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ABSTRACT

USING LATENT VARIABLE MODELS TO
IMPROVE CAUSAL ESTIMATION

FEBRUARY 2018

HÜSEYİN OKTAY

B.Eng., BOĞAZİÇİ UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David D. Jensen

Estimating the causal effect of a treatment from data has been a key goal for a large number

of studies in many domains. Traditionally, researchers use carefully designed randomized exper-

iments for causal inference. However, such experiments can not only be costly in terms of time

and money but also infeasible for some causal questions. To overcome these challenges, causal

estimation methods from observational data have been developed by researchers from diverse dis-

ciplines and increasingly studies using such methods account for a large share in empirical work.

Such growing interest has also brought together two arguably separate fields: machine learning

and causal estimation, and this thesis also contributes to this intersection.

Specifically, in observational data researchers have lack of control over the data generation pro-

cess. This results in a fundamental challenge: the presence of confounder variables (i.e., variables

that affect both treatment and outcome). Such variables, when not adjusted statistically, can result

viii



in biased causal estimates. When confounder variables are observed, many methods can be used to

adjust for their effect. However, in most real world observational data sets, accurately measuring

all potential confounder variables is far from feasible, hence important confounder variables are

likely to remain unobserved. The central idea of this thesis is to explicitly account for unobserved

confounders by inferring their values using a predictive model.

This thesis presents three main contributions in the intersection of machine learning and causal

estimation. First, we present one of the earliest application of causal estimation methods from

social sciences to social media platforms to answer three causal questions. Second, we present a

novel generative model for estimating ordinal variables with distant supervision. We also apply

this model to data from US Twitter user population and discover variation in behavior among users

from different age groups. Third, we characterize the behavior of an effect restoration model based

on graphical models with theoretical analysis and simulation studies. We also apply this effect

restoration model with predictive models to account for unobserved confounder variables.
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CHAPTER 1

INTRODUCTION

Estimating the causal effect of a treatment from data has been a key goal for a large number of

studies in many domains. Examples include medical studies estimating the effect of a medication

on patients’ health; public policy studies estimating the effect of a social program on the welfare

of a certain group of people; and business studies estimating the effect of an online marketing

campaign on customers’ shopping behavior.

Traditionally, researchers use carefully designed randomized experiments for causal inference

[28, 93]. However, such experiments can be costly in terms of time and money [59]—recruitment

of subjects and recording their outcomes throughout experiments may take time; furthermore, often

times there are a large number of experiments required to rule out alternative explanations. More

importantly, there may be causal effects of interest in which randomization of treatment might

be unethical (such as randomly assigning subjects to a smoking group to estimate its effect on

lung cancer) or might be impossible (such as randomly assigning gender to estimate its effect on

drug use). To overcome these limitations of randomized experiments, causal estimation methods

from observational data have been developed by researchers in diverse disciplines and increasingly

account for a large share of studies in empirical work [4, 10, 37].

Such growing interest has also brought together two arguably separate fields: machine learning

and causal estimation. Several recent studies in this intersection are particularly notable. Athey et

al. [10] survey many recent causal estimation methods for policy decisions and discuss how recent

developments in machine learning field can help to develop new causal estimation methods [9, 10];

Wager et al. [104] develop a causal random forest method to estimate heterogeneous treatment

effects; Varian [102] discusses how machine learning methods can model the counterfactual for a
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treatment and showcase a study about the effect of online advertisement on increasing sales; on

a complementary study, Kleinberg et al. [41] argue that not all policy problems are causal and

some are predictive and contend that machine learning can help effectively solve prediction policy

problems. This thesis also contributes to the mutual interaction between machine learning and

causal estimation from observational data.

The key difference of observational data from experimental data is that the details of the under-

lying data generation process—especially the treatment assignment mechanism—are unobserved

or uncertain and not controlled by the researcher [36]. This lack of control over the data generation

process in observational data creates a fundamental challenge: the presence of confounder vari-

ables (i.e., variables that affect both treatment and outcome). Such variables, when not adjusted

for statistically, can result in biased estimates of causal effect [4].

Consider estimating the effect of two different medication options for treating a certain disease,

one affordable and one costly option. A naı̈ve analysis using observational data might compare

well-beings of patients using one medication to that of patients using the other medication. Fur-

thermore, such a hypothetical analysis might credit the difference in the outcome to the difference

in the medication used. This process could result in an unsound causal estimate as it ignores po-

tential confounder effects. For example, socioeconomic status of patients might be correlated with

medications they can afford as well as their general state of well-being. The patients who use the

affordable medication might also be in poor general health condition. Conversely, patients who

use the costly medication might be in relatively good general health condition. Taking the naı̈ve

difference in health condition might include the effect due to socioeconomic condition (i.e., the

confounding effect) along with the direct effect of the medication (i.e., treatment effect). Hence,

directly comparing the outcomes of populations (i.e., without accounting for confounders) might

provide biased estimates [94, 111].

When confounder variables are observed, researchers have developed many statistical methods

to account for their effect, and these methods are sometimes referred to as quasi-experimental

designs (QEDs). A few examples of such designs are covariate adjustment [35, 94], propensity
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score matching [5, 63, 89], and instrumental variables [4, 7]. These methods have been applied

and extended by investigators from diverse disciplines due to the availability of large and rich

observational data sets capturing detailed interactions in diverse domains [40, 50, 105]. Just to

highlight a few recent studies, Aral et al. [7] estimate the peer influence on running behavior

using an instrumental variable design; Peysakhovich et al. [79] develop a method that combines

observational data with experimental data resulting in decreased number of experiments required

to reliably estimate a causal effect (i.e., efficient experimentation); Krishnan and Sitaraman [45]

identify the effects of video streaming quality on viewer engagement in content delivery networks

using a matching design; Bornfeld et al. [18], identify the effect of newly introduced badges on

user behavior in three Stack Exchange websites, using a natural experiment design.

In most real world observational data sets, capturing all potential confounder variables is far

from being feasible, hence important confounder variables might be unobserved. When unob-

served confounder variables exist, causal estimation from observational data is even more chal-

lenging and, as discussed earlier, can result in biased estimates. However, the increasing availabil-

ity of large and rich data sets suggests that proxy variables for potential unobserved confounders

can be inferred from other observed and correlated variables.

The central idea of this thesis is to explicitly account for unobserved confounders with effect

restoration by inferring their values using predictive models. First, we employ predictive models

to estimate the values of confounder variables. Second, we use such inferred values as the proxy

variables of unobserved confounders with one caveat that the proxy variables are measured with

error. We use an effect restoration model based on graphical models as our measurement error

model to deal with this estimation error, and adjust for the confounding effect due to unobserved

variables. We propose this mechanism as a novel method to remove bias in causal estimation due

to unobserved confounder variables.

Although the ideas presented in this thesis are generally applicable to a wide range of domains,

the focus of this thesis is mostly causal inference in social media domains due to two main reasons.

First, social media platforms provide a framework in which social phenomena can emerge and be
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measured on an unprecedented scale, breadth, and depth [50, 105]. For example, Twitter has

several hundreds of millions of daily active users around the globe, and their post activities and

relationships are recorded over time resulting in a large and rich observational data set.

Second, computational social scientists increasingly use data from social media platforms to

answer causal questions (e.g., [6, 68, 79]). However, often times social scientists want to adjust for

potential confounding effects of traditional demographic variables such as age and ethnicity and

such variables are almost always unobserved on data from such platforms. For example, estimating

the effects of using social media on TV consumption, many social scientists think that age can be a

confounding variable (i.e., younger users both tend to overwhelmingly use social media and tend to

substantially consume TV). If we use social media data to answer such a question without adjusting

for the effects of confounding variables, we might overestimate its effect on TV consumption

potentially resulting in harsh policies in restricting social media access. Here, we enrich arguably

popular data from social media platforms with latent variable models to adjust for unobserved

confounder variables.

Third, several platforms make their data either publicly available (e.g., the Stack Exchange

websites), or provide ways to obtain samples of their data through public firehouses, partnerships,

sales, or challenge contests (e.g., Twitter, Yelp, or Netflix) enabling replications of research results

and follow-up studies by other researchers.

The contributions of this thesis include:

• An early application of causal estimation methods based on QEDs to social media plat-

forms—We demonstrate one of the earliest use of QEDs to data about social media plat-

forms. We apply three different QEDs to answer causal questions about social media sys-

tems, specifically the Stack Overflow website. First, we use a matching design to estimate

the effect of having a high-quality answer on the number of subsequent answers. Our re-

sults suggest no significant effect of having a high-quality answer on the subsequent posts.

Second, we use an interrupted time-series design to estimate the effect of a specific badge,

the epic badge, on user engagement on the website. Our results suggest that engagement is
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sustained until the badge is received, but is reduced after. Third, we use a natural experiment

design to identify the effect of answer ordering on the number of up-votes an answer gets.

Our results find no significant effect suggesting that users ignore ordering while voting.

• A novel generative model for estimating ordinal variables with distant supervision—We de-

velop a novel generative model to estimate ordinal variables with distant supervision. Specif-

ically, we use this model to estimate age using first names and evaluate our model using voter

registration data. We then apply our method to understand the demographic breakdown of

users on Twitter and find that 18-29-year-old user group is the largest among Twitter users.

We show that our method can eliminate limitations of other methods such as surveys per-

formed by Pew Research in estimating the demographic breakdown of social media users

resulting in complete visibility of all age groups in user populations. We also perform anal-

ysis to estimate different usage patterns of different age groups on Twitter in terms of their

topical interests and follow relationships. We find that follow relationships show strong evi-

dence of assortative mixing for young and senior users (e.g., young users follow other young

users) but weak evidence of assortative mixing for middle-aged users.

• An effect-restoration mechanism based on graphical models that improves causal estima-

tion by accounting for unobserved confounders—We characterize the behavior of an effect

restoration model based on graphical models with theoretical analysis and simulation stud-

ies. First, we empirically confirm prior work showing that the effect restoration adjustment

reduces bias only when the variable measured with error is a confounding variable. We

also show that the relative benefit of effect restoration is the highest for estimating small

treatment effects with large confounding bias. By using a real world data set from a ran-

domized experiment, we show that the effect restoration adjustment removes bias more than

its natural alternatives. Second, by leveraging graphical models, and d-separation, we show,

for the first time, that simple rules and typical temporal ordering assumptions are sufficient

to identify whether a variable measured with error is a confounding variable. This knowl-
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edge determines if using effect restoration for that variable can reduce bias. Finally, through

simulation studies, we show that the effect restoration adjustment can reduce bias for an

unobserved confounding variable, when estimates for that variable are available from an

independent process, such as a predictive model, along with the corresponding error distri-

bution.

The organizational structure of the remainder of this document is as follows. Chapter 2 summa-

rizes the necessary background for this thesis, including social media platforms, graphical models

and their causal extensions, d-separation, and the challenges of causal estimation. This chapter

also describes the problem statement of this thesis. Chapter 3 presents one of the earliest applica-

tion of QEDs to observational data from the Stack Overflow website. Chapter 4 develops a novel

generative model to estimate ordinal variables with distant supervision and shows a specific case to

estimate age using first names. This chapter also illustrates the results of its application to US Twit-

ter user base estimating different types of social behavior on the platform. Chapter 5 characterizes

the use of the graphical model-based effect restoration mechanism to deal with measurement error

in confounding variables through theoretical analysis and simulation studies. This chapter also

applies the effect restoration mechanism along with independent estimation methods to adjust for

unobserved confounder variables. Chapter 6 concludes the thesis and suggests future directions.

6



CHAPTER 2

BACKGROUND AND PROBLEM STATEMENT

This chapter reviews several key underlying concepts used in this thesis. First, we identify

the unique opportunities and challenges of using data from social media platforms. Second, we

review the relevant concepts in graphical models with a focus on their use in representing causal

knowledge. Third, we discuss the challenges of causal estimation from observational data sets.

Finally, we state the main problem addressed in this thesis.

2.1 Social Media Platforms: Opportunities and Challenges

Since the beginning of the 21st century, the use of social media platforms have increased

tremendously, enabling them to digitally capture many social interactions between users such as

friendship, communication, and financial exchange [40, 50, 105]. As an unintended side effect,

they have substantially increased the measurement capabilities of social scientists studying general

human behavior. They have enabled broader data collection (by observing different interactions

of user behavior), deeper data collection (by observing such interactions at the transaction level),

and larger-scale data collection (by observing millions and for some platforms billions of users

all together) [40, 50, 105]. For example, Facebook1 has more than 2 billion monthly active users

and can capture friendship, communication, and personal relationships among its users [19, 103].

Such big and rich data sets, coupled with advancements in computational tools to analyze them

[2, 102], provide new opportunities for researchers to study social phenomena that are analogous

to the opportunities created when researchers started to use microscopes in the 1600’s [40, 50].

1www.facebook.com
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However, these opportunities come with many challenges as well. Preserving and assuring the

privacy and security of users’ data on these platforms are valid concerns [50]. Within the context of

academic studies, these social systems, by providing new ways of interactions, also alter the human

behavior creating feedback loops for behaviors under study [90]. Furthermore, many algorithmic

features on these platforms interact with each other and changes in one feature may have unfore-

seen effects on other parts of the platform [49]. Finally, the user base in these platforms might

have population bias (e.g., younger users tend to use Twitter [27, 68]) and unobserved important

variables, making the generalization of research results challenging to the entire population.

In this thesis, we aim to address the problem of unobserved variables by leveraging the ad-

vancements in machine learning models and the richness of big data. We propose that one can

estimate proxy variables for important unobserved variables, using predictive models that rely on

other related observed fields.

2.2 Bayesian Networks

A Bayesian network is a widely used graphical model to capture joint probability distributions

among variables [30, 39, 44]. The structure of a Bayesian network is a directed acyclic graph

(DAG) defined by a set of vertices and a set of edges, G =< V,E >. For example, Figure 2.1

represents a Bayesian network with V = {A,B,C,D,E} and E = {< A,B >,< A,C >,<

B,C >,< B,D >}.

Each vertex, v ∈ V , represents a random variable. Each edge, e ∈ E represents a probabilistic

dependency between variables forming the edge e =< A,B >. Given a directed edge, A → B,

vertex A is called a parent of vertex B. Vertex B is called a child of vertex A. A vertex vd is called

a descendant of vertex vi, if there is a directed path from vi to vd. For example, in Figure 2.1,

vertex D is one of the descendants of vertex A. A non-descendant vertex of vi is, simply, a vertex

that is not a descendant. For example, vertex A is a non-descendant for vertex D, in Figure 2.1.

Bayesian networks, by definition, satisfy the local Markov property.
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Figure 2.1: Example Bayesian network

Definition 2.2.1. Local Markov property : Given a causal graph G = (V,E) , a variable X ∈ V

is independent of every other variable except X’s descendants given its parent variables.

For example in the Bayesian network in Figure 2.1, the Local Markov property implies: D ⊥⊥

{A,C,E} |B.

More generally, Bayesian networks provide a compact framework to encode (in)dependencies

in a given domain between pairs of variables. d-separation is a graph-based criterion to identify

conditional independence relationships from the structure of a Bayesian network. d-separation

criterion conceptually links statistical independence relationships among variables with the con-

nectedness of variables in networks.

Here we review the d-separation criterion to provide the necessary background for understand-

ing contributions in this thesis as oppose to explaining it thoroughly. Before, giving the definition

of d-separation, let us provide some useful definitions related to the concept of blocking of paths,

using the Bayesian network in Figure 2.1, as our example.

Definition 2.2.2. Given the following path between vertex A and D, A → B → D, conditioning

on B would block the path.

Definition 2.2.3. Given the path between vertex A and B, A→ C ← B, conditioning on C would

unblock the path.

Definition 2.2.4. Vertex vi and vj are d-connected, if there is an unblocked path between them.
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Definition 2.2.5. Vertex vi and vj are d-separated, if they are not d-connected.

For example, for the Bayesian network in Figure 2.1, by using d-separation criterion, we can

devise the following relationships among the variables (by no means the exhaustive list of depen-

dencies).

• E ⊥⊥ {A,B,C,D}

• A ⊥⊥ D |B

• A 6⊥⊥ D | C

• A ⊥⊥ D | {C,B}

• C ⊥⊥ D |B

• C 6⊥⊥ D | A

Different causal Bayesian networks on the same set of variables can imply the same set of

conditional independence relationships, and this is formally defined as Markov equivalence.

Definition 2.2.6 (Markov Equivalence). Let two DAGs, be G1 = (V,E1) and G2 = (V,E2) on the

same set of nodes V . G1 and G2 are called Markov equivalent if and only if, based on the Markov

condition, they entail the same conditional independencies and dependencies.

For example, in Figure 2.2, in row a, both of the graphical models imply the same dependence

relationship between X and Y (i.e., X 6⊥⊥ Y ), and hence they are Markov equivalent.

Definition 2.2.7 (Markov Equivalence Class). A Markov equivalence class, ζ, is a set of DAGs,

where all pairs of (Gi, Gj), such that Gi, Gj ∈ ζ and Gi = (V,Ei),, Gj = (V,Ej), are Markov

equivalent.
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2.3 Causal Bayesian Networks

Bayesian Networks, with the following additional assumption, have been extended to represent

causal dependencies [73, 97].

Assumption 1 (Causal Markov Assumption). Given a causal graph G = (V,E) , a variable

X ∈ V is independent of every other variable except X’s effects conditional on all of its direct

causes.

For example, a causal interpretation of the Bayesian network in Figure 2.1 implies that A is a

cause of B, and B is an effect of A. A and D are causally independent given B.

Pearl [73] introduces interventions and the do-operator to formalize causal estimation using

Causal Bayesian networks. In this framework, interventions imply actively setting the values of

a variable instead of passively observing them. The do-operator distinguishes interventions from

mere observations in Bayesian networks. P (Y |do(X = x
′
)) implies the interventional distribution

for Y when the value ofX is set to x′ . However, P (Y |X = x
′
) implies the conditional distribution

for Y when the value ofX is passively observed as x′ . From a graphical representation perspective,

P (Y |do(X = x
′
)) changes the structure of the graph by removing the incoming edges to X ,

whereas P (Y |X = x
′
) implies no change in the structure, just mere observation of X .

Given the causal semantic of intervention, the average treatment effect of a binaryX on Y (i.e.,

ATE) can be calculated as:

ATE = E[Y | do(X = 1)]− E[Y | do(X = 0)] (2.1)

whereE[Y |do(X = x)] implies the expected value of the interventional distribution P (Y |do(X =

x)).
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Figure 2.2: Conditional independence facts and the corresponding causal structures that can ex-
plain such facts are enumerated. For the first example (first row), two potential causal structures
listed are statistically indistinguishable. However, for the second example (second row), the causal
structure is uniquely identified given the facts.

2.4 Challenges of Causal Estimation

2.4.1 Correlation Underdetermines Causality

One of the main challenges of causal estimation is that association underdetermines causality.

In other words, different causal structures can explain the observed set of conditional independence

facts in the data. This defines the limits of causal discovery algorithms on how much they can learn

from data.

More formally, several causal discovery algorithms that aim to learn the underlying structure

of a causal Bayesian network from data make the following two key additional assumptions.

Assumption 2 (Causal Sufficiency). All common cause variables of all variables represented in

the causal Bayesian network are observed.

Assumption 3 (Faithfulness). All the independence relationships implied by the causal Bayesian

network, G, are present in any population sample, P , causally represented by such network.

With these assumptions, a Markov equivalence class for the observed conditional independence

relationships in a given data set can be determined. For example, an association between variables

X and Y can be explained by at least two different causal models, as shown in Figure 2.2, even

when all the important variables are measured (i.e., assuming no latent variables). These two

models are statistically indistinguishable based on the data.
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For example, watching excessive amounts of TV (i.e., X) may be correlated with performing

violent behavior (i.e., Y). A person is more likely to engage in violent behavior if he watches

excessive TV. However, ignoring any potential common cause variables for the sake of argument,

this correlation might be either because of watching excessive TV makes people violent (i.e., X

→ Y) or conversely, because violent people extensively watch TV (i.e., Y → X). With only the

knowledge about correlation, we cannot further infer the cause and the effect.

However, with another variable and the corresponding set of conditional independence facts,

the underlying causal structure can be uniquely identified, as shown in Figure 2.2 on the second

row. In more detail, when X is marginally correlated with Y, and similarly Z is marginally corre-

lated with Y, if X and Z are conditionally independent (i.e., conditionally not correlated) given a

set W that does not include Y, a unique causal structure that satisfies all these constraints, as shown

in Figure 2.2 (i.e., a Markov equivalence class of size 1).

In general, one of the main challenges of causal discovery is that there may be multiple sta-

tistically indistinguishable models (i.e., models that are Markov equivalent) that can explain the

observed conditional independence facts, even when all variables are observed. It is important to

distinguish among those models since each of these models implies a different set of actions to

take to change the desired outcome.

2.4.2 Latent Common Cause Variables

The size of the set of statistically indistinguishable causal models that can explain a set of

observed conditional independence facts is even larger if several important variables are latent (i.e.,

unobserved). Specifically, when latent variables could exist (when causal sufficiency assumption

is lifted), the set of statistically indistinguishable models that can explain the association between

X and Y includes at least three more causal structures, as shown in Figure 2.3.

For example, building on the earlier example, watching excessive amounts of TV (i.e., X) and

performing violent behavior (i.e., Y) might be correlated. However, a certain personality trait might

be a common cause for both watching TV and performing violent behavior (i.e., latent common
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Figure 2.3: Conditional independence facts and causal structures with latent variables that can
explain such facts are enumerated. Dashed nodes represent latent variables, and a shaded node
represent conditioning on the corresponding variable.

cause, Z). Hence, hypothetically, all the observed correlation can be explained by a latent common

cause represented as the third possible structure in Figure 2.3. Alternatively, when a latent common

cause exists, there can still be a direct effect as shown in the fourth structure.

Finally, the fifth structure corresponds to a case with selection bias [99] where a common

effect of X and Y exists and is conditioned on. For example, arguably, people watching excessive

amounts of TV might have limited number of friends in their circles. Similarly, people performing

violent behavior might have limited number of friends in their circles. A study performed on people

with limited number of friends might result in a spurious correlation between watching excessive

TV and performing violent behavior. Careful randomized experimentation and propensity score

matching are some ways proposed in the literature to deal with sample selection bias [14, 93].

2.4.3 Faithfulness

The faithfulness assumption, stated earlier, is a complement to causal Markov assumption that

the implied dependencies by G should be expected in P . If this does not hold, the causal depen-

dencies in G might be missing in P , making learning G from P challenging. If two paths in G

with opposite effects perfectly cancel each other out, the resulting population sample may not be

faithful to the underlying structure.
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Figure 2.4: In this structure, smoking has two competing effects on health: a negative direct effect,
and a positive indirect effect. When competing effects perfectly cancel each other out, faithfulness
assumption is violated.

For example, in the hypothetical world represented in Figure 2.4, smoking negatively affects

health, and positively affects exercise. Exercise eventually positively affects health. If the direct

negative effect of smoking on exercise cancels out with its indirect positive effect on health through

exercise, then the resulting population would not be faithful to the underlying graphical model

structure, making the learning of causal structures from data challenging.

2.4.4 Unbiased and Consistent estimates

The main goal for causal inference is to estimate a treatment effect. Let’s assume TE is the

true treatment effect, and TEest is our estimator. TEest is an unbiased estimator for TE, if the

expected value of TEest is TE. Mathematically:

TE = E[TEest(x1, x2, ..., xn)].

Carefully designed randomized experiments guarantee unbiased estimates of the treatment ef-

fect [8, 54, 74].

Furthermore, TEest is a consistent estimate of TE if:

TE = lim
n→∞

TEest(x1, x2, ..., xn)
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where TEest(x1, x2, ..., xn) implies the value of the estimator using n instances. A consistent

estimate is asymptotically unbiased and most of the causal estimation methods from observational

data guarantee a consistent estimate of a treatment effect [74, 87, 93, 97].

2.5 Problem Statement

The focus of this thesis is causal estimation when latent common cause variables exist. The

main idea is to use external statistical processes to explicitly infer the values of latent variables,

and then use those inferred values for causal estimation.

Many of the existing causal estimation methods assume causal sufficiency, the assumption that

all common cause variables are known and accurately measured [55, 56, 62, 73, 96, 97, 113].

However, in many real world cases, latent variables might exist [13, 25, 97], and ignoring those

latent common causes might introduce a bias in causal estimation [94, 111]. Spirtes et. al. [98]

lift causal sufficiency assumption and identify sufficient conditions based on joint conditional de-

pendencies to determine causal structures from data when latent variables might exist. Based on

these conditions authors propose the FCI algorithm, Zhang [111] extends the FCI algorithm by

providing additional edge orientation rules and shows that the extended algorithm is complete, in

the sense that the edge orientation rules cover all possible cases to identify causal structures for any

given joint dependency set, though set of uniquely identifiable causal structures are limited result-

ing in large number of DAGs in Markov equivalence classes. Rattigan and Jensen [85] introduce

relational blocking as an operator for causal discovery algorithms that can leverage the relational

structure of rich data sets. For causal estimation, instrumental variable designs have been shown

to adjust for both observed and unobserved latent variables [4, 58], though the challenge lies in

finding an instrument for a treatment variable.

The proposed approach in this thesis deals with latent common cause variables in a distinct and

novel way.

First, the method explicitly infers the values of latent variables by exploiting other external

sources of information. Such sources can be predictive models for latent variables using other
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Figure 2.5: The latent variable, U, can also be the cause of the other observed signal, W. However,
conditioning on the observed signal does not necessarily eliminate the bias due to the latent variable
(i.e., block the path between X and Y that goes through the latent variable).

information. For example, when age information about people is a latent variable but information

about their first names is available, we might use a statistical model to predict the age of those

people using their first names. We expect that the availability of large data sets in unprecedented

breadth, depth, and scale [9, 50, 105] have the potential to present abundant opportunities to predict

relevant latent variables, using other correlated information.

Second, the proposed approach suggests conditioning on estimated values of latent variables to

reduce bias in causal estimation. One might suggest to directly condition on the other information

in the data as a proxy of the latent common cause variable while performing causal estimation. In

our example above, the suggestion might be to use first name values directly in causal estimation

rather than inferring latent age values through a statistical model.

We suggest several challenges with this approach. First, such a variable may have many pos-

sible values such that in a data set with a reasonable size, each possible value might have limited

number of actual instances. For example, more than 150,000 different first name values are regis-

tered in the US Social Security data about baby names, and conditioning merely on names is likely

to provide subgroups with a handful of instances. Second, if a latent variable is causal for the other

observed information, as shown in Figure 2.5, then conditioning on the observed signal does not

necessarily eliminate the bias due to the latent variable (i.e., conditioning on W does not block the

path between X and Y that goes through the latent variable) [31, 47].
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CHAPTER 3

CAUSAL ESTIMATION USING QUASI-EXPERIMENTAL DESIGNS

In this chapter, we report one of the earliest causal analysis of an arguably popular social media

platform using quasi-experimental designs (QEDs)1. Traditionally, social scientists use QEDs

for causal estimation from observational data. Here, we present results from one of the earliest

applications of such designs to causal questions about social media platforms. Specifically, we

briefly describe three different QEDs and apply them to answer causal questions related to the

Stack Overflow website2, estimating cause-and-effect relationships about this question and answer

platform. We then discuss the assumptions and limitations of QEDs specifically about threats to

validity when latent common cause variables exist. This chapter provides the motivations to deal

with such latent variables for unbiased causal effect estimations.

This chapter is organized as follows. First, we describe the question and answer platform used

in our study, the Stack Overflow website. Second, we review the related literature about social

media platforms and knowledge sharing platforms with a specific focus on causal analysis both

before and after our work. Third, we provide a brief overview of QEDs. Fourth, we present our

analysis of applying three distinct QEDs to Stack Overflow estimating relevant relationships on

the website. Finally, we summarize our conclusions and highlight the limitations of QEDs with

respect to unobserved variables.

1Much of the content of this chapter is derived from: H. Oktay, B. J. Taylor, and D. Jensen. (2010).

2http://www.stackoverflow.com
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Figure 3.1: A screenshot of an example question on the Stack Overflow website.

3.1 The Stack Overflow Website

Stack Overflow is one of the more than 100 online platforms built using Stack Exchange 3, an

online framework for constructing sites in which users can exchange knowledge through questions

and answers. Each of these platforms has a specific topical focus and an extensive amount of rich

data capturing interactions among users. Specifically, Stack Overflow focuses on questions related

to programming and has over 7 million registered users, more than 10 million monthly visits, along

with almost 36 million posts. A screenshot of an example question on Stack Overflow is shown in

Figure 3.1.

There are five main entities in Stack Overflow, as shown in a simple entity-relationship diagram

in Figure 3.2: (1) users, (2) posts, which represent both questions and answers in the system, (3)

comments, (4) votes, and (5) badges. There are three main actions in Stack Overflow. First, users

can ask questions related to programming. Second, users can share their knowledge by providing

an answer to a particular question. Third, users can vote up or down questions and answers that

3http://stackexchange.com/sites
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Figure 3.2: Entities and relationships in Stack Overflow.

they like or dislike. As users take these actions, they both contribute to the platform and gain

reputation points as well as badges.

Understanding the interactions among different entities by identifying cause-and-effect rela-

tionships has valuable benefits not only while managing the day-to-day operations of the system

but also while studying the user behavior in knowledge sharing platforms. The data for the Stack

Overflow website (along with all other Stack Exchange websites) is publicly available providing a

desirable opportunity for research.

3.2 Related Work

Social media platforms, where collective user behavior emerges and can be measured in detail,

provide an unprecedented research opportunity [50, 101, 105]. Many researchers from diverse

fields including computer science and social sciences have performed studies using data from such

platforms. We review this diverse related literature in three distinct categories: (1) Predictive

models and macro modeling of user dynamics; (2) Causal studies with experimental and non-

experimental data; (3) Studies focusing on question-and-answer platforms and the Stack Overflow

website.
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As for predictive and macro-modeling studies, Bakshy et al. [11] studied the role of social

networks on content adoption using the social network in Second Life,4 a multiplayer game in a

virtual world. Lerman et al. [51] studied the role of social networks in promoting content via voting

mechanisms on the web using data from a social news aggregator website (i.e., Digg5). In another

study, Lerman et al. [52] developed a predictive model for social media content popularity based

on user behavior, again using data from Digg. Ratkiewicz et al. [84] proposed a model to explain

the macro dynamics of online popularity by using Wikipedia entries and web pages. Wilkinson

[106] described a model about macro user-behavior to explain the contributions in online peer

production systems using data about Wikipedia.

As for causal studies, Kohavi et al. [42] published a practical guide to controlled randomized

experiments on the Web, summarizing their lessons learned while developing the online exper-

imentation platform for Microsoft6. Salganik et al. [91] performed an experimental study in an

artificial online cultural market to identify the effect of social influence on inequality and un-

predictability of success. As for non-experimental data, Aral, Muchnik, Sundararajan [5] used

dynamic propensity score matching on an instant messaging platform to disentangle the effect of

homophily from peer influence on product adoption, using the underlying social network based on

instant messaging interactions.

As for studies about question and answer platforms, Raban et al. [81] discussed motivations be-

hind user contribution in peer-to-peer knowledge sharing systems using qualitative analysis. Zhang

et al. [112] found that the expertise networks in question and answer platforms are structurally dif-

ferent than other online networks such as the World Wide Web. Adamic et al. [1] identified that in

Yahoo! Answers, interactions in certain categories mirror interactions in expertise sharing forums;

however, certain other categories that involve discussions and posts about everyday advice mirror

interactions in social networks. Furthermore, certain users chose to contribute with a narrow focus

4http://secondlife.com

5http://digg.com

6http://exp-platform.com/experiments-at-microsoft/
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in categories, and certain users contribute with a diverse focus across categories. Finally, they used

these insights to develop a model to predict whether a particular answer would be the best answer

for a given question. Kumar et al. [46] provided a theoretical model for the evolution of question

and answer platforms over time capturing the two different actions of users (asking vs answering

questions) as a two-sided market. They, then, used Yahoo! Answers and Stack Overflow as two

case studies to gather empirical evidence for their theoretical model.

In our study, described in this chapter, we provide one of the earliest studies 7 about peer-to-

peer knowledge sharing platforms with a specific focus on causal inference. Specifically, we use

non-experimental data from Stack Overflow and employ QEDs for causal inference. Our work was

cited by a number of subsequent causal studies about social media.

For example, Krishnan and Sitaraman [45] identified the effects of video streaming quality on

viewer behavior in content delivery networks using a matching design. Reis et al. [86] used match-

ing methods on Twitter to identify the effect of exercise on mental health. Sharma et al. [95]

use instrumental variable design to identify the causal effect of online recommender systems on

the viewer traffic of product pages. Kusmierczyk et al. [48] used instrumental variable design to

identify the effect of first-time badges (i.e., badges awarded for the first occurrence of a particular

type of action) on user activity on the Stack Overflow website. Bornfeld et al. [18], using a nat-

ural experiment design, identified the effect of newly introduced badges on user behavior in three

separate Stack Exchange websites.

3.3 Quasi-Experimental Designs

In an ideal experimental scenario, random assignment of experimental units to values of treat-

ment is used for obtaining unbiased estimates of causal effects [28, 29]. One of the key advantages

of randomly assigning treatment is that it eliminates the confounding bias due to both observed and

latent variables [73]. We illustrate random assignment using graphical model terminology in Fig-

7https://meta.stackexchange.com/questions/134495/academic-papers-using-stack-exchange-data
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ure 3.3a. When the values of a treatment variable are assigned completely randomly, as depicted

by variable R, all incoming edges to a treatment variable are removed resulting in an unbiased

estimate of the causal effect (i.e., no back door path from treatment to outcome).

In many social media platforms, randomized experimentation may be unavailable to researchers

due to economic and experimental integrity concerns [6, 45, 69]. It may be too costly to design and

deploy experiments over millions of customers. Additionally, platform managers may be meticu-

lous about the design of experiments and hesitant to deploy any experiment that might sour users’

experience on the platform.

When random assignment of treatment is either impossible or infeasible, QEDs [20, 93] are

widely used. Other than lacking random assignment, QEDs have purposes and characteristics sim-

ilar to those of randomized experiments. Designs generally work by identifying an experimental

unit that has undergone treatment and comparing it to another experimental unit that has not under-

gone treatment but that is similar to the corresponding treatment unit, in almost all other aspects.

Traditionally, these methods have been used and developed by social and biological scientists

to answer policy questions. However, in the past decade, increased availability of rich and large

observational data through social media platforms and wearable devices provided new application

domains of existing designs as well as new opportunities for the development of new methods

[6, 7, 45, 50, 69]. In this chapter, we present results from one of the earliest applications of

three specific QEDs to estimate cause-and-effect relationships about a social media platform, Stack

Overflow.

3.4 Using Designs to Discover Causal Knowledge

The Stack Overflow website is a platform where users interact with each other through ques-

tions and answers related to programming. The managers of the platform might have a strategic

goal to include all relevant content on the platform. Since there are no curators for content, the

platform relies on users to both ask and answer questions. To achieve this goal, managers might

want to discover the factors that change the engagement levels on the platform, such as features
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(a) Graphical model of random assignment. (b) Graphical model of matching.

Figure 3.3: Randomized assignment of treatment and the matching design are represented in graph-
ical model formalism, respectively. Note that when treatment (T) is randomized (R), there cannot
be any other cause for (T) other than (R), resulting in statistical control of potential common cause
variables. Whereas, the matching design attempts to model the effect of potential common causes
(Z), to obtain a consistent causal estimate.

that increase the number of posts from users. This requires performing causal analysis and the

rich observational data that is already being collected for operational purposes can also be used for

that purpose. Specifically, we present our results using several matching designs, an interrupted

time series design, and a natural experiment design to identify causal dependence within the Stack

Overflow platform.

3.4.1 The Matching Design

Since observational data generally do not have the random assignment of treatment variables,

matching designs are used to avoid confounding bias by conditioning on observed covariates in

each matched pair. Using graphical model formalism, we illustrate the difference between a ran-

domized experimental design and a matching design in Figure 3.3b. The matching design identifies

pairs of units where one of the units has received a treatment and the other has not such that those

units are similar in all other observed measures. Existing matching methods use different simi-

larity metrics and weighting mechanisms to assign units to control and treatment groups such as

propensity scores and Euclidean distance of covariate vectors [36, 89, 100]. The validity of the

causal conclusions drawn from a matching design improves as the matched pairs become more
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similar to each other. A causal question related to Stack Overflow that we can attempt to answer

with this design is:

Does posting a high-quality answer for a particular question cause a reduction in
the number of subsequent answers posted by other users?

The question has direct implications for website policies related to maximizing user contribu-

tion. For example, if the answer to the question is a negative effect, a policy that publishes the

answers after a certain total number of answers are reached (or a certain amount of time passed)

might result in higher number of posts and can be desirable for website managers.

To answer this question, first, we define a method for determining a high-quality answer. We

use a key characteristic of the Stack Overflow site: the user who asks a question can select one of

the answers as the accepted answer. We assume the accepted answer is a high-quality answer for a

particular question. The accepted answer is often selected long after it is initially posted. Because

of this time lag, we can examine the effect of quality on the number of subsequent answers.

To illustrate the importance of matching criteria, we apply, in progression, three different ver-

sions of the matching design [69] as summarized in Figure 3.4 using graphical models. In the first

design, we only examine questions in the treatment group (i.e., questions with accepted answers)

with no matching, as shown in Figure 3.4a. In the second design, we have treatment-control pairs

where control questions are randomly selected from questions that have the same tag. Tags are

labels for questions to relate them to corresponding topics or concepts (e.g., machine-learning,

causality). In the third design, we match treatment and comparison questions by requiring a much

stronger similarity within pairs based on their answer rates.

The outcome is the change in answer rate ∆t minutes before and after the treatment is applied.

The first design is a simple statistical analysis that evaluates the change in answer rate before and

after an accepted answer occurs. We show the results of this analysis in the No Matching column

of Table 3.1. We find a negative change in answer rate for different ∆t values.

This suggests that the answer rate is greater before the treatment and that there is a decrease

in the number of answers provided after a high-quality answer is posted. However, it is unclear

whether this change is caused by the appearance of the eventually accepted answer (i.e., treatment).
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(a) No matching (b) Random matching (c) Matching with criteria

Figure 3.4: Graphical models corresponding to the different matching cases. Shaded variables
represent variables that are being conditioned. The goal of the analysis is to estimate the causal
effect of a high-quality answer on the subsequent change in answer rate.

The decrease in the answer rate could be caused by the intrinsic change in the answer rate due

to temporal effects in question life-cycle rather than the presence of the accepted answer. For

example, questions might get high exposure right after they are initially posted because they are

featured on the homepage. This might result in a large number of answers initially, and as time

passes, the exposure fades away resulting in a small number of answers.

To eliminate the temporal effects in question life cycles, we can use a basic matching design

as shown in Figure 3.4b. We pair each treatment question with a random control question to better

compare the difference in behavior. The idea is both questions in the matched pair go through a

similar life cycle, hence we can adjust for its effect. We randomly select questions that have the

same tag to adjust for the variability due to topical differences. The outcome measure for this

design is the difference between the answer rate change of a treatment question (i.e., Tarc) and the

answer rate change of its comparison question (i.e., Carc) within the matched pair.

As shown in the Random Pairs column of Table 3.1, with this version of the design that also

conditions on temporal effects, we conclude that at least for several ∆t values the difference be-

tween the treatment and comparison questions is insignificant when we compare the random-pair

design to no matching. We conclude, at least in those cases, that the accepted answer has no effect

on the subsequent answer rate. We can also observe that for ∆t values where there appears to be

an effect, the size of the effect is smaller than that estimated using the no matching design. This
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Time Experiments
∆t No Random Matching

(in minutes) Matching Pairs
15 -0.78 -0.66 NS
20 -0.45 NS NS
25 -0.52 -0.25 NS
30 -0.36 -0.24 0.18
60 -0.24 -0.12 NS
90 -0.10 -0.07 NS

120 -0.10 NS NS
150 -0.03 NS NS
180 -0.05 NS NS

Table 3.1: Our analysis indicate no significant effect of having a high quality answer on answer
rate. For No Matching experiments, differences in answer rate for each time interval are shown.
For Random Pairs and Matching, differences between the answer rate change for the treatment
group and the answer rate change for the control group are shown. NS means Not Significant.
Values are number of answers per hour.

shows evidence that we can have a more thorough analysis by using designs that can adjust for

potential common cause variables.

Although this design matches a pair of questions, we are not guaranteed to find highly similar

pairs. For example, answer rate before treatment can be an important variable that can affect the

high-quality answer as well as the answer rate after treatment, as shown in Figure 3.4c. In such

cases, any difference we observe may be partially or fully due to the inherent difference in their

previous answer rate rather than the high-quality answer provided.

To create better-matched pairs in the third design, we combine two criteria. First, we require

the treatment question and the control question to have nearly the same number of overall answers

provided. Second, we want the matched pair to have a similar previous answer rate before treatment

(for the specified time interval, from [t − ∆t, t] where t is the time the high-quality answer is

provided for a treatment question). For example, in Figure 3.5 we illustrate the total number of

answers for three different questions over time; the dashed vertical line shows the time the accepted

answer is posted for question I. According to the criteria specified, for question I, question II
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Figure 3.5: The total number of answers over time for three different hypothetical questions. The
vertical dashed line represents the time that the accepted answer is posted for question I (i.e., a
question in the treatment group).

is a closer match than question III because II has not only similar number of total answers but

also similar answer rate with question I before treatment. Using the criteria described above, we

matched 200 pairs of questions with the same tag.

This design uses the same outcome measure as the second design and the right-most column

of Table 3.1 shows the results obtained with this design. By also conditioning on previous answer

rate and a total number of answers, the final version of the matching design indicates that having

a high-quality answer has no significant effect on answer rate for almost all ∆t values, whereas

the previous designs do show a statistically significant effect. Even for some ∆t values where the

results of the random pair design (i.e., the second design) suggest that a high-quality answer has

an effect, the final matching design results suggest the effect is not significant.

More generally, in an ideal matching design, the matching criteria should eliminate the effects

of all possible confounders as possible explanations for the observed effect. Depending on the

causal question, a researcher can identify matching criteria to adjust for almost all the variables that

can simultaneously influence both the treatment and the observed effect, such as the topics of the

questions, activities of users, and extrinsic rewards provided to users by the site (e.g., their badges

or reputation points). However, additional possible confounders could be latent, and these variables

might invalidate causal conclusions based on matching designs. Regardless of the matching criteria

used, researchers should continue to consider alternative explanations involving latent variables at
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the end of the analysis and look for ways of inferring those potential latent variables, if they suspect

that any exist.

3.4.2 The Interrupted Time-Series Design

In the interrupted time series design, we observe an outcome variable of a unit during a certain

time interval, ∆t, that includes an interruption for another variable (i.e., the treatment variable)

[20, 93]. This observation of the same unit over ∆t lets us adjust for latent variables within the

unit and thus rule out some threats to validity. For example, one causal question in Stack Overflow

that can be examined using this design is:

For users, does receiving the epic badge cause an increase in their posting activ-
ity?

For Stack Overflow managers, a strategic goal for the platform might be to keep high levels of

user engagement at all times. Badges can provide motivation for users to continue their contribu-

tions by providing recognition and distinction among other users. Understanding if and how much

a badge changes user behavior is an important causal question.

For example, the epic badge is given to users who earn 200 reputation points (the daily maxi-

mum) 50 times. For this design, the treatment is receiving the epic badge, and the outcome is the

number of posts. We normalize the number of posts for each user by taking the difference between

the average number of posts by that particular user before and after treatment over a 60-day inter-

val. To be more precise, for each user we calculate two average values: (1) the average number of

posts before treatment, (2) the average number of posts after treatment. We normalize the number

of posts for each user with the corresponding average value 8. There are 54 users with the epic

badge in our data set, and they obtain the badge at different physical times. By relatively aligning

such different physical time points that users obtain the badge, the effect of other exogenous events

8This is a within subject design where for each user her own behavior before treatment serves as a control subject.
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Figure 3.6: We report that the average number of posts by users that obtain the epic badge decreases
after receiving the badge. Values are normalized for each user by subtracting the corresponding
average number of posts before and after treatment.

that might occur on the site (e.g., being featured on a popular blog post or executing a marketing

campaign) are assumed to be averaged out.

In Figure 3.6, we show the results of the interrupted time series design. The vertical dashed

line represents the 30-day mark for each user at which the epic badge was received. We plot the

average normalized number of posts for each day on the y-axis. The first linear model is for the

average number of posts before the badge is received and the second linear model is for the average

number of posts after the badge is received. The slope of the first line is −0.001, and this slope is

not significantly different than 0 (p = 0.94). The slope of the second line is −0.10, and this slope

is significantly different than 0 (p < 0.01). We observe a significant negative slope after the badge

is received. Our results suggest that obtaining the epic badge reduces the number of posts created

by the corresponding users. An alternative badge mechanism where tiered-badges with increasing

level of exclusivity can help sustain contributions from users.
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3.4.3 The Natural Experiment Design

A natural experiment is a condition within an observed data set that approximates the con-

ditions of a randomized experiment, particularly randomized assignment of treatment. Such a

condition can occur if a social media system changes a single aspect, such as a user interface, and

has data collected both before and after the change. While the system change was never intended

to be a treatment used in an experiment, the data can be analyzed as if it was.

A causal question in Stack Overflow for this design is:

Does the order in which answers are displayed within the Stack Overflow interface
cause the number of votes received by each of those answers?

The ordering of answers has been a subject of public debate on the Stack Overflow website.

Some users argued that the previous policy (which used the chronological order of posting) was

unfair to users who provide quality answers at a later time9. Clearly, this public discussion (which

featured hundreds of posts and thousands of votes about the issue over several years) suggests that

users and moderators cared about the perceived effects of answer order.

The causal question can be examined by using data generated by the eventual policy change in

Stack Overflow. In Stack Overflow, answers for a question are sorted in descending order in terms

of their net number of votes. To break ties, two different approaches were used in the system.

Before August 2009, ties were broken in terms of the creation date of the answers. Older posts got

higher priority and were listed higher on the page when there was a tie in the number of votes. After

August 2009, Stack Overflow managers changed their policy and decided to break ties randomly,

which removed bias in answer ordering that favored older posts. Answers are now sorted randomly

when they have received the same net number of votes.

To benefit from this versatile natural experiment, we consider tie-breaking votes before and

after the policy change as our instances. A tie-breaking vote is a vote-up that is cast for an answer

that is in a tie with exactly one other answer. Our treatment variable is the way the answers are

ordered in a tie situation (i.e., either from oldest to newest or randomly). Our outcome variable

9See, particularly: https://meta.stackexchange.com/questions/9731/fastest-gun-in-the-west-problem
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Vote
Number

Number of
Instances P-Value χ2-Statistic Frequency

1 87405 < 2.2e−16 2684.2 0.41
2 45899 < 2.2e−16 2208.0 0.39
3 24908 < 2.2e−16 1042.6 0.40
4 14260 < 2.2e−16 807.8 0.38
5 8555 < 2.2e−16 532.8 0.38
6-8 12291 < 2.2e−16 638.3 0.39
9-12 6434 < 2.2e−16 337.7 0.38
13-17 3748 < 2.2e−16 145.3 0.40
18-26 3593 < 2.2e−16 109.4 0.41
26-665 9728 < 2.2e−16 160.6 0.44

Table 3.2: The results of a chi-square test on the frequency of votes for the older answer before the
policy change. Degree of freedom is 1 for each stratum.

is the frequency of voting for the older answer when there is a tie. If the order of answers has an

effect on voting, we would expect to see a significant difference between the frequency of voting

for the older answer before and after the policy change.

We randomly choose more than 200,000 tie-breaking votes, both before and after the policy

change. For each vote, we assign a binary value that is 0 if the vote is for the newer answer in the tie

situation or 1 if the vote is for the older answer. Then we do a chi-square test to determine if those

values are significantly different than a binomial distribution where the success probability is 0.5.

In such a binomial distribution, we would expect to have equal numbers of votes for newer answers

and for older answers. We do the same test for the votes before and after the policy change.

The frequency of tie-breaking votes for the older answer is 0.40 before the policy change, and

the chi-square test reveals that this frequency is significantly different than 0.5 with χ2 = 8487.76

and p < 0.001. Similarly, after the policy change, the frequency of tie-breaking votes for the older

answer is 0.40, and the chi-square test reveals that this frequency is also significantly different than

0.5 with a χ2 = 8424.14 and p < 0.001. These results show that users are more likely to vote for

the newer answer than for the older answer regardless of the policy change. The results could also

imply that the newer answers are often of a higher quality than older answers.
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Vote
Number

Number of
Instances P-Value χ2-Statistic Frequency

1 87436 < 2.2e−16 2652.1 0.41
2 46079 < 2.2e−16 1915.5 0.40
3 24756 < 2.2e−16 1253.2 0.39
4 13954 < 2.2e−16 884.9 0.37
5 8718 < 2.2e−16 527.3 0.38
6-8 12323 < 2.2e−16 670.7 0.38
9-12 6530 < 2.2e−16 271.7 0.40
13-17 3970 < 2.2e−16 118.5 0.41
18-26 3668 < 2.2e−16 139.7 0.40
26-665 9810 < 2.2e−16 177.5 0.43

Table 3.3: The results of a chi-square test on the frequency of votes for the older answer after the
policy change. Degree of freedom is 1 for each stratum.

To assess the effect of the policy change, we also compare the frequency of tie-breaking votes

for the older answer before and after the policy change. We do a two-sample unpaired t-test with

two-tail analysis, and the results reveal no significant difference between the frequencies of tie-

breaking votes for the older answer before the change and after the change with t = 0.35, degrees

of freedom = 433640, and p = 0.73. The data does not support the hypothesis that the policy

change had an effect on voting behavior.

Recall that in our dataset of tie-breaking votes, we have votes that correspond to a vote-up

for an answer for which the pre-tie-breaking vote count (i.e., the number of existing vote-ups of

an answer right before the tie-breaking vote) is in a tie situation with exactly one other answer.

This vote-up in our data set breaks this tie between these two answers (i.e., answer pairs) either

by voting for the older answer or the newer answer. A closer observation of this vote distribution

for the tie-breaking votes in our dataset is shown in Figure 3.7. In these figures, the x-axis shows

the number of pre-tie-breaking votes and the y-axis shows the frequency of tie-breaking votes. For

example, from Figure 3.7, we can see that in our dataset there are more than 20,000 tie-breaking

votes that break the tie between answer pairs for which the pre-tie-breaking vote count is three.

Both answers in the pair already have three vote-ups, and the tie- breaking vote in our data set
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Figure 3.7: Histogram for tie-breaking votes before and after the policy change. The last bar is
the aggregate of all the tie-breaking votes of answers for which the pre-tie-breaking vote count is
greater than 50.

breaks this tie by increasing the vote number for one of the answers (either the older answer or the

newer answer) by one.

The histograms in Figure 3.7 show that many of the tie- breaking votes are cast for answer

pairs when there is exactly one pre-tie-breaking vote for each answer in these pairs. The number

of qualifying-vote instances decreases rapidly as the number of pre-tie-breaking votes goes up

for two reasons. First, since vote-ups are counted cumulatively for an answer, there are more

vote-up instances that correspond to answers for which the pre-tie-breaking vote counts are small

than instances that correspond to answers for which the pre-tie-breaking vote counts are large.

Second, being in a tie situation with another answer when the pre-tie-breaking vote count is small

is more likely than when the pre-tie-breaking vote count is large. For these two reasons, we get

more tie-breaking votes that correspond to answers for which the pre-tie-breaking vote counts are

small when we randomly sample from vote-up instances (i.e., there is a bias towards small pre-tie-
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Vote
Number P-Value t-Statistic Frequency

Before
Frequency

After

1 0.81 0.23 0.41 0.41
2 0.02 2.32 0.39 0.40
3 0.02 −2.34 0.40 0.39
4 0.25 −1.15 0.38 0.37
5 0.90 0.12 0.38 0.38
6-8 0.66 −0.43 0.39 0.38
9-12 0.15 1.44 0.38 0.40
13-17 0.19 1.31 0.40 0.42
18-26 0.41 −0.82 0.41 0.40
26-665 0.69 −0.40 0.44 0.43

Table 3.4: The results of a two-sampled unpaired t-test with two-tail analysis for comparing the
frequency of voting for the older answer before and after the policy change.

breaking vote counts for data instances both before and after the treatment as shown in Figure 3.7).

To better account for the difference in the distributions seen in Figure 3.7, we stratify our

data points into 10 strata, as shown in the vote number column of Table 3.2. For each stratum,

we perform the chi-square test to see if the frequency of tie-breaking votes for older answers is

different than the binomial distribution where the probability is 0.5. Tables 3.2 and 3.3 show the

results for the data points in each stratum before and after the policy change, respectively. Those

tables show that, for each stratum, the frequency is significantly different than 0.5, both before and

after the policy change, suggesting that regardless of the existing vote count, users vote-up for the

recently posted answer more frequently than expected by random chance.

We also performed a two-sample unpaired t-test with two-tail analysis to see whether, in each

stratum, the frequency of voting for the older answer before the policy change is different than the

frequency after the policy change. Table 3.4 summarizes the results of these tests. For a generous

p-value threshold 0.05, except for strata 2 and 3, the results were not significant, indicating that we

cannot accept the hypothesis that the frequency of the vote for the older answer differs before and
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after the policy change. For strata 2 and 3, although we get a significant result, the difference in

the frequency values is extremely small, suggesting a very small effect, if any.

These type of policy changes that enable useful analysis for impactful questions might be more

frequent than generally expected. For example, another recent policy change in the Stack Overflow

system sets up another natural experiment to assess whether there is a causal relationship between

reputation points and asking questions. Users get reputation points when their questions or answers

get a vote-up. Before the recent policy change, users received 10 points for a vote-up, both for a

question and an answer. However, after this change, users get 5 reputation points after a vote-up

for their questions and still get 10 reputation points after a vote-up for their answers. The goal of

this change is to decrease the number of questions a user asks and increase the number of answers

that a user provides. This natural experiment can be leveraged to identify the effect of the change in

vote-up reputation points on user behavior. The treatment variable is the change in vote-up reward

for questions. The outcome variable is the number of questions provided by a particular user. We

can pose the following question: Will users provide more answers and fewer questions after this

policy change? We exclude this design from our study because the policy change was recent and

data collected after the treatment event was not sufficient to perform the analysis.

3.5 Conclusions

In this chapter, we discuss QEDs as a set of powerful tools to obtain causal knowledge from

observational data and present results from one of their early applications to rich data sets from

social media platforms. Specifically, we present three different applications of QEDs to answer

three different questions using data from a social media platform, the Stack Overflow website,

a peer-to-peer knowledge sharing platform. Our results suggest no significant effect of having a

high-quality answer on the number of subsequent answers. Furthermore, specific badges designed

to drive engagement seem to work until the badge is received, however, engagement is signifi-

cantly reduced after. Finally, we show that answer ordering has no effect on the number of votes

leveraging a natural experiment design.
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Many of these QEDs assume that all common cause variables are observed. However, in prac-

tice, observational data sets can easily miss such variables, resulting in biased causal estimates.

For handling latent common cause variables, this thesis suggests a novel and distinct approach by

using predictive models in machine learning. The next section describes a novel predictive model

for inferring values of ordinal latent variables with distant supervision. We illustrate the use of the

model for estimating key demographic variables that are often times unobserved on social media

platforms.
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CHAPTER 4

A GENERATIVE MODEL FOR ORDINAL VARIABLES WITH DISTANT
SUPERVISION

Modern modeling frameworks in machine learning have been widely used to infer hidden vari-

ables almost always with a predictive goal. In this thesis, we explore the utility of such predictive

models in adjusting for unobserved variables that are otherwise unavailable.

For example, external data sources, such as first names associated with birth years, last names

associated with ethnicity, and zip codes associated with household income, can be useful predictors

of age, ethnicity, and income, respectively. This might enable researchers to adjust for such key

variables (e.g., age) when they are unobserved, using other correlated signals (e.g., first name) with

predictive models.

In this chapter, we develop a novel predictive model for key demographic variables and use

it to estimate key demographic information about the population of Twitter users in the United

States. We propose to use the generative model framework to incorporate external data sources

in the form of aggregate level statistics (i.e., distant supervision)1. Specifically, first, we develop

and evaluate a generative model that can infer ordinal latent variables with distant supervision.

We show the effectiveness of such a model on estimating age from first names. Second, using

this proposed model, we perform the largest sample size analysis of US Twitter user population

to estimate several useful demographic information. We estimate the age breakdown for the US

population of Twitter users over time and show the representation of each age group compared

to their corresponding share in the general internet population. We also report on the size of the

teenager users on Twitter, which is overlooked in previous reports. We analyze how different age

1Much of the content of this chapter is derived from: H. Oktay, A. Fırat, and Z. Ertem. (2014).
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groups engage in different topical conversations on Twitter. We also show evidence of assortative

mixing in the follow relationship among certain age groups on Twitter. Third, we evaluate another

generative model for another key demographic variable (i.e., ethnicity), and use it to estimate

ethnicity information about the Twitter user population.

4.1 Related Work

Many academic studies have used a variety of data sources and methods to estimate demo-

graphic information about users of social media and other internet services. We review them in

three distinct categories.

The first category of studies used self-reported demographic information either in their online

profile or through user surveys. Sharad et al. [34] linked self-reported demographic information of

internet users to their internet browsing activity to estimate different usage patterns among different

demographic groups. Mislove et al. [61] identified geography, gender, and ethnicity by using self-

reported location and name information on Twitter profiles to estimate the demographic properties

of US Twitter users. They simply mapped each first name to the most likely gender and each last

name to the most likely ethnicity by using US Census data about last name ethnicity distributions2.

Pew Research [27] reported different demographic attributes of users of social media websites

including Twitter through the analysis of data from phone surveys. Methods in this category,

though useful, by definition are limited not only to report on attributes that are self-reported in user

profiles but also to exclude populations that cannot be reached with the methodology employed by

the study (e.g., Pew Research study ignored users who were less than 18 years old by compulsorily

exclusion from their phone surveys).

The second category of studies used annotated data sets to develop supervised models. Rao

et al. [83] used manually annotated tweets to predict age, gender, and regional origin about Twit-

ter users with stacked-SVM-based classification algorithms built using linguistic and network-

2https://www.census.gov/genealogy/www/data/2000surnames/index.html
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structure based features. Due to labeling difficulties, they defined two age categories and manually

annotated users with their respective categories: below 30 and above 30. Another study by Za-

mal et al. [110], similarly, trained SVM models from manually labeled tweets focusing gender,

age, and political affiliation using features based on profiles of individual users as well as their

neighbors in the social graph. Pennacchiotti et al. [78] used gradient boosted decision trees to

predict ethnicity, political orientation, and gender of Twitter users. They obtained a training data

set by manually annotating user profiles with ethnicity and gender by examining user’s profile pic-

ture; and by extracting political affiliation from the user’s profile information. They used linguistic

features captured by a topic model analysis over all tweets of users as well as network-structure

based features. Finally, Nguyen et al. [66] used a linear regression and a logistic regression model

based on text features to predict age, by modeling it continuous and categorical, respectively. They

trained their model on manually labeled training instances of Dutch Twitter users to estimate dif-

ferent linguistic usages among different age groups. Methods in this category require correctly

labeled data sets about each individual user to train robust models and inherently limited in the

size of training data sets by the resources available for annotation.

The third category of models used distant supervision to inform predictive models. O’Connor

et al. [67] proposed a generative mixture model to understand demographic and linguistic varia-

tions among Twitter users using geotagged tweets. Zip codes of users were cross-referenced with

US Census statistics3 to obtain the ethnicity distribution reported in the corresponding zip code.

This allowed them to discover latent communities in Twitter characterized jointly by linguistic

and ethnic properties. In another study, though in a non-social media context, Gallagher et al.

[32] used data about baby names from the US Social Security Administration4 as a prior along

with image-based features in a generative mixture model to estimate the age of a person from

an image-first-name pair. Finally, Chang et al. [22] used US Census data3 about last names and

3https://www.census.gov/genealogy/www/data/2000surnames/index.html

4http://www.ssa.gov/oact/babynames/limits.html
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their corresponding ethnicity distributions in a generative mixture model to predict ethnicity of

Facebook users from their last names.

Our proposed method, in this chapter, builds on the work in the third category of models and

describes a novel generative model to predict ordinal latent variables with distant supervision such

as age and income. In this chapter, we use this model for age estimation using first names. Our

distant supervision comes from the Social Security baby name frequency data set. The proposed

model removes the need for individually labeled data sets and can estimate variables unreported in

user profiles such as age or income.

4.2 Age Estimation Using First Name

In this section, we describe a generative model to predict age by considering first names along

with Social Security data (SSD) about baby names.4 The input to the model is a list of first names

along with name frequencies from SSD for each birth year. The output of the model is two-fold: (1)

an individual-level prediction of age for each name; (2) a population-level prediction of aggregate

age breakdown for the entire population.

The U.S. Social Security Administration releases data about the frequency of each baby name

for each year. Such data include the frequency of more than 150 thousand different baby names

for each year starting from 1881. We show in Figure 4.1 some example first names and how their

smoothed frequency values show temporal trends over years. For example, among common names

(names that belong to at least 500 thousand people), a person named Tyler is less than 30 years old

94% of the time. Similarly, a person named Debra is 50-64 years old 78% of the time.

A naı̈ve method to predict age using such a signal would be to independently assign a first

name to the corresponding most frequent birth year in the SSD [61]. Then to estimate population-

level statistics, we can simply sum up the probability vector of birth years for each name in a given

population and then normalize the sum. The suggested naı̈ve analysis assumes that members of the

population of interest are independent of each other. Inferring age for each name independently

is a less useful indicator of age distribution than inferring collectively when the members of a
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(a) Probability that a person
named Tyler was born between
1983-2013 is 94%.

(b) Probability that a person
named Ashley was born between
1973-2013 is 88%.

(c) Probability that a person
named Debra was born between
1949-1963 is 78%.

Figure 4.1: Smoothed frequencies of example first names over birth years show that baby names
in the US show clear temporal trends.

population of interest show assortative mixing [38], and there is an abundance of evidence that

social media platforms exhibit high-order assortative mixing (e.g., [17, 60, 65]).

For example, the list of names of students attending a college is clearly not an independent

sample, and it is likely that the list of names of college students includes many names that are

popular in relatively recent birth years such as Ashley (i.e., high-order assortative mixing). Thus,

each name in a population is not necessarily independent from each other. In other words, proba-

bilistically, assume that we have a name in a college student population that is uniformly popular

among all age groups. If the inference is performed independently on such a name, the model

makes predictions randomly due to the uniform probability. Whereas if the inference is performed

collectively by considering other names in the population, the model shifts its prediction towards

young age groups. That, in turn, happens to other age groups because many names indicate highly

specific age groups (e.g., Debra or Ashley, as in Figure 4.1). The proposed generative model

(described in the next section) provides a powerful framework by allowing each name in a given

population to inform each other name through collective inference.
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Figure 4.2: The proposed Bayesian graphical model predicting age given first names. Shaded
variables indicate the inputs to the model, and unshaded variables are inferred using the model.

4.2.1 Model

We use a generative Bayesian mixture model to estimate the age density of a given population

[15, 16, 43, 57, 64]. We model the individual age values as hidden variables, and we model the

first names of corresponding individuals as observed variables. Also, parameters corresponding

to first name frequencies for each age value are observed (through SSD data). Then, we simply

infer the most likely values for hidden variables (individual age values and population mixture)

given the observed variables (corresponding first names and corresponding frequencies in each

age category).

In our model, we explicitly account for the ordinal relations among the age values by using a

logistic-normal prior for age proportions with a predefined covariance matrix [3, 15]. The model

enables collective inference [38] through the shared logistic-normal prior among all the names in

the population.

More formally, the age prediction model assumes that the first names present in a population of

sizeN arise from the following generative process. Let A be the number of different age categories,

and N be the number of users in a given population.
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1. For each age value a ∈ 1...A, get a first name frequency distribution from SSD, βfa .

2. Draw ν, from a multivariate Gaussian with mean µ and standard deviation Σ.

3. Transform ν with the logistic function to get age proportions, η = F (ν).

4. For each person n ∈ 1...N ,

(a) Draw an age value zi from Multinomial(η).
(b) Draw the first name of an individual based on age value, fi ∼Multinomial(βfzi).

The graphical representation of the corresponding model is shown in Figure 4.2. The param-

eters of the model are µ and Σ for multivariate Gaussian, and βfa for multinomial distributions

of first names for each age category (i.e., βfa , a ∈ 1...A, where A is the total number of age

categories). We transform multivariate Gaussian values to multinomial parameters using logistic-

normal transformation as follows:

F (νi) , ηi ,
eνi∑
j e

νj
.

The shaded variables in Figure 4.2 correspond to the observed variables, and unshaded vari-

ables correspond to the hidden variables. We set βfa values from the SSD about baby names.

Age is an ordinal variable where the following inequality holds for an age value x: x − 1 <

x < x + 1. From the posterior probability perspective, such ordinal dependency translates into

having similar probability values for age values that are close to each other. For example, as shown

in Figure 4.1, if a person’s name is Ashley, there is a high probability of being born in 1990 and a

similarly high probability of being born in 1991 and 1989. By modeling the ordinal dependency

among age values, we explicitly model high probabilities for values that are close to 1990 (e.g.,

1991, 1989). On the other hand, a person named Ashley has a low probability that she was born in

1950, and therefore we explicitly model low probability estimates for values close to 1950 (e.g.,

1951, 1949).

We set the parameter for Σ as suggested by Agresti [3] to model the ordinal dependency among

the age values as Σij = ρ|i−j|, where 0 < ρ < 1 and i and j are indexes for consecutive possible
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0 0.3 0.5 0.7 0.9

Different Covariance Matrix

Figure 4.3: Possible values of class mixture proportions for a three-valued variable as the covari-
ance values change for the logistic-normal prior. When rho is small, all values can be possible. As
we increase rho, the space of possible values is constrained, mimicking the ordinal dependency
among values. In the proposed model, this mixture proportion corresponds to the probability vector
for the multinomial.

values of the age variable. We show in Figure 4.3 how setting the Σ as suggested by Agresti [3]

constrains the possible probability vectors for an ordinal variable with three possible values. Each

dot represents a probability vector that sums to 1. In this figure, each corner represents a possible

value for the ordinal variable, and the distance from a dot to a corner represents the probability

of the corresponding value. The closer the dot is to the corner, the higher the probability for

that particular value. We systematically change the ρ value from 0 to 0.9 and plot 1000 possible

probability vectors. We observe that as the ρ value for the covariance matrix increases, the values

in the probability vector for the random variable become more and more dependent, mimicking

the ordinal dependency.

The individual age categories (i.e., zi), the age breakdown of the population (i.e., η), and the

mean values for the logistic normal prior (i.e., µ) are hidden variables and to estimate their values

we need to perform posterior inference. Mathematically, we must estimate

p(η,µ, z1:N |f1:N ,βf1:A,Σ) (4.1)
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Although a logistic-normal distribution can model ordinal aspects of age, parameter estimation

and inference are challenging because logistic-normal distribution is not a conjugate prior for the

multinomial distribution [15]. Therefore, we use variational methods for parameter estimation by

modifying the inference algorithm proposed by Blei et al. [15] for correlated topic models. We

report results using the expected value of each hidden variable under the variational inference.

For a given list of names in a population, we infer the age breakdown of the population using

p(η|f1:N ,βf1:A,Σ). For convenience, we define πi as the estimated age breakdown of user i

πi , p(zi|f1:N ,βf1:A,Σ) (4.2)

where πi is a vector of size A whose ath element expresses the probability that the user is in

age group a. This representation supports custom age categorization by simply defining new age

category boundaries and summing up the corresponding values in πi, for each category.

In Section 4.2.4, we report results on the relationships between age groups. To achieve this, we

define the following matrix between a pair of users, (n1, n2), in a particular relationship,

Mn1,n2 , πn1π
T
n2
, (4.3)

where Mn1,n2 is an AXA matrix whose (a1, a2)th entry expresses the probability that user n1

is in age group a1 and user n2 is in age group a2.

4.2.2 Limitations and assumptions of the model

First of all, by using the data compiled by the US Census, we assume that the populations we

use in this model to make inference are sub-populations included in the US Census. For example,

using this model on populations from the UK might fail.

Second, the generative process assumes that the first names are independent of the population

mixtures given birth years. This suggests that we assume being in a certain population only de-

pends on birth year, not first name. For example, if people whose first names start with T are more

likely to be in a certain population this assumption would be violated.
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(a) Results on an example data set (b) Results on another example data set

Figure 4.4: Two different examples from our experimental evaluation in which the performance
of the logistic model roughly corresponds to the average performance among 1000 test runs. A
logistic-normal model estimates the age distribution of populations better than the natural alter-
native models. Each column represents results from an example data set. The figure on the top
in each column shows the actual predictions of each model. The figure at the bottom shows the
KL-divergence of predicted mixture distributions to the true mixture.

Third, the generative process assumes that, given a population mixture, birth year values of any

two first names are independent of each other. For example, if a population includes grandchildren

only when their grand parents are also in the population, this assumption would be violated.

4.2.3 Experimental Evaluation

We evaluate the proposed model by using voter registration data. We gather 154,016 voter

registration records from Ohio in which we have the ground truth data with first names and cor-

responding birth years. We compare performance of the proposed method to the performance of

these following natural alternative models in estimating the population level statistics:

47



Figure 4.5: The model with logistic-normal prior achieves the smallest (i.e., best) KL-divergence
as it both models age as an ordinal variable and performs collective inference.

Truth is the ground truth data from voter registration.

Random is randomly assigning a person to a birth year, and then calculating the aggregate propor-

tions.

Naı̈ve model is a model that simply aggregates the probabilities in the SSD. (This corresponds to

the independent inference of names, as described in the text.)

Dirichlet prior model with smoothing is a mixture model with collective inference, but models

age as a categorical variable (i.e., not ordinal). We smooth the predictions of this model to make it

more suitable for estimating an ordinal variable. (We note that the performance without smoothing

is much worse than with smoothing.)

Logistic-normal prior model is the proposed model that explicitly accounts for the ordinal de-

pendency among age values.

We evaluate the proposed model on estimating the population-level age proportions. We sys-

tematically sample populations with different mixtures of birth years using the ground truth data.

We create 1000 different data sets, each of which includes 10,000 first names, and we use the pro-

posed model to estimate population-level statistics. We evaluate performance at an age category

level, where we combine birth years into categories by summing the density values of correspond-

ing birth years. For example, we estimate the density for the 18-29 age group by summing all the

birth year values corresponding to that group. We define four age categories: <30, 30-49, 50-64,
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and 65+. For the evaluation metric at the age category level, we use KL-divergence (the smaller

the value, the better the performance).

We expect that models utilizing collective inference should outperform naı̈ve models, espe-

cially when the population of interest is skewed from the population that is representative of SSD.

In Figure 4.4, we show two test runs with different age distributions. In the top row; we show

actual predictions, and in the second row we show the KL-divergence between estimations and

true distribution. In the top figures, the bottom bar corresponds to the true age distribution, and the

rest above are predictions from different models (random, naı̈ve, smoothed Dirichlet, and logistic-

normal, respectively).

In Figure 4.5, we plot the average KL-divergence of each model’s predictions for 1,000 test

cases. We observe that models that utilize collective inference (i.e., logistic-normal and Dirichlet)

perform better than models that do not utilize collective inference (i.e., naı̈ve and random). We also

report that the logistic-normal prior, which models age as an ordinal variable, performs better than

Dirichlet prior, which models age as a categorical variable. These experimental results suggest that

both collectively inferring posterior probability and explicitly modeling the ordinal dependency

among age values improve the estimation of population-level statistics.

4.2.4 Application to Twitter

In this section, we apply the proposed model described in Section 4.2.1 to US Twitter users.

First, we replicate a popular Pew Research study [27] about Twitter demographics, and eliminate a

methodological limitation in their study. Second, we report on how the age diversity of US Twitter

users has changed over time.

With the model described in Section 4.2.1, we can accurately estimate the relative age break-

down of Twitter users over time. First, we calculate the age category breakdown of a Twitter user

base snapshot from December 2012 and compare our findings to estimates in a Pew Research Re-

port about US Twitter demographics [27]. We define our categories as follows: <18, 18-29, 30-49,

50-65, and 65+, as suggested in the Pew Research report. We note that first name is an optional
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(a) Pew Research comparison (b) Age breakdown for full data

Figure 4.6: Estimates of the proposed method are comparable to the findings in the Pew Research
report. Other than their report, we also provide estimates for the age group <18 that such category
might be the second largest age group among US Twitter users. The Pew Research overlooked
estimates of this category due to methodological limitations.

feed on a Twitter profile. We assume that Twitter users who report their name in their profile report

their correct name, and who do not report their name are missing at random.

In Figure 4.6a, we compare our findings based on a random sample of one million random

Twitter users in the US to the findings of Pew Research and show that we are able to closely repli-

cate their conclusions. Similar to their conclusions, according to our analysis the largest age group

of the US Twitter users is in the 18-29 age group and the least active age group is 65+. However,

due to a methodological limitation, the Pew Research study only focused on Twitter users over 18,

completely excluding users below 18 years old (i.e., they could only perform phone surveys for

users above 18). Therefore, in Figure 4.6a, we compare our findings for the age categories over 18

years old.

In contrast to the Pew Research methodology, our proposed methodology does not have a

limitation and can give estimates for any age category, including <18. Figure 4.6b shows our

estimate for all age categories, and we find evidence that US Twitter users who are less than 18

years old might be the second largest age-category among US Twitter users.
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Figure 4.7: We compare different age groups in the US Twitter users to the general US internet
population as reported by the Pew Research. We observe that the largest age group on Twitter has
been 18-29, and members of this age group have consistently been over represented compared to
their population in the general US internet population as reported by Pew Research [27].

US Twitter user population age breakdown: Also, with the proposed methodology, we can

estimate how different age groups are represented on Twitter over time. We analyze a random

sample of US Twitter users of size 100K for each month starting from June 2011 to May 2013.

In Figure 4.7, we compare the saturation of each age group over 18 years old to the age break-

down of internet users obtained from the Pew Research report [27]. We observe that among US

Twitter users, age group 30-49 is almost saturated (i.e., has its fair share of users compared to the

US Internet population). Age group 18-29 is over-represented, and other age groups are under-

represented—though 65+ seems to be increasing rapidly, in the first half of 2013.

Activity of different age groups throughout the day: With the proposed method, we can

also analyze which age group is actively using Twitter at what time during the day. We randomly

sample 170K+ tweets posted at different hours from a one-month interval. In Figure 4.8, we plot

the daily activity of different age categories. We observe that US Twitter users under 18 and above

65 might be active on Twitter at completely different times of the day. Twitter users above 65
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Figure 4.8: During the day different age groups post tweets at different times in the US. Users over
65 and users under 18 use Twitter at completely different times.

seem to be most active early in the morning. In contrast, Twitter users under 18 seem to be posting

Tweets later in the day. For the largest age group on Twitter, age category 18-29, Twitter usage

peaks later in the afternoon. The age groups 30-49 and 50-64 show a similar pattern where their

usage peaks around late midnight.

Follower Analysis: We also perform some example case studies on US Twitter users to show

various potential applications of the model. First, we focus on age breakdown of followers of

arguably popular US Twitter users, and we compare such breakdown figures with respect to the

breakdown of general US Twitter users.
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Figure 4.9: We perform a case study on US Twitter users focusing on followers of a set of popular
Twitter users. Different Twitter users have followers from different age groups.

Figure 4.9 compares the age breakdown for each group of followers to the age breakdown of a

random sample of US Twitter users. If an age group is well-represented with respect to the general

Twitter population, the dot should be on the solid vertical lines, which intersect with 100%. Dots
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to the left of this line indicate under-representation, and dots to the right side of this line indicate

over-representation of the corresponding age category with respect to general Twitter population.

For example, we observe that the 50-64 age group is more than four times more represented

in the followers of Allstate, an insurance company, than its corresponding share in the general

US Twitter population. We see a similar trend for followers of Whole Foods, a national chain of

grocery stores in the US, and also for followers of NCLR, an NGO organization for Hispanic rights

located in Chicago.

On the other hand, for followers of Ajiona Alexus, a teenage celebrity, we observe that Twit-

ter users under age 18 are over-represented compared to their corresponding proportion on Twit-

ter. Different Twitter users attract followers from different demographic groups and this proposed

model can estimate such population-level breakdowns for the followers of different users.

Topical Analysis: Using the proposed model, we can also analyze the breakdown for different

age groups engaging in conversation around specific topics on Twitter. In Figure 4.10, we compare

the age breakdown of users given a specific topic to the general age breakdown of US Twitter

users. As explained above, 100% indicates perfect representation of each age group, smaller values

indicate under-representation, and higher values indicate over-representation.5

We observe that the age groups are represented differently in different conversations. For

example, for the immigration act conversation on Twitter, measured by the relevant set of hashtags,

we observe that Twitter users of age 65+, <18, and 30-49 are over-represented (i.e., provided more

posts than their expected share by their general proportion on Twitter). We also observe that users

of age 18-29 are under-represented in the immigration act conversation on Twitter.

Users in age group 50-64 seem to be actively participating in conversations about fiscal cliff,

gun regulations, the blizzard nemo, boston-strong campaign and nba-finals. We also observe that

users under 18 are also participating in conversations about nba finals.

5We gather data for each of these topics using the Twitter Firehose API. We filter tweets containing relevant
keywords and hashtags. See Section A.1 for a detailed list of hashtags used for each topical analysis.
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Figure 4.10: We perform a case study on US Twitter users engaging in specific conversation.
Different topics attract users from different age groups as participants.

Follow relationship analysis: We analyze how different age groups interact with each other

with respect to the follow relationship on Twitter. We sample 100,000 random follow relationships

from the Twitter social graph. We then use our model to predict the age of each user in the sample.

For each relationship, we calculate an interaction matrix by simply taking the cross-product of
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Figure 4.11: Following relationship between different age groups. Darker cells indicate that age
group pairs follow each other (i.e., y follows x) more frequently than expected by chance. We
observe that <30 and 50+ age groups show assortative mixing in their relationship, however, 30-
49 age group shows diverse assortative mixing.

age prediction vectors corresponding to users involving in a follow relationship, as described in

Equation 4.3. We calculate the interaction matrix for the population by aggregating individual

matrices, as follows. Let κ denote the set of pairs in a relationship,

M̂ ,
1

|κ|
∑

(n1,n2)∈κ

Mn1,n2 (4.4)

where M̂ is an AXA matrix whose entries denote the estimated proportion of relationship being

of a particular pair of age groups.

We calculate an average interaction matrix by aggregating the matrices for random edges sam-

pled from the Twitter graph, using Equation 4.4. We normalize the average interaction matrix,

with the expected interaction matrix by chance, M∗ , η∗η∗T , where η∗ is the population age

breakdown. This practically corresponds to sampling random pairs from the population.

Figure 4.11 shows the normalized interaction matrix as a heat map. In this matrix, the age group

in the y-axis follows the age group on the x-axis. The darker the cell, the higher the interaction

between the corresponding pair of age groups. We observe that the age groups <30 and 50+

show high assortative mixing (i.e., users tend to follow mostly users within their own age group),

whereas the age group 30-49 shows less assortative mixing.
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Name Rank Count % in group
African American

Washington 138 163036 89.7%
Jefferson 594 51361 75.2%
Booker 902 35101 65.6%

Asian/Pacific Islander
Zhang 963 33202 98.2%
Huang 697 44715 96.8%
Choi 872 57786 96.4%

Hispanic
Barajas 989 32147 96.0%
Orozco 690 45289 95.1%
Zavala 938 34068 95.1%

White
Yoder 707 44245 98.1%

Krueger 863 36694 97.1%
Mueller 467 64305 97.0%

Table 4.1: Frequently occurring last names for different ethnic groups.

4.3 Ethnicity Estimation Using Last Names

Ethnicity is another key demographic variable that is unobserved in many social media plat-

forms. In this section, we present another generative model to predict ethnicity by considering

the last name along with US Census Bureau statistics about last name ethnicity frequencies. The

input to the model is a list of last names and data from the US Census Bureau statistics (i.e., the

frequency of last names in each ethnic group), and output of the model is an ethnicity prediction

for each last name, and ethnicity mixture for the corresponding population.

The US Census Bureau publishes data about frequently occurring last names under its Geneal-

ogy Project6. The data are compiled from almost 270 million responses to the 2000 Census. This

data includes last names, their corresponding total count in the population, and their individual

ethnic breakdown (i.e., proportions for each ethnicity).

Last names can provide a strong signal for inferring ethnicity. For example, having the last

name Washington is a strong signal of Black ethnicity (more than 89% of people with last name

6http://www.census.gov/genealogy/www/data/2000surnames/index.html
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Figure 4.12: Probabilistic Bayesian model to estimate ethnicity proportions.

Washington are of Black ethnicity, as shown in Table 4.1). Having the last name Zhang is a strong

signal of Asian ethnicity. Having the last name Krueger is a strong signal of White ethnicity.

Similar to the age-prediction model proposed earlier, Chang et al. [22] proposed a probabilistic

Bayesian model to predict the ethnicity information using last names. Such a model collectively

infers the ethnicity of a given population by allowing inference about each name in a given pop-

ulation to be informed by inference about every other name. For example, the last name Mack

is almost equally likely to be of White ethnicity or of Black. However, if this last name is in a

population where there are many other people named Yoder or Krueger (which are last names that

are more likely to belong to people of White ethnicity than of other ethnic groups), then Mack is

more likely to be of White ethnicity than of Black ethnicity. Instead, if this name is in a population

where there are many people named Washington or Jefferson, then Mack is more likely to be of

Black ethnicity.

The collective inference is performed on a generative mixture model, as shown in Figure 4.12.

Instead of learning the βle parameters (distribution of last names given ethnicity), the values from

the US Census Bureau statistics are used in the model. As shown in the graphical model in Fig-
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Figure 4.13: Ethnicity breakdown of a data set from Freebase.com. A Bayesian model accurately
estimates the proportions.

ure 4.12, last names and the beta (βle) parameter (i.e., last name frequencies from the US Bureau

Statistics), are observed, as indicated by shaded nodes, and theta θ (i.e., ethnicity distribution of

a given population), α, and zi’s are inferred through collapsed-Gibbs sampling. We focus on the

main four ethnic groups that cover most of the US population: White, Black, Asian/Pacific Islander

and Hispanic7.

4.3.1 Experimental Evaluation

To evaluate this probabilistic Bayesian model, we gather names and corresponding ethnicity

information from Freebase.com8, which is a large knowledge base for structured data compiled

from various sources. We focus on Americans of White, Black, Asian/Pacific, or Hispanic origin

and put together a data set that contains 3,536 people from the USA. Among these users, 3,076 of

them have last names that are present in the US Census Bureau statistics.

First, we test our model on the whole Freebase data set. Figure 4.13 compares the model

estimate to the actual ground truth. We use KL-divergence to measure the distance between the

7We use the same ethnic categories as the ones in the US Census Bureau data merely because of the availability,
though the methodology discussed can be used with any categorization.

8http://www.freebase.com
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estimated probability distribution and the true distribution. The KL-divergence between the ground

truth and the model estimate is less than 0.001. The model is accurately able to estimate the

ethnicity proportions for the overall Freebase population.

We further evaluate the Bayesian model for cases where the training distribution (i.e., ethnicity

distribution implied by the US Census Bureau statistics) and the test distribution (i.e., ethnicity dis-

tribution of a given population) are considerably different from each other. To generate test cases

with a skewed distribution, we first randomly sample a mixture proportion from a Dirichlet distri-

bution. Then, we sub-sample from the Freebase data set to satisfy this sample mixture proportion.

By randomly changing the values of the Dirichlet distribution, we generate data where ethnicity

values are skewed (i.e., people of one particular ethnicity dominating the whole population). We

run this experiment on 1000 different list of names, with different ethnicity proportions. We use

collapsed-Gibbs sampling for the inference that runs 1,000 iterations.

The average KL-divergence between the true distribution and the estimated distribution is 0.02.

Figure 4.14 shows the results of four example data sets where the underlying population is skewed

towards one specific ethnicity. We provide evidence that the model is quite accurate even when

there is a considerable skew in ethnicity distributions.

4.3.2 Application to Twitter

We apply the Bayesian model for ethnicity to US Twitter user data. We present how diversity

on Twitter changes over time, and how saturated each ethnicity in US Twitter user base compared

to addressable internet population. Diversity in terms of ethnicity on Twitter changes over time

as new users join to the platform. The Bayesian model allows us to get predictions for each time

snapshot, and to temporally estimate the ethnicity distribution. We note that the last name is an

optional feed on the Twitter user profile, and we assume the information is correct when present

and missing at random when not. Starting from June 2011, for each month we randomly sample

three thousand users who listed their location as the US in their Twitter profile.
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(a) (b)

(c) (d)

Figure 4.14: Four example sub-samples of Freebase data with skewed ethnicity distributions com-
pared to the corresponding true density. The Bayesian model accurately estimates ethnicity even
though the test distribution is skewed.

Figure 4.15 shows the ethnic proportions on Twitter over time divided by the corresponding

proportion of that ethnicity in addressable internet population. We use the estimated ethnic break-

down of households with an internet connection from the National Telecommunications and In-

formation Administration report on the Networked Nation9. We observe that Black and Hispanic

US Twitter users are over-represented, whereas White and Asian users are under-represented in the

9http://www.ntia.doc.gov/report/2008/networked-nation-broadband-america-2007
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Figure 4.15: Comparison of ethnic proportions of US Twitter users to the addressable internet
population shows that Black and Hispanic users have been over-represented, whereas White and
Asian users have been under-represented on the platform.

US Twitter population. These results appear to be in agreement with many other news articles and

blog posts indicating the over-represented minority population among US Twitter users (especially

among early adopters of Twitter).10

4.4 Conclusions

In this chapter, we develop a novel predictive model based on generative models to predict

ordinal variables with distant supervision. We use this model to predict age using first names in a

given population. Our model is distantly supervised in the sense that it uses Social Security baby

name data for each year as a prior. This model provides accurate population level predictions as

well as individual-level predictions using a generative model framework with collective inference.

We show the benefit of explicitly modeling the ordinal dependency among age groups.

10http://www.businessinsider.com/twitter-study-results-2010-4
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We apply our model to estimate demographic information about US Twitter user age groups.

First, we closely replicate a Pew Research report about the active age groups on Twitter, finding

that 18-29 age group is the most active. Limited by the user groups they could reach by surveying

people on the phone, Pew Research study reports age groups older than 18 (i.e., they cannot legally

survey users younger than 18). Our method is free from such a limitation and we find that less than

18-year-old is the second most active age group on Twitter.

Our results also indicate that users older than 50 are under-represented; conversely, users in the

18-29 age group are over-represented compared to their respective presence in the general internet

users population. We identify times in a day each age group is active on Twitter, finding that users

in 65+ age group and 18-29 age group are active on Twitter at completely opposite times during

the day. We show evidence that different age groups engage in different topics and follow different

users. Finally, we find that young and senior Twitter users exhibit high-order assortative mixing in

their follow relationships, whereas middle age users follow users from diverse age groups.

We develop a simple yet effective predictive model for ordinal variables with distant supervi-

sion. We apply this model to estimating a key demographic variable (i.e., age estimation using first

names). We also evaluate another related model for estimating categorical variables (i.e., ethnicity

estimation from last names). We argue that such predictive models with distant supervision can

estimate key demographic variables. We propose that for causal questions where age or ethnicity

might be unobserved, estimations from predictive models, such as presented in this thesis, can

help adjust for their effects. Since every estimation process inherently includes error, we point that

such estimations would be noisy and we characterize potential ways to deal with such noise. In

the next chapter, we propose to use predictions from these models to improve causal estimation by

explicitly handling unobserved variables.
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CHAPTER 5

USING LATENT VARIABLE MODELS TO ADJUST FOR
UNOBSERVED CONFOUNDING VARIABLES

Confounding variables can bias estimates of treatment effects obtained from observational data.

For example, when estimating the effect of activity level on weight gain, age is a potential con-

founding variable because it might affect both activity level and weight gain. Ignoring confounding

variables introduces bias in estimates of treatment effect [74, 97], and conditioning on confounding

variables is a common approach to adjust for this bias.1

However, almost all theoretical principles and practical methods that adjust for confounding

variables make the assumption that such variables are measured without error. This conflicts with a

harsh reality of empirical analysis: nearly every variable is measured with some degree of error due

to misspecification, instrumentation, or recording [92]. When a confounding variable is measured

with error, mere conditioning might be unable to completely remove confounding bias [23, 71].

Kuroki et al. [47] proposed algebraic and graphical methods to adjust for measurement error in

observed confounding variables. Their proposed method (i.e., effect restoration) assumes knowl-

edge of which variables are confounders, values for their proxy variables, and the corresponding

error distributions between proxy and confounding variables.

For example, in the graphical model structure in Figure 5.1b,X is a treatment, Y is an outcome,

and U is an unobserved confounding variable. W is a version of U measured with error. While

estimating the joint distribution P (X, Y ), the proposed method re-assigns the effect ofW onX and

Y by using the error distribution. When the specific underlying graphical structure in Figure 5.1b

1Much of the content of this chapter is derived from: H. Oktay, and D. Jensen (2017).
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(a) Confounding variable (b) Confounding variable with measurement error

Figure 5.1: Graphical model representation of a domain where U is a common cause for X and
Y. Figure 5.1a represents perfect observation of a confounding variable. Figure 5.1b represents
observing the confounding variable with measurement error.

is assumed, such re-assignment can adjust for the measurement bias. This underlying structure

assumes the prior knowledge of confounding variables.

However, in practice, it is far from straightforward to conclude that the assumed structure holds

given a treatment, outcome, and a proxy variable. Furthermore, it is unclear whether the adjust-

ment made by effect restoration still provides a bias-free estimate when the underlying generative

process does not correspond to the structure in Figure 5.1b, which Kuroki et al. [47] consider

out-of-the scope in their study.

In this chapter, we characterize the behavior and extend the use cases of effect restoration for

given (X, Y, W) triplets. First, we characterize bias and variance trade-off for effect restoration for

all possible underlying structures for X, Y, and W. Second, we formulate the sufficient conditions

using d-separation rules to identify the underlying structures of X, Y, and W. Third, we present

evidence that effect restoration can reduce bias in real-world experiments. Finally, we show ev-

idence that effect restoration can be used with predictive models to reduce bias by adjusting for

unobserved confounding variables. This idea assumes that we have a priori hypothesis about con-

founding variables and for each such variable we can develop a latent variable model using other

observables to estimate its values.
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5.1 Related Work

Causal sufficiency, a common assumption in casual discovery, states that the set of measured

variables include all of the confounding variables for all pairs of variables in a given domain

[74, 97]. Many methods focusing on identifying the treatment effect of a particular treatment-

outcome pair require a particularly expansive version of causal sufficiency to guarantee a consistent

causal estimate: all potential confounder variables of a treatment and outcome pair are perfectly

observed (i.e., observed with no error) [35, 80, 100].

However, Scheines et al. [92] recently pointed out that in almost any empirical data collection

setting, measurement error accounts for some variation in variables due to errors in instruments or

recordings. By employing a simulation study, the authors showed that a standard causal discovery

algorithm suffers especially in the edge orientation stage from measurement error. In a simpler set-

ting, to estimate one causal effect with measurement error Kuroki et al. [47] proposed theoretical

principles of an effect restoration method by extending the do-calculus for a specific underlying

structure. We employ simulation analysis to enhance this theoretical work with empirical evalua-

tions. We also relax the specific structure assumption and characterize the bias-variance trade off

for the adjustment method under other simple graphical structures.

Although not explicitly in causal estimation context, measurement models for covariates in

regression models have been extensively studied by statistics community, often referred as errors-

in-variables [21, 23]. The work presented here differs from models for errors-in-variables because

we use graphical models and because we explicitly focus on interventional distributions by using

the do-calculus, (i.e., p(y|do(x))). Effect restoration with graphical models can be mapped into

regression analysis only when certain causal assumptions are made [47]. The benefit of explicit

causal consideration is to identify measurement models that are compatible with transportability

[76], transferring information learned from analysis in one environment to another environment.

Here, by building on the explicit causal work by Kuroki et al. [47], and by explicit use of graphical

models, we focus on the effects and specification of measurement models for causal estimation.
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Furthermore, we explore the use of effect restoration to account for bias from unobserved con-

founder variables when used with predictive models. Two main methods often used in the literature

to adjust for unobserved confounders are instrumental variables where external variables such as

weather conditions serve as randomization for the treatment [4] and with-in subject designs, where

an experimental subject serves both as a control and a treatment subject for herself [93, 85, 100].

In this chapter, for the same goal, we propose a different approach. We suggest accounting for un-

observed confounding variables by using their predictions from independent predictive processes

along with their corresponding error distributions in such processes.

Our proposed approach might resemble transfer learning approaches in machine learning where

a target learning task is performed by using knowledge obtained from previously related tasks

[53, 70, 108]. Early work in this field defines a meta-learning task to capture informative priors

through joint inference, that then can inform a new classification task [26, 82]. Recent work

includes deep representation learning so that higher-level learned features are transferable across

many classification tasks [12, 109]. The main focus in the related literature about transfer learning

appears to be virtually classification and prediction tasks as oppose to effect-learning [76]. In

this chapter, we focus on transferring knowledge from a predictive model to obtain a bias-free

estimation for the interventional distribution.

5.2 do-Calculus and Treatment Effect Calculation

To formalize the problem of effect restoration, we use probabilistic graphical models [44] and

Pearl’s do-calculus [74]. For example, in the graphical model shown in Figure 5.1a, we denote

the direct effect of X on Y as P (Y | do(X)). Generally in observational studies, this quantity

is different than simply conditioning on X (i.e., P (Y | X)). Conditioning implies the probability

distribution of Y in each possible world defined by an observedX value. However, the do operator

implies actively setting the value of X (i.e., intervention). Hence, P (Y | do(X)) represents the

effect of actively manipulating the values of X and P (Y |X) represents passive observation. We

refer the reader to the book by Pearl [74] for more details about do-calculus.
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Weight Gain
Activity Level 0 1

0 0.20 0.80
1 0.60 0.40

Table 5.1: Effect of activity level on weight gain.

For the graphical model in Figure 5.1a, when all variables are fully observed and under iden-

tifiability conditions (again, see the book by Pearl [74] for details about such conditions), the

probability P (Y | do(X)) can be estimated by:

P (Y | do(X = x)) =
∑
U

P (X, Y, U)

P (X | U)
(5.1)

Given this interventional distribution, for a binary X, the treatment effect (TE) of X on Y can be

calculated as [75, 72]:

TE = E(Y | do(X = 1))− E(Y | do(X = 0)). (5.2)

From perfect observations of X , Y , and U , consistent estimates of TE can be obtained using

various modeling methods [37, 63, 73, 97]. However, these methods fail to provide consistent

estimates if U is measured with error [23, 92]. Kuroki et al. [47] recently extended the do-calculus

to adjust for confounding variables with measurement error. Figure 5.1b shows the graphical model

structure they assume in their extended framework. They propose that under certain conditions,

the TE of X on Y can be restored bias-free when a proxy variable for the confounding U (i.e., W )

is observed and the error distribution (i.e., P (W | U)) is known. (See work by Kuroki et al. [47]

for further details.)

Treatment Effect Calculation

Our experiments use a specific formulation for the TE estimator defined by Kuroki et al. [47]

with the do-calculus framework. Illustrating with our earlier example of activity level, weight gain,
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and age, our goal is to estimate the interventional distribution of P (WeightGain|do(ActivityLevel)).

Let us assume the interventional distribution shown in Table 5.1.

According to this distribution, when a person has low activity level, the odds of weight gain is

0.80
0.20

= 4. Whereas, when a person has high activity level, the odds of weight gain is 0.40
0.60

= 0.66.

We define the difference in the log-odds ratio for different treatment values as the causal effect of

treatment (e.g., activity level) on outcome (e.g., weight gain). Mathematically, the causal effect of

a binary treatment variable on a binary outcome variable (referred as TE) is:

TE = log

(
P (Y1 | do(X1))

P (Y0 | do(X1))

)
− log

(
P (Y1 | do(X0))

P (Y0 | do(X0))

)

5.3 Effect Restoration and Underlying Structure

The effect restoration method proposed by Kuroki et al. [47] assumes that a confounding bias

exists as shown in the graphical structure in the first column of Figure 5.2. Here, we relax this

assumption and characterize the performance of effect restoration under all possible modifications

of the simple graphical structure suggested in the original paper.

Figure 5.2 shows all possible modified structures between X, Y, W, and U with the following

assumptions, which are typical in many causal inference studies in social and medical sciences.

Assumption 1. X is temporally prior to Y .

Assumption 2. W is a noisy measurement of U .

Assumption 3. U is temporally prior to X and Y .

We employ simulation studies to characterize the performance of effect restoration for each

possible graphical model structure.

5.3.1 Data Generation

We generated discrete and continuous synthetic data consistent with the graphical structures in

Figure 5.2. We explain the discrete data generation process for the graphical structure shown in the
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Figure 5.2: All possible underlying structures with temporal ordering assumptions

first column of the table. Other graphical structures follow almost the same steps, except that the

added, removed, or reversed dependencies in the structure entail adding, removing, or changing

the order of steps in the data generation process, respectively.

In the generative processes below, italic letters denote scalar values (e.g., N); upper-case bold

characters denote vectors (e.g., W); each element of a vector is accessed by an index subscript

(e.g., wi); correlations between variables are referred with subscripts such as ρuw denoting the

correlation between U and W; marginal and conditional probabilities are denoted by the upper-

case letter P. Following are the steps to generate binary data for the structure in column A in

Figure 5.2.

We vary ρuw, ρux, ρuy and ρxy correlation values between (0,1). We model P (Y | U,X) as a

noisy-or conditional probability distribution by using the following formula as suggested in Kohler

et al. [44]:

P (Y = 0 | U,X) = (1− λ0) ∗ (1− ρuy)U ∗ (1− ρxy)X (5.3)

P (Y = 1 | U,X) = 1− (1− λ0) ∗ (1− ρuy)U ∗ (1− ρxy)X (5.4)

We set the value of λ0 = 0.01 as the noise parameter of the noisy-or model. Note that we add

a constant bias to values of W and the amount of bias is defined by the ρuw.

For each parameter setting, {ρuw, ρuy, ρux, ρxy}, we generate 50 separate data sets. Each dataset

includes 10,000 instances, where each instance is a list of values for U , X , Y , W . As noted, for

other graphical structures we revise the data generation process for the corresponding removed
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1. Set correlation values, ρuw, ρuy, ρux, and ρxy.

2. Draw a prior for Pu ∼ Uniform(0, 1).

3. Draw N values for U from Bernoulli(Pu).

4. For each ui in U:

(a) Draw a p′ ∼ Uniform(0, 1).

(b) If p′ < ρuw, set wi = ui;
else draw a value for wi ∼ Bernoulli(p = 0.8).

5. For each ui in U:

(a) Draw a p′ from Uniform(0, 1).
(b) If p′ < ρux, set xi = ui;

else draw a value for xi ∼ Bernoulli(p = 0.5).

6. Draw Y ∼ Binomial(N,P (Y = 1 | U,X))

dependency. For example, in the structure in Figure 5.2 column B, the dependency between U and

X is removed. To account for this in our data generation process, we sample a prior for PX from

a uniform distribution; we sample values for X using the prior instead of using P (X | U).

In our experiments, we calculate the true treatment effect (i.e., TE) as our ground truth by using

the values of U . We estimate the treatment effect (i.e., TE’) with the following three approaches:

(1) Ignore W: Simply ignoring the measurements of W , (2) Ignore measurement error: Using W

and ignoring the measurement error, and (3) Effect restoration: Using W and adjusting for the

measurement error. Note that these three methods do not use values of U (i.e., they can only use

values of X , Y and W ). We measure the bias for each approach in each experiment by normalized

error:

ε =
TE − TE ′

TE

We measure the standard deviation of error values across experiments.
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Figure 5.3: Variance and bias results for different underlying structures

5.3.2 Bias and Variance for Different Underlying Structures

We perform simulation analysis for each of the graphical structure in the first row of Figure 5.3.

In the second and third row, we show both the variance and the bias in estimating the treatment

effect, respectively. In each plot, we show the behavior for each of the three different approaches

as the measurement error changes along the x-axis. We calculate the measurement error by the

strength of dependency between U and W using the Cramer’s V φ coefficient2. The stronger the

dependence, the weaker the measurement error. On the y-axis we plot locally smoothed normalized

2www.en.wikipedia.org/wiki/phi_coefficient
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error for the bias and locally smoothed standard deviation for the variance for the three different

approaches. Figure 5.3 shows the results for a fixed treatment and confounding effect for all

graphical structures considered.

We observe that, for the graphical model structure in the first column in Figure 5.3, when the

confounding variable is simply ignored, unsurprisingly, we see a constant bias in our estimate of

the treatment effect. However, when values of W are used as if they are the perfect observations

of U (i.e., when the measurement error is ignored), the bias in treatment effect estimate is reduced.

Unsurprisingly, this reduction is especially significant, when values of W is highly correlated with

values of U (i.e., measurement error is small). Finally, when values of W is used with the effect

restoration adjustment, the bias is consistently reduced more than the other approaches.

Furthermore, the smaller the measurement error between W and U , the smaller the bias in

estimation. Also, the larger the measurement error, the more the relative benefit of explicitly

adjusting for it using effect restoration versus simply ignoring it. However, when U and W are

poorly correlated (i.e., measurement error is high), applying effect restoration comes with the cost

of increased variance, as shown in the second row in Figure 5.3. In a way, when effect restoration

is used with poorly correlated proxy variables, it transforms the problem of estimating treatment

effect from a high-biased one to a high-variance one.

For the other graphical model structures in Figure 5.3 columns B, C, D, we observe that ignor-

ing or using W directly provide consistent estimates for the treatment effect, however, explicitly

applying effect restoration might increase bias as well as variance. Hence, applying effect restora-

tion regardless of the underlying structure can result in an incorrect estimate.

We perform additional experiments for the graphical model structure in column A by changing

the values of treatment effect and confounding effect. Figure 5.4 shows the results of our exper-

iments. In these plots, the treatment effect increases along the big y-axis and confounding effect

increases along the big x-axis. Along the x-axis in each plot, the strength of effect between U and

W increases. These results suggest that the effect restoration is most effective when the treatment

effect is small and the confounding effect is high.
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Figure 5.4: Bias and variance as the treatment and confounding effects change

We have performed the same experiments with continuous data, and we reach the same con-

clusions in those experiments. See Appendix Section A.2 for the results of the continuous experi-

ments.
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5.4 Detecting the Underlying Graphical Structure

In the previous section, we presented empirical evidence that when the underlying structure

deviates from the confounding variable case, the adjustment provided by effect restoration can

increase bias and variance. This raises a natural question: Can we detect when to apply effect

restoration? Instead of assuming that the confounding bias exists, we propose to verify if it exists

by using d-separation and typical temporal ordering constraints on the variables.

Note that U may or may not be a confounding variable for X and Y . Our goal is to identify

sufficient conditions to determine if U is a confounding variable and only apply effect restoration

when it is.

Possible Underlying Structures

In Table 5.2, we list all possible underlying structures with variables X , Y , W , and U that

satisfy the stated assumptions 1 and 2 in Section 5.3. There are nine possible graphical structures.

We individually account for dependence and independence relationships between variables in each

of the possible structures. One of the possible structures contains a cycle (i.e., the structure in

the last column of Table 5.2 is not a directed acyclic graph.) and hence out of the scope of our

discussion.

In four of these structures, U is temporally prior toX and Y (i.e., columns A through D). In the

remaining four structures, U is temporally posterior to X and Y (i.e., columns E to H). In the rows

of Table 5.2, for each graphical model structure, we list all the marginal and conditional indepen-

dence relations between X , Y , and W using d-separation criterion. In the columns of the table,

we list the possible underlying graphical models. Each column vector in the table corresponds to

the expected conditional dependence and independence relations for the corresponding graphical

model.

We make several observations. First, we note that some of these graphical structures are per-

fectly distinguishable from conditional independence relations (i.e., structures in columns B, D,

and F in Table 5.2). These structures can be identified by analyzing observed values of X , Y ,
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U is temporally prior to X and Y U is temporally posterior to X and Y Cycle
A B C D E F G H I

X ⊥⊥ Y 6 6 6 6 6 6 6 6 N/A
X ⊥⊥ Y |W 6 6 6 6 6 6 6 6 N/A
X ⊥⊥ W 6 4 6 4 6 6 6 6 N/A
X ⊥⊥ W |Y 6 6 6 4 6 4 6 6 N/A
Y ⊥⊥ W 6 6 6 4 6 6 6 6 N/A
Y ⊥⊥ W |X 6 6 4 4 6 6 4 6 N/A

Table 5.2: Conditional (in)dependence relationships for all simple graphical structures.

and W , assuming accurate conditional independence tests. However, some structures are indistin-

guishable with the given set of conditional independence relations (e.g., structures in A, E, and H

share exactly the same set of conditional independence relations).

Second, if we also make a common assumption that covariates are measured pre-treatment [10,

93, 100, 107], then only the structures in columns of A, B, C, and D will be possible. Furthermore,

conditional independence relations would be sufficient to distinguish among these graphical model

structures.

Thus, common temporal assumptions and conditional independence relations are sufficient to

determine the underlying graphical structure from X , Y , and W .

5.5 Effect Restoration with Real Data

In this section, we evaluate the performance of effect restoration on causal distributions ob-

tained from real-world settings. We use the experimental data compiled by Garant et al. [33] about

the effects of interventions on large-scale software systems.

Specifically, we use their experimental data about PostgreSQL3, a large open-source relational

database management system. The authors ran over 11, 000 queries under each of eight different

3https://www.postgresql.org
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(a) Relationships between indexing, disk reads, and
cache hits on a Postgress database system. (b) Bias in cache hits effect on disk reads estimation.

Figure 5.5: Effect restoration with real experimental data.

system configurations. This creates a nearly ideal data set for causal estimation because each sub-

ject (i.e., query) is observed in each treatment condition (i.e., configuration setting). This approach

allows direct interventional estimates of the effect of treatment variables on outcome variables in

the context of a large number of other covariate variables representing characteristics of queries

and intermediate states of the database server.

The authors then use GES, a score-based algorithm for structure learning [24], to recover the

underlying structure for the PostgreSQL domain. From their partially learned graphical structure,

we focus on specific variables in which the sub-structures satisfy the effect restoration conditions

as shown in Table 5.2.

We identify two cases in which we can apply effect restoration. One is shown in Figure 5.5a

and represents the relationships between indexing, disk reads, and cache hits. Generally speaking,

indexing affects both disk reads and cache hits. Indexing reduces the disk reads (i.e., a result of a

query can be retrieved with fewer disk block reads) and increases the cache hits. Figure 5.5a shows

the cache hits as a cause of disk reads. The authors note that the direction of this edge between

disk reads and cache hits might also be in the opposite direction. In our analysis, we separately
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analyzed graphical structures in both directions and the results for effect restoration are similar in

both cases.

For simplicity, we converted each variable to a binary variable by using the median value of

each variable as a threshold. Our goal is to estimate the effect of cache hits on disk reads under

noisy measurements of indexing. To obtain such noisy measurements, we manually added noise to

the values of indexing by overwriting the values for a subset in indexing with results coming from

a random sampling process.

Then we use these noisy measurements to adjust for the confounding bias of indexing. Similar

to our previous experiments, we compare three approaches: (1) Ignoring the values of noisy mea-

surements for indexing, (2) Using the values of indexing, ignoring that they are noisy, (3) Using

the values by correcting for the noise in their measurements. We calculate the true effect by using

the true values of indexing.

In Figure 5.5b, we plot the normalized error in the estimated treatment effect with respect to

measurement noise in indexing. Similar to our results on simulated data, estimation with correction

provides significantly smaller bias than alternatives. In addition, as the measurement error of the

confounding variable increases (i.e., the strength of effect betweenU andW decreases), the relative

benefit of applying measurement error correction increases over simply ignoring the measurement

error.

5.6 Effect Restoration with Predictive Models

Adjusting for a confounding variable by using noisy measurements can also be thought as

adjusting for an unobserved variable when both its predictions and the error distribution of such

predictions can be inferred using an independent external estimation process. For example, assume

we want to estimate the effect of activity level on weight gain. Assume age is a confounding

variable (i.e., age is related to both activity level and weight gain) and that it is unobserved for the

population of interest. Clearly, in this hypothetical example, we need to adjust for the confounding

bias of age to get a consistent estimate of activity level on weight gain.
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One idea might be to estimate age by using other observables for the subjects under study. For

example, such observables might be based on users’ social media content [66, 77], links on social

networks [110], first names [68], or names combined with personal images [32].

We can use the predictions of such models as noisy measurements of age and along with their

error distributions adjust for its confounding bias. This idea assumes that the population under

study is similar to the population from which the predictive model was trained so that we can

transfer the knowledge of that model to obtain the corresponding predictions and error distribu-

tion. This assumption, referred to as external validity, is common to nearly all statistical causal

modeling.

Here, a priori, we hypothesize that age might be a confounding variable, and we employ a

latent variable model to estimate its values. Similarly, if there are other confounder variables such

as ethnicity or income, we can separately use latent variable models to adjust for their effects as

long as the confounder variables are independent of each other.

We evaluate the idea of using predictive models for effect restoration by constructing a scenario

in which we observe activity levels, and weight gain recordings of a population along with their

first names. Although one can use more complicated models for predicting age, here we use the

model introduced in Chapter 4 due to its simplicity.

In our experiments, we generate synthetic data with activity levels, weight gain, and the first

name for each subject. We then use first names to infer an age value for each subject. Finally,

we use the inferred age values along with the corresponding error distribution to adjust for the

confounding bias due to age.

One might suggest that instead of using a model to estimate age, we could simply adjust for

the values of first names. There are three reasons for avoiding this approach. First, the number of

possible first names is very large and using them directly would lead to a high-variance estimator

of causal effect for most data sets.

Second, conditioning on first names leaves the back-door path unblocked between activity

levels and weight gain [47], as shown on in Figure 5.6. (See [74] for a detailed discussion of back-
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Figure 5.6: Effect restoration for unobserved variables with predictive models

door paths.) This implies that the confounding bias would still exist. Third, our proposal is to plug

in any predictive model for unobserved confounders, and such models can use many independent

variables rather than just one. Again, conditioning on many independent variables can lead to a

high-variance estimator. In fact, from the perspective of effect restoration adjustment, using high-

capacity models in causal estimation is desirable to drive down prediction error and subsequently

reduce bias.

Our proposed approach—using a predictive model for effect restoration in pursuit of a low-bias

estimator of causal effect—is similar in spirit to the use of predictive models for propensity score

matching [88]. Both approaches use a predictive model to summarize the effect of a potentially

large number of variables. Propensity score matching aims to summarize all observed covariates,

however, we focus on adjusting for unobserved confounding variables.

Figure 5.6 shows the graphical model representation of the experiment. As before, we compare

estimating the effect when a confounding variable is ignored, when the error in the confounding

variable is ignored, and finally when effect restoration is used. Our results with an independent

estimation process are similar to those obtained earlier from both the simulation and real data

experiments. We observe the most reduction in bias when correction based on measurement error

is used. We also show that, as the influence of confounding variable increases, the relative benefit

of effect restoration increases.
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Figure 5.7: Density plot of estimations using three alternative models. Using effect restoration
reduces the bias practically in all cases. Similarly, using the information in the proxy variables
reduces the bias practically in all cases over simply ignoring it.

Confidence intervals with bootstrapping

We perform confidence interval estimation by performing bootstrapping. Specifically, for a

fixed confounding and treatment effect, we perform estimation of the treatment effect 1000 times.

In each iteration, we sample 10K instances for activity level, weight gain, and first name. We

calculate error for each of the three methods. We use the treatment effect estimations from all

iterations to empirically estimate density distributions for error values corresponding to the three

separate methods.

Figure 5.7 shows the density plots for the error values corresponding to the three methods:

(1) Ignore W, (2) Ignore measurement error, (3) Effect restoration. Practically, in all iterations

using effect restoration reduces the bias more than ignoring the measurement error. The empirical

density distributions of the error values intersect at -0.98. The probability that an estimate from

effect restoration mechanism will have an error value less than -0.98 is practically 0. Similarly,

probability that an estimate from ignoring measurement error will have an error value greater than

-0.98 is also practically 0.
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Additionally, when we compare the density of the error values between simply ignoring the

proxy variable and using the proxy variable (but ignoring the measurement error), we find that

using the proxy variable reduces the bias practically in all iterations.

5.7 Conclusions

In this chapter, we characterize the behavior of effect restoration with measurement error un-

der all possible simple graphical structures as suggested by Kuroki et al. [47]. Unsurprisingly,

we show that it is desirable to use effect restoration only in one of the four possible graphical

models. According to our simulation analysis, effect restoration adjustment is most effective for

small treatment and large confounding effects. Furthermore, we show that with common tempo-

ral assumptions among variables and simple d-separation rules, we can identify if the underlying

structure matches the desirable one. We also show empirical evidence that effect restoration adjust-

ment can reduce bias on causal estimation tasks in real data. Finally, we show that this mechanism

can be used to account for unobserved confounding bias when used with independent predictive

models and their corresponding error distributions.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Causal estimation from observational data has been an important problem for researchers in

diverse fields and has become widespread with the availability of large and rich datasets. This thesis

focuses on causal estimation when latent common cause variables exist. We present a mechanism

to adjust for the effects of such latent variables using predictive models. Specifically, first, we

employ predictive models to estimate the values of confounder variables. Second, we use such

inferred values as the proxy variables of unobserved confounders with one caveat that the proxy

variables are measured with error. We use an effect restoration model based on graphical models

as our measurement error model to deal with this estimation error, and adjust for the confounding

effect due to unobserved variables. We highlight this mechanism as a novel method to remove the

bias in causal estimation due to important unobserved confounder variables.

We have presented new applications of causal estimation methods to social media domains,

new predictive models for key demographic variables, and a new methodology to deal with latent

common cause variables using predictive models. In this final chapter, we discuss concluding

remarks and identify future research directions.

6.1 A Novel and Early Application of QEDs to Data About Social Media

Platforms

We present one of the earliest applications of QEDs, a set of causal estimation methods highly

used by social scientists, to an arguably popular social media platform, i.e., the Stack Overflow

website. We illustrate three basic QEDs and use them to answer causal questions about the plat-

form.
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Our results show no significant effect of having an already posted high-quality answer on the

number of subsequent answers posted by other users. Furthermore, specific badges designed to

drive engagement seem to work until the badge is received, however, engagement is significantly

reduced after. This suggests that an alternative badge mechanism where tiered-badges with in-

creasing level of exclusivity to help sustain contributions from users. Finally, we show that answer

order has no effect on the number of up-votes, contrary to the popular perception among the users.

This suggests that users might be taking their time to read all answers regardless of their relative

order.

We also discuss the assumptions and limitations of QEDs, specifically, their behavior when

latent common cause variables exist. We propose overcoming confounding bias due to latent

common cause variables by using estimates from predictive models.

6.2 A New Predictive Model with Distant Supervision for Ordinal Variables

We develop a novel predictive model based on generative models to predict ordinal latent vari-

ables with distant supervision. We use this model to predict age using first names in a given

population. Our model is distantly-supervised in the sense that it uses Social Security baby name

data for each year as a prior and is capable of both providing individual-level predictions as well as

population-level predictions. We show the benefit of explicitly modeling the ordinal dependency

among age groups.

We apply our model to estimate demographic information about US Twitter users. First, we

closely replicate a Pew Research report about the active age groups on Twitter, finding that 18-29

age group is the most active. Legally limited by the user groups they could reach by phone surveys,

Pew Research report age groups older than 18 (i.e., they cannot legally survey users younger than

18). Our method is free from such a limitation and we find that less than 18-year-old is the second

most active age group on Twitter.

Our results also indicate that users older than 50 are under-represented; conversely, users in the

18-29 age group are over-represented compared to their respective presence in the internet users
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population. We identify times in a day each age group is active on Twitter, finding that users in

65+ age group and 18-29 age group are active on Twitter at completely opposite times during the

day. We show evidence that different age groups engage in different topics and follow different

users. Finally, we find that young and senior Twitter users exhibit high-order assortative mixing in

their follow relationships, whereas middle age users show low assortative mixing.

We develop a simple yet effective predictive model for age, a traditional demographic variable,

by using a generative model. We propose that for causal questions where age might be a latent

variable, estimations from predictive models such as presented in this thesis can help adjust for

its effect. Since every estimation process inherently includes error, we point that such estimations

would be noisy and we characterize potential ways to deal with such noise.

6.3 Characterization of Effect Restoration with Measurement Error and Its

Application with Predictive Models

We characterize the behavior of effect restoration with measurement error under all possible

scenarios a treatment variable, an outcome variable, a latent variable, and its proxy variable can

form. Employing simulation studies, we show that only when the latent variable is a common

cause the effect restoration can reduce bias. In all other scenarios, applying effect restoration can

increase variance and slightly increases bias.

In the common cause case, we show that effect restoration is most effective for small treatment

and large confounding effects. Using theoretical analysis, we show that simple d-separation rules

along with basic temporal assumptions are sufficient to detect which underlying graphical model

holds given a treatment, an outcome, and a proxy variable, enabling to decide whether effect

restoration should be applied.

Furthermore, we show that effect restoration reduces bias on real data sets obtained from ran-

domized experiments of software systems. Finally, we combine effect restoration with estimations

of a latent common cause variable obtained from a predictive model to reduce bias in causal es-

timation. We argue that data from social media platforms can be enriched with latent variable
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models to account for the confounding effects of traditional demographic variables such as age,

ethnicity, and income. For each unobserved confounder variable, first, we employ a predictive

model to estimate its values. Second, we use such inferred values as the proxy variables of unob-

served confounders with one caveat that the proxy variables are measured with error. We use an

effect restoration model based on graphical models to account for the measurement error. We can

adjust for multiple unobserved confounder variables using separate predictive models as long as

each confounder variable is independent of each other.

There are several future research directions. First, the proposed effect restoration method can be

generalized for mixed-type data sets. Second, the use of high-capacity predictive models and their

limitations can be explored. Third, existing causal discovery algorithms can be extended to account

for measurement errors using an effect restoration mechanism. Fourth, instead of independently

inferring values for a latent common cause variable and estimating a treatment effect, both of these

processes can jointly be modeled and inferred.
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APPENDIX

SUPPLEMENTAL MATERIALS

A.1 Keywords Used to Filter Tweets for Corresponding Topics

Here we list the keywords we use to filter tweets related to the corresponding topic.

Immigration Act–#cir OR #immigration OR #CIR OR #immyouth OR #DREAMact OR #cirasap

OR #dwn OR #StopICE

Fiscal Cliff–(”fiscal cliff” OR fiscalcliff)

Gun Control–(obama OR romney) AND ”gun control”

Blizzard Nemo–(”winter storm” OR blizzard OR Nemo OR winterstorm OR (snow AND

storm) OR snowstorm OR snow

Boston Strong–BostonStrong OR ”Boston Strong” OR OneFundBoston OR ”One Fund” OR

”Boston Marathon” OR BostonMarathon OR WeAreBoston OR BostonStrongest OR BelieveIn-

Boston OR WeAreOneBoston OR PrayForBoston

NBA Finals–(”San Antonio” OR spurs OR ”Tim Duncan” OR ”Tony Parker” OR Miami OR

”the heat” OR ”Dwayne Wade” OR LeBron OR MIA OR SA) AND (finals OR NBA finals OR win

OR winning OR champion OR champions OR ring OR ”win finals”) AND -(eastern OR east OR

west OR western OR Indiana OR Pacers OR ”game 7” OR Memphis OR Grizzlies OR HTTP OR

”moving on”)

A.2 Effect Restoration with Continuous Data

We applied effect restoration framework to continuous data generated from the simple graphi-

cal models, as shown in the first row of Figure A.1.
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A.2.1 Data Generation

Following steps describe the data generation process for the variables X, Y, W, U when U is a

confounder for X and Y. ε.. corresponds to the Gaussian error.

1. U ∼ Normal(µu, σu)

2. W ∼ βuwU + εuw

3. X ∼ βuxU + εux

4. Y ∼ βuyU + βxyX + ε.y

5. ε.. ∼ Normal(0, σ..)

In our experiments, we set µu = 0, σu = 1. For the graphical model structure that corresponds

to common cause scenario, we set βuw = 1, βux = 1, βuy = 1, and βxy = 2. We systematically

change the values of σ.. between 0.05 to 2.

Figure A.1 summarizes the bias and variance when effect restoration is used with continuous

synthetic data for the four graphical models. Similar to the results from simulations with discrete

data, unsurprisingly, effect restoration reduces bias only when U is a confounder variable, and it

comes with the cost of increased variance. Furthermore, it is worse to use effect restoration in

other simple scenarios as it might increase bias and variance.

We further perform simulations for the confounder variable scenario by varying the error dis-

tributions to change the confounding effect. As shown in Figure A.2, these experiments show that

the relative benefit of applying effect restoration is high when the confounding effect is high.
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Figure A.1: Bias and variance for the graphical models identified in continuous experiments.
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Figure A.2: Performance as the confounding effect increases.
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