
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

2018

Machine Learning Methods for Activity Detection
in Wearable Sensor Data Streams
Roy Adams

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Part of the Artificial Intelligence and Robotics Commons

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Adams, Roy, "Machine Learning Methods for Activity Detection in Wearable Sensor Data Streams" (2018). Doctoral Dissertations.
1318.
https://scholarworks.umass.edu/dissertations_2/1318

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1318?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

MACHINE LEARNING METHODS FOR ACTIVITY
DETECTION IN WEARABLE SENSOR DATA STREAMS

A Dissertation Presented

by

ROY ADAMS

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2018

College of Information and Computer Science

c© Copyright by Roy Adams 2018

All Rights Reserved

MACHINE LEARNING METHODS FOR ACTIVITY
DETECTION IN WEARABLE SENSOR DATA STREAMS

A Dissertation Presented

by

ROY ADAMS

Approved as to style and content by:

Benjamin Marlin, Chair

Andrew McCallum, Member

Deepak Ganesan, Member

Patrick Flaherty, Member

James Allan, Chair
College of Information and Computer Science

ACKNOWLEDGMENTS

Very little worth doing was ever done in a vacuum and this thesis is no exception. I

have received the support of many people over the past six years and fortunately, I can

completely repay every single one of them by including them in my acknowledgments.

One cannot overstate the importance of the advisor/advisee relationship to one’s

success and sanity. Fortunately, my Ph.D. is complete and my sanity is intact due in

large part to my advisor, Ben Marlin. Ben is among the most pragmatic and quietly

intelligent people I know. He is dedicated to teaching, patient in his advising, and

recognizes the diverse needs of his advisees. I am immensely fortunate to have had

him as an advisor.

I am indebted to the many great professors I have come into contact with at UMass

and as part of MD2K including my committee Deepak Ganesan, Andrew McCallum,

and Patrick Flaherty, whose reading group was a highlight of my time here. I have

also bene

tted from the conversations with and general proximity to all of the great students

in the MLDS lab including Juston, Tao, Malai, Steve, and Garrett, as well as the

professors who helped create the lab, Dan Sheldon and Hanna Wallach. I would like

to extend a special thanks to Shannon, whose ability to handle nearly any task we

threw at them is truly humbling.

I have made a number of truly great friends at UMass including Pinar, Kevin,

David, Kristen, and the Propagators: James, Luis, Pat, and Aaron. I am especially

lucky to have met this last Propagator. Without him, I would likely have gotten more

sleep, but would be much the worse for it.

iv

Is it a cliche to say that I could not have done this without my parents? Undoubt-

edly, but it is nevertheless true. If I can have anything resembling the scienti

c careers they have had, I will consider myself lucky. They have continuously

pushed me to

nd what makes me happy and I will be forever grateful.

Finally, as of this writing, it is exactly one month and one day until I marry Paige

Seegan. Three weeks after that, she will receive her own Ph.D. It is hard to express

how much I admire this woman, and yet, custom dictates that I try. She is smart

and kind and funny and has more empathy than I will ever possess. She cares deeply.

Not just about her work or her friends, but about nearly everyone who enters her life.

She puts me at my ease and for that, I am a lucky man.

This work was partially supported by the National Institutes of Health under

award 1U54EB020404, and the National Science Foundation under award IIS-1350522.

v

ABSTRACT

MACHINE LEARNING METHODS FOR ACTIVITY
DETECTION IN WEARABLE SENSOR DATA STREAMS

SEPTEMBER 2018

ROY ADAMS

B.S., UNIVERSITY OF CALIFORNIA DAVIS

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Benjamin Marlin

Wearable wireless sensors have the potential for transformative impact on the

fields of health and behavioral science. Recent advances in wearable sensor technol-

ogy have made it possible to simultaneously collect multiple streams of physiological

and context data from individuals in natural environments; however, extracting re-

liable high-level inferences from these raw data streams remains a key data analysis

challenge. In this dissertation, we address three challenges that arise when trying to

perform activity detection from wearable sensor streams. First, we address the chal-

lenge of learning from small amounts of noisy data by proposing a class of conditional

random field models for activity detection. We apply this model class to three differ-

ent activity detection problems, improving performance in all three when compared

with standard independent and structured models. Second, we address the challenge

of inferring activities from long input sequences by evaluating strategies for pruning

vi

the inference dynamic programs used in structured prediction models. We apply these

strategies to the proposed structured activity detection models resulting in inference

speedups ranging from 66x to 257x with little to no decrease in predictive perfor-

mance. Finally, we address the challenge of learning from imprecise annotations by

proposing a weak supervision framework for learning discrete-time detection models

from imprecise continuous-time observations. We apply this framework to both in-

dependent and structured models and demonstrate improved performance over weak

supervision baselines.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES .xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Problem Definition and Notation . 3
1.2 Contributions . 5
1.3 Outline . 8

2. BACKGROUND AND RELATED WORK . 9

2.1 Structured Prediction . 9

2.1.1 Conditional Random Fields . 10

2.1.1.1 Inference in CRFs . 12

2.1.2 Standard CRFs . 14

2.1.2.1 Linear Chain CRFs . 14
2.1.2.2 Semi-Markov CRFs . 15
2.1.2.3 Context Free Grammar CRFs . 16

2.1.3 Learning in CRFs . 18

2.1.3.1 Maximum Likelihood Learning . 18
2.1.3.2 Maximum Margin Learning . 19

2.1.4 Structured Prediction in mHealth . 21

viii

2.2 Weakly Supervised Learning . 21

2.2.1 Weakly Supervised Learning in Independent Models 22

2.2.1.0.1 Inexact Supervision . 22
2.2.1.0.2 Inaccurate Supervision . 23

2.2.2 Weak Supervision in Structured Models . 24

2.2.2.0.1 Inexact Supervision . 24
2.2.2.0.2 Inaccurate Supervision . 25

2.3 Datasets . 26

2.3.1 mPuff (Ali et al. [1]) . 26
2.3.2 puffMarker (Saleheen et al. [56]) . 27
2.3.3 Extrasensory (Vaizman et al. [74]) . 27
2.3.4 rConverse (Bari et al. [3]) . 28
2.3.5 ECGmorph (Natarajan et al. [43]) . 29
2.3.6 eatingMoments (Thomaz et al. [68]) . 29
2.3.7 RisQ (Parate et al. [47]) . 30

3. STRUCTURED PREDICTION MODELS FOR
HETEROGENEOUS MHEALTH SEGMENTATION 31

3.1 Notation . 33
3.2 Heterogeneous Segmentation . 34

3.2.1 Inference . 35

3.3 Conversation Detection . 36

3.3.1 Model . 36
3.3.2 Experiments . 37

3.3.2.1 Models . 38
3.3.2.2 Train and Test Procedures . 38
3.3.2.3 Experiment: Speech Detection . 38

3.4 Eating and Smoking Detection . 39

3.4.1 Model . 40
3.4.2 Experiments . 43

3.4.2.1 Baseline Models . 44
3.4.2.2 Train and Test Procedures . 45
3.4.2.3 Experiment 1: Synthetic Data . 46

ix

3.4.2.4 Experiment 2: Real Data . 47

3.5 Electrocardiogram Morphology Extraction . 48

3.5.1 Model . 50
3.5.2 Experiments . 52

3.5.2.1 Models . 52
3.5.2.2 Train and Test Procedures . 52
3.5.2.3 Experiment: Peak Labeling . 53

3.6 Improving Inference Times in Segmentation Models 55

3.6.1 Static Pruning . 56

3.6.1.0.1 Experiments . 57

3.6.2 Learning to Prune . 58

3.6.2.1 Pruned MAP Inference . 58
3.6.2.2 Learning the Pruning Function . 59
3.6.2.3 Experiments . 61

3.6.2.3.1 Sleep Detection . 61
3.6.2.3.2 Smoking Detection . 61
3.6.2.3.3 Train and Test Procedures 62
3.6.2.3.4 Results . 62

3.7 Discussion . 63

4. LEARNING EVENT DETECTION MODELS FROM
TEMPORALLY IMPRECISE LABELS . 66

4.1 Notation . 70
4.2 Independent Classification Models . 70

4.2.1 Weak Supervision Framework . 71
4.2.2 Learning . 74
4.2.3 Inference . 77
4.2.4 Experiments . 78

4.2.4.1 Datasets . 78
4.2.4.2 Models . 80
4.2.4.3 Train and Test Procedures . 81
4.2.4.4 Experiment 1: Performance Under Varying Noise

Conditions . 82
4.2.4.5 Experiment 2: Performance on Real Timestamps 84

x

4.3 Segmentation Models . 84

4.3.1 Model . 85
4.3.2 Learning . 87
4.3.3 Inference . 89
4.3.4 Multiple Observation Types . 90
4.3.5 Experiments . 90

4.3.5.1 Sleep detection . 90

4.3.5.1.1 Model . 91
4.3.5.1.2 Train and Test Protocols 92
4.3.5.1.3 Experiments . 92

4.3.5.2 Smoking detection . 94

4.3.5.2.1 Features . 94
4.3.5.2.2 Model . 96
4.3.5.2.3 Train and Test Protocols 98
4.3.5.2.4 Experiment 1 - Inference Pruning 98
4.3.5.2.5 Experiment 2 - Detection Performance 100

4.4 Combining Imprecise Annotations and Wearable Sensors 102

4.4.1 MAP Inference . 102
4.4.2 Experiments . 103

4.4.2.0.1 Experiment 1 - Sleep Detection 103
4.4.2.0.2 Experiment 2 - Smoking Detection 104

4.5 Discussion . 106

5. CONCLUSIONS . 109

BIBLIOGRAPHY . 112

xi

LIST OF TABLES

Table Page

2.1 Basic information and statistics for the datasets used in this
dissertation. 26

xii

LIST OF FIGURES

Figure Page

1.1 An illustration of the activity detection problem. On the bottom is a
sample sensor signal that has been discretized using a peak
detection method. Above that is the input sequence of feature
vectors, x. On top is a possible label structure for this input, y.
In this case, the label structure is a segmentation where blue and
orange indicate positive and negative segment labels
respectively. 3

2.1 Graphical model for a linear chain conditional random field
(CRF-LC). Grey nodes indicate variables that are always
observed. 14

2.2 A typical graphical model used for inaccurate supervision problems.
x is the input features, y is the true, unobserved label, ỹ is the
observed, noisy version of the label. The dashed arrow from x to
ỹ indicates that the noise model does not always depend on the
features. Grey nodes indicate variables that are observed during
training. 23

3.1 An illustration of homogeneous and heterogeneous segmentations.
Colors indicate class label. 33

3.2 (Left) Average instance-level labeling accuracy for each model. Error
bars represent one standard-error calculated across subjects. The
y-axis is clipped at 0.7. (Right) Average instance-level labeling
accuracy for each model in conversation and non-conversation
activities. 39

3.3 On the left is an example of a standard instance labeling and
segmentation where a positive instance represents a bite of food
and a positive segment represents a complete eating activity. On
the right is the implied segmentation into periods between
positive instances described in Section 3.4.1. At test time,
predictions are converted back to the original observed format. 41

xiii

3.4 Distributions of the modeled quantities for the four datasets used.
The left plot shows the distributions of the number of positive
events in a complete positive activity. The right plot shows the
distributions of the time in seconds between consecutive positive
instances. For display purposes, three outliers were omitted from
the eatingMoments dataset box-plot in right plot. 43

3.5 This figure shows the graphical model for the TREE baseline model
with a window size of two. Y

(1)
i is the i’th instance label and Y

(2)
j

is the j’th activity label. 44

3.6 F1 results for the LR, TREE, and SEG models on synthetic data with
varied amounts of noise in the instance features as measured by
σE. 46

3.7 The top row shows results on the instance labeling task and the
second row shows results on the segmentation task. From left to
right, the three panels in each row correspond to precision, recall,
and F1. In each group of bars for the instance labeling task, the
models are LR, TREE, and SEG. In each group of bars for the
segmentation task, the models are TREE, and SEG. 47

3.8 (a) Idealized ECG waveform (b) Sample data from the Zephyr
BioHarness wearable chest band sensor . 49

3.9 A sample ECG signal with peaks marked and an example of a
labeling and segmentation of this sample. 50

3.10 (a) shows the average accuracies across lab subjects, (b)-(d) show
confusion matrices for the lab subjects, (e) shows the average
accuracies across field subjects, and (f)-(h) show confusion
matrices for the field subjects. 53

3.11 This figure shows the inference runtime against instance-level
classification performance for different settings of each of the
static pruning constraints described in this section. 57

3.12 This figure shows the inference complexity against instance-level
classification performance for different settings of the negative
instance weight λ1 the Bodenstab pruning objective. The left plot
shows performance on the Extrasensory sleep detection dataset
and the right plot shows performance on the puffMarker smoking
dataset. Blue lines represent models trained using equation 3.9
and yellow lines represent models trained using equation 3.10. 62

xiv

3.13 A sample ECG signal with peaks marked and a parse of this input
sequence using the grammar from Section 3.7. 64

4.1 An example of an input sequence, ground truth labeled segmentation,
and imprecise annotation for the beginning and end of sleep. 68

4.2 Graphical model for the proposed weak supervision framework. z
represents the observed continuous-time annotations, and o
represents the unobserved alignment between instances in x and
annotations in z. Shaded variables are observed during model
training. 69

4.3 Samples of π0 = pπ(oi = 1|yi = 0) and π1 = pπ(oi = 1|yi = 1) from the
posterior distribution over parameters p(π|x, t, z). 77

4.4 The marginal distribution of the difference between the true and
observed time stamps for positive instance in the puffMarker data.
The dashed lined shows a Normal distribution fit to this data. 79

4.5 Figures (a) and (b) show the prediction performance for all models
when varied amounts of synthetic noise is added to the hand
aligned labels of the mPuff and puffMarker datasets respectively.
Figure (c) shows the recall of the labels generated by the naive
alignment strategy. Figures (d) and (e) show the predictive
performance for all models when different proportions of
observations are dropped from the observation sequence on the
mPuff and puffMarker datasets. Figure (f) shows the F1

performance of all models on the puffMarker dataset trained on
the real unaligned observation sequence. The dashed line
corresponds to LR-HA. 83

4.6 The complete dynamic program for calculating the marginal
likelihood of the observation sequence pω(z|x, t) in the proposed
framework. 88

4.7 Performance for the semi-WS and semi-NV models on the sleep
detection problem when trained on data with Exp(λ) distributed
noise (measured in minutes) added to the observation
timestamps. 92

4.8 This plot shows the average sleep per day predicted by both the
semi-WS and semi-NV models. Also shown is the average sleep
per day in the true labels (Ground) and the expected sleep per
day in the noisy annotations (Annotations). 93

xv

4.9 The instance labeling performance of logistic regression based models
as a function of the number of fully-labeled sessions used to train
the feature augmentation model. 97

4.10 An illustration of the observation types used in the SEG-WS model.
z(2) and z(3) contain activity start and end observations
respectively while z(1) contains observations of smoking puffs
within a smoking activity. 97

4.11 This figure shows the effect of changing the maximum segment length
with no observation depth pruning or filtering (left), the effect of
changing the maximum observation distance with no filtering
(center), and the further marginal effect of filtering approximately
85% of instances (right). The maximum pruning configuration
results in a 40x speedup. 99

4.12 The left plot shows F1 score for all three models on the instance
labeling task. The right plot shows the accuracy for all three
models on the segmentation task. Error bars show one standard
error. 100

4.13 The dynamic program for calculating the unnormalized probability of
MAP assignment to o and y in the proposed framework. 103

4.14 Performance for the semi-WS and semi-NV models on the sleep
detection problem when trained on data with Exp(λ) distributed
noise (measured in minutes) added to the observation timestamps.
Each plot shows the performance of both models when
conditioned on all segment start observations (Start), all segment
end observations (End), neither (None), or both (Start+End) at
test time. 104

4.15 The left plot shows the segmentation accuracy when all three SEG
models are conditioned on combinations of observations (segment
start, segment end or both). The right plot shows the
performance of the SEG-WS model when conditioned on segment
observations with different amounts of synthetic noise added to
the observation sequence. The dashed line shows the
segmentation accuracy of the SEG-WS model when conditioned
on no observations (None) and the solid black line shows the
empirical standard deviation of the timestamp noise in the data,
which reflects what SEG-WS was trained on. 105

xvi

CHAPTER 1

INTRODUCTION

A small number of behaviors including physical inactivity, poor diet, tobacco use,

and alcohol consumption are key risk factors in a wide array of chronic conditions

including obesity, cancer, diabetes and cardiovascular disease [37, 40, 11]. These be-

haviors have traditionally been studied using self-report data; however, self-report has

well-known limitations including data sparsity, recall bias, and high burden on study

subjects [62]. The emerging field of mobile health (mHealth) seeks to supplement and

eventually replace the use of self-report data with continuously recorded physiological

and activity-related data streams collected using wearable sensors. While mHealth

technologies have the potential to yield novel insights into health and behavior, sig-

nificant data analysis challenges must first be overcome [28].

In this dissertation, we identify machine learning and data analysis challenges that

arise in many mHealth settings and propose new models and methods for overcoming

them. These challenges include data scarcity and noise, the high cost of acquiring

annotated data, and the need to process high volumes of densely sampled signals. A

core component of many mHealth applications is the ability to infer from wearable

sensor data when a subject is engaging in the behaviors we want to study or treat.

We call this the activity detection problem and it is the focus of this dissertation.

Enabling accurate mHealth activity detection has the potential for major impact

on behavioral science. A search of the NIH grant database1 for current projects whose

1https://projectreporter.nih.gov/reporter.cfm

1

https://projectreporter.nih.gov/reporter.cfm

descriptions include the phrase “ecological momentary assessment” (a common self-

report methodology [62]) returns over 200 projects. These projects include studies of

smoking, drug use, stress, post-traumatic stress disorder, alcohol consumption, food

choices, and medication adherence, among many other behaviors and conditions. The

ability to accurately infer behaviors of interest as well as contextual information about

when and where these behaviors occur will allow us to to study these behaviors at

a level of detail that is not currently possible [28]. Further, such detection capabil-

ities open the possibility for novel types of interventions that do not require direct

interaction with a health care provider and thus can be delivered at scale [42, 50].

Our hope is that the techniques developed in this thesis can be incorporated by

behavioral scientists into the standard suite of tools for studying behavioral health,

improving current study designs and enabling new ones. The following are three

examples of the ways activity detection may be used in downstream mHealth tasks:

1. Monitoring: For many conditions, it is valuable to simply monitor and record

behaviors of interest. For example, in the treatment of chronic conditions such

as obesity, tracking food consumption is an effective part a behavioral inter-

vention plan [6]. In this case, wearable sensors may supplant or supplement

traditional monitoring methods such as journaling.

2. Causal inference: Behavioral scientists are concerned with understanding

the causal mechanisms underlying behaviors and conditions such as addiction.

To identify these mechanisms it is necessary to detect behaviors of interest and

place them in a broader context. Wearable sensors may be used to both identify

the behavior of interest, as well as record relevant contextual information.

3. Intervention: An emerging technology for delivering behavioral interventions

for chronic conditions is Just-In-Time adaptive interventions [42, 50]. Just-in-

Time interventions use signals from wearable sensors to determine the optimal

2

Discretized signal

Input sequence, x

Label structure, y

Figure 1.1: An illustration of the activity detection problem. On the bottom is a
sample sensor signal that has been discretized using a peak detection method. Above
that is the input sequence of feature vectors, x. On top is a possible label structure
for this input, y. In this case, the label structure is a segmentation where blue and
orange indicate positive and negative segment labels respectively.

time to deliver an intervention using a mobile device such as a smart phone.

For example, a Just-In-Time intervention for insufficient exercise might use an

accelerometer to detect physical activity and prompt the user to get up and move

if they have been too sedentary. Accurate behavioral detection is necessary in

this case to identify the right time to deliver an intervention.

In the remainder of this chapter, we define the detection problem as a super-

vised learning problem (Section 1.1) and outline the contributions of this dissertation

(Section 1.2).

1.1 Problem Definition and Notation

We treat activity detection as a supervised learning problem. That is, we assume

that we are given a set of signals where the occurrences of the activity of interest have

been annotated and we would like to learn a function that takes a new signal and

locates occurrences of the same activity. To formalize this problem, we must define

the notation and describe the assumptions we will make about the input signals. We

assume that the data is organized into a set of N sessions each corresponding to a

3

time series generated from one or more wearable sensors. Each time series may be

multivariate and sessions may vary in length. Separate sessions may correspond to

data from different subjects or to data from the same subject collected at different

times. We assume that each session n has been discretized into a sequence of Ln

discrete instances and that a feature vector xni ∈ RD has been extracted from a

window around each instance i. Further, each instance i in session n is associated

with a timestamp tni which may correspond to any point of interest associated with

instance i. We refer to the complete sequence of feature vectors xn = {xni}Lni=1 as

the input sequence and the complete sequence of timestamps tn = {tni}Lni=1 as the

timestamp sequence.

Finally, each session n is associated with a label structure yn ∈ Yn that denotes the

locations of activities in the sequence. The support set Yn depends on the application

at hand and may depend on the size of the session n. For example, some problems

require only that each instance be labeled as positive or negative, in which case

Yn = {0, 1}Ln .

Alternatively, some applications require a segmentation of the input sequence. We

define a segmentation as a sequence of segments yn = {yns}Sns=1 where each segment

yns = (cns, jns, kns) is a tuple containing a segment label cns ∈ C, a start index

jns ∈ {1, ..., Ln}, and an end index kns ∈ {1, ..., Ln}. In this case, Yn will include all

possible segmentations of a length Ln sequence. To ensure that a segmentation does

not contain overlapping segments and that the entire input sequence is covered, we

constrain the set of segmentations Yn such that kn1 = 1, knSn = Ln, and kns = jns+1

for all 1 ≤ s ≤ Sn − 1.

With these definitions, we can formalize activity detection as a supervised learning

problem where our goal is to learn a function f : RD×Ln × RLn → Yn that maps a

feature sequence and a timestamp sequence to a label structure representing the

activity of interest. Figure 1.1 shows an example of this problem formulation where

4

peak detection is used to discretize the input signal and the label structure is a labeled

segmentation of the input sequence.

1.2 Contributions

This dissertation makes three main contributions that address challenges faced

when applying supervised learning methods to the problem of mHealth activity de-

tection: structured prediction models for learning from small amounts of noisy data,

inference acceleration methods for performing structured prediction on long input se-

quences, and weak supervision frameworks for learning in the presence of temporal

label imprecision.

1. Structured prediction for learning from small amounts of noisy data:

Data gathered from wearable sensors is subject to many confounding noise

sources such as sensor movement and signal dropout. Further, gathering reliable

labeled data may require expensive protocols which leads to scarcity of labeled

data. Because of these issues, generic supervised learning algorithms can under-

perform in this domain. One way to improve over generic models when data is

limited is to encode domain knowledge into the model.

Traditionally, this has been done using feature engineering which has been suc-

cessfully applied in the mHealth space a number of times [1, 56, 3, 74]; however,

hand-engineered features are limited because they are typically only applicable

to a single input modality. Further, it is still common practice to use generic

instance labeling models on top of these features and to use ad-hoc methods

to perform segmentation on top of predictions from these models. Instead, we

use structured prediction to encode domain knowledge into the model itself and

jointly perform segmentation and instance labeling.

5

In Chapter 3 we present a family of conditional random field-based models for

the problem of heterogeneous segmentation, or segmentation where the instances

within a segment need not share the same label. While similar models have

been developed for specific applications [64], we present a general form models

of this type. We apply versions of this model family to three different mHealth

domains: conversation detection (Section 3.3), eating and smoking detection

(Section 3.4), and electrocardiogram morphology extraction (Section 3.5). This

represents the first application of structured prediction to many of these prob-

lems. We improve detection performance in all three domains compared with

both independent instance classifiers and generic structured models.

2. Inference acceleration for performing structured prediction on long

input sequences: The application of structured models to mHealth data re-

quires that we perform inference on very long unlabeled sequences. In these

cases, even inference algorithms with polynomial complexity in the length of

the input sequence, such as those presented in Chapter 3, may be too slow

in practice. One strategy for improving inference runtimes is to constrain the

support set of label structures [78]. In Section 3.6, we apply this strategy to

structured segmentation models. We present two such approaches including

static constraints on the label set based on domain knowledge, and learned

constraints that use an independent classifier to constrain the support set of

a structured model. Such acceleration strategies have been heavily developed

in the natural language processing literature. In this work we show how they

can be applied to mHealth activity detection problems. In particular, we adapt

the approach used by [5] for parsing to the problem of segmentation. We apply

this approach to two mHealth segmentation problems resulting in up to 257x

speedups in inference time with no significant drop in prediction accuracy.

6

3. Weak supervision for learning in the presence of temporal label im-

precision: Gathering high-quality labeled data for supervised learning of activ-

ity detection models requires expensive, high-fidelity observation mechanisms

and time-consuming annotation protocols. It is often possible to acquire an-

notations using lower cost methods, such as self-report, but these annotations

may be imprecise. As we might expect, applying supervised learning methods

directly to imprecise labels leads to lower performance as these methods have

no way to distinguish errors in the training data. Techniques for learning from

data with label imprecision have been developed and applied to domains such

as image classification [39] and species distribution modeling [84], allowing for

the estimation of models from higher volumes of lower-quality data.

In Chapter 4, we present a new type of label imprecision that arrises when

annotations for model estimation are provided as continuous timestamps. This

problem is not naturally solved by existing approaches to weakly supervised

learning, so we introduce weak supervision framework that allows estimation of

discrete-time activity detection models from continuous-time, temporally im-

precise annotations. We first develop this framework for independent detection

models (Section 4.2) resulting in approximately a 0.06 improvement in F1 over

a model trained on ground truth labels. We further develop this framework

for structured prediction models (Section 4.3) resulting in approximately a 0.02

loss in accuracy relative to a model trained on hand aligned labels. Finally, we

show how this framework can be used to integrate imprecise observations with

sensor data at test time (Section 4.4), allowing for inferences that combine both

data sources.

7

1.3 Outline

The remainder of this dissertation is organized as follows: We begin by presenting

background material on conditional random fields and weakly supervised learning in

Chapter 2. In Section 2.3, we describe seven datasets that we use throughout this

dissertation. In Chapter 3, we present a family of conditional random field models

for joint sequence labeling and segmentation and apply this model family to three

mHealth applications. We then present inference acceleration methods for improving

inference times on long sequences. Finally, in Chapter 4, we present weak supervision

frameworks for learning independent and structured activity detection models from

temporally imprecise labels.

8

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we present background material and related work used throughout

the remainder of this dissertation. In Section 2.1 we discuss the conditional random

field (CRF) model family and present a selection of standard CRF models. In Section

2.2 we discuss various weakly supervised learning frameworks for independent classi-

fication and structured prediction. Finally, in Section 2.3, we describe the datasets

used throughout the remainder of this dissertation.

2.1 Structured Prediction

A typical first approach to the mHealth event detection problem is to treat each

instance independently [1, 56, 47, 68, 38]. That is, a classifier is learned that maps

each instance xi to a discrete label yi. For example, if our goal is to detect eating, we

may learn an independent classifier to label each instance as an eating gesture or not.

When it is necessary to detect more complete activities, such as a complete meal, it

is common to use post-hoc segmentation rules. For example, we may decide that any

two bites of food within five minutes of each other belong to the same eating activity.

This approach fails to leverage domain knowledge we may have about the ap-

plication. For example, people tend to pause between bites of food. Encoding this

knowledge into our model may allow us to generalize better from small amounts of

noisy data, but it breaks the independence between instances. Further, by performing

segmentation on top of fixed instance-level predictions, errors made by the indepen-

dent instance classifier may propagate and cause errors in the post-hoc segmentation.

9

Information about what is a likely segmentation cannot flow back to the instance-level

classifier. In this section, we present background on structured prediction, which can

be used to model known structures in activities of interest and avoid propagating

errors in prediction pipelines.

Structured prediction is a sub-area of supervised learning focused on the si-

multaneous prediction of multiple related label variables. Specifically, given a set of

feature variables X = {Xi}Mi=1 ∈ X and a set of label variables Y = {Yi}Li=1 ∈ Y ,

the goal of structured prediction is to learn a function f : X → Y that maps an as-

signment of X to an assignment of Y. The set of label variables is often, though not

always, used to represent a specific structure such as a label sequence, a segmentation,

or a parse tree.

Structured prediction methods have been developed in a number of application

areas, with computer vision and natural language processing playing a particularly

pivotal role. We will draw on techniques from both fields in this work. In particular,

we focus on the conditional random field (CRF) family of models [30]. In the following

sections, we describe the CRF formalism and its application to mHealth activity

detection problems.

2.1.1 Conditional Random Fields

CRFs are a sub-class of probabilistic graphical models [25] that generalize log-

linear probabilistic classifiers like logistic regression [23] to the case of structured

prediction. A CRF defines a conditional distribution over a set of L output variables

Y = {Yi}Li=1 given a corresponding set of M feature variables X = {Xi}Mj=1. We

assume that each feature variable Xj ∈ RD is a D dimensional real vector and that

each label variable Yi takes a value in a set Yi; however, there may be additional

constraints on the set of possible joint configurations, denoted by Y . For example,

if the structure we are trying to predict is a segmentation of a sequence, then it is

10

necessary to constrain Y to contain only segmentations that cover the entire sequence

with no overlapping segments.

A general log-linear CRF is defined through a linear energy function that takes

the form of a weighted sum of K feature functions fk involving values of Y and X:

〈θ, f(x,y)〉 =
K∑
k=1

θkfk(y,x) (2.1)

where 〈u, v〉 is the inner product of u and v. These feature functions are typically

sparse in the sense that they involve few label and feature variables. The set of

label and feature variables referenced in function fk is referred to as its scope Sk.

exp(〈θk, fk(y,x)〉) is commonly refered to as a factor.

Importantly, this energy function can be represented using an undirected graph

G = (V,E) where the set of vertices V = Y ∪ X is the set of all variables in the

model. For any pair of variables u and v there is an edge in the graph if both u and

v are in the scope of the same feature function: E = {(u, v) |u, v ∈ V, ∃ k s.t. u, v ∈

Sk}. Variables in the model obey a Markov property with respect to G. That is, a

variable u is independent of all other variables in the graph given the variables in its

neighborhood, otherwise known as the Markov blanket of variable u.

The probability Pθ(y|x) of a configuration of all of the label variables y = {yi}Li=1

conditioned on the observed feature variables x = {xj}Mj=1 is given below. Zθ(x) is

referred to as the partition function and is the normalization term of the probability

distribution.

Pθ(y|x) =
exp(〈θ, f(x,y)〉)

Zθ(x)
(2.2)

Zθ(x) =
∑
y∈Y

exp(〈θ, f(x,y)〉) (2.3)

We will refer to any log-linear conditional model as a CRF even if the model

was not trained as a probabilistic model (i.e. using a likelihood). This includes

11

conditional graphical models trained to minimize various empirical risk functions

such as structured support vector machines [67, 71] which are trained to minimize

the multiclass hinge-loss and models trained to minimize expected negative marginal

probabilities [12].

2.1.1.1 Inference in CRFs

Two common inference problems arise when using CRFs: maximum a posteriori

(MAP) inference and marginal inference. MAP inference is the problem of finding

the highest probability setting of y given a value for x and a setting of the parameters

θ. MAP inference is commonly used at test time to predict unseen values of y and

is a necessary sub-routine of maximum margin learning (discussed below). Formally,

the MAP inference problem is defined as follows

y∗ ∈ arg max
y∈Y

Pθ(y|x) (2.4)

= arg max
y∈Y

logPθ(y|x) (2.5)

= arg max
y∈Y

〈θ, f(x,y)〉 − logZθ(x) (2.6)

= arg max
y∈Y

〈θ, f(x,y)〉. (2.7)

The last simplification can be made because the partition function does not de-

pend on the value of y. If Yi is a discrete set for all i, then solving the MAP inference

problem is equivalent to solving an integer linear program which is, in general, in-

tractable. As a result, much of the work on CRFs has focused on models for which

this problem can be solved tractably. In particular, for many models of interest,

〈θ, f(x,y)〉 factorizes in such a way that MAP inference can be performed using a

dynamic program with polynomial complexity.

12

Alternatively, marginal inference is the problem of calculating the expected

value of the feature functions for given values of x and θ. Formally, the the expected

feature functions µ are defined as

µ = EPθ(y|x)[f(x,y)] (2.8)

=
∑
y∈Y

Pθ(y|x)f(x,y). (2.9)

In many models, each feature function fk depends on Y only through indicator

functions on its scope Sk, I[ySk = v]1 where ySk is a setting of the variables in Sk. For

example, the feature function for logistic regression is f(x, y) = xI[y = 1]. In these

cases, calculating the marginals is equivalent to calculating marginal probabilities

because the expectation of an indicator function of a discrete variable is a probability.

In the logistic regression case, EPθ(y|x)[f(x,y)] = xP (Y = 1|x).

Because of the log-linear form of CRF models we have the following useful prop-

erty:

∇θ logZθ(x) =
∑
y∈Y

∇θ exp(〈θ, f(x,y)〉)
Zθ(x)

(2.10)

=
∑
y∈Y

Pθ(y|x)f(x,y) = µ. (2.11)

That is, the marginals are equal to the gradient of the log partition function with

respect to the parameters θ. Assuming we can tractably calculate the log partition

function, we can also tractably calculate the marginals using automatic differentiation

[4]. Unfortunately, calculating the partition function involves a sum over a set of size

O(
∏

i |Yi|) and so, like the MAP inference problem, this computation is intractable in

the general case. As with the MAP inference problem, many models of interest allow

1The notation I[s] is the indicator function where I[s] = 1 if the statement s is true and I[s] = 0
if the statement s is false.

13

Y1 Y2 Y3 YL

X1 X2 X3 XL

...

Figure 2.1: Graphical model for a linear chain conditional random field (CRF-LC).
Grey nodes indicate variables that are always observed.

factorizations of this sum that result in tractable dynamic programming solutions.

We discuss some important examples of this below.

2.1.2 Standard CRFs

In this section, we present three standard CRF models which are related to the

models presented in Chapter 3.

2.1.2.1 Linear Chain CRFs

The linear-chain CRF gives a distribution over a label sequence given a feature

sequence of the same length. The graphical model for the linear-chain CRF model

is shown in Figure 2.1. The linear-chain CRF model defines a joint distribution over

a sequence of discrete label variables Y = {Yi}Li=1 given a corresponding sequence

of feature vectors X = {Xi}Li=1. Each label variable Yi is assumed to take a value

from the label set C. This model incorporates the feature vectors via a set of pairwise

feature functions f
(1)
iv (y,x) = I[yi = v]xi. Consecutive label variables are tied together

by a set of pairwise feature functions f
(2)
ivu = [yi = v][yi+1 = u]. Importantly, this model

obeys a first order Markov property on the sequence, that is, Yi ⊥ Yi+k|Yi+1, ∀ k <

1. MAP inference can be performed in this model using the Viterbi algorithm [79]

and marginal inference can be performed using the closely related forward-backward

algorithm [25]. Both algorithms are dynamic programming algorithms that have

complexity O(|C|2L).

14

2.1.2.2 Semi-Markov CRFs

For many applications, the Markov assumption made in the linear-chain CRF

model (Yi ⊥ Yj|Yi−1, ∀ j < i − 1) does not hold. Semi-Markov models generalize

Markov models by defining a segmentation of the input sequence and allowing non-

Markov dependencies within segments [57]. The semi-Markov CRF defines a distribu-

tion over such segmentations given an input sequence x = {xi}Li=1. The semi-Markov

CRF represents a segmentation as a sequence of segment variables Y = {Ys}Ss=1

where a segment Ys = (Cs, Js, Ks) is a tuple containing a label Cs ∈ C, a start

position Js ∈ {1, ..., L}, and an end position Ks ∈ {1, ..., L}.

To ensure only valid segmentations, we constrain the set of segmentations Y such

that K1 = 1, KS = L, and Ks = Js+1 for all 1 ≤ s ≤ S − 1. The semi-Markov CRF

is defined by a feature function f(Ys, Cs−1,x) which is applied to each segment Ys for

all s > 1. This function may depend on the segment Ys, the label of the previous

segment Cs−1, and the complete input sequence x. The function f maps these inputs

to a length F feature vector. Given a parameter vector θ ∈ RF , the distribution over

segmentations is given by:

Pθ(y|x) ∝
∏
s

exp (〈θ, f(ys, cs−1,x)〉) . (2.12)

Both MAP and marginal inference can be performed in the semi-Markov CRF

using dynamic programs with complexity O(|C|2L2). We present some details of this

algorithm here, as it is closely related to the inference algorithm presented in Section

3.2.1. The dynamic program for calculating the partition function Zθ(x) is defined

by the following recursion:

α(k, c) =
k∑
j=1

∑
c′∈C

exp(〈θ, f((c, j, k), c′,x)〉)α(j − 1, c′) (2.13)

15

with the base case α(0, c) = 1 for all c ∈ C. The dynamic programming table α has

the interpretation that α(k, c) is the sum over all segmentations of the subsequence

from position 0 through k constrained so that the last segment has label c. Given

this interpretation, the full partition function is given by Zθ(x) =
∑

c∈C α(L, c).

2.1.2.3 Context Free Grammar CRFs

The context free grammar (CFG) CRF generalizes a number of other CRF models

(including the linear-chain CRF and the semi-Markov CRF) and defines a distribution

over the types of tree structures commonly used to describe language. Specifically,

given a CFG and an input sequence, a CFG CRF defines a distribution over all

possible parses of the sequence using the rules defined by the context free grammar

[65]. We will first define context free grammars and then describe the CFG CRF

model.

A CFG is a mathematical structure that compactly describes the set of valid

strings that can occur in a set of strings known as a language. The set of valid strings

is described using a set of production rules R that specify transformations from a set

of internal (or non-terminal) symbols I to sequences consisting of both non-terminal

and terminal symbols. We let V represent the set of terminal symbols. A string in

the language is simply a sequence of terminal symbols.

In this work, we will consider CFGs where each rule r ∈ R is either a triple

(A,B,C) where A ∈ I, B ∈ I ∪ V , and C ∈ I ∪ V , or a tuple (A, a) where A ∈ I

and a ∈ V .2 Such rules can be written in the form A→ BC or A→ a.

To generate a string, the set of rulesR is applied recursively starting from a special

“start” symbol α ∈ I. The generation of a terminal symbol serves as the recursion

base case. The sequence of recursive production rule applications thus generates a

2This is a slightly relaxed form equivalent to Chomsky normal form [10]. It allows for more
compact sets of production rules.

16

binary tree with non-terminal symbols as the internal nodes and terminal symbols as

the leaf nodes. The left-to-right sequence of terminal symbols in the tree gives the

generated string.

A CFG is formally defined as a tuple G = (I,V ,R, α). The language defined by

the grammar G consists of all strings that can be generated through the recursive

application of production rules in R starting from α. As an example, consider a

simple CFG with I = {α,A,B}, V = {a, b} and the production rules α → AB,

A→ aA, A→ a, B → bB, B → b.3 The recursive application of these rules produces

strings containing any number of a’s followed by any number of b’s.

The problem of parsing a string is the problem of inverting the generative process

defined by the grammar to infer the tree structure and production rules responsible

for generating the string. In the simple example described above, every string in the

language has a unique valid parse, but this is not the case in general. In such cases,

weights can be attached to the productions to express their relative likelihoods, and

the parsing problem can be converted into the problem of identifying the tree structure

and production rules that result in the parse with the maximum total weight. The

weighted CFG can equivalently be viewed as a probabilistic model over trees, and the

maximum weighted parse can be interpreted as the maximum probability parse.

The CFG CRF model is a subclass of CRF models that specifies a probability

distribution over parse trees given a feature sequence and a context free grammar

G = (I,V ,R, α). Let X = {Xi}Li=1 be an input sequence consisting of L feature

vectors Xi. Let {YA,BC,i,j,l | A → BC ∈ R, 1 ≤ i ≤ j < l ≤ L} be a set of binary

variables where YA,BC,i,j,l takes the value 1 if the rule A → BC ∈ R is used in the

parse tree with the sub-tree rooted at B covering positions i to j in the input sequence

3As a notational convenience, the possible productions starting from each non-terminal are typi-
cally written together using “|” as a separator. This allows writing the last four rules as A→ aA|A
and B → bB|B.

17

and the sub-tree rooted at C covering positions j + 1 to l. The variable YA,BC,i,j,l

takes the value 0 otherwise.

Next, we define a set of KA,BC scalar feature functions for every production rule

A→ BC in R: {fA,BCk (yA,BC,i,j,l, i, j, l,x) | 1 ≤ i ≤ j < l ≤ L}. Each feature function

takes the form of a product of the binary indicator variable yA,BC,i,j,l and a function

gA,BCk (i, j, l,x) that computes a feature value from x, as shown below:

fA,BCk (yA,BC,i,j,l, i, j, l,x) = yA,BC,i,j,l · gA,BCk (i, j, l,x). (2.14)

While this model is substantially richer and more complex than either the linear-

chain or semi-Markov CRFs, it has the important property that MAP and marginal

inference can still be performed in polynomial time. Specifically, marginal inference

can be performed in O(|R|L3) time using the inside-outside dynamic programming

algorithm originally developed for the weighted CFG model [31]. MAP inference can

be performed using an algorithm closely related to the inside portion of the inside

outside algorithm [65]. In the next section, we discuss methods for estimating the

parameters of CRF models.

2.1.3 Learning in CRFs

Given a data set D = {(yn,xn)}Nn=1 of fully labeled training examples, the un-

known parameters θ must be learned from training data before the model can be

used for prediction. Two commonly used learning methods for CRFs are maximum

likelihood learning and maximum margin learning.

2.1.3.1 Maximum Likelihood Learning

In maximum likelihood learning, we try to find the parameters that maximize the

likelihood of the observed data. More specifically, the parameters are estimated by

maximizing the conditional log-likelihood shown below:

18

LML(θ|D) =
N∑
n=1

logPθ(yn|xn) (2.15)

=
N∑
n=1

〈θ, f(xn,yn)〉 − logZθ(xn) (2.16)

This objective can alternatively be viewed as minimizing the conditional KL-divergence

from the empirical distribution to the distribution given by the model. For a log-

linear model, this objective function is strongly convex, so gradient-based methods

are guaranteed to find the unique optimal solution. In particular, due to the log-

linear nature of the model, we have that the gradient is zero when 1
N

∑
n f(xn,yn) =

1
N

∑
n EPθ(y|xn)[f(xn,y)]. That is, in maximum likelihood learning, we are trying to

match the expected feature function under the model to the expected feature function

under the empirical distribution.

The computational bottleneck to computing the gradient of the log-likelihood is

computing the gradient of the log partition function, ∇θ logZθ(x); however, as shown

above, this is equivalent to performing marginal inference. That is, EPθ(y|x)[f(x,y)] =

∇θ logZθ(x). Therefore, any log-linear model that supports efficient marginal infer-

ence also supports efficient maximum likelihood learning.

2.1.3.2 Maximum Margin Learning

An alternative way to learn the parameters of a CRF is to treat the energy function

as a scoring function and to minimize a loss on predictions made by this scoring

function. A scoring function maps configurations of the label variables to a real

number and predictions can be made by finding the configuration with the highest

score. One noteworthy loss function that has successfully been used for this purpose

is the multiclass hinge loss. Given a set of fully labeled training examples D =

{(yn,xn)}Nn=1, we can learn the parameters by minimizing the multiclass hinge-loss

defined below:

19

LMM(θ|D) =
N∑
n=1

max
y′
〈θ, f(xn,y

′)− f(xn,yn)〉 (2.17)

This objective can be efficiently minimized using a number of methods including

sub-gradient descent, cutting-plane methods [71, 67], and the Frank-Wolfe algorithm

[29]. All of these methods need only an efficient MAP inference algorithm to work.

One problem with this objective is that it does not distinguish between training

examples for which only a single variable is predicted incorrectly and examples where

all variables are predicted incorrectly. One way to correct for this is to modify the

hinge loss with an error term. Given an error function ∆ : Y2 → R+, the loss-

augmented hinge loss is defined as:

LMM−L(θ|D) =
N∑
n=1

max
y′
〈θ, f(xn,y

′)− f(xn,yn)〉+ ∆(y,y′) (2.18)

Optimizing this objective requires that we be able to perform efficient loss-augmented

MAP inference. That is, we must be able to solve the following optimization problem

max
y′∈Y
〈θ, f(x,y′)〉+ ∆(yn,y

′) (2.19)

For many common error functions (e.g. zero-one error) this problem is very dif-

ficult; however, if the error function ∆ is chosen so that it decomposes over the

graphical model G, then it is often possible to augment the feature vectors x and

parameter vector θ such that performing regular MAP inference in the augmented

model is equivalent to performing loss-augmented MAP inference [71]. An impor-

tant case of this is Hamming loss, which can be decomposed as a sum over the label

variables and incorporated by augmenting unary feature functions.

20

2.1.4 Structured Prediction in mHealth

Numerous structured prediction models have previously been applied to the activ-

ity detection problem including: linear chain models [20, 55], variable duration linear

chain models [66], and semi-Markov models [32, 75, 61, 66]. Importantly, all of these

applications of structured prediction to activity detection assume homogeneity of the

activities of interest. That is, it is assumed that a subject is engaging in one activity

at a time and activities do not compose. We highlight three notable exceptions. Liao

et al. [34] recognize that full activities can be decomposed into heterogeneous parts

and use a model akin to those used for fixed segmentation in images [54]. Koppula

and Saxena [26] further recognize the benefits of a dynamic segmentation, so they

propose placing a distribution over the model structure and sampling it. Finally,

Sung et al. [64] propose a joint segmentation and sequence labeling model similar

to those presented in Chapter 3 that allows for a segmentation with heterogeneous

sequence labels beneath it and apply it to activity detection from image sequences. In

Chapter 3 we generalize this approach and apply it to three new detection problems.

2.2 Weakly Supervised Learning

The learning methods described in the previous section both require a set of fully

labeled examples; however, in many cases the cost of acquiring such data can be

quite high. Reducing the cost of acquiring labeled data is a fundamental problem

in supervised learning and has been addressed using a number of approaches. One

way to decrease the cost of obtaining labeled data is to decrease the amount of data

that needs to be labeled. Active learning aims to optimally select the instances that

are labeled from an unlabeled pool or stream of instances with the goal of learning

better models from lower volumes of labeled data [60]. Semi-supervised learning aims

to learn from small volumes of labeled data by combining it with large amounts of

unlabeled data [8]. Positive unlabeled learning is a special case of semi-supervised

21

learning where a small number of positive instances have labels, but a large pool of

unlabeled instances are available [33].

An alternative to labeling less data is to lower the cost of obtaining each label,

which is typically achieved by lowering the quality of labels in some way. This form

of learning is often referred to as weakly supervised learning. In this section, we

review some of the approaches to weakly supervised learning for both independent

and structured models.

2.2.1 Weakly Supervised Learning in Independent Models

Weak supervision may come in a variety forms. Here we survey some of standard

weak supervision paradigms following a categorization presented by Zhou [86].

2.2.1.0.1 Inexact Supervision In the inexact supervision paradigm, accurate

supervision is provided, but not at the granularity needed to use traditional supervised

learning techniques. For example, suppose we are interested in localizing objects

within an image. To use fully supervised learning, we require a dataset containing

images annotated with a list of objects and their locations within each image; however,

it is faster to label images if all the annotator has to do is provide a list of objects

that appear in each image but not the object locations.

One of the most studied weak supervision problems is the multiple instance (MI)

learning problem. MI learning generalizes supervised learning by allowing for sets (or

“bags”) of instances to be labeled instead of single instances [36]. For a classification

problem, it is assumed that a bag labeled c contains at least one instance with the label

c. For an extensive review of MI learning problems and techniques, see Carbonneau

et al. [7]. The learning from label proportions framework is closely related to MI

learning in that instances are still grouped into bags, but instead of receiving only

a single label for each bag, we are provided with the proportion of each label type

within each bag [21, 51].

22

! "!#
Figure 2.2: A typical graphical model used for inaccurate supervision problems. x is
the input features, y is the true, unobserved label, ỹ is the observed, noisy version
of the label. The dashed arrow from x to ỹ indicates that the noise model does
not always depend on the features. Grey nodes indicate variables that are observed
during training.

One version of inexact supervision that is particularly relevant to the problem

addressed in Chapter 4 is when instances and labels occur in unaligned sequences

with different lengths [18]. Graves et al. [18] address this problem by treating the

alignment of the two sequences as a latent variable that is marginalized out; however,

the label sequence is assumed to be accurate and the timestamps of positions in the

sequences are not considered. The work presented in Section 4.2 can be view as an

extension of this framework to allow for inaccurate supervision.

2.2.1.0.2 Inaccurate Supervision In the inaccurate supervision paradigm, su-

pervision is provided at the appropriate granularity, but may contain errors. For

example, this may occur when annotations requiring expertise are provided by non-

experts [84]. While standard supervised learning models may be trained directly on

the noisy labels, this generally leads to poor performance [45, 85]. There are three

common approaches to this problem: detecting and correcting label errors, using a

supervised method that is inherently robust to label noise, and explicitly modeling

label noise. For a comprehensive survey of these methods, see Frénay and Verleysen

[14].

Numerous approaches have been proposed for identifying and correcting label er-

rors including model-based (e.g. [69]), neighborhood-based (e.g. [82]), and boosting-

23

based (e.g. [76]) among others. Alternatively, if we can identify methods that are

naturally robust to label noise, then we can apply them directly without modifying

the data. While most common loss functions are not robust to label noise [14], a few

exceptions have been found [15, 16].

The approach we adopt later in this dissertation is to use a probabilistic model

in which the true label for an instance is a latent variable and the model includes a

distribution over noisy labels [83, 84, 53, 24, 39]. An example of this type of model is

shown in Figure 2.2 where x is the feature vector, y is the unobserved true label, and

ỹ is the observed noisy label. The learning algorithms and observation noise models

depend on the specific applications, but learning generally involves maximizing the

marginal likelihood of the observed noisy labels using either expectation maximization

or gradient methods.

2.2.2 Weak Supervision in Structured Models

There has also been significant research in the area of weakly supervised structured

prediction, particularly in computer vision applications. We briefly survey this work,

again using the categorization presented in Zhou [86].

2.2.2.0.1 Inexact Supervision Many of the standard inexact supervision frame-

works, such as MI learning, have been extended to structured prediction. Song et al.

[63] and Vezhnevets et al. [77] extend the multiple instance support vector machine

framework to structured support vector machines by treating an image as a bag of

pixels or a bag of overlapping sub-windows. Guan et al. [20] extend multiple instance

learning to an auto-regressive HMM using a similar approach. The core assumption

in all three methods is that there are correlations between instances within a bag that

can be modeled using structured prediction methods.

One inexact supervision problem unique to structured prediction is when only

a subset of the label variables in the structured model are observed. This can be

24

handled in probabilistic models by marginalizing out the unobserved variables when

marginal inference is tractable [52] and using approximate inference when it is not

[59, 70]. In this way, supervision may propagate from the observed label variables

to the unobserved label variables. A related problem is considered by Pathak et al.

[49] who assume that supervision is provided as constraints on the set of possible

structure Y . Mann and McCallum [35] consider yet another inexact supervision

framework where supervision is provided in the form of constraints on the marginal

label distributions in structured models. These constraints can then be enforced on

otherwise unlabeled data.

2.2.2.0.2 Inaccurate Supervision Inaccurate supervision for structure predic-

tion models is a relatively understudied paradigm compared with inaccurate supervi-

sion for independent models; however, a few examples of work in this area do exist.

Dredze et al. [13] consider the case where multiple, potentially conflicting label struc-

tures are given for each sample. Rather than include an explicit noise model, they

estimate the probability that an observed label is correct and use that to weight

observations in the loss function. Gross et al. [19] show that optimizing a loss that

decomposes over the label structure (as opposed to, say, joint log likelihood) is more

robust to noise in the individual label variables. Finally, Vahdat [73] make the as-

sumption that errors occur at the level of individual variables in the label structure.

They define a CRF over both the true label structure and the observed noisy label

structure and estimate the parameters of this model by maximizing a lower bound on

the marginal likelihood. In Chapter 4, we present an new weakly supervised learn-

ing problem in which the parameters of a structure prediction model over discrete

variable must be learned from continuous annotations that correspond roughly to the

discrete structure. Existing weakly supervised structured prediction methods do not

cleanly apply to this problem as such methods generally assume that the labels used

25

Name Citation Activity Setting Sensors # features # subjects # sessions

mPuff Ali et al. [1] smoking lab RIP band 17 10 13

puffMarker Saleheen et al. [56] smoking lab, field RIP band, actigraph 30 6 32

Extrasensory Vaizman et al. [74] various field phone, actigraph 175 28 80

rConverse Bari et al. [3] conversation lab RIP band 34 12 12

ECGmorph Natarajan et al. [43] cocaine use lab, field ECG 100 11 1704

eatingMoments Thomaz et al. [68] eating lab actigraph 15 20 20

RisQ Parate et al. [47] smoking field actigraph 34 15 18

Table 2.1: Basic information and statistics for the datasets used in this dissertation.

for weak supervision are also discrete. In the next section, we describe the datasets

used to evaluate methods throughout this work.

2.3 Datasets

We use seven mHealth datasets to evaluate the methods proposed in the remainder

of this dissertation. In this section, we summarize relevant information about each of

these datasets. Basic information and statistics for these datasets is shown in table

2.1 and more details are provided in the following sections. For complete details on

each dataset, see the original citations.

2.3.1 mPuff (Ali et al. [1])

The mPuff dataset contains smoking data gathered in a laboratory setting using

a respiratory inductive plethysmograph (RIP) band. The RIP band is worn around

the chest and measures the area inclosed within the band. As the subject inhales

and exhales, this area grows and shrinks. While subjects smoked a cigarette, an

observer recorded the occurrence of smoking puffs using a mobile phone. The RIP

signal was discretized into non-overlapping respiration cycles using methods described

in Ali et al. [1]. The recorded smoking puff timestamps were then visualized along-

side the RIP signal and the recorded timestamps were manually aligned to individual

respiration cycles to generate binary instance labels and a segmentation of the input

sequence into periods of smoking and non-smoking. A total of 17 features were ex-

tracted from each respiration cycle. These features measure morphological structure

26

in each respiration cycle including magnitude and duration features. This dataset

includes 13 smoking activities across 10 subjects. We consider each of these smoking

activities a distinct session.

2.3.2 puffMarker (Saleheen et al. [56])

The puffMarker dataset contains smoking data gathered both in the lab and the

field using a RIP band, a 3-axis wrist-worn accelerometer, and a 3-axis wrist-worn

gyroscope. The sensors were worn at all times, but smoking was carried out in the

presence of an observer. As in the mPuff dataset, the observer recorded the occurrence

of smoking puffs using a mobile phone. The RIP signal was discretized into non-

overlapping respiration cycles using methods described in Saleheen et al. [56]. As in

the mPuff dataset, the observed smoking puff timestamps were visualized alongside

the RIP signal and the recorded timestamps were manually aligned to individual

respiration cycles to generate binary instance labels and a segmentation of the session

into periods of smoking and non-smoking. 30 features were extracted from each

respiration cycle. These features include those from the mPuff dataset as well as

13 new morphological features. This dataset includes 32 distinct smoking activities

across 6 subjects. For each smoking activity, we sampled random amounts of non-

smoking activities from either side to create a complete session.

2.3.3 Extrasensory (Vaizman et al. [74])

The extrasensory dataset4 contains data on a wide variety of activities, but we use

only the annotation of sleep. The data was gathered in the field using a 3-axis mobile

phone accelerometer, a 3-axis mobile phone gyroscope, a mobile phone GPS, a mobile

phone microphone, and a 3-axis wrist-worn accelerometer. Data was collected from all

sensors for a twenty second period every minute. This leads to a natural discretization

4Available at http://extrasensory.ucsd.edu/

27

http://extrasensory.ucsd.edu/

where each instance represents a minute. Subjects self-reported a wide range of

activities using a specially designed mobile phone application. Subjects could freely

log activities or respond to prompts asking about specific activities. If an instance

overlapped with a reported activity, it was labeled with that activity. Researchers

used ad hoc rules to correct inconsistencies between the self-report location or between

self-reported activities. A total of 175 features were extracted from the sensors listed

above including a wide variety of statistical and morphological features. The complete

dataset contains data from 60 subjects and contains around 214 days of labeled data

in total. We filtered the data using two criteria. First, we dropped any instance with

missing features. Second, we partitioned the data into 24 hour sessions beginning and

ending at 2:00pm, dropping any session with less than four hours of recorded data

or less than one hour of reported sleep. After filtering, we were left with 80 sessions

from 28 subjects.

2.3.4 rConverse (Bari et al. [3])

The rConverse dataset contains conversation and speaking data gathered in the

lab using a RIP band. The RIP signal was discretized in non-overlapping respiration

cycles using methods described in Bari et al. [3]. While wearing the RIP band, sub-

jects were recorded using a microphone. An annotator later listened to the audio and

marked each respiration cycle as containing speech by the subject or not, resulting in

a binary label for each instance and a segmentation into periods of conversation and

non-converation. A total of 34 morphological and statistical features were extracted

from each respiration cycle including duration and magnitude-based features. Data

was collected from 6 pairs of subjects (12 total). Each pair performed approximately

45 minutes of scripted and unscripted activities requiring different amounts of conver-

sation and interaction. We treat each complete 45 minute signal as a session resulting

in 12 sessions across 12 subjects.

28

2.3.5 ECGmorph (Natarajan et al. [43])

The ECGmorph dataset contains electrocardiogram (ECG) data gathered both in

the lab and the field using a wireless ECG sensor. The ECG signal was discretized

using an off-the-shelf peak detection method. Each peak was visualized and manually

labeled as one of the characteristic ECG peaks, P, Q, R, S, or T, or a noise peak, N.

Sparse coding was used to learn a length-100 sparse representation of a 204 millisecond

window around each peak. Additionally, the peak height and squared peak height

were included as features. Data was gathered from six subjects in the lab and five

subjects in the field. Sessions containing two to four cardiac cycles were randomly

sampled from the complete data. 1531 sessions were sampled from the lab data and

173 sessions were sampled from the field data.

2.3.6 eatingMoments (Thomaz et al. [68])

The eating moments dataset5 contains eating data gathered in the lab using a

3-axis wrist-worn accelerometer. Instances were generated using six second sliding

windows with three seconds of overlap. While eating, subjects were recorded on video

and this video was later annotated with the beginning and end of hand-to-mouth

eating gestures. An instance was given a positive label if at least one hand-to-mouth

gesture fell within the corresponding six second sliding window. All eating within a

session was considered a single eating activity. Five statistical features were extracted

for each accelerometer channel for a total for 15 features. These features included the

mean, variance, skewness, kurtosis, and uncentered second moment of each channel’s

signal within the sliding window. An average of approximately 31 minutes of data

was collected for each of the 20 subjects as they performed scripted eating activities.

Each subject’s data was treated as a separate session.

5Available at http://users.ece.utexas.edu/~ethomaz/

29

http://users.ece.utexas.edu/~ethomaz/

2.3.7 RisQ (Parate et al. [47])

Finally, the RisQ dataset contains smoking data gathered in the field using a 9-axis

inertial measurement unit (IMU) consisting of a 3-axis wrist-worn accelerometer, a

3-axis wrist-worm gyroscope, and a 3-axis wrist-worm magnetometer. Instances cor-

responding to gestures were extracted using a gesture detection method described in

Parate et al. [47]. Subjects self-reported the beginning and end of smoking activities.

For the purposes of annotating individual gestures, subjects wore a second 9-axis IMU

on their upper arm. For each gesture in the proximity of a self-reported smoking ac-

tivity, a 3D model of the subjects arm was visualized performing the gesture and the

gesture was labeled as a smoking gesture or not. This resulted in a binary labeling

of the input sequence and segmentation into periods of smoking and non-smoking.

Duration, velocity, displacement, and angle features were extracted for each gesture

resulting in 34 total features. Over 32 hours of data was collected from 15 subjects

containing 17 complete smoking activities. The data from each subject was treated

as a complete session with the exception of a single subject whose data contained a

number of smoking activities. This subject’s data was split randomly between each

smoking activity. This resulted in a total of 18 sessions.

30

CHAPTER 3

STRUCTURED PREDICTION MODELS FOR
HETEROGENEOUS MHEALTH SEGMENTATION

mHealth activity detection can often be framed as a segmentation problem. For

example, given the signal from a wearable sensor and an activity of interest, we may

want to segment the signal into periods where the subject is engaging in the activity

of interest and periods where they are not. In traditional segmentation problems, all

instances within a segment are assumed to share the same class (e.g. [32, 75, 61]). An

example of such a problem is sleep detection since we can reasonably assume that a

subject is not engaging in other activities during sleep. We call this type of segmen-

tation problem homogenous segmentation. In such problems, the instance labels and

segmentation are not typically treated as separate variables as they represent the same

thing. This is in contrast to heterogeneous segmentation where instance labels may

vary within a segment. For example, during eating, a person may engage in a wide

variety of other activities between bites of food such as talking, drinking, or checking

their phone. The difference between homogenous and heterogeneous segmentation is

illustrated in Figure 3.1.

In the mHealth literature, this problem is commonly solved by applying post hoc

segmentation rules to the predictions from an independent classifier [56, 38]. For

example, if we are performing eating detection, we might reasonably assume that

two bites of food that occur more than two minutes apart belong to separate eating

activities [38]. Such approaches have two disadvantages. First, segmentation rules

must be developed for every new detection application and detection performance

will be heavily dependent on the quality of these ad hoc rules. Second, performing

31

segmentation in a post hoc manner allows information to flow in only one direction,

from the instance labels to the segmentation. On the other hand, by considering

the instance labeling and segmentation problems together, information about what a

typical activity looks like can be used to “clean-up” the instance-level predictions. A

discussion of previous applications of structured prediction to activity detection can

be found in Section 2.1.4. While the heterogeneous segmentation has been addressed

in at least one specific application [64], we significantly generalize this approach and

apply it to three new detection problems.

Our first contribution in this chapter is the introduction a class of heterogeneous

segmentation models and the application of this model class to three real mHealth

detection problems. In Section 3.2, we introduce the proposed class of heterogeneous

segmentation models. In Section 3.3, we consider the problem of conversation and

speech detection where the goal is to segment the input sequence into periods of con-

versation and non-conversation and label each instance as containing speech or not.

To solve this problem, we use a simple segmentation model where the instance labels

are assumed to be independent given the segmentation. In Section 3.4, we consider

the problems of eating and smoking detection. Like conversation, smoking and eating

are heterogeneous activities; however, these activities exhibit structure in the distri-

bution of positive instance labels within a segment, which we leverage to improve

detection accuracy. Finally, in Section 3.5, we consider the problem of electrocar-

diogram morphology extraction where the problem is to identify the characteristic

morphological structure of a heartbeat from an electrocardiogram signal. We frame

this as a heterogeneous segmentation problem in order to overcome the limitations

of the Markov assumption and to leverage the regular structure and timing of heart

beats.

Our second contribution is a set of inference acceleration methods that allow

inference in the proposed segmentation models to scale to long input sequences. In

32

Homogeneous Heterogeneous

Segmentation ----
Instance labels ----

Figure 3.1: An illustration of homogeneous and heterogeneous segmentations. Colors
indicate class label.

particular, we present two strategies based on pruning the dynamic programs used

for inference in segmentation models. First, in Section 3.6.1, we present and evaluate

two static, domain specific constraints on the set of possible segmentations. Second,

in Section 3.6.2, we adapt the learning-to-prune method first presented for parsing

by Bodenstab et al. [5] to the case of segmentation and evaluate this method on two

activity detection problems.

3.1 Notation

As described in Section 1.1, we assume that the input data consists of N multivari-

ate time series that we will call sessions. Each session contains a set of time-aligned

signals gathered from one or more sensors. Separate sessions may correspond to data

from different subjects, or to data from the same subject collected at different times.

We assume that each session n has been discretized into a sequence of Ln instances

and that a feature vector xni ∈ RD has been extracted for each instance i. Further,

each instance i in session n is associated with a timestamp tni which may correspond

to the start, end, or other point of interest associated with instance i. We refer to

the complete sequence of feature vectors xn = {xni}Lni=1 as the input sequence and

the complete sequence of timestamps tn = {tni}Lni=1 as the timestamp sequence.

In this chapter, our goal is to map x and t to a length L sequence of instance

labels and a labeled segmentation of the input sequence. We will use two sets of

variables to describe this labeling and segmentation. First, let y(1) = {y(1)i }Li=1 be

the length L sequence of instance labels where y
(1)
i ∈ C(1) is the instance label for

33

instance i. Second, as described in Section 1.1, we represent a labeled segmentation

as a sequence of segments y(2) = {y(2)s }Ss=1 where each segment y
(2)
s = (cs, js, ks) is a

tuple containing a label cs ∈ C(2), a start position js ∈ {1, ..., L}, and an end position

ks ∈ {1, ..., L}. We denote a full labeling and segmentation as y = {y(1),y(2)} and

our goal is to learn a function that maps (x, t) to y. In the next section, we present

a class of CRF models for performing this type of labeling and segmentation.

3.2 Heterogeneous Segmentation

Our proposed model is a segmentation based CRF model. We include include both

instance and segment-level factors. We incorporate feature information at the instance

level using a simple log-linear pairwise factor ψ(1)(y
(1)
i ,xi) = exp(〈θ(1), f (1)(y(1)i ,xi)〉)

which is applied to each instance i. At the segment level, we include the standard

semi-Markov factor ψ(2)(y
(2)
s , cs−1,x, t) = exp(〈θ(2), f(y

(2)
s , cs−1,x)〉) which is applied

to each segment in y. Finally, we include a pairwise potential between each instance

label and the segment containing it, ψ(3)(y
(1)
i , y

(2)
s) = exp(〈θ(3), f (3)(y(1)i , y

(2)
s)〉). This

factor can be used to model interactions between the instance labels and segmenta-

tions; however, it follows the assumption that instance labels are independent give

the segmentation. The specific forms of these feature functions are application de-

pendent and we give some examples in the following sections. The complete model

can be written as

Pθ(y|x) ∝
S∏
s=1

ψ(2)(y(2)s , cs−1,x, t)
ks∏
i=js

ψ(3)(y
(1)
i , y(2)s)ψ(1)(y

(1)
i ,xi) (3.1)

where θ = {θ(1), θ(2), θ(3)} is the full set of parameters for the model. In the next

section, we present a method for performing MAP inference in this model which we

use to perform maximum margin learning, as discussed in Section 2.1.

34

3.2.1 Inference

We perform exact MAP inference in this model using an augmented version of the

dynamic program used for inference in the semi-Markov CRF. Here, we present the

dynamic program for MAP inference, however, the dynamic program for marginal

inference can be obtained by swapping maximization for summation. The dynamic

program for MAP inference has two parts: First, for each possible segment, we max-

imize over the instance labels of instances contained in that segment. Second, we

maximize over the segmentation. We store the contributions of the instance-level

factors in the table α(1) which is defined by the following recursion:

α(1)(j, k, c) = max
y
(1)
k ∈C(1)

ψ(1)(y
(1)
k ,xk) · ψ(3)(y

(1)
k , c) · α(1)(j, k − 1, c) (3.2)

with the base case α(1)(j, k, c) = 1 for all c ∈ C(2) and j > k. The entry α(1)(j, k, c)

is the contribution to the MAP score of the instance-level features for instances for j

through k given that the MAP segmentation contains a segment y = (c, j, k). Next,

we maximize over all possible segmentations using a small modification to dynamic

program for inference in the semi-Markov CRF (see 2.1.2.2). We denote the dynamic

programming table as α(2) which is defined by the following recursion:

α(2)(k, c) = max
j=1,...,k

max
c′∈C(2)

ψ(2)((j, k, c), c′,x) · α(1)(j, k, c) · α(2)(j − 1, c′) (3.3)

with the base case α(2)(0, c) = 1 for all c ∈ C(2). The score of the MAP labeling

is given by maxc∈C(2) α
(2)(L, c) and the MAP labeling can be found by backtracking

through this dynamic program. Filling in α(1) has complexity O(|C(1)||C(2)|L2) and

filling in α(2) has complexity O(|C(2)|2L2) so the complete inference algorithm has

complexity O(|C(2)|(|C(1)| + |C(2)|)L2). Equipped with this inference algorithm, we

can now estimate the parameters of this model using maximum margin learning. In

the following sections, we describe applications of this model to three real mHealth

35

problems: conversation detection, sleep and eating detection, and ECG morphology

extraction.

3.3 Conversation Detection

In this section, we apply the heterogeneous segmentation model to the problem

of conversation and speech detection from a wearable respiration monitor used to

track inhalation and exhalation of a subject. Conversation is at the core of many

social interactions and understanding the patterns of conversation, such as turn-

taking behavior, can help us understand mental well-being and work productivity

[46, 80]. In particular, understanding turn-taking behavior requires identifying both

when a person is speaking, as well as the context in which they are speaking (e.g.

a conversation). The goal in this problem is to segment the input sequence into

periods of conversation and non-converstation and to label each instance (in this

case, a respiration cycle) as containing speech by the subject or not. That is, the set

of possible instance labels C(1) = {0, 1} is binary with a positive instance label for

instance i indicating that instance i contains speech by the subject. Likewise, the set

of segment labels C(2) = {0, 1} is also binary with a positive segment label cs = 1

indicating that segment s corresponds to a complete conversation. In the rest of this

section we describe the proposed model and evaluate the model on respiration data

gathered in the lab.

3.3.1 Model

To model speech and conversation, we use the following factors. We incorporate

instance level features using a pairwise factor ψ(1)(i, y
(1)
i ,x) = exp(〈θ(1)

y
(1)
i

,xi〉). At the

segment level, we incorporate two segment-level features which aggregate features

from the instances contained within each segment. First, for a segment beginning

at j and ending at k, we include the mean of instance features contained within it,

36

x̄jk = 1
k−j
∑k

i=j xi. Second, we include a normalized histogram of feature values for

instances contained within a segment. We do this by first discretizing each feature into

one of five evenly spaced percentile bins where the bin edges are calculated using the

complete training set. Next, we convert each feature to a five-bin, one-hot encoding

and, finally, we average the values of each of the one-hot encoded feature vectors for

all instances contained within a segment. Call this operation hist(x, j, k). We define

the complete segment level feature function as f (2)(y
(2)
s ,x) = [x̄jsks hist(x, js, ks)].

Then, the segment-level factor can be written as:

ψ(2)(y(2)s ,x) = exp(〈θ(2)cs , f
(2)(y(2)s ,x)〉). (3.4)

Finally, we include a pairwise potential between each instance label and the label of

the segment containing it, ψ(3)(y
(1)
i , cs) = exp

(
θ
(3)

y
(1)
ics

)
. This models the probability of

speaking inside and outside of a conversation. The full model is shown in Equation 3.3

and MAP inference is described in Section 3.2.1. We used loss-augmented maximum

margin learning to learn the parameters of this model with Hamming-loss on the

instance label sequence as the loss. To perform learning, we used a cutting plane

method [72] as implemented by PyStruct [41].

3.3.2 Experiments

In this section, we present a comparison of the proposed model against two base-

line models on the speech detection (instance labeling) task. We use the rConverse

dataset (Section 2.3), which consists of data gathered from subjects during conver-

sation in a lab setting using a respiration monitor [3]. We used all instance features

described in Bari et al. [3]. Additionally, we applied a non-linear transformation to

these features by finding five equal-sized percentile bins for each feature and calculat-

37

ing the Euclidean distance from the center of each percentile bin to the input feature

value.

3.3.2.1 Models

We compare the proposed model (SEG) against an independent model and a

linear-chain model. The independent model (IND) is a linear model which includes

only the instance-level features and makes independent speech/non-speech predictions

for each instance. The linear-chain model (CHAIN) includes instance-level features

as well as pair-wise potentials between adjacent instance labels (for full-details, see

Section 2.1.2.1). We trained the SEG and CHAIN models using loss augmented max-

margin learning with instance level Hamming-loss as the loss function and the IND

model using hinge-loss. This makes IND equivalent to a linear SVM and CHAIN

equivalent to a linear-chain structured SVM. All models were trained using `2 regu-

larization.

3.3.2.2 Train and Test Procedures

We evaluated each model using a leave-one-subject-out cross-validation procedure.

For all models, the strength of the `2 regularization was tuned over a logarithmic grid

to maximize average accuracy using a further leave-one-subject-out cross-validation

on the training set.

3.3.2.3 Experiment: Speech Detection

The average instance-level prediction accuracy for each model is show in Figure 3.2

(left) with error bars showing one standard-error calculated across subjects. We can

see that the IND and CHAIN models perform nearly the same with accuracy around

0.8 whereas the SEG model gives an accuracy of around 0.85, a relative error reduction

of approximately 25%. The improvement of SEG over IND and CHAIN is significant

at the p = 0.05 level using a paired t-test with Bonferroni correction. Figure 3.2 (right)

38

IND CHAIN SEG
0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Instance Labeling

IND CHAIN SEG
0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Instance Labeling
Acc. in non-conv.
Acc. in conv.

Figure 3.2: (Left) Average instance-level labeling accuracy for each model. Error bars
represent one standard-error calculated across subjects. The y-axis is clipped at 0.7.
(Right) Average instance-level labeling accuracy for each model in conversation and
non-conversation activities.

shows average accuracy for each model within true conversation and non-conversation

activities. While the SEG model performs best in both cases, the performance gap

is much higher in the non-conversation activities. This is explained by observing

that, in our data, subjects do very little speaking outside of conversations. The SEG

model recognizes this and learns a negative weight for positive instances within a

negative segment. As a result, the SEG model is able to suppress positive instances

outside of conversations whereas, the IND and CHAIN models predict many false

positives. This is a case where making use of top-down information substantially

improves instance-level performance.

3.4 Eating and Smoking Detection

In some heterogeneous mHealth segmentation problems, the distribution of posi-

tive instances within a positive segment exhibits modelable structure. This is the case

for semi-periodic behaviors such as eating, in which the activity of interest (eating

a meal) consists of semi-regularly spaced bites. As in speech detection, our goal is

to provide a label for each instance and a labeled segmentation of the instances. A

positively labeled segment corresponds to the activity of interest.

39

In this section, we present and evaluate a heterogeneous segmentation model for

detection of semi-periodic activities. This model encodes two structural quantities:

the time between consecutive positive instances and the number of positive instances

per activity of interest. For example, in the case of eating, we model the time between

consecutive bites of food and the number of bites it takes to consume a meal. This

domain structure generalizes to both eating and smoking detection problems and we

evaluate it using four real mHealth datasets. In the next section, we describe the

heterogeneous segmentation model used for eating and smoking detection.

3.4.1 Model

As in conversation detection, the set of possible instance labels C(1) = {0, 1}

is binary. We make two modifications to the segmentation structure described in

Section 3.2 that allow us to model the time between positive instances and the number

of positive instances that make up a positive activity. First, unlike in the speech

detection problem, a positive segment will no longer represent a complete activity.

Instead, let each segment y
(2)
s represent the period between two positive instances. We

enforce this interpretation by constraining the space of joint labelings such that every

segment y
(2)
s must begin with a positive instance followed by any number of negative

instances. We call this constraint (1).

By defining segments in this way and including segment duration as a feature (de-

scribed in more detail below), we are able model the time between positive instances.

The second modification we make is to change the set of segment labels to include all

non-negative integers up to a positive integer C which represents the maximum pos-

sible number of positive instances in a positive activity. That is, C(2) = {0, 1, ..., C}.

A segment with label cs > 0 now represents the period between positive instances cs

and cs+1 in a positive activity while a segment with label cs = 0 represents a negative

activity. In essence, the label values are counting the number of positive instances

40

0 1 0 0 1 0 1 0 1 0 0
eatingSegmentation ----

Instance labels ---- 0 1 0 0 1 0 1 0 1 0 0
0 1 02 3

Segmentation into
periods between bites

Segmentation into
complete eating activities

Figure 3.3: On the left is an example of a standard instance labeling and segmentation
where a positive instance represents a bite of food and a positive segment represents
a complete eating activity. On the right is the implied segmentation into periods
between positive instances described in Section 3.4.1. At test time, predictions are
converted back to the original observed format.

in each positive activity. We enforce this interpretation by further constraining the

set of possible segmentations to only allow transitions from segments with label cs to

segments with label cs+1 or segments with label 0 if cs > 0. We call this constraint

(2).

Importantly, this constrained label set allows transitions between segments with

label cs > 0 and segments with label 0. These transitions represent the end of

positive activities and we can model the number of positive instances per positive

activity by placing a weight on these types of transitions. We note that, data is

not generally provided with this type of labeling. Instead, it is typically annotated

with the locations of positive instances and beginning and end of positive activities;

however, there is a one-to-one mapping between a standard activity segmentation

and the segmentation described above. Figure 3.3 illustrates this mapping.

We include both instance and segment-level factors. At the instance level, we

include a log-linear unary factor ψ(1)(i, y
(1)
i ,x) = exp(〈θ(1)

y
(1)
i

,xi〉). At the segment

level, we include a log-linear factor on the segment duration and segment duration

squared. This induces the equivalent of a class-conditional normal distribution on the

segment durations. This factor can be written as

ψ(2a)(y(2a)s , t) = exp(〈θ(2a)I[cs>0], [tks − tjs (tks − tjs)2]〉). (3.5)

41

Also at the segment level, we include the following segment transition potential which

models the number of positive instances in a positive activity and enforces constraint

(2):

ψ(2b)(cs, cs−1) =

 exp(I[cs+1 = 0]θ
(2b)
cs) : cs = cs−1 + 1 or (cs = 0 and cs−1 > 0)

0 : else

The complete segment-level factor can be written as ψ(2)(y
(2)
s , cs−1,x, t) = ψ(2a)(y

(2)
s , t)·

ψ(2b)(cs, cs−1). Finally, we use ψ(3) to enforce constraint (1) as:

ψ(3)(y
(1)
i , y(2)s) =

1 : i = js and y

(1)
i = 1

1 : i > js and y
(1)
i = 0

0 : else

The full model can be written as in equation 3.3. We make one important modifi-

cation to the MAP inference described in Section 3.2.1. Because transitions are only

allowed between certain types of segments, we can constrain the recursion for α(2) in

the following way:

α(2)(k, c)=

 maxj ψ
(2)((j, k, c), c− 1,x) · α(1)(j, k, c) · α(2)(j − 1, c− 1) if c > 0

maxj,c′ ψ
(2)((j, k, c), c′,x) · α(1)(j, k, c) · α(2)(j − 1, c′) if c = 0

(3.6)

In other words, we drop the maximization over the label for the previous segment

when the current segment has label c > 0. This modification reduces the complexity

of solving α(2) from O(|C(2)|2L2) to O(|C(2)|L2). Since |C(2)| = C + 1 represents the

maximum possible number of positive instances in a segmentation, this reduction in

complexity is quite significant. Once again, we estimate the parameters of this model

42

PM EM MP RQ
0

10
20
30
40
50
60
70

Pos instances/pos activity

PM EM MP RQ
0

20
40
60
80

100
120

Pos segment duration (sec)

Figure 3.4: Distributions of the modeled quantities for the four datasets used. The
left plot shows the distributions of the number of positive events in a complete pos-
itive activity. The right plot shows the distributions of the time in seconds between
consecutive positive instances. For display purposes, three outliers were omitted from
the eatingMoments dataset box-plot in right plot.

using loss-augmented maximum margin learning. We use the average of the Hamming

loss on the instance labels and the Hamming loss of the segmentation as our loss.

3.4.2 Experiments

We evaluated the proposed model using synthetic data (described below) as well

as four real mHealth datasets. The mPuff dataset (MP) was presented in Ali et al. [1]

and contains respiration data from smokers recorded using a chest band sensor. The

puffMarker dataset (PM) was presented in Saleheen et al. [56] and contains contains

data from smokers recorded using a chest band sensor and a wrist-worn actigraphy

device (accelerometer and gyroscope). The RisQ (RQ) dataset was presented in

Parate et al. [47] and contains wrist-worn actigraphy data. Finally, we use the data

presented in Thomaz et al. [68] (EM), which also contains wrist-worn actigraphy data

for eating. For details on these datasets, see Section 2.3. Empirical distributions for

the two structural quantities included in the segmentation model (positive instances

per positive activity and time between consecutive positive instances) are shown in

Figure 3.4. We can see that these distributions vary significantly across the datasets.

43

...
!"(") !%(") !&(") !'(") !()"(") !((")

!"(%) !%(%) !(/%
(%)

+" +% +& +' +()" +(

Figure 3.5: This figure shows the graphical model for the TREE baseline model with
a window size of two. Y

(1)
i is the i’th instance label and Y

(2)
j is the j’th activity label.

For each of the datasets described above, we use the instance-level features orig-

inally published with the data with the exception of puffMarker, where we omit

actigraphy features used in the original paper, which were not available for all in-

stances. Additionally, we applied a non-linear transformation to these features by

finding five equal sized percentile bins for each feature and calculating the Euclidean

distance from the center of each percentile bin to the input feature value.

We evaluated performance on both the instance labeling and segmentation tasks.

For smoking, a positive instance corresponds a puff on a cigarette or a cigarette-

to-mouth gesture and for eating a positive instance corresponds to a food-to-mouth

gesture. When using the heterogeneous segmentation model to predict segmentations,

we treat all segments with label c > 0 as positive segments and a positive segment

may represent smoking or eating depending on the dataset (for an example of this,

see Figure 3.3).

3.4.2.1 Baseline Models

We compared the proposed model (SEG) against two baselines: a Logistic Regres-

sion (LR) model, and the tree structured pairwise CRF (TREE) shown in Figure 3.5.

The TREE model includes two levels of labels: activity-level labels and instance-level

labels. Each activity-level label corresponds to a fixed size window of instances in the

44

base sequence (Figure 3.5 shows a model with a window size of two). We treated the

window size as a hyperparameter. The TREE model thus provides a strong segmen-

tation baseline which allows for heterogeneous instance labels beneath homogenous

activity labels, but is restricted to pairwise factors. We generated activity-level fea-

tures for this model by averaging the instance-level features sitting beneath each

activity-level label. The LR model was trained using `2 regularized maximum like-

lihood and the TREE and SEG models were trained using `2 regularized maximum

margin methods. On the instance labeling task we compared against both the LR and

TREE models and on the segmentation task we compared only against the TREE

model since LR does not produce an explicit segmentation.

3.4.2.2 Train and Test Procedures

We conducted experiments using a stratified 10-fold cross-validation protocol.

Specifically, we split the sessions into two groups, one for all sessions containing

the activity of interest and one for the rest, and randomized within groups. Next, we

created 10 test folds so that each test fold contained approximately the same num-

ber of sessions from each group. To select hyperparameter values, we performed a

further stratified 10-fold cross-validation on the training samples. The LR hyperpa-

rameters were tuned to maximize instance-level F1 score, while the TREE and SEG

hyperparameters were tuned to maximize segmentation accuracy. `2 regularization

hyperparameters for each model were tuned on a logarithmic grid and the window

size hyperparameter for the TREE model was tuned on a linear grid.

We assessed the performance for instance labeling using precision, recall, and F1

score, which adjusts for the major class imbalance we faced in this problem. We

do not report accuracy due to strong class imbalance. For the segmentation task,

we compared the predicted activity level segmentation to the true segmentation by

projecting each segmentation onto the input sequence, and calculating the precision,

45

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
σE

0.0

0.2

0.4

0.6

0.8

1.0

F1

LR
TREE
SEG

Figure 3.6: F1 results for the LR, TREE, and SEG models on synthetic data with
varied amounts of noise in the instance features as measured by σE.

recall, and F1 score of the projected labels compared to the projected ground truth

segmentation.

3.4.2.3 Experiment 1: Synthetic Data

To evaluate the performance of the SEG model under controlled noise conditions,

we evaluated all models on a series of synthetic datasets. For each synthetic session,

we sampled the length of each segment, the number of positive events per positive

segment, and the number of negative instances between consecutive positive instances

from discretized, truncated normal distributions with standard deviation σS = 0.25.

Next, we sampled instance-level features from class conditional normal distributions

with means separated by unit distance and a common standard deviation parameter

σE, which we varied to simulate different amounts of discriminative information. That

is, we sampled xi from N (y
(1)
i , (σE)2). We generated train, validation, and test sets

containing 30, 50, and 50 sessions, each of length 100.

Figure 3.6 shows the instance-level F1 score for each model versus the feature

standard deviation (σE). When there is little noise in the features (σE = 0.25), all

methods perform equally well; however, the SEG model substantially outperforms

the other two models when there is there is less information in the instance features,

46

PM EM MP RQ
0.1
0.3
0.5
0.7
0.9

Precision

PM EM MP RQ
0.1
0.3
0.5
0.7
0.9

Recall

PM EM MP RQ
0.1
0.3
0.5
0.7
0.9

F1
LR
TREE
SEG

(a) Instance labeling task

PM EM MP RQ
0.3
0.5
0.7
0.9

Precision

PM EM MP RQ
0.3
0.5
0.7
0.9

Recall

PM EM MP RQ
0.3
0.5
0.7
0.9

F1

(b) Segmentation task

Figure 3.7: The top row shows results on the instance labeling task and the second
row shows results on the segmentation task. From left to right, the three panels
in each row correspond to precision, recall, and F1. In each group of bars for the
instance labeling task, the models are LR, TREE, and SEG. In each group of bars
for the segmentation task, the models are TREE, and SEG.

indicating that the SEG model can more effectively leverage high-level structure in

the data.

3.4.2.4 Experiment 2: Real Data

The results from our instance labeling experiments on each the mHealth bench-

mark datasets are shown in Figure 3.7a. The SEG model performs better in terms of

average F1 score on three of the four data sets. We ran a paired t-test on the com-

bined results of all datasets and found that the SEG model achieves an improvement

over both LR and TREE that is statistically significant at the p = 0.05 level using

Bonferroni correction.

47

The results from the Task 2 segmentation experiments are shown in Figure 3.7b.

The SEG model outperforms the TREE baseline in terms of F1 score on three of

the four datasets and has the same performance on the remaining dataset (mPuff).

The improvements range from 0.082 to 0.266 F1 When all datasets are considered

together, the improvement in segmentation F1 over the TREE model is significant at

the p = 0.05 level. Finally, we note that we ran the same set of experiments using

maximum likelihood learning for the SEG model; however, segmentation performance

was uniformly worse across all datasets than using maximum margin learning.

One of the most common failure modes of the TREE model is a tendency to

extend activities beyond the first or last positive instance in the activity. The SEG

model avoids this by defining activities to begin and end on positive instances. This

avoids slop in the segmentation and improves segmentation accuracy.

Unfortunately, our results on the segmentation task are not easily comparable to

the original papers in which the data sets appeared as these papers do not consider the

segmentation problem directly. On the instance labeling task, Ali et al. [1] evaluated

performance on rebalanced data, Saleheen et al. [56] used ad-hoc pre-filtering methods

to form train and test sets, and the exact data used for evaluation in Parate et al. [47]

is not available. Our implementation of the random forest experiment from Thomaz

et al. [68] achieves Task 1 F1 score of 0.311. This is very close to the performance of

LR on the same task indicating that performance is not limited by the choice of a

linear model, at least on the EM dataset.

3.5 Electrocardiogram Morphology Extraction

Until now, we have considered only binary segmentation problems, that is, our

goal was to segment a sequence into positive and negative segments. In this section,

1This number differs somewhat from the performance reported in [68] due to differences in the
train/test splits and the way results were averaged.

48

(a) (b)

Figure 3.8: (a) Idealized ECG waveform (b) Sample data from the Zephyr BioHarness
wearable chest band sensor

we consider electrocardiogram (ECG) morphology extraction, a setting with multiple

segment types and strong transition structure.

An electrocardiogram (ECG) sensor produces a data stream corresponding to

the electrical activity of the muscles of the heart as measured at the surface of the

skin. Each normal cardiac cycle (corresponding to a single heart beat) produces

a characteristic sequence of five waves (the P, Q, R, S, and T waves) as shown in

Figure 3.8a. These waves are the result of atrial and ventricular depolarization and

repolarization. Identifying each part of the heartbeat in an ECG signal, which we

will call morphology extraction, entails labeling the ECG trace with the positions of

each P, Q, R, S and T wave, when present.

We adopt the problem formulation in Natarajan et al. [43] which is consistent

with our formulation of an activity detection problem. That is, we assume that the

ECG signal has been discretized using a generic peak detection method. Features are

calculated on windows around each peak to form an instance sequence x = {xi}Li=1.

The morphology extraction problem then simplifies to a sequence labeling problem

where each candidate peak generated by the peak detection method must be labeled

as a P, Q, R, S, or T wave or a noise peak, denoted by the label N. The peak detection

49

n p q r n n n t n
t p q r t

Figure 3.9: A sample ECG signal with peaks marked and an example of a labeling
and segmentation of this sample.

method is tuned to over-produce peaks so that there is minimal probability of missing

a true wave. In the remainder of this section, we describe a heterogeneous segmen-

tation model for ECG morphology extraction and then evaluate the performance of

this model on real mobile ECG data.

3.5.1 Model

In the ECG morphology extraction problem, the instance label set C(1) = {p, q, r, s, t, n}

includes the five ECG peak types, p, q, r, s, and, t, as well a label n indicating that

a peak is none of the five ECG peak types. The set of possible segment labels is the

set of ECG peak types C(2) = {p, q, r, s, t}. Similar to the model presented in section

3.4, we define a segment as representing the period between two consecutive ECG

peaks. To achieve this, we include a constraint similar constraint (1) in section 3.4

that the first instance in a segment must have take a label from the set {p, q, r, s, t}

and any remaining instances must have the label n. Further, the label of the first

instance in a segment must match the label of the segment. That is, for a segment

y
(2)
s = (cs, js, ks), y

(1)
js

must equal cs and y
(1)
i must equal n for all i ∈ {js + 1, ..., ks}.

An example of this type of segmentation is shown in Figure 3.9.

50

We include instance-level features xi using a log-linear pairwise potential on the

instance label ψ(1)(i, y
(1)
i ,x) = exp(〈θ(1)

y
(1)
i

,xi〉). We model the time between peaks of

each type using a segment-level log-linear factor on the segment durations:

ψ(2a)(y(2)s , cs+1, t) = exp(〈θ(2a)cscs+1
, [tks − tjs (tks − tjs)2]〉) (3.7)

This is equivalent to placing a normal distribution on the time between two peaks

where the mean and variance of the distribution is learned separately for each pair

of instance label types. In other words, the model can represent the characteristic

period between p and q peaks, p and r peaks, p and s peaks, and so on. Further, we

include a transition potential between consecutive segments

ψ(2b)(cs, cs+1) = exp(θ(2b)cscs+1
) (3.8)

The complete segment-level factor can be written as ψ(2)(y
(2)
s , cs−1,x, t) = ψ(2a)(y

(2)
s , cs+1, t)·

ψ(2b)(cs, cs−1). Finally, we use ψ(3) to enforce the labeling constraint defined above as

ψ(3)(y
(1)
i , y(2)s) =

1 : i = js and y

(1)
i = cs

1 : i > js and y
(1)
i = n

0 : else

The full model can be written as in equation 3.3 and the MAP inference algorithm

is presented in section in section 3.2.1. Once again, we estimate the parameters of

this model using loss-augmented maximum margin learning with Hamming loss on

the instance label sequence as our augmentation loss. In the next section, we present

an evaluation of this model on real mobile ECG data gathered in both the lab and

the field.

51

3.5.2 Experiments

We evaluated the proposed model on the ECGmorph dataset, which consists of

data from wearable a ECG monitor discretized using a peak detection method. Each

peak in the dataset is labeled as p, q, r, s, t, or n. This dataset includes data gathered

in the lab and in the field and we evaluated our model on both sets separately. For

full details on the dataset, see Section 2.3. The task of interest in this dataset is

instance labeling. While the proposed model also generates a segmentation, it is only

used to propagate information between instance labels and is discarded at prediction

time.

3.5.2.1 Models

We considered three different models for labeling the input sequence. We com-

pared the performance of the segmentation model described above (SEG), the linear-

chain CRF model (CHAIN) from Natarajan et al. [43], and a multinomial logistic

regression model (MLR). The MLR model uses only instance features to indepen-

dently predict each instance label. The linear-chain CRF model uses both instance

features and transition information between peaks to predict instance labels. We

trained the MLR and CHAIN models using maximum likelihood estimation while the

SEG model was trained using max-margin learning. All models included tuned `2

regularization.

3.5.2.2 Train and Test Procedures

The ECG dataset contains both data gathered in the lab as well as data gathered in

the field (see Section 2.3 for details). We performed two, slightly different, prediction

experiments on the lab and field datasets. When evaluating on the lab data, we used a

leave-one-subject-out protocol, holding one subject out as a test subject and training

all models on the remaining subjects. We then averaged evaluation metrics across all

subjects. For the field data, we trained all models on the complete set of lab data and

52

Figure 3.10: (a) shows the average accuracies across lab subjects, (b)-(d) show con-
fusion matrices for the lab subjects, (e) shows the average accuracies across field
subjects, and (f)-(h) show confusion matrices for the field subjects.

tested on the complete set of field data. In both cases, we tuned hyperparameters

using further cross-validation on the training set. Specifically, we randomly generated

three leave-one-subject-out train/validation splits from the training data and averaged

performance across these three subjects. `2 regularization strength hyperparameters

for each model were tuned on a logarithmic grid to maximize average label accuracy.

3.5.2.3 Experiment: Peak Labeling

The leave-one-subject-out prediction accuracy for each model averaged across sub-

jects is shown in Figure 3.10(a) for the lab data. Error bars show one standard error

calculated with respect to the subjects. These results show that the SEG model

outperforms the CHAIN model by a margin of 1.8% for a relative error reduction of

22.2%. These results are significant at the p = 0.05 using a paired t-test with Bon-

ferroni correction. Additionally, the confusion matrices for each method are shown

53

in Figures 3.10(b)-(d). The results show that the SEG method is at least as good as

the linear-chain CRF model for most peak types, and provides significantly improved

performance for T-waves.

The largest gap between the SEG and CHAIN models is on the accuracy of classi-

fying t peaks. The CHAIN model has an accuracy of 0.93 whereas the SEG model has

an accuracy of 0.97. In order to understand where the performance gains of the SEG

model are coming from, we looked at t peaks that the SEG model correctly classified

but the CHAIN model did not. There are 148 such instances. On approximately 88%

of these instances, the chain model that predicted the previous instance in the session

was a noise peak, n. This supports the hypothesis that the CHAIN model loses its

place in the peak sequence when it encounters a noise peak.

The average classification accuracies on the field subjects are shown in Figure

3.10(e). The confusion matrices for the field setting are shown in Figures 3.10(f)-(h).

We can see that while the SEG model does not have uniformly better performance

for all peak types compared to the linear-chain CRF in the field setting, it does have

superior overall performance obtaining a 2.2% improvement in accuracy for a relative

error reduction of 19.5%. These results are significant at the p = 0.1 level using a

paired t-test with Bonferroni correction. We attribute this drop in significance, at

least in part, to the much smaller amount of labeled field data. We also note that

while there is a drop in performance between the lab and field data sets due to the

strict across-subjects protocol used, the overall performance gap between the SEG

and CHAIN models is consistent in both the lab and field settings.

One trend of note is that the SEG model outperforms the linear-chain CRF at

classifying T waves on the lab data, but not on the field data. This appears to be

explained by a number of extremely noisy samples in the field data. In these cases,

the linear-chain CRF tends to label many of the peaks as T waves resulting in high

recall, but low precision. The SEG model, on the other hand, chooses a single peak

54

to call the T wave. While the choice is sometimes incorrect, the predicted structure

makes much more sense than having a number of adjacent T waves. The result is

that the SEG model has lower T wave performance, but higher overall accuracy.

3.6 Improving Inference Times in Segmentation Models

All of the models presented thus far admit polynomial time exact inference and

until now, we have considered only offline processing of relatively short sequences,

so polynomial inference complexity has been sufficient. In this section, we consider

settings where quadratic or cubic inference complexities are unacceptable and evaluate

a collection of methods for improving the run time of inference in the models discussed

in this chapter.

One setting where polynomial time inference may be unacceptable is applications

that generate long input sequences. For example, consider a conservative hypothetical

case of the ECG morphology extraction problem. Assuming an average heart rate of

60 beats per minute and perfect candidate peak generation (i.e. no noise peaks), every

hour of data will result in a sequence of approximately 18,000 instances. Further, if a

subject is asked to wear a sensor all day, the raw input time series may be 8-16 hours

long. For the purposes of morphology extraction, breaking the sequence into pieces

may result in relatively few errors; however, if an activity detection task is layered on

top, breaking the sequence may result in corruption of important quantities such as

activity duration.

In this section, we present two strategies for accelerating the inference dynamic

programs presented in this section. In particular, we focus on techniques for avoiding

intermediate computations that do not have a large impact on the final output of

the dynamic program. This form of inference accelleration is sometimes refered to

as pruning. There are many approaches to pruning dynamic programs in graphical

models. In Section 3.6.1 we present static pruning methods, which leverage domain

55

knowledge to constrain the set of possible segmentations. We present two such con-

straints on the heterogeous segmentation model from the previous section. In Section

3.6.2, we adapt the learning-to-prune method presented in Bodenstab et al. [5] to

segmentation models and evaluate this method on the sleep and smoking detection

problems.

3.6.1 Static Pruning

In many mHealth applications, we have domain knowledge that allows us to con-

strain the set of possible segmentations. Such constraints can be used to improve

the runtime of inference. We refer to such pruning strategies a static pruning. The

following are two examples static pruning that we apply to the heterogeneous segmen-

tation models from this chapter. We analyze the effect on the complexity of inference

for the heterogeneous segmentation model proposed for smoking and eating detection

(Section 3.4). Recall that this model had an inference complexity of O(|C(2)|L2):

• Maximum segment length: In many cases, the time between events or ac-

tivities is not unbounded and we can upper-bound the length of individual

segments. For example, in the case of smoking detection, we might say that

two smoking puffs separated by five minutes (or approximately 50 respiration

cycles) constitute two separate smoking activities. We can enforce this con-

straint by bounding the length all segments with non-zero labels. Adding this

constraint reduces the complexity of inference to O(L2 + |C(2)|LB) where B is

the maximum segment length.

• Maximum cardinality: Similarly, we may reasonably bound the number of

puffs that it takes to smoke a cigarette. This translates to a bound C on the size

of the segment label set C(2). Enforcing this bound reduces inference complexity

to O(CL2).

56

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Runtime (s)

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

F 1

Maximum segment length

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Runtime (s)

0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65

F 1

Maximum cardinality

Figure 3.11: This figure shows the inference runtime against instance-level classi-
fication performance for different settings of each of the static pruning constraints
described in this section.

3.6.1.0.1 Experiments We evaluated these static constraints on the puffMarker

dataset using the heterogeneous segmentation model for smoking (Section 3.4). We

used all respiration based-features. Further, we extracted features from the actigraphy

data using the following procedure: Let ti be the timestamp of the maximum peak

in respiration cycle i. Extract a window beginning 8 seconds before ti and ending

1 second after ti and calculate as features the mean, max, min, standard deviation,

median, and five bin histogram of each channel’s signal within this window. The

actigraphy channels included were accelerometer x, y, and z, accelerometer magnitude,

gyroscope x, y, and z, gyroscope magnitude, and pitch and roll angles for a total of

100 actigraphy based features. Pitch and roll calculations using accelerometer data

are only valid when the hand is stationary, so these signals were filtered using the

procedure described in [56].

To evaluate the trade-off between inference runtime and accuracy, we first trained

a model with B = 100 and C = 50. For comparison, the maximum session length L

in the puffMarker dataset is 389 and the maximum number of positive instances in

any session is 20. Next, we varied B and C to generate the Pareto curves shown in

Figure 3.11. In both cases, static pruning achieves approximately a 3 times speedup

57

in inference compared to the original settings with little to no loss in performance.

In fact, the performance appears to improve slightly as we constrain the maximum

segment length. This is likely because the average distance between positive instances

is not, in fact, very long, so constraining the model in this way is providing useful

domain knowledge. In the next section, we consider learning constraints on the label

set.

3.6.2 Learning to Prune

An alternative to static pruning is to learn pruning rules from data. This idea has

been successfully applied to parsing [5, 78] and, more broadly, the idea of learning to

filter a structured output space has been applied successfully in a number of settings

(e.g. [81]). In this section, we review the learning-to-prune method presented in

Bodenstab et al. [5] and adapt it to the semi-Markov CRF (the same ideas can be

applied to heterogeneous segmentation models with little change). This presentation

of learned pruning methods follows that in Vieira and Eisner [78], but is adapted to

the case of segmentation.

3.6.2.1 Pruned MAP Inference

Bodenstab et al. [5] frame pruning as a decision making process carried out during

the inference algorithm. Every time the inference algorithm fills in an entry in the

dynamic programming table, a decision is made as to whether that entry is important

for the final computation. If it is deemed unimportant, it is skipped, saving compu-

tation time. Every time an entry is skipped, it is equivalent to filtering the space

of possible segmentations. The core learning problem is learning a decision function

that can make these decisions while achieving an acceptable speed-accuracy trade-off.

Recall that the dynamic program for MAP inference in the semi-Markov CRF

α(k, c) has two indices: k represents a position in the input sequence and c represents

a segment label. Let gw : X ×{1, ..., L} → [0, 1] be a pruning function, parameterized

58

Algorithm 1
1: α← 0
2: α(0, :)← 1
3: for k = 1, ..., L do
4: if gw(x, k) < 1

2
then

5: continue
6: for j = 1, ..., k do
7: if gw(x, j) < 1

2
then

8: continue
9: for c ∈ C do

10: for c′ ∈ C do
11: s← exp(〈θ, f((c, j, k), c′,x)〉) · α(j − 1, c′)
12: if α(k, c) < s then
13: α(k, c)← s

14: return α

by w, that maps the feature sequence and a position in the input sequence to a

number between zero and one. If gw(x, k) < 1
2
, then we skip over the entries α(k, c)

for all c while performing inference. In essence, gw(x, k) must decide whether or not

k looks like a likely position for the beginning of a segment. The complete MAP

inference algorithm with pruning for the semi-Markov CRF is shown in algorithm 1.

The complexity of inference with pruning O
(
|C|2 (

∑
i gw(x, i))2

)
is now a function

of the pruning decisions and scales quadratically in the number of unfiltered positions.

In the remainder of this section, we consider the problem of learning gw from data.

3.6.2.2 Learning the Pruning Function

Bodenstab et al. [5] train gw to recreate, as closely as possible, the output from

a fixed, pre-trained model. In particular, let y∗ = arg maxy 〈θ, f(x,y)〉 be the output

from MAP inference in a semi-Markov CRF with feature function f and parameters

θ. Then, gw makes an error if it prunes a position that is a split-point in y∗ (false

negative) or if it does not prune a position that is not a split-point in y∗ (false

positive). In order to control the balance between inference runtime and fidelity to

the original model, Bodenstab et al. [5] place a weight on all false positive errors.

59

When this weight is low, the model prioritizes fidelity to the original model and when

it is high, the model prioritizes efficiency. Bodenstab et al. [5] use weighted zero-one

loss as their error function and train a linear pruning function using a perceptron

method. To allow for non-linear pruning functions, we instead use weighted log-loss

to train gw. Specifically, given a dataset D = {(xn,yn)}Nn=1, we train gw to minimize

the following objective:

L(w|D) =
∑
n

Ln∑
i=1

ω(y∗, i)gw(x, i) + λ1(1− ω(y∗, i))(1− gw(x, i)) +
λ2
2
||w||22 (3.9)

where ω(y, i) =
∑

s I[i = js] is the indicator function for whether position i is a

split-point in y, λ1 controls the accuracy/runtime trade-off, and λ2 controls the `2

regularization strength.

One advantage of the loss in equation 3.9 is that the ground truth labels yn

do not appear anywhere. This allows us to train the filter function on unlabeled

data, which is often much easier to acquire. However, equation 3.9 also has two

disadvantages. First, because gw is trained to replicate the original model, it will

also learn to replicate the mistakes made by the original model. Second, because gw

is trained on the outputs of a pre-trained segmentation model, it cannot be used to

accelerate inference during the learning of the segmentation model. Both of these

weaknesses can be addressed by training gw directly on the training data as shown

in the following loss:

L(w|D) =
∑
n

Ln∑
i=1

ω(yn, i)gw(x, i) + λ1(1− ω(yn, i))(1− gw(x, i)) +
λ2
2
||w||22.

(3.10)

In the following section, we present an evaluation of these methods on a standard

semi-Markov CRF for sleep detection and the heterogeneous segmentation for smoking

detection presented in Section 3.4.

60

3.6.2.3 Experiments

3.6.2.3.1 Sleep Detection We evaluated Bodenstab pruning on a standard semi-

Markov CRF using the Extrasensory dataset [74]. For full details on this dataset,

see Section 2.3. Subjects carried a variety of sensors during daily activities and self-

reported a range of activities such as sleeping, eating, and exercising. We focus on the

sleep detection problem, as this was one of the more abundantly reported activities.

We note that there is no ground truth for this data, so we evaluated against the

cleaned, self-reported sleep annotations provided in the data.

Our goal in the sleep detection problem is to segment the input sequence into

periods of sleep and non-sleep. We used a binary semi-Markov CRF with a constraint

that consecutive segments may not have the same label. We included as features the

sum of all instance-level features within a segment xjk =
∑k

i=j xi as well as two

duration-based features: I[cs = 1](tks − tjs) and I[cs = 1](tks − tjs)2 where I[·] is the

indicator function. The duration-based features are equivalent to placing a normal

distribution on the duration of sleeping activities. We placed a zero-mean gaussian

prior with tuned variance on the parameters of the semi-Markov CRF model (i.e. `2

regularization).

We used a neural network as our filter model gw. First, we applied a sigmoid layer

to each instance followed by a one-dimensional convolutional layer with width 9 and

5 output units, and finally, a second sigmoid layer as the output layer.

We evaluated performance on this dataset using a 10-fold cross-validation proce-

dure, where folds were formed at the session level. The strength of the `2 regularizer

was tuned to maximize instance-level F1 over a logarithmic grid using a further 9-fold

cross-validation on the training set.

3.6.2.3.2 Smoking Detection We further evaluated Bodenstab pruning on the

heterogeneous segmentation model for smoking detection (Section 3.4) using the puff-

Marker dataset. We used all respiration based-features as well as the actigraphy-based

61

101 102 103 104

Inference complexity (calls to line 11)
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

Extrasensory

trained on y *
n

trained on yn

102 103 104

Inference complexity (calls to line 11)

0.56
0.58
0.60
0.62
0.64
0.66
0.68

F 1

puffMarker

trained on y *
n

trained on yn

Figure 3.12: This figure shows the inference complexity against instance-level clas-
sification performance for different settings of the negative instance weight λ1 the
Bodenstab pruning objective. The left plot shows performance on the Extrasensory
sleep detection dataset and the right plot shows performance on the puffMarker smok-
ing dataset. Blue lines represent models trained using equation 3.9 and yellow lines
represent models trained using equation 3.10.

features described in Section 3.6.1. We used logistic regression as our filter function

gw, as the filter needs only detect a positive instance to know a segment transition

should occur in this model.

3.6.2.3.3 Train and Test Procedures We evaluated performance on the Ex-

trasensory and puffMarker datasets using 10 and 8-fold cross-validation procedures

respectively, where folds were formed at the session level. The strength of the `2 reg-

ularizer was tuned to maximize instance-level F1 over a logarithmic grid using further

9 and 7-fold cross-validation procedures on each training set.

3.6.2.3.4 Results For both datasets and both models, we varied the negative

instance weighting parameter λ1 over a logarithmic grid to evaluate the trade-off

between runtime and test set performance. Figure 3.12 shows the Pareto frontier

of inference complexity versus instance-level performance on the Extrasensory (left)

and puffMarker (right) datasets. In both plots the x-axis represents the complexity

of inference (calls to line 11 in algorithm 1) averaged across sessions and then across

folds. The y-axis represents instance level performance averaged across folds. The

62

two lines in each plot represent training gw using equation 3.9 and equation 3.10. On

the Extrasensory dataset, Bodenstab filtering using equation 3.9 results in approxi-

mately a 66x speedup with only a 0.04 drop in average instance-level accuracy. On

the puffMarker data, the results are even better, with Bodenstab filtering achieving

approximately a 257x speedup with almost no change in instance-level F1. Across

both datasets, the difference between using equation 3.9 and equation 3.10 is mini-

mal. These experiments demonstrate that we are able to achieve excellent speed-ups

using trained filtering models.

3.7 Discussion

In this chapter, we presented a family of heterogeneous segmentation models that

can be used for a variety of mHealth activity detection tasks. We derived quadratic

time inference methods for this model family based on dynamic programming. We

then applied instances of this model family to three real activity detection problems

demonstrating improved performance on all three. Finally, we presented two inference

pruning strategies which resulted in inference speedups of up to 257x.

Just like the linear-chain CRF and the semi-Markov CRF, heterogeneous segmen-

tation models are a special case of context free grammar CRF models. For example,

the ECG morphology extraction model can be written as a CRF-CFG model using

the following grammar:

63

n p q r n n n n

N P Q R N N N T N

SN

t

SP SQ SR STα

Figure 3.13: A sample ECG signal with peaks marked and a parse of this input
sequence using the grammar from Section 3.7.

α→ SP | SQ | SR | SS | ST | SN

SP → P SQ | P SP | P SR | P SS | P ST

SQ→ Q SQ | Q SP | Q SR | Q SS | Q ST

SR→ R SQ | R SP | R SR | R SS | R ST

SS → S SQ | S SP | S SR | S SS | S ST

ST → T SQ | T SP | T SR | T SS | T ST

SN → N SQ | N SP | N SR | N SS | N ST

P → p | p N R→ r | r N T → t | t N

Q→ q | q N S → s | s N N → n | n N

where α is the start symbol and S· symbols represent segment labels. An example

of a parse tree from this grammar is shown in Figure 3.13. While this model does

not admit a particularly compact CFG representation, this interpretation may still

be useful in cases that do. While inference in CRF-CFG models generally has cubic

complexity in the length of the input sequence, top-down parsing algorithms can

achieve reduced complexity when the grammar allows it.

64

Heterogeneous segmentation models have a few notable limitations. First, they

require the user to specify a discretization of the input sequence into instances. For

some applications, this discretization is intuitive. For example, peak detection meth-

ods are a natural fit when the goal is to identify specific peaks as in ECG morphology

extraction. In general, however, the choice of discretization method can have a large

effect on activity detection performance. A related concern is the need for prespecified

instance features. Such features must be specified for each newly encountered combi-

nation of target activity and sensing modality. One possible solution to this problem

is to use feature learning methods such a neural networks to learn a representation of

the raw sensor signal. One final limitation is that supervised learning of CRF models

requires fully labeled data, which is expensive to gather. Further, if there are errors

in the observed label structures, this may result in reduced detection performance. In

the next chapter we address this problem using the framework of weakly supervised

learning.

65

CHAPTER 4

LEARNING EVENT DETECTION MODELS FROM
TEMPORALLY IMPRECISE LABELS

To this point, we have assumed that fully and accurately labeled data is available

for model training; however, one of the core challenges facing mHealth researchers

is the collection of precisely labeled data. In machine learning, this problem has

been addressed through a number of alternative learning frameworks where labels

can be obtained at lower cost, including frameworks for learning from lower volumes

of labeled data (semi-supervised learning [8], positive unlabeled learning [33], active

learning [60], etc.), and frameworks for learning from lower-quality labels (multiple

instance learning [36], learning with label proportions [21] etc.). In this chapter, we

consider a new low-quality label learning problem: learning discrete-time detection

models from continuous-time temporally imprecise labels.

While many mHealth detection methods, including the ones discussed in this

work, assume a temporally discretized input (e.g. [68, 1, 3]), annotations of events or

activities are generally recorded in continuous time. Such annotations may come from

a number of sources. In the lab, researchers may record the timestamps of events via

live observation (e.g. [1]) or by annotating video or audio recordings of subjects (e.g.

[68]). In the field, subjects may be asked to self-report activities or researchers may

provide annotations based on a second, higher quality sensor such as a front-facing

camera or microphone (e.g. [3]). In all cases, it is necessary to align the continuous-

time annotations to the discrete input sequence in order to generate labels that can

be used for training discrete time detection models. Specifically, let z be a potentially

imprecise continuous time annotation of an activity of interest. Then, before using

66

it to learn a discrete time detection model, it is necessary to decide which instance i

annotation z corresponds to.

This problem has resulted in a wide variety of (mostly ad hoc) alignment proce-

dures including rule-based [38, 68] and manual [1, 56] alignment procedures. Rule-

based alignment procedures map continuous time annotations to instances based on

simple rules. For example, we may map a continuous time annotation to the tempo-

rally nearest instance in the discrete input sequence. This can be done rapidly, but

may result in labeling errors when the continuous time annotations are imprecise.

Manual alignment procedures, on the other hand, require an annotator to visualize

the input signal and make decisions about how continuous time annotations map onto

the discrete input sequence. Such procedures are time consuming and may also result

in labeling errors when events are not apparent to the annotator in the input signal.

The primary intuition encoded in our approach is that observations are recorded

“close” in time to the true label structures they correspond to (this intuition will be

formalized in the following sections). One simple rule-based alignment procedure that

encodes this intuition is to map each observation to the temporally closest time point

in the discrete input sequence; however, this transformation will convert imprecision

in the observation times into errors in the label values. We will refer to this as the

naive alignment strategy. Our framework seeks to improve on the naive alignment

strategy by explicitly modeling the observation process and allowing for temporal

imprecision.

A further problem with applying supervised learning to discrete time aligned an-

notations is that supervised learning methods cannot account for missing or spurious

annotations. In particular, even an alignment procedure that perfectly corrects for

temporal imprecision cannot add or remove annotations. Our framework seeks to ad-

dress this problem by explicitly modeling the probability of observing true activities.

67

non-sleep sleep non-sleep

Sleep start annotation Sleep end annotation

Input sequence

Ground truth
segmentation

Time

Figure 4.1: An example of an input sequence, ground truth labeled segmentation,
and imprecise annotation for the beginning and end of sleep.

We take a weakly supervised learning approach to this problem. In particular,

we consider the unaligned continuous annotations to be weak supervision for the de-

tection problem of interest. Unfortunately, existing approaches to weakly supervised

learning (discussed in Section 2.2) do not cleanly solve this problem. The closest

set of approaches are based around multi-instance learning; however, applying multi-

instance learning to this problem requires discretizing the continuous-time annota-

tions in some way, resulting in a loss of information. We evaluate one such approach

in Section 4.2.4.

The primary contribution of this chapter is a framework for estimating the param-

eters of discrete-time detection models from imprecise continuous-time annotations.

As in Chapter 3, we begin with a multivariate time series and assume that it has been

temporally discretized to produce a temporal input sequence. Unlike in Chapter 3,

we assume that supervision for learning is provided in the form of timestamps corre-

sponding approximately to the unobserved true label structure. Figure 4.1 shows an

example where the annotations approximately mark the beginning and end of sleep.

Our framework augments a discriminative detection model with a probabilistic

model of the annotation process, treating the true label structure as a latent variable.

A graphical model for this augmentation is shown in Figure 4.2. In this model, x

represents the input sequence, y represents the unobserved label structure, z rep-

68

y o zx

! " #

Figure 4.2: Graphical model for the proposed weak supervision framework. z rep-
resents the observed continuous-time annotations, and o represents the unobserved
alignment between instances in x and annotations in z. Shaded variables are observed
during model training.

resents the observed continuous-time annotations, and o represents the unobserved

alignment between instances in x and annotations in z.

This framework allows us to marginalize out the proper alignment of annotations

to discrete time instances from the data, obviating the need for ad hoc alignment

methods. Further, by assuming an imprecise observation process, this framework

allows us to more accurately estimate models from temporally imprecise annotations

such as those generated by self-report.

The second contribution of this chapter is a method for integrating continuous-

time annotations with signals from wearable sensors at test time. Self-report and

wearable sensors are not mutually exclusive technologies and can potentially be used

together in the same study. In such a study, predictions from a detection model can

be combined with the self-reported activities hopefully resulting in more accurate

predictions than using either separately. In this setup, one can think of the detection

model as denoising the potentially imprecise self-reported annotations. This denoising

can naturally be framed as posterior inference in the model shown in Figure 4.2.

In Section 4.2, we present a version of the proposed weak-supervision framework

for independent instance labeling and evaluate it on a smoking detection problem. In

Section 4.3, we extend this framework to the semi-Markov CRF and the segmenta-

tion models presented in Chapter 3. We evaluate this extension on sleep detection

69

and smoking detection problems. Also in Section 4.3, we apply inference pruning

methods from Section 3.6 to the proposed weakly supervised structure prediction

framework and evaluate them on smoking data. Finally, in Section 4.4, we show how

this model can be used to integrate imprecise observations with sensor data at test

time, improving on the accuracy of either one individually.

4.1 Notation

As in previous chapters, we assume that the input data consists of N multivariate

time series that we will call sessions. Each session contains a set of time-aligned

signals gathered from one or more sensors. Seperate sessions may correspond to data

from different subjects data, or to data from the same subject collected at different

times. We assume that each session n has been discretized into a sequence of Ln

potentially overlapping sub-windows and that a feature vector xni ∈ RD has been

extracted for each sub-window i. We refer to each sub-window i as an instance.

Further, each instance i in session n is associated with a timestamp tni which may

correspond to the start, end, or other point of interest associated with instance i.

We refer to the complete sequence of feature vectors xn = {xni}Lni=1 as the input

sequence and the complete sequence of timestamps tn = {tni}Lni=1 as the timestamp

sequence. Where it does not cause ambiguity, we will drop the session index n. We

use the notation xj:k = {xi}ki=j to refer to the subsequence of x beginning at j and

ending at k (this applies to any sequence).

4.2 Independent Classification Models

We start by addressing the problem of learning independent instance labeling mod-

els from temporally imprecise observations. While Chapter 3 focused on structured

prediction for mHealth detection problems, independent models are commonly used

when the goal is to detect short duration events such as bites of food [1, 56, 68, 38]. Ac-

70

quiring accurate labels for short duration events is a particularly challenging problem

in mHealth, often requiring video or live observation and time consuming annotation

procedures. For example, in the mPuff [1] and puffMarker [56] smoking datasets,

subjects smoked while under direct observation and smoking puffs were recorded by

research staff using a mobile phone. Due to the short duration of smoking puffs,

even minor imprecision in the annotations may result in instance label errors if a

naive alignment procedure is used. As an alternative, we propose to learn an instance

labeling model directly from timestamps corresponding to observations of positive

instances, obviating the need for time consuming annotation or alignment processes

and allowing for the correction of false positives and false negatives. In the remainder

of this section, we introduce the proposed framework and evaluate it on real smoking

data with temporally imprecise observations.

4.2.1 Weak Supervision Framework

In this section, our goal is to learn a function that maps instance features to bi-

nary labels. Let yni ∈ {0, 1} be the binary label variable for instance i in session

n. We assume the labels yni are not directly observed in the training data. Instead,

we observe a length Mn sequence zn = {znm}Mm=1 of observations where each ob-

servation znm is a timestamp corresponding roughly to the time at which a positive

instance occurred. Our goal, then, is to learn a standard instance-level classification

function f : RD → {0, 1} from a data set D = {(xn, tn, zn)}Nn=1 consisting of the

input sequences, the instance timestamps, and the observation timestamp sequences.

To map between the unobserved label sequence y and the observation sequence

z, let o = {oi}Li=1 be a sequence of latent binary variables where oi = 1 if and only if

instance i is associated with an observation. We call o the observation indicator

sequence. We make two assumptions about o. First we assume that
∑

i oi = M , that

is, the sum of the observation indicators equals the number of observations, which

71

is necessary for our interpretation of o. Second, we make the following simplifying

assumption:

Assumption 1. If instance j occurs after instance i in the input sequence, then

an observation timestamp associated with instance j must occur after an observation

timestamp associated with instance i.

Under these two assumptions, o defines a matching between instances in the input

sequence and observations in the observation sequence.

Our proposed framework includes three components that can be chosen indepen-

dently: a probabilistic base classifier pθ(yi|x), an observation indicator distribution

pπ(oi|yi), and an observation timestamp density pφ(zm|ti).

The base classifier is the distribution we are primarily interested in estimating.

For the base classifier, we assume a differentiable discriminative classifier of the form

pθ(yi|x) with parameters θ. Any discriminative probabilistic classifier where the label

variables yi are probabilistically independent given the features x can be used. Such

models include logistic regression [23] and kernel logistic regression [87], as well as

multi-layer feedforward neural networks [22], convolutional neural networks [27], and

recurrent neural networks [17] when used with logistic/softmax output layers. We

focus on the case of logistic regression to demonstrate the framework.

The observation indicator distribution pπ(oi|yi) models the probability that in-

stance i is associated with an observation given its label yi. This distribution allows

for the occurrence of false positive observation (observations that do not correspond

to a true positive instance) and missed observations (positive instances that are not

associated with an observation). In settings where there are no such annotation errors,

this can be set to a deterministic distribution. Finally, the observation timestamp

density pφ(zm|ti) models the observation timestamp zm given the instance timestamp

ti with which it is associated. The choices for these distributions are domain specific.

For example, in section 4.2.4 we evaluate a model where pπ(oi|yi) is a Bernoulli dis-

72

tribution and pφ(zm|ti) = N (z;µ + t, σ2) is a normal distribution centered at t plus

an offset µ. With these distributions, we can now write the observation generation

process as shown below:

1: M ← 0
2: for i = 1, ..., L do
3: yi ∼ pθ(yi|x)
4: oi ∼ pπ(oi|yi)
5: if oi = 1 then
6: M ←M + 1
7: zM ∼ pφ(z|ti)

This generative process asserts that each instance label yi is first sampled from

the base classifier pθ(yi|x). Then, each instance either generates an observation or

not according to pπ(oi|yi). Finally, if instance i does generate an observation, an

observation timestamp is sampled from pφ(zm|ti). The variable M counts the number

of generated observations. We note that additional structure could be encoded into

the label observation process at the potential cost of higher inference complexity.

We can now specify the individual joint distributions over the label sequence y,

the observation indicator sequence o, and the observation sequence z as shown below.

We define i(m) = min {i|
∑i

j=1 oj = m} as the function mapping observation m to

the instance that generated it.

pθ(y|x) =
L∏
i=1

pθ(yi|xi) (4.1)

pπ(o|y) =
L∏
i=1

pπ(oi|yi) (4.2)

pφ(z|o, t) =
M∏
m=1

pφ(zm|ti(m)) (4.3)

The complete joint distribution over y, o, and z is shown in Equation 4.4 where

ψ = {θ, φ, π} is the complete set of model parameters.

73

pψ(y,o, z|x, t) = pθ(y|x)pπ(o|y)pφ(z|o, t) (4.4)

The label sequence and observation indicator sequence y and o are not observed

during learning, but we can marginalize them out of the model as seen in in Equation

4.5. The marginalization operation is expressed in terms of a sum over the support

sets O = {o|o ∈ {0, 1}L,
∑L

i=1 oi = M} and Y = {0, 1}L of o and y respectively.

pψ(z|x, t) =
∑
y∈Y

∑
o∈O

pψ(y,o, z|x, t) (4.5)

In the next sections, we derive computationally efficient inference and learning

algorithms for maximizing the log marginal likelihood of the data. We note that once

the model is learned, the observation count distribution and the timestamp noise

distribution can be discarded and instances can be classified based only on pθ(yi|x)

as is typically done in independent classification.

4.2.2 Learning

To learn the proposed model, we will maximize the log marginal likelihood L(θ, φ, π|D)

where θ are the base classification model parameters, φ are the observation noise

model parameters, π are the observation indicator model parameters, and D =

{(xn, tn, zn)}Nn=1 consists of the observed data for each session. This objective function

is defined below:

L(θ, φ, π|D) =
N∑
n=1

log pψ(zn|xn, tn)

=
N∑
n=1

log

(∑
yn∈Yn

∑
on∈On

pψ(yn,on, zn|xn, tn)

)
(4.6)

74

We optimize this objective using standard gradient methods1. In this section, we

consider the gradient equations for each of the three parameter groups: θ, π, and φ.

We first consider the gradient of log pψ(z|x, t) with respect to the base classifier

parameters θ. For brevity, we drop the dependence on the session index n.

∇θ log pψ(z|x, t) =
L∑
i=1

Epψ(yi|z,x,t)[∇θ log pθ(yi|xi)] (4.7)

This gradient has the form of a sum of expected gradients for individual instances

where the expectation is taken with respect to the marginal posterior distribution

pψ(yi|z,x, t). Assuming that the gradient of the base classifier can be computed

efficiently, the complexity of computing the gradient of the proposed likelihood with

respect to θ depends only on the complexity of computing the posterior marginal

pψ(yi|z,x, t). In the next section, we will show how this gradient can be computed

efficiently.

Next, we give the gradient with respect to the noise model parameters φ.

∇φ log pψ(z|x, t) =
M∑
m=1

Epψ(i(m)|z,x,t)[∇φ log pφ(zm|ti(m))] (4.8)

where i(m) (defined above) maps m to the instance it is associated with. We can again

see that this gradient has the form of a sum of expectations for individual event time

stamps. In this case, the sum is over each observed time stamp and the expectation

is taken with respect to the posterior marginal distribution pψ(i(m)|z,x, t), which

gives the distribution over which instance corresponds to observation m. Assuming

that the gradients of log pφ(zm|ti) can be computed efficiently, the complexity of the

gradient computation depends on the complexity of computing the posterior marginal

pψ(i(m)|z,x, t).

1In practice, we use L-BFGS-B as implemented in SciPy

75

Finally, we give the gradient with respect to the observation indicator parameters,

π.

∇π log pψ(z|x, t) =
L∑
i=1

Epψ(oi,yi|z,x,t)[∇φ log pπ(oi|yi)] (4.9)

Once again, the gradient has the form of a sum of expected gradients. In this case

the expectation is taken with respect to the posterior marginal pψ(oi, yi|z,x, t) which

gives the distribution over the label of instance i and whether or not it is associated

with an observation.

The complete gradient system required to optimize all parameters of the complete

joint distribution is shown below in Equations 4.10, 4.11, and 4.12.

∇θL(θ, φ, π|D) =
N∑
n=1

∇θ log pψ(zn|xn, tn) (4.10)

∇φL(θ, φ, π|D) =
N∑
n=1

∇φ log pψ(zn|xn, tn) (4.11)

∇πL(θ, φ, π|D) =
N∑
n=1

∇π log pψ(zn|xn, tn) (4.12)

One difficulty with learning the parameters of this model is that posterior distri-

bution over the parameters p(θ, π, φ|D) is multi-modal. In particular, analysis using

the puffMarker data and model described in section 4.2.4 suggests that the posterior

distribution over π is bimodal. Samples drawn from p(π|D) using Hamiltonian Monte

Carlo (HMC)2 [44] are shown in Figure 4.3. In one of the modes, the model treats

all observations as false positives and in the other it treats most of the observations

a true positives. This makes training starting from a random location unstable as

2We used the pyhmc package (https://pythonhosted.org/pyhmc/index.html with 10 steps
per sample and a step size of 0.001 resulting in an acceptance rate of approximately 0.87. We drew
5000 total samples, but dropped the first 2000 samples as burn-in and used only every 100th sample
to avoid autocorrelation in the samples.

76

https://pythonhosted.org/pyhmc/index.html

0.00

0.05

0.10

0.15

0.20

0

0.00 0.05 0.10 0.15 0.20

0

0.00

0.05

0.10

0.15

0.20

1

0.00 0.05 0.10 0.15 0.20

1

Figure 4.3: Samples of π0 = pπ(oi = 1|yi = 0) and π1 = pπ(oi = 1|yi = 1) from the
posterior distribution over parameters p(π|x, t, z).

Algorithm 2 Posterior Inference Dynamic Program for Temporally Imprecise Labels

1: Inputs: θ, φ, π,x ∈ RLxD, t ∈ RL, z ∈ RM

2: Let a ∈ RLxM , b ∈ RLxM a(0, 0)← 1
3: for i = 1, ..., L do
4: a(i, 0)←

∑
y∈{0,1} pθ(yi = y|x)pπ(oi = 0|y)a(i− 1, 0)

5: for m = 1, ...,M do
6: a(i, l)←

∑
y∈{0,1}

∑
o∈{0,1} pθ(yi = y|x)pπ(oi = o|y)pφ(zm|ti)oa(i−1,m−o)

7: Return a

it may fall into either mode. We avoid this by initially constraining the observation

indicator distribution such that pπ(oi = 1|yi = 1) = 1 and pπ(oi = 0|yi = 0) = 0,

training to convergence, and then relaxing the constraint on pπ(oi|yi). This initial-

ization procedure allows us to start learning within the desirable basin of attraction.

We next turn to the problem of efficiently computing the log marginal likelihood and

its gradients.

4.2.3 Inference

The primary computational challenge of this learning procedure is calculating the

log marginal likelihood. This can be done exactly using the dynamic program shown

77

in Algorithm 2. An entry in the dynamic programming table α has the following

interpretation: α(i,m) is the probability that the input subsequence x1:i generated

the observation subsequence z1:m. Or, written mathematically:

α(i,m) = pψ(z1:m|x1:i, t1:i) (4.13)

The marginal likelihood is given by pψ(z|x, t) = a(L,M). This algorithm has

complexity O(LM) where L is the length of the input sequence and M is the length

of the observation sequence. We use reverse-mode automatic differentiation [4] to

compute the gradients of this dynamic program with respect to the parameters3.

4.2.4 Experiments

In this section, we present an evaluation of the proposed framework under both

synthetic and real temporal noise conditions.

4.2.4.1 Datasets

To evaluate the predictive performance of our model, we used two real mobile

health datasets: mPuff [1] and puffMarker [56]. Details on these datasets and the

feature preprocessing are given in Section 2.3. In both datasets, sessions were dis-

cretized into respiration cycles (i.e. a single inhalation/exhalation cycle) and the goal

is to label each respiration cycle as being a smoking puff or not. Both data sets had

the originally recorded positive event timestamps manually aligned to the instance se-

quence using a visualization procedure. We considered these manually aligned labels

to be ground truth for both datasets.

We evaluated the proposed framework when trained on both synthetic (Experi-

ment 1) and real (Experiment 2) observation timestamps. To test the behavior of our

3We performed automatic differentiation using Theano (http://deeplearning.net/software/
theano/)

78

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/

−8 −6 −4 −2 0 2 4 6 8
Seconds

0.00

0.05

0.10

0.15

0.20

0.25

Figure 4.4: The marginal distribution of the difference between the true and observed
time stamps for positive instance in the puffMarker data. The dashed lined shows a
Normal distribution fit to this data.

model under varied amounts observation noise, we generated synthetic observation

timestamps for both datasets. We used the following noise model, which conditions

on the ground truth instance timestamps and labels:

p(oi = 1|yi = 1) = 1− p(oi = 1|yi = 0) = π, ∀ i (4.14)

p(zm|ti(m)) = N (zj; ti(m), σ
2) (4.15)

We varied π ∈ (0, 1) and σ ∈ R+ to simulate different amounts of missed/spurious

observations and timestamp noise respectively. We chose a normal noise distribution

for the synthetic observation process because it approximately matches the noise

distribution observed in the real puffMarker data, as shown in Figure 4.4.

The puffMarker dataset also includes the original imprecise smoking puff time

stamps as recorded by the observer during data collection. This allowed us to conduct

experiments where we trained on temporally imprecise smoking puff timestamps, but

tested the learned classifier on held out sessions with ground truth labels provided by

the manual alignment process.

79

4.2.4.2 Models

In the following experiments, we used logistic regression as the base classifier in our

model (LR-WS). We placed a zero-mean Gaussian prior on θ (i.e. `2 regularization).

As our observation count model, we used a simple Bernoulli distribution pπ(oi =

1|yi = c) = 1 − pπ(oi = 0|yi = c) = πc for πc ∈ (0, 1). This allows the model to

account for both false positives and false negatives. We placed a beta prior on π.

Finally, we used the following normal distribution as our observation noise model:

pφ(zj|ti) = N (zj; ti + µk, σ
2
k) (4.16)

where φ = {µ, σ}. We placed a standard normal prior on µ and an inverse-Gamma

prior with shape α = 1 and scale β = 1 on σ2. We found the LR-WS model to be

relatively insensitive to the setting of these hyperparameters so weakly-informative

default values were chosen.

We compared this instance of our proposed framework with logistic regression

models trained using different transformations of the available observation sequences.

In particular, we experimented with a logistic regression model learned with obser-

vation timestamps manually aligned to instances (LR-HA). If the manual alignment

process results in no instance label errors, this model can be thought of as producing

best-case results given the discretization and feature extraction methods. We also

experimented with the naive alignment strategy where we assign a positive label to

the instance that is closest in time to each observation timestamp (LR-NV). This ap-

proach treats the temporally imprecise observation timestamps as if they were correct,

potentially resulting in label noise.

Finally, we compared our model to a traditional multi-instance learning strategy

that produces an instance-level classifier (LR-MI). In particular, we adapted the MI-

SVM training algorithm from Andrews et al. [2] to train logistic regression models.

80

This algorithm works by forming bags of instances which are labeled as either positive

or negative. A negative bag label indicates that the bag contains only negative

instances and a positive bag label indicates that at least one of the instances is

positive. For a given bag size, B, we formed bags by segmenting the base sequence

into non-overlapping segments of length B. We generated bag labels by applying the

naive alignment strategy described above and labeling a bag as positive if at least

one observation timestamp fell inside of the bag.

The MI-SVM algorithm alternates between picking a representative instance from

each positive bag, called a witness, and training a classifier on the witnesses plus the

negative instances. The witnesses are chosen to minimize the classifier’s loss function.

To our knowledge, this strategy has never been applied to logistic regression. In

the case of logistic regression, this alternating algorithm results in a non-decreasing

objective and therefore converges to a local optima. The hyperparameters for this

model include the bag size B and the `2 regularization strength.

4.2.4.3 Train and Test Procedures

We evaluated all models using a 10-fold cross-validation procedure where the folds

were generated across sessions. We tuned all hyper-parameters to maximize F1 score

using a further 10-fold cross-validation procedure on the training set. This is equiv-

alent to assuming a small amount of labeled data is available for validation. `2

regularization parameters for each model were tuned across an logarithmic grid while

the parameters for the beta prior on π and the bag size for the multi-instance models

were tuned on a linear grid. Results for all models are presented in terms of F1 score,

which was chosen due to the heavy class imbalance and to highlight the performance

on the class of interest, smoking puffs. Performance results were averaged across all

folds. For all experiments involving synthetic noise, results were further averaged

across data generated using two different seeds.

81

4.2.4.4 Experiment 1: Performance Under Varying Noise Conditions

We evaluated how robust the proposed model is to varied observation noise condi-

tions by testing the predictive performance of all models on the mPuff and puffMarker

datasets with synthetic observation timestamps generated by adding noise to the

timestamps of true positive instances. Figures 4.5 (a) and (b) show the performance

in terms of F1 of these models on the mPuff and puffMarker datasets respectively

with varied observation timestamp noise, but fixed observation indicator noise. For

these plots, we varied the standard deviation (σ) of the synthetic noise from 0.25

to 5.0 with the observation count probability (p(oi = 1|yi = 1) = π) fixed at 1.

While the performance of each model degrades as the amount of noise increases, the

performance of the proposed model (LR-WS) degrades noticeably slower than the

traditional multi-instance method (LR-MI), which in turn only slightly outperforms

the naive alignment strategy (LR-NV) at this task. To understand why the perfor-

mance of the naive and multi-instance methods degrade so much, Figure 4.5 (c) shows

the proportion of true positive labels that are assigned positive labels by the naive

alignment procedure on the mPuff and puffMarker datasets across the same range

of noise standard deviations. Even at σ = 2.0, only 65% of true positives retain a

positive label under the naive alignment strategy. As expected, the performance of

the baseline methods track this plot very closely.

Figure 4.5 (d) and (e) show the performance of the logistic regression based models

when σ is kept fixed at 1, but π is varied between 0.7 and 1. σ = 1 was chosen because

it matches the standard deviation of the empirical observation noise distribution of

the puffMarker dataset. Again, the performance of the multi-instance and naive

alignment methods degrade much more quickly than the proposed method as noise

is added.

82

0 2 4
Observation std.

0.1

0.2

0.3

0.4

0.5

0.6

F1 LR-WS
LR-MI
LR-NV
LR-HA

(a)

0 2 4
Observation std.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

F1 LR-WS
LR-MI
LR-NV
LR-HA

(b)

0 1 2 3 4 5
Observation std.

0.0

0.2

0.4

0.6

0.8

1.0

A
li
g

n
m

e
n

t
R

e
c
a
ll

mPuff

puffMarker

(c)

0.7 0.8 0.9 1.0
p(oi=1|yi=1)

0.1

0.2

0.3

0.4

0.5

0.6

F1 LR-WS
LR-MI
LR-NV
LR-HA

(d)

0.7 0.8 0.9 1.0
p(oi=1|yi=1)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

F1 LR-WS
LR-MI
LR-NV
LR-HA

(e)

LR-WS LR-MI LR-NV0.0

0.1

0.2

0.3

0.4

0.5

F1

(f)

Figure 4.5: Figures (a) and (b) show the prediction performance for all models when
varied amounts of synthetic noise is added to the hand aligned labels of the mPuff and
puffMarker datasets respectively. Figure (c) shows the recall of the labels generated
by the naive alignment strategy. Figures (d) and (e) show the predictive performance
for all models when different proportions of observations are dropped from the ob-
servation sequence on the mPuff and puffMarker datasets. Figure (f) shows the F1

performance of all models on the puffMarker dataset trained on the real unaligned
observation sequence. The dashed line corresponds to LR-HA.

83

4.2.4.5 Experiment 2: Performance on Real Timestamps

We also evaluated the performance of all models on the puffMarker dataset using

the original positive event timestamps during training. The predictive performance in

terms of F1 is shown in Figure 4.5 (f). The LR-WS model substantially outperforms

both the multi-instance and naive methods. The improvement of LR-WS over LR-NV

and LR-MI is statistically significant at the p = 0.001 level using a paired t-test with

Bonferroni correction.

As in the synthetic experiments on the puffMarker dataset, the LR-WS model

outperforms a logistic regression model trained on the hand aligned labels. One pos-

sible explanation for this behavior is that there is a non-trivial amount of annotation

error that our model is correcting for. Another possible explanation for this result is

that the there is a non-trivial amount of class overlap in the instance feature space.

Our model allows for the possibility that there are false negatives in the labels and

so it is able to get around this overlap by treating positive looking negative examples

as positive, whereas the other models must treat them as negative. This is supported

by the observation that the precision of our model is slightly lower than the two

baselines, but the recall is much higher.

4.3 Segmentation Models

As demonstrated in Chapter 3, we can often achieve performance improvements

by applying structured prediction methods to mHealth detection problems. In this

section we extend the weak supervision framework presented in the previous section

to the types of segmentation models presented in Chapter 3. In particular, we con-

sider the problem of learning segmentation-based CRF models when supervision is

provided in the form of timestamps roughly corresponding to the transitions between

segments of different types. Observations of this type are particularly common in

field data studies where either data volumes preclude finer-grained annotation (e.g.

84

[3, 68]) or subjects are asked to self-report activities (e.g [74]). For example, in Vaiz-

man et al. [74], subjects were asked to report the times they started and finished

activities of certain types, such as sleeping. While the activities of interest are gener-

ally much longer than the short duration events discussed in the previous section, the

imprecision in annotations generated by self-report may be correspondingly larger. In

the remainder of this section, we present the modified weak supervision framework,

inference dynamic program, and evaluations of this framework on semi-Markov CRF

and heterogeneous segmentation models (see Section 3.4) using both semi-synthetic

and real datasets.

4.3.1 Model

In this section, our goal is to learn a model that produces a labeled segmentation

of the input sequence x. As in previous sections, we represent such a segmentation

as a sequence of segments y = {ys}Ss=1 where each segment ys = (cs, js, ks) is a

tuple containing a label cs ∈ C, a start position js ∈ {1, ..., L}, and an end position

ks ∈ {1, ..., L}. To ensure only valid segmentations, we assume j1 = 1, kS = L,

and ks = js+1 for all 1 ≤ s ≤ S − 1. Our goal, then, is to learn the distribution

pθ(y|x, t). For purposes of presentation, we will parameterize this distribution as a

semi-Markov CRF, but we will show later how this framework can also be applied

to the heterogeneous segmentation models from Chapter 3. The details of the semi-

Markov CRF are presented in Section 2.1.

As before, we assume that the ground-truth segmentation y is not observed dur-

ing training. Instead, we observe a sequence of observations z = {zm}Mm=1 where

each observation zm is a timestamp corresponding to a particular transition between

segments. For example, each zm may be the time a subject reported going to sleep,

marking the approximate start of a sleep segment. For ease of exposition, we will

assume that there is only one type of observation and will later generalize to multiple

85

observation types. To map between the unobserved segmentation y and the observa-

tion sequence z, let the observation indicator sequence o = {oi}Li=1 be a sequence

of latent binary variables where oi = 1 if and only if instance i is associated with an

observation. Under the assumption that observations are recorded in the order they

actually occurred (Assumption 1 in Section 4.2) and
∑

i oi = M , o defines a matching

between instances in the input sequence and observations in the observation sequence.

We model the observation sequence using three components. The base segmen-

tation model pθ(y|x, t) is the semi-Markov CRF model whose parameters we are

interested in estimating. The observation indicator distribution pπ(oi|ys, cs−1) models

the probability that instance i is associated with an observation given the segment it is

contained in and the label of the previous segment. Finally, the observation timestamp

density pφ(zm|ti) models the timestamp of an observation zm given the timestamps ti

with which it is associated. For example, we may use a simple Bernoulli distribution

for pπ(oi|ys, cs−1) and a normal distribution centered at ti for pφ(zm|ti). With these

distributions, we can now write the observation generation process as shown below:

1: M ← 0
2: y ∼ pθ(y|x)
3: for s = 1, ..., S do
4: for i = js, ..., ks do
5: oi ∼ pπ(oi|ys, cs−1)
6: if oi = 1 then
7: M ←M + 1
8: zM ∼ pφ(zm|ti)

This generative process asserts that a complete segmentation is first sampled ac-

cording to the semi-Markov CRF model. Next, each instance either generates an

observation or not according to pπ(oi|ys, cs−1). Finally, if instance i does generate an

observation, an observation timestamp is sampled from pφ(zm|ti). The variable M

counts the number of generated observations. The joint model implied by this gener-

ative process is given in Equation 4.17 where the set of all parameters in the model is

86

ω = {θ, π, φ}. The distributions pπ(o|y) and pφ(z|o, t) are defined in Equations 4.18

and 4.19 where i(m) = min {i|
∑i

j=1 oj = m} is the function mapping observation m

to the instance that generated it, as before.

pω(z,y,o|x, t) = pθ(y|x)pπ(o|y)pφ(z|o, t) (4.17)

pπ(o|y) =
∏
s

ks∏
i=js

pπ(oi|ys, cs−1, i) (4.18)

pφ(z|o, t) =
M∏
m=1

pφ(zm|ti(m)) (4.19)

4.3.2 Learning

To learn the parameters of this model, we maximize the log marginal likelihood

L(ω|D):

L(ω|D) =
N∑
n=1

log pω(zn|xn, tn) (4.20)

pω(z|x, t) =
∑
y∈Y

∑
o∈O

pω(z,y,o|x, t) (4.21)

where D = {(xn, tn, zn)}Nn=1 consists of the observed data for all sessions. We perform

this optimization using standard gradient methods. Here, we consider the gradient

equation for each of the three parameter groups: θ, π, and φ. The gradient equations

for π and φ are shown below.

∇φ log pω(z|x, t) =
M∑
m=1

Epω(i(m)|z,x,t)
[
∇φ log pφ(zm|ti(m))

]
(4.22)

∇π log pω(z|x, t) =
L∑
i=1

Epω(oi,y|z,x,t) [∇π log pπ(oi|y)] (4.23)

Both gradient equations take the form of a posterior expectation of the log gradient of

the relevant distribution. The gradient with respect to the base classifier parameters

87

1: for k = 1, ..., L do
2: for c ∈ C do
3: for m = 0, ...,M do
4: for c′ ∈ C do
5: β(j, k, c, c′,m)←

∑
o α(k − 1, c′,m− o) pπ(o|(c, k, k), c′, k) pφ(zm|tk)o

6: for j = 1, ..., k − 1 do
7: β(j, k, c, c′,m)←

∑
o β(j, k− 1, c′,m− o) pπ(o|(c, j, k), c′, k) pφ(zm|tk)o

8: α(k, c,m)←
∑

j

∑
c′ exp(〈θ, f((c, j, k), c′,x)〉)β(j, k, c′,m)

9: Return α

Figure 4.6: The complete dynamic program for calculating the marginal likelihood of
the observation sequence pω(z|x, t) in the proposed framework.

also takes the form of an expected gradient of a log density and is shown below.

∇θ log pω(z|x, t) = Epω(y|z,x,t) [∇θ log pθ(y|x)] (4.24)

= Epω(y|z,x,t) [∇θ〈θ, f(x, t,y)〉]−∇θZθ(x)

= Epω(y|z,x,t) [f(x, t,y)]− Epθ(y|x) [f(x, t,y)]

where f(x, t,y) denotes the complete feature function for the semi-Markov CRF

model. In this case, the log-linear form of the semi-Markov CRF model gives us

the further interpretation that the learning algorithm is trying to match the expected

feature function under the base semi-Markov CRF model to the posterior expected

feature function given by the observation model. This is in contrast to typical max-

imum likelihood estimation for a log-linear model, which would match the expected

feature function under the model to the expected feature function under the empirical

distribution. We perform optimization of this objective using L-BFGS and the same

warm-start procedure described in Section 4.2.2.

88

4.3.3 Inference

The primary computational challenge of this learning procedure is calculating

the log marginal likelihood. This can be done exactly using a dynamic program

for calculating pω(z|x, t). The complete dynamic program is shown in Figure 4.6.

The primary dynamic programming table is α which has the following interpretation:

α(k, c,m) is the unnormalized probability that the input subsequence x1:k generated

the observation subsequence z1:m given that the last segment in y has label c where

here y is a segmentation of the input subsequence x1:k. Or, written mathematically:

α(k, c,m) ∝ pω(z1:m|x1:k, t1:k, c|y| = c) (4.25)

=
∑

y∈Y(x1:k):
c|y|=c

∑
o1:k

pω(z,y,o|x, t) (4.26)

Once this algorithm is complete we can calculate the unnormalized marginal likelihood

for the complete model as

pω(z|x, t) ∝
∑
c

α(L, c,M). (4.27)

Then, all that remains is to normalize the unnormalized marginal likelihood. Since

the observation model is locally normalized, we need only calculate the normalizer

for the base semi-Markov CRF model Zθ(x, t) which can be done using a dynamic

program with complexity O(|C|2L2) [57]. In this algorithm, line 5 has complexity

O(1) and is executed O(|C|2LM) times, line 7 has complexity O(1) and is executed

O(|C|2L2M) times, and line 8 has complexity O(|C|L) and is executed O(|C|LM)

times. Thus, the whole algorithm has complexity O(|C|2L2M) where L is the length

of the input sequence, C is the set of possible segment labels, and M is the length of

the observation sequence.

We use reverse-mode automatic differentiation [4] to derive a dynamic program

with the same complexity to calculate the necessary gradients for learning. We do not

89

use automatic differentiation software as most such packages cannot efficiently handle

highly dynamic computation graphs such as the one shown in Figure 4.6. Instead,

we manually derive the adjoints for each entry in the dynamic programming table

and use these to compute the parameter gradients. As with all computation graphs,

the backwards pass has the same complexity as the forwards pass [4], so calculating

the gradients has the same complexity as calculating the marginal likelihood, namely

O(|C|2L2M).

4.3.4 Multiple Observation Types

In some settings, it may be desirable to allow for multiple types of observations.

For example, we may want to include observations of both the beginning and end of

sleep. This can be handled by including multiple observation sequences z(l) each with

length M (l) and observation indicator sequences o(l) where l indicates the observation

type. Observation sequences of each type are assumed to be independent conditioned

on the segmentation y and the ordering assumption need not hold between types.

The complexity of inference in this setup is O(|C|2L2
∏

lM
(l)).

4.3.5 Experiments

We evaluated the proposed framework’s ability to accommodate the temporal

imprecision in the label structure that arises in both the lab and field settings on two

mHealth detection problems: sleep detection and smoking detection. In this section

we describe the specific models used and the results of these evaluations.

4.3.5.1 Sleep detection

We evaluated our framework’s performance on data from the field using the Ex-

trasensory dataset [74]. For full details on this dataset, see Section 2.3. This dataset

contains signals from a variety of sensors including the accelerometer, gyroscope, GPS,

and microphone on a mobile device as well as a wrist-worn accelerometer. Subjects

90

carried these sensors during daily activities and self-reported a range of activities such

as sleeping, eating, and exercising. We focus on the sleep detection problem, as this

was one of the more abundantly reported activities. We note that there is no ground

truth for this data, so we evaluated against the cleaned, self-reported sleep annota-

tions provided in the data. To simulate extra imprecision in the observation process,

we added further synthetic noise (described below) to the observation timestamps.

4.3.5.1.1 Model Our goal in the sleep detection problem is to segment the input

sequence into periods of sleep and non-sleep. We used a binary semi-Markov CRF

with a constraint that consecutive segments may not have the same label. We included

as features the sum of all instance-level features within a segment xjk =
∑k

i=j xi as

well as two duration-based features: I[cs = 1](tks − tjs) and I[cs = 1](tks − tjs)
2.

The duration-based features are equivalent to placing a normal distribution on the

duration of sleeping activities4. We placed a zero-mean gaussian prior with tuned

variance on the parameters of the semi-Markov CRF model (i.e. `2 regularization).

In our observation model, we included two types of observations: the beginning

of sleep z(1) and the end of sleep z(2). Because sleep was observed in all sessions, we

used a fixed, deterministic observation indicator distribution. That is, if instance i

is the beginning of a sleep segment, it must generate an observation z
(1)
m and likewise

for the end of a sleep segment. No other instances may generate observations in this

model.

To model the procedure of self-reporting when you go to sleep and when you wake

up, we used a one-sided distribution to model the observation timestamp noise. We

used the following exponential distributions to model observation timestamp noise:

4I[·] is the indicator function

91

0 30 60
Noise std (minutes)

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy semi-WS

semi-NV

Figure 4.7: Performance for the semi-WS and semi-NV models on the sleep detection
problem when trained on data with Exp(λ) distributed noise (measured in minutes)
added to the observation timestamps.

pφ(z(1)m |ti(m)) = Exp(ti(m) − z(1)m ;λ)

pφ(z(2)m |ti(m)) = Exp(z(2)m − ti(m);λ)

We placed an inverse-Gamma prior with shape α = 1 and scale β = 1 on λ. We found

parameter estimation to be fairly insensitive to changes in the settings of this prior

distribution and so we used weakly-informative default values for α and β.

4.3.5.1.2 Train and Test Protocols We evaluated performance using a 10-fold

cross-validation procedure, where folds were formed at the session level. The strength

of the `2 regularizer was tuned to maximize instance-level F1 over a logarithmic grid

using a further 9-fold cross-validation on the training set. This procedure is equivalent

to assuming that some of the data has been labeled for tuning purposes. Predictions

were evaluated against the self-reported labels.

4.3.5.1.3 Experiments We compared semi-Markov CRF models trained in two

ways. First, we trained a semi-Markov CRF model based on a naive alignment defined

by mapping each augmented observation to the nearest instance (semi-NV). Second,

we trained a semi-Markov CRF model using the proposed weak supervision framework

applied to the augmented observations (semi-WS). To test these models under a

92

0 10 20 30 40 50 60
Noise std (minutes)

400

420

440

460

480

500

Sl
ee

p
pe

r d
ay

 (m
in

ut
es

) Ground
Annotations
semi-WS
semi-NV

Figure 4.8: This plot shows the average sleep per day predicted by both the semi-WS
and semi-NV models. Also shown is the average sleep per day in the true labels
(Ground) and the expected sleep per day in the noisy annotations (Annotations).

variety of noise conditions, we added different amounts of independent, exponentially

distributed noise to the observation timestamps and trained both models using these

augmented observations. The results from these experiments are shown in figure 4.7.

The plot shows how both models performed when trained and tested on observations

augmented with standard deviation λ = 0, 30, 60 minutes of temporal noise. While

small, the performance gap grows as the standard deviation of the observation noise

increases, indicating that semi-WS is better able to learn from temporally imprecise

labels.

This performance gap can be at least partially explained by looking at Figure 4.8.

This plot shows the average predicted sleep per day for the semi-WS and semi-NV

models. Also plotted is average sleep per day in the raw labels, approximately 392

minutes, and the average sleep per day with noise added. A model unaffected by

the added noise should predict around 392 minutes of sleep per day whereas a model

heavily effected by the added noise should predict an extra λ minutes of sleep per

day. While both models fall between these extremes, the semi-WS is much closer to

predicting the correct amount of sleep per day. This result supports the hypothesis

93

that the semi-NV model is learning to identify the periods around true sleep and

incorrectly predicts that they are also sleep.

4.3.5.2 Smoking detection

We evaluated the proposed framework’s ability to handle the types of imprecision

that arise in a laboratory setting using the puffMarker smoking dataset [56]. For

complete details on this dataset, see Section 2.3. Subjects were fitted with chest-worn

respiration monitors and wrist-worn actigraphy sensors and asked to smoke a cigarette

while an observer marked the occurrence of smoking puffs using a mobile phone app.

The respiration signal was discretized into a sequence of non-overlapping respiration

cycles (a single inhalation and exhalation) and the goal is to label each respiration

cycle as a smoking puff or not and segment the respiration cycles into periods of

smoking and non-smoking activities. The researchers visualized the respiration signal

and manually aligned the observation timestamps to the visualized signal. We treat

these manually aligned labels as ground truth for the purposes of evaluation, though

we acknowledge that there may be errors in the alignment process. All experiments

in this section used the real observation timestamps recorded during data collection

for weakly-supervised learning. We all respiration based-features, augmented using

the method described below.

4.3.5.2.1 Features We used all respiration based-features, augmented using the

method described below. Further, we extracted features from the actigraphy data

using the following procedure: Let ti be the timestamp of the maximum peak in

respiration cycle i. Extract a window beginning 8 seconds before ti and ending 1

second after ti and calculate as features the mean, max, min, standard deviation,

median, and five bin histogram of each channel’s signal within this window. The

actigraphy channels included were accelerometer x, y, and z, accelerometer magnitude,

gyroscope x, y, and z, gyroscope magnitude, and pitch and roll angles for a total of

94

100 actigraphy based features. Pitch and roll calculations using accelerometer data

are only valid when the hand is stationary, so these signals were filtered using the

procedure described in [56].

Respiration and actigraphy based features have very different properties as a func-

tion of time. Due in large part to the method we used to extract actigraphy based

features (described in Section 2.3), these features tend to be very smooth through

time, particularly as compared to the respiration features which are extracted from

non-overlapping windows. One effect of this differential in smoothness is that the

smooth noise model we propose in this section tends to over-emphasize temporally

smooth features at the expense of less smooth features when the two feature sets are

simply concatenated together into one long feature vector. To combat this effect, we

use the actigraphy features to augment the respiration features in a manner similar

to the filtering approach used in Saleheen et al. [56].

In particular, we used predictions ŷact from a logistic regression model trained

using only actigraphy features on a subset of instances with hand aligned labels

to augment the respiration features. The form of the resulting augmented feature

vectors is xaug = [ŷactxresp (1 − ŷact)xresp] where xresp is the vector containing only

respiration features. This augmentation can roughly be thought of as a hierarchical

model. A similar effect could be achieved by only including interaction effects between

the actigraphy features and the respiration features; however, this would result in

more than 10,000 features. The filtering approach can therefore also be thought of

as first doing a supervised compression of the actigraphy features and then doing a

polynomial basis expansion.

As stated, we assume that some number of hand-aligned labels are available for

training the the feature augmentation model. Here we consider the effect of the

amount of hand-aligned data on the end-to-end prediction performance of a model

learned using augmented features xaug. The experimental protocol varies the number

95

of sessions of fully labeled instances used to train the feature augmentation model.

For each number of sessions, the feature augmentation model is trained, and used to

produce the augmented feature vectors xaug. For the purpose of this evaluation, a

second-stage logistic regression model is then trained using the augmented features

xaug.

Three second-stage models are considered: (1) logistic regression trained using

hand-aligned labels (LR-HA), (2) logistic regression trained using a naive alignment

strategy where positive instance observations are mapped to the nearest instance

(LR-NV), and (3) the weakly supervised logistic regression model presented in 4.2

trained using the unaligned observation timestamps (LR-WS). In all cases, the results

shown are for a leave-one-session-out experimental protocol using hand-aligned labels

for testing. The results were averaged over three random seeds to account for the

random sampling of the sessions used to train the feature augmentation model.

The end-to-end performance of these models is shown in Figure 4.9. We found

that the relative performance of these models remains relatively stable as the subset

size changes. In particular, there is a difference of 0.03 in the F1 score when doubling

the number of sessions used to train the feature augmentation model from 10 to 20.

For all experiments in the remainder of this section, we used augmented features xaug

derived from a fully-labeled subset of the data consisting of 10 sessions as our instance

features for all models.

4.3.5.2.2 Model Our goal in the smoking detection problem is to label each

respiration cycle as smoking or non-smoking and to segment the input sequence into

periods of smoking and non-smoking; however, smoking detection differs from typical

segmentation problems in that a complete smoking activity contains a mix of smoking

puffs and non-smoking respiration cycles. Accordingly, we use the heterogeneous

segmentation (SEG) model described in Section 3.4 as our base model pθ(y|x). We

96

4 6 8 10 12 14 16 18 20
train obs. for filter model

0.0

0.2

0.4

0.6

0.8

1.0

In
s
ta

n
c
e
 F

1

LR-WS

LR-HA

LR-NV

Figure 4.9: The instance labeling performance of logistic regression based models as a
function of the number of fully-labeled sessions used to train the feature augmentation
model.

semi-CRF

HNS

HNS as semi-CRF

smoking

10 02

z(1)
mz

(2)
m0 z

(3)

m00

z(1)
m z

(2)
m0 z

(3)

m00

activities:
instances:

observations:

Figure 4.10: An illustration of the observation types used in the SEG-WS model. z(2)

and z(3) contain activity start and end observations respectively while z(1) contains
observations of smoking puffs within a smoking activity.

placed a zero-mean gaussian prior on the parameters of the SEG model (i.e. `2

regularization).

As seen in Figure 4.10, we included three types of observations. z(1) contains

observations associated with smoking puffs that are neither the first nor last in a

smoking activity. That is, z
(1)
m marks the start of a segment with label c > 1. z(2)

contains observations associated with the start of a smoking activity, or, in other

words, the start of a segment with label c = 1. Finally, z(3) contains observations

associated with the last smoking puff in a smoking activity, or, in other words, with

the start of a segment with label c = 0. We used the following Bernoulli distributions

for our observation indicator model pπ(o
(l)
i |y):

97

pπ(o
(1)
i = 1| i is the start of an inter-event span) = π

(1)
1

pπ(o
(2)
i = 1| i is the start of a smoking activity) = π

(2)
1

pπ(o
(3)
i = 1| i is the end of a smoking activity) = π

(2)
1

where π
(1)
1 , π

(2)
1 ∈ [0, 1]. The distributions over o

(2)
i and o

(3)
i share a parameter π(2),

which reflects the assumption that it is equally likely to miss an activity start ob-

servation as an activity end observation. For the observation timestamp density, we

used the following normal distribution:

pφ(z(l)m |ti(m)) = N (z(l)m ; ti(m) + µl, σ
2
l)

for l ∈ {1, 2, 3} where φ = {µ, σ}. We placed a Uniform(0, 1) prior on each π(l), a

standard normal prior on each µl, and an inverse-Gamma prior with shape α = 1

and scale β = 1 on each σ2
l . As in the sleep detection model, we found parameter

estimation to be insensitive to changes in the settings of these prior distributions, so

we chose default weakly-informative values. The only hyperparameter for this model

is the `2 regularization strength.

4.3.5.2.3 Train and Test Protocols We evaluated performance using a leave-

one-session-out cross-validation procedure. We tuned all `2 regularization strength

hyperparameters to maximize instance level F1 over a logarithmic grid using a further

nested leave-one-session-out evaluation on the training set. We evaluated predictions

against the hand-aligned labels.

4.3.5.2.4 Experiment 1 - Inference Pruning While the inference algorithm

described in Section 4.3.3 is at most quadratic in the size of each input, the overall run

time can be quite high, particularly for long sequences or models with a large segment

label set C, such as the SEG model for smoking detection. In order to improve infer-

98

350 250 150 50
101

102

103

Se
co

nd
s

Max seg. length
350 250 150 50

Max obs. distance (s)
no yes

Filtered

Figure 4.11: This figure shows the effect of changing the maximum segment length
with no observation depth pruning or filtering (left), the effect of changing the maxi-
mum observation distance with no filtering (center), and the further marginal effect of
filtering approximately 85% of instances (right). The maximum pruning configuration
results in a 40x speedup.

ence run times, we consider three strategies to prune the inference dynamic program.

First, we bound the maximum segment length, as described in section 3.6.1.

Second, we place a constraint on the maximum time between a true event and

an associated timestamp. This corresponds to using a truncated distribution for

pφ(zm|ti). The effect this has on the complexity of inference is more complex than

the effect of bounding the maximum inter-event segment length as the effect depends

on the timestamps of the input and observation sequences; however, given a max-

imum observation distance of r, we can upper bound the inference complexity by

O(|C|2LBM̃) where M̃ is the maximum number of observations that could be associ-

ated with a single instance or M̃ = maxi
∑

m I [ti − r ≤ zm ≤ ti + r]. In practice, the

average improvement in runtime is better than this because many instances are so far

from an observed timestamp that they could not have generated any observations.

Finally, we use a version of Bodenstab filtering (see Section 3.6.2). As our filter

function, we use the same logistic regression that we used to augment the respiration

features. Because this filter function is trained on ground truth labels, we can train it

prior to training the detection model and use it to improve inference speeds. Because,

this augmentation model is trained on temporally smooth features, it naturally tends

to give high-recall predictions, making it well suited for use as a filter model.

99

SEG-HA SEG-WS SEG-NV
0.4

0.5

0.6

0.7

0.8

0.9

F 1

Instance Labeling

SEG-HA SEG-WS SEG-NV
0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Segmentation

Figure 4.12: The left plot shows F1 score for all three models on the instance labeling
task. The right plot shows the accuracy for all three models on the segmentation
task. Error bars show one standard error.

To test the effect of these pruning strategies, we ran an ablation experiment to

assess the time required to run marginal inference in the SEG-WS model using dif-

ferent combinations of pruning techniques. First, we varied the maximum segment

length from 350 to 50. Next, with the maximum segment length fixed at 50, we

varied the maximum observation distance from 350 to 50. Finally with the maximum

segment length and maximum observation distance fixed at 50, we ran inference with

and without negative instance filtering. Figure 4.11 shows the run time in seconds for

each of these settings5. Using all pruning strategies, the runtime of marginal inference

is decreased from approximately 600 seconds to approximately 15 seconds, a 40 times

speedup. We use the maximum pruning settings for all remaining experiments in this

chapter.

4.3.5.2.5 Experiment 2 - Detection Performance We next evaluated the

ability of the proposed framework to learn the parameters of the base classifier from

imprecise lab data by comparing the SEG model trained in three different ways.

First, we trained the SEG model directly on the hand-aligned labels (SEG-HA). This

represents the gold standard performance that we would like to achieve. Second, we

5Runtime experiments were performed on a 2.8 GHz Intel Core i7 processor with 8GB of RAM
and the inference algorithm was coded in Cython.

100

trained the SEG model on labels generated by associating each observation timestamp

with the closest respiration cycle (SEG-NV). This represents the naive baseline and

we would expect our procedure to fall somewhere between SEG-HA and SEG-NV.

Third, we trained the SEG model using the weak supervision framework proposed

above (SEG-WS). Figure 4.12 shows the performance of all three models on the in-

stance labeling and segmentation tasks. The SEG-WS model performs approximately

as well as the SEG-HA model at both the instance labeling and segmentation tasks

while the SEG-NV model performs worse than either. A paired t-test indicates that

the improvement in SEG-WS results over SEG-NV results is statistically significant

in terms of both instance labeling and segmentation (p ≤ 0.05). These results indi-

cate that the proposed weak supervision framework is able to effectively learn from

imprecise observations that occur in the lab setting.

One interesting characteristic of the SEG-WS model is that it tends to predict

one or two contiguous segments, whereas the SEG-HA and SEG-NV models tend to

predict a more fragmented segmentation. One possible explanation for this behavior

is that while imprecision in the instance-level annotations means that the posterior

expectations of the instance-level feature functions will be a mixture of the features

from multiple nearby instances, the posterior expectations of the segment-level fea-

ture functions should be nearly the same as the ground truth values for these feature

functions. For example, the exact location of the positive instances does not effect

the number of such instances. Therefore, if the observation indicator distribution is

peaked and there are not many missing or spurious observations, then the posterior

expectation of the number of positives in an activity should be very close to the true

value. This results in a stronger learning signal for the segment-level parameters

than for instance-level parameters. This suggests that including segmentation-level

features in the model may improve performance in settings with imprecise observa-

tions beyond the improvements we get in settings with ground truth observations.

101

4.4 Combining Imprecise Annotations and Wearable Sensors

Mobile sensors and self-report are not mutually exclusive study techniques. A

combination of the two techniques has the potential to outperform either technique

alone. While some studies have combined the two, to the best of our knowledge, cur-

rent methods for synthesizing these two types of observations are ad hoc and domain

specific (e.g. [48]). In this section, we address this problem by performing posterior

inference in the weak supervision framework presented in the previous section, obvi-

ating the need for ad hoc solutions. We show that explicitly modeling the observation

process leads to improved performance over treating test-time observations as ground

truth.

4.4.1 MAP Inference

Our goal in this section is to combine continuous time observations, such as self-

reported activities, with wearable sensor input to infer behaviors. That is, we would

like to infer the most likely label structure y given x, t, and z. To do this, we perform

full maximum a posteriori (MAP) inference over both y and o

y∗,o∗ = arg max
y,o

pω(y,o|z,x, t) (4.28)

= arg max
y,o

pω(z,y,o|x, t) (4.29)

The dynamic program presented in Section 4.3.3 to calculate the marginal likelihood

can be used to perform MAP inference by swapping summation over y and o for

maximization and using backtracking to recover y∗ and o∗ with no change in the

computational complexity. This modified dynamic program is shown in Figure 4.13.

The main dynamic programming table α has the interpretation that an entry in

this table α(k, c,m) is the unnormalized posterior probability of the MAP segmenta-

tion and observation indicator sequence given the input and timestamp subsequences

x1:k and t1:k and the observation timestamp subsequence z1:m given that the final

102

1: for k = 1, ..., L do
2: for c ∈ C do
3: for m = 0, ...,M do
4: for c′ ∈ C do
5: β(j, k, c, c′,m)← maxo α(k − 1, c′,m− o) pπ(o|(c, k, k), c′, k) pφ(zm|tk)o
6: for j = 1, ..., k − 1 do
7: β(j, k, c, c′,m)← maxo β(j, k−1, c′,m−o)pπ(o|(c, j, k), c′, k)pφ(zm|tk)o

8: α(k, c,m)← maxj maxc′ exp(〈θ, f((c, j, k), c′,x)〉)β(j, k, c′,m)

9: Return α

Figure 4.13: The dynamic program for calculating the unnormalized probability of
MAP assignment to o and y in the proposed framework.

segment in the MAP segmentation of this subsequence has the label c. Given this

interpretation, the unnormalized posterior probability y∗ and o∗ can be calculated as

p(y∗,o∗|z,x, t) ∝ maxc α(L, c,M)

4.4.2 Experiments

We evaluated this method on the sleep detection and smoking detection problems

using the extrasensory and puffMarker datasets. We used the features, models, and

train/test protocols presented in Sections 4.3.5.1 and 4.3.5.2. The key difference

between the experiments in this section and those in Section 4.3.5 is that for each

test session n, all methods are given access to the observations for that session, zn. In

this context, the naive alignment strategy maps segment transition observations to the

nearest instance and treats them as ground truth, finding the MAP segmentation that

agrees with the naively aligned observations. We tested all models when given either

all activity start observations (Start), all activity end observations (End), neither

(None), or both (Start+End) at test time. This simulates different plausible self-

report scenarios where subjects only give partial information.

4.4.2.0.1 Experiment 1 - Sleep Detection As in 4.3.5.1, we trained semi-NV

and semi-WS using observations with different amounts of added exponential noise.

103

Start+End Start End None
= 0

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Start+End Start End None
= 30

Start+End Start End None
= 60

semi-WS
semi-NV

Figure 4.14: Performance for the semi-WS and semi-NV models on the sleep detection
problem when trained on data with Exp(λ) distributed noise (measured in minutes)
added to the observation timestamps. Each plot shows the performance of both
models when conditioned on all segment start observations (Start), all segment end
observations (End), neither (None), or both (Start+End) at test time.

In this experiment, observations for the test sessions were modified with the same

amount of noise. The results from these experiments are shown in figure 4.14. The

plot shows how both models performed when trained and tested on observations

augmented with standard deviation λ = 0, 30, 60 minutes of temporal noise. Within

each plot, the performance for each model when conditioned on different amounts

of information is shown. In all but one case, semi-WS outperforms semi-NV. The

performance gap grows as the standard deviation of the observation noise increases

and as the amount of information conditioned on grows indicating that using an

explicit observation model is useful when incorporating imprecise observations. In

many cases semi-NV model is able to explain the test-time observations by inserting

a short positive or negative segment and leaving the rest of the predicted segmentation

unchanged. The semi-WS model, on the other hand, tends to explain observations

by shortening or lengthening segments in the unconditioned prediction resulting in

more substantive incorporation of the observations and higher prediction accuracy.

4.4.2.0.2 Experiment 2 - Smoking Detection We evaluated the ability of the

SEG-WS model to combine sensor data with timestamp observations at test time. In

these experiments, we are conditioning only on the activity start and end observations

104

Start+End Start End None
0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

SEG-HA
SEG-WS
SEG-NV

100 101 102

Noise standard deviation (s)

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Start+end
Start
End

Figure 4.15: The left plot shows the segmentation accuracy when all three SEG mod-
els are conditioned on combinations of observations (segment start, segment end or
both). The right plot shows the performance of the SEG-WS model when condi-
tioned on segment observations with different amounts of synthetic noise added to
the observation sequence. The dashed line shows the segmentation accuracy of the
SEG-WS model when conditioned on no observations (None) and the solid black line
shows the empirical standard deviation of the timestamp noise in the data, which
reflects what SEG-WS was trained on.

z(2) and z(3) at test time and not the internal smoking puff observations z(1). The

results are shown in Figure 4.15 (left). Unlike in the sleep detection experiments,

all imprecision present in these observations was real and all evaluations were made

against carefully hand aligned labels. While conditioning on segment observations

results in improvements for all three models, these gains are much larger for the SEG-

WS model. In particular, conditioning on both the segment start and end timestamps

results in a 6% error reduction for the SEG-HA model and a 16% error reduction for

the SEG-NV model. Conditioning on the same information results in an 89% error

reduction for the SEG-WS model.

The reason for this gap in performance when conditioning on observations becomes

clear when we recall from Section 4.3.5.2 that the SEG-WS model tends to predict

long, contiguous smoking activities whereas the SEG-HA and SEG-NV tend to predict

fragmented short fragmented activities. When conditioning on a particular split-

point, the SEG-HA and SEG-NV models can simply adjust one of the many small

segments to match this split point and leave the rest unchanged. The SEG-WS

105

model, on the other hand, must adjust the single predicted activity to explain the

observations resulting in near perfect predictions.

In general, we cannot expect the noise we observe in the field to look like the noise

we observe in the lab, therefore it is valuable to know how sensitive the SEG-WS model

is to the correctness of the observation timestamp model. To test this, we trained

the SEG-WS model on the real imprecise observations, but tested using synthetic

observation timestamps drawn from a normal distribution centered at the true activity

start or end. We varied the standard deviation of the synthetic noise distribution to

see how performance degrades as the test time noise distribution grows further from

the train time noise distribution. The results of this experiment are shown in 4.15

(right) where the x-axis is the standard deviation of the synthetic noise distribution.

The results show that the SEG-WS model can successfully incorporate observations

with up to an order of magnitude more noise than was observed at train time. As

expected, adding sufficient noise to the observations eventually causes performance to

degrade; however, even with large amounts of noise, posterior segmentation accuracy

plateaus between 0.6 and 0.7 compared to an accuracy of approximately 0.8 when

not conditioning on any observations.

4.5 Discussion

In this chapter, we presented a framework for learning independent and structured

detection models from temporally imprecise annotations. To motivate this framework,

we focused on the case where all training data comes from a single source, however

one interesting use case for the proposed framework is to allow models to be trained

on data from multiple sources. For example, suppose we had a limited set of data

gathered in the lab with precise annotations and a larger set of data gathered in

the field with self-reported annotations. The proposed framework allows us to learn

a shared base classifier by instantiating a separate observation model for each data

106

source. It is similarly trivial to incorporate data for which the true label structure

is observed. In this case, the learning objective looks like standard semi-supervised

learning objectives where for some instances we are maximizing pθ(y|x, t) and for

others we are maximizing pθ(z|x, t). Combining data in this way, we can use field

data to ensure external validity while still leveraging the high-quality data gathered

in the lab.

The proposed framework has a few of important limitations that suggest future

research directions. The first limitation is the need to specify and validate an ob-

servation model. While specifying an observation model may seem no more difficult

than specifying any other piece of a model, validating such a model requires knowing

the ground true label structure for some subset of sessions. In the self-report setting,

for example, this may be achieved by having some subjects wear a second, higher-

quality sensor, but at very least, this complicates the study design. This is a general

problem for weakly supervised learning frameworks that treat the true label variable

as a latent variable.

A second limitation is multimodality of the marginal likelihood. Analysis suggests

that the posterior distribution over the parameters in this model is bimodal. In one of

the modes, the model treats all observations as false positives and in the other it treats

most of the observations a true positives. We were able to avoid the undesirable mode

by pre-training the model with a deterministic observation indicator distribution;

however, two questions remain for future work. First, while analysis of simple versions

of the model suggests that using a deterministic observation indicator distribution,

a log-linear base classifier, and a normal observation timestamp distribution results

in a unimodal likelihood, this remains to be proved in general. Second, it remains

to be shown whether the likelihood with a non-deterministic observation indicator

distribution has only two modes, as it appears.

107

A final limitation is that the complexity of inference scales exponentially in the

number of types of observations (see section 4.3.4). One possible alternative to this ap-

proach is to associate each individual observation with a type such that zm = (tm, lm)

where tm is the observation timestamp and lm is the observation type. oi is now

a categorical variable indicating not only whether an instance is associated with an

observation, but also which type of observation. In the stochastic processes literature,

this is referred to as a marked point process (e.g. [58]). The complexity of inference

in this case is O(|C|L2
∑

lM
(l)) where M (l) is the number of observations of type l;

however, observations of different types must now obey the ordering assumption (as-

sumption 1). When applied to multiple observation types, this assumption implies,

for example, that a subject will never report two different types of activities out of

order. Relaxing this assumption in cases with multiple observation types remains a

problem for future work.

108

CHAPTER 5

CONCLUSIONS

In this thesis, we addressed a number of practically motivated problems in mHealth

activity detection using machine learning methods. First, we presented a class of

conditional random field models for heterogeneous segmentation. We applied this

model class to three different mHealth detection problems and showed across-the-

board improvements in prediction performance compared to the types of models that

are typically used in mHealth settings. Second, we explored two strategies for prun-

ing the dynamic programs used for inference in segmentation models. We showed

that static pruning strategies can be applied to achieve linear improvements in infer-

ence runtime. Further, we used a learned pruning strategy, originally developed for

parsing, to achieve a two orders of magnitude improvement in inference complexity

on a smoking detection problem. Finally, we introduced a new weakly supervised

learning problem in which supervision for discrete-time detection models is provided

in the form of imprecise continuous-time annotations. We proposed a weakly su-

pervised learning framework to address this problem and applied it to independent

classification and segmentation models, demonstrating improvements over automatic

alignment strategies.

While specific limitations and directions for future work were discussed in Sec-

tions 3.7 and 4.5, there are a few broader research directions that deserve further

discussion. One important set of techniques that we did not discuss in this thesis is

neural networks. Our primary goal in Chapter 3 was to model activity-level features.

We did this using CRF-based structured prediction, however, an alternative would

109

have been to use a recurrent neural network to learn long-range dependencies be-

tween instances. In other fields, such as natural language processing, we have seen a

progression from structured prediction based on graphical models to neural networks

(e.g. [9]). Neural networks have the flexibility to learn structure directly from data;

however, learning that structure typically requires more data than fine tuning the pa-

rameters in a heavily constrained CRF model. In many mHealth detection problems,

we must learn to identify activities with fewer than 20 examples, which is generally

not enough to learn long-range dependencies.

An alternative application of neural networks to the activity detection problem is

to use them to learn instance-level features. Such networks could be used in place of

hand-derived features, which may fail to generalize across target activities, discretiza-

tion methods, or sensing modalities. While we may only have 20 complete activities

to use for model training, these activities are typically comprised of hundreds to thou-

sands of individual instances, making the prospect of learning a flexible neural model

much better. We view this application of neural networks as orthogonal to the work

in this thesis and as a promising direction for future research. For example, one could

integrate neural networks into the models described in Chapter 3 by replacing the

instance-level feature functions with neural networks. Similarly, the weak supervision

framework presented in Section 4.2 can be used to learn any classier with proba-

bilistic outputs which includes both feed-forward and recurrent neural networks with

sigmoid output layers. A particularly interesting direction along these lines is to use

the raw sensor signal as input to these instance-level networks. This approach may

obviate the need for domain specific features, but may also necessitate novel network

architectures to efficiently work with high-resolution signals.

An important limitation of the work presented in this thesis is that we focus

almost entirely on global models of behavior. The characteristics of behavior vary

widely among people and capturing these differences in personalized models may

110

prove crucial to improving detection performance. Limited data quantities make

evaluating such techniques difficult; however, data from large scale studies, such as

the All of Us1 study, and techniques to learn from data gathered in the field, such as

the methods presented in Chapter 4, can help us to overcome this obstacle. There

are a number of possible approaches to this problem including adaptation of methods

from multi-task and online learning. With sufficient data, models may be even further

personalized to include contextual and temporal information. For example, in the

ECG morphology extraction problem, we modeled the duration between peaks of

different types. These durations vary between subjects and within a single subject’s

data depending on what activities the subject is performing. One can imagine a

model that uses an auxiliary sensor to recognize when a person is sitting and adjusts

the ECG morphology model accordingly.

1https://allofus.nih.gov/

111

https://allofus.nih.gov/

BIBLIOGRAPHY

[1] Amin Ahsan Ali, Syed Monowar Hossain, Karen Hovsepian, Md Mahbubur Rah-
man, Kurt Plarre, and Santosh Kumar. mPuff: automated detection of cigarette
smoking puffs from respiration measurements. In Proceedings of the 11th interna-
tional conference on Information Processing in Sensor Networks, pages 269–280.
ACM, 2012.

[2] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vec-
tor machines for multiple-instance learning. In Advances in neural information
processing systems, pages 561–568, 2002.

[3] Rummana Bari, Roy J Adams, Md Mahbubur Rahman, Megan Battles Parsons,
Eugene H Buder, and Santosh Kumar. rconverse: Moment by moment conver-
sation detection using a mobile respiration sensor. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1):2, 2018.

[4] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey.
arXiv preprint arXiv:1502.05767, 2015.

[5] Nathan Bodenstab, Aaron Dunlop, Keith Hall, and Brian Roark. Beam-width
prediction for efficient context-free parsing. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 440–449. Association for Computational Linguis-
tics, 2011.

[6] Lora E Burke, Jing Wang, and Mary Ann Sevick. Self-monitoring in weight
loss: a systematic review of the literature. Journal of the American Dietetic
Association, 111(1):92–102, 2011.

[7] Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain
Gagnon. Multiple instance learning: A survey of problem characteristics and
applications. Pattern Recognition, 2017.

[8] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien, et al. Semi-supervised
learning. 2006.

[9] Danqi Chen and Christopher Manning. A fast and accurate dependency parser
using neural networks. In Proceedings of the 2014 conference on empirical meth-
ods in natural language processing (EMNLP), pages 740–750, 2014.

112

[10] Noam Chomsky. On certain formal properties of grammars. Information and
control, 2(2):137–167, 1959.

[11] Ross DeVol, Armen Bedroussian, Anita Charuworn, Anusuya Chatterjee, In Kyu
Kim, Soojung Kim, and Kevin Klowden. An unhealthy america: The economic
burden of chronic disease. 2007.

[12] Justin Domke. Learning graphical model parameters with approximate marginal
inference. IEEE transactions on pattern analysis and machine intelligence, 35
(10):2454–2467, 2013.

[13] Mark Dredze, Partha Pratim Talukdar, and Koby Crammer. Sequence learn-
ing from data with multiple labels. In Proceedings of the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases Workshop on Learning from Multi-Label Data, page 39, 2009.

[14] Benôıt Frénay and Michel Verleysen. Classification in the presence of label noise:
a survey. IEEE transactions on neural networks and learning systems, 25(5):845–
869, 2014.

[15] Aritra Ghosh, Naresh Manwani, and PS Sastry. Making risk minimization tol-
erant to label noise. Neurocomputing, 160:93–107, 2015.

[16] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under
label noise for deep neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 1919–1925, 2017.

[17] Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pages 6645–6649. IEEE,
2013.

[18] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.
Connectionist temporal classification: labelling unsegmented sequence data with
recurrent neural networks. In Proceedings of the International Conference on
Machine Learning, pages 369–376. ACM, 2006.

[19] Samuel S Gross, Olga Russakovsky, Chuong B Do, and Serafim Batzoglou. Train-
ing conditional random fields for maximum labelwise accuracy. In Advances in
Neural Information Processing Systems, pages 529–536, 2007.

[20] Xinze Guan, Raviv Raich, and Weng-Keen Wong. Efficient multi-instance learn-
ing for activity recognition from time series data using an auto-regressive hid-
den markov model. In Proceedings of the International Conference on Machine
Learning, pages 2330–2339, 2016.

[21] Jerónimo Hernández-González, Iñaki Inza, and Jose A Lozano. Learning bayesian
network classifiers from label proportions. Pattern Recognition, 46(12):3425–
3440, 2013.

113

[22] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[23] David W Hosmer Jr and Stanley Lemeshow. Applied logistic regression. John
Wiley & Sons, 2004.

[24] Rong Jin and Zoubin Ghahramani. Learning with multiple labels. In Advances
in neural information processing systems, pages 897–904, 2002.

[25] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[26] Hema Koppula and Ashutosh Saxena. Learning spatio-temporal structure from
rgb-d videos for human activity detection and anticipation. In Proceedings of the
International Conference on Machine Learning, pages 792–800, 2013.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[28] Santosh Kumar, Wendy Nilsen, Misha Pavel, and Mani Srivastava. Mobile
health: Revolutionizing healthcare through transdisciplinary research. Com-
puter, (1):28–35, 2013.

[29] Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher.
Block-coordinate frank-wolfe optimization for structural svms. arXiv preprint
arXiv:1207.4747, 2012.

[30] John Lafferty, Andrew McCallum, and Fernando C N Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence data. 2001.

[31] Karim Lari and Steve J Young. The estimation of stochastic context-free gram-
mars using the inside-outside algorithm. Computer speech & language, 4(1):
35–56, 1990.

[32] Sungyoung Lee, Hung Xuan Le, Hung Quoc Ngo, Hyoung Il Kim, Man-
hyung Han, Young-Koo Lee, et al. Semi-markov conditional random fields for
accelerometer-based activity recognition. Applied Intelligence, 35(2):226–241,
2011.

[33] Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples using
weighted logistic regression. In Proceedings of the International Conference on
Machine Learning, volume 3, pages 448–455, 2003.

[34] Lin Liao, Dieter Fox, and Henry Kautz. Extracting places and activities from gps
traces using hierarchical conditional random fields. The International Journal of
Robotics Research, 26(1):119–134, 2007.

114

[35] Gideon S Mann and Andrew McCallum. Generalized expectation criteria for
semi-supervised learning with weakly labeled data. Journal of machine learning
research, 11(Feb):955–984, 2010.

[36] Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learn-
ing. Advances in neural information processing systems, pages 570–576, 1998.

[37] J Michael McGinnis, Pamela Williams-Russo, and James R Knickman. The case
for more active policy attention to health promotion. Health affairs, 21(2):78–93,
2002.

[38] Christopher Merck, Christina Maher, Mark Mirtchouk, Min Zheng, Yuxiao
Huang, and Samantha Kleinberg. Multimodality sensing for eating recognition.
In Proceedings of the 10th EAI International Conference on Pervasive Computing
Technologies for Healthcare, pages 130–137, 2016.

[39] Volodymyr Mnih and Geoffrey E Hinton. Learning to label aerial images from
noisy data. In Proceedings of the International Conference on Machine Learning,
pages 567–574, 2012.

[40] Ali H Mokdad, James S Marks, Donna F Stroup, and Julie L Gerberding. Actual
causes of death in the united states, 2000. Jama, 291(10):1238–1245, 2004.

[41] Andreas C. Müller and Sven Behnke. pystruct - learning structured prediction
in python. Journal of Machine Learning Research, 15:2055–2060, 2014.

[42] Inbal Nahum-Shani, Shawna N Smith, Bonnie J Spring, Linda M Collins, Katie
Witkiewitz, Ambuj Tewari, and Susan A Murphy. Just-in-time adaptive inter-
ventions (jitais) in mobile health: Key components and design principles for
ongoing health behavior support. Annals of Behavioral Medicine, pages 1–17,
2016.

[43] Annamalai Natarajan, Edward Gaiser, Gustavo Angarita, Robert Malison,
Deepak Ganesan, and Benjamin Marlin. Conditional random fields for morpho-
logical analysis of wireless ecg signals. In Proceedings of the 5th ACM Conference
on Bioinformatics, Computational Biology, and Health Informatics, pages 370–
379. ACM, 2014.

[44] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo, 2(11), 2011.

[45] David F Nettleton, Albert Orriols-Puig, and Albert Fornells. A study of the
effect of different types of noise on the precision of supervised learning techniques.
Artificial intelligence review, 33(4):275–306, 2010.

[46] Daniel Olgúın and Alex Pentland. Assessing group performance from collec-
tive behavior. In Proceedings of the ACM conference on Computer-Supported
Cooperative Work and Social Computing, 2010.

115

[47] Abhinav Parate, Meng-Chieh Chiu, Chaniel Chadowitz, Deepak Ganesan, and
Evangelos Kalogerakis. RisQ: recognizing smoking gestures with inertial sensors
on a wristband. In Proceedings of the 12th annual international conference on
Mobile systems, applications, and services, pages 149–161. ACM, 2014.

[48] Sanjay R Patel, Jia Weng, Michael Rueschman, Katherine A Dudley, Jose S
Loredo, Yasmin Mossavar-Rahmani, Maricelle Ramirez, Alberto R Ramos,
Kathryn Reid, Ashley N Seiger, et al. Reproducibility of a standardized actigra-
phy scoring algorithm for sleep in a us hispanic/latino population. Sleep, 38(9):
1497–1503, 2015.

[49] Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Constrained convolu-
tional neural networks for weakly supervised segmentation. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1796–1804, 2015.

[50] Christine A Pellegrini, Jeremy Steglitz, Winter Johnston, Jennifer Warnick,
Tiara Adams, HG McFadden, Juned Siddique, Donald Hedeker, and Bonnie
Spring. Design and protocol of a randomized multiple behavior change trial:
Make better choices 2 (mbc2). Contemporary clinical trials, 41:85–92, 2015.

[51] Novi Quadrianto, Alex J Smola, Tiberio S Caetano, and Quoc V Le. Estimating
labels from label proportions. Journal of Machine Learning Research, pages
2349–2374, 2009.

[52] Ariadna Quattoni, Sybor Wang, Louis-Philippe Morency, Michael Collins, and
Trevor Darrell. Hidden conditional random fields. IEEE Trans. Pattern Anal.
Mach. Intell., 29(10):1848–1852, 2007.

[53] Vikas C Raykar, Shipeng Yu, Linda H Zhao, Anna Jerebko, Charles Florin,
Gerardo Hermosillo Valadez, Luca Bogoni, and Linda Moy. Supervised learning
from multiple experts: whom to trust when everyone lies a bit. In Proceedings of
the International Conference on Machine Learning, pages 889–896. ACM, 2009.

[54] Jordan Reynolds and Kevin Murphy. Figure-ground segmentation using a hierar-
chical conditional random field. In Computer and Robot Vision, pages 175–182.
IEEE, 2007.

[55] Akira Saito, Yoshihiko Nankaku, Akinobu Lee, and Keiichi Tokuda. Voice ac-
tivity detection based on conditional random fields using multiple features. In
Eleventh Annual Conference of the International Speech Communication Asso-
ciation, 2010.

[56] Nazir Saleheen, Amin Ahsan Ali, Syed Monowar Hossain, Hillol Sarker, Soujanya
Chatterjee, Benjamin Marlin, Emre Ertin, Mustafa Al’Absi, and Santosh Kumar.
puffMarker: A Multi-sensor Approach for Pinpointing the Timing of First Lapse
in Smoking Cessation. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pages 999–1010, 2015.

116

[57] Sunita Sarawagi and William W Cohen. Semi-markov conditional random fields
for information extraction. In Advances in Neural Information Processing Sys-
tems, pages 1185–1192, 2004.

[58] Peter Schulam and Suchi Saria. Reliable decision support using counterfactual
models. In Advances in Neural Information Processing Systems, pages 1697–
1708, 2017.

[59] Alexander Schwing, Tamir Hazan, Marc Pollefeys, and Raquel Urtasun. Efficient
structured prediction with latent variables for general graphical models. arXiv
preprint arXiv:1206.6436, 2012.

[60] Burr Settles. Active learning literature survey. University of Wisconsin, Madison,
52(55-66):11, 2010.

[61] Qinfeng Shi, Li Cheng, Li Wang, and Alex Smola. Human action segmentation
and recognition using discriminative semi-markov models. International journal
of computer vision, 93(1):22–32, 2011.

[62] Saul Shiffman, Arthur A Stone, and Michael R Hufford. Ecological momentary
assessment. Annual Review of Clinical Psychology, 4:1–32, 2008.

[63] Hyun Oh Song, Ross B Girshick, Stefanie Jegelka, Julien Mairal, Zaid Harchaoui,
Trevor Darrell, et al. On learning to localize objects with minimal supervision. In
Proceedings of the International Conference on Machine Learning, pages 1611–
1619, 2014.

[64] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. Unstructured
human activity detection from rgbd images. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 842–849. IEEE, 2012.

[65] Charles Sutton and Andrew McCallum. Conditional probabilistic context-free
grammars. PhD thesis, Citeseer, 2004.

[66] Kevin Tang, Li Fei-Fei, and Daphne Koller. Learning latent temporal structure
for complex event detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1250–1257. IEEE, 2012.

[67] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks.
Advances in neural information processing systems, 16:25, 2004.

[68] Edison Thomaz, Irfan Essa, and Gregory D Abowd. A Practical Approach for
Recognizing Eating Moments with Wrist-mounted Inertial Sensing. In Proceed-
ings of the 2015 ACM International Joint Conference on Pervasive and Ubiqui-
tous Computing, pages 1029–1040. ACM, 2015.

[69] Jaree Thongkam, Guandong Xu, Yanchun Zhang, and Fuchun Huang. Support
vector machine for outlier detection in breast cancer survivability prediction. In
Asia-Pacific Web Conference, pages 99–109. Springer, 2008.

117

[70] Bill Triggs and Jakob J Verbeek. Scene segmentation with conditional random
fields learned from partially labeled images. In Advances in Neural Information
Processing Systems, pages 1553–1560, 2008.

[71] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Al-
tun. Large margin methods for structured and interdependent output variables.
In Journal of Machine Learning Research, pages 1453–1484, 2005.

[72] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Al-
tun. Large margin methods for structured and interdependent output variables.
In Journal of Machine Learning Research, pages 1453–1484, 2005.

[73] Arash Vahdat. Toward robustness against label noise in training deep discrimi-
native neural networks. In Advances in Neural Information Processing Systems,
pages 5601–5610, 2017.

[74] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. Recognizing detailed
human context in the wild from smartphones and smartwatches. IEEE Pervasive
Computing, 16(4):62–74, 2017.

[75] TLM Van Kasteren, Gwenn Englebienne, and Ben JA Kröse. Activity recognition
using semi-markov models on real world smart home datasets. Journal of ambient
intelligence and smart environments, 2(3):311–325, 2010.

[76] Sofie Verbaeten and Anneleen Van Assche. Ensemble methods for noise elimina-
tion in classification problems. In International Workshop on Multiple Classifier
Systems, pages 317–325. Springer, 2003.

[77] Alexander Vezhnevets, Vittorio Ferrari, and Joachim M Buhmann. Weakly su-
pervised structured output learning for semantic segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 845–
852. IEEE, 2012.

[78] Tim Vieira and Jason Eisner. Learning to prune: Exploring the frontier of
fast and accurate parsing. Transactions of the Association for Computational
Linguistics, 5:263–278, 2017.

[79] Andrew Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE transactions on Information Theory, 13(2):
260–269, 1967.

[80] Benjamin N Waber, Daniel Olguin Olguin, Taemie Kim, and Alex Pentland.
Productivity through coffee breaks: Changing social networks by changing break
structure. 2010.

[81] David J Weiss and Benjamin Taskar. Structured prediction cascades. In Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics,
pages 916–923, 2010.

118

[82] D Randall Wilson and Tony R Martinez. Instance pruning techniques. In Pro-
ceedings of the International Conference on Machine Learning, volume 97, pages
403–411, 1997.

[83] Yan Yan, Rómer Rosales, Glenn Fung, Mark W Schmidt, Gerardo Hermosillo
Valadez, Luca Bogoni, Linda Moy, and Jennifer G Dy. Modeling annotator
expertise: Learning when everybody knows a bit of something. In Proceedings
of the International Conference on Artificial Intelligence and Statistics, pages
932–939, 2010.

[84] Jun Yu, Weng-Keen Wong, and Rebecca A Hutchinson. Modeling experts and
novices in citizen science data for species distribution modeling. In Proceedings
of the IEEE International Conference on Data Mining, pages 1157–1162. IEEE,
2010.

[85] Jian Zhang and Yiming Yang. Robustness of regularized linear classification
methods in text categorization. In Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval,
pages 190–197. ACM, 2003.

[86] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National
Science Review, 2017.

[87] Ji Zhu and Trevor Hastie. Kernel logistic regression and the import vector ma-
chine. In Advances in neural information processing systems, pages 1081–1088,
2001.

119

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2018

	Machine Learning Methods for Activity Detection in Wearable Sensor Data Streams
	Roy Adams
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Problem Definition and Notation
	Contributions
	Outline

	Background and Related Work
	Structured Prediction
	Conditional Random Fields
	Inference in CRFs

	Standard CRFs
	Linear Chain CRFs
	Semi-Markov CRFs
	Context Free Grammar CRFs

	Learning in CRFs
	Maximum Likelihood Learning
	Maximum Margin Learning

	Structured Prediction in mHealth

	Weakly Supervised Learning
	Weakly Supervised Learning in Independent Models
	Weak Supervision in Structured Models

	Datasets
	mPuff (ali2012mpuff)
	puffMarker (saleheen-ubicomp2015)
	Extrasensory (vaizman2017recognizing)
	rConverse (bari2018rconverse)
	ECGmorph (natarajan2014conditional)
	eatingMoments (thomaz-ubicomp2015)
	RisQ (parate2014risq)

	Structured Prediction Models for Heterogeneous mHealth Segmentation
	Notation
	Heterogeneous Segmentation
	Inference

	Conversation Detection
	Model
	Experiments
	Models
	Train and Test Procedures
	Experiment: Speech Detection

	Eating and Smoking Detection
	Model
	Experiments
	Baseline Models
	Train and Test Procedures
	Experiment 1: Synthetic Data
	Experiment 2: Real Data

	Electrocardiogram Morphology Extraction
	Model
	Experiments
	Models
	Train and Test Procedures
	Experiment: Peak Labeling

	Improving Inference Times in Segmentation Models
	Static Pruning
	Learning to Prune
	Pruned MAP Inference
	Learning the Pruning Function
	Experiments

	Discussion

	Learning Event Detection Models from Temporally Imprecise Labels
	Notation
	Independent Classification Models
	Weak Supervision Framework
	Learning
	Inference
	Experiments
	Datasets
	Models
	Train and Test Procedures
	Experiment 1: Performance Under Varying Noise Conditions
	Experiment 2: Performance on Real Timestamps

	Segmentation Models
	Model
	Learning
	Inference
	Multiple Observation Types
	Experiments
	Sleep detection
	Smoking detection

	Combining Imprecise Annotations and Wearable Sensors
	MAP Inference
	Experiments

	Discussion

	Conclusions
	Bibliography

