
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

Spring 2015

Learning Parameterized Skills
Bruno Castro da Silva
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Part of the Artificial Intelligence and Robotics Commons, and the Robotics Commons

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Castro da Silva, Bruno, "Learning Parameterized Skills" (2015). Doctoral Dissertations. 293.
https://scholarworks.umass.edu/dissertations_2/293

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/293?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

LEARNING PARAMETERIZED SKILLS

A Dissertation Presented

by

BRUNO CASTRO DA SILVA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2015

Computer Science

c© Copyright by Bruno Castro da Silva 2015

All Rights Reserved

LEARNING PARAMETERIZED SKILLS

A Dissertation Presented

by

BRUNO CASTRO DA SILVA

Approved as to style and content by:

Andrew G. Barto, Chair

Roderic A. Grupen, Member

Sridhar Mahadevan, Member

Neil E. Berthier, Member

Lori A. Clarke, Chair
Computer Science

for my family

ACKNOWLEDGMENTS

I first read Andrew Barto’s book on reinforcement learning in 2005. I remember

being thoroughly amazed by the elegance and succinctness with which he introduced

the field that he and Rich Sutton pioneered. It was difficult to imagine that two

years later I would be living in a different country and working with Andy himself.

Andy’s breadth of knowledge in math, psychology, statistics, neuroscience, and ma-

chine learning make him a perfect example of a Renaissance man. His ability to

see the underlying themes connecting seemingly disparate ideas is uncanny. Andy’s

technical skills are only surpassed by his immense generosity, thoughtfulness, and

completely unnecessary humbleness. I cannot imagine a better role model to aspire

to. Thank you, Andy, for these incredible seven years.

I am also grateful to Victor Lesser. Victor’s guidance began even before I ap-

plied to this program and has remained invaluable ever since. His continuous support

allowed me to pursue my interests even when they did not perfectly align with his.

I am glad that I got the chance to work with him. I am also thankful for Srid-

har Mahadevan’s sound and practical advice. Sridhar’s ideas were essential to my

research, and in fact part of this thesis directly follows from his earlier studies on

manifold learning. Rod Grupen and Neil Berthier—the other members of my thesis

committee—provided early feedback that made this dissertation possible. I am also

indebted to Gianluca Baldassarre. Gianluca’s creativity and ability to ask the impor-

tant questions helped me consolidate the idea of parameterized skills. His support,

dedication, and friendship were invaluable during my time in Rome and were utterly

crucial to our efforts to achieve skill learning on a robot.

v

Many of the ideas in this thesis originate from discussions with my colleagues in the

Autonomous Learning Lab. George Konidaris, in particular, was a constant source

of inspiration and encouragement. His insights and intellectual curiosity underlie

many of my papers, and his unrelenting optimism made all of this possible. Thanks,

dude! Many others have contributed to making my journey through grad school fun:

Phil Thomas, Bo Liu, Yariv Levy, Will Dabney, Scott Kuindersma, Armita Kaboli,

Vimal Mathew, Scott Niekum, Livia Quintanilha, Ashvin Shah, Özgür Şimşek, Chris

Vigorito, Andrew Stout, Chang Wang, Yoonheui Kim, and Amir Tal. I am also

grateful to the wonderful people I met during orientation week and who have remained

by my side, one way or another, ever since. Blake Foster, Dirk Ruiken, Julie de

Chantal and Biki Takashima-Uebelhör: you made this little town feel like home.

When I first arrived in Amherst, with two broken suitcases and a guitar, I was met

by two amazing Brazilians who later became my family away from home. Antonio

Americo and Andre Muniz, vocês são meus irmãos. Obrigado pelas risadas, churrascos

e rodas de violão. I am also grateful for the support of the extended family I formed

over these years: Daniel Sadoc, Jacqueline Muniz, Antonio “Guto” Rocha, Bruno

Ribeiro, Paula Franco, Gabi Dantas, Fabricio Murai, Cibele Freire, Marcelo Dias,

Paula Condon, Karin Camihort, and Linda Pisano. Many other friends helped from

afar. Daniel Basso has been a constant presence in my life ever since we drunkenly

discussed Kohonen maps on a bus to the Pantanal, a decade ago. Carlos Scheidegger,

Adelio Bilhalva, Enguer Charão, Rafa Perotto, and Thais Santa Rita: you are the

friends I wish I could see every day.

I am grateful to my family. Their love and unconditional support were a constant

source of motivation and strength. Not a single day goes by when I don’t think about

how privileged I am. My parents and sisters have been nothing but supportive and

encouraging throughout this entire process—even when I decided to move 5000 miles

vi

away. I am forever indebted to them for the many sacrifices they have made to give

me a life that few in my country have. Mãe e Pai, obrigado.

Most of all, I would like to thank my wife, Ana. Her love, quiet support, and

constant reassurance kept me sane and gave me a reason to keep going. I could not

have done this without her. Ana, seven years ago you agreed to embark with me on

this uncertain journey. I am glad you came along and can’t wait to see what comes

next. O mundo começa agora. Apenas começamos.

vii

ABSTRACT

LEARNING PARAMETERIZED SKILLS

FEBRUARY 2015

BRUNO CASTRO DA SILVA

B.Sc., FEDERAL UNIVERSITY OF RIO GRANDE DO SUL, BRAZIL

M.Sc., FEDERAL UNIVERSITY OF RIO GRANDE DO SUL, BRAZIL

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

One of the defining characteristics of human intelligence is the ability to acquire

and refine skills. Skills are behaviors for solving problems and performing tasks

that an agent encounters often—sometimes in different contexts and situations—

throughout its lifetime. Identifying important problems that recur and retaining their

solutions as skills allows an agent to more rapidly solve novel problems by adjusting

and combining its existing skills.

One of the motivating principles underlying the idea of skill acquisition is that

open-ended learning agents need to solve not a single problem but a range of prob-

lems over their lifetimes. In this thesis we introduce a general framework for learning

reusable skills. Reusable skills are parameterized procedures that—given a description

of a problem to be solved or task to be performed—produce appropriate behaviors or

policies. They can produce, on-demand, policies for any problems in a given family

viii

of related problems, even those with which the agent has never had direct experience.

We refer to reusable skills of this type as parameterized skills. Parameterized skills

are useful because they allow an agent to tackle novel variations of a problem given

only a parameterized description of the problem. They can be sequentially and hier-

archically combined with other skills and primitive actions to produce progressively

more abstract and temporally extended behaviors.

Existing work has shown that it is possible to transfer information between pairs

of related problems and that parameterized policies can be constructed to deal with

slight variations of a known problem. Not much attention, however, has been given

to methods that allow agents to autonomously and actively learn general, reusable

parameterized skills from few training examples. In this thesis we identify three major

challenges involved in the construction of such skills.

First, an agent should be capable of solving a small number of problems and gen-

eralizing these experiences to construct a single reusable skill. The skill should be

capable of producing—on demand—appropriate behaviors even when applied to yet

unseen variations of a problem or task. Once learned, parameterized skills might be

sequentially or hierarchically combined with other skills to produce increasingly more

general behaviors;

Secondly, an agent should be able to identify when a parameterized skill can be

hierarchically decomposed into specialized sub-skills. A single skill can often be hi-

erarchically decomposed into specialized sub-skills, each one capable of solving one

particular subset of problems. As an example, a parameterized throwing skill might

be hierarchically expressed as the composition of specialized overhand and underhand

throwing skills. Even though these might involve qualitatively different motor behav-

iors, they are nonetheless instances of a same overall problem—that of throwing an

object—and can be encapsulated into a single general skill for throwing. The agent

should be capable to analyze the parameters of a particular target location and iden-

ix

tify which sub-skill is the most appropriate for hitting it. Identifying and modeling

sub-skills allows agents to autonomously aggregate related parameterized behaviors

into single, more abstract skills;

Finally, the agent should be able to actively select on which problems it wishes

to practice in order to more rapidly become competent in a skill. Thoughtful and

deliberate practice is one of the defining characteristics of human expert performance.

By carefully choosing on which problems to practice, and in what order, the agent

may be able to more rapidly construct a skill that performs well over a wide range of

related problems.

We address these challenges by introducing a general framework for learning pa-

rameterized skills. We evaluate it on challenging simulated decision-making problems

and on a physical humanoid robot, and we demonstrate that it allows for the efficient

and active construction of reusable skills from limited data.

x

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT .viii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Research Challenges . 3
1.2 Contributions . 4

2. BACKGROUND AND RELATED WORK . 7

2.1 Reinforcement Learning . 7

2.1.1 Value Function Approximation . 9
2.1.2 Direct Policy Search . 10

2.2 Related Work . 13

2.2.1 The Options Framework . 13
2.2.2 Parameterized Options via State Space Augmentation 15
2.2.3 Grupen’s Motor Control Framework . 18
2.2.4 Methods Based on Transfer Learning . 20
2.2.5 Methods Based on Directly Adjusting Existing Policies 21
2.2.6 Discussion . 24

3. LEARNING PARAMETERIZED SKILLS . 25

3.1 Setting and Objective . 25
3.2 Assumptions . 27
3.3 A Parameterized Skill Model . 29
3.4 The Parameterized Dart Throwing Domain . 32

xi

3.5 Experiments . 35
3.6 Related Work . 43
3.7 Discussion . 45

4. PARAMETERIZED MOTOR SKILLS ON A HUMANOID
ROBOT . 46

4.1 Skill Learning on a Robot . 47
4.2 Sample Reuse . 49
4.3 The iCub Throwing Domain . 52
4.4 Experiments . 55
4.5 Related Work . 61
4.6 Discussion . 62

5. ACTIVE LEARNING OF PARAMETERIZED SKILLS 64

5.1 Setting and Motivation . 64
5.2 Active Learning of Parameterized Skills . 65
5.3 A Bayesian Model of Skill Performance . 67
5.4 Active Selection of Training Tasks . 69
5.5 Modeling Non-Stationary Skill Performance Functions 73
5.6 The Catapult Domain . 76
5.7 Related Work . 83
5.8 Discussion . 85

6. FUTURE WORK . 87

6.1 Extending EISP to a Fully Bayesian Formulation . 87
6.2 Efficiently Computing EISP by Incrementally Updating

Concentration Matrices . 88
6.3 A Mechanism for Merging Redundant Sub-skills . 88
6.4 Smooth Chaining of Parameterized Skills . 89
6.5 Learning Reusable Skills Under Heterogenous State and Action

Spaces . 90
6.6 Learning Inverse Parameterized Skill Models . 90

7. SUMMARY AND CONCLUSIONS . 94

APPENDICES

A. SMOOTHLY PARAMETERIZED CHARTS . 97
B. STANDARD ACQUISITION FUNCTIONS . 99
C. THE CATAPULT DOMAIN . 101
D. EISP UNDER A SQUARED EXPONENTIAL KERNEL 102

xii

E. A METHOD FOR EFFICIENTLY PRACTICING TASKS 103

BIBLIOGRAPHY . 122

xiii

LIST OF FIGURES

Figure Page

3.1 Steps involved in executing a parameterized skill. 32

3.2 The dart throwing domain (not to scale). 33

3.3 Analysis of the variation of a subset of policy parameters as a
function of smooth changes in the task. 37

3.4 2-dimensional embedding of policies parameters. 39

3.5 Learned parameterized arm movements. 40

3.6 Average predicted policy parameter error as a function of the number
of sampled training tasks. 41

3.7 Average distance to target (before any policy improvement) as a
function of the number of sampled training tasks. 42

3.8 Average number of policy updates required to improve the solution
predicted by the parameterized skill as a function of the number
of sampled training tasks. 43

4.1 Steps involved in executing a learned parameterized skill composed of
D chart models Θc, c ∈ {1, . . . , D}. 50

4.2 The iCub humanoid robot. 52

4.3 The iCub preparing for a throw. 53

4.4 Grasp resulting from a predefined open-loop motion to hold the
plastic ball. 54

4.5 A sample throw executed by the iCub. 54

4.6 Target board positioned in front of the iCub robot (not to scale). 56

xiv

4.7 Examples of lower-dimensional projections of a learned chart Θc. 58

4.8 Average predicted policy parameter error as a function of the number
of sampled training tasks. 59

4.9 Average distance to target (before any policy improvement) as a
function of the number of sampled training tasks. 60

5.1 The process of actively learning a parameterized skill. 66

5.2 GP posteriors obtained when using a standard kernel and a
spatiotemporal kernel to model a synthetic non-stationary
function f . 76

5.3 The Catapult Domain. 77

5.4 Policy manifold of the catapult domain. 78

5.5 Average skill performance as a function of the number of sampled
training tasks (uniform task distribution). 79

5.6 Average skill performance as a function of the number of sampled
training tasks (non-uniform task distribution). 81

5.7 Density of samples collected by different training strategies. 82

6.1 Inferring tasks where a policy is applicable given the observed return
of a trajectory. 92

E.1 Geometric interpretation of the expected time until a policy change,
d(s, a), represented by the intersection between lines. 105

E.2 Performance of ∆π in the maze domain. 117

E.3 Performance of ∆π in the maze domain (vs. DQL). 118

E.4 Performance of ∆π in the rod positioning domain. 118

E.5 Performance of ∆π in the rod domain (vs. DQL). 119

xv

CHAPTER 1

INTRODUCTION

One of the defining characteristics of human intelligence is the ability to acquire

and refine skills. Skills are behaviors for solving problems and performing tasks

that an agent encounters often—sometimes in different contexts and situations—

throughout its lifetime. Identifying important problems that recur and retaining their

solutions as skills allows an agent to more rapidly solve novel problems by adjusting

and combining its existing skills.

One of the motivating principles underlying the idea of skill acquisition is that

open-ended learning agents need to solve not a single problem (which we interchange-

ably refer to as a task), but rather a range of problems over their lifetimes. Skills can

be used to encapsulate the behavioral knowledge needed to solve particular types of

problems. Once learned, they can be combined with other skills to address progres-

sively more complex challenges. Consider, as an example, the motor skills of reaching

and grasping. Humans learn such skills early in their lives [7] and subsequently use

them as basic “building blocks” for solving increasingly more general manual manip-

ulation problems. Skill composition of this kind allows an agent to address complex

problems by first decomposing them into more tractable subproblems. Learning to

fly an airplane, for instance, may be infeasible if treated as a single problem. It can,

however, be expressed as a combination of simpler behaviors—for which specialized

skills can be learned—such as taxiing, steering and controlling the rudders and pitch

of the airplane. Acquiring skills of this type widens the scope of an agent’s behav-

1

ior and allows it to tackle learning problems that would otherwise be infeasible or

extremely challenging.

In this thesis we introduce a general framework for learning reusable skills. Opti-

mization techniques exist that allow an agent to learn optimal or near-optimal behav-

iors, or policies, for solving single decision-making problems. These policies, however,

may fail if the problems at hand vary or if the policies are to be applied in novel

contexts. As an example, consider a grasping skill. It should allow an agent to

grasp not only a single type of object, but objects of various shapes and weights. It

should also be reusable in a wide range of contexts; for instance, situations in which

single or two-handed grasps may be required. A skill is said to be reusable if it con-

sists in a parameterized procedure that—given a description of the problem to be

solved—produces an appropriate behavior or policy. In what follows we refer to these

procedures as parameterized skills.

Parameterized skills are useful for solving families of related problems that recur

throughout an agent’s lifetime. Once learned they can produce—on-demand—policies

for any problems in a given distribution, even those with which the agent has never

had direct experience. As an example, consider a soccer-playing agent tasked with

learning a kicking skill parameterized by desired force and direction. For it to be truly

competent, it should be able to execute such kicks whenever necessary, even with a

particular combination of force and direction it has never had direct experience with.

Learning a single policy for each possible type of kick is infeasible. The agent might

wish, instead, to learn policies for a few specific kicks and use them to synthesize

a single general skill for kicking, parameterized by force and direction, that it can

execute on-demand.

Parameterized skills can be sequentially and hierarchically combined with other

skills and primitive actions to produce progressively more abstract and temporally

extended behaviors. Skill composition of this type is important because it allows for

2

the hierarchical organization of an agent’s behavior. A key advantage of hierarchical

behaviors is that skills, once learned, can be treated as adjustable primitive actions

and incorporated into higher-level skills, thereby abstracting away details of lower-

level control.

Existing work has shown that it is possible to transfer information between pairs of

related problems [76, 75, 44, 3] and that parameterized policies can be constructed to

deal with slight variations of a domain [59, 53, 33, 27]. Not much attention, however,

has been given to methods that allow an agent to autonomously and actively learn

general, parameterized skills from scratch and with few training samples.

1.1 Research Challenges

In this dissertation we identify three problems that need to be addressed for an

agent to autonomously and efficiently learn parameterized skills:

1. The agent should be capable of solving a small number of problems and general-

izing these experiences to construct a single reusable skill. The skill should be

capable of producing—on demand—appropriate behaviors even when applied

to yet unseen variations of a problem or task. Once learned, it may be combined

with other skills or primitive actions to produce progressively more abstract and

temporally extended behaviors;

2. The agent should be able to identify when a given skill can be hierarchically

decomposed into sub-skills specialized in solving different classes of problems. As

an example, consider the kicking skill introduced above. Qualitatively different

types of kicks may be needed during a game; for instance, free kicks or kicks to

pass the ball to a different player. The choice of which one to use depends on the

current objective of the agent. A general parameterized skill for kicking may,

therefore, be hierarchically expressed as the composition of these two sub-skills,

3

each of which is specialized in executing one particular type of kick. Even

though these might involve qualitatively different motor behaviors, they are

nonetheless instances of a same overall problem—that of kicking a ball—and

might be encapsulated into a single general skill for kicking. The agent should

be capable of analyzing the parameters of a particular kick and identifying which

sub-skill is the most appropriate for executing it. Identifying and modeling sub-

skills allows agents to autonomously aggregate related parameterized behaviors

into single, more abstract skills. This is important to reduce the number of

actions available to an agent and to simplify the space of possible policies;

3. The agent should be able to autonomously select on which tasks it wishes to

practice in order to more rapidly become competent in a skill. Intuitively, the

tasks from which experience is most beneficial are those that allow a skill to

better generalize to a wider range of related problems. This goal can be for-

malized as an active task selection criterion whose objective is to maximize skill

performance over a family of related problems.

1.2 Contributions

This dissertation makes three main contributions, each one addressing one of the

major challenges introduced above.

1. A method to learn reusable parameterized skills. We introduce a skill-

learning method that solves a small number of decision-making problems and

uses the corresponding learned policies to estimate properties of the lower-

dimensional manifold on which they lie. This manifold models how policy

parameters change as we vary the parameters of a problem. Our method com-

bines manifold learning techniques, classification algorithms and non-linear re-

gression methods to estimate geometric and topological properties of manifold.

4

This allows agents to obtain a general model by which policy parameters can

be predicted from task parameters.

2. A method for autonomously discovering the sub-skills that may be

needed to solve different classes of problems. We introduce a method

for automatically identifying and modeling the qualitatively different and spe-

cialized sub-skills that might be needed to implement a given skill. We ob-

serve that the manifold where task policies lie may be composed of several

disjoint, piecewise-smooth surfaces, or charts. Disjoint charts might exist be-

cause changes in task or problem parameters may result in abrupt changes

in the parameterization of its policy. Each disjoint chart typically encodes a

specialized sub-skill needed to solve a particular subclass of problems. We pro-

pose a method for identifying and modeling each of these specialized sub-skills,

thereby obtaining a unified model by which different sub-skills are integrated

into a single, more general parameterized behavior. Furthermore, we introduce a

rejection sampling method designed to make skill-learning more sample-efficient.

This method is motivated by the observation that unsuccessful policies expe-

rienced while learning to solve one particular problem may be useful to solve

different, but possibly related, problems. Realizing when this is the case corre-

sponds to a type of counterfactual reasoning that allows agents to use seemingly

unsuccessful policies as additional valid training samples to construct a skill,

thus accelerating the skill acquisition process.

3. A method to actively select on which tasks to practice in order to

more rapidly become competent in a skill. We introduce a method for

actively learning parameterized skills. We present a non-parametric Bayesian

model of skill performance and derive analytical expressions for a novel acquisi-

tion criterion capable of identifying tasks that maximize expected improvement

5

in skill performance. We also introduce a spatiotemporal kernel specially tai-

lored for non-stationary skill performance models. Our active learning frame-

work is agnostic to policy and skill representation and scales independently of

task dimension.

We evaluate these methods on challenging simulated decision-making problems

and on a physical humanoid robot tasked with learning whole-body parameterized

motor skills from limited data.

This thesis is organized as follows. In Chapter 2 we introduce the background

necessary to understand the remainder of this dissertation and discuss relevant exist-

ing research. In Chapter 3 we introduce a method for learning parameterized skills

from a small number of training examples. We extend this method in Chapter 4 so

that it is applicable to robotics problems, where samples are expensive to collect. We

discuss how to automatically identify and model the qualitatively different sub-skills

needed to implement a skill, and we introduce a rejection sampling method designed

to make skill-learning more sample-efficient. Chapter 5 focuses on how an agent might

actively select how to practice in order to more rapidly become competent in a skill.

Finally, we present possible future work in Chapter 7 and conclude with a discussion

and summary of the main contributions of this thesis.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents a brief overview of Reinforcement Learning and describes

existing work relevant to the high-level objective of skill acquisition. Research more

specifically related to each of the individual algorithms developed in this dissertation

is discussed in the relevant chapter.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a framework for learning how to act in complex

environments while maximizing a reward signal [74]. An RL agent interacts with its

environment in discrete time steps. At each time, it observes the current state of

the environment and selects an action. After executing an action, the agent observes

its effects—the new state of the environment—and receives a reward signal. The

behavior of an agent is encoded by a policy—a function specifying which actions

should be taken in different situations. The objective of the agent is to learn a

behavior, or policy, that allows it to maximize the cumulative reward it receives over

time.

RL problems are typically modeled as Markov Decision Processes (MDP). An

MDP M is a tuple
(
S,A,R, T, γ

)
, where S is a finite set of states in which the agent

may find itself; A is a finite set of actions that the agent may choose to execute;

R : S × A → R is a function returning a scalar reward signal for executing action

a ∈ A in state s ∈ S; T : S × A × S → [0, 1] is a transition function specifying the

probability P (s′|a, s) of the agent transitioning to state s′ ∈ S after taking action a

7

while in state s; and γ ∈ [0, 1) is a discount factor expressing the extent to which the

agent prefers immediate over delayed rewards. Finally, a policy π : S × A → [0, 1]

is a function that encodes how the agent should behave (i.e., which action it should

take in each state). Concretely, π(s, a) is the probability P (a|s) of selecting action a

when in state s.

The goal of an RL agent is to learn a policy that allows it to accumulate as much

reward as possible. Let the reward received at time t be rt and the cumulative reward

(or return) from time t on be Rt =
∑∞

i=0 γ
irt+i. Solving an MDP M consists of

finding an optimal policy π∗ that maximizes the agent’s expected return. Let V π(s)

be the expected cumulative discounted reward obtained when starting in state s and

following policy π:

V π(s) = Eπ

[∞∑
k=0

γkrt+k

∣∣∣∣ st = s

]
=

∑
a

π(s, a)

[
R(s, a) + γ

∑
s′

T (s, a, s′)V π(s′)

]

where Eπ denotes the expected value with respect to a policy π and t is any time

step. This function is called a value function. Similarly, let Qπ(s, a) be the expected

total discounted reward obtained when taking action a in state s and following π

thereafter:

Qπ(s, a) = Eπ

[∞∑
k=0

γtrt+k

∣∣∣∣ st = s, at = a

]
= R(s, a) + γ

∑
s′

T (s, a, s′)
∑
a′

π(s′, a′)Qπ(s′, a′)

The optimal Q-function for an MDP M , denoted by Q∗, is the function obtained

when following an optimal policy: Q∗(s, a) = maxπQ
π(s, a). It has the property that

8

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′) max
a′

Q∗(s′, a′) (2.1)

One way of identifying optimal policies is to first compute or estimate Q∗(s, a) and

then select greedy actions with respect to it. In this case, an optimal policy is defined

as π∗(s) = arg maxaQ
∗(s, a). Optimal policies can also be computed via dynamic

programming techniques if T and R are known and the number of states in S is not

large. If models are not available or if the state space is too large, exact methods

may become infeasible and approximation techniques are needed. These techniques

are generally referred to as approximate dynamic programming.

RL methods often learn optimal policies via temporal difference (TD) techniques

[74], which iteratively improve estimates of V ∗ or Q∗. One commonly-used TD control

method is Q-Learning [83]. Let Qt be an agent’s estimate of Q∗ at time t. A Q-

Learning agent in state st selects an action at according to some arbitrary policy and

then observes a subsequent reward r and a next state s′. Based on these, it updates

its estimate Qt according to

Qt+1(st, at)← Qt(st, at) + αt

(
r + γmax

a
Qt(st+1, a)−Qt(st, at)

)
(2.2)

where αt ∈ (0, 1] is a step-size parameter. Note that Equation 2.2 does not assume

knowledge of the transition or reward functions. For this reason, Q-learning is known

as a model-free method. Under mild assumptions regarding the sequence of step sizes

used, and assuming that all actions are executed infinitely often in each state, the

sequence of estimates Qt provably converges to Q∗ [74].

2.1.1 Value Function Approximation

In several practical problems, states of an MDP are not just arbitrary symbols with

no internal structure. They can often be defined as tuples of real-valued features. In

a robot application, for instance, a state may correspond to a vector that aggregates

9

the current angle and angular velocities of each one of the robot’s joints. This type of

state representation has two important consequences: (1) value functions now have

to be defined over continuous state spaces; (2) during an agent’s interaction with the

environment, individual states might be visited only once—if at all—and therefore a

mechanism for generalizing experiences from nearby states becomes necessary.

One common way of compactly representing continuous value functions, while

generalizing values to nearby states, is via a linear combination of basis functions Φ,

each of which depends on the state:

V̂ (s) = w ·Φ(s) =
n∑
i=1

wiφi(s). (2.3)

Note that even though V̂ (s) is a linear model, it can represent complex values func-

tions because the bases φi themselves are allowed to be arbitrarily complex. Popular

choices for basis functions include Radial Basis Functions and the Fourier Basis [39].

Approximating a value function, under this setting, corresponds to identifying an

appropriate weight vector w. Temporal difference errors may be combined with a

gradient descent step to update the value function’s weights at time t:

wt+1 = wt + α

(
r + γV (s′)− V (s)

)
∇wtV (s)

= wt + α

(
r + γV (s′)− V (s)

)
Φ(s).

2.1.2 Direct Policy Search

In some cases, complex value functions may induce simple policies. In these situa-

tions it may be easier to directly search the space of parameterized policies for policies

that maximize expected return, instead of first estimating an optimal value function.

Policy search methods exploit this idea. They assume that policies are parameter-

10

ized functions that directly map states to actions or to probability distributions over

actions. By modifying the parameters of a policy, different behaviors can be obtained.

Let us assume that policies are functions πθ parameterized by vectors θ ∈ RM of

weights. If the policy is stochastic the weights θ directly parameterize a probability

distribution over actions. Alternatively, πθ may be independent of the current state

(i.e., open-loop), in which case θ parameterizes fixed trajectories through the state

space.

The goal of a policy search method is to directly identify policy parameters that

induce an optimal or near-optimal policy. This type of search may have advantages

over value function-based techniques. First, they might allow agents to more natu-

rally deal with continuous states and actions. Secondly, policy representations can

be chosen that are meaningful for the task at hand and that easily incorporate do-

main knowledge. Thirdly, since parameterized policies often require fewer parameters

than value functions, they may be easier to estimate. Fourthly, direct policy search

methods often do not depend on the Markov property—the requirement that the con-

ditional probability distribution over future states depends only on the current state.

Finally, some policy search methods, such as policy gradient techniques, are known

to converge to local optima and can be used in a model-free manner, or, alternatively,

can make use of a model if one is available.

Direct policy search can be performed in three main ways: (1) by using black-box

local search methods, such as hill climbing or the NelderMead simplex technique [34];

(2) by using gradient descent methods [86, 6, 72, 9]; or (3) by using EM or cross-

entropy approaches [31, 46]. In some cases, EM and cross entropy methods can be

shown to be equivalent and correspond to special cases of a broader class of learning

techniques based on probability-weighted averages of policy parameters [70].

Policy gradient methods improve a policy by updating its parameters along the

gradient of the expected return J(θ) with respect to policy parameters θ. Most appli-

11

cations of policy gradient algorithms to robotics involve undiscounted, episodic and

indefinite-horizon tasks, in which case J(θ) is simply referred to as policy performance.

In the following chapters we use J instead of V whenever we wish to clarify

that the problem being considered is undiscounted (γ = 1), episodic and

with indefinite-horizon.

Let πθ(s, a) be a differentiable policy (with respect to its parameters θ) defining

the probability of selecting action a when in state s. The objective of a policy gradient

algorithm is to identify the parameters θ∗ that maximize the expected return of the

policy:

θ∗ ≡ arg max
θ
ET

[
J(θ)

]
= arg max

θ
ET

[
R(s0, a0) +R(s1, a1) + . . .

]

where the expectation is over all possible trajectories τ ∈ T resulting from the exe-

cution of policy πθ. It is possible to write the gradient of J(θ), with respect to the

parameters θ of a policy, as:

∇θJ(θ) = ET

[
R(τ)

(
∇θπθ(s0, a0)

πθ(s0, a0)
+ . . .+

∇θπθ(sT , aT)

πθ(sT , aT)

)]

where the expectation is over all possible trajectories τ ∈ T resulting from the ex-

ecution of policy πθ and T and R(τ) are, respectively, the length and the return of

trajectory τ . The gradient ∇θJ(θ) is the direction in θ-space of most rapid increase

in policy performance J . It may be approximated in several ways—for instance, by

sampling trajectories τ of πθ. Such a gradient, once estimated, may be used to update

the parameters of a policy via a gradient ascent approach:

θt+1 = θt + α∇θ

12

where α is a step-size parameter. This specific gradient-based policy update is called

REINFORCE [86]. If the Q-function Qπ under the current policy πθ is known, it can

be shown [72] that

∇θJ(θ) =
∑
s

dπ(s)
∑
a

∇θπθ(s, a)Qπ(s, a),

where dπ(s) = limt→∞Pr(st = s|s0, π) is the stationary distribution of states under

π, which we assume exists and is independent of s0 for all policies. More advanced

gradient methods exist, such as those based on natural gradients [9] and mirror descent

algorithms [45], which often allow for faster convergence to near-optimal policies.

2.2 Related Work

We now present existing related work relevant to the problem of learning param-

eterized skills.

2.2.1 The Options Framework

The standard MDP setting assumes that actions are atomic operations that take

exactly one time step to be executed. When a particular control problem is modeled

as an MDP, its actions are assumed to correspond to primitive behaviors, pre-defined

and handcrafted by a designer. Reinforcement learning agents are typically concerned

with learning to select actions, but not necessarily to construct new actions by com-

bining existing ones, or to identify useful behaviors that can be learned and stored

for later reuse.

One way of addressing these limitations is via the options framework [73]. The

Options framework describes to a set of formalisms and methods for dealing with hier-

archical Reinforcement Learning (HRL) problems and for learning and planning using

temporally extended actions. Temporally extended actions, also known as options,

are named, reusable policies defined in terms of primitive actions or other options.

13

One of the motivating principles underlying this idea is that subproblems recur, so

that options can be reused in a variety of related tasks or contexts. In particular,

options are useful because they abstract away details of low-level control and allow

for the definition of hierarchical policies.

An option o consists of three components: (1) a policy πo(s, a) describing the

probability of taking action a while executing option o in state s; (2) an initiation

set Io containing all states s ∈ S in which the option can be executed; and (3) a

termination condition βo giving the probability of the option terminating at each

state in which it is defined. Option policies are typically defined over subsets of

the state space in which they are embedded, though this is not always required.

Konidaris and Barto [37], for example, proposed a method for identifying the best

state abstractions to be used by each option.

Because MDPs do not allow for the use of temporally extended actions, a more

flexible formalism is needed. One way in which MDPs can be extended is via the

Semi-Markov Decision Processes (SMDP) framework [54]. In an SMDP, T (s′, τ |s, o)

is the probability of reaching state s′ after τ time steps when executing option o from

state s, and R(s, o) describes the total discounted return accumulated during the

execution of o. Option policies can then be learned using standard RL algorithms.

Options are typically handcrafted by a designer who defines their objectives via

an option reward function Ro. An option for walking through a door, for instance,

might reward states in which the agent reaches or approaches that door. Algorithms

for autonomously constructing options also exist. These include methods for (1)

determining when to create a new option; (2) autonomously identifying a suitable

option reward function; (3) identifying what should the initiation and termination

conditions be; and (4) determining whether any of the conditions or metaparameters

defining an option should to be dynamically modified with time. Initiation and ter-

14

mination conditions, for instance, might be determined by identifying possibly useful

subgoal states [47, 14, 16, 38] that an agent may want to reach.

The Options framework is an important first step towards an architecture and

set of algorithms capable of specifying and learning reusable skills. Unfortunately,

options only allow for a single policy—specifically, the one maximizing the option

reward function Ro. They are not flexible enough to encode arbitrary reusable skills

capable of solving novel variations of a problem, since each variation may require

a different, specialized policy. In Chapter 3 we introduce a type of parameterized

option that produces appropriate behaviors or policies based only on a description of

the problem to be solved. We argue that this method extends the Options framework

in a way that achieves one of its original motivating objectives: the autonomous

acquisition of higher-level reusable skills from data.

2.2.2 Parameterized Options via State Space Augmentation

Consider a robot tasked with delivering mail to different offices in a building. This

robot may benefit from a set of options, o1, . . . , on, each one specifying a policy for

reaching one of the n rooms in the building. Assume that these policies are defined

over some state space So. Instead of explicitly learning and storing n separate op-

tions, the robot may prefer to construct a single parameterized option, capable of

reaching any room in the building given only the number of that room. Parameter-

ized options of this type may be constructed by posing the problem of learning to

reach n rooms as a single MDP, whose state space Saug augments So by including

the target room’s number as an additional state feature. Even though this is pos-

sible in principle, we will argue, in what follows, that this approach has important

limitations. The augmented state space Saug of the problem introduced above is

defined as {(target-room, so) | target-room ∈ {1, . . . , n} and so ∈ So}. Assume that

rewards in this MDP are given whenever the agent enters a room whose number

15

corresponds to the current value of the target-room feature. Once learned, optimal

policies πaug for this MDP can be seen as parameterized options. Concretely, an

agent wishing to reach a given room k selects, at each time t, actions a(t) with proba-

bility πaug((k, so(t)), a(t)), where so(t) is the state of the agent at time t. Intuitively,

πaug jointly solves a set of decision-making problems—namely, those encoded by the

options o1, . . . , on. The particular task solution to be produced by πaug is specified

via the additional target-room state feature describing the parameters of the task of

interest. This approach has important shortcomings:

1. Learning a single policy πaug over n tasks may require a larger number of

samples than learning n independent policies, especially if the agent has to

estimate a value function. This is because such a value function is defined over

a larger state space Saug;

2. Learning a single policy over n tasks may require more samples than learning

n independent policies if the agent practices one task at a time, and if differ-

ent tasks may require significantly different policies. Consider an agent that

selects one task uniformly at random and practices it until its joint policy πaug

can no longer be improved, and then repeats this process over several tasks.

Such an agent may have to collect a large number of samples if its current pol-

icy is significantly different from one that is appropriate to the new training

task. Intuitively, the agent may need to repeatedly “unlearn” its current policy

(which might have overfit to the last task) in order to adapt it to subsequent

training problems. This type of negative transfer may result in poorer sample

complexity1;

1As a simple example, consider an agent faced with n decision-making problems. Assume that
these can be grouped into G clusters, each containing problems whose solutions are similar according
to some given metric. Assume, furthermore, that the agent selects tasks to practice uniformly at
random and without replacement, and that it practices a selected task until its current policy π can

16

3. A more expressive representation is needed for the joint policy πaug, compared

to that of a single option policy. Intuitively, πaug needs to be able to capture

all non-trivial correlations between task and state features and how they jointly

determine optimal actions. Conversely, policies for a single option can be repre-

sented with fewer parameters because they only model how state features (but

not task features) determine actions;

4. Policies for different problems cannot be easily learned in parallel and later

combined to accelerate the construction of a skill; instead, an agent learning a

single joint policy needs to practice one task at a time;

5. If the distribution of tasks changes, it is not possible to easily readjust the

(single) learned joint policy to deal with the new distribution;

6. Specifying the task to be executed via additional state features assumes that the

agent can arbitrarily assign values to those features. Most learning algorithms,

no longer be improved. Let c0 be the expected number of samples required to learn an optimal policy,
from scratch and starting from a fixed initial policy π0, for one arbitrary decision-making problem.
Assume that if the agent consecutively practices tasks that belong to the same cluster, it needs to
collect only a small number p of samples; assume, conversely, that if the agent consecutively practices
tasks that belong to different clusters, it undergoes negative transfer and requires a larger number
P of samples in order to update its current policy to the subsequent task. Assume that p� c0 < P ;
that is, consecutively solving problems that belong to a same cluster requires fewer training samples
than solving a problem from scratch (i.e., by using as a starting point a fixed, initial policy π0); and
that learning from scratch, in turn, requires fewer samples than solving the problem but starting
with an inappropriate policy (e.g., one for solving a problem from another cluster). Let C(t, g) be
the expected cost, in terms of number of samples, for an agent to solve t remaining decision-making
problems given that it has selected a task from a cluster with g yet-unsolved problems. C can be
expressed via the following set of recurrence relations: C(t, t) = tp; C(t, 0) = P + C(t − 1, t − 1);
and C(t, g) = g

t [p + C(t − 1, g − 1)] + t−g
t [P + C(t − 1, t − g − 1)]. Consider, as an example, the

case when n = 4 and G = 2; it is possible to show that C(4, 2) = c0 + 5
2P + 3

2p, where c0 is the cost
incurred in solving the first sampled task using as starting point the initial policy π0. Consider, by
contrast, the expected cost incurred by an agent that learns independent policies for each task, and
that always uses as starting point the fixed initial policy π0. In this latter case, the agent incurs an
expected cost of 4c0 samples. Since p � c0, the cost of learning independent policies is lower than
that of learning a single joint policy if 4c0 > c0 + 5

2P ⇒ P > 1.2c0. In other words: if the cost P
resulting from negative transfer is 20% higher than the cost of solving a problem from scratch, it is
possible to learn n independent policies faster than a single joint policy defined over n tasks.

17

however, assume that agents can observe their current states, but not that they

can actively set new values to particular state features;

7. Specifying the task to be executed by πaug via additional state features lim-

its the learning algorithms that can be used. Black-box policy improvement

methods [71], for instance, often ignore state information. Because the rewards

received by an agent are task-dependent, and tasks are encoded via features that

the algorithm may ignore, learning a joint policy over n tasks might become a

non-stationary problem.

2.2.3 Grupen’s Motor Control Framework

Grupen’s motor control framework aims at constructing hierarchical closed-loop

motor control plans [13]. In this framework actions are defined by three sets: motor

resources Ωτ , feedback signals Ωσ and potential functions Ωφ. Motor resources and

feedback signals are grounded in the robot’s sensor and actuator sets, respectively, and

potential functions describe the objectives of the controller. The motor commands

used to achieve a controller’s goal are computed via the Jacobian ∂φ(σ)
∂τ

of the potential

function with respect to the motor output parameters. Controllers c(φ, σ, τ) are

defined by combining potential functions, feedback signals and motor variables and

can be used as primitive actions by the robot. Planning occurs on a higher-level

discretized state space in which states are predicates describing the current condition

of each controller—for example, whether it is running, has converged or is in an

unknown state. This framework effectively defines a control basis that can be used

to construct hierarchical motor control plans and is strongly related to the options

framework, though it was proposed first [28].

Because controllers can be bound to different sensorimotor couplings (i.e., different

sets of sensor inputs and motor outputs) the control basis framework is particularly

well-suited to transfer and generalization in robot systems. Hart et al. [25] achieve

18

generalization in two steps. First, a policy is converted into an abstract form called a

declarative policy. Declarative policies are alternative representations of a controller

that allow it to be bound to different sources of sensor inputs and use different output

effectors. A declarative policy captures only abstract information about the objec-

tives required to meet a given behavioral goal. Assume, for instance, a controller for

reaching objects. If this controller requires the cartesian coordinates of the target

object, its declarative form will correspond to an abstract representation that explic-

itly states that the controller can use any input sources that provide said cartesian

coordinates—for instance, laser scanners or a stereo vision system.

The second step in the generalization is achieved by computing and applying

a procedural policy. A procedural policy is a function constructed via supervised

learning that maps contexts (sets of features describing a problem or situation) to

resources. Procedural policies parameterize a declarative policy with different sets

of resources and thus allow for abstract controllers that can be used in different

situations requiring different types of input data or output effectors. A procedural

policy for the reaching task, for example, might encode that in some contexts it is

advantageous for the agent to reach using its left arm instead of its right arm.

The type of abstraction and generalization made possible by the control basis is

related to the generalization we aim for with parameterized skills. In our setting,

however, we assume that the resources available to the robot (e.g., its sensors and

actuators) are fixed—the robot always has full access to the complete set of resources.

Furthermore, the flexible skills that we wish to construct parameterize not the robot’s

input and output resources, but the internal representation of the controller itself.

This is equivalent to a potential function that can change according to the context.

In this sense our objectives are complementary to those of the control basis and could

be used to define an extra layer of parameterization—specifically, one by which the

context modifies the internal policy used by lower-level controllers.

19

2.2.4 Methods Based on Transfer Learning

Parameterized skill learning may be seen as the problem of transferring policies

designed for one task to different but possibly related tasks. Transfer Learning (TL) is

a machine learning paradigm that focuses on tackling this problem. A few TL methods

have been developed to address questions similar to that of learning parameterized

skills.

Taylor and Stone [76] proposed a method for summarizing a source task policy as

a set of abstract production rules, and leveraging those rules to more rapidly learn a

target task. Their approach constructs a decision tree from trajectories (sampled from

a known policy) and subsequently uses a translation function to transfer and apply the

learned rules on a new task. A mapping between states and actions from the source

task to a target task is assumed to be known. Liu and Stone [44] described a similar

technique for transferring value functions between given pairs of tasks, but require

prior knowledge of the tasks’ dynamics in the form of a Dynamic Bayesian Network.

Both of these methods are applicable if exact relations and mappings between source

and target problems are known. They are not capable, however, of learning general

parameterized skills that can tackle families of related motor tasks.

Value functions can also be transferred between different but related tasks. Taylor

et al. [75] transfer Q-values between tasks defined over different state and action

spaces. Their method constructs a translation function between the state and action

representations of a source and target tasks by exhaustively searching over all possible

mapping functions. The selected mapping corresponds to the best match between

the transition models of a given pair of source and target tasks. Barrett et al. [3]

introduced a similar method, in which the weights used to represent a Q-function

are transferred to a target task. A mapping between state features of both tasks is

required. It is also possible to directly transfer policies between tasks. Instead of

transferring Q-functions, it is also possible to transfer policies directly. If a policy

20

is represented, for example, as a neural network, its weights and structure may be

reused to execute similar tasks by assuming that a mapping between features of the

source and target tasks is available [77].

2.2.5 Methods Based on Directly Adjusting Existing Policies

Unlike methods based on Transfer Learning, other techniques exist that directly

learn flexible policies. Schaal et al. [59] introduced Dynamic Movement Primitives,

or DMPs, which are a framework for modular motor control based on a set of linearly-

parameterized autonomous non-linear differential equations. The time evolution of

these equations defines smooth kinematic control policies that can be used to drive

a system. The trajectories encoded by a DMP can be obtained by integrating the

following set of differential equations:

κv̇ = K(g − x)−Dv + (g − x0)f

κẋ = v,

where x and v are the position and velocity of the system, respectively; x0 and g

denote the start and goal positions; κ is a temporal scaling factor; and K and D act

like a spring constant and a damping term, respectively. Finally, f is a non-linear

function that can be learned in order to allow the system to generate arbitrarily

complex movements and is defined as

f(s) =

∑
iwiψi(s)s∑
i ψi(s)

(2.4)

where ψi(s) = exp(−hi(s− ci)2) are Gaussian basis functions with adjustable weights

wi and that depend on a phase variable s. The phase variable is constructed so that

it monotonically decreases from 1 to 0 during the execution of a movement and is

typically computed by integrating κṡ = −αs, where α is a pre-determined constant.

PID controllers are typically used to track such trajectories, especially in robotics

21

applications. The weights w in the above-mentioned equation can be estimated either

via direct policy search or Learning from Demonstration (LfD) techniques [53].

DMPs are capable of encoding flexible policies because after a set of weights w is

learned, both the initial state x0 and the goal state g of a desired trajectory may be

specified. This allows DMPs to generate novel trajectories, which are qualitatively

similar to the one observed when training but with different endpoints.

Although DMPs constitute a type of parameterized skill, they are not general

enough to represent arbitrary reusable skills. This results, in part, from the fact that

the number and nature of their tunable parameters (or metaparameters) are fixed

and pre-determined. DMPs cannot be used to construct behaviors that depend on

arbitrary task parameterizations; some families of related tasks, for instance, might

require parameterizations that depend on more than just initial and goal states in a

trajectory. Furthermore, different types of tasks may require the use of qualitatively

different trajectories. As an example, consider a tennis player that uses parameterized

forehand and backhand movements to hit the ball. DMPs are not capable of jointly

modeling the different trajectories needed to execute different ball-hitting movements;

that would require a set of task-dependent weight vectors w. Finally, note that even

for those tasks that can be parameterized solely by initial and goal states, it is not

always clear how to set those metaparameters given a high-level description of the

task to be performed.

In order to address some of these limitations, Kober et al. [33] proposed learning

a mapping from task description to metaparameters of a DMP. This mapping is

constructed via cost-regularized kernel regression, from which it is possible to estimate

both the mean predicted metaparameter appropriate for a task and the uncertainty

with which it executes that task. Their method was developed specifically for DMPs

and does not support other types of policies; furthermore, it assumes that DMP

metaparameters are sufficient to represent all possible classes of parameterized tasks

22

of interest. Bitzer et al. [10] take a different approach and synthesize novel robot

movements by modulating DMPs learned in a latent space and projecting them back

onto the original pose space of robot. Their method does not support arbitrary task

parameterizations and is not capable of addressing task families that require the use

of more than one qualitatively different trajectory.

Other methods exist for directly adjusting existing policies. Soni and Singh [65]

introduced a technique for creating adjustable options whose termination criteria is

adapted, on-the-fly, to deal with unknown, changing aspects of a motor task. This

technique does not, however, directly predict a complete parameterization of appro-

priate policies for novel tasks. Hoffmann et al. [27] introduced a type of parameterized

model designed to deal with continuously changing environments. They assume that

parts of the environment (e.g., the mass of an object with which the robot interacts)

cannot be observed and are under constant change, and thus need to be estimated or

indirectly taken into account by the skill. Their method also does not construct skills

which can be directly parameterized by an agent, and does not work under arbitrary

policy representations.

Finally, Hausknecht and Stone [26] presented a method for learning a parameter-

ized skill for kicking a soccer ball with varying amounts of force. They exhaustively

vary one particular policy parameter known a priori to be relevant for the skill and

measure the resulting distance traveled by the ball. By assuming a quadratic relation

between these variables, they are able to construct a regression model and invert it,

thereby obtaining a closed-form expression for the policy parameter value required

for a desired kick. This is an interesting example of the type of parameterized skill

that we would like to construct, albeit a very domain-dependent one.

23

2.2.6 Discussion

Previous research has considered the problem of learning flexible skills largely in

isolation and has not addressed the construction a general cohesive framework for

parameterized skill acquisition. Few existing approaches are agnostic regarding the

type of policy parameterization used, which further limits their applicability and con-

strains the types of skills that can be learned. Recent work on DMPs focuses primarily

on open-loop policies and typically assumes that their metaparameters are sufficient

to represent arbitrary families of motor tasks. Finally, most of the existing transfer

learning approaches assume that mappings between features of a source and target

tasks are known a priori. In this dissertation we introduce a general framework for

learning parameterized skills that addresses these limitations and that complements

existing methods by adding capabilities for identifying and modeling useful sub-skills,

and for actively designing training regimens that result in more rapid skill acquisition.

24

CHAPTER 3

LEARNING PARAMETERIZED SKILLS

In this chapter we introduce a general framework for learning parameterized skills.

Our main objective is to design a method by which reusable skills can be learned

from limited data and subsequently used to solve a distribution of related problems.

Our method solves a small number of sample decision-making problems and uses the

corresponding learned policies to estimate properties of the low-dimensional manifold

on which they lie. This manifold models how policy parameters change as we vary

the parameters of a problem. We combine manifold learning techniques, classification

algorithms and non-linear regression methods to estimate geometric and topological

properties of such a manifold, thereby obtaining a general model by which policies

can be predicted given only a description of the problem to be solved.

3.1 Setting and Objective

Consider an agent presented with a sequence of decision-taking problems (which

we henceforth interchangeably refer to as tasks) drawn from some distribution of

problems. Assume that each problem is modeled as an MDP, and that MDPs have

dynamics and reward functions similar enough so that they can be considered varia-

tions of a same overall problem. Consider, as an example, a robot tasked with moving

different objects in a warehouse. While doing so it may have to pick up objects of

different shapes and weights. Each time that it is presented with a new object, the

robot needs to determine an appropriate grasping behavior. This can be achieved

by computing the optimal policy for an MDP specifically constructed to reflect the

25

properties of that particular object. States in this MDP could encode, for instance,

the current configuration of the robot’s body and visual features of the scene and

of object. Large rewards may be given for achieving stable and successful grasping

configurations. The robot, then, while interacting with different objects in the ware-

house, needs to solve a sequence of MDPs. Since these MDPs encode variations of a

same overall problem—namely, grasping—we assume that they have similar transition

dynamics and reward functions.

In order to deal with sequences of related problems of this kind, agents might

choose to solve each one independently and from scratch. Alternatively, they may

exploit the fact that the problems have similar structure and learn a single param-

eterized skill, which they subsequently use to produce solutions to novel problems

given only a description of the problem.

Let Ψ be the set of possible decision-making problems that an agent might need

to solve. Each element of this space is an MDP, which we assume can be compactly

described by a vector τ of parameters. Learning to grasp a particular object, for in-

stance, is a decision-making problem that may be compactly described by parameters

specifying that object’s shape and weight. Assume, furthermore, that problems in

Ψ occur in an agent’s lifetime with probabilities given by some distribution P . The

objective of a parameterized skill is to maximize the agent’s expected reward over the

entire distribution of possible problems:

∫
P (τ)J

(
πθ, τ

)
dτ, (3.1)

where τ ∈ T is a vector of parameters compactly describing a particular problem

in Ψ, T is the space of possible compact problem descriptions, πθ is a policy with

parameters θ ∈ RM , and J(πθ, τ) = E
[∑

t rt|πθ, τ
]

is the expected return obtained

when using policy πθ to solve problem τ . Finally, P (τ) is the probability with which

problem τ occurs during the agent’s lifetime; concretely, let T : Ψ→ T be a random

26

variable mapping each possible decision-making problem in Ψ to its corresponding

compact description τ . Then, P (T = τ) is the probability that the agent has to

solve a particular problem with parameters τ . Because we use problem and task

interchangeably, we often refer to T as a task space, that is, the space of possible task

parameters that compactly describe elements of Ψ.

We now define a parameterized skill as a function

Θ : T → RM (3.2)

mapping task parameters to policy parameters. Concretely, a skill maps the compact

description τ ∈ T of a problem in Ψ to an appropriate policy with parameters Θ(τ) ∈

RM . The optimization objective of a parameterized skill is to maximize Equation 3.1,

and may be written as:

max
Θ

∫
P (τ)J

(
πΘ(τ), τ

)
dτ. (3.3)

A parameterized skill can be constructed via a training set of sample decision-

making problems and their corresponding optimal or near-optimal policies. In this

thesis we assume that a skill-learning agent has access to (or can construct) a set K

of pairs {τ, θτ}, where τ ∈ T is the parameter vector describing a particular problem

in Ψ and θτ are the parameters of an optimal or near-optimal policy for solving it.

By analyzing K, an agent may attempt to model how policy parameters change as

the parameters τ of a problem are varied. This model, once learned, can be used to

predict appropriate policies for novel problems given only their corresponding compact

descriptions τ .

3.2 Assumptions

We make four central assumptions in this thesis. First, we assume that similar

decision-making problems generally have similar optimal or near-optimal policies. In

27

particular, policies for solving MDPs in Ψ might have similar parameters since the

problems that they solve have similar transition and rewards dynamics.

Secondly, we assume that the set of policies for solving problems in Ψ has a

structure that can be exploited in order to learning a parameterized skill. Consider

policies πθ with parameters θ ∈ RM . These policies may be seen as points in an

M -dimensional space, which we henceforth refer to as policy space. Even though they

have M parameters which can, in principle, assume arbitrary values, we argue that

policies for problems in Ψ do not truly have M degrees-of-freedom. To see why, note

that the problems solved by these policies can vary in only dim(T)1 ways—concretely,

by varying each one of the dim(T) parameters of τ ∈ T . Since policies may have fewer

than M degrees-of-freedom, and because generally dim(T)�M , we expect them to

be confined to a lower-dimensional manifold2 embedded in RM . The fact that the

policy space has this kind of structure can be exploited by parameterized skill learning

algorithms to more easily predict appropriate policies for novel problems.

Thirdly, we assume that smooth changes to the parameters τ of a problem result

in smooth changes to its policy. If that is the case, it is possible to smoothly move

over the manifold of policies by smoothly varying task parameters. This assumption

is reasonable in a variety of situations, especially in the common case where a policy

πθ is differentiable with respect to its parameters. A motivating example to this

assumption is discussed in Appendix A.

Fourthly, we assume that even though similar problems generally have similar

solutions (see Assumption 1), problems may in exist Ψ that, if slightly modified, result

in qualitatively different policies. Consider, for instance, how particular changes to

the speed of a horse may cause it to adopt qualitatively different gaits. A walking

1Here, dim(S) denotes the dimensionality of space S.

2Manifolds are topological spaces that locally resemble Euclidean space; each point on a p-
dimensional manifold has a neighborhood that is homeomorphic to the Euclidean space of dimension
p.

28

gait is used when moving at speeds less than 4 miles per hour. In this gait, the horse

always keeps one foot raised and the other three on the ground. At approximately

5 miles per hour, a qualitatively different gait is adopted—trotting—during which

the horse moves its legs in unison in diagonal pairs. Finally, as a horse approaches

approximately 12 miles per hour it adopts a third gait: galloping. The need for

qualitatively different behaviors as a function of the speed suggests that particular

changes to the parameters of a problem—such as increasing speed from 5 to 6 miles

per hour—may result in abrupt changes to its policy.

Motivated by example above, we divide our fourth assumption into two more

specific assumptions. First, we assume that problems with parameters within certain

subregions of the task space T have similar policies. Because these policies have similar

parameterizations, they lie on a single smooth surface embedded in RM . Secondly, we

assume that problems with parameters in other regions of the task space may require

significantly different policies, which results in those policies being embedded in a

different lower-dimensional chart. In general, we expect the policies for problems in

Ψ to be distributed over a set of disjoint, piecewise-smooth lower-dimensional surfaces,

or charts. Separate charts exist whenever particular changes to the parameters of a

problem result in a discontinuous change to the parameterization of its policy. Each

individual chart typically models policies for solving a subclass of related problems,

such as galloping at speeds between 12 and 30 miles per hour might. A different

subclass of related problems, such as walking at speeds between 0 and 4 miles per

hour, might have their policies embedded in a separate lower-dimensional chart.

3.3 A Parameterized Skill Model

In this section we introduce a general algorithm for learning parameterized skills.

Our method begins by constructing a set K of sample decision-making problems and

corresponding learned optimal or near-optimal policies. We assume that the sample

29

problems τ used in the construction of K are drawn from the task distribution P .

Formally, let K ≡ {(τi, θi)}, where τi ∈ T is the parameter vector describing the

i-th training task drawn from P and θi = (θi(1), . . . , θi(M))> ∈ RM are the M

parameters of a policy solving it. Our algorithm uses the set K of sample tasks and

corresponding solutions to construct a family of regression models (one per policy

parameter) mapping task parameters to policy parameters. These models allow an

agent to identify where (in the policy space) the solution to a particular problem is.

In this sense, they can be seen as a unified model of the smooth manifold (embedded

in RM) where task policies lie. Since policies for different tasks might be embedded

in different low-dimensional charts, our algorithm first estimates the number D of

charts within the manifold and only then constructs a specialized model of each one.

Our method consists of four general steps:

1. construct a skill training set K by drawing sample problems from P and learning

an optimal or near-optimal policy for solving them;

2. use K to estimate properties of the geometry and topology of the policy mani-

fold. Specifically, our algorithm a) estimates the number D of lower-dimensional

charts that compose the policy manifold; and b) constructs a training set Kχ

(to be used in step 3) of pairs (τ, c), where τ is a training task in K and

c ∈ {1, . . . , D} is an integer number identifying the chart in which that task’s

policy is embedded;

3. use Kχ to train a classifier χ : T → {1, . . . , D} mapping task parameters τ ∈ T

to {1, . . . , D}. χ allows for the identification of the chart where a given task’s

policy is most likely embedded;

4. train a set ofM×D independent non-linear regression models Φi,j, i ∈ {1, . . . , D},

j ∈ {1, . . .M}, each one mapping elements of T to individual policy parameters

30

θi, i ∈ {1, . . .M}. Each subset {Φi,1, . . . ,Φi,M} of regression models is trained

over all tasks τ in K where χ(τ) = i.3

This training process above results in D sets of M non-linear regressions models.

Each set contains the models necessary for predicting policy parameters, given task

parameters, for problems whose policies are embedded in a same given chart. These

models are then combined to construct a parameterized skill function Θ(τ):

Θ(τ) ≡ (Φχ(τ),1, . . . ,Φχ(τ),M)T . (3.4)

Using a learned parameterized skill to solve novel problems involves three main

steps, depicted in Figure 3.1: 1) task parameters τ are drawn from the task distri-

bution P ; 2) the classifier χ is used to identify in which chart that task’s policy is

embedded; 3) the corresponding set of regression models associated with that chart

is used to predict policy parameters for the task.

Note that the algorithm introduced above makes no assumptions regarding which

policy representation, manifold analysis method, and classification and non-linear

regression techniques are to be used. These are design decisions best made in light of

the characteristics of the application at hand. In the following section we introduce

one possible instantiation of this framework, in which an underactuated robotic arm

is tasked with learning to accurately throw darts at parameterized target locations.

3This last step assumes that the policy features are approximately independent conditioned on
the task. If this is known not to be the case, it is possible to alternatively train a set of D multivariate
non-linear regression models Φi, i ∈ {1, . . . , D}, each one mapping elements of T to complete policies
parameterizations θ ∈ RM , and use them to construct Θ. Again, the i-th such model should be
trained only over tasks τ in K such that χ(τ) = i. The problem of predicting a vector of possibly
correlated policy features can also be addressed via structured prediction techniques [84].

31

Task space
T

i

policy space

i

k
m

χ(τ)
P (τ)

τ
Φi,1

Φi,N

...
...

θ1

θN

Figure 3.1. Steps involved in executing a parameterized skill. First, a task is drawn
from the distribution P ; the classifier χ identifies the chart to which the policy for
that task belongs; finally, the corresponding regression models map task parameters
to policy parameters.

3.4 The Parameterized Dart Throwing Domain

In the parameterized dart throwing problem, a simulated planar underactuated

robotic arm is tasked with learning a skill to accurately throw darts at parameterized

target locations around it (Figure 3.2). The base of the arm is affixed to a wall in

the center of a 3-meter high and 4-meter wide room. The arm is composed of three

connected links and a single motor which applies torque only to the second joint,

making this a difficult non-linear and underactuated control problem. At the end

of its third link, the arm has an actuator capable of holding and releasing a dart4.

The state of the system is a 7-dimensional vector composed of 6 continuous features

corresponding to the angle and angular velocities of each link and by a seventh binary

feature specifying whether or not the dart is still being held. The goal of the system

is to control the arm so that it executes a throwing movement and accurately hits

a target of interest. In this domain the space T of tasks consists of a 2-dimensional

4We designed this problem so that the three links have combined mass almost negligible compared
to the mass of the dart; their main purpose it to make the system harder to control. The link directly
affixed to the wall is a 50cm × 2.5cm rectangle with mass of 15 grams; the link connected to it is a
35cm × 2.5cm rectangle with mass of 12 grams; and the final link is a 25cm × 2.5cm rectangle with
mass of 8 grams. The dart is modeled as a circle with 10cm of radius and mass of 200 grams. The
maximum torque allowed is 2.75 Nm.

32

Euclidean space containing all (x, y) coordinates at which a target can be placed—a

target can be affixed anywhere on the walls or ceiling surrounding the agent.

�, �̇

�, �̇

�, �̇

4m

3m

Figure 3.2. The dart throwing domain (not to scale). One possible target is depicted
as a circle on the wall to the left of the robot.

To obtain a concrete instantiation of the algorithm outlined in Section 3.3 we need

to specify 1) a policy representation; 2) a policy-learning algorithm; 3) a method to

analyze the policy space and estimate D, the number of lower-dimensional charts

on which task policies lie; 4) a method to construct the non-linear classifier χ; and

5) a method to construct the set of non-linear regression models Φ. In this section

we introduce and discuss the specific algorithms and techniques chosen to tackle the

parameterized dart-throwing domain. We discuss experiments and results in Section

3.5.

Our choices of methods are directly guided by the characteristics of this domain.

Because it involves a multi-joint simulated robotic arm, we use a policy representation

that is well-suited to robotics: Dynamic Movement Primitives, or DMPs (see Section

2.2.5). We use a DMP to model the trajectory of torques to be applied to controlled

joint of the arm. A PID controller is used to tracking these trajectories. The DMP-

33

based policy we obtain is parameterized by a 37-dimensional policy feature vector

θ = (λ, g, w1, . . . , w35)T , where λ is the value of the DMP phase variable s at which

the arm should let go of the dart; g is the goal parameter of the DMP; and w1, . . . , w35

are the weights of each Gaussian basis function in the movement primitive (Equation

2.4).

We combine DMPs with a policy learning algorithm known to perform well with

this type of policy representation. PoWER [31] is a policy search method that col-

lects sample path executions from a policy and updates policy parameters towards

ones that induce a new success-weighted path distribution. We use PoWER due to

its simplicity and because it has been empirically shown to outperform other pol-

icy learning algorithms in a variety of standard benchmarks and on real robotics

problems [32]. PoWER works by executing rollouts ρ constructed based on slightly

perturbed versions of the current policy parameters; these perturbations consist in

a structured, state-dependent exploration εt
Tφ(s, t), where εt ∼ N (0, Σ̂) and Σ̂ is a

meta-parameter of the exploration; φ(s, t) is the vector of policy feature activations

at time t. By adding this type of perturbation to θ we induce a stochastic policy

whose actions are a = (θ + εt)
Tφ(s, t)) ∼ N (0, φ(s, t)T Σ̂φ(s, t)). After performing

rollouts using such a stochastic policy, the policy parameters are updated as follows:

θk+1 = θk +

〈 T∑
t=1

W(s, t)Qπ(s, a, t))

〉−1

ω(ρ)

×

〈 T∑
t=1

W(s, t)εtQ
π(s, a, t))

〉
ω(ρ)

where Q̂π(s, a, t) =
∑T

t̃=t r(st̃, at̃, st̃+1, t̃) is an unbiased estimate of the return, W(s, t) =

φ(s, t)φ(s, t)T
(
φ(s, t)T Σ̂φ(s, t)

)−1
and 〈·〉ω(ρ) denotes an importance sampler which

can be selected based on the domain. A useful heuristic when defining ω is to discard

sample rollouts with very small importance weights. In the experiments discussed in

34

Section 3.5 we use importance weights proportional to the relative performance of a

rollout in comparison to others.

To analyze the geometry and topology of the policy space and estimate the number

D of lower-dimensional charts we use the ISOMAP algorithm [78]. ISOMAP is a

technique for learning the underlying global geometry of high-dimensional spaces and

the number of non-linear degrees of freedom that underlie it. It allows an agent to

estimate the number of disjoint charts in policy space and to identify to which chart a

given training policy belongs. We use this information to train a classifier χ mapping

task parameters τ ∈ T to {1, . . . , D}. This classifier is subsequently used to identify

the lower-dimensional chart where a given task’s policy is most likely embedded. In

this instantiation of the parameterized skill framework, we implement χ as a simple

linear classifier.

Finally, we must choose a non-linear regression method to construct Φi,j. We use

Support Vector Regression (SVR) [20] due to their good generalization capabilities

and relatively low dependence on parameter tuning. In the experiments discussed in

Section 3.5 we use SVRs with Gaussian kernels and a inverse variance width of 5.0. As

previously mentioned, if important correlations between policy and task parameters

are known to exist, multivariate regression models (such as Structured Support Vector

Machines [81]) might be preferable.

3.5 Experiments

Before discussing the performance of parameterized skill learning in the dart-

throwing domain, we analyze and discuss important topological characteristics of

the space of policies induced as we vary task parameters. We sampled 60 tasks

(target positions) uniformly at random and placed target boards at the corresponding

locations. Near-optimal policies for executing each one of these tasks were learned

using PoWER; the learning algorithm was configured to perform a policy update

35

every 20 rollouts and to run until a minimum performance threshold was reached. In

our experiments, this criterion corresponded to the moment when the robotic arm

first executed a policy that landed the dart within 5 centimeters of the intended

target. In order to speed up the sampling process we initialize policies for subsequent

targets with ones computed for previously sampled tasks.

We first analyze the structure of the induced policy manifold; this is done by

modeling how each dimension of a policy varies as we smoothly vary the task. Figure

3.3a presents this information for a representative subset of policy parameters. On

each subgraph of Figure 3.3a the x axis corresponds to a 1-dimensional representa-

tion of the task obtained by computing the angle at which the target is located with

respect to the arm. This is done for ease of visualization, since using x, y coordinates

would require a 3-D figure. The y axis corresponds to the value of a selected policy

parameter. The first important observation to be made is that as we vary the task,

not only do policy parameters vary smoothly, but they tend to remain confined to one

of two disjoint but smoothly varying lower-dimensional surfaces. A discontinuity ex-

ists, indicating that after a certain point in task space a qualitatively different policy

parameterization is required. Another interesting observation is that this disconti-

nuity occurs approximately at the task parameter values corresponding to hitting

targets directly above the robotic arm. This implies that policies for hitting targets

to the left of the arm lie on a different manifold than policies for hitting targets to its

right5. This is relevant for two reasons: 1) it confirms that the manifold assumption

is reasonable and that smooth task variations induce smooth, albeit non-linear, pol-

icy changes; and 2) it shows that the policies for solving a distribution of problems

are generally confined to one of several lower-dimensional charts, and that the way

5In fact, the existence of disjoint charts in this case results from a type of symmetry in the policy
space: the two identified charts encode throwing movements that are mirror reflections of each other,
and that are represented using qualitatively different policy parameterizations.

36

in which they are distributed among these charts is correlated to the qualitatively

different strategies that they implement.

1 0 1 2 3 4
10

0

10

20

1 0 1 2 3 4
4

2

0

2

1 0 1 2 3 4
4

2

0

2

4

1.5 2 2.5 3 3.5 4
0

1

2

3

1.5 2 2.5 3 3.5 4
459

459.5

460

460.5

1.5 2 2.5 3 3.5 4
142.5

143

143.5

144

0.5 0 0.5 1 1.5 2
8

9

10

11

0.5 0 0.5 1 1.5 2
7

6

5

4

3

0.5 0 0.5 1 1.5 2
463

462

461

460

459

a)

b)

c)

Figure 3.3. Analysis of the variation of a subset of policy parameters as a function
of smooth changes in the task.

Figures 3.3b and 3.3c show, similarly, how a selected subset of policy parameters

changes as we vary the task, but now with the two resulting charts analyzed separately.

Figure 3.3b shows the variations in policy parameters induced by smoothly modifying

tasks for hitting targets anywhere in the interval of 1.57 to 3.5 radians—that is, targets

placed roughly at angles between 90◦ (directly above the agent) and 200◦ (lowest

part of the right wall). Figure 3.3c shows that same information but for targets

located in one of the other two quadrants—that is, targets to the left of the arm. We

superimposed in Figures 3.3a-c a red curve representing the non-linear fit Φ modeling

the relation between task and policy parameters in each chart. Note how a clear

linear separation exists between which task policies lie on which lower-dimensional

chart: this separation indicates that two qualitatively distinct types of movement are

required for solving different subsets of the tasks. Because we empirically observe

that a linear separation exists, we construct χ as a linear classifier mapping tasks

37

parameters to the numerical identifier of the chart in which that task’s policy is

embedded.

We can also analyze the characteristics of the lower-dimensional, quasi-isometric

embedding of policies produced by ISOMAP. Figure 3.4 shows the 2-dimensional

embedding of a set of policies sampled from one of the charts. Embeddings for

the other chart have similar properties. Analysis of the residual variance of ISOMAP

allows us to conclude that the intrinsic dimensionality of the policy manifold is 2; this

is expected since we are essentially parameterizing a high-dimensional policy space by

task parameters, which are drawn from the 2-dimensional space T . This implies that

even though policies are part of a 37-dimensional space, they remain confined to a

2-dimensional manifold because there are just two degrees-of-freedom with which we

can vary the tasks. In Figure 3.4 lighter-colored points identify embeddings of policies

for hitting targets at higher locations. Note how each point in this embedding space

is surrounded by points with similar colors6. This implies that policies for similar

tasks (e.g., targets at similar heights) remain geometrically close in policy space—or,

equivalently, that nearby targets have similar near-optimal policies.

Figure 3.5 shows three sample movements that the arm can execute in order to hit

particular targets. Each inset figure shows the configuration of the arm at selected

moments, t0, . . . , t4, during a throw. We overlay current and past configurations of

each link—more recent states of the arm are shown in lighter colors. The dart is

depicted as an orange circle. By analyzing the trajectory of the dart during each

throw, it is possible to observe that it follows a non-linear path in the configuration

space of the robot. This results from the fact that the arm is underactuated and

6Note that the axes in Figure 3.4, representing two embedding dimensions of a given set of
policies, have somewhat irrelevant units. This occurs because ISOMAP computes embedding co-
ordinates so that pairwise Euclidean distance between embeddings approximate geodesic distances
in the manifold; as such, the resulting embedding coordinates do not necessarily have a natural
interpretation in terms of the original dimensions.

38

−10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

Embedding dimension #1

Em
be

dd
in

g
di

m
en

si
on

 #
2

Figure 3.4. 2-dimensional embedding of policies parameters.

has to build momentum in order to hit certain targets. Figure 3.5a and Figure 3.5b

show trajectories for hitting targets high on the ceiling and low on the right wall,

respectively. These were used as training examples to construct a parameterized

throwing skill. A total of five sample policies were used to train the skill; each

predicted policy was further improved by allowing PoWER to execute two additional

policy updates. Figure 3.5c shows a throwing movement produced by the skill for a

novel task, corresponding to a target in the middle of the right wall.

Figure 3.6 shows the error in policy parameters predicted by the skill as a function

of the number of examples used to train it. This is a measure of the relative error

between the policy parameters predicted by Θ and parameters of a known solution

for the same task. The lower the error, the closer the predicted policy is (in norm)

to the correct solution. Figure 3.6 shows errors averaged over the parameters of 15

unknown tasks sampled uniformly at random from the task space. After 6 training

samples are presented to the parameterized skill, it is already capable of predicting

policies whose parameters are within 6% of the correct ones; with approximately 15

39

t0

t1

t2

t3

t4

t1

t2

t3

t0

t1

t2
t3

t4t1

t0

t1

t3

t4

t1

t3

time

time

time

t2t2

t2t2

t2t2

t3

Figure 3.5. Learned parameterized arm movements. Arm movements (a) and (b)
were used as training examples to the parameterized skill; (c) is the movement pre-
dicted by the skill for hitting a novel target.

samples, this error stabilizes around 3%. This accuracy is only possible because the

policy space—even though high-dimensional—is also highly structured; specifically,

40

because policies for similar problems lie on a lower-dimensional chart whose regular

topology can be exploited when generalizing known solutions to novel tasks.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 fe
at

ur
e

re
la

tiv
e

er
ro

r

Sampled training task instances

Figure 3.6. Average predicted policy parameter error as a function of the number
of sampled training tasks.

Since some policy representations might be particularly sensitive to noise, we

additionally measure the effectiveness of predicted policies when directly applied to

novel tasks. Specifically, we measure the distance between the position where the dart

hits and the intended target. This measurement is obtained by directly executing the

predict policy and before any further learning or policy improvement takes place.

Figure 3.7 shows that after 10 samples are presented to the skill, it can produce

throws capable of hitting within 70cm of the intended target. This is a reasonable

error if we consider that novel targets may be placed anywhere on a surface that

extends for a total of 10 meters. If the parameterized skill is presented with a total of

24 samples, the average error decreases to 30cm. This corresponds, roughly, to darts

being thrown from 2 meters away and landing one dartboard away from the intended

center.

41

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 d
is

ta
nc

e
to

 ta
rg

et
 b

ef
or

e
le

ar
ni

ng
 (c

m
)

Sampled training task instances

Figure 3.7. Average distance to target (before any policy improvement) as a function
of the number of sampled training tasks.

Although these initial solutions are reasonable, especially considering that no di-

rect learning with the target task took place, they are not perfect. We might therefore

want to further improve them. Figure 3.8 shows how many additional policy updates

are required to improve policies predicted by the skill up to a point where they reach

our performance threshold—that is, landing the dart within 5 centimeters of the

intended target. The dashed line in Figure 3.8 shows that on average 22.6 policy up-

dates are required to find a near-optimal policy if the agent does not use a skill and

has to practice each novel task from scratch. By using a parameterized skill trained

with 9 examples, on the other hand, it is already possible to decrease this number to

just 4 policy updates. If 20 training examples are used to construct the skill, it takes

the agent only 2 additional policy updates to improve the predicted policy so that it

meets the performance threshold.

These experiments demonstrate how useful a parameterized skill can be for agents

facing sequences of related problems. Instead of repeatedly incurring the cost of

learning to execute new tasks from scratch, it is more advantageous to use these ex-

42

periences to construct a reusable skill capable of generalizing previous experiences to

more rapidly tackle novel problems. A parameterized skill is capable, once learned, to

directly produce appropriate policies for novel tasks without ever explicitly practicing

those tasks. If the predicted solutions do not meet the agent’s performance require-

ments, they can be further improved via standard policy search algorithms—usually

at a fraction of the cost required to learn from scratch.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

Po
lic

y
up

da
te

s t
o

pe
rf

or
m

an
ce

 th
re

sh
ol

d

Sampled training task instances

With parameterized skill
Without parameterized skill

 (averaged over tasks)

Figure 3.8. Average number of policy updates required to improve the solution
predicted by the parameterized skill as a function of the number of sampled training
tasks.

3.6 Related Work

Instead of explicitly learning a function to predict policy parameters for novel

tasks, a näıve nearest-neighbor technique is also possible. In this case the agent main-

tains a library of known problem solutions and, when presented with a novel task,

directly selects and executes the policy of the nearest known problem. This approach

does not scale to complex families of parameterized problems because the number of

observed task solutions required to uniformly cover the task space T grows exponen-

43

tially with its dimensionality. Alternatively, techniques based on k -nearest neighbors

regression are also possible. These correspond to non-parametric approaches that

linearly interpolate the policies of the k nearest known problems. This type of ap-

proach may fail if task policies lie on a non-linear manifold. Furthermore, regression

methods of this kind typically do not consider that different charts may exist. If that

is the case, incompatible solutions (embedded in different charts) may be combined

and produce policies that lie outside of the manifold of valid solutions. This is similar

in nature to the problem of learning inverse kinematic solutions by averaging exam-

ples on a non-convex set [29]. A 2-joint robotic arm, for instance, may be able to

reach a same object in two different ways, but if those solutions (when represented in

joint space) are averaged, the arm misses the target object completely. This occurs

because interpolated solutions in joint space do not necessarily yield a correct result

in Cartesian space. Similarly, parameterized skill methods that linearly interpolate

policies on a non-linear, multi-chart manifold may produce solutions that lie outside

of the manifold of valid solutions.

Alternative, more sophisticated approaches have been proposed under the general

heading of skill transfer. Konidaris et al. [36, 40] introduce a method for constructing

reusable options by learning them in an agent-centered state space instead of in the

original state space. This technique does not, however, construct generalized skills

capable of solving a family of related tasks. Soni and Singh [65] create adaptable

options whose meta-parameters, e.g., their termination criteria, can be adapted on-

the-fly in order to deal with unknown, changing aspects of a task. However, this

technique does not directly predict a complete parameterization of the policy for new

tasks. Liu and Stone [44] propose a method for transferring a value function between

a specific given pair of tasks but require prior knowledge of the task dynamics in the

form of a Dynamic Bayesian Network. Finally, Braun et al. [12] discuss the idea of

structure learning in humans, a concept that is very similar in nature to the one of

44

parameterized skills. The authors present studies from cognitive and motor neuro-

science that show that humans explicitly learn abstract structural invariants of their

environments in order to facilitate generalization to novel tasks. They then introduce

a Bayesian model with carefully designed priors capable of explaining experimental

data supporting structure learning in humans. The authors do not, however, propose

a concrete method for autonomously identifying invariants that allow for previous

learning experiences to be generalized to novel tasks.

3.7 Discussion

We introduced a general framework for constructing parameterized skills. The idea

underlying our method is to solve a small number of problem instances and generalize

their solutions to new problems by combining manifold learning techniques, classifica-

tion algorithms and non-linear regression methods in order to estimate geometric and

topological properties of manifold. This allows the agent to obtain a general model

by which policy parameters can be predicted from task parameters. This approach is

effective because it exploits the intrinsic structure of the policy space—namely, that

policies for similar tasks typically lie on lower-dimensional charts. Furthermore, our

framework is capable of autonomously discovering the qualitatively different sub-skills

required to execute distinct classes of tasks in a distribution.

This basic method can be extended in several important directions. First, the

question of how to actively select training tasks to improve the overall readiness of

a skill needs to be addressed. We introduce, in Chapter 5, an active skill learning

technique. Another important open problem is that of how to properly deal with

non-stationary distributions of tasks. If a new task distribution is given, it may be

possible to use it to resample instances from K and construct a more appropriate

parameterized skill. A more general strategy is needed, however, in case the task

distribution changes in a way that is not known to the agent.

45

CHAPTER 4

PARAMETERIZED MOTOR SKILLS ON A HUMANOID
ROBOT

In this chapter we introduce a sample-efficient method for learning parameter-

ized motor skills on a physical humanoid robot. Our method builds on the general

framework introduced in Chapter 3 and extends it by introducing new mechanisms

that allow for a more rapid skill acquisition when samples are expensive to obtain.

Learning skills on a physical robot introduces significant challenges when compared to

learning on a simulator, mainly because of the significant costs involved in practicing

tasks, such as experimenter time, money, and robot wear and tear.

To address these challenges we develop a method for reusing seemingly unsuc-

cessful policies as additional valid training samples for synthesizing a skill. This

constitutes a simple type of counterfactual reasoning that allows an agent to use

suboptimal policies—which may correspond to solutions to different problems—as

additional training examples, thereby accelerating skill acquisition. We also show

that simple rules can be created to automatically adjust the metaparameters of the

models composing a skill, in particular those regulating the complexity of each chart

model as a function of the number of samples available. This capability is important

because it allows agents to adaptively control the expressiveness of their parameter-

ized skill models as more samples are acquired.

We instantiate our learning framework via a set of specially designed regularized

classification and multivariate regression models. We show that the resulting method

is capable of constructing a whole-body parameterized throwing skill, in a physical

46

humanoid robot, from few training samples. This demonstrates that our framework

is not restricted to the realm of simulated problems, in which the cost of practic-

ing tasks and evaluating candidate policies is typically negligible. Our experiments

also confirm the qualitative findings presented in Chapter 3; in particular, that our

learning algorithm can, from a small number of sample problems, predict appropriate

solutions to novel tasks, and that it can autonomously learn the non-linear boundary

separating low-dimensional charts. In our experiments, charts correspond to sub-skills

that model the qualitatively different torso and arm movements required to execute

different types of parameterized throws.

4.1 Skill Learning on a Robot

Our main objective is to demonstrate that parameterized skill learning can be

successfully achieved on a physical robot. We assume the same optimization objec-

tive introduced in Chapter 3, but now consider the case when training samples are

expensive to obtain, both in terms of robot wear and tear and experimenter time.

As before, the acquisition of a parameterized skill starts with the construction of

skill training set K. This set is constructed by drawing sample problems from P

and learning an optimal or near-optimal policy for solving them. In this chapter we

use a slightly different notation than the one used in Chapter 3. This allows for a

simpler description of the regression and classification models used to instantiate our

framework on a robot. Let K ≡ {(τi, θi)}, where τi is the i-th training task drawn

from P and

θi = (θi(1), . . . , θi(M))> ∈ RM (4.1)

are the M parameters of a policy for executing task τi. We follow the skill learning

algorithm introduced in Section 3.3 and we use the set of sample tasks and corre-

sponding policies to train a family of regression models mapping task parameters to

policy parameters. Because policies for different subsets of T might be embedded in

47

different lower-dimensional charts of the policy manifold, we once again first estimate

the number D of such charts and only then train a separate regression model for

each one. We employ a similar strategy to the one introduced in Section 3.4 and

use ISOMAP to identify the global geometry of the policy manifold and the intrinsic

number of non-linear degrees of freedom that underlie it. This allows the agent to

estimate the number D of disjoint charts in the manifold, and to identify in which

chart the policy of each training task is embedded. We organize this latter informa-

tion into a training set Kχ ≡ {(τi, ci)}, where τi is a training task and ci ∈ {1, . . . , D}

identifies the chart to which task τ ’s policy belongs. We use Kχ to learn a classifier

χ mapping the parameters of a task to the chart in which its policy is most likely

embedded:

χ : T → {1, . . . , D}. (4.2)

We learn χ via non-linear regularized logistic regression. The parameters optimizing

this model are found via standard gradient descent.

In this instantiation of our framework we choose to represent parameterized skill

functions Θ in terms of a set of functions Θc : T → RM , each one modeling one

individual chart. Each Θc models how policy parameters change as we vary task

parameters and is defined over all tasks whose policies are embedded in chart c. Let

Kc be the set of all tasks which χ assigns to chart c: Kc ≡ {(τ, θ) ∈ K} s.t. χ(τ) =

c and where πθ is a policy for executing τ . We use each set Kc to construct the

corresponding function Θc. In this chapter we represent each Θc as a `2-regularized

linear regression model mapping non-linear task features to policy parameters. We

then compose all learned chart models Θc to construct the overall parameterized skill

function Θ:

Θ(τ) ≡ Θc(τ) s.t. c = χ(τ) (4.3)

48

and

Θc(τ) =

(
(w1

Kc)
> . . . (wM

Kc)
>
)
ϕKc(τ), (4.4)

where ϕKc(τ) is an arbitrary V -dimensional vector of non-linear task features com-

puted over τ , and wj
Kc

, for each j ∈ {1, . . . ,M}, is a V -dimensional vector given

by

wj
Kc

=
(
Φ>KcΦKc + λKcI

)−1
Φ>KcΠj . (4.5)

Here, ΦKc is a |Kc|×V design matrix
(
ϕKc(τ1)> . . .ϕK(τKc)

>), λKc is a regularization

term and Πj is a |Kc|-dimensional vector containing the j-th policy feature of each

one of the |Kc| training policies θi in Kc: Πj = (θ1(j), . . . , θ|Kc|(j))
>. Note that

Equation 4.4 is a multivariate regression model that implicitly assumes that policy

features are approximately independent conditioned on the task. If this is known not

to be the case, more expressive multivariate models that directly encode dependencies

between task and policy features may be used.

Figure 4.1 depicts the overall process of executing a learned parameterized skill,

which closely follows the general steps proposed in Chapter 3. First, a task τ is drawn

from P ; the classifier χ identifies the chart c in which that task’s policy is most likely

embedded; and finally, the regression model Θc associated with that chart is selected

and maps the task parameters of τ to policy parameters θ1, . . . , θM .

4.2 Sample Reuse

Consider the dart-throwing agent introduced in Chapter 3.4. It constructed pa-

rameterized skills by first learning policies for a small number of tasks and then

generalizing them according to the algorithm presented in Section 3.3. Let us as-

sume that this agent wishes, at some point during the skill acquisition process, to

learn a policy for hitting target T1. While learning to do so it may consider several

candidate policies, most of which are unsuccessful at performing the task. Let us

49

Task space
T

c

policy space

c

k
m

�(⌧)
P (⌧)

⌧
...

✓1

✓N

⇥1

⇥c

⇥D

...

...

task parameter 1 task parameter |T|

✓

Figure 4.1. Steps involved in executing a learned parameterized skill composed of
D chart models Θc, c ∈ {1, . . . , D}.

assume that the agent evaluates a particular candidate policy which, when executed,

hits an unintended target position T2. Although it fails to hit the desired target, this

policy may nonetheless be useful to the agent and should not be discarded. If T2 or

a nearby position ever need to be targeted, for instance, the agent can directly reuse

that policy and avoid the cost of learning to hit T2 from scratch. Instead of directly

storing unsuccessful policies for later reuse, however, the agent may attempt to use

them as additional training examples to learn a parameterized skill. The reuse of

seemingly unsuccessful policies requires the agent to be capable of identifying which

problems a given policy might solve. This corresponds to a type of counterfactual

reasoning that allows an agent to use suboptimal policies—which may correspond

to solutions to different problems—as valid training examples to construct a skill,

thereby accelerating skill acquisition.

In the dart-throwing domain, a policy πθ for hitting a target position τ is subop-

timal if it hits a different target τ ′. Even though it fails to solve τ , the unsuccessful

policy πθ can nonetheless be used to accelerate skill acquisition by incorporating the

pair (τ ′, θ) into K, without requiring the agent to ever explicitly train for τ ′.

Reusing unsuccessful policies as additional training samples accelerates the con-

struction of the set K, the most time-intensive step in learning a parameterized skill.

50

This is possible because an agent practicing a single task analyzes a sequence of subop-

timal policies, all of which may potentially be reused to solve novel problems without

incurring any additional costs. Such sequences correspond to trajectories (in policy

space) of potential problem solutions. An agent practicing a single task instance,

therefore, can potentially acquire solutions to a large number of related problems,

thereby decreasing the sample complexity of constructing the skill training set.

A first challenge to reuse policies is that it requires access to a function mapping

from a policy, or observed effects of a policy (e.g., trajectories generated by it) to

the parameters of the tasks in which that policy could be applied. This mapping can

be seen as an inverse model of the parameterized skill. In some settings, such as the

robotics domain introduced in the next section, this map can be easily handcrafted by

an expert. Learning arbitrary inverse skill models from data, however, is significantly

harder and beyond the scope of our work. In Section 6 we discuss possible future

research directions related to this problem.

A second challenge to perform policy reuse it to determine when it is safe to do

so; more specifically, in which situations an unsuccessful policy is guaranteed not to

be an outlier with respect to a given chart model. This may occur because policy

representations can be redundant and allow for different parameterizations, embedded

in distinct charts, for solving a same problem. In this case, reusing policies may lead

models Θc to be trained with incompatible solutions originating from different regions

of the manifold. This is similar in nature to the problem (first discussed in Section

3.6) of attempting to learn inverse kinematic solutions by averaging examples on a

non-convex set.

In order to ensure that a training set Kc does not contain samples from different

charts, we design a simple rejection sampling strategy. Let τ ′ be the task uninten-

tionally executed by a policy πθ, while in search for a solution to τ . We add the tuple

(τ ′, θ) to Kc, c = χ(τ ′), iff

51

||θ − PKc(θ)||2 < ε diam(Kc), (4.6)

where PS(p) is the projection operator of p onto set S and diam(S) denotes the

diameter of S, both of which are defined with respect to the `2-norm, and ε ∈ [0, 1] is a

tunable parameter regulating how strict the rejection sampling strategy is. Intuitively,

this condition tries to ensure that reused samples added to Kc are never too far away

from the surface of that given chart.

4.3 The iCub Throwing Domain

Figure 4.2. The iCub humanoid robot.

We evaluate the method introduced in Section 4.1 on an iCub robot tasked with

learning to accurately throw plastic balls at parameterized target locations. The iCub

is a humanoid robot with 53 actuated degrees of freedom built to have dimensions

similar to that of a 3.5 year old child [48]. Our goal with this experiment is threefold:

1) to test the effectiveness of our skill learning framework on a challenging physical

system; 2) to evaluate whether an effective whole-body parameterized throwing skill

can be learned from few examples; and 3) to evaluate whether the learning process

52

can automatically identify and separately model the different sub-skills that may be

required for executing qualitatively different types of tasks.

We place a 90cm × 90cm target board on the floor in front of the robot and

allow targets (plastic bottles) to be placed anywhere on that board. The space T of

tasks consists of a 2-dimensional Euclidean space containing all (x, y) coordinates at

which targets can be placed. The performance of a policy (throw) corresponds to the

distance between where the ball landed and the intended target.

Figure 4.3. The iCub preparing for a throw.

Prior to acquiring a parameterized throwing skill we recorded the parameters of a

whole-body overhand throw from kinesthetic demonstration. This throwing movement

required simultaneously rotating the robot’s shoulder, torso and forearm, pitching its

torso and extending its elbow. Based on this recorded motion we defined a base

policy for throwing whose parameters can be modified so that it hits different target

positions. The base policy is a function of a 7-dimensional vector (θ1, . . . , θ7)> whose

individual elements modify different aspects of a throw. Concretely, the parameters

of the policy regulate the initial and final torso angles, torso rotation speed, torso

pitch at the end of the movement, initial angle of rotation of the shoulder, amount

of forearm rotation during the throw and total elbow extension. A throw initiates

when the robot executes a predefined open-loop grasping motion to hold the plastic

53

Figure 4.4. Grasp resulting from a predefined open-loop motion to hold the plastic
ball.

ball (Figure 4.4). Executing a throw consists in using a PID controller to track the

parameters of its corresponding policy. A throws also involves commanding the iCub’s

fingers to release the ball at a fixed movement during the movement. A sample throw

is shown in Figure 4.5.

Figure 4.5. A sample throw executed by the iCub.

In order to fully instantiate our parameterized skill framework, we need to make

two domain-dependent design decisions: 1) what policy search algorithm to use when

constructing the training set K; and 2) what set of non-linear task features ϕKc(τ) to

use when modeling the surface of each individual chart. The former decision influences

the time to construct the skill training set, while the latter affects the expressiveness

of each chart model Θc. We use the PI2 algorithm [79] to learn individual policies.

54

PI2 is policy search method derived from first principles of stochastic optimal control.

We choose it because has been empirically shown to outperform standard gradient

methods on robotics problems [70] and also due to its simplicity and low dependence

on parameter-tuning. The stopping criteria used to determine when to terminate PI2

corresponds to the moment when it finds a policy capable of hitting the desired target

4 out of 5 times. This criterion is needed to rule out noisy policy candidates. Finally,

we construct the set of non-linear task features ϕKc(τ) used to model individual

charts as a set of polynomial features computed over the original task representation.

Because τ corresponds to the cartesian coordinates (x, y) of a given target, we define

ϕKc(τ) ≡ ϕKc

(
(x, y)

)
=
(
xe1 , ye2 , re3 , αe4

)>
, (4.7)

where (r, α) ≡
(
(x2 +y2)

1
2 , atan2(y, x)

)
is the polar-coordinate representation of (x, y)

and each exponent e1, . . . , e4 varies in the range {0, . . . , P}, where P is the desired

degree of the polynomial expansion.

We determined by cross-validation that an effective heuristic for choosing P is a

logarithmic function of the number of training examples: P = blog2(|Kc|)c. Similarly,

we determined that the regularization parameter λKc can be effectively set by a linear

function of the number of training examples: λKc = 0.1|Kc|. These simple heuristic

rules, even if only approximate, are extremely important in problems where samples

are costly because they allow agents to adaptively control the expressiveness of their

parameterized skill models as more training examples are acquired.

4.4 Experiments

Before discussing the performance of parameterized skill learning in this domain,

we analyze and discuss important topological characteristics of the space of policies

induced as we vary task parameters. We sampled 30 tasks (target positions) uniformly

at random and placed targets (plastic bottles) at the corresponding locations. Near-

55

optimal policies for executing each one of these tasks were learned using PI2. We

used ISOMAP to analyze these samples and estimate topological characteristics of the

induced policy manifold. Our first important observation is that the residual variance

of the produced quasi-isometric embeddings indicates that the intrinsic dimensionality

of the skill manifold is two. This is expected since we are essentially parameterizing a

7-dimensional policy space by task parameters, which are drawn from a 2-dimensional

space T . This implies that even though policies are part of a 7-dimensional space,

they remain confined to 2-dimensional charts because there are only two degrees-of-

freedom with which we can vary the tasks.

robot
orientation

target
board

Saturday, September 14, 13

Figure 4.6. Target board positioned in front of the robot (not to scale). Targets in
different regions of the board require the use of different specialized sub-skills.

Furthermore, our analysis of the manifold indicates that policies for different tasks

are distributed over two disjoint, but piecewise-smooth charts. Figure 4.6 depicts the

target board used in this domain and, overlaid on it, colors indicating which regions

of the task space are associated to which chart. Policies for targets to the left of the

56

robot are embedded in one of the charts, while policies for targets to the right of

the robot lie on a second chart. The learned non-linear boundary separating these

surfaces indicates the existence of two disjoint classes of policies, each one encoding

a qualitatively distinct parameterized sub-skill (throwing to the left; throwing to the

right) needed to execute different types of throws.

The identification of two classes of policy parameterizations is a demonstration of

skill specialization: from a single root policy, learned from kinesthetic demonstration,

two parameterized sub-skills are automatically identified and modeled. The need for

these differentiated sub-skills partially reflects the dynamics of the robot, as well as

physical constraints of its body and motor capabilities. The requirement for throws to

be overhand and right-handed, for instance, implies that qualitatively different torso

movements are needed in order to hit targets on the extreme left field of the robot.

Next, we analyze how the model of a low-dimensional chart encodes the way

in which policy parameters vary as we smoothly vary a task. Figure 4.7 shows a

representative subset of policy dimensions varying within a chart. The vertical axis

on each inset figure corresponds to the value of a selected policy feature and the two

other axes correspond to the task parameters. Our first important observation is that

smooth task variations induce smooth, albeit non-linear, policy changes. Secondly,

that even though the relation between task and policy parameters is non-linear and

arguably difficult to be known a priori, there exists a clear structure that can be

exploited—specifically, that policies for related tasks tend to be grouped on a same

smoothly-varying, lower-dimensional chart.

We now discuss the performance of our parameterized skill learning method. Fig-

ure 4.8 shows the error in policy parameters predicted by the skill as a function of the

number of examples used to train it. This is a measure of the relative error between

the parameters predicted by Θ and parameters of a known solution for the same task.

The lower the error, the closer the predicted policy is (with respect to the `2-norm)

57

Target Position (X)

Po
lic

y
Fe

at
ur

e
Target Position (Y)

Po
lic

y
Fe

at
ur

e

Target Position (X
) Target Position (Y)

Po
lic

y
Fe

at
ur

e
Po

lic
y

Fe
at

ur
e

Target Position (X) Target Positio
n (Y

)

Target Position (X) Target Position (Y)

Figure 4.7. Examples of lower-dimensional projections of a learned chart Θc.

to a correct solution. In Figure 4.8 errors are averaged over 35 novel validation tasks

sampled uniformly at random from the task space. After approximately 8 samples

are presented to the parameterized skill, the average policy parameter error stabilizes

around (but not at) zero. Obtaining this level of accuracy with few samples is only

possible because the policy space is highly structured; specifically, because policies for

similar tasks lie on low-dimensional charts whose regular topology can be exploited

to better generalize known solutions to novel problems.

Because some policy representations might be sensitive to noise, high feature ac-

curacy does not necessarily imply good policy performance. For this reason, we

additionally measure the empirical effectiveness of predicted policies when directly

applied to novel tasks. Specifically, we measure the average distance between the

position where the ball hit and the intended target. In these experiments we defined

a minimum performance threshold ; this corresponds to the minimum acceptable per-

formance of a predicted policy so that it can be considered sufficiently accurate. For

58

2 4 6 8 10 12 140

5

10

15

20

Sampled training task instances

A
ve

ra
ge

 fe
at

ur
e

er
ro

r

Average feature error

Figure 4.8. Average predicted policy parameter error as a function of the number
of sampled training tasks.

this domain we set the performance threshold as the diameter of the plastic bottles

used as targets: 6cm. This threshold was selected because throws that miss the in-

tended target position by that amount are still capable, on average, of knocking down

the plastic bottle. Figure 4.9 shows the average distance between where the ball hit

and the intended target position as a function of the number of training samples.

Distances were measured by directly executing a predicted policy and before any fur-

ther policy improvement took place. Figure 4.9 shows, additionally, the expected

performance of a baseline nearest-neighbors approach, which corresponds to selecting

and directly executing the policy of the nearest known task in the training set K.

Our experiments show that the generalization power of the parameterized skill allows

its performance to strictly dominate that of the baseline approach. Furthermore,

the learned parameterized skill produces throws meeting the specified performance

threshold after around 8 training examples are presented. At this point, the robot is

already capable of hitting arbitrary target regions of 6cm × 6cm within the 90cm ×

59

2 4 6 8 10 12 14 16

5

10

15

20

Sampled training task instances

A
ve

ra
ge

 d
is

ta
nc

e
to

 ta
rg

et
 (c

m
)

Nearest Neighbor
Parameterized Skill
Performance Threshold

Figure 4.9. Average distance to target (before any policy improvement) as a function
of the number of sampled training tasks.

90cm target board. As discussed in Section 3.5, policies predicted by the skill can be

further improved via standard policy search methods if more accuracy is desired.

These experiments allow us to draw a few important conclusions: 1) the base

framework introduced in Chapter 3 can be augmented with a simple sample reuse

mechanism and successfully applied to a challenging physical system in which samples

are expensive to obtain; 2) even though policy features cannot be perfectly predicted,

an effective parameterized skill can be constructed from relatively few examples and

used to predict accurate whole-body throwing policies; and 3) our method is capa-

ble of exploiting the structure of the policy manifold to automatically identify and

model the distinct sub-skills needed to execute different types of tasks. In particular,

the charts identified by our method in this domain correspond to sub-skills that di-

rectly reflect important properties of the dynamics of the robot, as well as physical

constraints of its body and motor capabilities.

60

4.5 Related Work

One alternative method for generalizing sample solutions to novel problems is to

construct an abstract representation of a given set of related MDPs. Effective ab-

stractions preserve the structural properties of an MDP and allow for a single abstract

policy to be learned and used to solve new problem instances. Rajendran and Huber

[55] introduce a method for constructing homomorphisms mapping a family of MDPs

to a single abstract MDP. The authors assume that a set of MDPs encodes the same

underlying task type if all of them achieve a same equivalent goal state. They introduce

a method to learn an abstract representation of a family of structurally-equivalent

MDPs (all of which achieving a same goal), thereby allowing for the construction of

abstract policies that can be applied to similar problems. This objective is opposite

to that of our method: we wish, by contrast, to construct a single skill capable of

achieving different goals, given only a parameterized description of the goal.

Other techniques have been proposed to generalize solutions to novel problems.

It is possible, for instance, to design flexible policy representations that allow the be-

havior of a robot to be parametrically adjusted in order to tackle novel motor tasks.

Schaal et al. [59] introduced DMPs (see Section 2.2.5), a compact policy representa-

tion that allows for the re-parameterization of the initial and goal states of a move-

ment. This policy representation cannot be used to encode arbitrary parameterized

skills since the number and nature of their tunable parameters (or metaparameters)

are fixed and pre-determined. Nemec et al. [50] partially addressed this limitation

by extending the DMP framework with a gradient-based method to automatically

determine appropriate metaparameters for executing a given task. Similarly, Kober

et al. [33] proposed learning a mapping from task descriptions to DMP metaparame-

ters. They assume that a single underlying motion primitive is sufficient to represent

all tasks of interest and do not identify or model the qualitatively different strategies

which may be needed to execute different tasks. Neumann et al. [51] explored a simi-

61

lar approach but their method requires learning a forward-model prior to training the

skill. Finally, Stulp et al. [69] proposed further extensions to the DMP framework

by allowing additional tunable parameters to be learned; they focus their attention,

however, to the learning-from-demonstration setting.

4.6 Discussion

We have introduced a sample-efficient method for learning reusable skills on a

physical humanoid robot. Our method instantiates the framework introduced in

Chapter 3 via a set of specially designed models and extends it with a new mechanism

for reusing seemingly unsuccessful policies. This constitutes a type of off-policy skill

learning which reduces the number of samples needed to acquire a parameterized skill.

Sample reuse of this kind, combined with simple heuristic rules to adaptively control

the expressiveness of a skill model, allow for complex parameterized behaviors to be

learned from very few examples.

We empirically show that our method is capable of identifying the low-dimensional

charts where task policies are embedded. We also show that these charts correspond

to qualitatively different sub-skills needed to execute different types of tasks. In

our experiments on a physical robot, the need for differentiated sub-skills partially

reflects the dynamics of the robot and physical constraints of its body. In particular,

the requirement for overhand, right-handed throws results in the need for qualitatively

different torso movements when hitting different target positions.

An important question not addressed in this chapter is that of how to select

training tasks. Näıve task selection strategies draw tasks uniformly at random or

directly from the target task distribution P . These sampling strategies, however,

implicitly assume that all tasks are equally difficult and that the policy manifold has

approximately uniform curvature. Actively selecting training tasks, by contrast, may

allow a robot to more quickly uncover unknown parts of the policy manifold, thereby

62

improving the overall readiness of the skill with fewer samples. This capability is

particularly important in robotics domains, where exploration and sample collection

are expensive. To address this problem we introduce an active skill learning technique

in Chapter 5.

A second challenge not addressed in this chapter is that of learning inverse skill

models. Reusing unsuccessful policies requires a mapping from the observed effects of

a policy (e.g., trajectories generated by it) to the parameters of the tasks in which that

policy could be applied. In some domains, such as the iCub throwing one, identifying

these tasks is straightforward. In general, however, an inverse parameterized skill

model needs to be learned—a mapping from policy parameters to tasks where they

are applicable. Learning mappings of this kind allows for parameterized skills to be

efficiently constructed even in domains where the correspondence between policy and

tasks spaces is non-trivial. Learning an inverse skill model from data is a challenging

problem with possible connections to Inverse Reinforcement Learning [52].

63

CHAPTER 5

ACTIVE LEARNING OF PARAMETERIZED SKILLS

In Chapters 3 and 4 we introduced methods for learning parameterized skills from

a small number of training tasks. These methods constructed skills by practicing ran-

domly selected tasks or by directly drawing them from the task distribution. These

sampling strategies, however, do not necessarily result in rapid skill acquisition. In

particular, they ignore which training tasks may improve skill performance the most

and do not directly attempt to model their relative difficulties. It may be advanta-

geous, therefore, for an agent to carefully select tasks for practice in order to guide

the skill acquisition process and build on its strengths and mitigate its weaknesses.

In this chapter we introduce a framework for actively learning parameterized skills.

This framework uses a novel task-selection mechanism capable of identifying tasks that

maximize expected skill performance improvement. We derive the analytical expres-

sions necessary to optimize it and propose a new spatiotemporal kernel tailored for

non-stationary skill performance models. Our method is agnostic to policy and skill

representation and scales independently of task dimension.

5.1 Setting and Motivation

In this chapter we adopt an optimization objective similar to the one introduced

in Section 3.1, but now additionally assume that the skill learning agent can actively

choose the tasks on which it wishes to train in order to more rapidly acquire a skill.

In the following sections we address the question of how such an agent, given a

distribution from which future tasks will be drawn, should choose to practice. We

64

posit that it should practice tasks that lead it to maximize skill performance im-

provement over all tasks in the distribution of interest. Intuitively, the tasks from

which experience is most beneficial are those that allow the skill to better generalize

to a wider range of related tasks. As we will show, identifying these tasks is not

straightforward—sampling tasks according to the target distribution, for instance,

is inefficient because it does not account for the varying difficulty of tasks. Fur-

thermore, non-adaptive sampling strategies often ignore how some tasks may require

policies qualitatively different from those of neighboring tasks, thus demanding more

extensive training.

Consider, as a motivating example, a soccer-playing agent tasked with learning a

parameterized kicking skill. This agent may wish to acquire the skill by practicing

different types of kicks, such as accurate ones towards the goal or powerful but inaccu-

rate kicks in the general direction of the opponent’s half field. Policies for the former

type of kick are harder to learn and generalize, since their parameters are very sen-

sitive to the desired direction. Carefully choosing which kicks to practice allows the

agent to identify which ones require less practice and which ones are more challenging,

thus focusing on the aspects of the skill that can more readily be improved.

These observations are consistent with recent theories of how human experts ac-

quire professional levels of achievement, which propose that skill improvement involves

deliberate efforts to change particular aspects of performance [23]. Indeed, thoughtful

and deliberate practice is one of the defining characteristics of expert performance in

sports, arts and science: world-class athletes, for instance, carefully construct training

regimens to build on their strengths and mitigate their weaknesses.

5.2 Active Learning of Parameterized Skills

A parameterized skill can be learned via a set of training tasks and their corre-

sponding policies, as described in Chapters 3.3 and 4.1. The simplest strategy for

65

constructing such a set is to select tasks uniformly at random or to draw them from

the task distribution P . These strategies, however, ignore how a carefully-chosen

task can improve performance not only on that task, but over a wider range of re-

lated tasks. Because parameterized skills naturally generalize policies to related tasks,

it is advantageous for skill learning agents to focus not only on improving their per-

formance at single tasks, but on the possible gains that practicing these tasks may

bring to the overall skill.

Skill
Performance

Model
Policy

Learning
Parameterized

Skill

Environment

⌧

J(⌧)

⇡⇤
✓

⇡̂✓

Figure 5.1. The process of actively learning a parameterized skill.

To address this challenge we introduce a framework for active task selection with

arbitrary parameterized skill representations. This framework uses a Bayesian model

of skill performance and a specially tailored acquisition function designed to select

training tasks that maximize expected skill performance improvement. The proposed

process for actively selecting training tasks consists of the following steps: 1) identify,

by means of a model of expected skill performance, the most promising task τ to

practice; 2) practice the task and learn a corresponding policy π∗θ ; 3) update the

parameterized skill; 4) evaluate the empirical performance J(τ) of the updated skill

at that task; and 5) update the model of expected skill performance with the observed

performance. These steps are repeated until the parameterized skill cannot be further

improved or a maximum number of practicing episodes is reached. This training

process is depicted in Figure 5.1.

66

5.3 A Bayesian Model of Skill Performance

Let J
(
πΘ(τ), τ

)
be the performance achieved by a parameterized skill Θ on task

τ . To simplify notation we suppress the dependence on Θ and write simply J(τ).

We propose creating a Bayesian model capable of predicting skill performance over a

set of tasks. This model allows an agent to predict skill performance—even at tasks

it has never directly experienced—without incurring the costs of executing the skill.

As will be shown in Section 5.4, this capability is particularly useful when estimating

how different training tasks may contribute to improving the overall performance of

a skill over a distribution of tasks.

Let µ(τ) be predicted mean performance of the skill at task τ and σ2(τ) the cor-

responding variance. One way of representing this predictive model is by using a

Gaussian Process (GP) prior [56]. A GP is a (possibly infinite) set of random vari-

ables, any finite set of which is jointly Gaussian distributed. GPs extend Gaussian

distributions to the case of infinite dimensionality, and thus can be seen as distribu-

tions over functions—in this case, predictive distributions over expected skill perfor-

mance functions. To fully specify a GP one must define a mean function m and a

positive-definite kernel k:

m(τ) = E[J(τ)]

k(τp, τq) = E

[(
J(τp)−m(τp)

)(
J(τq)−m(τq)

)>]
.

A kernel specifies properties of J such as smoothness and periodicity. In this

section and the following we do not make any assumptions about the form of k; in

Section 5.5 we introduce a kernel designed specifically for use with our framework.

We assume that the performance function J is zero-mean, so that m can be dropped

from the equations; the extension for the non-zero mean case is straightforward.

Given k and a set of observations D = {(τ1, J(τ1)), . . . , (τN , J(τN))}, both the

log likelihood of the data conditioned on the model and the Gaussian posterior over

skill performance, P (J(τ)|τ,D), can be computed easily for any tasks τ . Under

67

a Gaussian Process, the predictive posterior over skill performance at a task τ is

normally-distributed according to J(τ) ∼ N (µ(τ), σ2(τ)), where

µ(τ) = k>
(
CD + σ2I

)−1
yD (5.1)

σ2(τ) = k(τ, τ) + σ2 − k>
(
CD + σ2I

)−1
k, (5.2)

where k = (k(τ, τ1), . . . , k(τ, τN))>, CD is an N × N matrix with entries (CD)ij =

k(τi, τj), yD = (J(τ1), . . . , J(τN))> and σ2 is the additive noise we assume affects

measurements of skill performance.

GPs are often used in Bayesian optimization to find the maximum of unknown,

expensive-to-sample functions. To do so, a surrogate acquisition function is max-

imized. Acquisition functions guide the search for the optimum of a function by

identifying the most promising points to sample. Standard acquisition functions in-

clude Lower Confidence Bounds, Maximum Probability of Improvement and Expected

Improvement [64]. Although these criteria may seem, at first, appropriate for select-

ing training tasks, that is not the case: if applied to a skill performance function,

standard acquisition criteria identify tasks on which the agent is expected to achieve

a high level of performance. Our goal, by contrast, is to identify training tasks that

result in the highest expected improvement in skill performance. This goal, formally

defined in Equation 5.4, measures how much skill performance may improve over a

given target distribution of tasks if the skill is updated by the practice of a selected

task. A motivating principle behind this objective is that because parameterized

skills naturally generalize policies to related tasks, an effective acquisition criterion

should focus not on improving the performance at a single task, but on the possible

performance gains that practicing it may bring to the skill as a whole.

In the next section we address this challenge by introducing a novel acquisition

criterion specially tailored for parameterized skills. We derive closed-form expressions

68

for this criterion and its gradient, thereby obtaining analytical expressions for the two

quantities needed to optimize the process of selecting training tasks.

5.4 Active Selection of Training Tasks

An acquisition function to identify tasks that provide maximum expected improve-

ment in skill performance should: 1) take into account that tasks may occur with dif-

ferent probabilities and prioritize training accordingly; and 2) model how the practice

of a single task may, due to the generalization properties inherent to a parameterized

skill, improve performance not only at that task but also over other similar tasks in

T .

Let us assume we have practiced N tasks, τ1, . . . , τN , and used the corresponding

(optimal or near-optimal) learned policies to construct a parameterized skill. Assume,

furthermore, that we have evaluated the efficiency of the skill on tasks τ1, . . . , τN and

observed corresponding performances J(τ1), . . . , J(τN). In what follows we annotate

each training task τi with the time ti it was practiced, which we denote by τ tii . Here,

time refers to the order in which tasks are practiced, so that the i-th task to have been

practiced is annotated with time ti = i. In the following sections we exclusively refer

to these quantities as being times since that facilitates the intuitive interpretation of

desired properties of our time-changing, non-stationary skill performance models.

Let D be a training set of tuples {τ tii , J(τi)}, for i ∈ {1, . . . , N}. Given this train-

ing set, Equations 5.1 and 5.2 can be used to compute a posterior distribution over

skill performance, P (J(τ)|τ,D), for any tasks τ . Let Jt be the posterior distribution

obtained when conditioning the Gaussian Process on all tasks practiced up to time

t, and let µt(τ) and σ2
t (τ) be its mean and variance, respectively. We define Skill

Performance (SP) as the expected performance of the skill with respect an arbitrary

task distribution P :

69

SPt =

∫
P (τ)µt(τ)dτ. (5.3)

Furthermore, let the Expected Improvement in Skill Performance (EISP), given

task τ , be the expected increase in skill performance if we assume that an agent

practices τ , learns a policy for executing it with performance j(τ), and uses this

experience to update its skill. Note, however, that unless the agent actually practices

task τ (which generally incurs high training costs), it is not possible to know for

sure the true performance that it might achieve on it by practice. The agent might

choose, instead, to use its own model of skill performance to construct an optimistic

estimate of the performance that it might achieve on a given task if it were to practice

it. Let j(τ) be an optimistic upper bound on the performance that the agent may

achieve at some task τ , computed with respect to its current posterior distribution

Jt over expected performance. We formally define j(τ) in Equation 5.14 as an Upper

Confidence Bound (UCB) on the agent’s performance at τ .

To compute the EISP of a task τ we consider the Gaussian posterior, Ĵt+1, that

would result if Jt were to be updated with a new observation (τ, j(τ)). Let µ̂t+1(τ)

and σ̂2
t+1(τ) be the mean and variance of Ĵt+1. The EISP of a task τ is defined as

EISPt(τ) =

∫
P (τ ′)(µ̂t+1(τ ′)− µt(τ ′))dτ ′. (5.4)

EISP can be understood intuitively as a quantitative way of comparing tasks

based on their likely contributions to improving the overall quality of a skill. Tasks

whose practice may improve skill performance on a wide range of related tasks have

higher EISP; conversely, tasks whose solutions are already well-modeled by the skill

have lower EISP. Computing the EISP is similar to executing a mental evaluation of

possible training outcomes: the agent uses its model of expected skill performance to

estimate—without ever executing the skill—the effects that different training tasks

may have on its competence across a distribution of problems.

70

We identify the training task τ ∗ that results in highest expected improvement in

skill performance by computing the maximum of Equation 5.4. This corresponds to

an acquisition function that selects training tasks according to:

τ ∗ = arg max
τ

EISPt(τ). (5.5)

One way of evaluating Equation 5.5 is to use a gradient-based method. This re-

quires an analytic expression for (or good approximation of) the gradient of EISPt(τ)

with respect to arbitrary tasks. To make notation less cluttered, we now consider the

case of 1-dimensional task parameters; the extension to higher-dimensions is straight-

forward. Assume, without loss of generality, that the parameter describing a task

is drawn from a bounded interval [A,B]. To derive the expression for the gradient

of EISP, we first observe that µt(τ
′) in Equation 5.4 does not depend on τ and can

be removed from the maximization. It is possible to show that the function to be

maximized in Equation 5.5 is equivalent to:

EISPt(τ) = Gt(τ)>
((

Ct(τ) + σ2I
)−1

y(τ)

)
, (5.6)

where

Gt(τ) =
(
gt(τ

t1
1), . . . , g(τ tNN), g(τ t+1)

)>
, (5.7)

gt(τ
ti
i) =

∫ B

A

P (r)k(rt+1, τ tii)dr, (5.8)

y(τ) =
(
J(τ1), . . . , J(τN), j(τ)

)>
, (5.9)

and where Ct(τ) is the covariance matrix of the extended training setD∪{(τ t+1, j(τ))}:

71

Ct(τ) =

k(τ t11 , τ
t1
1) . . . k(τ t11 , τ

t+1)

...
. . .

...

k(τ tNN , τ t11) . . . k(τ tNN , τ t+1)

k(τ t+1, τ t11) . . . k(τ t+1, τ t+1)

. (5.10)

Furthermore, the gradient of EISPt(τ) with respect to any given task τ is

∇τEISPt(τ) = ∇τGt(τ)>Wt(τ)y(τ)

− Gt(τ)>Wt(τ)∇τCt(τ)Wt(τ)y(τ)

+ Gt(τ)>Wt(τ)∇τy(τ), (5.11)

where

∇τGt(τ) =

(
0, . . . , 0,︸ ︷︷ ︸

N times

∇τgt(τ)

)>
, (5.12)

∇τy(τ) =

(
0, . . . , 0,︸ ︷︷ ︸

N times

∇τj(τ)

)>
, (5.13)

and W (τ) =
(
C(τ) + σ2I

)−1
. As previously discussed, j(τ) is as an optimistic upper

bound on the performance that the agent might achieve at a task. We compute it by

finding the upper endpoint of the 95% confidence interval around the mean predicted

skill performance at τ :

j(τ) = µt(τ) + 1.96
√
σ2
t (τ). 1 (5.14)

1This upper bound is related to the one used to compute Upper Confidence Bound policies [41].
This latter approach, however, uses UCB bounds to identify single tasks with highest expected
performance, while we use them as base values over which expected skill improvement on a task
distribution is computed.

72

Then, ∇τj(τ) = ∇τ

(
µt(τ) + 1.96

√
σ2
t (τ)

)
. If we assume that the variance σ2

t of the

process is approximately constant within infinitesimal neighborhoods of a given task,

then ∇τj(τ) = ∇τµt(τ), which can be rewritten as

∇τj(τ) =

(
∇τ (k(τ t, τ t11), . . . , k(τ t, τ tNN))>

)
×(

CD + σ2I
)−1

yD. (5.15)

By rearranging the terms in Equation 5.11 it is possible to express ∇τEISPt(τ) as

a linear form φ1j(τ)+φ2yD, where both φ1 and φ2 depend only on the kernel function

k and on the task parameters sampled so far. This reveals an interesting property:

given an arbitrary fixed set of training tasks, the gradient of EISP can be linearly

decomposed into one component that depends solely on the performances yD that are

achievable by the skill, and another component that depends solely on the optimistic

assumptions made when defining j(·). This implies that the direction of maximum

improvement of EISP is independently influenced by 1) the generalization capabilities

of the skill—specifically, the actual performances it achieves on various tasks; and 2)

the optimistic assumptions regarding how further practice of a particular task may

improve its performance.

Note that some of the equations in this section depend directly or indirectly on the

choice of kernel k. In Section 5.5 we introduce a novel spatiotemporal kernel specially

designed to better model skill performance functions, and in Appendix D we derive

analytical expressions for the quantities involving it; namely, ∇τk(τ tii , ·), gt(τ
ti
i) and

∇τgt(τ
ti
i).

5.5 Modeling Non-Stationary Skill Performance Functions

Kernels encode assumptions about the function being modeled by a GP, such as its

smoothness and periodicity. An implicit assumption made by standard kernels is that

73

the underlying function is stationary—that is, it does not change with time. Kernel

functions also specify a measure of similarity or correlation between input points, usu-

ally defined in terms of the coordinates of the inputs. If dealing with non-stationary

functions, however, defining similarities is harder: when a point is resampled, for

instance, we generally expect the similarity between its new and previous values to

decrease with time. Note that the model of expected performance introduced in

Section 5.3 is intrinsically non-stationary, since skill performance naturally improves

with practice. If a standard kernel were to be used to model this function, outdated

performance observations would contribute to the predicted mean, thus keeping the

GP from properly tracking the changing performance.

To address this issue we introduce a new spatiotemporal kernel designed to better

model non-stationary skill performance functions. Let us assume an arbitrary kernel

kS(τ1, τ2) capable of measuring the similarity between tasks based solely on their

respective parameters, τ1 and τ2. We expect kS to be higher if comparing related tasks,

and close to zero otherwise. Note that kS does not account for the expected decrease

in the similarity between observations of a task’s performance at very different times.

To address this issue we construct a composite spatiotemporal kernel kC , based on

kS, capable of evaluating the similarity between tasks based on their parameters and

on the times they were sampled. Let kC(τ t11 , τ
t2
2) be such a kernel, where τ ti denotes a

task τi sampled at time t. For kC to be suitable for modeling non-stationary functions,

it should ensure the following properties: 1) related tasks have higher similarity if

sampled at similar times; that is, kC(τ t11 , τ
t2
2) > kC(τ t1+∆t

1 , τ t22), for small ∆t > 0; 2)

if related tasks are sampled at significantly different times, no temporal correlation

can be inferred and similarity is defined solely on their task parameters; that is,

kC(τ t11 , τ
t2
2) → kS(τ1, τ2) as |t1 − t2| → ∞; and 3) the more unrelated tasks are,

the smaller the correlation between them, independently of when they were sampled;

that is, kC → 0 as kS → 0. The first property implies that if tasks are related, closer

74

sampling times suggest higher correlation in observed task performance; the second

property implies that nothing besides similarity in task space can be inferred if tasks

are sampled at very different times; and the third property implies that sampling

times, on their own, carry no correlation information if the tasks being compared

are significantly different. To define kC we introduce an isotropic exponential kernel

kT (t1, t2) for measuring the similarity between sampling times:

kT (t1, t2) = 1 + (C − 1) exp

(
− ρ−1(t1 − t2)2

)
, (5.16)

for some C > 0. kT is such that kT → C as |t1 − t2| → 0, and kT → 1 as |t1 − t2| →

∞. The parameter ρ is similar to the length-scale parameter in squared exponential

kernels and regulates our prior assumption regarding how non-stationary the skill

performance function is. We define the composite spatiotemporal kernel kC as

kC(τ t11 , τ
t2
2) = kS(τ1, τ2)×(

1 + (C − 1)e−
(t1−t2)

2

ρ

)
. (5.17)

Intuitively, kT boosts the correlation between tasks if they were sampled at similar

times and ensures that only spatial correlation is taken into account as the difference

between sampling times increases. Furthermore, note that when C = 1 all temporal

information is ignored and kC degenerates to the purely-spatial kernel kS. Several

methods, such as evidence maximization, are available to automatically identify suit-

able metaparameters for kC and kS [56].

Figure 5.2 depicts the predicted posterior mean and variance of a GP used to

model a synthetic non-stationary function f . Two curves are shown: one for the

predicted mean if using the purely-spatial kernel kS, which does not take sampling

time into account, and one for the improved predicted mean obtained if using the

spatiotemporal kernel kC . Lighter-colored points indicate older samples, while darker

75

ones indicate more recent ones. Note how the latter kernel allows the predicted mean

to correctly track the non-stationary function.

Figure 5.2. GP posteriors obtained when using a standard kernel and a spatiotem-
poral kernel to model a synthetic non-stationary function f . Lighter-colored points
indicate older samples, while darker ones indicate more recent ones.

5.6 The Catapult Domain

We evaluate our method for active skill acquisition on a simulated catapult con-

trol problem where the agent is tasked with learning a parameterized skill for hitting

targets on mountainous terrains (Figure 5.3). Targets can be placed anywhere on

a 2-dimensional terrain with various elevations and slopes—both of which are un-

known to the agent. The task space T consists of a single parameter describing the

horizontal distance from the catapult to the target; note that this task parameter-

ization does not convey any information about the elevation of the target or the

geometry of the terrain, which makes the problem partially observable. Constructing

a skill of this type is difficult because it requires generalizing over an ensemble of

continuous-state, continuous-action control problems. In the following experiments

76

we learn parameterized skills for controlling the catapult via Gaussian Process regres-

sion2. Parameterized skills in this domain map target positions to continuous launch

parameters—namely, the angle and velocity with which a projectile is launched from

the catapult. The performance of a launch is defined as the distance between where

the projectile hits and the intended target. For more details about the equations

governing this domain’s dynamics, see Appendix C.

Figure 5.3. The Catapult Domain.

Determining which tasks to practice in this domain is challenging because irregu-

lar, non-smooth terrains may require significantly different launch profiles for hitting

neighboring targets. Figure 5.3 shows how a change ∆τ in task parameters may

result in significantly different launch parameters depending on the region of the par-

ticular terrain being considered. Figure 5.4 depicts the policy manifold associated

with launch parameters required for hitting various targets on a randomly-generated

terrain (not shown). The 1-dimensional task space is represented by the red line, and

2This is similar to the approach taken by Kober et al. [33] but with no cost regularization. The
GP-based parameterized skill model used here uses a squared exponential kernel—see Appendix D.
In the following experiments, kernel parameters are found by evidence maximization.

77

gray lines mapping points in task space to policy space indicate policy predictions

made by the skill. Discontinuities in this mapping indicate irregular regions of the

policy manifold in which generalization is difficult. Finally, note that identifying the

target task with maximum EISP corresponds to optimizing a one-step look-ahead

sampling strategy to quickly uncover the structure of this manifold.

Velocity
Angle

Task Space

Figure 5.4. Policy manifold of the catapult domain. The red line represents the
task space. Gray lines connecting task to points in the policy space indicate predic-
tions made by the skill. Discontinuities in the mapping indicate task regions where
generalization is difficult.

We compare the performance of our method with four alternative approaches. Two

of them are baseline, non-adaptive sampling strategies: selecting tasks uniformly at

random, and probabilistically according to the task distribution P . We also compare

with two active acquisition criteria commonly used in Bayesian optimization: Ex-

pected Improvement (EI) and Lower Confidence Bound (LCB). Figures 5.5 and 5.6

show skill performance as a function of the number of tasks practiced, for different

task selection methods. In these experiments, skill performance was measured by

78

evaluating the skill on a set of novel tasks; the observed performances were weighted

by the task distribution P to reflect whether the agent was competent at tasks of

higher interest. To report an absolute measure of skill quality we computed the mean

squared difference between overall performance of the learned skill and the maximum

performance that can be achieved by the skill model. The lower the difference, the

better the skill is at solving tasks from the distribution of interest. All curves are

averages over 50 randomly generated terrains.

0 10 20 30 40 501

1.5

2

2.5

3

3.5

4

4.5

Number of tasks practiced

M
SE

 o
f S

ki
ll

Pe
rfo

rm
an

ce
 w

rt
op

tim
al

Uniform Task Distribution

EI
LCB
Random
EISP

Figure 5.5. Average skill performance as a function of the number of sampled
training tasks (uniform task distribution).

Figure 5.5 shows how skill performance changes as the agent practices more tasks,

assuming a uniform target distribution P of tasks. Note that in this case both non-

adaptive sampling strategies—i.e., selecting tasks at random or drawing them from

P—are equivalent. Similarly, Figure 5.6 shows skill performance as a function of tasks

practiced but for the case of a non-uniform target distribution P—that is, an agent

with stronger preference for becoming competent at targets in particular regions of

the terrain. Here, P was defined as a Gaussian centered at the midpoint of the terrain.

79

Under both types of task distribution, EI performed worse than all other methods.

EI selects tasks whose individual performances are expected to improve the most by

practice. This criterion leads the agent to repeatedly practice tasks that are already

well-modeled by the skill but which may be marginally improved. This causes the

agent to ignore regions of the task space in which it is not yet competent. LCB suffers

from a similar shortcoming; it selects tasks in which the skill has lowest expected

performance, thus focusing on improving the agent’s weaknesses. This often leads the

agent to obsessively practice tasks that it may be unable to execute well. Finally, both

random selection of tasks and selection according to the target distribution P fail to

account for the varying difficulty of tasks. These criteria choose to practice problems

independently of the skill’s current capability of performing them; furthermore, they

often practice tasks that are irrelevant according to the target task distribution. EISP,

on the other hand, correctly identifies which tasks can improve skill performance

the most, and takes into account both their relative difficulties and how well their

solutions generalize to related tasks.

Figure 5.7 depicts the probability with which different methods explore different

regions of the task space. The horizontal axis represents the possible tasks the agent

may choose to practice; in this domain, these correspond to the different positions

within a terrain where targets may be placed. The vertical axis represents the prob-

ability with which each method practices on specific regions of the terrain. Figure

5.7 shows results for a randomly-generated sample terrain (not shown); similar qual-

itative results were observed in other terrains. This experiment allows us to draw

a few important conclusions. Random sampling and sampling according to the task

distribution P do not adapt their task-selection strategies according to the available

training tasks or based on the current performance or generalization power of the

skill. EI identifies three regions of the task space in which the skill is effective and

focuses on trying to further improve those. LCB, in contrast, samples more densely

80

0 5 10 15 20 25 30 35 40 450

0.5

1

1.5

2

2.5

3

Number of tasks practiced

M
SE

 o
f S

ki
ll

Pe
rfo

rm
an

ce
 w

rt
op

tim
al

Non−Uniform Task Distribution

EI
LCB
Random
P
EISP

Figure 5.6. Average skill performance as a function of the number of sampled
training tasks (non-uniform task distribution).

regions that contain difficult tasks. However, because it does not model whether skill

performance is expected to improve, it often focuses on tasks that are too difficult.

EISP prioritizes practice according to the target distribution P and selects problems

according to how much they are expected to contribute to improving skill perfor-

mance. In particular, note how it chooses to practice less on tasks at the beginning of

the task range, even though those tasks have a high probability of occurring according

to P . This happens because EISP quickly realizes that solutions to those tasks can

be easily generalized and that no further samples are required. Finally, the peak of

samples collected by EISP at the end of the task range corresponds to a particularly

difficult part of the terrain which requires prolonged practice. Note how EISP devotes

less attention to that region than EI since it is capable of predicting when no further

skill improvement is expected.

We can draw a few important conclusions from our results: 1) non-adaptive strate-

gies implicitly assume that all tasks can be equally well generalized by the skill—or,

81

R
an

d
P

EI
SP

EI
LC

B

Tasks

Sa
m

pl
in

g
de

ns
ity

Figure 5.7. Density of samples collected by different training strategies.

equivalently, that the manifold has approximately uniform curvature; this causes

them to unnecessarily practice tasks that may already be well-modeled by the skill;

2) the LCB criterion always selects tasks with lowest predicted performance, often

repeatedly practicing poorly-performing tasks as long as they can be infinitesimally

improved; 3) EI focuses on further improving single tasks at which the agent may

already be competent, thus refraining from practicing more difficult ones, or ones that

are more important according to the task distribution; and finally 4) because EISP

uses a model of expected performance to infer the generalization capabilities of a skill,

it correctly identifies the task regions in which practice leads to better generalization

across a wider range of tasks. Furthermore, the use of an expected skill performance

model allows for the identification of tasks that are either too difficult to execute or

whose performance cannot yet be further improved, thus leading the agent to focus

on problems that are compatible with its current level of competence.

82

5.7 Related Work

In Section 5.5 we introduced a spatiotemporal composite kernel to model non-

stationary skill performance functions. Other methods have been proposed to allow

GP regression of non-stationary functions. Rottmann and Burgard. [57] proposed to

manually assign higher noise levels to older samples, causing them to contribute less to

the predicted mean. This approach relies on domain-dependent cost functions, which

are difficult to design. Spatiotemporal covariance functions, defined similarly to our

composite kernel kC , have been proposed to solve recursive least-squares problems

on non-stationary domains. These functions, constructed by the product of a stan-

dard kernel and an a Ornstein-Uhlenbeck temporal kernel, often require estimating a

forgetting factor [82].

Previous research has also addressed the problem of selecting training tasks to

efficiently learn a skill. Hausknecht and Stone [26] constructed a skill by solving a

large number of tasks uniformly drawn from the task space. They exhaustively varied

policy parameters and identified which tasks were executed by the resulting policies,

thus implicitly acquiring the skill by sampling all possible tasks. Kober, Wilhelm,

Oztop, and Peters [33] proposed a cost-regularized kernel regression method for learn-

ing a skill but did not address how to select training tasks. In their experiments, tasks

were sampled uniformly at random from the task space. Similarly, da Silva et al. [17]

proposed to acquire a skill by analyzing the structure of the underlying policy man-

ifold, but assumed that tasks were selected uniformly at random. Finally, Baranes

and Oudeyer [2] proposed an active learning framework for acquiring parameterized

skills based on competence progress. Their approach is similar to ours in that promis-

ing tasks are identified via an adaptive mechanism based on expected performance.

However, their approach, unlike ours, requires a discrete number of tasks and can

only optimize the task-selection problem over finite and discrete subsets of the task

space.

83

The overall question of how to actively select training tasks is also related to

the idea of intrinsic motivation. Intrinsic motivation leads animals—even in the ab-

sence of explicit rewards or reinforcement—to engage in exploration, play and other

curiosity-driven behaviors. The notion of self-motived learning and curiosity has been

studied both in psychology (e.g., by Harlow [24]) and in the machine learning and de-

velopmental robotics communities [60, 61, 67, 65]. Psychologists distinguish between

extrinsic motivation, which means doing something because of some specific reward-

ing outcome, and intrinsic motivation, which refers to doing something because it is

inherently “interesting or enjoyable” [58]. In a classic paper, White [85] argued that

intrinsically motivated behavior is essential for an organism to gain the competence

necessary for autonomy, where autonomy refers to the extent to which an organism is

able to achieve mastery over its environment. An agent engaged in actively learning

skills can be seen as intrinsically motivated to improve its mastery of the skill.

The idea of intrinsic motivation has also been extensively studied in the machine

learning community. We highlight, in particular, the pioneering work of Barto et

al. (e.g., [5, 63, 4], where intrinsic motivation signals are used (for the first time,

to the best of our knowledge) to autonomously identify and construct a set of skills.

Also of importance is the work of Schmidhuber (e.g., [60, 61]), where he posits that

intrinsically motivated agents are interested in learnable but yet unknown regularities,

but bored by predictable or inherently unpredictable events. Schmidhuber introduced

a series of computational models based on the notion of compression progress, where

compression generally refers to the acquisition of more compact predictive models.

An agent maximizing compression progress might, for instance, be driven to observe

particular aspects of the world that allow it to rapidly acquire more compact models

of the environment. The idea of competence progress has also been explored by

others. Stout et al. [66] introduced a method to choose, at any given moment,

which of a number of skills (or options) an agent should attempt to improve. Their

84

method differs from ours in that it aims at efficiently learning a repertoire of options

for solving independent problems. They do not, however, address the case in which

attempting to improve one option might be beneficial because that option’s policy

can be generalized and used to solve other related problems.

5.8 Discussion

We have introduced a framework for actively learning parameterized skills. Our

method uses a novel acquisition criterion capable of identifying tasks that maximize

expected skill performance improvement. We have derived the analytical expressions

necessary for optimizing it and proposed a new spatiotemporal kernel especially tai-

lored for non-stationary performance models. Our method is agnostic to policy and

skill representation and can be coupled with any of the recently-proposed parameter-

ized skill learning algorithms [33, 17, 51, 19].

This work can be extended in several important directions. The composite kernel

kC can be used to compute a posterior over expected future skill performance, which

suggests an extension of EISP to the case of multistep decisions. This can be done

by evaluating the predicted posterior mean (Equation 5.1) over a set of test points

{τi, T + ∆}, where T is the current time and ∆ is a positive time increment. This

is useful in domains where a one-step look-ahead strategy, like the one optimized in

Equation 5.5, is too myopic.3 Secondly, our model uses a homoscedastic GP prior,

which assumes constant observation noise throughout the input domain. This may

be limiting if the agent has sensors with variable accuracy depending on the task—

for instance, it may be unable to accurately identify the position of distant targets.

Heteroscedastic GP models, such as the ones proposed by Kuindersma et al. [42], may

3A myopic strategy might fail to realize the long-term impact of practicing specific tasks. Con-
sider, for instance, that even if two tasks have similar potential for improving skill performance, one
of them—if trained first—may facilitate learning of other tasks in the future.

85

be used to address this limitation. Finally, taking advantage of human demonstrations

might help biasing EISP towards tasks which an expert deems relevant, which suggests

an integration with active learning from demonstration techniques [62].

86

CHAPTER 6

FUTURE WORK

The methods introduced in this thesis can be extended in several important di-

rections. Besides the ones already discussed in each individual chapter, we highlight

six important future research directions:

6.1 Extending EISP to a Fully Bayesian Formulation

The EISP formulation introduced in Equation 5.4 assumes that the posterior dis-

tribution over performance, Ĵt+1, is computed by updating the current distribution

Jt with a synthetic observation (τ, j(τ)), where j(τ) is an optimistic upper bound on

performance. Instead of assuming a single optimistic upper bound, a fully Bayesian

formulation of EISP is also possible. This formulation computes the expected im-

provement in skill performance by considering all possible observations of performance

after training a task τ :

EISP∗(τ) =

∫
φ(p;µ(τ), σ2(τ))

(∫
P (τ ′)(µ̂pt+1(τ ′)− µt(τ ′))dτ ′

)
dj

(6.1)

where µ̂pt+1(·) is the mean of the posterior distribution Ĵt+1 resulting from updating

Jt with an observation (τ, p), and φ(p;µ, σ2) is the PDF of the Normal distribution

with mean µ and variance σ2.

87

It is not clear, however, if it is possible to efficiently evaluate this alternative

formulation of EISP. Further study is also necessary to determine whether closed-

form solutions, such as the ones presented in Section 5.4, are possible under this new

formulation.

6.2 Efficiently Computing EISP by Incrementally Updating

Concentration Matrices

Computing EISP given a task involves executing a matrix inversion operation.

When evaluating Equations 5.6 and 5.11 for various candidate tasks τ , the covariance

matrix CD (Equation 5.2) is updated by adding one row and one column to it. This

results in an extended matrix Ct(τ), which then needs to be inverted. Because both

of these matrices are related, however, it is possible to use the Bordering Method for

inverting block matrices and obtain an incremental update for the inverse of Ct(τ).

This simple modification is important if our method is to be applied in real-time

systems where the decision of which tasks to practice is time-bound.

6.3 A Mechanism for Merging Redundant Sub-skills

An agent practicing a task might choose to use a parameterized skill to obtain

an initial guess for that task’s policy. This might introduce biases regarding which

policies are considered during the learning process, and may ultimately affect how

many charts or sub-skills are discovered. A stable skill acquisition scheme should

be able to identify, and remove or merge, spurious sub-skills resulting from biases

introduced by bootstrapping task policies.

As an example of the type of bias we refer to, assume that two given tasks, τ1 and

τ2, can be executed by policies π1 and π2, respectively. Furthermore, assume that the

parameters of π1 can be smoothly modified by a learning algorithm to obtain solutions

to a large number of related tasks, including τ2. Assume, by contrast, that π2 cannot

88

be similarly modified to generate solutions to other tasks. If the agent chooses to

practice τ1 first, the skill, when queried about a solution to τ2, will produce a policy

biased towards π1. Because π1 can be smoothly modified to generate a solution to τ2,

both learned policies remain near in policy space and the manifold analysis reveals a

single chart. If the agent chooses to practices τ2 first, however, the skill, when queried

about a solution to τ1, will produce a policy biased towards π2. Because we assume

that this policy cannot be easily modified to generate solutions to other tasks, the

learning algorithm will eventually converge to an alternative solution for τ1 which

may be far (in policy space) from τ2. Since these policies are not neighbors in the

space of policies, the analysis of the manifold will most likely identify multiple charts.

To mitigate the impact of potentially spurious chart models, a chart or sub-skill

merging mechanism is needed. Reducing the number of redundant or unnecessary

sub-skills is important because a larger number of models implies that more samples

are needed to train the skill. One possible approach to address this issue is to identify

when two sub-skills can be interchangeably used to execute, with similar performance

levels, a large number of tasks. The agent might then use this information to remove

or merge redundant sub-skills.

6.4 Smooth Chaining of Parameterized Skills

Assume that an agent has acquired two parameterized skills, A and B. Is it

possible to use these skills to derive a new joint skill, ÂB, parameterized by the task

parameters of A and B, and capable of producing behaviors that correspond to the

smooth sequential execution of A and B? As an example, consider a soccer-playing

agent that has learned a sprinting skill, parameterized by desired running speed, and

a kicking skill, parameterized by desired kicking force. If the agent learns these skills

independently, there are no guarantees that the sprinting skill will, after termination,

leave the agent in a state from which the kicking skill can be immediately executed.

89

One way to construct the joint skill ÂB is to 1) explicitly model or learn the initiation

and termination sets of A and B; 2) redefine A so that it has an additional task

parameter, gA, corresponding to the desired termination state of that skill; and 3)

execute ÂB by temporally sequencing A and B, but enforcing that gA is set of some

state in the intersection of A’s termination set and B’s initiation set. This guarantees,

by construction, that the two skills will be smoothly executed because A terminates

in a state from which B can be immediately invoked. However, a mechanism for

smoothly combining A and B without having to redefine (and retrain) A over a

larger task space would be preferable.

6.5 Learning Reusable Skills Under Heterogenous State and

Action Spaces

A parameterized skill is a function capable of predicting appropriate parameters

θ of a policy πθ : S × A → [0, 1] so that it solves some given problem τ . Because

the domain of the policy being parameterized is fixed (S ×A), all MDPs that might

be solved by the skill need share the same state and action spaces. It would be

beneficial to extend our framework in a way that allowed skills to generalize over

problems with different state and action representations. Konidaris et al. [36, 40]

introduced a method for learning reusable options by representing their policies not

in the original state space, but in an agent-centered feature space. This approach

assumes that the set of shared features defining the agent-centered space is known a

priori. A mechanism for autonomously discovering the common space of shared task

features would significantly extend the applicability of our framework.

6.6 Learning Inverse Parameterized Skill Models

Reusing seemingly unsuccessful policies as additional training samples (Section

4.3) requires a mapping from observed effects of a policy (e.g., trajectories) to tasks

90

in which that policy could be used. In some problems this information can be readily

extracted from trajectories, such as those in which the agent attempts to reach a

given goal state. Let an inverse parameterized skill model Θ−1 be a function mapping

trajectories to tasks:

Θ−1 : ξ → T

where ξ is a trajectory in the form (s0, a0, r0), . . . , (sn, an, rn), si, ai and ri are, respec-

tively, the state, action and instantaneous reward at time i, and T is the continuous

space of tasks.

Consider the dart-throwing agent introduced in Section 3.4, and assume that it

continually observes the location of the dart after a throw. If episodes end whenever

the dart hits a wall, the last state of any trajectory will contain the coordinates where

the dart hit. An inverse skill model would, in this case, map any given trajectory ξ

of length n to the last state in it: Θ−1(ξ) = sn. More generally, however, Θ−1 might

depend on the entire trajectory instead of only on its last state.

It may be also possible to manually construct an inverse model Θ−1 in problems

where the reward function has a specific type of internal structure. Assume that the

reward function can be decomposed into one term that is invariant with respect to

the task and one that is not. Then, the performance of the agent at a task τ , given

the trajectory ξ, is

J(ξ) = R(ξ) +G(ξ, τ), (6.2)

where R is the component of the reward function that is invariant to task and G is

the one that depends both on the task and on the observed trajectory. Consider a

basketball-playing agent tasked with learning a skill for shooting a ball through a bas-

ket. Assume that the basket is at coordinates (0, 0) and that the skill is parameterized

by the agent’s own position (x, y) and orientation α on the court. Assume that poli-

91

cies are open-loop throwing motions that depend on (x, y, α). Assume, furthermore,

that the reward function is composed of a constant penalty term −ε for every time

step before the throw and a penalty −d received at the end of the episode, where d

is the distance between where the ball landed and the basket. The performance of a

throw is

J(ξ) = −nε− d

where ξ is a trajectory of length n. Note that J is in the form of Equation 6.2. By

knowing the structure of the reward function it is possible to estimate how far ahead

of the agent (distance D) a given policy throws the basketball—see Figure 6.1.

(0,0)

(x,y)

α

D

d

Figure 6.1. Inferring tasks where a policy is applicable given the observed return of
a trajectory.

The domain described above has one important invariant that can be exploited;

namely, that throws have the same effect on the ball independent of where the player

is on the court. It is possible to use this observation in conjunction with the inferred

distance D to identify other tasks where the current policy could be applied. Specif-

ically, the agent can use the current policy to execute any other tasks τ = (x′, y′, α′)

92

where ||(x′, y′)|| = D and α′ = arcsin(y
′

D
). Here, α′ is the angle the agent needs to

reorient itself to so that it faces the basket. These task parameters put the agent at

the correct distance from the basket. If the agent can freely rotate its body to any

desired orientation, the current policy can also be applied to any tasks τ = (x′, y′, ω)

where ||(x′, y′)|| = D and ω is the angle required so that the agent faces the basket.

We have so far discussed cases in which Θ−1 can be manually specified by an

expert with prior knowledge about invariants of the domain, as well of the structure

of the reward function. In general, however, Θ−1 may need to be learned from data.

We believe that learning a suitable Θ−1 entails finding the task with maximum

reward for a given trajectory. This optimization problem is related to that of In-

verse Reinforcement Learning (IRL), where the goal is to identify a reward function

under which an optimal policy matches sample trajectories provided by an expert

[52, 43]. One important difference is that identifying a suitable reward function does

not necessarily help to identify the tasks that maximize it.

Finally, note that not all parameterized skills benefit from sample reuse. Consider

an agent learning to balance a pole under different gravitational fields. Unsuccessful

policies do not necessarily correspond to valid solutions for balancing under different

gravity forces. One important open problem is that of formally characterizing the

family of parameterized RL problems in which sample reuse may be helpful.

93

CHAPTER 7

SUMMARY AND CONCLUSIONS

The main goal of this thesis is to improve the state of the art in autonomous

acquisition of reusable skills. Our research is mainly driven by the desire to provide

foundational methods assisting in the construction of open-ended learning agents

capable of mastering their environments via learned libraries of composable skills.

One of the key reasons why humans—perhaps more than any other animals—

manage to achieve competence in a wide variety of problems is their ability to acquire

and refine skills. This idea is corroborated by recent research in cognitive and motor

neuroscience, which shows that humans actively acquire general skills by identifying

structural invariants in their environments. These structures can, once learned, be

exploited to facilitate generalizing past learning experiences to novel problems.

In this thesis we proposed a computational framework to partially emulate the

above-mentioned process. We introduced methods capable of identifying the lower-

dimensional structures underlying the space of solutions to related problems. We

exploit these lower-dimensional patterns to construct an abstract representation of

an agent’s behavior as it solves different problems. This is achieved by modeling how

changes to a particular decision-making problem are reflected in the corresponding

behaviors or policies adopted by the agent. Predictive models of this kind allow an

agent to construct parameterized skills : procedures capable of producing appropri-

ate solutions to novel problems, even those with which the agent has had no direct

experience.

94

Parameterized skills are useful for agents that repeatedly encounter, throughout

their lives, variations of a same overall decision-making problem. Instead of repeat-

edly incurring the cost of solving these problems from scratch, the agent might choose

to learn a single reusable skill for producing appropriate behaviors to novel problems.

This capability, combined with the possibility of sequentially and hierarchically com-

bining learned skills, allows agents to produce increasingly more abstract and general

behaviors.

Single parameterized skills may be internally composed of a series of specialized

models of behavior, each one appropriate for solving a given subclass of problems.

We showed that it is possible to autonomously identify these specialized behaviors by

analyzing the topological properties of the policy manifold. In particular, we showed

that specialized behaviors, which we refer to as sub-skills, are typically associated with

particular lower-dimensional charts embedded in the policy manifold. We introduced

a method to identify and model sub-skills, thereby allowing agents to hierarchically

aggregate related parameterized behaviors into single, more abstract skills.

Finally, we observe that it may be advantageous for skill-learning agents to delib-

erately construct training regimens that allow them to more rapidly become compe-

tent. Skill acquisition in animals is often achieved by engaging in exploration, play

and other curiosity-driven behaviors. Motivated by this observation, we developed

an active learning framework capable of identifying training behaviors that lead to

maximal skill competence progress.

We have empirically demonstrated that the methods introduced in this thesis

allow for both simulated and physical robots to autonomously and efficiently acquire

challenging parameterized skills. Nonetheless, much still remains to be done before

truly open-ended learning robots can be constructed. The possible extensions detailed

in Section 6 indicate that this work has only begun to scratch the surface of what is

necessary to build such robots. Ultimately, it is our hope that the ideas introduced

95

here represent a tangible, albeit possibly small step towards the practical construction

of more broadly competent robots.

96

APPENDIX A

SMOOTHLY PARAMETERIZED CHARTS

One of the main assumptions made in this thesis is that smooth changes to the

parameters τ of a problem result in smooth changes to its policy. If that is the case,

it is possible to smoothly move over the manifold of policies by smoothly varying task

parameters. This assumption is reasonable in a variety of situations, especially in the

common case where a policy πθ is differentiable with respect to its parameters.

As a motivating example, let us discuss a particular type of policy change that

can induce a family of MDPs with smoothly varying goals. Consider perturbations

∆θ to the parameters of a policy that do not change its path distribution pθ by much:

{∆θ ∈ RM s.t. KL
(
pθ‖pθ+∆θ

)
= ε}, (A.1)

where pθ KL(A‖B) is the KL-divergence between distributions A and B and ε is an

arbitrarily small constant. If πθ is differentiable, the second order Taylor expansion

of KL(pθ‖pθ+∆θ) is (∆θ)>F (θ)∆θ, where F (θ) is Fisher Information matrix:

F (θ) =
∑
s∈S

dπθ(s)
∑
a∈A

πθ(s, a)∇θ log π(s, a)∇θ log π(s, a)> (A.2)

and dπθ(·) is the stationary state distribution of the Markov chain induced by πθ.

Consider, furthermore, a family of continuous-state MDPs that differ only in that

they have different goal states—i.e., states that the agent tries to reach as rapidly as

possible. Assume that πθ is a policy that leads the agent, with high probability, to

a goal state g. If we perturb the parameters of πθ by ∆θ, such that ∆θ respects the

constraints in Equation A.1, the distribution of paths induced by πθ and by πθ+∆θ

97

remains similar. As a consequence, the perturbed trajectories induced by πθ+∆θ lead

to goal states near g. Smooth changes to policy parameters, therefore, induce a set of

smoothly varying goal states. An alternative interpretation is also possible: a set of

smoothly varying goal states can be achieved by smoothly varying policy parameters.

In this thesis we assume that this holds in more general settings: specifically, that

smooth changes to the parameters τ of a problem result in smooth changes to its

policy.

98

APPENDIX B

STANDARD ACQUISITION FUNCTIONS

Gaussian Processes are often used in Bayesian optimization to find the maximum

of unknown, expensive-to-sample functions. To do so, surrogate acquisition functions

are maximized (see Section 5.3). Acquisition functions guide the search for the op-

timum by identifying the most promising points to sample, so that the maximum

can be rapidly identified. In Chapter 5 we introduced a novel acquisition function

for identifying tasks that maximize expected skill performance improvement. Develop-

ing this new criterion was necessary because standard acquisition functions are not

designed to select tasks which result in faster skill acquisition: if applied to a skill

performance function, standard acquisition criteria identify tasks on which the agent

is expected to achieve a high level of performance. Our goal, by contrast, is to identify

training tasks that result in the highest expected improvement in skill performance.

In Section 5.3 we presented two standard acquisition function; we now discuss

them in more details. Let P (J(τ)|τ) be the current distribution over skill performance

(as defined in Section 5.3) and µ(τ) and σ(τ) be its mean and standard deviation,

respectively. Furthermore, let P be the task distribution. The Lower Confidence

Bound (LCB) acquisition criterion is defined as:

LCB(τ) = µ(τ)− κσ(τ)

where κ is a tunable parameter. Intuitively, training tasks that minimize the LCB

criterion causes the agent to focus on regions of the task space where skill performance

is low but has a high probability of improvement. This criterion focuses on improving

99

the agent’s weaknesses, thereby trying to ensure that the skill will be minimally

effective in the entire the range of possible tasks. This often leads agents to obsessively

practice tasks that they may be unable to execute well.

Another commonly used acquisition criterion is Expected Improvement (EI). EI

defines the expected performance improvement of a task τ over the task τ+ with the

highest performance observed so far as:

EI(τ) =

 (µ(τ)− J(τ+)− ξ)Φ(Z) + σ(τ)φ(Z) if σ(τ) > 0

0 if σ(τ) = 0,

where

Z =
µ(τ)− J(τ+)− ξ

σ(τ)
,

Φ(·) and φ(·) are the CDF and PDF of the Normal distribution, respectively, τ+ is the

task with the highest performance observed so far (which we denote, here, by J(τ+))

and ξ balances exploration and exploitation. If applied to the problem of selecting

training tasks to efficiently learn a parameterized skill, EI would select tasks whose

individual performances are expected to improve the most by practice. This may lead

the agent to repeatedly practice tasks that are already well-modeled by the skill but

which may be marginally improved; it also causes the agent to ignore regions of the

task space in which it is not yet competent.

100

APPENDIX C

THE CATAPULT DOMAIN

We simulated launches in the Catapult Domain (Section 5.6) using standard bal-

listic equations. We assumed Earth’s gravity.

Assume that a given projectile is launched from the catapult with velocity v and

angle θ, and let Cx and Cy be, respectively, the horizontal and vertical coordinates of

the catapult. We can decompose the velocity vector of the projectile in its horizontal

and vertical components: vx = vcos(θ) and vy = vsin(θ). The projectile follows

a parabolic path y(t) = ax(t)2 + bx(t) + c, where x(t) and y(t) are the horizontal

and vertical coordinates of the projectile at time t, respectively, and a, b and c are

parabola parameters:

a =
−9.8

2v2cos(θ)2

b =
vy
vx

+
9.8Cx
v2
x

c = Cy −
vyCx
vx
− 1

2

9.8C2
x

v2
x

The point of impact of the projectile is given by the point where its parabolic

path intersects the equation describing the terrain. If using a piecewise-linear ap-

proximation of the terrain surface, the impact point can be found by identifying the

coordinates where the parabolic path of the projectile first intersects one of the line

segments describing the terrain.

101

APPENDIX D

EISP UNDER A SQUARED EXPONENTIAL KERNEL

Analytical solutions to Equations 5.5 and 5.6 depend on the choice of kernel. If

we assume that P is a uniform distribution over tasks and define kS as the squared

exponential kernel kS(τ1, τ2) = σ2
f exp(−L−1(τ1 − τ2)2), then:

∇τkC(τ t, τ tii) = − 2

L
(τ − τi)kC(τ t, τ tii)

gt(τ
ti
i) =

1

2

(
σ2
f

√
πL

)
kT (t+ 1, ti)×[

erf

(
τi − A√

L

)
− erf

(
τi −B√

L

)]
∇τgt(τ

ti
i) = σ2

fkT (t+ 1, ti)×[
exp

(
−(A− τi)2

L

)
−

exp

(
−(B − τi)2

L

)]
.

where erf(z) is the Gauss error function.

102

APPENDIX E

A METHOD FOR EFFICIENTLY PRACTICING TASKS

Practicing sample tasks to construct the training set K is the most time-intensive

step involved in acquiring a parameterized skill. Several policy learning algorithms

can be used to identify an optimal or near-optimal policy for a given task. Most

algorithms, however, explicitly balance exploration and exploitation while doing so.

This is necessary whenever the agent has to learn a good actuation policy while at

the same time obtaining as much reward as possible.

Often, however, it makes sense to assume an initial training phase during which the

goal of the agent is to just explore efficiently, so that an optimal or near-optimal policy

can be learned fast but without necessarily worrying about performing well (see, e.g.,

the work of Şimşek and Barto [15]). This is precisely the problem encountered by an

agent practicing tasks to construct a skill: it is only concerned with rapidly identifying

a near-optimal policy for each training task, but does not care about performing well

while doing so.

In this chapter we study the problem of finding exploration policies for the case

in which an agent is momentarily not concerned with exploiting, and instead tries to

compute a near-optimal policy for later use. We formally define the Optimal Explo-

ration Problem as one of sequential sampling by posing it as an MDP constructed by

expanding the state space of the original one that we want to explore. Solutions to

this expanded MDP correspond to paths of minimum expected length in the space

of policies and describe optimal sequential sampling trajectories. We show an im-

portant property of such solutions and a special function that can be constructed

103

based on them. Since directly computing these solutions is not feasible, we derive

a local linear approximation to the relevant estimates and present an intuitive geo-

metric interpretation of its meaning. We compare our model-free approach to other

exploration techniques, most importantly Delayed Q-Learning (DQL) [68] and ∆V

[15], and show that ours is both based on a well-defined optimization problem and

empirically efficient.

Note that the method introduced in this chapter is only applicable to MDPs with

discrete state and action spaces. This simplifies the problem but somewhat limits the

applicability of the resulting algorithm to continuous parameterized skill acquisition

settings. In the experiments described in Sections 3.5, 4.4 and 5.6, therefore, we

carefully selected alternative policy learning algorithms that were known to perform

well at those particular tasks.

E.1 Summary of the Method

We first informally describe our method and in later sections show that it con-

stitutes a principled approximation to a well-defined optimization problem. The

algorithm that we propose, which we call ∆π , focuses exploration not on regions

where the value function is changing the most, or in which a model is being made

more accurate, as several of the works described in Section E.5, but on regions where

the likelihood of a change in the policy is high. In other words, exploration is based

on how sensitive the policy is at a given state, given that we continue to gather

information about it.

The indicator of policy sensitivity that we use is based on a simple linear extrap-

olation of the behavior of the Q-function at a state, both for the action currently

considered to be optimal and for some other recently tried action. Specifically, given

any unbiased estimate of how a Q-value changes as more samples are collected (e.g.,

a temporal difference error), we can estimate if and when the value of some action

104

with a lower Q-value will surpass the value of the one currently considered to be

optimal. When exploring, one should find desirable those actions whose Q-values are

soon likely to surpass that of the action currently considered to be optimal; the sooner

this crossing point is predicted to occur, the more attractive the action should be. If,

on the other hand, the evolution of Q-values indicates that the ordering of actions is

likely to remain the same, then we shouldn’t find those states attractive (Figure E.1).

We denote an approximation to the expected time until a policy change in a given

state by d(s, a). This value serves as a guide to how valuable it is to explore certain

parts of the MDP based on how likely it is that new samples from them will lead to

changes in the policy. The derivation of d(s, a) as a principled approximation and its

precise definition are given in Sections E.2 and E.3.

Q(s,•)

time(t-1) t (t+1)

current

optimal

action

suboptimal

action
time(t-1) t (t+1)

current optimal

action

suboptimal

action

 projected Q-value

Q(s,•)

(t-1) t

suboptimal

action

(t+k)

new expected

optimal action

time

Q(s,•)

(a) (b) (c)

current

optimal

action

Figure E.1. Geometric interpretation of the expected time until a policy change,
d(s, a), represented by the intersection between lines. (a) Q-values are predicted to
diverge and no change is expected; (b) Q-values seem to evolve at same rate and no
change is expected; (c) a change expected in k steps.

Notice that negative expected times until a policy change have a natural interpre-

tation: a change has already happened and now the Q-values seem to be diverging

(Figure E.1a). Our exploration algorithm considers small values of |d(s, a)| attrac-

tive, since they either indicate that a policy change is expected soon or that one has

happened recently. In the latter case, it might be important to continue exploring the

corresponding states to ensure that the change was not caused by noise in the sam-

105

pling of rewards and next states. In order to model this, we do not use d(s, a) directly

as an indication of policy sensitivity; instead, we define the following quantity:

r(s, a) =

 exp
(
− d2(s,a)

σ

)
|d(s, a)| < λ

−p |d(s, a)| ≥ λ,
(E.1)

where p is a small penalty given when the action’s values seem to have stabilized, λ

quantifies how rigorous we are when deciding whether this is the case, and σ controls

the maximum horizon of time during which we trust the predictions made by our

local linear approximation. In practice we have observed that many functions other

than the Gaussian can be used to define r(s, a), as long as they are monotonically

increasing and decreasing in the same intervals as a Gaussian and the resulting r(·, ·)

is bounded. In systems where noise does not play a crucial role, one might want to

favor exploration of expected future policy changes by adding a penalty (e.g, −1) to

r(s, a) in case d(s, a) < 0.

We point out that the direct use of r(s, a) as a guide for exploration provides just

a myopic perspective, since it reflects only the value of exploring one specific state

and action. In general, though, the choice of which regions to explore is a sequential

decision problem: states that do not look promising now might allow the agent to

reach regions where several corrections in the policy are expected. This can be dealt

with by using r(s, a) as a new, surrogate reward function for the MDP that we want to

explore, in which case its solutions approximately minimize the sum of times until all

policy corrections are performed. This corresponds to executing an exploration policy

that tries to correctly rank actions as fast as possible (see Section E.2). Notice that

because r(s, a) is used as a surrogate reward function, we need to store the original

Q-function (the one related to the exploitation policy being estimated) separately.

Specifically, we keep track of two separate Q-functions: one related to the exploration

policy and one to the exploitation policy. The latter is constructed based on samples

106

collected by the former, and the former is updated given new estimates from the

latter. This is also the approach taken by Şimşek and Barto [15].

E.2 Optimal Exploration

In this chapter we use a slightly different notation than the one presented in

Section 2.1. This will allow for a simpler description of the analyses and algorithms

introduced in the following sections.

Let an MDP M be a tuple
(
SM , AM , RM , TM , γM

)
, where SM is a finite set of

states, AM is a finite set of actions, RM : SM → R is a reward function, TM :

SM ×AM ×SM → [0, 1] is a transition function, and γM is a discount factor. Solving

M consists of finding an optimal policy π∗M , i.e., a mapping from states to actions

that maximizes the expected discounted sum of future rewards. Let Qπ
M(s, a) be

the function that gives the expected total discounted reward obtained when taking

action a in s and following π thereafter. The optimal Q-function for an MDP M is

denoted by Q∗M , and an estimate of it at time t by Qt
M . A greedy policy with respect

to a Q-function can be derived by taking the action that maximizes the Q-function

at a given state; let π[Q] be this deterministic greedy policy, obtained when using

Q to rank actions and breaking ties randomly. Let V π(s) be the value of state s

when following policy π, and VD(π) be the value of a policy π given an initial state

distribution: VD(π) =
∑

s∈S D(s)V π(s), where D(s) is the probability of the MDP

starting at state s.

For the problem of Optimal Exploration, we wish to find a (possibly non-stationary)

policy such that the samples it collects allow for the identification of π∗M as quickly

as possible; we note that this is different from calculating V ∗M as quickly as possible.

Specifically, an optimal exploration policy might correctly rank all optimal actions

even though the values of some (or all) states are still inaccurate. Formally, we define

the Optimal Exploration Problem as one of sequential sampling by posing it as an

107

MDP constructed by expanding the state space of the process we originally want to

explore. Solutions to this expanded MDP correspond to paths of minimum expected

length in the space of policies and describe optimal sequential sampling trajectories.

Based on the original MDP M , we define a new MDP, M ′, such that any optimal

policy for M ′, by construction, induces an optimal exploration strategy for M . As

will become clear shortly, optimality is defined in terms of the minimum expected

number of actions (or steps) needed until enough information is collected and π∗M can

be found. We construct M ′ in a way so that trajectories in it correspond to sequences

of joint evolution of states in M and estimates Qt
M ; this evolution satisfies the Markov

property and encodes trajectories in the space of policies for M . M ′ is defined by:

• a state space S ′ = SM × R|SM ||AM |. S ′ corresponds to the same state space of

M , but augmented with the current estimate of the optimal Q-function for M .

We denote the state s′t ∈ S ′ in which M ′ is at time t as a tuple s′t ≡
(
stM , Q

t
M

)
;

• an action space A′ = AM , i.e., the same as the action space of the original MDP;

• Q0
M , an initial estimate of Q∗M ;

• L, an off-policy, deterministic learning mechanism that converges to an optimal

policy. Given an action a taken in M ′, we can imagine also executing a in

the original MDP, M , and observing a sample experience
(
stM , a, r

t
M , s

t+1
M

)
. L

then takes this information, along with Qt
M , and returns an updated estimate

of the Q-function: Qt+1
M ← L(stM , a, r

t
M , s

t+1
M , Qt

M , ρ), where ρ is the set of any

other data structures or parameters required by L, such as step size parameters,

models, etc;

• T ′, a transition function based on TM and L. Given the current state s′t of

M ′, T ′ describes the distribution over possible next states s′t+1. Since s′t+1 is a

tuple of the form
(
st+1
M , Qt+1

M

)
, we can think of T ′ as computing each of those

108

components independently: st+1
M probabilistically according to TM(stM , a), and

Qt+1
M by applying L to the last sample experience obtained when executing a

in M . Also, T ′ is such that all states with zero instantaneous reward (i.e., goal

states, as defined below) are absorbing;

• 0 < γ′ < 1, a (fixed) discount rate;

• R′, a reward function mapping states of M ′ to the reals:

R′(
(
stM , Q

t
M

)
) =

 −1 if VD(π[QtM]) 6= VD (π∗M)

0 otherwise.

Note that rewards in M ′ are nonnegative only in states in which the use of the best

actions, according to the ranking induced by Qt
M , yields a greedy exploitation policy

for M whose value is optimal. This ensures that maximizing cumulative rewards in

M ′ is equivalent to efficiently reaching a Q-function for M that allows all optimal

actions to be correctly ranked. This is made rigorous in Proposition 1:

Proposition 1 An optimal policy for M ′ specifies a path of minimum expected length

in the space of policies for M , starting from an arbitrary initial policy and reaching

an optimal policy for M . Paths between policies are specified by sequences of sample

experiences in M .

Proposition 1 follows from the facts that (1) SM and AM are finite and L is

deterministic, and thus from any s′ ∈ S ′ there exists only a finite number of possible

next states in M ′; (2) since R′ is bounded and 0 < γ′ < 1, the value function for M ′ is

bounded, specifically in [1
log γ′

, 0]; and finally (3) because L is a learning algorithm that

converges to an optimal policy for M (even if asymptotically), there exists at least

one proper policy for M ′, that is, one that reaches the goal state with probability

1 regardless of the initial state. This is true because otherwise M would not be

109

solvable. Taken together, these observations imply that there exists a nonempty,

possibly uncountable number of proper policies for M ′, which form a totally ordered

set with respect to the value of each policy. Because this set is bounded above, its

supremum is well-defined and there exists an optimal policy for M ′. This policy, by

construction, minimizes the expected number of samples needed in order to compute

π∗M . All above-mentioned expectations are taken over all possible trajectories in M ′.

This result is similar to the more general problem of Stochastic Shortest Paths (SSP)

[8] — the main difference being that SSPs require MDPs with finite state spaces.

Finally, note that M ′ is constructed in such a way that an optimal policy for M

is reached whenever the greedy policy induced by the current estimate Qt
M correctly

ranks all optimal actions, even if the values of the states themselves are still inaccurate.

It should be clear that directly solving M ′ is not feasible, since R′ assumes prior

knowledge of an optimal policy for M . This impossibility is not surprising: one cannot

find a truly minimal sequence of exploration actions without knowing beforehand TM

and RM , which would make exploration unnecessary. However, M ′ is useful since we

can observe general properties of its solutions and use them to construct a principled

technique for efficient exploration. In what follows, we discuss some of these properties

and derive a local linear approximation which allows us to construct a principled

exploration strategy called ∆π .

Let φπs,a(t) be the expected value of QM(s, a) after a trajectory of length t in M ′,

starting from some given state s′ ∈ S ′ and following a fixed policy π for M ′. In order

to simplify the notation, we suppress the dependence on s′:

φπs,a(t) = E[Qt
M(s, a)]. (E.2)

The above expectation is taken with respect to trajectories in M ′; the prob-

abilities involved depend on π and T ′. φ encodes how Q-value estimates are ex-

pected to evolve if updated with samples collected by π. Let πexpl be any policy

110

for M ′; this policy induces an exploration policy for M . Let us analyze the ex-

pected length k of the shortest trajectory in M ′, when following πexpl, such that

we expect a change in the greedy policy (for M) induced by the expected Q-values:

arg mink
[
∃s ∈ S π[φ

πexpl (t+k)](s) 6= π[φ
πexpl (t)](s)

]
. If this is generated by an optimal

policy for M ′, then k is the expected minimum number of samples from M needed

to cause a change in the current greedy policy. Similarly, we can define the expected

minimum number of samples until the induced policy changes in a given state s ∈ S:

arg min
k

[
π[φ

πexpl (t+k)](s) 6= π[φ
πexpl (t)](s)

]
. (E.3)

Let us now assume we have taken an arbitrary step in M ′ and observed a next state

s′t+1 ∈ S ′. This state contains an updated estimate of the Q-function, namely Qt+1
M . If

the ranking of actions induced by Qt
M changes with respect to Qt+1

M , we say a crossing

has occurred. For example, if a1 and a2 are actions and Qt
M(s, a1) > Qt

M(s, a2) but

Qt+1
M (s, a1) ≤ Qt+1

M (s, a2), then a crossing has occurred.

Note that φ is defined only in the domain of integer timesteps. For our purposes,

however, it is advantageous to embed it in a continuous process by assuming that

updated Q-values change linearly and continuously between timesteps. Viewing φ as a

function of continuous time is useful for the following reason: if Qt
M(s, a1) > Qt

M(s, a2)

but Q∗M(s, a1) ≤ Q∗M(s, a2), then for some (not necessarily integer) k, φπ(s,a1)(t+ k) =

φπ(s,a2)(t+ k), assuming that π is a proper policy for M ′. This proposition is trivially

true because of the Intermediate Value Theorem. It allows us to say that a crossing

occurs precisely at the time k when the Q-values of two actions are momentarily

equal, before one surpasses the other. It also helps us to interpret non-integer values

of φ, which might occur since it is an expectation. Finally, it makes it easier to

meaningfully compare non-integer expected crossing times in terms of the rate with

which the ranking of actions seems to be changing. This becomes particularly clear

if using Boltzmann policies with high temperatures, in which case the rate of change

111

in action probabilities of two actions, as new samples are collected, can be shown to

cross exactly when the derivatives of their Q-values becomes equal. This connection

between the rate of change in action preferences and the derivative of their Q-values

appears again as part of the solution of Equation E.5.

E.3 Deriving an Efficient Exploration Policy

We would now like to use the definition of φ (or an approximation of it) to derive

an efficient, though not necessarily optimal, exploration strategy for M . We first

observe that because updates to the Q-function are generally not independent, the

minimum time to rank actions in all states (the quantity minimized by π∗M ′) is not

equal to the sum of the minimum times to rank actions at each state in turn. However,

we propose that a policy that minimizes the latter is also a good approximation of the

former. We further note that because d(s, a) is an estimate of the minimum time until

a change in ranking at a given state, it is possible to minimize that latter quantity

by solving a sequential decision process in which d(s, a) (or a related quantity) serves

as a surrogate reward function for M . Under this new reward structure, π∗M defines

an efficient exploration policy which quickly improves the ranking of actions at each

state. For more details, see Algorithm 1. We empirically show this to be an effective

approximation in Section E.4 and discuss when it might perform poorly in Section

E.6. Finally, note that minimizing d(s, a) is equivalent to minimizing the time until

the nearest crossing. Let us build on this last observation and define c(s,a1,a2)(t), the

expected difference between the Q-values of any actions a1 and a2, for any given state

s ∈ S:

c(s,a1,a2)(t) = φπ(s,a1)(t)− φπ(s,a2)(t). (E.4)

The smallest root of c(s,a1,a2)(t) corresponds to the minimum expected time at

which a1 and a2 cross, and therefore represents exactly the information required

for estimating d(s, a). However, φπ (and therefore c as well) is hard to describe

112

analytically since the precise understanding of how Q-values evolve requires knowing

the structure of M and of the learning algorithm. Although we do not have a closed

form for φπ, we can use a Taylor expansion around the time of the last sample

experience, t− 1:

φ̂π(s,a)(t) ≈ φπ(s,a)(t− 1) +
∂φπ(s,a)(t− 1)

∂t
. (E.5)

We expand the series around the time of the last experience since we need to

approximate the terms in Equation E.5 by using sampled values; it should be clear

that any statistics of interest will be the most accurate if we allow the use of all

t− 1 samples observed so far. Also, note that we do have unbiased samples for both

terms in Equation E.5: a sample of φπ(s,a)(t− 1) is simply Qt−1
π (s, a), and a sample of

∂φπ
(s,a)

(t−1)

∂t
is αMδ(s,a)(l), where δ(s,a)(l) is the TD error1 for the last time Qπ(s, a) was

updated, at time l; αM is the step-size parameter used in L. For any given π, these

are unbiased estimators: Qt−1
π (s, a), directly because of the definition of φπ(s,a)(t− 1);

and αMδ(s,a)(l), by a similar argument and by noticing that (1) it can computed by

subtracting consecutive Q-values, and (2) expectation is a linear operator. Better,

lower-variance estimates of the derivative of φπ(s,a)(t) can be obtained and are useful

in highly stochastic problems: one could estimate them via finite differences, by

averaging past updates to the Q-function, or by propagating updates to other Q-

values through a model. In what follows, we use just the simplest estimates possible,

as described above, and instantiate a model-free version of ∆π called TD(0)-∆π .

Proposition 2 A local linear approximation to φπ(s, ·)(t) induces a family of approx-

imations for the functions c(s,·,·)(t), whose smallest roots correspond to approximations

of the minimum expected time until a crossing between any pair of actions.

1TD errors are not required, though; any observed difference between consecutive estimates of a
Q-value suffice.

113

Proposition 2 follows from simple geometric reasoning based on φ̂π being a linear

approximation. Specifically, we can show that a local linear approximation to the

expected time until the value of an action a crosses the value of the one currently

considered optimal, â∗, for some s ∈ S, is:

d(s, a) =

(
1

αM

)
Qt(s, â∗)−Qt(s, a)

δ(s,a)(Ts,a)− δ(s,â∗)(Ts,â∗)
(E.6)

≈ arg min
t

(
c(s,a,â∗)(t) = 0

)

where Ts,ai is the last time at which Q(s, ai) was updated. d(s, a) is a valid approx-

imation unless its denominator is zero, which occurs if both Q-values seem to be

changing at the same rate — in this case, it correctly concludes that no crossings

are expected. Note also how it implements the type of policy sensitivity indicator

described in Section E.1.

E.4 Experiments

We now compare our approach to other algorithms for efficient exploration. Our

main comparisons are with ∆V [15] and Delayed Q-Learning (DQL) [68]. ∆V is a

principled, model-free way of finding efficient, purely-exploratory policies. DQL is, to

the best of our knowledge, the model-free technique with best PAC-MDP bounds, and

provably performs near-optimally in all but a polynomial number of timesteps. We

also compare with two baseline algorithms: (1) a Constant-Penalty (CP) technique,

which gives small penalties to each visited state and thus implements a least-visited

strategy [80]; and (2) ε-greedy Q-Learning (QL), for several values of ε; this includes

random exploration (ε = 1).

The first domain in which we evaluate TD(0)-∆π consists of a simple discrete

25 × 25 maze with four exits. The four usual actions are available (N,S,E,W), and

114

Algorithm 1 TD(0)-∆π

for all (s, a) do
Q0
exploit(s, a)← 0; Q0

explore(s, a)← 0;
δ(s,a)(0)← 0; Ts,a ← 0; visited(s, a)← False

end for
for t = 1, 2, 3, . . . , do

Let st be state of M at time t
Choose action at := arg maxa′∈AM Q

t
explore(s, a

′)
Take at in M , observe reward rtM , next state s′

Let â∗ := arg maxa′∈AM Q
t
exploit(s, a

′)
if not visited(st, at) or not visited(st, â

∗) then
r(st, at) := 1

else
if |δ(st,at)(Tst,at)− δ(st,â∗)(Tst,â∗)| < λ then
r(st, at) := −p

else
Compute r(st, at) according to Eq. E.1 and E.6

end if
end if
Qt+1
exploit ← L(st, at, r

t
M , s

′, Qt
exploit, ρexploit)

Qt+1
explore ← L(st, at, r(st, at), s

′, Qt
explore, ρexplore)

Tst,at ← t; visited(st, at)← True;
δst,at(t)← Qt+1(st, at)−Qt(st, at);

end for

each has a 0.9 probability of taking the agent to the intended direction, and 0.1 of

taking it to another uniform random direction. Rewards are −0.001 for each action,

and 1, 2 or 5 when transitioning into one of the terminal states. Q-functions in

Algorithm 1 are learned using Q-Learning with step-size parameter α = 0.1 and

discount rate γ = 0.99.

Results for the value of the learned exploitation policy as a function of the amount

of exploration allowed are shown in Figure E.2 and E.3, and are averages over 20 runs.

Both our approach, ∆V and DQL perform significantly better than the baseline

algorithms. We searched the space of values of ε, for QL, and present only some

sample results. ∆V initially performs better than our approach, mainly because

the random walk it performs during its initial phase finds one of the goals faster;

however, a closer look reveals that it gets “obsessed” with fine-tuning the value of

115

states even when the policy for reaching them is already correct. At this moment,

on the other hand, TD(0)-∆π notices that no other policy changes are expected and

proceeds to other regions of the state space. TD(0)-∆π finds the optimal exploitation

policy almost 100,000 steps before ∆V . DQL takes even longer to learn: in principle

it requires (for this domain) m ≈1 billion samples before updating the value of any

given state–action pair, in order for its bounds to guarantee convergence in polynomial

time. In our experiments we used more reasonable values for m, which removed its

PAC-MDP properties but made it comparable to other approaches. DQL’s bounds

also require Q-values to be initialized optimistically, which for this domain means

setting Q0(s, a) = 500. However, we noticed that only values of Q0(s, a) ≤ 9 were

capable of generating reasonable learning curves. Furthermore, the only way we could

make DQL perform similarly to TD(0)-∆π was to initialize its Q-values fairly close to

the optimal ones, and even then it became stuck in a local minimum 20% less efficient

than the optimal exploitation policy. We searched the space of parameters of DQL

to make it perform as well as possible; a representative sample of the learning curves

is shown in Figure E.3.

The second domain in which we evaluate TD(0)-∆π is a rod positioning task

[49], which consists of a discretized space containing a rod, obstacles, and a target.

The goal is to maneuver the rod by moving its base and angle of orientation so

that its tip touches the target, while avoiding obstacles. We discretize the state

space into unit x and y coordinates and 10◦ angle increments; actions move the rod’s

base one unit in either direction along its axis or perform a 10◦ rotation in either

direction. Rewards are −1 for each action and 1000 when the tip of the rod touches

the goal. We used the same learning method and parameters as in the previous

domain. Results for the value of the learned exploitation policy as a function of the

amount of exploration allowed are shown in Figures E.4 and E.5. ∆π again performed

better than other methods; interestingly, simple approaches like ε-greedy QL and CP

116

performed better than specialized ones such as ∆V and DQL — the reason being

that this domain contains only one source of positive reward, which, when found,

can be aggressively exploited without risking overlooking others. ∆V again kept fine-

tuning the value function even when the policy was already correct, and often got

stuck in local minima 25% worse than the optimal exploitation policy. ∆π , on the

other hand, explored a region only while it had evidence that the policy could still

change. We searched the space of parameters of DQL to optimize its performance;

representative learning curves are shown in Figure E.5. DQL only performs well if

initialized with a Q-function fairly close to the optimal and if m is set much lower

than required to guarantee its PAC-MDP bounds. After 1.8 million timesteps, it

learned an exploitation policy 50% worse than the optimal one.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300 350

P
o

li
cy

 v
al

u
e

Timesteps (x1000)

!"
!V

QL, #=1.0
CP

Figure E.2. Performance of ∆π in the maze domain.

E.5 Related Work

Efficient exploration in RL has been studied extensively, usually with the objective

of maximizing return in an agent’s lifetime, thus requiring a trade-off between explo-

117

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300 350

P
o

li
cy

 v
al

u
e

Timesteps (x1000)

!"
DQL Q0=6 m=2

DQL Q0=5 m=20

DQL Q0=8 m=2

DQL Q0=10 m=2

Figure E.3. Performance of ∆π in the maze domain (vs. DQL).

-200

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600

P
o

li
cy

 v
al

u
e

Timesteps (x1000)

!"
!V

QL, #=0.9
CP

Figure E.4. Performance of ∆π in the rod positioning domain.

ration and exploitation. In this chapter, on the other hand, we are concerned with

purely exploratory policies. Some of the existing approaches to tackle this are simple

techniques such as random exploration, picking actions that were selected the least

number of times, visiting unknown states, etc. [80]. These are inefficient due to treat-

118

-200

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800

P
o
li

cy
 v

al
u
e

Timesteps (x1000)

! "

DQL Q0=750 m=2

DQL Q0=750 m=5

DQL Q0=900 m=7

DQL Q0=1k m=10

DQL Q0=1.2k m=5

Figure E.5. Performance of ∆π in the rod domain (vs. DQL).

ing the entire state space uniformly, ignoring useful structure provided by the value

function. Other approaches for efficiently learning consider the full exploration versus

exploitation problem directly. Duff [21] proposes a Bayesian approach for the case in

which prior uncertainties about the transition probabilities are available; Abbeel and

Ng [1] present a method for computing a near-optimal policy assuming that demon-

strations by a teacher are available. Another model-based Bayesian approach was

proposed by Dearden, Friedman, and Andre [18], where the Value of Information for

exploring states is computed considering a model and uncertainty about its param-

eters. Finally, Kolter and Ng [35] present a method for constructing a belief state

for the transition probabilities and obtaining a greedy approximation to an optimal

Bayesian policy.

Two techniques have been especially influential among researchers studying effi-

cient RL algorithms: R–Max [11], and E3 [30]. Both give polynomial guarantees for

the time to compute a near-optimal policy. These techniques differ from ours in at

least two important aspects: (1) they maintain a complete, though possibly inac-

curate model of the environment; (2) they perform expensive, full computations of

119

policies (via, e.g., value iteration) over the known model as steps in their algorithms.

Therefore, a direct, meaningful comparison with our model-free approach would be

difficult. Instead, we compare with Delayed Q-Learning [68], a model-free approach

which, to the best of our knowledge, has the best known PAC-MDP bounds and

which provably performs near-optimally in all but a polynomial number of timesteps.

Other techniques relevant to this work include the Active RL algorithm [22] and

the ∆V approach [15]. The former is similar to ours in that it defines an exploration

policy based on a type of sensitivity analysis, namely that of the policy with respect

to perturbations to a model. It differs from ours in that our analysis focuses, alterna-

tively, on the impact that collecting additional samples has on the expected evolution

of Q-values, and therefore on the ranking of actions, and also in that Active RL as-

sumes an initial, complete estimate of a model, while we don’t. The latter approach

(∆V) shares with ours the idea of model-free exploration and uses a similar formal-

ization. It focuses exploration on regions of the state space where the magnitude

of the value function changes the most, implicitly maximizing the speed with which

the value function is fine-tuned. Unfortunately, it has practical shortcomings, mainly

because agents following it become “obsessed” with fine-tuning the value of states

even when the policy is already correct. Intuitively, the specific values of the states

shouldn’t matter; the important information to be acquired is the ranking of actions.

Achieving this type of exploration strategy is the goal of this chapter.

E.6 Discussion

We have presented a derivation of a local linear approximation to the expected

time until a policy change and used it to construct an efficient, model-free exploration

technique. The specific approximation used might have practical shortcomings. It

is possible, for instance, to construct MDPs in which TD(0)-∆π performs poorly by

initializing it in a region of the state space where many crossings are likely to occur

120

but which is not part of any optimal trajectory. We believe, however, that these cases

are not common in practice. In fact, ∆V seems much more sensitive to small changes

in the formulation of the MDP, since simply rescaling the reward function can make it

perform arbitrarily slowly. DQL, even with provably polynomial sample complexity,

is a good example of how such guarantees don’t necessarily correspond to algorithms

that are feasible in practice.

For future work, we would like to study model-based estimations of Equation E.5,

which could have lower variance. We also believe there might be a relevant connection

between Equation E.6 and Advantage functions, and that PAC-MDP bounds can

be obtained. Another interesting open problem is that of deciding when to safely

terminate the exploration process.

Even more important is the question of whether this method can be extended

to the case of MDPs with continuous states and actions. Being able to identify

efficient exploration policies under this alternative formulation would allow an agent to

more rapidly identify near-optimal policies for various training tasks, thereby further

accelerating the construction of the skill training set K.

121

BIBLIOGRAPHY

[1] Abbeel, P., and Ng, A. Exploration and apprenticeship learning in reinforce-
ment learning. In Proceedings of the 22nd International Conference on Machine
Learning (2005), pp. 1–8.

[2] Baranes, A., and Oudeyer, P. Active learning of inverse models with intrinsically
motivated goal exploration in robots. Robotics and Autonomous Systems 61, 1
(2013), 69–73.

[3] Barrett, S., Taylor, M., and Stone, P. Transfer learning for reinforcement learning
on a physical robot. In Proceedings of the Ninth International Conference on Au-
tonomous Agents and Multiagent Systems - Adaptive Learning Agents Workshop
(2010).

[4] Barto, A. Intrinsic motivation and reinforcement learning. In Intrinsically Moti-
vated Learning in Natural and Artificial Systems, G. Baldassarre and M. Mirolli,
Eds. Springer, 2013, pp. 14–47.

[5] Barto, A. G., Singh, S., and Chentanez, N. Intrinsically motivated learning
of hierarchical collections of skills. In Proceedings of the Third International
Conference on Developmental Learning (2004), pp. 112–119.

[6] Baxter, J. Bartlett, P. L. Direct gradient-based reinforcement learning. In Pro-
ceedings of the International Symposium on Circuits and Systems (2000), vol. 3,
pp. 271–274.

[7] Berthier, N., and Keen, R. Development of reaching in infancy. Experimental
Brain Research 169 (2006), 507–518.

[8] Bertsekas, D.P., and Tsitsiklis, J. N. An analysis of stochastic shortest path
problems. Mathematics of Operations Research 16, 3 (1991), 580–595.

[9] Bhatnagar, S., Sutton, R., Ghavamzadeh, M., and Lee, M. Natural actor-critic
algorithms. Automatica 45, 11 (2009), 2471–2482.

[10] Bitzer, S., Havoutis, I., and Vijayakumar, S. Synthesising novel movements
through latent space modulation of scalable control policies. In Proceedings of
the Tenth International Conference on Simulation of Adaptive Behavior: From
Animals to Animats (2008), pp. 199–209.

122

[11] Brafman, R.I., and Tennenholtz, M. R-MAX - A general polynomial time al-
gorithm for near-optimal reinforcement learning. Journal of Machine Learning
Research 3 (2001), 213–231.

[12] Braun, D., Waldert, S., Aertsen, A., Wolpert, D., and Mehring, C. Structure
learning in a sensorimotor association task. PLoS ONE 5 (2010), e8973.

[13] Brock, O., Fagg, A., Grupen, A.R., Platt, R., Rosenstein, M., and Sweeney, J. A
framework for learning and control in intelligent humanoid robots. International
Journal of Humanoid Robotics 2(3) (2005).

[14] Şimşek, O., and Barto, A.G. Using relative novelty to identify useful tempo-
ral abstractions in reinforcement learning. In Proceedings of the Twenty-first
international conference on Machine learning (2004), pp. 751–758.

[15] Şimşek, Ö., and Barto, A.G. An intrinsic reward mechanism for efficient explo-
ration. In Proceedings of the 23rd International Conference on Machine learning
(2006), pp. 833–840.

[16] Şimşek, O., Wolfe, A., and Barto, A.G. Identifying useful subgoals in reinforce-
ment learning by local graph partitioning. In Proceedings of the Twenty-Second
international conference on Machine learning (2005), pp. 816–823.

[17] da Silva, B.C., Konidaris, G.D., and Barto, A. Learning parameterized skills. In
Proceedings of the Twenty Ninth International Conference on Machine Learning
(2012), pp. 1679–1686.

[18] Dearden, R., Friedman, N., and Andre, D. Model based bayesian exploration.
In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence
(1999), pp. 150–159.

[19] Deisenroth, M.P., Englert, P., Peters, J., and Fox, D. Multi-task policy search
for robotics. In Proceedings of 2014 IEEE International Conference on Robotics
and Automation (2014).

[20] Drucker, H., Burges, C., Kaufman, L., Smola, A., and Vapnik, V. Support vector
regression machines. In Advances in Neural Information Processing Systems 9
(1997), MIT Press, pp. 155–161.

[21] Duff, M.O. Design for an optimal probe. In Proceedings of the 20th International
Conference on Machine learning (2003), AAAI Press, pp. 131–138.

[22] Epshteyn, A., Vogel, A., and DeJong, G. Active reinforcement learning. In
Proceedings of the 25th International Conference on Machine Learning (2008),
Omnipress, pp. 296–303.

[23] Ericsson, K. The influence of experience and deliberate practice on the develop-
ment of superior expert performance. Cambridge University Press, 2006, ch. 13,
pp. 685–708.

123

[24] Harlow, H. F. Learning and satiation of response in intrinsically motivated com-
plex puzzle performance by monkeys. Journal of Comparative and Physiological
Psychology 43 (1950), 289–294.

[25] Hart, S., Sen, S., and Grupen, R.A. Generalization and transfer in robot control.
In Proceedings of the Eighth International Conference on Epigenetic Robotics
(2008).

[26] Hausknecht, M., and Stone, P. Learning powerful kicks on the Aibo ERS-7: The
quest for a striker. In RoboCup-2010: Robot Soccer World Cup XIV, vol. 6556
of Lecture Notes in Artificial Intelligence. Springer Verlag, 2011, pp. 254–65.

[27] Hoffmann, H., Petkos, G., Bitzer, S., and Vijayakumar, S. Sensor-assisted adap-
tive motor control under continuously varying context. In Proceedings of the
Tenth International Conference on Informatics in Control, Automation, and
Robotics (2007).

[28] Huber, M., and Grupen, R.A. Learning to coordinate controllers-reinforcement
learning on a control basis. In Proceedings of the Fifteenth International Joint
Conference on Artificial intelligence (1997), pp. 1366–1371.

[29] Jordan, M. Rumelhart, D. Forward models: Supervised learning with a distal
teacher. Cognitive Science 16 (1992), 307–354.

[30] Kearns, M.J., and Singh, S. Near-optimal reinforcement learning in polynominal
time. In Proceedings of the 15th International Conference on Machine Learning
(1998), Morgan Kaufmann, pp. 260–268.

[31] Kober, J., and Peters, J. Policy search for motor primitives in robotics. In
Advances in Neural Information Processing Systems 21 (2008), pp. 849–856.

[32] Kober, J., and Peters, J. Imitation and reinforcement learning. IEEE Robotics
& Automation Magazine 17, 2 (2010), 55–62.

[33] Kober, J., Wilhelm, A., Oztop, .E, and Peters, J. Reinforcement learning to
adjust parametrized motor primitives to new situations. Autonomous Robots
(2012), 1–19.

[34] Kohl, N., and Stone, P. Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Proceedings of the IEEE International Conference
on Robotics and Automation (2004).

[35] Kolter, J.Z., and Ng, A. Near-Bayesian exploration in polynomial time. In
Proceedings of the 26th International Conference on Machine Learning (2009),
Omnipress, pp. 513–520.

[36] Konidaris, G.D., and Barto, A.G. Building portable options: Skill transfer in
reinforcement learning. In Proceedings of the Twentieth International Joint Con-
ference on Artificial Intelligence (2007), pp. 895–900.

124

[37] Konidaris, G.D., and Barto, A.G. Efficient skill learning using abstraction se-
lection. In Proceedings of the Twenty-first International Joint Conference on
Artificial Intelligence (2009).

[38] Konidaris, G.D., and Barto, A.G. Skill discovery in continuous reinforcement
learning domains using skill chaining. In Advances in Neural Information Pro-
cessing Systems 22 (2009), pp. 1015–1023.

[39] Konidaris, G.D., Osenstoski, S., and Thomas, P. Value function approximation
in reinforcement learning using the fourier basis. In Proceedings of the Twenty-
Fifth Conference on Artificial Intelligence (2011), pp. 380–385.

[40] Konidaris, G.D., Scheidwasser, I., , and Barto, A.G. Transfer in reinforcement
learning via shared features. Journal of Machine Learning Research 13 (2012),
1333–1371.

[41] Kroemer, O., Detry, R., Piater, J., and Peters, J. Combining active learning
and reactive control for robot grasping. Robotics and Autonomous Systems 58,
9 (2010), 1105–1116.

[42] Kuindersma, S., Grupen, R., and Barto, A. Variational Bayesian optimization
for runtime risk-sensitive control. In Robotics: Science and Systems VIII (RSS)
(Sydney, Australia, 2012).

[43] Levine, S., Popovic, Z., and Koltun, V. Nonlinear inverse reinforcement learning
with gaussian processes. In Advances in Neural Information Processing Systems
24 (2011), pp. 19–27.

[44] Liu, Y., and Stone, P. Value-function-based transfer for reinforcement learning
using structure mapping. In Proceedings to the Twenty-First National Conference
on Artificial Intelligence (2006), pp. 415–420.

[45] Mahadevan, S., Giguere, S., , and Jacek, N. Basis adaptation for sparse nonlinear
reinforcement learning. In Proceedings of the Twenty-Seventh Conference on
Artificial Intelligence (2013).

[46] Mannor, S., Rubinstein, R., and Gat, Y. The cross entropy method for fast policy
search. In Proceedings of the Twentieth International Conference on Machine
Learning (2003), pp. 512–519.

[47] McGovern, A., and Barto, A.G. Automatic discovery of subgoals in reinforcement
learning using diverse density. In Proceedings of the Eighteenth International
Conference on Machine Learning (2001), pp. 361–368.

[48] Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von Hofsten,
C., Rosander, K., Lopes, M., Santos-Victor, J., Bernardino, A., and Montesano,
L. The icub humanoid robot: An open-systems platform for research in cognitive
development. Neural Networks 23, 8-9 (2010), 1125–1134.

125

[49] Moore, A.W., and Atkeson, C.G. Prioritized sweeping: Reinforcement learning
with less data and less time. Machine Learning 13 (1993), 103–130.

[50] Nemec, B., Forte, D., Vuga, R., Tamosiunaite, M., Wörgötter, F., and Ude, A.
Applying statistical generalization to determine search direction for reinforce-
ment learning of movement primitives. In Proceedings of the Twelfth IEEE-RAS
International Conference on Humanoid Robots (2012), pp. 65–70.

[51] Neumann, G., Daniel, C., Kupcsik, A, Deisenroth, M., and Peters, J.
Information-theoretic motor skill learning. In Proceedings of the AAAI Workshop
on Intelligent Robotic Systems (2013).

[52] Ng, A.Y., and Russell, S.J. Algorithms for inverse reinforcement learning. In
Proceedings of the Seventeenth International Conference on Machine Learning
(2000), pp. 663–670.

[53] Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. Learning and generalization
of motor skills by learning from demonstration. In Proceedings of the IEEE
International Conference on Robotics and Automation (2009).

[54] Precup, D. Temporal Abstraction in Reinforcement Learning. PhD thesis, De-
partment of Computer Science, University of Massachusetts, Amherst, 2000.

[55] Rajendran, S., and Huber, M. Autonomous identification, categorization and
generalization of policies based on task type. In Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics (2011), pp. 1333–1339.

[56] Rasmussen, C. E., and Williams, C. K. I. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[57] Rottmann, A., and Burgard, W. Learning non-stationary system dynamics online
using gaussian processes. In Proceedings of the Thirty-second Symposium of the
German Association for Pattern Recognition (2010), pp. 192–201.

[58] Ryan, R., and Deci, E. Intrinsic and extrinsic motivations: Classic definitions
and new directions. Contemporary Educational Psychology 25, 1 (2000), 54–67.

[59] Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. Learning movement prim-
itives. In Proceedings of the Eleventh International Symposium on Robotics Re-
search (2004), Springer.

[60] Schmidhuber, J. Adaptive confidence and adaptive curiosity. Tech. Rep. FKI-
149-91, Technische Universitat Munchen, 1991.

[61] Schmidhuber, J. A possibility for implementing curiosity and boredom in model-
building neural controllers. In Proceedings of the First International Conference
on Simulation of Adaptive Behavior: From Animals to Animats (1991), pp. 222–
227.

126

[62] Silver, D., Bagnell, J., and Stentz, A. Active learning from demonstration for
robust autonomous navigation. In Proceedings of 2012 IEEE International Con-
ference on Robotics and Automation (2012).

[63] Singh, S., Barto, A.G., and Chentanez, N. Intrinsically motivated reinforcement
learning. In Advances in Neural Information Processing Systems 17. MIT Press,
Cambridge, MA, 2005, pp. 1281–1288.

[64] Snoek, J., Larochelle, H., and Adams, R. Practical bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing
Systems 25 (2012), pp. 2951–2959.

[65] Soni, V., and Singh, S. Reinforcement learning of hierarchical skills on the Sony
Aibo robot. In Proceedings of the Fifth International Conference on Development
and Learning (2006).

[66] Stout, A., and Barto, A.G. Competence progress intrinsic motivation. In Pro-
ceedings of the Ninth International Conference on Development and Learning
(2010), pp. 257–262.

[67] Stout, A., Konidaris, G.D., and Barto, A.G. Intrinsically motivated reinforce-
ment learning: A promising framework for developmental robot learning. In
Proceedings of the AAAI Spring Symposium on Developmental Robotics (2005).

[68] Strehl, A.L., Li, L., Wiewiora, E., Langford, J., and Littman, M. PAC model-free
reinforcement learning. In Proceedings of the 23rd International Conference on
Machine learning (2006), pp. 881–888.

[69] Stulp, F., Raiola, G., Hoarau, A., Ivaldi, S., and Sigaud, O. Learning compact
parameterized skills with a single regression. In Proceedings of the IEEE-RAS
International Conference on Humanoid Robots (2013), pp. 1–7.

[70] Stulp, F., and Sigaud, O. Path integral policy improvement with covariance
matrix adaptation. In Proceedings of the Twenty-Ninth International Conference
on Machine Learning (2012).

[71] Stulp, F., and Sigaud, O. Policy improvement: Between black-box optimization
and episodic reinforcement learning. In Journées Francophones Planification,
Décision, et Apprentissage pour la conduite de systèmes (2013).

[72] Sutton, R., Mcallester, D., Singh, S., and Mansour, Y. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems 12 (2000), MIT Press, pp. 1057–1063.

[73] Sutton, R., Precup, D., and Singh, S. Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence
112 (1999), 181–211.

127

[74] Sutton, R.S., and Barto, A.G. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[75] Taylor, M., Kuhlmann, G., and Stone, P. Autonomous transfer for reinforce-
ment learning. In Proceedings of the Seventh International Joint Conference on
Autonomous Agents and Multiagent Systems (2008).

[76] Taylor, M., and Stone, P. Cross-domain transfer for reinforcement learning. In
Proceedings of the Twenty-Fourth International Conference on Machine Learning
(2007).

[77] Taylor, M., Stone, P., and Liu, Y. Transfer learning via inter-task mappings for
temporal difference learning. Journal of Machine Learning Research 8, 1 (2007),
2125–2167.

[78] Tenenbaum, J., de Silva, V., and Langford, J. A global geometric framework for
nonlinear dimensionality reduction. Science 290, 5500 (2000), 2319–2323.

[79] Theodorou, E., Buchli, J., and Schaal, S. A generalized path integral control
approach to reinforcement learning. Journal of Machine Learning Research 11
(2010), 3137–3181.

[80] Thrun, S.B. Efficient exploration in reinforcement learning. Tech. Rep. CMU-
CS-92-102, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

[81] Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large margin
methods for structured and interdependent output variables. Journal of Machine
Learning Research 6 (2005), 1453–1484.

[82] Van Vaerenbergh, S., Santamaŕıa, I., and Lázaro-Gredilla, M. Estimation of the
forgetting factor in kernel recursive least squares. In Proceedings of the IEEE
International Workshop On Machine Learning For Signal Processing (2012).

[83] Watkins, Christopher J. C. H., and Dayan, Peter. Q-learning. Machine Learning
8, 3 (1992), 279–292.

[84] Weiss, D., and Taskar, B. Structured prediction cascades. In Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics
(2010), vol. 9, pp. 916–923.

[85] White, R. Motivation reconsidered: The concept of competence. Psychological
Review 66, 5 (1959), 297–333.

[86] Williams, R. J. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8, 3-4 (1992), 229–256.

128

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	Spring 2015

	Learning Parameterized Skills
	Bruno Castro da Silva
	Recommended Citation

	tmp.1419427642.pdf.nHtOk

