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ABSTRACT

INFERENCE IN NETWORKING SYSTEMS WITH
DESIGNED MEASUREMENTS

FEBRUARY 2017

CHANG LIU

B.S., XI’AN JIAOTONG UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Don Towsley

Networking systems consist of network infrastructures and the end-hosts have been

essential in supporting our daily communication, delivering huge amount of content

and large number of services, and providing large scale distributed computing. To

monitor and optimize the performance of such networking systems, or to provide

flexible functionalities for the applications running on top of them, it is important to

know the internal metrics of the networking systems such as link loss rates or path

delays. The internal metrics are often not directly available due to the scale and

complexity of the networking systems. This motivates the techniques of inference on

internal metrics through available measurements.

In this thesis, I investigate inference methods on networking systems from multiple

aspects. In the context of mapping users to servers in content delivery networks,

v



we show that letting user select a server that provides good performance from a

set of servers that are randomly allocated to the user can lead to optimal server

allocation, of which a key element is to infer the work load on the servers using the

performance feedback. For network tomography, where the objective is to estimate

link metrics (loss rate, delay, etc.) using end-to-end measurements, we show that the

information of each end-to-end measurement can be quantified by Fisher Information

and the estimation error of link metrics can be efficiently reduced if the allocation

of measurements on paths is designed to maximize the overall information. Last but

not least, in the context of finding the most reliable path for routing from a source

to a destination in a network while minimizing the cost of exploring lossy paths, the

trade-off between exploiting the best paths based on estimated loss rates and taking

the risk to explore worse paths to improve the estimation is investigated, and online

learning methods are developed and analyzed. The performance of the developed

techniques are evaluated with simulations.
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CHAPTER 1

INTRODUCTION

In large scale communication systems, such as the Internet, the cloud of Amazon

EC2, or the Content Delivery Network of Akamai, internal metrics of the system, such

as server workloads or link loss rates in the underlying network, are often desired yet

not available due to the size and complexity of the networking system. For example,

a central controller of a data center will want to know the load of each server for task

scheduling so as to achieve load balancing, or the service provider of an Autonomous

System network will want to know the failure rates of routers in the network for

maintenance purposes. In these cases, inferences techniques are needed to estimate

the internal metrics of interest.

There are several dimensions to this problem. One regards the study of inferences

in networking systems as focusing on the development of estimators of the internal

metrics for various applications. Another, however, focuses on design of the inference

process, e.g., on how to allocate measurement budget on data collection, to improve

efficiency of the inference.

This thesis studies the problem of inferences in networking systems with a fo-

cus on three different applications, and explores both the development of estimators

and improvement of inference accuracy. The goal of this thesis is to advance our

understanding of how inference techniques can be used as an aid for performance

optimization in large scale networks, and how it can be done efficiently.

Inference techniques are needed in many application scenarios in large scale net-

works and systems. In data center management, for example, information such as
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server utilization is required if one wants to achieve load balancing in the system. It’s

possible for a centralized controller to query all the servers and gather information

about their utilizations, but such operations incur large amounts of communication

overhead when the system is large. Furthermore, there are cases that the agent in

need of such information does not have the access or authorization to directly ask

servers for their status: imagine a client application that shares servers in a data

center with other clients trying to guess the server loads so that to optimize its job

scheduling. In some other cases, the information of interest cannot be obtained by

querying components in the network but can only be estimated though measurements,

examples of which include estimating link delays or server failure probabilities. These

estimations also become complicated when network size grows large. When there are

many links or servers in the network it becomes impossible to measure each link or

server directly, and one may have to design estimation methods to obtain such infor-

mation using more accessible end-to-end measurements. This thesis is motivated by

these problems, and will investigate inference techniques in three different application

scenarios.

The first part of the thesis investigates how to allocate servers to users in a content

delivery network so as to achieve load balancing, where a key ingredient is to infer

server loads through outside performance measurements. Content delivery networks

(CDN) deliver much of the world’s web and video content by deploying a large dis-

tributed network of servers. Server-to-user mapping is a key component that affects

user experience for CNDs. On a global level, a CDN usually routes each user request

to a cluster of servers located geographically close to the user. At a local level, within

a cluster, the problem becomes that of how to map users to servers so as to achieve

load balancing. We investigate this problem from the perspective of user-side server

selection with the aid of server load inferences on the user side.
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In the second part of the thesis, we study how to efficiently infer link loss probabil-

ities in a network through end-to-end path loss measurements. Network tomography

is the process of inferring the individual performance of networked elements (e.g.,

links) using network measurements conducted from the edge. Previous works have

investigated how to place monitors in a network (enabling measurement functionality

on nodes in the network) and what kind of measurement paths should be constructed

between these monitors so that all the internal link metrics can be identified. But

the problem remains as to how to allocate a limited measurement budget on end-to-

end measurement paths to efficiently estimate the link metrics, a.k.a. measurement

design. In this part of the thesis, we study the allocation of measurements among

paths to minimize the estimation error given a measurement budget.

The third part of the thesis continues to look at network tomography on link

loss probabilities, but with a focus on comparing difference measurement approaches.

Two kind of end-to-end measurements can be used for network tomography: multi-

cast measurement, and unicast measurement. We compare the two methods on tree

topologies. Intuitively, multicast measurement that start from the root and traverses

to all the leaf nodes in the tree has the advantage of covering all the links, yet unicast

measurement has the flexibility of allocating measurements non-uniformly as needed

across different part of the tree. This part of the thesis focuses on comparing the

efficiency of these two measurement methods with analysis and experiments.

The fourth part of the thesis focuses on online routing with regard to finding

the most reliable path in a network. In contrast to network tomography, the goal

is not to determine the performance of all internal links, but only on identifying

the best path from a set of paths in the network. We define path reliability as the

probability a packet is delivered successfully across the path. We assume that the

success across each link is a Bernoulli process independent from link to link, and that

a path success probability is then the product of link success probabilities of links
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on the path. The goal is to design an algorithm that allocates measurements across

paths so that to find the path with the largest success probability while minimizing

the cost of measurement, where cost is defined as the expected number of losses

occuring during the measurement process. This part of the thesis studies the design

of the measurement process for this problem and analyzes its performance.

1.1 Thesis Contributions

The following are the contributions of this thesis, summarized for each part as

mentioned above.

1.1.1 Server Selection and Load Inference

We model and analyze a simple paradigm for client-side server selection where

each user independently measures the performance of a set of candidate servers and

selects the one that performs the best. Based on the inferred information about

whether each server is overbooked by users more than its serving capacity, we design

a simple algorithm and analyze its performance under the assumption that each user

is provided at least two candidate servers to choose from. Our algorithms achieves

system-wise load balancing while requiring no direct information about server load

nor any coordination between servers and users. We prove the convergence of our

algorithm and give an upper bound on the convergence time. We run simulations

to evaluate our algorithms and demonstrate how design parameters will affect the

performance.

1.1.2 Measurement Design for Link Loss Tomography

A framework is proposed to design probing experiments with a focus on probe allo-

cation, and applying it to two concrete problems: packet loss tomography and packet

delay variation (PDV) tomography. Based on Fisher Information Matrix (FIM), this

work designs the distribution of probes across paths to maximize the best accuracy
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of unbiased estimators, asymptotically achievable by the maximum likelihood esti-

mator. Two widely-adopted objective functions are considered: the determinant of

the inverse FIM (D-optimality) and the trace of the inverse FIM (A-optimality). The

A-optimal criterion is then extended to incorporate heterogeneity in link priorities.

Under certain conditions on the FIM, satisfied by both loss and PDV tomography, we

derive explicit expressions for both objective functions. When the number of probing

paths equals the number of links, these lead to closed-form solutions for the optimal

design; when there are more paths, we develop heuristics to select a subset of paths

and optimally allocate probes within the subset. Observing the dependence of the op-

timal design on unknown parameters, we further propose an algorithm that iteratively

updates the design based on parameter estimates, which converges to the design based

on true parameters as the number of probes increases. Using packet-level simulations

on real datasets, we verify that the proposed design effectively reduces estimation

error compared with the common approach of uniformly distributing probes.

1.1.3 Comparing Multicast Measurement and Unicast Measurement for

Link Loss Tomography

We compare the performance of using unicast measurement with that of using

multicast measurements for link loss tomography. We focus on the link loss tomog-

raphy problem and networks with tree topologies for convenience of comparison. To

theoretically compare multicast and unicast, an observation model for multicast and

expressions for calculating the Fisher Information Matrix are developed. We apply

optimal experiment design and derive a simplified solution of probe allocation for

unicast measurement. Using a packet level simulator, we evaluate and compare the

per-link MSE of multicast and unicast under varying parameter settings including

link weights, link success rates and tree size. Our results show that multicast mea-

surements often outperforms unicast measurement, though unicast can outperform
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multicast under a tight probing budget constraint, especially when one is interested

in minimizing a weighted average of per-link MSEs. Furthermore, multicast achieves

more consistent performance with respect to varying link success rates or tree size.

1.1.4 Online Routing with Inferred Path Reliability

The problem of finding the most reliable path in a network is modeled as a Multi-

Armed Bandit (MAB) problem where each arm represents a path, and the objective is

to optimize the quality of communication between a source and a destination through

adaptive path selection. We investigate two different measurement models. In the

first model, link states are not directly observable. Sending a probe over a path results

in either a success or a loss. When the latter occurs, no information is revealed as

to which link might have dropped the probe. In the second model, a loss reveals the

location of the link where the loss occurred. The objective is to find the most path with

the largest success probability while minimizing the cost introduced by measuring sub-

optimal paths. We design algorithms determining measurement allocation strategies

on the set of paths, and develop performance bounds for the algorithms. Our results

bring insights on the benefit of having additional information about the location of

losses.

1.2 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, I provide the context

to this thesis work with background on network modeling, statistical inferences, and

Multi-Armed Bandit problems. Chapter 3 formulates the problem of mapping server

to users in the content delivery network, and proposes a method to infer congestion

events at the server side, based a which an randomized algorithm is developed for

users to select servers. Chapter 4 considers the problem of loss tomography where

link loss rates are inferred from end-to-end path loss measurements, and demon-

6



strate the benefit of allocating measurement budget across paths based on the Fisher

information provided by each path. Chapter 5 compares the performance of link

loss tomography using end-to-end path measurements against that using multicast

measurements. Simulation results show how the preference of the two measurement

methods should depend on varies settings of the network parameters. Chapter 6 de-

scribes the algorithms for online routing with regard to find the most reliable path

and present analysis and evaluation of the algorithms. We conclude in Chapter 7 and

discuss future directions.
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CHAPTER 2

DEFINITIONS AND BACKGROUND

In this chapter we define terms and notation commonly used in this dissertation.

In addition, we provide an overview of statistical inference and Maximum Likelihood

Estimation (MLE), which is relevant to all of the following chapters. We also in-

troduce Fisher Information (a measure to quantify the statistical information in a

sample) and explain how it relates to lower bounds on estimation errors through

the Cramér-Rao bound. This definition and relationship are relevant to Chapter 4

and Chapter 5. Last, we provide an overview of Multi-Armed Bandit problems and

algorithms, which is relevant to Chapter 6.

2.1 Definitions

Let G = (V,E) be the undirected graph representing the network topology, where

V is a set of vertices (or nodes) and E is a set of unordered pairs of vertices l =

(u, v), u ∈ V, u ∈ V representing a connection from u to v (a.k.a. links).

2.2 Statistical Inference and MLE

Statistical inference is the process of deducing properties of an underlying distribu-

tion by analysis of data. Statistical inference makes propositions about a population,

using data drawn from the population using some form of sampling. Given a hypoth-

esis about a population, for which we wish to draw inferences, statistical inference

consists of (firstly) selecting a statistical model of the process that generates the data

and (secondly) deducing propositions from the model. In statistics, an estimator is a
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rule for calculating an estimate of a given quantity based on observed data. In this

thesis, we only use point estimators, which is the rule to calculate a particular value

that best approximates some parameter of interest. Maximum likelihood estimation

is a type of estimation that maximize the likelihood of making the observations given

the parameters.

Suppose there is a sample x1, x2, . . . , xn of n independent and identically dis-

tributed observations, coming from a distribution that we assume to have a probabil-

ity density function f(·|θ), where θ is a vector of parameters in the parametric model

of the distribution. The true value of θ is unknown and thus it is desirable to find

an estimator θ̂ which could be as close to the true value as possible. The likelihood

function of parameter θ given the set of samples is

L(θ;x1, x2, . . . , xn) = f(x1, x2, . . . , xn|θ). (2.1)

The Maximum Likelihood Estimator (MLE) is defined as,

θ̂MLE = arg max
θ∈Θ
L(θ;x1, x2, . . . , xn). (2.2)

Although MLEs have no optimum properties for finite samples, it possesses a

number of attractive limiting properties. One of them is the asymptotic efficiency

(under regularity conditions [49]), i.e. it achieves the Cramér-Rao Bound when the

number of sample size increases to infinity. We will introduce the Cramér-Rao Bound

in the next section.

2.3 Fisher Information and Cramér-Rao Bound

Fisher information is one way to measure the statistical information contained in

an observable random variable X about an unknown parameter θ that models the

distribution of X. Let f(X; θ) be the likelihood function for θ, i.e., the probability
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density of the random variableX conditional on the value of θ. The Fisher information

I(θ) is defined as the variance of the score function, where the score function is defined

as the gradient of the natural logarithm of f(X; θ) w.r.t. parameter θ. Under weak

regularity conditions [12], the expected value of the score function is zero. Hence, the

Fisher Information is the second moment of the score, expressed as

I(θ) = E
[
(
∂

∂θ
log f(X; θ))2|θ

]
, (2.3)

where the expectation is taken with respect to the distribution of X given θ, i.e.,

f(X; θ). When θ = (θ1, θ2, . . . , θW ) is a vector, the Fisher Information takes the form

of a square matrix of dimension W where its elements are defined as

Ii,j(θ) = E
[
(
∂

∂θi
log f(X; θ))(

∂

∂θj
log f(X; θ))|θ

]
. (2.4)

The Cramér-Rao Bound relates the Fisher Information to the estimation error of

any unbiased estimator T (X) = (T1(X), T2(X), . . . , TW (X)):

covθ(Ti(X), Tj(X)) � I−1(θ), (2.5)

where � means that cov(T (X))− I−1(θ) is a positive semi-definite matrix. Further-

more,

(covθ(T (X)))i,i = V ar(Ti(X)) ≥ I−1
i,i (θ). (2.6)

To achieve the Cramér-Rao Bound the estimator must be efficient, which makes

the Maximum Likelihood Estimator a great candidate because of its asymptotic effi-

ciency property.

2.4 Multi-Armed Bandit problems and algorithms

In a Multi-Armed Bandit (MAB) problem, a forecaster is given a number of arms

(or actions) K and a number of rounds T . For each round t, nature generates a reward
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vector rt = (r1,t, . . . , rK,t) ∈ [0, 1]K unobservable to the forecaster1. The forecaster

chooses an arm It ∈ 1, . . . , K and receives payoff rIt,t, with the other rewards hidden.

A general performance metric for solutions to the MAB problems is the regret,

R(T ) = E

[
T∑
t=1

r∗,t

]
− E

[
T∑
t=1

rIt,t

]
, (2.7)

where ∗ represents the index of the best arm. Thus, the regret is the gap between the

expected reward when using the best arm at each time step and the expected reward

achieved by the solution. The goal is to maximize the cumulative rewards obtained,

which is equivalent to minimizing the regret.

MAB problems can be classified according to how the reward vector is generated.

In stochastic bandit problems, each entry ri,t in the reward vector is sampled inde-

pendently, from an unknown distribution vi, regardless of t. In adversarial bandit

problems, the reward vector rt is chosen by an adversary which, at time t, knows

the past, but not It. In this thesis, however, we focus on non-adversarial stochastic

MAB problems, where the underlying unknown distributions vi, i = 1, 2, . . . , K do

not change over time t.

1In general rewards can be normalized to interval [0, 1]
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CHAPTER 3

SERVER SELECTION WITH INFERENCE OF
OVERBOOKING

3.1 Introduction

Modern content delivery networks (CDNs) host and deliver a large fraction of the

world’s web content, video content, and application services on behalf of enterprises

that include most major web portals, media outlets, social networks, application

providers, and news channels [39]. CDNs deploy large numbers of servers around the

world that can store content and deliver that content to users who request it. When a

user requests a content item, say a web page or a video, the user is directed to one of

the CDN’s servers that can serve the desired content to the user. The goal of a CDN

is to maximize the performance perceived by the user while efficiently managing its

server resources.

A key function of a CDN is server selection by which client software running on the

user’s computer or device, such as media player or a browser, is directed to a suitable

server of a CDN [16]. The desired outcome of server selection is that each user is

directed to a server that will provide the requested content with good performance.

The performance metrics that are optimized vary by the content type. For instance,

good performance for a user accessing a web page might mean low latency web page

downloads. Good performance for a user watching a video might mean high bitrate

video delivery by the server while avoiding video freezing and rebuffering [29].

Server selection can be performed in two distinct approaches that are not mutually

exclusive. The first approach relies on network-side server selection algorithms to
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monitor the real-time characteristics of the CDN and the Internet. Such algorithms

are often complex and measure liveness and CDN server load, as well as latency, loss,

and bandwidth of the communication paths between servers and users. Using this

information, the algorithm computes a good “mapping” of users to servers, such that

each user is assigned a “proximal” server capable of serving that user’s content [39].

This mapping is computed periodically and is typically made available to the client

using the domain name system (DNS). Specifically, the user’s browser or media player

looks up the domain name of the content that it wants to download and receives as

translation the IP address of the selected server.

A complementary approach to network-side server selection commonly used is

client-side server selection where the client embodies a server selection algorithm.

The client software is typically unaware of the global state of the server infrastructure,

the Internet, or other clients. Rather, the client software typically makes future server

selection decisions based on its own historical performance measurements from past

server downloads. Client-side server selection can often be implemented as a plug-in

within media players, web browsers, and web download managers [3].

While client-side server selection can be used to select servers within a single CDN,

it can also be used in a multi-CDN setting. Large content providers often make the

same content available to the user via multiple CDNs. In this case, the client can

try out the different CDNs and choose the “best” server from across multiple CDNs.

For instance, NetFlix uses three different CDNs and the media player incorporates a

client-side server selection algorithm to choose the “best” server (and the correspond-

ing CDN) using performance metrics such as achievable video bitrates [1]. Note also

that in a typical multi-CDN case, both network-side and client-side server selection

can be used together, where the former is used to choose the candidate servers from

each CDN and the latter is used by the user to pick the “best” among all the candi-

dates.
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3.1.1 The Go-With-The-Winner paradigm

A common and intuitive paradigm that is often used for client-side server selection

in practice is what we call “Go-With-The-Winner”. It consists of an initial trial

period during which each user independently “tries out” a set of candidate servers by

requesting content or services from them (cf. Figure 3.1). Subsequently, each user

independently decides on the “best” performing server using historical performance

information that the user collected for the candidate servers during the trial period.

It is commonly implemented in the content delivery context that incorporate selecting

a web or video content server from among a cluster of such servers.

Besides content delivery, the Go-With-The-Winner paradigm is also used for other

Internet services, though we do not explicitly study such services in this thesis. For

instance, BIND, which is the most widely deployed DNS resolver (i.e., DNS client) on

the Internet, tracks performance as a smoothed value of historical round trip times

(called SRTT) from past queries for a set of candidate name servers. BIND then

chooses a particular name server to query in part based on the computed SRTT

values [31]. It is also notable that BIND implementations incorporate randomness in

the candidate selection process.

The three key characteristics of the Go-With-The-Winner paradigm are as follows.

1. Distributed control. Each user makes decisions in a distributed fashion using

only knowledge available to it. There is no explicit information about the global

state of the servers or other users, beyond what the user can infer from it’s own

historical experience.

2. Performance feedback only. There is no explicit feedback from a server to a

user who requested service beyond what can be inferred by the performance

experienced by the user.
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Figure 3.1: Client-side Server Selection with the Go-With-The-Winner paradigm.
User U makes request to two candidate servers S1 and S2. After a trial period
of observing the performance provided by the candidate, the user selects the better
performing server.

3. Choosing the “best” performer. The selection criteria is based on historical

performance measured by the user and consists of selecting the best server

according to some performance metric (i.e., go with the winner).

Besides its inherent simplicity and naturalness, the paradigm is sometimes the only

feasible and robust solution. For instance, in many settings, the client has no detailed

knowledge of the state of the server infrastructure as it is managed and owned by

other business entities. In this case, the primary feedback mechanism for the client

is its own historical performance measurements.

While client-side server selection is widely implemented, its theoretical foundations

are not well understood. A goal of our work is to provide such a foundation in the

context of web and video content delivery. It is not our intention to model a real-

life client-side server selection process in its entirety which can involve other adhoc

implemention-specific considerations. But rather we abstract an analytical model that

we can explore to extract basic principles of the paradigm that are applicable in a broad

context.
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3.1.2 Our contributions

We propose a simple theoretical model for the study of client-side server selection

algorithms that use the Go-With-The-Winner paradigm. Using our model, we answer

foundational questions such as how does randomness help in the trial period when

selecting candidate servers? How many candidate servers should be selected in the

trial phase? How long does it take for users to narrow down their choice and decide

on a single server? Under what conditions does the selection algorithm converge to

a state where all users have made correct server choices, i.e., selected servers provide

good performance to their users? Some of our key results that help answer these

questions follow.

(1) In Section 3.2, in the context of web content delivery, we analyze a simple

algorithm called GoWithTheWinner where each user independently selects two or

more random servers as candidates and decides on the server that provides the best

cache hit rate. We show that with high probability, the algorithm converges quickly to

a state where no cache is overloaded and all users obtain a 100% hit rate. Furthermore,

we show that two or more random choices of candidate servers are necessary, as just

one random choice will result in some users (and some servers) incurring cache hit

rates that tend to zero, as the number of users and servers tend to infinity. This work

is the first demonstration of the “power of two choices” phenomena in the context of

client-side server selection for content delivery, akin to similar phenomena observed

in balls-into-bins games [35], load balancing, circuit-switching algorithms [14], relay

allocation for services like Skype [38], and multi-path communication [27].

(2) In Section 3.3, in the context of video content delivery, we propose a simple

algorithm called MaxBitRate where each user independently selects two or more

random servers as candidates and decides on the server that provides the best bitrate

for the video stream, We show that with high probability, the algorithm converges

quickly to a state where no server is overloaded and all users obtain the required
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bitrate for their video to play without freezes. Further, we show that two or more

random choices of candidate servers are necessary, as just one random choice will

result in some users receiving bitrates that tend to zero, as the number of users and

servers tends to infinity.

(3) In Section 3.4, we go beyond our theoretical model and simulate algorithm

GoWithTheWinner in more complex settings. We establish an inverse relationship

between the length of the history used for hitrate computation (denoted by τ) and

the failure rate defined as the probability that the system converges to a non-optimal

state. We show that as τ increases the convergence time increases, but the failure

rate decreases. We also empirically evaluate the impact of the number of choices of

candidate servers. We show that two or more random choices are required for all users

to receive a 100% hitrate. Though even if only 70% of the users make two choices, it

is sufficient for 95% of the users to receive a 100% hitrate. Finally, we show that the

convergence time increases with system load. But, convergence time decreases when

the exponent of power law distribution that describes content popularity increases.

3.2 Hit Rate Maximization for Web Content

The key measure of web performance is download time which is the time taken for

a user to download a web object, such as an html page or an embedded image. CDNs

enhance web performance by deploying a large number of servers in access networks

“close” to the users. Each server has a cache capable of storing web objects. When a

user requests an object, such as a web page, the user is directed to a server that can

serve the object (cf. Figure 3.1). If the server already has the object in its cache, i.e,

the user’s request is a cache hit, the object is served from the cache to the user. In this

case, the user experiences good performance, since the CDN’s servers are proximal

to the user and the object is downloaded quickly. However, if the requested object

is not in the server’s cache, i.e., the user’s request is a cache miss, then the server
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first fetches it from the origin, places it in its cache, and then serves the object to the

user. In the case of a cache miss, the performance experienced by the user is often

poor since the origin server is typically far away from the server and the user. In fact,

if there is a cache miss, the user would have been better off not using the CDN at

all, since downloading the content directly from the content provider’s origin would

likely have been faster! Since the size of a server’s cache is bounded, cache misses

are inevitable. A key goal of server selection for web content delivery is to jointly

orchestrate server assignment and content placement in caches such that the cache

hit rate is maximized. While server selection in CDNs is a complex process [39], we

analytically model the key elements that relate to content placement and cache hit

rates, leaving other factors that impact performance such as server-to-user latency

for future work.

3.2.1 Problem Formulation

Let U be a set of nu users who each requests an object picked independently from

a set C of size nc using a popularity distribution {p1, p2, . . . , pnc}, where the k-th most

popular object in C is picked with probability pk. The user then makes a sequence of

requests for that content item to the set of available servers. In practice, users tend

to stay with one website for a while, say reading the news or looking at a friend’s

posts. We model the sequence of requests generated by each user as a Poisson process

with homogeneous arrival rate λ. Note that each request from user u can be sent to

one or more servers selected from Su ⊆ S, where Su is the set of candidate servers for

user u.

Let S be the set of ns servers that are capable of serving content to the users.

Each server can cache at most κ objects and a cache replacement policy such as LRU

is used to evict objects when the cache is full. Given that the download time of a web

object is significantly different when the request is a cache hit versus a cache miss,
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we make the assumption that the user can reliably infer if its request to download

an object from a server resulted in a cache hit or a cache miss immediately after the

download completes.

The objective of client-side server selection is for each user u ∈ U to independently

select a server s ∈ S using only the performance feedback obtained on whether each

request was a hit or a miss. Let the hit rate function H(u, s, t) denote the probability

of user u receiving a hit from server s ∈ Su at time t. We define the system-wide

performance measure H(t), as the best hit rate obtained by the worst user at time t,

H(t)
∆
= min

u∈U
max
s∈Su

H(u, s, t), (3.1)

a.k.a. the minmax hit rate. Our goal is to maximize H(t). In the rest of the section,

we describe a simple “Go-With-The-Winner” algorithm for server selection and show

that it converges quickly to an optimal state, with high probability.

Note: Our formulation is intentionally simple so that it can model a variety of

other situations in web content delivery. For instance, a single server could in fact

model a cluster of front-end servers that share a single backend object cache. A single

object can model a bucket of objects that cached together as is often done in a CDN

context [39].

3.2.2 The GoWithTheWinner Algorithm

After each user u ∈ U selects a content item and a set of σ servers Su, the

user executes algorithm GoWithTheWinner to select a server likely to always have

the content. In this algorithm, each user locally executes a simple “Go-With-The-

Winner” strategy of trying out σ randomly chosen candidate servers initially. For

each server s ∈ Su, the user keeps track of the most recent request results in a vector

hs = (hs1, h
s
2, · · · , hsτ ) where hsk = 1 corresponds to the k-th recent request resulting

in a hit from server s and hsk = 0 if otherwise. τ is the “sliding window size”. Using

19



Algorithm 1: GoWithTheWinner

1 The current user u chooses a set of σ candidate servers Su ⊆ S uniformly at
random from all the servers;

2 for each s ∈ Su do
3 set hs ← (hs1, h

s
2, · · · , hsτ ) = 0;

4 end
5 for each arrival of request do
6 set t to the current time;
7 Request content au from all servers s ∈ Su;
8 for each server s ∈ Su do
9 hsi ← hsi−1, 2 ≤ i ≤ τ ;

10 hs1 ← if hit;hs1 ← 0, if miss;
11 compute hit rate Hτ (u, s, t)← (

∑τ
i=1 h

s
i )/τ ;

12 if Hτ (u, s, t) = 100% then
13 decide on server s by setting Su ← {s};
14 return;

15 end

16 end

17 end

the hit rates, each user then independently either chooses to continue with all the

servers in Su or decides on a single server that provided good performance. If there

are multiple servers providing 100% hit rate, the user decides to use the first one

found.

3.2.3 Analysis of Algorithm GoWithTheWinner

Here we analyze the case where nu = nc = ns = n and experimentally explore

other variants where nc and nu are larger than ns in Section 3.2.4 and 3.4. Let H(t)

be as defined in (3.1). If σ ≥ 2, we show that with high probability H(t) = 100%, for

all t ≥ T , where T = O( κ
log(κ+1)

(log n)κ+1 log log n). That is, the algorithm converges

quickly with high probability to an optimal state where every user has decided on a

single server that provides a 100% hit rate, and every server has the content requested

by its users.

20



Definitions. A server s is said to be overbooked at some time t if users request

more than κ distinct content items from server s, where κ is the number of content

items a server can hold. Note that a server may have more than κ users and not be

overbooked, provided the users collectively request a set of κ or fewer content items.

Also, note that a server that is overbooked at time t is overbooked at every t′ ≤ t

since the number of users requesting a server can only remain the same or decrease

with time. Finally, a user u is said to be undecided at time t if |Su| > 1 and is said to

be decided if it has settled on a single server to serve its content and |Su| = 1. Note

that each user starts out undecided at time zero, then decides on a server at some

time t and remains decided in all future time later than t. Users calculate the hit

rates of each of the available servers based on a history record of the last τ requests,

where τ is called the sliding window size.

Lemma 1. If the sliding window size τ = Θ(logκ+1 n), the probability that some user

u ∈ U decides on an overbooked server s ∈ Su upon any request arrival is at most

1/nΩ(1).

Proof. If user u decides on server s then the current request together with the previous

τ − 1 requests are all hits. Let Hk, k = 1, 2, · · · , τ be Bernoulli random variables, s.t.

Hk = 1 if the most recent k-th request of u is a hit and Hk = 0 if it is a miss. To

prove Lemma 1 we need to show

P (∩τk=1(Hk = 1)) ≤ n−Ω(1). (3.2)

Let t1 denote the time of the most recent request for content au from user u appears at

server s, resulting in feedback H1 to the user. Let t1−∆ be the time that the previous

request for au arrives at s. Let As = {a1, a2, · · · , aM} be the set of different content

items requested at s, where M > κ. Let Ni ≥ 1 be the number of users requesting

ai from s. WLOG, let a1 = au be the content that u requests, such that N1 is the
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number of users requesting for au. Because we assume all the users generates requests

with a Poisson process with arrival rate λ, the aggregated arrival rate of requests for

au is then N1λ. Thus ∆ is an exponential random variable, ∆ ∼ Exp(N1λ). Now

we look at the number of different requests arrives between time t1 −∆ and t1. Let

Xi, i = 2, 3, · · · ,M be an indicator that a request for ai arrives at server s during

the time interval (t1 −∆, t1), we have Xi ∼ Bernoulli(1− e−Niλ∆). Furthermore, let

random variable Y =
∑M

i=2 Xi be the number of different requests arrived in the time

interval. With the server running on LRU replacement policy,

P (H1 = 0) = P (Y ≥ κ) , (3.3)

because for content au to be swapped out of the server, more than κ different requests

other than that for au must have arrived. Equation (3.3) shows that H1 only depends

on the number different requests arrived after the previous request for au, which

means events Hk, k = 1, 2, · · · , τ are mutually independent.

Furthermore1, because Ni ≥ 1, we have Xi ≥d X ′ where X ′ ∼ Bernoulli(1 − e−λ∆).

Thus,

Y =
M∑
i=2

Xi ≥d
M∑
i=2

X ′ = Z,

where Z ∼ Binomial(κ, (1− e−λ∆)).

Thus, we have

1random variables U ≥d V if P (U > x) ≥ P (V > x) for all x.
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P (Y ≥ κ) ≥ P (Z ≥ κ)

=

∫ ∞
0

P (Z ≥ κ|∆ = t) f∆(t)dt

=

∫ ∞
0

(1− e−λt)κNλe−Nλtdt

=
N !κ!

(N + κ)!

≥ (N + κ)−κ,

where f∆(t) is the probability density function of ∆.

Note that N is the number of users requesting a at server s, and is bounded by

N = O( logn
log logn

), with high probability [42].

Now, we can finally prove (3.2). Let c′ be an appropriate constant,

P (∩τk=1(Hk = 1)) = P (H = 1)τ = (1− P (H = 0))τ

= (1− P (Y ≥ κ))τ

≤ (1− (N + κ)−κ)τ

≤ (1− (c′
log n

log log n
+ κ)−κ)τ ,

which is n−Ω(1) when τ = Θ(logκ+1 n).

By bounding the time for τ requests to arrive at user u, we have the following,

Lemma 2. If user u (with candidate servers Su) is not decided at time t, then the

server is overbooked at time t− δ for δ = τ+1
λ
c0 where c0 > 1 is a constant, with high

probability.

Proof. Let random variable Nδ be the number of requests from u during time (t −

δ, t), Nδ ∼ Poisson(λδ). A bound on the tail probability of Poisson random variables

is developed in [36] as

P (X ≤ x) ≤ e−λ
′
(eλ′)x

xx
,
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where X ∼ Poisson(λ′) and x < λ′.

We can show there are at least τ + 1 requests during (t − δ, t) w.h.p. as the

following,

P (Nδ < τ + 1) ≤ e−λδ
(eλδ)τ+1

(τ + 1)τ+1
= e−(τ+1)c0(ec0)(τ+1)

= e−(τ+1)(c0−1)c
(τ+1)
0

= n−
(τ+1)
logn

(c0−1−log c0)

= n−Θ(logκ n),

as c0 > 1 and τ = Θ(logκ+1 n). Thus, w.h.p. no fewer than τ + 1 requests arrive at

u. And because user is not decided at time t we know that with high probability,

at least one of the previous τ requests results in a miss, which means that between

the previous (τ + 1)-th request and the miss, κ different other requests arrived at

the server. Thus server s is overbooked at the time the previous (τ + 1)-th request

arrives, which with high probability is no earlier than t− δ.

Based on Lemmas 1 and 2, we can then establish the following theorem about the

performance of Algorithm GoWithTheWinner.

Theorem 3. With probability at least 1− 1
nΩ(1) , the minmax hit rate H(t) = 100% for

all t ≥ T , provided σ ≥ 2 and T = O( κ
log(κ+1)

(log n)κ+1 log log n). That is, with high

probability, algorithm GoWithTheWinner converges by time T to an optimal state

where each user u ∈ U has decided on a server s ∈ S that serves it content with a

100% hit rate.

Proof. For simplicity, we prove the situation where σ = 2, i.e., each user initially

chooses two random candidate servers in step 1 of the algorithm. The case where

σ > 2 is analogous. Wlog, we also assume κ is at most O(log n/ log log n), which

includes the interesting case of κ equal to a constant. When the server capacity
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is larger, i.e., if κ = Ω(log n/ log log n), there will be no overbooked servers with

high probability and the theorem holds trivially. This observation follows from a

well-known result that if n balls (i.e., users) uniformly and randomly select k out

of n bins (i.e. servers), then the maximum number of users that select a server is

O(log n/ log log n) with high probability, when k is a fixed constant [42].

In contradiction to the theorem, suppose some user u has not decided on a server

by time T . We construct a “witness tree2” of degree κ + 1 and depth at least ρ,

where ρ = T/δ = κ log log n/ log(κ + 1). Each node of the witness tree is a server.

Each edge of the witness tree is a user whose two nodes correspond to the two servers

chosen by that user. We show that the existence of an undecided user in time step T

is unlikely by enumerating all possible witness trees and showing that the occurrence

of any such witness tree is unlikely. The proof proceeds in the following three steps.

(1) Constructing a witness tree. If algorithm MaxHitRate has not converged to

the optimal state at time T , then there exists a user (say u1) and a server s such that

Hτ (u1, s, T ) < 100%, since user u1 has not yet found a server with a 100% hit rate.

We make server s the root of the witness tree.

We find children for the root s to extend the witness tree as follows. Since

Hτ (u1, s, T ) < 100%, by Lemma 2 we know server s is overbooked at time t′ = t− δ,

i.e., there are at least κ+ 1 users requesting server s for κ+ 1 distinct applications at

time t′. Let u1, . . . , uκ+1 be the users who sent requests to server s at time t′. Wlog,

assume that the users {ui} are ordered in ascending order of their IDs. By Lemma 1,

we know that the probability of a user deciding on an overbooked server is small,

i.e., at most 1/nΩ(1). Thus, with high probability, users u1, . . . , uκ+1 are undecided at

time t′ since server s is overbooked. Let si be the other server choice associated with

user ui (one of the choices is server s). We extend the witness tree by creating κ+ 1

2A witness tree is so called as it bears witness to the occurrence of an event such as a user being
undecided.
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children for the root s, one corresponding to each server si. Note that for each of

the servers si we know that H(ui, si, t
′) < 100%, since otherwise user ui would have

decided on server si in time step t′. Thus, analogous to how we found children for s,

we can recursively find κ+ 1 children for each of the servers si and grow the witness

tree to an additional level.

Observe that to add an additional level of the witness tree we went from server s

at time T to servers si at time t′, i.e., we went back in time by an amount of T−t′ ≤ δ.

If we continue the same process, we can construct a witness tree that is a (κ+ 1)-ary

tree of depth T/δ = ρ.

(2) Pruning the witness tree. If the nodes of the witness tree are guaranteed

to represent distinct servers, proving our probabilistic bound is relatively easy. The

reason is that if the servers are unique then the users that represent edges of the

tree are unique as well. Therefore the probabilistic choices that each user makes

is independent, making it easy to evaluate the probability of occurrence of the tree.

However, it may not be the case that the servers in the witness tree constructed above

are unique, leading to dependent choices that are hard to resolve. Thus, we create a

pruned witness tree by removing repeated servers from the original (unpruned) witness

tree.

We prune the witness tree by visiting the nodes of the witness tree iteratively in

breadth-first search order starting at the root. As we perform breadth-first search

(BFS), we remove (i.e., prune) some nodes of the tree and the subtrees rooted at

these nodes. What is left after this process is the pruned witness tree. We start

by visiting the root. In each iteration, we visit the next node v in BFS order that

has not been pruned. Let β(v) denote the nodes visited before v. If v represents a

server that is different from the servers represented by nodes in β(v), we do nothing.

Otherwise, prune all nodes in the subtree rooted at v. Then, mark the edge from

v to its parent as a pruning edge. (Note that the pruning edges are not part of the
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pruned witness tree.) The procedure continues until either no more nodes remain

to be visited or there are κ + 1 pruning edges. In the latter case, we apply a final

pruning by removing all nodes that are yet to be visited, though this step does not

produce any more pruning edges. This process results in a pruned witness and a set

of p (say) pruning edges.

Note that each pruning edge corresponds to a user who we will call a pruned user.

We now make a pass through the pruning edges to select a set P of unique pruned

users. Initially, P is set to ∅. We visit the pruning edges in BFS order and for

each pruning edge (u, v) we add the user corresponding to (u, v) to P , if this user is

distinct from all users currently in P and if |P | < dp/2e, where p is the total number

of pruning edges. We stop adding pruned users to set P when we have exactly dp/2e

users. Note that since a user who made server choices of u and v can appear at most

twice as a pruned edge, once with u in the pruned witness tree and once with v in the

pruned witness tree. Thus, we are guaranteed to find dp/2e distinct pruned users.

After the pruning process, we are left with a pruned witness tree with nodes

representing distinct servers and edges representing distinct users. In addition, we

have a set P of dp/2e distinct pruned users, where p is the number of pruning edges.

(3) Bounding the probability of pruned witness trees. We enumerate possible

witness trees and bound their probability using the union bound. Observe that since

the (unpruned) witness tree is a (κ + 1)-ary tree of depth ρ, the number of nodes in

the witness tree is

m =
∑

0≤i≤ρ

(κ+ 1)i =
(κ+ 1)ρ+1 − 1

κ
≤ 2 log2 n, (3.4)

since ρ = 2 log log n/ log(κ+ 1) and hence (κ+ 1)ρ = log2 n.

Ways of choosing the shape of the pruned witness tree: The shape of the pruned

witness tree is determined by choosing the p pruning edges of the tree. The number

of ways of selecting the p pruning edges is at most
(
m
p

)
≤ mp, since there are at most
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m edges in the (unpruned) witness tree.

Ways of choosing users and servers for the nodes and edges of the pruned witness

tree: The enumeration proceeds by considering the nodes in BFS order. The number

of ways of choosing the server associated with the root is n. Consider the ith internal

node vi of the pruned witness tree whose server has already been chosen to be si. Let

vi have µi children. There are at most
(
n
µi

)
ways of choosing distinct servers for each

of the µi children of vi. Also, since there are at most n users in the system at any

point in time, the number of ways to choose distinct users for the µi edges incident

on vi is also at most
(
n
µi

)
. There are µi! ways of pairing the users and the servers.

Further, the probability that a chosen user chooses server si corresponding to node

vi and a specific one of µi servers chosen above for vi’s children is

1(
n
2

) =
2

n(n− 1)
,

since each set of two servers is equally likely to be chosen in step 1 of the algorithm.

Further, note that each of the µi users chose µi distinct applications and let the

probability of occurrence of this event be Uniq(na, µi). This uniqueness probability

has been studied in the context of collision-resistant hashing and it is known [5]

that Uniq(na, µi) is largest when the content popularity distribution is the uniform

distribution (α = 0) and progressively becomes smaller as α increases. In particular,

Uniq(na, µi) ≤ e−Θ(µ2
i /na) < 1. Putting it together, the number of ways of choosing a

distinct server for each of the µi children of vi, choosing a distinct user for each of the

µi edges incident on vi, choosing a distinct application for each user, and multiplying

by the appropriate probability is at most

(
n

µi

)
·
(
n

µi

)
· µi! ·

(
2

n(n− 1)

)µi
· Uniq(na, µi) ≤

2µi

µi!
, (3.5)
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provided µi > 1. Let m′ be the number of internal nodes vi in the pruned witness tree

such that µi = κ + 1. Using the bound in Equation 3.5 for only these m′ nodes, the

number of ways of choosing the users and servers for the nodes and edges respectively

of the pruned witness tree weighted by the probability that these choices occurred is

at most

n · (2κ+1/(κ+ 1)!)m
′
.

Ways of choosing the pruned users in P : Recall that there are dp/2e distinct pruned

users in P . The number of ways of choosing the users in P is at most ndp/2e, since at

any time step there are at most n users in the system to choose from. Note that a

pruned user has both of its server choices in the pruned witness tree. Therefore, the

probability that a given user is a pruned user is at most m2/n2. Thus the number of

choices for the dp/2e pruned users in P weighted by the probability that these pruned

users occurred is at most

ndp/2e · (m2/n2)dp/2e ≤ (m2/n)dp/2e.

Bringing it all together: The probability that there exists a pruned witness tree with

p pruning edges, and m′ internal nodes with (κ+ 1) children each, is at most

mp · n · (2κ+1/(κ+ 1)!)m
′ · (m2/n)dp/2e

≤ n · (2κ+1/(κ+ 1)!)m
′ · (m4/n)dp/2e

≤ n · (2e/(κ+ 1))m
′(κ+1) · (m4/n)dp/2e, (3.6)

since (κ + 1)! ≥ ((κ + 1)/e)κ+1. There are two possible cases depending on how the

pruning process terminates. If the number of pruning edges, p, equals κ+ 1 then the

third term of Equation 3.6 is

(m4/n)dp/2e ≤ (16 log8 n/n)d(κ+1)/2e ≤ 1/nΩ(1),
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using Equation 3.4 and assuming that cache size κ is at least a suitably large constant.

Alternately, if the pruning process terminates with fewer than κ + 1 pruning edges,

it must be that at least one of the κ + 1 subtrees rooted at the children of the root

s of the (unpruned) witness tree has no pruning edge. Thus, the number of internal

nodes m′ of the pruned witness tree with (κ+ 1) children each is bounded as follows:

m′ =
∑

0≤i<ρ−1

(κ+ 1)i ≥ (κ+ 1)ρ−2 ≥ log2 n/(κ+ 1)2,

as (κ+ 1)ρ = log2 n. Thus, the second term of Equation 3.6 is

(2e/(κ+ 1))m
′(κ+1) ≤ (2e/(κ+ 1))log2 n/(κ+1) ≤ 1/nΩ(1),

assuming κ > 2e − 1 but is at most O(log n/ log log n). Thus, in either case, the

bound in Equation 3.6 is 1/nΩ(1). Further, since there are at most m values for p,

the total probability of a pruned witness tree is at most m · 1/nΩ(1) which is 1/nΩ(1).

This completes the proof of the theorem.

Are two or more random choices necessary for all users to receive a 100% hit

rate? Analogous to the “power of two choices” in the balls-into-bins context [35], we

show that two or more choices are required for good performance with the following

theorem.

Theorem 4. For any fixed constants 0 ≤ α < 1 and κ ≥ 1, when algorithm

GoWithTheWinner uses one random choice for each user (σ = 1), the minmax hit

rate H(t) = o(1), with high probability, i.e., H(t) tends to zero as n tends to infinity,

with high probability.

Proof. From the classical analysis of throwing n balls into n bins [35], we know that

there exist a subset U ′ ⊆ U such that |U ′| = Θ(log n/ log log n) and all users in U ′
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have chosen a single server s, with high probability. Now we show that some user in U ′

must have a small hit rate with high probability. Let C ′ represent the set of all objects

accessed by all users in S ′. The probability that |C ′| ≤ κw(n) can be upper bounded

as follows, where w(n) is an arbitrarily slowly growing function of n. The number of

ways of picking C ′ objects from a set C of n objects is at most n|C
′|. The probability

that a user in U ′ will pick an object in C ′ can be upper bounded by the probability

that a user chooses one of the |C ′| most popular objects. Thus the probability that

a user in U ′ picks an object in C ′ is at most H(|C ′|, α)/H(n, α) = Θ((|C ′|/n)1−α),

where H(i, α) is the ith generalized harmonic number and H(i, α) = Θ(i1−α).Thus,

the probability that all users in U ′ pick objects in C ′ is at most Θ((|C ′|/n)(1−α)|U ′|).

Therefore, the probability that |C ′| ≤ κw(n) is at most

n|C
′| ·Θ((|C ′|/n)(1−α)|U ′|)

≤ nκw(n) · (κw(n)/n)Θ(logn/ log logn) = o(1)

Thus, probability that |C ′| ≤ κw(n) is small and hence |C ′| > κw(n), with high

probability. Since the minmax hit rate H(t) is at most κ/|C ′| which is at most

1/w(n), H(t) tends to zero with high probability.

3.2.4 When nu = nαs , α > 1

Now we analyze the case that there are many more users than the number of

servers. Assume ns = n, nu = nα and κ = nu
ns

= nα−1, we have the following result,

Theorem 5. When ns = n, nu = nα, α > 1, with probability at least 1 − 1
nΩ(1) , the

maximum load (number of incoming servers) over all servers is O(σ nu
ns

). Furthermore,

if κ = nu
ns

, all users have 100% hit rate.

Proof. We prove the Theorem 5 using Chernoff Bound.

We firstly look at the load of one server. Let Xi be the indicator that user ui selected

31



the server we looked at, and let Y =
∑nu

i=1Xi be the total number of incoming users

at this server. Because each user chooses σ servers uniformly at random, we have

P (Xi = 1) = σ/ns. Thus we have,

P
(
Y > σ

nu
ns

)
= P (Y > σ log ns)

= P (Y ≥ σ log ns + 1)

= P
(
Y ≥ (1 +

1

σ log ns
)σ log ns

)
≤ e

−ns logns
1

3(σ logns)2

= n
− ns

3σ2 log2(ns)
s .

With which we can then calculate the bound on the maximum load with union bound.

Let Yi be the number of users at server ui, then we have

P
(

max
i
{Yi} > σ

nu
ns

)
= P

(
∪nsi=1{Yi > σ

nu
ns
}
)

≤
ns∑
i=1

P
(
Yi > σ

nu
ns

)
≤ ns × n

− ns
3σ2 log2(ns)

s

= n
−( ns

3σ2 log2(ns)
−1)

s ,

which is in the order of 1

n
Ω(1)
s

.

Theorem 5 implies that when nu = nαs all the servers have balanced load of σ nu
ns

,

and thus we don’t need a server selection mechanism for load balancing other than

just letting users randomly choose the server. In this case, it’s not beneficial to let

users start with more than one randomly selected servers, because with σ = 1 the

load on all servers are balanced already. Thus, as long as we have feasible server

capacity κ = ω(nu
ns

), all the users will have enough resources from the server and have

100% hit rate by randomly select one server.
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The number of content items nc here does not affect the result of load balancing.

Actually, the result stays the same when nc ≥ nu. When the number of content items

is much smaller than number of users, nc << nu, the cache size can be made smaller

because the number of distinct requests at each server becomes smaller.

3.3 Bitrate Maximization for Video Content

In video streaming, a key performance metric is the bitrate at which a user can

download a video. If the server is unable to provide the required bitrate to the user,

the video may frequently freeze resulting in an inferior viewing experience and reduced

user engagement [29]. For simplicity, we model the server’s bandwidth capacity that is

often the critical bottleneck resource, while leaving other factors that could influence

video performance such as the server-to-user connection and the server’s cache3 for

future work.

3.3.1 Problem formulation

The bitrate required to play a stream without freezes is often the encoded bitrate

of the stream. For simplicity, we assume that each user requires a bitrate of 1 unit

for playing its video and each server has the capacity to serve an aggregation of κ

units. We also assume each server evenly divides its available bitrate capacity among

all users streaming videos from it. We assume each user can tell the exact bitrate

that it receives from its chosen candidate servers and that this bitrate is used as the

performance feedback (cf. Figure 3.1).

Unlike web content delivery, where users make random requests to the same web-

site, we assume that users requesting video streaming maintain persistent connections

with the server. We use a discrete time model in this case as compared to the con-

3Unlike the web, cache hit rate is a less critical determinant of video performance. Videos are
cached in chunks by the server. The next chunk is often prefetched from origin if it is not in cache,
even while the current chunk is being played by the user, so as to hide the origin-to-server latency.
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tinuous time model for web content delivery. We assume after each time unit that

users examine the bit rate provided by each of the available servers and then make

decisions according to the performance (measured by bit rate). The goal of each user

is to find a server that can provide the required bitrate of 1 unit for viewing the video.

3.3.2 Algorithm MaxBitRate

After each user u ∈ U has selected a video object cu ∈ C using the popularity

distribution, Algorithm MaxBitRate described below is executed independently by

each user u ∈ U , in discrete time steps.

1. Choose a random subset of candidate servers Su ⊆ S such that |Su| = σ.

2. At each time step t ≥ 0, do the following:

(a) Request the video content from all servers s ∈ Su.

(b) For each server s ∈ Su, compute B(u, s, t)
∆
= bitrate provided by server s

to user u in the current time step.

(c) If there exists a server s ∈ Su such that B(u, s, t) = 1, then decide on

server s by setting Su ← {s}.

Note that each user executes a simple strategy of trying σ randomly chosen servers

initially. Then, using the bitrate received in the current time step as feedback, each

user independently narrows it’s choice of servers to a single server that provides the

required unit bitrate. If multiple servers provide the required bitrate, the user selects

one at random. Further, note that a user u downloading from a server s at time t

knows immediately whether or not the server is overloaded, since server s is overloaded

if user u received a bitrate of less than 1 unit from the server, i.e., B(u, s, t) <

1. This is a point of simplification in relation to the complex situation of hit rate

maximization where any single cache hit is not indicative of a non-overloaded server

and a historical average of hit rates over a large enough time window τ is required
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as a probabilistic indicator of server overload. Furthermore, this simplification yields

both faster convergence to an optimal state in T = O(log log n/ log(κ+ 1)) steps and

a much simpler proof of convergence.

3.3.3 Analysis of Algorithm MaxBitRate

As before, we rigorously analyze the case where nu = ns = n. Let the minmax

bitrate B(t) be the best bitrate obtained by the worst user at time t, i.e.,

B(t)
∆
= min

u∈U
max
s∈S

B(u, s, t).

Theorem 6. When σ ≥ 2, the minmax bitrate converges to B(t) = 1 unit, for all

t ≥ T , within time T = O(log log n/ log(κ+1)), with high probability. When σ = 1 on

the other hand, the minmax bitrate B(t) = O(κ log log n/ log n), with high probability.

In particular, when σ = 1 and the cache size κ is o(log n/ log log n), including the

case when κ is a fixed constant, B(t) tends to zero as n tends to infinity, with high

probability.

Proof. The proof is similar to that of Theorem 3 in that we create a witness tree,

prune it, and then show that a pruned witness tree is unlikely. A server s is said

to be overloaded at time t if more than κ users want to download from server s in

time step t. We construct a witness tree as follows. If the algorithm MaxBitRate

has not converged to the optimal state at time T = 4 log log n/ log(κ+ 1), then there

exists an user (say u1) and a server s such that B(u1, s, T − 1) < 1, since user u1

has not yet found a server that can provide a bitrate of 1 unit. We make sever s the

root of the witness tree. We find children for the root s to extend the witness tree

as follows. Since B(u1, s, T − 1) < 1, there exists κ + 1 distinct users u1, . . . , uκ+1

who sent a request to server s at time T − 1. We know that users u1, . . . , uκ+1 are

undecided at time T − 1 since they made a request to a overloaded server s. Let si
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be the other server choice associated with user ui (one of the choices is server s). We

extend the witness tree by creating κ+1 children for the root s, one corresponding to

each server si. Note that for each of the servers si we know that B(ui, si, T − 2) < 1,

since otherwise user ui would have decided on server si in time step T − 2. Thus,

analogous to how we found children for s, we can recursively find κ + 1 children for

each of the servers si and grow the witness tree to an additional level. Note that

going back two time steps yields an additional level of the witness tree. Thus, we get

a witness tree that is a (κ + 1)-ary tree of depth ρ = T/2 = 2 log log n/ log(κ + 1).

The rest of the proof of pruning and enumerating such witness trees to show that the

probability that any such witness tree occurs is at most 1/nΩ(1) is similar to the proof

of Theorem 3.

3.4 Empirical Evaluation

We empirically study our algorithm GoWithTheWinner through simulation. Re-

quests from each user is modeled as a Poisson arrival sequence with unit rate. We

use nu = 1000 users. To simulate varying numbers of servers, users, and content

items, we vary ns and nc such that 1 ≤ nu/nc, nu/ns ≤ 100. We also simulate a

range of values for the spread 1 ≤ σ ≤ 6, and sliding window size 1 ≤ τ ≤ 20. Each

server implements an LRU replacement policy of size κ ≥ 2. We use the power law

distribution for content popularity distribution, where the kth most popular object in

C is picked with a probability

pk
∆
=

1

kα · H(nc, α)
, (3.7)

where α ≥ 0 is the exponent of the distribution and H(nc, α) =
∑nc

k=1 1/kα. Note

that power law distributions (aka Zipf distributions) are commonly used to model

the popularity of online content such as web pages, and videos. This family of dis-

tributions is parametrized by a Zipf rank exponent α with α = 0 representing the
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(a) α = 0.65, nu/ns = 1
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(b) α = 0.65, nu/ns = 10
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(c) α = 0.65, nu/ns = 20

Figure 3.2: The figures show the percentage of undecided users for a typical power law
distribution (α = 0.65) with spread σ = 2 and nu = 1000. Note that the undecided
users decrease with time in all cases, but the convergence is faster when we use fewer
but larger servers by setting nu/ns to be larger. Also, the smaller values of the
look-ahead window τ result in faster convergence.
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Figure 3.3: Generally, as τ increases, convergence time increases but failure rate
decreases. It is also true for larger servers (nu/ns = 20), only the failure has gone to
zero for all investigated sliding window sizeτ .

extreme case of an uniform distribution and larger values of α representing a greater

skew in the popularity. It has been estimated that the popularity of web content can

be modeled by a power law distribution with an α in the range from 0.65 to 0.85

[8, 22, 20]. In the simulations, the content items are requested by users using the

power law distribution of (3.7) with α = 0.65 to model realistic content popularity

[8] [22]. However, we also vary α from 0 (uniform distribution) to 1.5 in some of our

simulations.

The system converges when all users have decided on a single server from their set

of candidate servers. There are two complementary metrics that relate to convergence.

Failure rate is the probability that the system converged to a non-optimal state where
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Figure 3.4: As nu/ns increases fewer
servers with larger capacity are used
and convergence time decreases. The
decrease is less pronounced beyond
nu/ns ≥ 40 under this setting (α =
0.65, σ = 2, τ = 20).
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Figure 3.5: There is a very small incre-
mental benefit in using σ = 3 instead
of 2, though higher values of σ > 3
only increased the convergence time.
(α = 0.65, nu/ns = 1, τ = 20, κ = 2.)
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Figure 3.6: Order statistics of the hit
rate of the user population. (α =
0.65, nu/ns = 1, τ = 10, κ = 2.)
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Figure 3.7: Minmax hitrate versus
time for different power law distribu-
tions.

there exists servers that are overbooked, resulting in some users incurring cache misses

after convergence. The failure rate is calculated from multiple runs of the simulation.

Convergence time is the time it takes for the system to converge provided that it

converges to an optimal state.

3.4.1 Speed of convergence

Figure 3.2 shows how the fraction of undecided users decreases over time until

it reaches zero, resulting in convergence. Note that users do not decide in the first

τ steps, since they must wait at least that long to accumulate a window of τ hits.

However, once the first τ steps complete, the decrease in the number of undecided

users is fast as users discover that at least one of their two randomly chosen candidate
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servers have less load. The rate of decrease in undecided users decreases towards the

end, as the number of users who experience cache contention in both of their server

choices require multiple iterations to resolve.

In this simulation, we keep the number of users nu = 1000 but vary the number of

servers ns to achieve different values for nu/ns. Note that for a fair comparison, we

keep the system-wide load the same. Load l is a measure of cache contention in the

network and is naturally defined as the ratio of the numbers of users in the system

and total serving capacity that is available in the system. That is, l
∆
= nu/(κ ·ns). For

all three setting of Figure 3.2, we maintain a load l = 0.5. The figure shows that with

fewer (but larger) servers (nu/ns is larger) the convergence time is faster, because

having server capacity in a few larger servers provides a larger hit rate than having

the same capacity in several smaller servers. Similar performance gains are also found

in the context of web caching and parallel jobs scheduling [40]. Convergence times are

plotted explicitly in Figure 3.4 for a greater range of user-to-server ratios. As nu/ns

increases from 1 to 40, convergence time decreases. The decreases in convergence

times are not significant beyond nu/ns ≥ 40.

3.4.2 Impact of sliding window τ

The sliding window τ is the number of recent requests used by algorithm GoWithTheWinner

to estimate the hit rate. As shown in Figure 3.3, there is a natural tradeoff between

convergence time and failure rate. When τ increases, the users take longer to con-

verge, as they require a 100% hit rate in a larger sliding window. However, waiting

for a longer period also makes their decisions more robust. That is, a user is less likely

to choose an overbooked server, since an overbooked server is less likely to provide a

string of τ hits for large τ . In our simulations with many smaller caches (nu/ns = 1),

when τ ≤ 4, users made quick choices based on a smaller sliding window. But, this

resulted in the system converging to a non-optimal state 100% of the time. As τ
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further increases, failure rate decreases. The value of τ = 11 is a suitable sweet spot

as it results in the smallest convergence time for a zero failure rate. However, for

fewer but larger servers (ns/nu = 20), all selections of window size τ (thus the small

values like τ = 5) yielded a 0% failure rate, while convergence time still increases as

the window size gets larger.

3.4.3 Impact of spread σ

As shown in Theorems 3 and 4, a spread of σ ≥ 2 is required for the system to

converge to an optimal solution, while a spread of σ = 1 is insufficient. As predicted

by our analysis, our simulations did not converge to an optimal state with σ = 1.

Figure 3.5 shows the convergence time as a function of spread, for σ ≥ 2.

As σ increases, there are two opposing factors that impact convergence time. The

first factor is that as σ increases, each user has more choices and a user is more likely

to find a suitable server with less load. On the other hand, an increase in σ also

increases the total number of initial requests in the system that equals σnu. Thus,

the initiate server load increases in σ. These opposing forces result in a very small

incremental benefit when using σ = 3 instead of 2, though the higher values of σ > 3

showed no benefit as convergence time increases with σ increases.

We established the “power of two random choices” phenomenon where two or more

random server choices yield superior results to having just one. It is intriguing to ask

what percentage of users need two choices to reap the benefits of multiple choices?

Consider a mix of users, some with two random choices and others with just one. Let

σavg, 1 ≤ σavg ≤ 2, denote the average value of the spread among the users.

In Figure 3.6, we show different order statistics of the hit rate as a function of σavg.

Specifically, we plot the minimum value, 1st-percentile, 5th- percentile and the median

(50th-percentile) of user hit rates after simulating the system for 200 time units. As

our theory predicts, when σavg = 2, the minimum and all the order statistics converge
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to 100%, as all users converge to a 100% hit rate. Further, if we are interested in

only the median user, any value of the spread is sufficient to guarantee that 50% of

the users obtain a 100% hit rate. Perhaps the most interesting phenomena is that

if σavg = 1.7, i.e., 70% of the users have two choices and the rest have one choice,

the 5th-percentile converges to 100%, i.e., all but 5% of the users experience a 100%

hit rate. For a higher value of σavg = 1.9, the 1st-percentile converges to 100%, i.e.,

all but the 1% of the users experience a 100% hit rate. This result shows that our

algorithm still provides benefits even if only some users have multiple random choices

of servers available to them.

3.4.4 Impact of demand distribution

We now study how hit rate changes with the exponent α in the power law dis-

tribution of Equation 3.7. Note that the distribution is uniform when α = 0 and is

the harmonic distribution when α = 1. As α increases, since the tails fall as a power

of α, the distribution becomes more skewed towards content items with a smaller

rank. In Figure 5.4, we plot the minmax hitrate over time for different α, where we

see that a larger α leads to faster convergence. The reason is that as the popularity

distribution gets more skewed, a larger fraction of users will request the same popular

content items, leading to higher hit rate and faster convergence. Thus, the uniform

popularity distribution (α = 0) is the worst case and the algorithm converges faster

for the distributions that tend to occur more commonly in practice. Providing the-

oretical support for this empirical result by analyzing the convergence time to show

faster convergence for larger α is a topic for future work.

3.5 Related work

Server selection algorithms have a rich history of both research and actual im-

plementations over the past two decades. Several server selection algorithms have
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been proposed and empirically evaluated, including client-side algorithms that use

historical performance feedback using probes [19, 15]. Server selection has also been

studied in a variety of contexts, such as the web [15, 45], video streaming [48], and

cloud services [50]. Our work is distinguished from the prior literature in that we

theoretically model the “Go-With-The-Winner” paradigm that is common to many

proposed and implemented client-side server selection algorithms. Our work is the

first formal study of the efficacy and convergence of such algorithms.

In terms of analytical techniques, our work is closely related to prior work on balls-

into-bins games where the witness tree technique was first utilized [35]. Witness trees

were subsequently used to analyze load balancing algorithms, and circuit-switching

algorithms [14]. However, our setting involves additional complexity requiring novel

analysis due to the fact that users can share a single cached copy of an object and the

hitrate feedback is only a probabilistic indicator of server overload. Also, our work

shows that the “power of two random choices” phenomenon applies in the context

of content delivery, a phenomenon known to hold in other contexts such as balls-

into-bins, load balancing [52], relay allocation for services like Skype [38], and circuit

switching in interconnection networks [35].

3.6 Conclusion

Our work constitutes the first formal study of the simple “Go-With-The-Winner”

paradigm in the context of web and video content delivery. For web (resp., video)

delivery, we proposed a simple algorithm where each user randomly chooses two or

more candidate servers and selects the server that provided the best hit rate (resp.,

bitrate). We proved that the algorithm converges quickly to an optimal state where

all users receive the best hit rate (resp., bitrate) and no server is overloaded, with high

probability. While we make some assumptions to simplify the theoretical analysis,

our simulations evaluate a broader setting that incorporates a range of values for τ
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and σ, varying content popularity distributions, differing load conditions, and situa-

tions where only some users have multiple server choices. Taken together, our work

establishes that the simple “Go-With-The-Winner” paradigm can provide algorithms

that converge quickly to an optimal solution, given a sufficient number of random

choices and a sufficiently (but not perfectly) accurate performance feedback.

43



CHAPTER 4

LINK METRIC TOMOGRAPHY WITH DESIGNED
EXPERIMENTS

4.1 Introduction

Network management in a complex network (e.g., MANET-cellular hybrid net-

work, coalition network) often suffers from inefficiencies imposed by protocol/policy

barriers between different administration domains, where one notable example is the

lack of common monitoring services that provide global state of all the networked

components (e.g., links). This limitation motivates the need for external approaches

that allow one domain to infer the internal state (e.g., link loss rates) of another

domain by measuring its external performance (e.g., end-to-end losses between a set

of vantage points). The methodology of such inference is called network tomography

[13].

Network tomography has been an active research area in the recent past. Com-

pared with the approach of directly measuring the performance at individual network

components, it provides an alternative approach that does not require privileged ac-

cess to the components. The challenge is that since the measurements are generally

functions of the states of multiple components, one has to “invert” these functions.

Moreover, the states of interest are usually persistent performance indicators such

as mean delays and packet loss rates, while the measurements are functions of the

delay/loss instances, and thus the “inversion” has to be robust against randomness

in the measurements.

By modeling the performance of each link as a random variable with a (partially)

unknown probability distribution, one can apply statistical techniques to estimate
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the parameter of this distribution from path measurements [11, 18, 32]. While most

existing works focus on estimator design, the accuracy of estimation is fundamentally

bounded by the amount of “information” contained in measurements. It is crucial that

the probing experiments generate the most informative measurements for estimating

link parameters.

It is not straightforward to quantify the information in measurements. On one

hand, measurements from different paths provide different amounts of information as

they traverse different sets of links, each exhibiting a different level of uncertainty; on

the other hand, measurements from a single (multi-hop) path alone do not provide

sufficient information for uniquely determining link performances. To address this

issue, we apply a notion from estimation theory called the Fisher Information Matrix

(FIM) [41]. The FIM combines knowledge of paths and link parameters into a single

measure of how much “information” a measurement provides for the parameter of

interest. By the Cramér-Rao bound (CRB) [41], the inverse of the FIM establishes a

lower bound on the error covariance matrix of any unbiased estimator.

Based on the FIM, an intuitive formulation of experiment design is to allocate

probes on paths to maximize the total information. Turning this intuition into a

precise formulation requires an objective function that maps a matrix (FIM) to a

scalar that can be uniquely optimized. The theory of optimal experiment design

[4] has established a set of such objective functions. In particular, maximizing the

determinant of FIM (aka D-optimality) leads to a design that minimizes (a bound

on) the volume of the error ellipsoid, and minimizing the trace of the inverse FIM

(aka A-optimality) leads to a design that minimizes (a bound on) the average mean

squared error (MSE). Both objective functions lead to convex optimization problems

that can, in theory, be solved to obtain the optimal experiment design [7]. Solving

these optimizations for practical networks, however, is highly nontrivial, as its solution

space (i.e., all possible probe allocations) has a dimension that is at least the size of
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the network. In this work, we develop efficient solutions for tomographic experiment

design using the above objective functions, and apply our results to two concrete

tomography problems with multiplicative/additive link metrics.

4.1.1 Related Work

Based on the model of link metrics, existing work can be classified into algebraic

tomography and statistical tomography. Algebraic tomography models each link met-

ric as an unknown constant (e.g., mean link delay) and each path measurement as

a deterministic function of link metrics (e.g., mean path delay). The goal of exper-

iment design for algebraic tomography is to construct paths whose measurements

can uniquely determine link metrics, e.g., n linearly independent paths for an n-link

network [34].

Statistical tomography models each link metric as a random variable with a (par-

tially) unknown probability distribution, and applies various estimation techniques to

infer the distribution from path measurements. When multicast is supported, tech-

niques have been proposed to estimate link loss rates and delays from multicast losses

and delays [11, 18, 32]. Similar results have been obtained for multi-source measure-

ments [28]. Variants based on subtree, unicast, and striped unicast have also been

developed to improve the flexibility of probing [46, 17].

Most existing work in statistical tomography has focused on developing estimators,

while the problem of experiment design is often ignored. Unlike algebraic tomography

where it suffices to find paths that result in a unique solution of link metrics, sta-

tistical tomography also needs to deal with randomness in link metrics and possibly

measurement noise. There has been a rich theory on experiment design for general

statistical inference, which casts the problem as an optimization of a set of design

objectives that capture various aspects of estimation accuracy [4]. The approach has

recently been adopted to design experiments for network monitoring, where the prin-
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ciple of optimal experiment design has been applied to design link sampling rates for

tracking volumes of flows going through the links [47], or design probing sequences

for estimating link delays from correlated delays of back-to-back probes [23]. In par-

ticular, [23] measures the quality of a probing sequence by the FIM and tries to

design probing sequences such that the trace of the inverse FIM can be optimized

(i.e., A-optimal design). Their solution, however, relies on a coarse approximation

that ignores off-diagonal elements of the FIM. We have a similar goal of designing

the optimal allocation of probes based on certain functions of the FIM that capture

the overall estimation accuracy, but we identify special structures of the objective

functions that allow for exact, closed-form solutions.

4.1.2 Summary of Contributions

Given a number of probes and a set of measurement paths, we want to allocate

the probes onto the paths so that the measurements can provide the most accurate

estimate of the link parameters of interest. Our specific contributions are:

1. We propose a general experiment design framework for network tomography,

where we use the FIM to allocate probes across paths for inferring link parame-

ters using path measurements, with illustrative applications to loss and packet

delay variation (PDV) tomography.

2. We derive closed-form estimators for loss and PDV tomography, which, in con-

junction with the optimal experiment design, provide asymptotically optimal

estimates of the link parameters of interest.

3. For two well-adopted design criteria, D-optimality and A-optimality, we derive

explicit formulas of the design objectives as functions of probe allocation. We

also propose a novel criterion, weighted A-optimality, that extends A-optimality

to incorporate heterogeneity in importance of links. We show how to evaluate

these formulas in closed form for loss and PDV tomography.
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4. Based on the derived formulas, we develop closed-form solutions of optimal

probe allocation when measurement paths form a basis of the vector space of

all links. In particular, our solutions show that the D-optimal design leads to

a uniform allocation of probes, while the A-optimal design is generally non-

uniform. When extra paths are available, we propose a two-step heuristic that

first selects a proper basis and then optimizes probe allocation over the basis.

Compared with numerical optimization, the proposed solutions significantly im-

prove scalability wrt the number of paths.

5. Observing the dependency of the optimal design on the unknown link param-

eters, we propose an iterative algorithm that periodically updates the design

using refined estimates of the parameters. We show that the result converges

to a design based on the true parameters with high probability.

6. We evaluate the proposed designs on real network datasets for both loss and

PDV tomography. Our results show that the proposed design based on the A-

optimal criterion can effectively reduce the MSE compared with uniform prob-

ing, even when the CRB is loose.

The rest of the chapter is organized as follows. Section 4.2 formulates the problem

of experiment design for network tomography. Section 4.3 introduces the FIM and its

basic properties. Section 4.4 presents estimators of link parameters. Section 4.5 de-

fines objectives of experiment design, and Section 4.6 presents algorithms to optimize

the objectives. Section 4.7 evaluates the proposed design algorithms via simulations

based on real data. Then Section 4.8 concludes the chapter.
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4.2 Problem Formulation

4.2.1 Network Model

Let G = (V, L) denote a network with nodes V and links L. Each link l ∈ L

is associated with a performance metric (e.g., delay, loss) that varies stochastically

according to a distribution with unknown parameter θl. Let P be a given set of

candidate probing paths in G. Each path py ∈ P consists of one or more pairwise

adjacent links in1 G. We assume that the monitoring system can inject probes on all

paths in P and observe their end-to-end performance. We also introduce a |P | × |L|

matrix A := [Ay,l] defined by P , called the measurement matrix, where Ay,l = 1 if link

l is on path py and Ay,l = 0 otherwise. Without loss of generality, we assume that

each link is on at least one path in P . Additional assumptions on A (and hence P )

will be introduced later as needed. At run time, probes are injected on paths selected

according to our experiment design. We consider a probabilistic design model, where

each probe is sent over a path randomly selected from P , with probability φy of

selecting path py. Here φ := (φy)
|P |
y=1, satisfying φy ≥ 0 and

∑|P |
y=1 φy = 1, is a design

parameter.

4.2.2 Stochastic Link Metric Tomography

Given a family of link metric distributions with unknown parameters θ := (θl)l∈L,

the goal of (parametric) stochastic link metric tomography is to infer θ from observa-

tions of the corresponding performance metrics over probed paths. Let fy(x; θ) denote

the conditional probability of observing path metric x, given that the probe is sent

on path py and the link parameters are θ. Then the problem of stochastic link metric

tomography is to infer the parameter θ from the observations (x, y) := (xt, yt)
N
t=1,

where xt is the outcome of the t-th probe and yt the corresponding path index. Un-

der the assumption that the performance experienced by probes is independent both

1We do not impose constraints on paths except that a path traverses each link at most once.
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across probes and across links, the observations are i.i.d., each with the following

distribution:

f(x, y; θ, φ) = φyfy(x; θ). (4.1)

As concrete examples, we will address in detail two representative performance metrics

as follows.

4.2.2.1 Packet Loss Tomography

Packet loss is a typical performance metric that is multiplicative over links on a

path. Packet loss tomography aims to infer loss rates on individual links by observing

end-to-end packet losses on probed paths. Let the parameter of interest θ be the

vector of link success rates (i.e., complements of loss rates), and each probe outcome

x be an indicator that the probe successfully reaches its destination. Assume that

losses of the same probe on different links and of different probes on the same link

are both independent. Then the observation model becomes:

f(x, y; θ, φ) = φy(
∏
l∈py

θl)
x(1−

∏
l∈py

θl)
1−x. (4.2)

4.2.2.2 Packet Delay Variation Tomography
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Figure 4.1: Illustration of PDV: tsi (tri ) is the timestamp of the i-th packet at the
sender (receiver).
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Packet delay variation (PDV), aka delay jitter, is a typical performance metric that

is additive over links on a path2. PDV between a sender and receiver pair is defined as

the difference in sender-to-receiver delays between different packets, i.e., as illustrated

in Fig. 4.1, PDV = (tr2 − ts2)− (tr1 − ts1); equivalently, it is the difference between the

inter-packet delays at the sender and the receiver, i.e., PDV = (tr2 − tr1) − (ts2 − ts1).

The latter definition has the advantage that its evaluation does not require clock

synchronization across nodes (assuming the difference in clock speeds is negligible).

One can verify that the end-to-end PDV on a path equals the sum of the PDVs at each

link. Suppose that PDVs on individual links follow the normal distribution N (0, θl)

with zero mean and unknown variance θl (l ∈ L), and that PDVs experienced by

the same probe on different links and by different probes on the same link are both

independent. PDV tomography aims to infer θ from the observed end-to-end PDV x

based on the following observation model:

f(x, y; θ, φ) = φy
1√

2π
∑

l∈py θl
exp

(
− x2

2
∑

l∈py θl

)
. (4.3)

4.2.3 Main Problem: Experiment Design

Our goal is to develop a systematic framework to optimally allocate probes over

measurement paths such that the overall error in estimating θ is minimized. Specif-

ically, given an error measure C(θ̂, θ) (e.g., L2-norm) and a total number of probes

N , we want to design the probe distribution φ, such that in conjunction with an

appropriate estimator θ̂, the expected error E[C(θ̂, θ)] after making N probes is

minimized. The specific form of C(θ̂, θ) will determine the design criterion, and will

be specified later (Section 4.5).

2Delay is also a typical additive performance metric, where the parameter of interest is usually the
mean link delay. We study PDV instead because it has a greater impact on streaming applications.

51



4.3 Preliminaries

In preparation for FIM-based experiment design, we first review FIM and its

important properties.

4.3.1 FIM and CRB

Given an observation model (4.1), the (per-measurement) FIM wrt θ is an |L|×|L|

matrix, whose (i, j)-th entry is defined by

E
[( ∂
∂θi

logf(x, y; θ, φ)
)( ∂
∂θj

logf(x, y; θ, φ)
)∣∣∣θ,φ] . (4.4)

We denote this matrix by I(θ; φ) to highlight its dependence on both the (unknown)

parameter θ and the design parameter φ. All subsequent references to “FIM” mean

this per-measurement FIM.

The significance of the FIM is that it provides a fundamental bound on the error

of unbiased estimators. Specifically, if θ̂ is an unbiased estimator of θ using N i.i.d.

measurements, then the covariance matrix of θ̂ satisfies3 cov(θ̂) � 1
N
I−1(θ; φ), known

as the Cramér-Rao bound (CRB) [41]. In particular, the MSE in estimating θl, given

by cov(θ̂)l,l, is lower bounded by I−1
l,l (θ; φ)/N .

4.3.2 Identifiability and Invertibility of FIM

The CRB has an implicit assumption that the FIM is invertible. In our problem,

we will show that this assumption follows from the identifiability of link parameters.

We say that an unknown parameter θ is identifiable from observations x if and only

if the observation model satisfies that f(x; θ) 6= f(x; θ′) at some x for any θ 6= θ′.

In network tomography, the identifiability of link parameters θ has direct implication

on the measurement matrix and the FIM.

3For matrices A and B, A � B means that A−B is positive semi-definite.
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Specifically, suppose that a stochastic link metric tomography problem can be cast

as a linear system Az(θ) = w, where A is the measurement matrix, z(θ) is a bijection

of θ, and w is a vector of path performance parameters such that the probe outcomes

depend on θ only through w. Suppose that w can be estimated consistently from

probes4. Then the following statements hold:

• θ is identifiable if and only if A has full column rank;

• if θ is identifiable, then I(θ; φ) is invertible.

The first statement can be easily proved by an argument of contradiction, and the

second statement is a direct implication of the equivalence between the invertibility

of the FIM and the local identifiability5 of θ [44].

Both loss tomography and PDV tomography admit a linear system model Az = w,

where zl = log θl, wy = log (
∏

l∈py θl) for loss tomography, and zl = θl, wy =
∑

l∈py θl

for PDV tomography (the same applies to delay).

Discussion: The aspect of experiment design focusing on path construction has

been extensively studied in the literature. If the routing of probes is controllable (sub-

ject to cycle-free constraint), then identifiability can be guaranteed by constructing

paths using the Spanning Tree-based Path Construction (STPC) algorithm in [34]; if

the routing is uncontrollable and the default routes between monitors cannot identify

all link parameters, then we can transform the topology into a logical topology as

in [53], whose links represent the Minimal Identifiable Link Sequences (MILS), such

that parameters of the logical links are identifiable.

In this work, we focus on a different aspect of designing probe allocation. Intu-

itively, identifiability is a basic requirement for the inference problem to be solvable

4That is, there exists an estimator ŵ that converges to w in probability as the number of probes
goes to infinity.

5That is, there exists an open neighborhood of θ such that no θ′ (θ′ 6= θ) in this neighborhood
leads to the same observation model.
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with infinite measurements, and probe allocation further maximizes the inference ac-

curacy with finite measurements. Therefore, we will assume in the sequel that the

link parameters of interest are identifiable using the given paths. By the above state-

ments, this implies that the measurement matrix A has full column rank and the

FIM I(θ; φ) is invertible. Conceptually, probe allocation among all possible paths

generalizes path construction because it specifies not only which paths are used for

probing but also how often each path is probed.

4.3.3 Example

We illustrate FIM-based experiment design by a simple example in Fig. 4.2, where

we want to use end-to-end losses on paths p1, p2, and p3 to infer loss rates of links

l1 and l2. Consider three candidate designs φ1 = (1
3
, 1

3
, 1

3
), φ2 = (0.5, 0.5, 0), and

φ3 = (0.15, 0.85, 0). The average CRB for loss rate estimation, given by the average

of diagonal elements of the inverse FIM, equals 0.6, 0.5, and 0.98 respectively for

the three designs, if the actual link loss rates are (0.5, 0.5); however, if the link loss

rates are (0.99, 0.5), the CRB becomes 0.21, 0.26, and 0.18 respectively (see (5.10)

in Section 4.5.4.1 for computation of the FIM and hence the CRB). The example

demonstrates that: (i) the usual approach of uniformly allocating probes (i.e., φ1) is

generally suboptimal, and (ii) the optimal allocation depends not only on the paths

but also on the link parameters. Moreover, although the preferred design (φ2 or φ3)

in the above cases does not use p3, it is not clear whether this is always true, as a

measurement on p3 provides information about both links.

l1 l2

p1 p2

p3

Figure 4.2: Example: loss tomography using three paths.
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4.4 Link Parameter Estimation

Fundamental to experiment design is how the collected measurements will be used

to estimate the parameters of interest. To this end, we review a well-known estimator

and its special relationship with FIM-based experiment design.

4.4.1 Maximum Likelihood Estimator (MLE)

Given observations, the MLE solves for the parameter value that maximizes the

likelihood of these observations and uses this value as an estimate of the parameter.

The MLE plays a significant role in FIM-based experiment design. Using the FIM

in experiment design implies an implicit assumption that the adopted estimator is

efficient (i.e., unbiased and achieves the CRB), and thus the CRB characterizes es-

timation error. In this regard, the MLE has a superior property that it is the only

candidate for efficient estimator, i.e., if an efficient estimator exists, it must be the

MLE [49]. Moreover, although efficient estimators may not exist for finite sample

sizes, the MLE is asymptotically efficient under regularity conditions, i.e., its expec-

tation converges to the true parameter at a rate approximating the CRB. Therefore,

using the MLE to estimate link parameters guarantees that our FIM-based experi-

ment design will optimize the decaying rate of error as the number of probes becomes

large.

4.4.2 MLE for Packet Loss Tomography

The MLE has a unique property that it is invariant under one-to-one param-

eter transformations. That is, if θ̂ is an MLE of θ and η = g(θ) is a one-to-one

transformation, then η̂ = g(θ̂) is an MLE of η. For tomography problems, this prop-

erty can be leveraged to greatly simplify the derivation of the MLE. Specifically, let

αy(θ) :=
∏

l∈py θl denote the success probability of path py, n1,y the number of suc-

cessfully received probes, and n0,y the number of lost probes. It is known that the

MLE of αy(θ) is simply the empirical path success probability α̂y := n1,y/(n1,y+n0,y),
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as n1,y can be viewed as a sum of n0,y + n1,y i.i.d. Bernoulli random variables with

success probability αy(θ). Moreover, when A has full column rank, the link suc-

cess rates θ and the path success rates α := (αy(θ))
|P |
y=1 form a one-to-one mapping

log θ = (ATA)−1AT logα (assume α > 0). Using the invariance property of MLE, we

can obtain the MLE of θ from the MLE of α as follows. Without loss of generality,

we assume that n1,y + n0,y > 0 for y = 1, . . . , |P |.

Proposition 7. If the measurement matrix A has full column rank and there is at

least one successful probe per path (i.e., n1,y > 0 for y = 1, . . . , |P |), then the MLE

for loss tomography equals6:

θ̂ = exp
(
(ATA)−1AT log α̂

)
, (4.5)

where α̂ is the vector of empirical path success rates.

Remark: The MLE for loss tomography is only asymptotically unbiased (verified

in Section 4.7.2) because of the non-linear operators (log, exp).

Example

Consider a simple 2-link network as illustrated in Fig... Applying the MLE formula

in (5.2) yields that the MLE of (θ1, θ2)T is

 θ̂1 = n1,1

n1,1+n0,1
,

θ̂2 = n1,2(n1,1+n0,1)

n1,1(n1,2+n0,2)
.

(4.6)

As mentioned before, the MLE is not always efficient. In particular, it is biased

in this example as shown below. While E[θ̂1] = θ1(1 − φN2 ) is not far from the true

value θ1 (assuming n1,1/(n1,1 + n0,1) = 0 if n1,1 + n0,1 = 0), it can be verified that

6For ease of presentation, we use g(z) to denote the vector obtained by applying a scalar function
g(·) to each element of a vector z.
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E[θ̂2] does not exist, because conditioned on n1,1 + n0,1 = n for any 0 < n < N , the

conditional expectation

E
[
θ̂2|n1,1 + n0,1 = n

]
=

n

N − n
E
[
n1,2|n1,2 + n0,2 = N − n

]
· E
[ 1

n1,1

|n1,1 + n0,1 = n
]

(4.7)

does not exist due to the divergence of the negative moment E[ 1
n1,1
|n1,1 + n0,1 = n].

Meanwhile, note that the bias will disappear as N → ∞, as the probability for n1,1,

n1,1 + n0,1, or n1,2 + n0,2 to be zero diminishes. We leave detailed study of conditions

for the MLE to be efficient for a general network to future work.

4.4.3 MLE for PDV Tomography

We follow a similar approach to derive the MLE for PDV tomography. Specif-

ically, let σy(θ) :=
∑

l∈py θl denote the PDV variance on path py. Under the zero-

mean assumption, it is known that the MLE of σy(θ) is the empirical path variance

σ̂y := 1
ny

∑ny
k=1 x

2
y,k, where ny is the number of probes sent on path py and xy,k the

end-to-end PDV for the k-th probe on py; this MLE is unbiased. When A has full

column rank, the link PDV variances θ and the path PDV variances σ := (σy(θ))
|P |
y=1

form a one-to-one transformation θ = (ATA)−1ATσ. We can then obtain the MLE

of θ as follows (assuming ny > 0 for y = 1, . . . , |P |).

Proposition 8. If the measurement matrix A has full column rank, then the MLE

for PDV tomography equals:

θ̂ = (ATA)−1AT σ̂, (4.8)

where σ̂ is the vector of empirical path PDV variances.

Remark: The MLE for PDV tomography is unbiased (verified in Section 4.7.3).
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Requirements on probing experiment: Applying the MLE formulas in Propo-

sitions 18 and 8 imposes certain requirements on the probing experiment: the set

of paths for which there is at least one successful probe per path should form a

full-column-rank measurement matrix (note that each probe for PDV measurement

contains at least two packets). One way to satisfy this requirement is to employ an

initialization phase, where we send one probe per path (recall that the entire path

set P is assumed to give a full-column-rank measurement matrix). In the case of loss

tomography, we also need to ensure non-zero empirical path success rates; we find a

modified estimate α̃y = 1/(1 + n0,y) for paths without a successful probe performs

well7 (note that the error caused by this modification diminishes as the number of

probes increases).

4.5 Objective of Experiment Design

The essence of FIM-based experiment design is to treat the CRB as an approxi-

mation of the estimation error matrix and select the design parameter φ to optimize

a given objective function based on the CRB. Given an estimate of θ, the FIM

(and hence the CRB) only depends on φ, which in theory allows us to optimize φ.

Solving this optimization, however, is highly nontrivial as it is an optimization of a

|P |-dimensional vector, making numerical solutions infeasible for larger |P |. In this

section, we will show that under certain conditions, satisfied by both loss and PDV

tomography, the objective function has a special structure that allows for closed-form

solutions.

7Alternatively, one may keep probing each path until obtaining a success; this procedure is
however not robust for paths with low success rates.
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4.5.1 D-Optimal Design

In D-optimal experiment design, we seek to minimize the determinant of the

inverse FIM, det(I−1(θ;φ)), or equivalently maximize det(I(θ;φ)). The CRB implies

that this design minimizes the volume of the error ellipsoid.

We begin by establishing a special structure of det(I(θ;φ)) that holds for any

network topology and any set of probing paths, under certain conditions on the ob-

servation model. We first show a general property of the FIM as follows.

Lemma 9. The FIM for the observation model (4.1) is a convex combination of

per-path FIMs:

I(θ;φ) =

|P |∑
y=1

φyI
(y)(θ), (4.9)

where I(y)(θ) is the FIM for path py based on the observation model fy(x; θ). Note

that I(y)(θ) is independent of φ and is only a function of θ.

Proof of Lemma 9. Let L(θ) and Ly(θ) be the log-likelihood functions for the

overall experiment and path py, respectively (both are implicitly functions of x and

φ). Since L(θ) = log φy + Ly(θ), applying the definition of FIM in (5.9) yields:

Ii,j(θ;φ)=

|P |∑
y=1

φyE
[( ∂

∂θi
Ly(θ)

)( ∂

∂θj
Ly(θ)

)∣∣∣θ,φ, y] , (4.10)

and E
[
(∂Ly(θ)

∂θi
)(∂Ly(θ)

∂θj
)
∣∣∣θ,φ, y] equals I

(y)
i,j (θ) by definition.

Based on this decomposition, we can show that the determinant of the FIM has

a particular structure as follows.
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Theorem 10. Let Sn be the collection of all size-n subsets of {1, . . . , |P |}. If the

per-path FIM satisfies

I
(y)
i,k (θ)I

(y)
j,l (θ) = I

(y)
i,l (θ)I

(y)
j,k (θ) (4.11)

for any y ∈ {1, . . . , |P |} and any i, j, k, l ∈ {1, . . . , |L|}, then there exist functions

BC(θ) (C ∈ S|L|) such that

det(I(θ;φ)) =
∑
C∈S|L|

BC(θ)
∏
i∈C

φi. (4.12)

Functions BC(θ) (C ∈ S|L|) do not depend on φ.

Proof of Theorem 10. Applying the Leibniz formula for determinant to the de-

composed FIM in (4.9) shows that

det(I(θ;φ)) =
∑
π∈Π|L|

sgn(π)

|L|∏
i=1

Ii,πi(θ;φ) (4.13)

=
∑
π∈Π|L|

sgn(π)

 |P |∑
y1=1

· · ·
|P |∑

y|L|=1

|L|∏
i=1

φyiI
(yi)
i,πi

(θ)

 , (4.14)

where π is a permutation of {1, . . . , |L|} (Π|L| is the set of all permutations), and

sgn(π) is a sign function that equals 1 if π is achievable by an even number of

pairwise swaps, and −1 if it is achievable by an odd number of swaps. Equation

(4.14) shows that the determinant of the FIM can be written as a sum of order-|L|

terms of φ (i.e.,
∏|L|

i=1 φyi), weighted by functions of θ. Each term in the summation

is uniquely determined by π and y.

The key to the proof is to show that after combining these order-|L| terms, the

remaining terms only contain product of |L| distinct φy’s, i.e., terms containing du-

plicate variables (yi = yj for i 6= j) all disappear. We prove this by showing that

terms with duplicate variables will combine to zero.
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For each term with at least one duplicate variable, i.e., the corresponding π and y

satisfy: ∃i, j ∈ {1, . . . , |L|} (i 6= j) such that yi = yj = y0 for some y0 ∈ {1, . . . , |P |},

there must exist a corresponding term, referred to as the opposite term, for the same

y and a slightly different permutation π′ that is identical as π except that π′i = πj

and π′j = πi. The absolute value of this opposite term equals

(∏
k 6=i,j

φykI
(yk)

k,π′k
(θ)

)
φ2
y0
I

(y0)

i,π′i
(θ)I

(y0)

j,π′j
(θ),

which equals the absolute value of the first term

(∏
k 6=i,j

φykI
(yk)
k,πk

(θ)

)
φ2
y0
I

(y0)
i,πi

(θ)I
(y0)
j,πj

(θ)

because I
(y0)

i,π′i
(θ)I

(y0)

j,π′j
(θ) = I

(y0)
i,πi

(θ)I
(y0)
j,πj

(θ). Meanwhile, sgn(π) and sgn(π′) must differ

as the permutations differ by one pairwise swap. Therefore, the two terms sum up to

zero.

Moreover, if we define the opposite term of a term containing duplicate variables

as the term obtained by swapping πi and πj for the first two duplicate variables (i.e.,

for the smallest i, j with yi = yj), then it is easy to see that the opposite term of the

opposite term is the original term, and thus no two different terms can have the same

opposite. Therefore, after combining terms, only terms consisting of a product of |L|

distinct φy’s remain, implying formula (4.12).

Remark: This theorem describes a generic structure of det(I(θ;φ)) that applies

to any tomography problem where condition (4.11) holds. In words, condition (4.11)

states that any 2×2 submatrix of the per-path FIM formed by removing |L|−2 rows

and |L| − 2 columns has a determinant of zero, i.e., any 2× 2 minor of the per-path
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FIM (and the overall FIM) is zero8 (note that the condition holds trivially if i = j or

k = l). We will see in Section 4.5.4 that this condition holds for both loss and PDV

tomography.

The essence of this theorem is that under condition (4.11), the determinant of the

FIM, when viewed as a function of φ, can be written as a weighted sum of order-|L|

terms, where each term is a product of |L| (out of |P |) distinct φi’s. We will show

later that this property helps to simplify our FIM-based experiment design.

In fact, analogous arguments can be used to show a formula for any minor of the

FIM as follows.

Corollary 11. Let M be an n-dimensional submatrix of I(θ;φ) after removing |L|−n

rows and columns, and Sn be defined as in Theorem 10. Then under condition (4.11),

there exist functions BC(θ) (C ∈ Sn) such that the determinant of M (i.e., a minor

of I(θ;φ)) equals:

det(M(θ;φ)) =
∑
C∈Sn

BC(θ)
∏
i∈C

φi. (4.15)

Functions BC(θ) (C ∈ Sn) do not depend on φ.

4.5.2 A-Optimal Design

In A-optimal experiment design, we seek to minimize the trace of the inverse FIM,

Tr(I−1(θ;φ)). The CRB states that this design minimizes the average mean squared

error (MSE) for estimating θ.

We observe a special structure of Tr(I−1(θ;φ)) as follows. Theorem 10 implies,

in particular, that when |P | = |L|, the determinant of the FIM equals:

8The k × k minor of an m × n matrix is the determinant of a submatrix obtained by removing
m− k rows and n− k columns.
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det(I(θ;φ)) = B(θ)

|L|∏
k=1

φk. (4.16)

This fact, together with Corollary 11, can be used to prove the following structure of

Tr(I−1(θ;φ)).

Theorem 12. Suppose |P | = |L| and the FIM is invertible. If condition (4.11) holds,

then the trace of the inverse FIM Tr(I−1(θ;φ)) admits the following representation:

Tr(I−1(θ;φ)) =

|L|∑
i=1

1

φi
Ai(θ), (4.17)

where A1(θ), . . . , A|L|(θ) are only functions of θ.

Proof of Theorem 12. Let us denote the (i, j)-element of I−1(θ;φ) by I−1
i,j (θ;φ).

Applying Cramer’s rule of calculating the inverse of a matrix, we can write

I−1
i,j (θ;φ) = (−1)i+j

det(Mji(θ;φ))

det(I(θ;φ))
, (4.18)

where det(Mji(θ;φ)) is the minor of element (j, i) of I(θ;φ) (i.e., the determinant

of the submatrix after removing row j and column i). In particular, the diagonal

elements of I−1(θ;φ) have the following form:

I−1
k,k(θ;φ) =

det(Mkk(θ;φ))

det(I(θ;φ))
, k = 1, . . . , |L|. (4.19)

By Corollary 11, the numerator can be written as:

det(Mkk(θ;φ)) =
∑

C∈S|L|−1

BC,k(θ)
∏
i∈C

φi. (4.20)
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The trace of I−1(θ;φ) is thus equal to

Tr(I−1(θ;φ)) =

|L|∑
k=1

I−1
k,k(θ;φ)

=
∑

C∈S|L|−1

∏
i∈C φi∏|L|
s=1 φs

 |L|∑
k=1

BC,k(θ)

B(θ)

 , (4.21)

where we have used the representation (4.16) for det(I(θ;φ)). Next, we observe that

S|L|−1 has exactly |L| members C1, . . . , C|L|, where each Ci is the subset of {1, . . . , |L|}

that excludes i. Thus,

Tr(I−1(θ;φ)) =

|L|∑
i=1

1

φi

 |L|∑
k=1

BCi,k(θ)

B(θ)

 =

|L|∑
i=1

1

φi
Ai(θ),

where Ai(θ) :=
|L|∑
k=1

BCi,k(θ)

B(θ)
.

Remark: The proof actually gives a more general structure of Tr(I−1(θ;φ)) for

any |P | ≥ |L|:

Tr(I−1(θ;φ))=

∑
C′∈S|L|−1

∏
i∈C′φi

[∑|L|
k=1BC′,k(θ)

]∑
C∈S|L| BC(θ)

∏
i∈C φi

, (4.22)

where BC′,k(θ) and BC(θ) are only functions of θ. We only highlight the special case

of |P | = |L| because it allows for efficient optimization of φ; see Section 4.6.1.

4.5.3 Weighted A-Optimal Design

In practice, applications may place different weights on the links. We extend the

A-optimal design to account for this by introducing a weight vector ω := (ωk)
|L|
k=1,

where ωk denotes the weight of link lk. Introducing weights changes the objective

from minimizing Tr(I−1(θ;φ)) to minimizing a weighted trace of I−1(θ;φ), i.e., the

weighted sum of the diagonal elements of I−1(θ;φ):
∑|L|

k=1 ωkI
−1
k,k(θ;φ). By the CRB,
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this design minimizes the weighted average MSE for estimating {θl}l∈L. We refer to

this design as the weighted A-optimal design.

Using analogous arguments, we can easily extend Theorem 12 to the following

result.

Corollary 13. Under the conditions in Theorem 12, the weighted trace of the inverse

FIM admits the following representation:

|L|∑
k=1

ωkI
−1
k,k(θ;φ) =

|L|∑
i=1

1

φi
Ãi(θ), (4.23)

where Ã1(θ), . . . , Ã|L|(θ) are only functions of θ.

Remark: Since the weighted A-optimal design contains the A-optimal design as

a special case, we only consider the weighted A-optimal design in the sequel, simply

referred to as “A-optimal”.

4.5.4 Application to Loss/PDV Tomography

We now apply our generic results to concrete tomography problems. To apply

these results, we need to answer two questions: (i) Does condition (4.11) hold for

the problem at hand? (ii) Can we evaluate the coefficient functions in the derived

formulas (i.e., BC(θ), Ai(θ), and Ãi(θ)) for a given value of θ? In this subsection, we

give positive answers to both questions for loss tomography and PDV tomography.

4.5.4.1 Application to Packet Loss Tomography

Based on the observation model (4.2), we can obtain the per-path FIM I(y)(θ) for

loss tomography, whose (i, j)-th entry equals

I
(y)
i,j (θ) =

αy(θ)

θiθj(1− αy(θ))
1{i, j ∈ py}, (4.24)
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where 1{·} is the indicator function. It is easy to verify that this FIM satisfies

condition (4.11), and thus the formulas in Theorem 10, Theorem 12, and Corollary 13

apply.

To derive explicit expressions for their coefficients, we take a detailed look at

the FIM, which leads to a decomposition into a product of matrices with special

structures. Substituting (4.24) into (4.9) gives the (i, j)-th entry of the FIM:

Ii,j(θ;φ) =

|P |∑
y=1

φy
αy(θ)

θiθj(1− αy(θ))
1{i, j ∈ py}. (4.25)

We introduce two auxiliary matrics9: D = diag
(

(dy)
|P |
y=1

)
for dy := φyαy(θ)/(1 −

αy(θ)), and Θ = diag (θ). Then the above FIM can be written in matrix form as

I(θ;φ) = Θ−1ATDAΘ−1, (4.26)

where A is the measurement matrix.

Based on this decomposition, we can evaluate its determinant and trace of the

inverse as functions of Θ, A, and D, leading to the following results.

Lemma 14. Let AC denote a |L|×|L| submatrix of the measurement matrix A formed

by rows with indices in C (C ∈ S|L|). Then det(I(θ;φ)) for loss tomography can be

expressed as (4.12) with coefficients

BC(θ) =
det(AC)2∏

l∈L θ
2
l

∏
i∈C

αi(θ)

1− αi(θ)
(4.27)

for each C ∈ S|L|.

9Here diag (d) denotes a diagonal matrix with the main diagonal d.
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Moreover, if |P | = |L| and I(θ;φ) is invertible, then Tr(I−1(θ;φ)) can be ex-

pressed as (4.17) with coefficients

Ai(θ) =
1− αi(θ)

αi(θ)

|L|∑
k=1

θ2
kb

2
k,i (4.28)

for i = 1, . . . , |L|, where bk,i is the (k, i)-th entry of10 A−1. Similarly, the weighted

sum of the diagonal elements of I−1(θ;φ) can be expressed as (4.23) with coefficients

Ãi(θ) =
1− αi(θ)

αi(θ)

|L|∑
k=1

ωkθ
2
kb

2
k,i, (4.29)

where ωk is the weight of link lk.

Proof of Lemma 14. To derive BC(θ), we evaluate the determinant of the FIM by

det(Θ−1)2 det(ATDA). Applying the Cauchy-Binet formula to det(AT (DA)) gives

det(I(θ;φ)) =
1∏
l∈L θ

2
l

∑
C∈S|L|

det(AC) det((DA)C), (4.30)

where similar to AC , (DA)C is a |L| × |L| submatrix of DA formed by rows with

indices in C. Since D is diagonal, we can further decompose det((DA)C) into

det(DC) det(AC), where DC = diag ((dy)y∈C). Since the only term depending on

φ is det(DC), we can rewrite (4.30) as a function of φ as

det(I(θ;φ)) =
∑
C∈S|L|

[
det(AC)2∏

l∈L θ
2
l

∏
i∈C

αi(θ)

1− αi(θ)

]∏
i∈C

φi, (4.31)

which matches formula (4.12) with BC(θ) defined as in (4.27).

10Given identifiability of θ, A must be invertible in this case; see Section 4.3.2.
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To derive Ai(θ), we evaluate the inverse of the FIM by ΘA−1D−1A−TΘ. De-

noting A−1 as (bi,j)
|L|
i,j=1, we can evaluate the k-th diagonal entry as I−1

k,k(θ;φ) =

θ2
k

∑|L|
i=1 b

2
k,id
−1
i since Θ and D−1 are diagonal. Plugging in the definition of d−1

i yields

Tr(I−1(θ;φ)) =

|L|∑
k=1

θ2
k

|L|∑
i=1

b2
k,i(1− αi(θ))

αi(θ)
· 1

φi

=

|L|∑
i=1

1

φi

1− αi(θ)

αi(θ)

|L|∑
k=1

θ2
kb

2
k,i

 , (4.32)

which matches formula (4.17) with Ai(θ) defined as in (4.28). The same derivation

will give the expression for Ãi(θ).

Remark: For the case of |P | > |L| and invertible I(θ;φ), we can also give an

explicit expression for Tr(I−1(θ;φ)). The key is to plug the decomposed I(θ;φ) into

Cramer’s formula of calculating I−1
k,k(θ;φ) (see (4.19)). Let A(k) denote the submatrix

of A by removing the k-th column and A
(k)
C the submatrix of A(k) formed by rows

with indices in C. A derivation similar to the proof of Lemma 14 shows that

Tr(I−1(θ;φ)) =

∑
C′∈S|L|−1

[∑|L|
k=1 θ

2
k det(A

(k)
C′ )

2
]∏

i∈C′ di∑
C∈S|L| det(AC)2

∏
i∈C di

, (4.33)

which is a rational expression of φ. A similar expression holds for the weighted sum

of the diagonal elements of I−1(θ;φ).

4.5.4.2 Application to PDV Tomography

Similarly, from the observation model (4.3), we can derive the per-path FIM for

PDV tomography as

I
(y)
i,j (θ) =

1

2
(∑

l∈py θl
)21{i, j ∈ py}, (4.34)

which also satisfies condition (4.11).
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Applying (4.34) to (4.9) gives an expression for individual entries of the FIM for

PDV tomography. Observing its similarity to the FIM for loss tomography, we again

write it in matrix form by introducing another auxiliary matrix E = diag
(

(ey)
|P |
y=1

)
for ey := φy/[2(

∑
l∈py θl)

2]. It can be verified that the FIM for PDV tomography

satisfies I(θ;φ) = ATEA. This decomposition leads to the following results.

Lemma 15. The det(I(θ;φ)) for PDV tomography can be expressed as (4.12) with

coefficients

BC(θ) =
det(AC)2

2|L|
∏

i∈C

(∑
l∈pi θl

)2 (4.35)

for each C ∈ S|L| (AC defined as in Lemma 14).

Moreover, if |P | = |L| and I(θ;φ) is invertible, then Tr(I−1(θ;φ)) can be ex-

pressed as (4.17) with coefficients

Ai(θ) = 2

(∑
l∈pi

θl

)2 |L|∑
k=1

b2
k,i (4.36)

for i = 1, . . . , |L| (bk,i is the (k, i)-th entry of A−1). Similarly, the weighted sum of

the diagonal elements of I−1(θ;φ) can be expressed as (4.23) with coefficients

Ãi(θ) = 2

(∑
l∈pi

θl

)2 |L|∑
k=1

ωkb
2
k,i. (4.37)

Proof of Lemma 15. The proof is analogous to that of Lemma 14 by evaluating

det(ATEA) and A−1E−1A−T .

Remark: Similar to loss tomography, for the case of |P | > |L| and invertible

I(θ;φ), we can explicitly write Tr(I−1(θ;φ)) for PDV tomography as

Tr(I−1(θ;φ)) =

∑
C′∈S|L|−1

[∑|L|
k=1 det(A

(k)
C′ )

2
]∏

i∈C′ ei∑
C∈S|L| det(AC)2

∏
i∈C ei

, (4.38)
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which is again a rational expression of φ, and a similar expression holds for the

weighted variation.

4.6 Experiment Design Algorithms

The special structures of the design objectives established in Section 4.5 enable

us to compute the design parameter φ efficiently. In the sequel, we will first derive

closed-form solutions for the case of |P | = |L|, i.e., all probing paths are linearly

independent, and then address the case of |P | > |L|.

4.6.1 Closed-form Solution for |P | = |L|

For the D-optimal design, Theorem 10 implies that when |P | = |L|, the deter-

minant of the FIM is proportional to the product of φi’s as shown in (4.16). Since∑|L|
i=1 φi = 1, by the inequality of arithmetic and geometric means, we see that (4.16)

is maximized by setting φi = 1/|L| for all i = 1, . . . , |L|.

Claim 16. Uniform probing (i.e., φi = 1/|P |) is D-optimal when |P | = |L|.

For the A-optimal design, it is easy to show using the Lagrange Multiplier method

that a closed-form solution for minimizing (4.17) wrt φ is the following:

φi =

√
Ai(θ)∑|L|

j=1

√
Aj(θ)

, (4.39)

for i = 1, 2, . . . , |L|. The solution for the weighted A-optimal design is analogous,

except that Ai(θ) is replaced by Ãi(θ).

4.6.2 Heuristic Solution for |P | > |L|

When |P | > |L|, the computation of the optimal design becomes more compli-

cated. From the example in Fig. 4.2, we see that uniform probing is no longer D-

optimal. Computing the exact D/A-optimal design involves optimizing a |P |-variable
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function (4.12) or (4.22), which can only be solved numerically for very small net-

works. To develop a scalable solution, we leverage the closed-form solution in the case

of |P | = |L|. We illustrate our idea by a small example in Fig. 4.3. Suppose links

l1, l2, and l3 have success rates 0.2, 0.1, and 0.3, respectively. Numerical calculation

gives the A-optimal design for inferring these link success rates in the last row of the

table. Alternatively, we can select a basis of paths11 and use the solution in (4.39)

to compute the optimal design when only probing paths in the basis; see the first

four rows of the table. We see that although the optimal design may use all paths,

a design that only optimizes φ for a properly selected basis can achieve near-optimal

performance (see Fig. 4.9 and 4.12 for more comprehensive evaluations).

l 1

l2 l3

p 1

p
3

p2

p
4

φ1 φ2 φ3 φ4 Tr(I−1)

0.42 0.34 0.24 0 9.70
0.47 0.37 0 0.16 21.79
0.27 0 0.45 0.28 6.95

0 0.22 0.49 0.29 6.60†

0.17 0.15 0.44 0.24 5.94∗

Figure 4.3: Example for heuristic solution. ∗: A-optimal; †: A-optimal on the best
basis.

This observation motivates a two-step heuristic solution, where we first pick a basis

of paths that gives the optimal objective value among all bases, and then optimize φ

using solutions in Section 4.6.1 for paths in the basis, while setting φy = 0 for paths not

in the basis. However, optimizing the basis is itself a combinatorial optimization that

is hard to solve exactly. To select a basis, we propose a backward greedy algorithm,

given in Algorithm 2. Starting with all |P | paths, it iteratively deselects one path

at a time to optimize the design objective (determinant, trace, or weighted trace of

I−1(θ;φ)), and the iteration continues until the remaining paths form a basis (lines 2–

10). To evaluate the design objective (line 5) before calculating φ, we assume uniform

φ for the selected paths.

11Here, ‘basis’ means a subset of |L| paths that provide an invertible measurement matrix.

71



Algorithm 2: Two-step Experiment Design for Given θ

1: PB ← P
2: for iteration i = 1, . . . , |P | − |L| do
3: for path p ∈ PB do
4: if PB \ p has rank |L| then
5: evaluate design objective when only using paths in PB \ p
6: record path p∗ that yields the optimal objective
7: end if
8: end for
9: PB ← PB \ p∗

10: end for
11: compute optimal φy for py ∈ PB; set φy to 0 for py 6∈ PB

Algorithm 3: Iterative Experiment Design

1: φy ← 1/|P | for y = 1, . . . , |P |
2: for iteration i = 1, . . . , N/k do
3: send k probes according to φ
4: update θ̂ based on probing results
5: compute a new design parameter φ̂ by Algorithm 2 using the updated θ̂
6: update design parameter φ← (1− ik/N)φ+ (ik/N)φ̂
7: end for

4.6.3 Iterative Design Algorithm

In general, the optimal design depends on the unknown parameter θ, which can

only be estimated after collecting some measurements. This motivates an iterative

design algorithm, presented in Algorithm 3. Specifically, we conduct probing in N/k

iterations of k probes each. In each iteration, we send k probes on paths selected

according to the current φ (line 3), update the estimate θ̂ based on the probing results

(line 4), and then compute a new design parameter φ̂ using the updated estimate

(line 5). During first few iterations, we may not have sufficient measurements to

accurately estimate θ, which can mislead our design. To improve robustness against

estimation error, we use a combination of the current φ (obtained from the previous

iteration) and the new φ̂ (computed by line 5), and give increasing weight to φ̂ as we

obtain more measurements (line 6).
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How does the iteratively designed φ̂ converge to the φ designed based on the

true value of θ? Intuitively, as we obtain more measurements, the estimated θ̂ will

converge to θ, and thus the iteratively designed φ̂ will converge to the φ optimized for

θ. Formalizing this intuition requires two steps: first, we need to show that the design

objectives (e.g., trace of the inverse FIM) computed from θ̂ and θ will converge so

that we will select the correct basis PB; moreover, we need to show that for a fixed PB,

the optimal φy (py ∈ PB) based on θ̂ and θ will converge. We now provide concrete

analysis for loss and PDV tomography. We only consider the A-optimal design due

to space limitation, as results are analogous for the other design objectives.

Theorem 17. For both loss and PDV tomography, as the number of probes per path

increases, the estimated objective of the A-optimal design (i.e., trace of the inverse

FIM based on θ̂) converges to the true objective with high probability. Moreover, for a

fixed basis PB, the A-optimal design on PB based on θ̂ converges to the true A-optimal

design on PB based on θ with high probability.

Proof of Theorem 17 . Fundamental to our proof is the convergence of empirical

path parameters to the true parameters. For loss tomography, these are path success

rates, denoted by α; for PDV tomography, these are path PDV variances, denoted

by σ. Based on the Chernoff-Hoeffding bound, the empirical parameters converge ex-

ponentially fast as the number of probes ni for each path pi (i = 1, . . . , |P |) increases,

i.e., both Pr{|α̂i − αi| ≤ δ} and Pr{|σ̂i − σi| ≤ δ} are lower bounded by 1− 2e−2δ2ni

(i = 1, . . . , |P |). What remains is to bound the error in the design objective and φ,

given δ-error in estimating αi and σi. Due to space limitation, we only detail the

analysis for loss tomography, as the analysis for PDV tomography is analogous but

simpler.

Let T (θ) denote the trace of inverse FIM based on uniform φ (as assumed in line 5

of Algorithm 2). For a function x(θ), we use x̂ to denote x(θ̂). We will show that for
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any sufficiently small δ > 0, ∃ε1(δ), ε2(δ) that go to 0 as δ → 0 such that |α̂i−αi| ≤ δ

(i = 1, . . . , |P |) implies |T̂ − T | ≤ ε1(δ), and |φ̂i − φi| ≤ ε2(δ) for all pi ∈ PB.

For loss tomography, a derivation similar to Lemma 14 shows that

T =
|P |
∑

C′∈S|L|−1

[∑|L|
k=1 θ

2
k det(A

(k)
C′ )

2
]∏

i∈C′
αi

1−αi∑
C∈S|L| det(AC)2

∏
i∈C

αi
1−αi

, (4.40)

where A(k) denotes the submatrix of A by removing the k-th column and A
(k)
C the

submatrix of A(k) formed by rows with indices in C. Denoting the numerator of

(4.40) by f1 and the denominator by f2 (both functions of θ). It can be shown that

δ-error in αi implies |θ̂k − θk| ≤ eδ
′ − 1 := c0(δ) (k = 1, . . . , |L|), where δ′ is the

largest absolute value for entries of (ATA)−1AT δ
α−δ ( δ

α−δ is a column vector defined

as ( δ
αi−δ )

|P |
i=1). Moreover, |

∏
i∈C

α̂i
1−α̂i −

∏
i∈C

αi
1−αi | ≤ max(

∏
i αi−

∏
i(αi− δ),

∏
i(αi +

δ)−
∏

i αi)/
∏

i(1− αi − δ)(1− αi) := c1(δ;C). Based on these results, we have

|f1 − f̂1| ≤|P |
∑

C′∈S|L|−1

[ |L|∑
k=1

θ2
k det(A

(k)
C′ )

2c1(δ;C ′)

+ 2c0(δ)(
∏
i∈C′

αi
1− αi

+ c1(δ;C ′))

|L|∑
k=1

det(A
(k)
C′ )

2
]

:= c2(δ), (4.41)

and |f2 − f̂2| ≤
∑

C∈S|L| det(AC)2c1(δ;C) := c3(δ). Together, these bounds yield

|T − T̂ | ≤ f1c3(δ) + f2c2(δ)

f2(f2 − c3(δ))
:= ε1(δ), (4.42)

which goes to 0 as δ → 0 since ci(δ)→ 0 (i = 0, . . . , 3).

Given a basis PB, the A-optimal designs on PB, calculated by (4.39), based on θ̂

and θ satisfy

|φi − φ̂i|≤
ε
(
|L|
√
Ai(θ) +

∑|L|
j=1

√
Aj(θ)

)
(∑|L|

j=1

√
Aj(θ)

)(∑|L|
j=1

√
Aj(θ)− ε|L|

) (4.43)
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if |
√
Ai(θ)−

√
Ai(θ̂)| ≤ ε for all pi ∈ PB for a sufficiently small ε > 0. Based on the

expression of Ai(θ) in Lemma 14, we can show that |α̂i − αi| ≤ δ implies

|Ai(θ)− Ai(θ̂)| ≤ 2(1− αi)βic0(δ)

αi
+

βiδ

αi(αi − δ)
, (4.44)

where βi :=
∑

k b
2
k,i. Hence, |

√
Ai(θ)−

√
Ai(θ̂)| ≤ ε(δ) for ε(δ) := maxi

2(1−αi)βic0(δ)

αi
√
Ai(θ)

+

βiδ

αi(αi−δ)
√
Ai(θ)

. Plugging ε(δ) into (4.43) gives a bound on |φi − φ̂i|, denoted by ε2(δ),

that goes to 0 as δ → 0.

4.7 Performance Evaluation
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Figure 4.4: Distribution of Roofnet link success rates.

We evaluate different experiment designs by packet-level simulations on real net-

work topologies and link parameters. Our goal in the evaluation is two-fold: (i)

evaluating the performance of (iterative) A-optimal design compared with uniformly

allocating probes (uniform probing), and (ii) evaluating the impact of system param-

eters such as link weights, number of monitors, and number of paths.

To guarantee identifiability of all the link parameters, we first place a minimum set

of monitors by the Minimum Monitor Placement (MMP) algorithm in [33] and then

place the remaining monitors, if any, randomly. Given the monitors, we first construct
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Figure 4.5: Distribution of Roofnet link PDVs.

|L| linearly independent paths by the Spanning Tree-based Path Construction (STPC)

algorithm in [34] and then construct additional paths if needed by a random walk12.

12We remove cycles from the random-walk paths so that all paths are cycle-free, although this is
not required for the design of probe allocation.
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We consider two types of link weights: homogeneous link weights, where all links have

unit weight, and heterogeneous link weights, where a randomly selected subset of K

links have a larger weight Ω (Ω > 1), and the rest of the links have unit weight. In

the case of heterogeneous link weights, we set K = 1 and Ω = 500.

We measure the performance of an experiment design by the (weighted) average

MSE and bias over all estimated link parameters when applying the MLE (Section 4.4)

to measurements collected using this design. Furthermore, we evaluate the CRB and

the design parameter φ to gain insights on the internal behaviors of various designs.

All results are averaged over 5 instances of monitor locations, measurement paths,

and link weights, and 100 Monte Carlo runs of probing simulations per instance. In

each Monte Carlo run, we simulate 105 probes, which is divided into 100 iterations of

1000 probes each for the iterative design.

4.7.1 Dataset for Evaluation

To evaluate our experiment design in a realistic scenario, we use the Roofnet

dataset [2], which contains topologies and link measurements from a 38-node wire-

less mesh network. The dataset contains four subsets of data, corresponding to data

rates 1, 2, 5.5, and 11 Mbps. We only present results based on the 1-Mbps data, as

the results are similar to those for the other data rates. The raw dataset contains

sent/received packet sequence numbers and timestamps between all pairs of nodes

within communication range.

This dataset is suitable for evaluating both loss tomography and PDV tomography.

For loss tomography, we extract link success rates by computing the fraction of packets

sent by a first node that are received by a second node. For PDV tomography, we

extract link PDVs by computing the difference between inter-packet delays at a sender

and a receiver (ignoring lost packets). We then take the average of both directions
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of transmission as the parameter of a link13. We also filter out links with success

rates below 0.1 to only focus on useful links. After filtering, we obtain a topology

with 38 nodes and 219 (undirected) links; see Fig. 4.4 and 4.5 (a) for distributions of

the link parameters. We also compare the empirical PDV distribution per link with

the normal distribution; see Fig. 4.5 (b) for the Quantile-Quantile (Q-Q) plot for a

sample link (dashed line corresponds to a true normal distribution). We see that the

mean PDVs are much smaller than the std’s, and that the majority (90%+) of the

PDV values fit a normal distribution (similar results are observed for other links),

both confirming our zero-mean normal assumption in Section 4.2.2.2.

4.7.2 Evaluation of Loss Tomography

We first evaluate the performance of different designs as the number of probes

increases; see Fig. 4.6 for results under homogeneous link weights, and Fig. 4.7 for

results under heterogeneous link weights. From Fig. 4.6 (a) and 4.7 (a), we see that the

A-optimal design and its iterative version achieve lower MSE than uniform probing,

and the improvement is greater under heterogeneous link weights. Examining the

design parameter φ under each design (Fig. 4.6 (c) and 4.7 (c)) verifies that this

improvement is achieved through nonuniformly allocating probes to better measure

the paths that provide more information for estimating link success rates (paths are

sorted in the order of increasing probing probabilities under the A-optimal design).

The same figure also verifies that the iterative design is able to converge to the

true A-optimal design (their curves essentially overlap); we will evaluate the rate of

convergence later. Interestingly, for loss tomography, the MLE (Eq. (5.2)) is biased

at finite sample sizes as shown in Fig. 4.6 (b) and 4.7 (b), and thus the CRB does

not provide a true lower bound on the MSE as shown in Fig. 4.6 (a) and 4.7 (a).

13Note that the realizations of link losses/PDVs for each probe are generated according to our
model, using parameters extracted from the dataset.
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Nevertheless, the CRB captures trends of the MSE so that minimizing the CRB

provides a design (i.e., A-optimal design) with low MSE.

Table 4.1: Relative Performance for Loss Tomography (20 monitors, 105 probes)

Link weights CRBA

CRBU
MSEA

MSEU
MSEI

MSEU

homogeneous 0.12 0.55 0.58

heterogeneous 0.18 0.41 0.35

To better appreciate the advantage of A-optimal design, we summarize the relative

performance of the A-optimal and the iterative A-optimal designs compared with

uniform probing, measured by ratios of their CRB and MSE (the lower, the better);

see Table 4.1, where {·}A stands for A-optimal, {·}U for uniform, and {·}I for iterative

A-optimal. We see that although the CRB overestimates performance improvement,

our iterative design algorithm used in conjunction with the A-optimal criterion indeed

achieves a much lower MSE than uniform probing (40–65% lower). Since our design

takes into account different link weights, it achieves greater improvement in the case

of heterogeneous link weights.

Next, we study the impact of system parameters on estimation performance. We

first vary the number of monitors and repeat the probing simulation under each in-

stance of monitor placement. Fig. 4.8 (a)–(b) show the error bar plots of MSE/CRB

and absolute bias computed over different instances of monitor placement and path

construction. The result shows that all probing methods benefit as we place more

monitors. Intuitively, this is because with more monitors, paths become shorter, mak-

ing the measurements less aggregated and more informative for inferring parameters

of individual links. We also evaluate the impact on convergence rate of the iterative

design by measuring the L2-distance of the iterative design (φI) to the A-optimal

design (φA) across iterations; see Fig. 4.8 (c). The result verifies that the iterative

design algorithm is able to quickly converge to the true A-optimal design. Moreover,
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the convergence becomes faster as the number of monitors increases, because a larger

number of monitors allows more accurate estimation of the link parameters and thus

closer approximation of the true A-optimal design. We only show the results under

homogeneous link weights, as the observations are analogous under heterogeneous

link weights.

So far we have limited probing to a basis of paths. To evaluate the impact of

probing extra paths, we add paths constructed by a random walk (#extra paths

= |P | − |L|) and repeat the simulations; see Fig. 4.9. Since when |P | > |L|, the

A-optimal design can no longer be computed in closed form, we only compute a con-

strained A-optimal design on a basis selected by Algorithm 2 (based on the true value

of θ), simply referred to as ‘A-optimal’. Due to the higher complexity of Algorithm 2

in this case, we reduce the number of iterations to 20, each with 5000 probes. We see

that although the constrained A-optimal design given by Algorithm 2 only probes a

subset of paths (i.e., a basis), it still performs notably better than uniform probing

which probes all the paths by strategically allocating probes (Fig. 4.9 (a)–(b)). In

contrast to adding monitors, adding paths does not significantly impact the MSE; we

do not observe a clear trend in bias. Meanwhile, we see from Fig. 4.9 (c) that having

extra paths significantly slows down convergence of the iterative design. Detailed

examination shows that this is due to near-tie between some bases in terms of the

objective value (trace of the inverse FIM). Nevertheless, Fig. 4.9 (a) shows that the

iterative design outperforms uniform probing in terms of MSE. We have obtained

similar results under heterogeneous link weights (omitted due to space limitation).

4.7.3 Evaluation of PDV Tomography

We have evaluated PDV tomography in a similar manner. Specifically, Fig. 4.10

shows the performance wrt number of probes in a basic setting with homogeneous

link weights, Fig. 4.11 shows the impact of placing more monitors, and Fig. 4.12
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Table 4.2: Relative Performance for PDV Tomography (20 monitors, 105 probes)

Link weights CRBA

CRBU
MSEA

MSEU
MSEI

MSEU

homogeneous 0.47 0.47 0.48

heterogeneous 0.38 0.39 0.39

shows the impact of probing more paths. We have obtained similar results under

heterogeneous link weights (omitted). Overall, the relative performances of different

designs are similar to those for loss tomography, but the absolute performances differ.

Specifically, the estimation error for PDV tomography decays faster than that for

loss tomography as the number of probes increases, as each measurement (path PDV)

contains more fine-grained information about the links. As a consequence, the MSE

values in Fig. 4.10 (a) are much smaller than those in Fig. 4.6 (a) for the same number

of probes. A more striking difference between the two plots is that instead of being

a loose approximation of MSE as in loss tomography, the CRB accurately predicts

the MSE in PDV tomography (the curves overlap). This is because the estimator for

PDV tomography (Eq. (4.8)) is unbiased, as verified by Fig. 4.10 (b); note that the

empirical bias is negligible compared to the parameters of interest (link PDV vari-

ances). As in loss tomography, the A-optimal design for PDV tomography leads to a

highly skewed distribution of probes across paths, as shown in Fig. 4.10 (c). Similar

to Table 4.1 for loss tomography, we summarize the relative performance for PDV

tomography in Table 4.2, which shows that the iterative design achieves a similar

improvement of 50–60% for PDV tomography, but the performance predicted by the

CRB is much more accurate.

As we vary the number of monitors, we again see a clear trend of decreasing

CRB/MSE in Fig. 4.11 (a). A key difference from the results for loss tomography

(Fig. 4.8 (a)) is that the CRB accurately predicts the value of the MSE. A more subtle

difference is that as we increase the number of monitors, the gap between (iterative)
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A-optimal and uniform probing becomes narrower, instead of becoming wider as in

loss tomography. We also see a trend of slightly decreasing absolute bias, and that

the iterative design incurs a slightly larger bias; see Fig. 4.11 (b). Note, however,

that the difference in bias is insignificant as the estimator is statistically unbiased.

Another difference from loss tomography is that the convergence rate of iterative

design for PDV tomography is largely independent of the number of monitors, as

shown in Fig. 4.11 (c).

As we vary the number of paths, we see from Fig. 4.12 (a) that the MSE of

uniform and A-optimal probing (on a basis selected by Algorithm 2) remains largely

the same, so does their CRB. We notice a mild but notable increase in the MSE of the

iterative A-optimal design, because having extra paths slows down the convergence

of the design parameter, as shown in Fig. 4.12 (c). Note that the convergence is much

faster than that in loss tomography (Fig. 4.9 (c)), because the parameters of interest

(link PDV variances) can be estimated more accurately using the same number of

probes (see Fig. 4.10 (a) and 4.6 (a)). As in loss tomography, increasing the number

of paths does not have monotone impact on the bias as shown in Fig. 4.12 (b).

4.8 Conclusion

We propose a general framework of optimal experiment design for inferring pa-

rameters of stochastic link metrics using path measurements, with two concrete case

studies on loss tomography and PDV tomography. Using the FIM to measure the

amount of information contained in each measurement, we formulate the problem

as an optimization of probe distribution across paths, with two widely-adopted ob-

jectives known as D-optimality and A-optimality. We are particularly interested in

A-optimal design since it is directly linked to MSE and can be easily extended to

incorporate different link weights. Under certain conditions on the FIM, satisfied for

both loss and PDV tomography, we derive explicit expressions for both objectives
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as functions of the design parameter, which enable closed-form solution of the opti-

mal design when the probing paths are linearly independent. Using this solution as

a building block, we develop a two-step heuristic and an iterative algorithm to ad-

dress the issues of linearly dependent paths and dependency on unknown parameters.

Our evaluations on real datasets verify the effectiveness of the proposed solution in

reducing MSE, even if the FIM-based bound can be loose.

Discussion: While our design is based on probabilistic allocation of probes, our

solution can be easily modified for deterministic probe allocation. Specifically, our

formulas for the design objectives derived in Section 4.5 remain valid when replacing

the probing probability φy by the allocated number of probes Ny for each path py.

Based on these formulas, one can derive analogous solutions to (Ny)
|P |
y=1, under the

new constraints that
∑|P |

y=1 Ny = N (N : total number of probes) and Ny’s are integers.

Relaxing the integer constraint yields Ny = φyN , where φy is the design parameter

computed by our current solution, rounding of which leads to a deterministic probe

allocation. However, deterministic probe allocation faces an additional challenge in

iterative design, where the order of probing also needs to be optimized to obtain useful

estimates as early as possible. In this regard, the probabilistic design framework

simplifies the design process.
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Figure 4.6: Loss tomography, homogeneous link weights (20 monitors, 219 paths)
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Figure 4.8: Loss tomography, varying number of monitors (219 paths, 105 probes,
homogeneous link weights)
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Figure 4.9: Loss tomography, varying number of paths (20 monitors, 105 probes,
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Figure 4.10: PDV tomography, varying number of probes (20 monitors, 219 paths,
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Figure 4.11: PDV tomography, varying number of monitors (219 paths, 105 probes,
homogeneous link weights)
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CHAPTER 5

MULTICAST VS. UNICAST FOR LINK LOSS
TOMOGRAPHY

5.1 Introduction

We introduced network tomography and the inference it addresses in the previ-

ous chapter. The most adopted and investigated measurement methods for network

tomography are unicast measurement [46] and multicast measurement [10, 9, 18, 32].

Unicast tomography gathers independent measurements on multiple end-to-end paths

via unicast probes and inverts path performance metrics to estimate corresponding

link performance metrics. Multicast tomography, on the other hand, gathers corre-

lated measurements along multicast trees between each source and its corresponding

receivers via multicast probes. In networks that do not directly support multicast

communications, multicast-like measurements can be obtained by sending batches of

back-to-back unicast probes, referred to as correlated unicast, so that probes in the

same batch experience similar performance on the same link [17]. For each of the

above probing methods, there have been studies on how to allocate probes across

different paths/trees so that the overall information about the link parameters of in-

terest can be maximized [23, 51, 25]. There is, however, a lack of understanding of

when each of these methods is preferable to the other.

Intuitively, multicast is always preferable to correlated unicast as it generates

less traffic in obtaining the same measurements. Comparison between multicast (or

correlated unicast) and unicast is much less straightforward: on one hand, multicast

can provide more end-to-end measurements than unicast for the same amount of
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probing traffic (measured by the total number of hops traversed by probes); on the

other hand, unicast provides more fine-grained control over the distribution of probes

(at the level of paths rather than trees), which allows one to focus probing resources

on paths providing more information about link parameters or containing links of

higher importance.

This chapter of the thesis aims to provide an initial understanding of the strengths

and weaknesses of each probing method for inferring link loss rates in networks with

tree topologies. The tree topology represents a case of special interest in network

tomography. Besides its simplicity, the tree topology is shown to approximate latency

and bandwidth in the Internet [43], and most tomography-based topology discovery

methods generate logical topologies that are trees [28]. Given a network spanned

by a single multicast tree, we ask the following questions: (i) Can unicast probing

consistently estimate link loss rates? (ii) If so, how should we allocate the unicast

probes among different paths? (iii) How do different probing methods compare in

terms of the accuracy of estimated link loss rates, and how does the comparison

depend on parameters such as the probing budget, the network size, and the values

of link loss rates?

5.1.1 Related Work

In existing works, statistical tomography models each link metric as a random vari-

able with a (partially) unknown probability distribution, and applies various estima-

tion techniques to infer the distribution from path measurements. When supported,

multicast-based probing has been proposed to estimate link parameters from mea-

surements at multicast receivers [10, 9, 18, 32]. Specifically, [10] derives a maximum

likelihood estimator to infer link loss rates from packet losses observed at receivers

of a single-source multicast tree, which is later extended to use losses observed from

multiple trees in [9]. Analogous results have been obtained for delays, where packet
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delays observed at multicast receivers are used to infer variances or distributions of

delays at internal links [18, 32]. Multicast probing has the benefit of uniquely iden-

tifying metrics of link segments between branching points [9], but it also has the

limitation of requiring network layer support for multicast communications. To relax

this limitation, [17] has proposed a technique to emulate multicast using back-to-back

unicast probes referred to as correlated unicast in this chapter, under the assumption

that unicast probes sent sufficiently close to each other (in time) on a given path will

experience the same realization of losses on each link of the path.

Both multicast probing and correlated unicast probing have the drawback that

they require sophisticated coordination at the network layer. In contrast, unicast

probing only measures the pairwise performance between individual source-destination

pairs and is generally supported by any network. Under the assumption that probed

paths form a full-rank measurement matrix, [46] has shown that it is possible to infer

link delay distributions solely from end-to-end delays of (independent) unicast probes.

Recently, there have been tremendous advances in techniques to ensure the full-rank

assumption, including techniques to transform the original topology into a logical

topology such that the measurement matrix on the logical topology has full rank

[53], and techniques to construct unicast paths (under the assumption of controllable

routing) such that the measurement matrix has full rank [34].

The theory of experiment design for general statistical inference casts the prob-

lem as an optimization of a set of design objectives that capture various aspects of

estimation accuracy [4]. The approach has recently been applied to design experi-

ments for network tomography. Under multicast or correlated unicast, [23, 51] have

proposed to measure the quality of an experiment design by appropriate functions of

the Fisher Information Matrix (FIM) and to design probing experiments such that

certain performance criteria based on the FIM can be optimized (A-optimality in [23],

D-optimality in [51]). These solutions either rely on numerical solvers [51] or a coarse
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approximation that ignores off-diagonal elements of the FIM [23]. This approach has

recently been extended to unicast probing, where closed-form solutions are derived

to optimally allocate probes among unicast paths under the criterion of D-optimality

or A-optimality [25].

We note that we focus on inferring link parameters (loss rates) from multicast

or unicast probes with known topology. There is another line of work on inferring

(routing) topology of a network from end-to-end observations, where most work as-

sumes multicast or emulated multicast (by back-to-back unicast) probes. See [28] and

references therein for more details.

5.1.2 Summary of Contributions

In investigating multicast and unicast on tree structures and comparing their

performance, our specific contributions are:

1. We establish the identifiability of all links in trees without degree-2 nodes using

unicast probes between leaves, and propose a path construction algorithm to

achieve identifiability.

2. We derive a closed-form expression for optimal probe allocation for unicast

probing.

3. We derive explicit formulas for evaluating the FIM for both unicast and multi-

cast probing.

4. We use packet-level simulation to evaluate the performance of unicast, multicast

and correlated unicast under varying system parameters including link weights,

link success rates and tree size. Besides confirming that multicast always out-

performs correlated unicast, our results show that unicast outperforms multicast

when the probing budget measured in total number of hops traversed by probes

is small. This is especially true when links have heterogeneous weights. On the
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other hand, multicast and correlated unicast are more robust than unicast to

different link success rates and different tree sizes.

5.2 Loss Tomography on Trees

5.2.1 Network Model

igh-level question: What is the performance, measured by the Cramér-Rao bound

(CRB) and MSE, of multicast probing, emulated by back-to-back unicast probing

along multicast trees, compared with unicast probing? The answer is non-trivial

because on one hand, emulated multicast probing can identify a larger number of

links by leveraging correlation between concurrent probes [10]; on the other hand,

unicast probing gives more flexibility to design experiments and optimize allocation

of probes. In this comparison, we only consider loss tomography. Recall that θl

denotes the success rate of link l, and αi :=
∏

l∈pi θl the success rate of path pi.

Let T = (V, L) denote a directed tree with nodes V and links L. Let s ∈ V denote

the source which is the root of the tree and R ⊂ V the receivers which are leaf nodes.

The complement of the leaf nodes I = V − R is referred to as the internal nodes.

Following [10], we assume that the other nodes (referred to as branching nodes) have

degrees of at least three. Without loss of generality, we label the nodes so that s = 0

and R = {|L| − |R|+ 1, . . . , |L|}. We label the links so that link i is the link leading

to node i (from node 0). We refer to node 0 as the root of the tree and R as the set

of leaves. Let f(i) denote the parent of node i in the tree, d(i) the set of children

of node i, and s(i) the set of siblings of node i (i.e., s(i) = {j ∈ d(f(i)) : j 6= i}).

Losses on link l ∈ L follow a Bernoulli process with an (unknown) loss probability

1− θl, θl being the success probability. We assume that losses are independent from

link to link, and across time. We also assume symmetric loss rates on both directions

for each link.
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5.2.2 Observation model and MLE of unicast

Let P denote the set of paths on which the monitoring system can inject probes on

and observe the end-to-end performance. Link success rates are then inferred from

unicast measurements on paths. Following the definition in [25], the measurement

matrix is a |P | × |L| matrix A := [Ay,l], defined by P , where Ay,l = 1 if link l is on

path y and Ay,l = 0 otherwise. We use the same probabilistic design model as in [25],

where each probe is sent over a path y randomly selected from P with probability

φy. Here φ := (φy)
|P |
y=1, satisfying φy ≥ 0 and

∑|P |
y=1 φy = 1, is a design parameter.

Let y be the selected path for a probe and x an indicator that the probe successfully

reaches its destination. Then the observation model becomes:

f(x, y; θ, φ) = φy(
∏
l∈y

θl)
x(1−

∏
l∈y

θl)
1−x. (5.1)

We use the MLE proposed in [25] for unicast as follows,

Proposition 18. [25] If the measurement matrix A has full column rank and there

is at least one successful probe per path, then the MLE for loss tomography is1:

θ̂ = exp
(
(ATA)−1AT log α̂

)
, (5.2)

where α̂ is the vector of empirical path success rates.

5.2.3 Observation model and MLE of multicast

For multicast probing, the observation model is more complicated. Let X =

(Xi)i∈V denote the indicators for a multicast probe to reach individual nodes in the

tree, Xi = 0 if the probe doesn’t reach node i and Xi = 1 if it does. XR = (Xi)i∈R

1For ease of presentation, we use g(z) to denote the vector obtained by applying a scalar function
g(·) to each element of vector z.
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denotes the subset of indicators for leaf nodes, and XI = (Xi)i 6∈R the subset of

indicators for internal nodes (including the root, for which X0 := 1); note that only

XR is observable.

Since only a fraction of the Xi’s are observable, the likelihood function is a

marginal conditional distribution:

P (XR|θ) =
∑
XI

P (XI ,XR|θ) (5.3)

where p(X|θ) is the joint conditional distribution of all Xi’s for given link success

rates θ. Each Xi, i ∈ V only depends on its parent Xf(i), so we can write the joint

distribution as,

P (X|θ) =
∏
k∈V

P
(
Xk|Xf(k),θ

)
. (5.4)

Note that because of the tree structure, each Xi, i ∈ V appears only once in front of

the conditional sign “|” in (5.4).

P (() Xk|Xf(k),θ) is the observation model at each node k given the observation

at its parent node f(k). If Xf(k) = 1, then at node k, Xk = 1 or 0 with probability θk

or θ̄k := 1− θk (recall that θk is the success probability of link k that connects nodes

f(k) and k); if Xf(k) = 0, then Xk = 0. Therefore, we have

P
(
Xk|Xf(k), θ

)
= Xf(k)(Xkθk + (1−Xk)θ̄k)

+ (1−Xf(k))(1−Xk).

(5.5)

Substituting (5.5) into (5.4) and then into (5.3) gives an explicit expression for the

likelihood function for multicast probing.

An indirect form of the MLE is provided in [10] as follows. For each node k, define

γk as the probability that any receiver under node k receives a multicast probe, and
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ak the probability that a multicast probe reaches node k. Then θk, γk, and ak are

related as follows:

θk = ak/af(k), k ∈ V \ {0} (5.6)

ak = γk, k ∈ R, (5.7)

1− γk/ak =
∏
j∈d(k)

(1− γj/ak) , k 6∈ R. (5.8)

Equations (5.6–5.8) jointly define a transformation from γ to θ. Note that the em-

pirical value of γk, namely γ̂k :=fraction of multicast probes that are received by at

least one of the receivers under node k, is directly measurable. Moreover, γ̂k is the

MLE of γk. If the transformation from γ to θ is one-to-one, then we can easily obtain

the MLE of θ from γ̂ by applying the invariance property of MLE. Indeed, this has

been shown in [10].

Theorem 19 ([10]). The transformation from γ to θ defined by (5.6–5.8) is a bi-

jection. Therefore, θ̂ defined by substituting γ̂ into (5.6–5.8) is the MLE of θ under

multicast probing.

Note that the estimators defined in Equation (5.2) and Equations (5.6–5.8) are

both asymptotically unbiased.

5.3 Identifiability and Path Construction

In order to compare the unicast and multicast approaches, it is important that

both methods identify all of the links. Multicast probing is shown to identify all

links in trees without degree-2 nodes (i.e., all nodes are either leaves or branching

nodes). Below we will show that with suitably constructed paths, unicast probing

can achieve the same identifiability using the same set of measurement nodes (s ∪R

in the multicast tree).
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Algorithm 4: Unicast Path Construction for Tree Topology

1: P ← ∅
2: for each leaf v ∈ R do
3: P ← P ∪ p0→v
4: end for
5: for each branching node v ∈ V \ {0 ∪R} do
6: select cv1, c

v
2 ∈ d(v) such that cv1 6= cv2

7: select leaves lv1 under cv1 and lv2 under cv2
8: P ← P ∪ plv1→lv2
9: end for

We establish the above by specifying a path construction algorithm that achieves

identifiability. Consider Algorithm 4, which constructs a set of |L| simple paths in

two steps:

1. select all paths from root to leaves (lines 2–4);

2. for each branching node v, select a path between two arbitrary leaves under

different children of v (lines 5–9).

Here we use the notation pv→w to denote the (unique) path in the tree between nodes

v and w. For example, for the multicast tree in Fig. 5.1, Step (1) constructs paths

p0→4, p0→5, p0→6, and p0→7, and Step (2) constructs paths p4→5, p4→7, and p6→7.

Figure 5.1: Example: unicast paths for identifying links in a multicast tree.
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The following theorem states that paths constructed by Algorithm 4 identify all

links in a tree without degree-2 nodes.

Theorem 20. For a tree T with no degree-2 nodes, unicast probing between the

monitors identifies all links in the tree if and only if all degree 1 nodes are monitors.

Proof. It is easy to see that the condition is necessary, as otherwise the link leading

to a non-monitor leaf cannot be measured. The proof of necessity follows because

given the metrics of the paths constructed by Algorithm 4 each equals the sum of the

traversed link metrics, thus allowing us to identify the metrics of all the links in the

tree. Since, under the assumption of independent losses for unicast, link/path success

rates can be converted to additive metrics by taking the logarithm, the result follows.

Let wi,j denote the metric of the path between nodes i and j; Given the path

construction of Algorithm 4, wi,j can be directly estimated from path performance

(e.g., losses) if and only if both i and j are degree-1 nodes (i.e., root or leaves).

Suppose we construct paths according to Algorithm 4. The constructed paths have

the property that they can identify w0,v for all v. In particular, if v is a branching

node (e.g., node 1 in Fig. 5.1), and the path constructed for v in Step (2) is between

leaves v1 and v2 (nodes 4 and 7 in Fig. 5.1), then w0,v = (w0,v1 + w0,v2 − wv1,v2)/2.

The metric of link (i, j) is then determined by wi,j = w0,j − w0,i, assuming node i is

closer to node 0 than node j.

Remark: Note that the theorem only states that there exists a set of unicast

probing paths that suffice to identify all links. This set may not be unique, and

one can add paths to the set without affecting identifiability. Which set of paths to

use and how many probes to send on each path are to be optimized by experiment

design.
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5.4 Performance Bound and Experiment Design

Given the observation model f(O; θ) where O represents the observations, the

(per-measurement) FIM wrt θ is an |L| × |L| matrix, whose (i, j)-th entry is defined

by

I(i, j) = −E
[

∂2

∂θi∂θj
log f(O; θ)

∣∣∣θ] . (5.9)

For unicast O = {x, y} in (5.1), and for multicast O = XR in (5.3).

The significance of the FIM is that it provides a fundamental bound on the error

of unbiased estimators. Specifically, if θ̂ is an unbiased estimator of θ using N i.i.d.

measurements, then the covariance matrix of θ̂ satisfies2 cov(θ̂) � 1
N
I−1(θ; φ), known

as the Cramér-Rao bound (CRB) [41]. In particular, the MSE in estimating θl, given

by cov(θ̂)l,l, is lower bounded by I−1
l,l (θ; φ)/N .

5.4.1 FIM Based Experiment Design for Unicast

Based on the observation model (5.1), as shown in [25], the (i, j)-th entry of the

FIM for unicast loss tomography is:

Ii,j(θ;φ) =

|P |∑
y=1

φy
αy(θ)

θiθj(1− αy(θ))
1{i, j ∈ py}. (5.10)

where 1{·} is the indicator function, and αy the path success rate of y.

Based on the FIM, the goal of experiment design is to optimize some function

of the FIM, which is related to bounding estimation errors, by choosing the design

parameter φ. We leverage the previous results on optimal experiment design [25]. We

consider weighted A-optimality, which is to minimize the weighted trace Trace(I−1 ·

diag(ω)) with ω = (ωl)l∈L denoting the link weights, as it directly corresponds to

2For matrices A and B, A � B means that A−B is positive semi-definite.
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weighted link MSE for unbiased estimators. The previous result states that if a set

of paths forms a basis for the link space, i.e. the measurement matrix A (defined

in Section II.B) is invertible, then the optimal probe allocation is given by φy =
√
Ay(θ,ω)∑|L|

i=1

√
Ai(θ,ω)

, where Ai(θ,ω) for path i is a function of θ and ω. Our focus is

therefore on selecting the optimal basis that optimizes the overall design objective,

i.e., the trace of the inverse FIM. Under optimal probe allocation, this design objective

equals (
∑|L|

i=1

√
Ai)2, where the coefficients Ai implicitly depend on the probing paths.

To optimize path construction, we first derive a closed-form expression for Ai that

explicitly depends on the decision variables in path construction.

Consider the path construction in Algorithm 4. Let pv denote the path associated

with node v: if v is a leaf, pv = p0→v; if v is a branching node, pv = plv1→lv2 for the

selected leaves lv1 and lv2 under different children of v. Note that for a given tree with a

given root, the decision variables for this algorithm are {lv1, lv2 : ∀ branching node v}.

The key to deriving an explicit expression for Ai(θ) is to derive an explicit expres-

sion for the inverse measurement matrix A−1 = [bk,i]
|L|
k,i=1. Let wi,j denote the metric

of the path segment between nodes i and j, and mv denote the end-to-end metric of

path pv. We have that the metric of link k equals the inner product between the k-th

row of A−1 and the vector of path metrics, i.e., wf(k),k =
∑|L|

i=1 bk,imi. Therefore, we

can obtain bk,i by expressing wf(k),k as a function of mi’s. Specifically, we can express

the metric of each 0-to-v path segment as

w0,v =

 mv if v ∈ R,
mlv1

+mlv2
−mv

2
if v 6∈ R.

(5.11)

Based on these 0-to-v path metrics, we can identify link metrics as
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wf(k),k =



m
l11

+m
l12
−m1

2
if k = 1,

m
lk1

+m
lk2
−mk

2
−

m
l
f(k)
1

+m
l
f(k)
2

−mf(k)

2

if k > 1, k 6∈ R,

mk −
m
l
f(k)
1

+m
l
f(k)
2

−mf(k)

2
if k ∈ R.

(5.12)

Comparing (5.12) with the generic formula of wf(k),k =
∑|L|

i=1 bk,imi gives the value

of bk,i as in Table 5.1,

Table 5.1: value of bk,i

bk,i = k = i k 6= i

i ≤ |L| − |R| −1
2

1
2
1{k ∈ d(i)}

i > |L| − |R| 1− 1
2
1{i ∈ pf(i)}

1

2
1{i ∈ pk, i /∈ pf(k)}−
1

2
1{i /∈ pk, i ∈ pf(k)}

where i ∈ pv means that node i is on path pv. For i > |L| − |R| (i.e., i is a leaf),

i ∈ pv if and only if v = i if v is also a leaf, or i ∈ {lv1, lv2} if v is a branching node.

Substituting the above expressions for bk,i into the formula for Ai(θ) in [25] yields

the following: if i ≤ |L| − |R|,

Ai(θ) =
1− αi
αi

1

4

∑
k∈i∪d(i)

ωkθ
2
k

 ; (5.13)

if i > |L| − |R|,

Ai(θ) =
1− αi
αi

(
ωiθ

2
i (

1

4
+

3

4
1{i 6∈ pf(i)}) +

1

4

∑
k∈Φi

ωkθ
2
k

)
, (5.14)

where Φi := {k 6= i : i ∈ pk, i 6∈ pf(k)} ∪ {k 6= i : i 6∈ pk, i ∈ pf(k)}. One observation

from the closed-form solution is that the coefficient corresponding to the path for
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a branching node, given by (5.13), only depends on path selection through αi, the

success rate of this path: the larger αi, the smaller Ai(θ). This observation motivates

a heuristic that when selecting lv1 and lv2, we can select the leaves with the highest

success rates to reach node v, and thus the path between lv1 and lv2 will have the

highest success rate (among all paths between leaves under different children of v).

This can be computed recursively.

Let λv denote the highest success rate for a probe sent by v to reach any leaf

under v, i.e., it is the success rate of path segment pv→lv1 for lv1 and lv2 selected by the

above heuristic. We then have:

1. if all children of v are leaves, then lv1 and lv2 are the leaves connected to v by the

two links with the highest success rates, and λv = θlv1 ;

2. if not all children of v are leaves, then lv1 and lv2 are the leaves with the two

largest value of λcθc among all c ∈ d(v), and λv =

5.4.2 FIM and Performance Bound for Multicast

Based on the likelihood function (5.3), we are ready to derive an explicit expression

for the FIM for multicast. By definition, the (i, j)-th entry in the FIM equals Ii,j(θ) =

−
∑

XR
P (XR|θ) ∂2

∂θi∂θj
L(XR|θ), where L(XR|θ) = log(P (XR|θ)) is the log-likelihood

function. Substituting (5.3) into the above equation gives

Ii,j(θ) =−
∑
XR

1

P (XR|θ)

[
P (XR|θ)

(∑
XI

∂2

∂θi∂θj
P (X|θ)

)
−
(∑

XI

∂

∂θi
P (X|θ)

)(∑
XI

∂

∂θj
P (X|θ)

)]
. (5.15)

Based on the explicit expression for P (X|θ) given by (5.4) and (5.5), we have

∂

∂θi
P (X|θ) = Xf(i)(2Xi − 1)

∏
k 6=i

P
(
Xk|Xf(k), θ

)
, (5.16)
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and

∂2

∂θi∂θj
P (X|θ) =

0, i = j,

Xf(i)(2Xi − 1)Xf(j)(2Xj − 1)

×
∏
k 6=i,j

P
(
Xk|Xf(k), θ

)
,

i 6= j.

(5.17)

Substituting (5.16, 5.17) into (5.15) gives the FIM for multicast probing, and

I−1
ii (θ)/N gives the lower bound on the MSE of any unbiased estimator of θi.

n the simple case of a single multicast tree, the design for multicast probing be-

comes trivial: we send batches of |R| back-to-back unicast probes per batch, each

following the path from the source to a receiver in the multicast tree. It has been

verified in [17] that such a batch of back-to-back unicast probes can mimic obser-

vations taken under a multicast probe. Note that to ensure fair comparison with

(independent) unicast probing, we consider each batch as |R| probes instead of a

single multicast probe.

5.5 Performance Evaluation

We compare the performance of loss tomography based on multicast or unicast

probing by packet-level simulations on binary tree topologies. We build a simulator

for multicast measurement and inference, using the inference algorithm from [10].

For unicast, we use the same simulator as in [25] and among its three proposed

measurement allocation methods we use ’Iterative A-optimal design’ which does not

assume known link success rates. To simulate correlated unicast, we send batches of

|R| back-to-back unicast probes per batch, each following the path from the source
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to a receiver in the multicast tree, assuming the packet loss realizations on each link

are the same for all probes in the same batch.

To avoid degree-2 nodes we add a node to the root node of a standard binary tree

and consider the added node as root node. Link success rates are randomly generated

with a uniform distribution between 0.1 and 1 unless otherwise specified. This model

is motivated from the RoofNet study [25], wherein link success rates were found to

be well approximated with Uniform(0.1, 1). For unicast, we simulate the iterative

A-optimal design by estimating link success rates for every 100 probes, and updating

the design parameter φ as in Algorithm 2 in [9]. For all topology and link settings, the

experiment results are based on simulations of 30 Monte Carlo runs, each consisting

of 100 of iterations of 100 probes per iteration.

It’s not fair to compare the performance of multicast and unicast for the same

number of probes because a unicast probe only traverses a path between one pair

of degree 1 nodes while a multicast probe traverses the entire tree and thus has a

much larger overhead. Thus we use the number of traversed hops as the “cost” of

measurement. For multicast, number of hops traversed by each probe is the number

of links in the whole tree. For unicast, it’s the length of the probed end-to-end path.

For correlated unicast, it’s the sum of path lengths of all root-to-leaf paths in the

tree.

5.5.1 Convergence Rate

The CRB gives a lower bound on MSE based on the FIM. It decreases with

rate 1/#probes. Figure 5.2 shows the CRB and MSE versus number of probes for

both multicast and unicast tomography for a 2-leaf tree, where MSE is calculated

with 30 Monte Carlo runs. The average link CRB is 0.24 for multicast and 1.28 for

unicast. Multicast has lower CRB and MSE here because each multicast probe gives
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Figure 5.2: Average link MSE and CRB of a 2-leaf tree

information on all 3 links in the tree, while unicast only gives information on links in

the path that’s probed (each unicast probe traverses 2 links in this case).

After adding plot of bias, add:) The results show that CRB is tight for both

multicast and unicast even if the MLEs are biased.

5.5.2 Impact of link weights

Unicast probing has the flexibility to allocate probes unevenly across the network,

which intuitively favors the cases where only a portion of the network is of interest,

while multicast measures all the links evenly. We introduce link weights to model rel-

ative importance and compare the subsequent performance of all three measurement

methods. Figure 5.3 shows weighted average MSE against number of hops in a 16-leaf

full binary tree with 32 nodes and 31 links. For homogeneous link weights, all links

have unit weight. For heterogeneous link weights, we randomly select a link and set

its weight as 500 while all the other links have unit weight. When links have homo-

geneous weights as in Figure 5.3(a), unicast achieves a lower MSE when the number

of hops is small due to its flexibility in sending more probes on paths providing more

“information” as measured by the FIM. But unicast is outrun by multicast and corre-

lated unicast as the number of hops increases. When link weights are heterogeneous
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Figure 5.3: MSE vs. number of hops with homogeneous/heterogeneous link weights.
(On a full binary tree with 16 leaf nodes. All link success rates ∼ Uniform(0.1, 1).)

as in Figure 5.3(b), the advantage of unicast becomes more significant as its probe

allocation takes into account link weights.

5.5.3 Impact of link success rate distribution

In our simulation, link success rates by default are uniformly distributed between

0.1 and 1. We randomly select a fraction of links to be ‘reliable links’, and set their

success rates to be Uniform(0.9, 1). Given a fraction of reliable links, we generate

10 instances of link success rates for all links. As shown in Figure 5.4 for a full 16-
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leaf binary tree, when the fraction of ‘reliable links’ gets larger, for a fixed and large

enough (65000+) number of hops, the MSE of unicast probing becomes smaller, a

similar effect was also observed in [25]. For multicast and correlated unicast probing,

the MSE is largely invariant under changes in the link success rate distribution.

5.5.4 Impact of tree size

We increase the size of the full binary tree from 3 links (2 leaf nodes) to 63 links

(32 leaf nodes) and evaluate the average link MSE. Figure 5.5 shows MSE vs. tree

size. For a meaningful comparison among trees of difference sizes, we fix the ratio of

total hop count and number of links to 2000, so that the total number of hops grows

proportionally to the size of the tree. The performance of multicast and correlated

unicast remains largely the same as the tree size increases, while both the median

and the range of MSE of unicast probing increase as the tree grows larger.

5.6 Conclusions

We compared the performance of link loss rate inference from unicast/multicast

probes using network tomography for tree topologies. We showed that both probing

methods achieve identifiability when there is no degree-2 node in the tree. Our empir-

ical comparison shows that while multicast generally gives good performance, unicast

with optimized probe allocation can outperform multicast for inferring heterogeneously-

weighted links under tight probing budget.
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CHAPTER 6

ONLINE ROUTING WITH INFERRED PATH
RELIABILITY

6.1 Introduction

The performance of end-to-end connections in large scale networks is strongly

affected by the performance of internal components of the network, as represented link

delays or loss probabilities. Traditional routing algorithms such as OSPF determine

routes between end-host pairs without considering such network internal metrics.

This motivates the study and design of routing algorithms that take internal metrics

such as delay or reliability into consideration for global optimal routing. When the

internal metrics are know, static solutions for routing can be calculated offline such

as OSPF. However, when we assume the underlying network metrics are unknown,

algorithms that can learn the metrics at the same time of deciding best routes, a.k.a.

online routing, are needed.

Routing takes different forms in different application scenarios. In ad hoc net-

works, algorithms are designed to decide on next-hop routing at each node. Another

kind of routing, however, decides the whole route (that often includes multiple hops)

between the source and destination node, and is referred to as end-to-end routing.

This part of the thesis focuses on the latter, where we assume there are a set of paths

between a source node and a destination node with unknown path reliabilities. Our

goal is to design an online routing algorithm that finds the most reliable paths among

them all so that given an end-to-end transmission budget, we can transmit as many

packets successfully as possible from the source to the destination. We assume the
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network topology is known, but link metrics(e.g. packet loss probabilities) are un-

known and non-time-varying. To learn the true quality of a path, the source has to

probe it repeatedly to accumulate sufficiently many samples. Although under basic

stationary conditions, any probing strategy that samples each path indefinitely often

(e.g. round-robin) eventually learns the true average path metrics and therefore de-

termines the best path to use, the probing strategy affects performance over a finite

time horizon, as it determines the number of times each path is measured, which then

determines the quality of path estimation and thus the quality of the routes. It is

hence desirable to have an online probing algorithm that not only converges to the

optimal route eventually, but also minimizes the use of suboptimal routes during the

convergence process. Intuitively, if all paths are independent of each other, we will

have to probe each of them a sufficiently number of times in order to get accurate

estimates of the underlying path metrics, which makes the problem intractable as

the number of paths grows large in large scale networks. Fortunately, however, paths

in our problem have strong dependencies because of the presence of many shared

links. Dependencies between paths makes it possible for us to reduce the space of

paths that we must probe a possibly small subset of all candidate paths that satisfies

certain properties, so that we can get accurate estimates of the metrics of all path by

only probing path in the subset.

Out problem fits into a classic Multi-Armed Bandit problem 2 setup, where the set

of paths are the “arms”. In the context of Multi-Armed Bandit problem, a commonly

used measure of the sub-optimality of the probing strategy is regret, defined as the

gap of the performance between the paths selected by an online algorithm and the

optimal path that is the most reliable based on the true link reliabilities. The goal of

this chapter is to design a online routing algorithm that determines at each discrete

time steps, which path to send on a packet transmission (a.k.a. a probe), so that to
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find the most reliable path while minimizing the regret (average transmission losses)

during the overall process.

In the context of determining the most reliable path, we consider two observation

models:

1. Bandit feedback: During each probe, link states are not directly observable.

Sending a probe over a path results in either a success or a loss. When the

latter occurs, no information is revealed as to which link might have dropped

the probe

2. Semi-bandit feedback: During each probe, the measurement result not only in-

cludes information about whether it ends up a success or a loss, but also the

location of the link where the loss occurred when a loss happens.

For each observation model, we propose an online algorithm and determines probe

allocations on the set of paths at each time step. We provide a regret upper bound

and regret lower bound for the bandit feedback model, and a regret upper bound the

the semi-bandit feedback model. The following is a summary of our contributions:

1. Topological structure-based learning algorithms: We propose algorithms that

leverage path reliability correlations introduced by link overlaps, and improve

the performance of probing strategy by reduce the probing space from all the

candidate paths to a subset of paths that satisfies certain topological properties.

Specifically, we find probing the basis instead of all paths improves the perfor-

mance under bandit feedback model, while probing the minimum cover set of

links brings similar performance gains under the semi-bandit feedback model.

2. Analysis of performance gain from having information on loss locality: By an-

alyzing the algorithms and finding their performance bounds, we compare the

achievable regret under of bandit feedback model and semi-bandit feedback
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model. Our results show that the potential performance gain depends on the

maximum path length, d, of the candidate paths set. Let n be the number of

links, when d = O(1) or d = O(log n), the semi-bandit feedback model yields a

smaller regret upper bound than the bandit feedback model. In the case that

d = O(1), the regret upper bound of semi-bandit feedback model matches the

regret lower bound of the bandit feedback model.

3. Evaluation on real traces: We evaluate the performance of our algorithms on

a small scale network with simulations. We run our algorithms to learn the

paths reliability between a pair of nodes in the network. Our simulation results

show that the Semi-bandit Feedback model has an obvious advantage over the

Bandit Feedback model. Meanwhile for the Bandit Feedback model under small

network sizes, there’s no significant benefit of measuring the basis instead of all

the paths. Furthermore, we investigate how the performance of our algorithms

are affected by tuning some of the design parameters.

6.1.1 Related work

Learning-based routing has been studied in the wireless context and falls in two

categories: hop-by-hop routing that fits especially well into ad hoc networks[6], and

end host-based routing where an end host controls the selection of intermedia nodes

for a route. Our work falls in the realm of end host-based routing.

Online routing has also been studied using the stochastic Multi-Armed Bandit

model, where arm rewards are assumed to follow some probability distributions. Some

works deal with the case where the underlying probability distributions are time-

varying, while others assume the probability distributions don’t change over time.

Our work falls into the latter category, a.k.a., non-adversarial stochastic Multi-Armed

Bandit model. When assuming arms are independent, the UCB algorithms[26] has

been proposed and studied in 2012. However, routing in networks often means the
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arms in the model are correlated since paths can share common links in the networks.

Under this scope, people have studied various methods for online routing with regard

to path delay, where the goal is to find the shortest paths. Different assumptions

regarding measurement granularity have been investigated. Assuming one can observe

each individual link delay when measuring a path, a method using combinatorial

optimization has been proposed[21] and shown to achieve a regret upper bound of

O(n4 log T ), where n is the number of links and T is the time horizen. Following the

same assumption, the benefit of decoupling measurement paths and routing paths

were investigated[24], and it were shown that decoupling can improve the regret upper

bound by reducing upper bound to O(log T ). Another line of work assumes one can

only observe end-to-end delays. Utilizing the correlation of paths, an algorithm that

only directly measures a subset of the paths has been proposed and proved to achieve

an upper bound of regret as O(md3 log T ), where m is the number of paths and

d is the maximum path length. This chapter investigates both assumptions of the

measurement granularity, path-level measurement and link level measurement. And

we are the first one to study online routing concerning transmission reliability.

The rest of this chapter is organized as follows. Section II formulates the problem.

Section III investigates the bandit feedback model, proposes a probing algorithm and

analyze its performance with a regret lower bound and regret upper bound. Section IV

then investigates the semi-bandit feedback model with proposing a probing algorithm

and analyzing its performance with a regret upper bound. Section V evaluates the

proposed solutions. Section VI concludes the chapter.

6.2 Problem Formulation

We define the online routing problem and propose our solutions in this section.

For our online routing algorithms, we provide performance bounds with proofs.
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6.2.1 Network model

Let G = (V, L) be the topology of the network, where V is the set of vertices

and L = {l1, l2, · · · , ln} is the set of links. Let P be an m-by-n path matrix, with

entries pij = 1 (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) if link j is on path i and pij = 0

otherwise. Each row of P , pi (i = 1, 2, . . . ,m), is a path in the network represented

as an n-dimensional row vector.

Each link li ∈ L has a success probability, denoted by θi. In other words, 1 − θi

is the probability that a packet is lost at link li. We assume the true values of

θi, i = 1, 2, . . . , n are unknown and that packet losses are independent across links

and i.i.d. over time for each link. Then the success probability of each path pi

(i = 1, . . . ,m), denoted as αi, is

αi =
n∏
j=1

θ
pij
j .

Let ~θ = (θ1, θ2, . . . , θn)T , ~α = (α1, α2, . . . , αm)T be the column vector of all link success

probabilities and path success probabilities respectively. We have,

~α = exp(P log(~θ)).

Without loss of generality., we assume that the path success probabilities are non-

increasing in their indices, α1 ≥ α2 ≥ . . . ≥ αm.

6.2.2 Learning the Most Reliable Path

Our problem is that at each time step t, t = 1, 2, . . . , T , we need to select a path

with index y(t) for one packet transmission (a.k.a. a probe). As the result of each

probe, we get the reward X(t), which is an indicator that equal to 1 if the probe

at time t on path y(t) has successfully reached the destination and 0 if the packet
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is dropped somewhere along the path. Thus {X(t)} are Bernoulli random variables

with P (X(t) = 1) = αy(t).

The objective of learning the most robust path is to determine y(t) for all 1 ≤

t ≤ T , such that the expected cumulative reward from all time steps until T ,

E
[∑T

t=1X(t)
]
, is maximized.

Let p1 denote the path with the largest success probability, and {X1(t)} a Bernoulli

process describes packet transmission on that path with P (X1(t) = 1) = α1. We

define the regret at time T as

R(T ) = E

[
T∑
t=1

[X1(t)−X(t)]

]
(6.1)

= TE [X1]−
T∑
t=1

E [X(t)] (6.2)

= Tα1 −
T∑
t=1

αy(t). (6.3)

6.2.3 Observation models

We consider the following two observation models:

Bandit feedback model: Probing result W (t) at time t consists of whether the probe

has traversed the whole path successfully and the index of path,

WBF (t) = {X(t), y(t)}.

Semi-bandit feedback model: Probing resultW (t) consists of the indicatorX(t) (X(t) =

1 if the probe is successful), and the index of link where the loss happens, denoted

I(t). In the case of a success, I(t) = 0. Thus we have,

WSF (t) = {X(t), y(t), I(t)}.
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6.3 Bandit feedback

In this section, we propose our solution for the Bandit Feedback model and provide

performance bounds on the algorithm.

6.3.1 Path basis

Recalling we define a path pi, i = 1, . . . ,m as a n-dimensional vector where pi,j = 1

if link lj is on path pi and pi,j = 0 if not. A path basis for all the paths in P is a subset

of paths so that any path outside the basis can be represented as linear combinations

of paths inside the basis. There can be multiple bases for a set of paths. The

minimum possible size of a basis is lower bounded by the rank of the path matrix P .

Let B = {p1, p2, . . . , pnb} be the set of paths in a basis of size nb. Then

pi =
∑
pj∈B

cijpj, (6.4)

∀ pi /∈ B, ∃ {cij : pj ∈ B} with |cij| ≤ 1. We denote the maximum absolute value of

all coefficients cij by

cmax = max
pi /∈B,pj∈B

|cij|. (6.5)

What motivate us to look at the basis is that the size of a basis can be much

smaller than the number of all paths. If we can find the best path by focusing on

learning the basis, we can significantly reduce the problem size. We present the

following lemma to demonstrate this to be true for complete graphs.

Lemma 21. In a complete graph with n nodes, there are O((n − 2)!) simple paths1

between any pair of nodes. Furthermore, all 1-hop, 2-hop, and 3-hop paths between

the pair of nodes form a basis for all the paths. The size of this basis is O(n2), which

is much smaller than the total number of paths.

1Simple paths are paths with no repetition of links or nodes.
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Proof. Let s and d denote the source and destination nodes respectively. We prove

the lemma by showing that any path p between s and d can be expressed as a linear

combination of only 1-hop, 2-hop, and 3-hop paths, recalling each path is an n-

dimensional vector with binary entries where the i-th entry is 1 if link i is on the

path and 0 if not. It’s trivial if p itself is no longer than 3 hops. If p is longer than

3 hops, let (s, v1, v2, . . . , vk, d), k > 2 be the sequence of nodes on the path. In the

vector representation of paths, each link is corresponding to the same entry in all the

paths. We denote the function that maps each link (u, v) to its index in the vector

representation as I(u, v), I : V 2 → {1, 2, . . . , n}. We assume links are undirected, so

that both (u, v) and (v, u) map to the same index, I(u, v) = I(v, u). Let p(v1,v2,...,vw)

be the vector representation of path (v1, v2, . . . , vw), then entries I(vi, vi+1) of the

vector with 1 ≤ i ≤ w − 1 are 1’s and the others entries are 0’s.

The rest of proof takes two steps.

(1). We show that any link in the path that is not connected to either s or d, say,

(vi, vj) where vi 6= s, vj 6= d, can be expressed as a linear combination of 2-hop and

3-hop paths. p(vi,vj) is a vector with only the I(vi, vj)-th element being one. Consider

the following four paths (all of them are either 2-hop or 3-hop),

(s, vi, d),

(s, vj, d),

(s, vi, vj, d),

(s, vj, vi, d),

we have the following,

p(vi,vj) =
1

2
(p(s,vi,vj ,d) + p(s,vj ,vi,d) − p(s,vi,d) − p(s,vj ,d)).

(2). Path p(s,v1,v2,...,vk,d) can then be represented as,
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p(s,v1,v2,...,vk,d) =
k−1∑
i=1

p(vi,vi+1) + p(s,v1,vk,d) − p(v1,vk).

Terms on the right side of the equation are either 3-hop paths or single-links that can

be expressed as linear combinations of 2-hop and 3-hop paths. Thus, p(s,v1,v2,...,vk,d)

can be expressed as a linear combination of 2-hop and 3-hop paths.

6.3.2 Estimators of Path Success probabilities

Given end-to-end successes/losses on paths in the basis B, we estimate path suc-

cess probabilities as follows. For a path pi in the basis (pi ∈ B), the estimated path

success probability α̂i is simply its empirical success probability, i.e., the frequency

that a packet successfully traverses that path. For a path pi not in the basis (pi /∈ B),

we use the following estimator

α̂i =
∏
pj∈B

α̂
cij
j . (6.6)

Remark: The above estimators are maximum likelihood estimators (MLE). For

pi ∈ B, the empirical path success probability is the MLE of αi as the MLE of the

mean of a Bernoulli random variable is its empirical mean. For pi /∈ B, (6.6) is the

MLE of αi due to the invariance property of MLE, as (αi)
m
i=1 and (αi)pi∈B form one-to-

one mappings αi =
∏

pj∈B α
cij
j (i = 1, . . . ,m), where cii = 1 and cij = 0 (pj ∈ B \{i})

for each pi ∈ B.

6.3.3 Algorithm LPR-BF

We propose Algorithm 5 for the online learning problem. There is a trade-off of

exploration and exploitation in the online learning problem as we formulated. At

each time slot, we decide either to explore a path that may not appear to be the

best path in order to learn path success probabilities, or to exploit the path with the

highest (empirical) success probability. To control this trade-off, we keep track of

At, the number of time slots allocated for exploration up to time t, and explore the
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Algorithm 5: Learning Path Reliability with Bandit Feedback (LPR-BF)

1: α̂i ← 0 for each pi ∈ B
2: A0 = 0
3: for each timestep t ≥ 1 do
4: if At−1 < nb(cb log t+ 1) then
5: // exploration:
6: At ← At−1 + 1
7: explore at time t by selecting a path in the basis in a round-robin order
8: else
9: // exploitation:

10: At ← At−1

11: exploit at time t by selecting the path in {p1, . . . , pm} with the largest
estimated success probability (breaking ties arbitrarily)

12: end if
13: if selected path is pi for pi ∈ B then
14: update α̂i based on the outcome of this transmission
15: end if
16: end for

paths in the basis in a round-robin fashion whenever At falls below a time-dependent

threshold (lines 4-12). In line 4, cb and nb are topology-dependent variables, where

nb is the size of B and cb must satisfy nbcb > 1 (as required for Eq. (6.7)).

6.3.4 Performance Bounds for Algorithm 5

In the proofs we use the following version of a Chernoff bound that is directly

derived from the Chernoff bound in [37]:

Lemma 22. Let X1, X2, . . . , XN be i.i.d. Bernoulli random variables with the same

mean µ. And let X̄ = 1
N

∑N
i=1Xi be the sample mean of size N , then for 0 < ∆ < 1,

P
(
X̄ ≥ (1 + ∆)µ

)
≤ e−Nµ∆2/3;

P
(
X̄ ≤ (1−∆)µ

)
≤ e−Nµ∆2/2 < e−Nµ∆2/3.

We present the following lemma, which will assist the proof of the regret upper

bound of Algorithm 5.
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Lemma 23. With Algorithm 5, if nbcb > 1, we have,

At ≤ dnb(cb log t+ 1)e,∀t ≥ 1. (6.7)

Furthermore, let2 t∗ := min{t : t ∈ N, t− 1 ≥ nb(cb log t+ 1)}, then

At ≥ nb(cb log t+ 1),∀t ≥ t∗. (6.8)

Proof. In the scope of this proof, we omit the subscript in nb and cb, and use n and

c instead.

(1) Proof of (6.7) by induction.

Since A0 = 0, and A1 = A0 + 1 = 1 ≤ dnc(log(1) + 1)e, (6.7) holds for t = 1. Assume

(6.7) holds for t = t′ so that At′ ≤ dn(c log(t′) + 1)e. Then for At′+1 we have the

following,

if At′ ≥ n(c log(t′ + 1) + 1), then

At′+1 = At′

≤ dn(c log(t′) + 1)e

< dn(c log(t′ + 1) + 1)e;

and if At′ < n(c log(t′ + 1) + 1), then

At′+1 = At′ + 1

≤ dn(c log(t′ + 1) + 1)e − 1 + 1 (At′ ∈ N)

= dn(c log(t′ + 1) + 1)e.

Thus, by induction At ≤ dn(c log t+ 1)e,∀t ≥ 1.

2Here N denotes the set of positive integers.
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(2) Proof of (6.8).

By definition, t − 1 < n(c log t + 1) and At = At−1 + 1,∀t < t∗. Because A1 = 1, we

have

At = t,∀t < t∗.

Thus, At∗−1 = t∗ − 1 ≥ n(c log t∗ + 1), and At∗ = At∗−1 ≥ n(c log t∗ + 1).

By definition,

t∗ − 1 ≥ n(c log t∗ + 1) (6.9)

t∗ − 2 < n(c log(t∗ − 1) + 1) (6.10)

Subtracting (6.10) from (6.9), yields

1 > nc log(t∗)− nc log(t∗ − 1).

Let f(x) = nc log x+1−nc log(x−1). Its derivative f ′(x) < 0,∀x > 1, which implies

f(t) < 1,∀t ≥ t∗.

Assume (6.8) holds for t = t′ ≥ t∗ such that At′ ≥ n(c log t′+ 1). When t = t′+ 1,

if At′ ≥ n(c log(t′ + 1) + 1), then At′+1 ≥ At′ ≥ n(c log(t′ + 1) + 1). Otherwise if if

At′ < n(c log(t′ + 1) + 1), then

At′+1 = At′ + 1

≥ n(c log t′ + 1) + 1

> n(c log t′ + 1) + [nc log(t′ + 1)− nc log(t′)]

= n(c log(t′ + 1) + 1).

thus by induction, At > n(c log t+ 1),∀t ≥ t∗.
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6.3.5 Regret Lower bound

Recall that a uniformly good algorithm is one that provides consistent performance

no matter what the underlying arm distributions are. Here we derive a regret lower

bound on any uniformly good algorithm, based on the following theorem from [30],

Theorem 24. [30] For any uniformly good algorithm, and suboptimal arm i s.t.

E [Xi] < E [X∗], we have:

lim inf
T→∞

E [τi(T )]

log(T )
≥ 1

D(Xi||X∗)
, (6.11)

where τi(T ) is the total number of times that the algorithm pulls arm i up to time T ,

and D(·||·) is the KL distance.

We provide a regret lower bound for bandit feedback model that holds under any

topology and path success probability configuration. We begin with the following

definition.

Intuitively, paths in the basis are critical where erroneous success probability

estimates can lead to suboptimal routing decisions. The cost for reducing such errors

so that the algorithm can distinguish the best path from suboptimal paths in the basis

is a lower bound on the cost to distinguish the best path from all suboptimal paths,

simply because PB ⊆ P . Since path measurement outcomes are random variables, we

quantify the error by the Kullback-Liebier (KL) distance. For each non-optimal path

pi ∈ PB, i 6= 1, there is a minimum error in the path success probability distribution

to make a suboptimal path optimal, defined as

Di
∆
= D(αi||α1), (6.12)

where D(·||·) is the KL distance and α1 is the path success probability of the optimal

path.
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We have the following regret lower bound for any uniformly good algorithm that

has an O(log T ) regret upper bound.

Theorem 25. For mutually independent and i.i.d. link success probabilities, the

average regret of of any O(log T )-regret algorithm under bandit feedback satisfies

R(T ) ≥
∑

pi∈PB ,i 6=1

∆i

Di

log T, (6.13)

for all sufficiently large T , where ∆i
∆
= α1 − αi is the expected regret of probing sub-

optimal path pi once. Hence,

R(T ) = Ω(nb log T ).

Proof. Based on Theorem 24, we know the expected number of times a sub-optimal

path pi ∈ PB, i 6= 1 in the basis is probed is bounded from below as follows,

lim
T→∞

E [τi(T )]

log T
≥ 1

Di

. (6.14)

The overall regret then,

R(T ) = E

[∑
i 6=1

δiτi(T )

]

≥ E

[ ∑
i∈B,i 6=1

∆iτi(T )

]

=
∑

i∈B,i 6=1

∆iE [τi(T )]

≥
∑

i∈B,i 6=1

∆i

Di

log T,

for sufficiently large T .
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6.3.6 Regret upper bound

Before we present the upper bound on the regret for Algorithm LPR-BF, we need

to first introduce the following notations,

δi
∆
= (α1 − αi)/2, i = 2, 3, . . . , n;

δ
∆
= (α1 − α2)/2 = δ2;

δmin
∆
= 1− (1 + δ)

−1
nbcmax .

Here δi is half the difference between the success probabilities of path pi and the best

path. δ is the minimum of all δi(i 6= 1). In this work, we assume ∃a > 0 s.t. δ ≥ a > 0

is bounded away from 0. Let us examineδmin.Note that δmin is a function of nb, cmax, δ,

and

lim
nb→∞

δmin
1/nb

= lim
nb→∞

− 1
n2
bcmax

(1 + δ)
−1

nbcmax log(1 + δ)

− 1
n2
b

=
1

cmax

.

Thus,

δmin = Θ

(
1

cmaxnb

)
. (6.15)

Now we introduce the following upper bound on the regret.

Theorem 26. Assume the individual link success probabilities are bounded away from

0, cb in Algorithm LPR-BF satisfies cb > 3/(αmδ
2
min) = Θ(3c2

maxn
2
bα
−1
m ) where αm is

the minimum path success probability of all paths, and t∗ is defined as in Lemma 23.

Then the regret at time T is bounded by

R(T ) ≤ dnb(cb log(T ) + 1)e+ (m− nb)nb(1 +
1

1
3
cbαmδ2

min − 1
)

+ nb(1 +
1

1
3
cbαmδ2 − 1

) + t∗

= O((
1

θmin
)dn3

b log T ),

where d is the maximum path length.
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Proof. The regret at time T , R(T ) comes from two mutually exclusive parts of the

algorithm,

R(T ) = RA(T ) +RI(T )

where RA(T ) is the regret during exploration, and RI(T ) is the regret during ex-

ploitation.

(1). Regret during exploration

By Lemma 23, the total number of probes for exploration is bounded by AT ≤

dnb(cb log T + 1)e, and because the regret of a single probe is less than or equal to

one, obviously RA(T ) ≤ dnb(cb log T + 1)e.

(2). Regret during exploitation

Let τi(t) be the number of times that path pi is probed until time t. For all t ≥ t∗

and i ∈ B, Lemma 23 implies that At > nbcb log t. Thus τi(t) ≥ bAt/nbc ≥ cb log t,

which means each path in the basis is probed at least cb log t times during exploration

(there could be more probes during exploitation). Now we look at the probability

that any suboptimal path is selected for exploitation. Let Ei(t) denote the event

that a suboptimal path pi(i 6= 1) is selected for exploitation at time t. Recall that

δi = (α1 − αi)/2 (i ≥ 2). We have

P (Ei(t)) ≤ P (α̂i(t) ≥ α̂1(t))

≤ P ({α̂1(t) ≤ α1 − δi} ∪ {α̂i(t) ≥ αi + δi}) .

Let E(t) = ∪i 6=1Ei(t) be the event that any suboptimal path is selected for exploita-

tion at time t. Since δ ≤ δi (i 6= 1), we have

P (E(t)) = P (∪i 6=1Ei(t))

≤ P (α̂1(t) ≤ α1 − δ) +
∑
i 6=1

P (α̂i(t) ≥ αi + δ) . (6.16)
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Now we focus on P (α̂i(t) ≥ αi + δ) for i ∈ B and i /∈ B respectively. For i /∈ B,

P (α̂i(t) ≥ αi + δ) ≤ P (α̂i(t) ≥ (1 + δ)αi)

= P

(∏
j∈B

α̂j(t)
cij ≥ (1 + δ)

∏
j∈B

α
cij
j

)

≤ P
(
∪j∈B{α̂j(t)cij ≥ (1 + δ)

1
nbα

cij
j }
)

≤
∑
j∈B

P
(
α̂j(t)

cij ≥ (1 + δ)
1
nbα

cij
j

)
=

∑
j∈B,cij>0

P
(
α̂j(t) ≥ (1 + δ)

1
nbcij αj

)
+

∑
j∈B,cij<0

P
(
α̂j(t) ≤ (1 + δ)

1
nbcij αj

)
≤

∑
j∈B,cij>0

P
(
α̂j(t) ≥ (1 + δ)

1
nbcmaxαj

)
+

∑
j∈B,cij<0

P
(
α̂j(t) ≤ (1 + δ)

−1
nbcmaxαj

)
(6.17)

recall that cmax = maxi,j |cij|. Because α̂j(t) (j ∈ B) is the sample mean of τj(t)

samples, we can apply the Chernoff bound as follows

P
(
α̂j(t) ≥ (1 + δ)

1
nbcmaxαj

)
≤ e−τj(t)αj((1+δ)

1
nbcmax −1)2/3

≤ e−cb log(t)αj((1+δ)
1

nbcmax −1)2/3

= t−cbαj((1+δ)
1

nbcmax −1)2/3

≤ t−cbαm((1+δ)
1

nbcmax −1)2/3, (6.18)

where αm is the success probability of the worst path. Similarly,

P
(
α̂j(t) ≤ (1 + δ)

−1
nbcmaxαj

)
≤ t−cbαm(1−(1+δ)

−1
nbcmax )2/3. (6.19)

Note that

δmin = 1− (1 + δ)
−1

nbcmax ,

128



and that

1− (1 + δ)
−1

nbcmax ≤ (1 + δ)
1

nbcmax − 1,

we can substitute (6.18-6.19) into (6.17) to obtain

P (α̂i(t) ≥ αi + δ) ≤ nbt
−cbαmδ2

min/3. (6.20)

For i ∈ B, we have

P (α̂i(t) ≥ αi + δ) ≤ P (α̂i(t) ≥ αi(1 + δ))

≤ e−cb log(t)αiδ
2/3

= t−cbαiδ
2/3

≤ t−cbαmδ
2/3. (6.21)

Similarly, we can bound P (α̂1(t) ≤ α1 − δ). Again, we need to separate the cases

of 1 ∈ B and 1 /∈ B. Following the same argument as in (6.21), we obtain for 1 ∈ B,

P (α̂1(t) ≤ α1 − δ) ≤ t−cbαmδ
2/3. (6.22)

For the case of 1 /∈ B,

P (α̂1(t) ≤ α1 − δ) (6.23)

≤
∑

j∈B,c1j>0

P
(
α̂j(t) ≤ (1− δ)

1
nbcmaxαj

)
+

∑
j∈B,c1j<0

P
(
α̂j(t) ≥ (1− δ)

−1
nbcmaxαj

)
≤ nbt

−cbαmδ2
min/3. (6.24)

Substituting the bounds (6.20, 6.21, 6.22, 6.24) into (6.16) yields for all t ≥ t∗,

P (E(t)) ≤ (m− nb)nbt−cbαmδ
2
min/3 + nbt

−cαmδ2/3. (6.25)
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Summing up (6.25) over all t ≥ t∗ bounds the regret during exploitation as follows

RI(T ) =
T∑
t=1

P (E(t)) (α1 − αy(t)) (6.26)

≤
T∑
t=1

P (E(t)) (6.27)

≤ t∗ +
T∑
t=t∗

[(m− nb)nbt−cbαmδ
2
min/3

+ nbt
−cbαmδ2/3] (6.28)

≤ t∗ + (m− nb)nb
T∑
t=1

t−cbαmδ
2
min/3

+ nb

T∑
t=1

t−cbαmδ
2/3. (6.29)

Since for any x > 1,
∑∞

t=1 t
−x ≤ 1+1/(x− 1), we know that for any cb > [αmδ

2
min/3]−1,

(6.29) converges to a finite value as T →∞, upper bounded by

RI(T ) ≤t∗ + (m− nb)nb(1 +
1

1
3
cbαmδ2

min − 1
)

+ nb(1 +
1

1
3
cbαmδ2 − 1

),

which is constant in T . Note that t∗ is a constant that depends only on nbcb.

(3). Combining RA(T ) and RI(T )

Together with the bound on Ra(T ), we have as T →∞,

R(T ) = Ra(T ) +RI(T )

≤ dnb(cb log(T ) + 1)e+ (m− nb)nb(1 +
1

1
3
cbαmδ2

min − 1
)

+ nb(1 +
1

1
3
cbαmδ2 − 1

) + t∗.

Note that cb must be greater than [αmδ
2
min/3]−1. Assuming link success proba-

bilities are bounded away from 0 s.t. ∃a > 0 and the minimum possible link
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success probability θmin ≥ a > 0. Then α−1
m ≤ ( 1

θmin
)d. Furthermore, recalling

δmin = Θ( 1
cmaxnb

), we have cb = Θ(c2
maxn

2
b). Thus the final regret R(T ) is in the order

of O(( 1
θmin

)dc2
maxIshn

3
b log(T )), where d is the maximum path length.

6.4 Semi-bandit feedback

In this section, we propose our solution for the Semi-Bandit Feedback model and

provide a performance upper bound on our algorithm.

6.4.1 Link Cover

A link cover of path set P is a subset of P , denoted Pc ⊆ P that covers all the

links that appear in P , while a minimum link cover is a link cover with the minimum

number of paths. Let nc = |Pc| denote the number of paths in link cover Pc. There

can be many link covers for a set of paths. The algorithm we propose can be applied

with any link cover, but with the minimum link cover it achieves the best performance

bound. Finding a minimum cover set is a classic set covering problem and is proved

to be NP-hard. We won’t explore about how to find the minimum link cover given a

set of paths, but assumes it is given.

The motivation for focusing on link cover is similar to that on focusing on the basis,

namely we want to reduce the problem size by exploring a smaller set of paths instead

of the set of all the paths. A link cover provides information of all the links, while

its size can be much smaller than total number of paths. We present the following

lemma to demonstrate this to be true for complete graphs.

Lemma 27. In a complete graph with n nodes, there are O((n − 2)!) simple paths3

between any pair of nodes, and 3-hop paths between the pair of nodes form a link cover

3A reminder: simple paths are paths with no repetition of links or nodes.
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for all the paths. The size of this cover is O(n2), which is much smaller than the total

number of paths.

Proof. If we don’t consider the direct link from the source node, denoted s, to the

destination node, denoted d, there are three kinds of links in all paths: links connected

to s, links connected to d, and links connected to neither s nor d. Any link that

connects to node s, denoted link (s, u), is covered by path (s, u, w, d) where w is any

node that’s not s, u, or d. Similarly, any link that connects to node d, denoted (u, d),

is covered by path (s, w, u, d) where w is an arbitrary node that’s not s, u, or d. Any

link (u, v) that’s not connected to neither s or d is covered by path (s, u, v, d). Thus,

the set of 3-hop paths is a link cover for all the paths between s and d.

The set of all 3-hop paths may not be the minimum link cover, but in the case of

a complete graph it is much smaller than the set of all paths.

6.4.2 Estimator

During the probing process, we maintain two counters for each link, success

counter si for the number of successful transmissions on link i, and failure counter fi

for the number of losses that occur on link i. It’s easy to update si and fi using the

feedback information of each probe. Recall the feedback information of each probe

for the Semi-Bandit Feedback model is defined as WSF (t) = {X(t), y(t), I(t)}, where

X(t) is the binary indicator that equals to 1 if a probe is a success and 0 if not, y(t)

denotes the index of the path the probe is sent on, and I(t) is the location of loss

(I(t) = 0 is the probe is successful). When X(t) = 1, we add 1 to the success counter

si for all the links in the path probes. When X(t) = 0, to the links preceding link

lI(t) we update their success counter by adding 1, and we add 1 to the failure counter

fI(t) for link lI(t).
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Algorithm 6: Learning Path Reliability with Semi-bandit feedback (LPR-SF)

1: A0 = 0
2: for each each timestep t ≥ 1 do
3: if At−1 < nc(cc log t+ 1) then
4: At ← At−1 + 1
5: explore at time t by selecting a path in the minimum cover in a round-robin

order
6: else
7: At ← At−1

8: exploit at time t by selecting the path in {p1, . . . , pm} with the largest
estimated success probability (breaking ties arbitrarily)

9: end if
10: update θ̂ and α̂ after the probe
11: end for

After updating counters si and fi for all links after each probe, we first estimate

the link success probabilities with,

θ̂i =
si

si + fi
. (6.30)

And then we estimate path success probabilities with,

α̂i =
n∏
j=1

θ̂
pij
j , (6.31)

where pij = 1 if link lj is on path pi and pij = 0 if not.

6.4.3 Algorithm

With a given minimum cover set Pc of the links, we propose Algorithm 6, a.k.a.

Algorithm LPR-SF, for the semi-bandit feedback model.

6.4.4 Regret Upper Bound

For each link i we choose a path p from Pc that contains the shortest path to link

i and call this path the primal path of the link, p = Primal(i). Let Prec(i) be the
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set of links preceding link i in the primal path of i. The probability of getting an

observation of link i from a probe on the primal path:

βi =
∏

j∈Prec(i)

θj. (6.32)

Furthermore, we define

δ′ = min{(1 + δ)
1
d − 1, 1− (1 + δ)

1
d}, (6.33)

and

η = mini∈Lθiβi ≥ αm. (6.34)

Theorem 28. With Algorithm LPR-SF, for any constant cc satisfying cc > [ηδ′2/3]−1 =

O(( 1
θmin

)dd2), the regret at time T is bounded by

R(T ) ≤ nccc log(T ) +mncd(1 +
1

ccβjδ′2θj/3− 1
) (6.35)

= O((
1

θmin
)dncd

2 log(T )). (6.36)

as time T →∞.

Proof. The regret at time T , R(T ) comes from two mutually exclusive parts of the

algorithm,

R(T ) = RA(T ) +RI(T )

where RA(T ) is the regret during exploration, and RI(T ) is the regret during ex-

ploitation.
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With Lemma 23, the total number of probes for exploration is bounded by AT ≤

dnc(cc log T + 1)e. Thus, the regret accumulated from the exploration phase is,

RA(T ) ≤ (α1 − αm)× AT

≤ 1× nc(cc log(T ) + 1)

= nc(cc log(T ) + 1).

Now we analyze the regret cumulated during the exploitation phase.

RI =
T∑
t=1

P (E(t)) ∆m ≤
T∑
t=1

P (E(t))

≤
T∑
t=1

m∑
i=2

P (Ei(t)) ,

where Ei(t) denotes the event that path i is selected for exploitation at time t instead

the best path p1. Following the same argument, Equation (6.16) holds for the semi-

bandit feedback as well, namely

P (E(t)) = P (∪i 6=1Ei(t)) (6.37)

≤ P (α̂1(t) ≤ α1 − δ) +
∑
i 6=1

P (α̂i(t) ≥ αi + δ) . (6.38)

For i ≥ 2,

P (α̂i(t) ≥ αi + δ) ≤ P (α̂i(t) ≥ αi(1 + δ))

≤
∑
j∈pi

P
(
θ̂j ≥ θj(1 + δ)

1
Li

)
.

And for the best path i = 1,
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P (α̂1(t) ≥ α1 − δ) ≤ P (α̂1(t) ≥ α1(1− δ))

≤
∑
j∈p1

P
(
θ̂j ≥ θj(1− δ)

1
L1

)
.

We use the following Chernoff bound to bound the probability that link success

probability estimate θ̂j exceeds θj,

P
(
θ̂j ≥ θj(1 + δ′)|sj = k

)
≤ e−kδ

′2θj/3. (6.39)

Meanwhile the number of observations on a link follows a binomial distribution,

sPrimal(j) ∼ Binom(τPrimal(j), βj). According to Lemma 23, τPrimal(j) ≥ cc log(t), thus

P (sj ≤ (1− δ0)cc log(t)βj) ≤ e−cc log(t)βjδ
2
0/3 = t−ccβjδ

2
0/3. (6.40)

Thus, we can bound the probability of over-estimating the success probability of

link j as the following,

P
(
θ̂j ≥ θj(1 + δ′)

)
= P

(
θ̂j ≥ θj(1 + δ′)|sj > (1− δ0)cc log(t)βj

)
×

P (sj > (1− δ0)cc log(t)βj)

+ P
(
θ̂j ≥ θj(1 + δ′)|sj ≤ (1− δ0)cc log(t)βj

)
×

P (sj ≤ (1− δ0)cc log(t)βj)

≤ e−cc log(t)θjβjδ
′2/3(1− t−ccβjδ2

0/3) + t−ccβjδ
2
0/3,

where δ0 > 0 is an arbitrary constant. Similarly, the probability of under-estimating

the success probability of link j has the same bound,
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P
(
θ̂j ≤ θj(1− δ′)

)
= P

(
θ̂j ≤ θj(1− δ′)|sj > (1− δ0)cc log(t)βj

)
×

P (sj > (1− δ0)cc log(t)βj)

+ P
(
θ̂j ≤ θj(1− δ′)|sj ≤ (1− δ0)cc log(t)βj

)
×

P (sj ≤ (1− δ0)cc log(t)βj)

≤ e−cc log(t)θjβjδ
′2/3(1− t−ccβjδ2

0/3) + t−ccβjδ
2
0/3.

Recall that,

δ′ = min{(1 + δ)
1
d − 1, 1− (1 + δ)

1
d}

η = mini∈L[θiβi],

and that d is the maximum path length. It can be shown that δ′ = Θ(1/d). Then

the overall regret from exploitation is

RI(T ) ≤ mncd
T∑
t=1

[t−ccβjδ
′2θj/3(1− t−ccβjδ2

0/3) + t−ccβjδ
2
0/3]. (6.41)

Let cc be any value such that cc > [ηδ′2/3]−1, then the regret of exploitation converges

to a constant value as the following,

RI(T ) ≤ mncd(1 +
3

ccηδ′2
). (6.42)

Thus the overall regret for semi-bandit feedback is
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R(T ) = RA(T ) +RI(T )

≤ nccc log(T ) +mncd(1 +
1

ccβjδ′2θj/3− 1
)

= O(ncd
2 log(T )).

Table 6.1: Comparison of regret bounds

d R(T ) of LPR-BF R(T ) of LPR-SF
upper bound lower bound upper bound

O(1) O(n3 log T ) Ω(n log T ) O(n log T )

O(log n) O(n
3+log( 1

θmin
)
log T ) Ω(n log T ) O(n

1+log( 1
θmin

)
(log n)2 log T )

O(n) O(( 1
θmin

)nn3 log T ) Ω(n log T ) O(( 1
θmin

)nn3 log T )

6.4.5 Discussion

Now we can compare the regret upper bound under the two observation models.

Under bandit feedback, Algorithm LPR-BF gives O(( 1
θmin

)dn3
b log(T )). Under semi-

bandit feedback model, Algorithm LPR-SF gives O(( 1
θmin

)dncd
2 log(T )). Both nb and

nc are of order O(n) for arbitrary topology. Comparison of the two upper bound is

shown in Table 6.1. There is a positive gap in the regret upper bound between the

semi-bandit feedback model and bandit feedback model, as long as d = o(nb).

6.5 Evaluation On Small Scale Network

We evaluate the performance of our algorithms in this section, with a packet level

simulator we built.

6.5.1 Experiment Setup

To evaluate the performance of Algorithm LPR-BF and Algorithm LPR-SF, we

build a simulator to run the algorithms. We use the RoofNet[2] data set and extract a
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network topology with 38 nodes and 117 links. Picking two nodes from the topology

and concatenating consecutive links without branching as one single logical link, we

found the embedded graph between the source node and destination node as shown

in Figure 6.1. In this subgraph, there are 7 nodes and 12 links. we construct 19

Figure 6.1: subgraph between the source and destination

paths from the source node to the destination node. Paths are allowed to revisit

nodes but not links. The minimum size basis for these 19 paths contains 11 paths

and the minimum link cover has 4 paths. Link success probabilities are generated at

random following distribution Uniform(0.1,1). We generate ten different link success

probability instances, each for 100 Monte Carlo runs, by default.

6.5.2 Benefit of Semi-Bandit Feedback

According to Theorems 26 and 28, the constants factors cb and cc needs to satisfy

cb > 3α−1
m n2

b ,

and

cc > 3α−1
m d2,

where αm is the reliability of the worst path, nb is the size of the basis for bandit

feedback model, and d is the maximum path length. The term α−1
m yields a large

values of cb and cc. We conjecture this term is not needed and can be replaced by

one even though we cannot prove in theory. In the experiment though, we have the
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freedom to explore how values of cb and cc affect the performance of our algorithm

when we set

cb = 3n2
b , cc = 3d2.

In out setting, the constants are cb = 3n2
b = 363 and cc = 3d2 = 147 (with factor α−1

m

removed from the equation). Hence each path in the basis is probed approximately

363 log t times in Algorithm LPR-BF, and each path in the minimum cover is probed

approximately 147 log t times in Algorithm LPR-SF. Figures 6.2,6.3 show the average

reward and regret of Algorithm LPR-BF and Algorithm LPR-SF over time of ten

link success probability instances each with 100 simulation runs. Algorithm LPR-BF

significantly out-performs Algorithm LPR-SF. Meanwhile, both algorithms identify

the best path, as we see a steady, linear-like growth in the reward curves, and a very

slow growth in the regret curves.

Observe in both figures, there is a ramp at the beginning of each curve. The cause

of the ramp is that at the beginning of both algorithms, all the probes are used to

explore the basis/cover paths in round-robin manner. Figure 6.4 show the behavior of

the total number of probes for exploration, At, for the algorithms. Recall that at each

time step t, if At < nb,ccb,c log t, we increase At by one. Thus At ≈ min{t, nc log t},

where we omit the subscripts for n and c. As shown in Figure 6.4, before At increases

to the point where t = nc log t, the value of At increases by one on every time step and

all the probes go into exploration. Subsequently explorations and exploitations are

interleaved. The slope of the ramps of the average reward curves are the average path

success probability of the paths in the basis and the paths in the cover respectively.

The length of the ramps, however, are determined by variables n and c. The transition

point happens approximately at time t∗, s.t. t∗ = nc log t∗.
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6.5.3 Size of basis for Bandit Feedback

In the case there are large number of paths and the size of the minimum basis of

paths is small, it makes sense to explore only the basis and then use information of the

basis to estimate the reliability of the rest of paths. However with our network, the

size of basis is 11 while there are totally 19 paths. It’s then worth checking whether

the benefit of using a basis disappear on such small networks. We run our Algorithm

LPR-BF under the case that the basis is composed of all the paths, and compare the

performance with the case that we use a minimum-sized basis with 11 paths. Let n′b

and c′b be the values of nb and cb we use for the case that all the paths forms the

basis. Note that in this case in Algorithm LPR-BF, nb = 19 and we don’t have a

lower bound on cb anymore. For a convenient comparison, we select c′b = nbcb
n′b

= 11
19
cb,

so that the two cases will have same length of the initial purely-exploration phase.

Figure 6.5,6.6 compare the reward over time and regret over time of the two cases

respectively. Averaged over 10 different link success probability instance and 100

Monte Carlo runs, the performance of using 11 paths as the basis is slightly better

than that of using all 19 paths as the basis on the initial ramp phase, then the

difference of the two remains the same as both have found the best path. The small

difference on the slopes of the ramps in the curves of reward comes from the difference

in average path success probability of the basis with 11 paths and that of the basis

using all paths. In our case, the basis with 11 paths has a slightly larger average path

success probability. Furthermore, this small benefit may not remain for a different

selection of 11 paths as the basis, or with more link success probability instances, or

if the underlying network topology changes.

6.5.4 Tuning constant factor cb,c

Next we consider the effect of reducing cb and cc at the expense of not having a

theoretical bound. By reducing cb and cc we reduce the length of the initial phase
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of our algorithms where all the probes are used for exploration. It’s preferable in

practice if we can use a smaller number of probes and achieve the same reward, which

corresponding to using smaller values for cb(or c′b) and cc. However, the value of cb,c

determine the number of samples each path in the basis/cover get during explorations

of the algorithms. Basically, each path in the basis or cover is sampled approximately

cb,c log t times. Intuitively, if cb,c is too small, we don’t get enough sample of path

reliability in the basis or cover and hence there will be large estimation errors that

prevent our algorithm to successfully identify the best path. To verify that, we run

a set of simulations where we keep the underlying link success probability (and thus

path success probability) fixed, and let cb and cc each vary over a set of values.

We observe that the algorithms start to deviate from finding the best paths, as we

decrease value of cb,c. Figure 6.7, 6.8, 6.9 summarizes the mean and the 95% of regret

over 100 Monte Carlo runs. The black curves show the mean value and the shades

show the 95 percentiles of regret. For bandit feedback model with a basis of 11 paths,

the regret deviates for cb = 200, 100, 50, 10. The performance is especially bad when

cb = 10. The bandit feedback model using all 19 paths as the basis, however, behaves

rather robustly against varying value of c′b. It always find the best path with little

deviation. As for the semi-bandit feedback model, the algorithm behaves well before

cc decreases to 20.

6.6 Evaluation on complete graphs

Here we evaluate LPR-BF and LPR-SF on a complete graph, where the total

number of paths can be much larger than both the size of the basis and and the

cover. We consider a complete graph with seven nodes, of which we remove the link

that connects the source node and the destination node directly. Between the source

and the destination, there are totally 325 paths. While the minimum size of a basis

is 19, we investigate performance of LPR-BF with the minimum size basis and with
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a basis that uses all 325 paths. For LPR-SF, we investigate a cover that contains all

3-hop paths. In the case of a seven-node clique, there are 20 paths in the cover. Link

success probabilities are randomly generated from distribution Uniform(0.5,1). All

simulations are repeated for one hundred times.

Does it make a difference whether the best path is inside or outside the basis? To

answer this question, we fix the link success probabilities and generate ten bases that

contain the best path and ten bases that do not. We run LPR-BF on these bases,

50 Monte Carlo runs for each, and compare the regret. The result show that bases

containing the best path have slightly better performance than bases that do not

contain the best path. This suggests that the benefit of having the best path inside

the basis is minimal and it’s not necessary to specifically identify a basis containing

the best path for Algorithm LPR-BF. With this understanding, we proceed with the

rest of the evaluation using bases that contain the best path.

Compared to the previous topology which has 11 paths in the minimum size basis,

the seven-node clique network examined here has 19 paths in its minimum basis. If

we choose cb and cc as in the previous section, then

cb = 3n2
b , cc = 3d2,

where nb = 19 and d = 6. This produces a much larger cb value and a comparable

cc value compared to the previous network. This considerably longthens the initial

exploration phase for LPR-BF, as we observe in Figure 6.10. Meanwhile, cc grows on

the order of the square of the maximum path length. In this case it’s six, the same

as for the previous network. Hence the initial exploration phase for LPR-SF does

not increase in length, and we observe that LPR-SF is able to quickly switch to the

exploitation phase and correctly find the best paths.

For the same practical concern that it is desirable to shorten the initial exploration

phase to speed up the algorithm, we speed up LPR-BF by using a smaller value of cb.
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Figures 6.11,6.12,6.13 show the regret for LPR-BF when we reduce constant cb. The

shaded areas show the 99 percentile and 95 percentile of regret of LPR-BF. When we

scale cb down by a factor of 0.4, LPR-BF still performs robustly to find the best path

as the shaded area in Figures 6.11,6.12 show that in most of the Monte Carlo runs

the regret grows slowly after the initial exploration phase. When the scale factor is

lowered by 0.2, there are two runs during which LPR-BF does not find the correct

best path, as shown by the light blue area in Figure 6.13. However for most of the

runs Algorithms LPR-BF finds the best path, as shown with the dark blue area in

Figure 6.13, and the regret remains low after the initial exploration phase. This

suggests that we can scale down cb with factor 0.2 in LPR-BF for the seven-node

clique network.

We modify LPR-BF by scaling down constant cb by a factor of 0.2, and compare its

performance with some baseline algorithms, as shown in Figure 6.14. The algorithms

we compare include LPR-BF with modified cb (by a factor of 0.2) using minimum basis

and the same algorithm using all paths as a basis, LPR-SF, and UCB1 algorithm[26].

The modified LPR-BF using a small basis out-performs UCB1, it also is much better

than LPR-BF that uses a much larger basis. Algorithm LPR-SF performs the best

among all 4 methods, with constant cc unmodified.

6.7 Conclusions

In this chapter of the thesis, we design and analyze two online routing algorithms

with different observation model: bandit feedback model, and semi-bandit feedback

model. By developing the performance bounds for both algorithms, we show the po-

tential benefit of having additional feedback information in the semi-bandit feedback

model. Out theory gives guidelines of the performance when the problem scale is

large. We simulation results evaluates the performance of our algorithms and show

the benefit of exploring only the basis/cover of the paths.
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Figure 6.2: Average reward versus time (number of
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Figure 6.3: Regret versus time (number of probes) of
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Figure 6.4: At = min{t, nc log t}, where n = 11, c = 100.

146



0 2 4 6 8 10

number of probes
×10

4

0

0.5

1

1.5

2

2.5

re
w

a
rd

×10
4

basis of 11 paths

basis of 19 paths
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Figure 6.7: Regret and 95% for bandit
feedback using a basis of 11 paths, where
constant cb = {363, 300, 200, 100, 50, 10}.

Figure 6.8: Regret and 95% for bandit
feedback using all 19 paths as basis, where
constant cb = {363, 300, 200, 100, 50, 10},
and c′b = 11

19
cb.

Figure 6.9: Regret and 95% for semi-
bandit feedback using a cover of 4 paths,
where constant cc = {147, 100, 50, 20, 10}.
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Figure 6.11: Regret and 99% for LPR-BF
using a basis of 19 paths, where cb = 3n2

b =
1083.

Figure 6.12: Regret and 99% for LPR-BF
using a basis of 19 paths, where cb is scaled
down by a factor 0.4, cb = 3nb×0.4 = 433.

Figure 6.13: Regret and 95%, 99% for
LPR-BF using a basis of 19 paths, where
cb is scaled down by a factor 0.2, cb =
3nb × 0.2 = 216.
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Figure 6.14: 95% of the regret for LPR-BF with small basis (19 paths), LPR-BF large
basis (all 325 paths in the network), LPR-SF, and UCB1.
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CHAPTER 7

CONCLUSIONS AND REMAINING WORK

7.1 Conclusions

This thesis has investigated and explored how to design inference techniques for

application in large scale networks and how to improve inference efficiency with de-

signed measurements.

The thesis first looked at the server selection problem in web content delivery. We

proposed a randomized algorithm that firstly let each user randomly selection a small

set of servers, and then based on our proposed method that infers congestions status

at the servers we proposed to use the Go-With-The-Winner approach and let users

select the server that gives the good performance (indicating no congestion) and drop

all the other servers.

We then investigated measurement design for network tomography. In the prob-

lem to infer link metric through path level measurements in a network, we quantify

the information each path level measurement contains by Fisher Information Matrix

(FIM). We show that by maximizing optimal criteria of the FIM we can minimiz-

ing the estimation error of the link metrics and thus achieve optimal allocations of

measurements among paths.

Following that, we further compared the performance of loss tomography using

multicast measurements with loss tomography using unicast measurements, in tree

topologies.
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In the final part of the thesis, we investigated the design of online routing with

regard to path reliability, where the goal is to adaptively find the most reliable path

and to minimize the cost caused by transmission losses during this process.

7.2 Future work

For sever selection in Content Delivery Networks, it’s interesting to further investi-

gate the possible solution of having a subset of the users run our Go-With-The-Winner

algorithm while the other users each choose a single server uniformly at random. It’s

also worth further analyzing and evaluating that how the content popularity distri-

bution affects the performance of our algorithm.

For the problem of experiment design for network tomography, there is space on

designing general probe allocation solution for the case that there are more paths

than number of links. Meanwhile, it’s worth noticing that even though the closed-

form solution we developed is for solving probe allocation for the network tomography

problem, yet our problem formulation is more general and thus our solution can

potentially be extended to other different applications that fits the formulation. It’s

worth finding out other problems or applications our solution can be applied to.

As to our work of comparing multicast and unicast measurements for link loss

tomography, our current results are mostly empirical evaluation. It will another

contribution if we can provide more results on the comparison of Fisher Information

and performance bound.

Last but not least, for the problem of learning path reliability for online routing.

One possible extension is to improve the current proof technique and explore if tighter

bounds are possible for the two observation models. It will also be nice if performance

of the algorithms can be evaluated on larger networks.
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