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ABSTRACT

APPLICATIONS OF SAMPLING
AND ESTIMATION ON NETWORKS

SEPTEMBER 2016

FABRICIO MURAI FERREIRA

B.Sc., FEDERAL UNIVERSITY OF RIO DE JANEIRO

M.S., FEDERAL UNIVERSITY OF RIO DE JANEIRO

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Don Towsley

Networks or graphs are fundamental abstractions that allow us to study many important

real systems, such as the Web, social networks and scientific collaboration. It is impossible

to completely understand these systems and answer fundamental questions related to them

without considering the way their components are connected, i.e., their topology. How-

ever, topology is not the only relevant aspect of networks. Nodes often have information

associated with them, which can be regarded as node attributes or labels. An important

problem is then how to characterize a network w.r.t. topology and node label distributions.

Another important problem is how to design efficient algorithms to accomplish tasks on

networks. Since nodes often have attributes, an interesting avenue for investigation con-

sists in learning and exploiting existing correlations between node and neighbor attributes

vi



for accomplishing a task more efficiently. One of the challenges faced when studying net-

works in the wild is the fact that in general their topology and information associated with

its nodes cannot be directly obtained. Thus, one must resort to collecting the data, but when

obtaining the entire network is infeasible, sampling and estimation are the best option. This

dissertation investigates the use of sampling and estimation to characterize networks and

to accomplish a particular task. More precisely, we study (i) the problem of characterizing

directed and undirected networks through random walk-based sampling, (ii) the problem

of estimating the set-size distribution from an information-theoretic standpoint, which has

application to characterizing the in-degree distribution in large graphs, and (iii) the problem

of searching networks to find nodes that exhibit a specific trait while subject to a sampling

budget by learning a model from node attributes and structural properties, which has appli-

cation to recruiting in social networks.
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CHAPTER 1

INTRODUCTION

Networks or graphs1 are fundamental abstractions that allow us to study many important

real systems, such as the Web, social networks, and scientific collaboration. It is impossible

to completely understand these systems and answer fundamental questions related to them

without considering the way their components are connected, i.e., their topologies. Topol-

ogy determines, among other things, the speed at which a process takes place on a network.

For example, information will propagate slowly on a line graph, but will propagate much

faster on a complete graph [41]. In barbell graphs (i.e., graphs formed by connecting two

copies of a complete graph by a bridge), it may take a long time for nodes to reach global

consensus when they update the value of local variables based on messages exchanged

with their neighbors [40]. Topology also determines the robustness of a network against

attacks. When nodes are removed uniformly at random, one by one, a graph generated

by the preferential attachment model is known to remain connected for a large number of

removals [3]. However, if nodes are removed in decreasing order of their degrees, this type

of graph quickly breaks into disconnected pieces.

However, topology is not the only relevant aspect of a network. Nodes often have infor-

mation associated with them. For instance, in a social network, nodes represent individuals

whose profiles contain information about places where they have lived, studied, their in-

terests, etc. This information can be regarded as node attributes or labels. An important

problem is then how to characterize a network w.r.t. topology and node label distributions.

1We use the term graph when referring specifically to topology. The term network refers to the combina-
tion of topology and information associated with nodes and edges.
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Another important problem is how to design efficient algorithms to accomplish tasks

on networks. One example of such a task is: find researchers that have been cited between

1,000 and 2,000 times in the last five years. Since nodes often have attributes, an interesting

avenue for investigation consists in learning and exploiting existing dependencies between

node and neighbor attributes for accomplishing a task more efficiently.

One of the challenges faced when studying a network in the wild is the fact that in

general its topology and node labels cannot be directly obtained. Some networks, such as

the Internet, are composed of several autonomous parts controlled by different institutions

that do not have information about each other. Others are controlled by single organizations

but their data is just not made available for download. In both cases, one must resort

to collecting the data, but when obtaining the entire network is infeasible, sampling and

estimation are the best option.

The first part of this dissertation focuses on the use of sampling and estimation to char-

acterize networks w.r.t. node label distributions, i.e. to estimate the fraction of nodes in a

network that have a given label. Labels can be any type of information associated with

nodes, either topological (e.g., out-degree) or not (e.g., citizenship of an individual). For

networks, uniform vertex sampling (VS) and random walks (RW) are two common ways

of sampling a network. VS is typically performed by randomly generating a vertex id and

then querying this id to see if they correspond to an existing vertex. When the set of valid

vertex ids is small relatively to the id space size, RWs are much cheaper than VS.

A random walk on an undirected network can be modeled as a stochastic process that

has well known statistical properties. In particular, when the walk reaches steady state

(provided it exists), it samples edges equiprobably. A random walk can be used for sam-

pling vertices by taking one endpoint of the sampled edges. In this case, the steady state

probability of sampling a node is proportional to the node degree, allowing for simple bias

removal. The same property holds for directed networks where both incoming and outgo-

ing edges from a node are observable when the walker navigates the network as if it were
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undirected, i.e., ignoring edges’ directions. However, in some directed networks (e.g., web

graphs), an edge from a to b can be seen from a, but not from b. In this case, the steady

state distribution of the classic random walk depends on the entire structure of the network,

which renders the method unsuited for characterization.

Some recent works propose RW methods designed for directed networks with invisible

in-edges. In this context, we propose Directed Unbiased Frontier Sampling (DUFS), a

sampling method based on multiple coordinated RWs, which generalizes two important

RW methods, one designed for undirected networks and the other for directed networks

with invisible in-edges. We also propose an estimator for node label distribution that can

leverage information from the initial walker locations, thus obtaining significant gains in

accuracy when the number of walkers is large w.r.t. the total sampling budget.

When in-edges are not directly observable, estimating the in-degree distribution be-

comes more complicated: there is an extra degree of uncertainty as we only observe some

of the incoming edges to a node, i.e., the true in-degree of a sampled node is unknown.

Assuming uniform edge sampling as an ideal case for RW sampling, we pose the following

question: is it possible to characterize large networks using random walks? Given a fixed

sampling probability, what happens to the estimation error when the network grows? We

study this problem analytically by using a more general formulation of the in-degree es-

timation problem with unobservable incoming edges called the problem of estimating the

set-size distribution. In this problem, elements are randomly sampled from a collection

of non-overlapping sets and we seek to recover the original set size distribution from the

samples. Recoverability of the original set size distribution presents a sharp threshold with

respect to the fraction of elements that remain in the sets. If this fraction lies below the

threshold, typically half of the elements in power-law and heavier-than-exponential-tailed

distributions, then the original set size distribution is unrecoverable. These results imply

that, when estimating in-degree distributions via uniform edge sampling, the fraction of

edges sampled must be above the same threshold in order to obtain accurate estimates.
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Last, we consider a problem where sampling and estimation are not used to charac-

terize a network, but rather to accomplish a task on a network. More precisely, we study

selective harvesting, the problem of finding as many nodes that exhibit a specific trait as

possible, subject to a sampling budget. The network is assumed unknown but as new nodes

are sampled we are allowed access to their neighbors and our knowledge of the network

grows. This knowledge can be used to learn a model to help us select new nodes to sample.

This problem poses several research questions: How to encode the relationship between

candidate nodes and the observed network? How to learn a model for estimating labels

of a set of nodes that is constantly changing? Unlike most problems in learning, a model

must be fit to the observations collected by the same model. Since the model is constantly

changing and the network is only partially observed, it is impossible to completely remove

the bias from the search.

We design highly informative features that blend node attributes and network structure,

and evaluate the performance of several models using those features in finding target nodes.

We show that fitting a model to the observations it collects can severely erode its perfor-

mance, a phenomenon we call the tunnel vision effect. We propose a framework called

Directed Diversity Dynamic Thompson Sampling (D3TS), which combines several meth-

ods to mitigate the tunnel vision effect by increasing diversity in the training data. This

problem has application to recruiting users of social networks for a campaign, when the

trait being modeled is the user interest in joining it.

1.1 Contributions

This dissertation provides contributions to the understanding and solving of problems

that arise in networks, through the use of sampling and estimation techniques. Our contri-

butions are divided into three parts.
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1.1.1 Characterizing node populations

1. We propose the Directed Unbiased Frontier Sampling (DUFS), a method that gener-

alizes previous methods based on random walks. DUFS uses multiple coordinated

walkers and random jumps to estimate statistical properties of undirected networks

and directed networks regardless of the in-edges visibility. Walkers are initially lo-

cated on vertices chosen uniformly at random. The probability of performing a jump

(instead of moving to a neighbor) is proportional to the degree of the node where a

walker is located.

2. We introduce a new estimator of vertex label distributions which combines observa-

tions from the initial walker locations with those made during the walks in order to

produce better estimates.

3. We investigate the impact of the number of walkers and the impact of the random

jump weight – which controls jump probability – on estimation errors associated

with DUFS. This allows us to provide practical guidelines on how to set them under

different scenarios.

4. We show that DUFS yields smaller errors than other random walk-based methods

when estimating probability masses associated with low in-degree and low out-degree

values, without hurting estimation performance in the distribution tail.

1.1.2 Characterizing the in-degree distribution

1. We study the problem of estimating the in-degree distribution when incoming edges

are not directly observable from a node. Assuming edges are observed via inde-

pendent edge sampling, we formulate this problem as the – more general – set size

distribution estimation problem.

2. We quantify the Fisher information contained in a sample and use Cramér-Rao bounds

to derive lower bounds on the estimation error of the set size distribution.
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3. We show that the recoverability of original set size distributions presents a sharp

threshold with respect to the fraction of elements sampled from the sets. If this

fraction lies below the threshold, then the original set size distribution or its average

are unrecoverable. For large-scale power law networks, we need to sample more than

50% of the edges to obtain accurate estimates.

4. We show that the MLE achieves the error lower bound when the fraction of sampled

elements is above the threshold.

5. We also derive lower bounds on the estimation error of the average set size.

1.1.3 Crawling a network to find target nodes

1. We introduce selective harvesting, the problem of searching networks to find a large

a number of nodes that exhibit a specific trait as possible. We approach this problem

by learning a model from node attributes and structural properties, while subject to

a sampling budget. We show that state-of-the-art methods perform poorly in these

problems because fitting a model to observations collected by the same model erodes

performance over time, a phenomenon we dub tunnel vision effect.

2. We show that classifier diversity – i.e., alternating between several classifiers when

deciding the next node to be sampled – can severely improve performance. Classi-

fier diversity helps improve accuracy in two complementary ways. It explores more

diverse regions and thus avoids remaining in a region where target nodes have been

depleted. It also achieves training sample diversity, where diverse classifiers create

enough diversity of observations to ease the tunnel vision effect.

3. We propose the Directed Diversity Dynamic Thompson Sampling (D3TS), a new al-

gorithm for deciding which classifier from a set to use during each step of selective

harvesting. D3TS is based on Multi-Armed Bandits for non-stationary reward distri-
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butions, but in contrast to methods proposed for these problems, we enforce diversity

by preventing the algorithm from converging to the use of a single classifier.

4. We evaluate the proposed framework on several real-world networks, including two

datasets derived from donations to projects on Kickstarter.com and to projects on

DonorsChoose.com. We observe that D3TS’ matches or exceeds the performance of

the best method on each dataset.

1.2 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we present defini-

tions and review the background material needed in the following technical chapters. In

Chapter 3 we investigate the problem of characterizing directed and undirected networks

through RWs. In Chapter 4, we study – from an information-theoretic perspective – the

set size distribution estimation problem. Next, in Chapter 5, we consider the problem of

crawling a network to find target nodes by learning models from node attributes and struc-

tural properties. Last, in Chapter 6 we present some final remarks and future research

directions.
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CHAPTER 2

DEFINITIONS AND BACKGROUND

In this chapter we define terms and notation used throughout this dissertation. In ad-

dition, we provide an overview of sampling techniques for networks, which is relevant to

Chapters 2 and 3. We also present the definition of Fisher information (a measure to quan-

tify the statistical information in a sample) and explain how it relates to lower bounds on

estimation errors through the Cramér-Rao bound. This definition and relationship are rel-

evant to Chapter 3. Last, we provide an overview of Multi-Armed Bandit problems and

algorithms, which is relevant to Chapter 4.

2.1 Definitions

Let Gd = (V , Ed) be a labeled directed graph representing the network topology, where

V is a set of vertices (also called nodes) and Ed is a set of ordered pairs of vertices (u, v)

representing a connection from u to v (a.k.a. edges). We refer to an edge (u, v) as an in-

edge with respect to v and an out-edge with respect to u. The in-degree and out-degree of

a vertex u in Gd are the number of distinct edges respectively into and out of u. We assume

that each vertex in Gd has at least one edge (either an in-edge or an out-edge).

In some networks, all connections are reciprocal. In this case, we can represent such a

network as an undirected graph G = (V , E), where E is a set of unordered pairs of vertices

(u, v) representing a connection between u and v. The degree of v ∈ V , denoted by deg(v),

is the number of pairs (a, b) ∈ E such that a = v. We can also represent such a network as

a symmetric directed graph Gd, i.e., (u, v) ∈ Ed iff (v, u) ∈ Ed. In this case, the degree of

v ∈ V is defined as its in-degree or, equivalently, as its out-degree.
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Let L be a finite (possibly empty) set of vertex labels. Let L(u) ⊆ L denote the set of

labels associated with vertex u ∈ V . Each vertex u ∈ V is associated with a set of labels.

For instance, one label ` ∈ L(u) could be a country where an individual u has lived before.

A directed graph is composed of one or more strongly connected components. A

strongly connected component (SCC) is the subgraph induced by a maximal set of nodes

C, such that for every pair u, v ∈ C, there is a directed path from u to v and from v to u. If

there is a path from one SCC C to another SCC C ′, there can be no path from C ′ to C, by

definition.

An undirected graph is composed of one or more connected components. A connected

component (CC) is the subgraph induced by a maximal set of nodes C, such that for every

pair u, v ∈ C, there is a path from u to v. There is no path between two distinct CCs.

2.2 Statistical Sampling of graphs

Sampling is vital to the characterization of large volumes of data. The idea is that, when

it is impossible (or too expensive) to compute a statistic θ over the entire population which

constitutes the data, we must sample units of this population and use statistical inference to

estimate θ.

Important network characteristics include distributions related to (i) topology, such as

degree distribution, clustering coefficient distribution, distribution of pair-wise distances,

and to (ii) node traits – i.e., the fraction of individuals that have each trait. A sample is a

sequence of observations consisting of nodes or edges from the network. An estimator is

a function that takes a sequence of N observations s1, . . . , sN (sampled data) as input and

outputs an estimate θ̂ of an unknown population parameter θ (graph characteristic).

When the probability of collecting each observation can be computed, estimators such

as the Hansen-Hurwitz estimator can be used to approximate θ. Suppose θ is some aver-

age value computed over the entire population (e.g., average degree, average probability

of being from a given country, etc). For all i = 1, . . . , N , let Si denote a random vari-
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able corresponding to the i-th observation and πi, i = 1, . . . , N , denote the probability

of observing (or sampling) Si when collecting the i-th observation. The Hansen-Hurwitz

estimator is given by

T (S1, . . . , SN) =
1

N

N∑

i=1

Si
πi
. (2.1)

Note that the estimator T (S1, . . . , SN) in (2.1) is a random variable that depends on the

joint distribution of Si, i = 1, . . . , N . The most commonly used metric to assess the quality

of an estimator is the mean squared error (MSE), given by

MSE(T (S1, . . . , SN)) = E[(T (S1, . . . , SN)− θ)2], (2.2)

where the expectation is taken with respect to the joint distribution of (S1, . . . , SN). In

some cases, the MSE can be derived analytically. In others, the expectation is approximated

based on a large number of simulations using different seeds for the pseudo-random number

generator.

Another useful metric to assess estimators is the normalized root mean squared error

(NRMSE), defined as

NRMSE(T (S1, . . . , SN)) =

√
E[(T (S1, . . . , SN)− θ)2]

θ
. (2.3)

The NRMSE is especially useful when comparing estimators of statistics that differ by one

of more orders of magnitude. We consider NRMSE values as large as 1 to be acceptable

regardless of the value of θ̂.

Sampling probabilities π1, . . . , πN depend on the sampling strategy in use. The sam-

pling strategy depends, in turn, on the API available to query nodes and edges. In what

follows, we discuss several strategies for sampling networks, indicating when they can be

applied and how to compute sampling probabilities. For simplicity, we focus on undirected

networks.

10



2.2.1 Uniform Vertex Sampling

In some networks, it is possible to perform uniform vertex sampling by generating node

identifiers uniformly at random and checking whether each of them corresponds to a valid

node or not. Unfortunately, in many cases (e.g., social networks) the id space is too sparse

for this to be feasible. Uniform vertex sampling is still possible on networks that have an

API to retrieve nodes uniformly (e.g., Wikipedia).

Uniform vertex sampling is typically used when we desire to estimate characteristics of

the node population – e.g., degree distribution, fraction of nodes that have a certain node

label. In that case, πi = 1/|V| for all i = 1, . . . , N . However, if we sample a node and then

choose one of its edges uniformly as an observation, the probability of selecting an edge

that connects nodes u and v is πi = ( 1
deg(u)

+ 1
deg(v)

)/|E|.

2.2.2 Random Walk Sampling

On web graphs, we can visit a page to retrieve outgoing links to other pages. Similarly,

on some social networks, we can visit a user profile to retrieve links to her acquaintances

on the social network. In these cases, it is possible to perform a random walk (RW), a

process in which a “particle” moves from node to node in a graph by traversing edges. At

each step, the walker moves to a neighboring node chosen according to some probability

distribution. In particular, if each neighboring node is chosen with equal probability, this

process is referred as the uniform RW, or simply RW.

On an undirected graph, a RW defines a discrete time Markov chain that has steady

state when the graph consists of a single connected component and is non-bipartite. In

steady state, a RW samples edges according to a marginal distribution that is uniform on

E . Although the RW does not start in steady state and the observations it collects are not

independent, most estimators assume so (or equivalently, that RW observations come from

Uniform Edge Sampling). Therefore, the probability of traversing each edge is approxi-
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mated by πi = 1/|E|. Moreover, the probability of observing (visiting) node v ∈ V is

approximated by πi = 1/ deg(v).

2.2.3 Uniform Edge Sampling

Uniform edge sampling can be performed by sampling two nodes uniformly at random

and checking whether an edge between them exists. In practice, it can only be used on

very small networks. For each observation, the probability of sampling any given edge

is πi = 1/|E|. When we choose one of the edge’s adjacent nodes as an observation, the

probability of sampling node v is πi = 1/ deg(v).

2.2.4 Independent Edge Sampling

Independent Edge Sampling can be thought of as a thinning process where we observe

each edge from the graph with a fixed probability p. The total number of observed edges is

binomially distributed with parameters |E| and p. This sampling process is useful to model

a network where edges are hidden, but events taking place over some edges (e.g., message

exchanges) make them observable. When the events over an edge are generated according

to a homogeneous Poisson process with rate λ, the probability of observing each edge given

an observation period ∆t is given by πi ≡ p = λ∆t.

2.2.5 Other sampling strategies

Other sampling techniques have been designed for collecting a subgraph that has simi-

lar characteristics (e.g., clustering coefficient) as the original graph [39, 52]. Typically, the

probability of observing a given node or edge is unknown. These techniques are evalu-

ated via simulation and often do not provide theoretical guarantees on the distance between

measures of characteristics on the collected subgraph and on the original graph. For in-

stance, in computer networks, the software tool traceroute can be run on a computer

to sample all routers on a path between that machine and a given IP address.
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2.3 Fisher information and Cramér-Rao Bound

Fisher information is one way to measure the statistical information contained in an

observable random variable X about an unknown parameter θ that models the distribution

of X . Let f(X; θ) be the likelihood function for θ, i.e., the probability density of the

random variable X conditional on the value of θ. The Fisher information J(θ) is defined

as the variance of the score function. The score function is the gradient of the natural

logarithm of f(X; θ) w.r.t. parameter θ. Under weak regularity conditions [89, Chapter

2], the expected value of the score function is zero. Hence, the Fisher information is the

second moment of the score, expressed as

J(θ) = E

[(
∂

∂θ
log f(X; θ)

)2
∣∣∣∣∣θ
]
, (2.4)

where the expectation is taken with respect to the distribution of X given θ, i.e., f(X; θ).

The score function indicates how sensitively f(X; θ) depends on its parameter θ. When

θ = (θ1, . . . , θW ) is a vector, the Fisher information J(θ) is a matrix where its elements are

given by

(J(θ))i,j = E

[(
∂

∂θi
log f(X; θ)

)(
∂

∂θj
log f(X; θ)

) ∣∣∣∣∣θ
]
. (2.5)

The Cramér-Rao Bound relates the Fisher information to the estimation error of any

unbiased estimator T (X) = (T1(X), . . . , TW (X)):

covθ(T (X)) � (J(θ))−1, (2.6)

where covθ(T (X)) � (J(θ))−1 indicate that covθ(T (X)) − (J(θ))−1 is a positive semi-

definite matrix. From Threorem 5 in [42, Appendix A1.1.4], this implies that

(covθ(T (X))ii = var(Ti(X)) ≥ ((J(θ))−1)ii. (2.7)
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2.4 Multi-Armed Bandits problems and algorithms

In Multi-Armed Bandit (MAB) problems, a forecaster is given a number of arms (or

actions) K and a number of rounds T . For each round t, nature generates a payoff vector

rt = (r1,t, . . . , rK,t) ∈ [0, 1]K unobservable to the forecaster.1 The forecaster chooses an

arm It ∈ 1, . . . , K and receives payoff rIt,t, with the other payoffs hidden. The goal is to

maximize the cumulative payoff obtained.

MAB problems can be classified according to how the payoff vector is generated. In

stochastic bandit problems, each entry ri,t in the payoff vector is sampled independently,

from an unknown distribution νi, regardless of t. In adversarial bandit problems, the payoff

vector rt is chosen by an adversary which, at time t, knows the past, but not It. A popular

algorithm for adversarial bandits is Exp3 (exponential-weight algorithm for exploration

and exploitation) [7]. In essence, Exp3 selects an arm It probabilistically according to a

weight vector, receives the reward associated to pulling It at time t and updates the weight

of It proportionally to the observed reward scaled by the probability of selecting It. Exp3.P

is a variant of Exp3 proposed by the same authors to offer better guarantees.

Stochastic and adversarial bandits do not cover the entire problem space, as the payoff

vector distribution may vary over time in a less arbitrary way than in adversarial bandits. In

stochastic bandit problems with non-stationary distributions or dynamic bandit problems,

the mean payoff vector can evolve according to random shocks or change at pre-determined

points in time.

MAB problems may also include context, which provides the forecaster with side-

information about the optimal action at a given step. In contextual bandits, a context xa,t

is drawn (from some unknown probability distribution) for each action a ∈ At available

in step t. The context may be provided explicitly or through recommendations of a set of

experts. The recommendation is given as a probability distribution over the set of possible

1In general, rewards can be normalized to be in [0, 1].
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actions. Auer et al. [7] proposes Exp4 (exponential-weight algorithm for exploration and

exploitation using expert advice) to address this setting. Recommendations are combined

proportionally to weights assigned to each expert. The observed reward is rescaled by the

probability that the action is taken and experts weights are updated proportionally to the

probability that each model select that node. Exp4.P is a variant of Exp4 proposed in [13]

for which the same regret bounds hold with high probability. In [55], the authors propose

LinUCB, a method that learns how to score actions assuming a linear relationship between

the contexts and the observed payoffs. In [49], the authors propose the Epoch-Greedy algo-

rithm, which has worse regret bounds than Exp4. However, when the number of hypotheses

is infinite (but with finite VC-dimension) it has regret bounds, while Exp4 does not.

In Restless Bandits problems [92], each arm has an internal state that evolves according

to an independent Markov chain. Even arms that were not pulled at time t make state

transitions and output payoffs. The transition probability matrix and payoff may depend

on whether the arm was pulled or not. The arm state is either observed or estimated after

being pulled. Existing algorithms for Restless Bandits assume that the Markov chain that

describes an arm is irreducible and composed by a few states.
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CHAPTER 3

CHARACTERIZING DIRECTED AND UNDIRECTED
NETWORKS VIA MULTIDIMENSIONAL WALKS WITH JUMPS

3.1 Introduction

A number of studies [15,18,22,29,47,52,54,62,71,73,90] are dedicated to the charac-

terization of complex networks. A complex network is a network with topological features

that do not occur in simple networks such as lattices or random networks. Examples of such

networks include the Internet, the Web, social, business, and biological networks. Charac-

terizing a network consists of computing or estimating a set of statistics that describe the

network. In this chapter we model a complex network as a directed or undirected graph

with labeled vertices. A label can be, for instance, the degree of a vertex or, in a social net-

work setting, someone’s hometown. Label statistics (e.g., average, distribution) are often

used to characterize a network.

Characterizing a network with respect to its labels requires querying vertices and/or

edges; associated with each query is a resource cost (time, bandwidth, money). For exam-

ple, information about web pages must be obtained by querying web servers while subject

to a maximum query rate. Characterizing a large graph by querying the entire graph is often

too costly. Even if the network is stored on disk it may constitute several terabytes of data.

As a result, researchers have turned their attention to estimation of graph characteristics

based on incomplete (sampled) data.

Simple strategies such as uniform vertex and uniform edge sampling possess desirable

statistical properties: the former yields unbiased samples of the population and the bias

introduced by the latter is easily removed. However, these strategies are often rendered

16



unfeasible because they require either a directory containing the list of all vertex (edge)

ids, or an API that allows uniform sampling from the vertex (edge) space. Even when the

space of possible vertex (edge) ids is known, its occupancy is usually so low that querying

randomly generated ids is expensive. An alternate, cheaper, way to sample a network is

via a random walk (RW). A RW samples a graph by moving a particle (walker) from a

vertex to a neighboring vertex. It is applicable to any graph where we can query the edges

connected to a given vertex. Furthermore, RWs share some of the desirable properties of

uniform edge sampling (i.e., easy bias removal, accurate estimation of characteristics such

as the tail of the degree distribution).

On one hand, a great deal of research has focused on designing sampling methods

for undirected graphs using RWs [33, 71]. Ribeiro and Towsley proposed Frontier Sam-

pling (FS), an n-dimensional random walk that uses n coupled random walkers [77]. This

method yields more accurate estimates than the uniform RW and also outperforms the use

of n independent walkers. In the presence of disconnected or loosely connected compo-

nents, FS is even better suited than the uniform RW and independent RWs to sample the

tail of the degree distribution of the graph. On the other hand, few works have focused on

developing tools for characterizing directed graphs in the wild. A graph is said to be di-

rected when edges are not necessarily reciprocated. Characterizing directed graphs through

crawling becomes challenging when only outgoing edges from a node are visible (incoming

edges are hidden): unless all vertices have a directed path to all other vertices, a walker will

eventually be restricted to a (strongly connected) component of the graph. Furthermore,

classic RWs incur biases that can only be removed by conditioning on the entire graph

structure. Ribeiro et al. addressed these issues by proposing the Directed Unbiased Ran-

dom Walk (DURW), a random walk sampling technique that performs degree-proportional

jumps to obtain asymptotically unbiased estimates of the distribution of vertex labels on a

directed graph [76].
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Figure 3.1. Comparison between proposed method (DUFS) and previous state-of-the-
art respectively for visible and for invisible incoming edges scenarios; (a) NRMSE ratios
between DUFS (w = 1, b = 10) and FS (b = 10) of the estimated joint in- and out-
degree distribution on the soc-Slashdot0902 dataset; (b) NRMSEs associated with DUFS
and DURW of the estimated out-degree distribution on the livejournal-links dataset.

In this chapter, we propose Directed Unbiased Frontier Sampling (DUFS), which gen-

eralizes the FS and the DURW algorithms. Building on ideas in [76], we extend Frontier

Sampling to allow the characterization of a network regardless of whether it is undirected,

directed with observable incoming edges, or directed with unobservable incoming edges.

DUFS matches or exceeds the performances of FS and DURW. This is illustrated in Fig-

ure 3.1. Simulation setup and datasets will be described in Section 3.5.1. 1

3.1.1 Contributions

Our main contributions are as follows:

1. Directed Unbiased Frontier Sampling (DUFS): we propose a new algorithm based on

multiple coordinated random walks that extends Frontier Sampling (FS) to directed

networks. DUFS generalizes FS [77] and DURW [76].

1In the figure caption, w and b are DUFS parameters corresponding to random jump weight and budget
per walker.
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2. More accurate estimator for vertex label distribution: the original estimator of vertex

label distribution proposed for FS is based only on the observations collected during

the walks. We introduce a new estimator that combines observations from initial

walker locations with those made during the walks to produce better estimates. We

show that these initial locations provide a valuable source of information regarding

vertex labels associated with large probability masses.

3. Practical recommendations: we investigate the impact of the number of walkers and

the probability of jumping to an uniformly chosen vertex (controlled via a parameter

called random jump weight) on DUFS estimation errors, given a fixed sampling bud-

get. By increasing the number of walkers the sequence of traversed edges approaches

the uniform distribution faster, but this also increases the fraction of the budget spent

to place the walkers in their initial locations. Moreover, increasing the random jump

weight favors sampling vertex labels with large probability masses, which translates

into more accurate estimates of the probability mass of these labels, but worse esti-

mates for those in the tail. We study these trade-offs through simulation and propose

guidelines for choosing DUFS parameters.

4. Comprehensive evaluation: we compare DUFS against other random walk-based

methods w.r.t. estimation errors when applied on directed networks, both when in-

coming edges are directly observable and when they are not. When in-edges are

observable, in addition to evaluating their performance in estimating the marginal

in-degree and out-degree, distribution, some graph properties evaluated in previous

works, we evaluate DUFS performance on estimating joint in- and out-degree distri-

butions.

3.1.2 Outline

The estimation problem is stated in Section 3.2. In Section 3.3, we review FS and

DURW algorithms. In Section 3.4, we propose the Directed Unbiased Frontier Sampling
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(DUFS) algorithm (along with some estimators), which generalizes the previous methods.

We investigate the impact of DUFS parameters on estimation accuracy in Section 3.5 and

then provide practical guidelines on how to set them. A comparison with other random

walk techniques is also provided. Section 3.6 discusses the NRMSE behavior on power

law networks, DUFS’ stopping criterion and the performance of DUFS in the absence of

an API for obtaining uniform vertex samples. We discuss some related work and present

our conclusions in Sections 3.7 and 3.8, respectively.

3.2 Problem Statement

Let Gd = (V , Ed) be a directed graph representing the network topology.2 Let θ`, for

` ∈ Lv be the fraction of nodes in V that is associated with label `. The problem of

estimating the node label distribution consists of estimating θ = {θ`}`∈Lv from a set of

observations. In this chapter, a set of observations consists of a set of uniform vertex

samples and a set of vertices visited by RWs. There is a cost associated with a RW step,

which is set to be 1. When sampling is done through uniform vertex sampling, the cost is

taken to be c ≥ 1 (typically larger). The cost c represents the difficulty of obtaining a valid

node by querying randomly generated node ids. For instance, if only 5% of the id space is

populated, c = 20. Sampling costs are taken off a budget denoted by B.

3.2.1 Input scenarios

When performing a RW, we assume that a walker retrieves the out-edges of the node

where it resides by performing a query and that vertices are distinguishable. We define two

scenarios depending on whether the walker can also retrieve in-edges. In the first scenario

(both out- and in-edges can be retrieved) it is possible to move the walker over any edge

regardless of the edge direction (if the edge is (u, v) ∈ Ed a walker can move from u to

2Undirected networks can also be represented this way by replacing each undirected edge with two di-
rected edges.
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v and from v to u). In this case, the walker can be seen as moving over G = (V , E),

an undirected version of Gd, i.e., E = {(u, v) : (u, v) ∈ Ed ∨ (v, u) ∈ Ed}. Define

deg(v) = |{(u, v) : (u, v) ∈ E}|. Let vol(S) =
∑
∀v∈S deg(v), ∀S ⊆ V , denote the

volume of the set of vertices in S ⊆ V .

In the second scenario (only out-edges are directly observable), we can build on-the-fly

an undirected graph Gu based on the out-edges that have been sampled. Details on how to

construct Gu will be presented in the following sections. For now, note that Gu is not an

undirected version of Gd as some of the in-edges of a node may not have been observed.

By moving the walker over Gu – possibly traversing edges in Gd in the opposite direction

– we can compute its stationary behavior and thus, remove the bias by accounting for the

probability that each observation appears in the sample.

3.3 Background

In what follows, we review a representative RW-based method proposed for each of

the two scenarios proposed in Section 3.2. First, we describe Frontier Sampling [77],

an algorithm that relies on n coupled random walks. This technique can be applied to

undirected graphs and to directed graphs provided that both incoming and outgoing edges

at a node are observable. Then, we describe the Directed Unbiased Random Walk [76], an

algorithm that adapts a single random walk to directed graphs when incoming edges are not

directly observable. The goal of these methods is to obtain samples from a graph, which

are then used for inferring graph characteristics via an estimator.

Although not required, in the first scenario, it is useful to keep track of the observed

graph during the sampling process. Storing information about visited nodes in memory

saves resources that would be consumed to query those nodes in subsequent visits – i.e.,

revisiting a node has no cost. In the second scenario, we need to store a variant of the

observed graph. This variant will be described in Section 3.3.2. As the budget B grows

larger, the space needed to store the observed graph tends to O(Bd̄), where d̄ is the average
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Algorithm 1 Frontier Sampling (uniform vertex sampling cost c, budget per walker b)
1: n← B/(c+ b)
2: i← 0 {i is step counter}
3: Initialize L = (v1, . . . , vn) with n randomly chosen vertices (uniformly)
4: do
5: Select u ∈ L with probability deg(u)/

∑
∀v∈L deg(v)

6: Select an edge (u, v), uniformly at random
7: Replace u by v in L and add (u, v) to sequence of sampled edges
8: i← i+ 1
9: while i ≥ B − nc

out-degree of the underlying graph. For small values of B, the space complexity depends

on how the average degree of the observed graph grows with the number of samples and is

left for future investigation.

3.3.1 Frontier Sampling: a multidimensional random walk for undirected networks

In essence, Frontier Sampling (FS) is a random walk-based algorithm for sampling

and estimating characteristics of an undirected graph. FS performs n coordinated random

walks on the graph. One of the advantages of using multiple walkers is that they can cover

multiple connected components (when they exist), while a single walker is restricted to

one component in the absence of a random jump or restart mechanism. However, when

random walks are independent (not coordinated) the number of samples obtained from a

component is proportional to the number of walkers in that component. Therefore, the

probability of sampling an edge in steady state will differ for different components, unless

the number of walkers in each component is set to be proportional to its volume. Unfortu-

nately, initializing the walkers in such a way requires knowing the component volumes in

advance, which cannot be done in practice. By coordinating multiple random walkers, FS

is able to sample edges uniformly at random in steady state regardless of how the walkers

are initially placed.

Algorithm 1 describes FS. There are two parameters, the initial cost of placing a walker

c ≥ 1 and the average number of new nodes sampled by a walker b. The initial walker
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Figure 3.2. Illustration of the Markov chain associated to FS with dimension n = 2
(adapted from [77]).

locations are chosen uniformly at random over the vertex set. Note that the number of

walkers is taken to be n = bB/(c+ b)c, that the cost of taking a random walk step is one

(except for previously sampled nodes) and that the cost of initially placing a walker, c, can

be greater than one because uniform vertex sampling is often expensive. FS maintains a

list L of n vertices representing the locations of the n walkers. At each step, a walker is

chosen from L in proportion to the degree of the node where it is currently located. The

walker then moves from u to an adjacent vertex v.

The Frontier sampling process is equivalent to the sampling process of a single random

walk over the n-th Cartesian power of G, Gn = (Vn, En), where

Vn = {(v1, . . . , vn) | v1 ∈ V ∧ · · · ∧ vn ∈ V}

is the n-th Cartesian power of V . For all v,u ∈ Vn, (v,u) ∈ En if there exists an index

i ∈ {1, . . . , n} such that (vi, ui) ∈ E and uj = vj for j ∈ {1, . . . , n}/{i} [77, Lemma 5.1].

For this reason, Frontier Sampling can be thought of as an n-dimensional random walk (see

Fig. 3.2).

Let Lt = (v1, . . . , vn) denote the state of FS before the t-th step, t = 1, . . .. Theorem

3.3.1 establishes key statistical properties of Frontier Sampling. A more complete version

of this theorem is presented and proved in [77, Theorem 5.2].
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Theorem 3.3.1. Recall that G is an undirected graph. If G is connected and non-bipartite,

then the stationary behavior FS exhibits the following properties:

(I) sampled edges form a stationary sequence and their marginal distribution is uniform

on E ,

(II) L∞ = (v1, . . . , vn) has the unique distribution

πv =

∑n
i=1 deg(vi)

n|V|n−1vol(V)
, for v ∈ Vn.

Using FS samples to estimate vertex label distributions is simple when the input corre-

sponds to the first scenario described in Section 3.2. The probability of sampling a given

node is proportional to its undirected degree in G. Hence, each sample must be weighted

inversely proportional to the respective node’s undirected degree. Storing the undirected

version of the observed graph along with labels associated with sampled nodes allows the

sampler to avoid having to pay the cost of revisiting a node.

Conversely, when incoming edges are not observed, there is a less straightforward way

to adapt Frontier Sampling, which we propose in Section 3.4.

3.3.2 Directed Unbiased Random Walk: a random walk adapted for directed net-

works with unobservable in-edges

The presence of hidden incoming edges but observable outgoing edges makes charac-

terizing large directed graphs through crawling challenging. Edge (u, v) is a hidden incom-

ing edge of node v if (u, v) can only be observed from node u. For instance, in Wikipedia

we cannot observe the edge (“Columbia Records”, “Thomas Edison”) from Thomas Edi-

son’s wiki entry (but this edge is observable if we access the Columbia Records’s wiki

entry).

These hidden incoming edges make it impossible to remove the bias incurred by walk-

ing on the observed graph, unless we crawl the entire graph. Moreover, there may not
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even be a directed path from a given node to all other nodes. Graphs with hidden outgoing

edges but observable incoming edges exhibit essentially the same problem. In [76], we

proposed the Directed Unbiased Random Walk (DURW) algorithm, which obtains asymp-

totically unbiased estimates of vertex label densities on a directed graph with unobservable

incoming edges. Our random walk algorithm resorts to two principles to achieve unbiased

samples and reduce variance:

• Backward edge traversals: in real-time we construct an undirected graph Gu using

the nodes that are sampled by the walker on the directed graph Gd. The role of the

undirected graph is to guarantee that, at the end of the sampling process, we can ap-

proximate the probability of sampling a node, even though in-edges are not observed.

The random walk proceeds in such a way that its trajectory on Gd is consistent with

that of a random walk on Gu. The walker is allowed to traverse some of the edges

in Gd in a reverse direction. However, we prevent some of the observed edges to be

traversed in the reverse direction by not including them in Gu. More precisely, once

a node v is visited at the i-th step, no in-edges to v observed at step j > i (by visiting

nodes w such that (w, v) ∈ Ed) are added to Gu. This restriction leads to Lemma 3.1

below. The fact that the degree of visited nodes in Gu remains fixed is an important

feature to reduce the random walk transient and thus, reduce estimation errors.

• Degree-proportional jumps: the walker makes a limited number of random jumps

to guarantee that different parts of the directed graph are explored. In DURW, the

probability of randomly jumping out of a node v, ∀v ∈ V , is w/(w + deg(v)),

w > 0. This modification is based on the following observation: let Gu be a weighted

undirected graph formed by adding a virtual node σ such that σ is connected to all

nodes in V with edges having weight w. All remaining edges have unit weight. In

a weighted graph a walker transverses a given edge with probability proportional to

the weight of this edge. The steady state probability of visiting a node v on Gu is
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(w + deg(v))/(vol(V) + w|V|). Similar to the cost of placing a FS walker through

uniform vertex sampling, each random jump incurs cost c.

Lemma 3.1. The degree of a node v in Gu does not change after v is visited by the first

walker.

The proof follows by definition from the backward edge traversal principle.

3.3.2.1 The DURW algorithm

DURW is a random walk over a weighted undirected connected graph Gu = (V , Eu),

which is built on-the-fly. We build an undirected graph using the underlying directed graph

Gd = (V , Ed) and the ability to perform random jumps. Let G(i) = (V , E (i)) denote the

undirected graph constructed by DURW at step i, where V is the node set and E (i) is the

edge set. Denote by Gu ≡ limi→∞ G(i). In what follows we describe the construction of

G(i).

Let N (v) denote the set of out-edges of a node v in Gd. To simplify our exposition, we

include a virtual node σ in the constructed graph, which represents a random jump. Let

S(i) = {s1, . . . , si} be the set of nodes from V ∪ {σ} sampled by the random walk up to

step i, where sj denotes the node on which the walker resides at step j. The walker starts

at node s1 ∈ V . We initialize G(1) = (V , E (1)), where E (1) = N (s1) ∪ {(u, σ) : ∀u ∈ V},

where {(u, σ) : ∀u ∈ V} is the set of all undirected virtual edges to node σ. Let

W (u, v) =





w, if u = σ or v = σ

1, otherwise

denote the weight of edge (u, v), ∀(u, v) ∈ E (i). The next node, si+1, is selected from

E (i) with probability W (si, si+1)/
∑
∀(si,v)∈E(i) W (si, v). In case the selected node is σ, the

walker immediately moves to a node v uniformly chosen from V , which then becomes si+1.
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These two node selections (σ and v) altogether incur cost c. Upon selecting si+1 we update

G(i+1) = (V , E (i+1)), where

E (i+1) = E (i) ∪N ′(si+1) , (3.1)

and

N ′(si+1) = {(si+1, v) : ∀(si+1, v) ∈ N (si+1) s.t. v 6∈ S(i)}

is the set of all edges (u, v) in N (si+1) where node v /∈ S(i). Note that N ′(si+1) ⊆

N (si+1). By using N ′(si+1) instead of N (si+1) in equation (3.1) we guarantee that no

node in S(i) changes its degree, i.e., ∀v ∈ S(i) the degree of v in G(i) is also the degree of v

in Gu. Thus, we comply with the requirement that once a node v, ∀v ∈ V , is visited by the

RW no edge can be added to Gu with v as an endpoint.

In the actual implementation, it is only necessary to keep track of nodes in S(i) ∪
⋃
v∈S(i)\{σ}N (v) and the edges in Ed leaving each node v ∈ S(i) \ {σ}. In fact, while

the virtual node σ is connected to all nodes in V , the sampler does not have access to the

identities of nodes other than the ones that were already observed. In order to estimate ver-

tex label distributions from DURW observations, we weight samples in proportion to the

reciprocal of the probability that the corresponding vertices are visited by a random walk

in Gu, in steady state. Storing the labels associated with nodes in S(i) \ {σ} saves the cost

of querying repeated nodes.

3.4 Generalizing FS: a new method applicable regardless of in-edges

visibility

This section is divided into two parts. In Section 3.4.1 we propose the Directed Un-

biased Frontier Sampling (DUFS) method, which generalizes FS to allow estimation on

directed graphs with unobservable in-edges (second scenario described in Section 3.2).

DUFS also generalizes DURW to provide the benefits obtained from using multiple cou-
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pled walkers. DURW is a special case of DUFS where the number of walkers is one. Next,

in Section 3.4.2, we describe two ways to estimate node label distributions from DUFS

samples. The first ignores observations from the initial walker placement and uses only

on observations collected during the random walks. The second estimator leverages the

information contained in the initial walker locations in addition to subsequent walker steps.

3.4.1 Directed Unbiased Frontier Sampling

Like FS, Directed Unbiased Frontier Sampling (DUFS) samples a network through n

coordinated walks. Similar to DURW, it constructs an undirected graph Gu = (V , Eu) in

real-time that allows backward edge traversals. Denote by G(i) = (V , E (i)) the undirected

graph constructed by DUFS at step i. At each step, it selects a walker in proportion to the

degree of the node where it currently resides. After a walker visits vertex u ∈ V for the first

time, DUFS includes all out-edges from u in G(i), except the ones that can cause walkers

to have a view of the graph that is inconsistent with the view at a previous point in time.

In other words, when node u is visited for the first time at step i, u is inserted in G(i) along

with all edges (u, v) ∈ Ed such that v has not been sampled. Thus, the degree of u is fixed

in G(j), for all j ≥ i.

It may seem that there is no need to include degree-proportional jumps to visit different

graph components when a large number of walkers are initially spread throughout the graph

(e.g., on vertices chosen uniformly at random). However, including degree-proportional

jumps in DUFS is still beneficial because it prevents walkers from being trapped when

initially located on vertices whose out-degree is zero. More generally, it allows walkers

to move from small volume to large volume components and, hence, obtain more samples

among large degree nodes.

Algorithm 2 gives a high-level pseudo-code description of DUFS. At each step i, DUFS

needs to keep track of G(i) for i = 1, . . .. In the extreme case where n = B/c, walkers are

initialized but no budget is left to perform steps (i.e., b = 0). Thus, DUFS degenerates to
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Algorithm 2 Directed Unbiased Frontier Sampling (budget per walker b, random jump
weight w)

1: n← B/(c+ b) . n is the number of walkers
2: i← 0 . i is the current number of steps
3: Initialize L = {v1, . . . , vn} with n randomly chosen vertices (uniformly)
4: do
5: Select v ∈ L with probability w+deg(v)

nw+
∑

∀vj∈L
deg(vj)

6: Sample p ∼ Uniform(0, 1)
7: if p < w

w+deg(v)
then

8: Select a vertex v ∈ V uniformly at random
9: else

10: Select an outgoing edge of v, (v, v′), uniformly at random
11: Replace v by v′ in L and add (v, v′) to sequence of sampled edges
12: i← i+ 1

13: while i ≥ B − nc

uniform vertex sampling. When the underlying graph is symmetric and the jump weight is

w = 0, it becomes FS.

3.4.2 Vertex Label Distribution Estimation

In this section we describe two estimators of vertex label distributions from samples

obtained by DUFS. The same estimators also apply to FS and DURW samples. For a

description of estimators of edge label distribution and other graph characteristics, please

refer to [77].

3.4.2.1 The edge-based estimator

Let si denote the i-th node visited by DUFS, i = 1, . . . . Let θ` denote the fraction of

nodes in V with label ` ∈ L. The steady state probability of sampling node v in G(t) is

given by

π(v) =
w + deg(v)

|V|w +
∑

u∈V deg(u)
, ∀v ∈ V ,

where deg(v) is the degree of v in G(t). The vertex label distribution is estimated at t as

θ̂` =
1

n

t∑

i=1

1{` ∈ L(v)}
π̂(si)

, ` ∈ L, t = 1, . . . , (3.2)
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where 1{P} takes value one if predicate P is true and zero otherwise, and π̂(si) is an

estimate of π(si): π̂(si) = (w + deg(si))S . Here

S =
1

t

t∑

i=1

1

w + deg(si)
. (3.3)

The following theorem states that π̂(si) is asymptotically unbiased.

Theorem 3.2. π̂(si) is an asymptotically unbiased estimator of π(si).

Proof. To show that π̂(si) is asymptotically unbiased, we first note that the limit limt→∞ E (t) =

E (∞) exists, since it visits all vertices w.h.p., after which no additional edges are included.

We then invoke Theorem 4.1 of [77], yielding limt→∞ S = |V|/(|E (∞)| + |V|w) almost

surely. Thus, limt→∞ π̂(si) = π(si) almost surely. Taking the expectation of (3.2) in the

limit as t→∞ yields E [limt→∞ θ̂`] = θ`,which concludes our proof. �

3.4.2.2 The hybrid estimator: leveraging information from initial walker locations

Note that the estimator presented in (3.2) does not make use of information associated

with the initial set of nodes on which the walkers are placed. When the number of walkers

is large this results in the loss of a considerable amount of statistical information. How-

ever, including these observations is challenging because subsequent observations from

RW steps are not independent of the initial observations. Moreover, the normalizing con-

stant for the random walk observations is no longer given by (3.3), since the degree distri-

bution estimates also depend on the information contained in the random vertex samples.

In this section, we derive a new estimator that circumvents these problems by approxi-

mating the likelihood of random walk samples by that associated with uniform edge sam-

pling. We call it the hybrid estimator because it combines observations from initial walker

locations and the random walks. The hybrid estimator significantly improves the estimation

accuracy for labels associated with large probability masses.
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For simplicity, assume that each vertex has exactly one label. Let us index the ver-

tex labels L from 1 to W , where W = |L|. Denote the vertex label distribution by

θ = (θ1, . . . , θW ). Let ni denote the number of walkers starting on label i nodes and

mi,j the number of subsequent observations of nodes that have label i and undirected de-

gree j. We approximate random walk samples in DUFS by uniform edge samples from

Gu. Denote by Z the maximum undirected degree in the underlying graph G. Experi-

ence from previous studies shows us that this approximation works very well in prac-

tice. Hence, the likelihood function given the samples n = {ni : i = 1, . . . ,W} and

m = {mi,j : i = 1, . . . ,W and j = 1, . . . , Z} is expressed as

L(θ|n,m) =

∏
i θ

ni
i

∏
k((w + k)θi,k)

mi,k

(∑
s,t(w + t)θs,t

)M . (3.4)

The maximum likelihood estimator θ? is the value of θ that maximizes (3.4) subject to

0 ≤ θi ≤ 1 and
∑

i θi = 1. This defines a constrained non-convex optimization problem.

We transform this optimization problem into an unconstrained non-convex problem using

the reparameterization θi = eβi/
∑

k e
βk for i = 1, . . . ,W . As shown in Appendix A, the

partial derivatives of the resulting objective function are given by

∂L(β|n,m)

∂βi
= ni +mi −

Neβi∑
j e

βj
− Meβimi/µi∑

s e
βsms/µs

, i = 1, . . . ,W, (3.5)

where mi =
∑

kmi,k and µi =
∑

kmi,k/(w+k). Setting one of the variables to a constant

(say, βW = 1) for identifiability and then using the gradient descent procedure to change

the remaining variables according to (3.5) is guaranteed to converge provided that we make

small enough steps. However, there is no guarantee that it converges to the true global

maximum.

An interesting interpretation of (3.5) is obtained by setting the derivatives to zero and

substituting back θi = eβi/
∑

k e
βk :
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θ?i =
ni +mi

N +M mi/µi∑
s θ
?
sms/µs

, i = 1, . . . ,W. (3.6)

According to (3.6), the estimated fraction of nodes with label i is the total number of

times label i was observed (i.e., ni + mi) normalized by sum of (i) the number of uniform

vertex samples and (ii) the number of uniform edge samples weighted by the probability

of sampling label i from one uniform edge sample. In the limit as N and M go to infinity,

we can show that θ? = θ is a solution, but we cannot prove that it is unique or that θ?

converges to θ. Hence, we cannot prove that θ? is asymptotically unbiased.

The system of non-linear equations determined by (3.6) cannot be solved directly, but

can be estimated by Expectation Maximization (EM). In this case, the term
∑

s θ
?
sms/µs

in the denominator is replaced by its expected value given θi’s from the previous iteration.

Based on the same idea, if we replace
∑

s θ
?
sms/µs with an edge sampled-based estimator

d̂, we obtain the following non-recursive variant of the hybrid estimator,

θ̂i =
ni +mi

N +M mi
µid̂

, i = 1, . . . ,W, (3.7)

where d̂ = M/(
∑

i µi). Theorem 3.4.1 below states the conditions under which θ̂i is

asymptotically unbiased (see Appendix A for proof). In practice, we find no significant

difference between θ?i and θ̂i, except when the number of walkers N is very large and the

jump weight w is very small. For those cases, θ?i tends to be slightly more accurate than θ̂i

for small values of i, which in some applications may justify the additional computational

cost of executing gradient descent or EM.

Theorem 3.4.1. Let N = αB and M = (1 − α)B, for some 0 < α < 1. In the limit as

B →∞, θ̂i is an unbiased estimate of θi.

In the special case where the label is the undirected degree itself, we have µi = mi/(w+

i). Hence, eq. (3.7) reduces to
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θ̄i =
ni +mi

N +M(w + i)/d̂
, (3.8)

where d̂ is the estimated average degree. When the average degree is known, we can show

that θ̄i is the minimum variance unbiased estimator (MVUE) of θi (see Appendix A for

proof).

When ni > 0 but mi = 0, the estimator in eq. (3.7) reduces to θ̂i = ni/N , which

is essentially the MLE for uniform vertex sampling. It is well known that this estimator

is not nearly as accurate as a RW-based estimator for large out-degree values with small

probability mass. In some sense, the estimator θ̂i = ni/N does not account for the fact that

the number of RW samples is zero. As a result, mass estimates for large out-degrees tend

to have very large variance when no RW samples are observed. Fortunately, we find that

the following heuristic rule can drastically reduce the estimator variance in these cases.

3.4.2.3 Variance reduction rule

If no uniform edge samples are observed for out-degree i, we set the estimate θ̂i = 0.

This implies that we ignore any uniform vertex samples seen of nodes that have out-degree

i. While this obviously results in a biased estimate, as the budget per walker b goes to

infinity, the probability that this rule is invoked goes to zero. Hence, this rule produces

an asymptotically unbiased estimate. This rule can be interpreted as a combination of

vertex-based and edge-based estimates in proportion to the reciprocals of their estimated

variances. That is, when no uniform edge samples are observed for a given out-degree,

the corresponding estimated variance is zero and hence, uniform vertex samples should be

ignored. We note that the converse rule (i.e., setting θ̂i = 0 if no uniform vertex samples

were observed) would not perform well, as the probability of sampling large out-degrees

with uniform vertex sampling is very small.

We simulate DUFS on several datasets and compare the results obtained with the hybrid

estimator when the rule is used and when it is not. Simulation details and datasets will

be described in Section 3.5.1. Figures 3.3(a-b) show typical results of the impact of the
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Figure 3.3. (visible in-edges) Effect of variance reduction rule on NRMSE, when B =
0.1|V| and c = 1. Using information contained in uniform vertex samples can increase
variance for large out-degree estimates. However, the proposed rule effectively controls for
that effect without decreasing head estimates accuracy.

rule when estimating out-degree distributions using DUFS in conjunction with the hybrid

estimator on two network datasets (averaged over 1000 runs). The results show that the rule

consistently reduces estimation error in the distribution tail without affecting estimation

quality for small values of i.

3.4.2.4 In-degree distribution: impossibility result

The fact that long random walks are often approximated by uniform edge sampling

brings up the question of whether they can be used to estimate in-degree distributions

when the in-degree is not observed directly. Under uniform edge sampling, the number

of observed edges pointing to a node is binomially distributed and a maximum likelihood

estimator can be derived for estimating the in-degree distribution. This problem is related

to the set size distribution estimation problem, where elements are randomly sampled from

a collection of non-overlapping sets and the goal is to recover the original set size distri-

bution from samples. In addition to in-degree distribution in large graphs, this problem is

related to the uncovering of TCP/IP flow size distributions on the Internet.
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We investigate this problem in Chapter 4, where we derive error bounds for the set

size distribution estimation problem from an information-theoretic perspective. The re-

coverability of original set size distributions present a sharp threshold with respect to the

fraction of elements sampled from the sets. If this fraction lies below the threshold, typ-

ically half of the elements in power-law and heavier-than-exponential-tailed distributions,

then the original set size distribution is unrecoverable.

3.5 Results

This section is divided into three parts. First, we investigate the impact of DUFS pa-

rameters on estimation accuracy. We then compare DUFS against other random walk-based

methods when both outgoing and incoming edges are visible. Finally, we perform a similar

comparison when only out-edges are visible. We refer to the edge-based estimator defined

in (3.2) and the hybrid estimator defined in (3.6) as E-DUFS and H-DUFS respectively.

In our evaluation, we simulate each method on 15 datasets taken from the Stanford

SNAP repository [53] that describe topologies of different directed networks. These datasets

correspond to a variety of social networks, communication networks, web graphs, one In-

ternet peer-to-peer networks and one product co-purchasing networks. We find it informa-

tive to extract the largest strongly connected component of each network and to apply our

methods to the resulting datasets, which we refer to as LCC datasets. Figure 3.4 shows

the out-degree probability mass function (p.m.f.) for each network, along with the out-

degree p.m.f. for the corresponding LCC dataset. We opt to show the p.m.f. instead of

the complementary cumulative distribution function (CCDF) because the estimation task

in this chapter is defined in terms of the p.m.f.’s. Defining the estimation task in terms of

the CCDF would give H-DUFS an unfair advantage, as we will see in Section 3.5.2.

Simulations consist of sampling the graph until a budget B = 0.1|V| (i.e., 10% of the

number of vertices) is depleted. Note that budget is decremented when walkers are initially

placed and each time one of them moves to a vertex and when they perform random jumps.
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We construct an undirected graph in the background throughout each simulation. As a

result, we assume that the cost to revisit a vertex is zero, even if this visit occurs due to a

random jump.3

When both outgoing and incoming edges are observable, random walks disregard edge

direction, and move as if the network was undirected. In this scenario, we focus either on

the estimation of the marginal out- and in-degree distributions or the joint distribution. The

methods we investigate here can be used to estimate other node label distributions. For

instance, if the underlying network is undirected, we can estimate the (undirected) degree

distribution or even non-topological properties, such as the distribution of user national-

ities in a social network. In the light of the impossibility results described in the end of

Section 3.4.2, we focus on out-degree distribution estimation when incoming edges are not

directly observable.

In the case of marginal in-degree (out-degree) distribution, we refer to in-degrees (out-

degrees) smaller than the average as the head of the distribution. We refer to the top 1%

largest in- (out-degree) values as the tail of the distribution.

3.5.1 Impact of DUFS parameters and practical guidelines

To provide some intuition on how the random jump weight w and the budget per walker

b affect the accuracy of DUFS estimates, assume for now that we replace samples collected

via random walks by uniform edge samples from the weighted undirected graph Gu. In this

hypothetical scenario, the budget B is used to collect n ≥ 1 uniform vertex samples and

B − nc uniform edge samples. Clearly, when the edge-based estimator defined in (3.2) is

used, the most accurate vertex label distribution estimates are obtained by setting n = 1,

or equivalently, b = B − c. Therefore, we focus on the case where the hybrid-estimator

defined in (3.6) is used. In particular, consider estimation of the out-degree distribution.

3Note that the alternative, i.e. always taking c units off the budget per random jump, is unlikely to impact
results significantly when B = 0.1|V|, since the vast majority of random jumps will find a non-visited node.
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1Figure 3.4. Out-degree probability mass function (p.m.f.) for each network and its largest
strongly connected component (LCC). A large difference between these p.m.f.s suggests it
is beneficial to use multiple walkers and/or random jumps.
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For a given value of b, the number of uniform vertex samples is B/(c+ b). For each of

the remaining B − B/(c + b) samples, a vertex v is sampled in proportion to deg(v) + w,

where deg(v) is the undirected degree of v in Gu. The choice of w and b impose, individ-

ually, a trade-off between estimation accuracy of the head and of tail of the distribution.

For a fixed value of w, smaller values of b translate into better estimates of the head (and

worse estimates of the tail) because we collect more (less) information about that region

of the distribution from uniform vertex samples. For a fixed value of b, larger values of w

also translate into more (less) accurate estimates of the head (tail), because random jumps

are more likely to move a node to low in- and out-degree nodes (as they tend to occur more

frequently).

In what follows, we observe through simulations that despite the uniform edge sampling

approximation, the previous intuition holds for H-DUFS head estimates, but not always for

tail estimates. In many cases, as we increase the number of walkers (i.e., decrease b) or

increase w, we still obtain good estimates of the tail. This occurs because varying w or b

changes the transition probability matrix that governs the sampling process, and thus, the

sample distribution.

We simulate DUFS on each original network dataset for combinations of random jump

weight w ∈ {0.1, 1, 10} and budget per walker b ∈ {1, 10, 102, 103} (1000 runs each).

Values of w much smaller and much larger than these would be approximately equivalent

to H-DUFS without jumps and random vertex sampling, respectively. Larger values of b

would approximately correspond to DURW. We consider four scenarios that correspond

to whether the incoming edges are directly observable or not and to two different costs of

independent vertex sampling c = 1 or c = 10. Evaluating these parameter combinations is

useful to establish practical guidelines for choosing H-DUFS parameters, which we sum-

marize in Table 3.1. We observe that the estimation accuracy is somewhat monotonic w.r.t.

the variation of each of these parameters, individually. This suggests that combinations

other than the ones investigated here will not provide large accuracy gains.
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Table 3.1. Practical guidelines on setting H-DUFS parameters to obtain accurate head or
tail estimates depending on in-edge visibility and vertex sampling cost c.

uniform vertex sampling cost
c = 1 c = 10

in-edges visible not visible visible not visible
most accurate for w = 10 w = 10 w = 1 w = 10
small out-degrees b = 1 b = 1 b = 102 b = 1
most accurate for w = 1 w = 1 w = 0.1 w = 0.1
large out-degrees b = 10 b = 10, 102, 103 b = 103 b = 10, 102, 103

3.5.1.1 Visible in-edges, c = 1

Figures 3.5(a-c) show typical results when varying w and b. To avoid clutter, we show

only estimates for powers of two (or the closest out-degree values) and omit results for

b = 103. Figure 3.5(d) shows similar results for amazon-0312, the dataset with the smallest

maximum out-degree (max. is 10). Similar to our intuition for uniform edge sampling, the

NRMSE associated with the head increases with b and decreases with w, on virtually all

datasets.4 Also as expected, for a fixed values ofw, b = 1 yields larger errors in the tail than

b ∈ {10, 100} (except for amazon-0312). However, contrary to the intuition for uniform

edge sampling, w = 1 matches or outperforms w = 0.1 for (except for b = 1). This is best

visualized in Figure 3.5(d). This happens because setting w = 1 allows DUFS to sample

regions with large probability mass (in this case, the head) and, at the same time, allows

the sampler to move walkers from low volume to high volume components more often than

w = 0.1. We also observe that b = 10 outperforms b ∈ {102, 103} for w ∈ {0.1, 1}.

Dataset amazon-0312 is the only dataset where (w = 10, b = 1) obtained the best results

over the entire out-degree distribution.

We note that the curves shown in Figures 3.5(a-d) seem to be composed of two distinct

parts. In the beginning, the NRMSE increases with the out-degree and, after a given out-

degree, the NRMSE starts to decrease. This behavior is investigated in Section 3.6.1.

4For simplicity, the observations regarding the distribution head (tail) are based on the single smallest
(largest) out-degree on each dataset. Similar conclusions are obtained when combining NRMSEs associated
with several of the smallest (largest) out-degrees.
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Figure 3.5. (visible in-edges) Effect of DUFS parameters on datasets with many connected
components, when B = 0.1|V| and c = 1. Legend shows the average budget per walker (b)
and jump weight (w). Trade-off shows that configurations that result in many random vertex
samples, such as (w = 10, b = 1), yield accurate head estimates, whereas configurations
such as (w = 1, b = 10) yield accurate tail estimates. Since NRMSE range varies across
datasets, the y-axis limits are defined on a per-dataset basis.
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Figure 3.6. (invisible in-edges) Effect of DUFS parameters on datasets with many con-
nected components, when B = 0.1|V| and c = 1. Legend shows the average budget per
walker (b) and jump weight (w). Configurations that result in many walkers which jump
too often, such as (w ≥ 10, b = 1) yield accurate head estimates, whereas configurations
such as (w = 1, b = 103), yield accurate tail estimates.

3.5.1.2 Invisible in-edges, c = 1

The results we obtained are similar to those obtained for the visible in-edge scenario,

but NRMSEs tend to be larger. Figures 3.6(a,b) show typical results for different DUFS

parameters, represented by two datasets (also shown in the previous figure). Once again,

the intuition for uniform edge sampling holds for the distribution head: decreasing b and

increasing w yield more accurate estimates for the smallest out-degrees. While b = 1

results in poor estimates for the largest out-degrees, our intuition regarding w does not hold

true for the tail. More precisely, in most cases w = 1 outperforms w = 0.1 (one exception

being dataset soc-Epinions1). As opposed to the visible in-edge scenario, increasing b

tends to provide more accurate tail estimates for w = 1. We investigate this effect in

Section 3.5.3. We find that, for a fixed w, larger values of b make the random walks jump

more often, moving them from small volume components to large volume components,

yielding better tail estimates.
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3.5.1.3 Visible in-edges, c = 10

Consider the case where the cost of obtaining uniform vertex samples is ten times larger

than the cost of moving a walker. It is no longer clear that using many walkers and frequent

random jumps achieves the most accurate head estimates, as this could rapidly deplete the

budget. In fact, we observe that setting w = 10 or b = 1 yields poor estimates for both

the smallest and largest out-degrees. While increasing the jump weight w or decreasing b

sometimes improves estimates in the head, it rarely does so in the tail. The best results for

the smallest out-degrees are often observed when setting w = 1 and b = 10 or 102. On

the other hand, setting (w = 0.1, b = 103) or (w = 1, b = 102) usually achieves relatively

small NRMSEs for the largest out-degree estimates.

3.5.1.4 Invisible in-edges, c = 10

Unlike the scenario with visible in-edges, setting w = 10 and b = 1 often produces

the most accurate estimates for the smallest out-degrees. This is because many of the

datasets have nodes with no out-edges; these nodes can only be reached through a neighbor

or through uniform vertex sampling. Conversely, the general trend for tail estimates is

similar to those observed for the visible in-edges case: large values of w and small values

of b yield less accurate estimates for the largest out-degree values. For w = 1, however,

b = 102 often outperforms b = 103. On the other hand, for w = 0.1 there is little difference

in the estimates for different values of b.

3.5.2 Evaluation of DUFS in the visible in-edges scenario

In this section we compare two variants of Directed Unbiased Frontier Sampling: E-

DUFS, which uses the edge-based estimator and H-DUFS, which uses the hybrid estimator,

against a single random walk (SingleRW) and multiple independent random walks (Mul-

tiRW).
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3.5.2.1 Out-degree and in-degree distribution estimates

Here we focus on estimating the marginal in- and out-degree distributions. Each simu-

lation consists of 1000 runs used to compute the empirical NRMSE. For MultiRW, E-DUFS

and H-DUFS we set the average budget per walker to be b = 10. For conciseness, we only

show a few representative results.

Figure 3.7 shows typical results obtained when using SingleRW, MultiRW, E-DUFS

and H-DUFS to estimate out-degree distributions on the datasets. In eight out of 15

datasets, MultiRW yields much larger NRMSEs than does the SingleRW. As pointed out

in [77, Section 4.5], this is due to the fact that the estimator in (3.2) assumes that all edges

are sampled with the same probability. This assumption is violated by MultiRW because

the stationary sampling probability depends on the size of the connected component within

which each walker is located. E-DUFS estimates are consistently more accurate than those

of MultiRW and SingleRW, except on datasets where the original graph and its LCC have

similar out-degree distributions. In some of these cases SingleRW slightly outperforms E-

DUFS in the tail (see Fig. 3.7(b)). H-DUFS, in turn, outperforms E-DUFS in the head of

the out-degree distribution and has similar performance when estimating other out-degree

values. For this reason, defining the estimation task in terms of the CCDF would give

H-DUFS an unfair advantage.

When restricted to the largest connected component, the performance differences be-

tween SingleRW and E-DUFS and those between SingleRW and H-DUFS become smaller,

for B = 0.1|V|. Results for in-degree distribution estimation are qualitatively similar and

are omitted.

3.5.2.2 Joint in- and out-degree distributions

We compare the NRMSEs associated with H-DUFS and SingleRW for the estimates of

the joint in- and out-degree distribution. We observe that H-DUFS consistently outperforms

SingleRW on all datasets. On 10 out of 15 datasets, the estimates corresponding to low in-
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Figure 3.7. Comparison of single random walk (SingleRW), multiple independent random
walks (MultiRW), DUFS with edge-based estimator (E-DUFS) and with hybrid estimator
(H-DUFS). MultiRW yields the worst results, as the edge sampling probability is not the
same across different connected components. Both DUFS variants outperform SingleRW,
but H-DUFS is slightly more accurate in the head.
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Figure 3.8. Comparison between H-DUFS and SingleRW w.r.t. NRMSE when estimating
the joint in- and out-degree distribution. In most cases SingleRW will exhibit “hot spots”
(regions with large NRMSE), which are mitigated by H-DUFS.
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degree and low out-degree exhibit much smaller errors when using H-DUFS than when

using SingleRW. Furthermore, H-DUFS also achieves smaller estimation errors for most

of the remaining points of the joint distribution in 11 out of 15 datasets. Figures 3.8(a-b)

show heatmaps corresponding to typical NRMSE results for H-DUFS and SingleRW. Inter-

estingly, we note that on the web graph datasets and on the email-EuAll dataset, H-DUFS

outperforms SingleRW by one or two orders of magnitude, as illustrated by Figure 3.8(c),

which shows the heatmap comparison for dataset web-Google. Although the NRMSE ex-

hibited by SingleRW applied to the LCC datasets is much smaller, the comparison between

H-DUFS and SingleRW is qualitatively similar and is, therefore, omitted.

We next investigate performance gains obtained by using the hybrid estimator instead

of the original estimator. Figures 3.9(a-b) show the ratios between the NRMSEs obtained

with H-DUFS (hybrid) to those obtained with the E-DUFS (original) for two networks. We

use the NRMSE ratio (or equivalently, the root MSE ratio) to make it easier to visualize the

differences. We observe that H-DUFS consistently outperforms E-DUFS on all datasets.

More precisely, the error ratio is rarely above one and, for points corresponding to small

in- and out-degrees, it often lies below 0.9. Results on most datasets are similar to that

depicted in Figure 3.9(a), but results on social networks datasets are closer to that shown

in Figure 3.9(b), where large in- and out-degrees also seem to benefit from the information

contained in the walkers’ initial locations. Results for the LCC datasets are qualitatively

similar, with accuracy gains from the hybrid estimator slightly larger on these datasets than

on the original datasets.

3.5.3 Evaluation of DUFS in the invisible in-edges scenario

In this section, we compare the NRMSEs associated with DUFS and DURW when

estimating out-degree distributions in the case where in-edges are not directly observable.

We note that DURW is known to outperform a reference method for this scenario proposed

in [10]. For a comparison between DURW and this reference method, please refer to [76].
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Figure 3.9. NRMSE ratios between H-DUFS and E-DUFS of the estimated joint in- and
out-degree distribution for two datasets. H-DUFS is typically better than H-DUFS at low
in and out-degree regions (left), but in social network graphs presented improvements over
most of the joint distribution (right).

As we mentioned in Section 3.5.1, DURW results are similar to those obtained with

DUFS when the budget per walker b is large, since DURW is a special case of DUFS

where b = B − c. Therefore, we compare DURW and DUFS when b is small and the total

number of uniform vertex samples collected by each method is roughly the same. More

precisely, we simulate DUFS for b = 10 and w = 1 and set the DURW parameter w so that

the number of vertex samples differs by at most 1% (averaged over 1000 runs). This aims

to provide a fair comparison between these methods.

We find that neither of the two methods consistently outperforms the other over all

datasets. The extra random jumps performed by DURW prevent the walker from spending

much of the budget in small volume components. As a result, DURW tends to exhibit

larger errors in the head but smaller errors in the tail of the out-degree distribution than

DUFS. Figures 3.10(a-b) show typical results for w = 1 and b = 10. DUFS exhibited

lower estimation errors in the head of the distribution on 11 datasets, being outperformed

by DURW on one dataset and displaying comparable performance on the others. In six

out of 15 datasets, DURW had better performance in the tail, while DUFS yielded better
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Figure 3.10. NRMSEs associated with DUFS (b = 10, w = 1) and DURW (w′ cho-
sen to match average number of vertex samples) when estimating out-degree distribution.
DURW performs more random jumps, thus better avoiding small volume components. This
improves DURW results in the tail, but often results in lower accuracy in the head (left).
In one third of the datasets, DUFS yielded similar or better results than DURW over most
out-degree points (right).

results on other five datasets. Results for w = 1 and b ∈ {102, 103} are similar and are,

therefore, omitted. As b increases, differences between DUFS and DURW start to vanish.

To better understand the impact of multiple connected components in DUFS and DURW

performances, we simulate each method on the largest strongly connected component of

each dataset (i.e., on the LCC datasets). Figures 3.11(a-d) show typical results among the

LCC datasets. In most networks, DUFS yields smaller NRMSEs than DURW in the head

and similar NRMSEs in the tail. Once again, for a larger b the performances of DUFS and

DURW become equivalent.

3.6 Discussion

In this section, we investigate the reason why NRMSE typically increases with out-

degree (in-degree) up to a certain value and then starts to decrease, as observed in Sec-

tion 3.5. We also discuss the stopping criterion for DUFS, which so far was assumed to be

48



out-degree
10 0 10 1 10 2 10 3 10 4

N
R

M
S

E

10 -2

10 -1

10 0

10 1

DURW
H-DUFS

(a) soc-Epinions1-lcc
out-degree

10 0 10 1 10 2 10 3 10 4
N

R
M

S
E

10 -2

10 -1

10 0

10 1

DURW
H-DUFS

(b) soc-pokec-relationships-lcc

out-degree
10 0 10 1 10 2 10 3

N
R

M
S

E

10 -2

10 -1

10 0

10 1

DURW
H-DUFS

(c) web-Stanford-lcc
out-degree

10 0 10 1 10 2 10 3

N
R

M
S

E

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3 DURW
H-DUFS

(d) wiki-Vote-lcc

Figure 3.11. NRMSEs associated with DUFS (b = 10, w = 1) and DURW (w′ chosen to
match average number of vertex samples) when estimating out-degree distribution.
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B = 0.1|V|. Last, we discuss the performance of E-DUFS and H-DUFS when a mecha-

nism for obtaining uniform vertex samples is not available.

3.6.1 Relationship between NRMSE and out-degree distribution

In Section 3.5 we observed that NRMSE tends to increase with out-degree up to a

certain point and to decrease after that. Moreover, for some out-degree ranges the NRMSE

seems to vary linearly on the out-degree when plotted in log-log scale (see, for instance,

Figure 3.5). For simplicity, we discuss the undirected graph case, but the extension to

directed graphs is straightforward. We assume that each sampled edge results in exactly

one observation, obtained by retrieving the set of labels associated with one of the adjacent

vertices chosen uniformly at random. To simplify the exposition, we start by analyzing

uniform vertex sampling.

Let S = {s1, . . . , sB} be the sequence of sampled vertices. For uniform vertex sam-

pling, the probability of observing a given label ` in L(si) is θ`, for any i = 1, . . . , B. The

minimum variance unbiased estimator of θ` is

T`(S) =
1

B

B∑

i=1

1{` ∈ L(si)}. (3.9)

Note that the summation in (3.9) is a binomially distributed random variable with parame-

ters B and θ`. It follows that the mean squared error (MSE) of T`(S) is given by

MSE(T`(S)) = E[(T`(S)− θ`)2]

=
θ`(1− θ`)

B
. (3.10)

For uniform edge sampling, the probability of observing a given label ` ∈ L in L(si)

for i = 1, . . . , B, is equal to

π` =

∑
v∈V 1{` ∈ L(v)} deg(v)∑

u∈V deg(u)
.
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Figure 3.12. NRMSE from Uniform Vertex Sampling and Uniform Edge Sampling when
estimating degree distribution on the Flickr dataset (for B = 0.1|V|).

In that case, the following estimator can be shown to be unbiased

T ′`(S) =
1

B

B∑

k=1

1{` ∈ L(sk)} deg−1(sk)∑B
j=1 deg−1(sj)

. (3.11)

In particular, when vertex labels are the undirected degrees of each node, the probability

of observing a given label ` ∈ L becomes π` = `θ`/d, where d is the average undirected

degree. The estimator for B = 1 reduces to T ′`(S1) = 1{` ∈ L(s1)}, which is a random

variable distributed according to a Bernoulli with parameter π`. As a result, the MSE for

B > 1 independent samples is given by

MSE(T ′`(S)) =
π`(1− π`)

B
(3.12)

=
`θ`(d− `θ`)

d2B
. (3.13)

Equations (3.10) and (3.12) characterize the conditions under which each sampling

model is more accurate. More precisely, for all i such that θ` > π` (or equivalently, ` <

d), uniform vertex sampling yields better estimates than uniform edge sampling. This

dichotomy is illustrated in Figure 3.12, which shows the NRMSE associated with degree
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distribution estimates resulting from each sampling model on the flickr-links dataset [53],

for B = 0.1|V|.

Note that in log-log scale, both curves resemble a straight line for ` = 2, . . . , 103, which

indicates a power law. For degrees larger than 5× 103, the NRMSE associated with vertex

sampling is constant, while the NRMSE associated with edge sampling decreases linearly

on the degree. We show that these observations are direct consequences of the fact that

the degree distribution in this network (as well as many other real networks) approximately

follows a power law distribution. However, the degree distribution of a finite network

cannot be an exact power law distribution because of the resolution limit. As a result, most

of the largest degree values are observed exactly once. This can be seen in Figure 3.4

by noticing that on the flickr-links (and many other datasets) the p.m.f. is constant for the

largest out-degrees. Assume, for instance, that the degree distribution can be modeled as

θ` =





`−α/Z , 1 ≤ ` ≤ τ

1/|V| , ` > τ,

for some α ≥ 1 and some normalizing constant Z.

From (3.10), we have that for uniform vertex sampling,

NRMSE(T`(S)) =
√

(1/θ` − 1)/B. (3.14)

For θl � 1 (true for large degrees), this implies

NRMSE(T`(S)) ≈





√
Z`α/B , 1 ≤ ` ≤ τ

√
|V|/B , ` > τ.

(3.15)

Clearly, for ` > τ , the NRMSE is constant. For 1 ≤ ` ≤ τ , taking the log on both sides

yields

log(NRMSE(T`(S))) ≈ α

2
log `+

1

2
(logZ − logB),
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which explains the linear relationship on that range observed in Fig. 3.12.

From (3.12), we have that for uniform edge sampling,

NRMSE(T ′`(S)) =
√

(1/π` − 1)/B. (3.16)

For θl � 1 (true for large degrees), this implies

NRMSE(T ′`(S)) ≈





√
Zd`α−1/B , 1 ≤ ` ≤ τ

√
|E|
`
/B , ` > τ.

(3.17)

Taking the log on both sides, it follows that

log(NRMSE(T ′`(S))) ≈





α−1
2

log `+ 1
2
(logZ + log d− logB) , 1 ≤ ` ≤ τ

−1
2

(log `− log |E| − logB) , ` > τ,

which explains the linear increase followed by the linear decrease observed in Fig. 3.12.

3.6.2 The stopping criterion

In all simulations described in this chapter, we set the budget to be B = 0.1|V|. We did

not study the effect of varying the budget because statistical theory gives us good intuition

on how the error should vary with the number of samples (see 3.6.1). In practice, however,

to set the budget to some fraction of the number of nodes, we have to estimate |V|.

The Random Tour and the Sample and Collide methods proposed in [59] use RWs to

estimate the number of nodes |V|. In particular, to obtain an estimate with relative variance

ε, Sample and Collide requires O
(
d̄ log(|V|)

√
|V|/ε
λ2

)
RW steps, where d̄ is the average

degree and λ2 is the spectral gap of a RW on the underlying graph. While |V| and λ2 are

not known a priori, the authors describe a heuristic that can be used for deciding when to

stop the sampling procedure.
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Alternatively, instead of setting a sampling budget, a practitioner can define a stopping

criterion based on the estimates obtained at a given step. In its simplest form, a distance

measure (e.g., Euclidean distance) can be used to determine if the estimates have con-

verged. A more sophisticated criterion would involve reasoning about the estimation error.

For instance, assuming that the estimates obtained at a given step are the true distribution,

it is possible to use the Cramér-Rao Bound to numerically compute a lower bound on the

estimation error associated with E-DUFS or H-DUFS given the number of uniform vertex

samples and random walk samples.

3.6.3 Performance of DUFS in the absence of uniform vertex sampling

In this section, we investigate the estimation accuracy of {E,H}-DUFS when the ran-

dom walkers are not initialized uniformly over V . We consider two simple non-uniform

distributions over V to determine the initial walker locations walker positions:

• Distribution PROP: proportional to the undirected degree, that is,

P (initial walker location is v) =
deg(v)∑
u∈V deg(u)

; (3.18)

• Distribution INV: proportional to the reciprocal of the undirected degree, that is,

P (initial walker location is v) =
deg−1(v)∑
u∈V deg1(u)

. (3.19)

We simulate E-DUFS and H-DUFS on each network dataset setting the budget per

walker to b ∈ {1, 10, 102} (100 runs), under the scenario where in-edges are visible. Since

we assume uniform vertex sampling (VS) is not available, we must set the random jump

weight to w = 0. We include, though, results obtained when the initial walker locations

are determined via VS for comparison. Figures 3.13(a,b) shows typical results in terms of

the NRMSE associated with E-DUFS out-degree distribution estimates. We observe that

NRMSE decreases with the budget per walker until b = 102, both for PROP and INV.
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Figure 3.13. Effect of initializing walkers non-uniformly over V on E-DUFS accuracy.
NRMSE decreases with budget per walker until b = 102.

Although it is clear that using the hybrid estimator when the initial walker locations

come from some non-uniform distribution can incur unknown – and potentially large –

biases, we include similar results obtained with H-DUFS for completeness. Intuitively,

since H-DUFS assumes that observations from initial walker locations come from VS, the

estimation errors tend to grow with the number of walkers n. Figures 3.14(a,b) shows the

NRMSE associated with H-DUFS out-degree distribution estimates for the same datasets

as before. As expected, errors are larger for smaller values of b (or equivalently, large n).

In particular, we observe that the NRMSE associated with large out-degrees is larger when

sampling according to INV than when sampling according to PROP. This occurs because

the former tends to overrepresent large out-degrees, which are usually associated with very

small probability masses. On the other hand, INV tends to overrepresent small out-degrees,

slightly underestimating the mass associated with large out-degrees.

In summary, the previous results indicate that when the initial walker locations are

determined according to some unknown distribution, a practitioner should use E-DUFS

with large b (e.g., 102). We conduct additional simulations setting b = B − 1 (i.e., using a
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Figure 3.14. Effect of initializing walkers non-uniformly over V on H-DUFS accuracy.
NRMSE associated with H-DUFS is generally larger than that associated with E-DUFS.
NRMSE decreases rapidly in b. Errors associated with large out-degrees are especially
high when walkers are more likely to start on large degree nodes (distribution PROP).

single walker), which yielded poor results and are, therefore, omitted. H-DUFS yields very

inaccurate estimates if their initial positions are not chosen via VS.

3.7 Related Work

Crawling methods for exploring undirected graphs: A number of papers investi-

gate crawling methods (e.g., breadth-first search, random walks, etc.) for generating sub-

graphs with similar topological properties as the underlying network [39,52]. On the other

hand, [58] empirically investigates the performance of such methods w.r.t. specific mea-

sures of representativeness that can be useful in the context of specific applications (e.g.,

finding high-degree nodes for outbreak detection). However, these works focus on tech-

niques that yield biased samples of the network and do not possess any accuracy guaran-

tees. [2, 47] demonstrate that Breadth-First-Search (BFS) introduces a large bias towards

high degree nodes, and it is difficult to remove these biases in general, although it can be

reduced if the network in question is almost random [47]. Random walk (RW) is biased to

sample high degree nodes, however its bias is known and can be easily corrected [77].
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Random walks in the form of Respondent Driven Sampling (RDS) [34, 81] have been

used to estimate population densities using snowball samples of sociological studies. The

Metropolis-Hasting RW (MHRW) [86] modifies the RW procedure, aimed at sampling

nodes with equal probability to estimation errors introduced by sampling. [18, 72] analyt-

ically prove that MHRW degree distribution estimates perform poorly in comparison to

RWs. Empirically, the accuracy of RW and MHRW has been compared in [29, 71] and, as

predicted by the theoretical results, RW is consistently more accurate than MHRW.

Reducing the mixing time of a regular RW is one way of improving the performance of

RW based crawling methods. [9] proves that random jumps increase the spectral gap of the

random walk, which in turn, leads to faster convergence to the steady state distribution. [46]

assigns weights to nodes that are computed using their neighborhood information, and de-

velop a weighted RW-based method to perform stratified sampling on social networks.

They conduct experiments on Facebook and show that their stratified sampling technique

achieves higher estimation accuracy than other methods. However, the neighborhood in-

formation in their method is limited to helping find random walk weights and is not used

in estimators of graph statistics of interest. To solve this problem, [19] randomly samples

nodes (either uniformly or with a known bias) and then uses neighborhood information to

improve its unbiased estimator. [94] modifies the regular random walk by “rewiring” the

network of interest on-the-fly in order to reduce the mixing time of the walk.

Crawling methods for exploring directed graphs: Estimating observable characteris-

tics by sampling a directed graph (in this case, the Web graph) has been the subject of [10]

and [36], which transform the directed graph of web-links into an undirected graph by

adding reverse links, and then use a MHRW to sample webpages uniformly. Our “back-

ward edge traversal” is an adaptation of the method of [10] to work with a pure random

walk and random jumps. Both of these Metropolis-Hastings RWs are designed to sample

directed graphs and do not allow random jumps. However, the ability to perform random

jumps (even if jumps are rare) makes DURW and DUFS more efficient and accurate than
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the MetropolisHastings RW algorithm. Random walks with PageRank-style jumps are used

in [52] to sample large graphs. In [52], however, there is no technique to remove the large

biases induced by the random walk and the random jumps, which makes this method unfit

for estimation purposes. More recently, another method based on PageRank was proposed

in [80], but it assumes that obtaining uniform vertex samples is not feasible. In the presence

of multiple strongly connected components, this method offers no accuracy guarantees.

Graph sketching: In the last decade, there has been a growing interest in graph sketch-

ing for processing massive networks. A sketch is a compact representation of data. Unlike

a sample, a sketch is computed over the entire graph, that is observed as a data stream. For

a survey on graph sketching techniques, please refer to [61].

3.8 Conclusion

In this chapter, we proposed the Directed Unbiased Frontier Sampling (DUFS) method

for characterizing networks. DUFS generalizes the Frontier Sampling (FS) and the Di-

rected Unbiased Random Walk (DURW) methods. In some sense, DUFS extends FS to

make it applicable to directed networks when incoming edges are not directly observable

by building on ideas from DURW. Like DURW, DUFS can also be applied to undirected

networks without any modification.

We also proposed a new estimator for vertex label distribution that can account for FS

and DUFS walkers initial locations – or more generally, uniform vertex samples – and a

heuristic that can reduce the variance incurred by vertex samples that happen to sample

nodes whose labels have extremely low probability masses. When the proposed estimator

is used in combination with the heuristic, we showed that estimation errors can be signifi-

cantly reduced in the distribution head when compared with the estimator proposed in [77],

regardless of whether we are estimating out-degree, in-degree or joint in- and out-degree

distributions.
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We conducted an empirical study on the impact of DUFS parameters (namely, budget

per walker and random jump weight) on the estimation of out-degree and in-degree distri-

butions using a large variety of datasets. We considered four scenarios, corresponding to

whether incoming edges are directly observable or not and whether random vertex sam-

pling has a similar or larger cost than moving random walkers on the graph. This study

allowed us to provide practical guidelines on setting DUFS parameters to obtain accurate

head estimates or accurate tail estimates. When the goal is a balance between the two

objectives, intermediate configurations can be chosen.

Last, we compared DUFS against random walk-based methods designed for undirected

and directed networks. In our simulations for the scenario where in-edges are visible,

DUFS yielded much lower estimation errors than a single random walk or multiple in-

dependent random walks. We also observed that DUFS consistently outperforms FS due

to the degree proportional jumps mechanism implemented by the former. In the scenario

where in-edges are unobservable, DUFS outperformed DURW when estimating the prob-

ability mass associated with the smallest out-degree values (for equivalent parameter set-

tings). In addition, more often than not, DUFS slightly outperformed DURW when esti-

mating the mass associated to the largest out-degrees. In the presence of multiple strongly

connected components, DURW tends to move from small to largest components more often

than DUFS, sometimes exhibiting lower estimation errors in the distribution tail. However,

when restricting the estimation to the largest component, DUFS outperforms DURW in vir-

tually all datasets used in our simulations. These and other results showed in this chapter

indicate that random jumps are not an alternative to the use of multiple walkers, but rather

a complementar mechanism that can further improve performance of random walk-based

techniques.
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CHAPTER 4

ESTIMATION OF SET-SIZE DISTRIBUTION AND
CHARACTERIZATION OF LARGE NETWORKS VIA SAMPLING

4.1 Introduction

Networks are increasingly large and complex; they pose tremendous challenges to their

characterization in the wild. Characterizing network structure (e.g. degree distribution),

network traffic flows (e.g. TCP/IP flow sizes in communication networks), node labels

(e.g. group memberships), is usually impossible without resorting to sampling due to the

size and scale of current networks. Practitioners often sample networks in order to char-

acterize them. One important way of characterizing networks from samples is to estimate

their out-degree and in-degree distributions. Estimating in-degree distributions is espe-

cially challenging because incoming edges to a node v are often not directly observable

(e.g., links to a given web page). These incoming edges can be seen as elements of a

set represented by node v. A process that samples network edges is then a process that

reveals some of the elements belonging to different sets. Like estimating in-degree distri-

butions, many problems in network characterization through sampling can be mapped into

the problem of estimating the set-size distribution (SSD). The SSD estimation problem can

be stated as follows. Consider a collection of non-overlapping sets whose elements are

probabilistically sampled. The problem is to estimate the underlying set-size distribution

based on the samples.

SSD estimation has several applications. As described earlier, one application of par-

ticular interest is the estimation of in-degree distributions of on-line social networks, where

nodes represent people and a directed edge represents, for instance, one or more messages
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exchanged between two pairs of nodes. By monitoring message exchanges over a period of

time one samples a fraction of the edges. In this case, the user relationships on the network

correspond to elements of a given set, in the SSD estimation problem. Using these samples

we want to estimate the in-degree or out-degree distribution of nodes. The SSD problem

also manifests itself in estimating the distribution (in packets) of TCP/UDP flow sizes [21].

In flow size estimation, each packet is probed (sampled) with a fixed probability. Each

packet is associated with a TCP/UDP flow. The goal is to estimate the distribution of flow

sizes from probed packets.

Despite the importance of characterizing set-size distributions, to the best of our knowl-

edge no deep analysis of SSD estimation exists in the literature. We fill this gap and prove

the existence of a phase transition on the estimation accuracy of in-degree distributions

of arbitrarily large power-law graphs (more precisely, any heavier-than-exponential distri-

bution). Namely, if less than 50% of the edges are observed that for any estimator (be it

frequentist or Bayesian), the lower bound on estimation errors grows with the network size.

Moreover, when we only observe nodes with at least one edge sampled, even a first order

metric like average degree is subject to the same threshold behavior, i.e., sampling less than

50% of all incoming edges impedes the estimation of in-degree averages. As a result, in the

SSD estimation problem an increase in the number of samples may, paradoxically, result in

no increase in accuracy. We prove these and other results in the general setting of sets with

arbitrary set-size distribution.

4.1.1 General Observations

We uncover some properties of the set-size distribution (SSD) estimation, including:

• A (finite) increase in samples can result in no reduction in estimation errors.

Unlike estimation problems such as election polls, where a sufficient increase in samples

always results in increased accuracy, we show, paradoxically, that in the SSD estimation
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problem an increase in samples can result in no increase in accuracy. Section 4.4 unveils

the cause of this behavior and explains how to avoid it. Another interesting property is:

• In networks with power-law set-size distributions (our results hold for any heavier-

than-exponential distributions), randomly sampling less than 50% of the set elements

(e.g., edges of a node) provides almost no information about the set-size distribution

or the average set-size. On the other hand, accurate SSD estimation is always possi-

ble in networks with sub-exponential set-size distributions.

The above observation is interesting because power-law distributions have more tail proba-

bility mass and, thus, large sets are more likely to have more sampled elements than when

the distributions have sub-exponential tails. However, and despite this, we show that if

less than 50% of elements are sampled, then estimates of power-laws distributions (more

precisely, any heavier-than-exponential distribution) are significantly less accurate than the

estimates obtained from sub-exponential distributions. We also prove the existence of a

similar phase transition for exponential distributions, but the corresponding threshold de-

pends on the distribution exponent. Our work also provides a host of other puzzling obser-

vations, fully and formally presented in Section 4.4.

4.1.2 Outline

This chapter is organized as follows. In Section 4.2 we conduct experiments on the

indegree distribution estimation with real data. Section 4.3 presents the sampling and es-

timation models. Sections 4.4 and 4.5 present our theoretic results. Section 4.6 discusses

problems of interest to field analysts, highlighting common mistakes made in the literature

and how to avoid them. In Section 4.7, we discuss the related work. Finally Section 4.8

presents the conclusions and outlook.

62



4.2 Estimation with Real Data

In this section, we investigate through simulation one particular application of the set-

size distribution problem: the estimation of the in-degree distribution of a network. Con-

sider the Enron email dataset [44], that describes a network composed by a group of people

who exchanged emails during a certain period of time. Here each node represents a person

and two people have a directed edge if one has emailed the other. The maximum node

in-degree is 1383.

Collecting a fraction of the exchanged messages means sampling network edges. Sup-

pose that each directed edge is observed independently with probability p, regardless of

the number of messages collected over an edge. Henceforth, the number of observed in-

coming edges to a node, provided that this number is at least one, will be called a sample.

Figure 4.1(a) depicts the quality of the maximum likelihood estimator for node in-degree

with p = 0.25, leading to N = 104 sampled individuals. The black dots indicate the true

in-degree distribution, the blue curve shows a typical estimate of that distribution, and the

heat map indicates the density of estimated values across 100 runs, where red indicates

high density and yellow (white) indicates low (no) density of estimated values. We observe

from the blue curve that the estimated values can be orders of magnitude away from the

actual values and from the heat map we observe that the blue line is typical.

In what follows we illustrate the effects of varying the number of samples N or chang-

ing the sample probability p separately. To vary N while keeping p fixed, we draw a node

in-degree directly from the in-degree distribution of Enron email network and subsequently

sample its edges. We repeat this process until we obtain N observed sets. This can be seen

as sampling a larger (smaller) network that has the same degree distribution.

We make two main observations:

1. Increasing the number of samples does not reduce estimation error. This is an

odd behavior. We know from estimation theory that the error should decrease by a

factor of
√
k when the number of samples is increased by a factor of k. Figure 4.1(b)
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shows the corresponding results for N = 50 × 103. We observe that the estimated

fraction of nodes of each degree still varies from the actual values.

To make it clear that the accuracy gain from increasing the number of samples is not

in agreement with theory, we compute the estimation error obtained when we vary

the number of samples N ∈ {5, 10, 20, 50, 100} × 103, for p = 0.25. The error is

measured in terms of the Normalized Root Mean Square Error (NRMSE).Then we

take the average NRMSE from the head (degrees up to 10) and the tail (degrees larger

than 10) of the distribution separately.

Surprisingly, we observe in Figure 4.1(c) that there is almost no improvement in ac-

curacy across different sample sizes, even when we compare 5×103 and 105 samples.

We also display in this figure the expected reduction in the NRMSE for both head

and tail by dashed lines. It turns out that the error does not decrease as we might

expect. This raises the question of why, which we address in Section 4.4.

2. For much larger values of p, the error starts to decrease with the number of sam-

ples. According to Theorem 4.1 presented in Section 4.4, the difficulties experienced

above arise due to the use of small sampling probability (p < 0.5) with heavy-tailed

distributions, and not due to a lack of samples. Hence we repeat the experiment us-

ing p = 0.9. Figures 4.1(d) and 4.1(e) show the heat maps for N = 20 × 103 and

N = 105. As opposed to what we previously saw, increasing the number of samples

does increase the accuracy of the estimate. The accuracy gain as a function of the

number of samples is shown in Figure 4.1(f). In fact, we observe that the NRMSE

does decrease as expected for the head of the distribution, but not for the tail. Why

are there two distinct behaviors, one for the head and one for the tail? Why did it

help to increase the number of samples when estimating frequencies of small degrees

for p = 0.9, as opposed to what we observed for p = 0.25? Is it possible to make the

NRMSE of the tail to decrease as fast as the NRMSE of the head?
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Figure 4.1. The first row (a-c) shows the results for p = 0.25, while the second row
(d-e) shows the corresponding plots for p = 0.90. (a-b,d-e) True degree distribution, one
example of estimate and heat map indicating the occurrence rates of the estimate values
for N = 10 × 103 samples (first column) and N = 50 × 103 samples (second column),
respectively. The red color in the heat map indicates high density of estimated values and
yellow (white) indicates low (no) density of estimated values. A subplot shows a zoom-
in for the first degrees. (c,f) Average NRMSE of the head and the tail of the distribution
for N ∈ {1, 5, 10, 20, 100} × 103. Dashed line shows how the error should vary with the
number of samples. In (c) we have the typical behavior of wrong estimates. Increasing
the number of samples does not improve the quality of estimates. On the other hand (f)
shows the typical behavior of correct estimates. Here increasing the number of samples
yields lower estimation errors of the head.
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In order to investigate the questions we pose here, we compute the Cramér-Rao Lower

Bound (CRLB) of the SSD estimation problem. This give us a lower bound on the estima-

tion errors based on the amount of information contained in the samples, measured in terms

of Fisher Information. Moreover, we apply the CRLB to the estimation of the in-degree

distribution and average in-degree.

4.3 Model

Let Sk be a nonempty set of elements, k = 1, . . . , n, with Si ∩ Sj = ∅, i, j = 1, . . . n,

i 6= j. Let Sk = |Sk| denote the size of the k-th set and assume set sizes are i.i.d. with

distribution Sk ∼ θ = (θ1, . . . , θW ), W > 1 k ≥ 1.

We assume W is finite (W < ∞). The model divides elements into groups (sets) and

our task is to characterize those groups from an incomplete observation (sample) of these

groups. To illustrate the model, consider a directed graph; edges can be grouped by the

nodes they are incident to (depart from), in which case Sk is the set of incoming (outgoing)

edges of a node k, θ is the indegree (outdegree) distribution, and W is the maximum

indegree (outdegree). Another straightforward example is characterizing IP traffic in a

communications network, where k is a TCP flow, Sk is the set of TCP/IP packets that

constitute flow k, and W is the maximum observable flow size.

4.3.1 Sampling

We observe (sample) elements of Sk, k = 1, . . . , n, with probability p – a process also

known as thinning. Let α(Sk) be a random function that returns the number of observed el-

ements of Sk. Elements are sampled independently (i.e., the sampling process is Bernoulli)

and thus,

P [α(Sk) = j|Sk = i] =





(
i
j

)
pjqi−j , 0 ≤ j ≤ i, i > 1

0, otherwise,
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where q = 1− p. We assume that when no elements of a set are observed, then the set as a

whole is not observed, i.e., Sk is said to be observable only if α(Sk) > 0. Thus, we denote

S = {α(Sk) : α(Sk) > 0 , k = 1, . . . , n}

the set of the observable set-sizes. Let N = |S| denote the number of observed sets.

4.3.2 Estimation

We start by considering p = 1, that is, all elements of all sets are observed. The

minimum variance estimator of θi is

T ′i (S1, . . . ,Sn) =
n∑

k=1

1{Sk = i}
N

,

where N = n. To measure the accuracy of the estimates we consider the mean squared

error (MSE) – a.k.a. quadratic loss – of the estimates

MSE(T ′i (S1, . . . ,Sn)) = E[(T ′i (S1, . . . ,Sn)− θi)2]

=
θi(1− θi)

n
≤ 1

4n
.

Thus, for p = 1 the estimation error decreases as 1/n, recalling that n is the number of sets.

Unfortunately, accurately estimating θ when p < 1 is significantly more challenging.

Recall that a set Sk is said to be observable if α(Sk) > 0. We assume that unobservable

sets cannot be used in the estimation process. That is, our estimator only has access to sets

Sk where α(Sk) > 0. Here we need another function Ti that takes the observed set-sizes S

as inputs and outputs an unbiased estimate Ti(S) of θi, i.e., E[Ti(S)] = θi. In what follows

we focus on unbiased estimates. The function Ti that minimizes the MSE with respect to

sets of size i = 1, . . . ,W is

T ?i (S) = arg min
Ti

E[(Ti(S)− θi)2], i = 1, . . . ,W s.t. E[T ?i (S)] = θi.
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4.4 Results

In order to investigate the questions we pose here, we study the Cramér-Rao Lower

Bound (CRLB) of the problem of estimating the set-size distribution. This gives us a

lower bound on the mean square error based on the amount of information contained in the

samples, measured in terms of Fisher Information. Moreover, we apply the CRLB to the

estimation of the in-degree distribution and average in-degree. The proofs can be found in

Appendices B to F.

We now introduce our main results which derive MSE lower bounds for unbiased set-

size distribution and average set-size estimators. In addition, we show that the lower bounds

obtained for the set-size distribution are achievable by a Maximum Likelihood Estimator.

We consider a general formulation of the sampling problem, where the number of observed

sets N is constant and N is independent of the maximum degree W . We also consider the

sampling probability p to be a known constant.

Theorem 4.1. Let θ = (θ1, . . . , θW ) be the set-size distribution, S be the sequence of N

observed set-sizes after randomly sampling elements of the sets with probability p, and

Ti(S), i ≥ 1 be an unbiased estimator of θi.

1. If θW decreases faster than exponentially inW , i.e.,− log θW = ω(W ), then MSE(Ti(S)) =

Ω(1/N), provided 0 < p < 1.

2. If θW decreases exponentially in W , i.e., − log θW = W log a + o(W ) for some

0 < a < 1, then

(a) log[MSE(Ti(S))] = Ω(W − logN), provided p < a/(a+ 1),

(b) MSE(Ti(S)) = Ω(W 2i+1/N), provided p = a/(a+ 1),

(c) MSE(Ti(S)) = Ω(1/N), provided p > a/(a+ 1).

3. If θW decreases more slowly than exponential, i.e., − log θW = o(W ), then

(a) log[MSE(Ti(S))] = Ω(W − logN), provided p < 1/2,
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(b) MSE(Ti(S)) = ω(1/N), provided p = 1/2 and
∑W

j=1 j
2iθj = ω(1),

(c) MSE(Ti(S)) = Ω(1/N), provided either p > 1/2, or p = 1/2 and
∑W

j=1 j
2iθj =

O(1).

The lower bounds of type Ω(1/N) in Theorem 4.1 are only meaningful if they are

achievable. We investigate this achievability question in Appendix E, showing that, in

fact, there exists a Maximum Likelihood Estimator (MLE) T ?i (S) of θi, i = 1, . . . ,W

that is asymptotically efficient and normal, which means that T ?i (S) approaches the CRLB

uniformly as N →∞. Hence, the corresponding bounds for T ?i (S) are as follows.

Theorem 4.2. Let θ = (θ1, . . . , θW ) be the set-size distribution, S be the sequence of

observed set-sizes after randomly sampling elements of the sets with probability p, and

T ?i (S), i ≥ 1 is the MLE of θi when N →∞.

1. If θW decreases faster than exponentially inW , i.e.,− log θW = ω(W ), then MSE(T ?i (S)) =

Θ(1/N), provided 0 < p < 1.

2. If θW decreases exponentially in W , i.e., − log θW = W log a + o(W ) for some

0 < a < 1 and p > a/(a+ 1), then MSE(T ?i (S)) = Θ(1/N).

3. If θW decreases more slowly than exponential, i.e., − log θW = o(W ) and p ≥ 1/2,

then MSE(T ?i (S)) = Θ(1/N).

In what follows we consider the problem of estimating the average set-size mθ =
∑W

i=1 iθi from the sample S. Surprisingly, we obtain bounds analogous to the bounds for the

set-size distribution in Theorem 4.1. This result is surprising because the average observed

set-size mφ =
∑W

i=1 iφi has remarkably different bounds: mφ is always finite (independent

of p or W ) as long as the second moment of φ is finite (see Section 4.5).

Theorem 4.3. Let θ = (θ1, . . . , θW ) be the set-size distribution, S be the sequence of N

observed set-sizes after randomly sampling elements of the sets with probability p, and

m̂θ(S) be an unbiased estimator of mθ.
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1. If θW decreases faster than exponentially inW , i.e.,− log θW = ω(W ), then MSE(m̂θ(S)) =

Ω(1/N), provided 0 < p < 1.

2. If θW decreases exponentially in W , i.e., − log θW = W log a + o(W ) for some

0 < a < 1, then

(a) log[MSE(m̂θ(S))] = Ω(W − logN), provided p < a/(a+ 1),

(b) MSE(m̂θ(S)) = Ω(W/N), provided p = a/(a+ 1),

(c) MSE(m̂θ(S)) = Ω(1/N), provided p > a/(a+ 1).

3. If θW decreases more slowly than exponential, i.e., − log θW = o(W ), then

(a) log[MSE(m̂θ(S))] = Ω(W − logN), provided p < 1/2,

(b) MSE(m̂θ(S)) = ω(1/N), provided p = 1/2 and
∑W

j=1 j
2θj = ω(1),

(c) MSE(m̂θ(S)) = Ω(1/N), provided either p > 1/2 or p = 1/2 and
∑W

j=1 j
2θj =

O(1).

From Theorem 4.3 we see that estimating the average set-size is asymptotically as hard

as estimating the distribution θ. We conjecture that the analogue of Theorem 4.2 for the

average set-size can be found by showing that the conditions for the existence of the MLE

also hold for mθ(S).

In what follows we sketch the proofs of Theorems 4.1 and 4.3 and describe their impli-

cations. The full proofs can be found in the Appendices B to F.

4.4.1 Lower Bound on Estimation Errors

In this section we derive a lower bound on the Mean Squared Error (MSE) of Ti(S),

i = 1, . . . ,W . For this we use the Cramér-Rao (CR) lower bound of Ti(S), which gives the

smallest MSE that any unbiased estimator Ti can achieve.
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Recall that a set is observable only if one or more of its elements are observable. The

probability that a (random) set S has j observed elements, given j > 0, is defined as

bji(p) ≡ P [α(S) = j |α(S) > 0, |S| = i] =

(
i
j

)
pjqi−j

1− qi , (4.1)

if 0 < j ≤ i ≤ W and bji(p) = 0 otherwise, where q = 1− p and α(S) > 0 is the size of

S after sampling. Let dj(θ, p) denote the fraction of observed sets with exactly j observed

elements. From (4.1) we have, j = 1, . . . ,W ,

dj(θ, p) = P [α(S) = j| |S| > 0]

=
W∑

i=j

P [α(S) = j|α(S) > 0, |S| = i]× P [|S| = i|α(S) > 0]

=
W∑

i=j

bji(p)φi(θ). (4.2)

where

φi(θ) = P [|S| = i |α(S) > 0] =
θi(1− qi)∑W
k=1 θk(1− qk)

, (4.3)

is the distribution of the observed set-sizes. Or, in matrix notation,

d(θ, p) = B(p)φ(θ),

where d(θ, p) = (d1(θ, p), . . . , dW (θ, p))T and B(p) = [bji(p)], j, i = 1, . . . ,W . To illus-

trate the distribution d(θ, p) in our model, note that for a random observed set S,

α(S) ∼ d(θ, p),

with likelihood function

P [α(S) = j |θ] = (B(p)φ(θ))j = dj(θ, p), j = 1, . . . ,W. (4.4)

In what follows for simplicity we denote dj(θ, p) by dj(θ).
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We now apply the Cramér-Rao Theorem to find the lower bounds of MSE(Ti(S)). The

Cramér-Rao Theorem states that the MSE of any unbiased estimator T is lower bounded by

the inverse of the Fisher information matrix divided by the number of independent samples

N , provided some weak regularity conditions hold [89, Chapter 2], i.e.,

MSE(Ti(S)) ≡ E[(Ti(S)− θi)2] ≥
(
(J (θ)(p))−1

)
ii

N
, 1 ≤ i ≤ W. (4.5)

where (J (θ)(p))−1 is the inverse of the Fisher information matrix of a single set-size obser-

vation defined using the likelihood function (4.4) as

(J (θ)(p))i,k ≡
W∑

j=1

∂dj(φ(θ))

∂θi

∂dj(φ(θ))

∂θk

1

dj(φ(θ))
, (4.6)

given
∑W

i=1 θi = 1.

The lower bound in (4.5) is known in the literature as the Cramér-Rao lower bound

or CRLB for short. Let Ti(S) be an unbiased estimator, i = 1, . . . ,W . We say Ti(S) is

asymptotically efficient if MSE(Ti(S)) approaches the Cramér-Rao lower bound in (4.5)

as N → ∞. We show in Appendix E that the Maximum Likelihood Estimator is asymp-

totically efficient on the set-size estimation under the condition that the bound is finite. In

what follows we represent J (θ)(p) as J (θ) for simplicity.

4.4.2 Obtaining the CRLB

In what follows we derive the CRLB in closed-form as a function of the original set-size

distribution θ, the sampling probability p, and the number of observed sets N , where we

ignore the constraint
∑W

i=1 θi = 1. Deriving a closed-form solution for the inverse of J (θ)

is no easy task as matrix J (θ) is a function of ∂φ(θ)/∂θi, j, i = 1, . . . ,W , which makes
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J (θ) a non-linear function of θ. The Fisher information matrix in (4.6) can be derived as a

function of φ and thus

J
(φ)
i,k ≡

W∑

j=1

∂dj(φ)

∂φi

∂dj(φ)

∂φk

1

dj(φ)
, (4.7)

given
∑W

i=1 φi = 1; and because dj(φ) is linear in φ the above yields

(J (φ))−1 = B(p)−1diag(B(p)φ)−1(B(p)−1)T − φφT. (4.8)

Here the term φφT corresponds to the accuracy gain obtained by considering the constraint
∑W

i=1 φi = 1 (see Tune and Veitch [88] for more details and Gorman and Hero [30] for the

general formula on adding equality constraints to the CRLB). Quantitatively we can safely

ignore the constant term φφT as we are interested in the behavior of (J (φ))−1 as a function

of W and the elements of φφT must be smaller than one. All that is left to do is to find a

relationship between (J (φ))−1 and (J (θ))−1.

We now obtain (J (θ))−1 from (J (φ))−1 through the Jacobian ∇H = [hik], hik =

∂θi(φ)/∂φk with θi(φ) obtained from inversion of (4.3), we arrive at the equivalent multi-

variate rule [89, p. 83] and express (J (θ))−1 as

(J (θ))−1 = ∇H(J (φ))−1∇HT. (4.9)

Using (4.8) – detailed derivation relegated to Appendix B – we find:

[(J (φ))−1]ij =
W∑

k=max(i,j)

(
q

p

)2k (
k

j

)(
k

i

)
(−1)−i−j(q−i − 1)× (q−j − 1)dk(θ). (4.10)

Substituting (4.10) into (4.9) – and applying a variety of algebraic manipulations detailed

in Appendix G – yields
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[(J (θ))−1]ii =
1

η2

(
1

(1− qi)2 [(J (φ))−1]ii
︸ ︷︷ ︸

A1(i)

+ θ2i

W∑

j=1

W∑

k=1

[(J (φ))−1]kj
(1− qk)(1− qj)

︸ ︷︷ ︸
A2(i)

− 2θi

W∑

j=1

[(J (φ))−1]ij
(1− qj)(1− qi)

︸ ︷︷ ︸
A3(i)

)
, (4.11)

where η =
∑W

j=1 φj(θ)/(1 − qj). Note that term A1(i) of (4.11) is proportional to the

CRLB of φ, [(J (φ))−1]ii but terms A2(i) and A3(i) are more involved. Through a series of

algebraic manipulations of terms A1, A2, and A3, all detailed in Appendix B, we find that

(A1(i) + A2(i)− A3(i)) grows as a function of (1− p)/p and W , yielding the relation

MSE(Ti(S)) = Ω



∑W

j=1

(
1−p
p

)j
θj

N


 , i = 1, . . . ,W, (4.12)

where the number of observed sets N is large but constant with respect to W .

The result in (4.12) is very powerful as it gives a simple estimation error lower bound

as a function of the sampling probability p and the original set-size distribution θ. In

particular, the following examples applied to (4.12) give some intuition on the results in

Theorem 4.1 – a detailed exposition is Appendix D. For instance, a close look at (4.12)

reveals that when ((1 − p)/p)iθi = Ω(i−1) for all i > i?, i? � W , then the sum in (4.12)

grows at least as fast as the harmonic series, which grows as logW . On the other hand,

when ((1 − p)/p)iθi = O(i−β), β > 1, the sum in (4.12) converges to a constant, more

precisely, it grows no faster than a Riemann zeta function with parameter β, ζ(β).

Thus, for a given θ with W � 1 the CRLB exhibits an interesting sharp threshold (p0)

related to the sampling probability p. If p < p0 no estimator Ti of θi, i = 1, . . . ,W , is able

to achieve accurate estimates of θi. If p > p0, there exist estimators Ti(S), i = 1, . . . ,W

that can achieve accurate estimates, as N → ∞. To be more specific, we look at the

threshold behavior of p by breaking down θ into three broad classes of distributions:
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1. If θW decreases faster than exponentially in W there is no threshold behavior of p.

This is because when − log θW = ω(W ) there exists a constant a < 1 such that

((1 − p)/p)jθj < aj , j = 1, 2, . . .. Hence, the sum in (4.12) converges to a constant

for any p > 0, yielding MSE(Ti(S)) = Ω(1/N), for 0 < p < 1.

2. If − log θW = W log a + o(W ) and p ≤ a/(a + 1), then ((1 − p)/p)jθj = a−jθj =

Ω(1), ∀j. Hence, the sum in (4.12) diverges with W . On the other hand, if p >

a/(a+ 1) the sum in (4.12) converges to a constant.

3. Finally, if θW decreases more slowly than exponential and p < 1/2, then there exists

an ε > 0, such that ((1− p)/p)j > (1 + ε/2)j , ∀j. Because θj decreases more slowly

than an exponential the sum in (4.12) diverges with W . If p ≥ 1/2 the lower bound

in (4.12) converges to a constant.

To illustrate our results, we compute the MSE lower bounds in (4.11) where θ is the

indegree distribution of the Enron email dataset truncated at different values of W . More

precisely, we take the in-degree distribution of the Enron dataset (discussed in Section 4.2)

and truncate the maximum degree to W by accumulating in W all the probability mass

previously corresponding to degrees greater than W . The Enron in-degree distribution is a

(truncated) heavier-than-exponential distribution.

Figures 4.2a and 4.2b show the MSE lower bounds for p ∈ {0.25, 0.90}, respectively.

We observe that for p = 0.25 (Figure 4.2(a)) the MSE lower bound grows with W even for

small degrees, as predicted by Theorem 4.1. While, for p = 0.9 (Figure 4.2(b)) the MSE

lower bound behaves (mostly) independent of W , also as predicted by Theorem 4.1. These

results corroborate to explain the simulations results in Section 4.2.

Other metrics besides the set-size distribution are of interest. In what follows we ob-

serve that the accuracy is similar to that of set-size distribution estimators Ti, i = 1, . . . ,W .

We then analyze the accuracy of the average set-sizes.
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Figure 4.2. CRLB of the in-degree distribution of the Enron dataset for N = 104 samples.

4.5 Accuracy of Estimated Averages

In this section we consider the accuracy of unbiased average set-size estimates. Let

mθ =
∑W

j=1 jθj be the average set-size. Theorem 4.3 implies that estimating the average

set-size is in the same order of hardness as estimating the entire set-size distribution (see

proof in Appendix F). However, we show that the average size of the observed sets, i.e., the

average set-size in respect to φ, mφ =
∑W

j=1 jφj, is much easier to estimate.

Theorem 4.3 shows that estimating the average set-size is asymptotically as hard as

estimating the distribution θ. However, the average size of the observed sets, i.e., the

average set-size in respect to φ,

mφ =
W∑

j=1

jφj,

is much easier to estimate accurately. A estimation error bound for mφ is affected only by

the first and second moments of φ, that is, as long as mφ and

m
(2)
φ =

W∑

j=1

j2φj
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are finite, mφ can be accurately estimated if enough sets are observed. To prove this, let

m̂φ(S) denote an unbiased estimate of mφ and let

MSE(m̂φ(S)) = E[(m̂φ(S)−mφ)2]

denote the MSE of m̂φ(S). After applying a variety of algebraic manipulations detailed in

Appendix F we arrive at the following inequality

MSE(m̂φ) ≥
(1, . . . ,W )(J (φ))−1(1, . . . ,W )T −m2

φ

N

=
W∑

k=1

k∑

i=1

k∑

j=1

ij

(
k

j

)(
k

i

)
(−q)2k−i−j

p2k
(1− qi)(1− qj)dk(φ)

=

(
W∑

i=1

i(pi+ qi+1 − 2qi + q)φi
p(1− qi) −m2

φ

)
/N.

Interestingly,

m̂?
φ(S) =

∑
s∈S s

Np
+

(
1− 1

p

)∑
s∈S 1{s = 1}

N
, (4.13)

is an unbiased efficient (minimum variance) estimator of mφ, yielding

MSE(m̂?
φ(S)) =

(
W∑

i=1

i(pi+ qi+1 − 2qi + q)φi
p(1− qi) −m2

φ

)
/N.

Alternatively we can rewrite the above as

MSE(m̂?
φ) = O

(
m

(2)
φ −m2

φ

N

)
.

Hence, MSE(m̂?
φ) is lower bounded by the variance of the observed set-sizes. A simple

explanation for this behavior is likely found in the inspection paradox. The sampling is

biased towards sets with larger sizes, which increases the variance of the observed set-sizes

and, in turn, makes it harder to unbias the samples.
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4.6 Discussion

This section considers applications of our results to the estimation of Internet flow sizes

on high-speed routers and to the estimation of latent indegrees (outdegrees) in directed

networks (e.g. Web graph) through edge sampling, and bounds on Bayesian and biased

estimators that complements our bounds of unbiased estimators. Moreover, we also discuss

the practical aspects of the initialization of estimation procedures.

4.6.1 Application Example

An important problem in network traffic measurement and planning is to estimate the

distribution of the flow sizes traversing a network. In this context, packets can be seen as

elements grouped by flows. Due to efficiency requirements, packets traversing a link are

sampled independently with a given probability, rather than collecting information about all

packets. In the most common sampling design, two parameters are chosen: p, the sampling

probability and N , the number of flows to be observed. A router is then set to sample

packets traversing a link until N different flows are sampled, but it only actually stops after

the last flow terminates. Here the number of observed sets (flows) is a constant defined a

priori. More generally, this sampling design can be used in any scenario where a stream of

elements is to be sampled. In the above scenario N and W are fixed and our results can be

directly applied. There are alternative sampling scenarios, however, where N is a random

variable.

4.6.2 Variable Number of Observed Sets (N )

Our results assume that the number of observed sets N , the maximum set-size W , and

the sampling probability p are independent constants. In what follows we consider N to

be a random variable that depends on the number of sets V and on the constants W and p,

showing how our results can still be applied.

To exemplify this scenario, consider again the estimation of Internet flow-size distri-

bution, where we sample packets with probability p from a fixed number of flows V .
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In this case, N is binomially distributed random variable with parameters V and ρ =
∑W

i=1 θi(1− qi) (probability of observing one set chosen uniformly at random). The Cher-

noff bound shows that N is concentrated around its mean V ρ:

P (N > (1 + δ)V ρ) ≤ exp

(
−V ρδ

2

3

)
, 0 < δ < 1.

For instance, choosing δ =
√

3
V ρ

log 1
ε
, yields P (N > (1 + δ)V ρ) ≤ ε. Even though V

and ρ may be unknown in practice, this inequality still illustrates that, for a fixed ε, the

upper bound on N increases linearly with V . From this fact, it follows that the negative

implications (items 2(a) and 3(a)) of Theorems 4.1, 4.2, and 4.3 hold as long as W grows

faster than log(V ).

4.6.3 The Maximum Set Size W as a function of the Number of Sets V

Consider the following network sampling application. We wish to sample nodes on a

directed network by randomly sampling edges (e.g. observing Web pages through sampling

incoming links). Here a relationship between V and W arises, as the size of the network

also determines the maximum node degree. To estimate the indegree distribution from

these sampled edges we need to consider thatW and V are coupled: the maximum indegree

cannot exceed the number of nodes in the network. Nevertheless, on power-law networks,

one can show that if W grows as Ω(V b) with high probability, for any b > 0, then we can

readily apply items 2(a) and 3(a) of Theorems 4.1 and 4.3. This is true, for instance, for

Barabási-Albert networks, where W grows as Ω(V 1/2) with high probability [63]. Since

− log(θW ) ∝ log(W ) = o(W ) (and clearly the number of observed setsN ≤ V ), it follows

from 3(a) that when p < 1/2, log[MSE(Ti(S))] = Ω(V 1/2 − log(V ))→∞ as V →∞.

Also it is worth noting that all results listed in Theorems 4.1, 4.2, and 4.3 that do not

depend on W also hold true, even when W and N depend on each other. For instance, for

large Erdős-Renyi networks where the degree distribution asymptotically approaches either

Poisson or Normal distributions, θW decreases faster than exponentially and our results
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show that the MSE is lower bounded by O(1/N) and if N → ∞ then MLE achieves this

bound.

4.6.4 Impact on Different Types of Estimators: Bayesian, Biased and Unbiased

To extend our results beyond unbiased estimators we explain the connection between

Fisher information, the Cramér-Rao bound and biased estimators. We also extend our

results to Bayesian estimators (including maximum a posteriori estimators).

4.6.4.1 Extension to Biased Estimators

Let b(θi) = E[Ti(S)]− θi be the estimator bias. Then (see Ben-Haim and Eldar [12])

MSE(Ti(S)) ≥
(

1 +
∂b(θi)

∂θi

)2

[(J (θ))−1]ii,

assuming ∂b(θi)/∂θi exists. Note if the bias derivative satisfies −2 < ∂b(θi)/∂θi < 0, then

the biased estimator has a smaller MSE than any unbiased estimator. However, we believe

it is unlikely that a biased estimator can be designed to compensate for a large value of

[(J (θ))−1]ii (as large as 10160 as seen in Section 4.4.2 for the Enron e-mail network).

4.6.4.2 Extension to Bayesian Estimators

Let θ now be a random variable with prior distribution πθ. A Bayesian estimator adds

πθ as extra information to the estimation problem. The Fisher information of the prior is

J
(p)
ij = E

[
∂ lnπθ
∂θi

∂ lnπθ
∂θj

]
.

The Fisher information obtained exclusively by the data is J (θ) presented in (4.6). And the

total Fisher information prior + data is [89, p. 84]

J (t) = J (p) + J (θ).
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The Cramér-Rao bound of a Bayesian estimator Wi(S) of θi with prior πθ yields [89, p. 85]

MSE(Wi(S)) ≥ (J (t))−1 = (J (p) + J (θ))−1.

Thus, if the data contains little Fisher information then any decrease in the MSE is due to

the information contained in the prior πθ.

4.6.5 Initialization of Estimation Procedures

As previously stated, eq. (4.4) can be used to derive a maximum likelihood estimator

(MLE) for θ. From the MLE one could either use a constrained non-linear optimization

method to maximize the likelihood function directly or use the Expectation-Maximization

(EM) algorithm to write an iterative estimation procedure. In the latter case, the procedure

consists of an initialization step followed by a loop of two steps known as the E-step and M-

step. We discuss two issues that arise when EM is used to estimate the set-size distribution.

In EM, the solution to which the algorithm converges depends on the initial guess.

Therefore, in order to have an unbiased estimate, one must choose a point uniformly at

random from the space of possible values. Although it may seem reasonable to choose

values for each θi uniformly in [0, 1] and then normalize them, it turns out that this does not

yield uniformly distributed initial guesses. One way to correctly generate the initial guess is

to sample W − 1 points uniformly from the unit line and then take the difference between

adjacent points (including 0 and 1) [20, Chapter XI, Theorem 2.1]. This is equivalent

to drawing from the Dirichlet distribution with W parameters α = (1, . . . , 1), since the

Dirichlet PDF at point θ is proportional to
∏W

i=1 θ
αi−1
i .

Nevertheless, such an initialization combined with the other two steps of EM will give

us estimates θ̂i ∈ [0, 1] hence producing biased estimates as they are not free to assume

any real value. Therefore, it is possible for the EM to achieve an MSE not in agreement

with the CRLB we derived previously. This is the case when the number of samples N

is small and, consequently, the diagonal of J−1(θ) has relatively large values (possibly
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greater than 1). On the other hand, for large N , the number of observed sets with size i

will converge to a Normal distribution with mean θi and small variance. For small enough

variance, restricting θi to be between 0 and 1 does not affect the final estimate significantly

and thus the CRLB accurately bounds the MSE.

4.7 Related Work

Not much prior work exists in the literature on theoretical bounds for estimation error

in problems related to the SSD estimation. Hohn and Veitch [37] first observed that using

a sampling probability of p < 1/2 poses problems in the context of two specific estimators

for the flow size distribution when the distribution obeys a power law. In particular, they

showed that their estimators of the flow size distribution are asymptotically unbiased with

decreasing error as the number of flow samples increases when p ≥ 1/2, but not when

p < 1/2. Our work shows that this is a fundamental result of SSD estimation and not

specific to any specific estimator. Ribeiro et al. [75] was the first to introduce the use of

Fisher information as a design tool for flow size estimation. Experiments reported in that

paper suggested that there is little statistical information about the distribution when p is

small and showed how this information can be significantly increased with the addition of

other data taken from packet headers. Tune and Veitch [88] applied Fisher information to

compare packet sampling with flow sampling. In the process of doing so, they obtained

a variety of useful Fisher information inverse identities, some of which we rely on in this

work.

In [74], Ribeiro et al. study the problem of predicting the distribution of cascade sizes

on a network building on the theoretical results presented in this chapter. Similar to what

we did here, the authors show the existence of a big data paradox: on power law networks,

as the network size grows, increasing both the available historical data and the maximum

cascade sizes, predictions beyond the time horizon of the historical data get more inaccu-

rate, whereas predictions within that time horizon become more accurate.
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4.8 Conclusions

In this chapter we give explicit expressions of MSE lower bounds of unbiased estima-

tors of the distribution of set-sizes θ and the average set-size mθ with sampling probabil-

ity p. We show that the estimation error of θ grows at least exponentially in W , when

− log θW = W log a+ o(W ) as W →∞ for some 0 < a < 1, and p < a/(a+ 1), or when

− log θW = o(W ) as W → ∞ and p < 1/2, which indicates that unbiased estimators of

some distributions θ are too inaccurate to be useful for practitioners. Moreover we show

that unbiased estimates of mθ suffer from similar problems.
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CHAPTER 5

SELECTIVE HARVESTING OVER NETWORKS

5.1 Introduction

Networked active search [27, 57, 60, 91] is a technique for finding the largest number

of target nodes – i.e., nodes with a target label – in a network by querying nodes in a

weighted graph, under a query budget constraint. Nodes have hidden labels but the network

topology and edge weights are fully observable and any node can be queried at any time.

Edge weights encode some form of node similarity that can be used to improve querying

efficiency. Unfortunately, edge weights, network topology and node information are rarely

available to be downloaded from one centralized place (except for the company that owns

the network). As a result, today’s prevalent method to collect network data is to query

neighbors of already queried nodes (crawling). Like networked active search, other similar

techniques, such as learning to crawl [31, 68], also assume that edge weights between the

queried nodes and their neighbors are observed. But in a variety of network crawling

problems, such as crawling online social networks, (micro) blog networks, and citation

networks, a node query often reveals only node attributes. This process poses an entirely

new set of challenges for networked active search and other similar methods.

In this chapter we introduce selective harvesting, where the goal is the same as in active

search, but in addition to the fixed budget our node querying is subject to a partial – and

evolving – understanding of the network. More precisely, we assume that knowledge about

the network is restricted to the set of queried nodes and their connections to the rest of

the network. Selective harvesting starts from a seed node (typically a target) and proceeds

by querying nodes from the fringe set, i.e. neighbors of already queried nodes. Training
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a classifier for selective harvesting is a challenging task due to the fact that the classifier

must be trained over observations that depend on previous choices of the same classifier,

the hidden network topology, and the distribution of node features over the network. We

call this the tunnel vision effect. Unlike standard active search, selective harvesting has no

recourse to true randomness or sample independence that can ease the tunnel effect. Under

partially observed networks, traditional active search methods perform quite poorly.

We discover that it is possible to collect a much larger set of target nodes by using mul-

tiple classifiers, not by combining their predictions as a weighted ensemble, but switch-

ing between classifiers used at each step, as a way to ease the tunnel vision effect. We

show that switching classifiers collects more target nodes by (a) diversifying the training

data and (b) broadening the choices of nodes that can be queried in the future. Based on

these observations, we propose Directed-Diversity Dynamic Thompson Sampling (D3TS),

a Multi-Armed Bandit (MAB) algorithm for non-stationary stochastic processes that intel-

ligently selects a classifier at each step to decide which neighbor to query. Unlike typical

MAB problems, where there is a clear exploration and exploitation tradeoff, the standard

MAB approach, which forces convergence to the “best classifier”, would be suboptimal in

the presence of the tunnel vision effect. This gives rise to what we refer as exploration,

exploitation, and diversification tradeoff. D3TS ensures continual diversification by using

multiple distinct classifiers, which plays a similar role to sample independence and eases

the tunnel vision effect.

Interestingly, we find that even a round-robin selection of distinct classifiers often per-

forms better than just using the best classifier or the best active search method for each

dataset. Consider simulation results shown in Figure 5.1 (the simulation is further ex-

plained in Section 5.6.1, for now we focus only on the overall results). Figure 5.1 shows

the number of queries (x-axis) against the number of target nodes found in the CiteSeer

network (NIPS papers as targets) normalized by the number of target nodes found by a

round robin selection of five distinct simple classifiers (y-axis); the details of these simple
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Figure 5.1. Lines show the (scaled) average number of targets found by round-robin, five
naı̈ve classifiers and D3TS against the total number of queries (t). Shadows indicate 95%
confidence intervals over 80 runs, each starting at a seed uniformly chosen from target
population. Surprisingly, round-robin use of five classifiers (including poor-performing
ones) outperforms any single classifier in the CiteSeer network. We also see that the best-
performing active search method (Wang et al. [91]) has its relative accuracy eroded over
time (and we will see why this is likely due to the tunnel vision effect). We include the
proposed method (D3TS) results, which are consistently better than all competing methods
for t ≥ 500.

classifiers are given in Section 5.3. Note that over time the cumulative gain of the best

active search method for this dataset (Wang et al. [91]) slowly erodes until it is worse than

the naı̈ve round-robin approach. Our analysis shows that this erosion can be attributed to

the tunnel vision effect. Each of the five simple classifiers when used on their own are

consistently outperformed by the round-robin approach, and the best such classifiers also

suffer from a performance erosion over time. In contrast, our proposed method, D3TS, con-

sistently and significantly outperforms state-of-the-art methods, the round-robin approach,

and naı̈ve approaches.

5.1.1 Contributions

The contributions of this chapter are:

1. Formulation and characterization of Selective Harvesting and Classifier Diver-

sity: We introduce selective harvesting and show that existing heuristics such as ac-
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tive sampling [14, 69] and active search [27, 57, 91] perform poorly in these settings.

We show that switching between various classifiers is helpful to achieve greater per-

formance. This works not because we are exploring classifiers in order to find the

best one or because we are combining their predictions as an ensemble. Instead,

classifier diversity – i.e., the use of multiple classifiers – helps improve accuracy in

two complementary ways. It achieves fringe set diversity, by exploring regions and

thus avoiding remaining in a region where target nodes have been depleted. It also

achieves training sample diversity, where diverse classifiers create enough diversity

of observations to ease the tunnel vision effect.

2. Directed Diversity Dynamic Thompson Sampling (D3TS): we propose D3TS, a

method for selective harvesting problems which combines different classifiers, and

show that it consistently outperforms state-of-the-art methods. We evaluate the pro-

posed framework on several real-world networks and observe that D3TS outperforms

all tested methods on five out of seven datasets and exhibits similar performance on

the other two.

5.1.2 Outline

The rest of this chapter is structured as follows. In Section 5.2 we formalize the selec-

tive harvesting problem and present a generic algorithm for solving it. In Section 5.3 we

describe existing and potential approaches to solve this problem and show that the tunnel

vision effect hurts their performance. In Section 5.4 we investigate why classifier diversity

– i.e., using multiple classifiers – can mitigate the tunnel vision effect. We propose D3TS

in Section 5.5. Datasets and results of our evaluation are described in Section 5.6. Related

work is described in Section 5.7. We discuss some ideas not explored in this dissertation

in Section 5.8. Last, conclusions are presented in Section 5.9.
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Figure 5.2. Representation of the search state over an unknown graph G after t = 5
steps. Solid nodes and edges show the subgraph G̃t. Black nodes represent queried nodes.
Unknown labels of nodes in Ft are represented by a question mark “?”.

5.2 Problem Formulation

In this section we formalize the selective harvesting problem and introduce notation

used throughout this chapter. Let G = (V , E) denote an undirected graph representing the

network topology. Each node v ∈ V has |L| attributes (domain-related properties of the

nodes) encoded without loss of generality as an attribute vector av ∈ R|L|.

In networked active search problems, the goal is to find a large set of nodes in V that sat-

isfy a given search criterion (e.g., nodes that exhibit a given attribute) under the constraint

that no more than B nodes can be queried. The search criterion is a boolean function

f : V → {0, 1}. Formally, let V+ ⊂ V be the set of all target nodes, i.e. all v such that

f(v) = 1. We define node labels yv as

yv = f(v) =





1 if v ∈ V+,

0 otherwise.
∀v ∈ V

Selective harvesting is a variant of active search. In active search, the topology is as-

sumed to be known. In selective harvesting, the search is subject to a limited but evolving

knowledge of the network. This knowledge is expanded by querying nodes in V , which

reveals their labels, neighbors and attribute vectors. A set of pre-queried nodes Q0 ⊂ V is
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given as input (typically consisting of one target node). Subsequent queries are restricted

to neighbors of already queried nodes.

At any step t, nodes belong to one of three sets: Qt, the set of previously queried

nodes; Ft, the set of neighbors of queried nodes that have not been queried (referred as

fringe nodes or fringe set); orWt, the set of unobserved nodes, which are invisible to the

algorithm. Figure 5.2 illustrates a snapshot of the search process (see caption for details).

Let G̃t = (Qt, Ẽt) denote the subgraph of G given by the subgraph induced by nodes

in Qt ∪ Ft minus edges in the subgraph induced by Ft (i.e., G̃t contains all edges between

nodes in Qt plus edges connecting Qt to Ft). The graph G̃t is the portion of the network

visible at step t. In G̃t, label yv is only known for nodes in Qt.

5.2.1 Generic solution

Given an initial input graph G̃0, a selective harvesting algorithm must decide at each

step t = 1, . . . , B what action to take, i.e., what fringe node v ∈ Ft to query, given

the currently available network information. This action returns v’s label, attributes and

connections, which is included as additional input to the search in step t+ 1. Node v’ label

(0 or 1) can be thought of as the payoff obtained by querying that node. The algorithm’s

output is the list of target nodes found in B steps. The best algorithm is the one that yields

the largest total payoff, i.e., yields the largest number of target nodes.

5.3 Background

In this section, we review methods for searching networks that can be used for or

adapted to selective harvesting. These methods exploit correlation between labels of con-

nected nodes to find targets. In addition, we review statistical models that could be used

as an alternative (data-driven) approach. In contrast to existing methods, base learners can

leverage node attributes by training a statistical model to infer the node’s label from the

observed graph. As a slight abuse of terminology, we may refer to existing methods and
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PNB [69] SN-UCB1 [14] MOD [8] AS [91] D3TS (ours)
Unknown network 3 3 3 - 3

Uses node features - - - - 3

Unknown neighbor
- - - - 3

attributes
Fits model to evol-

- 3 - - 3
ving observations
Scalable - 3 3 3 3

Table 5.1. Comparison of heuristics for selective harvesting: Active Sampling (PNB), So-
cial Network UCB1 (SN-UCB1), Maximum Observed Degree (MOD), and Active Search
(AS).

base learners generically as classifiers, since both are used to classify fringe nodes as either

targets or not.

5.3.1 Existing methods

There is related work in the literature that provides methods that can be used for or

adapted to selective harvesting. A subclass of selective harvesting methods known as active

sampling [14,69] does not account for node attributes. Our problem is closely related to the

graph-theoretic myopic budgeted online covering problem [8, 16, 43]. In this problem, all

nodes are relevant (equivalently, all nodes are targets) and the task is to find a connected set

of nodes that yields the largest cover (i.e., the largest set Qt ∪ Ft). The closest problem to

ours is that addressed by networked active search [27,57,60,91], where nodes have hidden

labels but the topology and edge weights are fully observed and any node can be queried

at any time. Algorithms for myopic budgeted online covering and active search can be

adapted for selective harvesting; active sampling methods require little or no modification.

We adapt four representative methods of the above to selective harvesting, namely Ac-

tive Sampling [69] (PNB – in reference to the authors surnames), Maximum Observed

Degree (MOD) [8], Social Network UCB1 (SN-UCB1) [14], and Active Search (AS) [91].

Table 5.3 summarizes the key differences between these methods and the proposed method

D3TS.
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5.3.1.1 Active Sampling (PNB)

PNB is a representative algorithm from the class of networked active sampling ap-

proaches proposed in [69]. PNB estimates a fringe node’s payoff value yv using a weighted

average of the payoffs of observed nodes two hops away from v, where weights are the

number of common neighbors with v. Fringe nodes are included among these observed

nodes, requiring all payoffs to be collectively estimated by a label propagation-like pro-

cedure based on Gibbs Sampling. PNB also tracks a running average of payoff values

acquired from random jumps, which we do not allow in our simulations since these are not

possible in selective harvesting. We refer the reader to [69] for a complete description of

PNB and its parameters.

5.3.1.2 Social Network UCB1 (SN-UCB1)

The SN-UCB1 search algorithm proposed in [14] divides fringe nodes into equivalence

classes and samples from theses classes using a multi-armed bandit (MAB) algorithm.

Equivalence classes are composed of all fringe nodes connected to the same set of queried

nodes. These classes are volatile: they split, disappear and appear over time, requiring the

use of a variant of the UCB1 algorithm called VUCB1. Although this method learns about

the equivalence classes, it does not learn a statistical model, and does not account for node

attributes. Similar to selective harvesting, it assumes partial but evolving knowledge about

the network.

5.3.1.3 Maximum Observed Degree (MOD)

MOD is a myopic algorithm proposed in [8] to maximize the network cover as it ex-

plores a graph. MOD is the optimal greedy cover algorithm in a finite random power law

network (under the Configuration Model [66]) with degree distribution coefficient either

one or two. In our simulations we adapt MOD to select the fringe node with the maximum

number of target neighbors in the queried set (ties are resolved randomly). From the ex-
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pected excess degree results in [8] such fringe nodes are rich with target neighbors provided

the underlying network exhibits strong homophily with respect to node labels.

5.3.1.4 Active Search

The Active Search method proposed by Wang et al. [91] attempts to find target nodes by

assuming that labels are defined by a smooth function over the graph edges. To estimate the

unknown labels, it attaches to each labeled instance a virtual node containing the instance’s

label and then performs label propagation on the original graph. This method assumes that

the underlying graph is known, which allows it to estimate the future impact of choosing a

given fringe node. We adapt Active Search to run label propagation only on the observed

graph.1

5.3.2 Data-driven methods

A data-driven selective harvesting algorithm trains a statistical model to estimate the

expected payoff µt(v) obtained from querying fringe node v ∈ Ft, based on v’s relationship

with the observed graph G̃t at step t. We encode this relationship as a “local” feature vector

xv|G̃t , which we describe next. Note that v’s features differ from v’s attributes (denoted by

av). Since v’s attributes are not observable until it is queried, we compute v’s local features

from the observed graph G̃t to use as training data for base learners.

5.3.2.1 Feature Design

We define features for each fringe node in v ∈ Ft. They are divided into:

• Pure structural features: observed degree and number of triangles formed with

observed neighbors.

1Although the method proposed by Wang et al. [91] is outperformed by a more recent proposal [57] in
active search problems, we found the opposite to be true when the graph is not fully observable. In addition to
being highly sensitive to the parameterization, the most recent method computes and stores a dense correlation
matrix between all visible nodes, which is hard to scale beyond 105 nodes.
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• Structure-and-attribute blends: number and fraction of target neighbors, number

and fraction of triangles formed with two non-target (and with two target) neighbors,

number and fraction of neighbors mostly surrounded by target nodes, fraction of

neighbors that exhibit each node attribute, probability of finding a target exactly after

two random walk steps from fringe node.2

We build upon features typically used in the literature [78, 79]. We also use a Ran-

dom Walk (RW) transient distribution to build features: we consider the expected payoff

observed by a RW that departs from node u ∈ Ft and performs two steps, given by

x(RW)
u|G̃t

=

∑
(u,v)∈Ẽt

∑
(v,w)∈Ẽt,w∈Qt yw

Cu|G̃t
(5.1)

where Cu|G̃t is the number of such paths of length two in G̃t. Note that the RW is not

restricted to the immediate neighbors of u. Also, this is not an average among the nodes

two hops away from u; this feature depends on the connectedness of the fringe node’s

neighborhood in the observed graph.

5.3.2.2 Base Learners

The feature vector described above can be given as input to any learning method able

to generate a ranking of fringe nodes. We consider classification, regression and ranking

methods as suitable candidates for this task. The classification representatives include Lo-

gistic Regression and Random Forests, because they provide ways to rank fringe nodes

according to how confident the model is that each fringe node is a target. Exponentially

Weighted Least Squares (EWLS) and Support Vector Regression are included by mod-

eling the task as a regression problem, and the list-wise learning-to-rank method List-

2Other seemingly obvious features (e.g., number of non-target nodes) are not considered due to colinear-
ity. Longer random walk paths are be too expensive to be used in most real networks.

93



Net [17] for directly outputting ranks. We briefly describe EWLS and ListNet below and

refer the reader to [24] for descriptions of other methods.

5.3.2.2.1 Exponentially Weighted Least Squares (EWLS): computes weights w that,

given a forgetting factor 0 � β ≤ 1 and regularization parameter λ, minimize the loss

function
t∑

i=1

βt−i|yt − xt
>w|2 + βtλ‖w‖2.

EWLS gives more weight to recent observations. The weights w are suitable for fast online

updates [56, Section 4.2]. Setting β = 1 reduces EWLS to `2-regularized Linear Regres-

sion.

5.3.2.2.2 ListNet: this is a representative method from the list-wise approaches for

learning to rank (a Machine Learning task where the goal is to learn how to rank objects

according to their relevance to a query) [17]. It assumes that the observed ranking π is a

random variable that depends on the objects’ scores (where π1 is the top-ranked object).

The scores are determined by a neural network that is trained by minimizing the K-L di-

vergence between the probability distribution over π̂ and the probability distribution over

a ranking π derived from ground-truth scores. In our context, P (π) is given by

P (π = 〈π1, ..., π|Ft|〉) =

|Ft|∏

i=1


exp(yπi)/

|Ft|∑

j=i

exp(yπj)


 .

Since the goal is not to predict the object-wise relevance, all of the statistical power of this

method goes into learning the ranking.

As with any learning approach, in the “small data” regime (few observations collected)

a base learner may perform worse than heuristic methods that assume homophily w.r.t.
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Methods
Datasets (budget B)

CS DBP WK DC KS DBL LJ
(1500) (700) (400) (100) (700) (1200) (1200)

PNB 833.2∗ 260.6∗ 107.7∗ 24.3∗ 178.3∗ 599.5∗ 632.4∗

SN-UCB1 568.9∗ 272.3∗ 71.8∗ 23.2∗ 133.2∗ 399.1∗ 573.7∗

MOD 3 746.8∗ 403.0∗ 140.9∗ 35.7∗ 159.6∗ 580.3∗ 584.1∗

Active Search 3 808.9∗ 412.2∗ 143.4 22.6∗ 215.3∗ 684.9∗ 654.2∗

Logistic Regression 764.5∗ 452.5 86.2∗ 35.8 122.1∗ 744.4 732.0
Random Forest 3 738.5∗ 454.0∗ 127.2∗ 37.2 215.6∗ 725.4 728.3∗

EWLS 808.2∗ 462.4 82.5∗ 35.2∗ 142.3∗ 656.9∗ 694.4∗

SV Regression 3 770.6∗ 456.3∗ 85.0∗ 37.6 205.3∗ 757.1∗ 736.1
ListNet 3 742.0∗ 448.0∗ 92.5∗ 34.4∗ 146.3∗ 730.7 742.8
Round-Robin (all 3) 822.2∗ 454.5∗ 135.3∗ 37.3 234.9∗ 696.0∗ 716.0∗

D3TS (all 3) 851.2 464.0 144.7 37.9 247.6 729.5 737.3
Target population size 1583 725 202 56 1457 7556 1441

Table 5.2. Average number of targets found by each method after B queries based on 80
runs. Datasets. CS: CiteSeer, DBP: DBpedia, WK: Wikipedia, DC: DonorsChoose, DBL:
DBLP, KS: Kickstarter and LJ: LiveJournal. Budget B is respectively set to number of
targets ×1,×1,×2,×2,×1

2
,×1

6
,×5

6
truncated to hundreds. First four rows correspond to

existing methods; five subsequent rows are base learners. Round-Robin and D3TS combine
methods indicated by (3). Means whose difference to D3TS’s is statistically significant
at the 95% confidence level are indicated by (∗). Best two results on each dataset are
shown in bold. Parameters. PNB: same as in [69]; Active Search: same as in [91];
ELWS: β = .99, λ = 1.0; Logistic Regression and SV Regression: penalty C set using
fast heuristic implemented in R package LiblineaR [35]; Random Forest: no. variables
=
√

no. features, number of trees = 500 for CS, DBP, WK, DC and = 100 for KS, DBL,
LJ; ListNet: no. iterations = 100, tolerance = 10−5.

node labels. To mitigate issues related to fitting a learner to few observations and yet allow

a fair comparison with the heuristic methods, we query the first 20 nodes using MOD.3

To highlight the tunnel vision effect and show how classifier diversity can mitigate

it we conduct a large set of simulations. We simulate searches using four heuristics –

MOD, PNB, Social Network-UCB1 (SN-UCB1) and Active Search – and five base learners

– Logistic Regression, Exponentially Weighted Least Squares (EWLS), Support Vector

Regression, Random Forest and ListNet – on seven networks and summarize the results in

3In comparison to other combinations of length and heuristic used in the “cold start” phase, this was found
to work best.
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Table 5.2 (network datasets and target populations are described in Section 5.6.1). We then

consider a set of classifiersM that typically exhibit good performance and cycle between

them during the search, in a Round-Robin (RR) fashion.

Based on Table 5.2, we pick M={MOD, Active Search, Support Vector Regression,

Random Forest, ListNet}.4 We use this set of classifiers throughout the rest of this chap-

ter, unless otherwise noted. At each step, one of the classifiers inM is used to determine

which node is the most likely to be a target. This node is then queried and the resulting

observation is, in turn, used to update all classifiers. One might expect RR’s performance

to be the average of the performance results yielded by the standalone counterparts, but as

we observe in Figure 5.1, this is not the case. Interestingly, switching classifiers at each

step outperforms the best classifier in M on the CiteSeer and Kickstarter datasets, and

finds at least 92% as many target nodes as the best classifier on other datasets. In what fol-

lows we investigate why the use of multiple classifiers can improve selective harvesting’s

performance.

5.4 Leveraging diversity through the use of multiple classifiers

We observe that RR outperforms all five classifiers on CiteSeer (Fig. 5.1). Conse-

quently, at least one of them must perform better under RR than on its own. In order to

identify which ones do, we show in Figure 5.3 the hit ratio – number of target nodes found

divided by number of queries performed using each classifier up to time t – under RR and

when used by itself, averaged over 80 runs. Interestingly, after t = 400 all classifiers ex-

hibit similar (relative difference smaller than 10%) or better performance under RR than

when used alone.

We propose two hypotheses to explain this performance improvement:

4We choose MOD in lieu of PNB because MOD is orders of magnitude faster. Among the base learners,
we choose one representative of regression (SV Regression), classification (Random Forest) and ranking
(ListNet) methods.
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Figure 5.3. Round-robin can have higher hit ratios for each of its classifiers than their
standalone counterparts.

(a) Fringe Hypothesis: RR explores regions of the graph containing more targets that

are likely to be scored high by a classifier, i.e. RR infuses diversity in the fringe set.

(b) Training Hypothesis: Observations from different classifiers can be used to train

the others to generalize better and cope with self-reinforcing sampling biases, i.e.,

diversity in the training set produce a classifier that is better at finding target nodes.

Note that these hypotheses are not mutually exclusive. In what follows, we perform con-

trolled simulations to isolate and study each hypothesis.

Training set diversity directly impacts model parameters. Model parameters, in turn,

determine how the fringe set will change. Therefore, to assess the impact of training set

diversity we must hold the fringe set diversity constant and vice-versa. This is the key

idea behind the two controlled sets of simulations described next. To perform them, we

instrumented our simulator to load, from another simulation run, (i) the feature vector

xσt|G̃t of node σt queried in step t, and label yσt , and (ii) the observed graph G̃t at each step

t. In what follows, we show the results obtained using the support vector regression (SVR)

model. We denote node σt’s feature vector and label simply by xt and yt, respectively, to

make it easier to follow.
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Stage	1:	simulate	SVR	until	t=T
and	store	training	data

Stage	2:	simulate	Round-Robin	
until	t=T and	store	sequence	of	
observed	graphs

Stage	3:	simulate	SVR	until	t=T,	
loading	training	data	from	Stage	1	
and	observed	graph	from	Stage	2
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eG3
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(a) Simulations for studying Fringe Hypothesis

Stage	1:	simulate	SVR	until	t=T
and	store	sequence	of	observed	
graphs

Stage	2:	simulate	Round-Robin	
until	t=T and	store	training	data

Stage	3:	simulate	SVR	until	t=T,	
loading	training	data	from	Stage	2	
and	observed	graph	from	Stage	1
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(b) Simulations for studying Training Hypothesis

Figure 5.4. (a) We study the Fringe Hypothesis by recreating the sequence of SVR models
from the original simulation run (stage 1) and using them to query nodes on a sequence of
observed graphs collected using round-robin (stage 2). (b) We study the Training Hypoth-
esis by recreating the sequence of observed graphs from the original simulation run (stage
1) and using a SVR trained on the samples collected using round-robin (stage 2) to query
nodes.
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5.4.1 Fringe Hypothesis

Our experiment consists of three stages (Fig. 5.4(a)). First, we store the sequence of

observations (i.e., pairs feature vector, label) OSVR = ((x1, y1), . . ., (xB, yB)) correspond-

ing to nodes queried when searching a network dataset D using SVR. Second, we store

the sequence of observed graphs G̃RR =
(
G̃1, . . . , G̃B

)
when searching D by cycling be-

tween models in the set M. Last, we simulate another SVR-based search on D, loading

the observed graph at each time step t from G̃RR. However, instead of training the SVR

model with observations collected on that run (which most likely differ from those col-

lected during the first stage), we gradually feed it with observations from OSVR, one for

each simulation step t. Therefore, we will reproduce the sequence of classifiers from the

first stage, but subject to a different sequence of observed graphs.

5.4.2 Training Hypothesis

As before, our experiment consists of three stages (Fig. 5.4(b)). In the first stage, we

store the sequence of observed graphs G̃SVR =
(
G̃ ′1, . . . , G̃ ′B

)
when searching D using a

SVR model. Second, we store the sequence of observationsORR = ((x′1, y
′
1), . . . , (x

′
B, y

′
B))

collected when searching D by cycling among classifiers inM. Last, we simulate another

SVR-based search, loading the observed graph at each time step t from G̃SVR, but feeding

it observations from ORR, one by one. Hence, the classifier is fit to a different set of ob-

servations, but the search is subject to the same sample path as the SVR-based search from

the first stage.

Figure 5.5 contrasts the average number of target nodes found by the original SVR-

based search on CiteSeer against those obtained in each set of simulations based on 80 runs.

The 95% confidence intervals for the mean at t = 700 are [393.8, 413.1], [416.6, 427.5]

and [417.1, 436.7]. These statistics corroborate the hypotheses that the fringe set and the

training data collected by the round-robin policy contribute to improving the performance

of the SVR model.
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Figure 5.5. SVR classifier and two ways to ease the tunnel vision effect: fringe set diver-
sity and training set diversity improve performance by ensuring greater diversity in query
choices and by diversifying the training data, respectively.

Intuitively, when a base learner is fit to the nodes it queried, it tends to specialize in one

region of the feature space and the search consequently only explores similar parts of the

graph, which can severely undermine its potential to find target nodes. One way to mitigate

this overspecialization would be to sample nodes from the fringe set probabilistically, as

opposed to deterministically querying the node with the highest score. This alternative is

investigated in Appendix H, where the ranking associated with each classifier is mapped

into a probability distribution. The results show no significant performance improvement

over those obtained when a single classifier chooses nodes to query deterministically. It is

possible that using node scores attributed by each classifier – rather than node rankings – to

obtain a mapping to a probability distribution yields better results, but this is left as future

work.

The round-robin policy infuses diversity in the training set without sacrificing perfor-

mance. This diversity is achieved by “asking another classifier” what is the best node to

query at a given step. In scenarios where all classifiers would have performed reasonably

well if used alone, learning from another’s classifier query is likely to improve one classi-

fier’s ability to find targets, especially when they disagree.
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Yet, different classifiers inherently exhibit different performances on a dataset. In the

following section, we propose a method that learns these inherent performances online and

thus improves upon round-robin by not using all classifiers an equal number of times. We

call it Directed Diversity Dynamic Thompson Sampling because it is based on the Dynamic

Thompson Sampling algorithm for multi-armed bandit problems and because it leverages

diversity in a “directed way” as opposed to randomly sampling nodes.

5.5 Directed Diversity Dynamic Thompson Sampling (D3TS)

Selective harvesting with multiple classifiers can be cast as a Multi-Armed Bandit

(MAB) problem. In selective harvesting, the sequential decision problem consists of choos-

ing the node to query at each step, given recommendations from several models. There are

two ways of mapping selective harvesting to a MAB problem. The first (and simplest) map-

ping is context-free. Each model is represented by an arm (i.e., the problem reduces to one

of choosing a model at each time step). Models are treated as black boxes that “internally”

query a node and return the node’s label. The queried node’s label is seen as the model’s

payoff. The second mapping falls into the class of contextual bandits. Each fringe node

represents an action and each model represents an expert that provides recommendations

on how to choose the actions. Node features correspond to action contexts, which are used

by the experts to compute their recommendations.

Despite the potential advantage of accounting for node features directly and combin-

ing the advice of several models, most algorithms for contextual bandits assume fixed and

small (relative to the time horizon) sets of actions, whereas the fringe set is dynamic and

potentially orders of magnitude larger than the query budget. Among context-free ban-

dits, we claim that algorithms for stochastic bandits with non-stationary distributions are

the best candidates for combining classifiers in selective harvesting, as we observe that the

average hit ratio can drift over time (Fig. 5.3). While adversarial bandits allow payoff dis-

tributions to change arbitrarily, they cannot exploit the fact that the mean payoff evolves in
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Algorithm 3 D3TS (budget B, model setM, threshold C ≥ 2)
1: . Assume Bt is updated after each iteration.
2: for t in 1, . . . , B do
3: for k in 1, . . . , |M| do
4: r̂

(k)
t ∼ Beta(αk, βk)

5: It = arg maxk∈1,...,K r̂
(k)
t

6: ŷ = estimate payoffs using classifier It and G̃t
7: b = arg maxv∈Bt ŷv
8: rt = yb = query(b)
9: if αIt + βIt < C then

10: αIt = αIt + rt
11: βIt = βIt + (1− rt)
12: else
13: αIt = (αIt + rt)× C/(C + 1)
14: βIt = (βIt + (1− rt))× C/(C + 1)

15: M = update or retrain classifiers given new point (xb|G̃t , yb)

a well-behaved manner. A thorough comparison of several bandit algorithms described in

Appendix I supports our claim. Our comparison includes the Exp4 and Exp4.P algorithms

for contextual bandits, which combine the prediction of all classifiers in a similar way that

traditional ensemble methods do.

For the reasons above, we adapt the Dynamic Thompson Sampling (DTS) algorithm

[32] proposed for MABs with non-stationary distributions to the selective harvesting prob-

lem. DTS is based on the Thompson Sampling (TS) algorithm for stochastic MABs,

where each arm k = 1, . . . , K is modeled as a distribution Beta(αk, βk). At step t,

TS samples r̂(k)t ∼ Beta(αk, βk) and selects the arm with the largest sample, i.e., It =

arg maxk∈1,...,K r̂
(k)
t . Given the binary payoff rt received after selecting arm It, the dis-

tribution parameters are updated according to the Bayesian rule, i.e., αIt = αIt + rt and

βIt = βk+(1−rt). In essence, DTS normalizes arm k’s parameters such that αk+βk ≤ C,

where C is a bounding parameter. When C is small (we set C = 5), DTS prevents Beta

distributions from becoming too concentrated around the mean, which will in turn guaran-

tee that we continue leveraging diversity. This highlights an exploration, exploitation and

diversification tradeoff in selective harvesting that goes beyond the duality found in classic
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Dataset nodes edges node attributes target nodes
DBpedia places hyperlinks place type admin. regions
CiteSeer papers citations venues top venue
Wikipedia wikipages links topics OOP pages
Kickstarter donors co-donors backed projects DFA donors
DonorsChoose donors co-donors awarded projects P donors
LiveJournal users friendship enrolled groups top group
DBLP authors co-authorship conference top conference

Table 5.3. High-level description of each network.

MAB problems, as simply converging to one arm would be suboptimal. The pseudo-code

for our adapted method, D3TS, is shown in Algorithm 3. In what follows we compare

D3TS against all approaches for selective harvesting discussed in Section 5.3.

5.6 Simulations

This section describes the datasets used in our simulations, together with simulation

results and comparisons with baseline methods.

5.6.1 Datasets

To evaluate the above search methods, we use seven datasets corresponding to undi-

rected and unweighted networks containing node attributes. In the following we describe

each of the datasets summarized in Table 5.3. Basic statistics for each network are shown

in Table 5.4.

The first three datasets have been used as benchmarks for Active Search [57, 91]. De-

spite the fact that Active Search assumes that the network topology is known, we can use

these datasets to evaluate active search methods by only revealing parts of the graph as the

search proceeds.
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Dataset |V| |E| |L| |V+|/|V|
DBpedia 5.00K 26.6K 5 14.5%
CiteSeer 14.1K 42.0K 10 13.1%
Wikipedia 5.27K 64.6K 93 3.83%
Kickstarter 27.8K 2.77M 180 5.27%
DonorsChoose 1.15K 6.60K 284 4.96%
LiveJournal 4.00M 34.7M 5K 0.04%
DBLP 317K 1.05M 5K 2.38%

Table 5.4. Basic statistics of each network: |V| (number of nodes), |E| (number of edges),
|L| (number of attributes) and |V+|/|V| (fraction of target nodes).

5.6.1.1 DBpedia

A network of 5000 populated places from the DBpedia ontology formed by linking

pairs whose corresponding Wikipedia pages link to each other, in either direction. Places

are marked as “administrative regions”, “countries”, “cities”, “towns” or “villages”.

5.6.1.2 CiteSeer

A paper citation network composed of the top 10 venues in Computer Science. Papers

are annotated with publication venue.

5.6.1.3 Wikipedia

A web-graph of wikipages related to programming languages. Pages are annotated with

topics obtained by thresholding a pre-computed topic vector [91].

Two network datasets from the SNAP repository [53] typically used to validate com-

munity detection algorithms are also used. We label nodes belonging to the largest ground-

truth community as targets. Other community memberships are used to define a binary

attribute vector av ∈ {0, 1}|L| for all v ∈ V .

5.6.1.4 LiveJournal

A blog community with OSN features, e.g.: users declare friendships and create groups

that others can join. Users are annotated with the groups they joined.
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5.6.1.5 DBLP

A scientific collaboration network where two authors are connected if they have pub-

lished together. Authors are annotated with their respective publication venues.

Last, we use datasets containing donations to projects posted on two online crowd-

funding websites. To assess the performance of each classifier in low correlation settings,

we build a social network connecting potential donors where edges are weak predictors of

whether or not neighbors of a donor will also donate. We label nodes as targets if they

donated to a specific campaign. Historical donation data prior to that is used to build the

network and define node attributes.

5.6.1.6 Kickstarter(.com)

An online crowdfunding website. This dataset was collected by GitHub user neight-

allen and consists of 3.04M donors that together made 5.87M donations to 87.3K projects.

We create a donor-to-donor network by connecting donors that donated to the same projects

in the past. More precisely, we assume that backers of small unsuccessful campaigns (be-

tween 100 and 600 backers) are all connected in a co-donation network – say, their names

are published on the campaign’s website. We choose campaigns with few donors so that

the resulting network is sparse and the network discovery problem challenges D3TS. Our

dataset has 180 small unsuccessful projects between 04/21/2009 and 05/06/2013, contain-

ing a total of 27.8K donors. We then choose the 2012 project (denoted DFA) that has the

largest number of donors in our dataset. The goal of the recruiting algorithm is to recruit

the 2012 DFA donors through the donor-to-donor network of past donations (2009–2011).

5.6.1.7 DonorsChoose(.org)

An online crowdfunding website where teachers of US public schools post classroom

projects requesting donations (e.g., for a science project). The dataset is part of the KDD

2014 Cup containing 1.29M donors that together made 3.10M donations to 664K projects

from 57K schools. Donations include information such as donor location, donation amount,
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Dataset
avg top 5 avg top 3 avg top 1

RR D3TS RR D3TS RR D3TS
CiteSeer 1.03 1.07 1.01 1.04 0.99 1.02
DBpedia 1.00 1.02 0.99 1.01 0.98 1.00
Wikipedia 1.11 1.19 0.99 1.05 0.94 1.01
DonorsChoose 1.03 1.04 1.01 1.03 0.99 1.01
Kickstarter 1.20 1.27 1.11 1.17 1.09 1.15
DBLP 0.96 1.00 0.94 0.98 0.92 0.96
LiveJournal 0.99 1.01 0.97 1.00 0.96 0.99

Table 5.5. Performance ratios: between RR (D3TS) and average of top k = 1, 3, 5 stan-
dalone classifiers.

awarded project, among other node features. As donors tend to be loyal to the same schools,

we focus on the school that received the most donations in the dataset. We use projects

from 2007 to 2012 to construct a donor-to-donor network where an edge exists between

two donors if they donated to the same project less than 48 hours apart. We then select the

project P in 2013 with the largest number of donations.

5.6.2 Results

In this section, we compare the performances of D3TS, Round-Robin (RR) and stan-

dalone classifiers, w.r.t. the number of targets found at several points in time. We set the

threshold C = 5 in D3TS and parameters of all classifiers as in Table 5.2.

We simulate selective harvesting on each dataset for a large budgetB, chosen in propor-

tion to the target population size (e.g., for DonorsChoose we set B = 300, for Kickstarter

we set B = 1500). In order to contrast RR’s and D3TS’ performance against that obtained

if side information about the identity of the top k performing classifiers on a given dataset

were available, Table 5.5 lists ratios between RR’s (and D3TS’) performance and the aver-

age performance of the top k = 1, 3, 5 standalone classifiers. Note that we consider the top
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k from all nine standalone classifiers described in Section 5.3, not only the classifiers used

by RR (and D3TS). Top classifiers vary across datasets.5

Overall, we observe that RR’s performance is comparable to that of the top 3 classifiers

and can sometimes outperform them (by up to 11%). In the worst case, RR’s performance

is 92% of that of the best standalone classifier (DBLP). D3TS consistently improves upon

RR and yields results at least as good as the best standalone classifier on all datasets except

DBLP and LiveJournal, where its performance is respectively 96% and 99% of that of the

best classifier. D3TS outperforms the best classifier by up to 15% (Kickstarter).

We now describe the results for each dataset in detail, except for CiteSeer, which was

discussed in the introduction. Figure 5.6 contrasts the average number of targets found by

RR and D3TS against those found by standalone classifiers, scaled by RR’s performance.

We include results for five out of nine classifiers (the same ones used inM) to avoid clutter.

On DBpedia, LiveJournal, DonorsChoose and Kickstarter, even RR was able to outper-

form the existing methods, except for the initial steps (where absolute differences are small

anyway). Moreover, on the first two datasets, base learners outperformed existing methods.

However, as shown in DonorsChoose and Kickstarter plots, a data-driven classifier by itself

does not guarantee good performance.

On most datasets D3TS matches or exceeds the performance of the best standalone

classifier. In particular, on Kickstarter, both RR and D3TS find significantly more target

nodes than standalone classifiers. While RR can leverage diversity from using multiple

classifiers to avoid the tunnel vision effect, D3TS goes beyond and intelligently decides

which classifier to use without harming diversity. To illustrate this, we look at the fraction

of times D3TS used a given classifier at turn t in 80 runs. Figure 5.7 shows this time series

for DBpedia. From the small fraction of uses, we find that MOD performs poorly not only

5We conducted some preliminary studies on dataset characteristics that favor the performance of some
classifiers over others. A positive correlation between homphily (measured by the assortative coefficient [65])
and Active Search’s performance was observed, but a more detailed investigation is left as future work.
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dalone classifiers are often outperformed by RR. D3TS improves upon RR.
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Figure 5.7. D3TS: fraction of runs in which each classifier was used in step t (smoothed
over five steps).
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Figure 5.8. RR and D3TS can perform well even when including classifiers that perform
poorly as standalone.

on its own, but also when used under D3TS. Fortunately, D3TS can learn classifiers’ relative

performances and adjust accordingly.

A closer look at the distribution of the number of targets found by each method high-

lights an important advantage of leveraging diversity. Figure 5.8 shows boxplots of RR and

D3TS’ performance in each dataset, for several points in time.6 On Wikipedia, DonorsChoose

and Kickstarter, although some of the classifiers used by RR and D3TS yield poor results on

their own, RR and D3TS’s still attain large mean and low variance. D3TS was only outper-

formed by a standalone classifier on DBLP (statistically significant). Because DBLP has

the largest number of target nodes in the fringe set (on average) over all datasets, classifiers

are less likely to be penalized by the tunnel vision effect on DBLP.

5.6.3 Classifier combinations

We also conducted an exhaustive set of simulations where we consider all 31 combi-

nations of these five classifiers under D3TS. We restrict this analysis to a set of networks

D composed of the five smaller datasets. Suppose we had an oracle that could tell which

combination of classifiers performs best on a dataset D ∈ D. We can then define the

6The box extremes in our boxplots indicate lower and upper quartiles of a given empirical distribution; its
median in marked in between them. Whiskers indicate minimum and maximum values.
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(normalized) regret of a classifier setM on D as

R(M, D) = 1− N+(M, D)

maxM′ N+(M′, D)

whereN+(M, D) is the number of target nodes found byM onD. If we define the optimal

combinationM? to be the one that minimizes the maximum regret, i.e.,

M? = arg min
M

max
D∈D

R(M, D),

thenM? indeed includes all five classifiers (maximum regret is 2.8%). Otherwise, if we

define the optimal combinationM† to be the one that minimizes the average regret, i.e.,

M† = arg min
M

∑

D∈D

R(M, D)/|D|,

thenM† is the combination composed of MOD, Active Search, SVR and Random Forest

(average regret is 0.9%). We note, however, that the performance obtained by combination

M? on each dataset is at most 0.7% smaller than that obtained byM† (CiteSeer). More-

over, we observed that adding a second classifier to a standalone classifier for selective

harvesting improves results in about 84% of the cases. This attests to the robustness of

using D3TS as the classifier selection policy.

5.6.4 Running time

We measured the average wall-clock time of 80 single-threaded runs of each classifier

on an Intel Xeon E5-2660@2.60GHz processor, for five datasets. We do not include mea-

surements for DBLP and LiveJournal because they were simulated in a more heterogeneous

environment. In what follows we list inside parentheses the average wall-clock time to find

a target (in sec.), for CiteSeer, DBpedia, Wikipedia, DonorsChoose and Kickstarter (in this

respective order).
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Among standalone classifiers inM, MOD (0.06, 0.08, 0.14, 0.29, 3.55) and Active Search

(0.05, 0.11, 0.17, 0.37, 1.71) were the fastest, followed by ListNet (0.35, 0.31, 1.76, 2.13, 8.42),

SVR (0.37, 0.80, 1.26, 5.88, 9.35) and Random Forest (2.54, 4.27, 6.75, 16.75, 43.80). We

emphasize, however, that MOD and Active Search require no fitting, which is the most

expensive step for a base learner. In spite of its good performance at finding target nodes,

Random Forest takes much longer than other classifiers to fit and thus, exhibits the longest

average time between successful queries.

One of the advantages of D3TS is that it can benefit from Random Forest (and more so-

phisticated classifiers in general) while only incurring the computational cost for the steps

in which they are used. D3TS (0.54, 1.29, 1.87, 4.98, 25.67) exhibits slightly smaller ra-

tios than Round-Robin (0.64, 1.11, 2.24, 5.21, 16.35), except on DBpedia and Kickstarter,

where D3TS tends to use Random Forest more often than Round-Robin does. Note that

the D3TS running time is determined by the classifiers it uses and their implementations.

Replacing methods used in this paper by online counterparts can lead to significant reduc-

tions in running time. In particular, Random Forest – which has the largest running time –

can, in principle, be replaced by online random forests when bounds on feature values are

known in advance.7

5.6.5 Dealing with Disconnected Seeds

In the previous simulations, the search starts from a single seed (starting node). When

more than one seed is available, the search process may end up exploring various regions

of the graph at the same time. In this scenario, the question arises as to how to adequately

model the observations in these regions. Intuitively, each region may exhibit distinct char-

acteristics such as target distribution and node degree. Furthermore, some regions may be

more similar than others. In some cases, it may be better to fit classifiers to specific re-

7We attempted to replace Random Forests by Mondrian Forests [48], but the only publicly available
implementation is not optimized enough to be used in our application.

111



gions of the network where they operate (i.e., using observations collected only from that

region), while fitting all classifiers to all observations would probably be the best course if

all regions are very similar to each other. One can also consider hierarchical models, which

model each region separately but allow some information sharing.

In this section, we consider standalone classifiers and compare their performance in

two extreme scenarios: using a single classifier and starting from k seeds (thus modeling

all k regions together), or using k models, each initially associated with a single seed (each

simulation run uses the same k seeds in both scenarios to reduce variance).

In the multiple classifier scenario, the classifier associated with each region is used to

rank its corresponding fringe set at each step t. A single node to be queried must then

be selected among all fringe nodes. In particular, we use the EWLS regression model.

We select the node with the highest estimated payoff across all rankings, and the model

responsible for this estimation is then updated with the new observation.

We vary k from 2 to 6 and observe that, for datasets with a small number of attributes,

some improvement is obtained when using multiple classifiers, each with its own model.

For instance, on DBpedia, which has only five attributes, an average increase from 523.9

to 562.5 is seen for k = 3. However, as the number of node attributes increases, either

no significant differences between the average payoffs is observed (Donors, CiteSeer) or

the single classifier approach yields better performance (Wikipedia). All comparisons are

based on a 95% confidence interval of the mean total payoffs. When D3TS is used in place

of standalone classifiers, base learners must be fit to region-specific observations in the case

of datasets with few attributes, and fit to the entire training set in the case of datasets with

many attributes.

5.7 Related work

The closest work to ours is on networked active search. The goal of active search is

to uncover as many nodes of a target class as possible in a network where the topology
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is known [27, 28, 57, 60, 91]. Like selective harvesting, active search considers situations

where only members of a target class (e.g., malicious class) are sought. Since obtaining

labels is associated with a cost (time or money), it is paramount to avoid spending resources

on nodes that are unlikely to be targets. Unlike our problem, active search assumes the

network topology is known and that any node can be queried at any time.

In [70] a problem similar to selective harvesting is investigated and a learning-based

method called Active Exploration (AE) is proposed. Unlike selective harvesting, fringe

nodes attributes are assumed to be observable. Since node attributes often carry consider-

able information about the node’s label, AE is not directly comparable with other selective

harvesting methods. Our solution differs from AE in that it leverages heuristics in addition

to base learners and is applicable to a wider range of applications.

Similarly to selective harvesting, active learning is an interactive framework for decid-

ing what data points to collect in order to train a classifier or a regression model. Unlike

active search, (i) its main objective is to improve the generalization performance of a model

with as few label queries as possible, and (ii) the set of unlabeled points does not grow

based on the collected points. A slew of active learning techniques have been proposed

for non-relational data settings, including some tailored for logistic regression [82], for

dealing with streamed data [6] and for the case of extreme class imbalance [5]. Although

the retrieval of target nodes can benefit from an accurate model, it is unlikely that active

learning heuristics (e.g., uncertainty sampling [83]) for training a single classifier can be

used for selective harvesting without sacrificing performance. However, it may be possible

to adapt active learning techniques proposed for training classifier ensembles (e.g., query

by committee [84]) in such a way that, at the same time we collect points on which many

classifiers disagree, we ensure that promising candidates among fringe nodes are queried

before the sampling budget is exhausted.

Despite these differences, there is an interesting parallel between selective harvesting

with many models and a body of research on active learning with a set of active learners (or
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heuristics). Both problems can be cast as MABs, where fringe nodes are analogous to un-

labeled data points. In active learning, a reward is indirectly related to the collected point:

it is computed as some proxy for or estimate of the model’s performance on a test set, when

fit to all points collected up to a given step. In contrast, rewards in active search are simply

the node labels. Like selective harvesting, active learning can either map heuristics directly

as arms [11] or map heuristics as experts that give recommendations on how to choose the

unlabeled points [38]. In both works it has been observed that combining heuristics may

often outperform the single best heuristic. While these works apply algorithms for adver-

sarial bandits to active learning, we find that Dynamic Thompson Sampling for stochastic

bandits with non-stationary rewards seem to exploit better the fact that arms rewards are

slowly changing in selective harvesting.

Last, another variant of active learning considers the task of learning an ensemble of

models [4] or finding a low risk hypothesis h ∈ H [25, 26] while labeling as few points

as possible. Since the labeled points are biased by the collection process, estimating the

models’ generalization performances requires either building an uniformly random vali-

dation set, or sampling probabilistically at every step and then using importance weighted

estimates. In active search, however, the models relative performances can be directly mea-

sured from the queried nodes payoffs. Moreover, building a random validation set is bound

to degrade performance in scenarios where target nodes are scarce.

5.8 Discussion

In this section, we discuss a few ideas that could not be put into practice or that failed

to yield performance improvements.

5.8.1 Accounting for the future impact of querying a node

The active search algorithm assigns a score to each potential query node v that consists

of a sum of two terms [91, eq. (2)]: the expected value of v’s label and sum of the expected
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changes in the labels of all other nodes multiplied by a discount factor α � 1. The dis-

counted term tries to account for the impact of querying node v, going one step beyond the

greedy solution. In selective harvesting, however, our view of the graph is limited to the

set of queried nodes and their neighbors, i.e. we cannot compute the impact of choosing a

node beyond the fringe set. Even if we could observe the entire graph, accounting for the

future impact of querying a node would require us to fit one statistical learning model to

each fringe node and predict all the remaining labels at each step, which is too expensive

even for a single online model.

5.8.2 Temporal dependencies between observations

We conducted some preliminary experiments that show that EWLS often outperforms

`2-regularized Linear Regression with forgetting factors β > 0.9 when both use the same

regularizing parameter λ ∈ {0.1, 1, 10}. We propose two non-mutually exclusive hypothe-

sis to explain this phenomenon: (i) the recruitment algorithm induces a temporal depen-

dence that is better represented by giving more weight to recent observations; (ii) the

algorithm tends to explore parts of the graph “close” to recently recruited nodes, which

represent fringe nodes better than their less recent counterparts due to similarities between

nodes that are close in the network. Exploiting this spatial dependence is computationally

expensive, as it requires branching several models in a similar fashion to the solution delin-

eated in Section 5.8.1 above. Although EWLS can exploit temporal dependencies induced

by recruitment, it is not clear how to perform cross-validation due to the dynamic nature of

selective harvesting. In other words, how to test the optimal forgetting factor β if the test

set is constantly changing? Also, the value of β that yielded the best results varied across

datasets. In the absence of a principled way to perform cross-validation, our recommenda-

tion is to combine through D3TS one or more EWLS models – choosing parameters from

β ∈ (0.9, 1.0) and λ ∈ {0.1, 1, 10} – with other types of models.
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5.8.3 Model ensembles

While D3TS makes use of multiple statistical models, only one of them is used for

prediction at each step. This differs from model ensembles, which combine predictions

of multiple models, possibly with weights. Ensemble methods, such as AdaBoost, are

known to perform very well in many classification problems. However, we find that D3TS

consistently outperforms AdaBoost. We conjecture that AdaBoost is only slightly less

susceptible to the tunnel vision effect than standalone models, as optimizing the weights

given to models in the ensemble will eventually nullify the impact of some of them.

5.8.4 Contrasting classifier diversity and diversity in ensembles

Diversity is known to be a desirable characteristic in classifier ensembles [45, 87, 93].

The intuition is that if one can combine accurate models that make independent mistakes,

the overall accuracy will be higher than those of the individual models. There are two

main classes of techniques for generating diverse ensembles [85]: (i) overproduce and

select, where a large set of base learners is generated, among which a subset is selected to

maximize a given measure of diversity, (ii) building ensembles, where the diversity measure

is directly used to drive the ensemble creation. In contrast, we did not measure diversity

explicitly to select a subset of models or to guide the model generation. This is because

the relationship between diversity and overall performance in selective harvesting is more

involved. The goal of using diverse classifiers in D3TS is to mitigate the tunnel vision

effect. Although each model is fit to the entire training set, diversity is enforced by the use

of different types of statistical learning models.

5.9 Conclusions

This chapter introduced selective harvesting, a problem where the goal is to find the

largest number of target nodes given a fixed budget and subject to a partial – but evolving

– understanding of the network. We discussed existing methods that can be adapted to
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selective harvesting and an alternative approach based on statistical models. However, we

showed that the tunnel vision effect incurred by the nature of the selective harvesting task

severely impacts the performance of a classifier trained on these conditions. We show that

using multiple classifiers is helpful in mitigating the tunnel vision effect. In particular, sim-

ulation results showed that methods used in isolation often perform worse than when com-

bined through a round-robin scheme. We raised two hypothesis to explain this observation,

which were investigated to show that classifier diversity – i.e., switching among classifiers

at each querying step – is an important ingredient to collecting a larger set of target nodes

in selective harvesting. Classifier diversity increases the diversity of the training set while

broadening the choices of nodes that can be queried in the future. Based on these observa-

tions we proposed D3TS, a method based on multi-armed bandits and classifier diversity,

able to account for what we named the exploration, exploitation and diversification trade-

off. D3TS outperforms all competing methods on five out of seven real network datasets

and exhibited comparable performance on the other two. While we evaluated D3TS’s per-

formance when used with five specific classifiers (MOD, Active Search, Support Vector

Regression, Random Forest and ListNet), the proposed method is flexible and can be used

with any set of classifiers (not shown here, replacing SVR by Logistic Regression yields

similar results). Moreover, we showed that adding a classifier to a standalone classifier

improves selective harvesting results in 84% of the studied cases.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we investigated the role of sampling and estimation in different ap-

plications related to data science in networks. In the problems investigated in Chapters 3

and 4, sampling is used to estimate characteristics of the population as a whole. In Chap-

ter 5, sampling is used to find nodes in a network that satisfy a given query and, at the

same time, to obtain training data to fit statistical models. Unlike classical applications of

sampling and estimation, the probability of sampling a node in selective harvesting tasks

cannot be computed. Fortunately, there is no need to remove (unknown) biases.

Another difference in these studies lies in the adopted approach or perspective. In

Chapters 3 and 5, we propose the DUFS and the D3TS methods respectively. These meth-

ods are designed to account for several practical issues. Although we provide no theoretical

guarantees for D3TS and only some analytical results for DUFS, we conduct a thorough

evaluation of these methods through simulation. In particular, our empirical study of se-

lective harvesting sheds light into the tunnel vision effect and how to mitigate it. This

allowed us to propose an algorithm that currently matches or exceeds the performance of

all competing methods. In contrast to these empirical studies, assuming a simple indepen-

dent edge sampling model in Chapter 4, allowed us to establish strong theoretical results

that hold in the limit for any unbiased estimator of the set size distribution (and related

estimation problems).

The approaches that we took to solve the research problems associated with each appli-

cation illustrate different stages in the typical life cycle of a data science problem. Initially,

a task is defined, as well as the way in which data will be collected and presented, heuristics
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are proposed for solving the task, hypotheses are posed and a large volume of experiments

conducted to validate or falsify the hypotheses, a solution is carefully tailored based on the

accepted hypotheses and then evaluated through more experiments. This stage corresponds

to our current understanding of selective harvesting over networks. Later, some analyti-

cal results and theoretical guarantees are proven for proposed methods, such as the ones

we proved for DUFS. As researchers reach a better understanding of the task in hand, it

becomes crucial to consider the problem from a more theoretical perspective in order to

understand its fundamental limits and – hopefully – how to reach the optimal performance.

This stage is exemplified by our work on the set size distribution estimation.

Therefore, general future directions in this line or research include proposing new

heuristics, proving properties of existing methods and properties of the problems they are

designed to address. One possible extension of the work in characterizing networks consists

of investigating other sampling models. For instance, there have been attempts to character-

ize the Internet router topology using traceroute sampling. This kind of sampling is based

on the traceroute software tool, which allows a user to sample minimum-cost paths

from controlled hosts to random hosts on the Internet. Estimating structural properties on

arbitrary graphs using traceroute is an important and well-known hard problem [1, 23] and

it remains open to date. In [64] we have shed some light on what is attainable when the

graph comes from a branching process from an empirical perspective.

There are still several open questions regarding selective harvesting over networks. The

proposed algorithm, D3TS, greedily selects the node to be queried at each step. Ideally, we

would like to query the nodes more likely to lead to the greatest number of targets. While

the fact that the network is only partially observed prevent us from applying the same ideas

from networked active search to account for future impact (see Section 5.8.1), increasing

the size of the fringe set can be helpful as this gives the search algorithm more options to

query. One way to achieve this goal is by estimating the degree of each fringe node and
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selecting, among those that are most likely to be targets, those that have the largest expected

degrees.

Another question left as future work concerns the use of context to guide the arm’s

choice in D3TS. Currently, the context is only used to choose a node after the arm (classi-

fier) is selected. Presumably, using context to select an arm could help in situations where

one classifier predicts a certain action has a very high reward with small error margin.

Another avenue of investigation consists of pursuing a systematic way of achieving

diversity in selective harvesting. In our approach, diversity is infused through the use of

different models. An open question is whether multiple instances of the same model can

achieve diversity by setting their parameters differently or by assigning different weights

to the observations used to fit each instance. This investigation requires defining measure

of diversity that is correlated with the performance of the search algorithm.

While we show that classifier diversity can severely increase the number of targets

found in selective harvesting, it is not clear that this is the only mechanism that can mitigate

the tunnel vision effect. We investigated the effect of sampling nodes probabilistically by

mapping the node ranking computed by a given classifier to a distribution. While this

showed no significant improvement over deterministic sampling, this approach could be

further investigated by taking node scores into account when defining a distribution over

possible choices.

Last, we lack a good understanding of what causes certain standalone classifiers to

perform well on a given dataset. Investigating which features of a network have positive

(or negative) correlation with the performance of a given classifier can be useful to select

the set of classifiers to be combined through D3TS, or to propose an improved solution that

accounts for how efficient each classifier in this set is on the specific dataset at hand.
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APPENDIX A

HYBRID ESTIMATOR AND ITS STATISTICAL PROPERTIES

First, we derive the recursive variant of the hybrid estimator. From that we derive

its non-recursive variant. Next, we show that the non-recursive variant is asymptotically

unbiased. In the case of undirected networks where the average degree is given, we show

that the resulting hybrid estimator of the undirected degree mass is the minimum variance

unbiased estimator (MVUE).

Let us recall variables and constants used in the definition of the hybrid estimator:

ni number of vertex samples with label i

θi,j fraction of nodes in G(t) with label i and undirected degree j

mi,j number of edge samples with label i and undirected degree j

mi =
∑

jmi,j total number of edge samples with label i

N =
∑

i ni total number of vertex samples

M =
∑

imi total number of edge samples

B = N +M total budget
We approximate random walk samples in DUFS by uniform edge samples fromGu. Ex-

perience from previous papers shows us that this approximation works very well in practice.

This yields the following likelihood function

L(θ|n,m) =

∏
i θ

ni
i

∏
k((w + k)θi,k)

mi,k

(∑
s,t(w + t)θs,t

)M . (A.1)

The key idea in our derivation is that we can bypass the numerical estimation of the

θi,j’s by noticing that θi,j ∝ θi, θi,j ∝ mi,j and θi,j ∝ 1/(w + j). Hence, the maximum
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likelihood estimator of θi,j for j = 1, . . . , Z is the Hansen-Hurwitz estimator

θ̂i,j =
θimi,j

(w + j)µi
, (A.2)

where µi =
∑

kmi,k/(w + k).

Substituting (A.2) in (A.1) yields

L(θ|n,m) =

∏
i θ

ni
i

∏
k(θimi,k/µi)

mi,k

(
∑

s θs
∑

zms,z/µs)
M

. (A.3)

The log-likelihood approximation is then given by

L(θ|n,m) = −M log

(∑

s

θs
∑

z

ms,z

µs

)
+
∑

i

ni log θi+
∑

k

mi,k(log θi+logmi,k−log µi).

(A.4)

We rewrite θi as eβi/
∑

j e
βj to account for the distribution constraints

∑
i θi = 1 and

θi ∈ [0, 1]. Hence, we have

L(β|n,m) = −M log

(∑

s

eβsms

µs

)
+
∑

i

(ni +mi)βi −N log

(∑

j

eβj

)
+ C, (A.5)

where mi =
∑

kmi,k and C is a constant that does not depend on β.

The partial derivative w.r.t. βi is given by

∂L(β|n,m)

∂βi
= − Meβimi/µi∑

s e
βsms/µs

+ ni +mi −
Neβi∑
j e

βj
. (A.6)

Setting ∂L(β|n,m)/∂βi = 0 and substituting back θi yields

θ?i =
ni +mi

N +M mi/µi∑
s θ
?
sms/µs

. (A.7)
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Theorem A.1. Let N = αB and M = (1 − α)B, for some 0 < α < 1. In the limit as

B →∞,

θ̂i =
ni +mi

N +M mi
µid̂

, (A.8)

where µi =
∑

kmi,k/(w + k) and d̂ = M/
∑

i µi, is an unbiased estimate of θi.

Proof. In the limit as B →∞, we have

E[ni] = Nθi, E[mi,k] = M
(w + k)θi,k∑
s,l(w + l)θsl

, E[mi] = M

∑
k(w + k)θi,k∑
s,l(w + l)θs,l

,

and thus,

E[µi] = M

∑
k(w + k)θi,k/(w + k)∑

s,l(w + l)θsl
= M

θi∑
s,l(w + l)θsl

and E

[
mi

µi

]
=

∑
k(w + k)θi,k

θi
.

It follows that

lim
B→∞

E[d̂] =
M

M
∑
i θi∑

s,l(w+l)θsl

=
∑

s,l

(w + l)θsl.

Substituting the above in eq. (A.8), we have

lim
B→∞

E[θ?i ] =
Nθi +M

∑
k(w+k)θi,k∑
s,l(w+l)θs,l

N +M
∑
k(w+k)θi,k/θi∑
s,l(w+l)θs,l

= θi.

This concludes the proof. �

In Section 3.4.2.2 we mentioned a special case of the previous estimator, where the

vertex label is the undirected degree itself. We prove that, when the average degree
∑

j jθj

is known, this estimator is the minimum variance unbiased estimator (MVUE) of θi.
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Theorem A.2. The quantity

θ̄i =
ni +mi

N +M(w + i)/µ̄
,

where µ̄ = w +
∑

j jθj , is an unbiased estimate of θi.

Proof. We know that ni ∼ Binomial(N, θi) and mi ∼ Binomial(M, (w + i)θi/µ̄). Hence,

E[θ̂i] =
∑

ni,mi

[
ni +mi

N +M(w + i)/µ̄

A(ni)︷ ︸︸ ︷(
N

ni

)
θnii (1− θi)N−ni ×

B(mi)︷ ︸︸ ︷(
M

mi

)(
(w + i)θi

µ̄

)mi (
1− (w + i)θi

µ̄

)M−mi ]

=
1

N +M(w + i)/µ̄

(∑

ni

niA(ni)
∑

mi

B(mi) +
∑

mi

miB(mi)
∑

ni

A(ni)

)

=
1

N +M(w + i)/µ̄

(∑

ni

niA(ni) +
∑

mi

miB(mi)

)

=
1

N +M(w + i)/µ̄
(Nθi +M(w + i)θi/µ̄)

= θi.

�

Having proved that θ̂i is unbiased, we are now ready to show that it is also the minimum

variance unbiased estimator (MVUE). In order to do so, we prove Lemmas A.3 and A.5

that show respectively that ni +mi is a sufficient and complete statistic of θi.

Lemma A.3. The statistic ni +mi is a sufficient statistic w.r.t the likelihood of θi.
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Proof. The log-likelihood equation for estimator (3.8) is given by

L(θ|n,m) =

∏
i θ

ni
i

∏
j((w + j)θj)

mj

µ̂M

=

∏
j(w + j)mj

µ̂M

∏

i

θni+mii . (A.9)

We can see from eq. (A.9) that the likelihood function L(θ|n,m) can be factored into a

product such that one factor,
∏

j(w+ j)mj/µ̂M , does not depend on θi and the other factor,

which does depend on θi, depends on n and m only through ni + mi. From the Fisher-

Neyman factorization Theorem [51], we conclude that ni + mi is a sufficient statistic for

the distribution of the sample.

�

We now prove that ni+mi is also a complete statistic for the distribution of the sample.

Definition A.4. Let X be a random variable whose probability distribution belongs to a

parametric family of probability distributions Pθ parametrized by θ. The statistic s is said

to be complete for the distribution of X if for every measurable function g (which must be

independent of θ) the following implication holds:

E(g(s(X))) = 0 for all θ ⇒ Pθ(g(s(X)) = 0) = 1 for all θ.

Lemma A.5. The statistic ni +mi is a complete statistic w.r.t. the likelihood of θi.

Proof.

E[g(ni +mi)] = 0

∑

ni,mi

g(ni +mi)Pθ(ni,mi) = 0

∑

ni,mi

g(ni +mi)A(ni)B(mi) = 0 (A.10)
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The LHS of (A.10) is a polynomial of degree M +N on θi. Hence, it can be written as

C0 + C1θi + C2θ
2
i + . . .+ CN+Mθ

N+M
i = 0. (A.11)

We prove that Pθ(g(s(X)) = 0) = 1 for all θ by contradiction. Suppose that there is a

θ such that Pθ(g(s(X)) 6= 0) > 0. In order to have E(g(s(X))) = 0, there must be terms

for which g(.) is strictly positive and terms for which g(.) is strictly negative. Let g(h1) be

the smallest h1 such that g(h1) > 0. Let g(h2) be the smallest h2 such that g(h2) < 0. Let

h = min(h1, h2).

Expanding A(ni)B(mi) in eq. (A.10) we note that the degree of the resulting polyno-

mial is at least ni + mi on θi. Therefore, the coefficient Ch in eq. (A.11) associated with

θhi cannot have terms of g(.) larger than h. Then Ch can only be zero if h1 = h2 which is a

contradiction.

�

Theorem A.6. The unbiased estimator θ̄i is the minimum variance unbiased estimator

(MVUE) of θi.

Proof. According to the Lehmann-Scheffe Theorem [51], if T (S) is a complete sufficient

statistic, there is at most one unbiased estimator that is a function of T (S). From Lem-

mas A.3 and A.5, we have that ni + mi is a complete sufficient statistic of θi. Clearly, the

unbiased estimator θ̂ in eq. (A.8) is a function ni + mi. Therefore, θ̂i must be the MVUE.

�
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APPENDIX B

SET SIZE DISTRIBUTION PROOFS

Let B(p) = [bji(p)], j, i = 1, . . . ,W be a matrix whose elements are given by

bji(p) ≡ P [α(S) = j |α(S) > 0, |S| = i] =

(
i
j

)
pjqi−j

1− qi , if 0 < j ≤ i, (B.1)

and bij(p) = 0 otherwise, where q = 1− p.

Lemma B.1 shows a closed formula for the inverse of B(p).

Lemma B.1. B(p)−1 = [b?ji(p)] (i, j = 1, . . . ,W ), where

b?ji(p) =





(
i
j

)
p−i(−q)i−j(1− qj) i ≥ j

0 i < j.

Proof. Let B(p)−1 = [b?ji(p)] with b?ji(p) defined above. We first show that Y =

B(p)B(p)−1 is an identity matrix. Consider element (j, i) of Y :

yji =
W∑

l=1

bjl(p)b
?
li(p) . (B.2)

We have three cases: j > i, j = i, and j < i.

Case 1, j > i: eq. (B.2) yields yji = 0 since bjl(p) = 0, ∀l ≤ i and b?li(p) = 0, ∀l > i.
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Case 2, j = i: Here bjl(p)b?lj(p) = 0, ∀l 6= j and (B.2) yields

yjj =
pj

1− qj · p
−j(1− qj) = 1 .

Case 3, j < i: eq. (B.2) yields

yji =
i∑

l=j

(−1)i−lpj−iqi−j
(
l

j

)(
i

l

)

= pj−iqi−j
i∑

l=j

(−1)i−l
(
i

j

)(
i− j
l − j

)

= pj−iqi−j
(
i

j

) i∑

l=j

(−1)i−l
(
i− j
l − j

)

= pj−iqi−j
(
i

j

)
(1− 1)i−j

= 0

Thus, yjj = 1, ∀j and yji = 0, ∀j 6= i, which concludes our proof. �

Lemma B.1 directly yields the inverse of the Fisher information matrix J (φ) of a single

observed set, as seen in the following lemma.

Lemma B.2. (J (φ))−1 = [[(J (φ))−1]ij] (i, j = 1, 2, . . . ,W ), where

[(J (φ))−1]ij =
W∑

k=max(i,j)

(
q

p

)2k (
k

j

)(
k

i

)
(−1)−i−j(q−i − 1)(q−j − 1)dk(θ) (B.3)

Proof. Denote R(φ)(p) = [R
(φ)
ji (p)] = B−1(p)diag(B(p)φ)−1, where R(φ)

ji (p) =

b?ji(p)di(φ). Based on Lemma B.1 and eq. (4.2), we have

R
(φ)
ji (p) =





(
i
j

)
p−i(−q)i−j(1− qj)di(φ), i ≥ j,

0, i < j.
(B.4)
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Since J (φ) = R(φ)(p)(B(p)−1)T, [(J (φ))−1]ji is computed as the following equation

based on Lemma B.1 and eq. (B.4)

[(J (φ))−1]ji =
W∑

k=1

R
(φ)
jk (p)b?ik(p)

=
W∑

k=max(i,j)

(
k
j

)(
k
i

)
(−q)2k−i−j(1− qi)(1− qj)dk(φ)

p2k

=
W∑

k=max(i,j)

(
q

p

)2k (
k

j

)(
k

i

)
(−1)−i−j(q−i − 1)(q−j − 1)dk(φ)

�

Lemma B.3. (J (θ))−1 = [[(J (θ))−1]ij] (i, j = 1, 2, . . . ,W ), where

[(J (θ))−1]ii =
1

η2

(
[(J (φ))−1]ii
(1− qi)2 + θ2i

W∑

j=1

W∑

k=1

[(J (φ))−1]kj
(1− qk)(1− qj) − 2θi

W∑

j=1

[(J (φ))−1]ij
(1− qi)(1− qj)

)

(B.5)

where η =
∑W

i=1 φi/(1− qi).

Proof. The relationship between (J (θ))−1 and (J (φ))−1 is given by

(J (θ))−1 = ∇H(J (φ))−1∇HT, (B.6)

where∇H = [hik] with hik = ∂θk(φ)/∂φi. Hence

hik =





−φi/(η(1−qi))
η(1−qk) i 6= k

1−φi/(η(1−qi))
η(1−qi) i = k

where η =
∑W

k=1 φk/(1−qk) is a constant. Note that from eq. (4.3) we have θi = φi/(η(1−

qi)). Therefore the diagonal elements of (J (θ))−1 can be written as
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[(J (θ))−1]ii =
W∑

j=1

W∑

k=1

hik[(J
(φ))−1]kjh

T
ij

=
W∑

j=1
j 6=i

W∑

k=1
k 6=i

(
− θi
η(1− qk)

)
[(J (φ))−1]kj

(
− θi
η(1− qj)

)
+

W∑

j=1
j 6=i

(
1− θi

η(1− qi)

)
[(J (φ))−1]ij

(
− θi
η(1− qj)

)
+

W∑

k=1
k 6=i

(
− θi
η(1− qk)

)
[(J (φ))−1]ki

(
1− θi

η(1− qi)

)
+

(
1− θi

η(1− qi)

)2

[(J (φ))−1]ii

=
1

η2

(
[(J (φ))−1]ii
(1− qi)2 + θ2i

W∑

j=1

W∑

k=1

[(J (φ))−1]kj
(1− qk)(1− qj) − 2θi

W∑

j=1

[(J (φ))−1]ij
(1− qi)(1− qj)

)
.(B.7)

�

We split eq. (B.5) in three parts to carry out its analysis:

[(J (θ))−1]ii =
1

η2

(
[(J (θ))−1]ii
(1− qi)2︸ ︷︷ ︸

A1(i)

+ θ2i

W∑

j=1

W∑

k=1

[(J (θ))−1]kj
(1− qk)(1− qj)

︸ ︷︷ ︸
A2(j)

− 2θi

W∑

j=1

[(J (θ))−1]ij
(1− qi)(1− qj)

︸ ︷︷ ︸
A3(i)

)
.

(B.8)

Analysis of A1(i)

Based on Lemma B.2 and eq. (4.2), we have

Lemma B.4.

A1(i) = ηq−2i
W−i∑

j=0

(
i+ j

i

)
qj+iθj+igij. (B.9)

where η =
∑W

k=1 φk/(1− qk) and gij =
∑j

k=0

(
i+k
i

)(
j
k

)
(q/p)k+i.

Proof.

[(J (φ))−1]ii =
W∑

k=i

(
q

p

)2k (
k

i

)2

(−1)−2i(q−i − 1)2dk(φ)
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=
W∑

k=i

W∑

j=k

(
q

p

)2k (
k

i

)2

(−1)−2i(q−i − 1)2
(
j
k

)
pkqj−kφj

1− qj

= (q−i − 1)2
W∑

j=i

(
j

i

)
qjφj

1− qj
j∑

k=i

(
k

i

)(
j − i
k − i

)
(q/p)k

= (q−i − 1)2
W−i∑

j=0

(
i+ j

i

)
qi+jφi+jgij

1− qi+j (B.10)

where gij =
∑j

k=0

(
i+k
i

)(
j
k

)
(q/p)i+k.

Since φi/(1− qi) = θi · η, we can eq. (B.9) as a function of θ:

[(J (φ))−1]ii = η
(
q−i − 1

)2 W−i∑

j=0

(
i+ j

i

)
qi+jθi+jgij.

Therefore

A1(i) = ηq−2i
W−i∑

j=0

(
i+ j

i

)
qi+jθi+jgij. (B.11)

�

Lemma B.5. We have the following bounds for A1(i):

A1(i) < Ci

i∑

k=0

cik

∞∑

j=0

1{k ≤ j}(i+ j)2i
(q
p

)i+j
θi+j (B.12)

and

A1(i) > Cicii

W−i∑

j=i(i−1)

j2i
(q
p

)i+j
θi+j (B.13)

where

Ci =
ηq−i

(i!)2

and

cik =

(
i

k

)
qk

i−k−1∏

l=0

(i− l), k = 0, . . . , i; i = 1, . . .W.
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Proof. Since the i-th derivative of (q/p)i+k with respect to q/p, is

di(q/p)i+k

d(q/p)i
=

i∏

l=1

(k + l)(q/p)k,

we have the following equations for gij

gij =
1

i!

(q
p

)i j∑

k=0

i∏

l=1

(k + l)

(
j

k

)
(q/p)k

=
1

i!

(q
p

)i j∑

k=0

(
j

k

)
di(q/p)i+k

d(q/p)i

=
1

i!

(q
p

)id
i
(∑j

k=0

(
j
k

)
(q/p)i+k

)

d(q/p)i

=
1

i!

(q
p

)id
i
(

(q/p)i(1 + q/p)j
)

d(q/p)i
.

Using a general form of the product rule [67, pp. 318] yields

gij =
1

i!

(q
p

)i min{i,j}∑

k=0

(
i

k

)(1

p

)j−k k−1∏

l=0

(j − l)
(q
p

)k i−k−1∏

l=0

(i− l), (B.14)

where to simplify the expression we define
∏−1

l=0 · · · = 1.

Substituting (B.14) back into (B.11), we obtain the following expression for A1(i)

A1(i) = Ci

i∑

k=0

cik

W−i∑

j=0

1{k ≤ j}
i∏

l=1

(j + l)
k−1∏

l=0

(j − l)(q/p)i+jθi+j (B.15)

where

Ci =
ηq−i

(i!)2

and

cik =

(
i

k

)
qk

i−k−1∏

l=0

(i− l), k = 0, . . . , i; i = 1, . . . ,W.
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We have the following upper bounds for A1(i),

A1(i) < Ci

i∑

k=0

cik

W−i∑

j=0

1{k ≤ j}(i+ j)2i
(q
p

)i+j
θi+j (B.16)

< Ci

i∑

k=0

cik

∞∑

j=0

1{k ≤ j}(i+ j)2i
(q
p

)i+j
θi+j. (B.17)

A lower bound is obtained by noting that

i∏

l=1

(j + l)
k−1∏

l=0

(j − l) > ji−k
k∏

l=1

(j + l)
k∏

l=1

(j − l + 1)

= ji−k
k∏

l=1

(j2 + j + l − l2).

The latter is greater than or equal to j2i whenever j > i(i− 1) yielding

A1(i) > Cicii

W−i∑

j=i(i−1)

j2i
(q
p

)i+j
θi+j. (B.18)

�

Analysis of A2(i)

W∑

i=1

W∑

j=1

[(J (θ))−1]ij
(1− qi)(1− qj) =

W∑

i=1

W∑

j=1

W∑

k=1

(
k
j

)(
k
i

) (
q
p

)2k
(−1)−j−i(q−j − 1)(q−i − 1)dk(φ)

(1− qj)(1− qi)

=
W∑

k=1

(
q

p

)2k

dk(φ)
k∑

i=1

k∑

j=1

(
k

j

)(
k

i

)
(−q)−j−i

=
W∑

k=1

(
q

p

)2k

dk(φ)

(
k∑

i=1

(
k

i

)
(−q)−i

)2

=
W∑

k=1

(
q

p

)2k

dk(φ)

((
−q
p

)−k
− 1

)2

using (G.2)
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=
W∑

k=1

dk(φ)− 2
W∑

k=1

(
−q
p

)k
dk(φ) +

W∑

k=1

(
q

p

)2k

dk(φ)

= 1− 2
W∑

k=1

(
−q
p

)k
dk(φ) +

W∑

k=1

(
q

p

)2k

dk(φ). (B.19)

First, note that

W∑

k=1

(
−q
p

)k
dk(φ) =

W∑

k=1

(
−q
p

)k W∑

j=1

(
j

k

)
pkqj−kθjη

= η

W∑

j=1

qjθj

j∑

k=1

(
j

k

)
(−1)k

= −η
W∑

j=1

qjθj. using (G.4) (B.20)

Also,

W∑

k=1

(
q

p

)2k

dk(φ) =
W∑

k=1

(
q

p

)2k W∑

j=1

(
j

k

)
pkqj−kθjη

= η
W∑

j=1

qjθj

j∑

k=1

(
j

k

)(
q

p

)k

= η

W∑

j=1

qjθj

((
1

p

)j
− 1

)
using (G.3)

= η

(
W∑

j=1

(
q

p

)j
θj −

W∑

j=1

qjθj

)
. (B.21)

Substituting eqs. (B.20) and (B.21) into (B.19) yields

W∑

i=1

W∑

j=1

[(J (θ))−1]ij
(1− qi)(1− qj) = 1 + η

(
2

W∑

j=1

qjθj +
W∑

j=1

(
q

p

)j
θj −

W∑

j=1

qjθj

)
(B.22)

= 1 + η

(
W∑

j=1

qjθj +
W∑

j=1

(
q

p

)j
θj

)
. (B.23)
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Therefore,

A2(i) = θ2i

(
1 + η

(
W∑

j=1

qjθj +
W∑

j=1

(
q

p

)j
θj

))
. (B.24)

Note thatA2(i) is positive and may diverge or not depending on the summation
∑W

j=1

(
q
p

)j
θj .

Analysis of A3(i)

Note that

W∑

k=1

(
k

i

)(
−q
p

)k
dk(φ) =

W∑

k=i

(
k

i

)(
−q
p

)k W∑

j=1

(
j

k

)
pkqj−kθjη

= η
W∑

k=i

(−1)k
W∑

j=1

(
j

i

)(
j − i
k − i

)
qjθj

= η
W∑

j=i

(
j

i

)
qjθj

j∑

k=i

(
j − i
k − i

)
(−1)k

= (−1)iη
W∑

j=i

(
j

i

)
qjθj

j−i∑

k=0

(
j − i
k

)
(−1)k

= (−q)iηθi. using (G.5) (B.25)

We also have

W∑

k=1

(
k

i

)(
q

p

)2k

dk(φ) =
W∑

k=1

(
k

i

)(
q

p

)2k W∑

j=1

(
j

k

)
pkqj−kθjη

= η

W∑

k=1

(
q

p

)k W∑

j=1

(
j

i

)(
j − i
k − i

)
qjθj

= η
W∑

j=i

(
j

i

)
qjθj

j∑

k=i

(
j − i
k − i

)(
q

p

)k
. (B.26)
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From eq. (B.25) and (B.26), we have

W∑

j=1

[(J (θ))−1]ij
(1− qj)(1− qi) = ηθi − (−q)−iη

W∑

j=i

(
j

i

)
qjθj

j∑

k=i

(
j − i
k − i

)(
q

p

)k
(B.27)

and hence,

A3(i) = 2ηθ2i︸︷︷︸
A3,1(i)

− 2θi(−q)−iη
W−i∑

j=0

(
i+ j

i

)
qi+jθi+j

j∑

k=0

(
j

k

)(
q

p

)k+i

︸ ︷︷ ︸
A3,2(i)

. (B.28)

Since A3,1(i) is always finite, we only need to compare the magnitude of A1(i) and

A3,2(i). Since
∑j

k=0

(
j
k

) (
q
p

)k+i
< gij , we can bound |A3,2(i)| by

|A3,2(i)| ≤ 2θiq
−iη

W−i∑

j=0

(
i+ j

i

)
qi+jθi+jgij.

Therefore

A1(i)− |A3,2(i)| ≥ (q−2i − 2θiq
−i)η

W−i∑

j=0

(
i+ j

i

)
qi+jθi+jgij.

The RHS of the previous inequation is positive when

q−2i ≥ 2θiq
−i

θi ≤
1

2qi
<

1

2
.

Recall that we assumed that ∃i0 such that θi ≤ 1/2 for all i > i0. Thus by examining

only A1(i) and A2(i) we can determine whether [(J (θ))−1]ii diverges or not for i > i0.
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APPENDIX C

PROOF OF THEOREM 4.1

The lower bound of MSE(Ti(S)), given by [(J (θ))−1]ii, is described for each of the three

possible cases in Theorem 4.1. The corresponding proofs are shown in what follows.

1) When θW decreases faster than exponentially in W .

Proof. Suppose that θW decreases faster than exponentially in W . More precisely,

assume that − log θW = ω(W ). It follows that log(θW/θW+1) → ∞ as W → ∞. Hence,

for any ε > 0, there exists a W0(ε) such that log(θW/θW+1) > 1/ε for W > W0(ε). This

implies θW+1/θW < e−1/ε for W > W0(ε). Given p > 0, we can choose ε such that

qe−1/ε/p < 1. We now apply the ratio test for convergence of an infinite sum to each of the

i+ 1 sums in the upper bound for A1(i) given by (B.12).

(W + i+ 1)2i(q/p)W+i+1θW+i+1

(W + i)2i(q/p)W+iθW+i

<
(W + i+ 1)2i

(W + i)2i
qe−1/ε

p

for W > W0(ε) − i and the latter expression becomes less than one as W → ∞. Hence

A1(i) = O(1) for 0 < p < 1. A similar argument can be used to show that A2(i) = O(1).

Hence, [(J (θ))−1]ii = O(1) for 0 < p < 1. �

2) When θW decreases exponentially in W .

Proof. Suppose that θW decreases exponentially in W . More precisely, let log θW =

W log a + o(W ) for 0 < a < 1. Recall that A2(i) is positive. Therefore, the logarithm of

[(J (θ))−1]ii in (B.5) can be lower bounded as follows,

log[(J (θ))−1]ii ≥ logA1(i). (C.1)
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In addition, the logarithm of A1(i) in (B.9) can be bounded by

logA1(i) ≥ W log(q/p) + log θW + o(W )

= W log(qa/p) + o(W )

where the latter equality follows from the hypothesis. Now, if qa/p > 1, then logA1(i) =

Ω(W ), which implies log[(J (θ))−1]ii = Ω(W ). Note that qa/p > 1 iff p < a/(a+ 1).

When p = a/(a+ 1), then qa/p = 1. Hence the lower bound of A1(i) given by (B.13)

is Ω(W 2i+1). Hence, [(J (θ))−1]ii = Ω(W 2i+1).

Similarly to the proof for the case where θW decreases faster than exponentially in W ,

we can use the ratio test for convergence of an infinite sum to show that for qa/p < 1,

A1(i) = O(1). Hence, it follows that [(J (θ))−1]ii = O(1) for p > a/(a+ 1). �

3) When θW decreases slower than exponentially in W .

Proof. Suppose that θW decreases slower than exponentially in W . More precisely

assume that − log θW = o(W ). The logarithm of A1(i) can be lower bounded as follows,

logA1(i) ≥ W log(q/p) + log θW + o(W )

= W log(q/p) + o(W )

The latter equality follows from the hypothesis. Now, if q/p > 1 (i.e., p < 1/2), then

logA1(i) ≥ Ω(W ), which implies log[(J (θ))−1]ii = Ω(W ).

When p ≥ 1/2, it follows thatA2(i) = O(1). In particular if p = 1/2 and
∑W

j=1 j
2iθj =

ω(1), we can see from eq. (B.13) that A1(i) = ω(1) and in turn, [(J (φ))−1]ii = ω(1).

Note that for p = 1/2 each of the i+1 sums in the upper bound forA1(i) given by (B.12)

is bounded by the 2i-th moment of the set size distribution. Hence, if
∑W

j=1 j
2iθj = O(1),

then [(J (θ))−1]ii = O(1).

Finally, when p > 1/2, an argument similar to that used in the case where θW decreases

faster than exponentially yields [(J (θ))−1]ii = O(1). �
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APPENDIX D

SIMPLIFIED BOUNDS

It is worth noting thatA2(i) gives us a lower bound on [(J (θ))−1]ii, asA1(i)−A3(i) > 0.

Furthermore, the convergence ofA2(i) is given by the convergence of the sum
∑W

j=1(q/p)
jθj .

Therefore, we can write

[(J (θ))−1]ii = Ω

(
W∑

j=1

(
1− p
p

)j
θj

)
. (D.1)

From that, we derive the following results.

1) When θW decreases faster than exponentially in W .

By definition, for any ε > 0, there exists aW0(ε) such that log(θW/θW+1) > 1/ε. Given

p > 0, we can choose ε such that qe−1/ε/p < 1. The ratio test for convergence of an infinite

sum reads
(q/p)j+1θj+1

(q/p)jθj
<
qe−1/ε

p
(D.2)

Let a = qe−1/ε/p. Hence, there exists a j∗ such that for all j > j?, ((1 − p)/p)jθj < aj ,

j = 1, 2, . . . . Therefore, the sum converges to a constant for any 0 < p < 1, yielding

[(J (θ))−1]ii = O(1).

2) When θW decreases exponentially in W .

By definition, there exists 0 < a < 1 such that log θW = W log a + o(W ). When p ≤

a/(a+ 1) it follows that ((1− p)/p)jθj ≥ a−jθj = Ω(1). Therefore, [(J (θ))−1]ii = O(W ).

A tighter bound can be obtained by taking into account A1(i), yielding log[(J (θ))−1]ii =

O(W ) for p < a/(a + 1) and [(J (θ))−1]ii = O(W 2i+1) for p = a/(a + 1). On the other

hand, for p > a/(a+1), we have ((1−p)/p)jθj < ajθj = O(1). Hence, [(J (θ))−1] = O(1).
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3) When θW decreases slower than exponentially in W .

When p < 1/2, it follows that (1 − p)/p = a > 1. In this case, there exists a j?

such that for all j > j?, ((1 − p)/p)jθj = ajθj = Ω(1). Hence, [(J (θ))−1]ii = O(W ) for

p < 1/2. Conversely, when p > 1/2, (1 − p)/p = a < 1. Hence, there exists a j? such

that for all j > j?, ((1− p)/p)jθj = ajθj = O(1). Thus, [(J (θ))−1]ii = O(1) for p > 1/2.

At last, for p = 1/2, the summation is exactly 1, which also implies [(J (θ))−1]ii = O(1).

In the latter case (i.e., p = 1/2), a tigher bound is obtained by taking A1(i) into account,

which yields [(J (θ))−1]ii = ω(1) if
∑
j = 1W j2iθj = ω(1) and [(J (θ))−1]ii = O(1) if

∑
j = 1W j2iθj = O(1).
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APPENDIX E

ASYMPTOTIC EFFICIENCY AND ASYMPTOTIC NORMALITY
OF THE MLE T ∗i (S)

In this section we show that there exists a Maximum Likelihood Estimator (MLE)

T
(φ)
i (S) of φi that is asymptotic efficient (i.e., MSE(T ∗i (S)) = [(J (φ))−1]ii) and asymptotic

normal. Since the Delta Method is an exact approximation for the Normal distribution,

it follows that there exists a MLE T ∗i (S) of θi that is asymptotic efficient, which can be

obtained by applying the Delta Method to T (φ)
i (S).

Consider the likelihood function obtained by expressing Eq. (4.2) as a function of φ:

dj(φ) =
W∑

i=1

bjiφi.

From the sum-to-one contraint on the parameters, it follows that φ1 = 1 −∑W
i=2 φi.

Thus we can rewrite the previous eq. as

dj(φ) = bj1 +
W∑

i=2

(bji − bj1)φi. (E.1)

Hence,

∂

∂φk
log dj(φ) =

bjk − bj1
bj1 +

∑W
i=2(bji − bj1)φi

2 < k < W.

From Theom. 5.1 [50, Chapter 5], we prove that there exists a MLE that is asymptotically

efficient and asymptotically normal by showing that assumptions (A0)-(A2) and (A)-(D)

are satisfied.

Proof. (A0) Follows from (E.1).
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(A1) The support of φi for 2 ≤ i ≤ W is 0 < φi < 1 subject to
∑W

i=2 φi ≤ 1.

(A2) Observations are assumed to be independent.

(A3) Follows by the assumption that 0 < φi < 1 for 2 ≤ i ≤ W .

(A) We have

∂

∂φk
dj(φ) = bjk, 2 ≤ k ≤ W

and hence

∂3

∂φm∂φl∂φk
dj(φ) = 0, 2 ≤ k, l,m ≤ W.

(B) The expectation of the first logarithmic derivative of f is

Eφ

[
∂

∂φk
log dj(φ)

]
=

W∑

j=1

bjk − bj1
bj1 +

∑W
i=2(bji − bj1)φi

(
bj1 +

W∑

i=2

(bji − bj1)φi
)

=
W∑

j=1

bjk −
W∑

j=1

bj1

= 1− b11

= 0.

As for the second derivative, we have

E

[
∂

∂φl
log dj(φ)

∂

∂φk
log dj(φ)

]
=

W∑

j=1

(bjl − bj1)(bjk − bj1)(
bj1 +

∑W
i=2(bji − bj1)φi

)2

(
bj1 +

W∑

i=2

(bji − bj1)φi
)

=
W∑

j=1

(bjl − bj1)(bjk − bj1)
bj1 +

∑W
i=2(bji − bj1)φi

,

which is equivalent to
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E

[
− ∂2

∂φl∂φk
log dj(φ)

]
=

W∑

j=1

−


− (bjk − bj1)(bjl − bj1)(

bj1 +
∑W

i=2(bji − bj1)φi
)2

(
bj1 +

W∑

i=2

(bji − bj1)φi
)


=
W∑

j=1

(bjl − bj1)(bjk − bj1)
bj1 +

∑W
i=2(bji − bj1)φi

.

(C) The vectors
[

∂
∂φ2

log dj(φ), ∂
∂φ3

log dj(φ), . . . , ∂
∂φW

log dj(φ)
]

for 1 < j < W must

be linearly independent with probability 1. Note that and bjk > 0 ⇐⇒ j ≤ k (in

particular, bj1 > 0 ⇐⇒ j = 1). It follows that for j > k ≥ 2

∂

∂φk
log dj(φ) =

bjk − bj1
bj1 +

∑W
i=2(bji − bj1)φi

= 0, for j > k ≥ 2, and

∂

∂φk
log dj(φ) =

bjk∑W
i=2(bji − bj1)φi

> 0, for j ≤ k.

Therefore, the j − 1 leftmost entries in the j-th vector are 0 while the remainder are

positive. Hence the vectors are linearly independent.

(D) Consider a constant εj > 0 such that dj(φ) = bj1 +
∑W

i=2(bji − bj1)φi ≥ εj for

1 ≤ j ≤ W . Thus,

∣∣∣∣
∂3

∂φm∂φl∂φk
dj(φ)

∣∣∣∣ =

∣∣∣∣∣∣∣

−(bjk − bj1)(bjl − bj1)× 2(bjm − bj1)φm(bj1 +
∑W

i=2(bji − bj1)φi)(
bj1 +

∑W
i=2(bji − bj1)φi

)4

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

2(bjk − bj1)(bjdj(φ)l − bj1)(bjm − bj1)φm(
bj1 +

∑W
i=2(bji − bj1)φi

)3

∣∣∣∣∣∣∣

≤
∣∣∣∣
2(bjk − bj1)(bjl − bj1)(bjm − bj1)φm

ε3j

∣∣∣∣ .

Since Mklm(j) =
∣∣∣ ∂3

∂φm∂φl∂φk
dj(φ)

∣∣∣ <∞, then Eφ[Mklm(j)] <∞ for all k, l,m. �
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APPENDIX F

AVERAGE SET SIZE PROOFS

Lemma F.1. Let p be the sampling probability and m̂φ denote an unbiased estimate of the

average size of the observed sets mφ. Then,

MSE(m̂φ) = O

(
m

(2)
φ −m2

φ

N

)
.

Proof. The estimation error lower bound of the average set size is [89, p. 83, Prop. 3]

MSE(m̂φ) ≥
(1, . . . ,W )(J (φ))−1(1, . . . ,W )T −m2

φ

N
. (F.1)

Lemma B.2 yields

(1, . . . ,W )(J (φ))−1(1, . . . ,W )T

=
W∑

k=1

k∑

i=1

k∑

j=1

ij

(
k

j

)(
k

i

)(
q

p

)2k

(−1)2k−i−j(q−i − 1)(q−j − 1)dk(φ)

=
W∑

k=1

(q/p)2kdk(φ)

(
k∑

i=1

i

(
k

i

)
q−i − 1

(−1)i

)(
k∑

j=1

j

(
k

j

)
q−j − 1

(−1)j

)

= d1(φ) +
W∑

k=2

(q/p)2kdk(φ)

((
−1− q

q

)k
k

1− q

)2

=

(
1− 1

p2

)
d1(φ) +

1

p2

W∑

k=1

dk(φ)k2. (F.2)

Now (4.2) yields

d1(φ) =
W∑

i=1

ipqi−1

1− qiφi (F.3)
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and

W∑

k=1

dk(φ)k2 =
W∑

k=1

W∑

i=k

(
i
k

)
pkqi−k

1− qi φik
2

=
W∑

i=1

i∑

k=1

(
i
k

)
pkqi−k

1− qi φik
2

=
W∑

i=1

(
i∑

k=1

(
i

k

)
pkqi−kk2

)
φi

1− qi .

Using the relation

i∑

k=1

(
i

k

)
xkyi−kk2 =





x, i = 1,

ix(ix+ y)(x+ y)i−2, i ≥ 2.

yields
W∑

k=1

dk(φ)k2 =
W∑

i=1

ip(ip+ q)φi
1− qi . (F.4)

Putting together (F.1), (F.2), and (F.4) yields

MSE(m̂φ) ≥
(

W∑

i=1

i(pi+ qi+1 − 2qi + q)φi
p(1− qi) −m2

φ

)
/N (F.5)

which concludes the proof. �

Lemma F.2. Using the observed set sizes S = {Sk}Nk=1 the following

m̂φ =

∑N
k=1 Sk
Np

+

(
1− 1

p

)∑N
k=1 1Sk=1

N
, (F.6)

is an efficient (smallest variance) unbiased estimator of mφ.
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Proof. We start by noting that

mφ = [1, ...,W ]φ = [1, ...,W ]B−1d(φ). (F.7)

Denote z = [z1, . . . , zW ] = [1, ...,W ]B−1. From Lemma B.1, we have

zi =
W∑

j=1

jb?ji

=
i∑

j=1

j

(
i

j

)
p−i(−q)i−j(1− qj)

= (−q/p)i
i∑

j=1

j

(
i

j

)
1− qj
(−q)j (F.8)

For i = 1 (F.8) yields z1 = 1 and for 2 ≤ i ≤ W ,

zi = (−q/p)i
(
−1− q

q

)i
i

1− q =
i

p
.

Therefore,

z =
[p, 2, 3, . . . ,W ]

p
.

Thus applying the above back into (F.7) yields

mφ =
md

p
+

(
1− 1

p

)
d1(φ), (F.9)

where md =
∑W

i=1 idi is the expectation of average set size of observed subsets. Rewriting

(F.9) using the set sizes S we get

m̂φ =
1

N

N∑

k=1

(Sk
p

+

(
1− 1

p

)
1Sk=1

)
.
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Based on our assumption that {Sk}mk=1 is an i.i.d. sequence, we have that {Sk}Nk=1 is also

i.i.d. with distribution d(φ). Therefore,

E[m̂φ] = E

[Sk
p

+

(
1− 1

p

)
1Sk=1

]
,

and

Var[(m̂φ)2] =
1

N
Var

[(Sk
p

+

(
1− 1

p

)
1Sk=1

)2
]
.

Since

E[Sk] = md =
W∑

i=1

idi(φ),

and

E[1Sk=1] = d1(φ),

we have E[m̂φ] = mφ from (F.9), which indicates that m̂φ is unbiased. Then

E[(Sk)2] =
W∑

i=1

i2di(φ),

E[(1Sk=1)
2] = d1(φ),

and

E[Sk1Sk=1] = d1(φ),

yield

Var[(m̂φ)2] =

(
1− 1

p2

)
d1(φ) + 1

p2

∑W
k=1 dk(φ)k2 −m2

φ

N
.

From (F.1) and (F.2) we find that m̂φ is an unbiased estimator that achieves the Cramér-Rao

lower bound (i.e., it is an efficient estimator). �
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Lemma F.3. Let m̂ denote an unbiased estimate of the average set size mθ. Then,

MSE(m̂θ) ≥
1

η2

(
W∑

i=1

W∑

j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi) +m2

θ

W∑

i=1

W∑

j=1

[(J (φ))−1]ji
(1− qj)(1− qi) −

2mθ

W∑

i=1

W∑

j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

)
. (F.10)

Proof.

MSE(m̂θ) ≥
∇M
∇θ

(∇H
∇φ (J (φ))−1

∇H
∇φ

T) ∇M
∇θ

T

=

(∇M
∇θ
∇H
∇φ

)
(J (φ))−1

(∇M
∇θ
∇H
∇φ

)T
. (F.11)

where ∇M∇θ = (1, . . . ,W ). Note that

[∇M
∇θ
∇H
∇φ

]

k

=
W∑

i=1

ihik

=
W∑

i=1
i6=k

i

(
− θi
η(1− qk)

)
+ k

(
1− θk

η(1− qk)

)

=
1

η(1− qk)

(
k −

W∑

i=1

iθi

)

=
k −mθ

η(1− qk) . (F.12)

Substituting eq. (F.12) in eq. (F.11), we have

MSE(m̂θ) ≥
W∑

i=1

W∑

j=1

(
j −mθ

η(1− qj)

)
[(J (φ))−1]ji

(
i−mθ

η(1− qi)

)

=
1

η2

(
W∑

i=1

W∑

j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi) +m2

θ

W∑

i=1

W∑

j=1

[(J (φ))−1]ji
(1− qj)(1− qi) −

2mθ

W∑

i=1

W∑

j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

)
.
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Similarly to what we did for eq. (B.5), we split eq. (F.10) into three pieces to analyze

its behavior.

MSE(m̂θ) ≥
1

η2

(
W∑

i=1

W∑

j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi)

︸ ︷︷ ︸
U1

+m2
θ

W∑

i=1

W∑

j=1

[(J (φ))−1]ji
(1− qj)(1− qi)

︸ ︷︷ ︸
U2

−

2mθ

W∑

i=1

W∑

j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

︸ ︷︷ ︸
U3

)
.

Analysis of U1

W∑

i=1

W∑

j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi) =

W∑

i=1

W∑

j=1

W∑

k=1

ij

(
k

i

)(
k

j

)(
q

p

)2k

(−q)−i−jdk(φ)

=
W∑

k=1

(
q

p

)2k

dk(φ)

(
k∑

i=1

i

(
k

i

)
(−q)−i

)2

=
W∑

k=1

(
q

p

)2k

dk(φ)

((
−q
p

)−k
k

p

)2

using (G.1)

=
1

p2

W∑

k=1

k2dk(φ)

=
η

p2

W∑

i=1

ip(ip+ q)θi

= η(
W∑

i=1

i2θi +
q

p
mθ).

Note that U1 is bounded by the second moment of the distribution θ.
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Analysis of U2

Note that U2 =
m2
θ

θ2i
A2(i). Therefore, we conclude that U2 diverges if either θW de-

creases exponentially in W and p < a/(a + 1) or θW decreases slower than exponentially

in W and p < 1/2.

Analysis of U3

W∑

i=1

W∑

j=1

j[(J (φ))−1]ji
(1− qi)(1− qj) =

W∑

k=1

(
q

p

)2k

dk(φ)
k∑

i=1

(
k

i

)
(−q)−i

k∑

j=1

j

(
k

j

)
(−q)−j

=
W∑

k=1

(
q

p

)2k

dk(φ)

((
−p
q

)k
− 1

)((
−p
q

)k
k

p

)
using (G.2,G.1)

=
1

p

W∑

k=1

kdk(φ)

︸ ︷︷ ︸
ηpmθ

−1

p

W∑

k=1

(
−q
p

)k
kdk(φ)

︸ ︷︷ ︸
−ηqθ1

= η(mθ +
q

p
θ1).

Thus,

U3 = 2mθη(mθ +
q

p
θ1).

It is interesting to note that, counterintuitively, U2 goes to infinity for certain values of

p and θ while U1 and U3 are always finite, even though the factor [(J (φ))−1]ji that appears

inside the double summation in U2 is the same factor that appears multiplied by j and ji in

U1 and U3, respectively.

Proof of Theorem 4.3

Note that U1, U2 and U3 are positive quantities and, moreover, MSE(m̂θ) > 0 ⇒

U1 + U2 > U3. We observe that U1 diverges if the second moment of θ is infinite, U2

diverges if
∑W

j=1

(
q
p

)j
θj →∞ as W →∞, while U3 is always finite.
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Proof. 1) When θW decreases faster than exponentially in W .

In this case, the second moment of θ is finite and the sum
∑W

j=1

(
q
p

)j
θj = O(1) for

0 < p < 1. Therefore, MSE(m(S)) = O(1) for 0 < p < 1.

2) When θW decreases exponentially in W .

The second moment of θ is still finite. However, we can show that the sum
∑W

j=1

(
q
p

)j
θj

is Ω(W ) for p ≤ a/(a + 1) and O(1) for p > a/(a + 1) by using an argument similar to

the one used in Section E of Appendix A. Hence, MSE(m(S)) = Ω(W ) for p ≤ a/(a+ 1)

and MSE(m(S)) = O(1) for p > a/(a+ 1).

3) When θW decreases more slowly than exponentially in W .

We can show that the sum
∑W

j=1

(
q
p

)j
θj is Ω(W ) for p < 1/2 and O(1) for p ≥ 1/2

by using an argument similar to the one used in Section E of Appendix A. However, the

second moment of θ shows up in U1 and it can be either finite or infinite. Although it

does not affect the bound for p < 1/2, in which case we have log MSE(m(S)) = Ω(W ),

it does change the bound for p ≥ 1/2. In particular, if p = 1/2 and
∑W

j=1 j
2θj = ω(1),

then MSE(m(S)) = ω(1). On the other hand, if p = 1/2 and
∑W

j=1 j
2θj ≥ O(1), then

MSE(m(S)) = Ω(1). Finally, if p > 1/2, then MSE(m(S)) = Ω(1) as well.

�
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APPENDIX G

USEFUL IDENTITIES

k∑

j=1

j

(
k

j

)
(−q)−j =

(
−q
p

)−k
k

p
(G.1)

k∑

j=1

(
k

j

)
(−q)−j =

(
−q
p

)−k
− 1 (G.2)

j∑

k=1

(
j

k

)(
q

p

)k
=

(
1

p

)j
− 1 (G.3)

j∑

k=1

(
j

k

)
(−1)k = −1 (G.4)

j∑

k=0

(
j

k

)
(−1)k =





1 if j = 0

0 otherwise
(G.5)
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APPENDIX H

CAN WE LEVERAGE DIVERSITY USING A SINGLE
CLASSIFIER?

Intuitively, when a learning model is fitted to the nodes it chose to query, it tends to

specialize in one region of the feature space and the search will consequently only explore

similar parts of the graph, which can severely undermine its potential to find target nodes.

One potential way to mitigate this overspecialization would be to sample nodes prob-

abilistically, as opposed to deterministically querying the node with the highest score.

Clearly, we should not query nodes uniformly at random all the time. It turns out that

querying nodes uniformly at random periodically does not help either, according to the

following experiment. We implemented an algorithm for selective harvesting that samples

at each step t, with probability p, an uniformly random node from B(t), and with 1− p, the

best ranked node according to a support vector regression (SVR) model. Table H.1 shows

the results for p = 2.5, 5.0, 10, 15 and 20%.

0.0% 2.5% 5.0% 10% 15% 20%
760.5± 52.1 773.85± 34.5 768.0± 32.3 770.8± 34.1 753.0± 59.8 764.7± 28.0

Table H.1. Results for SVR w/ uniformly random queries on CiteSeer (at t = 1500)
averaged over 40 runs. Top line shows probabilty of random query; bottom line shows
number of target nodes found.

We observe that the performance does not improve significantly for p ≥ 2.5%, either

because the diversity is not increasing in a way that translates into performance improve-

ments or because all gains are offset by the samples wasted when querying nodes at random.

Instead of querying uniformly at random, we could query nodes according to a proba-

bility distribution that concentrates most of the mass on the top k nodes w.r.t. model scores.
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We experimented with several ways of mapping scores to a probability distribution P . In

particular, we considered two classes of distributions:

• truncated geometric distribution (0 < q < 1):

P (v) ∝ (1− q)π(v)−1q, and

• truncated Zeta distribution (r ≥ 1):

P (v) ∝ π(v)−r,

where π(v) is the rank of v based on the scores given by the model to v ∈ B(t). In each

experiment, we set q or r at each step in one of nine ways:

1. Top 10 have x% of the probability mass; for x ∈ {70, 90, 99}.

2. Top 10% nodes have x% of the probability mass; for x ∈ {90, 99, 99.9}.

3. Top k(t) = min{10 × (1 − t/T ), 1} have x% of the probability mass; for x ∈

{70, 90, 99}.

None of the mappings was able to substantially increase the search’s performance. In con-

trast to almost 20% performance improvement seen by SVR under round-robin on CiteSeer

at T = 1500 (Fig. 5.3), mapping scores to a probability distribution increased the number

of targets nodes found by at most 3%.

154



APPENDIX I

EVALUATION OF MAB ALGORITHMS APPLIED TO
SELECTIVE HARVESTING

We experiment with representative algorithms of each of the following bandit classes:

Stochastic Bandits – UCB1, Thompson Sampling (TS), ε-greedy; Adversarial Bandits

– Exp3 [7]; Non-stationary stochastic bandits – Dynamic Thompson Sampling (DTS)

[32]; Contextual Bandits – Exp4 [7] and Exp4.P [13]. UCB1 and TS are parameter-

free. For ε-greedy, Exp3 and Exp4.P we set the probability of uniformly random pulls, to

ε ∈ {0.10, 0.20, 0.50}, γ ∈ {0.10, 0.20, 0.50} and Kpmin ∈ {0.01, 0.05, 0.10, 0.20, 0.50}

(respectively). We set parameter γ in Exp4 asKpmin in Exp4.P. For DTS, we set the cap on

the parameter sum C ∈ {5, 10, 20, 50}. Interestingly, for each MAB algorithm, there was

always one parameter value that outperformed all the others in almost all seven datasets. In

Figure I.1 we show three representative plots of the performance comparison between the

best parameterizations of each MAB algorithm. Since Exp4 was slightly outperformed by

Exp4.P, Exp4 is not shown. These results corroborate our expectations (Section 5.5) that

DTS would outperform other bandits in selective harvesting problems.
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TS
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Eps−Greedy (Eps=0.2)
Exp3 (Gamma=0.2)
Exp4.P (Gamma=0.01)

Figure I.1. Comparison between the best parameterizations of each MAB algorithm.
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