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ABSTRACT

DETECTING ANOMALOUSLY SIMILAR ENTITIES
IN UNLABELED DATA

SEPTEMBER 2016

LISA D. FRIEDLAND

A.B., HARVARD UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David D. Jensen

In this work, the goal is to detect closely-linked entities within a data set. The entities

of interest have a tie causing them to be similar, such as a shared origin or a channel of

influence. Given a collection of people or other entities with their attributes or behavior,

we identify unusually similar pairs, and we pose the question: Are these two people linked,

or can their similarity be explained by chance?

Computing similarities is a core operation in many domains, but two constraints dif-

ferentiate our version of the problem. First, the score assigned to a pair should account

for the probability of a coincidental match. Second, no training data is provided; we must

learn about the system from the unlabeled data and make reasonable assumptions about

the linked pairs. This problem has applications to social network analysis, where it can

be valuable to identify implicit relationships among people from indicators of coordinated

activity. It also arises in situations where we must decide whether two similar observations

correspond to two different entities or to the same entity observed twice.

vi



This dissertation explores how to assess such ties and, in particular, how the similarity

scores should depend on not only the two entities in question but also properties of the entire

data set. We develop scoring functions that incorporate both the similarity and rarity of

a pair. Then, using these functions, we investigate the statistical power of a data set to

reveal (or conceal) such pairs.

In the dissertation, we develop generative models of linked pairs and independent entities

and use them to derive scoring functions for pairs in three different domains: people with

job histories, Gaussian-distributed points in Euclidean space, and people (or entities) in a

bipartite affiliation graph. For the first, we present a case study in fraud detection that

highlights the potential, as well as the complexities, of using these methods to address real-

world problems. In the latter two domains, we develop an inference framework to estimate

whether two entities were more likely generated independently or as a pair. In these settings,

we analyze how the scoring function works in terms of similarity and rarity; how well it

can detect pairs as a function of the data set; and how it differs from existing similarity

functions when applied to real data.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In this thesis, we consider a problem that has appeared in many variations but surpris-

ingly, has not previously been described abstractly. Suppose we have a collection of objects

or people in which most entities are generated independently, while a small number are

generated in dependent pairs. The paired entities closely resemble each other, but they are

otherwise unremarkable. We wish to identify these pairs.

This problem is interesting to study because it can represent diverse scenarios; for exam-

ple, the paired entities could be people who shop together, bots online that spam together,

or database records that describe the same object. To identify such pairs within the collec-

tion, we might start by noting some candidate pairs that are unusually similar in attributes

or behavior. For each candidate, either the entities were generated independently—so their

similarity is due to coincidence—or they were generated dependently—that is, their simi-

larity is due to an unobserved tie. A central question in this thesis is how to estimate the

probability that such a tie (or “link”) exists, given the two entities and the rest of the data

set. We assume that we have unlabeled data, that we wish to identify the pairs (or small

groups) of linked entities by assigning them probability scores, and that we want the scores

to account for whether the similarity could have arisen by chance. We call this problem the

detection of Anomalously Similar Objects in UNlabeled Data, or (detecting) ASOUND.

In the thesis, we look closely at ASOUND in three domains, with a focus on the scoring

functions for candidate pairs. The first piece of research is a real-world case study in fraud

detection that serves as an introduction to the task. For the latter two, starting from the

abstract problem statement, we construct generative models, derive scoring methods, and

validate them on real and synthetic data. The work culminates in a set of interpretable

methods for inferring latent ties among nodes in a bipartite graph or among binary vectors.
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The methods are based on likelihood ratios, they adjust for the rarity of shared elements,

and they are applicable to a wide range of problems.

In parallel, we investigate a higher-level story regarding pair detection. Many well-

established areas of research, such as entity resolution and information retrieval, share this

same core problem of detecting and scoring pairs of anomalously similar objects (ASOs).

In contrast, newer applications, in particular those involving social network inference, could

stand to benefit from firmer theoretical foundations. However, despite the existence of

sophisticated methods for specific ASO problems, little work addresses commonalities across

domains, and we found little guidance for generalizing their approaches to new domains.

In response to this gap, we formalize ASOUND as a domain-independent problem. We

view this problem statement as a previously missing abstraction layer, a means of unify-

ing existing work and facilitating the sharing of methods and results across communities.

Working within this abstraction layer, we focus on two natural and important questions.

The first, described above, is how to derive a scoring function for pairs.

The second question concerns mapping the problem space of ASOUND. Even using an

optimal method, pairs will be statistically more difficult to distinguish within some data

sets than others. Furthermore, as we vary characteristics of the data set, not only does

the amount of information present vary, but so do the primary sources of that information.

Because related literature has mostly ignored these issues, we make an effort to systemati-

cally explore the problem space. We show that a data set’s location in the problem space

influences both the detectability of its pairs and the relative effectiveness of various scoring

methods.

The contributions of this thesis, which result from investigating the questions above, are

in the following four areas. These points are more fully elaborated in Section 1.5.

• Domain-independent task formalization and modeling. We present the first

abstract characterization of ASOUND and provide an approach to developing scoring

functions for any domain.

• Domain-specific scoring functions. We derive methods for scoring pairs of Gaussian-

distributed points and pairs of nodes in a bipartite graph, and we examine tradeoffs

among these and other new and existing alternatives.
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• Demonstration of practical utility. In a large-scale case study, we show that these

inferred social ties have value as indicators of fraud risk. Using other real-world data

sets in which ground truth pairs are known (yet non-trivial to identify), we demon-

strate that our recommended scoring functions can yield substantial improvements

over naive methods.

• Problem space analysis. Using theory and simulations, we manipulate the pa-

rameters of ASOUND data sets to identify which characteristics make pair detection

easier. Similar analysis also reveals how some methods can be near-optimal in certain

parts of the problem space only.

1.2 Problem Details

A broad range of tasks require judgments about anomalously similar pairs. Here are

examples from several domains and application areas.

Employment: Two people worked at the same office as each other, at three different

times (and employers) over the course of their careers. Could this have happened by

accident, or is it evidence that they stayed together on purpose?

Consumer purchasing: Two customers at a bookstore purchased five of the same titles

last week. Are they in a book club or class together?

Social media: Two Twitter accounts are posting links to the same spam website (a blog

advertising pharmaceuticals). Are they Sybil accounts controlled by a single person?

Entity resolution: A publication database lists two articles by the same author, in which

the titles and co-authors differ by only a few characters. Is one record just a noisy

duplicate of the other?

Fraud prevention: A visitor to a lost and found claims she lost a Gucci watch with a

brown leather band. Is this description enough to uniquely identify the object and

prove ownership?
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Individual re-identification: At a professional event, you meet someone of the same na-

tionality, institution, and research area as someone (whose name and face you cannot

recall) you met yesterday. What are the odds this is the same person twice?

The upper half of this list is representative of our primary interests, but our approach is

via an abstract characterization of the task, next.

1.2.1 Task Specification

Problems involving ASOs span not only a wide range of domains, but also a variety of

assumptions and problem setups. We differentiate ASOUND from the larger class of ASO

problems with the following constraints.

First, we assume in ASOUND that we have no labeled examples, but rather, that linked

pairs will be identifiable through being “anomalously similar.” This restriction is important

because in many practical settings, there are in fact few or no known positives.

Second, we require that the pairwise scores take into account whether the similarity

could be coincidental—that is, produced by independent entities. Notice, however, that

the phrase “anomalously similar” reflects only part of this requirement. To estimate the

probability of a link, a scoring method needs to take into account not only a pair’s similarity,

but also its rarity—how unusual the two entities are in the population. All else being equal,

a pair that shares rare attributes is more likely to be linked than one that shares common

attributes.

Note that we assume that the linked entities are similar, but we do not assume that

they are all detectable. Some linked pairs, even perfect duplicates, might be statistically

indistinguishable from independent. Our emphasis is not on identifying the linked pairs

using any means possible, such as external data, but rather, on optimally combining the

available information.

Finally, we assume that linked pairs are rare, and the remaining entities—the vast

majority—are independent. Treating most entities as independent is a reasonable simplify-

ing assumption; it means they can be modeled as separate draws from a single distribution,

but it does not prevent that distribution from having a complex substructure. Assuming a

strong class imbalance provides a source of leverage: it means we can use the data set as
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a whole to learn the properties of typical entities. If the models need to take rarity into

account, they can estimate from the original data how rare a given attribute is. If they

need to determine whether a pair is unusually similar, they can estimate from original data

the distribution of similarities for independent pairs.

Some ASO tasks only ask for certain pairs to be scored or involve additional constraints

on the outputs. For example, some problems need to determine the best matches (if any)

to a specific entity, such as when searching a database for the best match to a DNA sample,

a fingerprint, or a plagiarized document. Others consider all links between one database

and another, such as when merging two feature sets describing the same entities or using

one data set to de-anonymize another. Still others must aggregate the inferred pairs into

clusters of entities corresponding to distinct real-world objects or groups of collaborators.

To avoid getting caught up in phenomena specific to those scenarios, we define the output

to ASOUND to be simply an independent score for every pair of entities. While this limits

us from exploring constrained matching scenarios, such as picking a single best match per

entity, it helps home in on our main questions, about pairwise scoring functions and pair

detectability.

1.2.2 Solution Characteristics

The solution we develop for the scoring function, further outlined in Section 1.4.1,

distinguishes between two classes of candidate pairs. First, from the entire data set, we

learn a model of independent entities, which we call φ. Then, to score a candidate pair, we

compute whether it has a higher likelihood of being a negative pair—that is, two independent

draws from φ—or a positive pair—generated from a separate model, one that also uses φ.

This approach satisfies the above requirements (up to limitations such as the fit of the

models), providing a statistical way to combine evidence about pairs.

Once we have such a method, it is natural to ask what properties of the data make

the score go up or down. This is important for understanding any method’s strengths and

weaknesses. Moreover, it is interesting because it is not always intuitively obvious what

behavior to expect.
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Take, for instance, the bookstore customers from above, who come from a bipartite

graph of all customers and their purchases. The likelihood of a link between a pair of

customers should depend on the number of titles they co-purchase, and also at least some

of the following factors:

Sample size: How many customers visited the store that week? If it is a large online

retailer, there is a greater chance that some pair of customers would buy the same

items, even without knowing each other, than in a brick and mortar store.

Number of pairs: How many of the store’s customers know each other? If the proportion

is high—e.g., if the store is in a small town—then it is more likely for the pair to have

a social tie affecting their book-buying habits.

Cardinality of attribute set: How many books does the store offer? In a souvenir shop

with a limited selection, it is less surprising for customers to buy the same items.

Number of attributes per person: How many books do customers tend to buy? How

many other books did these customers buy? If they each only bought the five that

overlapped, the similarity seems more likely to be intentional. If one or both of them

made a large number of other purchases, then it seems more likely to be coincidental.

Strength and characteristics of true links: When people do share a social link, how

does it affect their buying habits? People in the same class might purchase many

books at the start of a semester, whereas those in a book club might instead overlap

by one title per month.

Distribution of shared attributes within the population: Which particular books did

they share? Best sellers seem more likely to occur by chance. So do series, such as

Harry Potter. Books that are rare and/or unrelated are stronger signs of a link.

Notice that some of these properties—those describing these particular customers—can

only affect the score of one pair. Others—those describing the data set as a whole—affect the

scores of all pairs in the data set. Properties that affect all scores, for instance by changing

φ, are traditionally neglected by the literature. But it is an interesting theoretical question
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to ask what happens in ASOUND when φ changes. One of our goals, beyond developing

scoring functions, is to understand how the data set’s properties affect the feasibility of

detecting pairs—or more broadly, to characterize the problem space of ASOUND.

1.2.3 Existing Literature

Problems involving pairs of ASOs are found in numerous areas of the literature. Cal-

culating similarity or detecting near-duplicates is a core computational need, and different

communities approach it in diverse ways, depending on the application at hand. Inferring

latent ties between people can be framed as analysis of social networks and human behavior

[40, 45, 86], or as a tool to detect spam or cheating in online activities [87, 128, 143]. De-

tecting the same person twice can indicate a successful forensic identification from a crime

scene [125], or else an unwanted privacy breach [93]. Determining whether two database

records match is a data cleaning problem to be solved using string similarity measures

wrapped into a supervised learning or clustering routine [46], while determining whether

two documents match is a question to address using information retrieval models [83] or

plagiarism detection software [103].

Yet despite the many related ASO problems—or perhaps because of them—existing

literature does not provide a clear starting point for ASOUND. One reason is our particular

problem constraints. The prerequisites that the scoring method handle unlabeled data

and that it take rarity into account in order to distinguish true links from coincidences

differentiate ASOUND from much existing work. Two common approaches are ruled out.

In many applications, researchers have access to labeled examples, so they construct useful

features and train classifiers to identify the linked pairs. In another segment of applications,

a similarity calculation is considered sufficient; the goal is to identify highly similar pairs

and do something further with them. There, if there is a concern about pairs being similar

“by chance,” it might be handled manually, for example by excluding pairs with too little

shared material.

A second reason is that most work is too domain-specific to be to be easily generalized.

Information retrieval models for computing a document’s relevance to a query, refined over

the past forty years, address issues we care about, but they assume a setup in which entities
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are text documents, a short query entity is held constant, and the output is a list of its best

matches. Likewise, the entity resolution problem in databases is very similar to ASOUND,

but its scoring method expects entities containing text fields, and an accompanying simi-

larity function. In forensic science, significant effort is put into into modeling the properties

of a given material, such as fingerprints or glass shards, in order to make high-accuracy

probability estimates for relatively few candidate pairs. Chapter 5 discusses these fields in

more detail. While their scoring methods might satisfy our requirements, they have not

been presented in general enough terms to be extended into new domains. New problems,

such as inferring social ties from activity data, have tended to be addressed using the two

common approaches mentioned previously, which do not involve modeling the independent

entities.

Because existing work is relatively task-focused, there has been little attention to how

outcomes are influenced by the properties of a data set. Within a given data set, it is

typical to compare multiple algorithms and feature sets. However, it is usually considered

outside the scope of interest to ask whether the task would be easier, or if a particular

scoring function would perform better, under a different data distribution. We highlight a

few exceptions in Chapter 5.

1.3 Research Goals and Outline

Originally, we expected to develop scoring methods for this thesis by borrowing from

prior literature on detecting ASOs. However, since existing research is specific to particular

domains and tasks, we found no clear starting point for new domains. As a response to

this gap, we formulate ASOUND as a domain-independent problem. Framing it as single,

abstract problem will help the community discover relevant work and facilitate progress on

its more general questions. Although other ASO instances are diverse in their domains,

constraints, and positions within the problem space, examining the theoretical aspects of

ASOUND should yield answers relevant to a broad audience. We envision that referring

to and building upon the models developed here, in addition to thinking about the larger

problem space, will help people contextualize results observed on individual data sets.
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Within ASOUND, the most immediate question is how to score pairs: Given two entities

from a data set, how can we estimate the probability that they are linked, as opposed to

independent? Such a pairwise function is at the heart of ASOs in any domain. Even when

research focuses on efficiency, as it does in near-duplicate detection, or on clusters or joint

configurations of links, as it does in record linkage, some pairwise similarity function is

implied.

Our second question concerns the problem space of ASOUND. Given a particular data

set containing linked pairs, we would like to be able to forecast how statistically identifiable

the pairs will be and how useful the respective information sources will be. These properties

will vary as a function of the data. If we can understand how they differ across the problem

space, a number of possibilities open up.

The issue of whether pairs are statistically identifiable relates to matters of statis-

tical power—whether there is enough data to make confident inferences—and of class

separation—whether the linked pairs are any more similar than independent pairs. If we

can determine a priori that a data set’s pairs are easy to identify, there may be opportuni-

ties for efficiency gains, such as by reducing the number of pairs or features examined or by

switching to a cheaper (but less accurate) scoring function. If we determine they are hard

to identify, there may be opportunities to remedy that, such as by increasing the number

of entities or features, or to respond to it, say, by scoring only the most likely-looking pairs.

Such knowledge either way has implications for the complementary problem of privacy pro-

tection: if it is easy to match entities to their near-duplicate pairs, their re-identification risk

is high (subject to the constraints of each task) [136]. Finally, an understanding of where the

information comes from, as a function of the problem space, lets us choose knowledgeably

among scoring functions and the features they use. Different scoring functions will provide

different tradeoffs among efficiency, performance, and robustness. Overall, understanding

the role of the problem space in ASOUND will help us make informed choices about data

and methods, and it is a fundamental step beyond empirically testing one algorithm versus

another.

In the thesis, we address ASOUND for entities from three domains: first, for entities

described by time-stamped sequences of affiliations (Chapter 2); second, for entities with

9



real-valued vectors of features (Chapter 3); and finally, for entities with arbitrary sets of

affiliations (Chapter 4). The first piece of research is a fraud detection application that

involves complex data and evaluation methods, and it serves as an introduction to the task.

The latter two form more of a unit, in which we generalize and formalize the task. The

third domain, in which the entities are part of a bipartite graph, is probably the most widely

applicable to new problems. In all three, we show how real-world problems can be framed

as instances of ASOUND, and we develop successful new scoring methods for data of the

given form.

Within ASOUND, the performance of any algorithm will vary as a function of its pairwise

scoring method, features used, the problem setup (the form of the inputs and outputs, and

the evaluation measures), and the data (properties of the linked pairs and the singletons).

Table 1.1 sketches how, across chapters, the thesis’s focus shifts as we develop the higher-

level story. Roughly speaking, other literature on ASOs tends to experiment with different

methods and feature sets, selects from multiple performance measures, and explores the

use of different constraints on algorithms’ inputs and outputs. It rarely systematically

varies the data properties themselves. In Chapter 2, we introduce a new real-world problem

that can be described as an instance of ASOUND, then we proceed in the vein of previous

literature, examining how findings vary across multiple scoring methods, feature sets, output

requirements and evaluation measures.

Vary problem setup Vary methods Vary problem space

Inputs,
outputs

Evaluation Features Models Properties
of true pairs

Distribution
of singletons

Previous literature 8 8 8 8

Tribes (Chapter 2) 8 8 8 8

Points (Chapter 3) 8 8 ∼
Bipartite (Chapter 4) 8 8 8

Table 1.1: High-level aspects of the pair detection problem addressed in each chapter and
in other literature.

In Chapters 3 and 4, taking a more theoretical approach, we hold constant the problem

setup and the feature set (using the full description of the entity, subject to what each

model can represent), and instead we vary both methods and properties of the data set.
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We develop synthetic model systems in which we can systematically explore how the data

properties affect overall performance and the strength of different information sources. The

real-valued points domain of Chapter 3 has practical applications, but it also serves as a

demonstration problem for sketching out the abstract characteristics of ASOUND—namely,

the domain-independent scoring approach and the axes along which the problem space

varies. In Chapter 4, we return to bipartite data (also present in Chapter 2), here again

analyzing the problem space, while also developing and comparing methods that can be

applied to many problems.

1.4 Approach to Detecting ASOUND

In ASOUND, we are given a set of entities described by their properties in some domain.

We assume the majority of entities can be treated as if they were independent samples from

some distribution, which we call φ. A small number of pairs of entities have a latent tie. At

times, we describe the scoring as if we were inferring the adjacency matrix of a graph, by

distinguishing the “linked” pairs from the “independent” entities (or “singletons”) among all

“candidate pairs.” Other times we use the terminology of a classification task, in which the

input is a set of “pairs,” “links,” or “edges,” and the purpose of the score is to differentiate

the “positive” or “true” pairs from “negative pairs.” The meanings should be clear in

context.

1.4.1 Modeling Approach

The approach we develop in Chapters 3 and 4 uses generative models and a likelihood

ratio. The first modeling decision to make in a given domain is choosing a suitable form

for φ, the distribution of most entities. Once we specify the form of φ, we can estimate its

parameters from the data set. Second, we must specify a generative model for the positive

pairs. This model needs to be developed specifically for the domain. It should involve φ, so

that the positives resemble the rest of the data, and it should produce two similar entities.

Then, the score for any pair (X1, X2)—the probability the pair is positive—comes out

to be a (monotonic) function of the following likelihood ratio, which we abbreviate LR:
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LR =
P (X1, X2 | positive)

P (X1, X2 | negative)
=
P (X1, X2 | positive)

P (X1 | φ)P (X2 | φ)
. (1.1)

The numerator in this expression is the joint likelihood of X1 and X2 under the generative

model for pairs, and the denominator is their likelihood under the model for independent

singletons.

In Chapter 3, we present a domain-independent generative model of both singletons

and pairs in a data set. We discuss how performing inference in that model leads to (1.1),

once we require that each pair’s score be computed independently. We then develop the

component models P (X | φ) and P (X1, X2 | positive) for a Gaussian domain. In Chapter 4

we use the same LR with new component models for bipartite graphs.

Chapter 2 predates this formal model; it uses φ, but has no model of positive pairs. Its

main probabilistic method, which is justified on intuitive grounds, is similar to Chapter 4’s

SharedWeight method (Section 4.4.3), but extended to handle temporal data.

Generative models are useful for ASOUND because they let us encode assumptions

about the problem without needing training data. (In actuality, our models for positive

pairs do require one parameter, but we offer guidance for when the parameter is unknown.)

Another benefit of generative modeling is the ability to create synthetic data. In Chapters 3

and 4, we run experiments on synthetic data, and in addition, we analyze its theoretical

distributions of positive and negative pairs.

1.4.2 Outputs and Evaluations

Of course we do need labeled data to evaluate algorithm performance. In Chapter 2, we

exploit additional features in the data to evaluate the quality of the methods. In Chapters 3

and 4, we similarly use additional features of real data, this time to define the “ground truth”

linked pairs. With synthetic data, we generate the ground truth labels along with the data.

In a naive implementation, to detect the true pairs in a data set, we would score every

pair of entities. In real systems, since the number of pairs scales as O(n2) in the number

of entities, finding ways to make the computation more efficient—mostly by reducing the

number of pairs examined—is of enormous practical importance. Because this aspect of the

problem is widely studied elsewhere, we do not focus on computational issues, except for
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requiring that individual scores be quick to compute. Section 5.7 briefly reviews existing

techniques, such as blocking, that can be applied in practice. In Chapter 2, where the

data set is large, we use a multi-pass approach, in which a cheap similarity criteria is used

to enumerate candidate pairs, and only those pairs meeting some minimum threshold are

scored fully; the remainder, for the sake of completeness, could implicitly be considered to

have been assigned a lower score. In Chapters 3 and 4, we skirt these issues by keeping the

number of entities per data set low enough that we can score all pairs.

Our scoring methods use probabilistic models, and the LRs of Chapters 3 and 4 can

be converted into probability estimates for the links. However, none of our evaluation

measures require the scores to be individually interpretable; all are based on the ranking of

pairs induced by the scores. Evaluating based on rankings let us compare scoring methods

of any type, probabilistic or not. In Chapter 2, we take the top k pairs, for different methods

and values of k, optionally form clusters, and evaluate the pairs or clusters according to

multiple criteria. In Chapters 3 and 4, we evaluate the quality of a ranking with respect to

the ground truth pairs.

When comparing a ranking to true labels, we use AUC (area under the Receiver Oper-

ating Characteristics, or ROC, curve) as the measure of ranking quality. Its main selling

point over alternatives such as precision or recall is its invariance to changes in the propor-

tion of true positives [49]. This means we can allow the numbers of positive and negative

pairs—and entities—to vary across experiments without inducing changes in the perfor-

mance measure. In addition, AUC can be interpreted as a measure of the distance between

two distributions, the positive and negative scores. In Chapter 4 we take advantage of this

property to estimate AUCs for purely theoretical distributions.

1.5 Contributions

The main contributions of the thesis are the following:

Domain-independent task formalization and modeling. We introduce the ASOUND

problem, a computational task that has appeared in many variations but has not pre-

viously been defined abstractly. We present a generative model in which ASOUND
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data comprises a mixture of pairs and singletons, and we use it to derive likelihood

ratio (1.1) as the scoring function for arbitrary domains. To instantiate it requires

creating a model of the true pairs, P (X1, X2 | positive), and estimating a model of

the singletons, P (X | φ).

Demonstration of practical utility. In an initial, applied example of ASOUND, we de-

tect small groups of connected people based on their career histories in the securities

industry. These people have unusual sequences of shared jobs, they share jobs in

multiple cities, and they have high and correlated risk scores for fraud, in comparison

with the general population or with other groups.

Development of domain-specific scoring functions. We construct generative models

of paired and singleton entities for Gaussian and bipartite (affiliation) data. The

models enable us to generate synthetic data, and they are simple enough to keep the

resulting scoring functions efficient.

Gaussian scoring. In Gaussian-distributed data, the LR score we derive is an inter-

pretable function of the pair’s distance apart, its distance from the origin, and

the model’s parameter for distance between true pairs.

Bipartite scoring. In bipartite data, the LR score we derive, called MixedPairs,

differs from most existing similarity methods for binary vectors in that it sat-

isfies three key properties: it is weighted based on the frequencies pi of shared

affiliations, it gives a small positive score for every affiliation that both people

lack, and it extends symmetrically to affiliations that are present in over half the

data.

Empirical evaluations. We show that LR and MixedPairs each give state-of-the-

art performance at detecting pairs in real data along with synthetic. In real

Gaussian data, an approximation to LR called P (d|ε)
P (m|φ) is more robust when the

distances between true pairs are unknown. In real affiliation data, three methods

seem to be the most reliable: the cosine of the pair’s idf -weighted vectors; the
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rarity of the pair’s shared affiliations, which we call SharedWeight1100; and our

adaptation of Pearson correlation, which we call Weighted Correlation.

Problem space analysis. We present some of the first-ever analyses of problem spaces

for ASOUND. Specifically, we look at how characteristics of the data affect the per-

formances of various methods at detecting pairs.

Task difficulty. We find that in both Gaussian and bipartite data, true pairs become

easier to distinguish—for most scoring methods—as true pairs get more similar

and as the number of dimensions increases. In bipartite data, a given affiliation

becomes more informative as its frequency in the data approaches one-half.

Method properties. We characterize how the interaction between properties of

data sets and properties of scoring methods can allow a method to perform

near-optimally in some parts of the problem space, yet poorly in others.

• In Gaussian data, the LR score performs better than using distance or rarity

alone, provided the true pairs are not too close together. Distance alone suffices

when true pairs are very close together, and rarity alone suffices when true pairs

are as far apart as independent points.

• In bipartite data, the three key properties above divide new and existing scor-

ing methods into similarly-performing groups. The behavior of each group

can be explained in part as a function of the group’s properties and the data

set characteristics. For example, the top-performing methods—MixedPairs,

CosineIDF, SharedWeight1100 and Weighted Correlation—all satisfy the first

two properties.

Next, we elaborate on the chapter by chapter contributions. In Chapter 2, we introduce

the task of detecting anomalously similar objects via a specific application: identifying

“tribes” of coworkers who move from job to job together, given the employment histories of

2.5 million registered representatives in the securities industry. We frame it as a problem

of identifying pairs (or small groups) of people with anomalously similar job sequences.

We contend that this task differs from clustering, and that a simple measure of career
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similarity, such as counting the number of jobs or years working together, will not suffice.

Using a Markov process to model the career trajectories of independent people, we develop

a score for pairs: the rarity of the shared components of their careers. Tribes are defined

as the groups of people connected by high-scoring links. In evaluations, we show that the

people in these tribes (as scored by either rarity or the number of jobs) share unusual

sequences of jobs, work in more zip codes together, and have higher fraud risk scores, than

other individuals. This work was first published in the Proceedings of the International

Conference on Knowledge Discovery and Data Mining [53].

Following that applied setting, in Chapter 3 we move to a theoretical treatment of

ASOUND. We derive a domain-independent generative model in which a data set is a

mixture of singletons and linked pairs, and we show that approximate inference in this model

leads to a likelihood ratio (the LR of (1.1)) we can use to score each pair. Instantiating

this LR in a given domain requires models of singletons and positive pairs in that domain.

We develop these generative models of singletons and pairs for Gaussian-distributed points

in a k-dimensional space. When the models are plugged in, the LR turns out to be a

function of just two features of a pair: its distance apart (the pair’s similarity) and its

(midpoint’s) distance from the origin (the pair’s rarity). We vary the problem space via

the distribution of distances between true pairs. When true pairs are very close together,

the task is easy, and it suffices to measure the distance between pairs. When they are

as far apart as independent points, the task is harder, since the only information comes

from the pair’s rarity. At values in between, the LR combines the features to give better

performance than either feature alone. As the dimensionality increases, true pairs become

easier to detect. Finally, in real data, we find that the LR again improves on either feature

alone. We also find empirically that an approximation to the LR, notated as P (d|ε)
P (m|φ) , is more

robust than it when the true parameter is unknown. This chapter’s material has appeared

at the International Conference on Machine Learning [54].

In Chapter 4, we return to the domain of people and affiliations seen in Chapter 2, but

now without the temporal aspect. We represent a person by a binary vector describing

their set of affiliations. Following the approach of Chapter 3, we develop generative models

of independent and paired binary vectors. Singleton vectors are sampled from a multiple
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Bernoulli distribution. To generate paired vectors, we sample one vector independently,

then create the second vector as a mixture between the first vector and the independent

distribution. With these models, the LR for a pair of vectors decomposes into a sum over

affiliations in the data set: LRi is a function of the frequency pi of affiliation i and of

whether neither, one, or both of the people have the affiliation (i.e., whether the pair’s

values are 0|0, 1/0, or 1|1). This function has three useful properties. It is higher (the pair

is more likely positive) when a shared affiliation is rarer; it is symmetric over the range

of pi, so a pair receives the same score for lacking a frequent affiliation as for sharing a

rare one; and although the function is highest for (rare) affiliations shared by both people

(1|1), it also treats 0|0 as mildly positive evidence, and 1/0 as negative evidence. We also

introduce two more scoring functions that satisfy these properties: Weighted Correlation is

an adaptation of Pearson correlation, and SharedWeight1100 is related to the shared rarity

score of Chapter 2. Comparing these to a number of existing similarity methods, we find no

others that have all three properties; that the methods’ performance in experiments relates

to which properties they satisfy; and that this new group, together with CosineIDF, seems

to be the most robust.

We also analyze the difficulty of detecting pairs as a function of the characteristics of

this domain. Like in Chapter 3, we find that ASOUND gets easier in synthetic data when

true pairs are more similar and when the dimensionality of the data (the cardinality of the

affiliation set) increases. In addition, it gets easier the closer each pi gets to 0.5. That is, it

is easiest to distinguish positive from negative pairs when each affiliation is held by about

half the people. To validate these properties in real data, we run experiments that truncate

the data sets to use only certain subsets of affiliations. The performance mostly degrades as

anticipated; however, with the subset of affiliations having pi closest to 0.5, the performance

is unexpectedly strong, still competitive with results from the full affiliation set.
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CHAPTER 2

TRIBES OF COWORKERS

In this chapter, we present a family of algorithms to uncover “tribes”—groups of in-

dividuals who share unusual sequences of affiliations. Given a database of employment

histories, we search for pairs, and extend them to groups, of employees who were coworkers

at multiple jobs. The aim is to distinguish those who worked together intentionally from

those who simply shared frequently occurring employment patterns in the industry.

We apply the algorithms to a data set consisting of millions of employment records

from the Financial Industry Regulatory Authority, the private organization that regulates

stock brokers in the United States. The resulting tribes contain individuals who have

higher risk score for fraud, whose risk scores are correlated within their tribes, and who

are geographically mobile, all at significant levels compared to random or to other sets of

individuals who share jobs.

The algorithms and evaluation techniques developed here are centered around a specific

data set, but one could look for “tribes” in a number of domains. The important properties

in the scenario are that “individuals,” or one type of entity, are connected to “affiliations,”

another type of entity, and that the connections change over time. We form a model of

“typical” sequences of affiliations, which allows us to calculate the likelihood of an individual

having any given sequence of affiliations. Then, for each pair of individuals, we determine

the sequence they have in common, if any. To score them, we compute the likelihood of that

sequence, which is proportional to the likelihood that two independent individuals would

share the given sequence by chance alone.

In contrast to the more common tasks of clustering or community detection, in this

work we seek to infer fine-grained, strong associations that exist among only a fraction

of the individuals within a larger data set. Other tasks with this structure could include

finding students that select classes together, given a table of students and their enrollments;
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inferring sets of cars traveling in caravan on a highway, given sightings at different loca-

tions and times [21, 102]; and discovering family structure in animal groups, from tagged

individuals frequently sighted together [11, 22]. If we remove the temporal aspect of the

problem and simply require a bipartite graph of affiliations, then a generalized version of

the model could identify people with unusually similar tastes in books or movies, highly re-

lated documents sharing words that rarely co-occur, or friends within an album or yearbook

containing photos of large groups.

This framework is particularly suited to situations involving large organizations, where

the original data does not describe detailed associations among individuals. For instance,

in our employment domain from the securities industry, thousands of people often share a

loose relation of working at the same branch. In such cases, we can benefit from learning

a model of typical affiliation patterns. Then, against this background, small groups doing

unusual things stand out in contrast.

Note that in contrast to Chapters 3 and 4, which will require explicit models of connected

pairs, here we try to set up the event space so that the pairs that are low-probability under

the general model are exactly the pairs we want. We assume most people are independent,

so the likelihood of two people’s careers is the product of the likelihoods of the individual

careers. We also assume that, for a given two people, we only need to pay attention to

the jobs they share. This is reasonable since, for example, we are not interested in pairs of

people who happen to have low-probability careers but never work together. To score a pair

of people, we compute the likelihood of their shared jobs, ignoring how that intersection

relates to either person’s full career.

2.1 Motivation and Data

The Financial Industry Regulatory Authority (FINRA, known through 2007 as the Na-

tional Association of Securities Dealers), regulates securities firms in the United States,

with responsibility for preventing and discovering misconduct among its registered repre-

sentatives, or “reps.” With over 600,000 reps under its jurisdiction, FINRA must focus

its investigatory resources on those reps most likely to commit fraud or other violations of

securities regulations. In conversations over the course of related projects [48, 95], FINRA
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representatives suggested that fraud is sometimes committed by colluding groups of reps

that have passed together through multiple places of employment. If we could identify

“tribes” of reps moving together from job to job, we could test them for elevated rates of

one or more indicators of fraud risk.

Of course, in finding tribes, we will certainly also identify harmless sets of friends that

worked together in the industry, perhaps recruiting one another to new jobs. Our hope

is that in the discovered groups, reps will tend to be homogenous with respect to fraud

risk: mostly low-risk or mostly high-risk. Such tribes could then serve as starting points

for detecting new fraud rings.

Our source data is a table of employment histories: for each rep, a series of records

contains the branch identifier, start date, and end date for every employment the rep has

held in the securities industry. The data set is large, containing (after some preliminary

cleaning) 4.8 million records describing employments of 2.5 million reps at 560,000 branch

offices. The branches range in size from 1 to 35,000 employees. The branch identities

themselves have been inferred, through an earlier process of link consolidation from office

addresses [48], from the 22,000 firms that have ever registered with FINRA. The employment

histories span the twentieth century through 2006, though most records are from 1990 or

later.

Two features of the real-world data shape our approach. First, many employment

histories include simultaneous, overlapping jobs or leave gaps between employments. This

muddies the concept of a transition between jobs: a rep does not necessarily leave one

job when starting another, nor vice versa. Overlapping jobs are too common to consider

discarding from the data: 20% of employees hold more than one job at some point, and

10% even begin multiple jobs (up to 16) on the same day. With transition dates ill defined,

we cannot formulate this task as a search for employees changing jobs within a common

interval of time. Therefore, we direct our attention to the times and places that people have

been coworkers, as opposed to the boundaries between them.

The second key feature is that mass movements of employees between jobs are common.

In addition to continual flows between firms (e.g., common career paths within a given city),

the businesses change: branches are closed or opened; firms merge or are acquired. Reps in
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Figure 2.1: (a) Example of branch-branch transition patterns. The left-most edge indicates
that 80% of the reps who ever worked at Branch A were later employed by Branch D. Only
edges with high percentages are shown. (b) Schematic of Markov process for generating job
sequences.

these flows could end up being colleagues at multiple organizations without even knowing

each other. We can visualize such trends as transition diagrams, as in Figure 2.1a, to create

a map of the whole industry. The meaning of the numbers along the edges will be discussed

and refined in Section 2.3.3; roughly speaking, they indicate the percentage of employees at

the source branch that later work at the destination branch.

Many of these transition percentages are high, which establishes that job movement in

the industry is not random. For instance, among branches of fewer than ten employees,

about 73% have some destination where at least 90% of the employees later end up. Among

larger branches, 30% of the branches have some destination where at least 50% of their

employees go. These figures increase slightly if we ask which transitions are common within

a given year—to spotlight abrupt shifts like mergers—as opposed to throughout the lifetime

of a branch office. This structured transition pattern is what we hope to factor out in order

to find genuinely tight associations among individuals.
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2.2 Task Definition and Approach

2.2.1 Formulation

In the most general setting, we define this task to be the identification of anomalously

related entities. As input, we require a bipartite graph G = (R ∪ A,E) of entities R =

{r1, r2, , rn} and affiliations (in this case, branches) A = {a1, a2, , ak}. The entities should

connect to at least several affiliations, on average, so as not to be too simply characterized.

Each affiliation should attach to a large number of entities, enough so that the behavior

of this set of entities can be modeled. The current formulation requires that an entity’s

affiliations be sequentially ordered (e.g., chronologically), while a more general extension

would consider an unordered set.

The groups of entities we wish to return are those sharing unusual combinations of

affiliations. Our strategy for this task revolves around developing a good definition of

“unusual.” For a pair or group to be considered anomalous, their shared affiliations need

not individually be unusual, but the particular configuration of them should be; entities

that are alike in typical ways are not part of our target. Our scores are similar in spirit to

tf-idf weights in that they emphasize unusual shared affiliations [83]; however, our method

for estimating joint likelihoods is unique. We use the co-occurrence rate (or transition rate)

of each pair of affiliations to approximate a joint probability distribution over affiliations.

Then, to measure the significance of a pair of entities, we compute the likelihood of their

sequence of shared affiliations.

2.2.2 Tribe-Finding Process

We are given a bipartite graph G = (R∪A,E). In the FINRA data, these are reps and

branches, and each edge e ∈ E is annotated with a time interval: e = (ri, aj , t startij , t endij).

The general tribe-discovery process, assuming we are given such time intervals, is summa-

rized in Algorithm 1. It begins with listing all pairs fij = (ri, rj) of individuals that have

ever worked together. This can be a large list (2.6 billion pairs, in our case), generated

by iterating through the branches and recording every pair of reps fij = (ri, rj) whose

employment stints at a branch overlap.
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For each pair, we then summarize their coworker relationships, keeping track of the jobs

where they coincide. We note additional information, such as the date the reps first coincide

at each job and the total time spent at overlapping jobs. The algorithm stores the pairs in

a new graph H = (R,F ), where F = {fij}, and each edge is annotated with:

SharedAffilInfoij = {the sequence of jobs {ax, ay, . . . } shared by ri and rj

∪ additional information described above}.

For purposes of efficiency, we retain only the rep pairs that had at least three jobs in com-

mon. This leaves us a graph H ′ = (R,F ′), with |R| = 2.5 million, and |F ′| = approximately

3 million pairs of individuals that are coworkers multiple times: the candidates for tribes.

The algorithm proceeds by identifying all significant pairs. For each edge in F ′, we

compute a score Score-Pair(SharedAffilInfoij) measuring how significant or unusual its

sequence of shared jobs is. Section 2.3, which follows, discusses the choice of function to

use for Score-Pair.

Once the significance scores are computed, we pick a threshold d for the scores and

remove all edges fij for which Cij < d. Then, we compute the connected components of

H ′, which are designated the tribes. The output of the algorithm is a list of tribes: sets of

reps within components of size two or higher in H ′.

Computationally, Determine-Candidate-Pairs is the most expensive step. If the

maximum degree of a branch is k, it requires enumerating and storing information about

O(|A|k2) potential pairs. Once we have created the graph of pairs H and pruned it to

a smaller H ′, the remaining steps are in O(|F ′|). Estimating the model parameters will

generally require O(|E|), one pass through the source data.

2.3 Scoring Methods

The choice of scoring methods constitutes the heart of the task. (We also use the term

ranking method, since we use the scores only to rank the pairs.) Given a sequence of shared

jobs such as in Figure 2.2a or 2.2b, we must decide whether it is unusual for a pair of

coworkers to have worked together at all of these jobs. We do so for each rep pair by
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Algorithm 1 Tribes algorithm.

function Find-Tribes(Reps R, Affils A, Edges E, Time Intervals T , Model Parameters
m, Threshold d)

/* Create graph H ← (R,F ) */
(F, SharedAffilInfo)← Determine-Candidate-Pairs(R,A,E, T )

/* Prune graph to create H ′ = (R,F ′) and score edges */
(F ′, C)← Prune-And-Score-Candidate-Pairs(F, SharedAffilInfo, m)

return Recover-Tribes(R,F ′, C, d)

function Determine-Candidate-Pairs(Reps R, Affils A, Edges E, Time Intervals T )
F ← ∅, SharedAffilInfo← []
for a in A do

Ra ← reps associated with a in E
for all pairs (i, j) of reps in Ra do

if Overlap(T (a, i), T (a, j)) then
F ← F ∪ (i, j)
SharedAffilInfoij ← SharedAffilInfoij∪ OverlapInfo(T (a, i), T (a, j))

return F, SharedAffilInfo

function Prune-And-Score-Candidate-Pairs(Rep Pairs F , Overlaps SharedAffil-
Info, Model Parameters m)

F ′ ← ∅, C ← []
for edge fij in F do

if NumBranches(SharedAffilInfoij) ≥ 3 then
F ′ ← F ′ ∪ fij
Cij ← Score-Pair(SharedAffilInfoij ,m)

return F ′, C

function Recover-Tribes(Reps R, Candidate Pairs F ′, Scores C, Threshold d)
for edge fij in F ′ do

if Cij < d then
F ′ ← F ′ − fij

return ConnectedComponents(R,F ′)
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computing a rarity score for their sequence of shared jobs. Note that we consider only the

shared jobs, specifically those held at the same time, to matter in this calculation.

2.3.1 Simple Measures

Two straightforward methods for ranking the pairs are:

• jobs = the number of jobs in the shared sequence.

• years = the number of years of overlap.

Computing jobs is a straightforward count of the job sequence. For years, we add

up the length of each overlap period, so that if a pair of reps works simultaneously at two

branches for ten years, this counts as twenty years of overlap.

These scores are most naturally seen as raw numbers measuring rep similarity. But in

the probabilistic setup that follows, we can also interpret them as measuring the likelihood

that two independent reps would share this sequence of jobs.

2.3.2 Probabilistic Background Models

Our null hypothesis is that reps move independently of each other and according to some

background model. The less likely a shared sequence of jobs is under the null hypothesis,

the more likely it is that the rep pair is connected. Under the null hypothesis, if P (Rep 1

holds sequence s of jobs) = p, then P (Reps 1 and 2 each hold sequence s of jobs) = p2.

That term p2 is thus what we should use for ranking the pairs. Since p and p2 are rank-

equivalent, it suffices to calculate and rank the pairs by p, the probability of a single rep

holding a given (shared) sequence of jobs.

Each scoring function we discuss can be seen as arising from a different background

model of movement. In this light, jobs can be seen as stemming from a naive model of how

reps choose employments. At each decision point, a rep either picks a new job, choosing

among all branches with equal probability, or else stops working. Under this model, any

given sequence of n jobs is equally likely and is more likely than a sequence of n+ 1 jobs.

The measure years could arise from the following model: each day, a rep independently

chooses a new job (which could be the same as the current job). Then, the longer the career
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of a rep, the less likely it is. This model is obviously not realistic, but it serves our needs

with respect to scoring a pair of reps and their shared jobs: the more days a pair spends as

coworkers, the larger the deviation from the model.

These simple methods treat all branches equivalently. As described earlier, however,

when reps in the securities industry change jobs, they follow patterns caused by industry

events and influenced by geographical and other factors. Accounting for these patterns

motivates the next models.

2.3.3 Markov Model

A more complex model for how reps choose jobs is a Markov process: the flows of reps

among jobs are described as transition probabilities among jobs, such as in Figure 2.1b.

This inspires our third ranking function.

• prob: Evaluate the probability of the shared jobs according to a Markov process.

If each rep held one job at a time, and changed it at each time step, we could model

movement using an ordinary Markov process, as follows: each rep picks a start branch

randomly. Then at each step, the rep’s next branch is decided stochastically based only on

the current branch. We ignore actual time spent at each job; at each step in the process, a

rep either moves to a new branch or leaves the workplace. We also assume that transition

probabilities are static over time.

This model satisfies a tradeoff between flexibility and performance. We want a model

that flexibly mimics the characteristics of each branch without exactly reproducing the

original data. In addition, the procedure must be tractable on a large data set. The process

of computing all pairs of coworkers is time- and space-intensive, so it would be infeasible, for

example, to generate random replicates of the network and recompute shared job sequences.

Using this model, we could estimate the probability of a rep having a job sequence such

as in Figure 2.2a as

p = P (Branch A→ Branch B→ Branch C→ Branch D)

= pA · tAB · tBC · tCD. (2.1)
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The quantities in this expression are

pi = P (start at Branch i)

= (# reps ever at Branch i)/(# reps in database)

tij = P (transition from Branch i to Branch j | currently at Branch i)

= (# reps who leave Branch i and next go to Branch j)/(# reps ever at Branch i).

If job sequences in the database were as simple as Figure 2.2a, this model would be

sufficient. However, Figure 2.2b is more typical of the data. The reps in this example start

at the same branches, split apart for a few years, come back together, and then both begin

two jobs (Branches C and D) at the same time. We would like to ignore Branches E, F,

and G, which are not shared, but it is not obvious how to do this. To allow for these

more complex situations, we adjust the model such that it is no longer exactly a Markov

process but instead allows us to score just the four shared jobs. After this adjustment, our

probability calculations (e.g., for Figure 2.2a) will remain almost the same.

(a) BA C D

(b)

BA E C

G

D

F

Sept 1987 / 
Feb 1988

June 1990 / 
May 1990 Dec 1990

June 1992

May 1995 / 
June 1996

May 1995 / 
June 1996

Feb 1997

Figure 2.2: Job sequences to score. Nodes represent branches. In (b), two reps have differing
trajectories, but only the shared jobs (in bold) are used for scoring. Labels show start dates
for each rep at each job.

The first modification is to allow reps to have different paths between shared jobs, such

as from Branch B to Branch C in Figure 2.2b. To do this, we replace the quantity tij with

a new quantity vij :
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vij = P (move to Branch j at any point after Branch i | currently at Branch i)

= (# reps who go to Branch j at any point after working at Branch i)

/(# reps ever at Branch i)

Computing vij , the probability of an eventual transition, directly from the data is cleaner

than an alternate approach that might attempt to sum up direct transition probabilities

along all possible paths.

The other modification is to allow for simultaneous jobs. We treat the shared job

sequences as if they are in a definite order, but the underlying situations can be complicated.

For example, in Figure 2.2b, the reps work at Branches C and D simultaneously, not one

after the other. To extend the model to handle these situations, we replace the quantity vij

with a new quantity wij :

wij = P (move to Branch j at any point simultaneous to or after Branch i

| currently at Branch i)

= (# reps who start at Branch j at any point simultaneous to or after

starting at Branch i)/(# reps ever at Branch i)

Now, to score the pair shown in Figure 2.2b, we use the equation shown in Equation (2.1),

but replace each tij with wij . In particular, we calculate P (Branch B → Branch C) without

regard for the intermediate branches. This is no longer a true, generative, Markov model;

each wij ≥ vij ≥ tij , so the transition probabilities leaving a branch no longer sum to 1

(
∑

i tij = 1, but
∑

iwij ≥ 1). Instead, it is an approximation: we factor the probability of

a rep having a given sequence into these Markov-like terms. Using these estimates, we can

compute an approximate score for any shared sequence of jobs, even if we have to ignore

some jobs along the path.
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2.3.4 Markov Models with Timing Variations

The prob model, which includes the modifications described above, treats jobs in a

sequence as being ordered by time, but it does not take into account when the transitions

occur. We create two variations by changing the treatment of time.

First, we account for non-static transition probabilities. We hypothesize that the scoring

will be more accurate if we can represent single-event mass movements, as well as changes

in industry patterns over time. For instance, consider the case where 30% of reps at Branch

A eventually move to Branch B, but in 1997 Branch A was purchased by Branch B, so 99%

of the reps who were at Branch A in 1997 also worked at Branch B in 1997. To account

for such variations, rather than scoring a transition based on a general probability of a rep

moving from Branch A to Branch B, we describe a more specific event. Now, the rep is

moving from Branch A at time X, to Branch B at time Y. (Specifically, the rep is first

seen at Branch A at time X, and then first seen at Branch B at time Y which is equal to

or later than time X.) Time is divided into bins, with bins representing one year or more.

Each branch is given its own bin divisions, which depend on the number of employees at

the branch in different years. We allocate the bins so that there are at least 10 people

who worked at each branch in each bin period, provided the branch has had that many

employees during its history.

The parameters needed for this new model, which we call prob-timebins, require chang-

ing pi and (again) wij . We now compute

piX = (# reps ever at Branch i during time X)/(# reps in database)

yiXjY = (# reps ever at Branch i during time X and at Branch j during time Y,

where Y ≥ X)/(# reps ever at Branch i during time X).

We take the opposite extreme for the second variation. The prob model is not very

informed about time: because the wij values describe the probability of being at Branch j

anytime after or simultaneous to being at Branch i, only the relative order of i and j matter.

To find out how important that directionality of time is, we create a simpler model, prob-

notime, which ignores even the order of job moves. For this model, we use the original pi,
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with a new transition quantity zij , representing the probability that a rep works at Branch

j either before or after they work at Branch i. However, there is an ambiguity in this

formulation, because zij 6= zji. We can still score a sequence of jobs using the equivalent

of Equation (2.1). Here, we keep the same temporal ordering of branches used in the other

methods. But a model that disregards time should be able to score a set of jobs; it should

be well-defined regardless of their order. This procedure is not. Nevertheless we include it

here, since in the experiments, it turns out to work almost as well as prob (see Section 2.4,

next). Because a well-founded model for scoring unordered sets would allow this framework

to be applied to situations without a time ordering, we return to this question in Chapter 4.

2.4 Evaluation and Results

Ideal tribes consist of reps that know each other and have coordinated their movements

among jobs. Since we cannot verify the personal relationships among thousands of securities

reps across the country, we evaluate our tribes using indirect measures. First, we examine

structural characteristics of the tribes produced with the various scoring methods. Then,

we analyze the tribes patterns of risk scores and geographic movement.

2.4.1 Tribe Structure

Using the process described in Section 2.2.2, we compile a list (the edges F ′) of the

3 million pairs of reps in the database that shared at least three different jobs. We rank

these pairs using the five scoring functions described in Section 2.3: jobs, years, prob,

prob-timebins, and prob-notime. All but jobs give quasi-continuous values as scores.

For these, we can choose a threshold d to keep any desired number of pairs. When we

compute the connected components of these pairs, we get a set of tribes of assorted sizes

and a corresponding set of reps in these tribes. For jobs, the scores are discrete: all pairs

have at least 3 jobs, and the maximum number of shared jobs is 25. To compare the various

scoring functions fairly, for each continuous method we determine a cutoff d such that the

resulting number of reps in the tribes matches (±1) the number of reps in tribes formed

with jobs. Below, we analyze the tribes corresponding to 4 different sizes of rep sets.
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Figures 2.3a and 2.3b display structural characteristics of these tribes. We omit these

characteristics for the variations on prob (prob-timebins and prob-notime), as they are

substantially similar to those for prob. Figure 2.3a indicates that, for each matched set,

prob creates more tribes, and smaller tribes, than jobs or years. Figure 2.3b further shows

that the majority of pairs created by the prob ranking go into tribes of size two—pairs of

associated reps. In contrast, jobs and even more so years, in order to get an equally large

set of reps, provide many more pairs—edges in the graph F ′—but the additional edges go

to fill in the enormous components1, instead of creating new, small groups.
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Figure 2.3: Comparison of tribe structures, for equal-size sets of reps produced using jobs
(J or j), prob (P or p), or years (Y or y). (a) Number of tribes and maximum tribe size.
(b) Number of pairs, and number of pairs in two-person tribes.

We can see this effect from another perspective by considering the rarity of high-ranked

job sequences. For jobs and prob, the scores are based solely on the job sequence; therefore,

if a number of reps all share an identical job sequence, then the scores of their edges are

equal. If that (shared) score passes the threshold, then the whole set of reps will be included

1Components with hundreds or even with dozens of nodes are unlikely to be the tightly-linked tribes we
seek. In practice, we would probably disregard tribes with more than ten members. Dropping the larger
tribes has little effect on the remaining analyses, so we leave them in.
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in the tribes. For this reason, a ranking that scores frequent job sequences as significant

will have large connected components among its tribes.

Table 2.1 shows the average, for each pair included in tribes, of the number of times its

exact shared job sequence occurs among the 3 million pairs we scored. The low averages for

the prob ranking confirm that this model succeeds in scoring rare sequences as significant.

jobs also brings in fairly rare sequences. For years, when one pair passes the threshold

d, others with the same job sequence do not necessarily cross it, since the score depends

on how long the coworkers are together. However, we see that the reps working together

for the longest times tend to have common sequences of jobs. For comparison, among all

3 million pairs, job lists appear an average of 40.72 times, far fewer than among the pairs

identified by years.

Ranking
Number of reps in tribes

578 1600 6066 26,152

prob 1.06 1.07 1.21 1.51

jobs 1.16 1.35 2.05 4.31

years 315.73 194.05 87.07 224.78

Table 2.1: Average number of times a job
sequence occurs among all pairs of reps.

●

● ●

●

0
20

40
60

80
10

0

P
er

ce
nt

ag
e 

ov
er

la
p 

w
ith

 P
R

O
B

● ●

●

●

● ● ●
●

●
● ● ●

578 reps
(Jobs >= 7)

1600 reps
(Jobs >= 6)

6066 reps
(Jobs >= 5)

26,152 reps
(Jobs >= 4)

Cutoff criterion

PROB−NOTIME

PROB−TIMEBINS

JOBS

YEARS

Figure 2.4: Percentage overlap of rep set with
that from prob.

Figure 2.4 gives a sense of how diverse the resulting tribes are. It shows, for several

cutoffs, the percentage overlap between the set of reps produced by prob and the equal-

sized set produced by each other ranking. We see that the prob variations, particularly

prob-notime, give results fairly close to prob. The rep sets created by jobs are related

but substantially different, while those of years have almost no overlap.

32



2.4.2 Disclosure Scores

As part of their oversight, FINRA and other regulatory organizations require disclosures

to be filed on reps for a variety of actions they commit and events that take place. These

disclosures span categories such as customer complaints, bankruptcies, criminal charges,

and regulatory actions; some are mundane and merely reflect administrative reporting re-

quirements, while others represent serious breaches of trust. We can use these disclosures

as assessments of past behavior or as predictors of future fraud risk. We compute a “dis-

closure score” for each rep as a weighted sum of their disclosures, where serious categories

are weighted more highly (the weights were developed in consultation with FINRA); in this

system, the vast majority of reps are assigned a score of zero.
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Figure 2.5: Disclosure scores of the top-ranked reps. Bar widths reflect the number of reps
in each set.

When we examine the disclosure scores of reps in tribes, we find that they score well

above average, and that the scores of reps at the top of the rankings are higher than those

lower down. Figure 2.5 displays the average disclosure scores of various sets of reps. Similar

to above, the reps are ordered and placed into bins based on which cutoff allows the rep to

be included in the set of tribes. The bar widths correspond to the number of reps in the bin.

For each cutoff, the four bars correspond to the top reps under jobs, prob, prob-timebins,

and prob-notime, respectively.
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Results for years are not displayed, as its scores are low: all fall below the higher dashed

line. In fact, for its highest-ranked reps, the values are below the lower dashed line, and

unlike with the other ranking systems, they rise as we move down the list of reps, reaching

2.4 for the largest set of reps. This implies that reps who have worked together for many

years are the least likely of all to commit fraud.

One alternative explanation for the high disclosure scores seen among top reps is that

these reps may simply have had longer careers than average, and so accumulated more

disclosures. We tested this explanation by dividing all reps into groups based on their

number of jobs held and number of years in the industry. Given a top-ranked set of reps

from the tribes, we replaced the disclosure score of each rep with the average score from

the rep’s matched group, and recalculated the average for the set. If the matched disclosure

scores were elevated, then our top-ranked reps would simply have long histories. In fact,

the matched scores all give averages close to 2.8, the height of the dashed line, which means

that the high scores are not caused by career length.

2.4.3 Disclosure Score Correlation within Tribes

If the tribes are of good quality and the conjecture is correct that reps at high risk of

disclosures often move in tribes, then we would expect each tribe’s disclosure scores to be

homogenous. That is, disclosure scores of individuals within a tribe would be correlated:

some tribes would have multiple members with high scores, while other tribes would have

low scores. Judging tribes by the properties of their members’ disclosure scores is not ideal,

since the outcome depends on that second conjecture. In addition, since the frequency

of disclosures is very low, under this lens only high-risk tribes look conclusively like high-

quality tribes; low-risk tribes are hard to distinguish from random sets of reps. Finally,

note the potential problem of incomplete information: reps that appear low-risk compared

to their tribe-mates might just have evaded detection. It is precisely these individuals that

the FINRA may be interested in investigating in the future.

We perform several experiments to test whether the tribes are homogenous with respect

to disclosure scores. First, we examine individual pairs of reps, using a chi-square test to

assess whether reps with positive disclosure scores pair with each other more often than ex-
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pected at random. If we used all the pairs that formed tribes, then reps in large components

would be represented more than once; to avoid this, we only perform this test on the tribes

of size 2. Since the rankings all show significance at the p ≤ 10−7 level, we compare them

using the phi-square statistic, which is chi-square normalized to have a maximum value of 1.

By this measure, the pairs from all five rankings are about equally homogenous, as shown

at the top of Figure 2.6a.
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JOBS
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PROB
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Area under ROC

Phi−square statistic

(a)
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Average number of 1−digit
zip code prefixes

Average number of 3−digit
zip code prefixes

Average number of branches

Baselines for all
3 million scored pairs

(b)

Figure 2.6: Comparison of tribe sets matched to have 1600 reps. (a) Tribe homogeneity,
measured two ways. (b) Geographic mobility. For the distinct job sequences among the
pairs, bars show average numbers of branches and zip code prefixes.

Next, we set up a prediction task with the tribes: we try to predict the disclosure score

of each rep, using the average score of its tribe-mates. We can compute an AUC (area under

the ROC curve) for these predictions if the classification task is binary. The AUC values

shown are for the task “is the rep’s score higher than the average among this set of reps?”

By this measure, jobs comes out a little more homogenous than prob-timebins, followed

by the other prob rankings, and years trails.

At the tribes sets shown, matched to have 1600 reps, prob-timebins has a higher phi-

square than the others, whereas jobs gives the highest AUC. These results vary at other
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cutoffs. Phi-square remains highest for either prob-timebins or jobs, while the highest

AUC alternates among jobs and the prob-based models.

2.4.4 Geographic Movement

The final indirect measure we use is the postal codes of the branches. If groups of

reps travel geographically, particularly across large distances, this suggests they are staying

together intentionally. Reps participating in the natural patterns of branch changes are less

likely to move to far-off places together. We use the five-digit zip codes associated with most

(96% of) branches as a way to estimate geographic movement. The first digit designates a

broad region of the United States, and the first three correspond to a particular large city

or local region. Counting the number of unique one-digit or three-digit zip code prefixes

associated with a rep pair’s list of shared branches gives an idea of the geographic mobility

of the pair. As with disclosure scores, since we expect many high-quality tribes will not have

geographic movement, this measure can only be used to evaluate tribes in the aggregate.

Figure 2.6b displays information about geographic movement. For each pair in the set,

we calculate how many jobs they share, then how many (one-digit and three-digit) zip codes

these jobs are in. The values shown are averages over the distinct shared job sequences in

the set.

The pairs identified by prob show the greatest mobility as measured by the number

of zip codes covered. Even though the pairs from jobs have the highest number of shared

jobs—by the definition of that ranking—the shared jobs of prob pairs are located in a

larger number of zip codes. Pairs in the years ranking move least of all, even less than the

average among the 3 million scored pairs, which indicates that long-term coworkers tend to

settle down. These long-term years tribes—judging from their low disclosure scores, low

overlap with the others, and low movement—do not seem to be the type of tribes we are

looking for.

2.4.5 Discussion

To sum up, the rankings jobs, prob, prob-timebins, and prob-notime create tribes

whose reps have higher disclosure scores, on average, than random (Section 2.4.2). Reps
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with high (or non-zero) disclosure scores are associated in tribes with other such reps under

these rankings (Section 2.4.3). The prob models create tribes that visit more zip codes

together, even though the jobs tribes have more shared jobs (Section 2.4.4). The prob

models produce more individual pairs in tribes, while jobs and years produce larger

connected components as tribes (Section 2.4.1).

The fact that the jobs and prob models perform comparably at various cutoffs, yet pick

different sets of reps, suggests that there is room for improvement by combining the best

of both systems. Of the tribes ranked highly by jobs but not prob, some, on inspection,

appear to be just the types we hoped to avoid: pairs of reps taking a large number of

very common transitions together. Others look like good tribes, and it appears prob may

miss them because of poor probability estimates at small branches. When both reps at a

two-person branch move to the same new job, it is impossible to tell whether they moved

together because their firm was bought, or because they wanted to stay together. The

prob model assumes the former, calculating the move as 100% likely to occur by chance,

but this may not be the best policy. More generally, the prob model seems to favor large

firms, either because the probability estimates are more stable there, or perhaps because

it is possible to create smaller transition probabilities from larger firms. We have not yet

succeeded in correcting for this property, and the conclusion might be that the model is

simply better suited for situations with large branches.

Qualitatively, many of the tribes look convincing when the reps’ job histories are dis-

played together. It is a compelling feature that transition dates often coincide closely, even

though the model did not use them.

As examples, Figures 2.7a and 2.7b display the career histories of two potential tribes.

Each of these tribes consists of a single pair of reps. The pair in Figure 2.7a was scored

by prob as highly significant, while that in Figure 2.7b, even though it has a long history

together and was ranked highly by jobs, appears to be following typical patterns; it was

scored as not significant by prob. As it turns out, the reps from the significant pair

have disclosure scores of 18 and 24, primarily since in April 1996 they were both fired

(disclosures show an Internal Review and a Termination for each). One of the reps from
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Figure 2.7: (a) Example tribe ranked highly by prob but not by jobs. (b) Example tribe
ranked highly by jobs but not by prob. Nodes display branches and their sizes (in paren-
theses). Firm names, which are fictitious, indicate how some branches are related. Arrows
leading into nodes show the starting dates of employment and the transition probabilities.
Solid lines are moves executed by both reps in the pair; dashed lines are by one rep only.
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the non-significant pair has no disclosures, while the other was fired in 1997 for “diversion

of profitable trades to personal,” for which they received a score of 12.

2.5 Conclusions and Extensions

One of the strengths of this work is that, beginning with no explicit knowledge of this

industry, we can discover, model, and factor out typical job transitions, even though in

real life these are caused by a combination of geography, career trends, and other factors.

Moving forward, we could extend this model by incorporating external or domain-specific

information. For example, we could consider relationships between reps who work in the

same city but not at the same branch, or we could better handle some cases of reps having

many simultaneous jobs given a better understanding of the industry and the data sources.

In this work, we had access to a complete history of employments and disclosures. In

practical use, tribe identification will be an ongoing process, a situation we need to consider;

it will be more difficult to recognize tribes when they have shared only a few jobs.

The most interesting aspect of this formulation, compared to related work, is our ac-

counting for simultaneous jobs and different paths between the same jobs. We needed to

allow for multiple affiliations starting and ending at arbitrary times, yet the model does not

describe the network’s changes day by day; instead, it observes certain discrete events (job

transitions, and coworkers intersecting at a job) as time moves forward.

It may be worthwhile to incorporate more timing information, such as job durations,

into the model, or other properties like the lengths of reps’ non-intersecting careers. In the

direction of simplifying, we plan to explore the time-oblivious version of the model (prob-

notime) to see how well it can be applied to other types of tasks (see Chapter 4). In

addition, we may incorporate a clustering or other dimensionality-reduction technique for

the branches, either as an initial step in order to produce fewer but more robust transition

probabilities, or afterwards to further analyze the resulting transition graph. We wish to

investigate whether adjustments may improve the model’s behavior with small branches.

Finally, we hope to experiment with other domains and data sets.
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CHAPTER 3

PAIRS OF POINTS IN GAUSSIAN DATA

In this chapter, we analyze the task of detecting ASOUND: detecting anomalously

similar objects in unlabeled data. Variations of this task appear in such diverse areas

as social network analysis, security, fraud detection, and entity resolution. To address

ASOUND in a general form, we propose a simple, flexible mixture model in which most

entities are generated independently from a distribution, but a small number of pairs are

constrained to be similar. We predict the true pairs using a likelihood ratio that trades off

the entities’ similarity with their rarity. To investigate the properties of this model, we apply

it to the problem of detecting linked pairs of points within a Gaussian distribution in Rk.

The likelihood ratio method always outperforms a method using only similarity; however,

with certain parameter settings, similarity turns out to be surprisingly competitive. Using

real data, we apply the model to detect twins given their birth weights and to re-identify

cell phone users based on distinctive usage patterns.

3.1 Introduction

In Chapter 2, we saw that in determining which entities in a large data set are linked,

identifying pairs with shared characteristics is only a first step. A remaining challenge is

how to assess the significance of candidate pairs. We return to that question here.

Intuitively, a pair is more likely to be linked the more the entities are similar and

the more the entities (or merely their shared aspects) are rare. (Pairs can also occur in

dense regions, but those pairs will be less distinguishable.) Across the literature, numerous

measures of pair strength have been developed. These usually describe the similarity of the

entities, and sometimes also their rarity. Some measures are probabilistically based, and

almost all are domain-specific.
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In this chapter, we develop a framework for reasoning about pairs in arbitrary domains.

In this framework, we explicitly model how both paired and non-paired entities are gener-

ated. Then we compare the paired and non-paired models using a likelihood ratio, a score

that implicitly accounts for both similarity and rarity. We instantiate these models in the

simplest of systems—continuous data with Gaussian distributions—in order to minimize

domain-specific aspects and focus on these questions:

• Supposing we knew everything about a domain, how would ASOUND be solved op-

timally? (Section 3.2)

• Do we even need a model, or will a simple distance-only baseline be equally effective?

If so, why and under what circumstances? (Section 3.4.3)

• As we approach realistic scenarios, in which the distance between pairs or the number

of pairs is not known (Section 3.4.4), or in which the form of the model might not fit

the data (Section 3.5), will this method still be feasible?

In Section 3.3, we present a generative model for continuous data in k dimensions, and

for inference, a likelihood ratio score (“LR”) to compute for every pair. In the synthetic

data of Section 3.4, we find that one key parameter most affects performance: t, which

describes how far apart the linked pairs may be. We compare LR to baseline methods that

measure only similarity of pairs (“d”, for distance), only rarity, or sub-optimal combinations

of the two. Surprisingly, we find that d can perform almost as well as LR—that is, rarity

doesn’t matter—but only for the easiest problems, those with the smallest values of t. By

examining the theoretical distributions of positive (i.e., linked) and negative (non-linked)

pairs, we are able to explain why this happens.

Moving towards situations where parameters are unknown (and true labels might be

unavailable), we examine performance when our estimate t̂ mismatches the model and

discover it governs the score’s balance of similarity versus rarity. When the optimal t

is unknown, the approximation we call P (d|ε)
P (m|φ) is a robust alternative to the full LR; its

numerator measures the likelihood of the distance between the pair, under the positive

model, and its denominator describes the pair’s rarity with respect to the data set. In

Section 3.5 we apply the model to two real data sets constructed to be labeled instances

of this task. As we vary t̂, the performance trends are comparable to those in synthetic
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data. We find that both real data sets are in a middle range of difficulty, a range where

performance is only moderate, but where LR distinctly outperforms d.

3.2 Domain-Independent Model

The model below makes the following assumptions, which are reasonable for many appli-

cations. First, the number of linked entities is low. Second, the linked entities appear only

in disjoint pairs, not larger groups. Third, the non-linked entities—the vast majority—can

be modeled as being independently generated from some distribution φ. Finally, the pairs

can be modeled as being generated jointly according to some process θ. This θ should be

specified, like in Section 3.3 below, in such a way as to involve φ but also keep pairs close

together.

This framework is flexible, in that arbitrary domains and distributions can be swapped

in depending on the choices of φ and θ. In Section 3.3 we will fully specify a model in

which entities are Gaussian-distributed points, and we work with it in the remainder of this

chapter. In Chapter 4, the entities will instead be binary vectors, and new distributions of

φ and θ will be defined accordingly. We keep these models simple so that we can study the

effects of parameter choices. However, more complex models could be developed to fit the

needs of specific applications. Moreover, although for present purposes we want pairs to be

close together, one could instead specify a θ that makes pairs be far apart or in another

specific configuration.

3.2.1 Generative Process

The output will be n entities, x1, . . . ,xn, where some pairs are generated together. Let

φ be the distribution of singletons. Let θ be the process for generating pairs. Two variables

are unobserved: r, the actual number of pairs, and C = {cij}, a (binary) adjacency matrix

describing which entities are in pairs. We control the number of pairs with the variable q,

such that the expected number of pairs E(r) = qn.

When cij = 1 we say that the entities xi and xj form a pair (or a link), or equivalently,

that the pair is positive. When cij = 0 we say that the entities are singletons or that the

pair is negative.
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Symbol Meaning

n Number of points

k Number of dimensions

r and q Number of positive pairs: r ∈ [0, n/2], controlled by q = E(r)
n .

C = {cij} Adjacency matrix of true pairs. Each cij is 1 (positive) or 0 (negative).

φ and σ Distribution of singletons: φ = Normal(µ, σ2I).

ε and ν Distribution of distances dij between positive pairs: ε = Normal(0, ν2I).

θ Joint distribution of positive pairs: P (mij ,dij | θ) = P (mij | φ)P (dij | ε).

t = ν
σ Normalized parameter describing distance between true pairs: 0 is identical.

m′ =
‖mij−µ‖

σ Normalized distance from center to midpoint of a pair

d′ =
‖dij‖
σ Normalized distance between a pair

Table 3.1: Notation in this chapter.

The generative process is as follows. First, choose how many and which entities are in

pairs.

1. Generate r, the number of pairs: r ∼ Binomial(n/2, 2q). (With this proportion,

r ∈ [0, n/2], and E(r) = qn.)

2. Generate C = {cij} uniformly from among all adjacency matrices of r links where no

point has > 1 link. Let ai ∈ {0, 1} indicate the number of links incident to point i in

C.

At this stage, for each xi, we know whether it will be a singleton or part of a pair with xj .

3. Generate x1, . . . ,xn:

(a) If ai = 0, then generate xi ∼ φ.

(b) For each pair (i, j) for which cij = 1, generate (xi,xj) ∼ θ.

This is essentially a mixture model for the data: one mixture component is a distribution

of independent entities (φ), the other is a distribution of pairs (θ).

3.2.2 Inference

In this paper, we never explicitly infer r or C. Instead, to make inference efficient, we

reason about each possible pair as if it were independent of the others.
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For each individual pair (xi,xj), we estimate the probability that it is positive. The

quantity of interest is pij = P (cij = 1 | x1, . . . ,xn, φ, θ, n, q), but it is easier to reason about

it in odds form:

PO =
pij

1− pij
=
P (cij = 1 | x1, . . . ,xn, φ, θ, n, q)

P (cij = 0 | x1, . . . ,xn, φ, θ, n, q)
.

PO, the posterior odds, is rank-equivalent to pij , and pij can be recovered at any time using

LR
1+LR = pij = P (cij = 1 | x). We will produce a probability estimate for each cij , and at

evaluation time, compare these values to the true set {cij}. (From this point on, the model

parameters φ, θ, n and q are implicit.)

We approximate, for every pair of points:

PO =
P (cij = 1 | x1, . . . ,xn)

P (cij = 0 | x1, . . . ,xn)
≈ P (cij = 1 | xi,xj)
P (cij = 0 | xi,xj)

=
P (xi,xj | cij = 1)P (cij = 1)

P (xi,xj | cij = 0)P (cij = 0)
(3.1)

=
P (xi,xj | θ)P (cij = 1)

P (xi | φ)P (xj | φ)P (cij = 0)
. (3.2)

Line (3.1) is an application of Bayes’ theorem. In (3.2), we use Step 3 of the generative

model to write out the likelihoods for positive and negative pairs, respectively. Line (3.2)

consists of a likelihood ratio (LR) term,

LR =
P (xi,xj | θ)

P (xi | φ)P (xj | φ)
,

and a prior odds term,
P (cij=1)
P (cij=0) . Because the prior odds (see next paragraph) is constant

throughout a data set, going forward we will focus on the likelihood ratio term.

The term for the prior P (cij = 1) is r divided by the total number of pairs, which is

2r
n(n−1) when r is known. When r is unknown, we compute P (cij = 1) from q by marginal-

izing over possible values1 of r (see (3.3)). In (3.4), P (r = h | q) is expanded using

1Note that the summation omits the term h = 0. Although our process can generate data sets having
r = 0, we discard those samples because our performance measure is only defined in the presence of positive
pairs.
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r ∼ Binomial(n/2, 2q). In either case, P (cij = 0) = 1− P (cij = 1).

P (cij = 1 | q) =

n/2∑
h=1

P (r = h | q)P (cij = 1 | r = h) (3.3)

=

n/2∑
h=1

(
n/2

h

)
(2q)h(1− 2q)n/2−h

2h

n(n− 1)
(3.4)

3.2.3 Limitations of this Inference Method

The output of inference is a list of likelihood ratios, one for each potential pair. We can

convert the likelihood ratios to probability estimates, and we can turn them into a discrete

set of positive pairs, if desired, by thresholding the scores.

One drawback to treating each pair as independent is that, in violation of the generative

model, the resulting (thresholded) adjacency matrix Ĉ may assign some entities to more

than one pair. We could remedy this situation with additional post-processing (instead of or

in addition to the thresholding), keeping only the highest-probability links. Alternatively,

we could reconsider the model’s assumptions: if an entity is matched to more than one pair,

we may have underestimated φ in that region or the entities may actually belong to a group

of more than two. It could be seen as a strength if the method is able to detect such groups

when the generative process only describes pairs.

Another way to avoid assigning any point to more than one pair would be to infer the full

C: compute P (Cl | x1, . . . ,xn) for every valid matrix Cl and choose the one with maximum

likelihood. This would be computationally challenging: for a typical data set in this paper,

there are more than 1.6× 1016 such matrices.

Another simplification is that we are modeling all negative pairs as if they were formed

by two singletons. In truth, of the n(n−1)
2 − r negative pairs, 2r(n− r − 1) of them involve

at least one entity from a positive pair. As r rises from 1 to n
2 , the fraction of non-modeled

pairs increases from near-0 to near-all of them. In Section 3.4.4, we discuss how these

non-modeled negatives can under certain circumstances affect performance.
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3.3 Model for Gaussian-Distributed Data

Next, we instantiate the model of Section 3.2 for a domain of points in Euclidean space.

The entities xi will now be points in Rk, and we set the distribution of independent points

to be a radially symmetric normal: φ = Normal(µ, σ2I).

For positive pairs, we define θ to use φ, so that the linked entities roughly resemble

singletons. To generate points xi and xj, the process θ is:

1. Generate mij ∼ φ.

2. Generate displacement vector dij ∼ ε.

3. Set xi = mij + dij and xj = mij − dij .

Here, θ samples from φ to generate the midpoint of a pair, then it displaces the individual

points symmetrically about that midpoint. Within this θ, we must specify ε, the distribution

governing the size of that displacement. We define ε to be another radially symmetric

normal: ε = Normal(0, ν2I).

Returning to the likelihood ratio from Eq. (3.2), we can now expand its numerator:

LR =
P (xi,xj | θ)

P (xi | φ)P (xj | φ)
=

1
2k
P (mij | φ)P (dij | ε)
P (xi | φ)P (xj | φ)

. (3.5)

The generative process for positive pairs was described in terms of mij and dij , so

the most natural way to write its likelihood function would be P (mij ,dij | cij = 1) =

P (mij | φ)P (dij | ε). However, since Lines (3.1) and (3.2) are written as functions of (xi,xj),

we have to perform a change of variables; the mapping is one-to-one but introduces the

constant 1
2k

(see Lemma A.0.1 in Appendix A).

It turns out that the likelihood ratio can be simplified since the underlying distributions

are normals. To see this, next, we plug in normal probability density functions for the terms

involving φ and ε:

P (mij | φ)P (dij | ε) =

(
1√
2πσ

)k
e−
‖mij−µ‖2

2σ2

(
1√
2πν

)k
e−
‖dij‖

2

2ν2 (3.6)

P (xi | φ)P (xj | φ) =

(
1√
2πσ

)k
e−
‖xi−µ‖2

2σ2

(
1√
2πσ

)k
e−
‖xj−µ‖2

2σ2 (3.7)

=

(
1√
2πσ

)2k

e−
m2+d2

σ2 . (3.8)
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For Eq. (3.8), we have defined m = ‖mij−µ‖ = ‖ (xi+xj)
2 −µ‖ and d = ‖dij‖ = ‖ (xi−xj)

2 ‖

(dropping the subscript ij when it is clear from context) and applied Lemma A.0.2.

Substituting these expressions back into (3.5) gives:

LR =

1
2k

(
1√
2πσ

)k
e−

m2

2σ2

(
1√
2πν

)k
e−

d2

2ν2(
1√
2πσ

)2k
e−

m2+d2

σ2

=
( σ

2ν

)k
e

1
2

(
m2+2d2

σ2
− d

2

ν2

)
. (3.9)

The likelihood ratio in Eq. (3.9) is fairly simple: instead of depending on the full data

vectors xi and xj—2k coordinates in all—it uses just two measures of the pair, m and d.

We assume (for now) that the model parameters are available at inference time. Among

them, n and q (or r) affect only
P (cij=1)
P (cij=0) . Changing them affects the individual scores, but

not the ranking. We also need σ and ν. However, it turns out we can rewrite the score as

a function of their ratio t = ν
σ . Eq. (3.10) shows the final, reparametrized LR as a function

of m′ = m
σ , d′ = d

σ , and t = ν
σ without σ:

LR =

(
1

2t

)k
e

1
2

(
m′2+d′2

(
2− 1

t2

))
. (3.10)

3.4 Applying the Model to Synthetic Data

In this section, we study the behavior of the algorithm when the data has been generated

by the model. We will address (a) how the task’s difficulty is affected by model parameters

(primarily t, but also the dimensionality k, the number of points n, and the number of pairs

q or r) (Section 3.4.2); (b) how the score for an individual pair varies as a function of t

and its (m′, d′) values (Section 3.4.3); and (c) how performance is affected by changing the

value t̂ used during inference (Section 3.4.4).

3.4.1 Experimental Setup

We evaluate performance by comparing the ranked list of predicted pairs to the set of

true pairs, calculating the AUC (area under the ROC curve) of the ranking. We considered

other common measures of ranking such as average precision or Hand’s H measure, but they
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were unsuitable because, unlike AUC, they fluctuate when the number of true positives or

negatives does [49, 60]. In realistic scenarios, it may also be important to focus attention

on the very top of the ranked list or on the individual probability estimates. These paths

are left to future work.

For present purposes, the ranked list contains all pairs. In larger data sets, efficiency

would become a concern, as it is in entity resolution. Existing techniques from that literature

address efficiency either by making the score calculation faster or by scoring only those

subsets of pairs that are judged similar according to some preliminary measure [31, 46]. See

Section 5.7 for further details. A method known as “binning” can be used for continuous

data: in each dimension, create overlapping bins for the data, and only consider pairs that

lie within the same bin in some dimension [85]. For the data sets in this paper and practical

values of parameters, applying this method, i.e., filtering out pairs having high d, would

probably bring gains in efficiency at little loss to performance.

For synthetic data experiments, given any parameter setting of n, q and t, we generate

100 data sets from the model. Within each data set, we score every pair and evaluate the

AUC of the ranked list compared to the true pairs. These experiments use k = 2 dimensions

and (without loss of generality) σ = 1.

3.4.2 Performance on Synthetic Data

The likelihood ratio of Eqs. (3.2) and (3.10) is the Bayes estimate for distinguishing

positive from negative pairs, so it should perform close to optimally, depending on how

closely the data matches the two modeled classes. We compare it to four baseline methods.

One, d, measures only the similarity of points in a pair: it ranks by dij , the distance

between the points, with smaller distance meaning more likely positive. The second, m,

measures only the rarity (i.e., local sparseness) of the pair: it ranks by mij , the distance

from the origin to their midpoint, with higher distance meaning more likely positive. It can

be seen from Eq. (3.10) that using m (or m′) is rank-equivalent to using LR if d′ is held

constant. Likewise, using d (or d′) is rank-equivalent to using LR if m′ is held constant—

provided that 1
t2
> 2, or t < 1/

√
2 ≈ 0.71. Generally we will use t � 1, so this will be the

case.
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The third baseline, called LR[d], is a likelihood ratio designed to take into account only

d, not m. It is computed as
P (d|cij=1)
P (d|cij=0) . This is intended as an analogy to a Fellegi-Sunter

model, in that it takes the likelihood ratio of a similarity function of a pair (see Section 5.4)

[50]. For the synthetic data, the score is similar to Eq. (3.10), but the discriminant function

in the exponential reduces to d′2
(
2− 1

t2

)
. The fourth baseline, P (d|ε)

P (m|φ) , is an intuitive if naive

way to combine the the terms for similarity and for rarity. But it is actually a reasonable

approximation to the full LR of Eq. (3.5) when d is small enough, because in that case

P (m |φ) ≈ P (xi |φ) ≈ P (xj |φ) and the terms cancel out. In the synthetic data, this

method is rank-equivalent to
(
m′2 + d′2

(−1
t2

))
.
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Figure 3.1: AUC as a function of t, the parameter describing distance between positive
pairs, for five methods. Each point is the average of 100 trials. Inset shows a close-up of
the smallest values of t, with error bars indicating 95% confidence intervals. In the inset,
P (d | ε)/P (m |φ) would be visually indistinguishable from LR. Parameters are n = 200,
E(r) = 4, and σ = 1.
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Figure 3.1 shows performance as we vary t for one setting of (n, q). (Other settings

were similar.) The results can be divided into three realms. First, when t is very low (see

inset), the AUCs of both LR and d are almost perfect. LR is always above d, but they are

nearly indistinguishable. Next, as t approaches 1/
√

2, both LR and d drop, and they diverge;

at its minimum value, LR matches m, while d is nearly 0.5, or random. When t > 1/
√

2,

LR increases again, while d continues to decrease, now ranking pairs in the wrong order.

Meanwhile, m is much lower and steady. The third and fourth baselines each partially

augment d: LR[d] is identical except that it changes the direction of ranking at 1/
√

2, and

P (d|ε)
P (m|φ) incorporates m, so it performs near optimal for low t, but it does not change direction

at 1/
√

2.

3.4.3 Understanding Performance

Conceptually, we can explain why t = 1/
√

2 is always a turning point, regardless of the

form of φ. In each dimension l, dl =
xil−xjl

2 , so for negative pairs, since xi and xj are

independent, E(dl|−) = 0 and Var(dl|−) = 1
2Var(xl) =

σ2
l
2 . For the positive pairs, by

definition E(dl|+) = 0 as well, while Var(dl|+) = ν2
l = (tσl)

2. When we set t = 1/
√

2,

the positives’ Var(dl|+) =
σ2
l
2 matches that of the negatives. In these experiments, at

t = 1/
√

2, not only do the means and variances of d match, but both the positive and

negative distributions of dl are normals; i.e., the distributions of d are identical for positive

and negative pairs. Therefore d contains no distinguishing information, and LR is only

using m. At higher t, the positives become farther apart, on average, than the negatives.

We next examine how the LR score of an individual pair combines the two measures of

it, m′ and d′. Figure 3.2 shows that the score increases when m′ increases; for the boxes in

which t < 1/
√

2, the score increases when d′ decreases, and when t > 1/
√

2, the score increases

when d′ increases, as discussed above. At t ≈ 1/
√

2 the contour lines are vertical, which shows

visually that the only information is contained in m. Now, consider the smallest setting

of t, in which empirically d performs almost as well as LR. The contour lines in the first

box are almost horizontal, indicating that d′ contains almost all the information (in the

LR score, d′2

t2
� m2). This dominance of d′ explains why the two methods are almost

indistinguishably strong.
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Figure 3.2 becomes more informative once we know not only what score is assigned to

a given position, but also the distributions of positive and negative pairs along these axes.

It turns out that with normal distributions for φ and ε in Rk, the distributions of positive

and negative pairs have closed forms (full derivations are in Section A). Each distribution

is a product of two independent χk distributions, one describing m′, one describing d′:

P (m′ | φ)P (d′ | ε) =

(
1

t

)
χk(m

′)χk

(
d′

t

)
(3.11)

P (m′ | φ)P (d′ | φ) = 2χk(m
′√2)χk(d

′√2). (3.12)

The peak of χk is at
√
k − 1. Since k = 2 here, that peak is at (1, t) for the positive pairs

and (1/
√

2, 1/
√

2) for the negatives. As t changes, the only effect is on the d′ dimension of the

positives. Visually, it is clear that the distributions are well separated at small t and begin

to overlap as t grows. In higher dimensions, the distributions become better separated (see

Appendix B), so the task should become easier as k increases.

3.4.4 Sensitivity to Parameters and to Assumptions

When n increases or q decreases, intuition suggests that since true pairs are less fre-

quent, the problem might get harder. However, since AUC is unaffected by changes to

class proportions, a glance at the class distributions of Figure 3.2 should help solidify the

(more relevant) intuition that changing the number of positives or negatives will not affect

the separation between the classes. At inference time, if we mis-guess q, the probability

estimates for pairs change, but the ranking of LR scores does not.

At data generation time, the situation is more subtle. For a given n, as the number

of pairs increases towards n/2, the performance of LR can actually decrease—but only for

large t > 1/
√

2. This is due to interference of the non-modeled pairs described in Section

3.2.3: when t is large, the positive points no longer resemble the singletons, and when

enough points become part of positive pairs, the majority of negatives no longer resemble

the modeled negatives. However, we observe no such performance effects with smaller t.

In many realistic problem scenarios, we will not know q nor, more importantly, t. Figure

3.3 shows how performance degrades when using an incorrect value t̂ for inference. For
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LR, t̂ determines the balance between d′ and m′, and the direction of d′’s effect. When t̂

approaches 0, LR approaches d; when t̂ reaches 1/
√

2, LR matches m, then continues to drop;

and the optimal is in between, at the true t. For P (d|ε)
P (m|φ) , performance is surprisingly robust:

when t̂ is underestimated, performance drops just like LR’s, but when t̂ is overestimated,

P (d|ε)
P (m|φ) remains high. This is because P (d|ε)

P (m|φ) has no turning point in its use of d: as t̂→∞,

P (d|ε)
P (m|φ) merely puts less weight on d and eventually converges to m. Meanwhile, LR[d]

simply matches d, and its AUC flips to (1− d) when t̂ > 1/
√

2.
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Figure 3.3: Performance as t̂ varies. True parameters are t = 0.3 (vertical dotted line),
n = 200, and E(r) = 4.

The implications for data sets with unknown parameters can be summarized as follows.

Mis-guessing q does not affect the ranking, and our inference methods seem to work well

even when the data contains a large number of pairs, as long as t < 1/
√

2. As long as we

know positive pairs are closer together than negative pairs, then when using LR, we should
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always use a t̂ less than 1/
√

2. Finally, mis-guessing t can be harmful, but there are several

options for avoiding the performance drop-off: (a) use d, which is parameter-free and often

performs well, (b) underestimate t, rather than overestimate it, to ensure performance will

not drop below d, or (c) use P (d|ε)
P (m|φ) , which is more robust to overestimates of t.

3.5 Applying the Model to Real Data

To apply this model to an arbitrary data set in Rk, we need to specify several parameters.

The distribution of singletons is straightforward: estimate φ (which can be of any desired

form) from the entire data set. For positive pairs, we preserve the generative process θ in

which m ∼ φ and d ∼ ε. We let ε remain a normal, but it should no longer be radially

symmetric, since the variables might be at different scales. We define a vector version of t

such that tl = νl
σ̂l

in each dimension l, where σ̂l is the (empirical) estimate of the variance

of the negatives. Then we can write d ∼ ε =Normal(0, t′Σ̂−1t), where Σ̂ is a diagonal

covariance matrix estimated from the data. As before, the key parameter to specify is

t, which describes the distance between the positive pairs. That distance will match the

negative pairs when t = 1/
√

2(1, 1, . . . , 1).

The baseline methods d and m can be generalized as P (d | ε) and 1
P (m |φ) , respectively.

When all the components of t are equal, P (d | ε) becomes rank-equivalent to a natural

k-dimensional measure called scaled Euclidean distance. The method LR[d] requires an

estimate of P (d | cij = 0); for this, we fit a normal to the set of all pairwise displacement

vectors d.

3.5.1 Data Sets

The Matched Multiple Birth Data from the National Center for Health Statistics (2000)

contains infant birth and mortality data for all twins and larger multiples born in the U.S.

from 1995–2000. In this data, two variables could potentially serve to re-identify paired

infants: birthweight (grams) and Apgar score (a 0–10 assessment of newborn baby health).

True pairs of twins might be expected to have one baby larger and healthier than the

other. Yet tests of a sample of twins show the pairs’ values are correlated (with a Pearson
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correlation of 0.79 for weight, 0.44 for Apgar), so there is at least some signal for the

algorithm to work with.

The second data set is derived from the Reality Mining data, cell phone data collected

from 94 students and faculty over a nine-month period [44]. Our task instances address the

question “Is an individual’s phone usage pattern distinctive enough to identify them?” We

summarize each user’s weekly behavior with seven aggregate features: total communication

events; number of distinct contacts; number of calls made, received, and missed; number

of SMS’s received and sent. Each such person-week becomes a point in a data set, and the

pairs are defined as instances of the same individual in two different weeks.

From each data source, we construct 100 labeled instances of the pair detection task. An

instance of twins data consists of five pairs of twins and 90 singleton babies. An instance of

cell phone data consists of five pairs of person-weeks and 75 singletons. In the experiments

below, φ is always a normal distribution with diagonal covariance.

3.5.2 Experiments and Results

In contrast to typical usage scenarios, where it might be difficult to validate the results

of a run, here we have ground truth labels and can experiment with different values of t̂.

It has one component for each variable, and for these domains all we know in advance is

that pairs should be “close together”—i.e., each component is in the range (0, 1/
√

2). For

the two-variable twins data, we explore a grid of possible values. For the seven-variable cell

phone data, the exponential state space becomes a problem, so we restrict t̂ to the form

a · (1, 1, . . . , 1) for some constant a.

Figure 3.4 shows that the methods behave very much the same way on real data as they

do on synthetic. As before, Best-LR > d > m, and P (d|ε)
P (m|φ) is an excellent alternative when

t̂ is unknown.

The grid search on twins data reveals that when we vary the individual components of

t̂, this affects the relative strengths of the variables. For instance, setting t̂weight = 0.001

(stringently small) but leaving t̂apgar = 0.7 (flexible) is almost equivalent to ranking only by

dweight. For a fixed ratio among the components of t̂, the relative strengths of the variables

are held constant, and only the balance with m will vary.
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Figure 3.4: Results (average AUC) on real data sets as t̂ varies.
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As a comparison, we also estimate a best fit t from a large sample of twins: that

(tweight, tapgar) = (0.33, 0.57) is not far from the t̂ = (0.3, 0.5) found by searching. Separate

experiments with single variables show that for twins, weight is a strong feature, but Apgar

is not. With Reality Mining, the strongest individual features are number of SMS’s sent

and number of contacts.

It is not surprising that both these tasks turn out to be difficult given their respective

feature sets; in particular, it has been noted that for the Reality Mining data, phone com-

munication is not nearly as consistent as proximity patterns [45]. If the trends of Figure 3.1

generalize to here, then the relatively low AUCs may go hand in hand with the high values

of t̂ and the performance boost of LR over P (d | ε).

3.6 Conclusions

This chapter introduces a simple model for ASOUND, the task of distinguishing tightly

linked pairs from singleton points, given a mixture of both. This task has not been previ-

ously described in a general form, although specific instances have been studied in numerous

contexts. From the generative model, we derive a likelihood ratio incorporating both the

similarity and rarity of the pairs. A single parameter t describing the distances between pairs

turns out to govern the task’s difficulty; at inference time, this same parameter describes

how to trade off a pair’s similarity with its rarity. This LR method always outperforms

using only similarity, but in a certain parameter range, similarity turns out to be surpris-

ingly competitive. We demonstrate how to apply the model to real-world data sets having

unknown parameters. In the next chapter, we build a different version of this model for a

more complex domain.
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CHAPTER 4

LATENT TIES IN AFFILIATION DATA

In this chapter, we further study methods for identifying unusually similar pairs of en-

tities within a data set, or ASOUND. However, now each entity (or, “item”) is no longer

a point, but a binary vector representing, for example, one person’s set of affiliations. The

pairs of interest are items with a connection, such as a latent social tie, causing them to

be more similar than independent pairs would be. Below, we present a simple, analytically

tractable model, named MixedPairs, for generating and scoring pairs with a given degree

of correlation. Within synthetic data, where MixedPairs is optimal, we can both predict its

performance and characterize which features of pairs and data sets cause pairs to be easy

to identify. We then transfer these insights to real data and to other similarity methods.

While an individual pair stands out if it shares many rare affiliations, we find that overall,

a data set’s pairs become more conspicuous as the total number of affiliations increases and

when each affiliation is present in about half the population. We show how the relative per-

formance of similarity methods varies depending on the affiliation frequencies and whether

the methods capture the information present for those frequencies. We find that a group of

four similarity methods—three of which are first introduced here—satisfies key properties

present in MixedPairs and performs the most robustly across data sets.

4.1 Introduction

As we discussed in Chapter 2, the problem of detecting pairs of people from their shared

affiliations would be more widely applicable if we could handle affiliations that were static,

as opposed to dynamically changing. In this chapter, we take on that more general domain:

identifying anomalously similar entities (ASOUND) within a bipartite graph. A number of

recent projects have demonstrated inferring ties among people who are unusually similar—if

not based on their job histories, then based on online behavior or physical proximity [1, 40,
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45, 86]. Problems of this flavor are a natural fit to ASOUND, provided we can construct

suitable representations and models for the data.

In this chapter, we assume the data provided can be described as an affiliation network:

a bipartite graph consisting of “items” (e.g., people) connected to “affiliations” (e.g., events

attended or purchases). As before, we define the task as computing, in an unsupervised

manner, a similarity score for all pairs of items. Again we assume that most items are

independent. Since each item can be described by its binary vector of affiliations, the

methods within this chapter are equally applicable to detecting pairs within a collection of

binary vectors.

This version of ASOUND resembles—and could potentially inform or be informed by—

several others that identify linked entities or compute similarities between nodes in a graph.

These problems include resolving entities [46], predicting links in unipartite networks [76],

detecting collusion [143], calculating document similarity [83], and re-identifying an indi-

vidual from two samples of their data [93].

The most closely matching problem is probably that of inferring latent social ties,

mentioned above. People who know each other often behave similarly—whether due to

homophily, imitation or intentional coordination—and it is interesting to ask how much

information about the social network is recoverable from data about individuals. Diverse

methods have been used in that literature, with methods usually tailored to specific data

sets. However, there has been less theoretical work addressing the principles behind the

methods. Two recent papers seek to bridge this gap by making clear assumptions about

how ties form in social networks and demonstrating how popular measures perform well

under, or fail to satisfy, those assumptions [58, 110]. Our work proceeds in the vein of these

papers, beginning with a formal model and examining the scoring methods it leads to.

Our high level goals are twofold. First, we want a principled method for assigning

probabilities to item pairs, one that describes whether the items are more similar than

would be expected by chance alone. Second, we seek an understanding of how the size and

distribution of the data (numbers and node degrees both of items and affiliations) affects

the statistical power to identify pairs within a given data set.
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In this chapter, we present such a method, a generative probabilistic model of affilia-

tion data sets that contain latent pairs of items. The method extends the framework of

Section 3.2 by specifying models for singletons and pairs in affiliation data. The resulting

model, which we call MixedPairs, is simple enough to be understandable and to permit

efficient inference. Doing inference within the model produces a likelihood ratio (LR)—a

similarity measure between pairs that describes their probability of being connected. The

LR is a readily interpretable function, a sum across the vector components of the pair

(Sections 4.2.2 and 4.2.3).

The MixedPairs model also gives us an ability to simulate data in order to explore

properties of the problem space. In synthetic data, we are able to predict the task’s difficulty

as a function of parameters (Section 4.3.2). The ability to identify pairs within a data set

depends, not surprisingly, on how similar the latent pairs are. It also turns out to be related

to the entropy of the data set: the task gets easier as the dimensionality increases, and as

the frequency of each affiliation approaches 0.5.

After analyzing the model’s behavior in synthetic data, we widen the scope to other

similarity methods and real data sets. We show that the MixedPairs LR satisfies certain

desirable properties, properties shared by the other top-performing similarity methods (Sec-

tions 4.5 and 4.6.2). Two such methods (Weighted Correlation and SharedWeight1100) are

derived in this chapter (Section 4.4.1), and we recommend them as parameter-free alter-

natives to MixedPairs. We find that in their experimental performance, the comparison

methods cluster into groups depending on which of the properties they satisfy. We also

find that, while results vary widely across data sets and methods, one entropy-like property

generally holds. This property tells us that within a given data set, the affiliations most

informative for detecting pairs are those with frequencies closest to 0.5 (Section 4.6.3).

4.2 The MixedPairs Model

The input data is a n × k binary matrix, the adjacency matrix of a bipartite graph

connecting n items (e.g., people or records) to k affiliations (e.g., events or binary features).

We describe each item by its row in the matrix, that is, a binary vector of k components.

We assume that most items are drawn independently from the same joint distribution of
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affiliations. Each item can be modeled as having its set of affiliations drawn from some

distribution φ that can be estimated from the data set as a whole. In this chapter, φ is

constrained to a simple form, a multiple Bernoulli distribution over affiliations.

We assume that the data set also contains a relatively small number of linked pairs,

which we wish to identify. Linked pairs are those that, for some reason—such as a common

origin, a copying event or a social tie—are generated dependently in a way that gives them

unusually similar sets of affiliations. Examples of linked pairs in our experiments include

two documents that share a block of text (and therefore have similar word vectors), two

colleagues who work together closely (and therefore display similar voting behavior), or two

samples of data taken from the same person’s cell phone in different weeks (that therefore

record proximity to similar sets of cell towers). By ignoring domain-specific features such

as word order or cell phone timestamps, we lose predictive ability for any individual task,

but gain the ability to study how algorithms generalize across problem instances.

Although in this research we keep the data sets small for experimental purposes, a typical

real-world problem setting might be a database of thousands or more people (e.g., website

users) and their recorded behavior, in which we conjecture there are interesting patterns of

correlated social behavior, but for which we have few or no labeled examples. To address

that scenario, we prefer an unsupervised method, in which we can assert merely that linked

pairs are more similar than they would be by chance (MixedPairs has one parameter, and

the other methods have none). We also need methods that are efficient; scoring all pairs

in a large data set is enough of a computational challenge [10] that we avoid methods with

latent variables, for example.

4.2.1 Generative Process

The MixedPairs model specifies how a data set of linked pairs and singletons is generated.

The inputs to the model are the total number n of items to generate; the number r of

pairs among them; the size k of the set of affiliations (that is, the length of each vector);

a similarity parameter s ∈ [0, 1] for the pairs; and the distribution φ of the singletons

parametrized by k affiliation frequencies (p1, p2, . . . , pk), with each pi ∈ [0, 1].
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The data set itself will be a mixture of singletons and pairs. The generative process for

them is as follows:

1. Generate n − 2r singletons. Each singleton X is drawn independently from φ. That

means X = (x1, . . . , xk), where for each i ∈ {1, . . . , k}, xi ∼ Bernoulli(pi).

2. Generate r pairs. Each pair (X1, X2) is generated as:

X1 ∼ φ

X2 ∼ sX1 + (1− s)φ

That is, X2 is generated from a mixture of φ and X1. For each component x2i of X2,

with probability s, x2i is forced to match x1i, while with probability (1 − s), x2i is

drawn from Bernoulli(pi).

If the similarity parameter s is 0, then the pairs become independent. At s = 1, they are

forced to be identical. In general it describes the proportion of components that are forced

to match, a process that increases similarity beyond the proportion that already match by

chance.

An alternative process for pairs that yields the same likelihood function: draw both X1

and X2 from φ. Then generate a vector f describing which components will be flipped to

match each other (if they don’t already). Each component fi is drawn i.i.d. ∼ Bernoulli(s).

Wherever fi = 1 and x1i 6= x2i, flip one of x1i and x2i, deciding between them with

probability 0.5.

The items generated as pairs are individually indistinguishable from singletons. For X1,

this is true because it is sampled directly from φ. For X2, the marginal probability of each

component matches φ: P (x2i = 1) = sP (x1i = 1)+(1−s)pi = (s+1−s)pi = pi. Since both

X2 and φ are component-wise independent, this shows that X2 is distributed according to

φ when considered by itself. Having pairs match singletons is an important property for

the model to satisfy, because it assures us that detection of pairs will be based exclusively

on their correlation, not some other incidental property.

Note that this generative process derives directly from that of Section 3.2. Section 3.2 is

explicit about certain aspects we skip here, such as the adjacency matrix C and uncertainty
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Symbol Meaning

n Number of items

k Number of affiliations

r Number of positive pairs

s Similarity parameter of positive pairs: 0 (independent) to 1 (identical)

c True label of a pair: 1 (positive) or 0 (negative)

pi Affiliation frequency, for i ∈ (1, . . . , k)

φ Distribution of singletons: φ = Multiple-Bernoulli(p1, . . . , pk)

bi One vector component of a pair: 1|1, 1/0, or 0|0
LLR(bi) Log likelihood ratio assigned by MixedPairs; see Table 4.2.

Table 4.1: Notation in this chapter.

over the number of pairs r; for a fuller treatment, refer back to that section. Below, the

likelihood ratio from (4.1) used in scoring is equivalent to that from (3.2). The concerns

regarding treating all pairs as independent, first discussed in Section 3.2.3, are reviewed

below.

4.2.2 Likelihood Functions and Inference

To detect pairs within a data set, we compute a score for every possible pair of items,

estimating its probability of being positive (a true pair) as opposed to negative (composed

of two singletons). Evaluation will compare these scores to the ground truth labels. In

this work, we ignore the issue of joint inference (that according to the generative model, if

(X1, X2) is a pair then (X1, X3) cannot be). By ignoring that constraint, we can score every

pair independently—which is much more computationally tractable—and we can deploy the

scoring function in a broader class of situations, as a general-purpose similarity measure.

Note that the data will also include negative pairs not formed from two singletons.

These are negatives which combine a point from a true pair together with a singleton or a

point from a different true pair. Since the individual points from true pairs look just like

singletons, as we showed above, these “different” negative pairs can be accurately modeled

just like the others, as two independent singletons.

We compute the score in odds form. Letting c ∈ {0 (negative), 1 (positive)} be the class

label for an arbitrary pair (X1, X2), we estimate the posterior odds (“PO”):
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bi = (x1i, x2i) P (bi | c = 0, pi) P (bi | c = 1, pi, s) LR(bi | pi, s) WC(bi | pi)
= 1

s (LR(bi | pi, s)− 1)

1 1 p2i pi(s+ (1− s)pi) s+(1−s)pi
pi

1−pi
pi

1 0 pi(1− pi) pi(1− s)(1− pi) 1− s -1
0 1 (1− pi)pi (1− pi)(1− s)pi 1− s -1

0 0 (1− pi)2 (1−pi)(s+(1−s)(1−pi))
= (1−pi)(1−pi+pis)

1−pi+pis
1−pi

pi
1−pi

Table 4.2: For a single component of a pair, likelihood functions and ratio under MixedPairs;
score from Weighted Correlation.
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Figure 4.1: In this example pair, the likelihood ratio comes out to

LR(X1, X2) =
(∏

i∈{1,3,7}
1−pi+pis

1−pi

)(
s+(1−s)p6

p6

)
(1− s)3.

P (c = 1 | X1, X2)

P (c = 0 | X1, X2)
=
P (c = 1)

P (c = 0)
× P (X1, X2 | c = 1)

P (X1, X2 | c = 0)
. (4.1)

The first term on the right, the prior odds, is constant across all pairs in a data set.

The second term, the likelihood ratio LR(X1, X2), determines the ranking induced by the

scores, which is our primary focus. When an estimate is available for the prior (e.g., under

the model, r positive pairs over
(
n(n+1)

2 − r
)

negative pairs), the posterior odds can be

converted to a probability using P (c = 1 | X1, X2) = PO
1+PO .

Since for both positive and negative pairs each vector component is generated inde-

pendently, their likelihood ratio can be factored into products over the components. The

notation bi is used to represent one component of the pair (x1i, x2i), LR(bi) (shorthand for

LR(bi | pi, s)) is the likelihood ratio for that component, and LLR is the log likelihood ratio

(of a component or pair, respectively). Then we can write the score for a pair as:

LR(X1, X2) =

∏
i P (x1i, x2i | c = 1)∏
i P (x1i, x2i | c = 0)

=

k∏
i=1

LR(bi)

or

LLR(X1, X2) =

k∑
i=1

log LR(bi).
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Figure 4.1 shows an example pair of points to score. At each vector component, there

is an associated pi from φ, and there are four possible configurations of the pair: bi ∈

{1|1, 1|0, 0|1, 0|0}. Table 4.2 shows the likelihood functions for each component, and their

ratio LR(bi), as a function of bi, pi and s.

Notice that bi = 1|0 and bi = 0|1 have the same likelihoods. This means scoring is

symmetric with respect to X1 versus X2; there is no need to designate one point as X1.

Furthermore, we can define the event bi = 1/0 to mean bi ∈ {1|0} ∪ {0|1}, which reduces bi

to three possible configurations: {1|1, 1/0, 0|0}. The combined event 1/0 has probabilities

P (1/0) = 2P (1|0) for positive or negative pairs and LR(1/0) = LR(1|0) = 1− s.

4.2.3 Understanding MixedPairs Scores

As we have seen, given a pair, MixedPairs produces a score, LLR(X1, X2) =
∑

i LLR(bi | pi, s),

that is a sum over components. The top left of Figure 4.2 illustrates how the function

LLR(bi | pi, s) works per component. First, notice that the value is always positive when

items match (when bi = 1|1 or 0|0). The value is highest when the pair matches on an

unexpected event (for bi = 1|1, highest with pi near 0, and for bi = 0|0, highest with pi near

1). It decreases towards 0 as the matched event becomes more common, with the curves for

bi = 1|1 and 0|0 intersecting at pi = 0.5. The score for a mismatch (bi = 1/0) is negative

and constant with respect to pi. Second, notice the symmetry with respect to pi = 0.5:

LLR(1|1 | pi, s) = LLR(0|0 | (1 − pi), s). That means that a 1|1 for a rare affiliation (e.g.,

where pi = 0.1) is treated just like a 0|0 for a common affiliation (e.g., pi = 0.9).

As s increases (Fig. 4.2 middle), the absolute values of all scores increase. At s = 0, true

pairs are independent; for all values of bi and pi, LR(bi | pi, 0) = 1, so LLR(bi | pi, 0) = 0. At

s = 1, true pairs are required to be exact duplicates, so LR(1/0) = 0 and LLR(1/0) = −∞.

We will examine the per-component curves of other scoring methods later in Section

4.5. Below, we take advantage of MixedPairs’s independence across components to analyze

its behavior across the parameter space.
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1−pi ; LLR(1/0) = −∞ cannot be displayed.
SharedWeight1100 matches the solid lines, but for it, Score(1/0) = 0. SharedWeight11
uses the same green 1|1 line but also assigns Score(0|0) = 0. Center, per-component scores
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4.3 Analysis of MixedPairs Behavior

Within the system defined by MixedPairs’s generative models of positive and negative

pairs, we can fully describe the scores that will be assigned to pairs. Depending on properties

of the data set, positive pairs will be easier or harder to detect. We characterize these

properties first for individual pairs, then for the overall distribution of pairs.

4.3.1 Scores for Pairs: When is a Point Worth Checking?

MixedPairs produces an estimate P(c = 1 | pair) for every pair in the data. If we are only

interested in high-probability pairs, we could ask “what’s the highest score item X could

receive?” as a means towards discarding some items for efficiency purposes. Intuitively, we

should expect true pairs in sparse regions of the probability space to be easier to identify—

i.e., to receive higher scores—than equally similar pairs in dense regions.

The highest score for any itemX1 occurs at an exact duplicate. That is, arg maxX2
P(c =

1 | (X1, X2), s, φ) = X1. This is easy to see, since given each x1i, LR(bi) is always highest

when x1i = x2i. The highest score for an exact duplicate occurs when s = 1: arg maxs P(c =

1 | (X1, X1), s, φ) = 1. This is because increasing s increases both LR(1|1) and LR(0|0).

Finally, regardless of s, the highest scoring pair would always be an exact duplicate of the

lowest-probability item in the space: arg maxX1
P(c = 1 | (X1, X1), s, φ) has x1i = 1 when

pi < 0.5 and x1i = 0 when pi > 0.5 (allowing either value at pi = 0.5). That rule maximizes

the score because it sets bi = 1|1 whenever LR(1|1) > LR(0|0), and vice versa.

In contrast, a good starting candidate for items to discard would be the highest-

probability item in the space—that having x1i = 0 where pi ≤ 0.5 and vice versa. Even if it

has an exact duplicate, their pair’s P(c = 1 | (X1, X1), s, φ) might fall below some threshold

of practical utility. Notice that the densest region of φ comprises items that are mostly or all

zeros, assuming all pi < 0.5. In varied domains, these items might correspond to “records

with little data,” “short documents,” or “people with low activity levels.” Informally, such

items are often discarded or found difficult to match [40, 86, 111] from such “sparse” infor-

mation, where “sparse” refers to the number of 1’s or the amount of surprising information.

In the current analysis, we would describe these items as too dense, or high-probability, for

the true pairs among them to receive high scores.
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Thus the highest scores for pairs occur when pairs are exact duplicates. These scores are

higher when the model requires true pairs to be more similar, and when more components

of a duplicate are rare events according to φ. But rare items are, by definition, rare, and we

are also interested in understanding whether a given data set on the whole is likely to have

its positive pairs be identifiable. As we show next, this property is related to the entropy

of the data distribution: data sets in which more items are unusual, on average—that is,

those with high entropy—turn out to be the data sets in which positive pairs can be more

easily identified, on average.

4.3.2 In Which Data Sets are Pairs Detectable?

Because MixedPairs is generative, we can reason about the distributions of scores it will

assign to the positive and negative pairs it produces. In the following discussion, assume s

is fixed and known.

Let Bi ∈ {1|1, 1/0, 0|0} be a random variable describing component i of a pair, and let

Vi = LLR(Bi | pi, s) be the score assigned to that component. Vi can be seen as a random

variable having three possible values. Those values LLR(Bi | pi, s) and their associated

probabilities P (Bi | pi) (for positive or negative pairs, respectively) can be read off of

Table 4.2. The full score assigned to a pair is V = Score(X1, X2) =
∑k

i=1 Vi. We wish to

describe the distribution of V . (We use the more general notation Score(X1, X2) instead of

LLR(X1, X2), to point out that this analysis can be extended to any scoring method whose

scores are component-wise independent and additive. See Appendix C for results with other

methods.)

In the special case where pi is a constant across all values of i, every Vi follows the same

distribution, so the Central Limit Theorem applies. It tells us that V ∼ Normal(kE(Vi), kVar(Vi)).

For positive pairs, those component-wise E(Vi) and Var(Vi) are Epos(Vi) =
∑

bi
P(bi |

pos)Score(bi) and Varpos(Vi) =
∑

bi
P(bi | pos) (Score(bi)− Epos(Vi))

2, and similarly for

negative pairs. Thus if pi is constant and we know pi and s, the distributions of scores for

both positive and negative pairs are normals whose mean and variance are easily computed.

Figure 4.3 shows actual MixedPairs LLR scores from a synthetically generated data set.

If s = 0, the distributions overlap exactly, with a mean of 0. As s increases, Epos(LLR)
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Figure 4.3: Empirical log likelihood ratio scores from MixedPairs, with predicted means
indicated. (Data is sampled from Figure 4.6’s φ setting 49, labeled “B.”)

increases and Eneg(LLR) decreases. At s = 1 exactly, there is a discontinuity: Eneg(LLR) =

−∞ because of the scores for non-duplicate pairs. At s = 1, for both the positive pairs

and the vanishingly1 small fraction of negatives that are duplicates, E(LLR) = H(φ), the

entropy of the distribution. If desired, we could convert Epos(LLR) and Eneg(LLR) to

probabilities and interpret them as the median probabilities anticipated for positive and

negative pairs under this model.

One way to evaluate the separation between the distributions would be to compute the

distance between the two means: Epos(V )− Eneg(V ), which (for MixedPairs) is equivalent

to the Jeffreys divergence between the distributions of positive and negative pairs [71].

However, what we use instead, throughout this work, is AUC (area under the ROC curve),

which is sensitive not only to the means of the scores but also their variances. The AUC of

two normal distributions can be approximated using [47]:

AUC = Φ

(
Epos − Eneg√

Varpos + Varneg

)
. (4.2)

1The fraction of negative pairs that are duplicates is also related to entropy: P(dup | neg) =
∑
x∼φ P(x |

φ)2 = e−H2(φ), where H2(φ) is the collision entropy of φ. As H2(φ) increases, the number of negative
candidates for scoring (at s = 1) decreases, here too making the task easier when φ has higher entropy.
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Figure 4.4: AUC predicted for MixedPairs as a function of pi and s, using k = 10.

We use the parameters of the normal distributions under constant pi and the AUC

formula above to estimate AUC as a function of pi, k, and s, for data generated and scored

by MixedPairs. Figure 4.4 displays those estimates at k = 10. From the figure, we can

see that AUC increases overall as s increases; that is, true pairs are easier to identify when

they are more closely correlated. As k increases (see Figure C.1a), the contour lines keep

the same shape, while performance increases. That is, additional affiliations always help.

As a function of pi, performance is highest when pi = 0.5 and decreases symmetrically

as pi moves towards 0 or 1. This maximum at pi = 0.5 contrasts with the focus earlier

on how more extreme values of pi can yield higher scores for individual pairs. What this

tells us is that on average across a data set, the information content per component is

highest for components with pi at 0.5. These are the affiliations for which we don’t know

whether to expect a 0 or 1; either outcome is informative, and for components that match,

both LLR(1|1) and LLR(0|0) provide non-negligible (and equal) contributions to the overall

score.
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So far, in order to have scores be normally distributed, we have been limited to data

sets in which φ has the same pi for every affiliation. This would be a strong restric-

tion, but we find that in practice, even across diverse collections of affiliation frequen-

cies {pi}, the assumption of normality works reasonably well for synthetically generated

data. When pi varies, we can apply the same AUC estimate by assuming that V ∼

Normal(
∑

i E(Vi),
∑

i Var(Vi)). In fact, the roughly normal densities shown in Figure 4.3

come from data in which the pi are not constant, but uniformly distributed. Figure 4.5

shows both this predicted AUC and the performance of MixedPairs on 69 different settings

of φ (see Section 4.6 for experimental details). As we can see, they agree well.

We have seen that a paired item X will receive a higher score if P(X | φ) is low, yet that

on average, the AUC of a data set is highest when all pi = 0.5, which is when all values of

P(X | φ) are equal. This property is reminiscent of entropy. The entropy of a distribution,

H(φ) = −
∑

x∼φ P(x | φ) log P(x | φ), is maximized when φ is uniform across a domain,

even though individual contributions of − log P(x | φ) could be higher by making P(x | φ)

lower. A natural question is whether the AUC predicted for detecting pairs in a data set

is simply a function of H(φ). We did not find a direct mapping between the quantities,

but it seems clear they are related. The red line in Figure 4.5 shows the entropy for each

φ (see scale on right axis). The x axis is ordered by the predicted AUC, and the entropy

mostly increases in tandem. Both are maximized at the uniform distribution (i.e., when all

pi = 0.5). In our domain of binary vectors, the entropy of that distribution is simply k, the

number of affiliations. Regarding the distributions of LLR scores, we mentioned above that

Epos[LLR] is maximized when s = 1, in which case E[LLR] = H(φ) for the duplicates. The

upper bound for this value is thus k, achieved when φ is uniform. In that setting, the LLR

of every duplicate pair is k.

4.4 Alternative Methods

Before proceeding to experiments, we introduce two alternative similarity methods,

Weighted Correlation and SharedWeight, which are closely related to MixedPairs. Fol-

lowing that, we examine the properties of a number of methods in Section 4.5.
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4.4.1 Weighted Correlation

Traditional Pearson correlation is defined as the covariance of distributions X and Y ,

divided by the product of their standard deviations:

Corr(X,Y ) =
E[(X − E(X))(Y − E(Y ))]√

Var(X)Var(Y )
.

The denominator normalizes the value to lie between −1 and 1. This calculation is based on

the premise that for all i, Xi ∼ X and Yi ∼ Y for some distributions X and Y . Correlation

is invariant to linear transformations of the variables, so it can also be written as the

covariance of the standardized versions of the variables, X ′ and Y ′:

Corr(X,Y ) = Covar(X ′, Y ′) = E[X ′Y ′]

=
1

k

k∑
i=1

(
Xi − E(X)√

Var(X)

)(
Yi − E(Y )√

Var(Y )

)
.

In our problem setting, where X and Y are items, it is not the case that each Xi

or Yi comes from a single distribution. Rather, each component comes from a different

distribution, but the distributions of Xi and Yi match: ∀i, Xi, Yi ∼ Bernoulli(pi). So

it makes more sense here to standardize each component separately, using our outside

knowledge of pi: define X ′′i = Xi−E(Xi)√
Var(Xi)

= Xi−pi√
pi(1−pi)

, and Y ′′i = Yi−E(Yi)√
Var(Yi)

= Yi−pi√
pi(1−pi)

.

We define Weighted Correlation to be much like the covariance of X ′′ and Y ′′:

WC(X,Y ) = E[X ′′Y ′′]

=
1

k

k∑
i=1

(
X ′′i − E(X ′′i )√

Var(X ′′i )

)(
Y ′′i − E(Y ′′i )√

Var(Y ′′i )

)

=
1

k

k∑
i=1

(
(Xi − pi)(Yi − pi)

pi(1− pi)

)

=
1

k

k∑
i=1

WC(bi | pi),
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where WC(bi | pi) =


bi = 1|1 : (1−pi)2

pi(1−pi) = 1−pi
pi

bi = 1/0 : −pi(1−pi)
pi(1−pi) = −1

bi = 0|0 : (−pi)2
pi(1−pi) = pi

1−pi

.

This function differs from Covar(X ′′, Y ′′) in that it contains no terms like E(X ′′) or

Var(X ′′) that summarize X ′′ across i = 1 to k. As a result, each component’s contribution

is independent of the others. Since each component has been mean-shifted and standardized

with respect to φ, each E(X ′′i ) = 0 and E[(X ′′i )2] = 1 when the expectation is taken across

all items or all pairs in the data set. However, within the sample of k components, those

expressions will not necessarily hold. As a consequence, WC(X,Y ) can produce values

outside of the interval [−1, 1].

Like Pearson correlation, Weighted Correlation is unchanged when computed based on

the original vectors, rather than the standardized ones:

WC(X,Y ) =
1

k

k∑
i=1

(
Xi − E(Xi)√

Var(Xi)

)(
Yi − E(Yi)√

Var(Yi)

)

=
1

k

k∑
i=1

(
(Xi − pi)(Yi − pi)

pi(1− pi)

)
.

The derivation above is shown via X ′′ and Y ′′ because the process of standardizing the

variables highlights how, in the current context, E(X) and Var(X) are not the right choices

for the moments of Xi.

4.4.2 Relationship between Weighted Correlation and MixedPairs

The far right column of Table 4.2 demonstrates an unexpected connection between the

per-component scores of Weighted Correlation and MixedPairs: WC(bi) = 1
s (LR(bi) − 1),

or LR(bi) = sWC(bi) + 1. They are simple linear transformations of each other. WC(bi)

cleverly removes the s from the expression LR(bi) (since Weighted Correlation doesn’t use s),

and WC(bi) is shifted lower by 1. For instance, for independent pairs, LR(bi) will be about

1, and WC(bi) will be about 0.

At first glance, this connection between the methods may seem baffling. How can

Weighted Correlation perfectly remove the s from MixedPairs? And how could the methods
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give similar experimental results (as Section 4.6 will show), if Weighted Correlation takes a

sum of its WC(bi) terms, while MixedPairs takes the sum of their logs?

In answer to the first question, MixedPairs uses the parameter s since it models both

positive and negative pairs. Weighted Correlation, in contrast, only reports the extent

of deviation from the negative pairs model. If we estimate the distributions of Weighted

Correlation scores under the MixedPairs model, it turns out that Eneg(WC) = 0 always

(unlike Eneg(LLR), which varies according to s). For positive pairs, Epos(WC) = s. That is,

the s of MixedPairs positives reappears in the correlation coefficient measured by Weighted

Correlation.

As for the second question, it turns out that Weighted Correlation computes an arith-

metic mean (AM) of its terms, while the log likelihood score of MixedPairs can be seen as

a geometric mean (GM):

WC(X,Y ) =
1

k

∑
i

WC(bi) = AM(WCi)

LLR(X,Y ) =
∑
i

log LR(bi) = log

(∏
i

LRi

)

= k log

(∏
i

LRi

) 1
k

= k log GM(LRi).

The arithmetic mean is appropriate for Weighted Correlation since covariances and correla-

tions are defined as expected values. MixedPairs is a ratio, with its “uninformative” score

at 1, and the geometric mean is appropriate for it.

Moreover, at the very low values of s seen in the experiments, MixedPairs approximates

Weighted Correlation. This happens because at low values of x, log(1 + x) ≈ x. At these

s,
∑

i log LR(bi) =
∑

i log (sWC(bi) + 1) ≈
∑

i sWC(bi). In this situation, the scores of the

methods match up to a constant factor—LLR(X,Y ) ≈ ksWC(X,Y )—so the two rankings

become equivalent.

4.4.3 Shared Weight

An alternative scoring method, which we motivate on intuitive grounds, is to look at

just the shared components y of the vectors, and compute 1
P (y|φy) (i.e., use φ restricted to
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the components in question). This has the appealing properties that 1
P (y|φy) increases both

as y expands to more components and as the shared components become more rare. We can

define the y to include only 1|1s, yielding SharedWeight11, or both 1|1s and 0|0s, yielding

SharedWeight1100.

We can write down a (non-generative) likelihood function for positive pairs—the nu-

merator of the expression below—such that, when we take the likelihood ratio, we get

SharedWeight1100.

P (X1, X2 | positive)

P (X1, X2 | negative)
=
P (X1 | φ)

(∏
i∈1/0 P (x2i | φi)

)(∏
i∈{1|1,0|0} 1

)
P (X1 | φ)

(∏
i∈{1/0,1|1,0|0} P (x2i | φi)

)
=

1∏
i∈{1|1,0|0} P (xi | φi)

=
1

P (y | φy)
.

(The notation “i ∈ 1|1” is shorthand for “i : bi = 1|1.”) The likelihood function can

be interpreted as saying that for the components where X2 matches X1, it copied them

with probability 1, but where they don’t match, X2 drew its components from φ. For the

method SharedWeight11, we change the indices of the products so that 0|0 gets treated

(i.e., ignored) like 1/0. As we can see from the middle of Figure 4.2, above, and again in

Table 4.3, the SharedWeight methods, where they are non-zero, match the score MixedPairs

gives at s = 1.

4.5 Comparisons Among Methods

In experiments, we will compare the methods derived above—MixedPairs, Weighted

Correlation, and SharedWeight—to a selection of similarity measures that would typically

be candidates for this task [74, Ch. 3.5], [83, Ch. 6]. The full list is shown with their

definitions in Table 4.3. We are concerned primarily with the ranking induced by the

scores, so we gloss over rank-equivalent transformations such as taking the log.

The simplest methods for comparing two sets of affiliations are to count the number of

shared affiliations (SharedSize) or count the differences between them (Hamming distance).

These are not equivalent: SharedSize counts the 1|1s in a pair, whereas Hamming distance

(multiplied by −1 so as to act as a similarity measure) counts the 1/0s in a pair. If we
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count both the 1|1s and 0|0s in a pair, as we do in SharedSize1100, we find this measure is

rank-equivalent to Hamming: #(1|1) + #(0|0) = k −#(1/0). Other classic methods that

treat the affiliations as interchangeable include Jaccard similarity, Cosine similarity, and

Pearson correlation. Euclidean distance is omitted here because for binary vectors, it is

rank-equivalent to Hamming distance.

Some similarity methods have been designed to vary as a function of pi, so that a pair’s

score is higher when the affiliation they share is rarer. What we refer to as CosineIDF is a

familiar method for text documents, in which each affiliation is weighted by the log of its

inverse document frequency 1
pi

before the cosine of the vectors is computed [83]. (Of the

tf-idf weighting commonly used in information retrieval, the tf portion is not meaningful for

binary vectors.) Adamic/Adar was developed for an instance of the current task: predicting

friendships among people given shared affiliations (mailing list memberships and data from

their personal homepages) [1]. Newman was proposed as a measure of collaboration strength

in affiliation data (among scientists, based on the papers they coauthored) [96].

It turns out that in all of these methods, either Score(X1, X2) or log(Score(X1, X2)) can

be rewritten as a sum of per-component scores, just as MixedPairs was in Section 4.2. These

component-wise decompositions, shown in Table 4.3, provide a common basis for comparing

the functions. The methods at the top of the table are the simple counts of components,

while most in the bottom half are functions of pi. The methods Jaccard, Cosine, CosineIDF,

and Pearson normalize the scores based on the lengths (the total number or weight of 1s) of

each individual vector. Since their denominators use the item lengths, these methods are not

component-wise independent like the others. On the contrary, these give a score of 1 to any

exact duplicate pair, whether in a dense or a sparse region. Adamic/Adar and Newman are

the only measures that vary with m, the number of items in the data set. Notice all the zeros

in the middle of the table: many measures sum only over components of type bi = 1|1. When

a method gives the same score (e.g., 0) to two types of components, generally that means it

cannot distinguish between them. However, the normalized methods work differently: even

though Score(0|0) = Score(1/0) = 0, the 1/0s increase the denominator, so they decrease

the overall score, unlike the 0|0s.
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A few trends are visible. First, Score(1|1) is almost always positive, and if it varies with

pi, it decreases as pi increases. If 1/0 has a non-zero effect, it decreases the score, and this

decrease almost never depends on pi. If pi < 0.5, then Score(1|1) � Score(0|0) ≥ 0. In

Figure 4.2 earlier, we examined the per-component scores for MixedPairs. The bottom plots

show these scores for the other functions that vary with pi. Although their scales differ, the

functions are roughly the same shape.

These diverse functions can be categorized according to which of three properties they

satisfy (see right side of Table 4.3).

P1 Scores are weighted based on pi. Specifically, Score(1|1) is a decreasing function of pi.

P2 Scores are sensitive to all three values of bi. That is, Score(X1, X2) changes if any bi

changes (among values {1|1, 0|0, 1/0}).

P3 Scoring is symmetric about pi = 0.5. If pi > 0.5, then the usual roles of 0 and

1 are switched: 0 becomes the more surprising event, and Score(0|0) > Score(1|1).

Formally, for all x1i, x2i, and pi, Score(X1, X2 | x1i, x2i, pi) = Score(X1, X2 | (1 −

x1i), (1− x2i), (1− pi)).

The experiments will show that each of these properties is beneficial. Regarding P3, we

find that it is important to correctly handle affiliations in which pi > 0.5. We will show

that when even small numbers of such affiliations are present, non-symmetric methods

can sometimes be helped by a “flipping” operation. As for relative performance, we will

see that the methods fall into four groups, depending on which combination of P1 and

P2 they satisfy. Group 1 methods, which satisfy both, are generally the strongest, and

include MixedPairs, CosineIDF, Weighted Correlation, and SharedWeight1100. Group 2

comprises the unweighted normalized methods, which satisfy P2 but not P1: Jaccard,

Cosine and Pearson. Group 3 consists of the 1|1-based methods, satisfying P1 but not P2:

Adamic/Adar, Newman, and SharedWeight11. Group 4 contains the simplest methods,

SharedSize and Hamming. These do not perform as well, nor similarly to each other, but

they can help us understand the others.
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Synthetic Newsgroups Reality Mining (Day; Week) Congress

D A E F B C Blue Cell Apps

Num affiliations 100 734 to 1355 590; 1799 1263; 4031 44; 67 1074 to 1773

Median pi .01 .04 .06 .16 .22 .47 .01 .03; .07 .65 to .89

Fraction of
pi > 0.5

0 0 0 .08 0 .46 .002 to .009 0 to .001 .15; .13 .55 to .82

Best ŝ .2 (true value given) .001 (.01, .001, .001,
.001; .4 .1, .4, .1)

Table 4.4: Data set properties (averages in trials).

4.6 Experiments

We run experiments using affiliation data in which the true pairs are known. From

each data source, we construct small data sets containing 75 items each: 65 singletons

and 5 (disjoint) true pairs. Each experimental trial consists of scoring all
(

75
2

)
pairs, then

computing the AUC of the true labels against the ranking induced by the scores. Plots

display the average AUCs across 400 trials. One reason we evaluate using AUC is that it

is unaffected by the proportion of positives to negatives in a data set; rather, it measures

the separation between the two distributions of scores, as we noted in Section 4.3.2. In

this task, the negative pairs will always greatly outnumber the positives, and the class skew

increases with k. In order to get enough positives to estimate the AUC, it is more efficient

to use many small data sets, as we do here, than fewer larger ones.

4.6.1 Data Sets

We generate synthetic data from the MixedPairs model using s = 0.2 for true pairs,

k = 100 affiliations, and 69 different settings of φ = MultipleBernoulli(p1, p2, . . . , pn). In

nine of those settings, pi is a constant ∈ {0.1, 0.2, ..., 0.9}. In the other 60 settings, the pi

vectors are randomly sampled from either uniform distributions (labels A, B and C in the

plots) or exponential distributions (labels D, E, and F) having means of 0.05, 0.25, 0.5, and

0.02, 0.1, 0.2, respectively.

The first real-world data sets are constructed from the 20 Newsgroups data, which

contains 1000 articles posted to each of 20 Usenet newsgroups [105]. Within each newsgroup,
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true pairs are defined as articles that quote each other—that is, articles sharing a block of

at least 10 consecutive words. This task is meant to evoke plagiarism detection, but in

a setting in which the true label is easy to determine. In this setup, the articles are our

items, the words present in an article are our affiliations, and the challenge is for the

methods to detect the quoted articles using only a binary vector (word presence/absence)

representation. Headers and punctuation are removed during preprocessing. Even with

the binary representation, this task is easy when using the full vocabulary; to avoid ceiling

effects, these experiments only use every fourth word in the vocabulary.

Next, we construct instances of the task from the Reality Mining data, collected from

the cell phones of 94 individuals over a period of nine months [45]. In this scenario, the goal

is to re-identify individuals: we define true pairs to be samples from the same phone during

different time windows. For an individual’s affiliations, we use either the set of applications

run on the phone, the IDs of bluetooth devices scanned nearby, or the IDs of the cell towers

providing service. For the size of the time window, we use either one day or one week.

Finally, we look at voting and sponsorship data from the U.S. House of Representatives

[122]. The idea is to detect pairs of Congress members whose voting profiles are unusually

similar compared to others in their party. Such pairs might be closely aligned in ideology, or

one member might be guiding or imitating the other’s votes. We validate the pairs against

relationships that are more easily observed, those of cosponsoring numerous bills together

[52].

For each of Congresses 110–113 (covering 2007–2014) and each party, we examine the

affiliation network of members and the bills they voted in favor of. Ground truth labels

are derived from the bills each member either sponsored or cosponsored (among all House

Resolutions and House Joint Resolutions introduced that session): true pairs were those in

the top 1% of number of shared cosponsorships2.

In the synthetic data experiments, the methods are given access to the true values of φ

and s. In the real data experiments, in each separate trial, φ is estimated from the (small)

2The sponsorship data is itself another affiliation network, so there is a potential circularity in choosing
a measure of legislator tie strength to define ground truth. We use SharedSize of cosponsorships without
flipping the high pis.
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data set at hand. Since the optimal s for MixedPairs is unknown in real data, we try a range

of values and display the best result for each data set. In most of the real data, MixedPairs

improves as long as ŝ decreases, and we use ŝ = 0.001. At that parameter value, MixedPairs

converges to WeightedCorrelation, as discussed in section 4.4.2.

Table 4.4 summarizes properties of the real data sets. While the synthetic data covers

a range of values of pi, the affiliation frequencies are quite low in Newsgroups and two of

the Reality Mining sets; the majority of their affiliations are seen only once per small data

set. In Reality Mining Apps, the pi are moderate, and in Congress, more than half of them

are above 0.5, which reflects the fact that bills are brought to a vote in Congress only when

they are likely to pass. When scoring a data set, we drop affiliations with pi of exactly 0 or

1 because they do not affect the methods’ rankings (with the single exception of Pearson),

and because intuitively speaking, they provide no signal.

4.6.2 Main Results

The synthetic experiment results, Figure 4.6, show how all 12 methods generally rise

and fall together as a function of φ. The x-axis is ordered by the predicted (and roughly,

actual) AUC of MixedPairs, as in Figure 4.5. On the far right are the settings with pi closest

to 0.5 (pi constant at 0.5, followed by 0.4 and 0.6, 0.3 and 0.7, etc.); on the far left are

those with the lowest pi. In between, each φ label (A, B, C, etc.) ends up grouped together,

with the labels ordered by mean(pi). Labels B and C are indistinguishable to MixedPairs

by symmetry about 0.5 (though see the discussion of P3 below). In the settings where pi is

constant (plotted with triangles), some weighted and unweighted methods converge.

Naturally, MixedPairs is optimal on its own data; the other top methods are Weighted

Correlation, SharedWeight1100, and Pearson. As pi increases, the groups of methods de-

scribed earlier differentiate into clusters: with some exceptions, Group 1 (plotted with  )

> Group 2 (unweighted normalized, plotted with ⊕) > Group 3 (1|1-based and weighted,

plotted with �).

Group 4 (�), SharedSize and Hamming, is worth understanding. Notice that the lines

cross: SharedSize is always one of the weakest methods, while Hamming goes from the

worst, at low pi, to the best, at pi = 0.5. When pi is near zero, most bis in the data
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Figure 4.6: Synthetic data experiments. Each position on the x-axis corresponds to one
setting of φ. In each trial, a data set of 75 items are generated, all pairs are scored, and the
AUC of the ranking is computed with respect to the true set of 5 pairs. Each point shows
the average of 400 trials for the setting; 95% confidence intervals are approximately +/-
0.008, and they overlap between neighboring methods. During inference, the true φ and s
are provided, and affiliations with pi > 0.5 are flipped. (Compare to Figure D.1 to see the
effects of flipping.) Cosine is omitted due to being visually indistinguishable from Jaccard.
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are 0|0 or 1/0, but the occasional 1|1s are extremely informative for detecting positives.

Hamming cannot distinguish 1|1 from 0|0, so at low pi, it is almost useless. At the other

end, when pi = 0.5, bis of 1|1 and 0|0 are equally likely. There, the important distinction is

the one Hamming can make—whether bi = 1/0 or not—so it performs as well as optimal.

Meanwhile, at the lowest pi, SharedSize can identify the 1|1s, and it even performs on a par

with Group 3—perhaps there are so few 1|1s that it suffices to count them—but it cannot

keep up when the pis (and their range) increase. At pi = 0.5, the inability to distinguish

0|0 from 1/0 makes both SharedSize and Group 3 fall off.

In the real data sets (Figure 4.7), the results vary widely, but a few trends can be

observed. First, for the most part, the methods perform in line with others of their group.

In Newsgroups, Group 1 ≥ Group 3 ≥ Group 2. In Reality Mining and Congress, generally

Group 1 ≥ Group 2 ≥ Group 3. SharedSize is usually below these groups. Second, the

relative performance of the methods seems to be affected, like in synthetic data, by whether

the pi are low or high (see Table 4.4; Figure 4.7 roughly orders the real data sets by pi, except

for Reality Mining Apps). We can certainly see this with Hamming, despite all other the

differences one would expect across domains. In Newsgroups and Reality Mining Bluetooth

and Cell towers, where the median pi is only 0.01, Hamming is far below SharedSize. In

Reality Mining Apps and Congress, where pis are higher, Hamming moves to the middle

of the pack. There is also some indication that Group 2 pulls above Group 3 only at these

higher pi, where distinguishing between 0|0 and 1/0 becomes more important, and where

the weights assigned by weighted methods vary less.

We can see the effect of property P1, weighting scores based on pi, by examining methods

that differ only in that property. SharedSize is the unweighted version of the Group 3

methods, and as we have seen, it usually performs worse than them. Also, CosineIDF is

the weighted version of Cosine, and CosineIDF generally performs the better of the two—in

the real data, if not in synthetic. Property P2, distinguishing among all three values of

bi, is supported by the comparison of SharedWeight1100 to SharedWeight11. Their only

difference is in whether a 0|0 receives a small positive score versus a score of 0, like 1/0

does. In almost every example, SharedWeight1100 achieves a substantially higher AUC.
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Figure 4.7: Experimental results on real data, for Newsgroups, Reality Mining and Congress.
Affiliations are not flipped. (See Figure D.2 for flipped version.) Error bars show 95%
confidence intervals. Weighted Correlation coincides almost exactly with MixedPairs; in
Congress, Cosine coincides almost exactly with Jaccard. In Newsgroups, Hamming, not
plotted, never exceeds 0.70.
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Finally, we examine the role of P3, symmetry about pi = 0.5 in scores assigned. Methods

lacking this symmetry may have been intended only for situations where pi < 0.5, and they

generally have impaired performance in the presence of affiliations for which pi > 0.5. To

help them compensate, we tried an approach of “flipping” the corresponding affiliation bits:

swapping the 0s and 1s in that component, throughout the data set, such that the new

p′i < 0.5. For methods that already satisfy P3, this operation has no effect.

Overall, the impact of flipping is substantial yet inconsistent, so it complicates the

interpretation of experimental results. It helps more often than it hurts; it changes the

relative ordering of methods; and it provides evidence for the groupings we have described,

as methods tend to move up or down together with their group.

In the synthetic data, flipping is so unequivocally helpful to the non-symmetric methods,

that for the sake of readability, this is what Figure 4.6 shows. Without it, in some high-

pi settings, the AUCs of some methods otherwise drop by up to 0.15 (see Figure D.1 of

Appendix D).

In real data, the effects of flipping can again be dramatic, but they are also mixed.

Figure D.2 shows the full results, and Figure 4.8 summarizes the effects for all three real

data sets. (Reality Mining Bluetooth and Cell towers are omitted because they have almost

no high-frequency affiliations to flip.) For the 1|1-based methods (Group 3 and SharedSize),

flipping helps almost uniformly. For the normalized methods of Group 2, the direction

of change is inconsistent; CosineIDF generally moves in the same direction as them when

flipped, but not nearly as much. It is interesting that such noticeable effects can result when

just a tiny proportion of affiliations are flipped: in Newsgroups and Reality Mining Apps, an

average of 5–7 affiliations have pi > 0.5, out of around 1000 total, or 50, respectively. All in

all, the operation of flipping seems useful to explore and to better understand for methods

lacking symmetry. Of course, this “fix” is entirely unneeded for MixedPairs, Weighed

Correlation or SharedWeight1100.

The Group 1 methods, which satisfy all three properties, are consistently among the top

performers. Of these four methods, MixedPairs is the least practically convenient, because it

requires a parameter. Weighted Correlation and SharedWeight1100, both derived in Section

4.4, are easy to explain and to use. CosineIDF is more typically used for text data than for
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affiliation data, and its particularly high performance in Newsgroups suggests there may be

properties of text domains that it is the best suited to handle.

4.6.3 Varying the Distribution of Affiliations

Section 4.3.2 showed how, at least with MixedPairs and synthetic data, the overall

ability to detect pairs in a data set is related to the entropy of the affiliation probabilities,

and in particular, performance increases as the pis approach 0.5. If such properties hold in

real data as well, we could use them to select or manipulate data sets, to make pairs either

more or less easily identifiable. In the real data, we do not find a relationship between

H(φ) and performance, but we do find that the affiliations nearest 0.5 contain the most

information, as we demonstrate next. According to theory, if we use only a subset of a data

set’s affiliations, the AUC should always decrease compared to the original. If we take a

subset of affiliations with values of pi near 0.5, the AUC should be higher than if we take a

subset with values of pi closer to 0 or 1.3

We test this theory by rerunning inference in the real data sets, but with access only

to subsets of the affiliations. In the Random setting, we choose a random subset of one

quarter of the affiliations. In the Max setting, we choose the quarter of affiliations with

values closest to 0.5, and in the Min setting, those with values farthest from 0.5. The subsets

are chosen independently for each small data set. (The calculations of Max and Min are

based on the pi estimated across all items, before the small data sets were constructed, but

these subsets vary from trial to trial due to tied values of pi.)

The anticipated behavior is that, for each trial, the affiliation subsets should perform

worse than the original full set of affiliations, and that among the affiliation subsets of equal

size, Max > Random > Min. Figure 4.9 shows representative examples of results in the

Congress data, for two methods. In Figure 4.8, the right side of each graph displays the full

averages for these experiments. In the Reality Mining data that the plot omits, affiliation

3The plots shown in Appendix C suggest that for non-symmetric methods, the optimal values of pi may
be much closer to 0. While determining these values is left to future work, we point out that for the lower-pi
data sets here, the affiliations nearest 0.5 are mostly also below 0.1; therefore, Max might simultaneously be
the set nearest other, lower, optimal values.
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Figure 4.9: How performance degrades depending on which 1/4 of affiliations are left avail-
able. Example results from Congress data, with high pis flipped.

subset results are consistent with the others. The Congress experiments are shown with

affiliations flipped because this condition comes out more cleanly.

Across all data sets and methods, the results are fairly consistent, but they are not quite

as expected. Among the affiliation subsets, Max > Random > Min; however, often Max ≥

Original as well. Min often gives near-random performance because, due to the sampling

process, the resulting data set ends up as all zeros. The fact that Max performs so well,

while using only a quarter of the affiliations, suggests opportunities for reducing storage or

computational costs with minimal loss of AUC, simply by ignoring rarer (and also extremely

frequent) affiliations.
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4.7 Discussion

The main takeaways of Sections 4.5 and 4.6 are how component-wise analyses both of

scoring methods and data sets are fruitful for understanding experimental performance.

Rewriting familiar methods as their per-component functions calls attention to their re-

spective commonalities and weaknesses (Table 4.3). Against the backdrop of the “ideal”

LLR curves from MixedPairs, we can see how methods lacking symmetry about pi would

break down when the true pi > 0.5; how methods that do not weight based on affiliation

frequencies would be sub-optimal, especially when the ideal weights vary widely; and how

methods that cannot distinguish all three values of bi would do poorly whenever the distinc-

tion they lack is important (at high or low pi, respectively). In both the real and synthetic

data, we have seen evidence of how the pi vector of the data set affects performance: when

pi approaches 0.5, detecting pairs gets easier—that is, there is more signal to work with,

for methods that can use it. This is because the distribution φ becomes more uniform, as

discussed in Section 4.3.2.

In terms of the best methods to use for this task, we cannot offer a complete char-

acterization of what causes relative differences among the methods across the data sets

above. However, for this task and evaluation measure, Group 1 seems robust—CosineIDF,

Weighted Correlation, SharedWeight1100, and MixedPairs. They satisfy the three key prop-

erties (except for CosineIDF’s lack of symmetry, which seems not to hurt it in the real data),

and they are at the top of the overall averages (Figure 4.8, Original conditions).

As a scoring method, MixedPairs itself has room to improve. In most real data sets,

the best ŝ we found is 0.001, which seems unrealistic. If the data were generated according

to the model, in our data sets of about 1000 affiliations, this would correspond to positives

sharing not even 1 more affiliation than negatives. On one hand, this ŝ makes the practical

recommendation easy: use Weighted Correlation instead, which produces the same scores

(up to rank equivalence) and needs no parameter. On the other hand, it suggests a mismatch

between the model’s assumptions and real data. Two aspects worth reconsidering are the

multiple Bernoulli model, which implies that affiliations are independent (unlikely in real

data), and the positive pairs model, which lets X2 copy 0s from X1 (implausible in some

domains).
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A third aspect seems the most likely culprit: the implicit assumption that all items have

roughly the same number of 1s. Under the model, the distribution of 1s per item is a narrow

normal; in real data, this distribution, which could also be described as the distribution of

item lengths or of affiliations per person, is far wider. When two items differ in length by

d, they are forced to have at least d 0/1s. Under MixedPairs, 0/1s produce negative scores;

minimizing their effect, which depends on s, could be what causes the best ŝ to be so low.

In information retrieval, document modeling has progressed away from multiple Bernoulli

models, over the years, towards models that normalize based on document length, such

as CosineIDF does, as well as towards multinomials for representing count data [69, 83].

Extending MixedPairs in these directions could prove beneficial.

Regardless of these issues, MixedPairs has great value as a tool. Its simplicity, and in

particular its component-wise independence, are what make the rest of the story visible.

The curves of Figure 4.2 are easy to interpret, and they furnish the non-obvious suggestion

that putting a small positive score on 0|0 can add up to a large difference in performance

(as we see when comparing SharedWeight11 to SharedWeight1100). Since MixedPairs is

generative, we can use it to create synthetic data. Since we can also model the distributions

of scores for the data it generates, we can explore the effects of parameters even without

running experiments.

Through these approaches, we have been able to analyze factors that contribute to the

comparative performance of many methods and address theoretical questions that are not

usually asked about similarity scores. These questions include which items are most con-

spicuous (if paired), and how changes in the overall data distribution, including the number

and frequencies of affiliations, affect the ability of optimal methods (or other methods) to

detect pairs. Finally, we put forth the four methods listed above as recommendations for

this task or to use as baselines in more complex domains.
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CHAPTER 5

RELATED WORK

In this chapter, we return to discussing ASOUND, the detection of unusually similar

objects in unlabeled data, from a domain-agnostic point of view. Special attention is paid

to the domains from Chapters 2–4. In the first section, we review technical approaches to

the problem. After that, we survey a number of research areas containing similar problems.

Among these areas, we turn first to social network analysis, the source of many of our

problem instances. It offers relatively few methods that satisfy our requirements, so we then

cast a wider net. We find closely related models in information retrieval, entity resolution

and forensic science—likelihood ratio methods that have been influential in these fields.

Some of these areas provide guidance regarding the task’s computation issues, discussed in

the final section.

5.1 Approaches for Identifying Similar Entities

Open any textbook on analyzing data in a domain, and it will describe measures of

distance for objects in that domain. Distance measures can be turned into similarity mea-

sures, and vice versa, by inverting or negating them or subtracting from their maximum.

In many problem-solving contexts, basic similarity methods are what people use and all

they need; the preceding chapters illustrated how Euclidean distance, Hamming distance,

and set intersection, respectively, can be sufficient for ASOUND under certain conditions.

Some standard similarity or distance measures for points also include Manhattan and Ma-

halanobis distances; for sets or binary vectors, set intersection or distance, Jaccard index,

Sørensen-Dice index, or cosine similarity (see also Section 4.5); for strings, Levenshtein edit

distance or Jaro-Winkler similarity; for graph nodes, shortest path distance between them,

or similarity between their sets of neighbors [19, 25, 46, 74, 76]. However, since we have for-

mulated the task with particular constraints—namely, that we identify entities more similar
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than chance would account for, and that we use the full data set as a source of informa-

tion about independent entities—we prefer hypothesis-driven tools to these general-purpose

methods.

Some tools sound applicable but are not. One common task that ASOUND resembles is

unsupervised clustering: partitioning data instances into related groups, often with a goal

of understanding the data’s latent structure [74]. However, ASOUND differs because we

expect our “clusters” (pairs) to be small and rare, and the majority of the entities to be

drawn from a single general population. If the data do contain large-scale clusters, we want

to make sure they are described by the general model, so that we can recognize deviations

from them. Another related framework is spatial point processes, which describe patterns

among points distributed in space, such as the locations of trees in a forest. The Strauss

process can model situations where points attract each other to form local clusters [6].

However, as with clustering, point process models are better suited for globally describing

a data set.

Almost all approaches we review are pair-based, focusing on a symmetric score to assign

independently to each pair. This focus contrasts with other possibilities such as treating

a pair asymmetrically, choosing the best-matching pairs from among mutually exclusive

candidates, or reasoning about the structure or size of groups connected by high-scoring

links.

For scoring pairs, another near-miss task is anomaly detection: identifying points (or

here, pairs) that are outliers from the rest of the data. While we do wish to detect pairs

that are near each other—nearer than most other pairs in the data set—we are not strictly

looking for “anomalously similar” pairs; rather, we must also take into account the pairs’

rarity. Once we have a scoring measure, we hope extreme values of the score will signify

true pairs, but this is not anomaly detection in its classic sense. ASOUND has more in

common with significance testing: we want to distinguish true pairs from singletons that

are close together by chance. Yet we do not want to merely test significance against a null

hypothesis of independence; that approach would return pairs composed of unusual points

in any configuration. To specify how the positive pairs should look, we introduce a second

model.
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Probably the simplest statistical method for distinguishing among two hypotheses, and

the basis for our work, is the likelihood ratio. In classical hypothesis testing, the Neyman-

Pearson lemma states that in order to distinguish between two fully specified models H0

and H1 for data D, the most powerful test statistic is the likelihood ratio P (D|H0)
P (D|H1) [24]. In

Bayesian statistics, when there are no model parameters to integrate over, the same quantity

is used to compare the two models and here is known as the Bayes factor [67]. In three of

the areas surveyed below, foundational work is based on likelihood ratios: see Robertson

and Jones [106] for information retrieval, Fellegi and Sunter [50] for entity resolution, and

Lindley [79] for forensic science.

If the models are not known, but labeled examples are available from each class, then

the standard machinery of supervised learning can be applied: choose features to construct,

train a classifier on the labeled examples, and use it to classify the pairs in question [62].

Finally, when the data are unlabeled and can be modeled as having latent structure, an

expectation-maximization (EM) algorithm may be suitable [24]. EM is used to infer latent

variables in situations where a likelihood model is provided but some variables are unob-

served. For instance, one could specify that there are two classes of data, each of a known

form but with unknown parameters. To maximize the full joint likelihood, the algorithm al-

ternately assigns points to classes and updates the parameter estimates of each class. Since

EM is often applied to mixture models, it might be possible to use it with our models of

Chapters 3 and 4 in order to infer the parameters of the positive model and the class labels

simultaneously. Such models have been widely applied in entity resolution [12, 63, 139].

5.2 Social Network Analysis

This dissertation, particularly Chapters 2 and 4 with their affiliation data, has a natural

home within the social networks research community. With that term, we are referring

broadly to work by computer scientists, physicists and social scientists studying human

social networks, online social systems, and models and algorithms for graphs (or synony-

mously, networks) in general. Depending on the community, these efforts variously focus on

modeling the global structure of graphs, understanding the characteristics of a particular
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data source or its underlying social processes, or developing predictive algorithms applicable

to graph-structured data.

When we emphasize the bipartite graph representation of its input data, ASOUND

resembles link prediction among the “people” (item nodes) in its graph (see Section 5.2.2

below). When, like in Chapter 2, we further aggregate the inferred pairs into clusters, the

work also relates to projects identifying small groups, often with a fraud-detection angle

(see Section 5.6).

5.2.1 Models of Graphs

Any project in which graph structure plays a role should consider the applicability of

existing models of graphs. In the networks literature, one major thrust is designing mod-

els of large-scale graph structure to adequately capture properties seen in real-world data.

Many of these properties are described in a review by Newman [97], and Newman et al. offer

a collection of key articles in the developing field [98]. Some influential paradigms include

preferential attachment models, which are generative processes that replicate distributions

of node degrees and other commonly observed properties [7]; exponential random graph

models, which explain edges based on frequencies of local graph structures [133]; stochas-

tic blockmodels, which explain edges based on latent communities [116]; and latent space

models, which explain edges based on their nodes’ proximity in a latent coordinate system

[64]. Goldenberg et al. present a comprehensive survey of these global network models

[56]. Some more recent innovations include mixed membership stochastic blockmodels, in

which each node belongs to multiple latent groups and links are explained by group-specific

connection probabilities [3], and Kronecker graph models, which can generate a number of

properties observed in real-world networks [73]. As is typical in networks research, most of

these models are initially developed for unipartite graphs, but some are later extended to

more complex data such as graphs with multiple types of nodes or edges, graphs with node

attributes or edge weights, or dynamic graphs.

A few such models have been developed specifically for bipartite graphs. Skvoretz and

Faust were the first to formulate exponential random graph models for this setting, and

Wang et al. summarize the current inference methods and local graph features available for
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them [114, 131]. For situations involving bipartite graphs augmented by edges within one

node type (e.g., people connected both to affiliations and to each other), Chang and Blei

offer a mixed membership, latent variable model in which words are generated by latent

topics and the similarity of topic vectors determines which documents are linked [26]. To

add time dynamics to these social-plus-affiliation graphs, Zheleva et al. propose a generative

model in which nodes and links of both types are added progressively [148]. More recently,

Snijders et al. have introduced an alternative dynamic model for these graphs, a stochastic

actor-oriented model in which the node set remains constant, but edges come and go [117].

Finally, dimensionality reduction techniques—applicable not only to bipartite adjacency

matrices, but to any matrix—have been used widely on graph-structured data. In informa-

tion retrieval, they are used to model collections of documents connected to words [16, 43],

and in collaborative filtering, to model users connected to ratings [121]. Of particular in-

terest, singular value decomposition creates a lower-dimensionality description of each item

[43, 121], and latent Dirichlet allocation, or more broadly, topic modeling, uses hierarchical

Bayesian models to infer a latent mixture of topics for each item [16].

In ASOUND, it is not clear that fitting one of these models to the bipartite graph

structure, which is known and fixed, would help predict the other type of edge—between

people—of which we have no examples. Some large-scale graph models have indeed been

used to predict edges, for instance by choosing the highest-probability edges from a set not

seen by the model [3, 33]. In Chang and Blei’s relational topic model, the bipartite structure

helps predict the other type of edge; however, in that situation, both types of edges are

present in the input data, and the model learns their joint structure [26]. Similarly, from

early work on link prediction, Taskar et al.’s Relational Markov Network learns a global

model of edge structure plus node and edge attributes, but it too needs training data [127].

For ASOUND, it might be possible to leverage node attributes inferred from global models

to characterize the similarity of two nodes. Our approach in Chapter 4 is essentially a

simple global model of the bipartite structure, one in which, importantly, entities are either

independent or have a latent tie, and links are conditionally independent given the node

properties. But since the goal in ASOUND is to predict links, we look next at that literature,

with its more local models.
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5.2.2 Predicting Links

In concert with the rapid expansion of interest in network data over the last fifteen years,

the subject of link prediction has emerged out of a few exploratory papers into a widespread

publication topic. Lichtenwalter et al. suggest why: “Put simply, any environment that

naturally maps to a network probably has an equally coherent mapping from link prediction

in that network back to an important question in the environment” [77]. A recent survey

by Wang et al. gives a comprehensive overview of the topic [132].

The “canonical” link prediction problem is to predict future edges in a unipartite graph.

Many early papers addressed the prediction of new social collaborations [76, 77, 100, 129]:

given a set of collaborative events, such as papers written during a given time period, a

unipartite graph is created by linking all pairs of people who share an event (i.e., as a

projection of an original bipartite graph), and the task is to predict which edges will newly

form in the next time period. Liben-Nowell and Kleinberg’s empirical study of about a

dozen graph-topological features across five physics bibliographic datasets has served as a

starting point from which many other features have been developed [76]. Of these features,

one major class is based on the immediate graph neighborhood of a pair, such as common

neighbors (i.e., SharedSize), Jaccard and Adamic/Adar, while another class characterizes

the graph connectivity between the pair, such as shortest path length, Katz score, and ran-

dom walk scores such as personalized PageRank [34, 76, 132]. Liben-Nowell and Kleinberg

also experimented with dimensionality reduction techniques. They reported surprisingly

good performance from their simplest method, common neighbors. In experiments, it usu-

ally beat Jaccard, and Adamic/Adar was often best of all, along with variations of Katz

score.

In parallel with the development of these features, other work introduced a supervised

approach to link prediction. The basic supervised approach uses a classifier to combine

topological features from above with content-based features, such as similarity of the au-

thors’ interests [61, 100, 127, 129]. O’Madadhain et al. described how training and applying

a classifier to individual edges independently is a more scalable approach than previous al-

ternatives, such as the global model presented by Taskar et al. (who also implemented local

models for comparison) [100, 127]. Most link prediction work today uses this supervised
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approach, fitting a model to a set of training edges (and non-edges). The models them-

selves come in numerous forms and degrees of complexity. In support of this approach,

Lichtenwalter et al. argue that supervised learning has strong advantages over unsupervised

methods for link prediction; for instance, it can flexibly model the target concepts across

different problem settings and incorporate ensemble methods to improve performance [77].

In ASOUND, the task is by definition unsupervised, so supervised approaches are not di-

rectly applicable. However, given all the newly developed topological features, it may be

interesting to examine them for use in future models.

The power that comes with using a graph abstraction to represent data can also serve as

a weakness: everything looks the same as a graph. That is, differing needs and assumptions

among problem domains are sometimes overlooked. Link prediction’s early scenario of

predicting new collaborations, for example, is a poor match to the link prediction needed

in ASOUND. Apart from the issue of supervised versus unsupervised tasks, classic link

prediction expects a unipartite graph as input, while ASOUND needs a full (unprojected)

bipartite graph. Moreover, ASOUND’s true pairs generally share affiliations, which means

they are already linked in the unipartite projection of the data.

As link prediction has grown in popularity, however, a multitude of variations have been

introduced. In addition to predicting the future state of a graph, link prediction is used to

recommend people to follow on social media [8], to recognize the same person in different

graphs [146], and to de-noise input data by adding or removing links [3]. Wang et al.

discuss work predicting repetition of existing links over time, link disappearance, inactive

links, link reciprocity and triadic closure, tie polarity, tie strength, links in bipartite graphs

(e.g., collaborative filtering), and links in heterogeneous graphs (those having multiple types

of nodes or edges) [132]. One line of research relates most closely to ASOUND: inferring

social ties from similar online activity.

5.2.3 Inferring Social Ties

The explosion of online data with a social network component has made it possible

to study the interplay of social ties and behavioral data in numerous domains, and of

particular interest to us, to predict or infer social ties from the behavioral data. In contrast
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to the abstract formulations of some link prediction problems, work in this area is quite

data centric. The literature differentiates among types of behavioral data, and there is an

emphasis on understanding the constraints and human processes that generate each type.

As such, many of these papers contain descriptive and exploratory analyses of new data

sources; these analyses in turn guide new models and features to construct. Most of the

papers below contain a link prediction component—whether for inferring existing social

ties among users [2, 39, 41, 86, 101, 109, 142], predicting in-person interactions [45, 149],

or recommending items to users [81, 142]. The most popular link prediction technique is

supervised learning, but some papers use unsupervised methods [2, 58, 104]. A minority

present more complex models, such as models of multiple link types or joint models of

attributes plus structure [109, 142].

One area of active interest is geographic mobility patterns and the extent to which we

can infer friendships from similarity in people’s spatio-temporal movement. Cho et al. offer

a model of human movement as a function of previous locations, time of day, and locations

of one’s friends, applying it to data from cell phone location traces and to the location-

based social networks Gowalla and Brightkite [28]. Others predict social ties using either

cell phone location traces [41, 45, 104], check-ins to location-based social networks [101], or

spatio-temporal co-occurrences of photographs posted to Flickr [39].

Among these, the method most similar to ours is that by Crandall et al. [40], in which

pairs of friends travel to locations together to take pictures. This paper derives a likelihood

ratio calculation from generative models in which positive pairs travel either independently

or together, depending on the day. The work by Provost et al. [104] is interesting in that

it uses unsupervised methods to compute geographic similarity among users, then—lacking

ground truth social ties—evaluates whether the methods succeed at linking different traces

from the same person. Also of note is Eagle et al. [45], the source of the Reality Mining

data we use in Chapters 3 and 4. This project uses mobile phones to collect location and

proximity data among users, then compares how the behavioral data matches self-reports of

friendships. The paper examines features such as the amount of time spent together during

or outside of work hours, phone calls, and having friends at work as they relate to reported

proximity, reported friendships, and job satisfaction.
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To differentiate from location-based social networks, Liu et al. introduce the term “event-

based networks” for platforms such as Meetup, in which users form social communities online

with the explicit purpose of meeting in groups together offline [81]. In the former, offline

co-occurrences with friends take place only rarely; in the latter, all offline meetings are

with friends, as users do not record other (individual) movements in the system. Zhuang

et al. in turn use the term “ephemeral social networks” to describe the quick-forming social

structures of conferences or other temporary, immersive events; they try to predict who

will interact in person, using people’s attributes and pre-existing social ties [149]. Given a

bipartite graph of people and events, Gupte and Eliassi-Rad present an axiomatic approach

to inferring tie strength; see Section 5.2.4 below for more details [58].

In some settings, we are given observations of people interacting, but not all interactions

are strong or relevant. One of the earliest empirical comparisons of social ties and shared

affiliations, by Kossinets and Watts [68], looks at predictors of new email relationships,

finding that shared (and strong) mutual friendships are the most important, followed by

shared classes, while shared attributes have little effect. In other work with emails, De

Choudhury et al. question the operational definition and practical meaning of observed

relationships [42]. They show that very different “true” networks result when they vary

the threshold on email volume that defines a link, and they argue that the right network

to use is simply the one that performs best on the subsequent task of interest. Finally,

Merritt et al. present a paper that is more typical of this genre: using a massive data set

about gamers playing Halo: Reach online, they construct features of player pairs given their

observed matches and train a supervised model to predict friendships [86].

Another category of online behavioral data is produced by friends without them neces-

sarily interacting. Mitzlaff et al. discuss how the concept of homophily—similarity among

friends—can be extended to similarity among the actions of friends, in what they call the

“social distribution hypothesis” [91]. They demonstrate how the interaction strength be-

tween pairs of users on Twitter, Flicker or Bibsonomy correlates with similarity in the pairs’

hashtag and folksonomy vocabularies, as well as the pairs’ geographic proximities. In other

work with similarity of vocabularies, Aiello et al. focus on social annotation sites in which

users post and annotate items such as URLs or songs [2]. They develop a null model to
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check whether pairs’ activities are more similar than would be expected by chance, and they

experiment with a number of ways to aggregate the (user, item, tag) triples into similarity

scores in order to predict links between users. Using graphical models, Sadilek et al. exploit

textual similarity on Twitter, along with geotagged co-locations and an observed portion of

the social network, to infer the remaining social edges [109]. In another more algorithmic

contribution, Yang et al. develop a joint probabilistic model of friendships and interests,

which they apply to a Yahoo! social network to predict (or recommend) both social ties

and applications installed [142].

Back in the offline world, as Chapter 2 mentions, animal biology has a related concept

called “association indices” for measuring the strength of association between individuals.

Given a number of sightings of herds or schools of animals at different times and locations,

these measures are used to estimate family ties by examining which individuals are present

at each sighting. When individuals frequently co-occur, they are determined to be linked;

and then these links are used for social network analysis of the animal populations [11, 22,

70, 137]. Regarding Chapter 2’s dynamic networks, a few other papers bear mentioning.

Magdon-Ismail et al. [82], searching for hidden groups in a unipartite social network, propose

a Markov chain model of how individuals’ group affiliations change over time, and Baumes et

al. [9] follow up with a more tractable model. The caravan identification task mentioned in

that chapter’s introduction has a realistic motivation from the military: using airborne video

surveillance data to detect convoys moving on the ground or infer other vehicle activities

[21, 102]. The image data available, however, is not nearly clear enough to distinguish the

identities of different vehicles.

5.2.4 Other Methods

In being unsupervised yet driven theoretically, the ASOUND problem makes different

assumptions than most of the link prediction work discussed above. One theoretical paper

on unipartite link prediction, by Sarkar et al. [110], strikes a similar balance. It assumes a

latent space model, in which links form between nearby nodes, and it provides results on

why, under that model, certain similarity measures (such as SharedSize and Adamic/Adar)
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are likely to perform well, while others (such as those based on long paths in the graph) are

not.

For affiliation data, recent work by Gupte and Eliassi-Rad appears to address exactly

our task of latent tie prediction given a bipartite graph: specifically, inferring tie strength

among pairs of people based on events of different sizes they attended [58]. This work

formalizes desirable properties of similarity measures into a set of axioms, characterizes

the form of measures that satisfy these axioms, and shows how various common measures

either fit this form or fail to satisfy some of the axioms. Our MixedPairs and other models

violate several of their axioms—for example, the requirement that that only 1|1s be used

as evidence for ties. The conflict seems to be that their axioms describe properties only

of ties caused by people attending the observed events together. In MixedPairs, since ties

exist before affiliations are chosen, they can result in both shared 1|1s and 0|0s; for instance,

friends might jointly decide to stay home instead of going to an event.

When picking comparison similarity measures for affiliation data, we could only sample

from the vast set that have been proposed across fields [19, 25]. MixedPairs is useful as a

reference method because it is backed by a specific model and satisfies desirable properties

we enumerated. Some popular methods obviously lack one of the properties, and so we can

conjecture how they might behave within our framework (subject, of course, to experimental

validation). For instance, Dice coefficient ( 2·#(1|1)
2·#(1|1)+#(1/0) in our notation) [25] is unweighted,

so it might resemble Jaccard, and the Delta and Linear methods discussed by Gupte and

Eliassi-Rad [58] are 1|1-based, so they might behave like Adamic-Adar and Newman.

Yet it would be interesting to take a closer look at certain probability-based methods.

One such example is Lin’s information-theoretic, axiomatic definition of similarity between

objects of any type, provided they can be described with probability distributions [78].

This measure would allow putting weights on affiliations, but it is also normalized such

that the similarity of any object with itself is 1—properties that serve well in CosineIDF.

Another example is a method by Tang and Srihari which takes P (d|ε)
P (m|φ) , an approximation of

the likelihood ratio that is valid when detecting pairs within normally-distributed data (as

we saw in Chapter 3), and extends it to arbitrary distributions [125]. The approximation

requires a distance measure between objects and a rarity measure. The appeal of the method
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is that it tries to incorporate the information found in a likelihood ratio without the need

to develop a full generative model for pairs of objects in each new domain. We discuss this

paper further at the end of Section 5.5.

5.3 Matching Text Documents

Information retrieval has a rich literature centered around ranking the best-matching

documents in a corpus, given a short query. Documents and queries are often represented

as bags of words, that is, vectors of counts of each word in the vocabulary. If we can

overlook the distinction between binary vectors and count vectors, this research area has

much of relevance to our task, including methods for computing similarity for items within

a larger corpus. Researchers dealing with documents and words—including for text classi-

fication and other tasks beyond retrieval—have experience contending with the large n of

numbers of documents, the large k of vocabulary size, and data sparsity in the resulting

high-dimensional space.

5.3.1 Document Retrieval

In document retrieval, some methods to draw from include relevance models, intended

to distinguish relevant from non-relevant documents given a query; tf-idf and other term

weighting systems for computing retrieval scores as a function of shared words; and statis-

tical language models, such as those based on query or document likelihood, cross entropy,

or KL divergence, which compare the query and document based on models estimated from

them [83]. Advances over the years have been in areas such as optimizing the formulas to

use for term weights in the score; normalizing to handle documents of different lengths;

and moving from Bernoulli vector models to multinomial models [69, 75, 83, 84]. Other

directions of interest include modeling correlations among words and reducing the dimen-

sionality of the vocabulary, for instance through latent semantic indexing or probabilistic

topic modeling, to alleviate data sparsity and dependencies [16, 43, 88].

However, one characteristic limits the adaption of retrieval models to ASOUND: while we

treat the items in a pair symmetrically, retrieval models treat the query and the document

as fundamentally different types of objects. Kraaij discusses this asymmetry and some
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possible workarounds in the context of a need for a document-document similarity measure:

since most models only need to produce the best ranking of documents for a given query,

their scores are incomparable across different queries [69]. Aside from the issue of symmetry,

the sheer diversity of probabilistic models that have been developed in information retrieval

reflects the challenge of choosing an event space that represents all the properties generally

expected to matter [84, 107].

The multiple Bernoulli models we use in Chapter 4 recall the classic Binary Indepen-

dence Model (BIM) developed in the late 1970s by Robertson and Spärck Jones among

others [83, 106]. Both models score pairs using likelihood ratios that compare matches to

non-matches. Table 5.1 shows the relationship between the derivations. MixedPairs is a

symmetric version that describes the joint likelihoods of X1 and X2 (under matching and

non-matching conditions). BIM describes the conditional likelihoods of the document con-

ditioned on the query (under matching and non-matching conditions) and then makes the

assumption that only words present in the query matter. MixedPairs is in some ways more

general than BIM, since it models both types of items, and in other ways more specific,

as it assumes a particular generative model for matches. BIM gives non-zero weights only

to 1|1 and Qi = 1|Di = 0 terms, or in its rearranged form (valid only when holding the

query constant), only to 1|1 terms. It is worth noting that the BIM formula, with cer-

tain added assumptions, is commonly cited as a theoretical justification for IDF weights,

(log 1
p1
, . . . , log 1

pn
) [83, 107]. In that IDF form,

∑
i∈1|1 log 1

pi
, the score is what we called

SharedWeight11. The method we call CosineIDF normalizes this quantity by the (weighted)

lengths of the documents, which is a common way to use IDF weights (see the Vector Space

Model of retrieval and Salton’s smart system) [69, 83].

5.3.2 Near-Duplicate Detection

Aside from document retrieval, the information retrieval community also has research

on identifying distinctive textual content as it reappears across documents. The term near-

duplicate detection encompasses tasks across a “similarity spectrum,” from pruning a corpus

of web documents of duplicates that differ only in minor presentation artifacts, to clustering

the messages received in an email campaign around the form letters they originate with,
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RSJ Model MixedPairs Model

(Writing c ∈ {0, 1} in place of R ∈ {0, 1}.) (Writing (Q,D) in place of (X1, X2).)

P (c = 1 | D,Q)

P (c = 0 | D,Q)
=

P (c = 1 | D,Q)

P (c = 0 | D,Q)
=

=
P (c = 1 | Q)

P (c = 0 | Q)︸ ︷︷ ︸
constant for a given Q

·P (D | Q, c = 1)

P (D | Q, c = 0)
=
P (c = 1)

P (c = 0)︸ ︷︷ ︸
constant across
all D and Q

·P (Q,D | c = 1)

P (Q,D | c = 0)

Expand P (Q,D) using joint likelihoods
for positive and negative pairs.

rank
=

P (D | Q, c = 1)

P (D | Q, c = 0)

rank
=

P (Q | φ)P (D | Q, c = 1)

P (Q | φ)P (D | φ)

Assume the set of non-relevant documents
can be approximated by the entire corpus.

=
P (D | Q, c = 1)

P (D | φ)
=
P (D | Q, c = 1)

P (D | φ)

=
n∏
i=1

P (Di | Qi, c = 1)

P (Di | φ)
=

n∏
i=1

P (Di | Qi, c = 1)

P (Di | φ)

=
n∏
i=1



Qi = 1, Di = 1 :
ri
pi

Qi = 1, Di = 0 :
1− ri
1− pi

Qi = 0 : 1

(Assumes words not in the
query are equally probable in
relevant and non-relevant doc-
uments)

=

n∏
i=1

LR(bi)
(quantities from
Table 4.2)

=

n∏
i=1


Qi = 1, Di = 1 : s+(1−s)pi

pi
Qi = 1, Di = 0

or
Qi = 0, D1 = 1

: 1− s

Qi = 0, Di = 0 : 1−pi+pis
1−pi

Table 5.1: Comparison of MixedPairs with the Binary Independence Model (BIM). Deriva-
tion of their respective likelihood ratio scores. MixedPairs models both the “query” and
“document,” while BIM models the document conditioned on its relevance to the query.
(Continues below.)
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RSJ Model

For a given Q,

rank
=

n∑
i∈1|1

log
ri(1− pi)
pi(1− ri)

With some approximations, can derive IDF
weights:

. . . ≈
n∑

i∈1|1

log
1

pi

This is exactly the SharedWeight11 method
of Chapter 4.

Table 5.1 continued.

detecting plagiarism, or identifying information reuse at the level of sentences that are

“difficult to believe [. . . ] were written independently of one another” (quoted phrases are

from Metzler et al. [89]) [59, 89, 103, 141]. Recent papers have examined patterns of text

reuse as a means for understanding the spread of ideas, for instance by tracking variations

of direct quotes to reveal the dynamics of breaking news stories, detecting reprints of 19th

century news stories to study the geography and speed by which they “went viral,” or

identifying copied sections of Congressional bills to expose the flow of ideas through the

lawmaking process [72, 115].

Methods for near-duplicate detection generally address one or both of two concerns:

efficiently indexing the corpus to reduce the number of pair comparisons needed, and de-

veloping measures of similarity, which depend on the size, amount of variation, and other

characteristics anticipated in the copied portions. Useful overviews of these techniques can

be found in Yang and Callan [141] and Hajishirzi et al. [59]. These ideas have been adapted

for detecting near-duplicate images as well [32]. For text, documents are typically repre-

sented either as vectors of words or vectors of k-grams. Broadly, methods vary in the choice

of k-grams to construct, the choice of vector components (whether words or k-grams) to
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ignore for efficiency purposes, whether to weight the vector components, and the choice

of similarity method to use on the resulting vectors. One family of techniques uses hash

functions to create “fingerprints” of a document, then computes similarity at the fingerprint

level. These techniques include shingling [20], I-Match [30], and more generally, locality-

sensitive hash functions, which are designed to efficiently identify the closest pairs of binary

vectors within a large collection under a given distance measure [55, 74]. In other methods,

Hajishirzi et al. [59] adapts a supervised method from Yih [144], which first learns term-

weighting functions for the vector components, then computes either the cosine or extended

Jaccard similarity of the weighted vectors. Metzler et al. [89] and Yang and Callan [141]

use similarity and weighting measures from document retrieval.

I-Match is of particular interest with respect to our affiliation subset experiments (Sec-

tion 4.6.3): to detect near-duplicate documents, it takes the unique set of terms left in a

document after a filtering step; computes a hash value; and looks for collisions. In the paper

that introduces the technique, Chowdhury et al. [30] experiment with various filtering crite-

ria as a function of IDF term weights. They remove terms either in the low range of values,

high, middle, or both edges of the distribution, and they find the best performance with a

filter that retains the 10% of terms with the highest IDF values. Since IDF percentiles are

identical to percentiles of what we call pi, their preference for retaining the rarest words

is at odds with our preference for retaining those with pi nearest 0.5. The discrepancy

could be because their true pairs are nearly identical, so a nuanced similarity measure is

not needed; instead, almost all documents contain at least some of the rarest 10% of words,

which provide the strongest signal of a match. Conversely, it is possible that for us, using the

subset of affiliations with pi nearest 0.05, 0.1 or some other non-zero value would perform

better—especially for certain (non-symmetric about pi = 0.5) similarity measures—than

those with pi nearest 0.5 or 0, the only options we explored.

5.3.3 Plagiarism Detection

Plagiarism detection draws on the same near-duplicate detection techniques, but with

some twists. A plagiarized document contains material closely borrowed from other sources,

but the borrowed material may consist entirely of short passages, in any order, possibly from
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multiple source documents. Recent work is reviewed by Meuschke and Gipp [90] as well as

in reports from the PAN annual competition and workshop [103]. Prior to applying near-

duplicate detection strategies, a suspicious document may first be subdivided into chunks

of a size expected to match a single source closely. After candidate matches are found,

further steps are required, such as aligning the document texts, to assess which passages

were plagiarized and from which sources.

The adversarial component of plagiarism is challenging: while existing methods perform

well with exact duplicates, they are not very robust to obfuscation strategies, which range

from mild rewording and synonym replacement to substituting look-alike letters from differ-

ent font families and embedding hidden text—the last examples being intended to combat

automatic plagiarism detection systems. Some techniques rely on non-traditional features

anticipated to be invariant when copied, such as the sequence of stopwords (after content

words are removed), which tends to be preserved when a sentence structure is, or the se-

quence of citations within an academic text, which is likely to be preserved even if the text

is translated to a different language. It is worth noting that for plagiarism detection, and

in fact for most tasks involving matching text documents, the final call on match quality

always comes down to human judgment.

Separate from plagiarism of text documents, another research area has emerged around

detecting plagiarism of software, whether in academic or commercial settings [80, 134]. As a

recent example, Wang et al. [130] developed a system to detect illegal clones of Android apps

on marketplaces, a task which is challenging because the code may have been obfuscated.

There is also a large body of work on code cloning, a more general term that encompasses the

detection of benign copy-and-paste passages within large code bases for purposes of software

analysis [108]. These techniques are diverse, compared to those for text duplicates, because

of the logical structures that can be leveraged in computer code.

5.4 Matching Database Records

Another closely related research area is entity resolution, also known as record linkage or

data de-duplication, in which a database contains multiple records pertaining to the same

real-world object, and the task is to correctly match and consolidate them [31, 46, 63].
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Database records generally contain text fields such as names and addresses, and methods for

handling them cannot necessarily be adapted for continuous or binary data. For instance, we

can safely ignore the numerous approximate string similarity functions, such as Levenshtein

edit distance, Monge-Elkan, or Jaro-Winkler. All the same, the scoring methods warrant

careful examination, and many additional issues treated are quite relevant.

5.4.1 Fellegi-Sunter Model

Much work in what is called “probabilistic record matching” stems from the Fellegi-

Sunter model, first published in 1969 [50]. This model ranks pairs using a likelihood ratio,

P (γ|c=1)
P (γ|c=0) , where c is our usual label for matches or non-matches, and γ is some function of

the pair—a “comparison vector,” or what we might call a feature vector. In typical usage,

the components of the feature vector are assumed to be independent, so log P (γ|c=1)
P (γ|c=0) =∑

i log P (γi|c=1)
P (γi|c=0) . So far, this resembles our models from Chapters 3 and 4. In the simplest

model, each feature γi = γi(X1i, X2i) describes whether a pair matches in one (or more)

fields; that is, it is a binary value. The model has also been extended to allow γi to be a

normalized score from a string similarity function [140]. This likelihood ratio differs from

those we use in that it measures similarity, including the probability of the similarity vector

occurring by chance, but not the rarity of a pair’s values; sharing a rare value yields the

same γi = 1 as sharing a frequent value. More broadly, while the LR from our generative

models is the ratio of joint likelihoods of the data itself, the Fellegi-Sunter LR is the ratio

of likelihoods of some feature vector of the pair. Of course, no feature vector can contain

more information than the original data, so when a joint likelihood function is known, it

should be preferred.

To incorporate rarity, Fellegi and Sunter described an alternative version of γi. In

this version, the function’s range of values is no longer {0, 1}, but a set such as {non-

match, matches on “Abadi”, matches on “Arnold”, matches on “Aronson”, . . . , matches

on “Zychowski”, matches on something else}, where the enumerated names might be just

a subset [50, 63]. With this representation, the LR is higher for rare matches. Outside

of likelihood ratios, another way to account for rarity is by capturing it within the string

similarity measure; for instance, borrowing from information retrieval, Cohen weights each
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word (or substring) by its tf-idf value, then takes the cosine similarity of the resulting

vectors [35, 37]. Alternatively, rarity can be ensured at a post-processing stage: in one

method, regardless of the distance measure, the final clusters are required to be both close

together and in sparse regions [27].

Using the Fellegi-Sunter model requires estimates of P (γi | c = 1) and P (γi | c = 0),

known in the literature as m(γi) (for matched pairs) and u(γi) (for unmatched pairs),

respectively. In the absence of labeled examples, P (γi | c = 0) for unmatched pairs can be

approximated as two random draws from the data set, just as in our models. (Most often

in this literature, all entities A from one data set are considered as candidate matches to

all entities B from another. But these assumptions can be revised for different scenarios.)

For matched pairs, P (γi | c = 1), the probability of agreement in the ith component, is

traditionally modeled as the probability of one random draw from the data set yielding some

value j, times a fixed probability of the second entity’s value matching the first [36, 50, 63].

Regardless of the particular models, the EM algorithm has proven useful for inferring their

parameters, along with the cutoff threshold between positive and negative pairs, in tandem

with the pairs’ class labels [12, 63, 139].

Cohen et al. have explored connections between Fellegi-Sunter and information retrieval

models, pointing out that if word frequencies are equal among matched and unmatched

pairs, then log P (γi|c=1)
P (γi|c=0) reduces to exactly log 1

pi
, the component’s IDF weight [36, 37]. As

we noted in discussing the Binary Independence Model (Section 5.3.1), that IDF weight also

appears in our methods SharedWeight11 and SharedWeight1100. Cohen et al. also observe

that when a pair mismatches, the log odds term in Fellegi-Sunter is a negative constant that

is independent of the mismatching word(s). While our model MixedPairs and the Hit-Miss

model (below) produce negative constants for mismatches as well, Cohen et al. consider this

property intuitively undesirable and adjust their score to remove it [37].

5.4.2 Broader Matching Process

Apart from pairwise scoring, the entity resolution literature has addressed other prob-

lems that need to be handled when detecting duplicates, in or out of databases. A number

of entity resolution issues are important in typical databases but outside our scope. Prior to
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the automated matching, much effort is required to clean and standardize data fields, cor-

rect systematic errors, and otherwise preprocess records so as to make matches perceivable

[63]. It can be non-trivial to subdivide free text fields, such as full names or addresses, into

sub-components for matching, such as first name or street number—a task called segmen-

tation [31]. Then, once two records are declared to match, a method is needed for merging

their data into one canonical record. When databases hold information about multiple types

of objects—whether explicitly, through separate tables, or implicitly, such as when variant

spellings of cities reappear within string fields—information from consolidating each type

of entity should, ideally, be able to help with the others [14, 31].

Certain issues are entirely applicable to problems such as ASOUND. One inevitable

concern is how to avoid the quadratic increase in the number of pairs to score as the data

set grows; we describe blocking and related techniques in Section 5.7 below. Another is how

the training sets, probability estimates and constraints on valid link configurations must be

modified when detecting duplicates within one database versus across two or more (including

possible constraints about which databases can be assumed already free of duplicates) [31].

Yet another relevant issue is how to handle the resulting graph of linked records, including

possibly inconsistent scores (that is, scores violating transitive closure) among related pairs.

One approach is to apply a graph clustering method as a post-processing step [27, 31].

Conversely, one can treat the full configuration of true pairs as a latent variable to infer,

thereby rendering the scores of adjacent pairs dependent. This is an approach we dismiss,

due to efficiency concerns, in Section 3.2.3, but Steorts et al. have recently proposed a

tractable approach worth considering [118].

5.4.3 Hit-Miss Model

Some of the closest models to Chapters 3 and 4 can be found in a 1990 paper by Copas

and Hilton [38], along with follow-up publications in statistics and computer science [51,

99, 123, 124]. Copas and Hilton depart from Fellegi-Sunter by modeling the full joint likeli-

hoods of matching and non-matching pairs. That is, they use a likelihood ratio equivalent

to our Eq. (1.1) (P (X1,X2|positive)
P (X1|φ)P (X2|φ) ), rather than Fellegi-Sunter’s P (γ|c=1)

P (γ|c=0) . They present a

generative model for pairs in Gaussian-distributed data, and another, called the Hit-Miss
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model, for categorical data. They even analyze the predicted distributions of scores under

these models much like we do in Figure 4.3, choosing to measure class separation using the

symmetrized (or Jeffreys) divergence—that is, the distance between the two class means.

For one-dimensional Gaussian data, the analysis shows that scoring with distance only

(more precisely, with what we call LR[d] in Chapter 3) yields a symmetrized divergence

that approaches that of their LR as the distance between pairs approaches zero, and it is

always at least half that of the full LR. For categorical data, they find that using their

LR is better than using a binary agreement vector (γ), with equality when the values are

uniformly distributed and a growing benefit as the values’ “incidence rates” become more

skewed.

The generative models we develop in Chapters 3 and 4 are almost, but not exactly,

special cases of those presented by Copas and Hilton [38]. Their models have a latent true

value for each entity and a noise process. Singletons are noisy observations of their true

values, while pairs are independent noisy observations of the same true value. The Hit-

Miss model specifies a frequency for each true value in a categorical distribution, a noise

probability a, and a probability b of the observed field being blank. When an observation

is noisy, its observed value is sampled from the original categorical distribution. Given

a MixedPairs model with parameter s, we can produce a Hit-Miss model with identical

likelihood ratios by setting b = 0, a = 1 −
√
s, and allowing only the values {0, 1} in each

component Semantically, s = (1 − a)2 is the probability in MixedPairs that one entity

copies the other, or the probability in Hit-Miss that both entities copy the original value.

The difference is that our models lack the notion of an unobserved true value for pairs to

copy. Copas and Hilton’s models are elegant, yet so far they have been applied only to

record linkage. Our work takes these ideas in new directions by applying them to different

problems and broader definitions of linked entities; by narrowing in on the case of bipartite

graph data with no blanks; and by exploring the parameter space to understand strengths

and weaknesses of other methods.

Norén et al. apply the Hit-Miss model to detect duplicate reports of the same event

within an adverse drug reaction database [99]. They offer two extensions to the model: for

numeric fields, a model in which the observed value can either hit, miss (draw randomly),
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or deviate (a small amount) from the original value; and for databases with correlated

fields, a method to adjust for pairwise correlations. One point of interest in this study is

an efficiency trick like the one we suggest in Section 4.3.1: Norén et al. compute a cutoff

threshold, then drop all records which, even if perfectly duplicated, would have scores below

the threshold. These “unmatchable” records—containing mostly blanks and common field

values—constitute about 30% of the data, with proportions varying widely by country.

Other work that builds on the models of Copas and Hilton [38] moves towards jointly

inferring all matches between two databases. Fortini et al. extend the Gaussian model of

pairs to a hierarchical Bayesian model whose likelihood function encompasses all singletons

and pairs in two databases, the number of pairs, and their adjacency matrix, and they

perform inference through MCMC [51]. Tancredi and Liseo similarly extend Hit-Miss to

a Bayesian model for categorical data [123, 124]. In their work, the goal is not merely to

infer the links between databases, but to use the posterior distribution to inform further

analyses of the matched data. In a related piece (also mentioned earlier), Steorts et al.

present another model for categorical data, one in which the unobserved linkage structure

can flexibly represent match possibilities among one, two, or arbitrarily many databases.

5.5 Forensic Science

In forensic science, an important question is whether material found at a crime scene

matches that taken from a suspect—that is, whether the two samples originate from the

same source or different sources. Likelihood likelihood ratio methods, first introduced to the

field by Lindley in 1977 [79, 126], are the modern approach to quantifying the “strength of

evidence” towards either hypothesis. Since the probability estimates affect the outcomes of

criminal trials, they need to be as accurate as possible. To this end, work in forensics centers

around developing features and likelihood functions to fit particular materials. There are

lines of research specializing in glass shards, paint flakes, MDMA tablets, handwriting,

footwear, fingerprints, DNA samples, and voice recordings, among others [17, 92, 120, 125,

126, 145]. The problem setup can vary based on whether either item of the pair has

been measured just once or several times, and whether the sample from the suspect is
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being compared to a previously-studied source (e.g., one or more types of glass with known

properties) or to a sample whose background is unknown.

The seminal paper by Lindley [79] explores a scenario closely related to Chapter 3

(and also independently addressed by Copas and Hilton [38]): whether two real numbers

are independent samples from a general, known, Gaussian distribution, or whether they

are both sampled from some tighter Gaussian distribution with a different mean. Lindley

assumes that rather than just two points, we are given two clusters of m and n points,

representing measurements taken from a crime scene and a suspect, respectively. Working

in the one-dimensional case only, he shows the LR to simplify to an expression similar,

though not identical, to our Equation 3.9, dependent on what we would call m2

σ2 and − d2

ν2
.

He also examines the behavior of the LR, calculating its value as a function of parameters,

much like in our Figure 3.2, and calculating the expected probabilities of error as a function

of hypothetical cutoff thresholds. Later work with continuous data has extended this model

to the multivariate case [4] and to fit arbitrary background distributions using kernel density

estimators, undirected graphical models, or Gaussian mixture models [5, 17, 92].

A recent, relevant paper by Bolck et al. addresses the benefits of what they term “feature-

based” versus “score-based” likelihood ratio models [18]. Feature-based models are those in

which, like ours, a pair’s likelihood function is its joint density function. Score-based models

are closer to Fellegi-Sunter models: a univariate distance measure γ(X,Y ) is computed

between the items in a pair, and the resulting value is compared to distributions from

matching and non-matching pairs, using the likelihood ratio P (γ|c=1)
P (γ|c=0) . These are like Fellegi-

Sunter models except that these reduce a multivariate input to a single continuous distance

value, rather than one distance value per component. Score-based models require a training

set of positive and negative pairs, unlike feature-based models, but after the model is learned,

they are simpler to use, only needing a single distance computation to produce the LR for

a new pair.

Bolck et al. find that compared to feature-based models, score-based models produce

LRs of smaller magnitude, and this is because they use less information: they reduce the

multivariate signal to a single variable and ignore information about rarity. Yet they also

discuss some advantages to score-based models: they are less sensitive to variations in

114



data, do not require complex models, and are more robust than feature-based models to

retaining their scores when the number of available features is decreased. This paper is

distinctive in that it also examines the effect of changing the background distribution,

called “Z.” The authors test the scores’ robustness—via the magnitude of the LRs—when

using fewer samples or fewer features. To select the least informative features to remove,

they use principal component analysis to identify features with the lowest variance in Z. In

Section 4.6.3, our justification is different, but the features we remove, those with the most

extreme pi values, likewise are those with the lowest variance.

Tang and Srihari offer a different perspective on the “feature-based” versus “score-

based” dichotomy, extending it with two more options [125]. First, they point out that

score-based models can either reduce the input pair to a scalar distance value, as above,

or to one value per component—a “vector distance” that retains more information, like

Fellegi-Sunter models. (In Chapter 3, our LR[d] is a vector distance model.) Second, they

focus on the decomposition of the likelihood ratio, in Lindley’s model for Gaussians, into

one term for the distance between the items (− d2

ν2
) and another for the rarity of the pair

(m
2

σ2 ). Extrapolating from that model, Tang and Srihari propose constructing likelihood

ratios for any type of items as the product of a distance term and a rarity term. Although

these LR approximations are justified mainly by analogy and leave many choices up to

the modeler, the experiments show reasonably good performance over a broad range of

data types, including binary vectors, categorical-valued vectors, and attributed graphs. In

addition, in work that complements and supports our Section 3.4, Tang and Srihari offer

some theoretical and synthetic comparisons of the full joint LR for Gaussians to its scalar

distance-based alternative. Measuring performance using accuracy and KL divergence, in

place of our AUC, they find that the scalar distance-based method is close to optimal only

when true pairs are very close together and the dimensionality is low.

5.6 Fraud and Security

In some scenarios, there is a fraud or security interest in detecting suspiciously similar

people or objects. Chapter 2 described how unusual patterns of sharing multiple jobs over

time may be a sign of collusion among stockbrokers. Likewise, in online auctions, unusual
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patterns of participating in (or avoiding) the same auctions may be a sign of collusion

among shill bidders. Trevathan and Read describe several strategies used by shill bidders

to drive up prices and present algorithms that detect them in simulated data [128]. More

widespread than these are the problems caused by individuals controlling large groups of

fake or compromised accounts or machines on the internet, whether in the context of online

social networks, advertising click fraud, or botnets, as we describe below. In each case, the

groups achieve their goals through coordinated, often synchronized behavior, which it is in

the interests of the network operators to detect.

Online social networks are often infiltrated by Sybil (spam) accounts. One detection

strategy addresses accounts that simulate human behavior by copying it from legitimate

accounts. For example, Bilge et al. outline a profile cloning attack in which a spammer

duplicates a profile and uses the stolen identity to acquire network ties with the real person’s

friends [15]. Similarly, on Weibo, a popular Chinese microblogging service, Zhang et al.

identify Sybil users whose tweets are mostly copied from others (excluding explicit retweets)

[147]. In this case, similarity between tweets is defined as the Jaccard similarity between

their sets of words, and locality-sensitive hashing is used to make the all-pairs computation

feasible at scale.

Another detection strategy is to look for groups displaying coordinated behavior. Yang

et al. examine a labeled set of Sybil accounts from Renren and find that the vast majority

are connected to other Sybils both in content (measured via Jaccard similarity among the

links they post) and in timing, even if they are rarely connected in the social graph [143].

Beutel et al.’s CopyCatch detects spam accounts on Facebook by looking for bipartite

cores in which at least n users “Liked” m Pages within a given time window [13]. These

cores of interest can also be defined as dense blocks within the adjacency matrix of users

and actions.

Jiang et al. extend the idea of looking for dense blocks to arbitrary matrices and tensors

[65]. They formulate a null model of matrix density, against which they can assign a

suspiciousness score to any block as a function of its dimensions and density. This approach

is of the same form as Chapter 2’s prob model, which measures the value of a test statistic

against a null model describing the rest of the data. In follow-on work, the same authors

116



introduce a scoring function that relies on concepts similar to Chapter 3’s “similarity”

and “rarity.” Under this method, called CatchSync, an account in the unipartite social

network of Twitter or Weibo is scrutinized based on the accounts it follows. It is considered

a spammer if these accounts are both similar to each other (high “synchronicity”) and

unlike the majority (low “normality”) [66]. Here, similarity between accounts is defined as

a function of their graph-based feature vectors. Note that although these measures capture

useful intuitions, they are not derived from an explicit probability model.

A different extension of CopyCatch, called SynchroTrap, loosens the assumption

that spam users must create a dense block of actions [23]. Instead of requiring that users

do m identical actions within a given time window, it measures the Jaccard similarity of

pairs of users, where identical actions are considered to match if they occur within a time

window of each other. Then, like in Chapter 2, it chooses a cutoff threshold and returns

the connected components of that graph as groups. Cao et al. describe the deployment of

this system at Facebook and Instagram, focusing on techniques for efficient implementation

[23].

In online advertising, fraudulent or accidental traffic to webpages, just like intentional

traffic, causes ads to be served, possibly clicked on, and charged for. One source of such

traffic is coordinated bots. Metwally et al. describe a problem in which fraudsters wish

to generate clicks on specific webpages. Moreover, since it is straightforward to detect

and block malicious traffic coming from a single machine, they address a scenario in which

coalitions of fraudsters obscure their activities by sharing and distributing them across

many machines [87]. In this case, traffic analysis can reveal these groups based on the

similarity of the sets of sites at which they generate traffic. The proposed algorithm uses

locality-sensitive hashing and sampling techniques to efficiently search for the closest pairs

of machines according to their Jaccard similarity. Stitelman et al. address advertising fraud

from a different angle. As they explain, “Some websites or clusters of websites are apparently

created for the sole purpose of perpetrating [fraud] by using non-genuine traffic to extract

payments by advertisers for advertisements that no user ever sees” [119]. They describe

methods to detect not the traffic creators, but websites themselves that have high rates of
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unintentional traffic. In this case, the incriminating evidence is pairs (or sets) of websites

visited by anomalously similar sets of browsers (as identified by cookies).

Compared to the above cases, botnets, or large groups of computers infected with mal-

ware and controlled remotely, are the greatest threat to security. Several methods to detect

them focus on the groups’ coordinated behavior as detected through network traffic mon-

itoring. BotMiner [57] and BotGAD [29] use unsupervised clustering to extract groups of

hosts or domains after constructing complex feature vectors of their traffic patterns. Bot-

GAD is of particular interest in that it employs a statistical technique called a sequential

likelihood ratio test as a similarity measure; this is a likelihood ratio test that outputs a

0/1 decision only once enough evidence has accumulated over time.

5.7 Computational Efficiency

Both the information retrieval and database communities have done extensive work on

indexing large data sets to make them efficiently searchable. For all-pairs problems like near-

duplicate detection, the key idea in computational efficiency is to reduce the number of pairs

under consideration, to combat the O(n2) blow-up. Reducing the cost of each individual

score is helpful but secondary. Almost every method uses a cheap approximate similarity

measure as a first pass, builds an indexing structure to make this “cheap” computation

feasible at large scale, and applies a more accurate measure only to the candidate pairs

output by this process. Since our work focuses on that more accurate similarity measure,

we can leverage existing techniques for scaling up, provided we want the same general set

of candidates.

In entity resolution, the first pass measure hinges on choosing database fields that we

expect to match in true pairs [31, 46]. At this step, high recall is important. In the simplest

case, if we expect just one field to match perfectly—say, zip code—we use this field as a

“blocking key:” for each zip code, output as candidates all pairs of records sharing that

value. Blocking approaches are useful as long as the derived blocks are not too small to

contain the true matches, and not too big, since within every block, we do enumerate all

pairs. For certain kinds of fields, such as name or height, we can instead use the field as

a “sorting key:” sort all records based on the field, then iterate through the sorted list,
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outputting as candidates all pairs of records within a window of a fixed size or whose field

values are within a fixed distance.

If no single field is certain to match, we can repeat these processes with multiple key

fields to generate larger lists of candidates. If the existing fields are not expected to match

closely enough, then indexing functions come into play. An indexing function maps a

field to one or more values which can then be used as blocking keys. Examples include

binning, for continuous values, and for strings, phonetic encoding, suffixes of varying lengths,

character n-grams or individual words. The indexed values can be used as discrete blocks,

or alternatively, they can be used as inputs to canopy clustering, which assigns records

into overlapping clusters. Canopy methods cheaply compute a similarity function between

records and output near neighbors under that function as the candidates for further scoring

[85].

Much of the recent work on near-duplicate detection of text documents, as well as of bot-

controlled accounts or machines, uses hashing and fingerprinting techniques, particularly

locality-sensitive hashing [55, 59, 74]. Fingerprinting is somewhat similar to indexing: both

extract values, such as substrings, from documents or records, to make them easier to

compare. However, in databases, the aim generally seems to be to expand the set of

possible matches for a short record, while in documents, the focus is more on choosing which

substrings are worth keeping. With fingerprinting, the resulting values are put through a

hash function, and the document is represented as a binary vector of values.

Locality-sensitive hash (LSH) functions are a family of randomized algorithms for solving

the nearest neighbors problem: given a set of points, build an indexing structure so that,

given an arbitrary query point, we can quickly retrieve all neighbors within distance R [112,

Ch. 1]. They are particularly suited for high dimensional spaces. LSH functions work by

mapping the input data to a lower-dimensional space of “signatures” in which, for any two

points, we can approximate the distance between them by the fraction of their components

that agree. This representation can be useful in itself. Then, to retrieve all pairs within

distance R of each other, we compute signatures of a given length—multiple times—and

return points whose signatures exactly match at least once. These methods have now been
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developed for a number of distance measures, including Hamming, Euclidean, Jaccard, and

cosine.

The only large-scale data set in the dissertation is in Chapter 2. There, to keep the

number of pairs tractable, we used each branch office in turn as a blocking key to enumerate

candidate pairs of reps, also requiring an overlap in the time intervals the reps worked

there. While aggregating that list of pairs, we further filtered it by retaining only pairs

that appeared on it three or more times. Going forward, that technique might continue

to suffice, with the right infrastructure. For entities with continuous values, we could use

binning, as mentioned in Section 3.4.

Experimenting with LSH-based methods is appealing, especially for dynamic and static

affiliation data. The ideal, of course, would be to have an LSH method for the exact score

we wish to use. Since the LSH method for cosine accepts real-valued vectors, it can be

used to approximate CosineIDF directly. An alternative would be to run LSH with any

distance measure under a fairly tolerant threshold, and use this as a first-pass filter. With

this or any other first-pass method, it is important to think through the method’s possible

weaknesses. Whether the method is appropriate for a given data set—that is, whether it

achieves high recall for the more accurate scoring measure while producing a small enough

set of pairs—will depend on specific properties such as the number of items, the number of

dimensions, the distribution of data within each dimension (e.g., pi), and also the evaluation

measure of interest. For now, these concerns need to be assessed on a case by case basis.
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CHAPTER 6

CONCLUSION

In this thesis, we started with a question that seems eminently answerable using statisti-

cal methods, but lacked an obvious solution: “Given two entities within a larger collection,

is their similarity best explained as the result of a link between them?” Of course there are

ways to measure similarity between entities; and alternatively, if we had access to labeled

training data, we could learn a classifier to distinguish pairs from non-pairs. For certain real-

world problems, questions like this have been explored extensively: how to judge whether

two documents contain text from the same source, two database records refer to the same

entity, or two fragments of glass come from the same manufacturer. But for two people and

their careers, two people and their sets of affiliations, or merely two points within a distri-

bution, there was no established approach for determining whether they are more similar

than we should expect by chance.

This gap was not a result of too little prior work on the subject, but rather, an excess

of options, all addressing slightly different questions or adapted to different domains. As

we discussed in Chapter 5, the fields of information retrieval and entity resolution have

sophisticated methods for estimating probabilities of feature matches in text fields or doc-

uments, given unlabeled data, and they have complex indexing and hashing methods for

efficiently detecting duplicates within large corpora. Forensic science builds detailed gener-

ative models of specific types of objects, such as fingerprints or samples of glass, in order

to minimize the probability of error when a particular case comes up for expert judgement.

Social networks research infers friendship ties by building models of human mobility pat-

terns and interaction dynamics. Yet when it comes to determining the similarity of two

nodes in a graph—a question that arises frequently—probabilistic models are lacking, and

people often fall back upon rule of thumb measures, such as “number of neighbors shared”

or the Adamic/Adar measure. In this dissertation, we have built new models consistent
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with existing literature, for domains that are general enough to be widely applicable, with

a goal of better understanding the problem space (of ASOUND) that all these fields share.

After demonstrating that detecting pairs can be useful in a real-world social network

inference task, and that there is room for improvement over a naive measure of similarity,

we formalized the problem of detecting ASOUND, first in a setting of Gaussian-distributed

points, then in a bipartite graph. We took a theoretical perspective, investigating, first,

how to derive a method for scoring pairs, second, how the ability to detect pairs within a

data set varies as a function of the data’s distribution, and third, how the score we derive

compares to baseline measures, both in form and in performance as a function of the data’s

distribution. Our general approach, of a symmetric score for every pair in the form of a

likelihood ratio, is familiar and reasonable for problems like this, as is the assumption that

negative pairs can be modeled as two independent samples from the data. Our choice to

use generative models, the specific forms of these models, and the analyses that the models

enabled, were unique. More concretely, we have introduced new similarity measures in

each domain. For the bipartite graph domain in particular, since many problems can be

rewritten in this form, we hope to see these new measures be further tested and adopted.

6.1 Review of Contributions

In Chapter 2, we began with a fraud detection problem, a large database of employee

job histories, and a conjecture that groups of people who “move together” through their

careers, in tribes, might be higher fraud risks than the general population. We framed this

as a task of detecting “tribes” moving together, defined as connected components formed

from pairs of reps whose job histories were unusually similar. The scoring measure for

pairs was defined as the rarity of their shared job sequence—much like the measure we

later called SharedWeight11. Since reps move among jobs over time, we used a Markov

process to model independent reps. Though we lacked ground truth labels, evaluations

showed that the inferred tribes were smaller, had higher risk scores, were more homogenous

in risk scores, shared rarer sequences of jobs, and were more geographically mobile than

comparison groups.
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Chapter 3 examined ASOUND among points in Gaussian-distributed data. We pre-

sented a generative model (for any domain) of data consisting of true pairs plus singletons

and showed how we could use a pair-wise likelihood ratio to infer the true pairs, provided

we are willing to treat all candidate pairs as independent. For Gaussian data, we created a

model of true pairs, derived its associated likelihood ratio (LR) for scoring, and showed how

the LR combines d, the distance between the pair, m, the rarity of the pair’s midpoint, and

t, parametrizing the distance between true pairs. Examining the theoretical distributions

of synthetic positive and negative pairs, we saw that the distributions become more distinct

when true pairs are closer together and as the dimensionality increases. In both real and

synthetic data, we showed that LR, and an approximation P (d|ε)
P (m|φ) that is more robust when

t is unknown, can improve over distance-only and rarity-only baselines whenever both these

features carry information.

In Chapter 4, we used a model of bipartite graphs (or, equivalently, binary vectors) in

which most items are independent. For each item, every affiliation is chosen independently

according to some affiliation frequency pi. True pairs choose a fraction s of their affiliations

jointly, and the remaining (1−s) of affiliations independently. In the likelihood ratio derived

from this model, the score for a pair of items can be written as a sum over all affiliations.

The score per affiliation is a constant negative value for every mismatch (1/0), and a positive

value for every match (1|1 or 0|0), with that value depending on the affiliation’s frequency

(vs. rarity) in the population. We showed that in synthetic data, positive and negative pairs

become more distinguishable as s, the similarity of true pairs, increases, as the number of

affiliations grows, and as affiliation frequencies approach 0.5. The latter two properties

were testable in real data and found to hold, except that removing the least informative

affiliations sometimes actually increases performance.

Besides the MixedPairs scoring method described above, we introduced a weighted ver-

sion of Pearson correlation, and two SharedWeight methods that use the rarity of the pairs’

shared matches (like in Chapter 2). Comparing these methods to eight others, we rewrote

them all in the form of sums across affiliations. We found that analyzing these component-

wise functions helped explain the methods’ empirical performance in synthetic and real

data sets. Namely, the most robust scoring methods have per-component functions that
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vary with pi; that treat 1|1, 0|0, and 1/0 as distinct configurations of a pair; and that treat

the presence of a rare affiliation as equivalent to the absence of a high-frequency one. Lack

of any one of these properties, particularly in cases where a data set’s pi vector suggests

the property would be important, seems to impair performance.

6.2 Future Directions

The models we developed have answered some questions and, of course, opened up new

ones. Below, we discuss avenues for future work in this area.

In affiliation data, the new methods seem promising. Some next steps will be to validate

the properties we have described in additional and larger data sets and look for situations

in which a change of methods could offer strong improvement. It may also be possible to

adapt these methods for link prediction in unipartite graphs. We showed that the method

Weighted Correlation, which we derived by analogy to Pearson correlation, is related to

MixedPairs, for instance in that it computes a “correlation coefficient” of s for positive

pairs generated with that parameter. Whether there is a more formal relationship among

these three is worth exploring.

In terms of improving the fit of the MixedPairs model to real data sets, we see potential

in two directions. The first is adjusting the form of φ so that it accounts for the varying node

degrees of not only affiliations, but also items. The second is moving φ away from a multiple

Bernoulli to a lower-dimensional representation, possibly using topic models, which could

allow for dependencies among affiliations and even for clusters among singletons. Finally,

an obvious possibility for extending this work is to shift from domains of binary vectors

to count vectors. Information retrieval already has numerous methods for count vectors,

however, so a pertinent question might be whether a pair-detection model would simply

reduce to a pre-existing method.

The domain of dynamic affiliations, which started off this project, remains as complex

as ever. In order to extend the full likelihood ratio approach to this (or any new) domain,

we would need to develop a generative model for positive pairs in the domain, which is not

necessarily straightforward. This challenge brings up the question of whether a full genera-

tive model is essential for good performance at the task, beyond its utility for understanding
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the parameter space. Another potential path could be to use manually constructed feature

vectors of a pair, in combination with an EM method, to learn a distinction between positive

and negative pairs. An interesting variation of the task, for complex domains especially,

would be to build generative models describing alternative behavior patterns for pairs. Such

pairs might avoid each other, have one follow the other after a time lag, or closely share

certain types of behaviors but never others.

We have left open the causal origin of the correlation between true pairs, describing

the ties as representing a “shared origin” or “channel of influence,” and implying that they

exist prior to the generation of the observed data. This is a useful simplifying assumption,

since the nature of the ties will vary across domains. It is difficult to distinguish among

causal explanations for shared behavior; in social networks, this is sometimes referred to

as the question of “homophily versus social influence” [113]. However, for social network

data with a temporal component, it might be useful for a generative process to distinguish

between pre-existing ties and others formed as a result of shared behavior—for instance, by

people attending a small event together. In the job history data, for example, if two people

work at a company of only five employees, our existing models count that as strong evidence

towards connections among them (which might as well be present in advance), but do not

take into account that they almost certainly know each other going forward. Whether the

new ties have any effect on future behavior, or whether they are of intrinsic interest to

the project, will vary. But in general, domains in which we expect people to form ties as

a result of their observed shared behavior might benefit from explicitly modeling such tie

formation.

Regarding the modeling approach of Chapters 3 and 4, the most useful algorithmic

extensions would be, first, to make the parameters of the positive models learnable, through

an EM algorithm or small amounts of training data, and second, to work out indexing

and comparison strategies to keep computational costs low. Meanwhile, some interesting

theoretical questions with practical implications remain open. For instance, in affiliation

data, we showed that entropy, or a measure related to it, plays a role in the difficulty of

pair detection. Intuitively, this is because the score of a pair is a function of its rarity,

and the entropy of the data set summarizes how often pairs can look rare. It would be
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interesting to look for this property in continuous data, and to investigate what the entropy

of a data set implies for the detectability of pairs (e.g., it might induce an upper bound). In

operational terms, thinking about entropy led us to experiment with the subsets of high or

low frequency affiliations, manipulations which could be useful towards goals of efficiency

(while preserving pair identifiability) or anonymity of a data set (while still releasing a

certain number of attributes). A related operation to explore is removing certain entities

from the data set: either those in dense regions that could never reach a high probability

match, so could safely be pruned, or those deemed too re-identifiable, in sparse regions.

Perhaps these operations could be combined iteratively to optimize a given data set for

either efficiency or anonymity.

If we reflect back on the opening examples, we find that this work has addressed them

mostly, but not fully. One remaining source of incompleteness stems from the task defini-

tion. The initial examples asked about the probability assigned to a particular pair within

the context of a data set, while in our research, we have scored all pairs in a data set, in-

dependently, and evaluated performance based on the ranking. Changing this setup would

force us to focus on different aspects of the problem. For instance, evaluating based on

the accuracy of the probability estimates would emphasize the role of the class distribu-

tion, whereas evaluating after fully scoring only a limited budget of pairs would focus our

attention on characterizing the most likely-looking candidate entities and pairs. The fact

that we score all pairs independently has a large impact. For instance, if we doubled the

size of an existing data set by sampling additional singletons (without changing the class

distribution), the likelihood ratio scores of existing pairs would be unchanged. However, if

we search a database for the match to a single query entity such as a fingerprint, finding

a second equally good candidate match would require us to roughly halve the probabilities

assigned to either pair—unless we expect the database itself to contain duplicates. These

types of constraints have been addressed in the entity resolution literature—under names

such as one-to-one matching, one-to-many, or many-to-many—but working out how they

affect the parameter spaces we have explored remains an open problem.
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APPENDIX A

LEMMAS AND DERIVATIONS FOR CONTINUOUS DATA

Lemmas

Lemma A.0.1. Suppose a probability distribution P (xi,xy) = f(xi,xj) is defined in terms

of xi = (xi1, xi2, . . . , xik) ∈ Rk and xj = (xj1, xj2, . . . , xjk) ∈ Rk. Let m =
xi+xj

2 be the

midpoint of xi and xj, and let d =
xi−xj

2 be the points’ (symmetric) displacement from the

midpoint. Then P (m,d) = 2kf(xi,xj).

Likewise, the factor is 1
2k

for the inverse transformation: P (xi,xj) = 1
2k
P (m,d).

Proof. The transformation is one-to-one. For each vector component l, the transforms and

their inverses are:

ml =
xil + xjl

2
xil = ml + dl

dl =
xil − xjl

2
xjl = ml − dl

We can show by induction that in k dimensions, the determinant of the Jacobian, |Ak|, is

−2k. Then, its absolute value 2k is the factor used in the transformation.

For a single dimension, |A1| is

∣∣∣∣∣∣∣
∂xil
∂ml

= 1 ∂xil
∂dl

= 1

∂xjl
∂ml

= 1
∂xjl
∂dl

= −1

∣∣∣∣∣∣∣ = −2 = −21.

In general,
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Ak =



∂xi1
∂m1

= 1 ∂xi1
∂d1

= 1 ∂xi1
∂m2

= 0 ∂xi1
∂d2

= 0 · · · ∂xi1
∂mk

= 0 ∂xi1
∂dk

= 0

∂xj1
∂m1

= 1
∂xj1
∂d1

= −1
∂xj1
∂m2

= 0
∂xj1
∂d2

= 0 · · · ∂xj1
∂mk

= 0
∂xj1
∂dk

= 0

∂xi2
∂m1

= 0 ∂xi2
∂d1

= 0 ∂xi2
∂m2

= 1 ∂xi2
∂d2

= 1 · · · ∂xi2
∂mk

= 0 ∂xi2
∂dk

= 0

∂xj2
∂m1

= 0
∂xj2
∂d1

= 0
∂xj2
∂m2

= 1
∂xj2
∂d2

= −1 · · · ∂xj2
∂mk

= 0
∂xj2
∂dk

= 0

...
...

...
...

. . .
...

...

∂xik
∂m1

= 0 ∂xik
∂d1

= 0 ∂xik
∂m2

= 0 ∂xik
∂d2

= 0 · · · ∂xik
∂mk

= 1 ∂xik
∂dk

= 1

∂xjk
∂m1

= 0
∂xjk
∂d1

= 0
∂xjk
∂m2

= 0
∂xjk
∂d2

= 0 · · · ∂xjk
∂mk

= 1
∂xj1
∂dk

= −1



∣∣∣∣Ak∣∣∣∣ =

1 1 0 0 · · · 0 0

1 −1 0 0 · · · 0 0

0 0 [
Ak−1

]0 0

...
...

0 0

0 0

= (−1)

∣∣∣∣Ak−1

∣∣∣∣− (1)

∣∣∣∣Ak−1

∣∣∣∣ = −2(−2k−1) = −2k

Lemma A.0.2. Given points xi and xj ∈ Rk, with midpoint mij and displacement vector

dij from the midpoint. Define m = ‖mij−µ‖ and d = ‖dij‖. Then ‖xi−µ‖2 +‖xj−µ‖2 =

2(m2 + d2).

It then follows (see main text, Eqs. (3.7) and (3.8)) that if φ ∼ Normal(µ, σ2I), then

P (xi | φ)P (xj | φ) depends on xi and xj only through m and d.

Proof. The vectors (µ,xi) and (µ,xj) define a plane, which contains mij . In that plane,

Figure A.1 is as shown. The law of cosines tells us that ‖xi − µ‖2 = m2 + d2 − 2md cos f ,

and that ‖xj−µ‖2 = m2 +d2−2md cos (π − f). Since cos (π − f) = − cos f , we can rewrite

‖xj − µ‖2 = m2 + d2 + 2md cos f . This yields ‖xi − µ‖2 + ‖xj − µ‖2 = 2(m2 + d2).
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µ

xi

xj

mijm = ||mij-µ
||

||dij||

||dij||

f

! - f

||xi - µ||

||xj - µ||

Figure A.1: Triangle formed by xi, xj , and µ.

Lemma A.0.3. Given z ∈ Rk with magnitude z = ‖z‖, and with a probability density

that depends only on that magnitude: fz(z) = g(z). Then, changing variables to write the

density as a function of z gives fz(z) = g(z)2zk−1π
k
2

Γ( k
2

)
.

Explanation. To transform, we would write z in spherical coordinates (z = (z, α1, α2, . . . , αk−1),

with α1, . . . , αk−2 ∈ [0, π] and αk−1 ∈ [0, 2π)), then integrate out the angles. The factor

introduced by this process is Sk = 2zk−1π
k
2

Γ( k
2

)
, the surface area of a hypersphere of radius z in

Rk [135, 138].

Lemma A.0.4. If fy(y) = 21−
k
2

Γ( k
2

)

yk−1

ak
e
−y2

2a2 , defined on y ≥ 0 with a ∈ R and k ∈ Z, k > 0,

then z = y
a ∼ χk.

Proof. Perform the change of variables: z = y
a , so y = az and dy

dz = a.

fy(y) =
21− k

2

Γ(k2 )

yk−1

ak
e
−y2

2a2

fz(z) =
21− k

2

Γ(k2 )
zk−1

(
1

a

)
e
−z2
2 |dy

dz
|

=
21− k

2

Γ(k2 )
zk−1e

−z2
2
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Equation (3.6) is exactly the density function for the distribution χk. We will also use the

notation χk(z) to represent that density function, so we would write above that fz(z) =

χk(z) and also that fy(y) = χk(
y
a)( 1

a).

Distributions for Positive and Negative Pairs

Beginning with the expression from (3.6) for the density function for positive pairs,

P (mij | φ)P (dij | ε) =

(
1√
2πσ

)k
e−

m2

2σ2

(
1√
2πν

)k
e−

d2ij

2ν2 , (3.6)

we apply Lemma A.0.3 to the first and second parts, respectively, to get

P (m | φ)P (d | ε) =

(
2mk−1π

k
2

Γ(k2 )

)(
1√
2πσ

)k
e−

m2

2σ2

(
2dk−1π

k
2

Γ(k2 )

)(
1√
2πν

)k
e−

d2ij

2ν2

=

(
21− k

2

Γ(k2 )

)
mk−1

σk
e−

m2

2σ2

(
21− k

2

Γ(k2 )

)
dk−1

νk
e−

d2

2ν2 .

With the use of Lemma A.0.4, we can recognize this as the product of two χk distributions:

m
σ = m′ ∼ χk, and d

ν = d′

t ∼ χk. Rewriting in terms of m′, d′ and t, and using the notation

χk(z) to represent the density function for χk:

P (m′ | φ)P (d′ | ε) = χk(m
′)χk

(
d′

t

)(
1

t

)
.

This is intuitively reasonable because χk is known to describe the distance from the origin

to points that are distributed as k-dimensional normals, which is exactly where mij and dij

came from.

For the negative density, we take the expression from Equation (3.8) and transform from

coordinates (xi,xj) to (mij ,dij) to (m, d).

P (xi | φ)P (xj | φ) =

(
1√
2πσ

)2k

e−
m2+d2

σ2 (3.8)

P (mij | φ)P (djj | φ) = 2k
(

1√
2πσ

)k
e
−m2

σ2

(
1√
2πσ

)k
e
−d2
σ2
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P (m | φ)P (d | φ) =

(
2mk−1π

k
2

Γ(k2 )

)(
1√
πσ

)k
e
−m2

σ2

(
2dk−1π

k
2

Γ(k2 )

)(
1√
πσ

)k
e
−d2
σ2

=

(
21− k

2

Γ(k2 )

)(√
2

σ

)k
mk−1e

−m2

σ2

(
21− k

2

Γ(k2 )

)(√
2

σ

)k
dk−1e

−d2
σ2

Lemma A.0.4 now applies, to show this term is also a product of two χk distributions:

m
√

2
σ ∼ χk, and d

√
2

σ ∼ χk, or in terms of m′ and d′:

P (m′ | φ)P (d′ | φ) = 2χk(m
′√2)χk(d

′√2).
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APPENDIX B

DENSITY PLOTS FOR GAUSSIAN DATA IN HIGHER DIMENSIONS

In Chapter 3, Figure 3.2 shows the distributions of positive and negative pairs and the

resulting likelihood ratio, as a function of m′ and d′, for 2-dimensional data. Figure B.1

displays these plots for additional values of k. In k dimensions, for a given value of t, the

LR’s contour lines have roughly the same shape as before, but as k grows, the distributions

end up better separated.

To see why, recall that the distributions of positive and negative pairs, respectively, are

as follows:

P (m′ | φ)P (d′ | ε) =

(
1

t

)
χk(m

′)χk

(
d′

t

)
(3.11)

P (m′ | φ)P (d′ | φ) = 2χk(m
′√2)χk(d

′√2). (3.12)

Since the peak of χk is at
√
k − 1, the peak of the negatives is always at (

√
k−1√

2
,
√
k−1√

2
),

and that of the positives is at (
√
k − 1, t

√
k − 1). As the dimensionality varies, the relative

positions of the peaks are the same up to a scale factor
√
k − 1. However, the variances of

the distributions do not scale as fast. So, compared to their positions, the distributions get

proportionally narrower and easier to distinguish.
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Figure B.1: Theoretical distributions of positive and negative pairs, and likelihood ratio
score assigned, as a function of (m′, d′) when n = 25, E(r) = 10. From left to right, t takes
on values (.02, .3, .7, 1). From top to bottom, number of dimensions k = 1, 2, 10, 100. Note
that the scales change for the bottom plots.
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APPENDIX C

AUCS FOR COMPARISON METHODS USING MIXEDPAIRS DATA
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(a) AUC predicted for MixedPairs as a function of pi and s, using n = 10 (left) and n = 100 (right)
with constant pi. (Left side repeats Figure 4.4.)
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(b) AUC predicted for SharedWeight1100 using MixedPairs-generated data, for n = 10 and 100.
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(c) AUC predicted for Weighted Correlation using MixedPairs-generated data, for n = 10 and 100.
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(d) AUC predicted for Hamming using MixedPairs-generated data, for n = 10 and 100.

Figure C.1: Theoretical AUCs for methods symmetric about pi = 0.5. Notice that the
settings where n = 100 and s = 0.2, which can be examined within the right-hand column,
correspond to the experiment from Figure 4.6 (specifically, its constant pi settings). These
methods differ only subtly in these plots, in the curvatures of their contour lines as pi moves
away from 0.5.
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Figure C.2: AUC predicted for SharedSize using MixedPairs-generated data, for n = 10
and 100. When pi is constant, all other 1|1-based methods (Adamic/Adar, Newman and
SharedWeight11) are identical. Notice how, unlike with the symmetric methods, the best
pi depends on s and n and is less than 0.5.
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Figure C.3: Theoretical AUCs for Pearson correlation using MixedPairs-generated data, for
n = 10 and 40. When pi is constant, this method is symmetric. For Pearson and the other
methods that are not pairwise independent, computing AUC is computationally intensive,
so we only increase n to 40.
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(a) AUC predicted for Cosine using MixedPairs-generated data, for n = 10 and 40.
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(b) AUC predicted for Jaccard using MixedPairs-generated data, for n = 10 and 40.

Figure C.4: Theoretical AUCs for the unweighted normalized methods. For constant pi,
CosineIDF is equivalent to Cosine. Like with SharedSize, the pi that maximizes AUC for
these methods varies as a function of s and n. In these plots, the best pi is less than 0.5,
although this property varies at lower values of n.

Note: although normally Cosine and Pearson are undefined if either item in the
pair is all 0s, we define them to be zero. The justification is that it lets these plots, along
with the synthetic experiments, be smooth (and for Pearson, symmetric). (The alternative,
of discarding these pairs for all methods, gives consistent experimental results, but makes
interpretation more difficult because all AUCs then rise as pi approaches 0.)
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APPENDIX D

ADDITIONAL FIGURES SHOWING EFFECTS OF FLIPPING
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Figure D.1: Synthetic data experiments, with affiliations not flipped. Compared with Fig-
ure 4.6, the non-symmetric methods drop dramatically in some high-pi settings, especially
those labeled “C” or having a constant pi > 0.5.

138



5 10 15 20

0.
85

0.
90

0.
95

1.
00

Newsgroups

(ordered by AUC of MixedPairs)

A
U

C
s

●

●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

● ●
●

●

● ●
●

● ● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ● ●
● ● ● ● ●

● ● ● ●
●

● ●
● ●

●

●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ●
●

●

●

●

●

●

●

●

MixedPairs

WeightedCorrelation

SharedWeight1100

CosineIDF

Pearson

Cosine

Jaccard

SharedWeight11

Newman

Adamic / Adar

SharedSize

Hamming

0.
55

0.
65

0.
75

Reality Mining

A
U

C
s

Apps Bluetooth Cell towers
day week day week day week

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

● ●

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Congress

A
U

C
s

Democrats Republicans
110 111 112 113 110 111 112 113

●

●

● ●

●
● ●

●

●

●

● ●

●
●

●
●

●

● ●
● ●

●

●
●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●
● ●

●

Figure D.2: Experimental results on real data, with high-pi affiliations flipped. (Compare
with Figure 4.7.)
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