
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

2015

Automated Style Feedback for Advanced Beginner
Java Programmers
Hannah Blau
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Part of the Software Engineering Commons

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Blau, Hannah, "Automated Style Feedback for Advanced Beginner Java Programmers" (2015). Doctoral Dissertations. 543.
https://scholarworks.umass.edu/dissertations_2/543

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/543?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

AUTOMATED STYLE FEEDBACK FOR ADVANCED
BEGINNER JAVA PROGRAMMERS

A Dissertation Presented

by

HANNAH BLAU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2015

College of Information & Computer Sciences

c© Copyright by Hannah Blau 2015

All Rights Reserved

AUTOMATED STYLE FEEDBACK FOR ADVANCED
BEGINNER JAVA PROGRAMMERS

A Dissertation Presented

by

HANNAH BLAU

Approved as to style and content by:

W. Richards Adrion, Co-chair

Robert Moll, Co-chair

Barbara Lerner, Member

J. Eliot B. Moss, Member

James Allan, Chair
College of Information & Computer Sciences

ACKNOWLEDGMENTS

This work would not have been possible without the support and guidance of my

Ph.D. advisors W. R. Adrion and R. Moll and my committee members B. Lerner and

J. E. B. Moss. Y. Smaragdakis also offered valuable insights at an early stage of the

project. Prof. Moss gave me indispensable technical guidance and made substantial

contributions to the plug-in implementation. I thank the professors who graciously

allowed me to collect data in their classrooms: J. Allan, D. A. M. Barrington, M. Cor-

ner, W. Lehnert, G. Miklau, and T. Richards. Many fruitful discussions with R. Fall

helped me clarify my thoughts. I am grateful to S. Kolovson for her unflagging effort

on data analysis.

iv

ABSTRACT

AUTOMATED STYLE FEEDBACK FOR ADVANCED
BEGINNER JAVA PROGRAMMERS

SEPTEMBER 2015

HANNAH BLAU

B.A., YALE UNIVERSITY

M.S.E., UNIVERSITY OF PENNSYLVANIA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Richards Adrion and Professor Robert Moll

FrenchPress is an Eclipse plug-in that partially automates the task of giving

students feedback on their Java programs. It is designed not for novices but for

students taking their second or third Java course: students who know enough Java to

write a working program but lack the judgment to recognize bad code when they see

it. FrenchPress does not diagnose compile-time or run-time errors, or logical errors

that produce incorrect output. It targets silent flaws, flaws the student is unable to

identify for himself because nothing in the programming environment alerts him.

FrenchPress diagnoses flaws characteristic of programmers who have not yet as-

similated the object-oriented idiom. Such shortcomings include misuse of the public

modifier, fields that should have been local variables, and instance variables that

should have been class constants. Other rules address the all too common misun-

derstanding of the boolean data type. FrenchPress delivers explanatory messages

v

in a vocabulary appropriate for advanced beginners. FrenchPress does not fix the

problems it detects; the student must decide whether to change the program.

The plug-in has been tested by undergraduates in the UMass data structures and

algorithms course, the target audience for FrenchPress diagnostics. A pilot study

took place during winter break 2013–2014 and a preliminary classroom trial in Spring

2014. This dissertation reports results from the final classroom trial covering four

programming assignments in Fall 2014. Among students whose code triggered one or

more of the diagnostic rules, the percentage who modified their program in response

to FrenchPress feedback varied from a high of 59% on the first project to a low

of 23% on the second and fourth projects. User satisfaction surveys indicate that

among students who said FrenchPress gave them suggestions for improvement, the

percentage who found the feedback helpful bounced from around 55% on the first

and third assignments to 32–40% on the second and fourth assignments. The lower

acceptance on the second and fourth projects corresponds to a higher incidence of

false positives and other confusing feedback messages. Nevertheless, the percentage

of survey respondents who said they were satisfied with FrenchPress performance

ranged from 56% to 66% on all four assignments.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. MOTIVATION AND OBJECTIVES . 1

1.1 Need for automated feedback . 1
1.2 FrenchPress in action . 3
1.3 Research hypotheses . 6
1.4 Objectives . 6

1.4.1 Effective feedback . 7
1.4.2 Easy for the student . 8
1.4.3 Easy for the professor . 9

1.5 Design tradeoffs in a diagnostic tool . 9
1.6 FrenchPress is not a grading instrument . 11
1.7 Evolution of CMPSCI 187 projects . 12

2. RELATED WORK . 16

2.1 Automated assessment systems in academia . 17
2.2 Static analysis tools for professionals . 22
2.3 Code smells . 27

3. DIAGNOSTICS . 30

3.1 Four categories of flaws . 31

vii

3.1.1 Misuse of fields . 31
3.1.2 Misuse of the public modifier . 32
3.1.3 Misunderstanding booleans . 36
3.1.4 For loops . 39

3.2 Minimize duplication with prior work . 40
3.3 Implementation . 41

4. FRENCHPRESS PLUG-IN . 46

4.1 Implementing an Eclipse plug-in . 46
4.2 Running the FrenchPress plug-in . 46
4.3 Running FrenchPress on the entire src folder . 48

5. CLASSROOM TRIAL OF FRENCHPRESS PLUG-IN 51

5.1 Plan for classroom trial . 52
5.2 User satisfaction survey . 53

5.2.1 Keep it short . 54
5.2.2 Survey questions . 55
5.2.3 Limitations of survey data . 56

5.3 Culling data from the FrenchPress archive folder . 58
5.4 Off-target feedback . 59

5.4.1 Implementation errors . 59
5.4.2 Software out of date . 60
5.4.3 Student ran plug-in too early . 61
5.4.4 Student ran plug-in on a JUnit test class . 61
5.4.5 Unused field or method . 61
5.4.6 Getter and setter methods . 62

5.5 Lessons learned . 62

6. RESULTS OF CLASSROOM TRIAL . 64

6.1 Data collection . 65
6.2 FrenchPress program archive . 66

6.2.1 Recap of diagnostic rules . 69
6.2.2 Short-term indicator of student learning . 69
6.2.3 Longer-term indicator of student learning . 70

6.3 User satisfaction survey responses . 76
6.4 Selected student comments . 80

viii

7. FUTURE WORK . 83

7.1 Student experience of FrenchPress . 83
7.2 New features for professors . 84
7.3 Improved diagnostics . 85
7.4 Extended classroom trial . 86
7.5 Conclusion . 87

APPENDICES

A. CMPSCI 187 ASSIGNMENTS . 89
B. STUDENT INTERACTION WITH FRENCHPRESS 98
C. MOTIVATION FOR UNIMPLEMENTED RULES 119
D. CLASSROOM TRIAL INFORMED CONSENT FORM 122
E. FRENCHPRESS USER SATISFACTION SURVEY 128

BIBLIOGRAPHY . 131

ix

LIST OF TABLES

Table Page

2.1 Automated assessment systems for introductory programming
courses . 19

2.2 JDeodorant code smells and the corresponding refactorings 28

5.1 FrenchPress usage by version . 60

6.1 CMPSCI 187 assignment topics . 66

6.2 Fluctuation in classroom trial participation . 66

6.3 Substantive feedback varies by project . 69

6.4 Recap of FrenchPress diagnostics . 69

6.5 Off-target feedback varies by project . 70

x

LIST OF FIGURES

Figure Page

1.1 FrenchPress feedback for a single .java file . 3

1.2 Student’s BirthdayDriver.java . 4

1.3 FrenchPress feedback for BirthdayDriver.java . 5

2.1 Student’s HanoiSolverImp.java, part 1 . 23

2.2 Student’s HanoiSolverImp.java, part 2 . 24

2.3 PMD feedback for HanoiSolverImp.java . 24

2.4 FrenchPress feedback for HanoiSolverImp.java . 25

2.5 Revised HanoiSolverImp.java . 26

2.6 PMD feedback for revised HanoiSolverImp.java . 27

2.7 FrenchPress feedback for revised HanoiSolverImp.java 27

3.1 Student’s ListImp.java . 33

3.2 FrenchPress feedback for ListImp.java . 34

3.3 Revised ListImp.java . 35

3.4 Student’s PostOrderIterator.java, part 1 . 37

3.5 Student’s PostOrderIterator.java, part 2 . 38

3.6 FrenchPress feedback for PostOrderIterator.java . 39

3.7 Student’s BirthdayParadox.java, part 1 . 41

3.8 Student’s BirthdayParadox.java, part 2 . 42

xi

3.9 FrenchPress feedback for BirthdayParadox.java . 43

4.1 FrenchPress popup dialog for entire src folder . 49

6.1 Rates of substantive feedback and program modification 67

6.2 Rules 1 and 2 feedback trends . 73

6.3 Rules 3 and 4 feedback trends . 74

6.4 Rules 5 and 6 feedback trends . 75

6.5 Is feedback confusing or easy to understand? . 77

6.6 Is feedback helpful or unhelpful? . 78

6.7 Overall satisfaction with FrenchPress . 79

xii

CHAPTER 1

MOTIVATION AND OBJECTIVES

1.1 Need for automated feedback

Anyone who has taught a college programming course at the freshman or sopho-

more level knows how difficult and time-consuming it can be to address issues of

program style in student submissions. Even if the professor discusses numerous ex-

amples of well-written code in class, many students ignore or mangle these templates

when they write their own programs. Often the class is so large that the teaching

assistant/grader can spend only a few minutes on each program, checking to see

whether it produces the expected output for selected test inputs. Or the course staff

adopt an automated test harness to grade student submissions. This naturally leads

students to conclude that a good program is one that has the desired input/output

behavior, and it matters not how they achieve that behavior. A student could get a

perfect grade on all his assignments and still be writing poor code.

When the teaching staff does take the time to inspect student programs, issues of

subjectivity arise. Judgments of code quality are hard to pin down, all the more so

if multiple instructors are employed for different sections of the same course or over

time. The potential for inconsistency makes the instructor reluctant to assign much

weight to program style in calculating grades. If the student loses only a few points

for a poorly written program, he will have little motivation to follow the corrections

he receives. He might even dismiss these comments as a reflection of the instructor’s

idiosyncrasies. The student could reach upper level courses before he gets a professor

whose grading policy enforces good programming practices. By this point the student

1

might already have developed bad programming habits. These bad habits carry over

into advanced classes where they are a hindrance for the student and a headache for

the professor.

To address this problem I developed FrenchPress, an Eclipse plug-in that partially

automates the task of giving students feedback concerning their Java programs. I

chose Java because it has been widely adopted (including at UMass Amherst) for

undergraduate curricula in object-oriented programming. Students get guidance to

make improvements without depending on the instructor or the teaching assistant to

review their code. My target population is not raw beginners but students taking their

second or third undergraduate Java course: students at the level of an introduction to

data structures and algorithms, who know enough Java to write a working program

but lack the judgment to recognize bad code when they see it. While it is never too

early for a professor to explain in class the elements of good programming style, I do

not think that students in their first semester of Java would be receptive to automated

stylistic feedback. Getting a program to compile and run to completion is already a

high hurdle for beginning students to surmount. Novice learners struggle mightily to

identify and correct logical errors. Showering them with feedback on stylistic points

they do not yet have the experience to understand is more likely to create information

overload than to inspire better programming.

The goal of FrenchPress is not to diagnose compile-time or run-time errors, or

logical flaws that produce incorrect output. A student who is paying attention can

recognize these issues without a special plug-in. I am after the silent flaws—flaws

the student is unable to identify for himself because he gets no feedback from the

programming environment to alert him that a problem exists. Such shortcomings

include misuse of the public modifier, fields that should have been local variables,

and instance variables that should have been class constants. These flaws are char-

acteristic of programmers who have not yet assimilated the object-oriented idiom.

2

Figure 1.1. FrenchPress feedback for a single .java file

Other diagnostic rules target the all too common misunderstanding of the boolean

data type.

1.2 FrenchPress in action

Figure 1.1 shows the FrenchPress plug-in in action within the Eclipse IDE. The

editor window displays one of the project’s class definitions. FrenchPress presents

feedback for that file in a dialog box. Figure 1.2 shows a class definition written by

a student in the data structures and algorithms course in Spring 2008. This .java

file triggers feedback from four of FrenchPress’s seven diagnostic rules (Figure 1.3).

Chapter 3 discusses FrenchPress’s diagnostics in more detail.

3

1 public class BirthdayDriver{

2 private final int trialRuns = 10000;

3 int counter = 0;

4

5 public static void main(String[] args){

6 BirthdayDriver driver = new BirthdayDriver(10, 30);

7 }

8 public BirthdayDriver(int min, int max){

9 for(;min<max; min++){

10 printResult(runTrials(min), min);

11 }

12 }

13

14 public double runTrials(int roomSize){

15 counter = 0;

16 for(int a = 0; a < trialRuns; a++){

17 BDayTest bDay = new BDayTest(roomSize);

18 if(bDay.match){

19 counter++;

20 }

21 }

22 return (double)counter/trialRuns;

23 }

24

25 public void printResult(double per, int size){

26 System.out.println("people: " + size + " -> " + per);

27 }

28

29 }

Figure 1.2. Student’s BirthdayDriver.java

4

FrenchPress 1.5 feedback for BirthdayDriver.java

Variables such as

counter (3)

are declared at the class level but appear to function as local

variables. Each of these variables could be declared locally

in each method where it is used. To find all the places a variable

is used, select the variable name and Eclipse will highlight

every occurrence of that variable.

Instance variables such as

trialRuns (2)

could be declared static final (class constants) because they are

initialized to a constant value and never changed later.

These methods are declared public but never called outside their

own class:

runTrials (14)

printResult (25)

If you meant these to be helper methods used only within this class,

they should be declared private instead.

Method parameters such as

min (9)

should not be used as for loop control variables.

It is preferable to use a separate variable as in, for (int i = ...).

Figure 1.3. FrenchPress feedback for BirthdayDriver.java

5

1.3 Research hypotheses

The research hypotheses underlying this work are:

H1 FrenchPress can reliably identify stylistic issues in Java code and communicate

those problems to students.

H2 Students who use FrenchPress consistently for all the programming assignments

in the course will by the end of the semester be making fewer errors of the types

diagnosed by the tool than they did at the beginning. They will learn to avoid

the flaws about which the tool has warned them.

It is tempting to hypothesize that students who use the diagnostic tool regularly will

achieve better grades on their homework. However, as noted in Chapter 1.1, grading

criteria in large undergraduate courses do not usually reflect the qualities of program

style FrenchPress is designed to promote. FrenchPress nudges students toward bet-

ter programming practices, but the nudge is gentle and might not pay off until a

semester or more after the end of the student’s exposure to the automated feedback.

Students who chose to participate in the classroom trial of FrenchPress (Chapter 5)

were rewarded with a small amount of extra credit toward their final grade. Those

who opted out of the trial could earn the same extra credit points by completing a

small research assignment about Java programming style recommendations. Intro-

ducing the plug-in into the data structures and algorithms course did not create a

grade differential between FrenchPress users and non-users.

1.4 Objectives

The main objectives that guided the design of the diagnostic tool are:

1. Give the student effective and useful feedback without increasing TA or professor

workload.

6

2. Make it easy for the student to run the diagnostic tool, so he can iteratively

improve his program before the final submission.

3. Liberate the course author from the burden of writing customized design checks

for each programming exercise.

1.4.1 Effective feedback

Many of the programming best practices articulated in books such as Effective

Java [6] evolved in the context of projects with multiple team members producing

software destined to be maintained and enhanced for several years. This perspective

is essentially meaningless to a student who works no longer than two weeks on any

assignment and who knows neither he nor anyone else will ever look at his code again

after he gets his grade. The feedback FrenchPress gives this student must be relevant

for his situation, not some hypothetical situation of large-scale software development.

My goal is to encourage coding discipline that will serve students well throughout

their career, while offering feedback they find meaningful at their current level of

knowledge.

Giving effective feedback means formulating messages in language the student can

understand, even if that entails glossing over the subtleties. Giving effective feedback

also means that the incidence of false positives must be kept to a minimum. A

false positive occurs when FrenchPress delivers feedback that is inappropriate for the

student’s program: a diagnostic rule triggers when it should not have. Students at the

advanced beginner level in Java would not be able to distinguish between a true flaw

and a false report. They might respond to a spurious feedback message by modifying

their program in a way that makes it worse, not better. This would undermine their

trust in the tool’s suggestions and they would stop using it. A false negative occurs

when FrenchPress skips over a student mistake that could have been corrected: a

diagnostic rule fails to trigger when it should have. False negatives are less of a

7

problem than false positives for a user population of inexperienced programmers. As

these students were not receiving much stylistic feedback from their instructors, if

FrenchPress misses an opportunity to be helpful the student is no worse off than he

was before he installed the software.

1.4.2 Easy for the student

Even when the professor or TA takes the time to write comments on submitted

assignments, that feedback might come too late to be of interest to the student. In

most cases, the student does not look at his program after it is graded, because he

is focussed on upcoming deadlines rather than prior submissions. Only in a course

where subsequent assignments build upon earlier ones would a student be motivated to

review his old projects. It is essential to integrate the diagnostic tool into the student’s

development environment so he can get feedback while still working on his program.

As Eclipse is now required for UMass Amherst’s CMPSCI 187, Programming with

Data Structures, I decided to implement FrenchPress as a plug-in. The student can

easily install the software and run it repeatedly as he changes and improves his code.

Eclipse is a widely used development environment and has a well-established and

free mechanism for software distribution. I created an update site for FrenchPress to

take advantage of the Install New Software and Check for Updates features in Eclipse.

The student runs FrenchPress by selecting a menu item in the Package Explorer view.

He can choose to analyze a single .java file, or all the .java files in the src folder

of his Java project. The single file mode of operation is illustrated in Figure 1.1.

FrenchPress writes a feedback file for each .java file it analyzes. The plug-in creates

a frenchpress folder in the student’s Java project and stores all its feedback files

there. The student can review the feedback whenever he wishes.

8

1.4.3 Easy for the professor

Some systems that give automated feedback to students (for example, the En-

vironment for Learning to Program [36], the Java Critiquer [28, 29], and the MIT

system for novice Python programmers [33]) require a substantial effort from the

instructor in the form of customized diagnostic checks or a model solution for each

programming assignment. Conscious of the many claims on the time of both profes-

sors and teaching assistants, I sought an approach that would be less labor-intensive

for them while still offering a benefit to their students. I created a generic tool that

demands nothing from the instructor, and has no knowledge of what problem the

student is attempting to solve.

There is a wide range of emphasis in data structures and algorithms courses, as

evidenced by the multiplicity of textbooks on offer to teach this material in Java.

FrenchPress diagnostics are not limited to a particular course syllabus. The rules

described in Chapter 3 embody principles of good programming that are appropriate

for assignments from any of these textbooks. Any professor who uses Eclipse in her

course can take advantage of FrenchPress. The FrenchPress update site will enable

her students to install the plug-in without additional effort on the part of course staff.

1.5 Design tradeoffs in a diagnostic tool

In designing a pedagogical program analysis system, one faces a tradeoff between

its range of applicability and the quality of its feedback. At one end of this spectrum,

I could create a tool to diagnose only a fixed set of programming assignments. The

system could give detailed feedback because I would have a good idea of what I

expected to see in a student solution. However, a small repertoire of assignments

would be useful for only one course and one instructor. Repeating the same set

of programming projects semester after semester could also increase the risk that

students would forgo the learning experience of writing their own code, opting instead

9

to “inherit” solutions from friends who have already taken the course. Extending the

diagnostic system to accommodate new programming assignments would be very

labor-intensive.

At the other end of the spectrum, I could produce a generic tool that has no

knowledge of the specific programming assignment the student is attempting to solve.

A generic tool could be used in many different courses, but would not be able to

provide the rich feedback one could achieve with a set of instrumented assignments.

Between these two extremes lies an intermediate approach: a system that places

no a priori restrictions on the programs it can analyze, but requires the instructor

to provide a model solution for the assignment before any student submissions are

processed. The student’s program could be compared to the model solution with

respect to features such as the number of classes, choice of instance variables, number

of methods, and depth of the call graph. The instructor would specify via a checkbox

interface which of these aspects she wants the diagnostic tool to examine. This

approach is feasible only if the assignment description gives clear guidance about

program structure. The professor would have to tell her students how many class

definitions she expects, and what are the important instance variables and methods

in each class. She might provide the main method for the application so her students

can see how it instantiates classes and calls methods they have to write.

I decided against the intermediate approach for two reasons. It goes against my

objective (Section 1.4) to avoid increasing the workload of the teaching staff. It is cer-

tainly desirable to write a model solution before releasing a programming assignment

to students, but not every professor adheres to this practice and FrenchPress should

not impose additional obligations. I also think the inherent creativity of program-

ming (in Java or any other language) makes it difficult to give useful stylistic advice

by comparing the student’s program to a reference solution. Such a comparison is

feasible for small-scale “fill in the gap” exercises; indeed, the Environment for Learn-

10

ing to Program described on page 18 operates on this principle. But assignments of

the scale that would be typical in a data structures and algorithms course involve

many implementation decisions for which more than one option is acceptable. Even

when the assignment description is carefully written, the student’s implementation

decisions may deviate from what the instructor anticipated. Telling the student how

far his approach is from the recommended path might not help him recognize the

stylistic weaknesses of his own code.

Another FrenchPress design choice is dynamic versus static analysis of student

programs. Most of the assessment systems cited in Section 2.1 execute the student

submission to check its output against the output of the model solution for the pro-

gramming assignment. Evaluating the input/output behavior of the student’s code is

beyond the scope of FrenchPress. I chose static analysis with the understanding that

the student has other ways to check his program for correctness, including of course

JUnit tests written by the teaching staff or by the student himself. Static analysis is

appropriate for all of the diagnostics described in Chapter 3. The one rule that would

be easier to implement with dynamic analysis is the over-ambitious constructor rule

described in Section 1.7. This rule is not currently part of the FrenchPress prototype.

1.6 FrenchPress is not a grading instrument

If the diagnostics reported by the plug-in were integrated into the grading rubric

for the programming assignments, students would have a strong motivation to read

the feedback messages. Conversely, if the grading criteria rely solely on the program’s

input/output behavior, the students might conclude that checking their work for

hidden flaws is a waste of time. Nevertheless, I would not recommend that the

professor consider FrenchPress as a grading instrument. My primary goal is to provide

instructional feedback that helps the student improve, not a numeric score to be

averaged in with other measures of homework performance. In the first few semesters

11

of use I would expect to encounter many problems with diagnostic rules that I did

not discover during my testing. If students feel that their grades are in part based

on inaccurate diagnostics from my tool, they will become justifiably indignant. The

teaching assistant would be obliged to double-check the output of the automated

analysis to determine which warnings are false positives that should be ignored in

determining the grade. This would place an unreasonable burden on the TA, just the

opposite of what I set out to do.

In a future version of the plug-in where the false positive rate has been driven

near zero, it would be feasible to factor FrenchPress usage into the grading scheme

of a course such as CMPSCI 187. I would advocate for positive rather than negative

reinforcement: give students some extra points for using FrenchPress, instead of pe-

nalizing them for ignoring the automated feedback. The plug-in’s diagnostic messages

are intended as suggestions for improvement, not imperatives. The student should

retain the autonomy to decide whether FrenchPress’s guidance is appropriate in the

context of his program.

1.7 Evolution of CMPSCI 187 projects

The idea of an Eclipse plug-in that could automate stylistic feedback grew out of

my experience as a TA for CMPSCI 187, the data structures and algorithms course.

Instead of hiring an instructor to teach this course every semester, UMass Computer

Science rotates responsibility for CMPSCI 187 among the professors of the college.

This introduces variability in the teaching style and the type of assignments given

in the course. Steadily increasing class sizes have also changed the character of the

programming projects. Higher enrollments have forced a move to automated grading

of submissions based solely on input/output behavior. Automated grading requires

greater uniformity in the submitted programs than might have been the case five or

ten years ago when the submissions were graded by TAs.

12

I devised my diagnostic rules by examining student submissions from the Spring

2008 offering of CMPSCI 187 taught by Prof. Robert Moll. The class size was about

45. Section A.1 reproduces the description for the first programming assignment Prof.

Moll gave in this course. He explains the problem to be solved and gives an example

of correct output. The only directive related to the implementation is “two class

application”.

As the class size and the grading burden grew, CMPSCI 187 assignments evolved

in the direction of giving students more guidance. By the fall of 2011, Prof. David Mix

Barrington had approximately 105 students. His first programming assignment can

be found in Section A.2. Prof. Barrington’s project description includes details of the

classes, fields, constructors, methods, and exceptions the students must incorporate

in their solution. He also gives an example of the data structure as well as values

returned by the toString and other methods. No code is provided as part of the

assignment.

In the fall of 2013, CMPSCI 187 had grown to an initial enrollment of 151.

Prof. James Allan’s assignments included a description of the classes and methods to

be implemented, and an example of correct output. For some assignments he pro-

vided Java class definitions, or interface definitions the students had to implement.

The assignment specification included input files and a description of the expected

output. For some projects the course staff gave students a test harness (not JUnit).

Grading was automated; students could submit their program and get a grade im-

mediately. If they were disappointed by their grade, they could improve the program

and resubmit repeatedly up to the deadline for the assignment. As the semester pro-

gressed, Prof. Allan placed a limit on the number of resubmissions, to encourage the

students to test their code in other ways. Section A.3 shows the first programming

assignment for this course.

13

One semester later in Spring 2014, initial enrollment in CMPSCI 187 had reached

191. Prof. Gerome Miklau and Lecturer Tim Richards gave their students not only

a written description for each assignment but also a Java project to be imported

into Eclipse. The Java project contained any starter code and interfaces the instruc-

tors chose to provide, as well as JUnit test classes. The student was allowed to add

classes or methods to his src folder but could not deviate from the program struc-

ture expected by the JUnit tests. Grading was fully automated and included more

rigorous JUnit tests that were not released to the students. Section A.4 gives the

first programming assignment for the Spring 2014 edition of Programming with Data

Structures.

The changes in CMPSCI 187 assignments over the years affected the development

of FrenchPress. The original plan for the plug-in included two rules that fall into the

category of misconceptions about object-oriented programming. Many inexperienced

Java programmers have only a shaky grasp of the concept of inheritance. Some

students appear to confuse Is-a with Has-a: they use inheritance when composition

would be suitable. For example, they create a class that extends ArrayList when

they really should have given their class an ArrayList instance variable. I wrote

a rule that would signal an inappropriate inheritance relationship when a subclass

does not override any method of its superclass. An exception to this rule would be a

subclass that implements an interface the superclass does not implement. This rule

would catch cases in which the student declares his class to extend a Java library class,

or makes spurious inheritance relationships between two classes of his own devising.

Another error in some student programs is a constructor that does not stop at

constructing an object but tries to run the entire program by calling instance methods.

This anomaly is difficult to detect with static analysis, but FrenchPress could at least

warn the student that a class constructor should only call final or private methods

(see [39, pp. 70–71]). The class definition in Chapter 3, Figures 3.7 and 3.8 exhibits

14

this flaw. Appendix C shows a student program from 2008 that would have triggered

both the inappropriate inheritance and over-ambitious constructor rules.

After consulting my committee, I eliminated these two rules from the FrenchPress

prototype because they seemed less applicable to CMPSCI 187 as it is now taught

at our institution. CMPSCI 187 assignments have of necessity become more and

more constrained, whereas these two rules are geared toward projects in which the

student develops his program “from scratch” without much design guidance from the

instructor. Obviously one is more likely to see design flaws when the student is given

the freedom and the responsibility to organize his program as he sees fit. To become

a competent programmer, the student must progress from filling in the missing pieces

of a pre-existing structure to creating the structure for himself. New inheritance and

constructor rules could be helpful as the student is struggling to make that transition,

whether it occurs in his second programming course or not until the third.

15

CHAPTER 2

RELATED WORK

FrenchPress’s target population of advanced beginners is not well served by the

program analysis tools that are currently available. Existing style checkers and auto-

matic assessment systems developed in academic environments are aimed at students

who are just learning how to program. They flag mistakes that will cause compile-

time or run-time errors, and common confusions that can lead to incorrect program

behavior (for example, = in place of ==). My research aims for the silent flaws that

do not cause compile-time or run-time errors, or produce incorrect output: flaws that

reveal the student’s misunderstanding of the object-oriented programming paradigm.

These flaws are described in Chapter 3.

On the other end of the spectrum, a professional program analysis tool such as

FindBugs [12, 18] is too complex for students in a course such as CMPSCI 187.

FindBugs does not report many of the stylistic flaws one sees in student submissions,

because it is looking for more subtle errors an experienced programmer might make

(synchronization of threads, vulnerability to malicious code). Bug reports written

for professional programmers can be intimidating to learners who have completed

only a few semesters of Java. FrenchPress gives students explanatory messages in a

simple vocabulary they can read without frustration. FrenchPress bridges the gap

between pedagogic support for novices that CMPSCI 187 students have outgrown

and industrial strength diagnostics they are not yet ready to tackle.

16

2.1 Automated assessment systems in academia

Many course management systems designed for Computer Science provide a func-

tion to evaluate student submissions and assign grades. The most common form of

assessment is to run the student program on a test suite created by the author of the

programming exercise. The author specifies correct input/output pairs in a configu-

ration file, or writes a model solution that will generate such pairs. ASSYST [20] and

Web-CAT [11] require the student to submit a test suite, which is itself evaluated for

completeness.

At UMass, students in the introductory course of the computer science major

(CMPSCI 121) rely on Interactive Java: An Online Approach to Java Learning,

by Prof. Moll [24]. This online textbook reinforces programming language concepts

with embedded exercises that prompt the reader to write short segments of code.

Like FrenchPress, Interactive Java gives its user immediate feedback: the student’s

solution is evaluated on a remote server the moment he submits it. Interactive Java

tests the code for correctness and, if needed, offers help specifically written for each

programming exercise.

Testing input/output behavior does not give the student any feedback on the style

or design of his program. Many systems compensate for this drawback by incorpo-

rating a software quality metric into their scoring. These metrics are a combination

of quantitative measures of the program such as number of comments, length of

identifiers, and length of methods. Some automated assessment systems offer static

analysis of qualitative aspects of the student’s program. ELP [36], Expresso [19], and

Web-CAT aim to discourage bad programming practices such as unused variables or

risky side effects. Web-CAT merges diagnostics from both Checkstyle [7] and PMD

[27] into a unified report, so the student can inspect his code with all the warning

messages displayed line by line. Cedilh [5] and CourseMarker [15, 16, 17] enable the

instructor to define exercise-specific “features” in the form of regular expressions that

17

are matched against the student submission. In Scheme-Robo [32], the assignment

author can write a customized structural analysis to enforce requirements that the

student include (or conversely, avoid) particular language constructs in his solution.

Table 2.1 summarizes the evaluation mechanisms available in (a subset of) the

many systems that have been developed for the automated assessment of program-

ming exercises. Most of the systems listed are geared toward students taking their

first programming course, and they diagnose errors beginners are more likely to make.

As an example, Expresso is a pre-compiler for Java programs that helps beginners

avoid common mistakes that can lead to incomprehensible compiler messages or un-

expected run-time behavior. Expresso will flag errors such as misuse or omission of

parentheses, braces, and brackets; confusion of = and ==; string comparison with ==

instead of equals; insertion of a semicolon where it does not belong; and invocation

of a method with arguments of the wrong types. The target audience for my diag-

nostic tool is not absolute novices but students who already have some programming

experience, albeit limited. I expect that these students have already learned to inter-

pret compiler error messages. FrenchPress requires that its input program compile

correctly.

Two research efforts that come closer to what I have in mind are the Environment

for Learning to Program (ELP) from the Queensland University of Technology [36]

and the Java Critiquer from Northwestern University [28, 29]. ELP does both dynamic

and static analysis of program snippets submitted by students to complete “fill in the

gap” programming exercises in the introductory Java course. The static analysis

module operates on an XML representation of the abstract syntax tree. It computes

statistics for each gap (total number of variables, statements, expressions) as well as

the cyclomatic complexity [23]. It checks for unused variables, unused parameters,

redundant logical expressions, numeric literals that should be named constants, and

other stylistic blunders. ELP also performs a structural similarity analysis between

18

T
a
b
le

2
.1

.
A

u
to

m
at

ed
as

se
ss

m
en

t
sy

st
em

s
fo

r
in

tr
o
d
u
ct

or
y

p
ro

gr
am

m
in

g
co

u
rs

es

S
y
st

e
m

O
ri

g
in

R
e
fs

L
a
n
g
u
a
g
e
s

T
M

S
A

S
S
Y

S
T

U
L

iv
er

p
o
ol

[2
0]

A
d
a,

C
×
×

A
u
to

m
at

ic
M

ar
ke

r
U

C
ap

e
T

ow
n

[3
4]

J
av

a
×

B
O

S
S

U
W

ar
w

ic
k

[2
2]

J
av

a,
P

er
l

×
×

C
ed

il
h

U
N

ot
ti

n
gh

am
[5

]
C

,
C

+
+

,
P

ro
lo

g,
Z

×
×
×

C
ou

rs
eM

ar
ke

r
U

N
ot

ti
n
gh

am
[1

5,
16

,
17

]
C

+
+

,
J
av

a
×
×
×

E
d
u
C

om
p

on
en

ts
U

M
ag

d
eb

u
rg

[1
]

H
as

ke
ll
,

L
is

p
,

P
ro

lo
g,
×

P
y
th

on
,

S
ch

em
e

E
L

P
Q

u
ee

n
sl

an
d

U
T

ec
h

[3
5,

36
,

37
]

C
#

,
J
av

a
×
×
×

E
x
p
re

ss
o

B
ry

n
M

aw
r

C
ol

l
[1

9]
J
av

a
×

J
av

a
C

ri
ti

q
u
er

N
or

th
w

es
te

rn
[2

8,
29

]
H

T
M

L
,

L
is

p
,

J
av

a
×

H
oG

G
R

u
tg

er
s

[2
5]

J
av

a
×

S
ch

em
e-

R
ob

o
H

el
si

n
k
i

U
T

ec
h

[3
2]

S
ch

em
e

×
×

T
R

Y
R

IT
[3

0,
31

]
A

n
y

×
W

eb
-C

A
T

V
A

T
ec

h
[1

1]
J
av

a
×

×
W

eb
T

oT
ea

ch
B

ro
ok

ly
n

C
ol

l
[2

,
9]

A
d
a,

C
,

C
+

+
,

×
F

or
tr

an
,

J
av

a,
P

as
ca

l

T
st

an
d
s

fo
r

d
y
n
am

ic
te

st
in

g;
M

fo
r

so
ft

w
ar

e
m

et
ri

c;
S

fo
r

st
at

ic
an

al
y
si

s.

19

the student’s submission and the instructor’s model solution(s) for the exercise. The

structural similarity analysis compares simplified versions of the abstract syntax trees

and reports to the student any discrepancies between his code and the instructor’s.

For example, if the instructor’s solution has two loops but the student’s has only one,

this might alert the student that he has missed part of the exercise. Truong et al.

acknowledge that this approach works only with the “fill in the gap” type of exercise

because these are so short there is relatively little room for structural variation. The

structural similarity analysis could not be extended to more substantial assignments,

involving multiple class definitions, that students would encounter in a data structures

and algorithms course.

Qiu and Riesbeck, creators of the Java Critiquer, advocate an approach of incre-

mental development for educational critiquing systems. The Java Critiquer provides

an authoring interface that allows professors and teaching assistants to write new

critiques as the need arises. The software was integrated into the grading process

for some introductory programming courses at Northwestern University. The human

grader first writes a critique in response to a student’s blunder, then saves the text

for future use. If the problem shows up frequently, the grader can convert the hand-

written critique into a static analysis rule so that the system can recognize the error

and generate appropriate feedback automatically. The left-hand side of each rule is a

pattern that matches the problematic code, and the right-hand side of the rule is an

appropriate diagnostic message for the student. The pattern can be written either as

a regular expression or as a structure in Java Markup Language (JavaML), an XML

representation of the Java source code [4]. JavaML has the expressive power of a

context-free language. Variables in the JavaML pattern are bound to matching parts

of the student program. The teacher can reference these variables in the right-hand

side of the rule to quote the student’s code in his critique. As the teacher authors new

critiques, he monitors the system’s application of those rules and refines the left-hand

20

side of any rule that results in too many false positives or false negatives. When the

rules reach an acceptable level of accuracy, the professor releases them to the students

so they can run the automated critiques for themselves and get feedback before the

final submission of their assignment. The critiques are divided into a default rule

set that applies to any Java code, and task-specific rule sets that each apply to a

specific programming assignment. One of the task-specific rules warns the student

that defining a Circle to be a subclass of Point is incorrect. The default rule set

includes critiques related to boolean expressions, increment operators, unnecessary

parentheses, and floating point data types (use double not float). It also includes

a prohibition of public instance variables.

If the examples discussed in Qiu and Riesbeck’s papers are representative, many

of the Java Critiquer’s rules address localized stylistic issues. One rule instructs the

student to use ++var; instead of var = var + 1; (not clear why the authors think

this rule is worth keeping). The rule against public instance variables is the one

area of overlap between the Java Critiquer’s default rule set and the program design

flaws that are my focus. The Java Critiquer can analyze only one class file at a time.

Diagnosing an inappropriate inheritance relationship between the Circle and Point

classes is possible only because the critique pertains to a particular programming

assignment, so the author knows which class names are likely to appear.

The MIT system described in [33] tackles a class of problem FrenchPress does

not cover: logic errors that cause incorrect output. MIT’s system gives automated

feedback to novice Python programmers. To formulate feedback for a programming

exercise, it requires a reference solution for the exercise and a set of corrections for

mistakes the instructor anticipates students will make. The system gives hints to help

the student transform his program into one that matches the expected behavior. The

instructor controls how much of a hint she wants to give the student, ranging from

the line number of an error to a suggestion of exactly what transformation to make on

21

the original code. The suggested transformations may improve program correctness

but do not generally improve program style.

2.2 Static analysis tools for professionals

Static analysis tools such as FindBugs and PMD are geared for large-scale profes-

sional projects. Their bug reports presuppose a sophisticated understanding of Java

that college students are unlikely to attain in their first year of exposure to the lan-

guage. Professional tools do not look for, and consequently do not find, the program

flaws FrenchPress catches, precisely because the errors of an experienced software

engineer are not those of a second-semester student. My diagnostic tool might flag a

programming practice that looks dodgy in student code, while the same practice in

the hands of a Java professional would not arouse suspicion.

Figures 2.1 through 2.7 compare FrenchPress and these two industrial strength

static analysis tools applied to one student’s .java file from the Fall 2014 CMPSCI 187

course. Figures 2.1 and 2.2 show the student’s code for a class called HanoiSolverImp.

Findbugs has no diagnostic results for this file. PMD feedback for this file is shown

in Figure 2.3, and FrenchPress feedback in Figure 2.4. FrenchPress comments on fea-

tures of the code that FindBugs and PMD pass over in silence, because FrenchPress

searches for flaws that are characteristic of an advanced beginner Java programmer.

PMD trusts the programmer to choose the right fields for the HanoiSolverImp class.

FrenchPress is on the lookout for local variables masquerading as instance variables,

because some students in their second Java course still do not fully understand the

distinction. PMD does not question the decision to make instance variables public,

perhaps assuming those fields must serve some function in another class of the applica-

tion. FrenchPress assumes that public instance variables as well as public methods

not called outside of the defining class are both manifestations of the inexperienced

programmer’s disregard for access control.

22

1 package hanoi;

2

3 import structures.ListImp;

4 import hanoi.HanoiBoardImp;

5

6 public class HanoiSolverImp implements HanoiSolver {

7

8 public int ringNum;

9 public HanoiBoardImp gameBoard = new HanoiBoardImp();

10 public HanoiSolution solved;

11 public ListImp<HanoiMove> storage =

new ListImp<HanoiMove>();

12

13 @Override

14 public HanoiSolution solve(int n) {

15 System.out.println("Solving for " + n + "\n");

16 gameBoard.setup(n);

17 ringNum= n;

18 if (n != 0)

19 moveRec(0, 2, n);

20 solved = new HanoiSolutionImp(ringNum, storage);

21 return solved;

22 }

23 public void moveRec(int a, int b, int k){

24 int c = 2;

25 if (a != 0 && b != 0)

26 c = 0;

27 else if (a != 1 && b != 1)

28 c = 1;

29

Figure 2.1. Student’s HanoiSolverImp.java, part 1

23

30 if (k == 1){

31 gameBoard.doMove(new HanoiMove(a, b));

32 System.out.println("Made move from " + (a+1) +

" to " + (b+1) + "\n");

33 storage.append(new HanoiMove(a, b));

34 }

35 else {

36 moveRec(a, c, k-1);

37 gameBoard.doMove(new HanoiMove(a, b));

38 System.out.println("Made move from " + (a+1) +

" to " + (b+1) +"\n");

39 storage.append(new HanoiMove(a, b));

40 moveRec(c, b, k-1);

41 }

42 }

43

44 }

Figure 2.2. Student’s HanoiSolverImp.java, part 2

src/hanoi/HanoiSolverImp.java:25: Avoid if (x != y) ..; else ..;

Figure 2.3. PMD feedback for HanoiSolverImp.java

24

FrenchPress 1.3 feedback for HanoiSolverImp.java

Variables such as

ringNum (8)

solved (10)

are declared at the class level but appear to function as local

variables. Each of these variables could be declared locally

in each method where it is used. To find all the places a variable

is used, select the variable name and Eclipse will highlight

every occurrence of that variable.

Instance variables such as

ringNum (8)

gameBoard (9)

solved (10)

storage (11)

should not be declared public. If you need to read or change

a variable V outside of the class, define getV and setV methods.

Or, if V is really a class constant, declare it public static final.

These methods are declared public but never called outside their

own class:

moveRec (23)

If you meant these to be helper methods used only within this class,

they should be declared private instead.

Figure 2.4. FrenchPress feedback for HanoiSolverImp.java

25

1 package hanoi;

2

3 import structures.ListImp;

4 import hanoi.HanoiBoardImp;

5

6 public class HanoiSolverImp implements HanoiSolver {

7

8 private HanoiBoardImp gameBoard = new HanoiBoardImp();

9 private ListImp<HanoiMove> storage =

new ListImp<HanoiMove>();

10

11 @Override

12 public HanoiSolution solve(int n) {

13 gameBoard.setup(n);

14 int ringNum= n;

15 if (n != 0)

16 moveRec(0, 2, n);

17 HanoiSolution solved = new HanoiSolutionImp(ringNum,

storage);

18 return solved;

19 }

20 private void moveRec(int a, int b, int k){

21 int c = 2;

22 if (a != 0 && b != 0)

23 c = 0;

24 else if (a != 1 && b != 1)

25 c = 1;

26

27 if (k == 1){

28 gameBoard.doMove(new HanoiMove(a, b));

29 storage.append(new HanoiMove(a, b));

30 }

31 else {

32 moveRec(a, c, k-1);

33 gameBoard.doMove(new HanoiMove(a, b));

34 storage.append(new HanoiMove(a, b));

35 moveRec(c, b, k-1);

36 }

37 }

38

39 }

Figure 2.5. Revised HanoiSolverImp.java

26

src/hanoi/HanoiSolverImp.java:8: Private field ’gameBoard’ could

be made final; it is only initialized in the declaration or constructor.

src/hanoi/HanoiSolverImp.java:9: Private field ’storage’ could

be made final; it is only initialized in the declaration or constructor.

src/hanoi/HanoiSolverImp.java:18: Consider simply returning

the value vs storing it in local variable ’solved’

src/hanoi/HanoiSolverImp.java:22: Avoid if (x != y) ..; else ..;

Figure 2.6. PMD feedback for revised HanoiSolverImp.java

FrenchPress 1.3 feedback for HanoiSolverImp.java

Good work! FrenchPress found no flaws in your code.

Figure 2.7. FrenchPress feedback for revised HanoiSolverImp.java

The student revised her code to follow FrenchPress’s suggestions. Note the changes

on lines 8, 9, 14, 17, and 20 of Figure 2.5. Running FindBugs on the revised

HanoiSolverImp.java again produces no feedback. PMD has more to say about the

revised version than it did about the original (Figure 2.6), as two public instance

variables have become private, and two instance variables have become local vari-

ables of the solve method. PMD correctly points out that the local variable solved

could easily be eliminated. The same is true of local variable ringNum, although none

of the three static analysis tools can detect this. The revised class definition trig-

gers none of FrenchPress’s diagnostic rules, as the student has fixed the three flaws

identified in the initial version (Figure 2.7).

2.3 Code smells

FrenchPress is similar in spirit to systems such as Stench Blossom [26] and JDeodor-

ant [13, 38, 14, 21] that alert programmers to code smells, questionable program fea-

tures that indicate the code should be refactored or redesigned. Stench Blossom offers

programmers an interactive visualization that warns them of code smells as they are

27

Table 2.2. JDeodorant code smells and the corresponding refactorings

Code smell Refactoring
feature envy move method
state checking replace conditional with polymorphism

replace type code with state/strategy
long method extract method
god class extract class

writing Java in Eclipse. The tool has three levels of visualization. Ambient View

shows the relative strength of smells in the method the programmer is currently edit-

ing. Active View tells the user the name of each smell identified. Explanation View

displays a summary from the smell analyzer and points to the code causing the smell.

Stench Blossom can recognize eight code smells: data clumps, feature envy,

message chain, switch statement, typecast, instanceof, long method,

and large class.

JDeodorant detects four categories of code smell and can automatically refactor

the code to eliminate them. The code smells and their remedies are shown in Table 2.2.

JDeodorant calculates and ranks multiple candidate refactorings that would remedy

each code smell it has identified. The user can select a refactoring, preview its effects,

and have JDeodorant apply it automatically to his program.

FrenchPress flaws can be considered code smells specific to advanced beginner Java

programmers. The poor programming practices FrenchPress highlights for students

are more localized than the smells identified by Stench Blossom and JDeodorant. The

repairs FrenchPress suggests in feedback messages are much smaller in scope than

the refactorings JDeodorant proposes. I chose not to automate any code modification

because I think the student learns more by thinking through the feedback he gets

from FrenchPress, then deciding for himself whether and how he will change his

program. To test this hypothesis, I would have to implement a new FrenchPress plug-

in that would not only diagnose program flaws but also repair them using functions

28

provided in Eclipse to manipulate the abstract syntax tree. I could then conduct a

controlled classroom trial to compare students using the original version of the plug-

in to students using the new version of the plug-in. In the classroom trial reported

in Chapters 5 and 6, I had difficulty estimating how well students had learned from

FrenchPress feedback messages. I would have to overcome this difficulty before I

could evaluate whether it is more effective to let the student make his own code

modifications or have FrenchPress correct the flaws it finds.

29

CHAPTER 3

DIAGNOSTICS

The current version of the FrenchPress prototype comprises seven diagnostic rules.

I developed these rules after examining a set of student programs submitted for the

UMass data structures and algorithms course in 2008. I focussed on programming

practices that

• do not affect the output of the program, but violate professional Java coding

standards;

• are amenable to automated analysis;

• occur frequently enough among the students to be worth investing effort to

correct.

I chose stylistic flaws I thought would not cause much debate among experienced

programmers. By “amenable to automated analysis” I mean I could come up with a

succinct list of criteria to determine whether or not a particular program exhibited

the flaw. There were, of course, other questionable features of these programs that I

could not characterize with sufficient precision to diagnose reliably. These include:

• The student relies on instance variables as global variables to avoid more com-

plex mechanisms for sharing information among methods. The symptom is a

class whose methods are all parameterless with a return type of void.

• The student calls a method repeatedly with incrementing or decrementing pa-

rameters. The repetitious code should be rewritten as a for loop.

30

• The student uses a set of Strings to represent the values of what should be an

enumerated type.

These ill-defined rules are not amenable to automated analysis as they stand now,

although it might be possible to refine them to the point where they could be imple-

mented.

3.1 Four categories of flaws

I grouped FrenchPress’s rules into four broad categories so that explanatory mes-

sages about related concepts would be displayed together. Some of these dodgy

programming practices reveal the student’s poor grasp of the object-oriented pro-

gramming paradigm. Others are stylistic blunders one might see in any programming

language. If the student’s .java file contains flaws of multiple types, FrenchPress

presents feedback in the order of the rules listed below. I ordered the categories ac-

cording to my judgment of their severity. Misconceptions about the use of variables

and access modifiers seem to me more serious in their potential consequences than re-

dundant boolean expressions or unexpected for loop control variables. I want to first

draw the student’s attention to the issues I consider to be more significant. For each

diagnostic I include below an example of the feedback the plug-in gives the student.

If no diagnostic rules are triggered, the student gets the message

Good work! FrenchPress found no flaws in your code.

3.1.1 Misuse of fields

Advanced beginners in Java do not always understand the significance of fields

in a class definition. They might declare something as an instance variable but then

use it as a class constant. Or they declare fields that are unrelated to the class’s

data representation; these are really local variables that have been inappropriately

promoted to the status of instance or class variables.

31

Rule 1. Field could have been a local variable

A field could be made local if, in every method that uses the variable, it is always

written before it is read, and it is read at least once. The same variable name might

appear in several different methods but it is used as a local variable in each of them.

Variables such as

game (8)

m (9)

are declared at the class level but appear to function as local

variables. Each of these variables could be declared locally

in each method where it is used. To find all the places a

variable is used, select the variable name and Eclipse will

highlight every occurrence of that variable.

Student submissions that exhibit this flaw may be found in Figures 3.7 and 3.8 on

pages 41–42, in Chapter 1, Figure 1.2, in Chapter 2, Figures 2.1 and 2.2, and in

Appendix B.

Rule 2. Instance variable could have been a static final constant

The instance variable is initialized to a constant expression and never modified

thereafter.

Instance variables such as

numTrials (4)

could be declared static final (class constants) because they

are initialized to a constant value and never changed later.

Figure 3.1 shows a program that triggers this rule, leading to the message in Fig-

ure 3.2. The student revised his program in light of the feedback as shown in Fig-

ure 3.3 (note change on line 6). Other student submissions that exhibit this flaw may

be found in Figures 3.7 and 3.8 and in Chapter 1, Figure 1.2.

3.1.2 Misuse of the public modifier

Inexperienced programmers often do not attach much importance to the principle

of hiding the details of a class’s data representation and internal methods. They

32

1 package structures;

2

3 public class ListImp<T> implements ListInterface<T> {

4

5 private int size = 0;

6 private int defSize = 10;

7 private Object[] contents = new Object[defSize];

8

9 @Override

10 public int size() {

11 return size;

12 }

13

14 @Override

15 public ListInterface<T> append(T elem) {

16 if (elem == null)

17 throw new NullPointerException("Null pointer.");

18 contents[size]= elem;

19 size++;

20 return this;

21 }

22

23 @Override

24 public T remove(int n) {

25 if(n > size)

26 throw new IndexOutOfBoundsException("No such location

in the list; Index out of bounds");

27 T temp = (T)contents[n];

28 contents[n]= null;

29 for(int i = n; i < size; i++)

30 contents[i] = contents[i+1];

31 contents[size]= null;

32 size--;

33 return temp;

34 }

35

36 }

Figure 3.1. Student’s ListImp.java

33

FrenchPress 1.3 feedback for ListImp.java

Instance variables such as

defSize (6)

could be declared static final (class constants) because they are

initialized to a constant value and never changed later.

Figure 3.2. FrenchPress feedback for ListImp.java

routinely declare instance variables public or make a method public even though

it is not part of the API for the class. Many times a method ends up public simply

because the student copied and adapted a method definition from his lecture notes

without thinking whether the access modifier was appropriate for his own program.

This carelessness is understandable in the case where the student is working on his

program alone (true for most courses at this level) and has no intention of re-using

his code after the due date of the assignment. FrenchPress pushes back against these

bad habits by reminding the student that access control is an important concept.

Rule 3. Instance variable declared public

The student should define getter and setter methods instead of exposing the class’s

instance variables.

Instance variables such as

count (8)

should not be declared public. If you need to read or change

a variable V outside of the class, define getV and setV

methods. Or, if V is really a class constant, declare it

public static final.

A student submission that exhibits this flaw may be found in Chapter 2, Figures 2.1

and 2.2.

34

1 package structures;

2

3 public class ListImp<T> implements ListInterface<T> {

4

5 private int size = 0;

6 static final int defSize = 10;

7 private Object[] contents = new Object[defSize];

8

9 @Override

10 public int size() {

11 return size;

12 }

13

14 @Override

15 public ListInterface<T> append(T elem) {

16 if(size == contents.length)

17 contents = new Object[2*contents.length];

18 if (elem == null)

19 throw new NullPointerException("Null pointer.");

20 contents[size]= elem;

21 size++;

22 return this;

23 }

24

25 @Override

26 public T remove(int n) {

27 if(n > size)

28 throw new IndexOutOfBoundsException("No such location

in the list; Index out of bounds");

29 T temp = (T)contents[n];

30 contents[n]= null;

31 for(int i = n; i < size; i++)

32 contents[i] = contents[i+1];

33 contents[size]= null;

34 size--;

35 return temp;

36 }

37

38 }

Figure 3.3. Revised ListImp.java

35

Rule 4. Non-static method declared public

If a public method is not called outside of its class, it does not need to be public.

(This rule does not trigger if the method is inherited from a superclass or required

by an interface the class implements.)

These methods are declared public but never called outside

their own class:

moveRec (23)

If you meant these to be helper methods used only within

this class, they should be declared private instead.

Student submissions that exhibit this flaw may be found in Figures 3.7 and 3.8

(pages 41–42), in Chapter 1, Figure 1.2, and in Chapter 2, Figures 2.1 and 2.2.

3.1.3 Misunderstanding booleans

The boolean data type seems to baffle some students more than other primitive

data types. FrenchPress recognizes two forms this misunderstanding can take in

student code.

Rule 5. Integer variable used as a boolean flag

In some cases the student declares an integer variable but uses it as a boolean flag.

A integer variable is suspect if it never gets any value other than 0 or 1, is compared

to 0 or 1 in at least one expression, and never compared to any other values.

Variables such as

Check (27)

are declared int but appear to function as boolean flags.

Instead of giving them the values 1 and 0, declare them as

boolean and give them the values true and false.

Figures 3.4 and 3.5 show a program that triggers this rule, leading to the message in

Figure 3.6. This student ignored the feedback. Appendix B contains the program of

a student who did not ignore the feedback from Rule 5. He changed his code and in

the process created a case of Rule 6 (below), which he fixed in the next iteration of

36

1 package structures;

2

3 import java.util.Deque;

4 import java.util.Iterator;

5 import java.util.LinkedList;

6

7 public class PostOrderIterator<T> implements Iterator<T> {

8 private final Deque<BinaryTreeNode<T>> stack;

9 private int count=0;

10 public PostOrderIterator(BinaryTreeNode<T> root){

11 if (root==null)

12 throw new NullPointerException("");

13

14 stack = new LinkedList<BinaryTreeNode<T>>();

15 stack.push(root);

16 }

17

18 @Override

19 public boolean hasNext() {

20 if(count!=0)

21 {

22 BinaryTreeNode<T> toVisit=stack.pop();

23

24 if (stack.isEmpty())

25 return false;

26 stack.push(toVisit);

27 return true;

28 }

29 return !stack.isEmpty();

30 }

31

32 @Override

33 public T next() {

34 BinaryTreeNode<T> toVisit=stack.peek();

35 if (count!=0)

36 {

37 toVisit=stack.pop();

38 if (stack.peek()!=null&&stack.peek().hasLeftChild()&&

toVisit==stack.peek().getLeftChild())

39 {

Figure 3.4. Student’s PostOrderIterator.java, part 1

37

40 if (stack.peek().hasRightChild())

41 {

42 toVisit=stack.peek().getRightChild();

43 stack.push(toVisit);

44 }

45 else

46 return stack.peek().getData();

47 }

48 else if (stack.peek()!=null&&stack.peek().

hasRightChild()&&toVisit==stack.peek().getRightChild())

49 return stack.peek().getData();

50 }

51 count++;

52 while (!toVisit.hasLeftChild()&&

toVisit.hasRightChild())

53 {

54 toVisit=toVisit.getRightChild();

55 stack.push(toVisit);

56 }

57 while (toVisit.hasLeftChild())

58 {

59 toVisit=toVisit.getLeftChild();

60 stack.push(toVisit);

61 while (!toVisit.hasLeftChild()&&

toVisit.hasRightChild())

62 {

63 toVisit=toVisit.getRightChild();

64 stack.push(toVisit);

65 }

66 }

67 return toVisit.getData();

68 }

69

70 @Override

71 public void remove() {

72 throw new UnsupportedOperationException();

73 }

74

75 }

Figure 3.5. Student’s PostOrderIterator.java, part 2

38

FrenchPress 1.3 feedback for PostOrderIterator.java

Variables such as

count (9)

are declared int but appear to function as boolean flags.

Instead of giving them the values 1 and 0, declare them as boolean

and give them the values true and false.

Figure 3.6. FrenchPress feedback for PostOrderIterator.java

interaction with the plug-in. The program is too long to include here; please refer to

Appendix B. Figures 3.7 and 3.8 below show another example of Rule 5.

Rule 6. Redundant boolean expressions

Boolean expressions that compare a boolean variable to the constants true or

false will be familiar to anyone who has read student code.

Boolean expressions such as

isLegalMove(move) == false (11)

temp.hasRings() != true (63)

are redundant and can be shortened. If B is a boolean

expression,

B == true or B != false means the same thing as B

B != true or B == false means the same thing as !B.

The student program in Appendix B exhibits this flaw.

3.1.4 For loops

Rule 7. Inappropriate for loop control

Students occasionally use an instance variable or a constructor/method parameter

as a loop control variable. Perhaps this reflects a misconception that their code is

more economical or efficient if they re-use variables instead of declaring a new int i

in their for loop.

39

Instance variables such as

numPeople (39)

should not be used as for loop control variables. It is

preferable to use a separate variable as in, for (int i = ...).

Rule 7 never triggered for any program in the classroom trial. The example in Fig-

ures 3.7 and 3.8 comes from the Spring 2008 edition of CMPSCI 187. It also triggered

Rules 1, 2, 4, and 5 (Figure 3.9). Another student submission from Spring 2008 that

exhibits this flaw may be found in Chapter 1, Figure 1.2.

3.2 Minimize duplication with prior work

In choosing which rules to implement in the plug-in, I tried to avoid duplicating

work that had been done elsewhere. Eclipse itself gives many helpful warnings to

the programmer, including private fields and local variables whose value is never

used, private methods that are never called. Checkstyle enforces (among many oth-

ers) naming and indentation conventions, and length limits on lines, methods, and

files. PMD identifies (among many others) unused formal parameters as well as the

same unused fields, local variables, and methods that Eclipse would mark with a

warning. While advanced beginner Java learners could benefit from similar warn-

ings, I wanted to focus my energy on feedback that was not available in other tools.

There is nevertheless some overlap between FrenchPress and other diagnostic sys-

tems. PMD’s SingularField is a limited version of Rule 1. Flaws caught by Rule 3

Instance variable declared public would also be flagged by Checkstyle’s VisibilityMod-

ifier and by the Java Critiquer discussed on page 20. Rule 6 Redundant boolean

expressions matches Checkstyle’s SimplifyBooleanExpression and PMD’s Simplify-

BooleanExpressions. PMD’s AvoidReassigningParameters overlaps with Rule 7 when

method parameters are used as for loop control variables.

40

1 public class BirthdayParadox{

2 int[] birthdays;

3 int count = 0;

4 double numTrials = 10000;

5 int numPeople=10;

6 int temp;

7

8 public BirthdayParadox(){

9 this.printResults();

10 }

11

12 public void birthdayGenerator(){

13 birthdays = new int[numPeople];

14 for(int a=0; a<numPeople; a++){

15 birthdays[a] = (int)(Math.random()*365+1);

16 }

17 }

18

Figure 3.7. Student’s BirthdayParadox.java, part 1

3.3 Implementation

The implementation of FrenchPress diagnostics relies on the abstract syntax tree

(AST) maintained by Eclipse for the program under construction. Implementing

these rules directly on source code would not be feasible, as the rules rely on the

structure of the program as well as its type hierarchy. Prof. Moss and I considered

implementing the diagnostics at the byte code level, using the ASM [3] tool. However,

I was concerned about the difficulty of incorporating ASM into an Eclipse plug-in

and did not want to devote a large part of my research effort to system integration. I

therefore relied on the rich repertoire of data structures and built-in functions Eclipse

provides for plug-in developers.

Rule 1 Field could have been a local variable is implemented with a custom data

flow analysis. The overall idea is that a field could be (and should be) replaced

by (multiple) local variables if, in every method that accesses the field, it is always

41

19 public double percentCalc(){

20 count=0;

21 for(int c=0; c<numTrials; c++){

22 this.birthdayGenerator();

23 temp = 0;

24 for(int g=0; g<numPeople; g++){

25 for(int h=g+1; h<numPeople; h++){

26 if(birthdays[g] == birthdays[h]){

27 temp++;

28 }

29 }

30 }

31 if(temp>0){

32 count++;

33 }

34 }

35 return ((double)count)/numTrials;

36 }

37

38 public void printResults(){

39 for(numPeople=10; numPeople<31; numPeople++){

40 System.out.println("People: " + numPeople + " " +

percentCalc());

41 }

42 }

43 }

Figure 3.8. Student’s BirthdayParadox.java, part 2

42

FrenchPress 1.5 feedback for BirthdayParadox.java

Variables such as

count (3)

temp (6)

are declared at the class level but appear to function as local

variables. Each of these variables could be declared locally

in each method where it is used. To find all the places a variable

is used, select the variable name and Eclipse will highlight

every occurrence of that variable.

Instance variables such as

numTrials (4)

could be declared static final (class constants) because they are

initialized to a constant value and never changed later.

These methods are declared public but never called outside their

own class:

birthdayGenerator (12)

percentCalc (19)

printResults (38)

If you meant these to be helper methods used only within this class,

they should be declared private instead.

Variables such as

temp (6)

are declared int but appear to function as boolean flags.

Instead of giving them the values 1 and 0, declare them as boolean

and give them the values true and false.

Instance variables such as

numPeople (39)

should not be used as for loop control variables.

It is preferable to use a separate variable as in, for (int i = ...).

Figure 3.9. FrenchPress feedback for BirthdayParadox.java

43

written before it is read, and it is read at least once. If the field’s value is initially

overwritten in every method that subsequently reads the field, then the inter-method

information content of that field is never used in the class. However, if there is a

method that writes the field but never reads it, that method is essentially a setter

method for the field. The value written in the setter might be used in another part

of the program, so FrenchPress does not recommend this field should be made local.

The data flow analysis classifies each method with respect to each field of the class

into one of four groups:

• exposed read : on some path, the first access to the field is a read

• write only : the field is written but never read

• used : the field is written and then read

• none: no access to field

If the field is used in at least one method and there are no methods in the exposed

read or write only categories, then FrenchPress suggests to the student that the field

could be declared locally in every method where it appears.

Rule 2 Instance variable could have been a static final constant examines the AST

of the class to find each field that is

• not static final;

• initialized to a constant value where it is declared;

• never assigned or modified (to the same value or a different one).

An instance variable that meets these criteria generates diagnostic feedback suggesting

to the student that the field appears to be a class constant.

Rule 4 Non-static method declared public exploits the Eclipse search mechanism

that allows a programmer to locate all the calls to a specified method within the

44

Java project. The rule considers every public method defined in the class, excluding

abstract methods, main methods, and constructors. The plug-in takes advantage of

the type hierarchy maintained in Eclipse to determine whether the method in question

is inherited from a superclass or required by an interface the class implements. If the

type hierarchy does not explain why this method is public, the plug-in searches for

calls to the method from outside the class. If no such call is found, there’s a good

chance the method does not need to be public and FrenchPress’s feedback urges the

student to make it private.

Rule 5 Integer variable used as a boolean flag examines the AST for any field or

local variable declared of type int that exhibits the following characteristics:

• assigned only the value 0 or 1;

• compared to 0 or to 1 somewhere in the class;

• might be incremented by 1 but never decremented;

• does not appear in a for loop control expression.

FrenchPress feedback points out that the integer variable functions as a boolean in

the program and should be declared that way.

Rules 3, 6, and 7 are straightforward to implement because each visits only one

type of AST node. Rule 3 Instance variable declared public examines the modifiers

of each FieldDeclaration node in the AST. Rule 6 Redundant boolean expressions

examines the operator and right hand side of each InfixExpression node looking

for comparisons with == or != to a boolean literal. Rule 7 Inappropriate for loop con-

trol examines the initializers and updaters of each ForStatement node to determine

whether they change the value of a field or method parameter.

45

CHAPTER 4

FRENCHPRESS PLUG-IN

4.1 Implementing an Eclipse plug-in

As Section 1.4.2 explains, implementing FrenchPress as an Eclipse plug-in offers

many advantages for the students who want to install and use the software with a

minimum of inconvenience. This implementation choice also offers advantages for

the creator of the system. Eclipse gives plug-in developers a rich API repertoire

for analyzing Java code, adding items to Eclipse menus, and displaying results in

the Eclipse interface. The diagnostic rules listed in Chapter 3 rely in large part on

Eclipse’s built-in functionality. Eclipse provides a powerful mechanism for searching

the type hierarchy and call graph of the Java program under construction. However,

the documentation for these functions is sometimes out of sync with the reality of

how they work in Eclipse. The programmer must also gain an understanding of the

software hooks that connect the code of a plug-in to the internal data structures of

the Eclipse environment.

4.2 Running the FrenchPress plug-in

To run FrenchPress, the user first selects what he wants to analyze in the Package

Explorer view. He can run FrenchPress on all the .java files in the src folder of a

project by selecting the project name. He can run FrenchPress on a particular .java

file in his src folder by selecting just that filename. Having selected his target, the

user right-clicks to get a menu that includes the item “Run FrenchPress”. When

46

FrenchPress completes its analysis, it displays a pop-up dialog box containing feed-

back for the student to read. If the student’s code triggers no diagnostic rules, the

message reads “Good work! FrenchPress found no flaws in your code.” If the code

triggers one or more rules, FrenchPress presents feedback in the numeric order of the

rules listed in Chapter 3. In either case, the student clicks an “OK” button to dismiss

the window. Figure 1.1 on page 3 shows a screenshot of FrenchPress running on a

single .java file.

The first time the student runs the plug-in on any part of his Eclipse Java project,

it creates an archive folder called frenchpress at the top level within the project.

The archive folder contains all the feedback files FrenchPress has produced for that

project, and a .jar file of program history. For the student, the frenchpress folder

is a repository of all the suggestions he has received concerning his code. For the

researcher, the frenchpress folder holds a complete record of the student’s interac-

tion with the plug-in. Every time FrenchPress runs, it records a snapshot of all the

.java files in the src folder at that moment (not just the file for which feedback is

produced). These snapshots are all stored in a file named <projectname>.jar. If

the student reruns the plug-in on the same project, FrenchPress adds to the existing

archive folder. The frenchpress folder is saved along with the rest of the student’s

Java project, so the feedback files and the program archive .jar file accumulate no

matter how many times he exits and re-enters Eclipse in the course of working on his

assignment.

FrenchPress feedback is initially delivered in a dialog box that the student must

close in order to continue composing his program. By storing feedback files in the

frenchpress folder, the diagnostic messages remain available over the life of the

project, not the life of a dialog box. The student can look back and review the

feedback he received at any time. The name of each FrenchPress feedback file contains

three components: the .java file whose analysis produced the feedback, the version of

47

FrenchPress that created the feedback, and a sequence number indicating how many

times the student has analyzed the same .java file. For example, a feedback file with

the name

ArrayHeap-fp15-03

means the feedback was generated by FrenchPress version 1.5 for file ArrayHeap.java,

and the student already has two feedback files for ArrayHeap.java from earlier runs

of the plug-in.

Knowing which version of FrenchPress produced the feedback file is important for

evaluating the results. Over the course of the classroom trial, bug fixes and feature

enhancements required the release of new versions of the plug-in. Some students

ignored my instructions to update and persisted in running older software. A false

positive from an old version of the plug-in might linger in these students’ feedback

files even after a new version was released.

The final element of the feedback filename indicates how many times the student

has run FrenchPress on the same source file. This number is a rough indication of

how seriously he engaged with the diagnostic tool. In an ideal scenario, the student

runs the plug-in and gets substantive feedback, modifies his program according to

FrenchPress’s suggestions, and then reruns the plug-in to see whether his edits have

eliminated the issues that were flagged the first time. It might take several iterations

to address all the feedback messages. The numbering of the feedback files allows both

the student and the researcher to track the history of the student’s interaction with

FrenchPress.

4.3 Running FrenchPress on the entire src folder

Students wrote comments on their surveys saying that for a project with many

.java files, it was tedious to run FrenchPress on each file individually. In response,

I implemented a new menu item to analyze all the student’s files at once. For

48

Figure 4.1. FrenchPress popup dialog for entire src folder

CMPSCI 187 assignments, the students were told to put all their work in the src

folder of the project, although the professors provided starter code and JUnit tests in

other folders. Therefore FrenchPress analyzes only class definitions found in the src

folder (there are no diagnostics for interface definitions).

I had to re-think how to communicate diagnostic feedback when FrenchPress runs

on the contents of the entire src folder. The user might feel overwhelmed if French-

Press opened a separate feedback window for each file analyzed. FrenchPress in-

stead displays one window that lists the .java files for which substantive feedback

is recorded in the frenchpress folder (Figure 4.1). Later, the user can peruse the

feedback created for each individual source file and make corrections if he wishes. If

no source files generated any substantive feedback, the user gets a message of con-

gratulations.

I also changed how the plug-in writes its archive .jar file when the student runs

FrenchPress on the entire src folder. When FrenchPress runs on a single file, the plug-

in records a snapshot of all the other .java files in the src folder along with the file

under analysis and the feedback generated for that file. If the user analyzes two .java

files in a row, the plug-in will record two snap-shots of the src folder. FrenchPress

does not monitor the modification time of each file; it assumes the file might have

49

changed since the last time and takes a new snapshot. However, when FrenchPress

runs on the entire src folder at once there is no need for multiple snapshots. In this

case FrenchPress will archive a single snapshot of each .java file in src along with

the feedback files, avoiding any repetition of source code in the .jar.

50

CHAPTER 5

CLASSROOM TRIAL OF FRENCHPRESS PLUG-IN

Under the supervision of the UMass Amherst Institutional Review Board, I have

tested the FrenchPress plug-in with three groups of CMPSCI 187 students. CMP-

SCI 187, Programming with Data Structures, is the second Java programming class

in the undergraduate computer science major sequence. These were formative eval-

uations, not controlled experiments. Running a classroom trial in which only half of

the participants would have a chance to use a new software tool raised such difficult

ethical issues that I did not attempt to create a control group.

The first time students tried FrenchPress was a pilot study over winter break start-

ing in December 2013. I enrolled five students who had just completed CMPSCI 187

with Prof. James Allan. The pilot study allowed me to debug the mechanism for

software distribution. I originally planned to have the students download the plug-

in’s .jar into the dropins folder of their Eclipse installation. This simple procedure

described in the Eclipse documentation failed in practice for half of the students.

Both Mac and Windows users had trouble with the dropin method. I undertook the

more complicated procedure of building an Eclipse update site for FrenchPress, which

worked for all the students.

I subsequently conducted two trials of FrenchPress in the CMPSCI 187 classroom,

with the generous collaboration of the faculty teaching the course. The first occurred

in the Spring 2014 semester, when Prof. Gerome Miklau and Lecturer Tim Richards

shared responsibility for CMPSCI 187. This study covered three programming assign-

ments. The implementation of FrenchPress’s diagnostic rules was not yet complete,

51

so the prototype deployed in the spring of 2014 had limited functionality. For this

reason the data collected in Spring 2014 are not included herein. The classroom trial

for which results are reported in Chapter 6 occurred in the Fall 2014 semester, when

Profs. David Mix Barrington and Mark Corner co-taught CMPSCI 187. This study

covered four programming assignments.

5.1 Plan for classroom trial

Miklau and Richards (Spring 2014) alternated lectures for all the students together

in one room, while Barrington and Corner (Fall 2014) each gave parallel lectures dur-

ing the same time slot for half the class. The professors gave me 15 minutes of class

time to explain the purpose of the plug-in, the potential risks and benefits of partici-

pating in the study, and the significance of the Informed Consent Form (Appendix D).

Those who signed a consent form were enrolled in the study. To reward their partic-

ipation in the trial, students were offered a small amount of extra credit—enough to

push their final grade from (for example) a high B to a B+. The Institutional Review

Board was concerned that the offer of extra credit might put pressure on students to

participate who would not otherwise have made that choice. To avoid that situation,

I devised an alternate writing assignment that students could do to earn the same

extra credit without using FrenchPress. The alternate assignment asked students to

research on the internet three stylistic recommendations for Java programmers, and

comment on whether they agreed or disagreed with each suggestion. In the Spring

2014 trial these alternate extra credit assignments were graded by one of the CMP-

SCI 187 TAs. In the Fall 2014 trial, I graded the alternate extra credit assignments.

Instructions for FrenchPress installation and usage were posted on the course

website. Installation was a simple matter after I created an Eclipse update site for

FrenchPress. Students were able to use the “Install new software” function of Eclipse

to download the plug-in from its update site. For each programming assignment, the

52

student was required to run FrenchPress on one or more .java files from his Eclipse

project and answer a short online user satisfaction survey (Appendix E) administered

through SurveyMonkey. Students who completed these two tasks for each of the as-

signments were rewarded with full extra credit for their participation in the classroom

trial. However, many students did not complete both steps for each assignment. They

received partial extra credit as appropriate.

As noted above, the Spring 2014 classroom trial did not produce a complete data

set because the plug-in was not fully implemented. The principal benefit to my

research from that experience was learning how to manage a classroom trial. The

surprises started with the informed consent process. I was encouraged that many

students were willing to participate, but I did not expect that some of them would

fill in their Informed Consent Form with a pencil, while others submitted a .pdf with

their name typed on the keyboard instead of signed by hand. I added a paragraph

to the Fall 2014 consent form explaining how to complete the form properly. I found

the overhead of communication with both the professors and the study subjects took

more of my time than I had anticipated. I sent repeated reminders to students about

completing the online survey for each assignment, and handled emails from those who

could not remember whether they had already done so.

5.2 User satisfaction survey

The user satisfaction survey for each assignment was open for one week following

the due date. There was no overall survey at the end of the semester. I decided to

administer multiple surveys for two reasons. First, I wanted to capture the students’

impressions of the plug-in soon after they finished working with it, before their mem-

ory of the FrenchPress feedback had faded. Second, different programs written for

different assignments elicit different feedback from FrenchPress. The student might

find the diagnostic messages he received on one assignment were helpful, but those for

53

the next assignment were less helpful. Instead of asking the student for his average

judgment over all assignments, I wanted to obtain a more specific evaluation of his

experience on each program.

5.2.1 Keep it short

Given the small amount of extra credit offered for participating in the study,

and the reality of undergraduates juggling many courses at once, my top priority in

writing the survey was brevity. I was concerned that if the survey were too long,

students would find it onerous and drop out of the trial because they did not want to

be bothered with a tedious task after each assignment. Perhaps if I had had only one

survey at the end of the semester I would have allowed myself more questions. Since

the students had to repeat the survey multiple times, I was determined to keep it as

short as possible.

I wrote the survey questions to include both positive and negative terms so that I

would not bias the responses in one direction. For example, I included the question,

For this assignment, was the feedback from FrenchPress confusing or easy
to understand?

with possible responses

• FrenchPress found no flaws in my program

• Very confusing

• Moderately confusing

• Neither confusing nor easy to understand

• Moderately easy to understand

• Very easy to understand

54

The alternative would have been a statement that more closely matches the standard

five-level item in a Likert-type scale [8]:

For this assignment, I found the feedback confusing.

with possible responses

• FrenchPress found no flaws in my program

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly disagree

But then to balance out the positive and negative vocabulary I would have needed

another question on the survey of the form,

For this assignment, I found the feedback easy to understand.

with the same possible responses. This would have doubled the length of the survey

and the time students would need to complete it. I was afraid including many ques-

tions to ask essentially the same thing would frustrate the students and lead them to

abandon the classroom trial.

5.2.2 Survey questions

The survey after the first assignment of the classroom trial included three ques-

tions about the operating system and the installation of the FrenchPress plug-in.

These questions did not appear on subsequent surveys. All the surveys included the

questions numbered 1 and 5–11 below. The last question was followed by a text box

55

in which students could type any comments they wished to communicate to the re-

searcher. Please refer to Appendix E for the full survey including all response choices

for these questions.

1. Please enter your student ID number for this survey to count toward extra

credit.

2. What operating system are you using? Please include the edition/version (e.g.

Windows 7 Professional or OS X 10.9.4).

3. How easy or difficult was it to install FrenchPress?

4. How long did it take you to install FrenchPress?

5. How often did FrenchPress crash or “freeze up” on you for this assignment?

6. Did FrenchPress find any flaws in your program for this assignment?

7. For this assignment, was the feedback from FrenchPress confusing or easy to

understand?

8. For this assignment, was the feedback from FrenchPress helpful or unhelpful?

9. Did the FrenchPress feedback for this assignment lead you to change your pro-

gram?

10. Are you satisfied or dissatisfied with the performance of FrenchPress on this

assignment?

11. How can we improve FrenchPress?

5.2.3 Limitations of survey data

The first step in interpreting the survey data was to eliminate duplicate and bogus

survey responses. Sometimes a student who could not remember completing the

56

survey for a particular assignment would take it a second time, creating a duplicate

in the data set. As the first question on the survey asked for student ID, it was

possible to identify these duplicates and delete them. A few students took the survey

although there was no evidence they had run the FrenchPress plug-in on the project

they submitted for the corresponding assignment. It seems they were trying to game

the system and get full extra credit without fulfilling the requirements of the classroom

trial. I weeded out the surveys from these students.

It became obvious that some of the survey questions were poorly worded and

subject to multiple interpretations. Question 6,

Did FrenchPress find any flaws in your program for this assignment?

was very misleading. I meant to ask, did you get any substantive diagnostic feedback,

something more than a “Good work” message? Some students understood the ques-

tion as, did you get any feedback that you felt truly reflected a poor programming

practice? If the student got feedback he judged to be a false positive or just not worth

the trouble to consider, he might answer no to this question when I expected him to

answer yes because he had received substantive feedback. Of course the feedback files

stored in the student’s frenchpress folder show exactly what messages FrenchPress

gave for each .java file analyzed. So I can get the answer to the question I thought

I was asking without relying on the student to tell me.

The ambiguity of question 6 might also affect the responses to questions 7 and 8

about the quality of FrenchPress feedback. The first possible answer for each of these

questions was

FrenchPress found no flaws in my program

which served the purpose of “Not applicable” for those students who could not com-

ment on how confusing/easy to understand, how helpful/unhelpful the feedback was

because they got only a “Good work” message. Students who did not understand

57

what I meant by question 6 might also have answered questions 7 and 8 in a way I

did not anticipate.

The survey responses to question 9,

Did the FrenchPress feedback for this assignment lead you to change your
program?

did not match the FrenchPress program archive for all students. Perhaps when he

completed the survey after submitting his project, the student could not remember

how or why he edited his program. I relied on FrenchPress archive data only to

determine what percentage of users were prompted to modify their code in light of

the plug-in’s diagnostic messages.

5.3 Culling data from the FrenchPress archive folder

One of the first questions one wants to ask about the classroom trial is, which

diagnostic rule triggered most often? Even something that seems straightforward,

counting feedback messages, requires careful attention to avoid counting duplicate

messages as if they were new. Many students ran the plug-in multiple times but

made no changes to their code in between. A cursory glance at the feedback files

might give the impression that a rule has triggered multiple times, but more careful

examination reveals the same mistake recorded again and again. A similar problem

arises if the student made other changes to his code that did not affect the mistake

being counted. The message generated by a different rule might disappear due to the

changes, but the untouched mistake will elicit the same feedback as before, perhaps

with a different line number. In these cases the feedback message counts once and

the repetitions of that message do not increase the total.

It can also be difficult to determine whether the student made changes to his pro-

gram following suggestions he received from FrenchPress. If the frenchpress folder

contains multiple feedback files for the same class definition, these might indicate that

58

the student has modified his code to remedy a shortcoming identified by the plug-in.

However, if the student runs the plug-in no more than once per .java file and then

submits his assignment, the only way to tell if he changed anything is to compare the

.jar in his frenchpress folder to the final submission of the program.

5.4 Off-target feedback

The program and feedback archives in the frenchpress folders submitted by stu-

dents reveal instances where the suggestions offered by the plug-in were inappropriate

for the program under analysis. I refer to these diagnostic messages as “off-target”.

Some but not all are false positives. The sources of off-target feedback include

• implementation errors in Rules 1, 2, and 4

• student neglected to update software

• student ran plug-in at an early stage of development

• student ran plug-in on a test class

• variable or method is unused

• getter/setter method

5.4.1 Implementation errors

Rule 1 Field could have been a local variable, Rule 2 Instance variable could have

been a static final constant, and Rule 4 Non-static method declared public caused some

false positives due to implementation errors. Rules 1 and 2 suffered from a problem

related to the key Eclipse generates for the binding associated with a field or local

variable. Rule 4 gave unnecessary warnings in cases where a public method was not

called outside of the defining class in the student’s code, but it was called in the JUnit

test classes provided by the instructor.

59

5.4.2 Software out of date

Some students did not update their software when I asked them to. The first

version of the plug-in that I made available to students in the Fall 2014 semester was

FrenchPress 1.2. Bug fixes and feature enhancements over the course of the classroom

trial led to three software releases, bringing the version to 1.5 by the last assignment

in the study. Updating the plug-in demanded minimal effort of the students, they

just had to select Check for Updates from the Eclipse Help menu. Nevertheless,

some students were slow to update their software and three even reached the end of

the classroom trial without updating at all. Figure 5.1 shows for each of the four

assignments how many users were running which version of FrenchPress. Note that

the totals do not necessarily count the same participants on all assignments; a few

students floated in and out of the study population. I will refer to the four assignments

as projects 3, 4, 5, and 6 to be consistent with the numbering they had in the course.

An asterisk for a particular project and version number indicates the version was not

yet released at the time of the project. Some students updated in the process of

working on their assignment; their frenchpress folder contains feedback files from

two different versions. No confusion resulted because the name of each feedback file

indicates which version of the plug-in wrote it. For these students, Figure 5.1 reflects

the higher version used on each project.

Table 5.1. FrenchPress usage by version

Version Project3 Project4 Project5 Project6
1.2 19 7 2 3
1.3 28 12 8 5
1.4 * 30 39 11
1.5 * * * 25

total 47 49 49 44

60

5.4.3 Student ran plug-in too early

One of my reasons for building an Eclipse plug-in (Section 1.4.2) is to give the

Java learner suggestions while he is working on his program, instead of delivering

comments several weeks after he submits his solution for a grade. I hoped students

would run the plug-in multiple times for the same .java file as they modified the

class definition. However, my examination of the archive folder shows that running

FrenchPress at an early stage of development can produce some unhelpful messages,

just as Eclipse displays spurious warnings and errors when the programmer is part-way

through a line of code. Rule 2 triggers in situations where the student has declared

and initialized a field but has not yet written the method that modifies its value.

FrenchPress might suggest that a field named size be declared static final when

it seems obvious from the name that the student intends to increment or decrement

size. Or FrenchPress recommends a public method be made private because it is

not called outside the defining class, when the student has not yet completed the code

for the calling class. These diagnostic messages might be confusing for the student,

but they are true positives. The plug-in can only analyze the code as it exists at the

moment the user selects the Run FrenchPress menu item.

5.4.4 Student ran plug-in on a JUnit test class

A few students tried analyzing one of the JUnit test classes provided to them by

the course instructors as part of the starter code for the project. This resulted in

spurious warnings from Rule 4 because all the test methods have to be public for

JUnit to function. FrenchPress is not designed to run on JUnit test classes.

5.4.5 Unused field or method

Rule 2 triggers when the student has declared and initialized a field that is never

referenced anywhere else in the program. While it is certainly possible to make such a

field static final as Rule 2 suggests, doing so would not improve the code. The best

61

feedback message in this scenario would ask the student to consider eliminating the

field all together. Similarly, Rule 4 recommends making a public method private if

it is never called outside of the class where it is defined. But some of these methods

are not called anywhere in the entire project (including test code). These might

be methods the student wrote and subsequently forgot to delete when he refactored

his code. Or perhaps the student included these methods because they are logically

part of the class’s API even though they are not required by any interface the class

implements, and are not used in the current project. The feedback message for a

method that is not called anywhere should be different from the feedback message

for a method that is called only within its defining class.

The savvy Eclipse user can find out where a field is referenced or a method called

by selecting the field or method of interest and choosing Open Call Hierarchy from

its menu. But the advanced beginner programmers in CMPSCI 187 are not always

aware of Eclipse’s capabilities or motivated to exploit them. To alert these students

about unused fields or methods in their code, it would be more effective to refine the

diagnostics and improve the feedback of Rules 2 and 4.

5.4.6 Getter and setter methods

Among the unused public methods flagged by Rule 4, getter and setter methods

are a special category. Students frequently define getter and setter methods whether

or not these methods are called anywhere in the project. Public getter and setter

methods are such a standard idiom of the Java programming language that French-

Press should simply pass over these unused methods without any feedback.

5.5 Lessons learned

I realized over the course of the classroom trial that the term “flaw” can be offen-

sive to students who are proud of their programming skills. I believe the vocabulary

62

of “suggesting improvements” instead of “finding flaws” would be more readily ac-

cepted by the plug-in’s intended audience. Had I chosen my words more carefully,

I might have avoided the misunderstandings around survey questions and response

choices that mention “flaws” (Section 5.2.3).

I should have implemented a branching survey [10, p. 213] instead of including

“FrenchPress found no flaws in my program” as a possible answer. I could have pro-

grammed skip logic so that any student who answered no to question 6 (Section 5.2.2),

indicating he received no substantive feedback, would have jumped directly to ques-

tion 10 and bypassed followup questions about how understandable or helpful the

feedback was. Skip logic would have prevented inconsistent responses to survey ques-

tions 6–9.

I should have made prompt software updates a requirement of the classroom trial.

Of course it would have been better to maintain a single stable version of the plug-in

throughout the duration of the study. But since bug fixes were necessary, I should at

least have ensured that all participants would update their FrenchPress installation

as soon as I announced a new release. Students might have been more conscientious

had I told them they would lose extra credit for submitting feedback files from older

versions.

I need to expand the FrenchPress usage instructions to clarify that the plug-in

is not designed for JUnit test files. The user guide should also explain that running

diagnostics at a very early stage of development can lead to misleading feedback from

Rules 2 and 4 as described in Section 5.4.3.

63

CHAPTER 6

RESULTS OF CLASSROOM TRIAL

The classroom trial of the FrenchPress plug-in produced two types of data: pro-

gram archives recorded in the participant’s frenchpress folder, and responses to the

online user satisfaction survey. The FrenchPress log file gives an objective record of

the student’s interaction with the tool, both the feedback received and the changes

made or not made. The student’s survey responses give insight into his subjective

experience of using FrenchPress.

The Fall 2014 classroom trial of FrenchPress covered four CMPSCI 187 program-

ming assignments, projects 3–6 in the course numbering. The percentage of students

using FrenchPress who got substantive feedback (not a “Good work” message) de-

clined steadily over the duration of the study, from a high of 87% on project 3 to a low

of 30% on project 6. This might indicate students benefited from FrenchPress over

the course of the semester, as they read the feedback and learned not to make the

same mistakes. But many other factors could influence the level of feedback, includ-

ing the type of coding required for the assignment as well as the student’s (lack of)

enthusiasm for running the plug-in on many different .java files. The program logs

show that students did not always modify their code as recommended by FrenchPress.

Among students who got suggestions for improvement, the proportion who changed

their program in light of the feedback was about half on projects 3 and 5, but less

than a quarter for projects 4 and 6. This might reflect the quality of FrenchPress

diagnostic messages, which were not always appropriate for the student’s program.

Higher incidence of off-target messages coincided with the lower uptake on projects 4

64

and 6. I also examined individual trajectories of subjects who ran the plug-in on all

four assignments. I wanted to see for each person whether the frequency of feedback

messages from each of the diagnostic rules increased, decreased, or fluctuated over

the four projects. This analysis was inconclusive because most students got feedback

from a particular rule on none of their projects, or only one. Few trajectories showed

any discernible trend up or down.

Survey data showed that over 87% of respondents found FrenchPress’s diagnostic

messages to be moderately or very easy to understand for projects 3–5, dropping

to 60% on project 6. However, the diagnostics were not as helpful as they were

intelligible. About 55% of users found the feedback rather or very helpful on projects

3 and 5, but the percentage drops to 32% on project 4 and 40% on project 6, tracking

the rates of off-target feedback. Despite this drawback, overall satisfaction with the

plug-in was good. The percentage of respondents who said they were somewhat

or very satisfied with the performance of FrenchPress varied from a low of 56% on

projects 3 and 6 to a high of 66% on project 5.

6.1 Data collection

Table 6.1 lists the topics of the four CMPSCI 187 assignments for which data

were collected in the classroom trial. The study did not cover assignments 1 and

2, as the informed consent process had to be completed before I could acquire any

student information. Students wrote their programs on their personal machines. They

exported the Eclipse Java project as a .zip file and submitted the archive file via

Moodle, the UMass course management system. I had Moodle instructor privileges

for CMPSCI 187 and could download the student submissions.

For each assignment, students enrolled in the trial were asked to analyze at least

one, preferably more, of their .java files before submitting their program to be

graded. After the assignment due date, the students responded to a short online

65

Table 6.1. CMPSCI 187 assignment topics

Project Problem/Data structure
P3 Towers of Hanoi
P4 Recursive linked list
P5 Binary search tree
P6 Priority queue

Table 6.2. Fluctuation in classroom trial participation

Project Ran plug-in Completed survey
P3 47 43
P4 49 46
P5 49 44
P6 44 43

user satisfaction survey (Appendix E) managed via the SurveyMonkey website. The

number of study participants varied slightly from one assignment to the next, as a few

students forgot to use the plug-in or skipped the survey for a particular project but

then re-engaged on the following one (Table 6.2). A total of 53 distinct individuals

tried the plug-in for at least one project. 37 students used the plug-in on all four

assignments (although not all of them kept their software up to date). Some students

answered the survey even though they had not run FrenchPress on their program for

that assignment. I excluded those responses; Table 6.2 reflects only legitimate survey

responses. The program archive and survey responses offer different vantage points

from which to evaluate the impact of FrenchPress on student learning.

6.2 FrenchPress program archive

Each time the student runs FrenchPress, the plug-in updates its log file in the

frenchpress folder of the student’s Eclipse project. The program archive records

all the feedback the student received, and a snapshot of his src folder at the time

he ran the plug-in. The left-hand bar plot of Figure 6.1 shows among students who

ran FrenchPress, what percentage received substantive feedback. By “substantive

66

P3 P4 P5 P6

Substantive feedback?

am
on

g
al

l F
P

 u
se

rs
, %

 w
ho

 g
ot

 s
ub

st
an

tiv
e

fe
ed

ba
ck

0
20

40
60

80

P3 P4 P5 P6

Changed program?

am
on

g
us

er
s

w
ho

 g
ot

 s
ub

st
an

tiv
e

fe
ed

ba
ck

, %
 w

ho
 c

ha
ng

ed
 p

ro
gr

am

0
20

40
60

80

Figure 6.1. Rates of substantive feedback and program modification

67

feedback” I mean any diagnostic message. Users who did not get any substantive

feedback saw only a “Good work” message when they ran the plug-in. The four

projects are color-coded in this and subsequent figures. The percentage of users

receiving substantive feedback declined from a high of 87.2% on the first project

to a low of 29.5% on the last project. Since each student could decide for himself

how many of his .java files he wanted to examine with FrenchPress, the amount

of diagnostic feedback to which the student was exposed depended in part on how

zealous he was in running the plug-in. The minimum required to earn extra credit

was running FrenchPress on just one .java file for each project. I deliberately kept

the criteria of participation low to avoid seeing students drop out of the study because

they found it too time-consuming.

Regardless of student behavior, project 6 elicited little diagnostic feedback com-

pared to the other assignments. Table 6.3 shows the percentage of substantive feed-

back messages among all the messages generated by the plug-in on each assignment.

Project 6 seems to be qualitatively different from the other three projects. The low

rate of substantive feedback on the final project might reflect improvement in student

programming practices, due to exposure to FrenchPress, the excellent instruction of

Profs. Barrington and Corner, and the coding experience gained over the semester.

However, the drop in substantive feedback from project 5 to project 6 is so steep that

I suspect other factors are also contributing. The data structure explored in each

assignment or the starter code furnished by the professors could render FrenchPress

diagnostics more or less relevant. One possible explanation is that project 6 had

some symmetrical structure because it asked students to implement a max- and a

min-priority queue using a max- and a min-comparator. When one of the pair was

working correctly, the student could just copy his code and make minor modifications

to finish the mirror class. Less room for creativity means lower likelihood of mistakes,

hence less FrenchPress feedback.

68

Table 6.3. Substantive feedback varies by project

Project Total msg Subst msg % Subst
P3 376 135 36%
P4 141 78 55%
P5 262 87 33%
P6 232 19 8%

Table 6.4. Recap of FrenchPress diagnostics

Rule 1 Field could have been a local variable
Rule 2 Instance variable could have been a static final constant
Rule 3 Instance variable declared public
Rule 4 Non-static method declared public
Rule 5 Integer variable used as a boolean flag
Rule 6 Redundant boolean expressions

6.2.1 Recap of diagnostic rules

For convenience, Table 6.4 recaps the six rules that produced diagnostic messages

for students in the classroom trial. Rule 7 Inappropriate for loop control did not

trigger on any student program. This could possibly be explained by an upward

trend in the level of the undergraduates who get admitted to the UMass computer

science major over the time it took to propose and develop FrenchPress. It is equally

possible that the courses students take before they arrive in CMPSCI 187 are doing

a better job of preparing them on this point.

6.2.2 Short-term indicator of student learning

The right-hand bar plot of Figure 6.1 shows what percentage of students who

received substantive feedback changed their program in response to the diagnostic

message. This measure can be taken as an indicator of student learning in the short

term: the student read the feedback message, understood it, and acted upon it. The

indicator ranges from 58.5% on the first assignment in the study to 23.1% on the final

assignment, but it does not show a smooth decrease in between. The sharp decline

69

Table 6.5. Off-target feedback varies by project

Project Subst msg Off-target msg % Off-target
P3 133 62 47%
P4 80 57 71%
P5 87 26 30%
P6 19 11 58%

from project 1 to project 2 might reflect the fact that the students’ initial enthusiasm

for new software has worn off. By the end of the classroom trial, fewer participants

were getting substantive feedback from FrenchPress but a good proportion of those

who got feedback were still motivated to modify their code. One reason for the vari-

ation in student uptake of FrenchPress’s suggestions is that the diagnostic messages

are not always on target. For reasons detailed in Section 5.4, Rules 2 and 4 gener-

ated many messages that were not entirely appropriate for the student’s program.

Some of these messages were false positives due to implementation errors, while other

messages were misleading because the rule itself needed further refinement. Rule 4

was the most prolific of all the diagnostic rules and also produced a large proportion

of the off-target messages. Table 6.5 shows the off-target feedback as a percentage

of all the substantive feedback FrenchPress doled out. Projects 4 and 6 have higher

percentages of off-target messages and lower percentages of students who changed

their programs in light of the feedback. It is quite possible that the students were

exercising good judgment in ignoring messages that did not make sense for their code.

6.2.3 Longer-term indicator of student learning

If FrenchPress is achieving its educational goals, one would expect the frequency

of feedback to decline over time as students learn to avoid the mistakes they were

making when they first started using the plug-in. To look for trends over the length of

the classroom trial, I limited my attention to the 37 participants who used the plug-in

70

on all four projects. I tabulated each rule separately because there is no reason to

expect that what a student learns from one rule will carry over to other rules. The

student might see, and learn from, an instance of Rule 3 on the first project but

encounter his first message from Rule 2 on the last project. Although the six rules

fall into three categories (as discussed in Chapter 3), even rules of the same category

address different stylistic issues; seeing feedback from one would not necessarily help

the student avoid triggering the other.

The concept of frequency is understood in relation to the length of the code

analyzed by FrenchPress. For each student and each project, the feedback frequency

for Rule n is

number of feedback messages generated by Rule n

total file length

The denominator includes all files the student analyzed for that project, whether or

not they produced substantive feedback. Each of the 37 students has four feedback

frequency numbers for each diagnostic rule, corresponding to the four projects covered

by the classroom trial. These four numbers reflect the trajectory of the student

through the classroom trial with respect to that rule. His trajectory falls into one of

the following categories:

0msg the student received no feedback messages from that rule on any project;

1prj the student received feedback messages from that rule on exactly one of the

four projects;

Dec the feedback frequency for that rule follows a decreasing trajectory;

Inc the feedback frequency for that rule follows an increasing trajectory;

Zig the feedback frequency for that rule follows a zigzag trajectory (down followed

by up, or vice versa).

71

Figures 6.2–6.4 show for each rule the distribution of student trajectories in these

five categories. I separated out trajectories in which the student received feedback

from the rule on only one of the four projects because it is difficult to interpret the

significance of the zeros that precede and follow the single positive feedback frequency.

Do these zeros reflect student understanding of the concept addressed by the rule, or

do they reflect the various types of code required by the different projects? Learning

from feedback is only one factor that might influence student trajectories through the

classroom trial. The nature of the problem posed in each assignment makes some

projects more likely to trigger certain rules and not others. Project 6 produced very

little substantive feedback, so almost all trajectories will show a decline at the end

of the semester. This seems more a consequence of the project than of any learning

that might have occurred.

The evidence for student learning from these plots is inconclusive. For all the

rules except Rule 4, so many student trajectories are in the 0msg or 1prj categories

that the remaining trajectories do not show much of a trend. Rule 4 is the only

one that has a significant percentage of decreasing trajectories. This rule generated

more feedback messages than any other, as may be seen from the low percentage

of trajectories in the 0msg category. Rule 4 also contributed a large proportion of

off-target feedback, which might account for the high percentage in the Zig category.

A classroom trial of only four programming assignments is not long enough to see

slowly developing trends. The data collected so far are not adequate to draw a firm

conclusion about the efficacy (or lack thereof) of the plug-in. The type of learning

one might expect from a tool such as FrenchPress will probably not be evident until

the semester following the one in which the student is exposed to the feedback, or

even later in the student’s course sequence. FrenchPress tries to give students a

gentle push toward better programming practices. A student might read a feedback

message and decide it is not worth the trouble to modify a program that is already

72

0msg 1prj Zig Dec Inc

Rule 1

am
on

g
st

ud
en

ts
 w

ho
 d

id
 a

ll
4

pr
oj

ec
ts

, %
 fo

r
ea

ch
 tr

en
d

0
10

20
30

40
50

60

0msg 1prj Zig Dec Inc

Rule 2

am
on

g
st

ud
en

ts
 w

ho
 d

id
 a

ll
4

pr
oj

ec
ts

, %
 fo

r
ea

ch
 tr

en
d

0
10

20
30

40
50

60

Figure 6.2. Rules 1 and 2 feedback trends

73

0msg 1prj Zig Dec Inc

Rule 3

am
on

g
st

ud
en

ts
 w

ho
 d

id
 a

ll
4

pr
oj

ec
ts

, %
 fo

r
ea

ch
 tr

en
d

0
10

20
30

40
50

60

0msg 1prj Zig Dec Inc

Rule 4

am
on

g
st

ud
en

ts
 w

ho
 d

id
 a

ll
4

pr
oj

ec
ts

, %
 fo

r
ea

ch
 tr

en
d

0
10

20
30

40
50

60

Figure 6.3. Rules 3 and 4 feedback trends

74

0msg 1prj Zig Dec Inc

Rule 5

am
on

g
st

ud
en

ts
 w

ho
 d

id
 a

ll
4

pr
oj

ec
ts

, %
 fo

r
ea

ch
 tr

en
d

0
20

40
60

80

0msg 1prj Zig Dec Inc

Rule 6

am
on

g
st

ud
en

ts
 w

ho
 d

id
 a

ll
4

pr
oj

ec
ts

, %
 fo

r
ea

ch
 tr

en
d

0
20

40
60

80

Figure 6.4. Rules 5 and 6 feedback trends

75

computing the correct output for the assignment. He might still internalize the coding

recommendation and adhere to it on subsequent projects. One would have to conduct

a longer study to discern the gradual evolution of student programming habits.

6.3 User satisfaction survey responses

An important objective of this research is to give advanced beginner programmers

feedback they can understand, eschewing unfamiliar jargon and subtle programming

language concepts these students have not yet absorbed. To get a sense of how well

FrenchPress achieved this goal, I included several questions on the user satisfaction

survey (Appendix E) related to the quality of feedback and the student’s overall

impression of the tool.

For this assignment, was the feedback from FrenchPress confusing or easy
to understand?

For this assignment, was the feedback from FrenchPress helpful or un-
helpful?

Are you satisfied or dissatisfied with the performance of FrenchPress on
this assignment?

Figures 6.5–6.7 show the distribution of answers to these questions for the four

projects. I standardized the three Likert-style scales so that each bar plot runs from

Bad (confusing, unhelpful, dissatisfied) on the left to Good (easy to understand,

helpful, satisfied) on the right. The labels MB and MG stand for moderately bad,

moderately good. In Figures 6.5 and 6.6, the y-axis includes only those students who

indicated on their survey that they had received substantive feedback (sfb) for that

project. These survey questions had a separate response choice (“FrenchPress found

no flaws in my program”) for students who got only “Good work” messages on the

project. In Figure 6.7 the y-axis includes all survey respondents for each project.

These bar plots suggest that most students found the feedback easy to understand,

but not consistently helpful. Project 6 feedback seems worse than the others, but the

76

Bad MB Neutral MG Good

Feedback easy to understand?

am
on

g
re

sp
on

de
nt

s
w

ho
 s

ai
d

sf
b,

 %
 fo

r
ea

ch
 c

ho
ic

e

0
10

20
30

40
50

60

Figure 6.5. Is feedback confusing or easy to understand?

77

Bad MB Neutral MG Good

Feedback helpful?

am
on

g
re

sp
on

de
nt

s
w

ho
 s

ai
d

sf
b,

 %
 fo

r
ea

ch
 c

ho
ic

e

0
10

20
30

40
50

60

Figure 6.6. Is feedback helpful or unhelpful?

78

Bad MB Neutral MG Good

Satisfied with FrenchPress?

am
on

g
al

l s
ur

ve
y

re
sp

on
de

nt
s,

 %
 fo

r
ea

ch
 c

ho
ic

e

0
10

20
30

40

Figure 6.7. Overall satisfaction with FrenchPress

79

difference might be due to population size: only 13 students got substantive feedback

on project 6 (19 messages in total). As noted in Section 5.4, the plug-in’s performance

was marred by false positives and rules that triggered in situations for which the

feedback message was not correctly worded. These shortcomings are reflected in

Figures 6.6 and 6.7. Nonetheless, most students rated their overall satisfaction with

the plug-in as neutral or positive.

6.4 Selected student comments

Many study participants wrote thoughtful comments in response to the last ques-

tion on the survey,

How can we improve FrenchPress?

Some students feel FrenchPress’s diagnostics are not relevant for their coursework.

FrenchPress didn’t find any big flaws in program. It might be more useful
when I have to write more and bigger classes, so that way FrenchPress
can catch mistakes and flaws that I might not have seen before. I just
found it rather unhelpful in a small programming assignment such as this
one.

Right now, I just don’t think FrenchPress is relevant to the material we
are covering. The coding and “flaws” that FrenchPress found within my
program aren’t really “flaws”, e.g. I had a method that was public but
wasnt called outside of a class so FrenchPress suggested that I make it
private. I guess that’s a flaw but it really doesn’t help when you’re a
student just trying to learn how to code. I can see how it would definitely
be useful in other contexts though. The thing’s we’re covering right now
are pretty basic and I think FrenchPress refines code rather than “fixes”.

Some students had unrealistic expectations of what kind of diagnostics they could

expect from FrenchPress. The 15 minutes of lecture time I had to introduce the

classroom trial were not sufficient to clarify the scope of the plug-in while also ex-

plaining the purpose of an Informed Consent Form (Appendix D).

Would be better if it can find logical errors in my program

80

It finds no flaws while there is logical errors in my program.

This is probably very difficult but I was having a hard time figuring out the
Big-O Notation. If FrenchPress could actually determine the performance
of codes, that would be amazing. Just a suggestion, something to optimize
codes would be a really good tool.

Some students acknowledged they had learned something from using the plug-in.

Although FrenchPress has really helped me to understand local variables
and other such things, I suppose it would be nice to get some feedback on
how my code is written in terms of clarity and style perhaps? Neverthe-
less, it has been working very well.

Using FrenchPress has really helped me improve the way I initially code.
Because I now have fewer flaws, it seems harder for me to receive feedback.
Nevertheless, there isn’t anything I can think of that FrenchPress really
needs.

Some comments addressed the problems with Rule 4.

It tells me that I need to change some “helper” method to private, but
they are not really helper methods.

Sometimes French Press detected “flaws” in my programs, but is not really
a flaws. For example, in my LlinkList class, even though the setInfo is
never call outside of class in this project, It can be call on other project. I
hope FrenchPress can detected flaws depend on the method’s general use
no just base on one project.

Rule 6 is more controversial than I anticipated.

I find that the phrase if(box.isEmpty() == false) is more readable than
if(!box.isEmpty). I would get rid of the corrections to remove this. It
seems like its mostly an issue of preference and I don’t know that I’ve heard
a convincing argument that the == false is worse in any way. Perhaps
it’s trivially slower, but that’s not the statement made in the report.

Some students asked for a better user interface.

Put the suggestions in tips on each line which are done automatically
rather than running it manually.

Although it is very clear where the error is, FrenchPress could direct you
to and highlight the the error.

81

It would be cool if like how the compiler underlines syntax errors with red,
if FrenchPress could underline the sections in a certain color after running
it. I don’t necessarily know what that entails for eclipse or if its possible,
but would both be visually appealing and also informative in marking the
errors.

Some students want FrenchPress to reformat their code, apparently unaware that

Eclipse already provides this functionality.

Perhaps it can fix formatting in the code to make the format look tidier

I suggest that it be able to fix the formatting of the code to make it be
more presentable and more professional.

Some students are ready for an expanded set of diagnostics.

It runs smoothly, but I still feel like there should be more features, unless
I’m doing something wrong.

not smart enough

Checking for more problems, and explanations on why existing ones are
bad practice.

Perhaps include more flaws, such as suggesting one break up large methods
into smaller sub-methods.

For some students, no news is good news.

For this project, I did not find any flaws in my programs. So it very good.

82

CHAPTER 7

FUTURE WORK

Future work on the FrenchPress plug-in falls into three areas: better user expe-

rience for students, new features for course instructors, and improved diagnostics.

Students need more detailed explanations and a better visual display of feedback.

Professors would benefit from summary statistics and more control over how French-

Press applies its rules. Rules that now generate off-target feedback must be refined to

give users appropriate guidance. A longer classroom trial is essential to gather more

conclusive evidence of FrenchPress’s effect on student learning.

7.1 Student experience of FrenchPress

The feedback FrenchPress currently offers is rudimentary. For the simpler rules

such as Rule 6 Redundant boolean expressions, perhaps the two- or three-sentence

message FrenchPress now displays is adequate. More subtle rules such as Rule 1

Field could have been a local variable or Rule 5 Integer variable used as a boolean flag

demand more explanation. The next phase of FrenchPress development will provide

a two-tier system of feedback. In addition to the short message FrenchPress now

delivers, students will have the option to get more information by clicking a button.

The button will open a window containing a more detailed writeup including an

example of the flaw FrenchPress identified and how to fix it.

The FrenchPress prototype displays feedback in a dialog box that closes as soon

as the student clicks the OK button. If the student wants to keep the feedback visible

while he modifies his code, he has to open the feedback file stored in the frenchpress

83

folder of his project. It would be easier for the student to track FrenchPress diag-

nostics if the plug-in exploited Eclipse interface mechanisms such as warning symbols

in the margin of the editor window, highlighting, and hover text. For example, the

student could mouse over a method definition or variable declaration and FrenchPress

would display the relevant feedback message (if any).

Most of the code changes FrenchPress suggests to the user will not affect the

behavior of the program. However, if the student heeds feedback from Rule 3 Instance

variable declared public and changes the variable in question to private, this will

cause compiler errors if the public instance variable is accessed in other classes. The

student could get frustrated when he sees that FrenchPress’s advice led him to new

compiler errors. The appropriate solution is getter and setter methods. FrenchPress

should include in the feedback message a list of the direct variable accesses that must

be replaced by a call to a getter or setter method.

7.2 New features for professors

I have ordered FrenchPress’s diagnostic rules to reflect my judgment of their rel-

ative importance for the student’s understanding of Java. Another instructor may

have a different opinion about the best way to order multiple feedback messages. In

a future version of the plug-in I would like to give the course instructor the power to

change the order of the rules or to disable rules she does not want her students to

see.

FrenchPress feedback could be helpful not only for the students but also for their

professor. Once the students have submitted their assignments, the course instructor

might want to know which programming issues were highlighted by FrenchPress. If

she realizes that many students are making similar types of mistakes, the professor can

discuss in class the misconceptions that led to those mistakes. The plug-in could be

repackaged as a stand-alone application that would run in batch mode over a directory

84

of the entire class’s homework submissions. This version of FrenchPress would create

a summary report showing the distribution of various diagnostic categories. The

instructor could then address some of the most frequent or most egregious stylistic

errors in her lecture.

7.3 Improved diagnostics

The rule that triggered most frequently in the classroom trial is Rule 4 Non-

static method declared public. This rule is intended to identify a method declared

public that is never called outside of the class where it is defined and hence does

not have to be public. As described in Section 5.4.5, many of Rule 4’s feedback

messages are not on point because in fact the method is not called anywhere, in the

defining class or outside of that class. Students sometimes define getter and setter

methods that are not needed in the program, but they include the methods anyway

for completeness. There might also be methods that are not called anywhere because

the student changed his mind as the program evolved and forgot to delete code that

had become useless. I need to refine Rule 4 to distinguish between methods that are

called only within the class where they are defined, and methods that are not called

at all. Likewise Rule 2 Instance variable could have been a static final constant should

be split in two to create separate diagnostics for a field that is declared (and possibly

initialized) but never referenced anywhere else in the program. In most cases these

unused fields are the residue of an abandoned design and should be eliminated.

I could expand the scope of FrenchPress by adding completely new diagnostic

rules. These might include the rules discussed in Section 1.7 to look for over-ambitious

constructors and inappropriate inheritance relationships between classes. I might also

invest the energy to first clarify and then implement the fuzzy ideas for diagnostics

listed in the introduction to Chapter 3.

85

7.4 Extended classroom trial

The classroom trial conducted in Fall 2014 was too short to yield any conclusive

evidence that students had learned better programming practices from using French-

Press. A longer study covering more programming assignments would be required

to substantiate claims that the plug-in offers a real benefit for students. If I were

planning a new classroom trial I would make two significant changes:

• identify a “control” group of CMPSCI 187 students who signed a consent form

but have not run FrenchPress;

• look at the possible correlation of student grades and diagnostic feedback.

I would like to identify a group of students within the study population who

are not using the plug-in so I could compare their programs to those of students

who have tried FrenchPress. In both of the classroom trials already conducted in

CMPSCI 187 (Spring and Fall, 2014), some students signed an Informed Consent

Form but never took any further steps to fulfill the requirements for extra credit. I

could not tell whether these students still considered themselves to be in the trial,

since paragraph 11 Can I Stop Being In The Study? of the Informed Consent Form

(Appendix D, page 125) says anyone is free to drop out of the study whenever he

wishes. The Informed Consent Form grants the researcher authorization to examine

programs submitted by study participants, but were these students still participating?

To resolve this confusion, I would revise the Informed Consent Form to require an

explicit opt-out by email from subjects who initially sign their form but subsequently

decide to leave the study. I would expect to see a group of students who sign a consent

form, lose interest and never run the plug-in, but do not communicate any intention

to drop out of the trial. I will refer to these subjects as “inactive participants” to

distinguish them from the “active participants” who run the plug-in and take the user

satisfaction survey after every assignment. I could treat the inactive participants as

86

an informal “control” group vis-à-vis the “treatment” group of active participants.

Of course this would not be a true controlled trial because students self-select for one

group or the other. I could run FrenchPress on programs submitted by the “control”

group to find out whether the categories and frequency of diagnostic feedback differ

between the active and inactive participants.

Exposure to FrenchPress does not promise to raise a student’s grades in CMP-

SCI 187 or similar programming courses. Most data structures and algorithms courses

with large class sizes evaluate student code on the basis of input/output behavior and

adherence to the specifications of the assignment. FrenchPress aims to improve the

advanced beginner’s programming style, but is not designed to have any direct effect

on the factors that determine his grade. Nevertheless, it could be revealing to ex-

amine the correlations among programming grades, FrenchPress usage, and feedback

received for students who participate in the classroom trial. Do weaker students run

the plug-in more often because they value the extra help? Or do stronger students run

the plug-in more often because they are generally more motivated to take advantage

of learning opportunities? Do weaker students get more feedback messages per line of

code than stronger students? Do they get different types of feedback (from different

rules) than stronger students? Gaining access to student grade information, even

if aggregated over groups of study subjects, would require revision of the Informed

Consent Form and compliance with FERPA regulations.

7.5 Conclusion

Many existing automated assessment systems are designed to help students get

through their first Java course, as they are struggling with the mechanics of the

language. At UMass, students in the introductory Java class rely on an interactive

online textbook described in Section 2.1. When students graduate to the next level of

instruction they outgrow these tools because they have made, and learned from, most

87

of the novice’s mistakes. Yet students in their second or third Java course are not

ready for professional strength diagnostics from FindBugs and comparable program

analysis systems. The errors detected and the explanations offered fly over the head

of the inexperienced programmer. I developed FrenchPress for the population of

advanced beginners in Java who are now dependent on their instructors and teaching

assistants for helpful feedback on their programs.

Implemented as an Eclipse plug-in, FrenchPress can be readily incorporated into

many different undergraduate programming courses. Researchers at two major confer-

ences in computer science education1 have expressed interest in deploying FrenchPress

in their own classrooms. The system will support student learning in any educational

environment, but particularly those in which the teaching staff have difficulty provid-

ing individualized attention to all the students. These include community colleges,

where instructors have no teaching assistants, and public universities, where large

class sizes outstrip limited personnel resources. Automated feedback will also facil-

itate distance learning: the student can get guidance on his program any time and

anywhere he needs it.

1SIGCSE 2015, 46th ACM Technical Symposium on Computer Science Education, 5–7 March,
Kansas City, MO; ITiCSE 2015, the 20th Annual Conference on Innovation and Technology in
Computer Science Education, 6–8 July, Vilnius, Lithuania.

88

APPENDIX A

CMPSCI 187 ASSIGNMENTS

A.1 Spring 2008

This assignment is a bit of a reality check. It isn’t very hard, but it’s also not

trivial. It’s designed to give you a sense of the Java skills I expect you to have as you

enter the course.

The so-called birthday paradox is the observation in basic probability theory

that if 23 people are in a room, the chances are about 50–50 that two people have the

same birthday. Your job for this assignment is to verify this claim. More specifically,

consider rooms with a variety of people (10 up to 30 people), and in each case, run

10000 experiments to determine the approximate likelihood that two people have the

same birthday. Here is sample output from my implementation; it shows, for example,

that with 10 people in a room, people have the same birthday 11.43% of the time. (In

other words, I ran 10000 trials with 10 in the room, and a common birthday showed

up in 1143 of those trials.)

> java BirthdayDriver

people: 10 0.1143

people: 11 0.1414

people: 12 0.1737

people: 13 0.1851

people: 14 0.2247

people: 15 0.2487

people: 16 0.2797

89

people: 17 0.3153

people: 18 0.3373

people: 19 0.3827

people: 20 0.4097

people: 21 0.4544

people: 22 0.4671

people: 23 0.505

people: 24 0.5347

people: 25 0.5751

people: 26 0.6023

people: 27 0.6226

people: 28 0.6583

people: 29 0.6836

people: 30 0.7037

Write a two class application that computes these values.

Robbie Moll – 29 Jan 2008

A.2 Fall 2011

CMPSCI 187: Programming With Data Structures

David Mix Barrington

Fall, 2011

Programming Project #1: Mazes and Cells

Originally posted 8 September 2011, due at 11:59 p.m. EDT on Monday 19 September

2011, by placing .java files in your cs187 directory on your edlab account. For more

information on accessing the edlab (Question P1.2), and answers to other questions

on this assignment, see the Q&A page.

Goals of this project:

90

1. Submit a compilable and correct program to us through the EdLab.

2. Write a program using objects and classes.

3. Begin the code base for later projects involving mazes.

4. Learn (or review) arrays, including two-dimensional arrays.

Many computer games, such as Sid Meier’s Civilization series, involve pieces mov-

ing on a square grid of cells. In this project you will write a Maze class, allowing you

to create Maze objects that are rectangular arrays of Cell objects. You will also write

the Cell class. In the future we will extend the Cell class to make it more interesting,

but for this project a Cell has only three fields: int x and int y giving its position

in its Maze, and boolean open telling whether it is open to be moved into.

A Maze has three fields in all. The first two are int width and int height,

giving the number of columns and the number of rows respectively, and the third

field is a two-dimensional array of Cell objects.

Each class should have the usual get and set methods, a toString method, and

constructors as specified below. The toString method for Cell gives a string such

as (2, 3) open if the Cell is at position x = 2 and y = 3 and is open, or (2, 3)

closed if it is in that position and not open. The toString method for a Maze of

width w and height h is a sequence of h binary strings, separated by line breaks,

where each individual string has length w. Open Cells are represented by ones and

closed ones by zeros. For example, if m is a Maze of width 4 and height 3, where

exactly those Cells on the boundary are open, then m.toString() would return the

String "1111\n1001\n1111", which is printed out as:

1111

1001

1111

The Cell class should have the following two constructors:

91

• Cell (int x, int y) — gives an open Cell with those values for x and y

• Cell (int x, int y, boolean isOpen) — gives a Cell with those x and y

values, open or not according to isOpen

The Maze class should have the following two constructors:

• Maze (int w, int h) — gives a Maze of width w and height h with a Cell in

each place, the correct x and y for each Cell, and all cells open

• Maze (int w, int h, String [] init) — gives a Maze of width w and

height h with a Cell in each place as above, but the openness of the Cells is

specified by the array init, which should be an array of h binary strings, each

of length w. For example, we would create the Maze above by

String [] s = {"1111", "1001", "1111"};

Maze m = new Maze (4, 3, s);

The final part of the assignment (necessary to get an A) is to add an instance

method moves to the Maze class. This method takes two int arguments and returns an

array of Cells, so its signature is Cell [] moves (int col, int row). The array

returned contains from zero to four Cells, and these Cells are to be exactly the open

Cells in the Maze that can be reached by one move up, down, right, or left from the

Cell at (col, row). The method should throw an ArrayIndexOutOfBoundsException

if (col, row) is a position that does not exist in the Maze. But it should not throw an

exception in any other case — this means that you will have to be careful when (col,

row) is on the boundary of the Maze.

If m is our example Maze above, the call m.moves(0, 0) should return an array

of two Cells, the first one having toString “(1, 0) open” and the second one having

toString “(0, 1) open”. If we call m.moves(1, 2) we again get an array of two Cells,

which have toStrings “(0, 2) open” and “(2, 2) open”. We don’t get the Cell at (1,

92

1) because it is closed and we don’t get a Cell at (1, 3) because that is outside the

Maze.

Last modified 15 September 2011

A.3 Fall 2013

CMPSCI187-SEC01 Programming w-Data Structures Fall 2013

P0 description

This is the first programming assignment. It is a simple assignment designed to

help you get you back in the spirit of Java and to let you practice submitting an

assignment for grading. This assignment is worth only a few points, but it is very

important that you submit it so that your submission setup can be tested.

This assignment is worth 15 points. You will be allowed to submit it for grading

as often as you like before the cutoff date. Submissions after the due date but before

the cut-off date will be penalized per class policy.

Summary

For this assignment, write a program that reads lines from standard input (not

from a pop-up window) until a line that contains just “end” is encountered. Each

line will be a URL, though for this assignment you do not care what the line contains

(you will for P1).

After you have encountered the “end” line, print the total number of lines that

were encountered, but not including that “end” line. The format of your output must

be exactly:

>> Got 10 lines

The two “greater than” characters must be the first two characters on the line, then

a space, then the word “Got”, then the number of lines found, and then the word

“lines” (if there was only one line, make it singular).

93

What to submit

Your program should be entirely contained in a file called P0.java and that is the

only file you should submit.

To submit, log onto the Edlab computers and change directory to your “cs187”

directory. Create a directory called “P0” and put your program there — that is, the

program should be in /cs187/P0/P0.java.

Then type the command submit P0 (an uppercase P) and watch your program

be submitted and graded. If you don’t like your grade, you may revise the program,

transfer the new version to the Edlab computers, and submit it. You may do that

as often as you like for P0; for future assignments, the number and frequency of

submissions will be restricted.

Tips

There are several ways to read input from standard input. An easy one is

the java.util.Scanner class. The class is described in your textbook on pages 764–

5 (in Appendix E). Section 1.3 of your textbook has example code called Days-

Between.java that uses Scanner — though it uses it to read numbers rather than

complete lines. You can also find lots of detail about Scanner online at places like

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Scanner.html.

Last modified: Thursday, September 5, 2013, 4:34 PM

A.4 Spring 2014

CMPSCI 187 — Spring 2014

Assignment 1

The goal of this assignment is to introduce you to Eclipse and the standard proce-

dure you will use for completing a programming assignment, testing your code, and

turning it in through Moodle. In this assignment (and others) you will be starting

from some initial code provided by us and then modifying it. Since you will repeat a

94

similar process for each programming assignment, please follow these steps and make

sure you understand each one:

1. Install the Eclipse development environment.

The version to download and install is: Eclipse Standard 4.3.1 available for

multiple platforms at:

http://www.eclipse.org/downloads/packages/eclipse-standard-431/keplersr1

If you already have a version of Eclipse installed, please make sure you upgrade to

the latest version. This version of Eclipse will be available on the edlab machines as

well.

2. Download the starter code.

Download the provided archive file containing the starter code (“Assignment1.zip”)

for this assignment from Moodle and save it somewhere where you can find it. You

do not need to unzip it — Eclipse will handle that for you.

3. Import the code into Eclipse.

A. Open the Eclipse application.

You will be asked to specify a location for your Eclipse workspace. This is a directory

on your system where all of your Eclipse projects can be stored. You can use one

workspace throughout the entire class, and this is where you will set it up. If you

are opening Eclipse for the first time, you may see a welcome screen with links to

instructions, tutorials, etc. You are welcome to read these, but eventually you should

click on the upper right: there is an arrow that will take you to the “Workbench,”

the standard view for working in Eclipse.

B. Import the starter code

Choose File → Import from the menu. A window will come up so you can choose

95

how to import. Select “General” and within that, “Existing Projects into Workspace”.

(It may seem strange, but do not choose “Archive File”). Then click “Next”. Choose

the button for “Select archive file” and locate the file you downloaded in step (2)

above. Then click “Finish”. You should see a dates java project in the package

explorer window on the left. Click on the triangles to reveal the content of this

directory and the src and test directories within it. You will see three java source files

among the directories:

Date.java DaysBetween.java DateTest.java

4. Run the starter code

First explore the code as it is. Under src, choose the DaysBetween.java file, then

click the green play button, or choose “Run” from the Run menu. A console will

appear in the bottom of the Eclipse window. Enter two dates and witness the output.

Chapter 1 of the textbook includes a complete description of this code.

5. Test the starter code

Choose DateTest.java in the Package Explorer and run it using the play button

or the menu, as above. The package explorer on the left will switch to a JUnit pane,

which will show the testing output. You should see a total of 6 tests: 5 tests that

pass, and one test that fails. Familiarize yourself with the testing interface. If you

select the failed test, you should see the following under Failure Trace:

java.lang.AssertionError: Day index of week not correct

expected:<3> but was:<0>

(You may have to resize the JUnit pane to see the full message.)

6. Correct the starter code

The failed test indicates a problem with the starter code that you need to fix. Your

goal should be to correct the implementation of the indexDayOfWeek() method

96

in Date.java. If you read the testing code, you will find that the failed test checks

whether indexDayofWeek returns the right integer for the date of 12/19/1973. The

test failure trace shows that 3 was expected, but the function returned 0. The correct

solution is not merely to make the function return 3 on the date 12/19/1973. Instead,

you should revise the code so that the function will return the right integer for any

date. When we grade your program, we will test it on other dates to make sure it

works properly.

7. Export your completed code

When you have completed the changes to your code, you should export an archive

file containing the entire java project. To do this, click on the dates project in the

package explorer. Then choose File → Export from the menu. In the window that

appears, under “General” choose “Archive File”. Then choose “Next” and enter a

destination for the output file.

8. Submit your code using Moodle.

Login to Moodle and, on the page for Assignment 1, upload the archive you

exported above.

97

APPENDIX B

STUDENT INTERACTION WITH FRENCHPRESS

This appendix reproduces one student’s interaction with the FrenchPress plug-in.

The initial version of the class definition (Section B.1) triggered Rules 1 Field could

have been a local variable and 5 Integer variable used as a boolean flag (Section B.2).

The student modified his code as suggested by Rule 5 (Section B.3) and ran the plug-

in again. FrenchPress then reported a case of Rule 6 Redundant boolean expressions

(Section B.4), which the student fixed (Section B.5). The final run of the plug-in

(Section B.6) indicates that the Rule 1 flaw remains unchanged.

B.1 Initial version

1 package structure;

2

3 public class RecursiveList<T> implements ListInterface<T> {

4

5 int size;

6 LLNode<T> first, last, temp;

7 T info;

8 int loc = 0;

9 int prime = 0;

10

11 @Override

12 public int size() {

98

13 return size;

14 }

15

16 @Override

17 public ListInterface<T> insertFirst(T elem) {

18 if (elem == null)

19 throw new NullPointerException();

20 LLNode<T> newNode = new LLNode<T>(elem);

21 if (first == null)

22 first = last = newNode;

23 else{

24 newNode.setLink(first);

25 first = newNode;

26 }

27 size++;

28 temp = first;

29

30 return this;

31 }

32

33 @Override

34 public ListInterface<T> insertLast(T elem) {

35 if (elem == null)

36 throw new NullPointerException();

37 LLNode<T> newNode = new LLNode<T>(elem);

38 if (last == null)

39 first = newNode;

99

40 else

41 last.setLink(newNode);

42 last = newNode;

43 size++;

44 temp = first;

45

46 return this;

47 }

48

49 @Override

50 public ListInterface<T> insertAt(int index, T elem) {

51 if (index < 0 || index > size)

52 throw new IndexOutOfBoundsException();

53 if (index == 0)

54 insertFirst(elem);

55 else if (index == size)

56 insertLast(elem);

57 else if (size == 2)

58 {

59 first.setLink(new LLNode<T>(elem));

60 first.getLink().setLink(last);

61 temp = first;

62 size++;

63 }else if (size > 2 && index > 1){

64 temp = temp.getLink();

65 insertAt(index-1,elem);

66 }else{

100

67 LLNode<T> newNode = new LLNode<T>(elem);

68 newNode.setLink(last);

69 temp.getLink().setLink(newNode);

70 temp = first;

71 size++;

72 }

73 return this;

74 }

75

76 @Override

77 public T removeFirst() {

78 if (isEmpty())

79 throw new IllegalStateException();

80 T info = first.getInfo();

81 first = first.getLink();

82 size--;

83 temp = first;

84 return info;

85 }

86

87 @Override

88 public T removeLast() {

89 if (isEmpty())

90 throw new IllegalStateException();

91 if (size <= 1){

92 info = first.getInfo();

93 temp = first = last = null;

101

94 size--;}

95 else if(size==2){

96 info = first.getLink().getInfo();

97 first.setLink(null);

98 temp = first;

99 size--;

100 }else{

101 if(temp.getLink().getLink() != null){

102 temp = temp.getLink();

103 return removeLast();

104 }else {

105 info = temp.getLink().getInfo();

106 temp.setLink(null);

107 temp = first;

108 size--;}}

109 temp = first;

110 return info;

111 }

112

113 @Override

114 public T removeAt(int i) {

115 if (i < 0 || i >= size)

116 throw new IndexOutOfBoundsException();

117 if (prime == 0)

118 temp = first;

119 if (i == 0){

120 info = removeFirst();

102

121 }else if (i == size-1)

122 info = removeLast();

123 else if (size == 2)

124 {

125 info = first.getLink().getInfo();

126 first.setLink(first.getLink().getLink());

127 size--;

128 }else if (size > 2 && i > 1){

129 prime = 1;

130 temp = temp.getLink();

131 removeAt(i-1);

132 }else{

133 info = temp.getLink().getInfo();

134 temp.setLink(temp.getLink().getLink());

135 size--;

136 }

137 prime = 0;

138 return info;

139 }

140

141 @Override

142 public T getFirst() {

143 if (isEmpty())

144 throw new IllegalStateException();

145 return first.getInfo();

146 }

147

103

148 @Override

149 public T getLast() {

150 if (isEmpty())

151 throw new IllegalStateException();

152 return last.getInfo();

153 }

154

155 @Override

156 public T get(int i) {

157 if (i < 0 || i >= size)

158 throw new IndexOutOfBoundsException();

159 if (i == 0){

160 info = first.getInfo();

161 }else if (i == size-1)

162 info = last.getInfo();

163 else {

164 if (size == 2)

165 info = first.getLink().getInfo();

166 else if (size > 2 && i > 1){

167 temp = temp.getLink();

168 get(i-1);

169 }else{

170 info = temp.getLink().getInfo();

171 }

172 }

173 prime = 0;

174 return info;

104

175 }

176

177 @Override

178 public boolean remove(T elem) {

179 if (isEmpty()) return false;

180 if (temp.getInfo().equals(elem)){

181 if (size == 1) {

182 first = last = null;

183 temp = first;

184 size--;

185 return true;

186 }else{

187 first = first.getLink();

188 temp = first;

189 size--;

190 return true;}}

191 if (size > 1) {

192 if (temp.getLink().getInfo().equals(elem)){

193 if (size == 2){

194 first.setLink(null);

195 temp = first;

196 size--;

197 return true;

198 }else{

199 temp.setLink(temp.getLink().getLink());

200 size--;

201 temp = first;

105

202 return true;}

203 }else{

204 if (size == 2) return false;

205 else if (temp.getLink().getLink() != null){

206 temp = temp.getLink();

207 return remove(elem);

208 }}}

209 temp = first;

210 return false;

211 }

212

213 @Override

214 public int contains(T elem) {

215 if (temp.getInfo().equals(elem)){

216 temp = first;

217 int toReturn = loc;

218 loc = 0;

219 return toReturn;

220 }

221 else if (temp.getLink() != null){

222 temp = temp.getLink();

223 loc++;

224 return contains(elem);

225 }

226 temp = first;

227 loc = 0;

228 return -1;

106

229

230 }

231 @Override

232 public boolean isEmpty() {

233 return size == 0;

234 }

235

236

237

238 }

B.2 FrenchPress feedback for initial version

FrenchPress 1.4 feedback for RecursiveList.java

Variables such as

info (7)

are declared at the class level but appear to function as local

variables. Each of these variables could be declared locally

in each method where it is used. To find all the places a variable

is used, select the variable name and Eclipse will highlight

every occurrence of that variable.

Variables such as

prime (9)

are declared int but appear to function as boolean flags.

Instead of giving them the values 1 and 0, declare them as boolean

and give them the values true and false.

107

B.3 Student responds to initial feedback

The student took the plug-in’s suggestion and made the variable prime a boolean

instead of an int. Note changes on lines 9, 117, 129, 137, and 173.

1 package structure;

2

3 public class RecursiveList<T> implements ListInterface<T> {

4

5 int size;

6 LLNode<T> first, last, temp;

7 T info;

8 int loc = 0;

9 boolean prime = true;

10

11 @Override

12 public int size() {

13 return size;

14 }

15

16 @Override

17 public ListInterface<T> insertFirst(T elem) {

18 if (elem == null)

19 throw new NullPointerException();

20 LLNode<T> newNode = new LLNode<T>(elem);

21 if (first == null)

22 first = last = newNode;

23 else{

24 newNode.setLink(first);

108

25 first = newNode;

26 }

27 size++;

28 temp = first;

29

30 return this;

31 }

32

33 @Override

34 public ListInterface<T> insertLast(T elem) {

35 if (elem == null)

36 throw new NullPointerException();

37 LLNode<T> newNode = new LLNode<T>(elem);

38 if (last == null)

39 first = newNode;

40 else

41 last.setLink(newNode);

42 last = newNode;

43 size++;

44 temp = first;

45

46 return this;

47 }

48

49 @Override

50 public ListInterface<T> insertAt(int index, T elem) {

51 if (index < 0 || index > size)

109

52 throw new IndexOutOfBoundsException();

53 if (index == 0)

54 insertFirst(elem);

55 else if (index == size)

56 insertLast(elem);

57 else if (size == 2)

58 {

59 first.setLink(new LLNode<T>(elem));

60 first.getLink().setLink(last);

61 temp = first;

62 size++;

63 }else if (size > 2 && index > 1){

64 temp = temp.getLink();

65 insertAt(index-1,elem);

66 }else{

67 LLNode<T> newNode = new LLNode<T>(elem);

68 newNode.setLink(last);

69 temp.getLink().setLink(newNode);

70 temp = first;

71 size++;

72 }

73 return this;

74 }

75

76 @Override

77 public T removeFirst() {

78 if (isEmpty())

110

79 throw new IllegalStateException();

80 info = first.getInfo();

81 first = first.getLink();

82 size--;

83 temp = first;

84 return info;

85 }

86

87 @Override

88 public T removeLast() {

89 if (isEmpty())

90 throw new IllegalStateException();

91 if (size <= 1){

92 info = first.getInfo();

93 temp = first = last = null;

94 size--;}

95 else if(size==2){

96 info = first.getLink().getInfo();

97 first.setLink(null);

98 temp = first;

99 size--;

100 }else{

101 if(temp.getLink().getLink() != null){

102 temp = temp.getLink();

103 return removeLast();

104 }else {

105 info = temp.getLink().getInfo();

111

106 temp.setLink(null);

107 temp = first;

108 size--;}}

109 temp = first;

110 return info;

111 }

112

113 @Override

114 public T removeAt(int i) {

115 if (i < 0 || i >= size)

116 throw new IndexOutOfBoundsException();

117 if (prime == true)

118 temp = first;

119 if (i == 0){

120 info = removeFirst();

121 }else if (i == size-1)

122 info = removeLast();

123 else if (size == 2)

124 {

125 info = first.getLink().getInfo();

126 first.setLink(first.getLink().getLink());

127 size--;

128 }else if (size > 2 && i > 1){

129 prime = false;

130 temp = temp.getLink();

131 removeAt(i-1);

132 }else{

112

133 info = temp.getLink().getInfo();

134 temp.setLink(temp.getLink().getLink());

135 size--;

136 }

137 prime = true;

138 return info;

139 }

140

141 @Override

142 public T getFirst() {

143 if (isEmpty())

144 throw new IllegalStateException();

145 return first.getInfo();

146 }

147

148 @Override

149 public T getLast() {

150 if (isEmpty())

151 throw new IllegalStateException();

152 return last.getInfo();

153 }

154

155 @Override

156 public T get(int i) {

157 if (i < 0 || i >= size)

158 throw new IndexOutOfBoundsException();

159 if (i == 0){

113

160 info = first.getInfo();

161 }else if (i == size-1)

162 info = last.getInfo();

163 else {

164 if (size == 2)

165 info = first.getLink().getInfo();

166 else if (size > 2 && i > 1){

167 temp = temp.getLink();

168 get(i-1);

169 }else{

170 info = temp.getLink().getInfo();

171 }

172 }

173 return info;

174 }

175

176 @Override

177 public boolean remove(T elem) {

178 if (isEmpty()) return false;

179 if (temp.getInfo().equals(elem)){

180 if (size == 1) {

181 first = last = null;

182 temp = first;

183 size--;

184 return true;

185 }else{

186 first = first.getLink();

114

187 temp = first;

188 size--;

189 return true;}}

190 if (size > 1) {

191 if (temp.getLink().getInfo().equals(elem)){

192 if (size == 2){

193 first.setLink(null);

194 temp = first;

195 size--;

196 return true;

197 }else{

198 temp.setLink(temp.getLink().getLink());

199 size--;

200 temp = first;

201 return true;}

202 }else{

203 if (size == 2) return false;

204 else if (temp.getLink().getLink() != null){

205 temp = temp.getLink();

206 return remove(elem);

207 }}}

208 temp = first;

209 return false;

210 }

211

212 @Override

213 public int contains(T elem) {

115

214 if (temp.getInfo().equals(elem)){

215 temp = first;

216 int toReturn = loc;

217 loc = 0;

218 return toReturn;

219 }

220 else if (temp.getLink() != null){

221 temp = temp.getLink();

222 loc++;

223 return contains(elem);

224 }

225 temp = first;

226 loc = 0;

227 return -1;

228

229 }

230 @Override

231 public boolean isEmpty() {

232 return size == 0;

233 }

234

235

236

237 }

B.4 FrenchPress feedback for revised version

FrenchPress 1.4 feedback for RecursiveList.java

116

Variables such as

info (7)

are declared at the class level but appear to function as local

variables. Each of these variables could be declared locally

in each method where it is used. To find all the places a variable

is used, select the variable name and Eclipse will highlight

every occurrence of that variable.

Boolean expressions such as

prime == true (117)

are redundant and can be shortened. If B is a boolean expression,

B == true or B != false means the same thing as B

B != true or B == false means the same thing as !B.

B.5 Student responds to new feedback

To avoid repeating a long class definition, I show here a diff between the previous

version and the final version.

117c117

< 117 if (prime == true)

> 117 if (prime)

120c120

< 120 info = removeFirst();

> 120 info = removeFirst();

160c160

117

< 160 info = first.getInfo();

> 160 info = first.getInfo();

B.6 FrenchPress feedback for final version

FrenchPress 1.4 feedback for RecursiveList.java

Variables such as

info (7)

are declared at the class level but appear to function as local

variables. Each of these variables could be declared locally

in each method where it is used. To find all the places a variable

is used, select the variable name and Eclipse will highlight

every occurrence of that variable.

118

APPENDIX C

MOTIVATION FOR UNIMPLEMENTED RULES

The following example from the Spring 2008 class of CMPSCI 187 illustrates the

need for both of the rules discussed in Section 1.7, which were not implemented in the

FrenchPress prototype. The student submitted this program for the assignment in

Section A.1. BirthdayDriver.java has an over-ambitious constructor that runs the

entire simulation (lines 4–7). BirthdayList.java shows an inappropriate inheritance

relationship between class BirthdayList and the Java collections class ArrayList

(line 4).

1 public class BirthdayDriver {

2 int size;

3

4 public BirthdayDriver(int num){

5 size=num;

6 run();

7 }

8

9 public void run(){

10 int matches=0;

11 double average=0.0;

12

13 for (int j=0;j<10000;j++){

14 BirthdayList b = new BirthdayList(size);

119

15 if (b.hasMatch())

16 matches++;

17 }

18

19 average = ((double)matches)/10000.0;

20

21 System.out.println("People: "+size+" Probablility: "+average);

22 }

23

24 public static void main(String[] args){

25 for (int j=10;j<=30;j++){

26 new BirthdayDriver(j);

27 }

28 }

29 }

1 import java.util.ArrayList;

2 import java.util.Random;

3

4 public class BirthdayList extends ArrayList<Integer>{

5 Random rand = new Random();

6 int size;

7 static final long serialVersionUID=0;

8

9 public BirthdayList(int num){

10 size=num;

11 clear();

120

12 newList();

13 }

14

15 public void newList(){

16 for (int j=0;j<size;j++){

17 add(rand.nextInt(365));

18 }

19 }

20

21 public boolean hasMatch(){

22 boolean foo=false;

23

24 for (int j=0;j<size;j++){

25 for (int i=j+1;i<size;i++){

26 if(get(i).equals(get(j)))

27 foo=true;

28 }

29 }

30

31 return foo;

32 }

33 }

121

APPENDIX D

CLASSROOM TRIAL INFORMED CONSENT FORM

Consent Form for Participation in a Research Study

University of Massachusetts Amherst

Researcher(s): Hannah Blau and Prof. W. Richards Adrion

Study Title: Automated feedback for Java program flaws

1. WHAT IS THIS FORM?

This form is called a Consent Form. It will give you information about the study

so you can make an informed decision about participation in this research. This

consent form will describe what you will need to do to participate and any known

inconveniences that you might experience while participating.

2. WHO IS ELIGIBLE TO PARTICIPATE?

All students enrolled in CMPSCI 187 and at least 18 years old are eligible to partic-

ipate.

3. WHAT IS THE PURPOSE OF THIS STUDY?

The purpose of this research study is to evaluate educational software called French-

Press. FrenchPress gives you automated feedback on your Java programs as you are

writing them.

4. WHERE WILL THE STUDY TAKE PLACE AND HOW LONG WILL

IT LAST?

122

You will install and run FrenchPress on the same computer you use for doing your

CMPSCI 187 programming assignments. You are asked to try the software for the

rest of the semester.

5. WHAT WILL I BE ASKED TO DO?

If you agree to take part in this study, you will be asked to install the FrenchPress

plugin in Eclipse on your computer. The researchers ask you to run FrenchPress at

least once for each programming assignment you work on (but you may run it as often

as you like). Each time you request feedback from FrenchPress, the software will save

a copy of your program on your own hard drive. You will be asked to submit the

saved data as part of your Java project for each assignment in the course.

You will be expected to complete a short online survey after each assignment for

which you use FrenchPress. The surveys will ask questions about how easy or difficult

it was to install FrenchPress, was the software easy or difficult to use, did you get any

feedback from FrenchPress, was the feedback easy or difficult to understand, and did

you modify your program in response to what FrenchPress told you. You may skip

any question you feel uncomfortable answering.

6. WHAT ARE MY BENEFITS OF BEING IN THIS STUDY?

The purpose of FrenchPress is to give you feedback on your program while you are

working on it, so you can eliminate the flaws that the software has pointed out to

you. This will help you learn to avoid making the mistakes FrenchPress is capable of

identifying for you. Fixing these flaws will not have any effect on your grade for the

assignment, but it will help you to be a better Java programmer. The researchers

want your opinions about the software as expressed in your survey responses. Knowing

123

what you think about FrenchPress will help them improve it for future CMPSCI 187

students.

7. WHAT ARE MY RISKS OF BEING IN THIS STUDY?

The main risk you run by participating in this study is the possibility that French-

Press will give you poor guidance. The software is still under development. The

researchers conducting this study cannot guarantee that all the feedback you receive

from FrenchPress will be appropriate for the program you are writing. You might

get frustrated if FrenchPress gives you a confusing feedback message. Another risk

of participating in this study is the possibility that your classmates or a teaching as-

sistant or the professor could read the feedback you get from FrenchPress. To reduce

this risk, the researchers will never show your feedback or saved data to anyone else

without first removing any information that could identify you.

Participation in the study could require modest additional effort. You will have

to install the FrenchPress plugin on your computer. For each assignment you will

have to submit the saved program data and complete an online survey. These tasks

should be simple to accomplish but they will take some time.

8. HOW WILL MY PERSONAL INFORMATION BE PROTECTED?

The following procedures will be used to protect the confidentiality of your study

records. FrenchPress will capture your Java program each time you request feedback.

These recorded programs will be stored on your own machine until you upload them

as part of your finished assignment to Moodle. At the end of the semester, the

researchers will match up your FrenchPress stored data with your survey responses,

and then remove from these files any information that identifies you (your name or

student number). The programs and survey responses will be stored on a password-

protected computer to prevent access by unauthorized users. Only the members of

the research staff will have access to the password. The professor of the course will

124

not be permitted to look at any data stored by FrenchPress. At the conclusion of this

study, the researchers may publish their findings. Information will be presented in

summary format and you will not be identified in any publications or presentations.

9. WILL I RECEIVE ANY PAYMENT FOR TAKING PART IN THE

STUDY?

Extra credit of 0.10 will be added to your final grade for CMPSCI 187 if you complete

your part in the research study. For example, if your final grade were 3.10, high in

the B range, the extra credit would give you a 3.20, in the B+ range. Partial credit

may be given for partial completion.

Completing your part in the study means that for every programming assignment,

you use FrenchPress at least once, submit the program versions that are automatically

saved by FrenchPress, and take the online survey.

Participating in the research study is not the only way to earn extra credit. The

Moodle page that gives instructions for this study also describes an alternate assign-

ment to earn the same amount of extra credit. To get extra credit you may choose

the FrenchPress study or the alternate activity, but not both.

10. WHAT IF I HAVE QUESTIONS?

Take as long as you like before you make a decision. We will be happy to answer

any question you have about this study. If you have further questions about this

project or if you have a research-related problem, you may contact the researcher,

Hannah Blau at (413) 584-0963 or blau@cs.umass.edu. If you have any questions

concerning your rights as a research subject, you may contact the University of Mas-

sachusetts Amherst Human Research Protection Office (HRPO) at (413) 545-3428 or

humansubjects@ora.umass.edu.

11. CAN I STOP BEING IN THE STUDY?

You do not have to be in this study if you do not want to. If you agree to be

125

in the study, but later change your mind, you may drop out at any time. There

are no penalties or consequences of any kind if you decide that you do not want to

participate.

12. HOW DO I FILL OUT THIS FORM?

First, read the form so you know what you are agreeing to. If you are ready to

participate in the study, please sign in section 14.

• Sign with a pen, not a pencil.

• Sign on the line that reads Participant Signature; leave the bottom signature

line blank.

• Your signature must be hand-written (not typed on the computer). Sign in the

first blank, then write (or type) your name legibly in the second blank.

• Fill in todays date, including the year.

• Fill in your student ID number. Be careful to get all the digits right.

13. HOW DO I SUBMIT THIS FORM?

After you have read and signed the consent form, you can submit it in one of three

ways:

• Hand it to the researcher, Hannah Blau, in class today.

• Hand it to a staff member in the main office of the School of Computer Science.

Ask the staff member to put your form in the secure box for 187 consent forms.

The office is located in room 100 on the ground floor of the Computer Science

Building.

• Submit electronically. You must first sign a hardcopy of the consent form by

hand. You can sign this copy, or print out the .pdf file from the course Moodle

126

page. Typed signatures are not acceptable. Then scan all three pages of your

signed consent form and email the scan to Hannah at blau@cs.umass.edu.

14. SUBJECT STATEMENT OF VOLUNTARY CONSENT

When signing this form I am agreeing to voluntarily enter this study. I have had a

chance to read this consent form, and it was explained to me in a language that I

use and understand. I have had the opportunity to ask questions and have received

satisfactory answers. I understand that I can withdraw at any time. I can get a copy

of this Informed Consent Form from the course website.

Participant Signature: Print Name: Date:

Student ID Number:

By signing below I indicate that the participant has read and, to the best of my

knowledge, understands the details contained in this document and has been given a

copy.

Signature of Person Print Name: Date:

Obtaining Consent

127

APPENDIX E

FRENCHPRESS USER SATISFACTION SURVEY

Study participants responded to this survey after each programming assignment for

which they used the FrenchPress software. Questions 2–4 appeared only on the first

survey. The remaining questions appeared on all the surveys.

To get extra credit for participating in the classroom trial, you must provide your

student ID number. If you prefer to answer this survey anonymously you may skip

question 1, but you will not get your extra credit.

1. Please enter your student ID number for this survey to count toward extra

credit.

[text box response]

2. What operating system are you using? Please include the edition/version (e.g.

Windows 7 Professional or OS X 10.9.4).

[text box response]

3. How easy or difficult was it to install FrenchPress?

• Very easy

• Moderately easy

• Neither easy nor difficult

• Moderately difficult

• Very difficult

128

4. How long did it take you to install FrenchPress?

• Very quick

• Moderately quick

• Neither quick nor slow

• Moderately slow

• Very slow

5. How often did FrenchPress crash or “freeze up” on you for this assignment?

• Very often

• Somewhat often

• Neither often nor rarely

• Rarely

• Never

6. Did FrenchPress find any flaws in your program for this assignment?

• Yes

• No

7. For this assignment, was the feedback from FrenchPress confusing or easy to

understand?

• FrenchPress found no flaws in my program

• Very confusing

• Moderately confusing

• Neither confusing nor easy to understand

• Moderately easy to understand

129

• Very easy to understand

8. For this assignment, was the feedback from FrenchPress helpful or unhelpful?

• FrenchPress found no flaws in my program

• Very helpful

• Rather helpful

• Neither helpful nor unhelpful

• Rather unhelpful

• Very unhelpful

9. Did the FrenchPress feedback for this assignment lead you to change your pro-

gram?

• FrenchPress found no flaws in my program

• Yes

• No

10. Are you satisfied or dissatisfied with the performance of FrenchPress on this

assignment?

• Very satisfied

• Somewhat satisfied

• Neither satisfied nor dissatisfied

• Somewhat dissatisfied

• Very dissatisfied

11. How can we improve FrenchPress?

[text box response]

130

BIBLIOGRAPHY

[1] Amelung, Mario, Piotrowski, Michael, and Rösner, Dietmar. EduComponents:
Experiences in e-assessment in computer science education. In ITiCSE ’06: Pro-
ceedings of the 11th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education (New York, NY, 2006), ACM, pp. 88–92.

[2] Arnow, David, and Barshay, Oleg. WebToTeach: An interactive focused pro-
gramming exercise system. In FIE 1999: 29th Annual ASEE/IEEE Frontiers in
Education Conference (1999), vol. 1, pp. 12A9/39–12A9/44.

[3] ASM 5.0.4. http://asm.ow2.org/.

[4] Badros, Greg J. JavaML: A markup language for Java source code. Computer
Networks 33, 1 (2000), 159–177.

[5] Benford, S D, Burke, E K, Foxley, E, and Higgins, C A. The Ceilidh system
for the automatic grading of students on programming courses. In ACM-SE 33:
Proceedings of the 33rd Annual Southeast Regional Conference (New York, NY,
1995), ACM, pp. 176–182.

[6] Bloch, Joshua. Effective Java, 2nd ed. The Java Series. Addison-Wesley, 2008.

[7] Checkstyle 6.9. http://checkstyle.sourceforge.net/.

[8] Dawis, Rene V. Likert scale. In International Encyclopedia of the Social Sciences,
W. A. Darity Jr., Ed., 2nd ed., vol. 4. Macmillan Reference, Detroit, MI, 2008,
pp. 447–448.

[9] Dexter, Scott. On automated checking of Java applets. Journal of Computing
Sciences in Colleges 15, 5 (May 2000), 84–95.

[10] Dillman, Don A., Smyth, Jolene D., and Christian, Leah Melani. Internet, Mail,
and Mixed-Mode Surveys: The Tailored Design Method, 3rd ed. John Wiley &
Sons, 2009.

[11] Edwards, Stephen H. Rethinking computer science education from a test-first
perspective. In OOPSLA ’03: Companion of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (New York, NY, 2003), ACM, pp. 148–155.

[12] FindBugs 3.0.1. http://findbugs.sourceforge.net/.

131

[13] Fokaefs, Marios, Tsantalis, Nikolaos, and Chatzigeorgiou, Alexander. Jdeodor-
ant: Identification and removal of feature envy bad smells. In ICSM 2007: 23rd
IEEE International Conference on Software Maintenance (2007), IEEE, pp. 519–
520.

[14] Fokaefs, Marios, Tsantalis, Nikolaos, Stroulia, Eleni, and Chatzigeorgiou,
Alexander. Jdeodorant: Identification and application of extract class refactor-
ings. In ICSE ’11: Proceedings of the 33rd International Conference on Software
Engineering (New York, NY, USA, 2011), ACM, pp. 1037–1039.

[15] Higgins, Colin, Symeonidis, Pavlos, and Tsintsifas, Athanasios. The marking
system for CourseMaster. In ITiCSE ’02: Proceedings of the 7th Annual Confer-
ence on Innovation and Technology in Computer Science Education (New York,
NY, 2002), ACM, pp. 46–50.

[16] Higgins, Colin A., Gray, Geoffrey, Symeonidis, Pavlos, and Tsintsifas, Athana-
sios. Automated assessment and experiences of teaching programming. Journal
on Educational Resources in Computing 5, 3 (2005), 5.

[17] Higgins, Colin A., Hegazy, Tarek, Symeonidis, Pavlos, and Tsintsifas, Athana-
sios. The CourseMarker CBA system: Improvements over Ceilidh. Education
and Information Technologies 8, 3 (2003), 287–304.

[18] Hovemeyer, David, and Pugh, William. Finding bugs is easy. SIGPLAN Not.
39, 12 (2004), 92–106.

[19] Hristova, Maria, Misra, Ananya, Rutter, Megan, and Mercuri, Rebecca. Identi-
fying and correcting Java programming errors for introductory computer science
students. In SIGCSE ’03: Proceedings of the 34th SIGCSE Technical Symposium
on Computer Science Education (New York, NY, 2003), ACM, pp. 153–156.

[20] Jackson, David, and Usher, Michelle. Grading student programs using ASSYST.
SIGCSE Bull. 29, 1 (1997), 335–339.

[21] JDeodorant 5.0.15. http://www.jdeodorant.com/.

[22] Joy, Mike, Griffiths, Nathan, and Boyatt, Russell. The BOSS online submission
and assessment system. Journal on Educational Resources in Computing 5, 3
(2005), 2.

[23] McCabe, T.J. A complexity measure. IEEE Transactions on Software Engineer-
ing 2, 4 (1976), 308–320.

[24] Moll, Robert. Interactive Java: An Online Approach to Java Learning. Edition
3.2, 2015. http://ijava.cs.umass.edu/.

[25] Morris, Derek S. Automatic grading of student’s programming assignments:
an interactive process and suite of programs. In FIE 2003: 33rd Annual
ASEE/IEEE Frontiers in Education Conference (2003), vol. 3, pp. S3F 1–6.

132

[26] Murphy-Hill, Emerson, and Black, Andrew P. An interactive ambient visual-
ization for code smells. In SOFTVIS ’10: Proceedings of the 5th International
Symposium on Software Visualization (New York, NY, USA, 2010), ACM, pp. 5–
14.

[27] PMD 5.3.3. http://pmd.sourceforge.net/.

[28] Qiu, Lin, and Riesbeck, Christopher. An incremental model for developing ed-
ucational critiquing systems: Experiences with the Java Critiquer. Journal of
Interactive Learning Research 19, 1 (2008), 119–145.

[29] Qiu, Lin, and Riesbeck, Christopher K. Facilitating critiquing in education: The
design and implementation of the Java Critiquer. In Proceedings of the Interna-
tional Conference on Computers in Education (ICCE) (Hong Kong, 2003).

[30] Reek, Kenneth A. The TRY system -or- how to avoid testing student programs.
In SIGCSE ’89: Proceedings of the 20th SIGCSE Technical Symposium on Com-
puter Science Education (New York, NY, 1989), ACM, pp. 112–116.

[31] Reek, Kenneth A. A software infrastructure to support introductory computer
science courses. In SIGCSE ’96: Proceedings of the 27th SIGCSE Technical Sym-
posium on Computer Science Education (New York, NY, 1996), ACM, pp. 125–
129.

[32] Saikkonen, Riku, Malmi, Lauri, and Korhonen, Ari. Fully automatic assessment
of programming exercises. In ITiCSE ’01: Proceedings of the 6th Annual Confer-
ence on Innovation and Technology in Computer Science Education (New York,
NY, 2001), ACM, pp. 133–136.

[33] Singh, Rishabh, Gulwani, Sumit, and Solar-Lezama, Armando. Automated feed-
back generation for introductory programming assignments. In PLDI ’13: Pro-
ceedings of the 34th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (New York, NY, USA, 2013), ACM, pp. 15–26.

[34] Suleman, Hussein. Automatic marking with Sakai. In SAICSIT ’08: Proceedings
of the 2008 Annual Research Conference of the South African Institute of Com-
puter Scientists and Information Technologists on IT Research in Developing
Countries (New York, NY, 2008), ACM, pp. 229–236.

[35] Truong, Nghi, Bancroft, Peter, and Roe, Paul. Learning to program through
the web. In ITiCSE ’05: Proceedings of the 10th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education (New York, NY,
2005), ACM, pp. 9–13.

[36] Truong, Nghi, Roe, Paul, and Bancroft, Peter. Static analysis of students’ Java
programs. In ACE ’04: Proceedings of the 6th Conference on Australasian Com-
puting Education (Darlinghurst, Australia, 2004), Australian Computer Society,
Inc., pp. 317–325.

133

[37] Truong, Nghi, Roe, Paul, and Bancroft, Peter. Automated feedback for “fill in
the gap” programming exercises. In ACE ’05: Proceedings of the 7th Australasian
Conference on Computing education (Darlinghurst, Australia, 2005), Australian
Computer Society, Inc., pp. 117–126.

[38] Tsantalis, Nikolaos, Chaikalis, Theodoros, and Chatzigeorgiou, Alexander.
Jdeodorant: Identification and removal of type-checking bad smells. In CSMR
2008: 12th European Conference on Software Maintenance and Reengineering
(2008), IEEE, pp. 329–331.

[39] Vermeulen, Allan, Ambler, Scott W., Bumgardner, Greg, Metz, Eldon, Misfeldt,
Trevor, Shur, Jim, and Thompson, Patrick. The Elements of Java Style. SIGS
Reference Library. Cambridge University Press, Cambridge, UK, 2000.

134

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2015

	Automated Style Feedback for Advanced Beginner Java Programmers
	Hannah Blau
	Recommended Citation

	tmp.1445316532.pdf.g5bNU

