resources at different spatial 

scales alter pollinator foraging behaviour and what are the implications of 

this for pollen movement? I approach this by exploring how various 

pollinator responses, including visitation at the plant level together with 

foraging behaviour (in terms of pollen transfer efficiency and constancy to 

a particular plant species) vary across habitats and landscapes. In addition, 

I explore intra- and inter-population pollen movement to infer changes in 

pollinator dispersal distance. This offers a greater understanding of the 

drivers of behavioural changes in pollinators. Given that pollinators are key 

vectors of pollen transfer and thus, essential for reproduction and 

outcrossing in the majority of plant species (Ollerton et al. 2011), this is 
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fundamental to decipher the mechanisms behind successful pollen transfer 

and gene exchange between plant populations. Moreover, it contributes to 

the evidence base informing policy on the restoration of plant-pollinator 

interactions under different circumstances. 

2. How do changes to pollinator behaviour at different spatial scales affect 

plant outcrossing, reproduction and fitness? I approach this by exploring 

variations in outcrossing rates and reproductive success in multiple plant 

species (in terms of seed set and progeny fitness) when located within a 

variety of habitats and landscapes. In addition, long-term survival potential 

is inferred through measures of inter-population pollen movement, a 

function of plant population connectivity. This offers insights into the roles 

that habitat type and configuration play in determining the genetic diversity 

of plant populations. In an applied context this could help improve our 

understanding of the scale at which habitat management (e.g. through 

AES) most effectively promotes pollination. 

 

1.8.3 Thesis structure 

1.8.3.1 Chapter two 

This chapter explores how the availability of floral resources at local (2m 

radius) and landscape (within a 1km² block) scales, together with a plant’s 

population size, affects pollinator behaviour and the reproductive success of 

plant species. This was achieved by conducting field experiments where plants 

were introduced into habitats and landscapes, which varied in the availability 

of floral resources (Fig.1.I). Experimental arrays comprised two plant species; 

Eschscholzia californica and Silene gallica, which varied in mating systems 

and phenology. At each array, I measured visitation rates and the constancy 

(inferred through heterospecific pollen deposition) and pollen removal 

effectiveness (inferred through pollen removal) of pollinators. Furthermore, 

plant reproduction and progeny fitness were determined to develop an 

understanding of whether plants are compromised by changes to floral 

resources at local or landscape scales. It is assumed that plants with the ability 
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to self will achieve reproductive assurance, where self-pollen is used in 

response to low pollinator activity (Eckert et al. 2010). I therefore explore 

whether there is a trade-off between reproductive assurance and fitness in 

such species. This enhances our understanding of how different plants are 

affected by management interventions at a habitat and landscape scale. 

 

1.8.3.2 Chapter three 

Building on chapter two, this chapter explores the fate of removed pollen in 

response to floral availability, using a greater range of semi-natural habitats 

and management interventions and a wider range of spatial scales (1-1500m 

radius) to account for variations in pollinator floral preferences and dispersal 

capabilities. Particular focus is put on small scales (1-100m radii) to reflect the 

tendency for localised pollinator foraging (Pasquet et al. 2008). This involved 

a multi-site field experiment where Vicia faba plants were introduced into 

habitats and landscapes which varied in floral availability (Fig.1.I). Intra-

population pollen movement was tracked by variations in a progeny’s hilum 

colour (a dominance inherited trait). This was related to the community 

composition of potential pollinator visitors, in terms of species richness, activity 

density and inter-tegular span (a proxy for body size). Further, I explored the 

implications for plant reproductive success through measures of reproduction 

rates and seed weight. This offers a greater understanding of the optimal scale 

at which habitat management should be targeted to positively enhance plant-

pollinator relationships. 

 

1.8.3.3 Chapter four 

Following findings from chapter three, this chapter focuses on how floral 

availability at a habitat scale affects pollinator foraging behaviour, inferred 

through the incidence and distance of pollen movement (1-150m). This was 

achieved through a field experiment coupled with molecular analysis using 

microsatellite markers. Experimental arrays comprising a plant species with a 

low propensity to self (E. californica) were introduced into habitats of low or 
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high floral availability (Fig.1.I). I measured the potential pollinator visitors (e.g. 

pollinator activity density and richness), from which I inferred visitation rates. 

In addition, I inferred pollinator foraging behaviour and dispersal distance 

through measures of inter-population pollen movement. In this chapter I focus 

not just on the implications for plant reproductive success, but also on the 

drivers of changes to reproductive success, including the incidence of pollen 

limitation and reductions in outcrossing rates. This offers a greater 

understanding of the dynamics of plant-pollinator relationships at a habitat 

scale and the implications for long-term, population persistence. 

 

1.8.3.4 Chapter five 

Chapter five expands on chapter four which looks at the effects of floral 

availability on pollen movement and instead looks to determine whether plant 

population connectivity at a local scale is a function of the floral community 

gradient. This involved two multi-plot field trials at the Park Grass Experiment, 

Rothamsted, where Vicia faba plants were introduced into plots varying in floral 

composition (Fig.1.I). I measured the incidence and distance of between- and 

within-plot pollen movement (5-15m). In addition, pollen movement was 

related to the potential pollinator visitors associated with each plot. The 

implications for plants were then quantified by measures of plant reproductive 

success in terms of reproductive rates and seed weight. This improves our 

understanding of the ability of habitats to impede or enhance pollen movement 

in relation to floral communities, and can inform policy on how best to promote 

pollen and gene flow between isolated conspecific plant populations. 

 

1.8.3.5 Chapter six 

In this final chapter, I draw together conclusions from chapters two, three, four 

and five, addressing how they contribute to the overarching research 

questions. I further consider the implications of findings on the effects of habitat 

and landscape composition on plants and pollinators for management and 
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conservation efforts to enhance plant and pollinator relationships. I highlight 

key findings and areas which need further research. 

 

 

 

 

 

 

Figure 1.I A schematic of experiments conducted within each chapter, a. Chapter two, looks 
at the effects of floral resources at a habitat and landscape scale on pollinator foraging 
behaviour (visitation, constancy and pollen removal effectiveness) on two plant species 
differing in mating systems; b. Chapter three, looks at the effects of floral resources through 
a greater range of semi-natural habitats and management interventions and at a wider range 
of spatial scales on pollinator communities and intra-population pollen movement and the 
implications for a self-compatible plant; c. Chapter four, looks at floral composition at a habitat 
scale on intra- and inter-population pollen movement and the implications for a plant exhibiting 
a partially self-compatible plant and; d. Chapter five, uses two plot-level experiments to 
explore the effects of a gradient of floral communities on the movement of pollen both between 
plots and at different distances within a plot. 

d c 

a b 

Legend 

         Different habitats/floral communities                                        Pollen movement 

         Conspecific plant population (different species)                      Pollinator visitation 
         Pollen removal/heterospecific pollen deposition                      Different spatial scales 
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 CHAPTER 2 

 

The effects of the availability of floral resources 

at a local and landscape scale and plant 

population size on plant-pollinator interactions  
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2.1 Abstract 

 
1. The relationship between plants and pollinators is often of a mutualistic 

nature.  In return for provisions, pollinators transfer pollen between 

plants and thus play a major role in the reproduction and fitness of 

outcrossing plants. However, the quantity and compatibility of pollen 

transfer is influenced by a pollinator’s behaviour, including visitation and 

foraging patterns (e.g. a pollinator’s pollen removal and transfer 

effectiveness and constancy to a preferred plant species). These 

behaviours are affected by the attractiveness and suitability of an area 

for pollinators, determined in part by the availability and composition of 

floral resources. It is however unclear to what extent changes to floral 

resources, brought about by habitat and landscape modification, affect 

pollinator behaviour and, consequently, the compatibility and quantity 

of pollen transfer. 

2. I conducted a large-scale field experiment to investigate how the 

availability of floral resources at a local (floral abundance and diversity 

within a 2m radius of a plant population) and landscape (the proportion 

of florally rich habitats within a 1km² square) scale affected pollinator 

behaviour and in turn, plant reproductive success. In addition, I explored 

how plant population size affected the response. Experimental arrays 

comprising two plant species (Eschscholzia californica and Silene 

gallica) which differed in breeding system were introduced into habitats 

and landscapes which varied in floral availability. Pollinator behaviour 

was measured through visitation rates, constancy to a single plant 

species and pollen removal effectiveness (inferred through 

heterospecific pollen deposition and pollen removal rates respectively). 

I then measured plant reproductive success by determining the seed 

set and fitness traits of progeny.  

3. Findings here show visitation rates to be two times greater to large 

experimental arrays (12 plants), when compared to small arrays (three 

plants). Furthermore, E. californica received a greater richness and 
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abundance of pollinator visitors when compared to S.gallica. No effect 

however was observed between the availability of floral resources at 

any spatial scale and either visitation or heterospecific pollen 

deposition. In contrast the removal of pollen was positively related to 

floral resources at a landscape scale (1km² square), though this effect 

varied between the two plant species. Despite this, no discernible 

effects were measured on the reproductive success of either plant 

species. The fitness of Silene gallica progeny (a self-compatible plant 

species) was marginally greater when experimental arrays were small, 

though this was restricted to seed weight, an ‘early lifecycle’ fitness trait, 

and did not translate to germination success. Given that seed weight 

was observed to be greater in outcrossed progeny of S. gallica, these 

results could reflect a higher incidence of outcrossing within small 

populations.   

4. This study, while highlighting the importance of a high availability of 

floral resources in the wider landscape for facilitating pollen removal, 

recognises the benefit of plant attractiveness in providing a competitive 

advantage against co-flowering plants. Both landscape context and 

plant population size are thus demonstrated to be important in plant-

pollinator relationships. However, given the negligible effects on plants, 

the fate of removed pollen and the mechanisms influencing plant 

reproductive success need further investigation. This is of particular 

importance in order to implement effective management in arable 

systems at a time when plants and pollinators are facing declines.    

 

2.2 Introduction 

 

A plant’s reproductive success comprises its reproductive output (the 

production and siring of seeds), weighted by the fitness and dispersal of its 

progeny (Richards 1997). This is affected by a plant’s mating system and can 

involve asexual reproduction whereby fertilisation is bypassed (i.e. apomixis) 
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or sexual reproduction. In plants adopting sexual reproduction, outcrossing 

can be characterised as obligate (self-incompatible) or facultative (self-

compatible), where the propensity to outcross is influenced by molecular, 

morphological or phenological adaptations preventing self-fertilisation (Pannell 

2001). Outcrossing in such plants is predominantly conducted by external 

means including abiotic (e.g. wind) or biotic (i.e. animal) vectors; approximately 

90% of the world’s flowering plant species rely upon pollinating animals 

(Ollerton et al. 2011). By effecting pollen transfer, pollinators influence the 

paternal success of a plant through seed siring, together with the maternal 

success of a plant through the fertilisation of ovules and consequently seed 

production (Devlin et al. 1992). Furthermore, pollinators with large dispersal 

capabilities have the capacity to move pollen between genetically distant 

individuals, thus mediating the exchange of novel alleles (Carvell et al. 2012, 

Redhead et al. 2016). In doing so, pollinators affect the fitness of progeny and 

subsequently, the long-term survival of plant populations (Busch 2005, Eckert 

et al. 2010, Mannouris and Byers 2013). 

 

Mutualistic interactions between plants that provide pollen and nectar rewards 

and pollinators which offer pollination services are integral to a plant’s 

reproductive success (Thomson 2003, Bascompte and Jordano 2007, Mitchell 

et al. 2009). The energy expenditure allocated to the production of rewards is 

a function of a plant’s dependency on these interactions. Given that pollinator 

species differ in their nutritional requirements, the characteristics of the 

rewards offered (i.e. the chemical composition of pollen and nectar; Vaudo et 

al. 2016, Stabler et al. 2015), together with a plant’s floral traits (e.g. deep or 

shallow corolla) can affect which pollinators visit a plant species (Pleasants 

1980, Elisens and Freeman 1988, Proctor et al. 1996). Indeed, pollinator 

species have been demonstrated to vary in the number of flowers visited and 

time spent on a flower during a foraging bout (Silva et al. 2013); their 

effectiveness at pollen removal and deposition (Matsuki et al. 2008); their 

specificity to a particular flower species (i.e. constancy; Van Rossum and 

Triest 2010) and; their dispersal distance (Matsuki et al. 2008). The 
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composition of local pollinator communities may thus affect the dynamics of 

plant-population interactions underpinning conspecific pollen transfer. 

 

In insect-pollinated plant species, reproductive success is determined by the 

quantity and compatibility of pollen received according to the frequency and 

effectiveness of pollinator visitation (Iwaizumi and Takahashi 2012, Saez et al. 

2014) (i.e. multiple insect visits are often required for a plant to attain sufficient 

pollen to fertilise all ovules; Bernhardt et al. 2008). Therefore, failure of a plant 

to attract high numbers of effective pollinators can lead to an inconsistent or 

insufficient supply of compatible pollen (Engel and Irwin 2003). As a 

consequence, plants can suffer from either a reduction in reproductive output 

(Wagenius et al. 2007) or, in the case of self-compatible plants, increased self-

fertilisation (Kalisz et al. 2004). The compatibility of this deposited pollen is 

affected by the constancy and dispersal distance of a pollinator (Glaettli et al. 

2006, Ashman and Arceo-Gomez 2013). For instance, the degree of pollinator 

constancy to a particular plant species will affect the incidence of interspecific 

pollen transfer. Interspecific pollen transfer can lead to conspecific pollen being 

lost during visitation to co-flowering heterospecific plants. Moreover, the 

physical or chemical interference from heterospecific pollen deposition on the 

stigma/style junction of plants (a symptom of inter-specific pollen transfer) can 

cause a reduction in seed set (Arceo-Gomez and Ashman 2014). Pollinator 

dispersal distance alternatively will influence the genetic relatedness of pollen 

receipt (Kenta and Nakashizuka 2003). Given that plant populations have been 

shown to exhibit genetic structure, whereby relatedness declines with distance 

between plants (Loveless and Hamrick 1984), increases or decreases in the  

dispersal distance of pollen could result in progeny exhibiting outbreeding or 

inbreeding depression (Zhao et al. 2009). This is attributable either to the 

introduction of maladapted alleles into a population or to increased 

homozygosity and a subsequent rise in the fixation of recessive deleterious 

alleles (Pannell 2001), both of which have negative implications for progeny 

fitness (Busch 2005). A sufficient supply of compatible pollen is thus essential 

for plant reproductive success and the maintenance of a minimum viable 
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population. Given this, a greater understanding is needed of the underlying 

mechanisms influencing plant and pollinator relationships in order to ensure 

the long-term survival of plant populations.  

 

The reproductive success of plants has been shown to vary considerably and 

is, in part, attributable to a plant’s phenology and mating system (Knight et al. 

2005, Vamosi et al. 2013). However, a plant’s failure to achieve its full potential 

seed set has been observed under a multitude of conditions (Campbell 2007). 

This has been demonstrated to be context specific and affected by the 

dynamics of a plant population (e.g. population size, plant density and the 

degree of isolation; Knight 2003, Waites and Agren 2004) together with the 

composition of surrounding habitats (Jakobsson et al. 2009). These factors all 

contribute to the attractiveness of an individual plant and its ability to compete 

for pollinator visitors. For instance, the extent and distribution of floral 

resources within a pollinator’s foraging range is recognised to positively affect 

the attractiveness of an area and thus, the abundance of potential pollinator 

visitors (Steffan-Dewenter et al. 2002, Heard et al. 2007, Venjakob et al. 2016). 

Whether a plant population however benefits from the increased pollinator 

activity depends upon the extent of rewards offered and whether a competitive 

advantage is achieved over co-flowering heterospecific floral communities 

(Goodell and Parker 2017). This is determined in part by the phenology of the 

focal plant together with the size and density of a population (Brys et al. 2007, 

Sun et al. 2010). Indeed, competitive advantage can further be affected by the 

composition of co-flowering floral communities. Co-flowering heterospecific 

plants can introduce competition for pollinators, thereby reducing potential 

visitors (Ghazoul 2006). Alternatively, if floral communities are characterised 

as displaying complementary plant species (e.g. species comprising different 

flower colour forms; Ghazoul 2006, van der Kooi et al. 2016) at an intermediate 

abundance, co-flowering plants can offer a facilitative effect, thereby 

increasing potential visitors (Ghazoul 2006, Mesgaran et al. 2017). Therefore, 

by affecting the availability and type of resources for pollinators, local floral 

communities are thus expected to alter a pollinator’s constancy (Fontaine et 



  Chapter two 
 

40 
 

al. 2008) and foraging distance (Carvell et al. 2012). The extent to which floral 

resources at different spatial scales disrupt plant-pollinator interactions and 

therefore affect plant reproductive success however is unclear. 

 

Landscape modification and fragmentation have been shown to threaten plant-

pollinator relationships by altering pollinator communities and pollinator 

foraging behaviour (Steffan-Dewenter et al. 2002, Carvell et al. 2012, Redhead 

et al. 2016). For instance, at larger scales the availability of resources 

determines the carrying capacity, while at local levels the relative abundance 

of resources determines pollinator behavioural responses (Meyer et al. 2017, 

Moquet et al. 2017, Senapathi et al. 2017). Here, I used a large-scale field 

experiment to explore how pollinator foraging behaviour changes in response 

to the availability of floral resources at a local (2m radius) and landscape 

(1km²) scale and variations in plant population size. More specifically, I 

measured the effects on the reproductive success of two plant species with 

dissimilar mating systems. I hypothesise: 

i) The richness and abundance of pollinator visitors is positively correlated 

with the size of the experimental array and the availability of floral 

resources at the landscape scale (1km²). Visitation is also greater to E. 

californica plants, which exhibit a lower propensity to self-fertilise than 

S. gallica plants; there is however a negative relationship between 

pollinator visitation and the abundance and diversity of floral resources 

at a local scale (2m radius). This reflects patterns of pollen removal; 

ii) Heterospecific pollen deposition (a measure of interspecific pollen 

transfer), exhibits no relationship with the availability of floral resources 

at a landscape scale (1km²) though is negatively correlated with the 

abundance and diversity of floral resources at a local scale (2m radius); 

heterospecific pollen deposition similarly exhibits a negative 

relationship with the size of the experimental array;  

iii) A plant’s seed set is positively related to the size of the experimental 

array and the availability of floral resources at a landscape scale (1km²). 

In contrast, the abundance and diversity of floral resources at a local 
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scale (2m radius) has a negative effect on the seed set of E. californica 

plants (a self-incompatible species); 

iv) Progeny fitness (seed weight and germination rates) exhibits a positive 

relationship with the size of the experimental array and the availability 

of floral resources at a landscape scale (1km²); the relationship between 

fitness and the abundance and diversity of floral resources is however 

negative at a local scale (2m radius), reflecting a higher incidence of 

self-fertilisation in plants. 

 

2.3 Methods and Materials 

 

2.3.1 Experimental site and study system 

The experiment was conducted on the 900ha Hillesden estate in 

Buckinghamshire, UK (1º00’01’’W, 51º57’16’’N: Fig.2.I). Hillesden is situated 

on heavy clay soils with a relatively flat topography and is characterized by 

large homogeneous arable fields (10–20 ha), cropped under a simple rotation 

of autumn-sown wheat followed by either oilseed rape or field bean crops. 

Under compliance with the English agri-environment scheme (AES), a 

proportion of the arable land within the estate has been converted to wildlife 

friendly habitat. Overall, these wildlife habitats comprised ~4% of the total area 

and include pollen and nectar mixes and wildflower areas. 

 

To test pollinator-mediated effects of floral resources at a local and landscape 

scale on plants exhibiting different mating systems I introduced two plant 

species; the small flowered catchfly, Silene gallica L. (Caryophyllaceae) and 

the Californian poppy, Eschscholzia californica Cham. (Papaveraceae). Plants 

were selected from a list of candidates which were previously distributed within 

the locality and thus, would likely have access to suitable pollinators. The 

chosen species met the desired criteria and represented model organisms by 

having an availability of genetic data and simple flower structures. Both plants 
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were also absent from the landscape (confirmed by ground-truthing), 

preventing additional conspecific pollen sources affecting plant reproduction.  

 

Silene gallica is a self-compatible wildflower (Desfeux et al. 1996). It has small, 

pink flowers (mean ± SE flower diameter 0.98 ± 0.03cm (n = 10); Fig.2.II) and 

large floral displays (mean ± SE flower number 36.7 ± 2.56 (n = 10)) and is 

visited by insects within the order Diptera (Gibson et al. 2006). It rewards 

visiting pollinators with nectar comprising 38.8% sucrose (Witt et al. 2013). In 

contrast, E. californica exhibits a partially self-compatible mating system with 

a low propensity to self-fertilise (Wright 1979) and thus is characterised as an 

obligate outcrosser (Becker et al. 2005). It produces large, yellow flowers 

(mean ± SE flower diameter 6.64 ± 0.46cm (n = 10); Fig.2.II) in small floral 

displays (mean ± SE flower number 5.3 ± 0.42 (n = 10)) and although it is 

characterised as nectarless, it produces an abundance of pollen. It is visited 

Figure 2.I Experimental set-up at Hillesden estate, Buckinghamshire, UK. Florally rich habitats 
refer to: Bird and bee mixes, Early pollen and nectar mixes, Margins, Meadows, Pollen and 
nectar mixes and Wildflower areas. 
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by a diversity of insects within the orders Hymenoptera, Diptera, Lepidoptera 

and Coleoptera (Cook 1962). 

 

Plants were grown from seed (seed source: Chiltern seeds Ltd, Wallingford, 

UK (E. californica) and Herbiseed, Berkshire, UK (S. gallica)) in compost-filled 

seed trays under glasshouse conditions (20°C during the day, 16°C at night, 

with 12 hours of light and 12 hours of dark) and were transferred to 1L pots 

when at the seedling stage. In June 2014, when plants were at reproductive 

maturity, three experimental arrays of each plant species were introduced into 

the centre of each of eight large (1km²) parcels (squares) of cropped land 

(Fig.2.I). Within each square, arrays were separated by at least 150m (mean 

± SE 173.99 ± 10.44m) to minimise inter-array pollen movement (Matter et al. 

2013). To test the impact of floral resources at a local scale on pollination, 

 

 

 

 

 

 

 

 

 

 

 

arrays in four squares were placed within florally ‘poor’ habitats (grass 

margins) (Fig.2.III), while arrays in the remaining four squares were placed 

within florally ‘rich’ habitats (a combination of wildflower corners and pollen and 

nectar strips; AES options: EF1 and EF4 respectively: Natural England 2010; 

Fig.2.III). Floral resources at the local scale were characterised by the 

abundance and diversity (Shannon diversity index (H)) of floral units (defined 

as discrete floral entities, thus one composite flower head of species like 

Taraxacum officinale agg. represented one floral unit) measured within a 2m 

Figure 2.II The flowers of plant species used in this study, from left to right; 1. Eschscholzia 
californica, 2. Silene gallica 
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radius surrounding each array (Table 2.I and Appendix 1: Plant list). To 

quantify the effect of the availability of floral resources at a landscape scale on 

pollination, I measured the proportion of land within squares which comprised 

of florally rich habitats. This varied systematically across the squares from 0 to 

19.48% (estimated using ArcGIS) (Table 2.I). Each square was separated by 

at least 500m to reduce the likelihood of inter-square pollen transfer by larger 

pollinators such as Bombus spp. (Carvell et al. 2012, Danner et al. 2016).  

 

Plants were introduced into pre-marked locations immediately prior to flower 

opening (late bud stage) and the three focal plants were placed within 0.5 x 

0.5m cages to protect against herbivory (prior testing comparing visitation 

demonstrated that cages to not impede pollinator visitation). In each array, 

plants were arranged in a linear formation and were separated by 

approximately 10cm, to limit pollination via contact but to enable ease of 

movement between plants. Plants remained in the field for six days to ensure 

full anthesis (Becker et al. 2005). To test how plant-pollinator relationships 

varied with plant population size, two experiments were conducted in two 

consecutive weeks. In the first, arrays were characterised as small and 

comprised of three plants and in the second, arrays were characterised as 

large and comprised of 12 plants. For practical reasons the manipulation of 

population size was made sequentially although both were introduced within a 

12-day window to avoid any effects of compositional changes in the pollinator 

communities or surrounding floral resources. 
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Table 2.I Quantification of the floral resources at a local and landscape scale. The abundance 
and diversity of floral resources was measured as the total number of floral units in a 2m radius 
surrounding the experimental array. The availability of floral resources at a landscape scale 
was measured by calculating the percentage of land within a 1km² square which comprised of 
florally rich habitats.  

 

 

Square Experimental 
array 

The abundance of 
floral resources at a 
local scale (2m 
radius) 

The diversity (Shannon 
diversity index H) of 
floral resources at a 
local scale (2m radius) 

The availability of 
floral resources at a 
landscape scale 
(1km²) (%) 

1 1 0 0 0.74 
 2 20 0 0.74 
 3 10 0 0.74 

2 1 623 0.72 19.48 
 2 1660 1.75 19.48 
 3 1261 1.40 19.48 

3 1 100 0 0 
 2 75 0.8 0 
 3 2 0 0 

4 1  1015 1.37 4.52 
 2 1480 1.15 4.52 
 3 1300 0.85 4.52 

5 1 52 0.19 2.21 
 2 153 1.17 2.21 
 3 0 0 2.21 

6 1 1315 1.34 8.16 
 2 735 0.78 8.16 
 3 2042 1.39 8.16 

7 1 1 0 0 
 2 120 0.45 0 
 3 51 0.10 0 

8 1 381 1.26 9.29 
 2 1379 0.92 9.29 
 3 1202 1.21 9.29 

Figure 2.III Experimental arrays with focal plants placed in a metal cage to protect from 
herbivory, from left to right; 1. A large array (experiment 2) located within a florally poor habitat 
(grass margin), 2. A small array experiment 1) located within a florally rich habitat (pollen and 
nectar mix). 
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2.3.2 Pollinator behaviour 

2.3.2.1 Visitation rates 

To measure the abundance and richness of pollinators visiting S. gallica and 

E. californica plants under field conditions I conducted timed visitation 

observations of experimental arrays. Each array was surveyed between 09.30 

and 17.00 across three consecutive days and surveys were systematically 

randomised to ensure a balance of morning and afternoon observations across 

all squares and arrays. Observation periods lasted for 15 minutes, during 

which all insect pollination activity (contacting an anther or stigma) on S. gallica 

or E. californica plants were recorded and identified according to recognisable 

taxonomic units (RTUs) (Bombus spp., Apis mellifera, solitary bee (small, 

medium and large), Syrphidae (small, medium and large), Lepidoptera, 

Coleoptera and non-syrphid Diptera). RTUs have been used in previous 

studies to measure pollinator visitation patterns (Lortie et al. 2012, Vanbergen 

et al. 2014b) and while simplifying estimates, they offer an effective method of 

identification in the field (Oliver and Beattie 1996).  

 

2.3.2.2 Pollen removal 

To ascertain a measure of the pollen removal effectiveness of local pollinator 

communities, I quantified the amount of pollen removed from pollinator 

exposed S. gallica and E. californica flowers. To measure this, two flowers (late 

bud stage) were tagged on each plant prior to the start of the experiment. Of 

these, one flower remained unmanipulated (henceforth ‘pollinator exposed’) in 

order to measure the quantity of pollen removed when flowers were exposed 

to pollinators and the other flower was covered in a fine muslin to provide a 

control when access to pollinators was restricted (henceforth ‘pollinator 

excluded’). After six days, when plants were collected in, dissecting forceps 

were used to remove three anthers from pollinator excluded flowers and three 

anthers from pollinator exposed flowers. Each anther was stored separately in 

an Eppendorf containing 100µl of 70% ethanol. 

  



  Chapter two 
 

47 
 

To measure the number of pollen grains remaining on anthers, Eppendorfs 

were sonicated and three 30µl sub-samples were individually removed by a 

pipette from each anther sample and examined under a haemocytometer. The 

number of conspecific pollen grains on the four diagonal 1mm² squares on the 

haemocytometer grid was calculated for each sub-sample. From this I 

calculated an average number of pollen grains in a 1mm² grid square (over the 

three replicates of four squares) and multiplied the average by a factor of ten 

to get the total number of pollen grains in 1µl (as: length;1mm x width; 1mm x 

height; 0.1mm = volume; 0.1µl). I then multiplied the number of pollen grains 

in 1 µl by the total volume of ethanol in the Eppendorf to determine the average 

number of pollen grains per anther. Pollen removal was expressed as a ratio 

between the amount of pollen on a pollinator exposed flower and the amount 

of pollen on a pollinator excluded flower (a measure of pollen removed due to 

pollinator activity). Where the quantity of pollen was greater on pollinator 

exposed anthers or where no pollen was recorded on either sample, the 

proportion of pollen removed was recorded as 0 (E. californica: n = 7 flowers; 

S. gallica: n = 98 flowers). 

 

2.3.2.3 Heterospecific pollen deposition 

To ascertain the incidence of heterospecific pollen deposition, a measure of 

pollinator constancy, I quantified the number of heterospecific pollen grains 

being deposited on a stigma. To do this, a further two flowers were tagged on 

each plant prior to the start of the experiment; as before, one was labelled 

‘pollinator exposed’ and one was covered with a fine muslin and labelled 

‘pollinator excluded’. After six days, when plants were collected in, dissecting 

tweezers were used to remove stigmas from pollinator exposed and pollinator 

excluded flowers. Each stigma was stored separately in an Eppendorf 

containing 50µl of 70% ethanol.  
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Prior to measuring heterospecific pollen deposition, ethanol was left to 

evaporate from the Eppendorf. Following this, three drops of Calberla’s 

solution (5ml glycerine, 10ml 95% ethanol, 15ml distilled water and 2-5 drops 

of fuchsin mix (50:50 distilled water and fuchsin crystals) (Dafni et al. 2005)) 

was added to each Eppendorf in order to stain the pollen and aid identification. 

The Eppendorf was then sonicated and the solution was mounted on a slide 

using a pipette and sealed with a coverslip. Slides were examined under a 

compound microscope at X20 magnification and the number of heterospecific 

pollen grains were counted. Additionally, I measured the number of conspecific 

pollen grains (Fig.2.IV) in order to verify the suitability of the method. 

 

2.3.3 Plant reproductive success 

2.3.3.1 Seed set 

To determine seed set, a further two flowers were tagged on each plant prior 

to the start of the experiment; as before, one was labelled ‘pollinator exposed’ 

and one was covered with a fine muslin and labelled ‘pollinator excluded’. After 

six days, when fruit was developed, the muslin was removed and plants were 

collected in and stored under controlled glasshouse conditions (day: night = 

20ºC:15ºC photoperiod light: dark = 12:12hr). If fruit had not formed, muslin 

was left on or was subsequently applied to flowers prior to transference to the 

Figure 2.IV Conspecific pollen grains stained with Calberla’s solution and viewed at X20 
magnification, from left to right; 1. Silene gallica, 2. Eschscholzia californica. 
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glass house and was kept on until fruit had formed. Upon maturation, fruit was 

collected and seeds were counted. Furthermore, the seed set of any fruit 

produced by flowers tagged for the analysis of pollen removal and deposition 

were additionally counted.  

 

2.3.3.2 Plant fitness 

Given the high propensity of S. gallica to reproduce by self-fertilisation along 

with an absence of seeds produced by control flowers in E. californica, early 

stage fitness measures were quantified for S. gallica progeny only. Although 

the intention was to relate fitness traits to the incidence of outcrossing, this was 

precluded given problems with identifying molecular markers necessary to 

conduct mating system analysis (Appendix 2: Primer note). 

 

To determine the effect of habitat and landscape context on early stage fitness, 

I quantified the seed weight from field exposed S. gallica plants. Prior to 

weighing, seeds were stored in paper envelopes and were oven dried at 50ºC 

for seven days in order to obtain a standardised dry mass. Subsequently, a 

sub-sample of ten seeds (given the low weight of seeds) from a pollinator 

excluded fruit and ten seeds from a pollinator exposed fruit were weighed from 

each plant (using fruits tagged for measures of seed set). Where fruit produced 

fewer than ten seeds, the total seed set was weighed and this was divided by 

the number of seeds and multiplied by ten to obtain the weight of ten seeds.  

Following this, the germination rates of these seeds were quantified. This 

involved taking a sub-sample of six seeds from a pollinator excluded fruit and 

six seeds from a pollinator exposed fruit from each plant. Seeds were then 

sown into individual 50x48mm wells within compost-filled seed trays. Seed 

dormancy was broken by placing seed trays in a chiller, set to 4°C, for seven 

days to simulate winter. Seed trays were then arranged under glasshouse 

conditions (as above). Germination was recorded over a 30-day period and 

any seeds which failed to germinate after 90 days were recorded as inviable. 
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2.3.4 Statistical analysis 

Pollinator behaviour and plant reproductive success parameters were 

analysed using generalised linear mixed effects models (GLMMs). The 

richness (RTU’s) and abundance of pollinator visitors were respectively 

modelled with a Poisson and Negative Binomial error distribution (n = 96). 

Similarly, heterospecific pollen deposition (the number of heterospecific pollen 

grains deposited on stigmas (n = 144 for each plant species)) was analysed 

with a Negative Binomial error distribution (both for models for pollinator 

exposed flowers and when comparing pollinator excluded and exposed 

flowers). Pollen removal (n = 144 for each plant species) alternatively was 

analysed with a Binomial error distribution using a combination of logit and 

probit links depending upon the best fit. Plant seed set (n = 148 and n = 226 

for E. californica and S. gallica respectively (following variations in abortion 

rates)) and the germination rate (n = 288) and seed weight (n = 288) of S. 

gallica progeny were respectively modelled with Poisson (log), Binomial (logit) 

Gaussian (log) error distributions (both for models for pollinator exposed 

flowers and when comparing pollinator excluded and exposed flowers). The 

difference in E. californica seed set between pollinator exposed and pollinator 

excluded flowers however was modelled with a Negative Binomial error 

distribution. Models were conducted using the lme4 package (Bates et al. 

2015) in R (version x64; R Core Team 2013), with the exception of: the 

abundance of pollinator visitors; heterospecific pollen deposition and the 

difference in seed set between pollination treatments, which were modelled 

using the glmmADMB package (Fournier et al. 2012, Skaug et al. 2012) in R 

(version x64; R Core Team 2013) to allow for zero-inflation. 

 

In all models, fixed effects comprised: i) size of experimental array, ii) the 

abundance and Shannon diversity (H’) of floral resources at a local scale and 

iii) the availability of floral resources at a landscape scale. An exception was 

models comparing pollinator exposed and pollinator excluded flowers where 

fixed effects were confined to pollination treatment (pollinator exposure). 

Experimental array nested within experimental square was included as a 
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random effect in all models to account for the nested spatial structure of the 

experimental design. An additional random effect of plant identity was used 

with pollen removal, heterospecific pollen deposition and plant reproductive 

success models to account for natural variation between plants. Where 

present, over dispersion in the data (e.g. variation between fruit) was controlled 

for by fitting an observational level parameter to the random effects (Harrison 

2014). To account for differences in physiology, S. gallica and E. californica 

were analysed separately in all models with the exception of pollinator 

visitation models. 

 

Prior to analysis, variables were tested for collinearity. AIC stepwise selection 

was used to find the minimum adequate model (Burnham and Anderson 2003) 

and all models were analysed using Laplace approximation (given that each 

model comprised of <3 random effects; Bolker et al. 2009). The significance of 

the final models was analysed by comparison to a null model with the same 

random effects structure using an ANOVA.  

 

2.4 Results 

 

2.4.1 Pollinator behaviour 

2.4.1.1 Visitation rates 

The total abundance of pollinators visiting S. gallica and E. californica arrays 

(3 focal plants) within the field was two times greater when experimental arrays 

were large (mean ± SE large arrays (12 plants) = 6.46 ± 1.36; small arrays (3 

plants) = 3.25 ± 0.8; glmmADMB z = -2.86, p < 0.001; Fig.2.V). Of these, five 

times more pollinators visited E. californica than S. gallica (mean ± SE E. 

californica = 8.21 ± 1.43; S. gallica = 1.5 ± 0.31; glmmADMB z = -7.56, p < 

0.0001; Fig.2.V). 
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Figure 2.V From left to right: 1. The abundance of pollinating insects visiting small (3 plants) 
and large (12 plants) arrays of E. californica and S. gallica plants; 2. The abundance and 
species richness (RTU’s) of pollinating insects visiting arrays of E. californica and S. gallica 
plants. Boxes represent the upper quartile range (Q3), the median value (Q2) and the lower 
quartile range (Q1) accordingly. Whiskers represent data that is +/- 1.5x the interquartile range 
(Q3-Q1) and data exceeding this are characterised as outliers and marked with circles (this 
representation is similar in all following graphs). 

 

Similarly, the richness of visitors (RTU’s) was two times greater to E. californica 

arrays compared to S. gallica arrays (mean ± SE E. californica = 1.54 ± 0.17; 

S. gallica = 0.60 ± 0.09 GLMM z = -4.276, df = 92, p < 0.0001; Fig.2.V). These 

pollinators were predominantly from the order Coleoptera (55% of all visits) 

followed by insects from the Syrphidae family (Diptera) (42% of visits; 

especially those within the medium size category: 37% of visits). The 

abundance and diversity (Shannon H’) of floral resources at the local and 

landscape scale however, had no effect on the abundance (p = 0.95, p = 0.42 

and p = 0.26 respectively) or species richness (RTU’s) (p = 0.62, p = 0.69 and 

p = 0.16 respectively) of pollinating visitors. 

 

2.4.1.2 Pollen removal 

The proportion of pollen removed from ‘pollinator exposed’ flowers (inferred 

from the average of three anthers per flower) was variable between plant 

species (mean ± SE E. californica 0.8 ± 0.02 (n = 144); S. gallica 0.27 ± 0.04 
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(n = 144)). In E. californica, this pollen removal was positively correlated with 

the availability of floral resources at the landscape scale (the proportion of land 

within a 1km² square which comprised of florally rich habitats) (GLMM z = -

2.26, df = 138, p = 0.02, R²c=0.18; Fig.2.VI). 

 

 

 

Figure 2.VI The proportion of pollen removed from an E. californica flower (average of three 
anthers) in relation to floral resources at a landscape scale (the percentage of land within a 
1km² square comprising florally rich habitats) 

 
No relationship was observed however between pollen removal and floral 

resources at a local scale (p = 0.08 and p = 0.22 for floral abundance and 

diversity respectively) or the size of the experimental array (p = 0.36). Pollen 

removal in S. gallica was not affected by floral resources either at a local (p = 

0.65 and p = 0.92 for floral abundance and diversity respectively) or landscape 

scale (p = 0.8), or indeed, by the size of the array (p = 0.74). 

 

2.4.1.3 Heterospecific pollen deposition 

The quantity of heterospecific pollen grains deposited on ‘pollinator exposed’ 

flowers (pollinator constancy) was low and varied depending upon the plant 
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species (mean ± SE Number of heterospecific pollen grains per plant: E. 

californica = 0.97 ± 0.37 (n = 144), S. gallica = 1.15 ± 0.18 (n = 144); Proportion 

of total pollen deposition: E. californica = 0.006 ± 0.003 (n = 144), S. gallica = 

0.07 ± 0.02 (n = 144)). Unsurprisingly therefore, for both plant species the 

incidence of heterospecific pollen deposition and hence, pollinator constancy, 

exhibited no relationship with floral resources at either a local (Floral 

abundance p = 0.93 and p = 0.3 for E. californica and S. gallica respectively; 

Floral diversity p = 0.89 and p = 0.41 for E. californica and S. gallica 

respectively) or landscape scale (p = 0.96 and p = 0.34 for E. californica and 

S. gallica respectively) or indeed the size of the array (p = 0.44 and p = 0.71 

for E. californica and S. gallica respectively).  

 

2.4.2 Plant reproductive success 

2.4.2.1 Seed production 

In E. californica the total number of seeds produced in a fruit was greater in 

‘pollinator exposed’ flowers when compared to ‘pollinator excluded’ flowers 

(mean ± SE Pollinator exposed = 56.17 ± 3.02 (n = 148), Pollinator excluded 

= 2.16 ± 0.91 (n = 114); glmmADMB z = 15.14, p < 0.001). In contrast, in S. 

gallica plants, the total number of seeds produced in a fruit was greater in 

‘pollinator excluded’ flowers when compared to ‘pollinator exposed’ flowers 

(mean ± SE Pollinator exposed = 37.32 ± 0.88 (n = 226), Pollinator excluded 

= 40.36 ± 0.86 (n = 180); GLMM z = -2.62, df = 400, p < 0.01), suggesting a 

negative effect of pollinator exposure due to removal of pollen otherwise 

available for self-fertilisation. For ‘pollinator exposed’ flowers, the number of 

fruit produced by tagged flowers per plant was variable (mean ± SE E. 

californica = 1.97 ± 0.07, S. gallica = 2.01 ± 0.05). For both plant species, 

however, the seed set of these fruits was not affected by floral resources at 

either a local (Floral abundance p = 0.93 and p = 0.6 for E. californica and S. 

gallica respectively; Floral diversity p = 0.55 and p = 0.86 for E. californica and 

S. gallica respectively) or landscape scale (p = 0.34 and p = 0.5 for E. 
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californica and S. gallica respectively) or indeed the size of the array (p = 0.09 

and p = 0.12 for E. californica and S. gallica respectively). 

 

2.4.2.2 Plant fitness 

The seed weight from the fruits of surviving field exposed S. gallica plants (ten 

seeds) was significantly greater in fruits from ‘pollinator exposed’ plants when 

compared to ‘pollinator excluded’ plants (mean ± SE (mg) Pollinator exposed 

= 3.72 ± 0.05 (n = 135); Pollinator excluded = 3.35 ± 0.04 (n = 140); GLMM t = 

-6.55, df = 269, p < 0.001; Fig.2.VII). In addition, seed weight was marginally 

greater when experimental arrays were small (3 plants) when compared to 

when arrays were large (12 plants) (mean ± SE (mg) Large arrays = 3.66 ± 

0.07 (n = 71); Small arrays = 3.79 ± 0.06 (n = 64); GLMM t = 1.91, df = 129, p 

< 0.06; Fig.2.VII). The weight of S. gallica seeds however, exhibited no 

relationship with floral resources at either a local (p = 0.91 and p = 0.88 for 

floral abundance and diversity respectively) or landscape scale (p = 0.4).  

 

 

Figure 2.VII From left to right: 1. The average weight (mg) of seeds (10 seeds) produced by 
field exposed S. gallica plants across squares and experiments when flowers were exposed 
to or excluded from pollinators; 2. The average weight (mg) of seeds across squares produced 
from pollinator exposed S. gallica plants placed in large (12 plants) and small (3 plants) 
experimental arrays. 
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The germination rates of S. gallica seeds did not differ between pollination 

treatments (mean ± SE Pollinator exposed = 0.89 ± 0.01 (n = 135), Pollinator 

excluded=0.87 ± 0.02 (n = 140) (p = 0.54)). Furthermore, the germination of 

‘pollinator exposed’ S. gallica seeds similarly exhibited no relationship with 

floral resources at either a local (p = 0.78 and p = 0.96 for floral abundance 

and diversity respectively) or landscape scale (p = 0.76), or indeed, by the size 

of the array (p = 0.17). 

 

2.5 Discussion 

 

In this study, findings demonstrate no relationship between the abundance and 

composition of pollinator visitors and floral resources at a local or indeed, a 

landscape scale. Visitation to plants however was affected by array size, 

where large experimental arrays and E. californica plants received a greater 

number and richness (in the latter) of pollinator visitors (though differences in 

richness may be due to differences in the abundance of pollinator visitors). The 

behaviour of visiting pollinators, measured through pollen removal and 

heterospecific pollen transfer, was unaffected by both floral resources at a 

local and landscape scale and the size of the experimental array. An exception 

was pollen removal, which in contrast, was positively related to floral resources 

at a landscape scale. This had no discernible effect on the reproduction of E. 

californica or S. gallica plants, which was similarly unaffected by both floral 

resources at a local and landscape scale and the size of the array. The fitness 

of S. gallica progeny however, while unaffected by floral resources both at a 

local and landscape scale, was reduced in pollinator excluded flowers and in 

large populations, albeit marginally. 

 

2.5.1 The effects of floral resources at a local and landscape scale on plant 

and pollinator interactions 

Pollinators have been shown to respond to floral resources at a number of 

scales, from a local, habitat scale (Masters and Emery 2015) to a landscape 
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scale (Steffan-Dewenter et al. 2002). This is illustrated by a greater abundance 

and diversity of pollinators and indeed, higher visitation rates in habitats and 

landscapes comprising an abundant and diverse floral community (Steffan-

Dewenter et al. 2002, Heard et al. 2007, Woodcock et al. 2013, Orford et al. 

2016, Pisanty et al. 2016). Findings here, in contrast to previous research, 

suggest that floral resources both in the immediate vicinity and within the wider 

landscape (1km² square) did not facilitate visitation to E. californica or S. gallica 

plants (Carvalheiro et al. 2012). Indeed, visitation rates were low in this study, 

either due to the reduced attractiveness of experimental arrays or reflecting 

the survey effort. These low visitation rates could provide reasons for the 

inconsistencies between studies. Alternatively, inconsistencies may highlight 

pollinator specific responses to local and landscape context (Woodcock et al. 

2013, Pisanty et al. 2016) and the importance of species comprising floral 

communities for attracting pollinators and facilitating visitation (Wood et al. 

2015). For instance, in one study, while visitation by honeybees to individual 

plants was negatively related to the coverage of semi-natural habitat at the 

landscape scale, visitation by solitary bees displayed the opposite trend 

(Steffan-Dewenter et al. 2002). This reflects the differences in pollinator 

requirements and floral preference. Indeed, the density and diversity of 

bumblebees has been shown to increase within habitats associated with agri-

environment schemes (e.g. pollen and nectar mixes), given the predominance 

of leguminous species such as Trifolium repens (Heard et al. 2007, Carvell et 

al. 2011). Research has however indicated that the benefits of habitats 

associated with agri-environment schemes are limited to a small suite of 

pollinator species (Wood et al. 2015). In this study, few bumblebees were 

observed in visitor observation surveys. This could either be because 

bumblebees were too specialised to visit phytometer plants (Weiner et al. 

2011), or alternatively, it could be an indication that small populations of plants 

which produce limited rewards, are not attractive to bumblebees. The low level 

of visitation by bumblebees (the dominant pollinator species associated with 

these mixes), together with the predominance of species from the orders 

Coleoptera and Diptera (which vary considerably in their life history and 
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foraging behaviour) may therefore provide reasons for the lack of variation in 

abundance and diversity of visitors in response to increases in floral resources 

at a local and landscape scale. 

 

Pollinator visitation has been shown to exhibit a positive relationship with 

pollen removal (Rush et al. 1995). In this study, despite there being no effect 

of floral resources on visitation, findings demonstrate a positive relationship 

between pollen removal and floral resources at a landscape scale (1km²). The 

poor model fit (R²=0.18) however suggests that this trend may be driven by 

outliers in the data as a result of an unbalanced experimental design and low 

replication of landscapes with high floral abundance. This raises doubt that 

these findings are indeed ecologically significant and further hypothesis testing 

is needed to verify results. This said, results do suggest an increased pollen 

removal effectiveness of pollinators where floral resources are abundant at a 

landscape scale. This pattern was however only seen in E. californica plants 

where pollen was copious and the likelihood of contact between pollinators 

and anthers was high given floral traits (Harder 1990). Pollen removal was not 

however affected by floral resources at a local scale, reflecting the presence 

of a shared pollinator community within habitats (Potts et al. 2003, Klein 2009). 

Indeed, pollen removal was measured as the additional number of pollen 

grains removed due to pollinator exposure, thereby giving an indication of 

pollinator activity. In S. gallica plants, low pollen removal therefore indicates a 

high level of pollen use for self-fertilisation. The differences in pollen removal 

between plant species may additionally reflect the variation in visitation 

between plant species and the species comprising these pollinator visitors. 

Indeed, pollinator species have been shown to differ in the amount of pollen 

removed and deposited and hence their transfer effectiveness (Thomson and 

Goodell 2001), where some species are characterised as high removers and 

low depositors and vice versa (Young et al. 2007). Pollinators visiting E. 

californica plants were diverse and included insects from the orders 

Hymenoptera, Lepidoptera, Diptera and Coleoptera, whereas those visiting S. 

gallica plants only comprised insects from the family Syrphidae (Diptera). In 
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one study, Syrphids were characterised as low pollen removers given that 

visitation was shown to have no effect on pollen removal (Rush et al. 1995). 

This offers support to the reductions in pollen removal due to pollinator activity 

observed in S. gallica within this study. Pollen removal is an indication of the 

fitness of a flower’s male function and, by contributing to the number of seeds 

sired, is therefore an important measure of plant reproductive success. The 

fate of this pollen will influence genetic exchange and thereby contribute to the 

fitness of a plant (Mannouris and Byers 2013). In order to gain an 

understanding of the absolute transfer efficiency of pollinator communities 

however it is important to relate pollen removal with subsequent deposition 

(Galen and Stanton 1989).  

 

While the fate of removed pollen was not directly explored within this study, 

the deposition of heterospecific pollen was measured to better understand the 

foraging behaviour of pollinators and thus, the destination of conspecific 

pollen. Heterospecific pollen deposition is a measure of pollinator constancy 

to a particular forage plant species (Dafni et al. 2005). This is a consequence 

of the relaxation of forage preferences in the face of resource depletion, 

caused by altered landscapes (Kunin and Iwasa 1996) or competition with 

other pollinators (Fontaine et al. 2008). The incidence of heterospecific pollen 

deposition is however complex and previous research has alternatively 

demonstrated an increase with the density of heterospecific flowers within the 

neighbouring community (Jakobsson et al. 2009, though see Feinsinger et al. 

1986). Findings here however demonstrate no relationship between the 

deposition of heterospecific pollen and floral resources at a local or landscape 

scale. Indeed, the incidence of heterospecific pollen deposition was low in this 

study, reflecting the low visitation rates observed (Morales and Traveset 2008). 

This offers an explanation for the inconsistencies between findings. 

Alternatively, the low incidence of such deposition may indicate a sufficient 

supply of floral resources within the wider landscape or indeed, the specialist 

nature of pollinator visitors. This is illustrated by a greater incidence of 

heterospecific pollen deposition in S. gallica plants, which were visited only by 
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Syrphids, of which some species are considered generalists (Pontin et al. 

2006). Heterospecific pollen deposition is an important measure for plants by 

affecting reproductive success through disruptions at the fertilisation stage, 

either through physical (e.g. blocking the stigma or style; Scribailo and Barrett 

1994, Holland and Chamberlain 2007) or chemical (e.g. allelopathy; Murphy 

2009) interference. Furthermore, it offers an indication of the fate of conspecific 

pollen (Morales and Traveset 2008). For instance, where heterospecific pollen 

deposition is low, as observed here, it suggests a high rate of direct pollen 

transfer. 

 

2.5.2 The effects of plant population size on plant and pollinator interactions 

The relationship between plants and pollinators is governed in part by the 

attractiveness of a plant population and the level of rewards offered (Weber et 

al. 2012). In this study, pollinator visitation was positively related to the size of 

the experimental array. This is consistent with previous studies (Bernhardt et 

al. 2008) and suggests that small populations have fewer resources to attract 

and sustain pollinator communities (Phillips et al. 2014), particularly when 

competitive co-flowering plants are abundant (Johnson et al. 2012, Tscheulin 

and Petanidou 2013). As populations increase in size they become more 

attractive and the competitive effect of co-flowering heterospecific plants is 

switched to a facilitative effect (Ghazoul 2006). This competitive advantage 

attributed to large population size however may be plant species dependent. 

Here, E. californica plants attracted a greater abundance and richness of 

pollinator visitors when compared to S. gallica plants. This further illustrates 

the importance of a plant’s rewards. Eschscholzia californica is reliant on 

pollinators and therefore invests greater energy expenditure in pollen 

provisions and floral displays. It is noteworthy however that, although S. gallica 

has been shown to be pollinated by Syrphids (Gibson et al. 2006), nocturnal 

Lepidoptera have been recognised to be important pollinators of Silene spp. 

(Young 2002), suggesting that visitation to this species may have been 

underestimated by visitation observations. Given differences in visitation rates 

between species however, it is likely that E. californica in this study 
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outcompeted S. gallica for pollinator visitors. This was not however reflected 

in the levels of heterospecific pollen deposition, which exhibited no relationship 

with the size of the experimental array in either plant species. This contradicts 

previous observations of an increased incidence of interspecific pollen transfer 

in small plant populations driven by a greater potential for shared pollinators 

(Ghazoul 2006). Of the two plant species, S. gallica received slightly higher 

heterospecific pollen deposition when compared to E. californica. This is 

surprising given the restricted nature of flowers, which has been negatively 

related to heterospecific pollen deposition (Montgomery and Rathcke 2012) 

and the lower rates of pollen removal due to pollinator activity. The absence of 

a relationship between the size of the experimental array and both pollen 

removal and heterospecific pollen deposition may instead be due either to 

populations being too small, with differences between small and large arrays 

insufficient to detect an effect, or indeed, due to the experimental design. 

Faced with impracticalities during experimental set-up, population size was 

confounded within experiment. This raises doubt as to whether the effects 

attributed to size of experimental array may instead be driven by variations in 

experimental conditions. Such variations were however expected to be 

minimal given that both experiments were conducted within a two-week period.  

 

2.5.3 The implications of local and landscape context on plants 

Based on previous research, plant seed set is expected to increase in 

response to a plant’s population size (Bernhardt et al. 2008, Duffy et al. 2013, 

Anic et al. 2015, though see: Johnson et al. 2012) and floral resources at a 

local (Orford et al. 2016) and landscape (Valdes and Garcia 2011) scale. 

However, greater pollinator visitation and pollen removal (in response to 

increases in the size of the experimental array and floral resources at a 

landscape scale respectively), did not translate into an effect on plant seed set 

in this study. This is surprising given that previous research has demonstrated 

a requirement of multiple pollinator visits for a plant to achieve its full potential 

seed set (Bernhardt et al. 2008). Given the positive relationship between 

pollinator visitation, pollen receipt and subsequently seed set in self-
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incompatible plants (Spigler and Chang 2008), this suggests visitation to be a 

poor predictor of pollination (Snow 1982, Rymer et al. 2005, King et al. 2013). 

Instead, pollinator effectiveness has been argued to be a superior predictor of 

pollination success (Lazaro et al. 2015). This was illustrated by research into 

the efficiency of butterflies at pollen transfer, where individuals were observed 

to collect 10% of available pollen when visiting a flower and then deposit only 

10-17% of this pollen on the subsequent flower (Richards 1997). Ineffective 

pollen transfer may alternatively be driven by low mate availability. Indeed, the 

small size of arrays in this study may have resulted in a limited pollen pool and 

thus, a reduction in the availability of compatible pollen (de Waal et al. 2015). 

Given that neither the source of the conspecific pollen deposited (i.e. whether 

it was self or outcrossed pollen) nor the fate of removed pollen was measured, 

the relationship between pollinator visitation and pollination effectiveness 

could not be deciphered. However, the low variance in seed set suggests that 

plants were not limited by pollen availability. This suggests that when visitors 

comprise effective pollinators, low visitation rates may be adequate for plants 

(Saez et al. 2014). The perceived absence of pollen limitation in S. gallica 

plants can be explained by the capacity of this species to use self-pollen to 

offer reproductive assurance during low pollinator availability. Indeed, in S. 

gallica, seed set was in fact greater in pollinator excluded plants, thereby 

suggesting a negative effect of pollinator exposure due to removal of pollen 

otherwise available for self-fertilisation.  

 

The effect of self-fertilisation on plant fitness is complex and has been 

demonstrated to vary between plants depending, in part, on their mating 

system (Wright et al. 2013). Plant fitness is fundamental for reproductive 

success and thus the maintenance of a minimum viable population and long-

term survival (Schleuning and Matthies 2009). In this study, early stage fitness 

was measured in order to gain an understanding of these effects. Given that 

arrays were not expected to exhibit genetic structure in this study (due to their 

random positioning in the field, coupled with the low propensity of E. californica 

to reproduce by self-fertilisation), fitness (seed weight and germination 
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success) was only measured in S. gallica plants. In support of previous 

research, findings here demonstrate a reduction in seed weight from self-

compatible plants due to self-fertilisation (Lowry 2007), though this had no 

effect on seed germination rates. Indeed, research deciphering the effect of 

seed weight on zygote fitness and later seedling development is inconsistent 

(Houssard and Escarre 1991) and has been shown to be species and context 

specific (Marshall 1986, Kromer and Gross 1987). Furthermore, the negative 

effects of self-fertilisation can be expressed at different life stages and previous 

research has demonstrated a plant’s ability to recover from inbreeding 

expressed in early fitness traits (Angeloni et al. 2011). The absence of a 

relationship between self-fertilisation and seed germination rates within this 

study, despite reduced seed weight, therefore supports this recovery 

hypothesis and demonstrates a negligible effect of seed weight on the survival 

of a plant’s progeny (Schaal 1980). Seed weight was additionally, albeit 

marginally, demonstrated to exhibit a negative relationship with the size of the 

experimental array, suggesting a higher incidence of self-fertilisation in large 

plant populations. This is unexpected and contradicts previous research which 

reports an increase in the rates of self-fertilisation within small plant 

populations (Routley et al. 1999). While this may indicate higher rates of 

geitonogamous pollen movement and thus, reduced pollen carry-over in large 

populations, it may alternatively be an artefact of the experimental set-up, 

where the size of the array was confounded with experiment. It is noteworthy 

however that whether these effects are attributed to increased self-fertilisation 

in large arrays cannot be verified given technical issues with primer 

development in S. gallica plants (Appendix 2: Primer note).  

 

2.5.4 The management and conservation of plant populations 

Management interventions such as those implemented under the English agri-

environment scheme have resulted in conflicting trends. Indeed, benefits to 

pollinators have been demonstrated to be dependent upon landscape 

complexity and the ecological contrast with introduced habitats (Batary et al. 

2011, Scheper et al. 2013, Hammers et al. 2015). Moreover, the magnitude of 
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effects will vary between pollinator species. For instance, while the density and 

diversity of pollinators has been shown to be enhanced by wildlife friendly 

habitats (Jonsson et al. 2015, Campbell et al. 2017), this pattern is limited to 

targeted pollinator genera (Wood et al. 2015, Wood et al. 2017). Furthermore, 

when comparing farms adopting agri-environment schemes with those 

complying to standard practises, Wood et al. (2015) demonstrated that the 

presence of florally rich habitats had no effect on the diversity of species 

comprising local pollinator communities. This was argued to be driven by the 

high abundance of a small number of plant species within wildlife friendly 

habitats associated with agri-environment schemes, thereby reducing the 

attractiveness and suitability of an area to a larger pool of pollinator species 

(Wood et al. 2015). Indeed, a diverse pollinator community provides functional 

complementation, which is important for providing pollination services to a 

diverse plant community (Pisanty et al. 2016). In this study, the implementation 

of wildlife friendly habitat had no effect on plants at a local scale, though 

exhibited an effect on pollen removal where a large proportion of the wider 

landscape comprised such habitats. This suggests a benefit of agri-

environment schemes on plant-pollinator interactions. The absence of a 

benefit of local floral resources on plant-pollinator interactions however points 

towards a failure of wildlife friendly habitats to facilitate pollinator visitation to 

plants present at low frequency. Visitation has instead been shown to be 

facilitated by linear features such as hedgerows (Cranmer et al. 2011). This, 

coupled with findings here demonstrating benefits of increased plant 

attractiveness, indicates a need for further research into how habitats and 

landscapes can be managed and used to enhance the facilitation of generalist 

pollinators to plant populations.  

 

2.5.5 Summary 

Findings from this study indicate that pollinator visitation was not affected by 

floral resources at a local or landscape scale. Instead plants benefited from 

the increased attractiveness created by large populations and the high rewards 

offered by obligate outcrossing plants. The removal of pollen and 
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heterospecific pollen deposition were not impacted by local or landscape 

context, with the exception of pollen removal in self-incompatible plants, which 

was positively related to floral resources at a landscape scale. Changes in 

pollinator behaviour, in terms of visitation and pollen removal, did not translate 

to changes in plant reproduction, which was comparable across arrays 

irrespective of local and landscape context. The fitness of progeny was 

however marginally reduced in large S. gallica arrays. Given the negative 

implications of self-fertilisation shown here on the weight of S. gallica seeds, 

this indicates a higher incidence of self-fertilisation in large arrays. Despite 

reduced seed weight in response to self-fertilisation, the comparable 

germination rates between pollinator exposed and pollinator excluded progeny 

points towards an ability to recover from inbreeding expressed in early stage 

fitness traits. This suggests a minimal impact of self-fertilisation on the survival 

of self-compatible plants. This study therefore highlights the complexity of the 

underlying mechanisms governing plant and pollinator relationships.  

 

With pollinators facing declines in abundance (Scheper et al. 2015) and 

functional diversity (Forrest et al. 2015) in arable systems (Marini et al. 2014) 

and the widespread implementation of agri-environment schemes with the 

purpose of enhancing pollinator diversity (Batary et al. 2015), it is important to 

gain an understanding of the changes to plant and pollinator relationships in 

these systems. Here, local and landscape context was shown to have a 

negligible impact on the maternal reproductive success of plants when 

populations comprise less than 12 plants. Given however that a positive effect 

of floral resources at a landscape scale was observed on pollen removal, 

research should now focus on the destination of this pollen and the scale at 

which floral availability has the greatest effect on pollen movement. By 

determining the fate of pollen, a greater understanding of the implications for 

paternal reproductive success, through seed siring, together with maternal 

reproductive success, through genetic diversity, will be attained.  
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3.1 Abstract 

 
1. Pollinator species alter their foraging behaviour according to the extent 

and distribution of floral and nesting resources at a spatial scale related 

to their dispersal capability. Landscape changes (e.g. agricultural 

intensification and agri-environment planting) modify the spatial and 

temporal availability of floral resources and thus affect the accessibility 

of forage for pollinators. It is important to understand how such 

changes, particularly within scales reflecting typical foraging distances, 

affect pollinator community composition and foraging behaviour (e.g. 

dispersal distance). This is expected to have implications for pollen 

transfer and thus, the outcrossing, reproduction and fitness of insect-

dependent plants.  

2. This study used a multi-site field experiment to explore how floral 

resource availability (using semi-natural habitat cover as a proxy) at 

habitat and landscape (1.5km radius) scales influenced pollinator 

communities and pollination services to plants. I measured activity 

density (the abundance of actively foraging pollinators), species 

richness, and community-weighted mean inter-tegular span (‘IT’ span) 

of potential pollinator visitors. In addition, I introduced experimental 

arrays of a self-compatible focal plant, Vicia faba, to sites to assess 

intra-population pollen movement (as an indicator of pollinator 

behaviour) and plant reproductive success. Furthermore, this 

experiment tested the magnitude of effects on pollinators and the focal 

plant at more localised spatial scales (1-100m radius).  

3. Relationships between floral resource availability and both pollinator 

communities and intra-population pollen movement differed at habitat 

and landscape scales. At a habitat scale, pollinator activity density and 

species richness were related negatively and community weighted 

mean IT span positively to greater availability of floral resources. 

However, there were no apparent effects on pollination services or the 

reproduction or progeny fitness of focal plants. At a landscape scale, 
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floral resource availability did not affect pollinator communities, 

pollination services or the reproduction and fitness of focal plants. When 

measuring the magnitude of effects at different spatial scales, pollinator 

communities and intra-population pollen movement were negatively 

affected by floral resources at local scales (1-50m and 1m from 

experimental arrays respectively), with pollinators most affected by 

floral availability within a 20m radius. 

4. This study indicates that while landscape context has been highlighted 

elsewhere as important for pollinator attraction, interactions between 

plants and pollinators are affected more by floral resources at a habitat 

scale. Here, reductions in pollinator activity density and thus, potential 

visitation, in response to high floral availability are paralleled by 

disruptions to pollen transfer. This suggests that plant outcrossing will 

be reduced within populations comprising low frequency when 

surrounded by competitive co-flowering plant species. While 

reproduction and fitness were not affected in this self-compatible plant 

species, this may not hold true for obligate outcrossing plants that rely 

on pollen transfer for long-term fitness and survival. 

 

3.2 Introduction 

 

Pollinating insects require an adequate supply of floral resources and 

provisions for shelter and breeding in order to maintain stable populations 

(Torne-Noguera et al. 2014). These resource requirements vary between 

pollinators in relation to a species’ nutritive demands, floral preferences and 

life history strategies (Goulson 2003, Gegear and Laverty 2005, Potts et al. 

2005, Fontaine et al. 2006, Kremen et al. 2007, Torne-Noguera et al. 2014). 

Habitat composition can therefore play a fundamental role in governing 

pollinator communities. For instance, semi-natural habitats, by comprising a 

large variety of floral resources and provisions for shelter and breeding, have 

been recognised to support rich, abundant and productive pollinator 
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communities (Steffan-Dewenter and Tscharntke 2001, Steffan-Dewenter et al. 

2002, Potts et al. 2003, Hines and Hendrix 2005, Williams and Kremen 2007, 

Roulston and Goodell 2011, Rollin et al. 2013). Indeed, the extent and 

distribution of floral resources is expected to influence pollinator community 

structure, foraging behaviour and have far-reaching implications for pollen 

movement, subsequent reproduction and longer-term survival of plants. 

Increasing pressure predominantly from agricultural intensification, however, 

is leading to habitat fragmentation and is thus threatening the availability of 

these resources across landscapes (Osborne et al. 2001). While effects have 

been studied individually, often at a single scale, knowledge is incomplete of 

the interplay of floral resource availability at different scales on plant 

reproduction and fitness mediated by changes in pollinator communities. 

 

The availability and diversity of floral resources within a habitat determines its 

attractiveness to pollinators (Essenberg 2012, Montero-Castano and Vila 

2012) and indeed, a positive relationship has been observed between 

pollinator abundance and floral resources, especially when such resources are 

limited at the landscape scale (Heard et al. 2007). Floral resources across 

landscapes vary both temporally (in relation to flowering periods) and spatially 

(Devoto et al. 2014). The accessibility of floral resources throughout a 

pollinator’s foraging season will therefore vary between species depending 

upon their seasonal activity (Cane and Payne 1993) and foraging range 

(Steffan-Dewenter et al. 2002). Indeed, foraging range varies considerably 

between pollinator species, with solitary bees observed to travel short 

distances of 100-300m (Gathmann and Tscharntke 2002), compared to 

honeybees which can travel up to 3000m on a foraging bout (Hagler et al. 

2011). Given this, the attractiveness of a landscape to pollinators is recognised 

to be a function of foraging capacity (Steffan-Dewenter et al. 2002, Westphal 

et al. 2006, Redhead et al. 2016). For example, Bombus spp. and Apis 

mellifera are central place foragers, exhibiting high mobility and considerable 

nutritive demands (Paoli et al. 2014, Stabler et al. 2015). Recruitment of these 

more mobile species has been shown to be affected by changes in the 
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composition of resources across larger spatial scales (e.g. <3000m) compared 

to less mobile central place foragers, such as solitary bees, which are more 

sensitive to changes in resource availability at more local spatial scales (e.g. 

<750m) (Holling 1992, Steffan-Dewenter et al. 2002, Westphal et al. 2006, 

Carvell et al. 2012).  

 

Landscape context, while important in governing pollinator attraction, has also 

been shown to be an influential driver of pollinator foraging behaviour. 

Pollinator foraging behaviour is characterised by systematic, non-random 

movements (Dreisig 1995, Brosi 2016). These movements are governed by 

energetics and are expected to reflect a trade-off between the cost of 

movement and the energy gained at the destination (i.e. through provisions at 

the subsequent flower) (Charnov 1976). This is reflected by the tendency of 

pollinators to forage locally (Matter et al. 2013, da Silva et al. 2015), only 

leaving a habitat when the cost of staying (e.g. resource depletion) exceeds 

that of leaving (e.g. energy loss) (Charnov 1976, Jha et al. 2013). This trade-

off is therefore influenced by the distance between suitable floral resources as 

well as perceived barriers to pollinator movement (e.g. habitat edges and the 

risk of desiccation and predation) (Osborne et al. 2001). For example, in 

landscapes characterised by a continuous availability of floral resources, 

pollinators have exhibited larger foraging distances (Jha and Vandermeer 

2009) than in landscapes low in floral resources, where greater time is typically 

spent within patches or on individual plants (Cresswell and Osborne 2004). To 

further minimise energy expended during foraging pollinators have been 

shown to make repeated visits to patches through the use of ‘trap-lining’ 

behaviour (Thomson et al. 1982, Osborne et al. 1999, Osborne et al. 2001, 

Ohashi and Thomson 2009). Such constancy to specific plants or patches is 

recognised to be a plastic foraging strategy (Fontaine et al. 2008) with return 

visits occurring at a greater frequency in areas where floral resources are 

abundant (Kunin and Iwasa 1996). In contrast, where floral resources are 

scarce, competition-led resource depletion is expected to reduce a pollinator’s 

floral constancy (Fontaine et al. 2008).  
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Changes to pollinator visitation and foraging behaviour are expected to have 

considerable implications for pollen transfer, which is essential for seed 

production and genetic exchange in most flowering plants (Ollerton et al. 

2011). The recruitment of a diverse and abundant pollinator community can 

provide diurnal and functional complementarity in foraging activity and thus, 

increase the potential for pollinator visitation (Albrecht et al. 2012). While 

dependent upon the species and characteristics (e.g. body size) of visiting 

pollinators, visitation has been demonstrated to exhibit a positive relationship 

with pollen deposition at the plant level (Engel and Irwin 2003, Larsen et al. 

2005, Bernhardt et al. 2008). The deposition of pollen is fundamental for seed 

production. It is the quality of this pollen, however, that ultimately influences 

seed viability and plant reproductive success. This is partly determined by a 

pollinator’s foraging behaviour, where large pollinator dispersal distances and 

a high incidence of pollinator constancy to a specific plant species increase 

the deposition of compatible, outcrossed pollen. Indeed, reductions in the 

constancy of a pollinator can introduce competition between plant species for 

pollinator visitors leading to a higher incidence of interspecific pollen transfer 

(Veddeler et al. 2006, Jha and Vandermeer 2009, Wenninger et al. 2016). 

Interspecific pollen transfer disrupts movement between conspecifics, leading 

to loss of pollen to heterospecific plants (Morales and Traveset 2008). 

Furthermore, interspecific pollen transfer can result in an increased incidence 

of incompatible, heterospecific pollen deposition (Holland and Chamberlain 

2007). While the effects of heterospecific pollen deposition are inconsistent, 

such deposition has been observed to clog a plant’s stigma and style and thus 

reduce plant reproduction (Brown and Mitchell 2001). A combination of high 

levels of inter-specific pollen transfer and localised pollen movement can lead 

to reductions in a plant’s outcrossing rates and subsequently increases in the 

incidence of self-fertilisation and geitonogamous pollen transfer (fertilisation of 

a flower by pollen from another flower on the same plant) (Kwak et al. 1998, 

Silvertown and Charlesworth 2009). These changes can negatively affect the 

genetic diversity of a population, elevating the risk of inbreeding depression 
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and subsequently reducing plant fitness and long-term survival (Charlesworth 

and Charlesworth 1987, Richards 1997, Barrett 1998).   

 

Although much research has been done on how floral resources affect 

pollinator behaviour, there are still large gaps on how this is manifested at 

different scales, from the local to landscape level. An additional knowledge gap 

includes how these scale-dependent changes in behaviour also go on to affect 

plant-pollinator interactions and the reproductive success of plant species. In 

this study, I explore how the availability of floral resources at a habitat and 

landscape (1.5km radius) scale moderates pollinator communities and 

pollination services to plants. Furthermore, I assess the magnitude of these 

effects when the availability of floral resources is measured at different spatial 

scales (1-100m). Using a multi-site field experiment, I introduced experimental 

arrays of a self-compatible plant which benefits from pollinator triggered pollen 

release (Vicia faba) (Aouar-Sadli et al. 2008). At each array, I determined the 

potential pollinator visitors and measured intra-population pollen movement 

and plant reproductive success. I hypothesise: 

i) The activity density and species richness of potential pollinator visitors 

is inversely related to the availability of floral resources at a habitat scale 

as available pollinators are effectively ‘diluted’. No relationship however 

is observed at a landscape scale (1.5km radius). The relationship with 

pollinator activity density and richness is strongest where floral 

resources are measured at scales of 1-50m; 

ii) The community weighted mean IT span of potential pollinator visitors is 

positively related to the availability of floral resources at a habitat scale 

given the nature of plant species comprising wildflower mixes. No 

relationship however is observed at a landscape (1.5km radius) scale 

as plant heterogeneity increases. The relationship with IT span is 

strongest where floral resources are measured at scales of 1-50m; 

iii) Intra-population pollen movement is inversely related to the availability 

of floral resources at a habitat scale. No relationship however is 

observed at a landscape (1.5km radius) scale. This relationship 
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parallels changes to potential pollinator visitors and is strongest where 

floral resources are measured at scales of 1-50m; 

iv) There is no relationship between the number of seeds produced and 

the availability of floral resources at a habitat or landscape (1.5km 

radius) scale, or indeed, when floral resources are measured within 1-

100m radii given the self-compatibility system of V. faba. Driven by a 

negative relationship between self-fertilisation and fitness, the weight of 

seeds (both mean seed weight and reproductive biomass) however, is 

inversely related to the availability of floral resources at a habitat scale, 

though no relationship is observed at a landscape (1.5km radius) scale. 

This relationship with seed weight is strongest where floral resources 

are measured at scales of 1-50m, in line with changes to intra-

population pollen movement.  

 

3.3 Methods and materials 

 

3.3.1 Experimental site and study system 

The experiment was conducted across four sites in Oxfordshire and 

Buckinghamshire, UK, separated by a maximum distance of 26 miles:  

Widmere farm, Marlow (0°48′2.15″W, 51°35′44.51″N); The Waddesdon estate, 

Waddesdon (0°55′54.52″W, 51°50′45.9″N); The Earth trust, Little Wittenham 

(1°11′20.69″W, 51°37′50.16″N) and The Hillesden estate, Hillesden 

(1°00′01″W, 51°57′16″N); Fig.3.I). Sites were situated on a mixture of acid 

loam, clay and chalk soils with relatively low topography (Cranfield University 

2017). The predominant land use across all sites was arable agriculture 

characterised by a cropping rotation of winter cereal followed by either oil seed 

rape or field beans. Each site included areas of semi-natural habitat (defined 

as: grassland; woodland and any ‘wildlife friendly’ habitat implemented under 

the English agri-environment scheme). These semi-natural habitats often 

comprise relatively good cover of mixed flowers, so the extent of semi-natural 

habitat at a landscape scale was used as a proxy for the availability of floral 
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resources. This was measured using ArcGIS by creating a 1.5km radius from 

the centre of each site to allow for the maximum foraging range of the majority 

pollinators (Osborne et al. 1999, Carvell et al. 2012). Sites were then ground-

truthed and the total area of land within the radius comprising semi-natural 

habitat was calculated. Sites were selected based on initial scoping to identify 

locations which varied in landscape composition; two sites had a relatively high 

proportion of semi-natural habitats (Widmere Farm = 0.547; Waddesdon 

Estate = 0.530) while the other two sites had half this amount; (Earth Trust= 

0.290; Hillesden Estate = 0.224; t = 4.82, df = 3, p = 0.017; Fig.3.I).  

 

 
Figure 3.I The landscape composition of the four sites used for this study, with a 20m, 50m 
and 100m radius surrounding each experimental array illustrated. From top left to bottom 
right (in decreasing order of semi-natural habitat cover at a landscape scale); Widmere farm, 
The Waddesdon estate, The Earth trust and The Hillesden estate. Semi-natural habitats 
comprised: Grassland (green), Florally rich habitats (orange) and woodland (brown). 



  Chapter three 
 

75 
 

To test the effects of habitat and landscape composition on pollinator and plant 

dynamics Vicia faba L. (Fabaceae) plants were introduced to each of the 

experimental sites. Two cultivars displaying comparable phenology were used: 

Arthur and Wizard. The use of Arthur and Wizard cultivars enabled 

discrimination of pollen movement through a dominance inheritance of hilum 

(seed connection scar) colour. Wizard plants produce seeds with a white hilum 

(homozygous recessive) and Arthur plants produce seeds with a black hilum 

(homozygous dominant) (Holden and Bond 1960, Bishop et al. 2016). Given 

that hilum colour is maternal, any seeds produced by Wizard plants which 

exhibit black hilum (expressed in second generation seeds) will therefore be 

the product of outcrossing with Arthur plants (Bishop et al. 2016). Vicia faba is 

a nectar producing plant characterised by small, white flowers (Fig.3.II). It 

exhibits a self-compatible mating system, making it capable of self-fertilisation, 

though the importance of pollinator visitors has been highlighted for both 

triggering pollen release and enabling outcrossing (Aouar-Sadli et al. 2008). 

Outcrossing rates in V. faba are variable and have been demonstrated to 

account for 29.5-69.8% of mating events under field conditions (Holden and 

Bond 1960). Pollinators include species from the families, Apidae, 

Megachilidae, Halictidae and Syrphidae (Aouar-Sadli et al. 2008, Garratt et al. 

2014); though of these, Bombus spp. are recognised to be the most efficient 

pollinators of V. faba (Garratt et al. 2014). 

 

Plants were grown from seed (seed source: Aberystwyth University) in 

compost-filled seed trays under glasshouse conditions (20°C during the day, 

16°C at night, with 12 hours of light and 12 hours of dark) and were transferred 

to 1L pots when at the seedling stage. In June 2016, V. faba plants were 

introduced to form experimental arrays across each site where they were left 

for a 16-day period to allow for multiple pollination events (flowers remain open 

for three days; Osborne et al. 1997). Arrays comprised of six plants, separated 

by 1m and arranged in a triangle, with three central Wizard plants and three 

outer Arthur plants (Fig.3.II). These arrays were introduced in two different 

habitats embedded within each site; a florally rich habitat (a standardised sown 
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wildflower mix) and a habitat devoid of flowers (either a cereal crop (within 

tramlines) or on tilled, fallow ground) (Fig.3.II). The wildflower habitats, 

typically introduced as part of the English agri-environment scheme (Carvell et 

al. 2007), comprised a common mix of approximately 25 species which 

included key species like Trifolium pratense, Centaurea nigra and 

Leucanthemum vulgare. Each array was positioned 15m from any habitat edge 

to standardise the proximity to the neighbouring habitat. The experiment was 

spatially replicated, with arrays positioned in three locations within both habitat 

types in each of the four sites. All arrays were positioned in separate habitats 

where possible or separated by a distance of over 100m to minimise inter-

array movement (Matter et al. 2013). Care was taken to ensure that a distance 

exceeding 500m was maintained between arrays and any field bean crop.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.II. From top left to bottom right; (1). A Vicia faba flower and (2) an experimental 
array comprising six V. faba plants (inner three plants constituted Wizard plants and outer 
three plants constituted Arthur plants) introduced on (a) tilled fallow ground and (b) within a 
wildflower mix. Red crosses demonstrate where quadrats were dropped at each 
experimental array when quantifying local floral abundance 
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The availability of floral resources immediately surrounding each experimental 

array was measured at the start of the experiment (Table 3.I and Appendix 1: 

Plant list) and was calculated as the total number of floral units (e.g. one 

Taraxacum officinale agg. flower head represented one floral unit) averaged 

across three 0.5m² quadrats, dropped each side of the triangular array 

(Fig.3.II) (henceforth ‘1m radius’). The availability of floral resources was then 

measured at different ‘local’ spatial scales (20-100m) following protocols used 

to determine landscape composition but instead by specifying different radii 

surrounding the experimental arrays (Table 3.I). 

 

Table 3.I The availability of floral resources when measured at different radii from experimental 
arrays, averaged across sites and between habitat types. Floral resources at a 1m scale are 
measured as the average number of floral units (Flower heads) in 0.5m² Comparably, floral 
resources within 20-100m radii are measured as the proportion of land within the radius 
comprising semi-natural habitats. 

Spatial scale Site Habitat The availability of 
floral resources 
(mean ± SE) 

1 m Widmere farm 
 

Florally rich 
Florally poor 
Florally rich 
Florally poor 
Florally rich 
Florally poor 
Florally rich 
Florally poor 

29.44 ± 5.62 
0.00 ± 0.00 

 The Waddesdon estate 23.22 ± 9.59 
  

The Earth trust 
0.00 ± 0.00 
20.44 ± 6.60 

  
The Hillesden estate 

0.00 ± 0.00 
51.44 ± 24.49 
0.00 ± 0.00 

20m Widmere farm Florally rich 
Florally poor 
Florally rich 
Florally poor 
Florally rich 
Florally poor 
Florally rich 
Florally poor 

0.80 ± 0.11 
  

The Waddesdon estate 
0.04 ± 0.04 
0.90 ± 0.04 

  
The Earth trust 

0.00 ± 0.00 
0.67 ± 0.08 

  
The Hillesden estate 

0.08 ± 0.04 
0.98 ± 0.01 
0.06 ± 0.03 

50m Widmere farm Florally rich 
Florally poor 
Florally rich 
Florally poor 
Florally rich 
Florally poor 
Florally rich 
Florally poor 

0.60 ± 0.16 
  

The Waddesdon estate 
0.20 ± 0.05 
0.68 ± 0.12 

  
The Earth trust 

0.03 ± 0.02 
0.35 ± 0.08 

  
The Hillesden estate 

0.25 ± 0.12 
0.59 ± 0.13 
0.20 ± 0.05 

100m Widmere farm Florally rich 
Florally poor 
Florally rich 
Florally poor 
Florally rich 
Florally poor 
Florally rich 
Florally poor 

0.52 ± 0.22 
  

The Waddesdon estate 
0.20 ± 0.03 
0.53 ± 0.09 

  
The Earth trust 

0.15 ± 0.08 
0.23 ± 0.04 

  
The Hillesden estate 

0.34 ± 0.12 
0.40 ± 0.13 
0.22 ± 0.05 
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3.3.2 Pollinator communities 

Potential pollinator visitors within the vicinity of V. faba arrays were quantified 

using pan traps (Westphal et al. 2008). Pan traps have been used to describe 

pollinator species richness and activity density (Westphal et al. 2008) as well 

as providing a surrogate measure of visitation (Ricketts et al. 2008). However, 

this survey method has been recognised to exhibit bias (Roulston et al. 2007) 

with the attractiveness of pan traps depending upon habitat and landscape 

context (Baum and Wallen 2011). Pollinators are less likely to encounter traps 

when floral resources are abundant and more likely to encounter traps when 

floral resources are scarce i.e. capture rates are proportional to visitation rates 

per unit flower area (Veddeler et al. 2006). I exploited this phenomenon to 

measure the attractiveness and pollinator activity density at the experimentally 

rare plant arrays located within different habitats. 

 

Traps comprised three water-filled circular plastic bowls (80x200mm) painted 

with non-toxic fluorescent paint (1 yellow, 1 blue and 1 white; UV Gear, UK) 

placed in the centre of each experimental array. Traps were deployed on two 

occasions during the study (total traps = 48) and were placed out in the four 

sites in a randomised order, between 0930 and 1700 over a two-day period 

(i.e. two sites per day). After traps were deployed for 48 hours, the insect catch 

was strained through fine muslin and stored in 70% ethanol until sorting and 

identification. Insects from groups known to pollinate V. faba (Hymenoptera: 

Apoidea and Diptera: Syrphidae) were counted and identified to species level. 

Given the positive relationship between body mass and both foraging distance 

(Greenleaf et al. 2007) and pollen deposition rate in Apoidea (Larsen et al. 

2005), the distance between the wing bases (Inter-tegular span, henceforth 

‘IT’ span), which provides a proxy for dry body mass in Apoidea (Cane 1987), 

was determined. This relationship is less clear in Lepidoptera and Syrphidae, 

however inter-tegular span has previously been used as a measure of dry body 

mass in the latter given observed correlations (Folkӧ 2014). I therefore 

adopted this measure to maintain consistency, but it is important to note the 
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potential inaccuracy in estimations due to differences between pollinator 

groups.  The IT span (mm) was therefore measured for up to five insects from 

each species of pollinator within groups observed to visit V. faba plants 

(depending upon the number caught) using digital callipers, From this, an 

average IT span (body size) was calculated for each species observed.  

 

3.3.3 Intra-population pollen movement  

Upon reaching reproductive maturity (i.e. flower production), all open flowers 

on Wizard plants were removed and one bud on each plant was covered in a 

fine muslin to measure the incidence of auto-pollination. Plants were 

subsequently introduced into pre-marked locations over a two-day period (two 

sites per day). Following the 16-day study period, Wizard plants were collected 

in (Arthur plants were discarded) and all unopened buds were removed to 

avoid confusion with flowers subjected to field conditions. Plants were then 

stored under glasshouse conditions (as above) until fruit maturation. Following 

the maturation of fruit, a sub sample of three seeds from up to three pollinator 

exposed fruit from each plant (depending on the number of fruits produced) 

were sown and were stored under glasshouse conditions (as above). When at 

reproductive maturity, flowers from second generation plants were continually 

‘tripped’ (agitated) to encourage self-fertilisation (given that hilum colour is 

maternally expressed). Upon maturation, one fruit from each second 

generation plant was then examined (given that all fruit produced by a maternal 

plant will produce seeds exhibiting the same hilum colour). For each 

experimental array the number of the second generation plants comprising 

black hilum and the number comprising white hilum were then recorded. This 

system precludes discrimination of Wizard to Arthur movements as well as 

Wizard to Wizard or Arthur to Arthur movements (Bishop et al. 2016) and thus, 

here, measures levels of detected intra-population pollen movement.  

3.3.4 Plant reproductive success 

The number of viable seeds was counted for each fruit produced by field 

exposed Wizard plants (described above) as an indicator of the implications of 
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the availability of floral resources at habitat and landscape scales on the 

reproduction of self-compatible plants. Given that self-fertilisation has been 

associated with reductions in plant fitness, seed weight was determined from 

each fruit to provide a proxy for plant fitness (Tremayne and Richards 2000). 

Seeds were placed in a sealed paper envelope and oven dried at 80°C for 

seven days to obtain a standardised desiccation state (Bishop et al. 2016). 

Upon drying, the total seed set of each fruit was weighed to obtain the biomass 

of reproductive output and then divided by the total number of seeds to obtain 

mean seed weight.  

 

3.3.5 Statistical analysis 

A combination of generalised linear mixed effects models (GLMMs) and linear 

regression models were used to analyse the effects of the availability of floral 

resources at different spatial scales on pollinator communities, intra-population 

pollen movement and plant reproductive success. When analysing pollinator 

communities, the activity density (n = 48) of pollinators was modelled using a 

GLMM with a Poisson error distribution. In contrast, the community weighted 

mean IT span (the mean IT span for each experimental array: n = 24) and the 

species richness of pollinators (n = 24) were modelled using linear regression 

models with Log-normal (to account for non-integers) and Gaussian error 

distributions respectively, given that no variance was observed in the random 

effects. In the latter model, data was pooled across trapping dates to avoid 

overestimation of species richness and was standardised (subtracting the 

mean and dividing by the standard deviation; z-scores) prior to analysis to 

account for differences in pollinator catch. Intra-population pollen movement 

(n = 22 given that progeny from two arrays produced no fruit) was modelled 

using a GLMM with a Binomial error distribution, where the incidence of intra-

population pollen movement was expressed as a ratio between the number of 

intra-population movements and the total number of progeny examined from 

each array. Plant reproductive success variables were similarly analysed using 

GLMMs. Seed set (n = 207) was modelled with a Binomial error distribution 

where the number of seeds produced by plants subjected to field conditions 
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was modelled against the maximum seed set produced within a fruit during the 

experiment (given that seed set was constrained at low numbers). Seed weight 

(n = 207) together with reproductive biomass (n = 207) were modelled with 

Log-normal error distributions (for reasons mentioned above). The relationship 

between intra-population pollen movement and pollinator activity density, 

species richness and community weighted mean IT span (body size) was 

modelled separately using a generalised linear model, with Binomial error 

distributions (as above).  

 

Fixed effects comprised of habitat type (florally rich and florally poor) and the 

availability of floral resources at a landscape scale (1.5km radius). Models then 

explored the availability of floral resources at different spatial scales (1- 100m 

radii). Response variables were modelled against each fixed effect individually 

(given their interdependence). Array (nested within site) was fitted as a random 

effect in all GLMMs to account for the spatial structure of the experimental 

design. In addition, plant (nested within array) was included as a random effect 

when analysing plant reproductive success models to account for between 

plant variation. Where present, over-dispersion in the models was controlled 

for by fitting an observational level parameter to the random effects (Harrison 

2014). The minimum adequate model was then determined using Laplace 

approximation (suitable for <3 random effects; (Bolker et al. 2009)) and was 

compared with a null model (containing an identical random effects structure) 

using an ANOVA. Likelihood ratio test statistics (LRT) were calculated to 

provide an indication of the importance of floral resources at different spatial 

scales on each response variable.  

 

Model residuals were then analysed using Moran’s I test with an inverse 

distance weighting to determine whether models had sufficiently accounted for 

any spatial autocorrelation within the data. Low values were obtained in all 

cases (-0.006>I< -0.01) and no models exhibited spatial autocorrelation 

(0.33>p<0.92). This indicates that data was independent and not correlated 

with the distance between sites. All analyses were conducted in R computer 
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software (version x64; R Core Team 2013) using the following packages: lme4 

(Bates et al. 2015), ape (Paradis et al. 2004) and ggplot (Wickham 2009). 

 

3.4 Results 

 

3.4.1 Pollinator communities 

A total of 1203 potential V. faba pollinators comprising 53 identified species 

were recorded across all surveys (Potential pollinators included groups 

observed to visit V.faba (Apoidea and Syrphidae) but visiting species were not 

verified by visitor observations and so may not all represent V.faba pollinators; 

Appendix 3: Pollinator list). Of these, pollinator communities (per unit area) 

associated with each experimental array varied in their degree of similarity 

(ranging from 0-66.67%), with variations predominantly driven by habitat type 

rather than site location (Fig.3.III). The activity density of pollinators was 

affected by habitat type, where fewer pollinators were caught within pan traps 

located in florally rich habitats (mean ± SE Florally rich habitat = 5.29 ± 1.03, 

Florally poor habitat = 44.83 ± 9.58 GLMM z = -6.854, df = 43, p < 0.001). Of 

these pollinators, fewer species were observed in florally rich habitats (mean 

± SE Florally rich habitat = 6 ± 1.02, Florally poor habitat = 10.75 ± 1.060 

GLMM t = -3.237, df = 22, p = 0.004). The activity density and richness of 

pollinators however were not affected by the availability of floral resources at 

a landscape scale (1.5km radius) (p = 0.755 and p = 0.958 respectively). When 

analysing the effects of floral resources at different spatial scales the activity 

density of pollinators was negatively correlated with floral resources at a 1m 

radius (GLMM z = -4.72, df = 43, p < 0.001), a 20m radius (GLMM z = -5.80, 

df = 43, p < 0.001) and a 50m radius (GLMM z = -2.21, df = 43, p = 0.027) from 

the survey location (Fig.3.IV). Similarly, the species richness of potential V. 

faba pollinators was negatively correlated with floral resources at 1m radius 

(LM t = -2.95, df = 22, p = 0.007) and a 20m radius from the survey location 

(LM t = -2.96, df = 22, p = 0.007) (Fig.3.V). 
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The community weighted mean IT span (body size) of pollinators within the 

vicinity of experimental arrays was higher in communities located within florally 

rich habitats (mean ± SE (mm) Florally rich habitat = 3.87 ± 0.25, Florally poor 

habitat = 2.53 ± 0.06 GLMM t = -6.158, df = 19, p < 0.001). This was not 

however affected by floral resources at a landscape scale (p = 0.409). When 

measuring the effect of floral resources at different spatial scales, a positive 

relationship was observed between the pollinator community weighted mean 

IT span (body size) and floral resources at a 1m radius (LM t = 3.08, df = 22, 

p = 0.005, R²c=0.29), a 20m radius (LM t = 5.02, df = 22, p < 0.001, R²c=0.52) 

and a 50m radius (LM t = 2.31, df = 22, p = 0.031, R²c=0.19) from the survey 

location (Fig.3.VI). The availability of floral resources within a 20m radius from 

the pan trap had the greatest effect on pollinator activity density and 

community weighted mean IT span, though all variables affected pollinator 

richness to a similar degree (inferred by the LRT statistic; Table.3.II). No effect 

was observed in any of the response variables when analysing floral resources 

at a 100m radius from the survey locations (Table.3.II).  
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Figure 3.III. The composition of pollinator communities at each experimental array within each 
of the four sites, using Bray-Curtis dissimilarity index. From top to bottom; 1. An ordination plot 
using non-metric multidimensional scaling to illustrate dissimilarity in pollinator communities 
and 2. A cluster dendrogram using an agglomerative hierarchical clustering algorithm, where 
communities with high similarity are positioned closer together (Labels F1, F2 and F3 
represent arrays located within fallow ground whereas labels WF1, WF2 and WF3 represent 
arrays located within wildflower patches).  
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Figure 3.IV. From top left to bottom right; the total number of pollinators caught in pan traps 
alongside each experimental array in relation to floral resources at a 1m (the number of floral 
units), a 20m and a 50m (the proportion of florally rich habitats) radius from the survey 
locations.  

 

Figure 3.V. From top left to bottom right; The number of pollinator species (standardised to 
account for differences in catch) recorded in pan traps at each experimental array in relation 
to floral resources at a 1m (the number of floral units) and a 20m (the proportion of florally rich 
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habitats) radius from survey locations. Points represent the cumulative standardised species 
richness across the two trapping periods. 

 

Figure 3.VI From top left to bottom right; The mean community inter-tegular span (body mass) 
of pollinators caught in pan traps at each experimental array in relation to floral resources at a 
1m (the number of floral units), a 20m and a 50m (the proportion of florally rich habitats) radius 
from the survey locations. 

 

3.4.2 Intra-population pollen movement 

Detected intra-population pollen movement was high in this study, with 

movement between conspecific plants within an array accounting for 40.95% 

of seed paternity. Rates were however variable across experimental arrays 

(range: 0-100% of progeny examined; Appendix 4). When analysed as a ratio, 

intra-population pollen movement was negatively correlated with the 

availability of floral resources within a 1m radius (GLMM z = -1.97, df = 18, p 

= 0.049, R²C=0.07; Fig.3.VII). However, this relationship was not significant 

when floral resources were measured at a habitat (p = 0.908) or landscape (p 
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= 0.870) scale or indeed, within 20-100m radii from the experimental array 

(Table 3.II). Although no significant relationship was observed between intra-

population pollen movement and the richness or community weighted mean IT 

span (body size) of pollinators (p = 0.101 and p = 0.354 respectively), there 

was a weak positive trend between intra-population pollen movement and the 

activity density of pollinators (p = 0.089). 

 

 

Figure 3.VII The relationship between the availability of floral resources within a 1m (the 
number of floral units) radius from experimental arrays and intra-population pollen movement 
at each experimental array, when analysed as a ratio between detected intra-population pollen 
movement and the total number of progeny analysed. 

 

3.4.3 Reproductive success 

The number of seeds produced by field exposed V. faba plants did not vary 

considerably between fruit (mean ± SE 2.85 ± 0.08, range 1-5). This was 

reflected by the absence of a relationship between seed set and both habitat 

type and the availability of floral resources at a landscape scale (p = 0.362 and 

p = 0.133 respectively). Similarly, when analysing the effect of floral resources 

at different spatial scales, seed set was not affected by floral resources at 1-

100m radii from the experimental arrays (Table 3.II). Seed weight and 

reproductive biomass, similarly, were not affected by habitat type (p = 0.811 

and p = 0.483 respectively) or the availability of floral resources at a landscape 
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scale (p = 0.787 and p = 0.471 respectively). This was consistent when 

analysing floral resources at 1-100m radii from the experimental arrays 

(Table.3.II). The estimation of auto-pollination was precluded given the high 

abortion rate of pollinator excluded V. faba flowers. Given that V. faba plants 

have been shown to be capable of auto-pollination, this suggests a possible 

bag effect which should be born in mind when conducting controls in the future.   

 

Table 3.II. Model outputs for each response variable analysed against the availability of floral 
resources at different spatial scales from experimental array’s (1-100m radii).  

Response variable Spatial scale 
at which 
floral 
resources 
were 
measured 

AIC LRT 
statistic 
(χ2/ F) 

P- 
value 

Slope Upper 95% 
confidence 

interval 

Lower 95% 
confidence 

interval 

Pollinator richness 1m 65.08 8.72 0.01* -0.02 -0.01 -0.04 
 20m 65.06 8.74 0.01* -1.27 -0.38 -2.16 
 50m 72.01 1.01 0.33 -0.80 0.85 -2.44 
 100m 73.08 0.01 0.94 0.08 2.18 -2.02 

Pollinator activity  1m 382.29 17.48 <0.001* -0.04 -0.06 -0.03 
density 20m 378.35 21.42 <0.001* -2.38 -1.53 -3.24 
 50m 393.75 6.02 0.03* -2.09 -0.15 -4.04 
 100m 397.78 1.99 0.55 -0.79 1.90 -3.47 

Pollinator ‘IT’ span 1m 0.16 9.48 0.01* 0.01 0.01 0.002 
 20m -9.55 25.18 <0.001* 0.46 0.64 0.27 
 50m 3.56 5.32 0.03* 0.44 0.83 0.04 
 100m 6.64 2.03 0.17 0.36 0.89 -0.16 

Intra-population  1m  70.28 4.19 0.05* -0.023 -0.001 -0.05 
pollen movement 20m 74.26 0.21 0.64 -0.32 1.20 -1.66 
 50m 74.37 0.10 0.75 0.38 3.06 -2.03 
 100m 73.44 1.03 0.31 1.78 5.70 -1.75 

Plant seed set 1m 624.55 0.44 0.5 -0.002 0.01 -0.01 
 20m 623.25 1.74 0.17 -0.26 0.14 -0.65 
 50m 639.69 1.97 0.14 -0.43 0.19 -1.03 
 100m 622.21 2.79 0.08 -0.7 0.13 -1.50 

Reproductive  1m 492.51 1.34 0.47 -0.51 0.6 -1.54 
Biomass 20m 492.04 1.24 0.31 -0.18 0.15 -0.52 
 50m 491.74 1.54 0.26 -0.31 0.2 -0.85 
 100m 492.00 1.28 0.3 -0.39 0.32 -1.14 

Seed weight 1m 300.96 0.3 0.63 -0.001 0.003 -0.005 
 20m 301.08 0.18 0.72 -0.03 0.15 -0.24 
 50m 300.77 0.49 0.54 -0.09 0.19 -0.41 
 100m 301.19 0.08 0.81 -0.05 0.34 -0.48 
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3.5 Discussion 

 

3.5.1 The effects of the availability of floral resources at different spatial 

scales on pollinator communities 

Findings from this study demonstrate reductions in the activity density and 

richness of pollinators (per unit area) in response to local floral availability, 

particularly within a 20m radius from survey locations. This adds a more 

nuanced understanding to existing research showing a positive relationship 

between the availability of floral resources and the abundance, richness and 

productivity of visiting pollinators (Steffan-Dewenter et al. 2002, Kremen et al. 

2004, Hines and Hendrix 2005, Ricketts et al. 2008, Couvillon et al. 2014, 

Jonsson et al. 2015, Sarospataki et al. 2016). These studies have similarly 

used semi-natural habitat as a proxy for floral cover and therefore 

inconsistencies are not expected to be based on the measurement of floral 

availability. Instead, inconsistencies between studies can be seen to arguably 

be driven by the spatial scale at which the landscape was parameterised. 

Previous studies have focused on the effects of floral resources at radii of 250-

3000m from a plant population (Steffan-Dewenter et al. 2002). Indeed, in this 

study, I focus on floral resources within 1-1500m radii from experimental arrays 

to reflect the range of pollinator foraging distances and the tendency for 

localised pollinator movement. This suggests that the availability of floral 

resources switches from having a negative effect on pollinator activity density 

to having a positive effect at spatial scales between 50m and 250m from 

survey locations. This pattern has been demonstrated in a previous study (Jha 

and Vandermeer 2009) and reflects a behavioural concentration and dilution 

effect operating at different spatial scales. Indeed, where the landscape 

comprises a high availability of floral resources at greater spatial scales 

(<250m), the attractiveness of an area is enhanced, resulting in increased 

pollinator activity density and subsequently, visitation at the individual plant 

level. In this study however, consistent with previous research, findings 
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suggest that as floral resources increase at smaller, habitat scales (<50m 

radius from the survey location) a saturation point is reached where pollinator 

communities are insufficient to exploit all available resources (Veddeler et al. 

2006, Sjodin 2007). Pollinator visits per plant are thus effectively ‘diluted’ 

(Tscharntke et al. 2012). Lower pollinator availability coupled with competition 

from co-flowering plants will, in turn, result in lower ‘per floral unit’ visitation at 

a local scale (Ghazoul 2006). It is worth noting that the concentration-dilution 

effect observed in this study could indeed be an artefact of the attractiveness 

of pan traps being dependent upon habitat and landscape context. To the 

same end, this would imply that the attractiveness of a plant would also be 

dependent on habitat and landscape context and thus it can be argued that 

the patterns discussed would apply to isolated plant populations.  

 

Pollinators vary in their response to floral resources and studies which have 

discriminated between pollinator taxa (e.g. honeybees, bumblebees and 

solitary bees) have indeed observed large differences in their response to the 

availability of floral resources (Steffan-Dewenter et al. 2002, Carre et al. 2009). 

While Apis mellifera, Bombus spp. and solitary bees have all been shown to 

respond positively to a high availability of floral resources (Steffan-Dewenter 

et al. 2002, Jauker et al. 2009), syrphids have contrastingly been shown to 

increase in abundance with distance from habitats of high floral cover (Jauker 

et al. 2009). In relation to spatial scale, Apis mellifera and Bombus spp., which 

are central place foragers and highly mobile, have been shown to respond to 

landscape composition at far greater scales than solitary bees, which are less 

mobile (Steffan-Dewenter et al. 2002, Westphal et al. 2003, Hines and Hendrix 

2005, Jha and Vandermeer 2009, Sarospataki et al. 2016). This may provide 

explanation for inconsistencies between findings. In this study, I was however 

interested in the general response of all potential pollinators, discriminating 

instead between pollinator community function in order to make inferences on 

local pollen movement. Pollinator body size, through positive associations with 

pollen deposition and foraging distance, provides a measure of the function of 

pollinator communities (Larsen et al. 2005, Greenleaf et al. 2007). In this study, 
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findings indicate an effect of habitat type on the mean IT span (a proxy for body 

size) of a pollinator community, where the availability of floral resources at a 

20m radius from survey locations had the greatest effect on the size of visiting 

pollinators. This suggests that larger pollinators (e.g. Bombus spp.) may  

increase in abundance in relation to the availability of floral resources at a local 

scale. Given that Bombus spp. have been shown to be the most efficient 

pollinator of V. faba (Garratt et al. 2014), these higher numbers in relation to a 

high availability of floral resources, may supersede the advantage of high 

activity densities of more generalist taxa, such as syrphids (which dominate 

pollinator communities in this study) in habitats of low floral resource 

availability.  

 

3.5.2 The effects of the availability of floral resources at different spatial 

scales on pollinator foraging behaviour 

Findings here indicate a negative relationship between intra-population pollen 

movement and floral resources at a local scale (1m radius from experimental 

arrays). By demonstrating the tendency of pollinators to exploit nearby flowers 

when resources are scarce, these findings reflect energy efficient foraging 

behaviour. It is however worth drawing attention to the poor model fit (R²=0.07; 

Table.3.II) and the importance of outliers in driving these conclusions, which, 

in this case was the result of a particularly high floral abundance in a 1 metre 

radius from one experimental array. Given that outliers represented real data 

in this instance, they were left in the analysis. While it is advised that habitats 

of high floral abundance be replicated further to verify findings, these results 

are consistent with previous research observing pollinators to forage in a 

manner which reduces the energy loss associated with movement (Heinrich 

1979). When foraging within fragmented landscapes, pollinators increased 

both the time spent and the number of flowers visited within a patch (Goverde 

et al. 2002), often reverting back into patches (Osborne and Williams 2001) 

and revisiting flowers (Cresswell 2000). In this study, this led to increased 

pollinator activity density and pollen transfer between plants when surrounded 

by fewer competing flowering plant species. Conversely, reductions in foraging 
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distance and increased localised pollen movement have similarly been 

observed when the availability of floral resources is high and less fragmented 

at landscape scales (Danner et al. 2016, Redhead et al. 2016). Consequently, 

we might expect the availability of floral resources at a larger spatial scale to 

drive local pollen movement. In this study, however, no relationship was 

detected between intra-population pollen movement and the availability of 

floral resources at a landscape scale (1.5km radius from experimental arrays), 

suggesting that local pollen movement is mediated by competition between 

plants for pollinators and pollinator constancy. 

 

Constancy is an energy efficient foraging strategy thought to reduce handling 

costs associated with switching between plant species (Chittka et al. 1999). 

Indeed, pollinators have been shown to exhibit constancy to flower species 

(Fontaine et al. 2006) as well as floral patches (Osborne and Williams 2001, 

Dorchin et al. 2013), though this varies with the generalist nature of species 

(Ranta and Lundberg 1981) and the sex of visiting pollinators (Carvell et al. 

2007). Pollinator foraging does however display density dependence (Rathcke 

1983). In habitats comprising a scarcity of flowers, pollinators are expected to 

expand their diet and increase visitation to other plant species (Kwak et al. 

1998). Indeed, this is supported by previous research measuring a reduction 

in both inter-plant flight distance and constancy as rewards diminish (Thomson 

et al. 1982). In this study, a higher incidence of intra-population pollen 

movement within arrays surrounded by a low availability of floral resources 

suggests a reduction in constancy in response to low forage availability and 

resource depletion. Given the low number of co-flowering plants within florally 

poor habitats, this is expected to have resulted in direct intra-population pollen 

movement in this study. Reduced constancy can have negative implications 

for plant populations leading to the loss of conspecific pollen and the 

subsequent deposition of heterospecific pollen on conspecific plants (Brown 

and Mitchell 2001, Morales and Traveset 2008). Low constancy, however, 

does not prevent outcrossing and, in fact, pollen carry over between plant visits 

is often observed (Feldman et al. 2004). A combination of reduced constancy 
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and pollen carry-over can therefore be argued to be driving increased local 

pollen movement in habitats comprising a low availability of floral resources. 

 

3.5.3 The effects of pollinator communities and pollen movement on plant 

reproductive success 

Variations in pollinator communities and pollen movement in response to local 

floral availability did not reflect measures of plant reproductive success, which 

wasn’t affected by the availability of floral resources at any spatial scale. 

However, in plants comprising a self-incompatibility system, pollen deposition 

and indeed, seed set has exhibited a positive relationship with the availability 

of floral resources, both at a habitat scale and within the wider landscape 

(Kremen et al. 2004, Albrecht et al. 2007, Taki et al. 2010, Martins et al. 2015). 

Inconsistencies in responses between plants with different mating systems 

most likely reflects compensation by the self-compatibility system through the 

use of self-pollen. Vicia faba has demonstrated a high capacity to reproduce 

by self-fertilisation (Holden and Bond 1960) and indeed, previous studies have 

observed seed production in V. faba to be equivalent between plants that were 

exposed to and excluded from pollinators (Garratt et al. 2014). Similarities in 

seed set between arrays can therefore be argued to not indicate similarities in 

pollen transfer rates but instead reflect differences in the incidence of self-

fertilisation in response to reduced pollinator activity density and intra-

population pollen movement within habitats comprising high floral availability.  

 

Self-fertilisation has been associated with detrimental effects on plant fitness, 

driven by increases in inbreeding depression observed through reductions in 

allelic diversity and heterozygosity (Barrett 1998, Goverde et al. 2002). These 

effects on plant fitness can be illustrated through changes to seed weight, 

germination rates and plant growth among others (De Clercq et al. 2003, 

Teixeira et al. 2009, Ferriol et al. 2011). Seed weight, by determining the 

availability of resources needed for the growth and development of an embryo, 

is particularly important for plant emergence (Kalisz 1989) and fitness (Black 

1958, Silvertown and Charlesworth 2009). Here, findings indicate no effect of 
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potential self-fertilisation on seed weight. This may reflect the nature of the V. 

faba plants used (two inbreeding lines), where cultivars have been artificially 

selected for high fitness in response to self-fertilisation and have thus been 

purged of deleterious mutations. Given this, V. faba plants may not be 

expected to show any variation in fitness irrespective of their parentage. 

Alternatively, this could be the result of low levels of self-fertilisation and 

instead, mating between Wizard plants. Previous studies exploring differences 

in the fitness between selfed and outcrossed V. faba plants have however 

consistently demonstrated no negative effect of self-fertilisation (Garratt et al. 

2014). The effect of self-fertilisation on plants is however complex and has not 

produced a consistent pattern across studies (Baskin and Baskin 2015). 

Inconsistencies between studies may be driven by the life stage at which plant 

fitness is assessed. Indeed, inbreeding has been shown to be expressed a 

number of life stages in plants (i.e. at early stages (e.g. seed weight and 

germination rate), or indeed, at late stages (e.g. number of flowers on stalks); 

Thiele et al. 2010). Most self-pollinating species have been shown to express 

inbreeding at later stages whereas outcrossers express it throughout their life 

cycle (Husband and Schemske 1996). Further research is necessary to assess 

the effects of self-fertilisation on V. faba plants through observing both early 

and late stage fitness traits in multiple generations. 

 

3.5.4 The implications for landscape management 

The management of habitats to enhance plants and pollinators is often 

targeted at a landscape scale (e.g. the implementation of agri-environment 

schemes across farms). At these wider scales, the presence of resources can 

enhance the attractiveness of a habitat to pollinators and thus, positively affect 

visitation rates and plant reproduction (Steffan-Dewenter et al. 2002). Findings 

here, however, demonstrate a contrasting effect of floral resources at more 

local scales on pollinator communities and pollen movement (though only at a 

1m radius in the latter). While this displayed no measurable effect on the 

reproductive success of a self-compatible plant, an abundant, diverse 

pollinator community and local pollen movement is essential for pollen transfer 



  Chapter three 
 

95 
 

and thus, plant outcrossing rates. This highlights the importance of factoring 

local context (within a 50m radius from the plant population) into the design of 

management options aimed at ensuring the long-term survival of plant 

populations. Focus should be placed on increasing the attractiveness of plant 

populations, ensuring isolated plants are better able to compete with 

competitive co-flowering plants. This can be achieved by: enhancing the size 

and density of plant populations (Mayer et al. 2012); introducing co-flowering 

plants with complementary phenotypes so to add a facilitatory effect (Ghazoul 

2006) and, if the focus is on re-introductions, populations should be positioned 

where competition from co-flowering plants is minimised (e.g. where floral 

resources are low within a 50m radius of the population) (Baskett et al. 2011). 

Furthermore, this study emphases the importance of accounting for spatial 

scale in monitoring the success of management schemes in order to gain an 

accurate account of the response of different pollinator taxa. This is of 

particular importance when plants rely on specialist pollinators. 

 

3.5.5 Summary 

Findings from this study illustrate a negative effect of floral resource availability 

on pollinator communities and pollen movement. The activity density and 

richness of potential pollinator visitors is reduced in response to a high 

abundance of floral resources at local spatial scales (<50m), driven by a 

dilution effect. Under these conditions, pollinators are expected to exhibit a 

high degree of constancy, thus reducing ‘per floral unit’ visitation rates and 

pollen transfer between conspecific plants when present at low frequency. 

Disruptions to pollen transfer can be seen by parallel reductions in intra-

population pollen movement in relation to a high availability of floral resources. 

The absence of an effect on the reproductive success of V. faba plants 

however suggests minimal implications at the plant level. Further studies are 

needed to determine the effects of reductions in potential pollinator visitors and 

pollen movement on plants unable to offer reproductive assurance and over a 

greater range of fitness traits. 
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This study highlights the importance of incorporating local spatial scales into 

interpretations of the effects of floral resources on pollinator foraging behaviour 

and pollen movement. However, with intra-population pollen movement only 

accounting for 40.95% of pollen movement, the destination of 59.05% of pollen 

in relation to local context is not known. Future studies should therefore look 

to determine the importance of variations in floral resources on long-distance 

pollen movement in order to enhance our understanding of the long-term 

survival potential of plant populations in relation to habitat context. 
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How does habitat floral composition affect the 

pollination and reproduction of isolated plants? 
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4.1 Abstract 

 
1. Pollinators are observed to forage optimally, moving short distances 

between plants and only leaving a habitat when resources are depleted. 

The diversity, abundance and spatial configuration of floral resources at 

a habitat scale is therefore expected to drive pollinator foraging 

behaviour (e.g. visitation and dispersal distance). The implications of 

changes to pollinator foraging behaviour on the incidence, distance and 

directness of pollen movement and ultimately, the reproductive success 

of insect pollinated plants however remains unclear, especially for 

species which are rare or isolated in the landscape.  

2. I used a landscape-scale experiment, coupled with microsatellite 

genotyping, to explore how the floral composition of habitats affected 

pollinator behaviour and pollination effectiveness.  Small arrays of the 

partially self-compatible plant California poppy (Eschscholzia 

californica), were introduced across a landscape gradient to simulate 

rare, spatially-isolated populations. I measured the effects on pollinator 

activity density (the abundance of actively foraging pollinators) and 

richness and inter-population pollen movement, along with the 

implications for plant outcrossing and plant reproduction.  

3. In florally rich habitats, reduced pollen movement between plants was 

observed, leading to fewer inter-population pollination events, lower 

plant outcrossing and a higher incidence of pollen limitation. This 

pattern indicates a potential reduction in pollinator visitation, as 

suggested by the lower activity density and richness of pollinators 

observed within florally rich habitats. In addition, seed production 

reduced by a factor of 1.8 in plants within florally rich habitats and 

progeny germination reduced by a factor of 1.2. I show this to be a 

consequence of self-fertilisation within E. californica.  

4. These findings indicate that locally rare or isolated plants are at a 

competitive disadvantage within florally rich habitats because co-
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flowering plant species disrupt conspecific mating by co-opting 

pollinators. Ultimately, this Allee effect may play an important role in 

determining the long-term persistence of rarer plants in the landscape, 

both in terms of seed production and viability. Community context 

therefore requires consideration when designing and implementing 

conservation management for plants which are comparatively rare in 

the landscape. 

 

4.2 Introduction 

 

Changes to the availability and diversity of floral resources through altered land 

use, including increased landscape fragmentation and simplification, can have 

considerable impacts on the structure, abundance and diversity of pollinator 

communities (Vanbergen et al. 2013, Senapathi et al. 2015b, Potts et al. 

2016b).  With an estimated 87.5% of flowering plant species worldwide at least 

partly reliant upon pollinators for reproductive success and long-term survival, 

this will have direct implications for plants (Ollerton et al. 2011). By transferring 

conspecific pollen between plant individuals, pollinators not only facilitate seed 

production but have important effects on fitness and population genetic 

diversity by increasing outcrossing and the exchange of novel alleles (Levin 

and Kerster 1974, Frankham 2005, Mannouris and Byers 2013). 

 

Plant-pollinator interactions vary with plant population size, density and habitat 

context (Essenberg 2012, Mayer et al. 2012). Habitats supporting a high 

abundance and species richness of flowering plants may either enhance or 

disrupt the transference of pollen to plants (Blaauw and Isaacs 2014, 

Vanbergen et al. 2014b). The outcome depends on pollinator visitation 

patterns, which are determined, in part, by the demography and characteristics 

of a species’ population relative to heterospecific co-flowering plants 

(Essenberg 2012). For instance, when at low floral densities, co-flowering 

heterospecific plants can facilitate pollinator visitation to a plant population by 
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enhancing the overall attractiveness of a floral patch (Rathcke 1983). At high 

floral densities, co-flowering heterospecific plants may result in inter-specific 

competition for pollinators, which can reduce ‘per floral unit’ visitation to a plant 

population, resulting in an insufficient supply of pollen that limits potential seed 

set (Ghazoul 2006). Alternatively, although pollinators may prefer foraging on 

particular plant species (Waser 1986, Chittka et al. 1999, Gegear and Laverty 

2005), such fidelity may be relaxed with increasing conspecific pollinator 

density or low floral richness, introducing the potential for inter-specific pollen 

transfer (Kunin and Iwasa 1996, Fontaine et al. 2008). This has potential 

negative implications for plant reproduction. The supply of conspecific pollen 

to a plant can be reduced if it is lost during visitation to heterospecific plants 

(Wilcock and Neiland 2002); moreover, the deposition of heterospecific pollen, 

by clogging the stigma and style of conspecific plants, can inhibit pollination 

(Holland and Chamberlain 2007). Both lead to reduced pollination 

effectiveness and ultimately a reduction in plant seed set, which could be 

detrimental for annual plants as well as perennial plants if continued across 

subsequent years.   

 

Pollinators face a metabolic trade-off when foraging for pollen and nectar 

(Charnov 1976, Vaudo et al. 2016) and optimal foraging theory predicts that 

they will maximise gain and minimise loss of energy (Charnov 1976). Thus 

pollinators may forage slowly through habitats rich in floral resources, 

minimising travel distances between flower visits, and either avoid or promptly 

traverse florally-poor habitats (Pasquet et al. 2008, Lander et al. 2011). 

Moreover, pollinator foraging distances have been shown to exhibit an inverse 

relationship with the proportion of available foraging habitat (Carvell et al. 

2012). Pollinator sensitivity to the dispersion of floral resources at different 

spatial scales is partly influenced by traits, such as body size, that predict their 

mobility and capacity to forage and disperse pollen (Greenleaf et al. 2007, 

Redhead et al. 2016). Given the capacity of pollinators to mediate plant gene 

flow, changes in foraging behaviour or pollinator community composition (e.g. 

body size distributions) in response to variation in habitat floral resources may 
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profoundly affect plant fitness (Ward et al. 2005, Vanbergen et al. 2014b). This 

may be particularly important for spatially isolated populations of uncommon 

plant species because increases in floral diversity might lead to greater inter-

specific plant competition for pollinators (Ghazoul 2006) and reduce the 

probability of long distance pollen dispersal (Eckert et al. 2010). 

 

One approach to understanding the interaction between floral community 

diversity and pollinator-mediated gene flow in locally rare plant populations is 

to analyse plant mating patterns using highly variable molecular markers 

(microsatellites). This permits inference, and even direct observation, of 

patterns of gene movement and mating (Ashley and Dow 1994), enabling the 

quantification of relatedness between plants (Ashley and Dow 1994). The use 

of such molecular methods has revealed that plant populations often exhibit 

spatial genetic structure, where relatedness declines with distance between 

individuals (Loveless and Hamrick 1984). Increased frequency of selfing and 

mating between close relatives within plant populations can lead to inbreeding, 

resulting in reduced allelic diversity and greater homozygosity, which has been 

linked to a reduction in the fitness and long-term survival of plants (Byers and 

Waller 1999). Low allelic diversity is particularly detrimental for self-

incompatible plants whose reproduction requires allelic variation at a single 

locus (the ‘S-locus’; Byers and Meagher 1992). Although mutations can cause 

self-incompatibility systems to break down, resulting in partial self-

compatibility, self-fertilisation and mating between close relatives in these 

plants is typically prevented (Richards 1997). As S-alleles are frequently lost 

through genetic drift, plant populations could face a reduction in compatible 

mates with negative implications for the effective population size and thus, 

plant reproduction (Wagenius et al. 2007). Self-incompatibility coupled with 

spatially structured populations may therefore render some plant species 

vulnerable to reductions in gene flow due to altered pollinator foraging 

behaviour.  
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In this study, I investigate how genetic connectivity and the reproductive 

success of a locally rare and partially self-compatible plant species is a function 

of habitat composition and the activity and richness of potential pollinator 

visitors. To simulate a species occurring at low frequency, small arrays of 

Californian poppy (Eschscholzia californica) were deployed into a landscape-

scale field experiment where floral composition had been manipulated through 

agri-environment planting of wildflower patches. In these experimental arrays, 

I measured pollinator activity, insect-vectored pollen movement using 

microsatellite genotyping, seed set and progeny viability. Based on previous 

observations of altered pollinator behaviour in response to floral cover (Heard 

et al. 2007), I hypothesise that: 

i) Habitats supporting high floral availability increase activity density 

and species richness of pollinators in the vicinity of experimental 

arrays of a partially self-compatible plant (E. californica); 

ii) The inter-tegular span (a proxy for body size) of pollinators is greater 

in florally rich habitats, reflecting the preference of Bombus spp. to 

plant species within sown wildflower patches (Carvell et al. 2007); 

iii) Pollen movement between introduced experimental arrays of E. 

californica is reduced in florally rich habitats, leading to pollen 

limitation, lower outcrossing rates, and fewer inter-population 

pollination events;  

iv) The reproductive success (seed set and progeny viability) of 

Eschscholzia californica is reduced in florally rich habitats, reflecting 

a higher incidence of self-fertilisation, which has negative 

implications for the fitness of E. californica plants.  

 

4.3 Materials and Methods 

 

4.3.1 Experimental site and study system 

The experiment was conducted on the Hillesden estate in Buckinghamshire, 

UK (1⁰00’01’’W, 51⁰57’16’’N), an intensive arable farm (~1000ha) situated on 

http://tools.wmflabs.org/os/coor_g/?pagename=Hillesden&params=SP678302_region%3AGB_scale%3A25000
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heavy clay soils with a relatively flat topography. Since 2005 a number of 

experimental landscape management ‘treatments’ have been established and 

managed across the estate within a randomised block design. These 

treatments, applied to 50-60 ha replicated land parcels, comprise varying 

proportions (0-8% of land out of production) of a range of wildlife habitat 

restoration options (including pollen and nectar rich flower margins and 

wildflower patches for pollinators) under compliance with the English agri-

environment scheme (AES) (Pywell et al. 2015). Overall, these wildlife habitats 

comprised ~4% of the total area (Fig.4.I). 

 

 

Figure 4.I The experimental set-up at the Hillesden estate, Buckinghamshire, UK. Blocks are 
denoted by boxes and are labelled blocks 1-4. Flower rich habitats represent all wildlife habitat 
options implemented under the English Agri-environment scheme. 

 

To test hypotheses, I introduced the Californian poppy, Eschscholzia 

californica Cham., (Papaveraceae). Although considered naturalised in the UK 

(Preston et al. 2002b), E. californica was locally absent, allowing me to 
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unequivocally ascribe paternity in mating events. Eschscholzia californica is a 

diploid species, with a partially self-compatible mating system, characterised 

by a low propensity to self-fertilise (Wright 1979), and thus predominantly 

requires insects for pollen transfer (Becker et al. 2005). It possesses large, 

open flowers (Fig.4.II) and is visited by a variety of insects from the orders: 

Diptera, Hymenoptera and Coleoptera (summarised in Cook 1962).  

 

 

Figure 4.II Eschscholzia californica flower at the final developmental stage: characterised by 
stigma receptivity and dehiscing anthers. 

 

Plants were grown from seed (seed source: Chiltern seeds Ltd, Wallingford, 

UK) in compost-filled seed trays under glasshouse conditions (20°C during the 

day, 16°C at night, with 12 hours of light and 12 hours of dark) and were 

transferred to 1L pots when at the seedling stage. In early June 2015, groups 

of three potted E. californica plants were positioned in a triangular 

experimental array to simulate a locally rare plant population. Plants were 

separated by 1m to prevent fertilisation by direct neighbour contact. A total of 

sixteen arrays were introduced for a 16-day period across four 1km² replicate 

blocks (four arrays per block) separated by >500m to minimise between block 

movement of insect pollinators (Fig.4.I). At the centre of each block, four 

experimental arrays were placed at 50m intervals along a 150m transect laid 
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symmetrically across the boundary between an established wildflower patch 

(henceforth ‘florally rich’ habitat) and bare, fallow ground (henceforth ‘florally 

poor’ habitat) (Fig.4.1). This ensured the first two arrays on a transect were 

located within the florally rich habitat, and the second two arrays within the 

florally poor habitat. The use of AES wildflower patches, sown with a common 

mix of approximately 25 species including Trifolium pratense, Centaurea nigra 

and Leucanthemum vulgare at a rate of 37 kg ha−1 (Carvell et al. 2007), 

allowed for the standardisation of florally rich treatments across the four 

blocks. To ensure the habitat classification was accurate, prior to the start of 

the experiment the local floral abundance (mean ± SE flowers m-2, florally rich 

= 235.25 ± 42.15; florally poor = 26.25 ± 14.08) and plant diversity (Shannon 

mean ± SE florally rich = 0.83 ± 0.17; florally poor = 0.28 ± 0.15) was 

established by recording all floral units within a 1m radius surrounding each 

experimental array (Appendix 1: Plant list).  

 

4.3.2 Pollinator activity and species richness  

Pan traps are typically deployed to describe pollinator species richness and 

activity density (Westphal et al. 2008). They have also been used to provide a 

surrogate measure of visitation, allowing for longer periods than standard 

observation methods (Ricketts et al. 2008). However, this survey method has 

been recognised to exhibit bias (Roulston et al. 2007) because the 

attractiveness of pan traps depends upon habitat and landscape context 

(Baum and Wallen 2011). Pollinators are less likely to encounter traps when 

floral resources are abundant and more likely to encounter traps when floral 

resources are scarce i.e. capture rates are proportional to visitation rates per 

unit flower area (Veddeler et al. 2006). I exploited this phenomenon to measure 

the attractiveness and pollinator activity density at the experimentally rare plant 

arrays located within different habitats. 

 

Pan traps comprised three water-filled circular plastic bowls (80 x 200 mm) 

painted with non-toxic fluorescent paint (1 yellow, 1 blue and 1 white; UV Gear, 

UK) placed in the centre of each array. Traps were deployed for 24 hours at 
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each of the 16 arrays on the same day, twice weekly over the 16-day study 

period (totalling four surveys). Each survey was done in randomised order, 

between 0930 and 1700. Emptied traps were left in situ to maintain the same 

levels of visual attractiveness to foraging insects throughout the experiment. 

All insects from the main pollinator groups (Hymenoptera: Apoidea, Diptera: 

Syrphidae and Lepidoptera) were counted and identified to species level. In 

addition, given that Apoidea body mass has been shown to correlate with 

foraging range (Greenleaf et al. 2007) and to a lesser extent, pollen deposition 

(Larsen et al. 2005), I measured the inter-tegular span (the distance between 

the wing bases) of each insect from the main pollinator groups using digital 

callipers (given the relationship between inter-tegular span and body mass in 

Apoidea; Cane 1987) to determine the body size distribution of pollinator 

communities. This relationship is less clear in Lepidoptera and Syrphidae, 

however inter-tegular span has previously been used as a measure of dry body 

mass in the latter given observed correlations (Folkӧ 2014). I therefore 

adopted this measure to maintain consistency, but it is important to note the 

potential inaccuracy in estimations due to differences between pollinator 

groups.    

 

To ensure pollinators caught within pan traps could be used as a proxy for 

visitation, these data were calibrated by direct visitor observations on the E. 

californica plants. Pollinator visitor observations were conducted for each 

experimental array between 09.30 and 17.00 over four surveying days (two 

per week). Observations lasted for 15 minutes, during which every insect 

foraging (contacting an anther or stigma) was recorded and identified to a 

broad pollinator group as above.  

 

4.3.3 Genotype analysis 

Eschscholzia californica was grown in compost under glasshouse conditions 

(day: night = 20⁰C:15⁰C photoperiod light: dark = 12:12hr). Once at seedling 

stage, 50mg of fresh leaf material was removed from 95 plants and DNA was 

extracted from each sample following the Qiagen DNeasy 96 plant kit protocol 
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(QIAGEN Ltd., Manchester, UK). The concentration of DNA was quantified on 

a spectrometer (ND8000) and subsequently diluted to 10ng/µl. Polymerase 

chain reaction (PCR) was conducted using seven non-overlapping 

microsatellite markers (Veliz et al. 2012) with fluorescent dyes attached to the 

forward primer (DS-33 dye set, Applied Biosystems™, California, USA). 

Separate PCRs were conducted for each primer set, with the exception of two 

primers (Ecalifdi11 and Ecalifdi1), which were successful in a multiplex PCR.  

 

The PCR program settings were: 95°C for 5 minutes, 35 cycles of 94°C for 30 

seconds, 55°C (or 56°C depending upon loci) for 60 seconds, 72°C for 30 

seconds, followed by a final elongation phase of 72°C for 10 minutes. Standard 

reaction conditions were as follows: 10ng of DNA, 0.1µl of reverse primer 

(20µM) and DS-33 attached forward primer (20µM), 0.08µl dNTPs (100µM), 

0.1µl BSA, 1µl Buffer and 0.1µl Taq polymerase in a 10µl reaction. The PCR 

products were combined and visualised on a 2% agarose gel. Fragment 

analysis was then performed on an ABI3730 under the following conditions: 

0.3µl Liz 500 size standard, 8.7µl HiDi formamide and 1µl PCR product. Alleles 

at all seven loci were manually scored on Genemarker V1.95 and ambiguous 

alleles were cloned and sequenced using TOPO® TA cloning kit® 

(Invitrogen™, California, USA) to verify that they were true alleles. Following 

this, I selected 48 plants with distinct genotypes to be deployed at pre-

determined locations across the landscape (Fig.4.I). Where possible, plants 

were selected so that the three individual plants within each array were 

homozygous with the same allele at a selected locus. Whereas, each 

experimental array (a triplet of plant individuals) within a block was 

homozygous for a different allele at this locus. This allele structure in the 

design allowed for verification of inter-population pollen movement (i.e. the 

presence of a novel allele at the selected locus was indicative of the array from 

which the pollen was sourced). During initial assessments, the selected plants 

were shown to be polymorphic at the seven studied loci (7 loci: Number of 

alleles, A = 2-8; Observed heterozygosity, Ho = 0.083-0.75). This points 
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towards a high diversity of S-alleles in the base population, indicating cross-

compatibility between parent plants. 

 

4.3.4 Pollen movement 

To detect pollination events approximately ten progeny per plant from each of 

the 48 field exposed plants (mean ± SE = 9.52 ± 0.39) were genotyped using 

50mg of fresh leaf material and following protocols as above. The incidence of 

self-fertilisation in plants from each habitat was calculated manually by 

individually comparing each successfully amplified progeny against their 

maternal plant. If, at each of the seven loci, the progeny was a complete match 

for the maternal genotype, or was homozygote for one of the maternal plants 

alleles, it was scored as selfed. Alternatively, if any novel alleles were observed 

in the progeny that were not present in the maternal plant, the plant was 

classified as outcrossed. Paternity was determined using Cervus 3.0.7 

(Kalinowski et al. 2007), where each progeny sample was listed detailing 

alleles at the seven microsatellite loci, specifying the known maternal sample 

as well as the potential paternal samples. Here all progeny from within a block 

were analysed against all potential parents within that block. I accounted for 

self-fertilisation and selected for the most likely paternal parent based on a 

derivative of likelihood ratios; the delta score (∆), which is the difference 

between the likelihood score of the most likely parent and the second most 

likely parent (Marshall et al. 1998). Only assignments with a trio ∆ confidence 

(the likelihood score of a mother-father-offspring match) above 95%, which is 

classified as high confidence, were included in the analysis (Marshall et al. 

1998). For all paternal assignments, I recorded which habitat, if any, the pollen 

had crossed together with the distance travelled. 

 

4.3.5 Plant fitness components: seed production, germination rates and 

progeny traits 

All open flowers were removed from the 48 genotyped E. californica plants, 

prior to their placement in pre-marked locations across the landscape. They 
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remained in the field for 16 days to ensure full anthesis of new flowers (which 

takes 3-4 days; Becker et al. 2005) and to allow for multiple pollination events. 

After this period, all fruit were tagged to ensure that only fruit development 

arising from the period of the field experiment were included in analyses. 

Plants were then collected and stored under controlled glasshouse conditions 

(as above) until fruit maturation. Upon maturation, tagged fruit were collected 

and the numbers of filled seeds per fruit were counted to quantify seed set per 

plant.  

 

To determine whether field exposed plants were limited by pollen, I 

supplemented a flower from each of the 48 plants with outcrossed pollen. This 

involved methodically wiping four dehiscing anthers from a donor plant onto 

the receptive stigma of a field exposed plant with dissecting tweezers. 

Supplemented flowers were then covered with fine muslin to protect against 

accidental windborne transfer of pollen from the glasshouse air-conditioning 

system. Once matured, fruit were collected and the number of seeds per fruit 

was counted to determine maximum seed set. The degree of pollen limitation 

was expressed as a ratio between the actual seed set (field exposed plants) 

and the potential seed set (supplemented) in each of the 48 field exposed 

plants.  

 

To measure the viability of progeny from field exposed plants, 20 seeds from 

each of the 48 plants were sown into compost and kept under glasshouse 

conditions (as above). Germination was recorded daily over a 30-day period 

and any seeds which had not germinated after 90 days were recorded as 

inviable. The germination success was expressed as a ratio between the 

number of seeds which successfully germinated against the number of seeds 

which failed to germinate in each of the 48 field exposed plants. Indeed, some 

species and populations of E. californica can exhibit seed dormancy (Cook 

1962), though this was found to be absent within experimental plants (personal 

observation).  
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To further assess how reproduction by self-fertilisation affects the viability and 

growth traits of a partially self-compatible plant I performed a glasshouse 

experiment using 40 artificially crossed plants. On each plant, two flowers were 

emasculated and supplemented; the first with outcrossed pollen and the 

second with self-pollen. This involved methodically wiping two dehiscing 

anthers from a donor plant or the focal plant onto the receptive stigma with 

dissecting tweezers, before covering it in fine muslin. From each 

supplemented plant, a seed was sown from the outcrossed fruit and from the 

selfed fruit (given that selfed fruits predominantly only produced one seed) into 

1L pots. These were then stored under glasshouse conditions (as above). I 

recorded the following fitness traits; the germination rate, the duration from 

germination to reproductive maturity (time of first flower), together with the 

height (cm) and the number of buds at reproductive maturity (biomass).  

 

4.3.6 Statistical analysis 

Pollinator activity density (a proxy for visitation) and the cumulative counts of 

pollinator species recorded at each experimental array were modelled using 

generalised linear mixed models (GLMMs) with a Poisson error distribution. 

When analysing the IT span of pollinator species caught within pan traps 

however, a Log-normal error distribution was instead used to account for non-

integers. Plant fitness components were similarly analysed using GLMMs with 

a combination of Poisson (seed production per plant) and Binomial (pollen 

limitation of each plant and the germination success of progeny) error 

distributions.  

 

Within the models, fixed effects comprised of habitat type (florally rich/florally 

poor). Experimental block (Fig.4.I) was fitted as a random effect to account for 

the spatial structure of the experimental design. For pollinator activity models, 

additional random effects were included to account for survey date and the 

pollinator species, when analysing the activity density (64 surveys) and IT span 

(203 pollinators) of pollinators respectively. Additional random effects for 

models of plant fitness components were ‘plant identity’ for pollen limitation (42 



  Chapter four 
 

112 
 

surviving plants) and germination success (48 plants) and ‘fruit nested within 

plant’ for seed production (n = 618) to account for variation between plants and 

fruit. Where present, over-dispersion in the data was controlled for by fitting an 

observational level parameter to the random effects (Harrison 2014). AIC 

stepwise selection was then used to find the minimum adequate model 

(Burnham and Anderson 2003) and all models were analysed using Laplace 

approximation. The significance of the final models were analysed by 

comparison to a null model with the same random effects structure using an 

ANOVA. All analyses were conducted with R (version x64; R Core Team 2013) 

using the lme4 package (Bates et al. 2015). 

 

When analysing the effects of self-fertilisation on plant fitness traits (e.g. 

height) I used a combination of chi-square contingency tables (the germination 

of selfed and outcrossed seeds), generalised linear models (GLMs) with a 

Poisson error distribution (plant height at reproductive maturity) and ANOVAs 

(duration to reproductive maturity and plant biomass at reproductive maturity). 

In both GLMs and ANOVAS the fitness trait measured was modelled against 

the mating system (outcrossed or selfed) for all surviving germinated seeds (n 

= 56).  

 

When analysing pollen movement parameters I used a combination of chi-

square contingency tables (the incidence of self-fertilisation modelled against 

the number of outcrossing events) and binomial proportion tests (the distance 

of pollination events, the movement of pollen across habitats of different floral 

covers and the movement of pollen to and from habitats of different floral 

covers). For the distance of pollination events, the cumulative number of inter-

population pollination events at each distance (50, 100 and 150m) was 

analysed against the total number of inter-population (50-150m) pollination 

events (n = 34). For the movement of pollen across habitats all 50m 

movements where the intervening habitat varied (i.e. florally poor, a mixture of 

florally poor and florally rich and florally rich) were analysed against the total 

number of 50m pollination events (n = 22). The movement of pollen to and 
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from each habitat was similarly analysed by comparing the cumulative counts 

of inter-population pollination events (50-150m) leaving or entering a habitat 

against the total number of inter-population (50-150m) pollination events (n = 

34). For all models of pollen movement I used cumulative counts across all 

blocks. The relationship between the number of selfing incidents and the total 

number of inter-population pollen movements (50-150m) to and from each 

array was then analysed against the abundance of pollinators caught in pan 

traps using generalised linear models with a Poisson error distribution.  

  

4.4 Results 

 

4.4.1 Pollinator activity and species richness 

Considering insect taxa generally thought to be the most effective pollinators 

(i.e. Apoidea, Syrphidae and to a lesser extent Lepidoptera), greater numbers 

were caught in pan traps centred on the experimental plant arrays in florally 

poor habitats (mean ± SE Florally rich = 7.63 ± 0.96; Florally poor = 17.75 ± 

3.87; GLMM z = -3.85, df = 59, p < 0.0001; Fig.4.III). Furthermore, the species 

richness of these main pollinator groups was similarly higher in traps centred 

on plant arrays in florally poor habitats (mean ± SE Florally Poor = 9.25±1.31; 

Florally rich = 5.5±0.57; GLMM z = -2.74, df = 13, p = 0.006; Fig.4.III) (Appendix 

3: Pollinator list). However, the IT span of visiting pollinators was not 

significantly different between florally poor and florally rich habitats (mean ± 

SE Florally rich = 2.97 ± 0.13; Florally poor = 2.60 ± 0.07; p = 0.427).  

 

The activity density of the main pollinator groups was mirrored by the overall 

catches of all potential pollinators (including non-Syrphid Diptera and 

Coleoptera). Twice as many pollinating insects were recorded in pan traps 

centred on the experimental plant arrays in florally poor habitats (mean ± SE 

672.5 ± 103.14) compared to florally rich habitats (mean ± SE 318.5 ± 56.83) 

(GLMM z = -4.68, df = 59, p < 0.0001). Non-syrphid Diptera and Coleoptera 

comprised the greatest proportion of flower visiting taxa in both habitats 
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(Florally poor = 0.97, Florally rich = 0.98) reflecting their typically greater 

abundance, although their efficacy as pollinators is largely unknown for most 

plant species (but see Orford et al. 2015).  

 

 

Figure 4.III The activity density (yellow  boxes) and species richness (green boxes) of insects 
within main pollinator groups caught in pan traps within habitats differing in floral composition. 
Box plots represent the cumulative counts of all trapping periods, with counts averaged across 
each experimental array within florally poor and florally rich habitats. Bars summarise the 
median value (50th percentile), with boxes illustrating the upper and lower quartiles (25th and 
75th percentile). Whiskers illustrate the minimum and maximum count. 

 

 The catches of pollinators within pan traps (from the main pollinator groups: 

Apoidea, Syrphidae and Lepidoptera) resembled the proportions of pollinator 

groups observed to actively visit E. californica (Fig.4.IV). Although only 3 out 

of the 5 groups were observed during observations, this justified the use of 

activity density from pan traps as a proxy for actual plant visitation. Statistical 

analysis of these direct observations of pollinator visitation was however 

precluded by the sparseness of this data (total pollinators observed (main 

pollinators groups) = 8 individuals).  
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Figure 4.IV The proportion of insects within main pollinator groups observed during direct 
visitor observations of E. californica plants and those caught in pan traps within habitats 
differing in floral cover. 

 

4.4.2 Pollen movement 

As expected for a partially self-compatible species, levels of selfing were low 

in field exposed plants. However, the proportion of progeny that were produced 

by self-fertilisation was marginally greater from plants within florally rich 

habitats (Florally rich = 15%; Florally poor = 9%; χ² = 3.69, df = 1, p = 0.055). 

The incidence of selfing was not however correlated with pollinator activity 

density (p = 0.097). 

 

Paternal assignments were achieved for 300 out of the 457 amplified samples, 

with the remainder (n = 157) disregarded (trio ∆ confidence score of below 

95%). The greatest proportion of pollination events comprised intra-population 

pollen movements, representing short distance pollen movement (1m = 72%; 

Fig.4.V).  A number of long distance inter-population pollen movements were 

observed (n = 34 (11% of all movements) and of these, a significantly greater 

proportion travelled 50m (65%), with fewer movements between 100 (24%) 
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and 150m (12%) (χ² = 23.65, df = 2, p < 0.001). These long distance inter-

population pollen movements (50-150m) were significantly more frequent both 

to (Florally rich = 32%; Florally poor = 68%; χ² = 7.12, df = 1, p = 0.008) and 

from (Florally rich = 29%; Florally poor = 71%; χ² = 9.94, df = 1, p = 0.002) 

arrays within florally poor habitats. The movement of pollen between 

experimental arrays was affected by the floral richness of the intervening 

habitat. Regarding the total number of 50m pollination events across all blocks, 

pollen movement was greatest between two arrays positioned within florally 

poor habitats i.e. where the intervening habitat had low floral cover (Florally 

poor cover = 73%, a mixture of both florally poor and florally rich cover = 14% 

and florally rich cover = 14%; χ² = 23.05, df = 2, p < 0.001; Fig.4.VI). 

Furthermore, the total number of long distance inter-population pollen 

movements (50-150m) to and from each array was positively correlated with 

pollinator activity density (GLM z = 2.06, df = 15, p = 0.036). 

 

 

Figure 4.V The distance of pollen movement, averaged across all blocks, from experimental 
arrays located within habitats differing in floral composition (self-fertilisation is denoted by 0m). 
Dashed lines with open circles represents pollen movement from florally poor habitats and 
solid lines with filled circles represents pollen movement from florally rich habitats. 
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Figure 4.VI The incidence of inter-population pollen movement (50m), averaged across all 
blocks, over habitats differing in floral composition. Mixed habitat denotes when the intervening 
habitat comprised of 25m of florally rich habitat and 25m of florally poor habitat; poor habitat 
denotes where the intervening habitat is comprised of 50m of florally poor habitat and rich 
habitat denotes where the intervening habitat is comprised of 50m of florally rich habitat. 

 
 

4.4.3 Plant fitness components: seed production, germination rates and 

progeny traits 

The number of fruits and seeds produced per plant were highly variable (fruit 

range = 4-23, seed range = 0-589). However, total seed set in arrays within 

florally poor habitats was 1.8 fold greater than in those within florally rich 

habitats (GLMM z = -1.980, df = 613, p = 0.048; Fig.4.VII). Furthermore, the 

number of additional seeds produced by pollen supplementation was greater 

in florally rich habitats (GLMM z = 2.396, df = 38, p = 0.017; Fig.4.VII), 

indicating that plants were more pollen limited in florally rich habitats. 
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Figure 4.VII The mean number of seeds (denoted by open bars) per fruit produced by plants 
within habitats comprising different floral composition, together with the mean degree of pollen 
limitation (denoted by filled points) of these plants. Pollen limitation is illustrated here as the 
number of additional seeds produced by a plant after pollen supplementation (when compared 
to the number of seeds produced by the same plant under field conditions). 

 

Germination rates of progeny arising from plants located in florally rich habitats 

was reduced, albeit marginally (mean ± SE Florally rich = 10.67 ± 0.85; Florally 

poor = 12.96 ± 0.87, GLMM z = -1.940, df = 44, p = 0.052). The glasshouse 

viability trial to quantify the implications of selfing on progeny viability showed 

that a lower proportion of seeds germinated when produced by self-

fertilisation, compared to seeds which were a product of outcrossing 

(outcrossed seeds = 0.8 (n = 33); selfed seeds = 0.6 (n = 24); χ² = 3.91, df = 

1, p = 0.048, phi = 0.25). However, no effect of self-fertilisation was found in 

E. californica on later stage fitness traits (time to reproductive maturity (first 

flower) p = 0.210; height at reproductive maturity GLMM p = 0.078; biomass at 

reproductive maturity p = 0.143). The negative implications of self-fertilisation 

were thus limited to reduced germination.  
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4.5 Discussion 

 

4.5.1 Habitat effects on pollinator visitation 

Consistent with previous work (Veddeler et al. 2006) I show a negative 

association between florally rich habitats and the activity density and species 

richness of pollinators. Elsewhere, the abundance and richness of pollinators 

has been observed to increase with floral cover (Williams et al. 2015), 

especially where this cover is limited within the wider landscape (Heard et al. 

2007). However, these results suggest that despite the increased aggregation 

of pollinators in habitats providing abundant, diverse floral resources, pollinator 

visitation is effectively ‘diluted’, which may result in lower ‘per floral unit’ 

visitation and greater interspecific competition for pollination (Veddeler et al. 

2006, Sjodin 2007). Consequently, when embedded within a diverse 

community of co-flowering heterospecific plants offering a variety of floral 

pollen and nectar, rare plant species may be unable to co-opt pollinators 

(Ghazoul 2006). In contrast, where co-flowering, heterospecific competitors 

were scarce, findings suggest that available pollinators would become 

concentrated, leading to potential increases in ‘per floral unit’ visitation rates at 

the individual plant level (Veddeler et al. 2006, Tscharntke et al. 2012). It 

should be noted however, this study did not take the wider landscape into 

consideration. Given that the experiment was conducted in the same locality, 

landscape composition may have been a driver of the low visitation rates 

across both habitats and thus, the patterns observed. In future experiments, 

the wider landscape should be considered in order to verify that these patterns 

aren’t context specific. 

 

A diverse community of pollinators can provide niche complementarity (Pisanty 

et al. 2016), often leading to enhanced pollen deposition (Larsen et al. 2005) 

and seed production (Martins et al. 2015). Alternatively, a high diversity of 

pollinators visiting diverse plant assemblages can result in an increase in 

heterospecific pollen deposition, which can interfere with conspecific 

pollination by stigma clogging (Holland and Chamberlain 2007). The extent to 



  Chapter four 
 

120 
 

which the diversity of pollinator species provides a benefit to plants is 

determined by the functional diversity and pollination effectiveness of 

communities (Perfectti et al. 2009). Indeed, pollinator species vary in their 

specialisation, pollen carrying behaviour and daily activity preferences, all of 

which affect pollination effectiveness (Rader et al. 2011, Martins et al. 2015). 

Furthermore, pollination effectiveness has been associated with body size, 

where larger pollinator species can travel greater distances (Greenleaf et al. 

2007) and deposit a larger amount of pollen per visit (Larsen et al. 2005). In 

this study, however, no difference was found in the size distribution (IT span) 

of pollinators between florally rich and florally poor habitats, indicating that by 

this measure there was no difference in the trait structure of pollinator 

communities between habitats with different floral cover that could alter 

pollination effectiveness. Instead, pollination effectiveness may be driven by 

changes to the foraging behaviour of pollinator communities.  

  

4.5.2 Habitat effects on pollen movement 

Consistent with previous studies, findings indicate that pollen movement 

between local populations was strongly affected by the floral composition of a 

habitat (Lander et al. 2011, Dyer et al. 2012). Pollen movement between 

experimental arrays (50m) was greater when the surrounding and intervening 

habitat comprised livestock grazed grassland or fallow ground with low 

richness of floral resources. In addition, very few pollination events were 

observed between arrays separated by habitats of high floral cover or those 

with heterogeneous intervening habitats (i.e. a mixture of habitats comprising 

high and low floral cover). These results are consistent with the hypothesis that 

the foraging behaviour of pollinator communities is highly determined by 

habitat composition. This higher level of pollen movement between 

populations in florally poor habitats supports research which shows pollinators 

to conform to the weighted line foraging principle when encountering 

heterogeneous landscapes (Lander et al. 2013). This principle assumes that 

pollinators will occupy optimal foraging habitat until resources are depleted, 

thus making short, energy efficient, movements between flowers. Conversely, 
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pollinators are expected under this principle to move greater distances within 

habitats that are nutritionally sub-optimal (Lander et al. 2013). By altering the 

insect-mediated pollen movement between plant populations, the weighted 

line foraging strategy will have implications for genetic exchange and the 

genetic diversity of rare plant populations.  

 

The floral cover of the surrounding habitat greatly affected the distance of 

pollen movement with plants in florally poor habitats subject to more long 

distance inter-population pollination events than those in florally rich habitats. 

Furthermore, this is shown to be positively correlated with activity density of 

pollinators. This suggests that pollinators were following optimal foraging 

expectations, where movement reflects energy efficient behaviour. Indeed, 

findings indicate that in both habitats the majority of pollen movement was 

localised (1m). Of the long-distance inter-population pollination events, a 

greater proportion were between plants separated by 50m, with fewer between 

distances of 50-150m. This pattern is consistent with a wealth of research 

indicating that although capable of travelling large distances (Hagler et al. 

2011), pollinators predominantly travel considerably shorter distances (Rader 

et al. 2011), remaining in localised resource patches (Pasquet et al. 2008). 

This results in a distance decay distribution of pollen movement (Matter et al. 

2013), suggesting that between block movement (>500m) in this experiment 

would be minimal. In spatially genetically structured plant populations, reduced 

long distance inter-population pollination events, particularly in florally rich 

habitats, will result in a higher frequency of mating between close relatives. As 

a consequence, self-incompatible and partially self-compatible plants will 

suffer from increased biparental inbreeding and a reduction in compatible 

mates (Turner et al. 1982). This will negatively impact plant seed set and 

viability (Ward et al. 2005), together with the adaptive potential and 

consequently, the long-term survival of rare plant populations (Etterson 2004). 
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4.5.3 Implications for plant reproductive success 

Reductions in the activity density and richness of pollinator species in florally 

rich habitats reflect the increased pollen limitation and reduced individual plant 

reproduction observed within experimental arrays located in florally rich 

habitats. Pollen limitation has been related to competition for pollinator 

visitation, with similar results observed in response to an increase in diversity 

(Vamosi et al. 2013) or density (Jakobsson et al. 2009) of co-flowering plants. 

Low pollen receipt, a cause of pollen limitation, can result either in an increase 

in self-fertilisation (Kalisz et al. 2004), or in the case of self-incompatible or 

partially self-compatible plants, where it is particularly detrimental, a direct 

reduction in seed production (Wagenius et al. 2007). Given the limited duration 

of stigma receptiveness the ability of a plant to attract pollinators is therefore 

important for both pollen receipt and seed production (Bernhardt et al. 2008). 

 

As well as the supply of pollen, the quality of pollen is also critical to plant 

reproduction and fitness. Pollen quality refers to both the deposition of 

heterospecific pollen, which can result in physical or chemical inhibition of seed 

set (Kanchan and Jayachandra 1980, Holland and Chamberlain 2007) and to 

the genetic relatedness of pollen, which can lead to inbreeding depression 

(Fischer et al. 2003). Findings indicate that, through alterations to pollinator 

visitation and subsequent reductions in pollen receipt, florally rich habitats can 

promote higher levels of self-fertilisation. Further, given reduced germination 

rates in progeny from plants in florally rich habitats and the negative 

relationship observed between germination and self-fertilisation, results are 

indicative of higher rates of self-fertilisation then detected by microsatellite 

analysis. Reproduction by selfing in self-incompatible or partially self-

compatible plants can have a negative impact on the fitness of progeny, shown 

in this study through a reduction in germination rates. These findings are 

consistent with previous research where self-fertilisation in self-incompatible 

plants resulted in inbreeding depression with negative implications for plant 

fitness (Bellanger et al. 2015). However, in contrast to previous studies (Thiele 

et al. 2010) reductions in germination did not translate into negative impacts 
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on late fitness traits (e.g. time to reproductive maturity) of surviving plants. This 

suggests that the immediate effects on population persistence would be due 

more to changes in vital rates than trait differentiation.  

 

4.5.4 Implications for the conservation of rare plants 

Rarity in plants is frequent and can be driven by biological or anthropogenic 

factors. It is often characterised by populations comprising low genetic 

variation together with restrictions in size, local abundance, geographical 

range and/or habitat specificity (Espeland and Emam 2011). In this study, by 

simulating anthropogenically rare plant populations, I show that restrictions in 

the population size of a naturally abundant plant, over the longer term, could 

lead to an Allee effect, whereby increases in mating between close relatives, 

coupled with higher self-fertilisation rates further reduces genetic variation and 

ultimately, increases the risk of local extinction (Etterson 2004). Conservation 

efforts for plants facing conditions associated with anthropogenic-induced 

rarity may benefit from focus on enhancing visitation and movement of 

pollinators between conspecifics. This could be achieved through a 

combination of: i) increasing the competitive advantage of plant populations 

(e.g. increasing a plant’s population size; Mayer et al. 2012), ii) managing 

surrounding habitats to enhance facilitation of pollinators to plant populations 

(e.g. introducing co-flowering species which have complementary phenotypes; 

Ghazoul 2006), and iii) reducing the distance between conspecific populations 

(Van Rossum and Triest 2010).  

 

4.5.5 Summary  

Findings from this study show that habitat context mediates plant–pollinator 

interactions and alters the reproduction of anthropogenically rare plant 

populations. In florally rich habitats, isolated plant populations are at a 

competitive disadvantage for pollinator visitation when faced with more 

abundant co-flowering heterospecific plants. Consequently, anthropogenically 

rare plant populations in these habitats suffer from increased rates of self-
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fertilisation, limited pollen movement, and reduced reproductive success. The 

implication is that plant populations dependent on insect pollinators may 

become less connected and more genetically depauperate when located in 

florally rich habitats, increasing the risk of genetic drift and extinction. Such an 

effect may hold for not only anthropogenically rare plants but also plants that 

are widespread but occur at low frequency within the environment.  

 

This study highlights the importance of floral availability at a habitat scale on 

pollen transfer to isolated plants, illustrated through changes to plant 

outcrossing and long distance, inter-population pollen movement. Given 

differences in a pollinator’s floral preferences and specialism to plant species, 

these effects are however expected to differ given variations in floral 

communities. Future studies should therefore focus on how these interactions 

vary with a gradient of floral communities within the intervening habitat 

between conspecific populations. This will enhance our understanding of the 

conditions under which facilitation for pollinator visitation is enhanced at a 

habitat scale. 
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rich habitats reduce insect pollination and the reproductive success of isolated plants. Ecology and 

Evolution, 7, 6507-6518.
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 CHAPTER 5 

 

Is the connectivity of conspecific plant 

populations a function of the floral communities 

within a habitat? 
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5.1 Abstract 
 

1. Connectivity is a function of the interactions between plant populations 

and therefore reflects the level of pollen movement between 

conspecifics. Inter-population pollen movement is fundamental for 

maintaining genetic exchange and consequently, enhancing plant 

fitness and long-term survival potential. For isolated, insect-pollinated 

plants, interactions between populations is determined by the ability of 

pollinators to navigate across a variety of habitats. However, our 

understanding of how inter-population pollen movement between plants 

separated by different distances is affected by a gradient of floral 

resources is unclear.  

2. This study explored the effects of variations in floral communities at 

local scales on pollen movement by insect pollinator communities 

between conspecific plant populations. Individuals of the self-

compatible plant Vicia faba were introduced into plots representing a 

gradient of floral communities.  I measured pollen movement at different 

distances through a plot and between adjacent plots and explored the 

relationship with the activity density (the abundance of actively foraging 

pollinators) and functional traits of pollinator communities. The 

implications for plants was then determined through measures of 

heterospecific pollen deposition and plant reproductive success. 

3. The incidence of both between- and within-plot pollen movement was 

low in this study. Although this precluded formal analysis, findings 

demonstrated patterns of reduced pollen movement in relation to a high 

abundance of floral resources. This was illustrated by a greater 

incidence of between-plot pollen movement where the abundance of 

floral resources within the intervening plot was classed as intermediate 

(5-25 floral units/0.5m²). This reflects the negative relationship observed 

between the abundance of floral resources within a plot and the activity 

density of potential V. faba pollinators. Despite this, the abundance of 

floral resources had no measured effect on the incidence of 
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heterospecific pollen transfer or the reproductive success of V. faba 

plants.  

4. Findings from this study suggest that floral resources at a local scale, 

when at a low abundance, can benefit isolated plants by facilitating 

visitation and thus, pollen transfer. As floral resources increase, 

competition for pollinators can disrupt interactions between isolated 

plant populations by reducing visitation constancy. While needing 

further research to draw concrete conclusions, this highlights the 

importance of maintaining a low level of floral resources between 

isolated plant populations in order to enhance pollen and gene flow. 

 

5.2 Introduction 

 

Connectivity is a measure of the extent to which a landscape impedes or 

facilitates the movement of organisms between patches or populations 

(Tischendorf and Fahring 2000). The movement of organisms may be affected 

by landscape structure (e.g. the linkage of habitats by linear features; Cranmer 

et al. 2011), or by elements within the landscape which are of relevance to an 

organism (e.g. floral resources) and thus, affect behavioural responses 

(Tischendorf and Fahring 2000). A high degree of inter-population movement 

is particularly important for outcrossing species, which rely on pollen transfer 

in order to achieve mating between genetically-unrelated individuals and thus, 

enhance long-term survival potential (Weidema et al. 2000, Lennartsson 2002, 

Bartlett et al. 2016, Gomez-Fernandez et al. 2016). For pollinator-dependent 

plants however, the successful transfer of pollen between conspecific plant 

populations depends upon the ability of pollinators to move across landscapes 

of varying composition (Taylor et al. 1993). This is governed both by the 

distance between conspecific plant populations (Gustafson and Gardner 1996, 

Moilanen and Hanski 2001, Murphy and Lovett-Doust 2004) and the attributes 

of the intervening habitat (Taylor et al. 1993, Dileo et al. 2014). Our current 

understanding of the effects of habitat composition on pollinator foraging 
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behaviour and thus the movement of pollen between plant populations is 

limited and would provide valuable insight into the implications of habitat 

modification and management interventions on plants.  

 

Landscapes were once often considered to be a binary mosaic of habitat 

considered suitable for organisms and a background matrix (MacArthur and 

Wilson 1967). The background matrix was considered equally inhospitable and 

impervious to organisms and was thus expected to restrict movement between 

optimal habitats or patches (Wright 1943, MacArthur and Wilson 1967, Murphy 

and Lovett-Doust 2004). This has since been challenged and the permeability 

of a habitat to the movement of organisms has been recognised to be a 

function of its structural (e.g. hedges or corridors; Epps et al. 2007) and 

functional (e.g. floral resources; Lander et al. 2011) attributes (Tischendorf 

2001), although these are not always synonymous (Tischendorf and Fahring 

2000, Aavik et al. 2014). For instance, while trees can enhance the movement 

of organisms by providing sustenance and protection from predation and 

desiccation (Dick et al. 2003); to some organisms they can act as barriers 

(Rocha and Aguilar 2001, Zeller et al. 2012). This highlights the importance of 

assessing landscape composition from a species’ viewpoint, incorporating 

structural components of particular importance to an organism, along with the 

scale of relevance and specific behavioural responses (Tischendorf and 

Fahring 2000). For pollinators, the availability of preferred plant species within 

a habitat is particularly important (Rosa et al. 2015) and where these resources 

are scarce, pollinators have been observed to avoid habitats (Hadley and Betts 

2009). From a plant’s perspective, however, this habitat avoidance can result 

in increases in long distance and direct pollen movements. For instance, a 

higher incidence of inter-population pollen movement has been observed over 

resource poor habitats (e.g. pine plantations) when compared to habitats rich 

in floral resources (e.g. clearfell woodland) (Lander et al. 2011).  

 

The movement of pollinators is expected to reflect optimal foraging behaviour, 

where decisions are made to minimise the physiological costs associated with 
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searching and handling (Charnov 1976). This is illustrated by a high degree of 

constancy among pollinators to single plant species (Chittka et al. 1999, 

Gegear and Laverty 2005) along with a tendency for localised foraging, where 

movement has been shown to be greatest between plants separated by 

shorter distances (Ghazoul et al. 1998). Pollinator foraging behaviour is 

therefore expected to be largely influenced by the extent and distribution of 

floral resources across the landscape. Indeed, changes to floral communities 

can alter pollinator constancy. For instance, where floral resources are scarce, 

pollinators have been shown to relax preferences in order to use all available 

flowers and thus reduce energy expended through dispersal (Levins and 

MacArthur 1969, Kunin 1993). Changes to floral communities can similarly 

affect pollinator dispersal distance. Depending on its life history (Jauker et al. 

2009) and characteristics such as body mass (Greenleaf et al. 2007), a 

pollinator is capable of travelling large distances (Osborne et al. 1999, 

Gathmann and Tscharntke 2002, Hagler et al. 2011). However, these 

distances often do not reflect typical pollinator foraging behaviour (Fahrig 

2001, Rader et al. 2011). Instead, pollinator dispersal distance appears to be 

a function of the extent and spatial distribution of floral resources, where 

foraging distance is inversely related to floral cover (Danner et al. 2016, 

Redhead et al. 2016).  

 

Depending on the distance of separation between plants, changes to foraging 

behaviour, both in terms of the dispersal distance and constancy of visiting 

pollinators, will have considerable implications for pollen transfer (Murphy and 

Lovett-Doust 2004, Dileo et al. 2014). Reproductive potential is influenced by 

the quality of intraspecific pollen deposition (e.g. the genetic relatedness). 

Plant populations typically exhibit spatial genetic structure, where relatedness 

declines with distance between individuals (Loveless and Hamrick 1984) as a 

function of seed dispersal capability. Consequently, the genetic relatedness of 

pollen received by a plant is driven by pollinator dispersal distance (Matsuki et 

al. 2008). For instance, localised pollen movement results in a greater 

incidence of mating between close relatives and an increased likelihood of self-
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fertilisation through geitonogamous pollen transfer (Ellstrand and Elam 1993). 

This can elevate the risk of inbreeding depression (Turner et al. 1982), which 

is characterised by increases in homozygosity and reductions in allelic 

diversity (Byers and Waller 1999). Furthermore, population genetic theory says 

that increased inbreeding, coupled with genetic drift, will culminate in a build-

up of recessive deleterious alleles (Charlesworth and Charlesworth 1987); an 

effect that will be particularly severe in small, isolated populations (Ellstrand 

and Elam 1993). This said, localised pollen movement and self-fertilisation can 

be seen to negatively impact plant fitness and adaptive potential (Richards 

1997, Grindeland 2008). However, fitness has also been shown to be reduced 

when outcrossed pollen is sourced from plants separated by large distances 

(e.g. outbreeding depression) (Ruane et al. 2015) and indeed, a benefit of 

shorter dispersal distances has been observed (Grindeland 2008). A plant’s 

reproductive potential is further affected by inter-specific pollen transfer, which 

can be affected by changes to pollinator constancy (Bell et al. 2005). For 

instance, as pollinators move more readily between different plant species, the 

incidence of heterospecific pollen transfer increases, introducing potential for 

clogging at the stigma or style level (Shore and Barrett 1984, Brown and 

Mitchell 2001). Depending upon a plant’s mating system and given the positive 

relationship between compatible pollen deposition and seed production (Shore 

and Barrett 1984, Bernhardt et al. 2008, Briggs et al. 2016), such changes can 

have negative implications for a plant’s reproductive potential.  

 

Driven by landscape change, plants are facing an increased risk of isolation 

from conspecifics. Under these conditions, ensuring inter-population pollen 

movement is essential in order to maintain genetic exchange and thus, long-

term population survival (Steffan-Dewenter and Tscharntke 1999). Previous 

research has however demonstrated reductions in inter-population pollen 

movement in response to high floral availability between conspecific plant 

populations (Evans et al. 2017). In this chapter I expand on this research and 

focus on the effects of a gradient of floral communities between conspecific 

plant populations on plant-pollinator interactions. More specifically, I explore 
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how variations in the floral resources within a plot affects the incidence and 

distance of inter-population pollen movement and the relationship with 

pollinator communities and plant reproductive success. This is approached 

through two temporally separated experiments using a self-compatible plant, 

Vicia faba, which benefits from pollinator-triggered pollen release (Aouar-Sadli 

et al. 2008). Plants were introduced into plots varying in floral composition and 

were separated by different distances. Pollen movement was measured both 

between plots (15m) and at different distances within plots (5-8m) and the 

relationships between pollen movement and pollinator activity density and 

inter-tegular span (‘IT’ span) were determined. In addition, the implications for 

V. faba plants were explored through measures of heterospecific pollen 

deposition and plant reproductive success. I hypothesise: 

i) The incidence of pollen movement, both between and at different 

distances within a plot are inversely related to the abundance and 

diversity of heterospecific floral resources within a plot;  

ii) The activity density of potential V. faba pollinators is negatively 

correlated with the abundance and diversity of floral resources within a 

plot; this is positively related to the incidence of between- and within-

plot pollen movement; 

iii) The IT span (a proxy for body mass) of potential V. faba pollinators is 

positively related to the incidence of between- and within-plot pollen 

movement. In contrast, pollinator IT span is not related to the 

abundance or diversity of floral resources within a plot;  

iv) The deposition of heterospecific pollen is negatively correlated with the 

abundance and diversity of floral resources within a plot; 

v) Reproductive activity in V. faba plants is not related to the abundance 

or diversity of floral resources within a plot. However, the mean seed 

weight and total biomass of seed production, is negatively correlated 

with the abundance and diversity of floral resources within a plot. 
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5.3 Methods and materials 

 

5.3.1 Experimental site and study system 

The two experiments were conducted on the long-term Park Grass Experiment 

at Rothamsted Research, Hertfordshire, UK (0° 21' 22.76''W, 51° 48' 

34.4448''N; Fig.5.I); an area characterised by flat topography and a temperate 

climate. Park Grass was set up in 1856 (Silvertown et al. 2006) and is the 

oldest ecological experiment in existence. It was originally set up to understand 

the effects of different fertilisers on the yield of hay meadows (Lawes and 

Gilbert 1859) but in recent times has proved invaluable in exploring the long-

term dynamics of plant populations. The site comprises 97 adjoining plots 

spanning over 2.8ha (Fig.5.I) (Silvertown et al. 2006). Plots vary in size 

(~0.013ha to ~0.05ha) and, driven by the historic differences in fertiliser 

regimes, each comprises a distinct floral community (Silvertown et al. 2006). 

Modern species numbers vary from virtual monocultures to 44 species per 200 

m2 among the plots (Silvertown et al. 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.I The layout of the Park Grass experiment at Rothamsted Research, Harpenden, UK 
(Courtesy of Rothamsted Research). Black circles illustrate the 12 plots used in experiment 
one and red circles illustrate the three plots used in experiment two 
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To test the effects of variations in floral resources at local scales on the 

incidence and distance of pollen movement, Vicia faba L. (Fabaceae) plants 

(two cultivars with comparable phenology; Wizard and Arthur) were introduced 

into experimental plots. Vicia faba is a nectar producing plant characterised by 

small, white flowers (Fig.5.II). Whilst it is self-compatible, pollinators have been 

demonstrated to trigger pollen release and enable outcrossing (Aouar-Sadli et 

al. 2008). Outcrossing rates in V. faba are variable and have been 

demonstrated to account for 29.5-69.8% of mating events under field 

conditions (Holden and Bond 1960). Pollinators include species from the 

families Apidae, Megachilidae, Halictidae and Syrphidae (Aouar-Sadli et al. 

2008, Garratt et al. 2014) though of these, Bombus spp. are recognised to be 

the most efficient (Garratt et al. 2014). The use of V. faba var. Arthur and V. 

faba var. Wizard enabled discrimination of pollen movement through a 

dominance of hilum (seed connection scar) colour. Wizard plants produce 

seeds with a white hilum (homozygous recessive) and Arthur plants produce 

seeds with a black hilum (homozygous dominant) (Holden and Bond 1960, 

Bishop et al. 2016). Given that hilum colour is maternal, any seeds from the 

Wizard progeny which exhibit black hilum (expressed in second generation 

seeds) will therefore be the product of outcrossing with Arthur plants (Bishop 

et al. 2016). Plants were grown from seed (seed source: Aberystwyth 

University) in compost-filled seed trays under glasshouse conditions (20°C 

during the day, 16°C at night, with 12 hours of light and 12 hours of dark) and 

were transferred to 1L pots when at the seedling stage. 

 

The study consisted of two experiments (Fig 5.III). Experiment one looks at the 

effects of a gradient of floral communities at a local scale on between-plot 

pollen movement. Experiment two instead focuses on the effects of a gradient 

of floral communities at a local scale on plant-pollinator interactions within a 

plot, through measuring the distance and directness (through heterospecific 

pollen deposition) of within-plot pollen movement. 
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Figure 5.II From left to bottom right: A Vicia faba flower on a plant raceme and: V. faba seeds 
exhibiting black hilum and white hilum (photos taken from Khamassi et al. 2014). 

Figure 5.III A schematic illustrating experiments one and two which explore the effects of a 
floral gradient on plant-pollinator relationships. Experiment one (left) measures between plot 
pollen movement and the relationship with pollinator activity density along with the implications 
for plant reproductive success. Experiment two (right) alternatively measures the distance and 
movement of pollen within a plot and the incidence of inter-species pollen transfer (through 
heterospecific pollen deposition). Here again I explore the relationship between pollen 
movement and pollinator activity density along with the implications for plant reproductive 
success 

v 

v 
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Experiment one:  

In May 2016, V. faba plants were introduced at the junction between four Park 

Grass plots to form experimental arrays. Arrays comprised of four plants, 

separated by 0.5m and arranged in a triangular formation with a central Wizard 

plant and three outer Arthur plants (henceforth ‘central array’: Fig.5.IV). Four 

additional arrays were then positioned along a plot edge at a 15m distance 

from the central array; each was separated from the central array by a different 

intervening plot (forming a cross formation; Fig.5.IV). These arrays consisted 

of three Wizard plants, separated by 0.5m and arranged in a triangular 

formation (henceforth ‘radiating array’). This set-up was replicated in three 

locations across the experimental site; each separated by a distance greater 

than 100m in order to restrict pollen movement between spatial replicates 

(Evans et al. 2017) (Fig.5.I). Plants remained in the field for seven days and 

the experiment was repeated temporally over four consecutive weeks. The 

abundance and diversity of floral resources within each of the 12 plots was 

measured weekly over the duration of the experiment and was calculated as 

the total number of floral units (e.g. one Taraxacum officinale agg. flower head 

represented one floral unit) averaged across five 0.5m² quadrats which were 

randomly dropped within the plot (Appendix 1: Plant list). Floral communities 

differed across spatial and temporal replicates (Wilcox Abundance: V = 820, 

df = 47, p< 0.001; Diversity: V = 820, df = 47, p< 0.001; Fig.5.V).  Plots were 

then divided into classes of floral abundance using the Braun-Blanquet scale 

to assess the effect of habitat (Braun-Blanquet, 1932) (Number of floral 

units/0.5m² habitat class 1 = 0, habitat class 2 = 1-5, habitat class 3 = 5-25, 

habitat class 4 = 25-50, habitat class 5 = 50-75, habitat class 6 = <75).  
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Figure 5.V The abundance and richness of floral resources in each of the 12 plots across 
the three spatial replicates (measured using five 0.5m² quadrats), averaged over the four 
temporal replicates. 

Figure 5.IIV From top left to bottom right: A central Vicia faba array in the junction of four 
plots; the three spatial replicates of the experimental set-up in experiment one. Arrows 
illustrate the intervening plot between central and radiating arrays. 
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Experiment 2 

In August 2016, central arrays of V. faba (as in experiment one: Fig.5.VI) were 

introduced into three of the plots used in experiment one (ensuring a gradient 

of floral resources) (Fig.5.I). Eight Wizard plants were then positioned at 

different distances (2x5m, 2x6m, 2x7m, 2x8m) from the central array (forming 

a circular formation; Fig.5.VI). As before, this set-up was repeated in three 

locations across the experimental site; each separated by a distance greater  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.VI From top left to bottom right: The three plots in experiment two. Arrows 
illustrate the intervening plot between the central array and radiating Wizard plants; the 
three plots, illustrating the central array and the eight radiating Wizard plants at different 
distances and the central V. faba array. 
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than 100m. Plants remained in the field for seven days and the experiment 

was repeated temporally over four consecutive weeks (one replicate was 

however destroyed by inclement weather leaving only three replicates). The 

abundance and diversity of floral resources was measured (as in experiment 

one) (Appendix 1: Plant list) and similarly differed across spatial and temporal 

replicates (t test Abundance: t = .54, df = 8, p = 0.008; Wilcox Diversity: V = 

45, df = 8, p < 0.009; Fig.5.VII). 

 

 

Figure 5.VII The abundance and richness of flower resources in each of the three plots 
(measured using five 0.5m² quadrats), averaged over the three temporal replicates. 

 

5.3.2 Pollen movement 

Upon reaching reproductive maturity (i.e. flower production), all open flowers 

on Wizard plants were removed and one flower on each plant was covered in 

a fine muslin to measure the incidence of auto-pollination in the absence of 

pollinator availability. Plants were subsequently introduced into pre-marked 

locations. Following the seven-day study period Wizard plants were collected 

in (Arthur plants were discarded) and all unopened buds were removed to 
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avoid confusion with flowers subjected to field conditions. Plants were then 

stored under glasshouse conditions (as above) until fruit maturation. Following 

the maturation of fruit, a sub sample of three seeds from up to three pollinator 

exposed fruit per plant (depending on the number of fruits produced) were 

sown and were raised under glasshouse conditions (as above). When at 

reproductive maturity, flowers from second generation plants were continually 

‘tripped’ (agitated) to encourage self-fertilisation (given that hilum colour is 

maternally expressed). Upon maturation, one fruit from each second 

generation plant was then examined (given that all fruit produced by a maternal 

plant will produce seeds exhibiting the same hilum colour). For each radiating 

plant/array the number of the second generation plants comprising black hilum 

and the number comprising white hilum were then recorded. This system 

precludes discrimination of Wizard to Arthur movements as well as Wizard to 

Wizard or Arthur to Arthur movements (Bishop et al. 2016) and thus is only 

capable of detecting a proportion of pollen movement. Given this, pollen 

movement in this study represents detected between- and within-plot pollen 

movement. 

 

5.3.3 Pollinator communities 

The activity density of pollinators known to visit V. faba plants was quantified 

within each plot using pan traps (Westphal et al. 2008). Traps comprised three 

water-filled circular plastic bowls (80x200mm) painted with non-toxic 

fluorescent paint (one yellow, one blue and one white; UV Gear, UK). Pan 

traps have been deployed to describe pollinator species richness and activity 

density (Westphal et al. 2008) and, in some cases, to provide a surrogate 

measure of visitation (Ricketts et al. 2008). However, this survey method has 

been recognised to exhibit bias (Roulston et al. 2007) because the 

attractiveness of pan traps depends upon habitat and landscape context 

(Baum and Wallen 2011). Pollinators are less likely to encounter traps when 

floral resources are abundant and more likely to encounter traps when floral 

resources are scarce i.e. capture rates are proportional to visitation rates per 

unit flower area (Veddeler et al. 2006). I exploited this phenomenon to measure 
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the attractiveness and pollinator activity density at the experimentally rare plant 

arrays located within different habitats. 

 

Pan traps were placed in the centre of each plot immediately following the 

temporal replicate to avoid influencing plot attractiveness. Samples were 

collected at each plot (12 in experiment one and three in experiment two) on 

four occasions (or three in the case of experiment two) during 32-day study 

periods. Each survey was carried out in a randomised order between 0930 and 

1700. After traps had been deployed for 24 hours, the catch was strained 

through fine muslin. All flower visitors were assigned to a broad taxonomic 

group (Bombus spp., Apis mellifera, solitary bee (small, medium and large), 

Syrphid (small, medium and large), Lepidoptera, Diptera and Coleoptera) and 

were subsequently counted. Of the total pollinators, the number of pollinator 

individuals from groups known to pollinate V. faba (Apidae: Apis mellifera, 

Bombus spp., solitary bee (small, medium and large) and Diptera: Syrphidae 

(small, medium and large)) was determined. Given the positive relationship 

between body mass and foraging distance in Apoidea (Greenleaf et al. 2007), 

the distance between the wing bases (Inter-tegular span, henceforth ‘IT’ span), 

which provides a proxy for dry body mass in Apoidea (Cane 1987), was 

determined. This relationship is less clear in Lepidoptera and Syrphidae, 

however inter-tegular span has previously been used as a measure of dry body 

mass in the latter given observed correlations (Folkӧ 2014). I therefore 

adopted this measure to maintain consistency, but it is important to note the 

potential inaccuracy in estimations due to differences between pollinator 

groups. The IT span was therefore measured for up to five insects from up to 

13 species representing each pollinator group listed above using digital 

callipers. From this, an average IT span was calculated for each group of 

potential V. faba pollinators (listed above) and applied across the whole 

pollinator catch. A community weighted IT span was then calculated for 

pollinators within each plot.  
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5.3.4 Heterospecific pollen deposition 

The deposition of heterospecific pollen on V. faba plants was measured in 

experiment two to assess the directness of within-plot movement through the 

occurrence of interspecific pollen transfer. Prior to the transference of plants 

into pre-marked locations, three buds (early stage) on each Arthur plant were 

covered with fine muslin to exclude pollinators and thus, serve as a control. 

After the seven-day study period, stigmas were removed from three pollinator-

excluded and three pollinator-exposed flowers (using dissecting tweezers 

rinsed with ethanol) on each of the three Arthur plants within the central arrays. 

Each stigma was transferred directly to separate Eppendorf tubes containing 

50µl of 70% ethanol.  

 

Prior to measuring heterospecific pollen deposition, ethanol was left to 

evaporate from tubes. Following this, three drops of Calberla’s solution (5ml 

glycerine, 10ml 95% ethanol, 15ml distilled water and 2-5 drops of fuchsin mix 

(50:50 distilled water and fuchsin crystals); Dafni et al. 2005) was added to 

each Eppendorf in order to stain pollen and aid identification. Tubes were 

sonicated and the solution was mounted on a slide using a pipette and sealed 

with a coverslip. Slides were examined under a compound microscope at X20 

magnification and the number of heterospecific and conspecific pollen grains 

were recorded.  

 

5.3.5 Plant reproductive success 

The number of viable seeds were counted for each of the fruits produced by 

Wizard plants in order to obtain a measure of seed set in plots varying in floral 

resources (described in section 5.2.1). Following this, the seeds from each fruit 

were placed in separate sealed paper envelopes and oven dried at 80°C for 

seven days to obtain a standardised desiccation state (Bishop et al. 2016). 

Upon drying, the total seed set of each fruit was weighed to obtain the biomass 

of reproductive output and then divided by the total number of seeds produced 

per fruit to obtain the mean seed weight from plants subjected to field 

conditions.  
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5.3.6 Statistical analysis 

Generalised linear mixed effects models (GLMMs) were used to analyse 

pollinator communities, heterospecific pollen deposition and plant reproductive 

success. Where random effects did not account for variation in the data 

generalised linear models (GLM’s) and linear models (LM’s) were used 

instead. For pollinator community models, a GLMM with a Poisson error 

distribution was used both for the total activity density of pollinating insects (n 

= 48) and the activity density of potential V. faba pollinators (n = 48) in 

experiment one, whereas an LM with a Gaussian error distribution (n = 9) was 

used in both cases in experiment two. In contrast, the community weighted 

mean IT span of potential V. faba pollinators was analysed using an LM and a 

GLMM with a Log-normal error distribution (to account for non-integers) in 

experiments one (n = 30) and two (n = 9) respectively. Further, the deposition 

of heterospecific pollen was modelled using a GLMM with a Poisson error 

distribution (n = 81). When analysing plant reproductive success, seed set was 

modelled using a GLM in experiment one (n = 330) and a GLMM in experiment 

two (n = 125). This was analysed with a Binomial error distribution, where the 

number of seeds produced by a field-exposed fruit was modelled against the 

maximum number produced across the experiment (given that seed set was 

constrained at low numbers). The weight of seeds (both mean seed weight 

and reproductive biomass) was similarly modelled using a GLMM with a Log-

normal error distribution in both experiments one (n= 330) and two (n= 125), 

with the exception of mean seed weight in experiment two which was modelled 

with a Gaussian error distribution.  

 

In all models, fixed effects comprised the abundance and diversity of floral 

resources within experimental plots. In addition, the distance of separation 

between plants was included as a fixed effect in experiment two. To account 

for the structure of the experimental design, temporal replicate (nested within 

plot) was included as a random effect in all GLMMs using Poisson and 

Binomial error distributions. Alternatively, in GLMMs using Gaussian error 
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distributions, only the temporal replicate was included as a random effect given 

the restrictions of the model. Stepwise selection using Laplace approximation 

(suitable for <3 random effects: (Bolker et al. 2009)) was then used to 

determine the minimal adequate model. Minimal models were subsequently 

compared to a null model with an identical random error structure, using an 

analysis of variance (ANOVA).  

 

Given the sparsity of between- and within-plot pollen movements, statistical 

analysis of movement in relation to floral resources was precluded. The 

relationship between pollen movement and both pollinator activity density and 

pollinator community weighted mean IT span was however analysed using a 

GLM with a Poisson error distribution. All analyses were conducted in ‘R’ 

(version x64; R Core Team, 2013), using the lme4 package (Bates et al. 2015).  

 

5.4 Results 

 

5.4.1 Pollen movement 

Outcrossing was observed in the majority of the central V. faba arrays 

examined, indicating an occurrence of intra-array pollen movement within this 

study (88.89% (n = 9) and 75% (n = 4) of arrays examined in experiments one 

and two respectively (only 13 arrays examined given the sparsity of fruit 

production). However, low levels of between-plot pollen movement (15m) was 

observed in experiment one (11.43% of examined fruit (n = 105)), which 

precluded formal statistical analysis. When plots were grouped into classes 

based on floral abundance using the Braun-Blanquet scale, overall, between-

plot pollen movement was greatest over plots comprising intermediate floral 

abundance (Fig.5.VIII).  

 

When measuring within-plot pollen movement at different distances from the 

central array in experiment two, fruit production was limited and, consequently, 

low levels of within-plot pollen movements were observed (8.3% of examined 

fruit (n = 24)), similarly precluding statistical analysis. These within-plot pollen 
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Figure 5.VII The total number of between-plot pollen movements when plots were split into 
classes based on floral abundance using the Braun-Blanquet scale (Floral units/0.5m² 1 = 0, 
2 = 1-5, 3 = 5-25, 4 = 25-50, 5 = 50-75, 6 = >75). 

 

movements were observed in plots three (n = 1) and nine (n = 1), where floral 

abundance was relatively low (1.4-11.4 flowers/0.5m²), between plants 

separated by a distance of 5m. 

 

5.4.2 Pollinator communities 

Overall the activity density of pollinators was low (total catch: experiment 1 = 

1920 individuals; experiment 2 = 251 individuals). Of the potential V. faba 

pollinators (Apoidea and Syrphidae) only 72 individuals (experiment 1, 

dominated by solitary bees, 76%) and 32 individuals (experiment 2, dominated 

by syrphids, 34%) were recorded. In experiment one, the total number of 

pollinating insects was not significantly related to the diversity or abundance of 

floral resources within a plot (p = 0.504 and p = 0.705 respectively). In contrast, 

the activity density of pollinators known to pollinate V. faba (Apidae and 

Syrphidae) was negatively correlated with a plot’s floral abundance (GLM z = 

-2.27, df = 44, p = 0.024, R²C = 0.37; Fig.5.IX) but not diversity (p = 0.164). Of 

these pollinators, no relationship was observed between the diversity or 

abundance of floral communities within a plot and the community weighted 
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mean IT span of potential V. faba pollinators, though a weak positive 

relationship was measured in the latter (p = 0.692 and p = 0.097 respectively). 

In contrast, in experiment two, neither the activity density (the total number or 

the number of potential V. faba pollinators), nor the community weighted mean 

IT span of potential V. faba pollinators was affected by the abundance (p = 

0.993, p = 0.673 and p = 0.984 respectively) or diversity (p = 0.864, p = 0.583 

and p = 0.928 respectively) of floral resources within a plot. 

 

Assessment of the relationship between pollinator communities and pollen 

movement was only analysed in experiment one given the particularly low 

incidence of pollen movement in experiment two. In doing this, between-plot 

pollen movement (15m) exhibited no relationship with either the activity density 

of pollinators or the community weighted mean IT span of potential V. faba 

pollinators (p = 0.376 and p = 0.360 respectively). 

 

 

Figure 5.VIII The total number of potential V. faba pollinators (e.g. Apidae and Syrphidae) 
caught within pan traps in experiment one in relation to the abundance of floral resources 
within a plot. 
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5.4.3 Heterospecific pollen transfer 

In experiment two, which looked at within-plot pollen movement, the number 

of heterospecific pollen grains deposited at a flower level was low (mean ± SE 

heterospecific: 0.81 ± 0.13; conspecific: 462.75 ± 64.17) and on flowers 

containing such pollen, this only represented 1-3 plant species, indicating a 

low incidence of interspecific pollen transfer within central V. faba arrays. 

Unsurprisingly therefore, the deposition of heterospecific pollen was not 

significantly related to the abundance or diversity of floral resources within a 

plot (p = 0.207 and p = 0.235 respectively). Although all heterospecific pollen 

was not identified to species level, pollen observations included plant species 

from within plots (e.g. Plantago lanceolate, a predominantly wind pollinated 

plant), plant species from within nearby plots (e.g. Leontodon hispidus) and 

plant species from the wider landscape (e.g. Pinus spp. (wind pollinated)).  

 

5.4.4 Plant reproductive success 

The number of seeds produced by V. faba plants was relatively consistent 

(mean ± SE Experiment 1 = 2.81 ± 0.15; Experiment 2 = 2.62 ± 0.23). 

Unsurprisingly therefore, no relationship was observed between seed set and 

the abundance and diversity of floral communities within a plot in either 

experiment one (p = 0.643 and p = 0.833 respectively) or experiment two (p = 

0.136 and p = 0.134 respectively) (when analysed against the maximum seed 

set observed; eight and five respectively). Similarly, the biomass of the 

reproductive output (total weight of a fruit’s seed set) together with the mean 

weight of seeds was not significantly correlated with the abundance (p = 0.785 

and p = 0.950 respectively) or diversity (p = 0.789 and p = 0.558 respectively) 

of floral communities within a plot in experiment one. Similarly, in experiment 

two, no relationship was observed between the reproductive output or the 

mean weight of seeds and the abundance (p = 0.172 and p = 0.651 

respectively) or diversity (p = 0.227 and p = 0.769 respectively) of floral 

communities within a plot. When analysing the effect of the distance between 

central populations and radiating plants in experiment two, no effect was 
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observed on seed set (p = 0.881), seed weight (p = 0.291) or reproductive 

biomass (p = 0.500). 

 

5.5 Discussion 

 

5.5.1 The effects of a habitat’s floral composition on pollen movement 

between conspecific plant populations  

This study indicates that the connectivity of conspecific plant populations is a 

function of the floral composition within the intervening habitat. This was 

illustrated in experiment one (looking at between-plot pollen movement) 

through an absence of pollen movement over plots comprising high floral 

availability. Although the sparsity of between-plot pollen movement in 

experiment one precludes concrete conclusions, these findings offer support 

to hypotheses. Moreover, these patterns reflect findings from chapter four, 

where inter-population pollen movement was reduced in habitats of high floral 

cover when compared to habitats of low floral cover (Evans et al. 2017). 

Findings here further this research and demonstrate a benefit of an 

intermediate cover of floral resources in enhancing pollen movement between 

conspecific plant populations. This is likely to be driven by the opposing effects 

of facilitation (recruitment of pollinators to habitat patches) and competition 

(between plants for higher visitation and constancy of visits between 

conspecifics). When habitats comprise low-intermediate levels of floral 

resources, co-flowering plants enhance the attractiveness of a habitat, 

facilitate visitation and increase pollen transfer between conspecifics. 

However, as floral resources increase, pollen transfer declines as pollinators 

are co-opted by competitive co-flowering plants (Ghazoul 2006, Jakobsson et 

al. 2009). The degree to which facilitation or competition occurs depends on 

the relative competitive advantage (e.g. large population size) offered by co-

flowering plants in relation to conspecifics (Ghazoul 2006). A high degree of 

competition for pollinators is reflected in this study by a reduction in between-

plot pollen movement.  
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In experiment two, the incidence and distance of within-plot pollen movement 

was similarly low. Where observed, pollen movement was between plants 

separated by close distances (5m) or between plants within central arrays 

(intra-population movements). Although conclusions can not be drawn here, 

this is suggestive of localised foraging. These findings support hypotheses 

which predict that pollinators base decisions on the trade-off between energy 

loss and energy gain. This is explained by optimal foraging theory and the 

benefit of shorter handling times when moving between plants separated by 

closer distances (Marden and Waddington 1981). The tendency of pollinators 

to forage locally, particularly in response to a habitat’s floral cover, is illustrated 

by previous research on pollen movement in V. faba plants, where intra-

population pollen movement increased in response to low floral availability 

(chapter three). The relationship between dispersal distance and floral 

availability has been observed by a wealth of research where a negative 

relationship has been demonstrated between foraging distance and the 

abundance and diversity of floral resources in the wider landscape (Jha and 

Kremen 2013, Danner et al. 2016, Redhead et al. 2016). As distances between 

plants increase, pollinators are faced with a trade-off between moving greater 

distances in search of preferred flowers or relaxing their constancy and 

switching to another plant species (Charnov 1976). Results from experiment 

two however demonstrate low levels of heterospecific pollen transfer 

irrespective of floral resources within a plot. This suggests that pollinators did 

not relax their constancy in line with habitat context as hypothesised. These 

findings are inconsistent with previous research which has shown reductions 

in constancy in response to a scarcity of floral resources (Kunin and Iwasa 

1996). Inconsistencies may be explained by low visitation to V. faba plants and 

thus, low levels of pollen movement in general. However, the response of 

pollinators to habitat context is expected to vary with pollinator taxon (Rader et 

al. 2016). For instance, foraging distance in generalist central place foragers, 

such as Bombus spp., has been shown to be driven more by the diversity than 

the abundance of a habitat’s floral resources (Jha and Kremen 2013). This is 
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arguably due to the importance of Bombus spp. maintaining a stable food 

supply across temporal and spatial scales in order to cater for their life cycle 

and foraging capability. In this study, no relationship was observed between 

floral diversity and pollen movement, probably due to the modest differences 

in species composition of floral communities between plots and the low 

incidence of between- and within-plot pollen movement. This study took 

advantage of the standardised size and distance of separation between study 

plots. In future experiments, it would be important to capture a greater variation 

in floral communities to reduce the unbalanced categorisation of habitats, while 

increasing sampling effort in order to better detect the low incidence of 

between- and within-plot pollen movement. 

 

5.5.2 The influence of pollinator communities on pollen movement 

In this study, the activity density of potential V. faba pollinators did not influence 

the incidence of between-plot pollen movement in experiment one. This 

contradicts previous research which demonstrated a positive relationship 

between pollinator activity density and inter-population pollen movement 

(chapter four). These inconsistencies may be attributable to the relationship 

between pollinator activity density and visitation rates and the biases attributed 

to using pan traps for measuring pollinator activity and richness (see 5.3.3). In 

contrast to chapter four, no direct observations were made between pollinator 

groups and visitation to V. faba plants and therefore relationships between 

pollinators and focal plants and biases of pan traps cannot be ascertained. 

Findings are however consistent with research looking at pollen movement in 

V. faba (chapter three). This indicates that implications of altered pollinator 

behaviour are plant specific and dependent upon interactions with pollinators.  

Findings here demonstrate reductions in pollinator activity density with 

increases in the abundance of floral resources. While this is not a direct 

measure of visitation, this is consistent with previous research demonstrating 

a negative relationship between ‘per floral unit’  visitation and the abundance 

of floral resources within a habitat (Veddeler et al. 2006). This pattern supports 

hypotheses and is explained by the landscape-moderated dilution and 
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concentration hypothesis (Tscharntke et al. 2012), which suggests that ‘per 

floral unit’ visitation is reduced in response to a high availability of alternative 

resources (Veddeler et al. 2006, Sjodin 2007). Reductions in pollinator 

visitation are expected to correspond to reductions in pollen movement and 

therefore, the dilution of pollinators within florally rich habitats may explain the 

absence of between-habitat pollen movement in these habitats in this study.  

 

Pollinator species differ considerably in their foraging behaviour. For instance, 

dispersal distance has been shown to vary between species (Rader et al. 

2011, Danner et al. 2014) in relation to characteristics such as IT span (a proxy 

for body size (Greenleaf et al. 2007) and length (Gathmann and Tscharntke 

2002). Here, however, no relationship was observed between floral resources 

and the community weighted mean IT span of potential V. faba pollinators 

within a plot. This may be due to the small number of pollinators observed 

across surveys, combined with the dominance of communities by small sized 

pollinators (solitary bees and Syrphids in experiments one and two 

respectively). This community composition may explain the low levels of pollen 

movement observed across the two experiments given that both are 

recognised to be poor pollinators and infrequent visitors of V. faba in the field 

(Garratt et al. 2014). Moreover, this may offer an explanation for the absence 

of a relationship between pollinator activity density pollen movement. Syrphids, 

in particular, have been shown to carry smaller pollen loads, comprising less 

viable pollen than bees (Rader et al. 2011). In this study, as I had focussed on 

pollen movement rather than pollinator movement per se, I did not discriminate 

the effects of different pollinator species, and this could be a productive avenue 

for future studies. 

 

5.5.3 The implications of altered pollinator communities and pollen movement 

on plant populations 

In both experiments one and two, the seed set of V. faba plants was not 

affected by the abundance or the diversity of floral resources within a plot. 

Seed set is positively related to the deposition of compatible pollen, which is a 
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function of pollinator visitation (Engel and Irwin 2003, Mayer et al. 2012). 

Pollinator activity density in experiment one were reduced within plots 

comprising high floral abundance, suggesting reduced visitation. Given that 

seed set was not reduced in parallel, this indicates that the supply of 

outcrossed pollen was not a limiting factor for V. faba reproduction in this 

experiment. Although pollen limitation, illustrated in chapter four, has been 

observed frequently in self-incompatible plants (Harder and Aizen 2010), this 

either suggests that limited pollen is required for seed set (Garratt et al. 2014), 

or alternatively, that selfing provided reproductive assurance when pollinator 

availability was low (Eckert et al. 2010). The quantification of self-fertilisation 

was precluded in this study given limitations of the plant system and high 

abortion rates of pollinator excluded flowers. In experiment two however, given 

that radiating plants comprised of an individual plant and that low levels of 

within-plot movement were observed, a high degree of self-fertilisation is 

expected. While self-fertilisation can have negative implications for plant seed 

set, previous research demonstrated comparable seed set in selfed and 

outcrossed V. faba plants (Garratt et al. 2014). This suggests that V. faba plant 

reproduction is not negatively affected by the source of pollen (i.e. whether it 

was outcrossed or selfed).   

 

When measuring the fitness of progeny, findings from both experiment one 

and two indicate that V. faba seed weight, similarly, was unaffected by habitat 

context in this study. This is suggestive that self-fertilisation does not affect the 

fitness of V. faba plants. However, conclusions on the comparative fitness of 

plants were precluded as self-fertilisation rates could not be measured due to 

a sparsity of within-habitat pollen movement data. Vicia faba plants have 

however previously been shown to exhibit comparable fitness following 

reproduction by either outcrossing or self-fertilisation (Garratt et al. 2014). This 

contradicts hypotheses which predicted negative effects of self-fertilisation, but 

instead reflects the effectiveness of the self-compatibility system in V. faba. 

This may be driven by the capacity of V. faba plants to purge deleterious 

effects or, alternatively, because such plants are shown to carry a lower 
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genetic load (fewer deleterious recessive alleles then obligate outcrossers 

which have higher genetic loads) as they are regularly exposed to selection. 

Given this, fitness effects in selfers may not be observed in studies observing 

immediate, short term effects (Lopez-Cortegano et al. 2016). The implications 

of self-fertilisation however will vary depending on a plant’s life stage (Husband 

and Schemske 1996) and may only be detected in specific fitness traits (Thiele 

et al. 2010). This was illustrated by a study which demonstrated that while 

selfed progeny were shown to be 50% less fit than outcrossed progeny when 

analysing seed set and pericarp mass, no effect was observed when 

examining seed weight or germination (Dudash 1990). This emphasises the 

need to measure a greater variety of traits when examining the fitness effects 

of selfing on a plant’s progeny.  

 

Plant fitness is further influenced by the genetic distance of outcrossed pollen, 

where progeny fitness is greatest when the distance between the pollen source 

and the maternal plant is optimal (Dudash 1990). This results from spatial 

genetic structure (SGS) in plant populations, where relatedness declines with 

distance between plants (Loveless and Hamrick 1984). In experiment one, 

radiating arrays comprised three plants to mimic rare and isolated plant 

populations. Given a low incidence of between-plot pollen movement and an 

occurrence of outcrossing within central arrays, a high degree of intra-

population movement is expected. As plants were artificially placed in the field, 

SGS was not expected to impact the arrays in this study. However, under 

natural conditions, where populations may exhibit SGS, a higher incidence of 

inbreeding and reduced genetic variation is expected where pollination occurs 

in localised patches (Ellstrand and Elam 1993). Given the observed absence 

of between-habitat pollen movement over habitats comprising high floral 

abundance, the potential increase in SGS-driven inbreeding may be a long-

term concern for plants in these conditions. 
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5.5.4 Connectivity in fragmented landscapes 

Plant populations in nature are becoming increasingly isolated from 

conspecifics, separated by large distances and a heterogeneity of habitats. 

Increasing the distance of separation between plant populations and altering 

the composition of intervening habitats has been shown to disrupt pollen 

movement between plant populations (Murphy and Lovett-Doust 2004, Leimu 

et al. 2006). Findings here support this research, illustrating an effect of floral 

resources on between-plot pollen movement. At a local scale, between-plot 

pollen movement can be enhanced by low levels of floral resources. Where 

these resources increase, intra- and inter-population pollen movement is 

reduced (illustrated in chapters three and four respectively). Contrary to this, 

high levels of floral resources are demonstrated to increase the permeability 

of habitats to pollinator movement (Rosa et al. 2015). This indicates that while 

pollinators may be attracted to florally rich habitats, they become distracted by 

an abundance of floral resources reducing inter-population pollen movement 

(Lander et al. 2013). 

 

This, along with previous research (chapter four), indicates that connectivity is 

a function of the floral communities within the intervening habitat together with 

the distance between plant populations (Aavik et al. 2014). Given this, inter-

population pollen movement may be enhanced by reducing distances between 

plant populations (e.g. through restoration plantings) together with managing 

intervening habitats to provide an intermediate floral cover. To enhance 

interactions between populations however, a greater understanding is needed 

of the combined effects of a habitat’s structural and functional attributes, 

scaled up to a level which represents a typical foraging bout of a pollinator 

species. Indeed, while landscape composition was demonstrated not to effect 

intra-population pollen movement (chapter three), little is known of the effects 

of floral resources at a landscape scale on population connectivity. Inter-

population pollen movement has been demonstrated to positively affect the 

genetic diversity of a plant population (Aavik et al. 2014). Faced with reductions 

in pollen movement, the genetic diversity of a plant population is expected to 
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decline through a combination of mating between close relatives and genetic 

drift (Frankham 2010). Such losses reduce a plant population’s evolutionary 

potential and long-term survival potential (Etterson 2004). This understanding 

is thus important to inform management interventions to ensure pollen 

movement between conspecific plant populations and thus, gene flow across 

fragmented landscapes (Rosa et al. 2015).  

 

5.5.5 Summary 

Findings from this study suggest an effect of floral resources on the incidence 

of inter-population pollen movement, where between-plot movement was 

maximised over habitats comprising an intermediate abundance of floral 

communities. This suggests that pollen movement is facilitated by low levels 

of floral resources surrounding focal plant populations. Between-plot pollen 

movement was however not related to pollinator activity density, which was 

reduced in response to high floral abundance in experiment one. Changes to 

pollinator activity density and pollen movement in experiment one however had 

no measurable effect on plant reproductive success. This was mirrored by an 

absence of an effect of floral resources on plant reproductive success in 

experiment two, reflecting comparable levels of heterospecific pollen transfer 

across plots in this experiment. The implications for plant reproductive success 

however are expected to vary depending upon a plant’s mating system; the 

degree of genetic structure within a plant population, and the fitness traits 

explored.  

 

In modified landscapes, plant populations are often separated by a matrix of 

heterogeneous habitats and by larger distances than explored in this study. It 

is therefore fundamental that future research focuses on the effect of a 

habitat’s structural and functional attributes at greater scales to determine the 

leading drivers of inter-population pollen movement within modified 

landscapes.
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Landscape modification alters the spatial and temporal availability of floral 

resources. By altering the attractiveness of habitats to pollinators, this is 

expected to influence pollen movement in terms of incidence, distance and 

directness, which may in turn impact the long-term survival of plant 

populations. However, knowledge of the effects of habitat and landscape 

context (e.g. the availability of floral and nesting resources), particularly in 

relation to the importance of spatial scale, on pollinator foraging behaviour and 

thus, pollen movement is limited. Moreover, the implications of variations in 

pollinator foraging behaviour for plants which are rare in the landscape needs 

further investigation in order to prescribe targeted management interventions. 

With this in mind, this thesis explored how variations in the availability of floral 

resources at different spatial scales affected plant-pollinator interactions and 

the impacts of this on the fitness and longer-term survival of plant populations. 

Overall, I focused on two overarching questions:  

 

1. How do variations in the availability of floral resources at different spatial 

scales alter pollinator foraging behaviour and what are the implications 

of this for pollen movement? 

2. How do changes to pollinator behaviour at different spatial scales affect 

plant outcrossing, reproduction and fitness? 

 

These questions were addressed through a number of large-scale and plot 

level field experiments. Chapter two specifically focused on the importance of 

floral resources at a local and landscape scale on plant-pollinator interactions. 

Here, findings demonstrated no relationship between floral resources and 

pollination behaviour (visitation rates and pollinator constancy). Furthermore, 

no effect was observed with the reproduction or fitness of plant species 

exhibiting different mating systems. The amount of pollen removed from study 

plants was however affected by the availability of floral resources at a 

landscape level, where pollen removal increased with the availability of floral 

resources. On this basis, chapter three explored the effects of floral availability 
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using a larger range of habitats at a wider range of spatial scales, to account 

for differences in pollinator floral preferences and foraging capabilities. In this 

chapter I assessed the fate of removed pollen through measures of intra-

population pollen movement. This illustrated changes in pollinator foraging 

behaviour through reductions in pollinator activity density and richness where 

the availability of floral resources was high at a local scale. This was paralleled 

by changes to intra-population pollen movement. No effects however were 

observed when floral resources were measured at spatial scales greater than 

50m. Chapter four therefore focused on the availability of floral resources at a 

local scale, this time exploring the effects on inter-population pollen movement 

and plant outcrossing rates within a habitat. Additional findings here 

demonstrated changes in pollinator function through reductions in inter-

population pollen movement and outcrossing rates when plants were located 

within florally rich habitats. The implications of changing pollinator function on 

plants present at low frequency was illustrated through a higher incidence of 

pollen limitation coupled with reductions in reproduction and fitness. With this 

in mind, chapter five explored how movement of pollen and the effects on plant 

fitness varied with a gradient of floral communities at a local scale. Here 

additional findings demonstrated changes in pollinator function through a 

higher incidence of inter-population pollen movement over habitats comprising 

intermediate floral resources, though given the paucity of data, statistical 

analysis in this case was precluded. 

 

In this chapter, I evaluate how findings from each of these chapters have 

contributed to answering the overarching questions and explore the wider 

implications for the management and conservation of threatened plants. 
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6.1 How do variations in the availability of floral resources at 

different spatial scales alter pollinator foraging behaviour and 

what are the implications of this for pollen movement? 

 

6.1.1 Pollinator behaviour 

In this thesis, variations in pollinator foraging behaviour was quantified by the 

activity density, richness and inter-tegular span (‘IT’ span) of pollinators. I show 

that the abundance of floral resources at a local scale had a negative effect on 

the activity density and richness of pollinator species (per unit area), while 

positively affecting pollinator IT span (a proxy for body size). This does not 

reflect the overall density and diversity of pollinators within a habitat, but 

instead illustrates the effect on the potential for pollinator visitors at a plant 

level. Reductions in pollinator activity density and richness at a plant level have 

similarly been observed in previous studies and are argued to be a result of a 

dilution effect; as pollinators are unable to utilise all available floral resources, 

‘per floral unit’ visitation rates are reduced (Veddeler et al. 2006, Jha and 

Vandermeer 2009, Holzschuh et al. 2016). Under these conditions, plants are 

faced with competition for a limited number of shared pollinators (Schuett and 

Vamosi 2010, Grab et al. 2017). Indeed, in this thesis, communities within 

florally rich habitats were shown to comprise larger pollinators, reflecting a 

greater number of Bombus spp. Given the tendency for Bombus spp. to exhibit 

constancy to a flower species (Gegear and Laverty 2005), visitation to isolated 

plants within florally rich habitats may be expected to be further reduced. 

Throughout this thesis, focal plants were present at low frequency (designed 

to mimic rare plant populations) and thus did not exhibit the competitive 

advantage required to benefit from a facilitative effect and co-opt pollinators. 

When, however, plants increase their competitive advantage (illustrated in this 

thesis through greater population size and enhanced attractiveness associated 

with a self-incompatible mating system syndrome), they become better able to 

co-opt pollinators. Although the relationship between population size and 

visitation is inconsistent (Mustajarvi et al. 2001), findings here mirror patterns 
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from a previous study which demonstrates a positive relationship between 

plant population size and pollinator visitation rates in populations comprising 

less than a few hundred plants (Bernhardt et al. 2008), as was the case in this 

study. This suggests that interventions aimed at increasing the attractiveness 

of plants occurring at low frequencies may negate the negative effect of high 

floral cover in the surrounding habitat. 

 

Variations in pollinator foraging behaviour were observed in this thesis to be 

governed by floral resources at a local (<50m) rather than a landscape scale 

(50-1500m). While the effect of co-flowering heterospecific plants on pollinator 

visitation rates is consistent with previous research, the absence of an effect 

of floral resources in the wider landscape contradicts research which has 

demonstrated an importance of landscape context on pollinator visitation 

(Steffan-Dewenter et al. 2002, Woodcock et al. 2013, Pisanty et al. 2016). 

Contrasting patterns at different spatial scales have however been observed 

in previous research (Veddeler et al. 2006) and suggest that while landscapes 

comprising a high availability of floral resources may attract a greater number 

of pollinators (Ricketts et al. 2008) as illustrated in this thesis, it is floral 

communities at a local scale which determine whether plants benefit from the 

greater number of pollinators. It is noteworthy however that findings from this 

thesis were inconsistent across experiments, where no significant difference 

was observed between pollinator communities in response to the availability 

of floral resources at any spatial scale in chapters two and five (experiment 

two). This may have arguably been driven by the low number of recorded 

visitors in chapter two as a result of differences in survey method. While 

visitation observations provide direct measures of ‘per floral unit’ visitation 

rates, they yield low pollinator numbers and thus a paucity of data. In contrast, 

in chapter five, the absence of a relationship in experiment two may have been 

caused by floral communities being not as distinct as intended due to the 

management schedule at Parks grass (e.g. late cutting of plots). These 

inconsistencies between experiments highlight the context specific nature of 

plant-pollinator relationships and the importance of the composition of floral 
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communities and the local pollinator pool in governing plant-pollinator 

interactions. 

 

6.1.2 The implications for pollen movement 

In this thesis, pollen movement was explored through the removal and 

deposition of pollen together with intra and inter-population pollen movement 

across a range of distances. Findings demonstrate a negative relationship 

between the abundance of floral resources at a local scale and pollen 

movement, indicating a change to pollinator foraging behaviour in response to 

floral availability. Typically, pollinator foraging is localised, displaying a 

distance decay distribution (Pasquet et al. 2008, Rader et al. 2011, Matter et 

al. 2013). This was reflected by patterns of pollen movement in this thesis, 

where the incidence of intra-population pollen movement was high and 

comparably, inter-population pollen movement (50-150m) was limited, 

particularly when the distance between populations exceeded 50m. This pollen 

movement was demonstrated to be affected by the surrounding floral 

communities, where both intra (1m) and inter (50-150m) population pollen 

movement was reduced as floral abundance increased at a local scale. This 

offers support to a previous study which showed inter-population pollen 

movement to be a function of the intervening habitat, where the presence of 

alternative resources led to a reduction in pollen transfer (Lander et al. 2011). 

In contrast, where floral resources were scarce, pollinators depleted resources 

(illustrated by increased intra-population pollen movement) and then moved 

longer distances in search of other resources. While pollen movement is not a 

direct measure of pollinator behaviour (Roulston et al. 2007), findings 

demonstrating a positive correlation between the activity density of pollinators 

and the incidence of inter-population pollen movement suggest an importance 

of pollinator visitors. The relationship between pollinator activity density and 

pollen movement was however not observed in chapter five. This 

inconsistency between experiments was likely due to a combination of a low 

incidence of between- and within-plot pollen movement caused by a low 

abundance of potential Vicia faba pollinator visitors.  
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Heterospecific pollen deposition and pollen removal however were unaffected 

by local floral communities, indicating comparable pollinator constancy and 

efficiency in habitats varying in floral resources. This contradicts previous 

studies which demonstrate changes in pollinator constancy and behaviour in 

response to a high availability of floral resources (Kunin and Iwasa 1996, 

Lander et al. 2011, Carvell et al. 2012). Given that deposition of conspecific 

pollen was not quantified, it is unclear as to whether the high degree of 

constancy observed in this thesis irrespective of surrounding floral 

communities reflects constancy to focal plants or to heterospecific plants, 

though given the low visitation rates, the latter is more likely. The removal of 

pollen however, while unaffected by floral resources at a local level, increased 

with floral resources at a landscape scale (1km²). Given that visitation was not 

affected by floral resources at a landscape level, this suggests a difference in 

the efficiency of pollinators in relation to landscapes varying in floral availability 

(Boscolo et al. 2017).  However, since intra-population pollen movement was 

not affected by floral resources at a landscape level, the fate of this removed 

pollen is unclear. 

 

6.1.3 Summary 

In this thesis, pollinators were shown to respond to the availability of floral 

resources at a local (<20-50m) and, to a lesser extent, a landscape scale 

(1km²). This was illustrated through changes in pollinator foraging behaviour 

in terms of activity density, species richness and pollinator IT span (per unit 

area). This had direct implications for pollen movement, affecting pollen 

removal rates and the transference of pollen, illustrated through changes to 

both intra- and inter-population pollen movement. These findings therefore 

highlight the importance of local floral communities in governing the activity of 

potential pollinator visitors and affecting pollinator foraging behaviour. 
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6.2 How do changes to pollinator function at different spatial 

scales affect plant outcrossing, reproduction, and fitness? 

 
The implications for plants of changes to pollinator function in response to the 

availability of floral resources was measured in this thesis through the 

incidence of pollen limitation, outcrossing rates, seed set and progeny fitness. 

Changes to pollinator function (including dispersal distance and pollen transfer 

efficiency) in response to the availability of floral resources was demonstrated 

to affect a plant’s outcrossing rates and reproductive success. Outcrossing 

rates were reduced where the abundance of floral resources was high 

surrounding experimental arrays (illustrated in chapters three (through intra-

population movement) and chapter four). This is consistent with previous 

research and reflects the low activity density and richness of pollinators within 

such habitats, driven in part by competition from other floral resources (Bell et 

al. 2005). Under these conditions, plants in chapter four were shown to receive 

an insufficient pollen supply, offering support to previous studies which have 

similarly demonstrated a high incidence of pollen limitation in plants when 

surrounded by rich floral communities (Jakobsson et al. 2009). Self-compatible 

plants, which can offer reproductive assurance, were observed in chapters 

three and five to be unaffected by changes to pollen movement. In contrast, 

plants which could not readily utilise self-pollen, were shown to suffer reduced 

seed production in chapter four. This pattern however was inconsistent and no 

such relationship was observed between floral resources and the seed set of 

plants exhibiting a low propensity to reproduce by self-fertilisation in chapter 

two. This variation between experiments reflected parallel inconsistencies with 

measures of pollinator activity density in this chapter and thus is unsurprising.  

 

Findings from this thesis further demonstrate an effect of changes to pollinator 

behaviour on plant fitness. This was illustrated in chapter four through 

reductions in the germination of seeds produced by plants exhibiting a low 

propensity to self when located within florally rich habitats. Given that this 

reflected parallel reductions in outcrossing rates, these findings imply a 
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negative effect of self-fertilisation. This was supported by findings from chapter 

two, where seed weight was demonstrated to be lower in plants potentially  

reproducing by self-fertilisation. Effects on plant fitness were however 

inconsistent across this thesis, with no relationship observed between seed 

germination and floral resources in either plant species in chapter two. 

Moreover, the negative implications of self-fertilisation on plant fitness were 

only observed in early stage fitness traits and not later stage fitness traits as 

measured in chapter four (e.g. the number of flowers at reproductive maturity 

etc.). This illustrates a plant’s ability to negate the negative effects of self-

fertilisation (Husband and Schemske 1996). This supports hypothesises 

suggesting a plant’s ability to purge the deleterious effects of self-fertilisation 

(Smith and Maynard-Smith 1978). The immediate effects of changes to 

pollinator function in response to variations in the availability of floral resources 

on plants are therefore expected to be minimal. In the longer-term however, 

self-fertilisation has been demonstrated to lead to more pronounced 

inbreeding and deleterious effects on plant survival (Lynch et al. 1995, Koelling 

et al. 2011, Sicard and Lenhard 2011). For instance, over four years, seeds 

from selfed plants exhibiting a mixed mating system were shown to suffer 

reductions in leaf area and height when compared to seeds from outcrossed 

plants (Mooney and McGraw 2007). More work is therefore needed to assess 

longer term fitness implications, using population models to incorporate other 

limiters to population survival (e.g. herbivory), in order to decipher the long-

term implications for plants. 

 

6.2.1 Summary 

Changes to pollinator function (e.g. foraging behaviour) in response to the 

availability of floral resources can be seen here to reduce the quantity and 

quality of pollen transfer. This was illustrated through a higher incidence of 

pollen limitation, coupled with reductions in plant outcrossing rates. Although 

this led to negative implications for plant reproduction and fitness, findings 

recognise differences between plant species. In the short-term, plants here 

have demonstrated the capacity to recover from the negative effects on fitness. 
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However, in the long-term, the negative effects on plant fitness will be 

determined by the degree of inbreeding within the next generation of plant 

progeny. 

 

6.3 Limitations of approach  

 
Associated with each experiment were a number limitations involving both the 

experimental system and the methods used which, in some instances, 

constrained the experiment and led to restrictions on the inferences being 

made. 

  

6.3.1 Experimental system 

When exploring the effects of habitat composition on plant-pollinator 

interactions, I utilised agri-environment scheme options; wildflower and pollen 

and nectar mixes to represent florally rich habitats and thus ensure that the 

availability of floral resources was standardised across spatial replicates. 

These sown habitats comprise a limited array of plant species, which have 

been shown in some cases to be particularly attractive to a small suite of 

pollinators (e.g. Bombus spp.; Wood et al. 2015). Exploring whether pollinators 

associated with these habitats included species known to visit the focal plant 

species was beyond the scope of these experiments. It is recognised however 

that findings may have varied if plants were instead introduced into habitats 

where a greater diversity of bees known to pollinate the focal plant species 

were expected. This is particularly the case for Silene gallica which is 

pollinated predominantly by syrphids which, given differences in morphology 

(e.g. to Bombus spp.), vary in their floral preferences. Moreover, when 

quantifying floral availability at a landscape scale, it was a combination of these 

habitats, along with woodland and grassland, that were classified as having a 

high floral richness. Although this categorisation was similarly used in previous 

experiments to mitigate the constraints of quantifying floral resources at a 

landscape scale (Steffan-Dewenter et al. 2002), it is recognised that habitats 

can vary considerably in their floral availability. Future studies may therefore 
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benefit from separating habitats into categories based on prior knowledge of 

the availability of floral resources. Further benefit may also be gained from 

maintaining greater consistency between sites or study systems to allow for 

cross comparison with fewer confounding variables. While this was the 

intention and was in some cases achieved (e.g. the use of Hillesden and E. 

California in multiple chapters), it was not always practical to answer the 

questions being asked. For example, Hillesden was too small for sufficient 

replicates at a landscape scale and variation in floral resources at these scales 

across a site is often limited. These experiments however, offer preliminary 

data and when scaling these experiments up, it is advised that the study 

system (e.g. plant species) should remain consistent but that populations are 

introduced into habitats which are more reflective of natural populations. 

 

6.3.2 Methods selection 

The experimental methods were chosen in order to maximise data return in 

light of time and funding constraints. Indeed, when measuring pollinator 

visitation, pan traps were often used to make inferences on visitation. This was 

following a paucity of low resolution data (i.e. recognisable taxonomic units) 

from visitation observation surveys. Pan traps alternatively provided a species 

inventory over a much longer time period (Ricketts et al. 2008). While, in some 

cases, visitation observations were conducted alongside pan traps to ensure 

consistency in catches between methods, pan traps do not reflect visitation 

rates and further, are shown to exhibit biases in catch (e.g. more generalists 

are often caught) (Roulston et al. 2007). In future, this could be remedied by 

increasing the sampling effort of visitation observation surveys or by utilising 

digital recording devices, enabling direct associations with plant visitation. It is 

important however that recording devices are used in combination with either 

pan traps or visitor observations given that they are shown to be limited by the 

depth and field of view (Gilpin et al. 2017). Similarly, when measuring pollen 

movement, time and funding constraints restricted the number of molecular 

markers used. This led to a large number of progeny samples being 

disregarded based on uncertainty in paternity assignment. Further, given that 
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inter-population pollen movement was low across all experiments, this 

indicated a need for greater sampling effort; a factor which should be borne in 

mind for future studies within this field. 

 

6.4 The implications for the management and conservation of 

threatened plants 

 

6.4.1 Habitat management 

The floral communities surrounding plant populations can compete for 

pollinator visitors or alternatively, depending upon flowering stage, they can 

instead facilitate pollination services (Grab et al. 2017). In this thesis, plants 

which were present at low frequency were outcompeted for ‘diluted’ pollinators 

when surrounding floral communities were abundant and diverse. While this 

may reflect the artificial nature of habitats introduced as part of agri-

environment schemes, which provide provisions for a limited pollinator 

community (Wood et al. 2015), it highlights the importance of considering the 

surrounding floral community when managing threatened or isolated plants. 

Management of threatened or isolated plants should therefore focus on 

maximising facilitation of pollinator visitation whilst also enabling isolated 

plants to better compete and co-opt pollinators (Grab et al. 2017). This could 

be done through limited intervention and instead, by allowing nature to take its 

course. This approach should encourage an intermediate cover of flowers with 

different phenotypes and flowering periods and thus limit competition between 

plant species. Alternatively, interventions can be used to facilitate visitation 

and pollen transfer, including increasing the attractiveness of floral displays 

through the introduction of magnet species (Molina-Montenegro et al. 2008) 

as well as by increasing the duration of floral availability through introducing 

plants with a range of flowering periods (Moeller 2004, Ghazoul 2006). This 

will enhance the activity density of shared pollinators within a habitat, or within 

non-target, neighbouring habitats through a spill-over effect (Brudvig et al. 

2009). Management interventions designed to help isolated plants better co-
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opt pollinators should focus on directly maintaining and increasing their 

population size (and indeed this is illustrated here by greater visitation when 

plant populations were large). The co-opting of pollinators can be further 

enhanced by targeted restoration plantings of heterospecific species, selecting 

for plant species which flower sequentially to isolated plants (Menz et al. 2011, 

Grab et al. 2017) and exhibit complementary phenotypes (e.g. different colour 

forms; Ghazoul 2006). 

 

6.4.2 Managing the intervening habitat  

The wider habitat matrix is shown here to be important for determining the 

ability and likelihood of pollinator movement between optimal habitat patches 

and thus, gene flow between plant populations. Indeed, through this thesis I 

demonstrate gene flow between conspecific plant populations and thus, 

connectivity, to be a function of the attributes of the intervening habitat. For 

instance, pollen movement was shown to be reduced between conspecific 

plant populations when separated by florally rich habitats. Example 

management interventions designed to enhance connectivity have included 

the use of corridors and stepping stone habitats (Bruckmann et al. 2010, Menz 

et al. 2011). While these create a directional response and provide a means of 

facilitating the movement of organisms between patches (Cranmer et al. 2011, 

Dick et al. 2003), findings from this thesis indicate that corridors can impede 

pollen movement between isolated plants by distracting pollinators which 

move to more rewarding, abundant flowers. For conservation and restoration 

efforts, the intervening habitat therefore needs to be taken into consideration 

in order to create self-sustaining plant populations and thus, lessen a plant’s 

vulnerability to extinction; a key objective of management interventions (Reiter 

et al. 2016). Therefore, where re-introduction or translocation programs of 

threatened plants are planned, care should be taken to ensure a network of 

low floral resources between plant populations. In natural populations, this can 

instead be achieved by reducing the isolation between conspecific plants by 

establishing additional populations where connectivity may be low (Hodgson 

et al. 2009, Auffret et al. 2015). It is noteworthy, however, that while gene flow 
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between populations can provide genetic rescue to inbred populations (e.g. 

heterosis) (Pickup et al. 2013), pollen from distant populations can result in 

outbreeding depression and thus, negatively affect plants (Ruane et al. 2015). 

Identifying an appropriate genetic source is therefore necessary prior to such 

interventions.  

 

6.4.3 The scale of intervention 

Floral resources at the landscape scale have been highlighted as driving 

pollinator attraction and thus governing pollinator communities within an area 

(Montero-Castano and Vila 2012, Boscolo et al. 2017). This, through ensuring 

relationships with pollinators, is key to the success of conservation efforts for 

threatened plants (Reiter et al. 2016). However, findings from this project 

indicate that threatened or isolated plant species may instead be affected to a 

greater degree by floral resources at a habitat scale. Therefore, although 

pollinators may be enhanced at a landscape scale, surrounding floral 

communities determine the level of competition for increased shared 

pollinators and thus, the benefit for plants. This highlights the need for focused 

habitat-level management when introducing conservation or restoration 

interventions for plant populations. It is noteworthy however that competition 

for pollinator visitation has been argued to be mitigated by increases in the 

activity density and richness of pollinators, which is expected to be greater in 

landscapes with a higher proportion of semi-natural habitats (Ricketts et al. 

2008, Diekotter et al. 2010, Holzschuh et al. 2016). While this was not shown 

in this thesis, this suggests that in certain circumstances landscape 

composition may still be important when designing management for plant 

populations. A greater understanding of the role of landscape composition in 

plant-pollinator relationships is therefore needed in order to decipher the 

indirect implications for plants. 
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6.5 Future directions 

 
Following experiments conducted during this thesis, findings have uncovered 

gaps in our understanding of plant-pollinator interactions which warrant 

investigation. These are important to further our understanding of changes to 

pollinator behaviour in response to landscape modification and enable 

targeted restoration and conservation of threatened and isolated plant species. 

Recommendations for future work are listed below. 

• How do the functional and structural attributes of a habitat alter the 

connectivity between plant populations which reflect conditions 

observed in nature? Given that the connectivity of plant populations has 

been shown to be a function of a habitat’s structural and functional 

attributes, research would now benefit from exploring the synergy of 

these variables. Indeed, in nature, plant populations are often separated 

by large distances together with a heterogeneity of habitats and barriers 

obstructing pollinator movement. A greater understanding of 

connectivity under different conditions would thus allow for more 

focused management of threatened plant populations. 

• Does the availability of floral communities affect the fate of pollen and a 

plant’s paternal success? With increased pollen removal in response to 

a high availability of floral resources at a landscape scale observed in 

this thesis, research would now benefit from understanding where 

pollen is being moved to in relation to the associated pollinator species. 

Indeed, pollinator species differ considerably in their foraging behaviour 

and work has tended to focus on specific species (e.g. Apis mellifera). 

By discriminating pollinator behaviour and foraging paths at a species 

level, management interventions could be targeted to enhance effective 

pollen transfer by associated pollinators. 

• What is the balance between competition and facilitation in plant 

populations which are present at low frequency in nature? Plant 

populations under natural conditions are likely to have established 
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pollinator communities. Given this, it would be beneficial to explore the 

balance between competition and facilitation in threatened plant 

populations, with particular focus on how plant populations could 

mitigate the negative effects of competition and maximise facilitation. 

This is particularly important for determining how best to manage plant 

populations which are threatened or isolated due to anthropogenic 

modification. 

 

6.6 Conclusion 

 

Overall, findings from this thesis highlight the importance of floral resources at 

a local scale on pollinator foraging and pollination services to threatened or 

isolated plant populations. Co-flowering heterospecific plants, by offering 

alternative resources, compete for ‘diluted’ pollinators, resulting in reductions 

in potential pollinator visitors. The consequences of these changes are 

demonstrated through disruptions in the dispersal distance and incidence of 

pollen movement, with negative implications for plant outcrossing and intra- 

and inter-population gene flow. This was demonstrated to result in negative 

implications for plant reproduction and fitness in plants exhibiting a low 

propensity to self, driven in part by a higher incidence of pollen limitation in 

florally rich habitats. Although effects on reproduction and fitness were not 

observed in all plant species studied, due in part to differences in the ability to 

offer reproductive assurance provided by different mating systems, long-term 

fitness is expected to be affected by reductions in gene flow.  

 

Given this, conservation and restorative efforts should focus on the 

surrounding and intervening habitat between threatened or isolated plant 

populations. Emphasis should be put on maximising the facilitative effect of 

neighbouring plants to encourage pollinator visitation and pollen transfer, while 

enabling plants to better withstand competition. In order to better prescribe 

management interventions however, further research is needed into changes 
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to plant-pollinator interactions under more realistic conditions which are 

representative of plant populations in nature. This will enable the application 

of findings across a wider range of plants and landscape contexts. 
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                                                                     Chapter 2    Chapter 3                         Chapter 4  Chapter 5 

 

Plant species Hillesden Widmere  Waddesdon  Earth trust  Hillesden  Hillesden  Park Grass  Park Grass  

   (May)         (August) 

 

Achillea millefolium L. R        

Anthriscus sylvestris L. emend. Hoffm. R      A  

Borago officinalis L. R        

Capsella bursa-pastoris L. emend. Medik.      R   

Centaurea nigra L. F R R   F   

Cerastium fontanum Baumg. O R   R R R  

Chenopodium album O        

Cirsium vulgare Savi. emend. Ten. R        

Conopodium majus Gouan. emend. Loret.       R  

Daucus carota L. O     R   

Echium vulgare L. O        

Epilobium montanum L. O        

Filipendula ulmaria L. emend. Maxim. R        

Galium aparine L. A        
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Galium verum L. A     F   

Geranium dissectum L. O R R  R O   

Heracleum sphondylium L. O     O   

Hypochaeris radicata L.      R R  

Lapsana communis L. F        

Leontodon hispidus L.        A 

Leucanthemum vulgare Lam. F O F F  D   

Lotus corniculatus L. D R R    F F 

Lychnis flos-cuculi L. R    R    

Matricaria recutita L. A     F   

Medicago lupulina L.  O  F     

Melilotus officinalis L. emend. Pall. A        

Myosotis arvensis L. emend. Hill. F        

Onobrychis viciifolia Scop. F 

Phacelia tanacetifolia Benth. O O 

Plantago lanceolata L. O R O R O O 

Polygonum persicaria S.F.Gray. O 

Prunella vulgaris L. O O R 

Ranunculus acris L. O F O O D A D 

Ranunculus repens L. R 
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Rhinanthus minor L. F F R R O 

Rosa canina L. R 

Rubus fruticosus L. agg. F 

Rumex acetosa L. A O 

Rumex obtusifolius L. F 

Silene dioica L. emend. Clairv. O R 

Sonchus arvensis L. R 

Sonchus asper L. emend. Hill. O 

Taraxacum agg F.H.Wigg. O 

Torilis japonica Houtt. O 

Trifolium hybridum L. F 

Trifolium incarnatum L. R 

Trifolium pratense L. D O F R A A R 

Trifolium repens L. R A 

Veronica chamaedrys L. O 

Vicia cracca L. F 

Vicia hirsuta L. emend. Gray. R O A 

Vicia sativa L. O O R 
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Primer note: Cross-species transfer of 

microsatellite markers in the native wildflower, 

Silene gallica (Caryophyllaceae)  

 

Abstract 

 

1. Premise of study: Cross-species transfer of nuclear microsatellite 

markers was attempted in the rare arable wildflower, Silene gallica to 

provide a means of assessing the effects of local and landscape context 

on outcrossing in a self-compatible species. 

2. Methods and Results: 29 microsatellite markers amplifying di- and 

trinucleotide repeats were transferred from three closely related species 

within the Silene genus to S. gallica. Reliable amplification was 

achieved for eight markers, though all showed little or no polymorphism 

(1-4 alleles per locus). Sequencing alleles at one locus indicated a 

substantial reduction in the length of the microsatellite repeat within S. 

gallica. 

3. Conclusions: These results indicate limitations in cross-species transfer 

of microsatellite markers for S. gallica because of reduced allelic 

diversity. Further, this study indicates that even when transferred 

primers are successful, sequencing of amplified fragments should be 

undertaken to check their properties. 

 

Introduction 

 

Silene gallica (Caryophyllaceae) is a self-compatible wildflower that, following 

substantial declines within Britain during the 20th century (Preston et al. 2002), 

is now listed as a priority species under the UK biodiversity action plan (Gibson 

et al. 2006). Our understanding of the fitness of remaining S. gallica 

populations is limited. Analysis of neutral molecular markers allows 
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quantification of outcrossing rates and levels of genetic diversity, which are 

positively correlated with the fitness and long-term viability of plant populations 

(Dostalek et al. 2010). By studying these factors in relation to local and 

landscape context, an understanding of the mechanisms determining 

outcrossing rates in this species, and the implications for plant survival, can be 

obtained. This is essential for the effective conservation of remaining 

populations. 

 

Given the absence of molecular markers for S. gallica, I followed previous 

studies (Gode et al. 2014) and attempted the transference of primers 

developed for closely related species. The results allowed validation of the 

approach and should be of use to researchers looking to use cross-species 

transfer as a cost effective means of marker development in future.  

 

Methods and Materials 

 

Silene gallica plants were grown from seed (Herbiseed, Reading, UK) and 

DNA was extracted from 50mg of leaf material following a DNeasy protocol 

(Qiagen Ltd, Manchester, UK) (n = 8). Microsatellite markers were sourced 

from closely related species; Silene ciliata, Silene latifolia and Silene nutans 

(Rautenberg et al. 2012), some of which, had shown evidence of previous 

successful cross-species transfer (Gode et al. 2014). Initial screening was 

done using touchdown polymerase chain reaction (PCR) with annealing 

temperatures 68-30ºC, before conditions were optimised at 95°C for 5 

minutes, 30 cycles of 94°C for 30 seconds, 56°C for 60 seconds, 72°C for 30 

seconds, followed by a final elongation phase of 72°C for 10 minutes. Standard 

reaction conditions were as follows; 20ng DNA, 2µl PCR buffer, 0.2µl Primers 

(20µM), 0.16µl dNTPs (100µM), 0.2µl BSA and 0.1µl Taq DNA polymerase in 

a 20µl reaction. Fragment analysis was then performed on an ABI3730 under 

the following conditions: 0.5µl Liz 500 size standard, 9µl HiDi formamide and 

0.5µl PCR product. Results were analysed using Genemarker V.1.95. To verify 

that markers were amplifying the target regions, and that variation in fragment 
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sizes were primarily driven by microsatellite repeat length, I cloned (TOPO® 

TA cloning kit®; Invitrogen™, California, USA) and sequenced alleles at a 

locus that was particularly unreliable during amplification (SL-eSSR22). 

 

Results and discussion 

 

Out of 29 pairs of microsatellite primers tested (Teixeira and Bernasconi 2007, 

Moccia et al. 2009, Garcia-Fernandez et al. 2012), only eight successfully 

amplified in S. gallica and all showed low heterozygosity (Observed 

heterozygosity mean ± SE 0.27 ± 0.1) and limited allelic diversity (Alleles per 

locus mean ± SE 1.75 ± 0.62; Table 7.1). Furthermore, alleles at each locus 

were systematically smaller in S. gallica when compared to the size range in 

the original Silene species (71% of the alleles (n = 14) fell below the reported 

size range; Table 1). When sequencing alleles from SL-eSSR22, mutations 

were observed in the binding site, providing a reason for the unreliablity in 

amplification. Only one allele at SL-eSSR22 was successfully sequenced, 

though within this allele, a substantial reduction was observed in the mean 

microsatellite repeat length from (ACA)8 in the original species (Silene latifolia) 

to (ACA)3 in S. gallica. The reduced repeat length and size range of alleles 

compared to those found in the original species could provide an explanation 

for the reduced allelic diversity found across loci in this study. However, given, 

that a small sample of a largely selfing plant species was anlaysed in this 

study, greater numbers may be needed to decipher whether low variability was 

down to reduced repeat length or instead, ascertainment bias. 

 

This study indicates that while markers can successfully be transferred 

between closely related species, their applicability depends on the allelic 

diversity within loci. This is affected in part by the propensity of the target 

species to self-fertilise (Barbara et al. 2007) as well as the repeat length, which 

has been positively correlated with mutation rate and hence, allelic diversity 

(Schug et al. 1997). This study therefore emphasises the need to sequence 
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amplified fragments in order to determine the nature of the microsatellite 

repeat, and hence, the usefulness in genetic studies. 
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Table 7.I. Characteristics of 8 microsatellite markers successfully transferred to Silene gallica. Shown for each marker are forward and reverse primer 
sequence, repeat type, size of the fragment (bp), annealing temperature (Ta), the number of alleles (A), the observed heterozygosity (Ho) and Genbank 
accession number. Values for S. gallica are shown in parentheses (n = 8). 

Primer Original species Sequence Repeat Size Ta A Ho Genbank 

reference 

Sci-1224 Silene ciliata F: ACCTGATTAGAAGACACAGGAGGA 

R: TTTATGTTGCCGCATCCTTATC 

(CT)18 140–196  

(117-119) 

56 (56) 26 (2) (0) JF979125 

SL-eSSR17 Silene latifolia F: CCCCTTTTCTTCTCCTCCAA 

R: CACCAGTTCCTGCACAAAAC 

(ATT)13 238-280 

(168-182) 

- (56) 10 (4) (0.83) - 

SL-eSSR22 Silene latifolia F: CACCATTTCTTCACGGCTTC 

R: GCTGTTGTTAATGGCGGATT 

(ACA)8 142-151  

(138-144) 

60 (56) 7 (2) (0.66) - 

37H Silene latifolia F: TTCGTGGCGGTCTCTAATCT 

R: CCGACTGATGGAACACACAC 

TRI (?) 211-253  

(222-234) 

60 (56) 12 (2) (0.66) - 

Sci-0106 Silene ciliata F: AAACAAACGAGCGATCATCTAA 

R: TTCCGATGCTTCTGGTACTTCT 

(CT)7 111-135  

(104) 

56 (56) 12 (1) (0) JF979127 

SL_eSSR16 Silene latifolia F: AACCAACACCAGCAACCTTC 

R: TTCTTTGCCACTTCTTCACTCA 

(ATC)5 185-200  

(171) 

- (56) 5 (1) (0) - 

SIL03 Silene nutans F: AAGCTTCATCAAATGAAATCGG 

R: GGTGGAGGAGAAGACCACAG 

(AG)8 208-214  

(200) 

55 (56) 4 (1) (0) KJ671557 

SL_eSSR08 Silene latifolia F: GCATGAAATCATTTTTCAGAGG 

R: CGAAAAACACCACCAAAACC 

(TAA)21 196-259  

(215) 

60 (56) 19 (1) (0) - 
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                                                                               Chapter 3                                                                 Chapter 4 

Order Pollinator species Widmere Waddesdon Earth trust Hillesden Hillesden 

Lepidoptera Agrotis exclamationis (Linnaeus, 1758) 0 0 0 0 1 

 Apamea monoglypha (Hufnagel, 1766) 0 0 0 0 1 

 Autographa gamma (Linnaeus, 1758) 0 0 0 0 1 

 Euclidia glyphica (Linnaeus, 1758) 1 0 0 0 0 

 Lepidoptera spp. 0 2 1 1 3 

 Maniola jurtina (Linnaeus, 1758) 0 0 1 0 0 

 Ochlodes sylvanus (Esper, 1777) 1 3 0 0 0 

 Polyommatus icarus (Rottemburg, 1775) 0 0 0 0 1 

HymenopteraAndrena bicolor (Fabricius, 1775) 3 0 0 0 0 

       Andrena chrysosceles (Kirby, 1802) 0 2 1 2 2 

      Andrena cineraria (Linnaeus, 1758) 0 0 0 3 1 

       Andrena flavipes (Panzer, 1799) 0 0 0 0 4 

      Andrena fulvago (Christ, 1791) 0 0 2 0 0 

        Andrena haemorrhoa (Fabricius, 1781) 1 0 0 0 0 

                     Andrena leaiana (Kirby, 1802) 0 0 0 1 0 

     Andrena minutula (Kirby, 1802) 2 0 3 0 1 
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       Andrena nigroaenea (Kirby, 1802) 1 0 0 0 9 

     Andrena nitida (Müller, 1776) 0 1 0 0 0 

        Andrena subopaca (Nylander, 1848) 0 0 2 0 0 

                     Apis mellifera (Linnaeus, 1758) 1 12 2 17 28 

                     Bombus barbutellus (Kirby, 1802) 1 0 0 1 0 

       Bombus hortorum (Linnaeus, 1761) 1 2 5 8 9 

       Bombus hypnorum (Linnaeus, 1758) 0 0 0 0 1 

       Bombus lapidarius (Linnaeus, 1758) 2 1 0 9 9 

       Bombus lucorum (Linnaeus, 1761) 2 0 0 1 0 

        Bombus pascuorum (Scopoli, 1763) 1 0 3 3 2 

        Bombus pratorum (Linnaeus, 1761) 0 2 0 0 2 

                     Bombus ruderarius (Müller, 1776) 0 0 0 0 1 

       Bombus rupestris (Fabricius, 1793) 0 0 1 0 0 

        Bombus slyvestris (Le Peletier, 1832) 0 0 0 0 1 

                     Bombus spp. 0 0 0 0 1 

       Bombus terrestris (Linnaeus, 1758) 8 2 1 4 8 

       Bombus vestalis (Geoffroy, 1785) 0 0 0 1 0 

                     Halictus rubicundus (Chris, 1791) 1 0 0 0 0 

                     Halictus tumulorum (Linnaeus, 1758) 1 1 1 0 1 

         Lasioglossum calceatum (Scopoli, 1763) 8 1 3 1 3 
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                     Lasioglossum fulvicorne (Kirby, 1802) 7 1 0 1 0 

       Lasioglossum malachurum (Kirby, 1802) 2 11 12 0 13 

        Lasioglossum minutissimum (Kirby, 1802) 1 0 18 0 1 

       Lasioglossum morio (Fabricius, 1793) 3 4 0 0 0 

        Lasioglossum parvulum (Schenck, 1853) 7 0 0 0 0 

        Lasioglossum pauxillum (Schenck,1853) 3 2 0 1 2 

                     Lasioglossum puncticolle (Morawitz, 1872) 0 0 1 0 1 

                     Lasioglossum quadrinotatum (Kirby, 1802) 0 1 0 1 0 

                     Lasioglossum villosulum (Kirby, 1802) 1 1 0 0 3 

                     Nomada fabiciana (Linnaeus, 1767) 0 0 0 0 1 

        Sphecodes ephippius (Linnaeus, 1767) 1 0 0 0 0 

 

Diptera     Cheilosia albitarsis (Meigen, 1822) 0 3 0 0 5 

      Cheilosia antiqua (Meigen, 1822) 0 3 0 0 0 

      Cheilosia vernalis (Fallén, 1817) 0 3 1 0 12 

      Chrysogaster hirtella (Loew, 1843) 0 1 0 2 2 

       Chrysotoxum elegans (Loew, 1841) 0 1 0 1 0 

       Epistrophe euchroma (Kowarz, 1885) 0 0 0 1 0 

        Episyrphus balteatus (De Geer, 1776) 1 3 32 28 18 

                     Eristalis arbustorum (Linnaeus, 1758) 0 34 3 25 9 
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                      Eristalis pertinax (Scopoli, 1763) 0 1 0 0 1 

                      Eristalis tenax (Linnaeus, 1758) 2 8 4 3 7 

       Eupeodes corollae (Fabricius, 1794) 56 249 320 174 24 

       Helophilus pendulus (Linnaeus, 1758) 0 1 0 0 0 

                       Melanostoma mellinum (Linnaeus, 1758) 0 0 1 0 1 

                       Melanostoma scalare (Fabricius, 1794) 0 0 0 1 1 

                     Merodon equestris (Fabricius, 1794) 3 1 1 0 4 

                     Metasyrphus luniger (Meigen, 1822) 1 3 4 3 0 

                       Neoascia podagrica (Fabricius, 1775) 0 0 1 0 0 

                           Platychierus spp 1 0 0 0 0 

                       Rhingia campestris (Meigen, 1822) 0 0 0 0 2 

                       Rivula sericealis (Scopoli, 1763) 0 0 0 0 0 

                       Sphaerophoria scripta (Linnaeus, 1758) 2 1 0 0 2 

                       Syphidae spp 0 0 0 1 1 

                       Syritta pipiens (Linnaeus, 1758) 0 1 1 0 0 

                       Syrphus ribesii (Linnaeus, 1758) 0 0 0 4 3 

                       Volucella bombylans (Linnaeus, 1758) 0 1 0 1 0 

                       Total 126 363 425 299 203 
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 Floral resources 

   

Site Habitat Plant 
array 

1m 
radius 

20m 
radius 

50m 
radius 

100m 
radius 

1500m 
radius 

Outcrossed 
progeny 

Progeny 
examined 

Proportion of 
outcrossing 

The Earth trust 
 

Fallow 
 

F1 0 0.11 0.05 0.15 0.29 1 6 0.17 

F2 0 0.14 0.46 0.52 0.29 2 4 0.5 

F3 0 0 0.24 0.33 0.29 6 9 0.67 

Wildflower 
mix 
 

WF1 25.67 0.55 0.25 0.14 0.29 2 4 0.5 

WF2 7.33 0.62 0.28 0.26 0.29 3 7 0.43 

WF3 28.33 0.83 0.51 0.29 0.29 1 2 0.5 

Widmere farm 
 

Fallow 
 

F1 0 0 0.15 0.25 0.55 0 4 0 

F2 0 0.01 0.35 0.20 0.55 4 11 0.36 

F3 0 0.01 0.35 0.20 0.55 0 0 NA 

Wildflower 
mix 
 

WF1 24.33 0.80 0.54 0.39 0.55 1 4 0.25 

WF2 24.33 0.80 0.54 0.39 0.55 0 0 NA 

WF3 23.33 0.61 0.36 0.22 0.55 6 8 0.75 

The Hillesden 
estate 
 

Fallow 
 

F1 0 0.01 0.23 0.17 0.22 0 1 0 

F2 0 0.09 0.10 0.16 0.22 2 3 0.67 

F3 0 0.08 0.26 0.31 0.22 1 2 0.5 

Wildflower 
mix 
 

WF1 97.33 0.95 0.32 0.14 0.22 0 10 0 

WF2 43.33 0.98 0.72 0.53 0.22 1 2 0.5 

WF3 13.67 1 0.73 0.53 0.22 2 2 1 

The 
Waddesdon 
estate 
 

Fallow 
 

F1 0 0 0.06 0.27 0.53 5 6 0.83 

F2 0 0 0.03 0.20 0.53 1 3 0.33 

F3 0 0 0 0 0.53 0 2 0 

Wildflower 
mix 
 

WF1 42.33 0.82 0.52 0.45 0.53 1 4 0.25 

WF2 15 0.92 0.88 0.71 0.53 1 4 0.25 

WF3 12.33 0.95 0.65 0.43 0.53 3 7 0.43 
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