
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

2017

The Complexity of Resilience
Cibele Matos Freire

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Part of the Databases and Information Systems Commons, and the Theory and Algorithms
Commons

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Matos Freire, Cibele, "The Complexity of Resilience" (2017). Doctoral Dissertations. 1081.
https://scholarworks.umass.edu/dissertations_2/1081

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1081?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

THE COMPLEXITY OF RESILIENCE

A Thesis Presented

by

CIBELE FREIRE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2017

College of Information and Computer Sciences

c© Copyright by Cibele Freire 2017

All Rights Reserved

THE COMPLEXITY OF RESILIENCE

A Thesis Presented

by

CIBELE FREIRE

Approved as to style and content by:

Neil Immerman, Chair

Alexandra Meliou, Member

Andrew McGregor, Member

Wolfgang Gatterbauer, Member

Barbara Partee, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

ABSTRACT

THE COMPLEXITY OF RESILIENCE

SEPTEMBER 2017

CIBELE FREIRE

B.Sc., UNIVERSIDADE FEDERAL DO CEARÁ

M.Sc., UNIVERSIDADE FEDERAL DO CEARÁ

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Neil Immerman

One focus area in data management research is to understand how changes in

the data can affect the output of a view or standing query. Example applications

are explaining query results and propagating updates through views. In this thesis

we study the complexity of the Resilience problem, which is the problem of finding

the minimum number of tuples that need to be deleted from the database in order to

change the result of a query. We will see that resilience is closely related to the well-

studied problems of deletion propagation and causal responsibility, and that analyzing

its complexity offers important insight for solving those problems as well.

Our contributions include the definition of the concept of triads for conjunctive

queries, which is a crucial tool on our analysis, and the characterization of a NP

versus P dichotomy for the resilience problem considering the class of conjunctive

queries without self-joins. Moreover, this result allowed us to show dichotomies for

iv

the same class of queries for both deletion propagation with source side-effects and

causal responsibility problems. We also completely characterize how the presence of

functional dependencies can change the complexity of such problems.

The class of conjunctive queries with self-joins is far richer and more complicated

than the self-join-free ones. Therefore we focus on binary queries without variable

repetition, which are queries formed by unary or binary relations only and each atom

has only one occurrence of any variable. For this restricted case, we identify three

main query structures that help us identify complexity: chains, permutations and

confluences. Using those we are able to characterize classes of queries for which

resilience is NP-complete and some for which it is P.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF FIGURES .viii

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND AND RELATED WORK . 3

2.1 General notation . 3
2.2 Query resilience . 4
2.3 Related work . 5

2.3.1 Deletion propagation . 6
2.3.2 Causal responsibility . 11
2.3.3 Additional related problems . 13

3. COMPLEXITY OF RESILIENCE FOR SJ-FREE QUERIES 15

3.1 Complexity of resilience: sj-free case . 15

3.1.1 Triads make resilience hard . 16
3.1.2 Polynomial algorithm for linear queries . 27
3.1.3 Dichotomy for sj-free conjunctive queries . 32

3.2 Functional dependencies . 33

3.2.1 FDs can only simplify resilience . 33
3.2.2 Induced rewrites preserve complexity . 35
3.2.3 For closed queries, FDs are superfluous . 37
3.2.4 Dichotomy of resilience with FDs . 39

vi

4. COMPLEXITY OF RESILIENCE FOR QUERIES WITH
SELF-JOINS . 40

4.1 Basic hard queries . 41
4.2 Notation and setup . 43

4.2.1 Query minimization . 44
4.2.2 Query components . 46
4.2.3 Isolated variables . 47
4.2.4 Domination for the self-join case . 48

4.3 Non-linear queries . 51
4.4 Linear queries . 56

4.4.1 Chains . 57
4.4.2 Permutations . 66

4.4.2.1 Other hard cases with permutation 73

4.4.3 Confluences . 74

4.5 Dichotomy conjecture . 78
4.6 A special case: R,R queries . 79

5. COMPLEXITY OF RESPONSIBILITY FOR SJ-FREE
QUERIES . 85

5.1 Triads and hardness . 92
5.2 The polynomial case . 93

5.2.1 A generalization of responsibility . 95

5.3 Dichotomy for responsibility with FDs . 97

6. CONCLUSIONS AND FUTURE WORK . 98

6.1 Future work . 99

6.1.1 Approximations and generalizations . 99
6.1.2 Deletion propagation with view side-effects 100
6.1.3 Refine our dichotomy . 100
6.1.4 Connections with vertex cover in hypergraphs 101

BIBLIOGRAPHY . 102

vii

LIST OF FIGURES

Figure Page

2.1 Example illustrating similarities and differences between (a) deletion
propagation with source side-effects, (b) resilience, (c)
responsibility for causality, and (d) deletion propagation with
view side-effects . 7

3.1 Example 3.2: The hypergraphs of queries q4, qrats, qbrats, qT.
{R, S, T} is a triad of q4; {A,B,C} is a triad of qT. 17

3.2 A six-node segment of the gadget Gi in the hardness proof for q4: A
minimum contingency set chooses either all the solid lines marked
vi, or all the solid lines marked vi. The dotted lines are sad
because each of them is only part of one single RGB triangle, thus
they are never chosen. 19

3.3 Each gadget Gi in the hardness proof for q4 is a cycle containing 2m
six-node segments and a total of 12m RGB triangles. They can all
be eliminated by removing the 6m edges marked vi or the 6m
edges marked vi. The even numbered segments are sad because
they are never used for connecting different gadgets
(corresponding to clauses that use several variables); they only
separate the odd ones, thus preventing spurious triangles. 19

3.4 For clause Cj = (v1 ∨ v2 ∨ v3) in the hardness proof for q4, we identify
vertices b1

4j+1 ∈ G1 with b2
4j+1 ∈ G2; c2

4j+1 ∈ G2 with c3
4j+1 ∈ G3

and a3
4j+2 ∈ G3 with a1

4j+1 ∈ G1. This RGB triangle will be
deleted iff the chosen variable assignment satisfies Cj. 20

3.5 Database D and database D′ defined by the reduction. 23

3.6 Reduction from RES(q4) to RES(q) when q contains a triad
{S0, S1, S2} in the proof of Lemma 3.10. 28

3.7 Definition 3.16: Linear query q :−A(x), R(x, y, z), S(y, z) 28

viii

3.8 A walk along the endogenous atoms in the proof of Lemma 3.23. The
cut ci results from removing all the variables (edges) from atom
Si. 31

4.1 Excerpt from the construct showing the gadget for clause
C1 = (v1 ∨ v̄2 ∨ v3) in the hardness proof for qchain. Note that blue
nodes represent a true value and red nodes a false value. 43

4.2 Hypergraphs only represent which variables occur in a given atom,
whereas binary graphs represent containment and position within
each atom, as we can see for query qchain . 44

4.3 (a) illustrates a query with two components. (b) and (c) show a
query and its minimized version, respectively. 46

4.4 A dominates R in q1 but not in q2. 50

4.5 Intuition behind the proof of Proposition 4.2 in terms of vertex cover:
the double red lines show “extenders” allowing to extend the
distance between corners. 58

4.6 Excerpt from the construct showing the gadget for clause
C1 = (v1 ∨ v̄2 ∨ v3) in the hardness proof for qa

chain. We omit the
A-tuples that participate in only one join, since they shall never
be chose for a minimum contingency set. 59

4.7 Excerpt from the construct showing the gadget for clause
C1 = (v1 ∨ v̄2 ∨ v3) in the hardness proof for qac

chain. We omit the
A-tuples and C-tuples that would not be chosen for a minimum
contingency set. 63

4.8 Easy permutations . 67

4.9 Query qperm is the smallest example of a query with permutations
that is NP-complete . 67

4.10 Excerpt from the construct showing the gadget for clause
C1 = (v1 ∨ v̄2 ∨ v3) in the hardness proof for qperm. Circles
represent A-tuples and squares B-tuples. R-tuples are omitted as
they can be inferred by the edges between circles and squares. 68

4.11 Example of queries with unbounded permutation that are in PTIME
. 70

4.12 Easy patterns with permutations . 72

ix

4.13 Unbounded hard permutation . 74

4.14 Bounded on one side: hard cases . 74

4.15 Contiguous permutations . 75

4.16 Examples of easy queries with confluences . 75

4.17 Simple hard confluence . 77

4.18 Example of hard queries with confluences . 77

4.19 Hard query with 2 confluences . 78

5.1 The qrats variable gadget G` for variable v`. Red, green, and blue lines
correspond to tuples from R, S, and T , respectively. Dotted lines
will never need to be chosen in minimum contingency sets of
f(ψ). 88

5.2 The qrats clause gadget corresponding to clause Cs = v1 ∨ v2 ∨ v3 and
truth assignment α6 = {〈v1, 1〉, 〈v2, 1〉, 〈v3, 0〉}. A(as,6) must be in
the minimum contingency set unless the chosen truth assignment
is α6. 88

5.3 Case 3 of the proof of Lemma 5.6. There is a tripod sitting in the
hypergraph of q. 94

x

CHAPTER 1

INTRODUCTION

As data continues to grow in volume, the results of relational queries become

harder to understand, interpret, and debug through manual inspection. Data man-

agement research has recognized this fundamental need to derive explanations for

query results and explanations for surprising observations. Existing work has defined

explanations as predicates in a query [41, 37, 11], or as modifications to the input

data [35, 28, 27]. In the latter category, the metric of causal responsibility, first in-

troduced by [13], quantifies the contribution of an input tuple to a particular output.

One can then derive explanations by ranking input tuples using their responsibilities:

tuples with high degree of responsibility are better explanations for a particular query

result than tuples with low responsibility [35].

A seemingly unrelated notion, the concept of deletion propagation with source

side-effects [9], seeks a minimum set of tuples in the input tables that should be

deleted from the database in order to delete a particular tuple from a query. Query

results that have a larger set of tuples that need to be deleted are more reliable or

more “robust” to changes in the input database than others.

In this thesis, we take a step back and re-examine how particular interventions

(tuple deletions in the input of a query) impact its output. Specifically, we study

how “resilient” a Boolean query is with respect to such interventions. Resilience

identifies the smallest number of tuples to delete from the input to make the query

false. We will show that characterizing the complexity of this problem also allows us

1

to study the complexities of both deletion propagation with source side-effects and

causal responsibility.

The main contributions of this work are:

1. Complete characterization of the complexity of resilience for conjunctive queries

without self-joins, resulting in a NP versus PTIME dichotomy;

2. Dichotomy theorem for the self-join-free case in the presence functional depen-

dencies;

3. Complete characterization of the complexity of responsibility for conjunctive

queries without self-joins with functional dependencies, also resulting in a NP

versus PTIME dichotomy;

4. Characterization of the complexity of resilience for certain classes of conjunctive

queries with self-joins.

The thesis proceeds as follows. Chapter 2 covers the background and notation

and discusses related work comprehensively, showing the close connections between

deletion propagation, causal responsibility and resilience. Chapter 3 presents our

dichotomy results for the resilience of conjunctive queries without self-joins and with

functional dependencies. Chapter 4 discusses resilience for queries with self-joins.

We explain how different from the self-join-free case this one is, in particular, that

we need a more diverse set of structures than just triads to characterize hardness,

and that we need to consider other query elements such as order and repetition

of variables. In Chapter 5, we characterize the complexity of causal responsibility

considering again conjunctive queries without self-joins and we obtain similar results

of that for resilience. Finally, Chapter 6 presents our conclusions and future work.

2

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter we present the background and formal setup, and give an overview

of problems related to resilience, giving particular attention to the deletion propaga-

tion and causal responsibility problems.

2.1 General notation

We use boldface (e.g., x = (x1, . . . , xk)) to denote tuples or ordered sets. A

conjunctive query (CQ) is a first-order formula q(y) = ∃x (A1 ∧ . . . ∧ Am) where the

variables x = (x1, . . . , xk) are called existential variables, y = (y1, . . . , yc) are called

the head variables (or free variables). Each atom Ai represents a relation Ri(zi) where

zi ⊆ x ∪ y and we say that a query is self-join free (sj-free) if no relation symbol

occurs more than once, otherwise we have a query with self-join (sj). We often refer

to self-join free conjunctive queries as sj-free CQ, and to conjunctive queries with

self-joins as sj-CQ. If a query has no head variables, i.e. y = ∅, we say it is a Boolean

query and its output is either true or false, otherwise it is a non-Boolean query.

We write var(Aj) for the set of variables occurring in atom Aj. The database

instance is then the union of all tuples in the relations D =
⋃
iRi. As usual, we

abbreviate the query in Datalog notation by q(y) :−A1, . . . , Am. For tuple t, we

write D |= q[t/y] to denote that t is in the query result of the non-Boolean query

q(y) over database D. The set of query results over database D is denoted by q(y)D.

We write D |= q to denote that the query q evaluates to true over the database

instance D, and D 6|= q to denote that q evaluates to false.

3

Definition 2.1 (Witness). We call a valuation of all existential variables that is per-

mitted by D and that makes q :−A1, . . . , Am true, a witness w. The set of witnesses

of D |= q is the set
{
w
∣∣ D |= (A1 ∧ . . . ∧ Am)[w/x]

}
.

Notice that our notion of witness slightly differs from the one commonly seen

in provenance literature where a “witness” refers to a subset of the input database

records that is sufficient to ensure that a given output tuple appears in the result of

a query [12].

A database instance may contain some “forbidden” tuples that may not be deleted.

Since we are interested in the data complexity of resilience, we specify at the query

level which tables contain tuples that may or may not be deleted. Those atoms from

which tuples may not be deleted are called exogenous1 and we write these atoms or

relations with a superscript “x”. The other atoms, whose tuples may be deleted, are

called endogenous. We may occasionally attach the superscript “n” to an atom to

emphasize that it is endogenous. Moreover, we can refer to a database as a partition

of its tables into its exogenous and endogenous parts, D = Dx ∪Dn.

2.2 Query resilience

Given D |= q, our motivating question is: what is the minimum number of tuples

to remove in order to make the query false? The formal definition of the resilience

problem:

Definition 2.2 (Resilience). Given a query q and database D, we say that (D, k) ∈

RES(q) if and only if D |= q and there exists some Γ ⊆ Dn such that D − Γ 6|= q and

|Γ| ≤ k.

1In other words, tuples in these atoms provide context and are outside the scope of possible
“interventions” in the spirit of causality [25].

4

In other words, (D, k) ∈ RES(q) means that there is a set of k or fewer tuples in

the endogenous tables of D, the removal of which makes the query false. Observe

that since q is computable in PTIME, RES(q) is in NP. We will see that there is a

dichotomy for all sj-free conjunctive queries: for all such queries q, either RES(q) is

in PTIME or RES(q) is NP-complete (Theorem 3.24). We are naturally interested in

the optimization version of this decision problem: given q and D, find the minimum

k so that (D, k) ∈ RES(q). A larger k implies that the query is more “resilient” with

respect to a given database and requires the deletion of more tuples to change the

query output.

We focus on Boolean queries, however we can also define the resilience problem

for non-Boolean queries as follows:

Definition 2.3 (Resilience for non-Boolean queries). Given non-Boolean query q(y)

and database D, we say that (D, k) ∈ RES(q(y)) if and only if q(y)D 6= ∅ and there

exists some Γ ⊆ Dn such that q(y)D−Γ = ∅ and |Γ| ≤ k.

It is clear from the definition that we are interested in eliminating all the output

tuples from the query result, and it is easy to see that RES(q(y)) ≡ RES(q′), where

q′ is obtained by removing all variables y from the head of q, turning them into

existential variables.

2.3 Related work

In this section we make a direct connection between the problems of resilience,

deletion propagation and causal responsibility. After reading this section, the reader

should be able to understand how our results on the complexity of resilience contribute

to the understanding of those problems.

5

2.3.1 Deletion propagation

Databases allow users to interact with data through views, which are often con-

junctive queries. Views can be used to simplify complex queries, enforce access control

policies, and preserve data independence for external applications. Of particular in-

terest is how deletions in the input data affect the view (which is a trivial problem),

but also how deletions in the view could be achieved by appropriately chosen dele-

tions in the input data (which is far less trivial). Concretely, the problem of deletion

propagation [9, 17] seeks a set Γ of tuples in the input tables that should be deleted

from the database in order to delete a particular tuple from the view. Intuitively,

this deletion should be achieved with minimal side-effects, where side-effects are de-

fined with either of two objectives: (a) deletion propagation with source side-effects

(DPsource) seeks a minimum set of input tuples Γ in order to delete a given output

tuple; whereas (b) deletion propagation with view side-effects (DPview) seeks a set of

input tuples Γ whose removal results in a minimum number of output tuple deletions

in the view, other than the tuple of interest [9].

Example 2.4 (Source & View side-effects). Consider the query

q(x, u) :−R(x, y), S(y, z, w), T (w, u)

defining a view over the database R, S, T shown below. To delete tuple v1 from the

resulting view with minimum source side-effects, one only needs to remove tuple t1

from the database. Therefore, the optimal solution to DPsource is Γ = {t1} with |Γ| = 1

(see Fig. 2.1a).

However, the deletion of t1 also removes v2, which is a view side-effect: ∆ = {v2}

with |∆| = 1. The optimal solution to DPview, which minimizes the side-effects on the

view (set ∆) is the set of input tuples Γ = {r1, r2}: deleting these two tuples removes

only v1 from the view but not v2, and thus has no view-side effects, i.e., ∆ = ∅ with

|∆| = 0 (see Fig. 2.1d).

6

1	 3	
1	 4	
2	 3	

3	 5	 7	
3	 6	 7	
4	 5	 7	

R	 S	 T	
D	

q	
7	 9	 1	 9	

2	 9	

|Γ|=1 	

(a) Source side-effects:
min |Γ|

3	
4	

3	 5	 7	
3	 6	 7	
4	 5	 7	

R'ʹ	 S	 T'ʹ	
D	

|Γ|=1 	

q	
7	 true	

(b) Resilience: min |Γ|

3	
4	

3	 5	 7	
3	 6	 7	
4	 5	 7	

R'ʹ	 S	 T'ʹ	
D	

|Γ|=2 	

q	
7	 true	

(c) Responsibility: min |Γ|

1	 3	
1	 4	
2	 3	

3	 5	 7	
3	 6	 7	
4	 5	 7	

R	 S	 T	
D	

q	
7	 9	 1	 9	

2	 9	

|Δ|=0	|Γ|=2 	

(d) View side-effects:
min |∆|

Figure 2.1: Example illustrating similarities and differences between (a) deletion prop-
agation with source side-effects, (b) resilience, (c) responsibility for causality, and (d)
deletion propagation with view side-effects

R S T q

X Y Y Z W W U X U

r1 1 3 s1 3 5 7 t1 7 9 v1 1 9

r2 1 4 s2 3 6 7 v2 2 9

r3 2 3 s3 4 5 7

Deletion propagation: source side-effects

Deletion propagation in view updates generally refers to non-Boolean queries

q(y) :−A1, . . . , Am. We next define the problem [9, 17] formally in our notation:

Definition 2.5 (Source side-effects). Given a query q(y), database D, and an output

tuple t, we say that (D, t, k) ∈ DPsource(q(y)) if and only if t ∈ q(y)D and there exists

some Γ ⊆ D such that t 6∈ q(y)D−Γ and |Γ| ≤ k.

We will see that there is a homomorphism between resilience and the source side-

effect variant of deletion propagation. We illustrate this correspondence in the exam-

ple below and next describe this transformation more formally.

Example 2.6 (Resilience & Source side-effect). Consider again the query from Ex-

ample 2.4 and the output tuple v1 = (1, 9). Applying the substitution [(x, u)/(1, 9)],

7

i.e., substituting x and u with 1 and 9, respectively, we get a query q(1, 9) :−R(1, y),

S(y, z, w), T (w, 9). The solution to DPsource for q and tuple v1 is then equivalent to the

solution of the resilience problem over the Boolean query q′ :−R′(y), S(y, z, w), T ′(w)

over the database R′, S, T ′ with R′(y) :−R(1, y) and T ′(w) :−T (w, 9) shown below.

The answer to the resilience problem for q′ is Γ = {t′1} with |Γ| = 1: deleting tuple t′1

makes the query false (also see Fig. 2.1b).

R′ S T ′

Y Y Z W W

r′1 3 s1 3 5 7 t′1 7

r′2 4 s2 3 6 7

s3 4 5 7

Given a conjunctive query q(y) :−A1, . . . , Am and a tuple t = c in the output

q(y)D. We first obtain a Boolean query q′ by deleting the head variables in q(y).

Then we modify the database by applying a filter (selection): for each relation Ri(zi)

we define a new relationR′i(xi) :−Ri(θt(zi)) with xi being the existential variables that

occur in Ri, and where the substitution θt : y→ c replaces the former head variables

with the corresponding constants from t and keep the existential variables as they

are. For example, R′(y) :−R(1, y) in Example 2.6 (see Fig. 2.1a and Fig. 2.1b). This

will lead to a new database D′ =
⋃
iR
′
i and a new Boolean query q′ :−A′1, . . . , A′m,

where A′i = R′i(xi) if Ai = Ri(zi), for which the following holds:

Corollary 2.7 (Resilience & Source side-effects). Given a query q(y), database D,

and output tuple t ∈ q(y)D, let q′ and D′ be the new Boolean query and new database

instance obtained by the above transformation. Then: (D, t, k) ∈ DPsource(q(y)) ⇔

(D′, k) ∈ RES(q′).

Notice that by solving the complexity of resilience, we immediately also solve

the problem of deletion propagation with source side-effects. We proceed to discuss

existing results on the complexity of deletion propagation with source side-effects,

and explain how our results on the complexity of resilience extend this prior work.

8

[9] define a dichotomy for the hardness of DPsource(q) based only on the operations

that occur in q, namely, selection, projection, join, union. Specifically, they show that

DPsource(q(y)) is NP-complete for PJ and JU queries (i.e., queries involving projections

and joins, or queries involving joins and unions), while it is PTIME for SJ and SPU

queries (i.e., queries involving selections and joins, or queries involving selections,

projections, and unions only). Later, [14] showed that DPsource(q(y)) is in PTIME for

a SPJ query if all primary keys of the involved relations appear in the head variables

y (a condition called “key preservation”). Notice that the concept of key preservation

does not apply to the problem of resilience, as keys are never preserved in Boolean

queries.

Our results on resilience imply a refinement for the complexity of minimum source

side-effects by defining a novel, yet simple and intuitive property of the query struc-

ture called “triads.” For the class of self-join-free conjunctive queries, we show that

resilience is NP-complete if the query contains this structure, and PTIME otherwise

(Chapter 3). Determining whether a query contains a triad can be done very effi-

ciently, in polynomial time with respect to query complexity. These results are anal-

ogous to the results of [33] for the deletion propagation with view-side effect problem.

In addition, our dichotomy criterion also allows the specification of “forbidden” ta-

bles (called exogenous tables) that do not allow deletions. This is an extension to the

traditional definition of the deletion propagation problem and affects the complexity

of queries in non-obvious ways (defining a table as exogenous can make both easy

queries hard, and hard queries easy).

Our work also provides a complete dichotomy result for the class of sj-free conjunc-

tive queries with Functional Dependencies (Section 3.2). At a high-level, we define

rewrite steps that are induced by the functional dependencies, and check the resulting

query for the presence of triads.

9

Deletion propagation: view side-effects

The problem of deletion propagation with view side-effects has a different objective

than resilience: it attempts to minimize the changes in the view rather than the

source.

Definition 2.8 (View side-effects). Given a query q(y), a database D, and a tuple t in

the view, we say that (D, t, k) ∈ DPview(q(y)) if and only if t ∈ q(y)D and there exists

some Γ ⊆ D such that t 6∈ q(y)D−Γ, and |∆| ≤ k, where ∆ = (q(y)D−(q(y)D−Γ∪{t})).

In other words, ∆ is the set of tuples other than t that were eliminated from the view.

The dichotomy results from [9] extend to the case of DPview(q), and the same is

true for key preservation [14]. Later, [33] refined the dichotomy for the view side-effect

problem by providing a characterization that uses the query structure: DPview(q(y)) is

PTIME for queries that are head dominated, and NP-complete otherwise. Head dom-

ination checks for the components of the query that are connected by the existential

variables, where all head variables contained in the atoms of that component appear

in a single atom in the query.

Kimelfeld augmented the dichotomy on DPview(q) for cases where functional depen-

dencies (FDs) hold over the data instance D [32]. The tractability condition for this

case checks whether the query has functional head domination, which is an extension

of the notion of head domination.

A variant of deletion propagation that aims to remove a group of tuples from the

view instead of a single target was studied in [14]. Their results classify all conjunctive

queries as NP-complete, but recently, [34] provided a trichotomy for the class of sj-

free CQs that extends the notion of head domination, classifying queries into PTIME,

k-approximable in PTIME, and NP-complete.

10

2.3.2 Causal responsibility

The problem of causal responsibility [35] seeks, for a given query and a specified

input tuple, a minimum set of other input tuples Γ that, if deleted would make

the tuple of interest “counterfactual,” i.e., the query would be true with that tuple

present, or false if the tuple was also deleted. Both problems of resilience and of

causal responsibility rely on the notion of minimal interventions in the input database

and are thus closely related. However, we show that resilience is easier (has lower

complexity) than responsibility.

A tuple t is a counterfactual cause for a query if by removing it the query changes

from true to false. A tuple t is an actual cause if there exists a set Γ, called the

contingency set, removing of which makes t a counterfactual cause. Determining

actual causality is NP-complete for general formulas [18], but there are families of

tractable cases [19]. Specifically, causality is PTIME for all conjunctive queries [35].

Responsibility measures the degree of causal contribution of a particular tuple t to the

output of a query as a function of the size of a minimum contingency set: ρ = 1
1+min |Γ| .

These definitions stem from the work of [25] and [13],and were adapted to queries in

[35]. Even though responsibility (ρ) was originally defined as inversely proportional

to the size of the contingency set Γ, here we alter this definition slightly to draw

parallels to the problem of resilience.

Definition 2.9 (Responsibility). Given query q, we say that (D, t, k) ∈ RSP(q) if

and only if D |= q and there is Γ ⊆ Dn such that D − Γ |= q and |Γ| ≤ k but

D − (Γ ∪ {t}) 6|= q.

Example 2.10 (Resilience & Causal responsibility). The causal responsibility prob-

lem requires a tuple in the lineage of the query as additional input. Consider query

q′ and database R′, S, T ′ from Example 2.6. The responsibility of tuple s1 in query

q′ corresponds to the contingency set Γ = {s2, s3} with |Γ| = 2. Deleting these two

11

tuples makes s1 a counterfactual cause for q′, i.e., the query is true if s1 is present or

false, otherwise (also see Fig. 2.1c).

In contrast to resilience, the problem of responsibility is defined for a particular

tuple t in D, and instead of finding a Γ that will leave no witnesses for D − Γ |= q,

we want to preserve only witnesses that involve t, so that there is no witness left

for D − (Γ ∪ {t}) |= q. This difference, while subtle, is significant, and can lead to

different results. In Example 2.6, the resilience of query q′ has size 1 and contains

tuple t1. However, the solution to the responsibility problem in Example 2.10 depends

on the chosen tuple: the contingency set of s1 has size 2, and this size can be made

arbitrarily bigger by adding more tuples in S with attribute W = 7. Furthermore,

we show that the problems differ in terms of their complexity.

For completeness, we briefly recall the notions of reduction and equivalence in

complexity theory:

Definition 2.11 (Reduction (≤) and Equivalence (≡)). For two decision problems,

S, T ⊆ {0, 1}∗, we say that S is reducible to T (S ≤ T) if there is an easy to compute

reduction f : {0, 1}∗ → {0, 1}∗ such that

∀w ∈ {0, 1}∗
(
w ∈ S ⇔ f(w) ∈ T

)
.

The idea is that the complexity of S is less than or equal to the complexity of T

because any membership question for S (i.e., whether w ∈ S) can be easily translated

into an equivalent question for T , (i.e., whether f(w) ∈ T). “Easy to compute” can

be taken as expressible in first-order logic2. We say that two problems have equivalent

complexity (S ≡ T) iff they are inter-reducible, i.e., S ≤ T and T ≤ S.

2All reductions presented in this work are first-order, i.e., when we write S ≤ T we mean S ≤fo T .
First-order reductions are natural for the relational database setting and they are more restrictive
than logspace reductions, which in turn are more restrictive than polynomial-time reductions (S ≤fo

T ⇒ S ≤log T ⇒ S ≤p T) [29].

12

The problem of calculating resilience can always be reduced to the problem of

calculating responsibility.

Lemma 2.12 (RES ≤ RSP). For any query q, RES(q) ≤ RSP(q), i.e., there is a

reduction from RES(q) to RSP(q). Thus, if RES(q) is hard (i.e., NP-complete) then so

is RSP(q). Equivalently, if RSP(q) is easy (i.e., PTIME) then so is RES(q).

Proof. Let q :−∃x1, . . . , xsA1(z1)∧· · ·∧Ar(zr). The reduction from RES(q) to RSP(q)

is as follows: given (D, k), we map it to (D′, t0, k) where D′ consists of the database D

together with unique new values a1, . . . as and the new tuplesA1(z1[a/x]), . . . , Ar(zr[a/x]).

In other words, we enter a completely new witness a for q that has no values in com-

mon with the domain of D. Let t0 = A1(z1[a/x]), i.e., the tuple of these new values

from atom A1. It follows that the size of the minimal contingency set for q in D is the

same as the size of the minimal contingency set for q and t0 in D′. Thus, as desired,

(D, k) ∈ RES(q)⇔ (D′, t0, k) ∈ RSP(q).

2.3.3 Additional related problems

Sections 2.3.1 and 2.3.2 have extensively discussed prior work and the connections

between resilience, deletion propagation and causal responsibility [9, 14, 32, 33]. In

this section, we discuss additional related work.

Data provenance. Data provenance studies formalisms that can characterize

the relation between the input and the output of a given query [8, 12, 16, 24]. Among

the kinds of provenance, “Why-provenance” is the most closely related to resilience

in databases. The motivation behind Why-provenance is to find the “witnesses” for

the query answer, i.e., the tuples or group of tuples in the input that can produce the

answer. Resilience, searches to find a minimum set of input tuples that can make a

query false.

View updates. The view update problem is a classical problem studied in the

database literature [5, 14, 15, 17, 21, 30]. In its general form, the problem consists of

13

finding the set of operations that should be applied to the database in order to obtain

a certain modification in the view. Resilience and deletion propagation are special

cases of view updates.

Causality. The study of causality is important in many areas other than databases,

for example in Artificial Intelligence and Philosophy. Although an intuitive concept, it

is difficult to formally define causality and many authors have presented possible def-

initions of causality. In [35], the notions of causality and responsibility were strongly

inspired by the work of Halpern and Pearl [13, 25]. Causal reasoning is based on the

idea of interventions : understand how changes of input variables affect an outcome,

and thus relates in spirit to resilience. In the case of resilience, the intervention is the

deletion of input tuples.

Explanations in Databases. Providing explanations to query answers is im-

portant because it can help identify inconsistencies and errors in the data, as well as

understand the data and queries that operate on it. Causality can provide a frame-

work for explanations of query results [35, 36], but it relies on the computation of

responsibility, which is a harder problem than resilience. Other work on explanations

also applies interventions, but on the queries instead of the data [37, 41]. These ap-

proaches, try to understand how the deletion, addition, or modification of predicates

may affect the result of a query. There are also other approaches on deriving expla-

nations that focus on specific database applications [2, 6, 7, 20, 31, 39]. Finally, the

problem of explaining missing query results [11, 26, 28, 27, 40] is a problem analogous

to deletion propagation, but in this case, we want to add, rather than remove tuples

from the view.

14

CHAPTER 3

COMPLEXITY OF RESILIENCE FOR SJ-FREE QUERIES

In this chapter we present the complexity results for the resilience problem when

considering sj-free conjunctive queries (sj-free CQ). We show how we extend these

results to consider the presence of functional dependencies (FDs).

The results in this chapter are published in [23], and a full version with all the

proofs can be found in [22]

3.1 Complexity of resilience: sj-free case

In this section we present the data complexity of resilience. We prove that the

complexity of resilience of a query q can be exactly characterized via a natural prop-

erty of its dual hypergraph H(q) (Definition 3.1).

In Section 3.1.1, we begin by showing that the resilience problem for two basic

queries, the triangle query (q4) and the tripod query (qT) are both NP-complete.

We then generalize these queries to a feature of hypergraphs that we call a triad

(Definition 3.7), which is a set of 3 atoms that are connected in a special way in

H(q). We then prove that if H(q) contains a triad, then RES(q) is NP-complete.

Conversely, we show in Section 3.1.2 that if H(q) does not contain any triad, then

RES(q) is in PTIME. We prove this by showing how to transform a triad-free sj-free

CQ into a linear query q′ of equivalent complexity. The resilience of linear queries

can be computed efficiently in polynomial time using a reduction to network flow

that was proposed by previous work [35]. Our dichotomy theorem for the resilience

of sj-free CQ then follows (Theorem 3.24).

15

3.1.1 Triads make resilience hard

In this section, we present our first main contribution which is the novel concept

of triads (Definition 3.7): we prove that if the dual hypergraph of a query q contains

a triad, then the resilience problem RES(q) is NP-complete (Lemma 3.10).

Triads were inspired by a set of queries previously studied in causal responsibil-

ity [35], but the particular structure was not discovered, nor characterized in prior

work. In order to lead to the concept of triads, we have to review some basic results

and queries that were initially introduced in causal responsibility [35]. While these

intermediate results seem on the surface similar to those that appeared in prior work,

their proofs follow different reductions that are important in understanding the proof

of our main result in Lemma 3.10.

We first define the (dual) hypergraph H(q) of query q. The hypergraph of a query

q is usually defined with its vertices being the variables of q and the hyperedges being

the atoms [1]. In this work we use only the dual hypergraph:

Definition 3.1 (Dual Hypergraph H(q)). Let q :−A1, . . . , Am be a sj-free CQ. Its

dual hypergraph H(q) has vertex set V = {A1, . . . , Am}. Each variable xi ∈ var(q)

determines the hyperedge consisting of all those atoms in which xi occurs: ei =

{Aj |xi ∈ var(Aj)}.

For example, Fig. 3.1 shows the dual hypergraphs of four important queries defined

in Example 3.2. We only consider dual hypergraphs, so we use the shorter term

“hypergraph” from now on. In fact we will think of a query and its hypergraph as one

and the same thing. Furthermore, when we discuss vertices, edges and paths, we are

referring to those objects in the hypergraph of the query under consideration. Thus,

a vertex is an atom, an edge is a variable, and a path is an alternating sequence of

vertices and edges, A1, x1, A2, x2, . . . , An−1, xn−1, An, such that for all i, xi ∈ var(Ai)∩

var(Ai+1), i.e., the hyperedge xi joins vertices Ai and Ai+1. We explicitly list the

16

x y

z

R

T S

(a) Triangle query q4

x y

z

A

R

T S

(b) Rats query qrats

x y

z

A B

R

T S

(c) Brats query qbrats

x y
z

A

C

B

W

(d) Tripod query qT

Figure 3.1: Example 3.2: The hypergraphs of queries q4, qrats, qbrats, qT. {R, S, T} is
a triad of q4; {A,B,C} is a triad of qT.

hyperedges in the path, because more than one hyperedge may join the same pair of

vertices.

Furthermore, since disconnected components of a query have no effect on each

other, each of several disconnected components can be considered independently.

We will thus assume throughout that all queries are connected. Similarly, WLOG we

assume no query contains two atoms with exactly the same set of variables, otherwise,

if two atoms A,B appear in q with the identical set of variables, we can replace A by

A ∩B and delete B.

Example 3.2 (Important queries). Before we precisely define what a triad is, we

identify two hard queries, q4, qT and two related queries, qrats, qbrats (see Fig. 3.1 for

drawings of their hypergraphs).

17

q4 :−R(x, y), S(y, z), T (z, x) (Triangle)

qrats :−A(x), R(x, y), S(y, z), T (z, x) (Rats)

qbrats :−A(x), R(x, y), B(y), S(y, z), T (z, x) (Brats)

qT :−A(x), B(y), C(z),W (x, y, z) (Tripod)

We now prove that q4 and qT are both hard, i.e., their resilience problems are

NP-complete. This will lead us to the definition of triads, the hypergraph property

that implies hardness. Later, we will see that qbrats is easy for both resilience and

responsibility. However, counter to our initial intuition, qrats is easy for resilience but

hard for responsibility.

Proposition 3.3 (Triangle q4 is hard). RES(q4) and RSP(q4) are NP-complete.

Proof. We reduce 3SAT to RES(q4). It will then follow that RES(q4) is NP-complete,

and thus so is RSP(q4) by Lemma 2.12. Let ψ be a 3CNF formula with n variables

v1, . . . , vn and m clauses C0, . . . , Cm−1. Our reduction will map any such ψ to a pair

(Dψ, kψ) where Dψ is a database satisfying q4, and

ψ ∈ 3SAT ⇔ (Dψ, kψ) ∈ RES(q4) (3.4)

In our construction, if ψ ∈ 3SAT, then the size of each minimum contingency set

for q4 in Dψ will be kψ = 6mn, whereas if ψ 6∈ 3SAT, then the size of all contingency

sets for q4 in Dψ will be greater than kψ.

Notice that Dψ |= q4 iff it contains three tuples R(a, b), S(b, c), T (c, a) that

together form a witness. We visualize R(a, b) as a red edge, S(b, c) as a green edge

and T (c, a) as a blue edge. In other words, each witness (a, b, c) for Dψ |= q4 forms

an RGB triangle. (Notice that the edge direction a → b drawn in Figures 3.2, 3.3

and 3.4 corresponds to the variable order in R, and analogously for S and T .) The

job of a contingency set for q4 is to remove all RGB triangles.

18

ai1 bi1 ci1 ai2 bi2 ci2
vi vi vi vi vi vi

Figure 3.2: A six-node segment of the gadget Gi in the hardness proof for q4: A
minimum contingency set chooses either all the solid lines marked vi, or all the solid
lines marked vi. The dotted lines are sad because each of them is only part of one
single RGB triangle, thus they are never chosen.

...

ai1 ai3

ai5
...

vi
vi vi vi vi vi vi

vi

vi

vi

vi

vi

vi

1

22m

Figure 3.3: Each gadget Gi in the hardness proof for q4 is a cycle containing 2m
six-node segments and a total of 12m RGB triangles. They can all be eliminated by
removing the 6m edges marked vi or the 6m edges marked vi. The even numbered
segments are sad because they are never used for connecting different gadgets (corre-
sponding to clauses that use several variables); they only separate the odd ones, thus
preventing spurious triangles.

Dψ contains one circular gadget Gi for each variable vi. The circle consists of 12m

solid edges, half of them marked vi and the other half marked vi (see Figures 3.2,

3.3). Note that there are 12m RGB triangles and they can be minimally broken by

choosing the 6m vi edges or the 6m vi edges. Any other way would require more

edges removed. Thus, each minimum contingency set for Dψ corresponds to a truth

assignment to the variables of ψ. And there will be a minimum contingency set of

size kψ = 6mn iff ψ ∈ 3SAT.

We complete the construction of Dψ by adding one RGB triangle for each clause

Cj. For example, suppose Cj = v1 ∨ v2 ∨ v3. The RGB triangle we add consists of a

19

a1
4j+1

a3
4j+2

b1
4j+1

b2
4j+1

c3
4j+1c

2
4j+1

v1

v2
v3

G1

G2G3

Figure 3.4: For clause Cj = (v1 ∨ v2 ∨ v3) in the hardness proof for q4, we identify
vertices b1

4j+1 ∈ G1 with b2
4j+1 ∈ G2; c2

4j+1 ∈ G2 with c3
4j+1 ∈ G3 and a3

4j+2 ∈ G3

with a1
4j+1 ∈ G1. This RGB triangle will be deleted iff the chosen variable assignment

satisfies Cj.

red edge marked v1, a green edge marked v2 and a blue edge marked v3 (see Fig. 3.4).

Note that if the chosen assignment satisfies Cj, then all v1 edges are removed, or all v2

edges are removed, or all v3 edges are removed. Thus the Cj triangle is automatically

removed.

How do we create Cj’s RGB triangle? Remember that we have chosen Gi to

contain 2 segments for each clause. We use segment 2j + 1 of Gi to produce the vi

or vi used in Cj’s triangle. The even numbered segments are not used: they serve as

buffers to prevent spurious RGB triangles from being created. In Fig. 3.3, we mark

these even segments with frowns: they are sad because they are never used.

More precisely, the red v1-edge from G1 is (a1
4j+1, b

1
4j+1), the green v2-edge from

G2 is (b2
4j+1, c

2
4j+1), and the blue v3-edge from G3 is (c3

4j+1, a
3
4j+2) (see Fig. 3.4).

Now to make this an RGB triangle in Dψ, we identify the two a-vertices, the two

b vertices and the two c vertices. In other words, G1’s a-vertex a1
4j+1 is equal to G3’s

a-vertex a3
4j+2, i.e., they are the same element of the domain of Dψ. We have thus

constructed Cj’s RGB triangle (see Fig. 3.4).

20

The key idea is that these identifications can only create this single new RGB

triangle because there is no other way to get back to G1 from G2 in two steps. All

other identifications involve different segments and so are at least six steps away.

Recall that this is the reason why the even-numbered segments in the Gi’s are not

used: this ensures that no spurious RGB triangles are created. Thus, as desired,

Eq. 3.4 holds and we have reduced 3SAT to RES(q4).

We next show that the tripod query qT is also hard. We do this by reducing the

triangle to the tripod.

Proposition 3.5 (Tripod qT is hard). RES(qT) and

RSP(qT) are NP-complete.

Proof. First observe that in qT, var(A) is a subset of var(W). We say that A domi-

nates W (Definition 3.8). It thus follows that when computing the resilience of qT, a

tuple W (a, b, c) is never needed in a minimum contingency set because it could always

be replaced at least as efficiently by the tuple A(a). It follows that we may assume

thatW is exogenous, i.e., RES(qT) ≡ RES(q′T) where q′T :−A(x), B(y), C(z),W x(x, y, z)

(Prop. 3.9).

We now reduce RES(q4) to RES(q′T). It will then follow that RES(qT) is NP-

complete, and thus so is RSP(qT) by Lemma 2.12. Let (D, k) be an instance of RES(q4).

We construct an instance (D′, k) of RES(q′T) by constructing relations A,B,C as copies

of R, S, T from D. Define D′ = (A,B,C,W x) as follows:

A =
{
〈ab〉

∣∣ R(a, b) ∈ D
}

B =
{
〈bc〉

∣∣ S(b, c) ∈ D
}

C =
{
〈ca〉

∣∣ T (c, a) ∈ D
}

W x =
{

(〈ab〉, 〈bc〉, 〈ca〉)
∣∣ a, b, c ∈ dom(D)

}

21

Here, dom(D) is the set of domain elements of D and 〈ab〉 stands for a new unique

domain value resulting from the concatenation of domain values a and b.

Observe that there is a 1:1 correspondence between the witnesses of D |= q4

and the witnesses of D′ |= q′T. For example, (a, b, c) is a witness that D |= q4 iff

tuples R(a, b), S(b, c), T (c, a) occur in D. This holds iff (〈ab〉, 〈bc〉, 〈ca〉) is a witness

that D′ |= q′T, i.e., the tuples A(〈ab〉), B(〈bc〉), C(〈ca〉),W (〈ab〉, 〈bc〉, 〈ca〉) occur in

D′. Thus, every contingency set for q4 in D corresponds to a contingency set of the

same size for q′T in D′. It follows that (D, k) ∈ RES(q4)⇔ (D′, k) ∈ RES(q′T).

Understanding the reduction q4 ≤ qT is useful for understanding the proof of our

main result. Here is an example of the reduction to help understand what is behind

the general case.

Example 3.6. The reduction q4 ≤ qT maps any pair (D, k) to a pair (D′, k′) such

that (D, k) ∈ RES(q4) iff (D′, k′) ∈ RES(qT). We illustrate this mapping with an

example: Fig. 3.5.

The mapping produces the tables A,B,C,W from the tables R, S, T . For each

tuple R(a, b) ∈ D, we create a new value 〈ab〉 and put A(〈ab〉) into D′. Similarly,

S(b, c) ∈ D generates B(〈bc〉) ∈ D′ and T (c, a) ∈ D generates C(〈ca〉 ∈ D′. Finally

each witness (a, b, c) that D |= q4 is mapped to the tuple W (〈ab〉, 〈bc〉, 〈ca〉) ∈ D′.

By the way, a minimum contingency set, Γ, for qT never needs to have a tuple

from W because the effect of any tuple W (i, j, k) ∈ Γ would be just to remove that

witness (i, j, k) of D′ |= qT. This can be more efficiently done instead by putting any

one of A(i), B(j), or C(k) into Γ. We will see that W is (dominated) by A,B,C

(Definition 3.8).

It is easy to see that this reduction gives a 1:1 correspondence between mini-

mum contingency sets for D and those for D′. For example, the minimum con-

tingency set {R(1, 2), S(4, 5)} for D corresponds to the minimum contingency set

{A(〈12〉), B({45})} for D′.

22

R S T

X Y Y Z Z X

1 2 2 5 5 1

3 4 2 6 5 3

1 4 4 5 6 1

A B C W

X Y Z X Y Z

〈12〉 〈25〉 〈51〉 〈12〉 〈25〉 〈51〉
〈34〉 〈26〉 〈53〉 〈12〉 〈26〉 〈61〉
〈14〉 〈45〉 〈61〉 〈34〉 〈45〉 〈53〉

〈14〉 〈45〉 〈51〉

Figure 3.5: Database D and database D′ defined by the reduction.

While q4 and qT appear to be very different, they share a key common structural

property, which we define next.

Definition 3.7 (triad). A triad is a set of three endogenous atoms, T = {S0, S1, S2}

such that for every pair i, j, there is a path from Si to Sj that uses no variable

occurring in the other atom of T .

Intuitively, a triad is a triple of points with robust connectivity. Observe that

atoms R, S, T form a triad in q4 and atoms A,B,C form a triad in qT (see Fig. 3.1).

For example, there is a path from R to S in q4 (across hyperedge y) that uses only

variables (here y) that are not contained in the other atom (here y 6∈ var(T)).

A triad is composed of endogenous atoms. Some atoms such as W in qT are given

as endogenous, but are not needed in contingency sets. We will simplify the query by

making all such atoms exogenous.

Definition 3.8 (Domination). If a query q has endogenous atoms A,B such that

var(A) ⊂ var(B), then we say that A dominates B.1

1Recall that for A 6= B, we never have that var(A) = var(B).

23

We already saw an example in Example 3.6: in qT, each of the atoms A,B,C

dominates W . The following proposition was proved in [35].

Proposition 3.9 (Domination for resilience). Let q be an sj-free CQ and q′ the query

resulting from labeling some dominated atoms as exogenous. Then RES(q) ≡ RES(q′).

Proof. Let Γ be a minimum contingency set of q inD. Suppose that atomA dominates

atom B but there is some tuple B(t) ∈ Γ. Let p be the projection of t onto var(A).

Then we can replace B(t) by A(p) and we remove at least as many witnesses that

D |= q. It follows, as desired, that the complexity of RES(q) is unchanged if B is

exogenous, i.e., RES(q) ≡ RES(q′).

When studying resilience, we follow the convention that all dominated atoms

should become exogenous, and we consider that the normal form of a query. For

example, A dominates R and T in the query qrats, and B dominates R and S in

the query qbrats. We thus transform the queries so that the dominated atoms are

exogenous. Exogenous atoms have the superscript “x”.

q′rats :−A(x), Rx(x, y), S(y, z), T x(z, x)

q′brats :−A(x), Rx(x, y), B(y), Sx(y, z), T x(z, x)

By Proposition 3.9, RES(qrats) ≡ RES(q′rats) and RES(qbrats) ≡ RES(q′brats). We now

state our first main result.

Lemma 3.10 (Triads make RES(q) hard). Let q be an sj-free CQ where all dominated

atoms are exogenous. If q has a triad, then RES(q) is NP-complete.

Proof. Let q be a query with triad T = {S0, S1, S2}. We build a reduction from

RES(q4) to RES(q). Given any D that satisfies q4 we will produce a database D′ that

satisfies q such that for all k:

24

(D, k) ∈ RES(q4) ⇔ (D′, k) ∈ RES(q) (3.11)

We will assume that no variable is shared by all three elements of T (we can ignore

any such variable by setting it to a constant). Our proof splits into two cases:

Case 1 : var(S0), var(S1), var(S2) are pairwise disjoint: Our reduction is similar

to the reduction from q4 to qT (Prop. 3.5).

We first define the triad relations in D′:

S0 =
{

(〈ab〉, . . . , 〈ab〉)
∣∣ R(a, b) ∈ D

}
S1 =

{
(〈bc〉, . . . , 〈bc〉)

∣∣ S(b, c) ∈ D
}

S2 =
{

(〈ca〉, . . . , 〈ca〉)
∣∣ T (c, a) ∈ D

}
.

(3.12)

Thus, each tuple of, for example, S0 consists of identical entries with value 〈ab〉

for each pair R(a, b) ∈ D. Thus, S0, S1, S2 mirror R, S, T , respectively.

To define all the relations corresponding to the other atoms Ai of D′, we first

partition the variables of q into 4 disjoint sets: var(q) = var(S0)∪var(S1)∪var(S2)∪

V3. Now for each atom Ai, arrange its variables in these four groups. Then define the

relation R′i of D′ corresponding to atom Ai as follows

R′i =
{

(〈ab〉; 〈bc〉; 〈ca〉; 〈abc〉)
∣∣ D |= q4(a, b, c)

}
(3.13)

For example, all the variables v ∈ var(S0) are assigned the value 〈ab〉 and all the

variables v ∈ V3 are assigned 〈abc〉.

By the definition of triad, there is a path from S0 to S1 not using any edges

(variables) from var(S2). Thus, any witness of D′ |= q that includes occurrences of

〈ab〉 and 〈b′c′〉 must have b = b′.

25

Similarly, a path from S1 to S2 guarantees that c is preserved and a path from S2

to S0 guarantees that a is preserved. It follows that the witnesses that D′ |= q are

essentially identical to the witnesses that D |= q4(x, y, z) (see Fig. 3.6).2

Furthermore, any minimum contingency set only needs tuples from S0, S1 or S2.

Thus the sizes of minimum contingency sets are preserved, i.e., Eq. 3.11 holds, as

desired. Thus RES(q) is NP-complete.

Case 2 : var(Si) ∩ var(Sj) 6= ∅ for some i 6= j: We generalize the construction

from Case 1 as follows. Partition var(Si) into those unshared, those shared with Si−1,

and those shared with Si+1 (addition here is mod 3).

We then assign the relations of the triad as follows:

S0 =
{

(〈ab〉; a; b)
∣∣ R(a, b) ∈ D

}
S1 =

{
(〈bc〉; b; c)

∣∣ S(b, c) ∈ D
}

S2 =
{

(〈ca〉; c; a)
∣∣ T (c, a) ∈ D

}

Since none of the Si’s is dominated, both a and b occur in each tuple of S0, both of

b and c in each tuple of S1 and both of c and a in each tuple of S2. Thus, as in Case

1, S0, S1, S2 capture R, S, T , respectively. The key ideas is now that we partition all

the variables var(q) into 7 sets according to their respective appearance in each of

the 3 tables. For each assignment of x, y, z to values a, b, c in D, we will then make

assignments to the variables according to their partition:

2More precisely, if (a, b, c) is a witness that D |= q4, then (〈ab〉, 〈bc〉, 〈ca〉, 〈abc〉, a, b, c) is a witness
that D′ |= q, with the variables partitioned according to Eq. 3.14, and these are the only possible
such witnesses.

26

set name variable partition assignment

V0 var(S0)− (var(S1) ∪ var(S2)) 〈ab〉

V1 var(S1)− (var(S0) ∪ var(S2)) 〈bc〉

V2 var(S2)− (var(S0) ∪ var(S1)) 〈ca〉

V3 var(q)− (var(S0) ∪ var(S1) ∪ var(S2)) 〈abc〉

V4 var(S2) ∩ var(S0) a

V5 var(S0) ∩ var(S1) b

V6 var(S1) ∩ var(S2) c

(3.14)

We then define the relations in D′ corresponding to each of the other atoms A of q

to be the following set of tuples, where the only difference is which of the 7 members

of the partition of variables occurs in var(A).

{
(〈ab〉; 〈bc〉; 〈ca〉; 〈abc〉; a; b; c)

∣∣ D |=q4(a, b, c)
}

(3.15)

By the definition of a triad, there is a path from S0 to S1 not using any edges

(variables) from S2. Thus, “b” is always present (see Eq. 3.14). Thus, any witness

including occurrences of some of 〈ab〉, b′, 〈b′′c〉 must have b = b′ = b′′. Thus, as in

Case 1, the witnesses of D′ |= q are essentially identical to the witnesses of D |= q4

and we have reduced RES(q4) to RES(q) (see Fig. 3.6).

3.1.2 Polynomial algorithm for linear queries

We just showed that resilience for queries with triads is NP-complete. Next we

will prove a strong converse: resilience for triad-free queries is in PTIME. We start

by defining a class of queries for which resilience is known to be in PTIME.

Definition 3.16 (Linear Query). A query q is linear if its atoms may be arranged

in a linear order such that each variable occurs in a contiguous sequence of atoms.

27

S0(〈ab〉)

S1(〈bc〉)S2(〈ac〉)

b
preserved

a
preserved

c preserved

(a) Case 1

S0(〈ab〉; a; b)

S1(〈bc〉; b; c)S2(〈ca〉; c; a)

b
preserved

a
preserved

c preserved

(b) Case 2

Figure 3.6: Reduction from RES(q4) to RES(q) when q contains a triad {S0, S1, S2} in
the proof of Lemma 3.10.

A R S
y
z

x

Figure 3.7: Definition 3.16: Linear query q :−A(x), R(x, y, z), S(y, z)

Example 3.17 (Linear Query). Geometrically, a query is linear if all of the vertices of

its hypergraph can be drawn along a straight line and all of its hyperedges can be drawn

as convex regions. For example, the following query is linear, q :−A(x), R(x, y, z), S(y, z)

(see Fig. 3.7).

The responsibility of linear queries is known to be in PTIME [35] and thus by

Lemma 2.12, resilience of linear queries is in PTIME as well.

Fact 3.18 (Linear queries in PTIME [35]). For any linear sj-free CQ q, RSP(q) (and

thus also RES(q)) are in PTIME.

The proof of Fact 3.18 is that RES(q) may be computed in a natural way using

network flow. The same is true for computing the responsibility of tuple t for D |= q.

In the latter case, we consider each possible extension, e of t that is a witness of

D |= q, and use network flow to compute the minimum size contingency set Γ for t

such that e remains a witness of D− Γ |= q. The responsibility of t for D |= q is the

28

minimum over all such extensions e of the size of the minimum contingency set that

preserves e.

If all queries without a triad were linear, then this would complete the dichotomy

theorem for resilience. While this is not the case, we will show that any triad-free

query can be transformed into a query of equivalent complexity that is linear.

Recall that when studying resilience, we make atoms which are dominated, ex-

ogenous (Proposition 3.9). This was done, for example, to the rats and brats queries

to transform them into the q′rats and q′brats queries. Neither of q′rats or q′brats is linear.

However they can be transformed to linear queries without changing their complexity

via the following transformation from [35]:

Definition 3.19 (Dissociation). Let Ax be an exogenous atom in a query q, and

v ∈ var(q) a variable that does not occur in Ax. Let q′ be the same as q except that

we add v to the arguments Ax. This transformation is called dissociation.

Example 3.20 (Dissociation). The above queries q′rats and q′brats have no triads but

they are not linear. However, by applying certain dissociations, we obtain the follow-

ing linear queries:

q′′rats :−A(x), Rx(x, y, z), S(y, z), T x(x, y, z)

q′′brats :−A(x), Rx(x, y, z), B(y), Sx(x, y, z), T x(x, y, z)

Note also that q′′rats and q′′brats have duplicate atoms which we finally delete, without

affecting their complexity:

q′′′rats :−A(x), Rx(x, y, z), S(y, z)

q′′′brats :−A(x), Rx(x, y, z), B(y)

29

The key fact is that dissociation can increase, but never decrease the complexity of

resilience or responsibility. For example, query q :−A(x),W x
1 (x, y), B(y),W x

2 (y, z), C(z)

is linear, but by dissociating W1 and W2, we can transform it into qT.

Lemma 3.21 (Dissociation increases complexity [35]). If q′ can be obtained from q

through dissociation, then RES(q) ≤ RES(q′).

It follows from Lemma 3.21 that if q can be dissociated into a linear query, then

RES(q) is in PTIME. In particular, the above dissociations of q′rats and q′brats prove that

RES(q′rats) and RES(q′brats) are in PTIME. Thus, since the transformations from qrats to

q′rats and qbrats to q′brats preserve the complexity of resilience, we thus conclude that

RES(qrats) and RES(qbrats) are easy.

Corollary 3.22. RES(qrats) and RES(qbrats) are in PTIME.

Now we are ready to show that RES(q) is easy if q is triad-free. We will show

that for every triad-free query, we can linearize the endogenous atoms and use some

dissociations to make the exogenous atoms fit into the same order.

Lemma 3.23 (Queries without triads are easy). Let q be an sj-free CQ that has no

triad. Then RES(q) is in PTIME.

Proof. Let q be a triad-free query. We prove by induction on the number of endoge-

nous atoms in q that we can transform it into a linear query by using dissociations.

Since dissociations cannot decrease complexity (Lemma 3.21) and resilience is easy

for linear queries (Fact 3.18), it follows that RES(q) is in PTIME.

Base case: q has fewer than three endogenous atoms. Consider S1, S2 the endoge-

nous atoms of q. Using dissociation, we add all the variables to all the exogenous

atoms. Thus all the exogenous atoms are identical and we can remove all but one,

call it Ex
1 . The resulting query, q′, is linear with ordering S1, E

x
1 , S2. Thus RES(q) ∈

PTIME.

30

S1

c1

Ex
1

c2

Ex
2
· · ·

· · ·

· · ·
Ex
n−1

cn

Ex
n

cn+1

S2 Sn Sn+1

Figure 3.8: A walk along the endogenous atoms in the proof of Lemma 3.23. The cut
ci results from removing all the variables (edges) from atom Si.

Inductive case: assume true for triad-free queries with n endogenous atoms. Let

qn+1 be triad-free and have n + 1 endogenous atoms. We now describe a way to

linearize these atoms. For each endogenous atom Si, let ci be the cut of the hypergraph

resulting from removing all the variables of Si, i.e., all the hyperedges that touch Si.

These cuts are drawn as dotted vertical lines in Fig. 3.8.

Let S1 and S2 be two endogenous atoms and draw S2 to the right of S1. Now

consider a third endogenous atom S3. Since qn+1 is connected and has no triads,

there is a unique i ∈ {1, 2, 3} such that the cut ci disconnects the two atoms in

{S1, S2, S3} − {Si}.

Thus we must place Si between the other two. In other words, there is exactly one

place that S3 can be added to the figure: to the left of S1 if c1 separates S3 from S2;

in between S1 and S2 if c3 separates S1 from S2; or to the right of S2 if c2 separates

S1 from S3.

For example, let S1(x, y) and S2(y, z) be the first two endogenous atoms. Let the

third be S3(z, w) which shares a variable with S2. Note that c3 does not separate S1

from S2 and c1 does not separate S2 from S3. Since qn+1 has no triad, it must be the

case that c2 separates S1 from S3. Thus, the order in this case must be S1, S2, S3.

Now add the remaining endogenous atoms one at a time. Since qn+1 has no triad,

by the above observation, there is exactly one place that each next endogenous atom

may be placed. Finally once all the endogenous atoms have been placed, renumber

them so left to right they are S1, S2, . . ., Sn+1.

31

Define the query qn to be the result of removing all the variables in var(Sn+1)−

var(Sn) and removing all the atoms in which any of those removed variables occurred.

In Fig. 3.8, this corresponds to removing everything to the right of cn.

By our inductive hypothesis, there is a query q′n that is the result of doing some

dissociations to qn, and q′n is linear. Furthermore by our observation above, the

ordering of the endogenous atoms remains S1, S2, . . . , Sn.

Now, we form q′n+1 by first adding back to qn all the variables and atoms that

we removed. Note that we are thus adding back just one endogenous atom, Sn+1,

together with zero or more exogenous atoms, all of which contain some variables in

var(Sn+1)− var(Sn). Finally, to all these exogenous atoms that we have just added

back (if any), add all the variables in var(Sn) ∪ var(Sn+1), together with any other

variables occurring in any of these exogenous atoms. Thus all the newly re-added

exogenous atoms are identical and we can combine them into one, call it, Ex
n. Note

that cn still separates Ex
n and Sn+1 from the rest of the hypergraph.

Thus, we have transformed qn+1 to a linear query q′n+1 such that RES(qn+1) ≤

RES(q′n+1). Thus RES(qn+1) ∈ PTIME as desired.

3.1.3 Dichotomy for sj-free conjunctive queries

Combining Lemma 3.10 and Lemma 3.23 leads to our first dichotomy result on

the complexity of resilience:

Theorem 3.24 (Dichotomy of resilience). Let q be an sj-free CQ and let q′ be the

result of making all dominated atoms exogenous. If q′ has a triad, then RES(q) is

NP-complete, otherwise it is in PTIME.

Note that it is easy to tell whether q has a triad. Checking whether a given triple

of atoms is a triad consists of three reachability problems – is there a path from Si

to Sj not using any of the edges in var(Sk) – and is thus doable in linear time. An

exhaustive search of all endogenous triples thus provides a PTIME algorithm:

32

Corollary 3.25. We can check in polynomial time in the size of the query q whether

RES(q) is NP-complete or PTIME.

3.2 Functional dependencies

Functional dependencies (FDs), such as key constraints, restrict the set of allow-

able data instances. In this section, we characterize how these restrictions affect the

complexity of resilience. We first show that FDs cannot increase the complexity of

the resilience of a query (Proposition 3.26). Next we introduce a transformation of

queries suggested by a given set of FDs call induced rewrites (Definition 3.29). We

show that induced rewrites preserve the complexity of resilience (Lemma 3.30).

We call a query closed if all possible induced rewrites have been applied (Defini-

tion 3.29). We conjectured that induced rewrites capture the full power of FDs with

respect to the complexity of resilience, in other words, the complexity of the resilience

of a closed query is unchanged if we remove its FDs (Conjecture 3.32).

We prove that the complexity of resilience for closed queries that have triads is

NP-complete (Lemma 3.33). On the other hand, even without its FDs, we know that

a closed query that has no triads has an easy resilience problem (Lemma 3.23). We

thus conclude that in the presence of FDs, the dichotomy – still determined by the

presence or absence of triads, but now in the closure of the query – remains in force

(Lemma 3.23). It follows as a corollary that Conjecture 3.32 holds.

3.2.1 FDs can only simplify resilience

We write RES(q; Φ) to refer to the resilience problem for query q, restricted to

databases satisfying the set of FDs Φ. Note that since we are always considering

conjunctive queries, any particular FD either holds or does not hold on the whole

query, so it is not necessary to mention which atom the FD is applied to.

First we observe that FDs cannot make the resilience problem harder:

33

Proposition 3.26 (FDs do not increase complexity). Let q be an sj-free CQ and Φ

a set of functional dependencies. Then RES(q; Φ) ≤ RES(q).

Proof. The reduction is the identity function. Note that RES(q; Φ) is just the re-

striction of RES(q) to databases satisfying Φ. Thus, for all databases D that satisfy

(q; Φ),

(D, k) ∈ RES(q; Φ) ⇔ (D, k) ∈ RES(q)

Corollary 3.27 (Triad-free queries are still easy). If q is an sj-free CQ that has no

triad, and therefore RES(q) is in PTIME, then RES(q; Φ) is also in PTIME.

We next show that for some queries, FDs do in fact reduce the complexity of

resilience. Recall that the tripod query, qT is hard (Proposition 3.5). However, qT

becomes polynomial when we add the FD ϕ = x→ y.

Proposition 3.28. RES(qT; {x→ y}) is in PTIME.

We will prove Proposition 3.28 along the way, as we learn about the effect of

FDs. Recall that the tripod query qT has the triad {A,B,C}. Notice that the FD

x → y “disarms” this triad because A and B are no longer independent. More

explicitly, once we know x, we also know y. Thus RES(qT; {x → y}) ≡ RES(r) where

r :−A′(x, y), B(y), C(z),W x(x, y, z) (Lemma 3.30). Furthermore, since B dominates

A′ in r, A′ becomes exogenous: r′ :−A′x(x, y), B(y), C(z),W x(x, y, z). Query r′ has

no triad and thus is easy.

34

3.2.2 Induced rewrites preserve complexity

We call the transformation (qT; {x → y}) ; (r; {x → y}) an induced rewrite3.

Induced rewrites are key to understanding the effect of FDs on the complexity of

resilience.

Definition 3.29 (induced rewrite: ;, closed query). Given a set of functional de-

pendencies Φ and a query q, we write (q; Φ) ; (q′; Φ) to mean that q′ is the result

of adding the dependent variable u to some relation that contains all the determinant

variables v for some v→ u ∈ Φ. We use
?; to indicate zero or more applications of

;. If (q; Φ)
?; (q∗; Φ) and no more induced rewrites can be applied to (q∗; Φ), then

we call (q∗; Φ) a closed query and we say that (q∗; Φ) is the closure of (q; Φ).

This work began as an attempt to determine whether the dichotomy for respon-

sibility of sj-free CQs [35] continues to hold in the presence of FDs. In studying the

effect of FDs, we defined induced rewrites and proved that induced rewrites preserve

the complexity of responsibility. We conjectured that once we have reached a closed

query, all the effect of the FDs on the complexity of responsibility has been exhausted

and thus there is no further change if we delete all the FDs. We were able to prove this

conjecture for unary FDs, i.e., those of the form v → u where v is a single variable.

However we had great difficulty proving this conjecture for all FDs. We stud-

ied the responsibility problem more carefully and found that responsibility is quite

delicate. In particular, we discovered an error in Lemma 4.10 of [35], namely that

Proposition 3.9 (in the present work) does not hold for responsibility.

We identified resilience as a better-behaved notion than responsibility and we

characterized the complexity of resilience via triads. Once we had done that, we were

able to use the notion of triads to prove our conjecture about closed queries and thus

prove the dichotomy theorem for resilience in the presence of arbitrary FDs.

3Transformations of queries called rewrites were defined in [35]. An induced rewrite is a rewrite
that is induced by an FD.

35

We first show that induced rewrites preserve the complexity of resilience.

Lemma 3.30 (Induced rewrites preserve complexity). Let q be a query, Φ a set of

functional dependencies, and q′ the result of an induced rewrite, i.e., (q; Φ) ; (q′; Φ).

Then RES(q′; Φ) ≡ RES(q; Φ).

Proof. Let the change from q to q′ be the transformation of the atom B to the new

atom B′ caused by adding variable u to B where (v→ u) ∈ Φ and v ⊆ var(B).

(a) RES(q′; Φ) ≤ RES(q; Φ): Suppose we are given (D′, k) where D′ satisfies Φ. Let D

be the result of projecting out the u entry from B′. Note that D still satisfies Φ.

Furthermore, the set of witnesses that D |= q is identical to the set of witnesses

that D′ |= q′ and the sizes of all minimum contingency sets are unchanged. This

is because the effect of the tuple B(t) in a contingency set in D is identical to

the effect of the tuple B′(t′) in the corresponding contingency set in D′, where

t′ is the result of adding to t the unique u-attribute which is determined by the

v-attributes of t. Thus the map (D′, k) 7→ (D, k) is a reduction of RES(q′; Φ) to

RES(q; Φ).

(b) RES(q; Φ) ≤ RES(q′; Φ). We are given (D, k) where D satisfies Φ. Let B′ be

the set of tuples resulting from adding to each tuple t from B, the uniquely

determined u-attribute, c. In symbols, B′ =

{
(t, c)

∣∣ B(t) ∈ D ∧ ∃s ∈ D (πv(s) = πv(t) ∧ c = πu(s))
}

For the same reason as above, the witnesses of q′ in D′ are the same as the

witnesses of q in D and the sizes of all minimum contingency sets are unchanged.

Thus the map (D, k) 7→ (D′, k) is a reduction of RES(q; Φ) to RES(q′; Φ).

It follows immediately that applying any set of induced rewrites preserves the

complexity of resilience:

36

Corollary 3.31. If (q; Φ)
?; (q′; Φ), then RES(q′; Φ) ≡ RES(q; Φ).

3.2.3 For closed queries, FDs are superfluous

Recall that our current goal is to determine whether the dichotomy of the com-

plexity of resilience remains true in the presence of FDs. The following is a natural

conjecture which would given an affirmative answer to this question.

Conjecture 3.32 (Induced rewrites suffice). Let (q∗; Φ) be a closed query, i.e., it is

closed under induced rewrites. Then RES(q∗; Φ) ≡ RES(q∗).

It is fairly easy to see that Conjecture 3.32 holds when all the FDs in Φ are unary,

i.e., of the form v → u, with u a single variable. However we were stumped about

how to prove this for general FDs. This lead to our more careful analysis of the

complexity of responsibility, our definition of resilience, and our characterization of

the complexity of resilience via triads (Theorem 3.24). Now we will use that analysis

to prove that the complexity of a closed query is NP-complete if it contains a triad,

and in PTIME otherwise. Thus Conjecture 3.32 is true and the dichotomy for the

complexity of resilience remains true in the presence of FDs.

Lemma 3.33 (Closed queries with triads are hard). Let (q∗; Φ) be a closed sj-free

CQ all of whose dominated atoms are exogenous. If q∗ has a triad, then RES(q∗; Φ) is

NP-complete.

Proof. Let (q∗; Φ) be as in the statement of the lemma. Recall that we proved in

Lemma 3.10 that RES(q4) ≤ RES(q∗) and thus RES(q∗) is NP-complete. Let f be the

reduction we produced from RES(q4) to RES(q∗). We will now show that if f(D, k) =

(D′, k′) then D′ |= Φ. It will then follow that f is a reduction from RES(q4) to

RES(q∗; Φ). Thus RES(q∗; Φ) is NP-complete as claimed.

To see why D′ |= Φ, we will recall the definition of the reduction in the proof of

Lemma 3.10. But first, we will examine how q4 (Example 3.2) itself is affected by

FDs.

37

In particular, let Φ0 be any set of FDs for which (q4,Φ0) is closed under induced

rewrites. Notice that since q4 is closed, there can be no nontrivial unary FDs such

as x → y, (otherwise, T (z, x) would have been replaced by T ′(z, x, y)) nor any non-

trivial binary FDs such as xy → z (otherwise R(x, y) would have been replaced by

R′(x, y, z)). In fact, Φ0 has no nontrivial FDs, i.e., Φ0 = ∅.

Now recall the reduction from RES(q4) to RES(q∗) in the proof of Lemma 3.10.

What that proof did was to embed q4 into q∗. Using the triad of q∗, T = {S0, S1, S2},

we partitioned the variables of q∗ into 7 sets, and for each assignment of x, y, z to

values a, b, c ∈ dom(D), we made assignments according to that partition (see Equa-

tion 3.14).

The net effect, is that just as for q4, since (q; Φ) is closed, it must be the case that

D′ |= Φ. In particular, suppose that Φ contains the FD, u→ v. First suppose that u is

contained in one of the 7 sets of the partition (see Equation 3.14). Then, since (q∗; Φ)

is closed, v must be in the same set and thus it has exactly the same value as each of

the variables in u. If u has a variable from V3 (var(q)−(var(S0)∪var(S1)∪var(S2)))

then its value is 〈abc〉 so it determines all other variables. Similarly, if u has variables

from two of V0, V1, V2 then it again determines all three values. Suppose u does

not determine all three values, e.g., say it does not determine c. Then, looking at

Equation 3.14, we see that all the variables of u are from V0, V4 or V5, i.e., they are

all from var(S0). But then since (q∗; Φ) is closed, v must be in var(S0) as well, and

thus it is determined by a and b.

Thus, we have shown that the reduction f is also a reduction from RES(q4) to

RES(q∗,Φ) and thus the latter problem is NP-complete.

38

3.2.4 Dichotomy of resilience with FDs

Recall that FDs cannot increase the complexity of resilience and thus if q has no

triad, then RES(q; Φ) ∈ PTIME (Corollary 3.27). Thus, we have succeeded in proving

the dichotomy for resilience in the presence of FDs:

Theorem 3.34 (FD Dichotomy). Let (q; Φ) be a sf-free CQ with functional depen-

dencies. Let (q∗,Φ) be its closure under induced rewrites, and such that all dominated

atoms of q∗ are exogenous. If q∗ has a triad then RES(q; Φ) is NP-complete. Other-

wise, RES(q; Φ) ∈ PTIME.

Note that we have also proved Conjecture 3.32:

Corollary 3.35 (Induced rewrites suffice). Let (q; Φ) be an sj-free CQ with functional

dependencies, and let q∗ be the closure of q under induced rewrites. Then, RES(q; Φ) ≡

RES(q∗; Φ) ≡ RES(q∗).

39

CHAPTER 4

COMPLEXITY OF RESILIENCE FOR QUERIES WITH
SELF-JOINS

Self-joins have long plagued the complexity study of many problems in database

theory research and that also applies to resilience. Their presence makes the problem

of categorizing the complexity of a query much richer and more complicated. Queries

with triads remain hard, but self-joins can make queries without triads and even

linear queries hard. There is no longer a polynomial time algorithm (in the size of the

query) to tell whether a query is hard or easy. Furthermore, the order and repetition

of variables can effect the complexity of resilience. These are irrelevant in the self-join

free case. We essentially characterize the complexity of resilience when all relations

have arity at most two and we do the same for queries of unbounded arity with just

two atoms.

To the best of our knowledge, there are no current results for the self-join case for

either view-side effects or source-side effects despite quite some work on the self-join

free case [9], [14], [33], [32], [34], [4].

In this chapter, we first show that very simple queries can already be hard (Sec-

tion 4.1), indicating that we will need more than the notion of triads to characterize

hardness. However, triads can still help in certain cases (Section 4.3). We then focus

on the case of linear queries and give various criterioa of hardness and show some

cases we identified as in PTIME Section 4.4.

40

4.1 Basic hard queries

We next show that self-joins change everything that we have known about re-

silience so far. In the sj-free case, a query needed a triad to be hard. In particular,

a query needed at least 3 variables and 3 atoms to be hard. We next prove hardness

for two queries that will play an important role in our later results. The first qvc (for

“vertex cover”) has only 2 variables and 3 atoms. The second qchain (since it “chains”

two binary relations together) has only 2 atoms and 3 variables:

qvc :−A(x), R(x, y), A(y) (Vertex cover)

qchain :−R(x, y), R(y, z) (Chain query)

Proposition 4.1. RES(qvc) is NP-complete.

Proof. First note that any database with vocabulary A,R, with unary A and binary R

can be seen as a directed graph, where A-tuples are the nodes and R-tuples represent

directed edges. That said, D |= qvc if and only if there is an edge on the graph.

To make the query false we need to delete all the edges, which is known as the

NP-complete vertex cover problem. Therefore, RES(qvc) is NP-complete.

Proposition 4.2. RES(qchain) is NP-complete.

Proof. We define a reduction from 3SAT to RES(qchain). It will then follow that

RES(qchain) is NP-complete. While the reduction is from 3SAT, the intuition behind

the reduction can be connected to the vertex cover problem (Fig. 4.5). The variable

gadget is such that a minimum cover will choose either blue nodes (variable is set to

true), or red nodes (variable is set to false). The clause gadget (black nodes) is

chosen to enforce a clause: if one or more of the outermost black nodes are chosen,

then the minimum cover is 2, otherwise 3.

41

Let ψ be a 3CNF formula with n variables v1, . . . , vn and m clauses C1, . . . , Cm.

Our reduction will map any such ψ to a pair (Dψ, kψ) whereDψ is a database satisfying

qchain, and

ψ ∈ 3SAT ⇔ (Dψ, kψ) ∈ RES(qchain)

In our construction, if ψ ∈ 3SAT, then the size of each minimum contingency set

for qchain in Dψ will be kψ = (n + 5)m, whereas if ψ 6∈ 3SAT, then the size of all

contingency sets for qchain in Dψ will be greater than kψ.

1. Variable gadget: For each variable vi and each j ∈ [m] insert the following two

tuples into the database: R(vji , v
j
i) and R(vji , v

j+1
i). If j + 1 > m, make the

superscript 1. The resulting joins between the tuples form a cycle of length 2m.

The minimum contingency sets are to either choose all tuples R(vji , v
j
i) repre-

senting a variable to have assignment true, or all tuples R(vji , v
j+1
i) representing

a variable to have assignment false.

2. Clause gadget: For each clause j ∈ [m] insert the following 6 tuples into the

database: R(aj, bj), R(bj, cj), R(cj, aj) R(a′j, aj), R(b′j, bj), R(c′j, cj). The in-

tuition is that the resulting joins form a triangle. If either of the R(∗′, ∗) is

removed, then the remaining joins can be destroyed by choosing only 2 or more

tuples, otherwise we need 3.

3. Connecting the gadgets: For each variable i that appears as positive in clause

j at position 1, add the following tuple: R(vji , a
′
j). For each variable i that

appears as negated in clause j at position 1, add the following tuple: R(vj+1
i , a′j).

Analogously use b′j or c′j instead of a′j for positions 2 and 3 instead of position

1.

Fig. 4.1 illustrates an excerpt from the gadget by focusing on clause C1 = (v1 ∨

v̄2 ∨ v3). Notice that since there is a valuation that makes the clause true, only 5

tuples need to be removed to break all joins.

42

a1, b1

b1, c1

c1, a1

a′1, a1

b′1, b1

c′1, c1

v1
1, a
′
1

v2
2, b
′
1

v1
3, c
′
1

v1
1, v

1
1

v1
1, v

2
1

v2
1, v

2
1

v2
1, v

3
1

v3
1, v

3
1

v3
1, v

4
1

v4
1, v

4
1

vm1 , v
1
1

v1
2, v

1
2

v1
2, v

2
2

v2
2, v

2
2

v2
2, v

3
2

v3
2, v

3
2

v3
2, v

4
2

v4
2, v

4
2

vm2 , v
1
2

v1
3, v

1
3

v1
3, v

2
3

v2
3, v

2
3

v2
3, v

3
3

v3
3, v

3
3

v3
3, v

4
3

v4
3, v

4
3

vm3 , v
1
3

Figure 4.1: Excerpt from the construct showing the gadget for clause C1 = (v1∨v̄2∨v3)
in the hardness proof for qchain. Note that blue nodes represent a true value and red
nodes a false value.

4.2 Notation and setup

In this section we discuss certain properties of conjunctive queries that were not

relevant for the self-join free case. We explain why they matter now and what as-

sumptions we make before we present our results.

In Chapter 3 we used the query dual hypergraph (Definition 3.1) in order to help

identify triads. We can still use that representation for queries with self-joins. How-

ever, certain features of the query can be hidden in this representation, for example,

the order in which variables appears in the atoms. Since we are only focusing on

binary queries with self-joins we can represent those queries as a graph.

Definition 4.3 (Binary graph). Let q :−A1, . . . , Am be a binary query with self-joins.

Its binary graph has vertex set V = var(q) and labeled edge sets defined by atoms A1,

. . . , Am. For unary atoms, the edge will be a loop.

43

x y z
R R

(a) Binary graph
for qchain

R R
zx

y

(b) Hypergraph for qchain

Figure 4.2: Hypergraphs only represent which variables occur in a given atom,
whereas binary graphs represent containment and position within each atom, as we
can see for query qchain

See Fig. 4.2 to illustrate the differences between the hypergraph and binary graph

of a query.

4.2.1 Query minimization

Given queries q1 and q2, we say that q1 is contained in q2 (q1 ⊆ q2) if answers to

q1 over any database instance D are always a subset of the answers to q2 over D. We

say q1 is equivalent to q2 (q1 ≡ q2) if q1 ⊆ q2 and q2 ⊆ q1 [1]. We say a conjunctive

query q is minimal if for every other conjunctive query q′ such that q ≡ q′, q′ has at

least as many atoms as q. For every query q, there exists a minimal equivalent CQ q′

that can be obtained from q by removing zero or more atoms [10].

We next establish a rule that we will always have to minimize a query before

evaluating the complexity of resilience. The reason is that our hardness evaluation

will rely on identifying certain subqueries (or patterns) in a query that make this

query hard by enabling a reduction from 3SAT or another already established hard

query. However, if a subquery is removed during minimization, then, intuitively, this

pattern does not allow this reduction, and does not render the original query hard.

While this observation seems obvious, the assumption of minimality is a key aspect

of our proofs.

We illustrate this next with an example of a query which seems to contain the

subquery qchain which we know to be NP-complete (Proposition 4.2). However, it con-

44

tains an additional atom which will “disarm” this hard pattern during minimization.

This results in our original reduction not going through anymore.

Example 4.4 (Query minimization). Consider queries q and its minimized version

qmin

q :−R(x, y), R(y, x), R(y, z)

qmin :−R(x, y), R(y, x)

over a reduced database D with tuples R(1, 2), R(2, 1), R(1, 3). Then qmin has 3 joins:

〈1, 2, 3〉 = R(1, 2), R(2, 1), R(1, 3)

〈1, 2, 1〉 = R(1, 2), R(2, 1), R(1, 2)

〈2, 1, 2〉 = R(2, 1), R(1, 2), R(2, 1)

qmin has only 2 joins which are obtained with the same tuples:

〈1, 2〉 = R(1, 2), R(2, 1)

〈2, 1〉 = R(2, 1), R(1, 2)

Both queries have as minimum contingency set, given D, either {R(1, 2)} or {R(2, 1)}.

Observe that a tuple like R(1, 3) that participates only in joins for q but not in qmin

need never be chosen to be part of a contingency set.

Lemma 4.5 (Minimization for resilience). Let q be a CQ and q′ the query resulting

from minimizing q. Then RES(q) ≡ RES(q′).

Proof. Because q and q′ are equivalent we can say that D |= q ↔ D |= q′. Therefore,

for any Γ, we have D − Γ 6|= q ↔ D − Γ 6|= q′. This proves that a contingency set for

D, q is a contingency set for D, q′ and vice-versa.

45

x y z w

A

R

B

R

(a) qcomp

x y z
R

R

R

(b) qmin

x y
R

R
(c) q′min

Figure 4.3: (a) illustrates a query with two components. (b) and (c) show a query
and its minimized version, respectively.

Thus when studying resilience, we follow the convention that all our queries are

minimized.

4.2.2 Query components

A connected component of q (or “component” in short) is a maximal subset of

atoms that are connected via existential1 variables. A query q is disconnected if

its atoms can be partitioned into two or more components that do not share any

existential variables. For example,

qcomp :−A(x), R(x, y), R(z, w), B(w)

is disconnected and has two components:

q1
comp :−A(x), R(x, y)

q2
comp :−R(z, w), B(w)

The resilience of a query is determined by taking the minimum of the resiliences of

each of its components. In the following, let ρ(q,D) stand for the resilience of query

q over database D, which is the size of the minimum contingency set for (q,D).

Lemma 4.6 (Query components). Let q :− q1, . . . , qk be a query that consists of k

components qi, i ∈ [k]. Then ρ(q,D) = mini ρ(qi, D).

1Because we only consider Boolean queries, all variables are existential.

46

Proof. First observe that disconnected components join as a cross-product, so for a

query to be made false it is necessary and sufficient that at least one of its query

components is made false. Hence, for each query component qi, if D − Γi 6|= qi, then

D − Γi 6|= q, which then implies ρ(q,D) = mini ρ(qi, D).

We can now show that the complexity of a query is determined by the hardest of

its components, if the query is minimal:

Lemma 4.7 (Query components complexity). Let q be a minimal query that consists

of k query components. RES(q) is NP-complete if and only if q has some component,

qi, for which RES(qi) is NP-complete.

In the remainder of the paper we assume queries are connected.

4.2.3 Isolated variables

The definition and lemma below help proving hardness in certain cases.

Definition 4.8 (Isolated variables). Consider {w1, . . . , wj} to be the set of variables

appearing as the first attribute of all occurrences of relation R in a query q. We say

that {w1, . . . , wj} are isolated for R in q, if those variables only occur in R and only

as a first attribute.

Lemma 4.9. Consider q :−R(wi, x1), . . . , R(wj, xl), . . . and {wi, . . . , wj} a set of iso-

lated variable. Then RES(q′) ≤ RES(q), with

q′ :−R′(x1), . . . , R′(xl),

Proof. Let D′ be a database and D′ |= q′. We can create D by augmenting R-

tuples in D with a new constant value 〈c〉 and keeping other tuples the same. With

that modification, we have a 1:1 correspondence of the tuples and joins, and the

contingency sets are preserved.

47

Example 4.10. Consider query

q :−A(y), R(y, x), B(y, w), R(w, z).

We can see that {x, z} are variables isolated to R, and therefore we can obtain q′,

such that RES(q′) ≤ RES(q),

q′ :−A(y), R′(y), B(y, w), R′(w).

Since RES(q′) is hard, it follows from Lemma 4.9 that RES(q) is hard as well.

Now consider qconf , that we saw earlier is an easy query:

qconf :−A(x), R(x, y), R(z, y), C(z).

According to the definition of isolated variables, Definition 4.8, y is isolated in qconf ,

therefore we can obtain

q′conf :−A(x), R′(x), R′(z), C(z),

which is now a disconnected query. Note that RES(q′conf) is in P.

We do not assume that all isolated variables are deleted from our queries. Since we

can decrease complexity by doing so, we can only use this as a tool to show hardness

results.

4.2.4 Domination for the self-join case

We defined domination for the sj-free case as the notion that a relation A is more

relevant for resilience than another relation B if var(A) ⊆ var(B). In the next

example, we see that is not true anymore when considering relations involved in a

self-join:

48

Example 4.11. Consider a query similar to qrats but having self-joins:

qsjrats :−A(x), R(x, y), R(y, z), R(z, x)

Remember that qrats has no triads because R, T are dominated by A. Following the

definition of domination, R should be dominated by A in qsjrats, but that is not the case.

Let D be a database with tuples {A(a), A(b), R(a, b), R(b, c), R(c, a), R(c, d), R(d, b)}.

We have 3 joins, namely 〈abc〉, 〈bca〉 and 〈bcd〉:

〈abc〉 = A(a), R(a, b), R(b, c), R(c, a)

〈bca〉 = A(b), R(b, c), R(c, a), R(a, b)

〈bcd〉 = A(b), R(b, c), R(c, d), R(d, a)

The minimum contingency set is Γ = {R(b, c)} and, since there is no other mini-

mum contingency set, we can conclude that R is not exogenous.

The old definition of domination does not work here but we have defined a gener-

alization of Definition 3.8 that works.

We write posg(i) = x to express that the i-th attribute of atom g is variable x.

We write [k] as short notation for the set {1, . . . , k}.

Definition 4.12 (Domination). Let relations A and B be endogenous relations for a

connected query q. We say that A dominates B if there exists a function

f : [arity(A)]→ [arity(B)]

such that for each occurrence h of B, there exists an occurrence g of A such that

posh(i) = posg(f(i)) for ∀i ∈ [arity(A)]. Notice that for the case of B appearing

only once, we get back our original definition of domination: var(A) ⊆ var(B).

49

x y z
R R

A A

(a) q1

x y z
R R

A A

(b) q1

Figure 4.4: A dominates R in q1 but not in q2.

Example 4.13. Consider queries q1 and q2:

q1 :−A(x), R(x, y), A(y), R(y, z)

q2 :−A(x), R(x, y), A(z), R(y, z)

A dominates R in q1 but not in q2.

Notice that domination as defined in Definition 4.12 is a generalization of the

previous notion of domination (Definition 3.8): If a relation R appears only in one

atom qi in a query with variables var(gi) = {x, y}, then it is enough to have a unary

relation A that appears in a subgoal gj with var(gj) = {x} or var(gj) = {y}.

Proposition 4.14 (Domination with self-join). Let q be a conjunctive query and

q′ the query resulting from labeling some dominated relations as exogenous. Then

RES(q) ≡ RES(q′).

Proof. We show that tuples from dominated relations do not need to be used in

minimum contingency sets. Assume q is a connected query and let Γ be a minimum

contingency set of q in D.

Suppose that relation A dominates relation B and there is some tuple B(t) that

is in Γ. Tuple B(t) can participate in joins as one or more of the B-atoms in q. Let’s

call those atoms Bi, for i ∈ [k]. Our definition of domination guarantees that there

exists an atom Aj for each atom Bi such that the projection of t onto var(Aj) always

produces the same tuple p. Then we can replace B(t) by A(p) and we remove at

least as many witnesses if D |= q.

50

As a result we show the complexity of RES(q) is the same if B is made exogenous

and therefore RES(q) ≡ RES(q′).

When studying resilience for queries with self-joins, we follow the convention that

all dominated atoms are exogenous, as we did for the self-join free case. In other

words, after we minimize the query, we transform it so that the dominated atoms

are exogenous. We will indicate such exogenous atoms with the superscript “x”. In

the remainder, we will refer to a query that is minimized, connected and that has all

dominated atoms made exogenous as a “minimal query.”

4.3 Non-linear queries

In this section we will show when non-linear queries will be hard. The intuition

is that we can use the notion of triads from the sj-free case.

We next show that minimal queries that contain triads are still NP-hard even if

they contain a self-join (whether or not the triad consists of repeated relations).

Definition 4.15 (Subgoal renaming). Consider queries q and q′. We say that Φ(q, q′)

holds if and only if we can transform q′ into q by renaming one or more atoms of q′

with new relational symbols. For each atom g in q we define function f to return the

corresponding atom in q′, i.e. f(g) = g′.

Example 4.16. Consider queries below

q :−R(x, y), S(y, z), A(x), T (x, y),W (y, z)

q′ :−R(x, y), R(y, z), A(x), T (x, y), T (y, z)

Given our definition, Φ(q, q′) is true, and

51

f ={(R(x, y), R(x, y)), (S(y, z), R(y, z)),

(A(x), A(x)), (T (x, y), T (x, y)), (W (y, z), T (y, z))}

Lemma 4.17 (Self-join elimination). If Φ(q, q′) where q is a sj-free query and q′ is a

minimal self-join query, then RES(q) ≤ RES(q′).

Proof. Consider q :−∃x1, . . . , xk (A1 ∧ · · · ∧ At) and let D be a database satisfying

q. Since q is sj-free, we can replace D by an equivalent version, Dcol, in which each

element is colored according to which variable it represents. For example, suppose

that the atom S(x, y, z) occurs in q. We change S to its colored version as follows,

Scol =
{

(a1,x, a2,y, a3,z)
∣∣ (a1, a2, a3) ∈ S

}

Observe that Dcol satisfies q and there is a 1:1 correspondence between the joins

of q in D and those in Dcol.

Now we define the reduction RES(q) ≤ RES(q′). Given a colored database Dcol, we

create D′ as follows:

R′ = {(a, b) | g(a, b) ∈ Dcol ∧ f(g) = R′}

It is easy to see that a join in Dcol, q will also be a join in D′, q′. Now suppose

that D′, q′ has a new join. That only can happen if there is a tuple joining with

an atom with a different combination of colors. Suppose tuple R(ax, by) participates

in new a join through atom R(w, z). We know there exists an atom R(x, y) in q′,

o.w. R(ax, by) would not be a tuple in D′, and for any occurrence of w, z there must

be a corresponding occurrence of x, y. This would imply that q′ is not minimal,

contradicting our assumption.

52

Since there is a 1:1 correspondence between joins and tuples, the contingency sets

are preserved.

Corollary 4.18 (Self-join queries with triads). If q has a triad, q′ is minimal and

Φ(q, q′), then RES(q′) is NP-complete.

Lemma 4.17 is very useful but it does not allow us to classify all non-linear queries.

Remember that in the sj-free case, some non-linear queries are in P. Because of

domination they do not have a triad and there exists an equivalent linear query, with

respect to resilience. For example qrats and qbrats are both easy.

Consider the following queries as a possible self-join variation of qrats and qbrats:

qsjrats :−A(x), R(x, y), R(y, z), R(z, x)

qsjbrats :−A(x), R(x, y), B(y), R(y, z), R(z, x)

We can obtain qrats and qbrats from qsjrats and qsjbrats through subgoal renaming (Def-

inition 4.15) but it does not help elucidate what their complexity is. In fact, their

resilience is hard.

Proposition 4.19. RES(qsjrats) and RES(qsjbrats) are NP-complete.

Proof. We show that RES(qsjrats) is NP-complete by a reduction from 3SAT, similar to

the one used to prove RES(q4) is NP-complete (Proposition 3.3).

Let ψ be a 3CNF formula with n variables v1, . . . , vn and m clauses C0, . . . , Cm−1.

Our reduction will map any such ψ to a pair (Ds
ψ, kψ) whereDs

ψ is a database satisfying

qsjrats, and

ψ ∈ 3SAT ⇔ (Ds
ψ, kψ) ∈ RES(qsjrats)

In our construction, if ψ ∈ 3SAT, then the size of each minimum contingency

set for qsjrats in Ds
ψ will be kψ = 6mn, whereas if ψ 6∈ 3SAT, then the size of all

contingency sets for qsjrats in Ds
ψ will be greater than kψ.

53

We construct Ds
ψ by taking Dψ from Proposition 3.3, and adding the following

tuples for each join 〈a, b, c〉 in Dψ, q4:

R = {(a, b), (b, c), (c, a)}

A = {(a), (b), (c)}

Notice that for each join 〈a, b, c〉 we create 3 joins, 〈a, b, c〉, 〈b, c, a〉, 〈c, a, b〉 but

they all use the same R-triangle.

We know from Proposition 3.3 that some R-tuples participate in 2 joins (triangles)

and some only in 1 within a variable gadget. Observe that A-tuples only participate

in 2 joins each, so it is never better to choose A-tuples. Therefore it follows that the

same choice of tuples for the minimum contingency set for Dψ, q4 will also work for

Ds
ψ, q

sj
rats by choosing the corresponding R-tuples in Ds

ψ based on the R, S, T -tuples

chosen from Dψ.

The same idea works for query qsjbrats. When defining Ds
ψ for this case, we just

need to add the appropriate B-tuples:

R = {(a, b), (b, c), (c, a)}

A = {(a), (b), (c)}

B = {(a), (b), (c)}

Since B-tuples have the same properties of the A-tuples, they are never better

choices than R-tuples and we can obtain a minimum contingency set with only R-

tuples, as we saw above.

As we saw with qsjrats and qsjbrats, subgoal renaming is not always helpful and we

might need an alternative way of showing the complexity of a non-linear query. In

the following, we look into some similar cases that require different proofs.

54

qsj
′

rats :−A(x), R(x, y), S(y, z), R(z, x)

qsj
′′

rats :−A(x), R(x, y), R(y, z), T (z, x)

Proposition 4.20. RES(qsj
′

rats) and RES(qsj
′′

rats) are NP-complete.

Proof. First notice that T is dominated by A in qsj
′′

rats. Therefore a reduction from

RES(qa
chain) is straightforward.

For qsj
′

rats we use the same reduction we used to show RES(qchain) is NP-complete

(Proposition 4.2), but with the appropriate A- and S-tuples. By doing that, note

that A-tuples and S-tuples in the variable gadgets are only involved in one join each,

whereas R-tuples are involved in two joins each, which makes R-tuples the best choice

for contingency sets. In the clause gadget, the same is true for S-tuples but not A-

tuples. However, for an A-tuple in two joins there is always an equivalent choice of

R-tuple, so the minimum contingency sets are the same as in Proposition 4.2.

qsj
′

brats :−A(x), R(x, y), A(y), R(y, z), R(z, x)

qsj
′′

brats :−A(x), R(x, y), B(y), S(y, z), R(z, x)

qsj
′′′

brats :−A(x), R(x, y), B(y), R(y, z), T (z, x)

Proposition 4.21. RES(qsj
′

brats), RES(qsj
′′

brats) and RES(qsj
′′′

brats) are NP-complete.

Proof. RES(qsj
′

brats) is NP-complete through a reduction from RES(qvc). Given a database

D we want to define a database D′ such that

(D, k) ∈ RES(qvc)⇔ (D′, k) ∈ RES(qsj
′

brats)

We define R as follows:

R = {(a, b), (b, 〈ab〉z), (〈ab〉z, a)|D |= qvc(a, b)}

55

(⇒) With this construction we guarantee that any join in D′, qsj
′

brats has only one

correspondent in D, qvc. Therefore, any contingency set Γ for D, qvc is also a contin-

gency set for D′, qsj
′

brats.

(⇐) Let Γ′ be a minimum contingency set for D′, qsj
′

brats. If Γ′ contains a tuple with

a new domain value, for example R(b, 〈ab〉z) or R(〈ab〉z, a), then we can exchange it

by A(b) or A(a), respectively. Therefore, we can obtain another contingency set Γ′′ of

same size as Γ′ but that is a contingency set for D, qvc, since it only contains tuples

with domain values.

Note that in this case, it does not matter if the binary atoms are all R’s or not,

just the presence of A(x), A(y) is enough to show hardness.

In qsj
′′

brats, S is exogenous,

qsj
′′

brats :−R(z, x), A(x), R(x, y), B(y), Sx(y, z),

so we can show hardness with a straightforward reduction from qbc
chain.

In qsj
′′′

brats, T is exogenous,

qsj
′′′

brats :−T x(z, x), A(x), R(x, y), B(y), R(y, z),

and, similar to the case above, we can show hardness with a straightforward reduction

from qab
chain.

4.4 Linear queries

Unlike the sj-free case, linear queries need no longer be in PTIME, as made evident

by Proposition 4.1 and Proposition 4.2. In this section we present the 3 main struc-

tures we can find in linear queries with self-joins and how they help us understand

the complexity of resilience for those queries.

56

4.4.1 Chains

We next show some variations of query qchain and explain how the reduction to

show hardness can vary with small variations in the query. Nevertheless, we can show

that any linear query with self-joins that only forms chains will be NP-complete. We

first show that chains of length longer than 2 are all NP-complete.

Lemma 4.22. Consider queries

qlchain :−R(x, y), R(y, z), R(z, w3), . . . , R(wl−1, wl),

for l ≥ 3. Then RES(qlchain) is NP-complete.

Proof. We define a reduction from RES(qchain) to RES(qlchain). We may assume that

there are no loops R(a, a) ∈ D. Given a database D, we define D′ as follows:

R′ ={(a, b), (b, c)|R(a, b), R(b, c) ∈ D}

∪{(c, 〈abc〉3), . . . , 〈abc〉l−1, 〈abc〉l)|R(a, b), R(b, c) ∈ D}

Now we want to show

(D, k) ∈ RES(qchain)⇔ (D′, k) ∈ RES(qlchain)

Let Γ be a minimum contingency set for D, qchain. Suppose that D′ − Γ |= qlchain

and let 〈a0, a1, a2, . . . , al〉 be a witness. First observe that, by construction, we cannot

have more than l − 2 new values in any given witness for D′, qlchain, and that if ai 6∈

dom(D), then aj 6∈ dom(D) for i ≤ j. Therefore, it must be that a0, a1, a2 ∈ dom(D),

which contradicts the fact that Γ was a contingency set for D, qchain, proving that

D′ − Γ 6|= qlchain.

57

+	
−	

+	

+	

+	

+	

−	

−	

−	

−	
...

(a)
Vari-
able
gadget

(b) Clause
gadget

+	

+	

+	

−	

−	

...

...

+	

+	

+	

−	

−	

−	 −	 −	

+	 +	
... ...

...

...
 x	

y	

z	

(c) Clause (x ∨ ȳ ∨ z) (d)
Exten-
der

Figure 4.5: Intuition behind the proof of Proposition 4.2 in terms of vertex cover: the
double red lines show “extenders” allowing to extend the distance between corners.

Now let Γ′ be a minimum contingency set for D′, qlchain. First let’s argue that

there is a minimum Γ′′ that only contains R-tuples that are also in D. That’s true

because any witness for D′, qlchain can only contain at most l− 2 new values, so there

are at least two R-tuples from D participating in any given join, so it’s better to

chose R-tuples that came from D instead of the ones with new values and therefore

D − Γ′ 6|= qchain.

Now we look into the following variations of query qchain. Note that by including

certain unary atoms we need to slightly change the clause gadget in our reductions.

However, the intuition behind how we construct such reductions still remains. All the

reductions follow the pattern of creating a variable gadget and a clause gadget which

will be connected by an extender, accordingly to the 3SAT formula, as illustrated in

Fig. 4.5.

Now consider the following variations of qchain:

58

a1, b1

b1, c1

c1, a1

a′1, a1

b′1, b1

c′1, c1

a′′1, a
′
1

b′′1, b
′
1

c′′1, c
′
1

a′′1

b′′1

c′′1

v1
1, v

1
1

v1
1, v

2
1

v2
1, v

2
1

v2
1, v

3
1

v3
1, v

3
1

v3
1, v

4
1

v4
1, v

4
1

vm1 , v
1
1

a′′1, v
1
1

v1
2, v

1
2

v1
2, v

2
2

v2
2, v

2
2

v2
2, v

3
2

v3
2, v

3
2v3

2, v
4
2

v4
2, v

4
2

vm2 , v
1
2

b′′1, v
1
2

v1
3, v

1
3

v1
3, v

2
3

v2
3, v

2
3 v2

3, v
3
3

v3
3, v

3
3

v3
3, v

4
3

v4
3, v

4
3

vm3 , v
1
3

c′′1, v
1
3

Figure 4.6: Excerpt from the construct showing the gadget for clause C1 = (v1∨v̄2∨v3)
in the hardness proof for qa

chain. We omit the A-tuples that participate in only one
join, since they shall never be chose for a minimum contingency set.

qchain :−R(x, y), R(y, z)

qa
chain :−A(x), R(x, y), R(y, z)

qb
chain :−B(y), R(x, y), R(y, z)

qc
chain :−C(z), R(x, y), R(y, z)

qab
chain :−A(x), B(y), R(x, y), R(y, z)

qbc
chain :−B(y), C(z), R(x, y), R(y, z)

qac
chain :−A(x), C(z), R(x, y), R(y, z)

qabc
chain :−A(x), B(y), C(z), R(x, y), R(y, z)

We next show resilience for all of them is NP-complete.

Proposition 4.23. RES(qa
chain) is NP-complete.

59

Proof. We again define a reduction from 3SAT, using gadgets similar to the one in

Proposition 4.2. The variable gadget remains such that a minimum cover will choose

either blue nodes (variable is set to true), or red nodes (variable is set to false).

The clause gadget (black nodes) is chosen as to enforce a clause: if one or more of

the outermost black nodes are chosen, then the minimum cover is 5, otherwise 6.

We next reduce 3SAT to RES(qa
chain). Let ψ be a 3CNF formula with n variables

v1, . . . , vn and m clauses C1, . . . , Cm. Our reduction will map any such ψ to a pair

(Dψ, kψ) where Dψ is a database satisfying qa
chain, and

ψ ∈ 3SAT ⇔ (Dψ, kψ) ∈ RES(qa
chain)

In our construction, if ψ ∈ 3SAT, then the size of each minimum contingency set

for qa
chain in Dψ will be kψ = (n + 5)m, whereas if ψ 6∈ 3SAT, then the size of all

contingency sets for qa
chain in Dψ will be greater than kψ.

1. Variable gadget: For each variable vi and each j ∈ [m] insert the following

tuples into the database: R(vji , v
j
i), R(vji , v

j+1
i) and A(vji), A(vji). If j + 1 > m,

then make the superscript 1. The resulting joins between the tuples form a

cycle of length 2m. The minimum contingency sets are to either choose all

tuples R(vji , v
j
i) representing a variable to have assignment true, or all tuples

R(vji , v
j+1
i) representing a variable to have assignment false. Note that any

A-tuple only joins once, therefore it is better to choose an R-tuple, since all of

these join at least twice.

2. Clause gadget: For each clause j ∈ [m] insert the following tuples into the

database: R(aj, bj), R(bj, cj), R(cj, aj), R(a′j, aj), R(b′j, bj), R(c′j, cj), A(aj),

A(bj), A(cj), A(a′j), A(b′j), A(c′j). The resulting joins form a triangle. If either

of the R(∗′, ∗) is removed, then the remaining joins can be destroyed by choosing

only 2 or more tuples, otherwise we need 3. Similar to the variable gadget, A-

tuples are not an optimal choice because they only participate in one join each.

60

3. Connecting the gadgets: For each variable i that appears in clause j at position

1, add the following tuples: R(a′′j , a
′
j) and A(a′′j). If vi appears as positive add

tuple R(a′′j , v
j
i), if it appear as negative add tuple R(a′′j , v

j
i). Analogously use

b′j, b
′′
j or c′j, c

′′
j instead of a′j, a

′′
j for positions 2 and 3 instead of position 1.

Observe that if the clause is not satisfied, then we need to choose the A-tuples

(orange squares in Fig. 4.6), and not choose the outer black nodes (R-tuples) in the

clause gadget, resulting in choosing 6 tuples in total in order to delete all the joins,

otherwise we just need 5 tuples.

Proposition 4.24. RES(qb
chain) is NP-complete.

Proof. For this case we are going to use almost the same reduction as the one used

for RES(qchain), just with the added B-tuples. Then we argue that there is always a

min Γ that only uses R-tuples.

Let ψ be a 3CNF formula with n variables v1, . . . , vn and m clauses C1, . . . , Cm.

Our reduction will map any such ψ to a pair (Dψ, kψ) whereDψ is a database satisfying

qb
chain, and

ψ ∈ 3SAT ⇔ (Dψ, kψ) ∈ RES(qb
chain)

In our construction, if ψ ∈ 3SAT, then the size of each minimum contingency set

for qb
chain in Dψ will be kψ = (n + 5)m, whereas if ψ 6∈ 3SAT, then the size of all

contingency sets for qb
chain in Dψ will be greater than kψ.

First, include in Dψ all the same R-tuples included in the proof of Proposition 4.2.

In addition to that add the following B-tuples:

1. Variable gadget: For each variable vi and each j ∈ [m] insert the following two

tuples into the database: B(vji) and B(vji).

2. Clause gadget: For each clause j ∈ [m] insert the following 6 tuples into the

database: B(aj), B(bj), B(cj), B(a′j), B(b′j), B(c′j).

By adding those tuples, we obtain the same structure and joins of the reduction for

RES(qchain). Now suppose that t = B(d) is in a minimum contingency set Γ. If d = vji

61

(or vji) for some i, j, we know that t must join with t′ = R(vj−1
i , vji) (or R(vji , v

j
i))

by our construction. Thus, we can exchange t for t′ and obtain contingency set Γ′.

Similar, if d ∈ {a, b, c, a′, b′, c′}, then t must join with tuple R(d, ∗), since there is only

tuple of that kind for each possible value of d.

This shows that there is a minimum contingency set for Dψ without B-tuples, and

the properties of the reduction in Proposition 4.2 also hold in this case.

Proposition 4.25. RES(qab
chain) is NP-complete.

Proof. We define a reduction from 3SAT. First, use the same Dψ as in the reduction

for RES(qa
chain), just adding the appropriate B-tuples, i.e., B-tuples that preserve the

joins.

Now note that for any t = B(d) ∈ Dψ, there is only one R-tuples such that

t′ = R(d, ∗), therefore t must join with t′. Therefore, any occurrence of B-tuple in

a contingency set can be exchanged by its correspondent R-tuple, and we guarantee

this reduction has the same properties as the one used in Proposition 4.23.

Proposition 4.26. RES(qac
chain) is NP-complete.

Proof. We define a reduction from 3SAT. As in the previous cases, the variable

gadget remains such that a minimum cover will choose either blue nodes (variable is

set to true), or red nodes (variable is set to false). The clause gadget (center black

nodes) is chosen as to enforce a clause: if one or more of the outermost joins (black

edges) are deleted by choosing the corresponding A-tuple (orange square), then the

minimum cover for the black subgraph is 2, otherwise 3.

We next reduce 3SAT to RES(qac
chain). Let ψ be a 3CNF formula with n variables

v1, . . . , vn and m clauses C1, . . . , Cm. Our reduction will map any such ψ to a pair

(Dψ, kψ) where Dψ is a database satisfying qchain, and

ψ ∈ 3SAT ⇔ (Dψ, kψ) ∈ RES(qac
chain)

62

a1, b1

b1, c1

c1, a1

a′1, a1

b′1, b1

c′1, c1
∗a1, a′′1 a′1, ∗aj

a′′1

a′1

∗b1, b′′1

b′1, ∗b1

b′′1

b′1

∗c1, c′′1

c′1, ∗c1 c′′1

c′1

v1
1, v

1
1

v1
1, v

2
1

v2
1, v

2
1

v2
1, v

3
1

v3
1, v

3
1

v3
1, v

4
1

v4
1, v

4
1

vm1 , v
1
1

v1
1, a
′′
1

v1
2, v

1
2

v1
2, v

2
2

v2
2, v

2
2

v2
2, v

3
2

v3
2, v

3
2v3

2, v
4
2

v4
2, v

4
2

vm2 , v
1
2

v2
2, b
′′
1

v1
3, v

1
3

v1
3, v

2
3

v2
3, v

2
3 v2

3, v
3
3

v3
3, v

3
3

v3
3, v

4
3

v4
3, v

4
3

vm3 , v
1
3

v1
3, c
′′
1

Figure 4.7: Excerpt from the construct showing the gadget for clause C1 = (v1∨v̄2∨v3)
in the hardness proof for qac

chain. We omit the A-tuples and C-tuples that would not
be chosen for a minimum contingency set.

In our construction, if ψ ∈ 3SAT, then the size of each minimum contingency set

for qac
chain in Dψ will be kψ = (n + 5)m, whereas if ψ 6∈ 3SAT, then the size of all

contingency sets for qac
chain in Dψ will be greater than kψ.

1. Variable gadget: For each variable vi and each j ∈ [m] insert the following tuples

into the database: R(vji , v
j
i), R(vji , v

j+1
i) and A(vji), A(vji) and C(vji), C(vji). If

j + 1 > m, then make the superscript 1. The resulting joins between the

tuples form a cycle of length 2m. The minimum contingency sets are to either

choose all tuples R(vji , v
j
i) representing a variable to have assignment true, or

all tuples R(vji , v
j+1
i) representing a variable to have assignment false. If we

only consider those tuples, note that A- and C-tuples participate in only one

join, so the optimal choice is to delete R-tuples.

2. Clause gadget: For each clause j ∈ [m] insert the following tuples into the

database: R(aj, bj), R(bj, cj), R(cj, aj), R(a′j, aj), R(b′j, bj), R(c′j, cj), A(aj),

63

A(bj), A(cj), A(a′j), A(b′j), A(c′j), C(aj), C(bj), C(cj). The resulting joins form

a triangle. If either of the A(∗′) is removed, then the remaining joins can be

destroyed by choosing only 2 or more tuples, otherwise we need 3. We later

argue that these tuples only need be R-tuples.

3. Connecting the gadgets: For each variable i that appears in clause j at posi-

tion 1, add the following tuples: R(a′j, ∗aj), R(∗aj , a′′j) and C(a′′j). If vi appears

as positive add tuple R(vji , a
′′
j), if it appear as negative add tuple R(vji , a

′′
j).

Analogously use b′j, b
′′
j or c′j, c

′′
j instead of a′j, a

′′
j for positions 2 and 3 instead of

position 1.

With our gadget, if the clause cannot be satisfied, then we need to choose all

the C-tuples (orange diamonds on Fig. 4.7), since we can delete two joins by doing

deleting each. In that case, in order to delete the remaining joins we need to delete

3 tuples, namely the 3 black nodes in the triangle, resulting on the total deletion of

6 tuples.

We now need to argue that, besides the tuples depicted in Fig. 4.7, we do not

need other A- or C-tuples for a minimum contingency set. Assume there is a tuple

t = A(d) in a min Γ. Given that d /∈ {a′j, b′j, c′j}, our construction guarantees there is

only one R-tuple such that t′ = R(d,−), therefore we can have Γ′ = Γ− t+ t′, and Γ′

is also a minimum contingency set. Similarly, if there is a tuple t = C(d) in Γ, and

assuming d /∈ {a′′j , b′′j , c′′j}, there is only one R-tuple t′ = R(−, d), and therefore the

same follows.

Proposition 4.27. RES(qabc
chain) is NP-complete.

Proof. We define a reduction from 3SAT, using almost the same construction as the

one in Proposition 4.26. We just add the appropriate B-tuples and show that there

is a minimum contingency set that does not contain those.

Consider Dψ as initially defined in Proposition 4.26. Now we include the appro-

priate B-tuples:

64

1. Variable gadget: For each variable vi and each j ∈ [m] insert the following

tuples into the database: B(vji), B(vji)

2. Clause gadget: For each clause j ∈ [m] insert the following tuples into the

database: B(aj), B(bj), B(cj).

3. Connecting the gadgets: For each variable i that appears in clause j at posi-

tion 1, add tuple B(∗aj). Analogously B(∗bj) and B(∗cj) for positions 2 and 3,

respectively.

By adding those B-tuples we obtain the same joins we saw in the reduction for

RES(qac
chain). With this construction we guarantee that for any tuple t = B(d), there is

either only one tuple R(d,−) or only one tuple R(−, d), which means we can always

choose one of those R-tuples instead and obtain another minimum contingency set

without B-tuples.

Lemma 4.28. Let q be a query such that its binary graph is isomorphic to a chain,

with or without loops (unary atoms). If q has self-joins with endogenous relations,

then RES(q) is NP-complete.

Proof. Since we know there are endogenous self-joins, we can have the following cases:

Case 1: q has unary relations A(x), A(y). We can define a reduction from qvc.

Given a database D we want to define a database D′ such that

(D, k) ∈ RES(qvc)⇔ (D′, k) ∈ RES(q)

We can assume w.l.o.g. that there is no loop in D, qvc, i.e., D 6|= qvc(a, a), for any a.

For each atom Ri(v1, . . . , vk) occurring in q, we define

Ri =
{

(t(v1, a, b), . . . , t(vk, a, b))
∣∣ D |= qvc(a, b)

}

65

where

t(v, a, b)
def
=

a if v = x

b if v = y

〈ab〉v otherwise

In other words, x maps to a, y maps to b, and any other variable v maps to 〈ab〉v.

Because the query is a chain and minimal, we can show this reduction does not

introduce joins with new values, similar to what we have in Lemma 4.22. Therefore,

we can argue there is a min Γ that only uses A-tuples with domain values, and so Γ

for D, qvc is also contingency set for D′, q, and vice-versa.

Case 2: q has binary relations R(x, y), R(z, w), and no R-atoms share variables.

We can also define a reduction from qvc, analogous to the one for case 1.

Case 3: q has binary relations R(x, y), R(y, z). We can define a reduction from

qchain.

4.4.2 Permutations

Now we introduce the notion of permutations. We call a subquery with two binary

atoms and two variables R(x, y), R(y, x) a permutation. The name “permutation”

indicates that the variable order (x, y) is permuted between the two occurrences of

the same relation. A simple example is the following query:

qp :−R(x, y), R(y, x)

As we can see in its binary graph representation (Fig. 4.8a), the main difference

in comparison to chains is that we have cycles connecting two consecutive nodes

(variables). Note that if the cycle was formed by non-consecutive nodes, then the

query would not be linear.

66

x y
R

R
(a) qp

x y
R

R

A

(b) q2p

Figure 4.8: Easy permutations

x y

A
R

R

B

Figure 4.9: Query qperm is the smallest example of a query with permutations that is
NP-complete

Proposition 4.29. RES(qp) is in P.

Proof. Given a database D satisfying qp, each tuple that is part of a witness for e in

D is part of exactly one witness. Therefore the size of a minimum contingency set

for e in D is exactly the number of witnesses.

Let’s now start augmenting query qp and see if and at what point adding more

atoms will change the complexity. First example is the following (Fig. 4.8b):

q2
p :−A(x), R(x, y), R(y, x)

Proposition 4.30. RES(q2
p) is in P.

Proof. Given a database D satisfying q2
p, for each join 〈a, b〉, we have 2 possible

choices. Either A(a) will be in the min Γ or one of R(a, b) and R(b, a) but never

both. Therefore we can reduce RES(q2
p) to a network flow where we represent each

A-tuple as an edge, and each pair R(a, b), R(b, a) as one single edge {a, b}, since we

never need to pick both R-tuples.

67

a

b

c

a

b

c

a′

b′

c′

a′

b′

c′

v1
1

v1
1

v2
1

v2
1

v3
1

v3
1

v4
1

vm1

v1
1

v1
1

v2
1

v2
1

v3
1

v3
1

v4
1

vm1

∗1
1

∗1
1

∗2
1

∗2
1

∗3
1

∗3
1

∗4
1

∗m1
∗1

1

∗1
1

∗2
1

∗2
1

∗3
1

∗3
1

∗4
1

∗m1
v1

2

v1
2

v2
2

v2
2

v3
2

v3
2

v4
2

vm2 v1
2

v1
2

v2
2

v2
2

v3
2

v3
2

v4
2

vm2
∗1

2

∗1
2

∗2
2

∗2
2

∗3
2

∗3
2

∗4
2

∗m2
∗1

2

∗1
2

∗2
2

∗2
2

∗3
2

∗3
2

∗4
2

∗m2

v1
3

v1
3

v2
3

v2
3v3

3

v3
3

v4
3

vm3

v1
3

v1
3

v2
3

v2
3v3

3

v3
3

v4
3

vm3

∗1
3

∗1
3

∗2
3

∗2
3

∗3
3

∗3
3

∗4
3

∗m3
∗1

3

∗1
3

∗2
3

∗2
3

∗3
3

∗3
3

∗4
3

∗m3

Figure 4.10: Excerpt from the construct showing the gadget for clause C1 = (v1∨ v̄2∨
v3) in the hardness proof for qperm. Circles represent A-tuples and squares B-tuples.
R-tuples are omitted as they can be inferred by the edges between circles and squares.

We will next give a hardness result for the simplest hard query containing a

permutation (shown in Fig. 4.9):

qperm :−A(x), R(x, y), R(y, x), B(y)

Proposition 4.31. RES(qperm) is NP-complete.

Proof. We define a reduction from 3SAT to RES(qperm). Similar to the previous cases,

we want to create variable gadgets such that a minimum cover will choose either blue

nodes (variable is set to true), or red nodes (variable is set to false), and a clause

gadget (black nodes) such that if the clause is satisfied, then the minimum cover is

5, otherwise 6.

68

Let ψ be a 3CNF formula with n variables v1, . . . , vn and m clauses C1, . . . , Cm.

Our reduction will map any such ψ to a pair (Dψ, kψ) whereDψ is a database satisfying

qperm, and

ψ ∈ 3SAT ⇔ (Dψ, kψ) ∈ RES(qperm)

In our construction, if ψ ∈ 3SAT, then the size of each minimum contingency set

for qperm in Dψ will be kψ = (3n + 5)m, whereas if ψ 6∈ 3SAT, then the size of all

contingency sets for qchain in Dψ will be greater than kψ.

1. Variable gadget: For each variable vi and each j ∈ [m] insert the following

tuples into the database: A(vji), B(vji), A(vji), B(vji) and R(vji , v
j
i), R(vji , v

j
i),

R(vj+1
i , vji), R(vji , v

j+1
i). If j + 1 > m, then make the superscript 1.

We want to join those tuples such that the minimum contingency sets are to

either choose all tuples A(vji), B(vji) representing a variable to have assign-

ment true, or all tuples A(vji), B(vji) representing a variable to have assignment

false, plus some R-tuples. To obtain that property, we need the following ad-

ditional tuples: A(∗ji), B(∗ji), A(∗ji), B(∗ji) and R(∗ji , v
j
i), R(vji , ∗

j
i), R(∗ji , v

j
i),

R(vji , ∗
j
i).

With this construction we guarantee that we can “cover” the variable gadget

by choosing either all positive A,B-tuples plus the m tuples R(∗ji , v
j
i), or all

negative A,B-tuples plus the m tuples R(∗ji , v
j
i). In both cases, we choose 3m

tuples.

2. Clause gadget: For each clause j ∈ [m] insert the following tuples into the

database: A(aj), B(aj), A(bj), B(bj), A(cj), B(cj), R(aj, bj), R(bj, aj), R(bj, cj),

R(cj, bj), R(cj, aj), R(aj, cj) and A(a′j), B(a′j), A(b′j), B(b′j), A(c′j), B(c′j),

R(aj, a
′
j), R(a′j, aj), R(bj, b

′
j), R(b′j, bj), R(cj, c

′
j), R(c′j, cj) and

For this gadget, we have 3 options to choose only 5 tuples in order to delete all

the joins. For example: A(aj), B(aj), A(bj), B(bj), R(cj, c
′
j).

69

x y z

A

R R

R
(a) qar−p

x y z

A

S R

R
(b) qas−p

Figure 4.11: Example of queries with unbounded permutation that are in PTIME

3. Connecting the gadgets: For each variable i that appears in clause j at position

1, add the following tuples: R(vji , aj), R(aj, v
j
i) if vi appears as positive, and

R(vji , aj), R(aj, v
j
i) if it appear as negative. Analogously use bj or cj instead of

aj for positions 2 and 3 instead of position 1.

After connecting the variable gadgets with the clause gadgets, the joins are formed

such that if a clause cannot be satisfied, then we need to pick all A- and B-tuples from

the clause gadget (the black triangle), totaling 6 tuples. Otherwise, we can delete all

joins by picking 5 tuples, namely 2 pairs of A,B-tuples and one R-tuple.

The main difference between queries qp, q
2
p and qperm is the presence of unary

atoms. In qperm both nodes of the permutation are bounded, whereas in the other

two it is not. We say that the presence of bounded permutations can lead to hardness.

Lemma 4.32 (Bounded permutation). Let q be a linear query that contains a bounded

permutation with R and there is no other permutation with R in q. Then RES(q) is

NP-complete.

Proof sketch. We can show that RES(qperm) ≤ RES(q). The restriction of not having

other permutations with R guarantees that no new joins will be created when we use

the padding strategy for the reduction.

Now we have two other cases, when the permutation is unbounded, and when it

is bounded only on one side. First consider the following queries:

70

qas−p :−A(x), S(x, y), R(y, z), R(z, y)

qar−p :−A(x), R(x, y), R(y, z), R(z, y)

We can see in Fig. 4.11 that in both queries the permutation is unbounded. How-

ever in Fig. 4.11a, the permutation connects to an unary atom A through an atom R.

Both queries are in P, but we need different variations of network flow to compute

the minimum contingency set.

Proposition 4.33. RES(qas−p) is in P.

Proof. First observe that S is exogenous because is dominated by A. It is easy to see

that we can construct a network flow similar to the one we defined in Proposition 4.30,

with edges for A-tuples and one single edge for each pair R(a, b), R(b, a).

Proposition 4.34. RES(qar−p) is in P.

Proof. Let D be a database such that D |= qar−p. We refer to tuples R(a, b) as 2-way

tuples if R(b, a) is also in D, and as 1-way tuples if R(b, a) is not. We construct a

flow graph by creating 1-weight edges for each tuple A(a), and edges {a, b} for pairs

of 2-way tuples. There are ∞-weight edges between an A(x)-edge and a {u, v}-edge

if and only if x ∈ {u, v} or there is a 1-way tuple R(x, u) or R(x, v). Note that 1-way

tuples are exogenous, since we can always pick an A-tuple instead, so we do not need

to include them in the flow graph. Suppose an {a, b}-edge is in the min-cut. Since

those represent 2 tuples, we must decide which of R(a, b) or R(b, a) we should pick.

If A(a) ∈ D − Γ, then choose R(a, b), otherwise choose R(b, a).

Now we show that Γ obtained in this way is a minimum contingency set. Since

each path from source to target in the network flow represents a join, we know that

Γ will “cut” those paths and therefore delete those joins. Now consider the following

join that was not represented in the flow graph because R(a, b) is a 2-way tuples:

〈a, b, c〉 = A(a), R(a, b), R(b, c), R(c, b). Since R(a, b) is a 2-way tuple, we know the

71

x y z
R

R S T

(a) qp as endpoint

x y z
R

R S T

A

(b) q2p as endpoint

x y z

A

RR

R T

(c) qar−p as endpoint

Figure 4.12: Easy patterns with permutations

join 〈a, b, a〉 = A(a), R(a, b), R(b, a), R(a, b) exists and is represented in the flow graph,

so either A(a) or {a, b} appears in the cut. If A(a) appears in the cut, the join 〈a, b, c〉

is also deleted. If {a, b} is chosen and A(a) is not, then we know choose tuple R(a, b)

from the pair, also deleting join 〈a, b, c〉.

We can generalize those cases in the following lemma:

Lemma 4.35. Let q be a linear query that contains as one of its endpoints one of

the following patterns:

1. qp :−R(x, y), R(y, x)

2. q2
p :−A(x), R(x, y), R(y, x)

3. qar−p :−A(x), R(x, y), R(y, z), R(z, y)

If q does not have any other self-join except the ones we see above, then RES(q) is in

PTIME.

Proof. Since the query is linear and we restrict the self-joins to be only the ones

appearing in the pattern, we can easily extend the network flow construction for the

entire query based on the flow for each of the cases (see Proposition 4.29 for case

1, Proposition 4.30 for case 2, and Proposition 4.34 for case 3). Because there is no

other self-join in the query, the algorithm will give as solution the optimal contingency

set.

72

As an illustration of how those queries might look like see Fig. 4.12. Note that for

case 3 (Fig. 4.12c), we need to have the A-loop, otherwise we cannot guarantee the

construction will work. For example, consider

q :−A(w, x), R(x, y), R(y, z), R(z, y)

We conjecture RES(q) is in PTIME but we do not know how to construct the

network flow for this case.

4.4.2.1 Other hard cases with permutation

In this section, we will see various case of hard queries that contain permutations,

both bounded and unbounded. First let’s look into some unbounded permutation

case (Fig. 4.13):

qs−p−t :−A(x), S(x, y), R(y, z), R(z, y), T (z, w), C(w)

qr−p−r :−A(x), R(x, y), R(y, z), R(z, y), R(z, w), C(w)

Both of those queries are NP-complete and here is a straightforward reduction

from RES(qperm).

Proposition 4.36. RES(qs−p−t) and RES(qr−p−r) are NP-complete.

Proof. We can show reductions from RES(qperm).

Now we will see some cases of bounded on one side that are hard. Consider queries

(Fig. 4.14):

q1 :−A(x), R(x, y), R(y, z), R(z, y), C(z)

q2 :−A(x), R(x, y), B(y), R(y, z), R(z, y)

73

x y z w

A

S R

R

T

C

(a) qs−p−t

x y z w

A

R R

R

R

C

(b) qr−p−r

Figure 4.13: Unbounded hard permutation

x y z

A

R R

R

C

(a) q1

x y z

A

R R

R

B

(b) q2

Figure 4.14: Bounded on one side: hard cases

Proposition 4.37. RES(q1) and RES(q2) are NP-complete.

Proof Sketch. There is a reduction from RES(qperm) to RES(q1). For q2 we use a re-

duction from Max-2SAT.

Contiguous permutation (Fig. 4.15):

q3 :−A(x), R(x, y), R(y, x), B(y), R(y, z), R(z, y), C(z)

q4 :−A(x), R(x, y), R(y, x), R(y, z), R(z, y), C(z)

Proposition 4.38. RES(q3) and RES(q4) are NP-complete.

Proof Sketch. There is a reduction from qperm to q3. For q4 we use a reduction from

Max-2SAT.

4.4.3 Confluences

The third structure we are going to present is what we call confluence. Two atoms

form a confluence if they refer to the same relation, i.e. form a self-join, and share a

variable in the same position.

74

x y z

A
R

R

R

R

CB

(a) q3

x y z

A
R

R

R

R

C

(b) q4

Figure 4.15: Contiguous permutations

x y z
R R

A C

(a) qconf

x y z
R R

A A

(b) qaconf

x y z
R R

A,C A,D

(c) q2conf

Figure 4.16: Examples of easy queries with confluences

The simplest minimal query with a confluence is (Fig. 4.16a):

qconf :−A(x), R(x, y), R(z, y), C(z)

Proposition 4.39. R is exogenous in qconf .

Proof. Let Γ be a minimum contingency set containing tuple R(1, 2).

Case 1: D contains only A(1) or C(1) but not both. WLOG, suppose it contains

only A(1). We can then obtain a contingency set Γ′ = (Γ−R(1, 2)) ∪A(1) of size k.

Similar if it contains only C(1).

Case 2: D contains both A(1) and C(1). Consider Γ′ = (Γ ∪A(1))−R(1, 2) and

Γ′′ = (Γ ∪ C(1)) − R(1, 2), and suppose that neither of those is a contingency set.

Then we have A(i), R(i, 2), R(1, 2), C(1) in D − Γ′ and A(1), R(1, 2), R(j, 2), C(j) in

D − Γ′′, with i 6= j. However, the existence of those joins implies that D − Γ has

the join A(i), R(i, 2), R(j, 2), C(j) contradicting the fact that Γ is a contingency set.

Therefore, at least one of Γ′,Γ′′ must be a contingency set and we can replace R(1, 2)

by A(1) or C(1).

Proposition 4.40. RES(qconf) is in P.

75

Proof. Since R can be made exogenous, solving resilience for this query is the same

as solving vertex cover in a bipartite graph, and therefore is in P.

Proposition 4.39 is an example that our definition of domination, Definition 4.12,

is a sufficient but not necessary condition for a relation to be exogenous.

Observe that if we had A(z), instead of C(z) in qconf (Fig. 4.16b), the query would

not be minimal:

qaconf :−A(x), R(x, y), R(z, y), A(z)

≡ A(x), R(x, y)

However, we can add another unary atom to make the query minimal as we can

see in the following (Fig. 4.16c):

q2
conf :−C(x), A(x), R(x, y), R(z, y), A(z), D(z)

Proposition 4.41. RES(q2
conf) is in P.

Proof. First note that C,D and R are exogenous relations because they are dominated

by A, so there is minimum contingency set with only A-tuples. If an A-tuple joins

with itself, then we can guarantee this tuple will be in Γ. After including all such

A-tuples in Γ, we can split the remaining ones as left and right tuples, meaning that

they join with a C-tuple and a D-tuple, respectively. Since we have 2 partitions, we

can compute the minimum vertex cover and add include that in Γ.

We also have queries with confluence that are NP-complete:

q2,b
conf :−C(x), A(x), R(x, y), B(y), R(z, y), A(z), D(z)

76

x y z
R R

A,C B A,D

(a) q2,bconf

Figure 4.17: Simple hard confluence

x y z w v
R S S R

A,C A,D

(a) q
r,s(1)
conf

x y z w v
R S S R

A,C A,D

(b) q
r,s(2)
conf

Figure 4.18: Example of hard queries with confluences

Proposition 4.42. RES(q2,b
conf) is NP-complete.

Proof sketch. Reduction from 3SAT.

We can generalize Proposition 4.42 for any query that has a middle point such that

the left and right sides, from the middle point, are symmetric and, when considered

in isolation, each side has no self-joins. Let’s look at the following example:

Example 4.43. Consider queries (Fig. 4.18):

q
r,s(1)
conf :−A(x), C(x), R(x, y), S(y, z), S(w, z), R(w, v), D(v), A(v)

q
r,s(2)
conf :−A(x), C(x), R(x, y), S(z, y), S(z, w), R(w, v), D(v), A(v)

Taking z as the middle point in both queries, we can see that the left and right

side are symmetric. In other words, we could ”fold” those queries at point z and the

edges would match, with the exception of the loops. We can show that RES(q
r,s(1)
conf) and

RES(q
r,s(2)
conf) are both NP-complete with a reduction from RES(q2,b

conf). It is important to

note that we must have atoms A(x), C(x) and A(w), D(w) together. If the query did

not have C,D, then it would not be minimal. On the other hand, without the A, we

do not how to define the reduction from RES(q2,b
conf).

77

x y z w
R R R

A A

(a) q3conf

Figure 4.19: Hard query with 2 confluences

Lemma 4.44. Let q be a query such that there exists a middle point that split the

query in two symmetric ones. Then RES(q) is NP-complete.

Proof sketch. We can always define a reduction from RES(q2,b
conf) to RES(q).

In certain cases where the query has confluences but there is no middle point, we

can still show hardness. Consider query (Fig. 4.19)

q3
conf :−A(x), R(x, y), R(z, y), R(z, w), A(w)

Note that q3
conf has no middle point that can split the query in two symmetric

ones. We say then that there is a non-symmetric path between A(x) and A(w). In

the general case we have:

Lemma 4.45. Let q be a minimal linear query with two atoms A(x), A(y), which are

the endpoints in its binary graph, and there is a non-symmetric path between them.

Then RES(q) is NP-complete.

Proof sketch. We can define a reduction from RES(qvc) to RES(q).

4.5 Dichotomy conjecture

In previous sections we have shown various cases of binary queries without variable

repetition, and for which ones we know how to characterize complexity, either NP-

complete and PTIME. This knowledge allowed us to build a better intuition about

this fragment of the problem and to conjecture that there is a NP vs P dichotomy.

78

Conjecture 4.46. Let q be a self-join binary query without variable repetition that

is minimal and connected. If at least one of the following is true, then RES(q) is

NP-complete. Otherwise, it is in PTIME.

1. q has a triad;

2. q has a chain;

3. q has a hard permutation;

4. q has a hard confluence.

Each of the cases for hardness above relates to results or conjectures we have made

throughout this chapter. Case 1 refers to the non-linear queries we saw in Section 4.3

and how we needed different strategies to show hardness but, essentially, having a

triad implied hardness. Case 2 refers to Section 4.4.1, in particular, Lemma 4.28. The

idea is that if a linear query only have chain-like connections, that query will be hard

even if it doesn’t have qchain as a subquery. Case 3 includes the hard permutation

cases we saw in Section 4.4.2. When we say a query has a hard permutation, we mean

that the query contains a permutation that is connected on both sides to relations

different than the ones participating on the permutation itself. Similarly, case 4 refers

to the hard confluences we saw in Section 4.4.3.

4.6 A special case: R,R queries

In this section we analyze the simple case of queries with only two atoms but

unbounded arity. As we are considering self-joins, both atoms will refer to the same

relation. We will see that, even in this simple case, some of the notions we explored

on the binary case already apply, like variable order and repetition.

We define set(x) = {x1, x2, . . . , xk} to be the set of variables that occur in tuple

x. The following lemmas simplify the queries in such a way that preserves certain

complexity properties.

79

Lemma 4.47 (Eliminate “matching” variables). Consider q :−R(w,x), R(w,y) such

that w 6∈ set(x) ∪ set(y), and q′ :−R′(x), R′(y). Then RES(q) ≡ RES(q′).

Proof. We can reduce RES(q′) to RES(q) by defining a new database D′ =
{

(a0, t)
∣∣

t ∈ D
}

. Adding an extra column with a fixed constant value, a0, does not sig-

nificantly change the set of witnesses. Thus, the size of the minimum contingency

set is preserved. In the opposite direction, given a database D we can partition

the tuples accordingly to the value of its first attribute. Let R′ =
{

(ta1, . . . , t
a
k)
∣∣

∃aR(a, t1, . . . , tk) ∈ D
}

. Then the size of a minimum contingency set for q in D is

equal to the size of a minimum contingency set for q′ in D′ = (R′).

Note that the above lemma is a special case of isolated variables (Definition 4.8),

therefore we can prove equivalence instead of only one direction reduction.

Lemma 4.48 (Eliminate repeated columns). Consider q :−R(w1, w1,x), R(w2, w2,y)

and q′ :−R′(w1,x), R′(w2,y). Then RES(q) ≡ RES(q′).

Proof. For database D = (R) satisfying q we can construct D′ = (R′) satisfying q′

with the same size minimum contingency set by letting R′ be the projection of R on

all columns except the first. Similarly, we can go from R′ to R by adding a copy of

the first column: R :=
{

(a1, a1, a2, . . . , ak)
∣∣ (a1, a2, . . . , ak) ∈ R′

}
. Again, the size of

the minimal contingency set for q in D is the same as for q′ in D′.

Now we define the concept of unique variables. The presence or absence of unique

variables plays an important role in our analysis but we do not know if they will be

central to our final dichotomy result.

Definition 4.49 (Unique variables). Consider query q :−R(v1), R(v2). We say that

a variable x is unique to the first atom if x ∈ set(v1) and x 6∈ set(v2). Analogously

y is unique to the second atom if y ∈ set(v2) and y 6∈ set(v1).

80

Even though unique variables will be important in our analysis, we would like to

eliminate them when they are isolated.

Example 4.50. Consider query q :−R(x,w, y)R(y, k, z). If we look closer, we can

note that this query is similar to query qchain, they only differ by the “extra” column

in the middle, in other words, w, k are isolated variables. By deleting those variables

we obtain exactly qchain, thus showing RES(q) is NP-complete via Lemma 4.9.

The following proposition shows that if the atoms have no unique variable, i.e. a

variable occurring in the first atom must occur in the second atom and vice-versa,

then the problem is easy. This case generalizes query e2.

Proposition 4.51. Let q :−R(x), R(y) be such that set(x) = set(y). Then RES(q) is

in PTIME.

Proof. Let D = (R) be any database satisfying q. Observe that if R(s)R(t) is any

witness of q in D, then set(s) = set(t), that is exactly the same domain values occur

in these two tuples. Put another way, if set(s) 6= set(t), then s and t come from

different connected components of the join graph of q on D. Notice, furthermore,

that for any s, the number of tuples, t, such that set(s) = set(t) is at most the fixed

constant k!, where k is the arity of R. Thus, we can compute a minimum contingency

set for q over D, by computing the minimum contingency set for the tuples from

each set(s) independently. That is RES(q) consists of polynomially many independent

constant-size problems.

Now we investigate the case where there are unique variables.

Proposition 4.52. Let q :−R(v1), R(v2) be a query without isolated variables such

that the following holds:

1. There exists x unique to v1 and z unique to v2

2. There is y shared by v1 and v2

81

3. There is no variable repetition

Then RES(q) is NP-complete.

Proof. The queries described here are a generalization of query qchain. As we show in

Proposition 4.2, RES(qchain) is hard via a reduction from 3SAT, but here we are going

to use a reduction from vertex cover. We define the reduction RES(qvc) ≤ RES(q) as

follows:

Given D = (A,R), let D′ = (R′) and r be the arity of R′. If r is odd we have

R′ =
{

(a1, a2, . . . , ar)
∣∣ a ∈ A} ∪{

(a2, a3, . . . , ar, b1), (a3, . . . , ar, b1, b
′), . . . , (ar, b1, . . . , br−1)

∣∣ (a, b) ∈ R
}

If r is even, we need to add an extra tuple to have an even number of intermediate

tuples between (a1, . . . , ar) and (b1, . . . , br).

R′ =
{

(a1, a2, . . . , ar)
∣∣ a ∈ V } ∪{

(a2, a3, . . . , ar, 〈ab〉), (a3, . . . , ar, 〈ab〉, b1), . . . , (〈ab〉, b1, . . . , br−1)
∣∣ (a, b) ∈ R

}

We claim that

(D, k) ∈ RES(qvc) ⇔ (D′, kr|E|+ k) ∈ RES(q),

where kr = br/2c.

(⇒) A contingency set for D is a vertex cover S. We will construct a contingency

set Γ for D′ based on the vertex cover S. For each vertex a ∈ S, add R′(a1, . . . , ar)

to Γ. As S is a cover, by definition, for each edge (a, b) in D we have R′(a1, . . . , ar)

or R′(b1, . . . , br) in Γ. Assume w.l.o.g. that R′(a1, . . . , ar) ∈ Γ. If r is odd we need to

add tuples R′(ai, . . . , bj) when i is odd and there are exactly (r − 1)/2 of those. If r

82

is even we need to add tuples R′(ai, . . . , bj) when j is odd and there are exactly r/2

of those. Suppose that Γ we obtained is not a contingency set. That means there are

tuples t1, t2 that joint under D′ − Γ. For t1 and t2 to join, by our construction, they

would need to be associated with the same edge, let’s say (c, d). As S was a cover,

one of the vertices c or d is in S, and therefore one of R′(c1, . . . , cr) or R′(d1, . . . , dr)

is in Γ. However, if that is the case, we eliminated all the joins that occur “within”

that edge by including half of the tuples associated with edge (c, d). Thus, Γ is a

contingency set of the appropriate size.

(⇐) Let Γ be a contingency set for D′ with k + kr|E|. First note that, with our

construction, we always have an odd number of edges l between a node R′(a1, . . . , ar)

and R′(b1, . . . , br), which means that we need l/2 + 1 vertices to cover all the edges.

Even though locally we could do that by only choosing internal nodes, with a global

perspective, choosing at least one of the extremities is either the same or better. We

can say then that for each edge in D we will pick l/2 internal edges in D′ which gives

us kr|E| vertices. The k tuples left to be picked must be from extremities. Let S be

a set formed by the nodes which correspond to the last k tuples in Γ and suppose S

is not a cover. Then there is an edge (c, d) such that c, d 6∈ S. If that is the case then

there is at least one edge (join) left in D − Γ, which is a contradiction with the fact

that Γ is a contingency set.

The property of queries we are capturing with Proposition 4.52 is a notion of path

connecting the attributes of each atom. In the following example this will be more

clear.

Example 4.53. Let’s look into a query we already know, qchain :−R(x, y), R(y, z). In

this query, we have a unique variable occurring in the first atom, x, and a unique

variable occurring in the second one, z, and those queries are connected by variable

83

y. We could augment this query by keeping the unique ones and including more

intermediate “steps” as in the following query:

qk-chain :−R(x, y1, y2, . . . , yk), R(y1, . . . , yk−1, yk, z)

Query qk-chain satisfies the conditions described on the Proposition 4.52 and, there-

fore, RES(qk-chain) is NP-complete.

84

CHAPTER 5

COMPLEXITY OF RESPONSIBILITY FOR SJ-FREE
QUERIES

In this chapter, we prove the analogous characterizations of the complexity of

responsibility. As we will see, responsibility is a bit more delicate than resilience; yet,

in the end, the final theorems are similar.

We first concentrate on the difference between resilience and responsibility. Recall

the following two queries:

qrats :−A(x), R(x, y), S(y, z), T (z, x)

q′rats :−A(x), Rx(x, y), S(y, z), T x(z, x)

We saw earlier that RES(qrats) is in PTIME (Corollary 3.22). The reason is that

atom A dominates R and T and thus the complexity of RES(qrats) is unchanged when

we make R and T exogenous (Proposition 3.9), i.e., RES(qrats) ≡ RES(q′rats). Obviously

q′rats is triad-free. Thus, by Theorem 3.24, RES(q′rats) and RES(qrats) are in PTIME. We

now show, however, that RSP(qrats) is NP-complete.

Proposition 5.1. RSP(qrats) is NP-complete.

Proof. We reduce 3SAT to RSP(qrats). Let ψ be a 3-CNF formula with variables

v1, . . . , vn and clauses C1, . . . , Cm. The reduction will map ψ to f(ψ) = (D, s0, k)

with s0 = S(b0, c0), where we will construct D = (A,R, S, T) to have a contingency

set for s0 of size k iff ψ ∈ 3SAT (we explain the choice of value k later in the proof).

We let a0 be the unique element of the domain of D that joins with s0.

85

In qrats, A dominates R, but when we are building a contingency set Γ for s0, we

may require some tuples of the form R(a0, b). Note that these cannot be replaced by

the tuple A(a0), because that would remove the only witness (a0, b0, c0) that contains

our tuple s0. This explains why RES(qrats) ∈ PTIME while RSP(qrats) is NP-complete,

and it is the key idea behind the reduction we now produce.

For each variable v` occurring in ψ, we build the gadget G` as follows: G` consists

of 2t b`j values for y and 2t c`j values for z (1 ≤ j ≤ 2t) where t is a constant to be

specified later. We include the 2t pairs R(a0, b
`
j) and the 2t pairs T (c`j, a0), 1 ≤ j ≤ 2t.

(See Fig. 5.1 where these pairs are drawn as edges from a0 to each b`j and from each

c`j to a0, respectively. Notice that the value a0 is shown twice for better illustration.)

Next, we include all the pairs S(b`j, c
`
j′), 1 ≤ j, j′ ≤ t. These are drawn in Fig. 5.1

as a complete bipartite graph between the vertex sets {b`1, . . . , b`t} and {c`1, . . . , c`t}.

Finally we add two matchings of size t which we name the “v` matching” and the

“v` matching,” respectively:

v` matching : S(b`1, c
`
t+1), . . . , S(b`t, c

`
2t)

v` matching : S(b`t+1, c
`
1), . . . , S(b`2t, c

`
t)

Notice that in Fig. 5.1, the v` matchings are connecting the upper left corner with the

lower right corner, whereas the v` matchings are connecting the other two corners.

Any minimum contingency set must remove all of the witnesses from G`. Such

a minimum contingency set must remove either all the pairs R(a0, b
`
1), . . . R(a0, b

`
t)

or all the pairs T (c`1, a0), . . . T (c`t, a0), i.e., one side or the other of the complete bi-

partite graph. After this, t witnesses remain, either involving the v` matching (if

the T (c`i , a0)’s were chosen), or otherwise the v` matching. Only the S-tuples will be

useful for the clause gadgets, so the optimal choice will be to choose the t S-tuples

marked v` or the t S-tuples marked v`. Any optimal minimal contingency set thus

corresponds to a truth assignment to the boolean variables v1, . . . , vn.

86

So far, we have described the gadgets G1, . . . Gn and shown that any minimum

contingency set for this part of D corresponds to a truth assignment for the variables

v1, . . . , vn. We next introduce the clause gadgets and choose the value k, so that

contingency sets for D of size k will correspond exactly to truth assignments that

satisfy all of the clauses of ψ.

We now describe the clause gadgets. Suppose, for example, that Cs = v1 ∨ v2 ∨ v3

with s ∈ [m]. Then 7 of the eight possible truth assignments to v1, v2, v3 satisfy Cs,

i.e., all but the assignment α2 (010 in binary). For each of these 7 good assignments:

αi, i ∈ {0, . . . 7} − {2}, we add an element as,i to A and we add the tuples to R

and T so that as,i participates in three witnesses, each of which shares an S tuple

with a witness from each of the three variable gadgets that agree with assignment

αi. For example, assignment α6 (110 in binary) makes v1, v2 true and v3 false, so

as,6 joins with S(b1
r(s,6), c

1
t+r(s,6)), S(b2

r(s,6), c
2
t+r(s,6)), and S(b3

t+r(s,6), c
3
r(s,6)). Here r(s, i)

is a function that chooses a unique element of the matching vj or vj appropriate to

assignment αi of clause s (see Fig. 5.2).

The key property of the Cs gadget is that, if the chosen truth assignment satisfies

Cs, then we do not need to worry about the as,i corresponding to the chosen assign-

ment, and may choose only 6 as,i’s from A for the contingency set. However, if the

chosen assignment does not satisfy Cs, then all 7 of the asi ’s must be chosen!

We can let t = 8m and k = (2t)n + 6m = (16n + 6)m. Our construction insures

that (D, s0, k) ∈ RSP(qrats) iff ψ ∈ 3SAT.

The proof of Proposition 5.1 shows that domination does not work the same way

for responsibility as it does for resilience. In particular, the analogy of Proposition 3.9

(Domination for Resilience) does not hold for responsibility.

We next show that a modified version of domination still works for responsibility.

Recall the query qbrats and define the query qbrxats as follows:

87

R

S

T

A Aa0 a0

b`1

b`2

...

...
...

...

b`t

b`t+1

b`t+2

b`2t

c`1

c`2

c`t

c`t+1

c`t+2

c`2t

v`

v`

v`

v`

v`

v`

Figure 5.1: The qrats variable gadget G` for variable v`. Red, green, and blue lines
correspond to tuples from R, S, and T , respectively. Dotted lines will never need to
be chosen in minimum contingency sets of f(ψ).

A A

S

R T

as,6 as,6

b1
r

b2
r

b3
t+r

c1
t+r

c2
t+r

c3
r

v1

v2

v3

Figure 5.2: The qrats clause gadget corresponding to clause Cs = v1 ∨ v2 ∨ v3 and
truth assignment α6 = {〈v1, 1〉, 〈v2, 1〉, 〈v3, 0〉}. A(as,6) must be in the minimum
contingency set unless the chosen truth assignment is α6.

88

qbrxats :−A(x), Rx(x, y), B(y), S(y, z), T (z, x) .

Notice that var(A) ⊂ var(R) and var(B) ⊂ var(R) and that also var(R) ⊆ var(A)∪

var(B).

Proposition 5.2 (RSP(qbrats)). The complexity of responsibility for qbrats is unchanged

if we make R exogenous, i.e., RSP(qbrats) ≡ RSP(qbrxats) .

Proof. Let D |= qbrats and let t be a tuple that participates in a witness that D |=

qbrats. We will show that there is a minimum contingency set Γ′ for t that contains no

tuples from R. Let Γ be a minimum contingency set for t that contains as few tuples

from R as possible. Suppose that R(a1, b1) ∈ Γ. Let j be a witness that (D − Γ) |=

qbrats and let a0, b0, c0 be the projection of j onto components x, y, z, respectively.

Thus, A(a0), R(a0, b0) and B(b0) are all in D−Γ. In particular, R(a1, b1) 6= R(a0, b0).

Let Γ′ be the result of replacing R(a1, b1) by A(a1) if a1 6= a0, and by B(b1) otherwise,

in which case b1 6= b0. Thus Γ′ is still a minimum contingency set for t and it contains

fewer tuples from R, contradicting the fact that Γ had the fewest possible such tuples.

Thus, tuples from R are never needed in any minimum contingency set for t. Thus, as

claimed, the complexity of RSP(qbrats) is unchanged when we make R exogenous.

We are now ready to formalize “full domination”, the version of domination that

works for responsibility the way that domination works for resilience.

For example, in the query qbrats, the relation R is fully dominated because every

variable in var(R) is “covered” by some other endogenous relation (Proposition 5.2).1

Here are three more examples where R is fully dominated (s1, s2, s3) and one where

it is not (n4):

1 Contrast this with the definition of domination (Definition 3.8) which only requires that some
subset of the variables is covered by another relation.

89

s1 :−A(x), R(x, y, w), B(y), S(y, z), T (z, x)

s2 :−A(x), R(x, y, w), Qx(w), B(y), S(y, z), T (z, x)

s3 :−A(x), R(x, y, w), Qx(w, x), B(y), S(y, z), T (z, x)

n4 :−A(x), R(x, y, w), Qx(w, z), B(y), S(y, z), T (z, x)

In a query q, we call a variable w ∈ var(R) “solitary” if it cannot reach another

endogenous atom without following one of the edges in var(R)−{w}. Then, in each

of s1, s2, s3, the variable w is solitary, but w is not solitary in n4.

Definition 5.3 (Full domination). Let F be an atom of query q. F is fully dominated

iff for all non-solitary variables y ∈ var(F) there is another atom A such that y ∈

var(A) ⊂ var(F).

Observe that relation R is fully dominated in qbrats, as well as in s1, s2, s3, but not

in n4. On the other hand, R is not fully dominated in qrats because y is connected to

S(y, z) and thus not solitary and not covered by any smaller atom.

We now show that fully dominated atoms may be made exogenous.

Lemma 5.4 (Full domination). Let F be a fully dominated atom in an sj-free CQ q.

Let q′ be the modified query in which F is made exogenous. Then RSP(q) ≡ RSP(q′).

Proof. We have to show that RSP(q) ≤ RSP(q′) and RSP(q′) ≤ RSP(q). Suppose we are

given (D,S(t)) and we are interested in the responsibility of tuple S(t). There are

two cases. In each case, we will show how, given one of k, k′, to produce the other,

such that:

(D, t, k) ∈ RSP(q) ⇔ (D′, t, k′) ∈ RSP(q′) (5.5)

Case 1 : F 6= S: We show that as in the proof of Prop. 5.2, there is no need to

include any tuples from F in a minimum contingency set Γ for q in D. As in that

90

proof, we let j be a witness for (D− Γ) |= q and suppose that F (f) ∈ Γ. Thus, j and

f must disagree on the assignment of at least one variable.

(a): Suppose they differ on some non-solitary variable y of F . Let A be the atom

that covers y and we can replace F (f) by the tuple πvar(A)(f) of A. Thus, the sizes of

the minimum contingency sets on the two sides are identical and letting k = k′ and

D = D′, Eq. 5.5 holds.

(b): Suppose on the contrary that j and f agree on all the non-solitary variables

of F . Note that since S is endogenous, no non-solitary variable of F can occur in S2.

Thus, the only place that j and f disagree is on non-solitary variables of F which do

not occur in S. Let F (f0) be the tuple of F that agrees with j. Then f and f0 agree

on all variables except for solitary variables of F . Thus, since removing S(t) from

D− (Γ−{F (f)}) removes all witnesses of D |= q that extend f0, it must also remove

all witnesses that extend f , i.e., f is not useful so it does not occur in Γ.

Case 2 : F = S: In this case, some tuples of F may need to be in Γ. Let I be

the solitary variables of F and let W =
{
f ∈ F

∣∣ f useful ; f 6= t ∧ πI(f) = πI(t)
}

.

These are the tuples of F which agree with t on all but the solitary variables of F .

W must be contained in every contingency set for (D, t). Thus, we let k = k′ + |W |

and F ′ = F −W . Eq. 5.5 holds. (The point of f being useful in the definition of W

is that solitary variables may occur in some exogenous relations which could already

exclude certain values, and thus tuples with those values are not useful so they do

not need to be in the contingency set.)

2We are allowing the computation of the responsibility of tuples from exogenous relations just to
make the proofs simpler. Notice that we never change the relation S whose tuples we are computing
the responsibility of. Thus, if we must make S exogenous, we do so as the last fully-dominated atom
we make exogenous.

91

5.1 Triads and hardness

Now that we have established that fully dominated atoms can be made exogenous

without changing the complexity of the responsibility problem of a query, we proceed

to prove a complexity dichotomy for responsibility.

When studying responsibility, we will insist from now on that every fully domi-

nated atom is exogenous, and analogously to the resilience case, this will be consider

the normal form of a query. For example, qrats has no fully dominated atoms, so it is

already in its normal form and it has a triad: {R, S, T}. Note that we cannot have

two elements in a triad such that var(S1) ⊂ var(S2) because removing var(S2) would

isolate S1. Thus {R, S, T} is the unique triad of qrats. On the other hand, R is fully

dominated in qbrats, so we transform it to triad-free qbrxats:

qbrxats :−A(x), Rx(x, y), B(y), S(y, z), T (z, x) .

We now show that RSP(q) is NP-complete if q has a triad.

Lemma 5.6 (Triads make RSP(q) hard). Let q be an sj-free CQ where all fully dom-

inated atoms are exogenous. If q has a triad, then RSP(q) is NP-complete.

Proof. Depending on which of the following cases the query falls into, we build a

reduction to RSP(q) from RSP(q4), RSP(qrats) or RSP(qT). Let T = {S0, S1, S2} be a

triad in query q.

Case 1: There is no endogenous atom A such that var(A) ⊆ var(Si) ∩ var(Sj),

for some i 6= j. We will show that RSP(q4) ≤ RSP(q).

Given D, t, k we must produce D′, t′, k′ such that

(D, t, k) ∈ RSP(q4) ↔ (D′, t′, k′) ∈ RSP(q) . (5.7)

Note that we may assume that t = R(a0, b0) for some values a0, b0, i.e., that t is

a tuple from R, because we know that RSP(q4) is hard no matter which relation we

choose the tuple from (Prop. 2.12).

92

In this case, we construct D′ exactly as we did in Lemma 3.10 (Cases 1 or 2),

and as we did there, we let k′ = k. The only difference is that we must define t′

from t. This is easy: recall that t = R(a0, b0). We let t′ = S0(〈a0b0〉, a0, b0), i.e., the

corresponding tuple of S0. Thus, we have exactly simulated q4 in q, so Eq. 5.7 holds.

Case 2: There is an endogenous atom A and some i 6= j, such that var(A) ⊆

var(Si)∩var(Sj), but only for a unique pair i 6= j. We show that RSP(qrats) ≤ RSP(q).

Let the pair be 0, 2, i.e., var(A) ⊆ var(S0) ∩ var(S2).

Again, we are given D, t, k, where t = R(a0, b0). We produce D′, t′, but now such

that,

(D, t, k) ∈ RSP(qrats) ⇔ (D′, t′, k) ∈ RSP(q) . (5.8)

We produce D′ and t′ exactly as in Case 1, and we again have that all the witnesses

and minimum contingency sets for qrats wrt D, t are preserved for q wrt D′, t′. Thus

Eq. 5.8 holds.

Finally, we are left with,

Case 3: There are endogenous atoms A,B such that WLOG var(A) ⊆ var(S0)∩

var(S2), and var(B) ⊆ var(S0) ∩ var(S1).

We know that S0 is not fully dominated. Thus, there must exist a non-solitary

variable w ∈ var(S0) such that w 6∈ var(A)∪var(B). Since w is not fully dominated,

there must be an endogenous atom C 6= S0 such that C is reachable from S0 without

using edges from var(A) ∪ var(B). Thus we have located a tripod sitting in the

hypergraph of q (see Fig. 5.3). It thus follow from Prop. 3.5, that RSP(q) is NP-

complete as well.

5.2 The polynomial case

As we saw in the previous section, the presence of triads in a query makes the

responsibility problem NP-complete. In the responsibility setting, we require full

93

S0

S1S2

A B

C

no edges from var(A) ∪ var(B)

Figure 5.3: Case 3 of the proof of Lemma 5.6. There is a tripod sitting in the
hypergraph of q.

domination to make an atom exogenous. This means that more atoms may remain

endogenous, so there can be more triads. The query qrats is an example: for re-

silience we use domination and after applying domination, qrats has no triads and

thus RES(qrats) ∈ PTIME. However, if we may only apply full domination, then qrats

keeps the triad R, S, T and thus RSP(qrats) is NP-complete.

We now want to prove the polynomial case for responsibility. Recall that in the

proof of Lemma 3.23, we showed the following:

Corollary 5.9. Let q be a CQ that has no triad. Then we can transform q, via a

series of dissociations, to a linear query q′.

Then, since dissociations cannot make the resilience problem of a sj-free CQ easier

(Lemma 3.21), it followed that RES(q) ∈ PTIME for any such triad-free query, q.

To prove that for any triad-free, sj-free CQ q, RSP(q) ∈ PTIME, it suffices to prove

that dissociations cannot make the responsibility problem of such queries easier [22].

94

5.2.1 A generalization of responsibility

We want to prove that if q′ is obtained from q through dissociation, then RSP(q) ≤

RSP(q′). In the proof of the similar result for resilience we did the following. We let

Rx(z) be the atom that was changed to Rx′(z, v). We then reduced RES(q) to RES(q′)

by mapping (D, k) to (D′, k) where D′ is the same as D with the exception that we

let R′ =
{

(t, d)
∣∣ R(t) ∈ D; d ∈ dom(D)

}
. This transformation does not change the

witness set nor the contingency sets, because, by the way we formed R′ from R, the

conjunct R′(z, v) places the same restriction on D′ that R(z) places on D.

This proof goes through fine for responsibility except in one case, namely if the

tuple t that we are computing the responsibility of belongs to R, the exogenous

relation to which we have added the new variable v.3

When t ∈ R, we would like to transform it to t′ ∈ R′ by appending a value,

ai, corresponding to the new variable, v. However, this will change responsibility

in an unclear way. In particular, the responsibility of t does not correspond to the

responsibility of (t, a) for any particular a. It rather corresponds to the responsibility

of (t, a) for all possible a’s.

To solve our problem, we need to generalize the notion of responsibility to include

wildcards.

Definition 5.10 (tuples with wildcards). Let D be a database containing a relation,

R(x1, . . . , xc). Let τ = (s1, . . . , sc) be a tuple such that each si ∈ dom(D) ∪ {∗}, i.e.,

τ may have elements in the domain in some attributes and the wildcard ∗ in others.

We call τ a “ tuple with wildcards”. We say that a tuple (a1, . . . , ac) ∈ R “ matches”

τ iff for all i, ai = si or si = ∗. When D and R are understood, τ represents a set of

tuples from R, 〈τ〉 =
{
a ∈ R

∣∣ a matches τ
}

.

3The reader may wonder why we might need to compute the responsibility of an exogenous
tuple. The answer is that the tuple originally might have come from an endogenous relation which
we transformed to an exogenous one using full domination.

95

For example, the tuple with wildcard (a, ∗) matches all pairs from R whose first

coordinate is a. We generalize responsibility to allow us to compute the responsibility

of a set of tuples denoted by a tuple with wildcards:

Definition 5.11 (RSP∗). Let D be a database containing a relation R, q a query for D,

and τ a tuple with wildcards. Then (D, τ, k) ∈ RSP∗(q) iff there exists a contingency

set Γ of size k such that (D − Γ) |= q and (D − (Γ ∪ 〈τ〉)) 6|= q.

Since RSP∗(q) is just a generalization of RSP(q), it is immediate that RSP(q) ≤

RSP∗(q). Thus, RSP∗(q) is NP-complete whenever RSP(q) is:

Corollary 5.12 (RSP∗ hardness). Let q be an sj-free CQ all of whose fully dominated

atoms are exogenous. If q has a triad then RSP∗(q) is NP-complete.

From our previous discussion, it now follows that dissociation does not make

RSP∗(q) easier:

Lemma 5.13 (Dissociation and RSP∗). If q′ is obtained from q through dissociation,

then RSP∗(q) ≤ RSP∗(q′).

Furthermore, linear queries are still easy for responsibility:

Lemma 5.14 (Linear queries and RSP∗). For any linear sj-free CQ q, RSP∗(q) is in

PTIME.

Corollary 5.15. If q has no triad, then RSP∗(q) can be made linear by using disso-

ciations, and is thus in PTIME. Therefore so is RSP(q).

We have thus proved our desired dichotomy for responsibility, and as a bonus, we

have proved it for groups of tuples with wildcards as well:

Theorem 5.16 (Responsibility Dichotomy). Let q be an sj-free CQ, and let q′ be

the result of making all fully dominated atoms exogenous. If q′ contains a triad then

RSP(q) and RSP∗(q) are NP-complete. Otherwise, RSP(q) and RSP∗(q) are PTIME.

96

It follows from Corollary 5.15 and Corollary 5.12 that RSP∗(q) ≡ RSP(q) for all

sj-free CQ, q. Note that it is not at all clear how one would build a reduction from

RSP∗(q) to RSP(q). However, our characterization of the complexity of RSP(q) and

RSP∗(q) gives us this result: After all fully dominated atoms are made exogenous, if

there is a triad, then RSP(q) is NP-complete, thus so is RSP∗(q). If there is no triad,

then RSP∗(q) ∈ PTIME, thus so is RSP(q):

Corollary 5.17. For all sj-free CQ q, RSP(q) ≡ RSP∗(q).

5.3 Dichotomy for responsibility with FDs

Our final theorem is that the dichotomy for responsibility continues to hold in the

presence of FDs:

Theorem 5.18 (FD Responsibility Dichotomy). Let

(q; Φ) be an sj-free CQ with functional dependencies. Let (q∗,Φ) be its closure under

induced rewrites, and such that all fully dominated atoms of q∗ are exogenous. If q∗

has a triad then RSP(q; Φ) is NP-complete. Otherwise, RSP(q; Φ) ∈ PTIME.

Proof. Since FDs only make RSP(q) easier, we know that if q∗ has no triad then RSP(q∗)

is easy, thus so is RSP(q∗; Φ) and thus also RSP(q; Φ). For the converse, we show that

the reduction, f , from one of RSP(q4), RSP(qrats), RSP(qT) to RSP(q) which we built

in Lemma 5.6 always produces databases, D′, that satisfy Φ. The proof is almost

exactly as in Lemma 3.33. Note that in the proof of Lemma 5.6, we use the same

reduction in all three cases, i.e., no matter if we are reducing from RSP(q4), RSP(qrats),

or RSP(qT).

97

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis we focus on analyzing the complexity of the Resilience problem for

conjunctive queries and we conjecture there is a NP vs P dichotomy for this problem.

We split the class of conjunctive queries into self-join free (sj-free) and self-join queries.

We first analyzed the sj-free case and we proved there is a dichotomy. In more

details we show:

• We define the concept of triad, which we use to show which sj-free queries are

NP-complete;

• We completely characterize the complexity of sj-free queries, proving there is a

dichotomy;

• The triad criterion is an easy to check property - polynomial on the size of the

query, and by consequence, it is easy to check the complexity of a given query;

• We extend the results for sj-free queries to include the presence of functional

dependencies;

• We show a dichotomy result for the related problem of Responsibility.

In a second phase, we analyzed the self-join case and we quickly understood self-

join queries have a far more complex structure than the sj-free ones. We decided to

restrict ourselves to binary queries without variable repetition and, even though we

haven’t proved a complete dichotomy yet, we have strong indications our conjecture

holds true. Among our findings, we would like to highlight:

• We show that we need to consider minimal queries in order to analyze this

problem correctly. This fact already contrasts with the sj-free case. Since it is

98

NP-complete to find the minimal equivalent of a given conjunctive query, it will

be NP-complete to determine what the complexity of a given query is;

• We show that triads are still meaningful in this setting, however not a sufficient

criterion for proving NP-completeness;

• We define 3 query structures, called chain, permutation and confluence, which

help us determine the complexity of a query in various ways;

• We state a dichotomy conjecture for binary queries with self-joins.

6.1 Future work

We ultimately want to prove our dichotomy conjecture for self-join binary queries,

and possibly extend that result to all of self-join conjunctive queries. The following

are problems that relate to our investigations and which seem like natural next steps

in this line of research.

6.1.1 Approximations and generalizations

We have shown a dichotomy for the resilience problem, which allows us to say we

cannot solve resilience for a certain set of queries, unless PTIME =NP. But there is

still hope! We can try to get good approximations for those cases. As resilience is

related to vertex cover, we will start by applying the same ideas for approximations

for vertex cover in here and see what kind of approximation we get. On the other

hand, we know that some queries are hard to approximate for deletion propagation

with view side-effects [32, 33], so we can expect a similar structure in this case too.

We can also think about a straightforward generalization of the deletion prop-

agation problem: “What if we are interested in deleting more than one tuple from

the view?” Intuitively, one could say that the problems are equivalent, since you

could consider one tuple at a time, but that is not the case. The multi-tuple deletion

propagation problem has been studied for the view side-effect variant [34] and, in this

99

work, it was shown to have a different characterization from the one found for the

single-tuple case.

The multi-tuple version of deletion propagation is a more realistic version of the

problems and we could analyze what changes arise for the source side-effects variant.

Another possible generalization is to consider changing the result of many views at a

time.

6.1.2 Deletion propagation with view side-effects

As we discussed on the related work (Section 2.3.1), the view side-effect variant of

deletion propagation has been studied and similar dichotomy results were obtained.

There are still many open problems, in particular: (1) How does the dichotomy

change, if at all, when we introduce the concept of forbidden tuples in the definition

of the problem? and (2) Is there a dichotomy result for the class of conjunctive queries

with self-joins? The results obtained in [32, 33] consider all tuples endogenous and

do not tackle the problem for self-joins.

For the first question, it is plausible to conjecture that considering some tuples

as exogenous can have an impact on the dichotomy, since that is true for the source

side-effect variant. For the second question, we can think of how our ideas for solving

the self-join case could carry on to the view side-effect variant.

6.1.3 Refine our dichotomy

Dichotomies are an interesting phenomenon in the study of complexity classes.

One of the most known results in the area is Schaefer’s dichotomy theorem showing

that, given certain restrictions on the relations that can be used, a Boolean constraint

satisfaction problem (CSP) is either in PTIME or is NP-complete [38]. A refinement

of this result [3] shows every Boolean CSP problem is either trivial or complete for

one of the following classes: NP, P, ⊕L, NL, L.

100

Given that the resilience problem has a dichotomy, we can try to express it as a

CSP and from there identify which queries will fall into the lower complexity classes, in

particular the trivial case. It is often the case that polynomial-time is not low enough

to imply efficiency when considering large quantities of data, therefore finding the

cases with very low complexity would have a practical impact.

6.1.4 Connections with vertex cover in hypergraphs

Resilience and vertex cover in hypergraphs are closely related, as we can informally

see in some of the examples and proofs. It would be nice if we could make this relation

formal, by defining a reduction or something of the sort. The whole point is to find

out if we could use the triad concept to define classes of graphs in which the vertex

cover problem is easy. We need to remember that when we are talking about triads,

we are talking about the query hypergraph but the vertex cover refers to the graph

we obtain when we consider a query and a database together.

101

BIBLIOGRAPHY

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level.
Addison-Wesley, 1995.

[2] D. Agarwal, D. Barman, D. Gunopulos, N. E. Young, F. Korn, and D. Srivastava.
Efficient and effective explanation of change in hierarchical summaries. In KDD, pages
6–15, 2007.

[3] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The com-
plexity of satisfiability problems: Refining schaefer’s theorem. J. Comput. Syst. Sci.,
75(4):245–254, June 2009.

[4] A. Amarilli, M. Monet, and P. Senellart. Conjunctive queries on probabilistic graphs:
Combined complexity. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’17, pages 217–232, New York,
NY, USA, 2017. ACM.

[5] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM TODS,
6(4):557–575, Dec. 1981.

[6] D. Barman, F. Korn, D. Srivastava, D. Gunopulos, N. E. Young, and D. Agarwal.
Parsimonious explanations of change in hierarchical data. In ICDE, pages 1273–1275,
2007.

[7] G. Bender, L. Kot, and J. Gehrke. Explainable security for relational databases.
SIGMOD, pages 1411–1422, 2014.

[8] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data
provenance. In ICDT, pages 316–330, 2001.

[9] P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and annotations
through views. In PODS, pages 150–158, 2002.

[10] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In STOC, pages 77–90, 1977.

[11] A. Chapman and H. V. Jagadish. Why not? In SIGMOD, pages 523–534, 2009.

[12] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how, and
where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[13] H. Chockler and J. Y. Halpern. Responsibility and blame: A structural-model ap-
proach. J. Artif. Intell. Res. (JAIR), 22:93–115, 2004.

[14] G. Cong, W. Fan, F. Geerts, J. Li, and J. Luo. On the complexity of view update
analysis and its application to annotation propagation. IEEE TKDE, 24(3):506–519,
2012.

102

[15] S. S. Cosmadakis and C. H. Papadimitriou. Updates of relational views. J. ACM,
31(4):742–760, Sept. 1984.

[16] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a warehousing
environment. ACM TODS, 25(2):179–227, 2000.

[17] U. Dayal and P. A. Bernstein. On the correct translation of update operations on
relational views. ACM TODS, 7(3):381–416, 1982.

[18] T. Eiter and T. Lukasiewicz. Complexity results for structure-based causality. Artif.
Intell., 142(1):53–89, 2002.

[19] T. Eiter and T. Lukasiewicz. Causes and explanations in the structural-model ap-
proach: Tractable cases. Artif. Intell., 170(6-7):542–580, 2006.

[20] D. Fabbri and K. LeFevre. Explanation-based auditing. PVLDB, 5(1):1–12, 2011.

[21] R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of updates in databases.
In PODS, pages 352–365, 1983.

[22] C. Freire, W. Gatterbauer, N. Immerman, and A. Meliou. A characterization of the
complexity of resilience and responsibility for self-join-free conjunctive queries. arXiv,
1507.00674:1–36, 2015.

[23] C. Freire, W. Gatterbauer, N. Immerman, and A. Meliou. The complexity of resilience
and responsibility for self-join-free conjunctive queries. Proc. VLDB Endow., 9(3):180–
191, Nov. 2015.

[24] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS,
pages 31–40, 2007.

[25] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach.
Part I: Causes. Brit. J. Phil. Sci., 56:843–887, 2005.

[26] M. Herschel and M. A. Hernández. Explaining missing answers to SPJUA queries.
PVLDB, 3(1):185–196, 2010.

[27] M. Herschel, M. A. Hernández, and W. C. Tan. Artemis: A system for analyzing
missing answers. PVLDB, 2(2):1550–1553, 2009.

[28] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-answers
to queries over extracted data. PVLDB, 1(1):736–747, 2008.

[29] N. Immerman. Descriptive Complexity. Springer, 1999.

[30] A. M. Keller. Algorithms for translating view updates to database updates for views
involving selections, projections, and joins. In PODS, pages 154–163, 1985.

[31] N. Khoussainova, M. Balazinska, and D. Suciu. Perfxplain: debugging mapreduce job
performance. PVLDB, 5(7):598–609, 2012.

[32] B. Kimelfeld. A dichotomy in the complexity of deletion propagation with functional
dependencies. In PODS, pages 191–202, 2012.

[33] B. Kimelfeld, J. Vondrák, and R. Williams. Maximizing conjunctive views in deletion
propagation. ACM TODS, 37(4):24:1–24:37, 2012.

103

http://arxiv.org/pdf/1507.00674

[34] B. Kimelfeld, J. Vondrák, and D. P. Woodruff. Multi-tuple deletion propagation:
Approximations and complexity. PVLDB, 6(13):1558–1569, 2013.

[35] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity of causality
and responsibility for query answers and non-answers. PVLDB, 4(1):34–45, 2010.

[36] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. Tracing data errors with view-
conditioned causality. In SIGMOD, pages 505–516, 2011.

[37] S. Roy and D. Suciu. A formal approach to finding explanations for database queries.
In SIGMOD, pages 1579–1590, 2014.

[38] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New
York, NY, USA, 1978. ACM.

[39] S. Thirumuruganathan, M. Das, S. Desai, S. Amer-Yahia, G. Das, and C. Yu. Maprat:
meaningful explanation, interactive exploration and geo-visualization of collaborative
ratings. PVLDB, 5(12):1986–1989, 2012.

[40] Q. T. Tran and C.-Y. Chan. How to conquer why-not questions. In SIGMOD, pages
15–26, 2010.

[41] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries.
PVLDB, 6(8):553–564, 2013.

104

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2017

	The Complexity of Resilience
	Cibele Matos Freire
	Recommended Citation

	Abstract
	List of Figures
	1. Introduction
	2. Background and Related work
	2.1 General notation
	2.2 Query resilience
	2.3 Related work
	2.3.1 Deletion propagation
	2.3.2 Causal responsibility
	2.3.3 Additional related problems

	3. Complexity of Resilience for sj-free queries
	3.1 Complexity of resilience: sj-free case
	3.1.1 Triads make resilience hard
	3.1.2 Polynomial algorithm for linear queries
	3.1.3 Dichotomy for sj-free conjunctive queries

	3.2 Functional dependencies
	3.2.1 FDs can only simplify resilience
	3.2.2 Induced rewrites preserve complexity
	3.2.3 For closed queries, FDs are superfluous
	3.2.4 Dichotomy of resilience with FDs

	4. Complexity of Resilience for queries with self-joins
	4.1 Basic hard queries
	4.2 Notation and setup
	4.2.1 Query minimization
	4.2.2 Query components
	4.2.3 Isolated variables
	4.2.4 Domination for the self-join case

	4.3 Non-linear queries
	4.4 Linear queries
	4.4.1 Chains
	4.4.2 Permutations
	4.4.2.1 Other hard cases with permutation

	4.4.3 Confluences

	4.5 Dichotomy conjecture
	4.6 A special case: R,R queries

	5. Complexity of Responsibility for sj-free queries
	5.1 Triads and hardness
	5.2 The polynomial case
	5.2.1 A generalization of responsibility

	5.3 Dichotomy for responsibility with FDs

	6. Conclusions and Future work
	6.1 Future work
	6.1.1 Approximations and generalizations
	6.1.2 Deletion propagation with view side-effects
	6.1.3 Refine our dichotomy
	6.1.4 Connections with vertex cover in hypergraphs

	Bibliography

