
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

2017

Automatic Derivation of Requirements for
Components Used in Human-Intensive Systems
Heather Conboy

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Part of the Software Engineering Commons

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Conboy, Heather, "Automatic Derivation of Requirements for Components Used in Human-Intensive Systems" (2017). Doctoral
Dissertations. 953.
https://scholarworks.umass.edu/dissertations_2/953

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/953?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F953&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

AUTOMATIC DERIVATION OF
REQUIREMENTS FOR COMPONENTS USED IN

HUMAN-INTENSIVE SYSTEMS

A Dissertation Presented

by

HEATHER M. CONBOY

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2017

Computer Science

c© Copyright by Heather M. Conboy 2017

All Rights Reserved

AUTOMATIC DERIVATION OF
REQUIREMENTS FOR COMPONENTS USED IN

HUMAN-INTENSIVE SYSTEMS

A Dissertation Presented

by

HEATHER M. CONBOY

Approved as to style and content by:

Lori A. Clarke, Co-chair

George S. Avrunin, Co-chair

Leon J. Osterweil, Member

Maciej J. Ciesielski, Member

James Allan, Department Chair
College of Information and Computer Sciences

DEDICATION

To my parents

ACKNOWLEDGMENTS

First and foremost, I want to thank my dissertation advisors, Lori Clarke and

George Avrunin, for their support and guidance throughout my software engineering

career and graduate studies. They improved by ability to research, develop, and

evaluate new software engineering techniques. They also made sure that I could give

a high-level overview of such techniques as well as provide the precise lower-level

details about them.

I also want to thank the other members of my thesis committee, Lee Osterweil and

Maciej Ciesielski. I had many fruitful discussions with Lee Osterweil about various

research projects. I benefitted from Maciej Ciesielski asking me thoughtful questions

and giving me constructive feedback on the dissertation. I greatly appreciate Dimitra

Giannakopoulou and Jamie Cobleigh for helping me understand how to employ the

L∗ learning algorithm and model checking techniques for this work.

I collaborated with many domain experts to put together case studies in the

healthcare and election administration domains. I especially want to thank Beth

Henneman, Jenna Marquard, the VA Boston Healthcare System cardiac surgery team,

Kevin Fu, Matt Bishop, and the Marin/Yolo County election officials for sharing their

knowledge about these case studies and providing feedback on the system models,

their requirements, and the software engineering tools applied to them.

I want to express my appreciation for the past and current LASER members

for providing such a collaborative and innovative research environment: Yuriy Brun,

Rene Just, Manish Motwani, Seung Yeob Shin, Stefan Christov, Huong Phan, Bobby

Simidchieva, Bin Chen, M.S. Raunuk, and Jamie and Rachel Cobleigh. I also bene-

fitted from mentoring the masters and undergraduate students, most recently Nancy

v

Famigletti, Siyu Peng, and Sam Kolovson. I want to thank Sandy Wise for building

many of the software engineering tools that I built on for this work and to thank

Barb Lerner for mentoring me as a CS undergraduate researcher.

I also want to express my appreciation for the CS administrative and technical

support staff. Leaanne Leclerc was always the voice of reason and answered any

and all questions about the CS graduate program. Deb Bergeron assisted me with

graduate appointments as well as travel funding. The CSCF helped me keep my

personal computers alive and well.

I am grateful to my friends for helping me maintain a healthier life/work bal-

ance, especially the CS volleyball team, the CS yoga class, and the Xenophon farm

community.

I want to thank my parents for always encouraging both their daughters’ interest

in math and science. They have always supported us in our studies and careers in

computer science and civil engineering. I am particularly grateful for my parents, sis-

ter, and brother for their love, encouragement, and patience throughout my graduate

studies.

vi

ABSTRACT

AUTOMATIC DERIVATION OF
REQUIREMENTS FOR COMPONENTS USED IN

HUMAN-INTENSIVE SYSTEMS

MAY 2017

HEATHER M. CONBOY

B.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Lori A. Clarke and Professor George S. Avrunin

Human-intensive systems (HISs), where humans must coordinate with each other

along with software and/or hardware components to achieve system missions, are

increasingly prevalent in safety-critical domains (e.g., healthcare). Such systems are

often complex, involving aspects such as concurrency and exceptional situations. For

these systems, it is often difficult but important to determine requirements for the

individual components that are necessary to ensure the system requirements are sat-

isfied. In this thesis, we investigated an approach that employs interface synthesis

methods developed for software systems to automatically derive such requirements

for components used in HISs.

In previous work, we investigated a requirement deriver that employs a regular

language learning algorithm to iteratively refine the derived requirement based on

vii

counterexamples generated by model checking techniques. Since this learning-based

requirement deriver often did not scale well, we investigated several learning and

model checking optimizations. These optimizations significantly improved perfor-

mance but affected the counterexample generation heuristics, often widely varying

the permissiveness of the derived requirements. For comparison purposes, we investi-

gated a direct requirement deriver that was purported to have poor performance but

guarantees the derived requirements are adequately permissive, conceptually mean-

ing the requirements are permissive as possible without violating the system require-

ments. For our evaluation, we applied these requirement derivers to case studies in

two important domains, healthcare and election administration.

Based on this evaluation, the direct requirement deriver with all optimizations

applied had reasonable performance and ensures the derived requirements are ade-

quately permissive. For the learning-based requirement deriver, many of the opti-

mizations and heuristics have been presented previously, but we recommend how to

selectively combine them to obtain reasonable performance while usually producing

the adequately permissive derived requirements.

Since such derived requirements often reflect the system complexity, these require-

ments can be easily misunderstood. Thus, we also investigated building views of the

requirements that abstract away or highlight certain aspects to try to improve their

understandability. Each single view appears to improve understandability and the

multiple views seem to complement each other further improving understandability.

Such derived requirements and their views can be used to safely develop and deploy

the components used in HISs.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xii

LIST OF FIGURES .xiii

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND . 7

2.1 Basic Definitions . 9
2.2 Illustrative Example . 10
2.3 Little-JIL Process Models . 18
2.4 FLAVERS Model Checker . 24
2.5 Interface Synthesis Methods . 34

3. DERIVATION APPROACH . 36

3.1 Basic Definitions . 38
3.2 HIS Subject Translator . 41
3.3 Pre-Requisite Check . 45
3.4 Direct Requirement Deriver . 46

3.4.1 FSA Extraction . 48
3.4.2 Guarantees . 51

3.5 Learning-Based Requirement Deriver . 53

3.5.1 L∗ Learner . 57
3.5.2 FLAVERS-Based L* Teacher . 60

ix

3.5.2.1 Membership Query . 60
3.5.2.2 Equivalence Query . 63

3.5.3 Guarantees . 66

3.6 Derived Requirement Permissiveness Classifier . 70

4. DERIVATION IMPROVEMENTS . 72

4.1 Derivation Optimizations . 73

4.1.1 Variable Modeling Alternatives . 75
4.1.2 Reset Dead Local Variables . 79
4.1.3 Channel Modeling Alternatives . 81
4.1.4 Incremental Membership Query . 87

4.2 Permissiveness Counterexample Generation Heuristics 89

4.2.1 Ensure the System Requirement is Satisfied 91
4.2.2 Select Terminating Node-Tuples . 92
4.2.3 Order of Node-Tuples in the Worklist . 93
4.2.4 Determine Previously Visited Node-Tuples . 93
4.2.5 Take N Steps Further . 94

5. DERIVATION EVALUATION . 97

5.1 Experimental Methodology . 98

5.1.1 Evaluation Metrics . 102
5.1.2 Requirement Deriver Results Ranking . 105

5.2 Experimental Results . 105
5.3 Discussion . 111
5.4 Preliminary Evaluation of Java Pathfinder Heuristics 112
5.5 Threats to Validity . 118

6. DERIVED REQUIREMENT VIEWS . 120

6.1 Procedure Abstraction View . 121
6.2 Modal Abstraction View . 123
6.3 Safe Alternatives View . 127
6.4 Evaluation . 130

7. RELATED WORK . 140

7.1 Compositional Verification . 140

x

7.2 Automated Synthesis Methods . 142

7.2.1 Scenario-based Development Frameworks . 143
7.2.2 Specification Mining Methods . 145
7.2.3 Interface Synthesis Methods . 146

7.3 Determining Requirements about the Human Participants
Interactions with Components Used in HISs . 148

8. CONCLUSIONS . 153

APPENDICES

A. BUILD NODE-TUPLE GRAPH ALGORITHM
DESCRIPTION . 159

B. LOW-LEVEL DERIVED REQUIREMENT ALPHABET
DESCRIPTION . 162

BIBLIOGRAPHY . 165

xi

LIST OF TABLES

Table Page

3.1 Correspondence between event sequences and paths 42

5.1 Derivation Optimizations Applied . 99

5.2 Derivation Heuristics Applied . 100

5.3 Subjects Used in Experiments . 101

5.4 Comparison of Query-Based Heuristics in Terms of
Permissiveness . 109

5.5 Summary of the top 5 ranked requirement derivers in terms of the
best performance with regards to maximum space needed 111

6.1 Mapping for the surgery derived requirement from call-return event
pairs to procedure abstraction events . 122

6.2 Summary of the applicable views for the derived requirements 131

6.3 Sets of Calling Context Events . 132

6.4 Mapping from Mode Change Events to Mode Name 133

6.5 Summary of Modal Abstraction View Results . 134

6.6 Mapping from Phase Change Events to Phase Name 135

6.7 Summary of Phase Abstraction View Results . 136

6.8 Summary of Safe Alternatives View Results . 138

B.1 Alphabets for the process and the component . 164

xii

LIST OF FIGURES

Figure Page

2.1 System requirement property for never overdose represented as an
FSA . 13

2.2 Pseudo-code for the abstract pump’s setDose procedure 14

2.3 View of the derived pump component requirement represented as an
FSA . 16

2.4 Pseudo-code for the concrete pump’s setDose procedure 17

2.5 View of the derived surgery process requirement represented as an
FSA . 19

2.6 Overall “performPumpHIS” model written in Little-JIL 20

2.7 Elaboration of the concrete “perform in-patient surgery” step 21

2.8 Elaboration of the “perform infusion” step . 22

2.9 Variable constraint for the setDose dose parameter with enumerated
type { LOW, HIGH } . 27

2.10 Portion of a TFG for the pump’s setDose procedure 28

2.11 System requirement property for never report a dose alert
(represented as event “setDose DoseAlert=TRUE”) 29

2.12 Portion of the node-tuple graph for the setDose procedure where each
node-tuple shows the TFG node (top) and the tuple (bottom) 30

3.1 Overview of our HIS-based requirement derivation approach 36

3.2 Non-deterministic node-tuple graph . 40

3.3 Overview of the direct requirement deriver . 47

xiii

3.4 Overview of the learning-based requirement deriver 55

3.5 Pseudo-code for the learner’s updateT method . 58

3.6 Pseudo-code for the updateT method that incorporates the
prefix-closed optimization . 59

3.7 Pseudo-code for the teacher’s membership query method 62

3.8 Pseudo-code for the teacher’s permissiveness counterexample
generation method . 66

4.1 Portion of the TFG for the setDose procedure constructed when the
first alternative for modeling the currLib , currDose , and
setDose DoseAlert variables is applied and the second alternative
for modeling the setDose dose variable is applied 77

4.2 Portion of the TFG for the setDose procedure shown in Figure 2.10
where the reset dead local variables optimization was applied to
the setDose dose variable . 80

4.3 Variable constraint for channel setDoseRetChn that stores a message
of boolean type . 82

4.5 Channel constraint for channel setDoseRetChn that stores a message
of boolean type . 85

4.7 Pseudo-code for the extended permissiveness counterexample
generation method that varies along the five dimensions (shown as
underlined) that parameterize some of the key helper methods 91

5.1 Performance of the top 5 ranked requirement derivers in terms of the
maximum space on the 5 largest subjects . 110

5.2 Performance of the top 5 ranked requirement derivers in terms of the
log of the time on the 5 largest subjects . 111

6.1 Implicit violation view of the surgery derived requirement 121

6.2 Procedure abstraction view of the surgery derived requirement (that
was also shown in Figure 2.5) . 124

6.3 Modal abstraction view of the surgery derived requirement 126

6.4 Safe alternatives view of the surgery derived requirement 129

xiv

A.1 Pseudo-code for the build node-tuple graph algorithm 161

xv

CHAPTER 1

INTRODUCTION

Human-intensive systems (HISs), where human participants need significant do-

main expertise to perform activities that affect the outcome of the system mission,

are becoming more prevalent. Many of these systems, such as certain medical proce-

dures, require the human participants to coordinate their activities among themselves

as well as with software applications and/or hardware devices. For such systems, it

is often difficult but important to determine requirements for individual software and

hardware components that are needed to ensure that the overall system requirements

are satisfied. For these systems, the HIS coordination is often complex, typically

involving non-deterministic choices, concurrent activities, and non-nominal (or ex-

ceptional) situations. When the HIS is taken into account when determining the

component requirements, the complex coordination makes it likely that some of the

various component usages may be misunderstood or even overlooked. Therefore some

of the component requirements may contain subtle errors or even be missing all to-

gether, potentially leading to overall system requirement violations that have dis-

astrous outcomes, such as patients being injured or even killed. In this thesis, we

investigated an automated requirement derivation approach that employs interface

synthesis methods developed for software systems (e.g., [4, 46]). The derive require-

ments for a particular component restricts the behaviors of that component to prevent

any violations of the system requirements.

Throughout this thesis, we will illustrate this requirement derivation approach on

a HIS that consists of a medical process for an in-patient surgery in which an infusion

1

pump is used to administer intravenous fluids and medications. One important system

requirement for such a system is that a patient never be administered a medication

overdose1. Many modern infusion pumps can be programmed with drug libraries for

particular areas of the hospital that for the drugs commonly used in those areas specify

the dosing limits (e.g., concentrations, units, and range of doses). For instance, the

drug library for an operating room typically allows a wider range of drugs and dosing

limits than other areas in the hospital. For the in-patient surgery medical process, a

clinician must configure a given infusion pump, shortened to pump in what follows,

for a particular drug library, enter the drug, enter the dose, etc., to ensure that the

pump issues the appropriate alerts. If during the surgery an exceptional situation

occurs, the patient with their attached pump is sometimes moved from the operating

room to another area of the hospital that uses a different drug library. If the pump

developers do not take into account such exceptional situations, a requirement that

states the pump must be reconfigured after being moved might be overlooked or,

perhaps more likely, the requirement might contain subtle errors.

Interface synthesis methods generally take as input a system implementation along

with an overall system requirement. Such methods focus on the interface between

a selected component and the remaining system. These methods produce an inter-

face automaton that restricts the sequences of the component procedure executions

to prevent any system requirement violations. For our work, each HIS in the case

studies is formally modeled as a composition of a selected component model and a

process model that describes the recommended ways to achieve the system mission,

including how that component will be used. In our setting, the synthesized interface

automata will be used as derived requirements on the interface between the compo-

nent and the process that, when met, ensure that the overall system requirements

1In a dual manner, another important system requirement is that a patient never be administered
a medication underdose.

2

are satisfied. The interface synthesis methods define the language of a synthesized

interface automaton to be safe when that automaton disallows all actual sequences of

the component procedure executions that may violate the overall system requirement

(e.g., disallows sequences that lead to overdoses). For this work, it is crucial that the

derived requirements are safe to prevent failures of the system mission. Ideally, these

requirements are also adequately permissive, meaning the automaton allows all ac-

tual sequences of the component procedure executions that always satisfy the system

requirement (e.g., allows sequences that lead to necessary doses).

For a process perspective, the model of the HIS consists of an imprecise component

model and a detailed process model in which the component will be used. The impre-

cise component model, in the least restrictive case, essentially allows the component

to behave in an arbitrary fashion, often leading to violations of the overall system

requirement. The derived requirement for the component restricts the wide range of

behaviors of the component to ensure that the overall system requirement is satisfied.

The derived component requirements can be used to help developers understand how

the recommended process impacts the component’s design and implementation, to

help certify that a component will be safely used by the recommended process, or to

help select a component to be safely used in the recommended process.

For a component perspective, the HIS model consists of a detailed component

model and an imprecise process model in which that component will be used. The

derived requirement for the process restricts the wide range of behaviors of the pro-

cess, in particular with regards to using the component, to ensure that the overall

system requirement is satisfied. The derived process requirements can be used to help

determine the class of processes in which such a component can be safely used, develop

training materials for human participants to learn how to safely use the component, or

to help monitor the process at run-time to ensure the component is safely used. The

interface synthesis methods are typically applied from the component perspective.

3

In previous work, we investigated such an automated requirement derivation ap-

proach [23] that built on interface synthesis methods (e.g., [4]) that employ regular

language learning algorithms (e.g., [6]) and model checking techniques (e.g., [19]).

Specifically, the learning algorithm iteratively refines the current derived requirement

based on counterexamples generated by the model checker. The final derived re-

quirement is represented as a minimal deterministic finite-state automaton (FSA).

This requirement is guaranteed to be safe but not necessarily adequately permissive.

Because this learning-based interface synthesis method often did not scale well, we

investigated several learning and model checking optimizations (e.g., [15, 25]). All

of these optimizations improved the performance of the requirement derivation but

some of the model checking optimizations interacted with the counterexample genera-

tion, affecting the permissiveness of the derived requirements. Thus, we investigated

several counterexample generation heuristics (e.g., [41]) to try to increase the per-

missiveness of the derived requirements. Specifically, we wanted to generate more

permissiveness counterexamples, meaning actual system executions disallowed by the

derived requirement but that always satisfy the system requirement. The learning-

based requirement deriver refines the derived requirement to allow the permissiveness

counterexamples. Our goal is to recommend a combination of the optimizations and

heuristics that makes the best tradeoff for the learning-based requirement deriver

results between performance and permissiveness.

For comparison purposes, we also investigated a direct interface synthesis method

(e.g., [12,36]) that first uses a model checker to generate the full reachability graph of

the system model. This method then extends regular language algorithms (e.g., [1])

to convert from the reachability graph, which is essentially represented as a non-

deterministic FSA, to a minimal deterministic FSA. The method produces derived

requirements that are guaranteed to be safe and adequately permissive. To improve

the performance of the direct interface synthesis method, we incorporated the same

4

model checking optimizations as we did for the learning-based interface synthesis

method.

The interface synthesis methods, however, often produce derived requirements

that reflect the inherent complexity of the systems and therefore are difficult to un-

derstand. Some of these methods (e.g., [74]) produce derived requirements specified

in higher-level representations such as statecharts to improve their understandability.

Alternatively, other of the methods, including the direct and learning-based methods

that we considered, produce derived requirements specified as minimal deterministic

FSAs. Thus, we create different views of the FSAs that abstract away or highlight

certain aspects of the FSAs to improve their understandability. This allows multiple

interface synthesis methods to share the views. This also allows the same FSA to

apply multiple views to further improve understandability.

For this evaluation, we developed a toolset that supports such an automated re-

quirement derivation approach and applied that toolset to case studies from two im-

portant domains, healthcare (e.g., [23]) and election administration (e.g., [64])). This

toolset provides support for a learning-based requirement deriver that incorporates

the learning and model checking optimizations along with the counterexample genera-

tion heuristics. The toolset also provides support for a direct requirement deriver that

incorporates only the model checking optimizations. Additionally, the requirement

derivation toolset provides support to automatically build the derived requirement

views. Our approach was flexible enough to automatically derive requirements that

provided insights about the component, process, or both. We found that each op-

timization applied improved the performance of both interface synthesis methods.

The direct interface synthesis method scaled well and produced derived requirements

that were safe and adequately permissive. For the learning-based interface synthesis

method, however, we needed to carefully tailor the permissiveness counterexample

generation heuristics for the optimizations applied in order to improve permissiveness

5

without significantly worsening performance. Based on our experimental results, we

identified a single heuristic that, when combined with all optimizations being applied,

usually led to the best derivation results in terms of permissiveness and performance.

We applied multiple views, whenever possible, to each derived requirement which

seemed to improve the understandability of that requirement and showed that the

views can complement each other.

In this thesis, Chapter 2 provides background on the HIS modeling language, the

model checker, and the interface synthesis methods used. Chapter 3 more fully de-

scribes our automated requirement derivation approach, which employs either a direct

or learning-based interface synthesis method. Chapter 4 describes optimizations to

both interface synthesis methods to improve their performance and counterexample

generation heuristics for the learning-based interface synthesis method to improve

the permissiveness of the derived requirements. Chapter 5 describes our experiments

to evaluate the effect of the optimizations and heuristics on the performance of the

requirement derivers as well as on the permissiveness of the derived requirements.

Chapter 6 describes multiple views of the derived requirements and their impact on

the understandability of the derived requirements. Chapter 7 discusses related work

and Chapter 8 presents our conclusions and some possible directions for future work.

6

CHAPTER 2

BACKGROUND

As described in the introduction, our automated requirement derivation approach

takes as input a formal model of the overall HIS along with one of its system require-

ments. For presentation purposes, we consider each HIS model to be composed of

a selected component model and a process model. In general, there may be multi-

ple component models, multiple process models, or both. The process model speci-

fies the recommended sequences of activities that must be performed by the human

participants and components to achieve the overall system mission. For this work,

each component is represented by its interface (represented by a set of procedure

definitions) that may be used by the remaining system (usually represented by pro-

cedure executions consisting of procedure call/return pairs). This approach is built

on interface synthesis methods that employ model checking techniques. The derived

requirements (often represented by interface automata) restrict the sequences of the

selected component’s procedures executed by the process to prevent any overall sys-

tem requirement violations. We next provide overviews of this requirement derivation

approach, the HIS modeling language, the model checking techniques, and the inter-

face synthesis methods.

For this work, the HIS models must reflect the real-world complexity, capturing

concurrent activities, non-deterministic choices, human participants communications

with each other and the components, and exceptional situations. They also must

have precisely defined semantics to support formal analyses such as model checking

techniques. We chose to write the HIS models in the Little-JIL process modeling

7

language [13], which is sufficiently expressive and precise for our purposes. In Little-

JIL, an overall system is hierarchically decomposed into the individual activities (or

steps) that the human and automated components must perform to achieve the system

mission. These steps can be thought of as procedures.

The model checking techniques verify that all paths through a system model sat-

isfy a given overall system requirement. The verification algorithms often explicitly

or symbolically generate a reachability graph that explores the possible reachability

nodes that encode the internal state of the system model such as program counters

and run-time variable values. Some of the verification algorithms can also generate

counterexample paths, meaning paths through the reachability graph that demon-

strate possible system requirement violations. For this work, a given HIS model

written in Little-JIL annotated with the system events can be automatically trans-

lated to what is essentially a labeled transition system [8]. That labeled transition

system can then be automatically translated to the input formalisms of two model

checkers, FLAVERS and Spin. The translation includes multiple optimizations. For

this work, we use FLAVERS that supports various model checking optimizations and

verification algorithms to generate the full reachability graph as well as to iteratively

generate counterexamples.

Interface synthesis methods employ various techniques to automate the reason-

ing about the system requirements and system model such as reachability analysis

(e.g., [36]), learning algorithms (e.g., [4]), counterexample-guided abstraction refine-

ment (e.g., [46]), and game theory (e.g., [77]). In the next chapter, we describe

a direct interface synthesis method based on reachability analysis techniques that

employs a model checker to build the full reachability graph of the system model.

Additionally, we describe a learning-based interface synthesis method that employs a

learning algorithm to iteratively refine a derived requirement based on counterexam-

ples generated by a model checker. Both interface synthesis methods considered use

8

the model checker to determine whether or not a given event sequence may violate

the overall system requirement. If so, the derived requirement should disallow that

event sequence. If not, the derived requirement should allow the event sequence. In

the following sections, we will more fully describe the illustrative example, Little-JIL,

FLAVERS, and the interface synthesis methods.

2.1 Basic Definitions

We use FSAs to specify the overall system and derived requirements because they

can express a wide range of interesting requirements and are formally defined to sup-

port automated analyses such as model checking techniques. Each FSA specifies the

intended or unintended sequences of the system events. For the requirement deriva-

tion, the system events usually correspond to the selected component’s procedure

calls and their returns along with any calling contexts.

We specify that each call to a key step (or procedure) (e.g., setLib) on given input

parameter values (e.g., ICU) corresponds to a call event denoted as follows:

• call(procedureName, inputParameterV alues) (e.g., call(setLib, ICU))

We also specify that each return from that procedure (e.g., setLib) with particular

output parameter values (e.g., OK) corresponds to a return event denoted as follows:

• return(procedureName, outputParameterV alues) (e.g., return(setLib, OK))

On the other hand, we specify that each return from the procedure with specific

exceptions thrown corresponds to a return event denoted as follows:

• return(procedureName, exceptionsThrown)

Additionally, we specify calling context events. For instance, we specify that the start

of the step “administer ICU care” corresponds to the calling context event enterICU

while the completion of that step corresponds to the calling context event leaveICU .

9

Thus, one partial system execution trace for the illustrative example is as follows:

enterICU , call(setLib, ICU), return(setLib, OK), leaveICU .

For this work, we use FSAs that are deterministic, meaning for each state s in the

FSA and for each event e in the FSA’s alphabet there exists at most one transition

from FSA state s on event e. We also use FSAs that are total, meaning for each state

s in the FSA and for each event e in the FSA’s alphabet there exists a transition from

FSA state s on event e. If an FSA is not total, we add a special violation state that

is a non-accepting state and a trap state, meaning the violation state has a transition

to itself for every event in the alphabet. Therefore any event sequence that reaches

the violation state will remain in the violation state. For each FSA state s and for

each event e in the FSA’s alphabet, if there does not exist a transition from FSA

state s on event e, then we then add a transition from FSA state s on event e to the

FSA’s violation state. Given an FSA A with alphabet ΣA, we use L(A) to denote the

language of FSA A, meaning all of the event sequences from Σ∗A that are accepted by

A. In a similar manner, we use ¬L(A) to denote the complement of the language of

FSA A, meaning all event sequences from Σ∗A that are rejected by A.

2.2 Illustrative Example

For each of our case studies, a HIS model is composed of a component model

and a process model in which that component will be used. The component models

were based on available user manuals and how the components are to be used in the

processes, as well as consultation with domain experts. The process models in which

the components are to be used were developed in prior work (e.g., [8, 64]) and are

based on extensive elicitation and validation efforts involving both computer scientists

and experts in the relevant domains. In the introduction, we mentioned one of our

case studies [7] that considers a model for a HIS that consists of a component model

for an infusion pump and a medical process model for an in-patient surgery in which

10

the pump will be used. The overall system requirement was taken directly from the

safety criteria discussed in [7]. For this illustrative example, we first provide more

details about the HIS model and the overall system requirement. We then briefly

describe how to apply our automated requirement derivation approach from both the

process perspective and the component perspective.

For the illustrative example, we use a very simplified model of a real-world infusion

pump, shortened to pump in what follows. There are only two drug libraries modeled,

a drug library for an OR and a drug library for an ICU. Each drug library contains

a single drug, and the only dosing limits modeled are a minimum and maximum.

The drug doses are abstracted as either LOW or HIGH. For the pump, we consider

only the following three procedures: setLib, setDose, start. The setLib procedure

inputs a primary care area (either OR or ICU) and configures the pump with the

drug library associated with that area. The setDose procedure inputs a drug dose

(either LOW or HIGH) and checks whether or not that dose is within the dosing

limits for the configured drug library. If so, this procedure stores the configured dose

and then returns OK (i.e. does not report a dose alert). If not, the procedure throws

a DoseExceedsLimits exception (i.e. does report a dose alert). In the introduction,

we described how the OR drug library permits both LOW and HIGH doses but the

ICU drug library permits only LOW doses. The start procedure checks whether

or not there is a configured dose. If so, this procedure administers that dose and

then returns OK. If not, the procedure throws a DoseAlert exception, specifically a

MissingDose exception.

In general for the in-patient surgery process model, we elaborated those steps

where the medical clinicians interacted with the infusion pump, based on a demon-

stration given by Professor Elizabeth Henneman from the University of Massachusetts

College of Nursing. At a high-level of abstraction, an in-patient surgery process model

consists of five key steps: checking the patient into the hospital, performing the op-

11

eration on that patient, administering ICU care if needed, monitoring the patient

during recovery, and checking that patient out of the hospital. The pump is used in

the context of either the OR or the ICU.

Each high-level system requirement is represented as one or more low-level prop-

erties. Each property is specified as an FSA that captures the intended or unintended

behaviors as a set of event sequences. Figure 2.1 shows the system requirement prop-

erty mentioned in the introduction specified as an FSA. This property informally

states that when a pump is in an ICU and is set to deliver a dose over the allowed

limit for the ICU, it must report a dose alert. In the simplified pump component

model, the ICU drug library specifies that a LOW dose is within the dosing lim-

its but a HIGH dose exceeds the dosing limits. For the property, the alphabet, or

set of events, is {enterICU, leaveICU, call(setDose,HIGH), return(setDose,OK),

return(setDose,DoseAlert)}. There are 4 states and 16 transitions.

In Figure 2.1, each state is shown as a circle annotated with a unique name.

Since in the medical process model the medical clinicians first use the pump outside

the ICU, specifically in the OR, the start state is annotated with 1 (denoted by the

right arrow). Additionally since this model allows the pump to remain in the OR,

start state 1 is also an accepting state (denoted by the inner concentric circle). Each

transition from a given state to a specified state on a particular event is shown as

an arc between those two states annotated with that event. To illustrate, the pump

may be moved from an OR to an ICU so there is a transition from the start state 1

to state 2 annotated with event enterICU . In this figure, the violation state and its

transitions are shown in red. For simplicity, the figures in the rest of this thesis that

show the FSAs usually do not show the violation states and their transitions. Thus if

a state does not show a transition annotated with a particular event in the alphabet,

then there is implicitly a transition on that event to the violation state. For the never

overdose property represented as an FSA, one event sequence that satisfies this FSA

12

is enterICU , leaveICU . Alternatively, an event sequence that violates the FSA is

enterICU , call(setDose,HIGH), return(setDose,OK), leaveICU .

1

enterICU

leaveICU

call(setDose,HIGH),
return(setDose,DoseAlert),

return(setDose,OK)

3
return(setDose,DoseAlert)

2

return(setDose,OK)

call(setDose,HIGH)

VIOL

leaveICU
enterICU,

return(setDose,DoseAlert)
enterICU,

call(setDose,HIGH),
return(setDose,OK)

enterICU,
leaveICU,

call(setDose,HIGH),
return(setDose,DoseAlert),

return(setDose,OK)

Figure 2.1: System requirement property for never overdose represented as an FSA

For the process perspective, our approach conceptually takes as input the “never

overdose” system requirement along with a HIS model composed of a concrete in-

patient surgery process model and a very abstract pump component model. This

approach produces a derived pump component requirement. In the process model,

the medical clinicians may use the pump in the context of an OR or an ICU. For

the nominal scenario, the clinician must first configure the pump using the setLib

and setDose procedures and then use the start procedure to administer the medi-

cation or fluid to the patient. Figures 2.7 and 2.8 show portions of the in-patient

surgery process model written in Little-JIL. The abstract pump component model

13

does not store the pump’s internal state and does not implement the procedures’

internal logic. In related work (e.g, [4, 35]), the component models are written in

programming languages such as Java. For this work, the models are written in Little-

JIL. For presentation purposes, the pump’s procedures are written as pseudo-code

that indicates how the pump’s internal logic has been abstracted away or concretely

implemented. To illustrate, Figure 2.2 shows pseudo-code for the abstract pump’s

setDose procedure. In this figure, this procedure non-deterministically chooses (line

2) to either not report a dose alert by returning OK (line 3) or to report a dose

alert by throwing a DoseExceedsLimits exception (line 5). The return and throw

statements are annotated with the corresponding return events. Such an abstract

pump component model permits the pump to behave in an arbitrary manner, which

may violate the system requirements. Given the system requirement shown in Figure

2.1 and the HIS model described in the previous sentences, our requirement deriva-

tion approach produces the derived component requirement shown in Figure 2.3. For

this figure, we actually show the procedure abstraction view of the derived compo-

nent requirement that will be described in Section 6.1. In this view, each procedure

call event (e.g., call(setDose,HIGH) was paired with its corresponding return event

(e.g., return(setDose,DoseAlert) to form a procedure execution event (e.g., set-

Dose(HIGH) DoseAlert)).

1: procedure setDose(dose: in Dose) throws DoseExceedsLimits
2: if (choose() = false) then
3: return . Event return(setDose,OK)
4: else
5: throw DoseExceedsLimits . Event return(setDose,DoseAlert)
6: end if
7: end procedure

Figure 2.2: Pseudo-code for the abstract pump’s setDose procedure

14

This requirement informally specifies that the nominal scenario is to set the drug

library, set the dose, and then start the infusion. The requirement also specifies an

exceptional scenario where after the pump is configured for the ICU that pump can-

not be configured with a HIGH dose and therefore reports a dose alert. In this figure,

each state was automatically annotated with a unique integer ID and manually an-

notated with both the configured drug library and dose. Each transition is annotated

with an event that corresponds to one of the pump’s procedures (e.g., the event set-

Dose HIGH DoseAlert). Initially, the pump is configured with no drug library and

no dose (represented by start state 1). The pump may be configured with either of

the two drug libraries, in particular the ICU (represented by states 2 and 4) or the

OR (represented by states 3 and 5). If the pump is configured for the ICU, then the

pump may be configured with a LOW dose (represented by state 4). On the other

hand, if the pump is configured for the OR, then the pump may be configured with

either a LOW or HIGH dose (represented by state 5).

For the component perspective, this approach basically takes as input the “never

overdose” system requirement along with a HIS model composed of a very abstract

in-patient surgery process model and a concrete pump component model. The ap-

proach produces a derived surgery process requirement. In more detail, the concrete

pump component model stores its internal state in global variables and for each proce-

dure implements the internal logic to check and update that internal state, including

reporting dose alerts. Specifically, the pump component model declares two global

variables, one to store the configured drug library (currLib) and another to store

the configured dose (currDose). The pump component model also declares and im-

plements the setLib, setDose, and start procedures. Figure 2.4 shows pseudo-code

for the concrete setDose procedure that indicates the pump’s internal logic for that

procedure. This procedure first checks the current run-time value of the currLib

global variable (line 2). If the currLib is OR, the procedure first sets the currDose

15

��
��
��
��
�

��
�
�
�

�
�

��
�
�
�

��
�
�
�

��
��
��
��
�
�
��
�
�

��
��
�
�

��
�
�
�

��
��
��
��
�
��
�
�

��
��
��
��
�
��
�
��
�
�
��
�
��
��
�

��
��
��
��
�
�
��
�
�

��
��
��
��
�
��
�
�

��
��
�
�
�

��
�
�

��
��
��
��
�
�
�
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��
�
�
�
��
�
�
��
�
��
��
�

��
��
��
��
�
��
�
�
�

��
��
��
��
�
��
�
��
�
�
��
�
��
��

��
��
�
�

��
�
�
��
�

�
��
�

��
��
��
��
�
��
�
��
�
�
�

��
��
��
��
�
�
�
��
�
�

��
�
��
��
�
�
��
��
��
��
�

��
��
��
��
�
��
�
��
�
�
��
�
��
��
�

��
��
��
��
�
�
��
�
�
�

��
��
��
��
�
�

��
��
��
��
�
��
�
�

��
��
��
��
�
�
�
��
�
�

��
��
��
��
�
�
��
�
�

��
��
�
��
��
�
�
��
�
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
��
��
��
�
��
�
�
�

��
��
�
��
��
��
�
��
�
�
��
�
��
��
�

��
��
��
��
�
�

��
��
��
��
�
��
�
��
�
�
�

��
��
��
��
�
�
�
��
�
�

F
ig

u
re

2.
3:

V
ie

w
of

th
e

d
er

iv
ed

p
u
m

p
co

m
p

on
en

t
re

q
u
ir

em
en

t
re

p
re

se
n
te

d
as

an
F

S
A

16

global variable to the dose input parameter (line 3). The procedure does not report a

dose alert and returns OK (line 4). If the currLib is ICU (line 5), then the setDose

procedure checks the current run-time value of the dose input parameter (line 6). If

the dose is HIGH (line 6), then the procedure does report a dose alert by throwing

a DoseExceedsLimits exception (line 7). If the dose is LOW (line 8), this proce-

dure first sets the currDose global variable to that dose (line 9) and then returns

(line 10). The return and throw statements are annotated with their corresponding

return events. The abstract process model for the in-patient surgery basically uses

the pump’s procedures in an arbitrary manner. In more detail, the surgery process

model contains a main loop where on each iteration one of the pump’s procedures is

used. The surgery process model non-deterministically chooses when to stop looping

and which of the pump’s procedures is used. Given the system requirement shown in

Figure 2.1 and the HIS model described in the preceding sentences, this requirement

derivation approach produces the derived process requirement shown in Figure 2.5.

In this figure, we actually show the procedure abstraction view of the derived process

requirement.

1: procedure setDose(dose: in Dose) throws DoseExceedsLimits
2: if (currLib = OR) then
3: currDose ← dose
4: return . Event return(setDose,OK)
5: else if (currLib = ICU) then
6: if (dose = HIGH) then
7: throw DoseExceedsLimits . Event return(setDose,DoseAlert)
8: else if (dose = LOW) then
9: currDose ← dose
10: return . Event return(setDose,OK)
11: end if
12: end if
13: end procedure

Figure 2.4: Pseudo-code for the concrete pump’s setDose procedure

17

This requirement informally specifies that the nominal scenario is to move the

pump to a primary care area, set the drug library for that area, set the dose, and

then start the infusion. The requirement also specifies an exceptional scenario where

after the pump is configured for the ICU that pump cannot be configured with a

HIGH dose. In this figure, each state was automatically annotated with a unique

integer ID and manually annotated with the primary care area (or location) along

with both the configured drug library and dose. Each transition is annotated with an

event that corresponds to one of the pump’s procedures being executed (e.g., the event

setDose(HIGH,DoseAlert)) or moving the pump to a new primary care area (e.g.,

the event enterICU corresponds to moving the pump into an ICU).1 Within the in-

patient surgery process model, the pump is initially located in the OR. Additionally,

the pump is initialized with the most restrictive drug library, which in this model

is the ICU’s drug library, along with no dose. Thus, the start state 1 is annotated

with loc-OR, lib-ICU, NONE. The pump may be configured with either of the two

drug libraries, in particular the ICU (represented by states 1, 2, 3, and 5) or the OR

(represented by states 4, 6, 7, and 8). If the pump is configured for the ICU, then the

pump may be configured with a LOW dose (represented by state 5). On the other

hand, if the pump is configured for the OR, then the pump may be configured with

either a LOW or HIGH dose (represented by state 7).

2.3 Little-JIL Process Models

Each Little-JIL process model precisely captures how to perform the individual ac-

tivities needed to achieve the system mission. The model contains three main parts,

a resource repository, an artifact collection, and a set of coordination specification

diagrams. The resource repository defines which agents, either human agents (e.g.,

1This illustrates a derived requirement that uses the calling context (i.e. the primary care area).

18

��
��
��
�
�
�

��
�
��
�
�
�

�
�
�
�

��
��
��
��
�
��
��

��
��
�

��
��

��
��
�
��

�
��
�
��
��

��
��
�

��
��
��
��
�
�
��
�
�

��
��
��
��

�
�

��
�
��
�
�
�

�
�
�
�

��
��
��
�
�

��
��
��
�
�
�

��
�
��
�
�
�

�
�
�

��
��

��
��
�
�
�

��
�
�

��
��
��
�
�
�

��
�
��

�
�

�
�
�
�

��
��
��
��

�
��
�
�

��
��

��
�
�

��
��
��
��
�
��
��

��
��
�

��
��

�
��
��

��
�
��
�
��
��

��
��
�

��
��
��
��
�
�
��
�
�

��
��
��
��

�
�

��
�
��
�
�
�

�
�
�

��
��

��
��
�
�
�

��
�
�

��
��
��
��

�
�

��
�
��

�
�

�
�
�
�

��
��
��
��

�
��
�
�

��
��

��
��
�
��

�
��
�
��
��

��
��
�

��
��
��
��
�
�
�

��
��
��
��
�
�
��
�
�

��
��

�
��
��
�
�

��
�
�

��
��
��
��

�
��
�
�

��
��
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��
�
��
��

��
��
�

��
��
��
��

�
��
�
�

��
��
��
�
�

��
��
��
�
�
�

��
�
��

�
�

�
�
�

��
�

�
��

�

��
��

��
��
�
��

�
��
�
�
�

��
��

��
��
�
�
�

��
�
�

��
��

��
��
�
��

�
��
�
��
��

��
��
�

��
��
��
��
�
�
�

��
��
��
��
�
�
��
�
�

��
��

��
�
�

��
��

�
��
��
�
�

��
�
�

��
��
��
��

�
��
�
�

��
��
��
��
�
�
��
�
�

��
��

��
�
�

��
��
��
��
�
��
��

��
��
�

��
��
��
��

�
��
�
�

��
��
��
��

�
�

��
�
��

�
�

�
�
�

��
��

�
��
��
�
�

��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��

�
��
�
�
�

��
��
��
��
�
�

��
��

��
��
�
��

�
��
�
�
�

��
��

��
��
�
�
�

��
�
�

��
��
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��

�
��
�
�
�

��
��
��
��
�
�

��
��

��
�
�

��
��

��
��
�
�
�

��
�
�

F
ig

u
re

2.
5:

V
ie

w
of

th
e

d
er

iv
ed

su
rg

er
y

p
ro

ce
ss

re
q
u
ir

em
en

t
re

p
re

se
n
te

d
as

an
F

S
A

19

anesthesiologists, nurses) or automated agents (e.g., electronic order entry system,

pump), perform the activities. The artifact collection defines what artifacts are taken

as input and/or produced as output by the activities. For instance, an artifact could

be a (communication) channel, a parameter, or an exception. Each coordination spec-

ification diagram is a visual representation of a process or sub-process that consists of

a hierarchical decomposition of steps (essentially procedures). Each step represents

how an activity is performed by a particular agent using the input artifacts to produce

the output artifacts.

For the motivating example, Figure 2.6 shows the “performPumpHIS” step that

represents the overall HIS model written in Little-JIL. In the Little-JIL figure, the

“performPumpHIS” step concurrently executes (denoted by the equal sign on the

left hand side of the step bar) the “performInPatientSurgery” step that represents

the process model and the “IteratePump” step that represents the component model.

Both the “performInPatientSurgery” and ”IteratePump” steps are elaborated in other

diagrams. In the previous section, we already provided a high-level description of the

“IteratePump” step elaboration. From the process perspective, we next describe the

“performInPatientSurgery” step elaboration.

performPumpHIS

IteratePumpperformInPatientSurgery

Figure 2.6: Overall “performPumpHIS” model written in Little-JIL

For the process perspective, the “performInPatientSurgery” step corresponds to a

concrete in-patient surgery process model while the “IteratePump” step corresponds

20

to a very abstract pump component model. The “performInPatientSurgery” step

shown in Figure 2.7 sequentially executes (denoted by the right arrow on the left

hand side of the step bar) the following substeps: “perform check-in”, “perform

surgery activities”, “perform check-out.” The “perform surgery activities” step may

be repeated zero or more times (denoted by the ‘*‘ on the incoming arc). This

step sequentially executes the “perform operation” step, optionally followed by the

“administer ICU care” step (denoted by the ’?’ on the incoming arc), and lastly the

“perform post-operative care” step. Both the “perform operation” and “administer

ICU care” steps use the “perform infusion” step shown in Figure 2.8 to configure the

pump and then to administer the medication or fluid to the patient.

perform check-in perform surgery activities

perform operation

verify patient ID perform infusion

administer ICU care

perform infusion

administer post-operative care

perform check-out

performInPatientSurgery

?

*

* *

Figure 2.7: Elaboration of the concrete “perform in-patient surgery” step

In this figure, the “perform infusion” step sequentially executes the “set library for

pump” substep followed by the “configure and administer dose” substep to administer

a prescribed medication or fluid to the patient in a particular primary care area

of the hospital. The step “set library for pump” takes as input the area’s drug

library either OR or ICU and returns no outputs denoted OK (shown in the yellow

note below the step bar). This step uses the pump’s setLib procedure. The step

21

“configure and administer dose” may be executed zero or more times. This step first

performs the step “set dose for pump” that takes as input the entered dose either

LOW or HIGH and then either returns no outputs denoted OK or else throws a

DoseExceedsLimits exception. This step uses the pump’s setDose procedure. If a

DoseExceedsLimits exception is thrown, then the handler “respond to dose exceeds

limits alert” is performed. If not, then the step “administer infusion” may optionally

be performed. This step first performs the step “start pumping” that may throw

a MissingDose exception type. This step uses the pump’s start procedure. If a

MissingDose exception is thrown, then the handler “respond to missing dose alert”

is performed. If not, then the step “stop pumping” is performed. The medical

clinician then decides either to repeat this entire sequence, assuming that dosage is

not entered correctly (i.e. mistyped a number), or to not administer the dosage at all

until double checking with someone else that the dosage was the appropriate one.

perform infusion

set library for pump configure and administer dose

set dose for pump respond to dose exceeds limits alertadminister infusion

start pumping respond to missing dose alertstop pumping

*

?

- Input Dose (either LOW or HIGH)
- May throw DoseExceedsLimits

- May throw MissingDose

Handles DoseExceedsLimits

Handles MissingDose

- Input DrugLibrary (either OR or ICU)

Figure 2.8: Elaboration of the “perform infusion” step

For both perspectives, we next provide a low-level description of how the HIS

model represents the environment (e.g., in-patient surgery process) executing one

22

of the selected component’s procedures (e.g., the pump’s setDose procedure). This

model performs the following sequence of system activities:

1. The environment calls one of the selected component’s procedures with any

input parameter values (e.g., call(setDose,HIGH)),

2. That component executes the named procedure on the given input parameter

values (e.g., setDose(HIGH))

3. The environment returns from that procedure with either any output parameter

values or any exceptions thrown (e.g., return(setDose,DoseAlert)).

For this work, the environment and component are executing in parallel and thus

the procedure calls must be treated as remote procedure calls. We chose to model

the remote procedure calls with (communication) channels. Each channel contains a

buffer of messages. The send method takes as input a given message, blocks waiting

until the channel’s buffer is not full, and adds that message to the buffer. On the

other hand, the receive method blocks waiting until the buffer is not empty, removes

a message from the buffer, and outputs that message. For the remote procedure calls,

the call system activity is broken down as follows:

1.1) The environment sends a procedure call message to a particular component’s

call channel (e.g., pumpCallChn). That procedure call message encodes the

procedure name and any input parameter values (e.g., call(setDose,HIGH)).

1.2) That component receives a procedure call message from its call channel and

then decodes that message.

In a dual manner, the return system activity is decomposed as follows:

3.1) The component sends a procedure return message to that procedure’s return

channel (e.g., setDoseRetChn). That procedure return message encodes any

output parameter values or exceptions thrown (e.g., return(setDose,DoseAlert)).

23

3.2) The environment receives a procedure return message from the procedure’s

return channel and then decodes that message.

2.4 FLAVERS Model Checker

FLAVERS (FLow Analysis for the VERification of Systems) [29] checks whether

or not all potential executions of a system model satisfy a set of user-defined prop-

erties. The system model and properties are event-based, where an event represents

a system activity such as a communication, a procedure call2, or a variable being

defined. FLAVERS models the system as a trace flow graph (TFG) that is essentially

a collection of control flow graphs (CFGs), one CFG for each thread of control, where

extra edges are added between nodes in different CFGs to explicitly represent the

possible thread inter-leavings. Each property is specified as an FSA. An FSA has its

transitions labeled with events as opposed to the TFG that has its nodes labeled with

events. FLAVERS checks whether all potential paths through the TFG satisfy the

property. If not, then FLAVERS may generate a counterexample path to illustrate

the potential property violation.

To make the analysis tractable, the TFG is imprecise but conservative. This

means that the TFG may allow paths that do not correspond to actual executions

of the system. For instance, the analyst may abstract away the run-time value of a

particular variable. This could lead to taking a branch on one value of that variable

and then taking a subsequent branch on a different value of the same variable. Thus,

if FLAVERS determines that no path can lead to a violation of the property, we

know that no actual system execution trace can violate it. But when FLAVERS

finds a path that leads to a property violation, we do not know for certain that this

path corresponds to an actual execution of the system. The analyst can incrementally

2In Little-JIL, all of the steps are essentially treated as procedures.

24

refine the TFG to make it more precise by specifying additional feasibility constraints

that restrict the system behaviors. Each feasibility constraint is also encoded as an

FSA that contains a special violation state that is entered when infeasible paths are

encountered. The violation state is a trap state that once entered cannot be exited.

When the user provides constraints, FLAVERS determines whether any potential

path through the TFG that is allowed by the constraints can violate the property.

The worst case complexity of FLAVERS is O(N2 · P · C1 · . . . · Cm) where N is

the number of nodes in the TFG, P is the number of states in the property, m is the

number of constraints, and Ci is the number of states in constraint i. In the following,

we give more details about the TFGs, the constraints, and the verification algorithms

that determine whether any potential path through the TFG that is allowed by the

constraints can violate the property.

The TFG supports single-entry/single-exit semantics, meaning that there is a

unique initial node of the TFG and a unique final node of the TFG. Each TFG node

is labeled with either a system event or τ , a special “empty” event. For instance, the

initial and final nodes are labeled with τ . The local TFG edges between nodes in

the same CFG capture the intra-thread control flow. Additionally, the may happen

in parallel algorithm [57] is used to compute the may immediately precede (MIP)

edges between nodes in different CFGs that capture the inter-thread control flow. To

illustrate, the pump example contains three threads of control for the system, the

in-patient surgery process, and the pump. Since the process and pump are executing

concurrently, the process and pump will have MIP edges between some of the nodes

of their respective CFGs. In FLAVERS, the system execution traces are represented

as paths through the TFG that start at the unique initial node, follow the local and

MIP edges, and end at one of the TFG nodes. The potential terminating system

execution traces correspond to the paths through the TFG that end at the unique

final node.

25

Analysts commonly use the the following three kinds of constraints in FLAVERs:

context constraints to model aspects of the environment, variable constraints [29,

Section 6.1] to track the run-time values of variables, and task constraints [29, Section

6.2] to track the run-time program counters of threads. The context constraints must

be manually specified by the analyst. Both the variable and task constraints can

be automatically built by FLAVERS. For instance, FLAVERS can automatically

build variable constraints that track the run-time values of variables of type boolean,

enumerated, or integer range. To illustrate, Figure 2.9 shows the variable constraint

for variable setDose dose with enumerated type {LOW, HIGH}3. In each variable

constraint (e.g., setDose dose), there is a state for every possible value of the type

of the variable (e.g., LOW, HIGH) and an UNKNOWN value (shortened to UNK).

The state for the UNKNOWN value is set as the start state and all states that

correspond to values of the variable are set as accepting states. Additionally, there

are transitions labeled with the events that set (e.g., “setDose dose=LOW”) and test

(e.g., “setDose dose==LOW”) the values of the variable. Lastly, there is a special

VIOLATION state (hidden to simplify the figure) that is entered when a path through

the TFG is infeasible. For instance, a path through the TFG that contains a TFG

node labeled with event “setDose dose=HIGH” cannot then be immediately followed

by another TFG node labeled with event “setDose dose==LOW’ because that path

is infeasible. That violation state is a trap state so will never be exited.

Because the motivating example produces a TFG with around a 100 nodes, we

consider only a portion of the motivating example in what follows, specifically the

pump’s setDose procedure shown in Figure 2.4. That procedure is modeled by the

portion of the TFG shown in Figure 2.10. For clarity, this TFG shows the intra-thread

control flow but not the inter-thread control flow, in particular the TFG does not show

3For presentation purposes, we used the string names of the enumerated type literals (e.g., LOW)
but in practice we actually used the ordinal values (e.g., 0) of the enumerated type literals.

26

setDose_dose=HIGH,
setDose_dose==HIGHsetDose_dose=LOW,

setDose_dose==LOW

setDose_dose=HIGH

setDose_dose=LOW

setDose_dose=UNK

setDose_dose=UNK

setDose_dose=UNK,
setDose_dose==UNK,
setDose_dose!=LOW,
setDose_dose!=HIGH

UNKUNK

LOWLOW HIGHHIGH

setDose_dose=LOW,
setDose_dose==LOW,
setDose_dose!=HIGH,
setDose_dose!=UNK

setDose_dose=HIGH,
setDose_dose==HIGH,
setDose_dose!=LOW,
setDose_dose!=UNK

Figure 2.9: Variable constraint for the setDose dose parameter with enumerated type
{ LOW, HIGH }

the MIP edges from/to other threads in the TFG or any necessary communication

over channels, which will be described in Section 4.1.3. In the TFG figure, each TFG

node is labeled with a unique ID and either a system event or τ . The TFG node with

ID 0 is the unique initial node and the TFG node with ID 11 is the unique final node.

The procedure is also modeled by variables constraints for the currLib , currDose ,

setDose dose, and setDose DoseAlert variables such as the variable constraint shown

in Figure 2.9. Each Little-JIL statement (e.g., assignment statement) is translated

to an atomic block. For instance, the assignment statment at line 9 is translated

to an atomic block that contains TFG nodes 9a, 9b, 9c, and 9d. For the setDose

procedure, one simple system requirement shown in Figure 2.11 states that the pump

must never report a dose alert (represented as event “setDose DoseAlert=TRUE”).

One infeasible path though the TFG is 0, 1b, 5, 8 where the current value of the dose

variable constraint is set to the value HIGH and then the test of the current value

of that variable against the constant value LOW returns TRUE. One terminating

path through the TFG is 0, 1b, 5, 6, 7, 11. That terminating path is allowed by the

constraints but violates the simple system requirement property.

27

setDose_dose=LOW

1a

setDose_dose=HIGH

1b

setDose_dose==LOW

3a

setDose_dose==HIGH

3b

currDose_=LOW

3c

currDose_=HIGH

3d

setDose_DoseAlert=FALSE

4

currLib_==OR

2

currLib_==ICU

5

setDose_dose==HIGH

6

setDose_dose==LOW

8

setDose_DoseAlert=TRUE

7

setDose_dose==LOW

9a

setDose_dose==HIGH

9b

currDose_=LOW

9c

currDose_=HIGH

9d

setDose_DoseAlert=FALSE

10

tau

11

tau

0

Figure 2.10: Portion of a TFG for the pump’s setDose procedure

The verification algorithms take as input a FLAVERS subject that consists of a

TFG, a set of constraints, and a property. These verification algorithms generate a

node-tuple graph, whose vertices are pairs consisting of a node from the TFG and a

tuple of states, one from the property and one from each constraint. (The node-tuples

are essentially the nodes of a reachability graph of the system model.) In more detail,

FLAVERS provides three different verification algorithms: build node-tuple graph,

state propagation, find path. These verification algorithms make different trade-offs

between the performance, especially in terms of space, and which paths through the

node-tuple graph are explored. Additionally, only one of the verification algorithm

can be used to generate counterexample paths. At a high-level, the verification algo-

rithms first generate the initial node-tuple that pairs the unique initial node of the

TFG with the initial tuple where each FSA is at its start state. These algorithms then

iteratively generate the node-tuple graph starting from the initial node-tuple. After

28

UNK1 VIOL

setDose_DoseAlert=TRUE

setDose_DoseAlert=TRUE

Figure 2.11: System requirement property for never report a dose alert (represented
as event “setDose DoseAlert=TRUE”)

all reachable node-tuples are generated, the algorithms examine the final node-tuples,

meaning the TFG node is the unique final node, that summarize the potential ter-

minating paths to determine the verification result. For instance, Figure 2.12 shows

the node-tuple graph generated from the subject that consists of the TFG for the

setDose procedure shown in Figure 2.10, the property shown in Figure 2.11, and the

variables constraints for currLib , currDose , setDose dose, and setDose DoseAlert

automatically generated using the variable constraint template shown in Figure 2.9.

The initial node-tuple with ID 0 pairs TFG node 0 with the initial tuple that has the

property at state 0 and each variable constraint at its UNKNOWN state (denoted

as UNK) represented as (1,UNK,UNK,UNK,UNK). The node-tuple 23 is infeasible

because the tuple has a constraint at its violation state (shown as dotted because

the infeasible paths are pruned away). The final node-tuples have IDs 6, 18, 12, and

22. The final node-tuple 22 violates the property (shown in red). In the following

paragraphs, we provide a formal definition of the node-tuple graphs, give a high-level

description of the verification algorithms, and then give a brief description of each

verification algorithm.

For FLAVERS, we model the actual system execution traces as sequences of sys-

tem events such as procedure calls, exceptions being thrown, or variables being de-

fined or used. A node-tuple graph is an over-approximation of all possible sequence

of system events that may be observed on an actual execution of the system. The

29

1a: setDose_dose=LOW
(1, UNK, UNK, LOW, UNK)

1

1b: setDose_dose=HIGH
(1, UNK, UNK, HIGH, UNK)

13

3a: setDose_dose==LOW
(1, OR, UNK, LOW, UNK)

3

4: setDose_DoseAlert=FALSE
(1, OR, LOW, LOW, FALSE)

5

2: currLib_==OR
(1, OR, UNK, LOW, UNK)

2

5: currLib_==ICU
(1, ICU, UNK, HIGH, UNK)

7

6: setDose_dose==HIGH
(1, ICU, UNK, HIGH, UNK)

20

8: setDose_dose==LOW
(1, ICU, UNK, LOW, UNK)

8

7: setDose_DoseAlert=TRUE
(VIOL, ICU, UNK, HIGH, TRUE)

21

9c: currDose_=LOW
(1, OR, LOW, LOW, UNK)

10

10: setDose_DoseAlert=FALSE
(1, ICU, LOW, LOW, FALSE)

11

0: tau
(1, UNK, UNK, UNK,UNK)

0

3c: currDose_=LOW
(1, OR, LOW, LOW, UNK)

4

11: setDose_DoseAlert=TRUE
(VIOL, ICU, UNK, HIGH, TRUE)

22

11: tau
(1, ICU, LOW, LOW, FALSE)

12

9a: setDose_dose==LOW
(1, ICU, UNK, LOW, UNK)

9

TFG node ID: Event
(Rs, currLib_,currDose_, setDose_dose, setDose_DoseAlert)

11: tau
(1, OR, LOW, LOW, FALSE)

6

8: setDose_dose==LOW
(1, UNK, UNK, VIOL, UNK)

23

5: currLib_==ICU
(1, ICU, UNK, HIGH, UNK)

19

2: currLib_==OR
(1, OR, UNK, HIGH, UNK)

14

3b: setDose_dose==HIGH
(1, OR, UNK, HIGH, UNK)

15

4: setDose_DoseAlert=FALSE
(1, OR, HIGH, HIGH, FALSE)

17

3d: currDose_=HIGH
(1, OR, HIGH, HIGH, UNK)

16

11: tau
(1, OR, HIGH, HIGH, FALSE)

18

Figure 2.12: Portion of the node-tuple graph for the setDose procedure where each
node-tuple shows the TFG node (top) and the tuple (bottom)

node-tuple graph is conservative, meaning that each actual system execution trace

corresponds to a path through that node-tuple graph, but imprecise, meaning each

path may correspond to zero or more actual system execution traces. Formally, a

node-tuple graph is a labeled directed graph G = (N, E, ninit, F, ΣG, L) where N is

a set of node-tuples, E ⊆ N × N is a set of directed edges, ninit ∈ N corresponds

to the unique initial node-tuple, and F ⊆ N is the set of final node-tuples, ΣG is an

alphabet of system events that label the node-tuples, and L : N → ΣG ∪ {τ} is a

function mapping node-tuples to their events. The tuple transition function takes as

input a current tuple along with a next TFG node and produces the possible next

tuples. This function applies the event labeling the next TFG node to each of the

FSA states in the current tuple to produce the next tuples. The function can be

30

configured to only produce the feasible node-tuples, meaning the tuple does not have

any constraint at its violation state. As shown in Figure 2.12, the tuple transition

function given the initial tuple 0 with contents (1,UNK,UNK,UNK,UNK) and next

TFG node 1b labeled with event “dose=HIGH” from Figure 2.10 will produce the

next tuple 13 with contents (1,UNK,UNK,HIGH,UNK). We define a path through

the node-tuple graph to be a sequence of node-tuples where the first node-tuple is the

initial node-tuple and each current node-tuple (at index i) can transition to its next

node-tuple pair (at index i + 1). We define an infeasible path to be a path through the

node-tuple graph that ends at an infeasible node-tuple, meaning a node-tuple where

the tuple has one or more of the constraints at their violation states. For instance, the

node-tuple graph shown in Figure 2.12 contains the path 0, 13, 19, 23 that is infeasible

and the path 0, 13, 19, 20 that is feasible (i.e. not infeasible). For the feasible paths,

we define a terminating path to be a feasible path through the node-tuple graph that

ends at a terminating node-tuple where the TFG node is the unique final node and

the tuple has each constraint at one of its accepting states. In the same figure, the

right path 0, 13, 19, 20, 21, 22 is terminating but the prefix of that path 0, 13, 19,

20 is non-terminating (i.e. not terminating). For the terminating paths, we define

an unsafe path to be a terminating path through the node-tuple graph that ends at

a violating node-tuple where the TFG node is the final node and the tuple has each

constraint at one of its accepting states but the property is at one of its non-accepting

states (i.e. the property is violated). (The model checker calls this a counterexample

path.) In the same figure, the right path 0, 13, 19, 20, 21, 22 is unsafe. On the other

hand, we define a safe path to be a terminating path though the node-tuple graph

that ends at a satisfying node-tuple where the TFG node is the final node and the

tuple has each constraint at one of its accepting states and the property is at one of

its accepting states (i.e. the property is satisfied). In that figure, the leftmost middle

path 0, 13, 14, 15, 16, 17, 18 is safe. Additionally, we define the non-safe paths to

31

be all of the paths that are not safe, meaning the unsafe paths, the non-terminating

paths, and the infeasible paths.

As mentioned above, the three verification algorithms take as input a FLAVERS

subject and then iteratively generate the node-tuple graph starting from the initial

node-tuple. For each current node-tuple that pairs a current TFG node with a cur-

rent tuple, these algorithms iterate through all of the edges of the current TFG node

to obtain the possible next TFG nodes. For each next TFG node, the algorithms

applies the tuple transition function to the current tuple and that next TFG node

to generated the possible next node-tuples. After the verification algorithms stop

iterating, these algorithms then determine the verification result by interpreting the

final node-tuples that summarize the potential terminating paths. The algorithms

first check whether there exist terminating paths. If not, then the verification al-

gorithms report “INCONCLUSIVE (No potential terminating paths exist).” In this

case, the verification result is INCONCLUSIVE because the system model is over-

constrained and therefore the verification algorithms cannot determine whether or

not all potential paths through the system model satisfy the user-defined property.

If so, these algorithms next check whether there exist any unsafe paths. If so, the

verification algorithms report “INCONCLUSIVE (Counterexample path exists).” In

this case, these algorithms may be able to generate one or more of the unsafe paths

as counterexample paths. If not, these algorithms report “CONCLUSIVE.” Since the

verification algorithms do not consider the infeasible paths when determining the ver-

ification result, any of the next node-tuples that are infeasible can be conservatively

pruned away. This pruning does not affect the verification result but can improve the

performance of the verification algorithms.

In more detail, the three verification algorithms generate different abstractions of

the node-tuple graph. The build node-tuple graph algorithm performs reachability

analysis to generate the full node-tuple graph where the vertices are represented

32

as node-tuples and the edges are explicitly represented among the node-tuples. This

algorithm explores all of the reachable node-tuples and all possible edges among them.

The algorithm reports the verification result but does not generate counterexample

paths. The algorithm, however, could easily be extended to generate some of the

counterexample paths because both the node-tuples and the edges among them are

stored. Appendix A provides more details about the build node-tuple graph algorithm.

Alternatively, the find path algorithm [67] employs search techniques, such as breadth

or depth first search, to iteratively generate counterexample paths. This algorithm

associates each node-tuple with a parent pointer that explicitly represents the edge

from the current node-tuple (at index i in the path) to the previous node-tuple (at

index i - 1 in the path). The find path algorithm explores all of the reachable node-

tuples. This algorithm, however, does not add a parent pointer to a current node-tuple

that has already been reached and, thus, the algorithm often only explores some of the

edges among the node-tuples. The algorithm reports the verification result based on

the reachable node-tuples and generates the counterexample paths for any violating

node-tuples that were found. On the other hand, the state propagation algorithm [29]

employs qualified data flow analysis (e.g., [47]) to propagate the tuples among the

nodes. This algorithm abstracts the node-tuple graph by storing a set of tuples

with each TFG node to represent the reachable node-tuples and by not storing how

each tuple reached that TFG node and, thus, not explicitly representing all of the

possible edges among the node-tuples. The state propagation algorithm instead uses

the TFG edges to explore all of the possible edges among the node-tuples. This

algorithm does report the verification result based on the tuple set associated with

the final TFG node. The algorithm, however, does not generate counterexample paths

because the edges among the node-tuples were abstracted away. Both the find path

and state propagation algorithms have an option to immediately terminate after the

33

first counterexample path is found, and thus these two algorithms in practice often

need to generate only a partial node-tuple graph.

2.5 Interface Synthesis Methods

The interface synthesis methods generally take as input a selected component

model (or implementation) that defines a set of procedures that will be used in the

remaining system. The interface synthesis methods also usually take as input an

overall system requirement that employs the never E property pattern [28] that states

that a given event E never occurs on any system execution trace. In particular, the

event E is usually that a specific error code is not returned by or a specific exception

is not thrown by any of the component’s procedures. The interface synthesis methods

produce a synthesized interface represented as an FSA that allows all system execution

traces (represented as sequences of procedure call/return pairs) that prevent any

system requirement violations (never return a specific error code or throw a specific

exception). In our terminology, the interface synthesis methods are commonly applied

from the component perspective. In what follows, we will refer to the synthesized

interfaces as derived requirements. For instance, Figure 2.5 shows a view of the

derived requirement for the process that prevents any of the pump’s procedures from

throwing dose alert exceptions. In what follows, we provide basic definitions first for

the interface synthesis methods and then for our automated requirement derivation

approach.

For the interface synthesis methods, we adopt Henzinger et. al’s [46] basic defi-

nitions. In what follows, we consider a system model S with alphabet ΣS. We also

consider an overall system requirement RS represented as an FSA with alphabet ΣRS
,

which is a subset of the system alphabet ΣS, and a derived requirement D also rep-

resented as an FSA with alphabet ΣD, which is also a subset of the system alphabet

ΣS. We use L(S) to denote the language of the finite-state system model S, meaning

34

all of the event sequences from Σ∗S that are accepted by system model S. Addition-

ally, we use ¬L(S) to denote the complement of the language of the system model

S, meaning all of the event sequences from Σ∗S that are rejected by system model S.

An illegal event sequence corresponds to at least one actual system execution trace

that violates the overall system requirement, meaning there exists an event sequence

from L(S) ∩ ¬L(RS). On the other hand, a legal event sequence corresponds to any

event sequence from Σ∗S that is not illegal, meaning an event sequence from either

L(S) ∩ L(RS) or ¬L(S). In the former case, the legal event sequence corresponds to

an actual system execution trace that satisfies the system requirement. In the later

case, the legal event sequence, however, corresponds to no actual system execution

traces at all.

A safe derived requirement Dsafe is defined to disallow all illegal event sequences.

In other words, each event sequence σ from L(Dsafe) must be legal. The most permis-

sive derived requirement DmostPerm is defined to allow all legal event sequences. More

formally, L(DmostPerm) = {∀σ ∈ Σ∗D : σ is legal}. Our goal is for a safe derived re-

quirement to also be adequately permissive, meaning the requirement allows all event

sequences from L(S)∩L(RS). The language of the adequately permissive derived re-

quirement is contained in (and might be equal to) the language of the most permissive

derived requirement that allows all legal event sequences from Σ∗S \ (L(S)∩¬L(RS)),

which allows the event sequences from L(S)∩L(RS) as well as the ones from ¬L(S).

35

CHAPTER 3

DERIVATION APPROACH

Our HIS-based requirement derivation approach takes as input a HIS model spec-

ification, a system requirement specification, and a requirement deriver perspective.

The approach, whenever possible, produces a safe derived requirement represented

as a minimal deterministic FSA. Figure 3.1 shows an overview of our HIS-based re-

quirement derivation approach.

HIS subject
translator

+ optimizations

Requirement deriver
+ optimizations

(Employs FLAVERS)

Derived requirement
permissiveness

classifier
(Employs FLAVERS)

Derived requirement
view builder

HIS model
specification

[Little-JIL]

System req.
specification
[RE or FSA]

HIS subject
+

Derived req.
alphabet HIS subject

+
Derived req.

No derived req. Derived req. view

"Is most permissive"

"May be most permissive"

Requirement deriver
perspective

[Set of threads]

Figure 3.1: Overview of our HIS-based requirement derivation approach

In more detail, the HIS subject translator takes as input a system requirement

specification represented as an RE (regular expression) or FSA. Additionally, this

translator takes as input a HIS model specification written in Little-JIL. In the pre-

vious chapter, we described that the overall HIS model concurrently executes the

component model and the process model in which that component will be used.

Thus, the translator takes as input the requirement deriver perspective specified as a

subset of the threads for the overall system, the component, and the process. From

the component perspective, the set of threads would contain only the thread for the

selected component (e.g., IteratePump). From the process perspective, the set of

36

threads would contain the threads for the overall system and the process (e.g., per-

formPumpHIS, performInPatientSurgery). This translator produces a HIS subject

along with the derived requirement alphabet. The translator incorporates several

optimizations that will be described in the next chapter.

For this work, we investigated two requirement derivers that employ different in-

terface synthesis methods that affect the requirement deriver results in terms of the

performance of the requirement deriver as well as the permissiveness of the derived

requirements. Each requirement deriver first performs a pre-requisite check to deter-

mine whether or not a derived requirement should be produced. If so, the requirement

deriver then takes as input the HIS subject and the derived requirement alphabet and

employs either a direct or learning-based interface synthesis method to automatically

produce a derived requirement that is guaranteed to be safe. The direct requirement

deriver basically first uses FLAVERS to build the full node-tuple graph, refines that

graph, and then converts the graph to a minimal deterministic FSA. In the previous

chapter, we defined a derived requirement to be safe when that requirement disallows

all actual system execution traces that may violate the overall system requirement.

We also defined a derived requirement to be adequately permissive when that re-

quirement allows all actual system execution traces that always satisfy the system

requirement. The direct derived requirements are guaranteed to be minimal, safe,

and adequately permissive. This requirement deriver, however, may exceed all avail-

able space when explicitly converting from a non-deterministic node-tuple graph to

a deterministic FSA. On the other hand, the learning-based requirement deriver uses

a regular language learning algorithm to iteratively refine the derived requirement

based on counterexamples generated by FLAVERS. This deriver uses an incremental

strategy to try to not exceed the available space by not explicitly converting from

a non-deterministic node-tuple graph to a deterministic FSA. The deriver, however,

only guarantees that the derived requirements are safe and minimal. This deriver

37

incorporates several learning algorithm optimizations that will be described in this

chapter and the next chapter. The deriver also incorporates several counterexample

generation heuristics that impact both the performance of the requirement deriver as

well as the permissiveness of the derived requirements that will also be described in

the next chapter.

The derived requirement permissiveness classifier can then be used to conserva-

tively determine whether or not a given derived requirement that is safe is also ade-

quately permissive. Since the derived requirements often reflect the complexity of the

HIS models, we also investigated building different views of the derived requirements

that use various HIS-based abstractions to try to improve the understandability of

the requirements as described in Chapter 6.

Section 3.1 first gives some basic definitions for our HIS-based requirement deriva-

tion approach. Section 3.2 to Section 3.6 then provide more details about the HIS sub-

ject translator, the pre-requisite check, the direct requirement deriver, the learning-

based requirement deriver, and the derived requirement permissiveness classifier re-

spectively.

3.1 Basic Definitions

For this work, the actual systems often contain non-determinism (introduced by,

e.g., the environment or human decision making) that must be reflected in the system

models. Additionally, the system models often use abstractions and refinements that

over-approximate the actual system execution traces. Thus, the interface synthesis

methods must take into account the non-determinism and over-approximations to

ensure that the derived requirements disallow all the system execution traces that may

violate the system requirements and allow as many as possible of the system execution

traces that always satisfy the system requirements. In more detail, each path through

the node-tuple graph S with alphabet ΣS corresponds to an event sequence from Σ∗S

38

that is the concatenation (denoted by ‘·’) of the non-τ events labelling the node-tuples.

We use L(S) to denote the language of the node-tuple graph S, meaning the set of

all event sequences that correspond to terminating paths through node-tuple graph

S. Since our systems often contain non-determinism and the system models are over-

approximations, an actual system execution trace represented as an event sequence

often corresponds to one or more paths through the node-tuple graph. In particular,

that event sequence may correspond to both unsafe paths and safe ones. We first

define the correspondence between event sequences and paths. We then define the

language of the derived requirements.

For illustration purposes, Figure 3.2 shows a non-deterministic node-tuple graph

with alphabet {a, b, c}. (This figure is based on an illustrative example provided by

Giannakopoulou [34].) In the figure, each node-tuple is labeled with the TFG node’s

event (shown on the top). That node-tuple is also labeled with a simplified tuple of

FSA states where the first state is from the derived requirement D and the second

state is from the system requirement RS (shown on the bottom). The FSA states

have been simplified to be either OK or VIOL. In the previous chapter, we defined a

safe path to satisfy both the derived requirement and the system requirement while

an unsafe path satisfies the derived requirement but violates the system requirement.

The node-tuple shows whether it ends a safe path (denoted by green) or ends an

unsafe path (denoted by red). To illustrate, the non-deterministic node-tuple graph

shown in Figure 3.2 contains path 1, 3, 4, 5 that corresponds to the event sequence

a·b. For the non-deterministic node-tuple graph S shown in Figure 3.2, L(S) = {λ,

c, a·b, a·c}.

We say that an event sequence s is unsafe if there exists at least one terminating

path corresponding to s that is unsafe. In Figure 3.2, the unsafe event sequence a·b

corresponds to unsafe path 1, 7, 8, 9 and safe path 1, 3, 4, 5. (In the interface syn-

thesis method terminology, the unsafe event sequences are the illegal event sequences

39

tau
(OK,OK)

2

a
(OK,OK)

7

b
(VIOL, VIOL)

8

tau
(OK,OK)

1

tau
(VIOL, VIOL)

9

TFG node event
Tuple (RD,RS)

a
(OK,OK)

3

b
(VIOL,OK)

4

tau
(VIOL,OK)

5

c
(VIOL,OK)

6

c
(OK, OK)

10

tau
(OK, OK)

11

Figure 3.2: Non-deterministic node-tuple graph

from L(S) ∩ ¬L(RS).) On the other hand, we say that an event sequence s is safe

if all terminating paths corresponding to s are safe. In the same figure, the safe

event sequence c corresponds to the safe path 1, 10, 11. (The safe event sequences

correspond to all legal event sequences from L(S) ∩ L(RS).) We say that an event

sequence s is non-terminating if there exist no terminating paths corresponding to s

that are feasible. On the other hand, we say that an event sequence s is infeasible if

all paths corresponding to s are infeasible or else there exist no paths corresponding to

s. (The non-terminating and infeasible event sequences correspond to all legal event

sequences from ¬L(S).) Additionally, we define the non-unsafe event sequences to

be all of the event sequences that are not unsafe, meaning the safe, non-terminating,

and infeasible event sequences. (The non-unsafe event sequences correspond to the

legal event sequences.) We also define the non-safe event sequences to be all of the

event sequences that are not safe, meaning the unsafe, non-terminating, and infeasible

event sequences. In more detail, Table 3.1 shows the correspondence between event

sequences from Σ∗D and paths through node-tuple graph S with alphabet ΣS where

ΣD is a subset of or equal to ΣS. In this table, NOT means there exist no paths of

that type corresponding to the event sequence, MUST means there exists one or more

paths of that type corresponding to the event sequence, and MAY means there may

40

exist paths of that type corresponding to the event sequence. If an event sequence

corresponds to no paths through the node-tuple graph, then that event sequence is

defined to be infeasible.

In the previous paragraph, we described how the event sequences from Σ∗S cor-

respond to paths. In this paragraph, we will frame our discussion in terms of event

sequences from Σ∗D, noting that ΣD is a (usually small) subset of ΣS. Thus, we de-

fine the projection of a given event sequence from Σ∗S on the derived requirement

alphabet ΣD to be the concatenation of those events contained in ΣD. We defined

a safe derived requirement Dsafe to disallow all unsafe event sequences. For the non-

deterministic node-tuple graph shown in Figure 3.2, the derived requirement alphabet

ΣD contains {a, b, c}. The learning-based requirement deriver could produce a safe

derived requirement Dsafe that allows the following safe event sequences {λ, c}, which

disallows the unsafe event sequence a·b. We defined an adequately permissive de-

rived requirement DadequatelyPerm to allow all safe event sequences. More formally,

L(DadequatelyPerm) = {σ ∈ Σ∗D : σ is safe}. Because L(DmostPerm) allows all of the

non-terminating and infeasible event sequences but L(DadequatelyPerm) may disallow

some or all of those event sequences, L(DadequatelyPerm) ⊆ L(DmostPerm). For the

non-deterministic node-tuple graph shown in Figure 3.2, the L(DadequatelyPerm) must

allow the following event sequences {λ, c, a·c}. The L(DmostPerm) must allow all

event sequences from (a|b|c)∗ \ a·b.

3.2 HIS Subject Translator

The HIS subject translator takes as input a system requirement specification rep-

resented as a regular expression or an FSA, a HIS model specification written in

Little-JIL, and a requirement deriver perspective. This translator produces a HIS

subject along with the derived requirement alphabet. In what follows, we first de-

scribe how the translator produces the HIS subject that consists of a system TFG, a

41

Unsafe Safe Non-terminating Infeasible
paths paths paths paths

1. Unsafe MUST MAY MAY MAY
event seqs.
2. Safe NOT MUST MAY MAY
event seqs.
3. Non-terminating NOT NOT MUST MAY
event seqs.
4. Infeasible NOT NOT NOT MAY
event seqs.

Table 3.1: Correspondence between event sequences and paths

set of system constraints, and the system requirement property RS. We then describe

how the HIS subject translator produces the derived requirement alphabet ΣD based

on that HIS subject and the requirement deriver perspective.

The system requirement specification represented as a regular expression (RE) or

FSA is automatically translated to the system requirement property represented as

an FSA. If the system requirement specification is represented as an RE then that

specification is parsed in as an RE and then a standard algorithm to convert from

that RE to an FSA (e.g., [1]) is applied. If the system requirement specification

is represented as an FSA, then that that specification is parsed in as an FSA. The

HIS model specification written in Little-JIL is automatically translated to a HIS

model represented as a TFG and a set of constraints. In the previous chapter, we

explained that a HIS model specification written in Little-JIL defines the overall

system as a hierarchy of steps that can be treated as procedures. Each step defines its

interface with its name, input parameters, output parameters, and exceptions thrown.

Additionally, that step may define local parameters. Some of the steps represent

the remote procedure calls between the process and the selected component. These

steps use channels to pass the input parameters from the process to that component

and then to pass back either the output parameters or exceptions thrown from the

42

component to the process. To accurately represent the actual system execution traces,

the HIS models represented by TFGs with sets of constraints often must encode the

channels, parameters, and exceptions relevant to the overall system requirement as

follows.

In more detail, such a HIS model declares a step representing the execution of the

overall system. That step concurrently executes a step that represents the process

model and another step that represents the component model. Thus, the TFG will

contain a thread for the overall system, the component, and the process. For each

TFG thread, the TFG will contain a TFG node to fork that thread to begin executing

and another TFG node to join the thread after it finishes executing. Additionally, the

set of constraints will contain a task constraint for that thread to track its program

counter and a thread status constraint [58] for that thread to track whether or not the

thread is currently executing. For each named channel that stores messages of a given

type, the system translator creates a variable constraint with that name and message

type that tracks the run-time value of the message stored in the channel. Additionally,

it creates TFG nodes to send messages to that channel and receive messages from the

channel.The channel translation is described in more detail in Section 4.1.3. For each

parameter (e.g., currLib) or exception (e.g., DoseExceedsLimits), that parameter

or exception is treated as a local variable in the TFG that may be tested and set.

For each named parameter of a given primitive type, including boolean, enumerated,

and integer range types, the system translator creates a variable constraint with that

name and primitive type. Additionally, it creates TFG nodes for any tests of that

parameter by the steps and any sets of the parameter because of initialization by the

steps or parameter passing among the steps. For each exception type, the system

translator creates a variable constraint with that exception type name and boolean

type. Additionally, it creates TFG nodes that set the variable constraint to true when

the exception type instance is thrown by a given step. The system translator also

43

creates TFG nodes that set the variable constraint to false when the exception type

instance is caught by a handler step. We know from previous work that alternative

ways of encoding the FLAVERS variables (e.g., channels, parameters, exceptions) can

have substantial impact on the cost of the verification. Thus, we explored different

variable encodings to reduce the space needed to perform the requirement derivation

as described in Section 4.1.

The derived requirement’s alphabet conceptually contains the events that are

relevant to the interface between the selected component and the process. This al-

phabet contains the events that correspond to all of the possible component’s proce-

dure executions (e.g., setLib(ICU) OK, setDose(HIGH) DoseAlert). The alpha-

bet may also contain the events that correspond to the process’ calling contexts (e.g.,

enterICU , leaveICU) for the component’s procedure executions. Appendix B de-

scribes how to compute the derived requirement’s alphabet where each procedure

execution is represented as a remote procedure call.

From both perspectives, we consider an overall system requirement RS with alpha-

bet ΣRS
. For the illustrative example, we consider the never overdose system require-

ment shown in Figure 2.1. We also consider an overall system S with alphabet ΣS de-

composed into the selected component model C with alphabet ΣC and process model

P with alphabet ΣP in which that component will be used. From the component per-

spective, the derived requirement alphabet ΣD is basically computed as ((ΣC∪ΣRS
)∩

ΣP). If the alphabet of the system requirement ΣRS
contains calling context events,

then the alphabet of the derived requirement for the process ΣD will contain the call-

ing context events because the alphabet of the process model ΣP contains them. For

the illustrative example, the derived requirement alphabet ΣD is {setLib(ICU) OK,

setLib(OR) OK, setDose(LOW) OK, setDose(LOW) DoseAlert, setDose(HIGH)-

OK, setDose(HIGH) DoseAlert, start() OK, start() DoseAlert, enterICU ,

leaveICU}.

44

From the process perspective, the derived requirement alphabet ΣD is essentially

computed as ((ΣP ∪ΣRS
)∩ΣC). If the alphabet of the system requirement ΣRS

con-

tains calling context events, the alphabet of the derived requirement for the compo-

nent ΣD does not contain the calling context events because the alphabet of the com-

ponent model ΣC does not contain them. For the illustrative example, the derived re-

quirement alphabet ΣD is {setLib(ICU) OK, setLib(OR) OK, setDose(LOW) OK,

setDose(LOW) DoseAlert, setDose(HIGH) OK, setDose(HIGH) DoseAlert,

start() OK, start() DoseAlert}. As noted above, this alphabet is missing the calling

context events enterICU and leaveICU .

3.3 Pre-Requisite Check

The Pre-requisite check takes as input a HIS subject and a derived requirement

alphabet and determines whether ALL, SOME, or NONE of the paths through the

node-tuple graph are safe, which determines whether or not a derived requirement

should be produced. This check first tests whether or not the derived requirement

alphabet is empty. If so, then the check returns NONE. In this case, a derived

requirement should not be produced because no derived requirement could ensure

that the system requirement is satisfied. In other words, the adequately permissive

derived requirement would allow no paths because they are all unsafe. If not, then

the Pre-requisite check looks for the existence of safe paths and unsafe ones through

the node-tuple graph. If there are only safe paths, then this check returns ALL. In

this case, a derived requirement should not be produced because it is not needed.

The adequately permissive derived requirement would allow all paths because they

are all safe. If there are only unsafe paths, then the check reports NONE. If there are

both safe and unsafe paths, then the pre-requisite check returns SOME. In this case,

a derived requirement should be produced that is guaranteed to be safe and may or

may not be adequately permissive.

45

Because the FLAVERS state propagation algorithm conservatively summarizes all

potential paths through the node-tuple graph for the given HIS subject, we use this

algorithm to check for the existence of safe and unsafe paths. The Pre-requisite check

runs the state propagation algorithm on a HIS subject consisting of the system TFG,

the system constraints, and the system requirement property. This check then looks

for the existence of safe and unsafe paths by interpreting the final node-tuples and then

returns either ALL, SOME, or NONE. If there exist only safe paths, meaning all of the

final node-tuples are satisfying (and perhaps non-terminating), the Pre-requisite check

returns ALL. If there exist only unsafe paths, meaning all of the final node-tuples are

violating (and perhaps non-terminating), or there exist no terminating paths at all,

meaning the final node-tuples are all non-terminating, then this check returns NONE.

If there exist both safe and unsafe paths, meaning some of the final node-tuples are

satisfying, other final node-tuples are violating, and perhaps the remainder are non-

terminating, the check returns SOME.

3.4 Direct Requirement Deriver

Given a HIS subject and the derived requirement alphabet, the direct requirement

deriver extends Giannakopoulou et al.’s interface synthesis method [36] that concep-

tually first generates the full reachability graph and then refines that graph based on

the derived requirement’s alphabet to produce the derived requirement represented as

a minimal deterministic FSA. Figure 3.3 shows a high-level overview of the direct re-

quirement deriver that consists of four main stages: Pre-requisite check, Composition,

Refinement, FSA extraction. We describe each stage in the following paragraphs.

Section 3.3 describes the Pre-requisite check that uses the state propagation algo-

rithm to determine whether or not a derived requirement will be produced. If not,

then that determination is reported. If so, then the direct requirement deriver per-

46

Pre-requisite
check

Refinement

FSA extraction

Full
node-tuple graph

+
Derived req. alphabet

Derived req.

Refined
node-tuple graph

Composition

HIS subject
+

Derived req. alphabet

No derived req.
HIS subject

+
Derived req. alphabet

Figure 3.3: Overview of the direct requirement deriver

forms the remaining three stages to produce a derived requirement that is guaranteed

to be safe and adequately permissive.

The Composition stage first uses the build node-tuple graph algorithm, which is

one of the FLAVERS verification algorithms described in Chapter 2, to generate

the full node-tuple graph for the given HIS subject. For the motivating example

from the component perspective, the full node-tuple graph has 29 unique events, 888

node-tuples, and 3555 edges. The Refinement stage takes as input the full node-

tuple graph and the derived requirement’s alphabet and then conceptually abstracts

away the nodes labeled with events not in that alphabet. At a lower-level, this

refinement performs two phases: minimization and backward-error propagation. The

minimization phase first relabels any nodes labeled with events not in the derived

requirement’s alphabet with the special τ event. The backward-error propagation

phase then will remove each node labeled with τ if after that removal the node-tuple

47

graph remains well-formed. For instance, a node that was labeled with a local variable

assignment and was relabeled as τ can be removed. On the other hand, the initial

node is labeled with τ but cannot be removed. The Refinement stage adapts the

alphabet refinement algorithm [29] developed for FLAVERS for Ada that applies to

CFGs. Given an original node-tuple graph S with alphabet ΣS that accepts language

L(S) along with the derived requirement alphabet ΣD that is a subset of ΣS, this

algorithm creates the refined node-tuple graph S ′ with alphabet ΣD that accepts

language L(S ′). The algorithm ensures that for each event sequence σ in L(S) the

language L(S ′) accepts the event sequence σ′ that is the concatenation of the events

from ΣD. For example, the refined node-tuple graph has 13 unique events, 499 node-

tuples, and 2483 edges. The FSA extraction stage is performed next to convert from

a node-tuple graph to a minimal deterministic FSA.

The FSA extraction stage first converts from the refined node-tuple graph where

the nodes are labeled with the events to a non-deterministic FSA (NFA) where the

transitions are labeled with the events. The FSA extraction stage then uses regular

language algorithms (e.g., [1]) to determinize the NFA and then minimize the resulting

deterministic FSA. The next section describes the FSA extraction stage in more detail,

and Section 3.4.2 discusses the guarantees provided by the direct requirement deriver.

3.4.1 FSA Extraction

At a lower level, the FSA extraction stage first converts the node-tuple graph to

an NFA. This conversion will convert each node-tuple, which represents the end of

a set of paths through the node-tuple graph, to a state in the NFA. To guarantee

that the derived requirement is safe, the conversion will ensure that every node-

tuple that represents the end of any unsafe paths will be converted to a unique

error state in the NFA that is a non-accepting trap. This stage next applies the

algorithm to determinize the NFA and then applies the algorithm to minimize the

48

resulting deterministic FSA. The algorithm to determinize the NFA, however, must be

specialized to direct all of the unsafe paths through the node-tuple graph to the error

state in the deterministic FSA to guarantee that the derived requirement is safe.

In more detail, the algorithm to determinize the NFA conceptually converts from

each possible subset of the NFA states to a corresponding state in the deterministic

FSA. For the requirement derivation, we need to extend this algorithm to add special

handling to ensure that each subset of NFA states that contains the error state in

the NFA is mapped to the error state in the deterministic FSA. The algorithm to

minimize the deterministic FSA, however, does not need to have special handling

for the error state. The FSA extraction stage, lastly, performs a refinement to the

deterministic FSA that also redirects all infeasible paths through the node-tuple graph

to the special error state in that FSA. In the following paragraphs, we describe the

node-tuple graph to NFA conversion and the infeasible paths refinement.

Given the refined node-tuple graph and the derived requirement’s alphabet, the

node-tuple graph to NFA conversion first creates a new NFA and sets the NFA’s

alphabet to a copy of the derived requirement’s alphabet. This conversion then

creates the special error state. This error state is set as a non-accepting state of the

NFA and made a trap state by creating a transition from the error state to itself

on each event in the NFA’s alphabet. Given a node-tuple, the conversion maps that

node-tuple to an NFA state as follows. This conversion checks whether the current

node-tuple is satisfying (i.e. corresponds to a safe path), violating (i.e. corresponds

to an unsafe path), or non-terminating (i.e. corresponds to a non-terminating path).

The current node-tuple will not be infeasible (i.e. corresponds to an infeasible path)

because the infeasible node-tuples were pruned away. If the node-tuple is satisfying,

then that node-tuple is mapped to a new NFA state that is set as an accepting

state of the NFA. If the node-tuple is violating, then that node-tuple is mapped to

the error state. If the current node-tuple is non-terminating, then that node-tuple

49

is mapped to a new NFA state that is set as non-accepting. If the current node-

tuple is the initial node-tuple, then the current state is set as the start state of the

NFA. The node-tuple graph to NFA conversion then reiterates over the node-tuples

to create the appropriate NFA transitions. Given a current node-tuple c with an

edge in the node-tuple graph to a next node-tuple n, it creates a transition from the

NFA state associated with c to the NFA state associated with n. This conversion

then checks whether or not the current node-tuple is labeled with the τ event. If

so, then that transition is labeled with λ, a special, “empty” event. If not, then the

transition is labeled with the non-tau event that labels the current node-tuple. For

the pump example, the NFA has 12 unique events, 499 non-error states, and 2483

non-error transitions. The node-tuple graph to NFA conversion, however, was not

able to redirect the infeasible paths to the error state because the build node-tuple

graph algorithm pruned away the infeasible paths. On the other hand, each FSA has

a transition function that is total, meaning for every state s in that FSA, for every

event e in the alphabet of the FSA, there exists a transition from state s labeled with

event e. Thus, these transition functions represent both the feasible paths and the

infeasible ones. We therefore perform an infeasible paths refinement on the resulting

minimal deterministic FSA to also redirect the infeasible paths to the error state in

the FSA to simplify the derived requirement.

Since the state propagation algorithm uses the feasible paths through the TFG

to compute the set of reachable states in the property and constraint automata, this

means that the infeasible paths will correspond to the unreachable states in those

automata. We also extended the state propagation algorithm to compute the set of

reachable transitions in the derived requirement FSA. The infeasible paths refinement

will redirect the infeasible paths to the error state in the derived requirement FSA by

removing the unreachable states and transitions. This refinement runs the extended

state propagation algorithm on a HIS subject that consists of the system TFG, the

50

system constraints along with a new constraint that is a copy of the derived require-

ment, and the system requirement property to compute the set of reachable states

and transitions. Based on the results of the extended state propagation algorithm,

the refinement first redirects every unreachable transition to the error state in the

FSA and then removes the unreachable states. Since the infeasible paths refinement

affects the transition function of the deterministic FSA, this refinement must reap-

ply the algorithm to minimize that FSA. For the example, the direct requirement

deriver produces a derived requirement represented as a minimal deterministic FSA

that contains 12 unique events, 26 non-error states, and 64 non-error transitions.

One possible view of that derived requirement is shown in Figure 2.3 represented as

a minimal deterministic FSA that contains 10 unique events, 8 non-error states, and

46 non-error transitions.

3.4.2 Guarantees

For a system model that is non-deterministic, a given event sequence may corre-

spond to both non-safe and safe paths. We defined an non-safe event sequence to be

an event sequence that corresponds to at least one terminating path that is unsafe

or else no terminating paths at all. On the other hand, we defined a safe event se-

quence to be an event sequence that corresponds to safe paths but no unsafe ones.

For the direct requirement deriver, the Composition, Refinement, and FSA extraction

stages conservatively but imprecisely model the non-safe and safe event sequences.

Thus, the derived requirement is safe, meaning the FSA disallows all of the unsafe

event sequences, and adequately permissive, meaning the FSA allows all of the safe

event sequences. Additionally, the FSA extraction stage ensures that the derived re-

quirement is a minimal deterministic FSA. We first discuss the guarantees about the

derived requirements and then the worst-case complexity of the requirement deriver.

51

In more detail, the Composition stage uses the build node-tuple graph algorithm to

generate the full node-tuple graph that over-approximates all potential paths through

the system model. The Refinement stage then uses the alphabet refinement algorithm

that ensures that the node-tuple graph remains an over-approximation of the potential

paths through the system model. For the FSA extraction stage, the node-tuple graph

to NFA conversion ensures that the unsafe event sequences end at the unique error

state that is a non-accepting trap state, the safe event sequences end at one of the

accepting states, and the non-terminating event sequences end at one of the non-

accepting states. The specialized NFA to DFA conversion needs to appropriately

handle any non-determinism that results in an event sequence corresponding to both

an unsafe and safe path. In particular, this conversion maps from each set of reachable

NFA states to a DFA state. The conversion first checked whether or not the event

sequence is unsafe (represented by reaching the NFA’s error state). If the set of NFA

states does contain the NFA’s error state, then the corresponding DFA state will be

considered non-safe, in particular unsafe, by mapping to the DFA’s error state. If the

event sequence is not unsafe, then the conversion checked whether or not the event

sequence is safe (represented by reaching any of the NFA’s accepting states). If the

set of NFA states does not contain the NFA’s error state but does contain at least one

of the NFA’s accepting states, then the corresponding DFA state will be considered

safe by making it an accepting state. If the event sequence is not unsafe or safe

(represented by not reaching the error state or any of the accepting states), then the

corresponding DFA state will be considered non-safe, specifically non-terminating,

by making it a non-accepting state. Finally, the infeasible paths refinement will

ensure that the infeasible event sequences will also be considered non-safe by making

these sequences end at the unique error state. In summary, our direct requirement

deriver produces derived requirements that disallow all of the non-safe event sequences

from either L(S) ∩ ¬L(RS) or ¬L(S) and allow all of the safe event sequences from

52

L(S)∩L(RS). This guarantees that the derived requirements are safe and adequately

permissive. For the original direct requirement deriver, Giannakopoulou et al. [36]

provide the full details about the guarantees concerning the derived requirements.

In their case, the derived requirements disallow all of the unsafe event sequences

from L(S) ∩ ¬L(RS) and allow all of the non-unsafe event sequences from either

L(S) ∩ L(RS) or ¬L(S). This guarantees that the derived requirements are safe and

most permissive.

The direct requirement deriver has worst-case complexity that is O(k · 2n), where

k is the number of events in the alphabet ΣD and n is the number of node-tuples in

the node-tuple graph. For this requirement deriver, the FSA extraction stage is the

most expensive due to the conversion from a non-deterministic node-tuple graph to a

deterministic FSA. In practice, the requirement deriver often does not encounter the

exponential blowup during that conversion.

3.5 Learning-Based Requirement Deriver

Given a HIS subject and the derived requirement alphabet ΣD, the learning-based

requirement deriver extends Beyer et. al’s interface synthesis method [12] that employs

the L∗ regular language learning algorithm [6,61] (shortened to L∗ learner for brevity)

and compositional reachability analysis. Our extension is similar to Giannakopoulou

and Păsăreanu’s extension [35] that employs the L∗ learner to iteratively refine the

derived requirement represented as an FSA based on counterexample paths generated

by a model checker, but differs in the technical details. The derived requirements are

guaranteed to be safe but not necessarily adequately permissive as discussed in Section

3.5.3. For the L∗ learner, the goal is to learn an unknown regular language U over

an alphabet ΣU and return a minimal deterministic FSA D such that the language

L(D) is equivalent to U .

53

In more detail, the L∗ learner needs to interact with a “minimally adequate

teacher” (for brevity shortened here to teacher) that is essentially an oracle that

is capable of precisely answering two types of queries about U , a membership query

and an equivalence query. For a membership query, the teacher is given an event se-

quence σ from Σ∗U and returns true when σ does belong to U and returns false when σ

does not belong to U . For an equivalence query, the teacher is given a current FSA Di

and returns true when L(Di) is equivalent to U and returns false when L(Di) is not

equivalent to U along with a counterexample event sequence from the symmetric dif-

ference of L(Di) and U . If the teacher can precisely answer both the membership and

equivalence queries, then the FSA D learned is guaranteed to accept the language U .

If not, then the FSA D learned will be an approximation of the language U . In our

setting, the direct requirement deriver produces a derived requirement represented

as an FSA that accepts the language U that contains all safe event sequences from

L(S) ∩ L(RS). For this learning-based requirement deriver, our goal is to learn the

same language U . In Section 3.5.2, we describe our teacher that employs FLAVERS

to answer the membership and equivalence queries. At the end of this section, we

will discuss how our teacher provides precise answers for the membership queries but

imprecise answers for the equivalence queries. Thus, the final derived requirement D

learned may only be an approximation of our language U that accepts all safe event

sequences.

Figure 3.4 shows a high-level overview of the learning-based requirement deriver

that first performs the Pre-requisite check stage. This requirement deriver then uses

the L* learner to perform the remaining three stages: Initialization, Conjecture, and

Counterexample-based refinement. We first briefly describe each stage in the following

paragraphs. In the next sections, we describe the L* learner, our teacher that uses

FLAVERS to answer the membership and equivalence queries, and the guarantees

provided by the learning-based requirement deriver.

54

Learner

Conjecture
(Ask teacher

equivalence query)

Counterexample-based
refinement

(Ask teacher
membership queries)

No
counterexample Final

derived req. D

Current
derived req. Di

+
 Counterexample Ci

Pre-requisite
check

Initial
derived req. D0

HIS subject
+

Derived req. alphabet

Next
derived req. Di+1

Initialization
(Ask teacher

membership queries)

HIS subject
+

Derived req. alphabet

No derived req.

Figure 3.4: Overview of the learning-based requirement deriver

In Section 3.3, we described the Pre-requisite check that determines whether or

not a derived requirement is needed. If not, then that determination is reported. If

so, then the learner is used to produce the derived requirement that is needed.

The Initialization stage creates a very basic initial derived requirement. This stage

basically considers an initial set of event sequences that contains the empty event

sequence λ and every event sequence of length one from the derived requirement’s

alphabet. The stage updates the FSA by asking membership queries about the initial

set of event sequences. For each event sequence σ in that set, the stage asks a

membership query about σ. If the query answer is true, then the initial derived

requirement allows the behaviors corresponding to σ. If the query answer is false, the

initial derived requirement disallows the behaviors corresponding to σ. The learner

55

next iteratively refines the current derived requirement based on counterexamples

generated by the model checker to produce the final derived requirement.

The learner on iteration i first conjectures that the current FSA Di is equivalent

to U by asking the teacher an equivalence query about that FSA. If the current

FSA Di is not equivalent to U , then our teacher tries to find a counterexample

in the symmetric difference of L(Di) and U , meaning a counterexample in either

U \ L(Di) or else in L(Di) \ U . In our setting, we want to learn the language U

that accepts all safe event sequences. If the counterexample is in L(Di) \ U , it

is a safety counterexample that is allowed by the current derived requirement but

violates the system requirement. On the other hand, if the counterexample is in

U \ L(Di), it is a permissiveness counterexample that is disallowed by the current

derived requirement but satisfies the system requirement. In a similar manner to

the Initialization stage, the Counterexample-based refinement stage updates the FSA

by asking the teacher a set of membership queries based on the generated safety or

permissiveness counterexample Ci. The next FSA Di+1 needs to disallow a safety

counterexample or to allow a permissiveness counterexample. After this refinement,

the learner then begins another iteration with the current FSA set to the next FSA

Di+1. If, on the other other hand, the current FSA Di is equivalent to U , meaning

that the equivalence query did not find a counterexample, then the learner returns

FSA Di as the final derived requirement.

In our discussion about the learning-based requirement deriver, we mentioned

that the L∗ learner interacts with a teacher that can answer both membership and

equivalence queries to learn an unknown language U . If that teacher is minimally

adequate, meaning the teacher can precisely answer both the membership and equiv-

alence queries, then the minimal deterministic FSA learned is guaranteed to accept

exactly the language U . If the teacher is not minimally adequate, then the FSA

learned will accept an approximation of the language U . In our setting, the direct

56

requirement deriver defines the language U to disallow all of the non-safe event se-

quences and to allow all of the safe event sequences. This means that the derived

requirements are guaranteed to be both safe and adequately permissive as discussed

in Section 3.4.2. For the learning-based requirement deriver, we define the language U

in the same manner as for the direct requirement deriver. Our teacher, however, is not

minimally adequate because this teacher performs a less precise static analysis than

the direct requirement deriver. In particular, the membership queries provide precise

answers but the equivalence queries do not. Because the equivalence queries may not

generate all of the permissiveness counterexamples, the derived requirements may not

allow all of the safe event sequences. Since the equivalence queries do not generate

any counterexamples from ¬L(S), the requirements may also allow some of the non-

terminating and infeasible event sequences. This means that the derived requirements

are guaranteed to be safe but not necessarily adequately permissive as further dis-

cussed in Section 3.5.3. In particular, the language of the derived requirement L(D)

is guaranteed to be a subset of the language of the safe and most permissive derived

requirement but not necessarily the U defined above. Other interface synthesis meth-

ods that employ the L∗ learning algorithm and a model checker (e.g., [4,35]) are also

learning an approximation of the safe and most permissive derived requirement.

3.5.1 L∗ Learner

The L∗ learner incrementally builds an observation table that records whether or

not event sequences from Σ∗U are in U to represent the FSA. Formally, this table (S, E,

T) consists of a set of prefixes S from Σ∗U , a set of suffixes E from Σ∗U , and a function

T that maps the event sequences seen so far to the answers to their membership

queries. The function T maps from ((S ∪ (S · ΣU)) · E) to either false or true. In the

above, we use P · Q to denote the concatenation of two sets of event sequences P and

Q, meaning the set of all event sequences p · q for all p ∈ P and for all q ∈ Q. The

57

learner converts the current observation table to the current FSA Di with alphabet

ΣU as follows. For each prefix s ∈ S, a new state vs is added to the FSA. If the

prefix s is λ, then state vs is set as the start state of the FSA. If T (s) is true, then

state vs is added to the accepting states of the FSA. For all a ∈ ΣU , e ∈ E, s′ ∈ S,

if T (s · a · e) is T (s′ · e), then a new transition from state vs on event a to state vs′

is added to the FSA. For this work, we did not implement the original L∗ learner

proposed by Angluin [6]. To try to reduce the number of membership queries asked,

we implemented the L∗ learner that incorporates the improvements by Rivest and

Schapire [61]. We first describe how to initialize the observation table and then how

to refine that table based on a given counterexample. These improvements usually

significantly reduce the number of membership queries that need to be asked, which

improves the learner’s performance in terms of space and time. Lastly, we describe a

learner optimization that takes into account characteristics of the unknown language

U to further reduce the number of membership queries that need to be asked.

1: for all t ∈ ((S ′ ∪ (S ′ · ΣU)) · E ′) do
2: T (t)← Membership-Query(t)
3: end for

Figure 3.5: Pseudo-code for the learner’s updateT method

For the Initialization stage, the learner initializes both of the S and E sets to

{λ}. The learner then updates T by asking the teacher membership queries. Figure

3.5 shows the pseudo-code for the updateT method that takes as input a subset S ′

of S and a subset E ′ of E and updates the corresponding elements of T to be the

answers to the membership queries about those elements. In this case, the learner

calls updateT with {λ} and {λ}. For the FSA to be well-formed, the table also needs

to be closed, meaning for all s ∈ S, for all a ∈ ΣU , for all e ∈ E, there exists a s′ ∈ S

such that T (s·a·e) is T (s′·e). Thus, the learner computes the closure of the table by

iterating through all event sequences s·a such that there does not exist an s′ ∈ S

58

where T (s·a·e) = T (s′·e). For each such event sequence s·a, the learner updates S by

adding s·a and then calls updateT with {s·a} and E.

For the Refinement stage, the learner first updates E by adding a new suffix e′

of counterexample cex that “witnesses a difference” between L(Di) and U . In more

detail, the learner splits the counterexample cexi into the shortest prefix p′ and the

longest possible suffix e′ such that p′·e′ ∈ L(Di) but p′·e′ /∈ U or else p′·e′ /∈ L(Di)

but p′·e′ ∈ U . The learner then calls updateT with S and {e′}. Lastly, the learner

computes the closure of the table as describe in the previous paragraph. The next

FSA Di+1 is guaranteed to reflect the witnessed difference by containing at least one

new state and its transitions. In practice, this means that the Refinement stage often

needs to be repeated multiple times for the same counterexample until the next FSA

is guaranteed to either disallow the given safety counterexample or allow the given

permissiveness one.

1: for all t ∈ ((S ′ ∪ (S ′ · ΣU)) · E ′) do
2: if (There exists a prefix p of t such that T (p) = false) then
3: T (t)← false
4: else
5: T (t)← Membership-Query(t)
6: end if
7: end for

Figure 3.6: Pseudo-code for the updateT method that incorporates the prefix-closed
optimization

Other researchers (e.g., [10,51]) have observed that the learner’s updateT method

can be optimized when learning an unknown language U that is prefix-closed, meaning

that for any event sequence that does not belong to U any extension of that event

sequence also does not belong to U . Figure 3.6 shows the pseudo-code for the updateT

method that incorporates such a prefix-closed optimization to reduce the number of

membership queries asked. This method first checks whether or not there exists a

prefix of a given event sequence that does not belong to U (line 2). If so, then the

59

method updates T without asking a membership query (line 3). If not, the updateT

method updates T by asking a membership query (line 5).

3.5.2 FLAVERS-Based L* Teacher

Our teacher has access to the original HIS subject consisting of the system TFG,

the system constraint set, and the system requirement property. This teacher also

has access to the derived requirement alphabet ΣD. The teacher uses FLAVERS to

answer the membership and equivalence queries. Section 3.5.2.1 first describes the

membership query that takes as input a given event sequence from Σ∗D. This query

uses FLAVERS to treat the system requirement as the property and the specified

event sequence as a constraint to determine whether or not that event sequence is

safe (i.e. corresponds to only safe paths). Section 3.5.2.2 then describes the equiva-

lence query that takes as input the current derived requirement and uses FLAVERS

to search for either safety or permissiveness counterexamples. For the safety coun-

terexample generation, this query uses FLAVERS to treat the system requirement as

the property and the current derived requirement as a constraint to search for unsafe

paths. For the permissiveness counterexample generation, the query uses FLAVERS

to treat the current derived requirement as the property and the system requirement

as a constraint to search for safe paths.

3.5.2.1 Membership Query

Since our teacher has assess to the original HIS subject consisting of the system

TFG G, the property is the system requirement RS, and the system constraint set

CS, the membership query simply takes as input an event sequence σ and determines

whether σ is safe (i.e. does belong to U) or is non-safe (i.e. does not belong to U).

For this work, we want to apply the prefix-closed optimization described in the learner

section but cannot because the node-tuple graphs are usually not prefix-closed. On the

other hand, any infeasible path that reaches one or more constraint violations states

60

that are trap states will always remain an infeasible path when extended. In a similar

manner, an unsafe path that reaches a property violation state that is a trap state will

always remain an unsafe path when extended. Thus we adapt the membership query

to return one of the following. If the given event sequence is safe (i.e. corresponds

to all safe paths), then IS PREFIX is returned. For instance, the non-deterministic

node-tuple graph shown in Figure 3.2 contains safe event sequence c. If that event

sequence is non-safe but can sometimes be extended to an event sequence that is safe

(i.e. corresponds to at least one safe path), then IS POSSIBLE PREFIX is returned.

For instance, the non-deterministic node-tuple graph shown in Figure 3.2 contains

non-safe event sequence a that can be extended to safe event sequence a·c but can

also be extended to unsafe event sequence a·b. If the event sequence is non-safe

and can never be extended to an event sequence that is safe (i.e. corresponds to all

infeasible paths or unsafe ones), then IS NOT PREFIX is returned. For instance,

the non-safe event sequence b can never be extended to a safe event sequence. We

also adapt the optimized updateT method shown in Figure 3.6 to check if T (t) is

IS NOT PREFIX (line 2) and set T (t) to IS NOT PREFIX (line 3). For instance,

the non-deterministic node-tuple graph shown in Figure 3.2 does not contain prefix b

and therefore the optimized updateT method returned IS NOT PREFIX. Thus, the

prefix b·c will also return IS NOT PREFIX.

Figure 3.7 shows the pseudo-code for the membership query method. This method

first checks whether or not the given event sequence is safe (line 3). Specifically, the

state propagation algorithm is run on a HIS subject consisting of a property that

is a copy of the system requirement RS to check for the existence of unsafe paths,

the TFG G, and a constraint set that is the system constraint set CS along with a

new constraint Cσ that accepts the event sequence σ. (The Build-Constraint method

that takes as input a given event sequence σ to be accepted along with whether or

not the extensions of that event sequence should also be accepted is described in the

61

next paragraph.) If the verification result is conclusive (in the figure shortened to

CON for brevity), then the membership query method returns IS PREFIX (line 4).

If not, then this method next checks whether or not the non-safe event sequence can

be extended to be a safe one (line 9), meaning there exists a suffix e from Σ∗U such

that the event sequence σ · e is safe. Specifically, the state propagation algorithm is

run on a HIS subject consisting of a property that is the complement of the system

requirement RS to check for the existence of safe paths instead of unsafe ones, the

TFG G, and a constraint set that is the system constraint set CS along with a

new constraint Cσ that accepts event sequence σ and any extensions of that event

sequence. If the verification result is inconclusive because a counterexample path

exists (in the figure shortened to INC-CEXPATH to save space), then the membership

query method returns IS POSSIBLE PREFIX (line 10), otherwise this query returns

IS NOT PREFIX (line 12).

1: // Check whether or not the given event sequence σ is safe
2: Cσ ← Build-Constraint(σ, FALSE)
3: if (State-Propagation(RS, G, CS ∪ { Cσ }) = CON) then
4: return IS PREFIX
5: else
6: // Check whether or not the non-safe event sequence σ can be
7: // extended to be a safe event sequence
8: Cσ ← Build-Constraint(σ, TRUE)
9: if (State-Propagation(¬RS, G, CS ∪ { Cσ }) = INC-CEXPATH) then
10: return IS POSSIBLE PREFIX
11: else
12: return IS NOT PREFIX
13: end if
14: end if

Figure 3.7: Pseudo-code for the teacher’s membership query method

The Build-Constraint method creates a new constraint that accepts a given event

sequence σ and optionally any extensions of that event sequence. Initially, the Build-

Constraint method creates a new FSA with alphabet ΣD and a single new state that is

62

set as the start state of the FSA. This method then walks through the event sequence

σ creating a new state for each event and then creating a new transition from the

previous state to the new state on that event. This method ensures that the FSA

accepts event sequence σ by setting the last state created as the single accepting state

of the FSA. If the FSA is also supposed to accept the extensions of event sequence σ,

then the method makes the last state created into a trap state by adding a transition

from the last state to itself on each event in ΣD.

3.5.2.2 Equivalence Query

As mentioned in the overview of this section, the teacher has assess to the original

HIS subject consisting of the system TFG, the system constraints, and the system

requirement property. The equivalence query additionally takes as input the current

derived requirement. This query determines whether or not the language of the cur-

rent derived requirement is equivalent to U . If the language of the current derived

requirement is equivalent to U , the query returns true. Otherwise, it returns false,

along with a counterexample witnessing the inequivalence. The equivalence query

first tries to generate a safety counterexample that is allowed by the current derived

requirement but violates the system requirement. If a safety counterexample is found,

then this query returns false along with that counterexample. If a safety counterex-

ample is not found, then the query tries to generate a permissiveness counterexample

that is disallowed by the current derived requirement but satisfies the system re-

quirement. If a permissiveness counterexample is found, then the equivalence query

returns false along with that counterexample. If neither a safety nor permissiveness

counterexample is found, then this query returns true. In the next section, we discuss

why the equivalence query is not precise enough to guarantee that L(D) is equivalence

to U , which allows all safe event sequences and disallows all non-safe event sequences.

63

In the next two paragraphs, we describe the safety counterexample generation method

and the permissiveness counterexample generation method.

The safety counterexample generation method takes as input the system require-

ment property RS, the system TFG G, the system constraint set CS, and the current

derived requirement Di. This method returns a safety counterexample if one is found

and NULL otherwise. The method searches for an unsafe path that is allowed by

the current derived requirement Di but violates the system requirement RS. Spe-

cially, the safety counterexample generation method runs the find path algorithm,

which is one of the FLAVERS verification algorithms described in the background

chapter, on a HIS subject consisting of a copy of the system requirement property

RS, the TFG G, and a copy of the the constraint set CS augmented with a copy of

the current derived requirement Di. Since the state propagation algorithm does not

generate counterexample paths, we use the find path algorithm to iteratively generate

the counterexample paths. If an unsafe path is not found, then the safety counterex-

ample generation method returns NULL. If an unsafe path is found, then this method

first takes the path that is a sequence of node-tuples and projects on the derived re-

quirement alphabet ΣD to produce the corresponding event sequence from ΣD. For

instance, the path 1, 3, 6, 5 shown in Figure 3.2 projected on a derived requirement

alphabet that contains {a, b, c} produces event sequence a·c. On the other hand,

the same path projected on a derived requirement alphabet that only contains {c}

produces the event sequence c.

Other interface synthesis methods (e.g., [4,35]) use heuristics to generate permis-

siveness counterexamples that will produce an approximation to the most permissive

interface. This is the approach taken in our work. The permissiveness counterex-

ample generation method takes as input the system requirement property RS, the

system TFG G, the system constraint set CS, and the current derived requirement

Di. This method returns a permissiveness counterexample if one is found and NULL

64

otherwise. Figure 3.8 shows the pseudo-code for the permissiveness counterexam-

ple generation method that basically uses a search-based counterexample generation

algorithm to heuristically find permissiveness counterexamples. This method first

iteratively searches for every potential permissiveness counterexample path t that

violates the current derived requirement Di (line 3). Specifically, the find path algo-

rithm is run on a HIS subject consisting of a property that is a copy of the current

derived requirement Di, the TFG G, and the constraint set CS. This is an extension

of the permissiveness heuristic originally proposed by Cobleigh et al. [20]. Alterna-

tively, the permissiveness counterexample generation method could first iteratively

search for every potential permissiveness counterexample path that violates the cur-

rent derived requirement Di and also satisfies the system requirement property. In

a similar manner to the membership query method, this method would run the find

path algorithm on a HIS subject consisting of a property that is a copy of the cur-

rent derived requirement Di, the TFG G, and the constraint set CS along with an

additional constraint that is a copy of the system requirement RS. This alternative

permissiveness heuristic will be further described in the next chapter. For each po-

tential permissiveness path t, the method checks whether or not that path is null (line

4). If that path is null, then the permissiveness counterexample generation method

returns NULL (line 5). If the path is non-null, then this method computes the event

sequence σt from ΣD that corresponds to path t (line 9). The method then checks

whether or not the event sequence σt is safe by asking a membership query (line

10). If so, then the permissiveness counterexample generation method returns the

permissiveness counterexample event sequence σt (line 11). If not, then this method

continues to the next iteration. For instance, the permissiveness counterexample gen-

eration method given the simplified node-tuple graph shown in Figure 3.2 could find

the potential permissiveness counterexample path 1, 3, 6, 5 (line 3) that corresponds

to event sequence a·c (line 9). This event sequence is determined to be safe (line

65

10) and returned as a permissiveness counterexample (line 11). Alternatively, this

method given the node-tuple graph shown in Figure 3.2 could find the potential per-

missiveness counterexample path 1, 3, 4, 5 (line 3) that corresponds to event sequence

a·b (line 9). The method, however, given that same node-tuple graph could find un-

safe path 1, 7, 8, 9 that also correspond to event sequence a·b (line 10). Because

event sequence a·b corresponds to both a safe path and an unsafe path, that event

sequence is determined to not be safe (line 10). Thus, the method continues to the

next iteration.

1: // Search for a potential permissiveness counterexample path t
2: // that is disallowed by the current derived req. Di

3: for all (t ∈ Find-Path(Di, G, CS)) do
4: if (t = NULL) then
5: return NULL
6: else
7: // Check whether or not event sequence σt is safe
8: // and thus should be allowed by the final derived req.
9: σt ← Project(t,ΣD)
10: if (Membership-Query(σt) = IS PREFIX) then
11: return σt
12: end if
13: end if
14: end for

Figure 3.8: Pseudo-code for the teacher’s permissiveness counterexample generation
method

3.5.3 Guarantees

In Section 2.5, we discussed that the actual system may contain non-determinism

that must be taken into account when determining whether or not a given event se-

quence is safe or non-safe. The system model may also use system abstractions that

introduce non-determinism. The learning-based requirement deriver handles the non-

determinism in such a way that the final derived requirement is guaranteed to be safe

but not necessarily adequately permissive. In particular, the permissiveness coun-

66

terexample generation method may not generate some of the actual permissiveness

counterexamples. In the next chapter, we will vary the permissiveness counterexam-

ple generation method along several dimensions to try to produce more of the actual

permissiveness counterexamples to improve the permissiveness of the final derived

requirements. The L∗ learner [6, 61] guarantees that the final derived requirement

is represented as a minimal deterministic FSA. In the following, we first discuss the

guarantees about the derived requirements and then discuss the worst-case complexity

of the requirement deriver.

For the learning-based requirement deriver, our teacher classifies the event se-

quences from ΣD as either safe or non-safe. We defined the unknown language U

being learned to disallow the non-safe event sequences and allow the safe ones. To

guarantee that the final derived requirement D is equivalent to U , this teacher needs

to be minimally adequate, meaning that both the membership and equivalence queries

must return precise answers. Our equivalence queries, however, only return precise

answers for the unsafe event sequences but imprecise answers for the non-terminating,

infeasible, and safe event sequences. This means that the final derived requirement

is guaranteed to disallow all unsafe event sequences (i.e. be safe) but may not allow

all safe event sequences (i.e. be adequately permissive). Additionally, this means

that the requirement may not disallow all of the non-terminating and infeasible event

sequences. In what follows, we first describe the guarantees for the membership query

and then the guarantees for the equivalence query.

Figure 3.7 shows the pseudo-code for the membership query that determines

whether a given event sequence σ from ΣD is safe or non-safe (line 3). To handle

the non-determinism, the state propagation algorithm is used to check whether or not

that event sequence corresponds to safe paths and no unsafe ones. If so, then this

query returns safe (line 4), otherwise the query returns non-safe (line 10 or 12). This

means that the membership queries return precise answers.

67

The equivalence query first uses a safety counterexample generation method and

if needed then a permissiveness counterexample generation method. Section 3.5.2.2

describes the safety counterexample generation method that uses the find path algo-

rithm to search for a safety counterexample that is allowed by the current derived

requirement but violates the system requirement (i.e. is unsafe). This algorithm

was designed to generate such unsafe paths but not the non-terminating or infeasible

paths. For the non-safe event sequences, the equivalence queries return precise an-

swers for the unsafe event sequences but imprecise answers for the non-terminating

and infeasible event sequences. On the other hand, Figure 3.8 shows the permissive-

ness counterexample generation method that is a conservative but imprecise heuristic.

This method also uses the find path algorithm (line 3) to search for permissiveness

counterexamples that are disallowed by the current derived requirement but satisfy

the system requirement. Because the find path algorithm can be influenced by the

non-determinism, some actual permissiveness counterexamples may not be generated

as described below. For the safe event sequences, the equivalence queries return

imprecise answers.

In more detail, the permissiveness counterexample generation method first uses

the find path algorithm to search for a potential permissiveness counterexample path

that is disallowed by the current derived requirement (line 3). To handle the non-

determinism, the method then maps that path to its corresponding event sequence

(line 9) and checks whether or not that event sequence is safe (line 10). If so, the

event sequence is returned as a permissive counterexample (line 11). If not, the

event sequence is ruled out as a permissiveness counterexample to guarantee that

the derived requirement is safe. For instance in the non-deterministic node-tuple

graph shown in Figure 3.2, the potential permissiveness counterexample path 1, 3,

4, 5 that corresponds to event sequence a·b is ruled out because event sequence

a·b also correspond to unsafe path 1, 7, 8, 9. For every potential permissiveness

68

counterexample path, the find path algorithm will add each of that path’s node-

tuples to the visited data structure that stores the node-tuples that have already been

explored. This means that a safe path ruled out because of non-determinism can lead

to another safe path being ruled out because some of its node-tuples have already

been marked as visited. Giannakopoulou and Păsăreanu [35] refer to this as the state-

matching problem. For instance, the potential permissiveness counterexample path 1,

3, 4, 5 was ruled out (and marked node-tuples 1, 3, 4, and 5 as visited). Thus, the

potential permissiveness counterexample path 1, 3, 6, 5 is also ruled out (because the

node-tuple 5 was already visited). For FLAVERS, the node-tuple graphs are non-

deterministic when the TFG is non-deterministic, the generate next tuples function is

non-deterministic, or both. The generate next tuples function is designed to be non-

deterministic but in practice is implemented in a deterministic manner. Thus, this

function given the initial tuple and an event sequence σ will produce a unique tuple

that is either safe or non-safe. The function therefore prevents the non-deterministic

system models from leading to the state-matching problem. On the other hand,

the permissiveness counterexample generation method first performs an imprecise

search for a potential permissiveness counterexample path that violates the current

derived requirement (line 3) and then checks whether or not that path is safe (line

9). If the potential permissiveness counterexample path is unsafe, then that path is

ruled out. In a similar manner to the non-deterministic case, such unsafe paths can

rule out safe paths because of the state-matching problem. The next chapter will

describe alternative permissiveness counterexample heuristics that perform a more

precise search for potential permissiveness counterexamples to try to avoid ruling out

actual permissiveness counterexamples.

In the worst case, the number of membership queries made by the L∗ learner

is O(k · m2) + m log l, where k is the number of events in the alphabet ΣD, m is

the number of states in the minimal deterministic FSA D, and l is the length of

69

the longest counterexample returned by any equivalence query. Since FLAVERS is

used to answer the membership and equivalence queries, each query has worst case

complexity that is O(n2 · s), where n is the number of nodes in the TFG and s is the

product of the number of states in the property and the number of states in each of

the constraints.

3.6 Derived Requirement Permissiveness Classifier

In the Introduction, we formally defined a derived requirement to be adequately

permissive when that requirement allows all safe event sequences. This classifier con-

servatively checks whether or not a given derived requirement disallows any potential

permissiveness counterexamples that correspond to safe paths. If not, then that de-

rived requirement is adequately permissive because all potential permissiveness coun-

terexamples are allowed by the requirement. If so, then the derived requirement may

or may not be adequately permissive because one or more potential permissiveness

counterexamples are disallowed by that requirement.

In the FLAVERS section, we discussed that the find path algorithm can be used

to generate some of the possible terminating paths through the node tuple-graph but

not necessarily all of them. Thus, the derived requirement permissiveness classifier

cannot use this algorithm to perform the check for safe paths since some of them may

not be generated. On the other hand, the build node-tuple graph and state propa-

gation algorithms summarize all possible terminating paths through that node-tuple

graph but cannot generate any of those paths. This classifier therefore could use ei-

ther of these algorithms to check for potential permissiveness counterexamples. In the

previous chapter, we described how the build node-tuple graph algorithm represents

the node-tuples as pairs of a TFG node and tuple and explicitly represents the edges

among those pairs. On the other hand, the state propagation algorithm represents

the node-tuples by associating each TFG node with a set of tuples and uses the ex-

70

iting TFG edges among the TFG nodes. Thus, we chose to use the state propagation

algorithm because the node-tuple graph representation is more compact in terms of

space. Specifically, we use this algorithm to check for potential permissiveness coun-

terexamples by treating the system requirement as a constraint to check for safe paths

and by treating the derived requirement as the property to check whether or not any

of those safe paths are disallowed by that derived requirement. In more detail, the

derived requirement permissiveness classifier runs the state propagation algorithm on

a HIS subject consisting of the system TFG, the system constraints along with a new

constraint that is a copy of the system requirement, and the property is a copy of

the derived requirement. This classifier checks whether or not the verification result

is CONCLUSIVE. If so, the classifier returns “Is adequately permissive.” If not, the

classifier returns “May be adequately permissive.” The permissiveness classifier uses

the state propagation algorithm to check for potential permissiveness counterexamples

in a similar manner to how the teacher’s permissiveness counterexample generation

method uses the find path algorithm to generate the potential permissiveness coun-

terexamples (shown in line 4 of Figure 3.8).

71

CHAPTER 4

DERIVATION IMPROVEMENTS

For our HIS-based requirement derivation approach, the L∗ learner must be pro-

vided with a teacher that can answer two different types of queries, membership

queries and equivalence queries. Our teacher answers both queries using a model

checker. For this work, we consider model checkers such as Spin [49], NuSMV [18],

Java Pathfinder, and FLAVERS that provide a counterexample generation algorithm

that take as input a system model and one of its properties and then explicitly or sym-

bolically generate the reachability graph to iteratively find counterexamples. Since

our preliminary evaluation showed that this approach often did not scale well, we

investigated several learning and model checking optimizations. These optimizations

improved performance but also influenced the generated counterexamples, impacting

the permissiveness of the derived requirements. Thus, we investigated the impact

on permissiveness of several counterexample generation heuristics and the interaction

of the optimization techniques and counterexample generation approaches. Although

many of the optimizations and heuristics have been presented previously, we show how

their selective combination affects the derivation results with respect to performance

as well as permissiveness.

Various optimizations have been developed for the learning algorithms (e.g., [4,15])

and model checking techniques (e.g., [25,38]). As part of this work, we extended our

approach to incorporate several optimizations intended to reduce the amount of space

and time needed to perform the requirement derivation. We found, however, that

some of these optimizations involving the encoding of variables in the HIS model may

72

interact with the counterexample generation approaches. When these optimizations

are applied, the derived requirement may be too restrictive to be useful because not

enough permissiveness counterexamples are generated. Thus, we also investigate a

general class of permissiveness counterexample generation heuristics that approximate

the derived requirements that are most permissive. Our goal is to find one or more

combinations of the optimizations and heuristics that have reasonable performance

in terms of space and time, but also derive requirements that are permissive enough

to be useful. Although we have evaluated these optimizations and heuristics for the

particular learning algorithm and model checker employed by our requirement deriver,

we believe the results would be applicable to other requirement derivers built with

similar approaches. In the next chapter, we will discuss a very preliminary evaluation

of another requirement deriver that employs the same learning algorithm and the

Java Pathfinder model checker. We first provide more details about the derivation

optimizations and the permissiveness counterexample generation heuristics. We then

describe our experimental evaluation.

4.1 Derivation Optimizations

For our HIS-based requirement derivation approach, we need to translate the HIS

model written in Little-JIL to the FLAVERS representation consisting of a TFG and

set of constraints. Since a Little-JIL step’s (or procedure’s) execution may need to

copy input and output parameters, send/receive to/from communication channels,

and throw exceptions, a Little-JIL step is typically translated to between 5 and 20

TFG nodes. Additionally, the Little-JIL to FLAVERS translator represents each pa-

rameter, exception, or channel as a FLAVERS constraint. For this work, the system

properties (e.g., never overdose) specify the intended or unintended interactions be-

tween the given component (e.g., pump) and its environment (e.g., perform in-patient

73

surgery). Thus the model checker often needs to model the variables relevant to the

properties.

As mentioned in the introduction, our HIS-based requirement derivation approach

takes as input a HIS model that is a parallel composition of the component of interest

and the environment in which that component is used. At a high level of abstrac-

tion, the component defines a set of remote procedures that the environment calls

to accomplish its goals. In our HIS models, the remote procedure calls are encoded

using communication channels that send and receive messages. Thus, we applied

two model checking optimizations to try to ameliorate the state explosion problem.

Both optimizations target the sequences of procedure calls to the component made

by its environment: we applied program slicing techniques (e.g., [72]) to keep only

the portions of the model relevant to those procedure calls, and we used partial order

reduction techniques (e.g., [19]) to reduce the number of thread interleavings between

the component and its environment. Although these optimizations improved per-

formance by decreasing both the space and time needed, the results for our largest

subjects showed the deriver’s performance still did not scale well. Thus, we explored

the application of three additional model checker optimizations and one learner op-

timization that affect how the interactions are encoded in the HIS model to further

improve the deriver’s performance.

Many researchers have investigated model checker optimizations (e.g., [18,19]) and

learner optimizations (e.g., [14, 33]). We know from other work (e.g., [9]) that alter-

native ways of encoding different modeling language features in the system model can

have substantial impacts on the size of the model and the performance of the verifi-

cation algorithm. For this work, we therefore applied three additional model checker

optimizations that influence how the interactions are encoded in the HIS model. Two

model checker optimizations employ constant propagation and live variable analysis,

two common compiler techniques, that affect how the variables relevant to the system

74

property are encoded in the HIS model. The third model checker optimization affects

how the channels are encoded in HIS model. We also applied a learner optimiza-

tion that uses a particular characteristic of the system models to reduce the number

of times that the model checker is run to answer the membership queries. In what

follows, we will illustrate the four optimizations by applying them to the setDose

procedure of the pump shown in Figure 2.4. As described in Section 2.3, for each

selected component (e.g., pump), we declare variables to store the internal state of

that component (e.g., currLib). For each of its procedures, we declare variables to

store the values of the input parameters (e.g., setDose dose) along with the output

parameters or exceptions thrown (e.g., setDose DoseAlert).

The four optimizations will be further described in the following sections. Overall

the four optimizations did not significantly interact with each other. The learner op-

timization and the channel-related model checker optimization improved the deriver’s

performance and did not impact the permissiveness of the derived requirements. The

compiler-based model checker optimizations tended to significantly improve the de-

river’s performance, especially in terms of space, but could drastically reduce the

permissiveness of the derived requirements. Since we need the improved performance

provided by all four optimizations, we investigated the ability of the counterexample

generation heuristics described in the next section to improve the permissiveness of

the derived requirements.

4.1.1 Variable Modeling Alternatives

FLAVERS can track the run-time values of user-specified variables to improve the

precision of the system model represented as a TFG and a set of constraints. Since the

worst case of the verification algorithm depends on the size of the TFG, the number

of constraints, and the size of each constraint, we explored two variable modeling

alternatives that differ in how the run-time variable values are tracked in the TFG

75

and constraints to study the impact of both alternatives on the performance of the

verification algorithm. In particular, the Little-JIL to FLAVERS translator allows

the user to specify the variable modeling alternative on a per variable basis. We next

briefly describe both variable modeling alternatives and illustrate each alternative on

the setDose procedure.

In the first alternative, the variables are modeled as constraints and their run-time

values are tracked in the node-tuple graph generated by the verification algorithm. For

a given variable (e.g., setDose dose), the Little-JIL to FLAVERS translator employs

a template-based approach to construct the appropriate TFG nodes annotated with

the events that set (e.g., setDose dose=LOW) and test (e.g., setDose dose==LOW)

the value of that variable. For instance, the setDose procedure shown in Figure 2.4 is

translated to the portion of the TFG shown in Figure 2.10 when the user specifies to

apply this first alternative to the variables currLib , currDose , setDose dose, and

setDose DoseAlert. To illustrate, one potential path through the pseudo-code of

the setDose procedure consists of statements 1, 5, 8, 9, 10. That path is translated

to TFG nodes { 0, 1a, 1b, 5, 8, 9a, 9b, 9c, 9d, 10, 11 } where the setDose dose

variable is set at TFG nodes 1a and 1b and then tested at TFG nodes 8, 9a, and 9b.

Additionally, the translator constructs an appropriate variable constraint represented

as an FSA as described in the FLAVERS section to track the run-time values of that

variable during the analysis. For instance, Figure 2.9 shows the variable constraint for

the setDose dose variable. So in this first alternative, all the information about the

run-time values of variables is tracked in the states of the variable constraints, and

the verification algorithm generates the full node-tuple graph by associating nodes

with tuples of constraint states. To illustrate, Figure 2.12 shows the portion of the

node-tuple graph for the setDose procedure where each node-tuple shows the TFG

node (top) and the tuple (bottom). In particular, every tuple tracks the states of the

variable constraints for currLib , currDose , setDose dose, setDose DoseAlert. The

76

FLAVERS background section describes how the verification algorithm generates the

full node-tuple graph in more detail. We call this first alternative the analysis-time

variable model.

currDose_=LOW
<9, LOW>

8

setDose_DoseAlert=FALSE
<10, LOW>

9

tau
<1, LOW>

1

tau
<HIGH>

10

currLib_==ICU
<5, HIGH>

15

currLib_==OR
<2, HIGH>

11

setDose_DoseAlert=TRUE
<7, HIGH>

17

currDose_=HIGH
<3, HIGH>

13

setDose_DoseAlert=FALSE
<4, HIGH>

14

currLib_==OR
<2, LOW>

2

currDose_=LOW
<3, LOW>

4

setDose_DoseAlert=FALSE
<4, LOW>

5

currLib_==ICU
<5, LOW>

6

tau
<3, LOW>

3

tau
<8/9a, LOW>

7

tau
<3, HIGH>

12

tau
<6, HIGH>

15

TFG node event
<lineNo,setDose_dose>

Figure 4.1: Portion of the TFG for the setDose procedure constructed when the first
alternative for modeling the currLib , currDose , and setDose DoseAlert variables
is applied and the second alternative for modeling the setDose dose variable is applied

In the second alternative, selected variables are modeled in the TFG, in particu-

lar their run-time values are tracked in the TFG nodes. Like FLAVERS, the INCA

model checker [24] first constructs a high-level model of the execution of the system

as a graph and then uses that graph as the basis for its verification. But INCA uses

constant propagation [1] to encode variable values in the graph and hence does not

need to explicitly track those values during the verification algorithm. In FLAVERS,

we have implemented this approach by extending the Little-JIL to FLAVERS trans-

lator to encode the values of (user-specified) variables in the TFG nodes. Specifically,

77

this translator associates a tuple consisting of the source location (in this case the

line number) and the selected variables with each TFG node. This is similar to how

the verification algorithms associate tuples of the property and constraints states,

including the task and variable constraint states, with the TFG nodes. For instance,

Figure 4.1 shows the portion of the TFG for the setDose procedure constructed

when the user specifies to apply the first alternative to the currLib , currDose , and

setDose DoseAlert variables and to apply this second alternative to the setDose dose

variable. In this figure, each TFG node is annotated with its event (shown at the

top) along with the encoded tuple that consists of the source location value and

setDose dose variable value (shown at the bottom). To illustrate, we consider the

same path through the pseudo-code of the setDose procedure that consists of state-

ments 1, 5, 8, 9, 10. In this figure, that path is translated to TFG nodes { 1, 6, 7, 8,

9, 10 } where the setDose dose variable is set at TFG nodes 1 and 10 and then tested

at TFG node 7. For clarity, we added the TFG nodes annotated with τ , but the TFG

refinements will later remove such TFG nodes to try to reduce the size of the TFG.

The TFG shown in Figure 4.1 essentially corresponds to the node-tuple graph shown

in Figure 2.12 where any set or test of the setDose dose variable was relabeled as

tau. This second alternative eliminates the need for some variable constraints (e.g.,

dose) and the tracking of their states in the node-tuple graph during the verification

algorithm. The second alternative, however, has the potential to increase the size of

the TFG to track the variable values in its nodes. We call this second approach the

model-construction-time variable model.

For this work, we must apply the analysis-time variable model to the channels

because they are shared by multiple agents. We also must apply the analysis-time

variable model to any parameters and exceptions that are shared by multiple agents.

On the other hand, we could apply either variable model to any parameters and

exceptions that are local to a single agent. In practice for most systems, the model-

78

construction-time variable model can greatly reduce the space and time needed for

the verification algorithm. Thus, we applied the model-construction-time variable

model to the parameters and exceptions whenever possible.

4.1.2 Reset Dead Local Variables

A local variable is live at a given CFG node if and only if there exists a path

to that node where that variable is defined (in our terminology set) and from that

node where the variable is used (in our terminology tested) before being redefined.

Otherwise that local variable is dead (meaning not live). For instance, Figure 2.10

uses the analysis-time variable model for the setDose dose variable that is defined at

TFG nodes { 1a, 1b } and used as TFG nodes { 3a, 3b, 3c, 3d, 6, 8, 9a, 9b, 9c, 9d }.

Thus, the dose variable is live at TFG nodes: { 2, 3a, 3b, 3c, 3d, 5, 6, 8, 9a, 9b, 9c,

9d }. Conceptually, the model checkers need to track all possible values for the live

variables but do not need to track the values of the dead variables. Thus some model

checkers such as Bandera [25] and INCA incorporate a reset dead local variables

optimization where each local variable that goes from live to dead is redefined to a

single value. This optimization attempts to reduce the number of possible values of

the local variables that need to be tracked in the node-tuple graph of the verification

algorithm or in the TFG nodes to try to reduce the space and time needed to perform

the verification.

For this optimization, the Little-JIL to FLAVERS translator allows the user to

specify whether or not each local variable is reset to dead when possible. This trans-

lator first performs live variable analysis [1] on the CFGs. Based on the analysis

results, each CFG node is then associated with a live variable set. A local variable

goes from live to dead when an edge transfers control from a CFG node that contains

that variable in its live variable set to another node that does not contain that variable

in its live variable set. The translator represents a local variable going from live to

79

dead with the insertion of a new assignment statement where the left hand side is the

variable (e.g., setDose dose) and the right hand side is the dead value of that vari-

able, in our case the initial value of the variable (e.g., LOW). For instance, Figure 4.2

shows the portion of the TFG for the setDose procedure shown in Figure 2.10 where

the reset dead local variables optimization was applied to the setDose dose variable.

The setDose dose variable goes from live to dead represented by the inserted assign-

ment statements (shown in bold) where the setDose dose variable is set to LOW at

TFG nodes: { 11, 12, 13 }. We described this optimization at the CFG-level. In

practice, we implemented the optimization on the labeled transition systems.

setDose_dose=LOW

1a

setDose_dose=HIGH

1b

setDose_dose==LOW

3a

setDose_dose==HIGH

3b

currDose_=LOW

3c

currDose_=HIGH

3d

setDose_dose=LOW

11

currLib_==OR

2

currLib_==ICU

5

setDose_dose==HIGH

6

setDose_dose==LOW

8

setDose_dose=LOW

12

setDose_dose==LOW

9a

setDose_dose==HIGH

9b

currDose_=LOW

9c

currDose_=HIGH

9d

setDose_dose=LOW

13

setDose_DoseAlert=FALSE

4

setDose_DoseAlert=TRUE

7

setDose_DoseAlert=FALSE

10

Figure 4.2: Portion of the TFG for the setDose procedure shown in Figure 2.10 where
the reset dead local variables optimization was applied to the setDose dose variable

For a given HIS model, each procedure of the selected component has its parame-

ters and exceptions translated to local variables that could have this reset dead local

variables optimization applied. For our evaluation, if the reset dead local variables

80

optimization is not applied, then the requirement deriver often exceeds either its

space or time bound. This evaluation therefore applied the reset dead local variables

optimization whenever possible.

4.1.3 Channel Modeling Alternatives

As mentioned in the background section, we represent the interactions between

the selected component and its environment as remote procedure calls. Specifically,

we model the remote procedure calls with channels in the HIS models written in

Little-JIL. Recall that a channel (e.g., setDoseRetChn) stores a buffer of messages

of a user-specified type (e.g., boolean) and provides two atomic operations, send

and receive, to access the messages. Thus to precisely model the remote procedure

calls, the input to the model checker often must encode the channel semantics in

the system model. For FLAVERS, we explored two channel modeling alternatives

that encode each channel as a single-slot buffer of messages, meaning that channel

stores a single message. The message may be set to a special EMPTY value or one

of the possible values of the user-specified type of the message (e.g., TRUE). The

send operation blocks waiting until the channel is not full and then adds a given

message to the channel. The receive operation blocks waiting until the channel is

not empty and then removes a message from the channel. In both alternatives, the

channels are modeled as constraints and the run-time values of the messages in the

channels are tracked in the node-tuple graph of the verification algorithm. The first

alternative encodes the semantics of the two channel operations in the TFG while

the second alternative encodes them in the constraint. We next briefly describe each

channel modeling alternative and illustrate its application to the return statement of

the setDose procedure of the pump.

For the first channel modeling alternative, the Little-JIL to FLAVERS translator

encodes the channel semantics by constructing a variable constraint for a given chan-

81

nel (e.g., setDoseRetChn) to track the run-time values of the message stored in that

channel. Additionally the translator inlines the calls to send to and receive from the

channel in the TFG. We call this the low-level channel model.

To illustrate, Figure 4.3 shows the variable constraint for the channel setDoseRetChn.

In this figure, there is a state labeled with the special UNKNOWN value (shortened

to UNK), the special EMPTY value, and the remaining states labeled with the other

possible values of the message stored in the channel (e.g., TRUE). The transitions

are labeled with events for setting the value of the message (e.g., setDoseRetChn =

TRUE) and testing the value of the message (e.g., setDoseRetChn == TRUE).

The figure only shows the transitions that may be executed by the inlined calls that

send to and receive from the channel.

setDoseRetChn=EMPTY,
setDoseRetChn==EMPTY

setDoseRetChn=EMPTY

setDoseRetChn!=EMPTY,
setDoseRetChn!=FALSE,
setDoseRetChn!=TRUE

UNKUNK

ICUEMPTY ORFALSE

setDoseRetChn=FALSE,
setDoseRetChn==FALSE,
setDoseRetChn!=EMPTY,
setDoseRetChn!=TRUE

setDoseRetChn=EMPTY,
setDoseRetChn==EMPTY,
setDoseRetChn!=FALSE,
setDoseRetChn!=TRUE

setDoseRetChn=FALSE,
setDoseRetChn==FALSE

ORTRUE

setDoseRetChn=TRUE,
setDoseRetChn==TRUE,
setDoseRetChn!=EMPTY,
setDoseRetChn!=FALSE

setDoseRetChn=EMPTY

setDoseRetChn=FALSE

setDoseRetChn=TRUE,
setDoseRetChn==TRUE

setDoseRetChn=TRUE

Figure 4.3: Variable constraint for channel setDoseRetChn that stores a message of
boolean type

For the low-level channel model, the Little-JIL to TFG translator defines a TFG

template that inlines the call to the send operation that copies a given input pa-

rameter (e.g., setDose DoseAlert) to a specified channel (e.g., setDoseRetChn). To

illustrate, Figure 4.4a shows the portion of the TFG for the return statement of the

82

setDose procedure where this template was applied. The template first tests whether

or not the channel is empty (corresponds to TFG node 3.1a). If the channel is not

empty, then the send operation will block. If the channel is empty, then this operation

will continue on to copy the input parameter to the channel. For each possible value

(e.g., FALSE) of the input parameter (e.g., setDose DoseAlert), this template copies

that input parameter value to a new message (corresponds to TFG node 3.1b) and

then adds that message to the channel (corresponds to TFG node 3.1d). The trans-

lator also defines a TFG template that inlines the call to the receive operation that

copies a message from a given channel (e.g., setDoseRetChn) to a specified output

parameter (e.g., setDose retMsg). To illustrate, Figure 4.4b shows the portion of

the TFG for the return from the setDose procedure where this template was applied.

The template first tests whether or not the channel is not empty (corresponds to

TFG node 3.2a). If the channel is empty, then the receive operation will block. If the

channel is not empty, then this operation will continue on to copy from the channel

to the output parameter. For each possible value (e.g., FALSE) of the message in the

channel, this template copies that message value (corresponds to TFG node 3.2b) to

the output parameter (corresponds to TFG node 3.2d). Lastly, the template removes

the message from the channel (corresponds to TFG node 3.2f).

For the second channel modeling alternative, the translator encodes the channel se-

mantics by constructing a channel constraint for a given channel (e.g., setDoseRetChn)

that both tracks the run-time values of the message stored in that channel and inlines

the calls for the send and receive operations for the channel. The translator also con-

structs TFG nodes annotated with events that correspond to making the calls that

send to and receive from the channel. This modeling alternative attempts to reduce

the size of the TFG by adding fewer nodes and edges. We call this the high-level

channel model.

83

setDoseRetChn==EMPTY

3.1a

setDose_DoseAlert==FALSE

3.1b

setDoseRetChn=FALSE

3.1d

setDose_DoseAlert==TRUE

3.1c

setDoseRetChn=TRUE

3.1e

(a) Portion of the TFG for the pump
where the low-level send operation was
applied to one of the return statements
of the setDose procedure

setDoseRespChn!=EMPTY

3.2a

setDoseRetChn==FALSE

3.2b

setDose_retMsg=FALSE

3.2d

setDoseRetChn=EMPTY

3.2f

setDoseRetChn==TRUE

3.2c

setDose_retMsg=TRUE

3.2e

(b) Portion of the TFG for the in-patient
surgery process where the low-level chan-
nel receive operation was applied to the
return from the setDose procedure

To illustrate, Figure 4.5 shows the channel constraint for the channel setDoseRetChn.

In each channel constraint (e.g., setDoseRetChn), there is a state for the special

EMPTY value and a state for every possible value of the type of the message (e.g.,

TRUE). The state for the EMPTY value is set as the start state and all states

that correspond to values of the message are set as accepting states. Additionally,

there are transitions labeled with the events that send a message to that channel

(e.g., SND(setDoseRetChn, TRUE)), receive a message from the channel (e.g.,

RCV(setDoseRetChn, TRUE)), and test whether or not there is a message (e.g.,

isEmpty(setDoseRetChn)). In more detail, the send operation blocks waiting until

the channel is empty. This is represented by the implicit transitions from each possible

message state to the violation state on the send operations. For example, the FALSE

state transitions to the violation state on the event SND(setDoseRetChn,FALSE).

The send operation is permitted when the channel is empty. For each possible mes-

sage, this is represented by the transition from the EMPTY state to the corresponding

message state on the send operation of that message. For example, the EMPTY state

transitions to the FALSE state on the event SND(setDoseRetChn,FALSE). On the

84

other hand, the receive operation blocks waiting until the channel is not empty. This

is represented by the implicit transitions from the EMPTY state to the violation state

on the receive operations. For example, the EMPTY state transitions to the violation

state on the event RCV(setDoseRetChn,FALSE). The receive operation is permit-

ted when the channel is not empty. For each possible message, this is represented

by the transition from the corresponding message state to the EMPTY state on the

receive operation of that message. For example, the FALSE state transitions to the

EMPTY state on the event RCV(setDoseRetChn,FALSE).

ICUEMPTY

RCV(setDoseRetChn, FALSE)

ICUFALSE

SND(setDoseRetChn, FALSE)

not_isEmpty(setDoseRetChn),
isFull(setDoseRetChn)

isEmpty(setDoseRetChn),
not_isFull(setDoseRetChn)

ICUTRUE

not_isEmpty(setDoseRetChn),
isFull(setDoseRetChn)

RCV(setDoseRetChn, TRUE)

SND(setDoseRetChn, TRUE)

Figure 4.5: Channel constraint for channel setDoseRetChn that stores a message of
boolean type

For the high-level channel model, the Little-JIL to TFG translator defines a TFG

template to make a call to the send operation that copies a given input parameter (e.g.,

setDose DoseAlert) to a specified channel (e.g., setDoseRetChn). To illustrate,

Figure 4.6a shows the portion of the TFG for the second return statement of the

setDose procedure where this template was applied. For each possible value (e.g.,

FALSE) of the input parameter (e.g., setDose DoseAlert), the template first copies

that input parameter value to a new message (corresponds to TFG node 3.1b). This

85

template then makes a call to send that message to the channel (corresponds to TFG

node 3.1d). The channel constraint will block the send operation when the channel is

full. On the other hand, this constraint will continue on to copy the input parameter

to the channel when the channel is empty. The translator also defines a TFG template

to make a call to the receive operation that copies a message from the given channel

(e.g., setDoseRetChn) to a specified output parameter (e.g., setDose return). To

illustrate, Figure 4.6b shows the portion of the TFG for the return from the setDose

procedure where this template was applied. For each possible value (e.g., FALSE)

of the message, the template first makes a call to receive that value of the message

from the channel (corresponds to TFG node 3.2b). This template then copies that

message value to the output parameter (corresponds to TFG node 3.2d). The channel

constraint will block the receive operation when the channel is empty. On the other

hand, this operation will continue on to copy from the channel to the output parameter

when the channel is not empty.

tau

3.1a

setDose_DoseAlert==FALSE

3.1b

SND(setDoseRetChn, FALSE)

3.1d

setDose_DoseAlert==TRUE

3.1c

SND(setDoseRetChn, TRUE)

3.1e

(a) Portion of the TFG for the pump
where the high-level send operation was
applied to one of the return statements
of the setDose procedure

tau

3.2a

RCV(setDoseRetChn,FALSE)

3.2b

setDose_retMsg=FALSE

3.2d

RCV(setDoseRetChn,TRUE)

3.2c

setDose_retMsg=TRUE

3.2e

(b) Portion of the TFG for the in-patient
surgery process where the high-level re-
ceive operation was applied to the return
from the setDose procedure

For this work, we implemented both channel models in FLAVERS. The two chan-

nel models could be implemented for other model checkers such as Spin. For our case

studies, we compared the performance of the requirement deriver when the low-level

86

and high-level channel models were applied. The low-level channel model generally

needed twice the amount of space as the high-level one. Thus, our evaluation always

applied the high-level channel model.

4.1.4 Incremental Membership Query

For the learning-based requirement deriver, Section 3.5.1 mentioned that the L*

learner asks membership queries during the initialization and also during each iter-

ative refinement. Thus, it is usually beneficial to reduce the number of membership

queries, the cost of each membership query, or both to improve the performance

of the learning-based requirement deriver. In Section 3.5.1, we described that our

L* learner incorporates Rivest and Schapire’s improvements to reduce the number of

membership queries asked. Additionally, this L* learner incorporates the prefix-closed

optimization to further reduce the number of membership queries asked. Figure 3.7

shows the pseudo-code for our teacher’s membership query that employs a two-stage

strategy to answer the query where each stage needs to run FLAVERS (lines 3 and

9). In the previous sections, we described how to reduce the cost of the membership

queries by having each run of FLAVERS incorporate three model checker optimiza-

tions. In a complementary manner, this optimization conceptually performs the first

stage and then incrementally performs the second stage to reduce the cost of the

membership query by only needing one run of FLAVERS.

At a high-level, the incremental membership query takes as input a given event

sequence σ from Σ∗D and determines whether or not σ belongs in the unknown lan-

guage U . The first stage initially checks whether or not event sequence σ is safe.

This stage creates a new constraint Cσ with alphabet ΣD that accepts event sequence

σ. The stage then runs the state propagation algorithm to determine whether or not

all terminating paths that are allowed by Cσ satisfy the system requirement. If so,

this stage returns IS PREFIX. If not, then the second stage checks whether or not

87

event sequence σ that is non-safe can be extended to an event sequence that is safe.

This stage modifies the constraint Cσ that accepts σ to also accept any extensions of

σ. Since the modified constraint can allow more paths than the original constraint,

the stage then continues to run the state propagation algorithm to check whether or

not there exists a terminating path that is allowed by Cσ that satisfies the system

requirement. If so, then this stage returns IS POSSIBLE PREFIX . If not, then the

stage returns IS NOT PREFIX. In what follows, we describe how to implement the

incremental membership query by extending the state propagation algorithm.

For the incremental membership query, the first stage can use the state propaga-

tion algorithm described in the FLAVERS section of the Background chapter. The

state propagation algorithm employs data flow analysis techniques to verify whether

or not all potential terminating paths through a system model satisfy a user-specified

property. At a lower-level, this algorithm associates each TFG node with a set of

tuples that summarize the paths that can reach that TFG node. The algorithm uses

a worklist to start from the initial TFG node that is associated with the initial tuple

and then generates the reachable node-tuples. Lastly, the state propagation algo-

rithm determines the verification result by examining the final node-tuples. If the

verification result is CONCLUSIVE, meaning that there exist final node-tuples that

are satisfying and none that are violating, then the first stage determines that the

membership query result is IS PREFIX. If not, then the second stage is incrementally

performed by extending the state propagation algorithm as follows. After the first

stage generates the reachable node-tuples, the second stage modifies the constraint

Cσ, which contains a single accepting state that accepts σ, to accept any extension

of σ by making that accepting state a trap state. This modification will not affect

the set of existing tuples because the states of Cσ remain the same. The modifica-

tion, however, can lead to the generation of new tuples because the transitions of

Cσ have been modified. The second stage then reinitializes the worklist by adding

88

any TFG node to the worklist that is associated with a tuple where constraint Cσ

is at its accepting state that was modified to be a trap state. This stage uses the

worklist to generate any newly reachable node-tuples. Lastly, the stage reexamines

the final node-tuples to determine whether or not there exists a final node-tuple that

is satisfying. If so, then the second stage returns IS POSSIBLE PREFIX. If not, this

stage returns IS NOT PREFIX.

4.2 Permissiveness Counterexample Generation Heuristics

In the previous chapter, we described the permissiveness counterexample genera-

tion method that specifies a heuristic for generating permissiveness counterexamples

that correspond to terminating paths that are disallowed by the current derived re-

quirement but that satisfy the system requirement. Some of the requirement deriva-

tion optimizations described in the previous section, however, can negatively impact

that heuristic, which can significantly decrease the permissiveness of the derived re-

quirements. Thus, we extend the permissiveness counterexample generation method

to specify a general class of heuristics for generating permissiveness counterexam-

ples. Specifically, this method is varied along multiple dimensions suggested by the

search-based counterexample generation techniques (e.g., [30]) and the learning-based

interface synthesis methods (e.g., [4]). These dimensions can significantly affect the

permissiveness of the derived requirements as well as the performance of the the

learning-based requirement deriver.

In more detail, the permissiveness counterexample generation method shown in

Figure 3.8 iterates through a set of potential permissiveness counterexamples (line 3).

The permissiveness of the derived requirement depends on which counterexamples are

generated and in what order they are generated. The worst case of the requirement

deriver depends on the length of the longest counterexample generated and the cost

of the counterexample generation algorithm (in our case the find path algorithm). For

89

such search-based counterexample generation algorithms, including the ones provided

by FLAVERS, JPF, and Spin, there are two common approaches to vary the search

to influence the set of counterexamples generated and the cost of the counterexam-

ple generation. The first approach narrows the search by applying additional con-

straints. The second approach guides the search by parameterizing some or all of the

following key data structures and functions: the is terminating function, the worklist

data structure, and the visited data structure. The is terminating function identifies

whether or not a given node-tuple corresponds to a terminating path and hence may

lead to the generation of a counterexample. The worklist data structure stores the

node-tuples to be explored while the visited data structure determines whether or not

a given node-tuple should be explored (again). For this work, the HIS models contain

loops and therefore there may be an infinite number of potential counterexamples to

be generated. One important responsibility of the visited data structure is to break

out of such loops to generate a finite set of counterexamples. Typically only a small

number of unrollings of these loops, however, are considered. Thus, special techniques

may be used for the loops to increase the number of unrollings considered.

Figure 4.7 shows the pseudo-code for the extended permissiveness counterexample

generation method that varies along the following five dimensions (underlined in the

figure). The first dimension varies how the permissiveness counterexample generation

method ensures that the permissiveness counterexample generated satisfies the system

requirement (lines 2, 6, 13). In particular, the system requirement can be used

as an additional constraint to the search (line 2). The next three dimensions vary

the search-based counterexample generation algorithm’s parameterization of the data

structures and function. The second dimension varies the is terminating function to

affect whether or not the prefixes of the terminating paths are generated. The third

dimension varies the worklist data structure to specify the order of the node-tuples

in the worklist. The fourth dimension varies the visited data structure to essentially

90

try to increase branch coverage. On the other hand, the fifth dimension varies the

learner (line 8) or the search-based counterexample generation algorithm (line 6) to

specify the number of unrollings of the loops that are considered. For each of the

five dimensions, we consider different implementation options that affect the set of

permissiveness counterexamples generated and the performance of the learning-based

requirement deriver in terms of space and time. We will call a combination, involving

one option for each of these dimensions, a permissiveness counterexample generation

heuristic, usually shortened to heuristic. In the remainder of this section, we give

some additional details about the extended permissive counterexample generation

method’s dimensions.

1: if (IsConstraintBased) then
2: CS ← CS ∪ { RS }
3: end if
4: // Search for a potential permissiveness counterexample path t
5: // that is disallowed by the current derived requirement Di

6: for all (t ∈ Find-Path(Di, G, CS, IsTerminating, Worklist, V isited)) do
7: if (t = NULL) then
8: return Learner-Take-N-Steps-Further(n)
9: else
10: // Check whether or not event sequence σt is safe
11: // and thus should be allowed by the final derived req.
12: σt ← Project(t, ΣD)
13: if (Membership-Query(σt) = IS PREFIX) then
14: return σt
15: end if
16: end if
17: end for

Figure 4.7: Pseudo-code for the extended permissiveness counterexample generation
method that varies along the five dimensions (shown as underlined) that parameterize
some of the key helper methods

4.2.1 Ensure the System Requirement is Satisfied

In Figure 3.8, we showed the original permissiveness counterexample generation

method that specifies the current derived requirement as the property (line 3) to

91

generate potential permissiveness counterexamples that are disallowed by the current

derived requirement. This method then uses the teacher’s membership query to en-

sure that a potential permissiveness counterexample also always satisfies the system

requirement (line 10). We call this first option the query-based option. In Figure

4.7, we showed the extended permissiveness counterexample generation method that

specifies the current derived requirement as the property (line 6) and the system

requirement as a constraint (lines 2 and 6). This ensures that any potential per-

missiveness counterexample found is disallowed by the current derived requirement

and also satisfies the system requirement. We call this second option the constraint-

based option. An additional constraint usually improves the precision of the paths

generated. The worst case performance of the search-based counterexample genera-

tion algorithm, however, depends on the number of constraints and the number of

states in each constraint. In practice, an additional constraint, however, can occa-

sionally improve both the precision and performance. Thus, we investigated both

the query-based and constraint-based options to evaluate different tradeoffs between

the precision of the counterexamples generated and the cost of the counterexample

generation.

4.2.2 Select Terminating Node-Tuples

A model checker determines whether or not all paths through a system model sat-

isfy a given property. Some model checkers such as NuSMV and FLAVERS consider

only terminating paths, meaning all of the paths must end at one of the nodes of the

reachability graph designated as final ones. Thus, the only terminating option returns

true when the given node-tuple is one of the final node-tuples. Alternatively, other

model checkers such as Spin and JavaPathfinder consider both terminating paths

and their prefixes. Thus, the terminating and prefixes option returns true for every

node-tuple. In general, this significantly increases the size of the set of counterex-

92

amples generated, decreases the average length of the counterexamples generated,

and increases the cost of the counterexample generation. For this work, we extended

the FLAVERS find path algorithm to support both isTerminating options. Since

the learner basically explores the event sequences from ΣD in an iterative deepening

order, this usually means that the prefixes of the terminating paths are explored be-

fore the terminating paths themselves. Thus, we also extended the permissiveness

counterexample generation method to use the IsTerminating options (line 6) to study

which option works better with the learner’s exploration order.

4.2.3 Order of Node-Tuples in the Worklist

The worklist can affect the set of counterexamples generated, the length of the

longest counterexample, and the performance of the counterexample generation. We

explored both a breadth first search (BFS) and depth first search (DFS) worklist

option (line 6). The BFS worklist strategy uses a queue to explore the node-tuples

in a first in first out order. The search-based counterexample generation algorithm

using the BFS worklist strategy will find a shortest counterexample but often has a

high cost for the counterexample generation. Alternatively, the DFS worklist uses

a stack to explore the node-tuples in a last in first out order. The search-based

counterexample generation algorithm using the DFS worklist option generally finds

longer counterexamples but often has a lower cost for the counterexample generation.

4.2.4 Determine Previously Visited Node-Tuples

For branches, the commonly used visited data structure often prevents different

counterexamples from containing the same node-tuple. Thus, we consider an alterna-

tive visited data structure that allows different counterexamples to contain the same

node-tuple, which can increase the number of counterexamples generated along with

the cost of the counterexample generation.

93

The unique visited option is intended to allow each distinct node-tuple to be visited

at most once. This strategy hashes the set of node-tuples that have already been

explored. Since the unique visited option may not allow different counterexamples to

contain the same node-tuple, the repeatedly visited option allows certain node-tuples

to be visited multiple times.

For the interface synthesis methods, the system often concurrently executes the

component of interest and its environment in their own threads. Such systems are

often implemented as a main thread that first allocates the component and environ-

ment threads, then forks the allocated threads, and lastly joins them. For model

checkers that consider only terminating system executions, different counterexamples

should be generated that pass through the node-tuples corresponding to the forks and

joins before reaching the final node-tuple. Thus, the repeatably visited option allows

the concurrency-related node-tuples (i.e. a thread being forked, begun, ended, and

joined) to be revisited and the remaining node-tuples to be visited at most once.

4.2.5 Take N Steps Further

Alur et al.’s learning-based interface synthesis method [4] incorporates a one step

further heuristic to essentially unroll any loops another time to try to augment the

set of permissiveness counterexamples found. At a high-level, this heuristic first finds

a set of original permissiveness counterexamples. The heuristic then generates a set

of new counterexamples by trying to extend each original permissiveness counterex-

ample by “one step further”, meaning by each event in the alphabet of the derived

requirement. The set of original permissiveness counterexamples is then augmented

with each new counterexample that is identified as a permissiveness counterexample.

We explored two different take N steps further options that will be described below.

Our experimental evaluation considers taking N steps further where N is 0, 1, or 2.

In general, a larger N increases the size of the set of counterexamples generated, the

94

average length of the counterexamples generated, and the cost of the counterexample

generation.

Alur et al. investigated a learner-based N steps further option. This option (line 8)

uses the learner’s observation table, specifically the set of prefixes, and the alphabet

ΣU to generate the set of new counterexamples as described in the previous paragraph.

In the Approach section, we described how the original permissiveness counterexample

generation method uses the teacher’s membership query to identify whether or not the

potential permissiveness counterexamples are permissiveness ones (shown in Figure

3.8 at line 10). In a similar manner, the learner-based N steps further option then

uses the membership query to identify whether or not the new counterexamples are

permissiveness counterexamples.

In a complementary way, the adaptive model checking technique [40] essentially

uses iterative deepening DFS to generate counterexamples. The iterative deepening

bound, however, must be provided by the analyst. For this work, we also investigated

both BFS N steps further and DFS N steps further options that conceptually first

use either BFS or DFS to generate the set of original permissiveness counterexamples

and then automatically compute the bound as described below. Both options then

switch to using an iterative deepening search with that bound to try to generate the

new permissiveness counterexamples.

For the learning-based interface synthesis methods, the bound can be automat-

ically computed as follows. We first run the counterexample generation algorithm

to iterate through the set of original permissiveness counterexamples found and then

determine the maximum depth of any counterexample. (The depth of a counterexam-

ple is the number of node-tuples that correspond to an event in the alphabet of the

derived requirement. Both iterative deepening searches annotate every node-tuple

with a depth.) We then set the bound to that maximum depth plus N (actually

2N for FLAVERS, since a human participant’s interaction with an automated com-

95

ponent needs to pair a channel send and receive) and again run the counterexample

generation algorithm to iterate through the set of new permissive counterexamples

found.

96

CHAPTER 5

DERIVATION EVALUATION

To evaluate such a requirement derivation approach, we extended our requirement

derivation toolset to support both the direct and learning-based requirement derivers

described in Section 3. For both requirement derivers considered, we incorporated the

model checking optimizations described in Section 4.1. For the learning-based require-

ment deriver, we also incorporated the learning optimizations described in Section 3

and Section 4.1 along with the the permissiveness counterexample generation heuris-

tics described in Section 4.2. We then applied the extended toolset to case studies

in two human-intensive domains: healthcare and the election administration. One

goal is to compare the direct requirement deriver with the learning-based requirement

deriver in terms of permissiveness as well as performance. For the learning-based re-

quirement deriver, another goal is to recommend a combination of the optimizations

and one or more permissiveness counterexample generation heuristics that produce de-

rived requirements that are adequately permissive while reducing the space and time

needed to perform the requirement derivation. In what follows, we first describe the

experimental methodology and then present the experimental results. Additionally,

we present a preliminary evaluation of a learning-based requirement deriver that em-

ploys the L* learning algorithm and the Java Pathfinder model checker. We extended

this requirement deriver to incorporate the ensure system requirement is satisfied op-

tions, the worklist options, and the take N steps further options. In conclusion, we

discuss our experimental results including possible threats to validity.

97

5.1 Experimental Methodology

To evaluate our requirement derivation approach, we applied our requirement

derivation toolset to a set of case studies. For each case study, we applied the di-

rect and learning-based requirement derivers from both the component and process

perspectives. Table 5.1 enumerates the five optimizations applied. In this table,

each optimization shows the option used in bold. On our experimental platform,

the larger subjects caused the unoptimized requirement derivers to either exceed all

available space or to run for multiple days. In the previous chapter, we discussed

the model checking and learning optimizations incorporated into the requirement de-

rivers that significantly improved performance in terms of space and time. In the

next section, we discuss how we selected the combination of optimization options

to be used. In the previous chapter, we also described how to extend our permis-

siveness counterexample generation method along five dimensions to define a class of

heuristics. Each heuristic is a combination of an option for each dimension. Table 5.2

shows the heuristics applied. The direct requirement deriver was run with all 3 model

checker optimizations applied. The learning-based requirement deriver was run with

all 3 model checker and 2 learner optimizations applied and each of the 80 different

heuristics. In what follows, we identify a particular heuristic using the following nota-

tion: Learner(IsSystemReqSatisfied,Worklist,Visited,IsTerminating,N). For instance,

our preliminary evaluation of the learning-based requirement deriver only used the

Learner(Query,BFS,Unique,OnlyTerm,0) heuristic. As mentioned in the Approach

chapter, the derived requirements are represented as minimal deterministic FSAs. We

automate the comparison between the direct and learning-based requirement derivers

using the evaluation metrics described in Section 5.1.1 that quantify the permissive-

ness of the derived requirements and the performance of the requirement deriver. We

also automatically rank the heuristics using the same evaluation metrics.

The case studies are:

98

Table 5.1: Derivation Optimizations Applied

OPTIMIZATION TYPE OPTIONS

Variable modeling Model checker Analysis-time,
alternative Model-construction-time
Reset dead Model checker FALSE,
local variables TRUE
Channel modeling Model checker Low-level,
alternative High-level
Prefix-closed Learner FALSE,
membership query TRUE
Incremental Learner FALSE,
membership query TRUE

• a computerized provider order entry (CPOE) application used in a healthcare

facility to manage any orders for the treatment of their patients during a simpli-

fied patient evaluation process: an initial version of the CPOE and an extended

version of the CPOE that supports a new access data procedure (CPOE-AD)

• a “smart” infusion pump (pump) used to administer medications and fluids

during an in-patient surgery process based on usage scenarios described by

Avrunin et al. [7]: an initial version of the pump (Pump) and an extended

version of the pump that supports a new start procedure (Pump-Start)

• an implantable cardioverter-defibrillator (ICD) [43, 44] used during a cardiac

patient care process [32]: an initial version of the ICD and an extended version

of the ICD that supports a new write data procedure (ICD-WD)

• an optical scanner (scanner) used for ballot and vote counting during the Cali-

fornia Marin County election process [31]

• a direct recording electronic (DRE) application used for ballot marking and

counting [60] during the California Yolo County election process [64]

99

Table 5.2: Derivation Heuristics Applied

DIMENSION TYPE OPTIONS

Ensure system requirement Model checker Query,
is satisfied Constraint
Worklist data structure Model checker BFS,

DFS
Visited data structure Model checker Unique,

Repeatable
Is terminating function Model checker OnlyTerm,

TermAndPre
Take N steps further Model checker N is 0, 1, 2

or learner

For the three case studies in the healthcare domain, we developed a preliminary ver-

sion of these case studies and then a scaled up version of the case study by increasing

the number of steps and procedures. For the two case studies in the election ad-

ministration domain, we developed a single version of the case study. In Chapter

2, we described that a HIS subject consists of a system requirement specified as a

property (e.g., “never overdose”), a HIS model, and a requirement derivation per-

spective (either component or process). A HIS model is a composition of a selected

component model (e.g., pump) with a process model in which that component will

be used (e.g., in-patient surgery process). Table 5.3 summarizes the subjects used

in the experiments. In the table, each row gives the name of the human-intensive

system, the perspective of the requirement deriver, the number of steps declared and

referenced in the system, the number of component procedures, and the number of

system requirements (represented as properties) that we used for the requirement de-

river. In some cases, a system requirement does not contain enough details about the

component and therefore from the process perspective it is not worthwhile to apply

the requirement derivers to that system requirement. This is the case for the Pump

and PumpS systems. In other cases, a system requirement is already satisfied by the

100

Table 5.3: Subjects Used in Experiments

REQUIREMENT # of # of # of
DERIVER SYSTEM COMPONENT SYSTEM

SYSTEM PERSPECTIVE STEPS PROCEDURES REQ.S

CPOE Component 33 2 1
CPOE Process 34 2 1
CPOEAD Component 44 3 2
CPOEAD Process 44 3 2
Pump Component 67 2 2
Pump Process 54 2 1
PumpS Component 73 3 2
PumpS Process 62 3 1
ICD Component 68 4 2
ICD Process 96 4 1
ICDWD Component 79 5 2
ICDWD Process 96 5 1
Scanner Component 82 6 2
Scanner Process 174 6 1
DRE Component 155 6 1
DRE Process 223 6 1

process model and therefore a derived component requirement is not needed. This

is the case for the ICD, ICDWD, and Scanner systems. Thus, we have a total of 23

subjects. The systems range in size from 33 to 174 steps and have between 2 and 6

procedures.

For each of the 23 subjects, we ran the direct requirement deriver once. We

also ran the learning-based requirement deriver with each of the 80 heuristics once.

This produced 81 requirement deriver results. As described below, we automatically

ranked all of the requirement derivation results by first sorting by the permissiveness

of the derived requirements and then sorting by the performance of the requirement

derivers.

The requirement derivation toolset is implemented in Java. All experimental runs

were on two PCs with dual 3.3 GHz processors and 8 GB of memory, using version

4.4.8 of the Fedora 23 Linux kernel. The toolset was run using OpenJDK version

101

1.8.0 91. We timed each experimental run with the Linux “time” command. Each

experimental run bounded the Java maximum memory at 2 GB and the time at 8

hours.

5.1.1 Evaluation Metrics

One criterion for evaluation of the requirement derivation approach is certainly the

performance of the tool: how much space and time are used to derive a requirement.

For each experimental run, we recorded the maximum number of node-tuples gener-

ated by any single stage of the requirement deriver and the sum of all node-tuples

generated during all stages. In more detail, the direct requirement deriver shown in

Figure 3.3 consists of the following four main stages: pre-requisite check, composition,

refinement, FSA extraction. On the other hand, the learning-based requirement de-

river shown in Figure 3.4 consists of the following four stages: pre-requisite check, ini-

tialization, conjecture, counterexample-based refinement. This requirement deriver,

however, iteratively performs the last two stages and therefore those stages are often

repeated multiple times. Additionally, we recorded the overall run-time. As we have

discussed however, different combinations of optimizations and permissiveness coun-

terexample generation heuristics can produce quite different derived requirements. So

our evaluation must also take the actual derived requirement into account.

There are a number of ways the quality or utility of a derived requirement might be

evaluated. In addition to permissiveness, we might be interested in the complexity and

understandability of the requirement to measure how useful it will be to component

developers or testers. It might be the case that handling some unusual or unimportant

corner cases is extremely complex or would require costly hardware support, so that a

requirement that allows the component to ignore those cases would be valuable. But

such characteristics would be very hard to define and measure objectively. For this

102

evaluation, therefore, we chose to focus solely on the permissiveness of the derived

requirements.

But even measuring the permissiveness presents some significant obstacles. As

noted earlier, we generally cannot determine the most permissive requirement, so we

can only compare the permissiveness of the requirements generated for a particular

experimental subject. For this, we begin by using regular language containment—if

the language of one derived requirement properly contains the language of another,

the first requirement is clearly more permissive. The problem with this is that it only

gives a partial order, and we have no good way to compare the permissiveness of two

requirements when neither language is contained in the other. We therefore adopted

two additional measures as proxies for permissiveness when language containment is

not adequate. The first is a measure of the branch coverage of the system model

provided by the language of the requirement. The intuition behind this is that a

requirement with greater branch coverage is likely to allow more system behaviors.

The second is a measure of the size of the minimal deterministic FSA representing

the requirement, based on the idea that extra states and transitions are used in the

FSA to more finely distinguish between safe and unsafe system behaviors. Both of

these measures give total pre-orders.

To evaluate the permissiveness, we start by computing the subset lattice of the

languages of the requirements derived for a particular subject. We then assign each

requirement a containment permissiveness rank by computing its level in the con-

tainment lattice, where the lattice’s greatest elements are at level 1. In practice, this

metric may be a total ordering or a partial ordering with a single greatest element.

If so, then the greatest element is considered the “most” permissive derived require-

ment. If not, then the other two permissiveness evaluation metrics are used as tie

breakers.

103

The coverage permissiveness evaluation metric is a total pre-order that compares

the branch coverage value of each derived requirement, essentially meaning the per-

centage of the reachability graph edges that are permitted by the derived requirement.

This metric gives precedence to derived requirements that provide the most coverage.

The metric is a coarse approximation of the permissiveness of the derived require-

ments. We describe how the branch coverage value is computed below.

For FLAVERS, the branch coverage value is the percentage of TFG edges with

source nodes that are associated with one or more tuples. To compute the branch

coverage value, we first create a new subject that contains the old TFG, the old

property, and a new set of constraints that is the union of the old set of constraints

and the derived requirement. We then use the state propagation algorithm to perform

data flow analysis on the new subject. After the data flow analysis reaches a fixed

point, we compute the branch coverage value by first counting the number of TFG

edges with source nodes that are associated with one or more tuples and then dividing

that count by the total number of TFG edges. For the set of derived requirements,

the coverage permissiveness rank is then assigned by sorting their branch coverage

values into descending order.

The FSA size permissiveness evaluation metric gives precedence to derived re-

quirements that are larger because such requirements often contain extra states and

transitions to distinguish the safe behaviors from the unsafe ones. This metric is also

a total pre-order that first compares the number of states in each derived requirement

that are not the violation state and then compares the number of transitions from

any source state in that requirement to any destination state that is not the viola-

tion state. The metric is a heuristic that roughly estimates the permissiveness of the

derived requirements.

104

5.1.2 Requirement Deriver Results Ranking

We initially ranked the requirement deriver results by the permissiveness of the

derived requirements, using containment of the languages of these requirements to

initially sort the requirements into levels. For eight of the subjects, the derived

requirements were totally ordered by language containment, and for two more the

ordering was not total but had a single maximal element. Within each level, we first

sorted the derived requirements in that level by the FSA size metric and then sorted

by the coverage metric. We then refined this ranking by performance, using first the

maximum number of node-tuples generated on a single iteration and then the wall

clock time. We used the maximum node-tuples generated on a single iteration as the

primary measure since that determines the space required and space is a more serious

limitation for the requirement derivers than time. The top ranked derivation results

correspond to requirement derivers that produced the safe and adequately permissive

derived requirements with the least amount of space needed.

5.2 Experimental Results

For this evaluation, we define the best derived requirements to be both safe and ade-

quately permissive. In the Approach section, we described how the direct requirement

deriver is guaranteed to produce the best derived requirements. We also described

how our learning-based requirement deriver is only guaranteed to produce a derived

requirement that is safe but not necessarily adequately permissive. For this learning-

based requirement deriver, we used the permissiveness classifier described in Section

3.6 to identify each derived requirement as either “IS ADEQUATELY PERMISSIVE”

or “MAY BE ADEQUATELY PERMISSIVE.” In the following, we will compare the

top ranked derived requirements in terms of permissiveness with the best derived

requirement to determine whether or not the permissiveness ranking is accurately

identifying the best derived requirement. For the performance, we mentioned that

105

both the direct and learning-based requirement deriver needed to apply all of the

optimizations to scale up to the larger subjects. As described above, for each sub-

ject, we ranked the 81 requirement deriver results according to the permissiveness

of the derived requirement and then by the performance of the requirement deriver.

We first briefly describe the optimizations applied and then discuss our observations

about the direct requirement deriver and the learning-based requirement deriver using

the heuristics.

To justify needing to apply the optimizations for scalability, we ran experiments

on all of the combinations of the optimizations where all optimizations were turned

off and then one optimization was turned on. These experiments could be run to com-

pletion on the smaller subjects but exceeded either the space or time bounds for the

larger subjects. To justify applying each individual optimization, we then ran exper-

iments on all of the combinations of the optimizations where all optimizations where

turned on and then one optimization was turned off. These experiments showed that

each optimization was contributing to the improvement in performance. Specifically,

the model checker optimizations affect the performance in terms of both space and

time while the learner optimizations only affected the performance in terms of time.

In the previous chapter, we also mentioned that the variable-related model checker

optimizations may influence the permissiveness of the derived requirements but the

remaining model checker optimization and learner optimizations do not.

In Section 3.4, we described the direct requirement deriver that at a high-level of

abstraction performs the following three main stages in order: build the full node-

tuple graph, refine that graph, convert the graph that may contain non-determinism to

a minimal deterministic FSA. For the performance metrics, we treat each main stage

as a single iteration. In theory, this requirement deriver may have poor performance

because of the blow up that can occur when converting from a non-deterministic FSA

to a deterministic one. In practice, the requirement deriver often has reasonable per-

106

formance when this blow up does not occur. For all 23 of our subjects, the direct

requirement deriver had reasonable performance in terms of the maximum number of

node-tuples generated and the number of states in the non-deterministic FSA. The

maximum node-tuples generated on a single iteration (in this case a single stage)

ranged from 82 to 28881 while the number of non-deterministic FSA states ranged

from 13 to 6779. For these subjects, the direct requirement deriver needed up to 66%

more space than the learning-based requirement deriver but usually needed signif-

icantly less overall time. The derived requirements produced are guaranteed to be

safe and adequately permissive. In what follows, these best derived requirements will

be used to judge the accuracy of the top ranked derived requirements based on the

permissiveness evaluation metrics.

On the other hand, the learning-based requirement deriver heuristics varied widely

in terms of both the performance of the requirement deriver and the permissiveness of

the derived requirements. On the largest subject, for example, 41% of the heuristics

exceeded either the space bound of 2 GB or the time bound of 8 hours. For those

heuristics that completed within the space and time bounds, the amount of space

varied by almost two orders of magnitude. The fastest heuristic took about 1 minute

while the slowest heuristic took a little over 5 hours. The heuristics that completed

produced 2 different derived requirements whose minimal deterministic FSAs have 39

and 67 states respectively. The heuristics that used the query-based option to ensure

that the system requirement is satisfied were almost always worse in terms of both

the permissiveness and performance evaluation metrics than similar heuristics that

used the constraint-based option.

For the largest subject, 28 of the 40 query-based heuristics exceeded either the

space or time bound. For those heuristics that completed within the bounds, both

the space and time differed by two orders of magnitude. The heuristics produced

two different derived requirements. The largest derived requirement is adequately

107

permissive with a coverage metric of 47% while the smallest requirement is not ade-

quately permissive with a coverage metric of 31%. The containment, coverage, and

FSA size metrics are all total orders. The top ranked derived requirement is the same

as the best derived requirement as identified by both the direct requirement deriver

and the permissiveness classifier. The query-based heuristics when combined with

any of the following three individual options, repeatable visited option, terminating

and prefixes option, or take 1 (2) steps further option, often increased the permissive-

ness of the derived requirements but worsened the performance of the requirement

deriver. To illustrate, Table 5.4 compares the query-based, BFS heuristics combined

with each of those three options. When these heuristics are combined with more

than one of the three options, the trends are even more noticeable. For 21 of the 23

subjects, the top permissiveness ranking based on containment, coverage, and FSA

size accurately identified the safe and adequately permissive derived requirements.

For the remaining two subjects, the top permissiveness ranking identified generaliza-

tions of the adequately permissive derived requirements that allow events sequences

from ¬L(S) ∩ L(RS). To produce the adequately permissive derived requirements,

the query-based option must be combined with the following other options. The

search-based counterexample generation algorithm must be parameterized with the

iterative deepening DFS worklist data structure that takes either 1 or 2 steps further.

Additionally, this algorithm must be parameterized with the terminating and prefixes

function, the repeatable visited data structure, or both. For 19 of the 23 subjects,

these 6 heuristics produce the adequately permissive derived requirements.

For heuristics that used the constraint-based option for the system requirement,

the repeatable visited option and take N steps further options where N was greater

than 0 did not improve permissiveness and often worsened performance. For the

largest subject, the Learner(Constraint,DFS,OnlyTerm,Unique,0) heuristic, for exam-

ple, needed 20% less space than the Learner(Constraint,DFS,OnlyTerm,Repeatable,0)

108

Table 5.4: Comparison of Query-Based Heuristics in Terms of Permissiveness

QUERY-BASED # OF
HEURISTIC BEST DER. REQ.S

Learner(Query,BFS,Unique,OnlyTerm,0) 4 / 23 (17%)
Learner(Query,BFS,Unique,OnlyTerm,1) 4 / 23 (17%)
Learner(Query,BFS,Unique,OnlyTerm,2) 14 / 23 (61%)
Learner(Query,BFS,Repeatable,OnlyTerm,0) 15 / 23 (65%)
Learner(Query,BFS,Unique,TermAndPre,0) 16 / 23 (70%)

heuristic and took about 10 minutes unlike the Learner(Constraint,DFS,OnlyTerm,Unique,4)

heuristic that exceeded the time bound of 8 hours. We therefore discuss further only

the 4 heuristics that do apply the constraint-based option but do not apply either the

repeatable visited option or a take 1 (2) steps further option, which are:

• Learner(Constraint,BFS,Unique,OnlyTerm,0)

• Learner(Constraint,BFS,Unique,TermAndPre,0)

• Learner(Constraint,DFS,UniqueOnlyTerm,0)

• Learner(Constraint,DFS,Unique,TermAndPre,0)

In what follows, we compare the performance of the learning-based requirement de-

river using each of these 4 heuristics and the direct requirement deriver.

For all 23 of the subjects, the 5 requirement derivers found the best derived require-

ment (in the sense of permissiveness). The performance of these requirement derivers,

in both space and time, varied. To illustrate, Figure 5.1 shows the performance of the

requirement derivers in terms of the maximum space needed, in particular the maxi-

mum number of node-tuples generated on a single iteration, for the 5 largest subjects.

For 22 of the 23 subjects, the Learner(Constraint,DFS,Unique,OnlyTerm,0) heuristic

had the best performance in terms of the maximum space needed. On the other

109

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

1	
 2	
 3	
 4	
 5	

M
ax
im

um
	
 n
od

e-­‐
tu
pl
es
	
 o
n	

a	

si
ng
le
	
 it
er
a3

on
	

5	
 Largest	
 Subjects	

Performance	
 in	
 terms	
 of	
 space	

Learner(BFS,OnlyTerm)	

Learner(BFS,TermAndPre)	

Learner(DFS,OnlyTerm)	

Learner(DFS,TermAndPre)	

Direct	

Figure 5.1: Performance of the top 5 ranked requirement derivers in terms of the
maximum space on the 5 largest subjects

hand, Figure 5.2 shows the performance in terms of time, specifically the log of the

overall run-time in seconds, for the same subjects. This figure shows that the di-

rect requirement deriver had the best performance in terms of time and that the

learning-based requirement deriver using the heuristics often decreased the maximum

space needed by paying a time penalty. To find the requirement deriver(s) with the

best performance in terms of the maximum space needed, we first searched through

the requirement deriver results to find the smallest maximum number of node-tuples

generated on a single iteration. For each requirement deriver, we then computed the

normalized maximum number of node-tuples generated using the smallest maximum

number of node-tuples generated. Each requirement deriver with a normalized max-

imum number of node-tuples generated less than or equal to 110% is identified as

having the best performance in terms of the maximum space needed. Table 5.5 shows

how often each of the 5 requirement derivers had the best performance in terms of

the maximum space needed.

110

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

1	
 2	
 3	
 4	
 5	

Lo
g	

of
	
 th

e	

)m

e	

in
	
 se

co
nd

s	

5	
 Largest	
 Subjects	

Performance	
 in	
 terms	
 of	
)me	

Learner(BFS,OnlyTerm)	

Learner(BFS,TermAndPre)	

Learner(DFS,OnlyTerm)	

Learner(DFS,TermAndPre)	

Direct	

Figure 5.2: Performance of the top 5 ranked requirement derivers in terms of the log
of the time on the 5 largest subjects

Table 5.5: Summary of the top 5 ranked requirement derivers in terms of the best
performance with regards to maximum space needed

REQUIREMENT # OF SUBJECTS WITH
DERIVER BEST PERFORMANCE

Learner(Constraint,BFS,Unique,OnlyTerm,0) 13 / 23 (57%)
Learner(Constraint,BFS,Unique,TermAndPre,0) 14 / 23 (61%)
Learner(Constraint,DFS,Unique,OnlyTerm,0) 22 / 23 (96%)
Learner(Constraint,DFS,Unique,TermAndPre,0) 8 / 23 (35%)
Direct 9 / 23 (39%)

5.3 Discussion

Based on our experimental results, we recommend the following heuristic:

Learner(Constraint,OnlyTerm,DFS,Unique,0). This recommended heuristic produced

the best derived requirements and had the best performance in terms of the maximum

space for 22 of the 23 subjects. For the second largest subject that did not have the

best performance in terms of the maximum space, the recommended heuristic needed

about 35% more space than the best performance in terms of maximum space. The

direct requirement deriver is guaranteed to produce the best derived requirements.

111

For all of our subjects, this requirement deriver needed at most 50% more space than

the learning-based requirement deriver using the recommended heuristic and needed

about 50% less time than that requirement deriver.

It is interesting to note that both the DFS- and BFS-based heuristics worked

well. Although further work would be needed to fully understand this, our intuition

is that the constraints keep the DFS heuristics from descending too far, while the

constraints and the use of the prefixes keep the BFS heuristics from spending too

much time finding short counterexamples.

These experimental results appear to contradict those of Alur et al. [4], where

the take N steps further method improved permissiveness. In fact, the take N steps

further method did substantially improve the permissiveness of FLAVERS heuristics

that use the query-based option, corresponding to the approach of [4]. But the

FLAVERS heuristics using the constraint-based option were substantially better, in

both performance and permissiveness, than the query-based ones.

For model checking used primarily for verification, only the existence or non-

existence of a counterexample is significant. Many other applications of model check-

ing, for such things as test generation, bug finding and understanding, and certainly

interface synthesis, do depend on the characteristics of the counterexamples found.

Our work demonstrates not only how a number of different aspects of the counterex-

ample generation algorithm may affect those characteristics, but also points to the

interactions among these aspects and between these aspects and standard optimiza-

tions often applied for model checking.

5.4 Preliminary Evaluation of Java Pathfinder Heuristics

Many of the learning-based requirement derivers incorporate a heuristic to approx-

imate the adequately permissive or most permissive derived requirements (e.g., [4,35]).

Specifically, this heuristic tries to generate more permissiveness counterexamples,

112

meaning system executions that are disallowed by the current derived requirement

but satisfy the overall system requirement. In the previous sections, we discussed

a general class of permissiveness counterexample generation heuristics that varies

along several key dimensions. Based on our experimental results for FLAVERS, it is

important to carefully tailor the heuristics by selectively combining the the dimen-

sions’ options to obtain the best derivation results in terms of the permissiveness of

the derived requirements and the performance of the requirement deriver. In what

follows, we will describe a smaller experimental evaluation of a learning-based re-

quirement deriver that employs JPF (Java Pathfinder model checker) and a similar

class of heuristics. Our goal is to be able to begin to generalize the results about such

heuristics.

In related work, Giannakopoulou and Păsăreanu developed a learning-based re-

quirement deriver [35] that takes as input a component model written as a Java class

that contains assertions and produces a derived process requirement represented as

a minimal deterministic FSA that prevents that class from throwing any assertion

violations. Their requirement deriver employs the L∗ learning algorithm and the

JPF model checker. This JPF learning-based requirement deriver produces a derived

process requirement that is guaranteed to be safe but not necessarily adequately per-

missive. In what follows, we first briefly describe how to translate a FLAVERS subject

specification, which consists of a system requirement specified as an FSA and a HIS

model written in Little-JIL, to a JPF subject specification, which consists of a Java

class that contains assertions. We then describe how we extended their permissiveness

counterexample generation method to vary along three of our dimensions to define

a general class of JPF heuristics. Lastly, we discuss a very preliminary evaluation

of the JPF heuristics that compares the requirement deriver results in terms of the

permissiveness of the derived requirements and the performance of the requirement

deriver.

113

From either the process perspective or component perspective, the FLAVERS

learning-based requirement deriver applies to concurrent HIS models written in Little-

JIL and user-defined system requirements specified as FSAs. From the component

perspective, the JPF learning-based requirement deriver applies to sequential compo-

nent models written in Java. This requirement deriver applies to system requirements

that employ the never E property pattern [28] that states that the event E never oc-

curs. In particular, the requirement deriver specifies that event E occurs when any

assertion violation is thrown. Because the JPF learning-based requirement deriver

only applies from the component perspective, this requirement deriver can potentially

be applied to the 14 FLAVERS subjects from the component perspective but not the

7 FLAVERS subjects from the process perspective. From the component perspec-

tive, each FLAVERS subject consists of a single system requirement along with a

HIS model written in Little-JIL, which is composed of a precise component model

and an imprecise process model. On the other hand, each JPF subject will consist

of a precise component model written in Java and all of the requirements for that

component model that employ the “never E” property pattern specified as assertions.

Additionally, the user-defined exceptions thrown will also be specified as assertion

violations.

In more detail, we manually translated the 8 component models written as Little-

JIL subprocesses that throw user-defined exceptions to Java classes that throw asser-

tion violations. In Little-JIL, the component’s subprocess declares local parameters to

store the internal state of that component. In the Java class, we translated each such

Little-JIL local parameter with a given name and type to a Java field with the same

name and type. Additionally, the Little-JIL subprocess declares the component’s pro-

cedures. In the Java class, we translated each Little-JIL procedure that declares any

input parameters, no output parameters, and any exceptions thrown as follows. We

declared a Java method with the same input parameters. In particular, we manually

114

inlined the methods with all possible combinations of the input parameters. For in-

stance, the method setLib that takes an input parameter named lib with enumerated

type {ICU, OR} became two methods: setLib ICU and setLib OR. In Section 4.1.1,

we described the variable modeling alternatives where the model-construction-time

option basically does such inlining of the methods. For each return statement within

that method, an assertion violation was not thrown. For each throw statement within

the method, an assertion violation was thrown. Thus, there are 8 JPF subjects.

In the previous chapter, we described how to extend our permissiveness counterex-

ample generation method to vary along 5 dimensions to define a class of FLAVERS

heuristics. In a similar manner, we extended Giannakopoulou and Păsăreanu’s per-

missiveness counterexample generation method to vary along 3 of the same dimen-

sions to define a class of JPF heuristics. In more detail, their original permissive-

ness counterexample generation method employed their search-based counterexample

generation algorithm (e.g., [41]) parameterized with a DFS worklist data structure, a

unique visited data structure, and a terminating and prefixes function. This method

does not incorporate Alur’s take N steps further dimension. We extended their per-

missiveness counterexample generation method to vary along the following three of

our dimensions: is system requirement satisfied, worklist, and take N steps further.

For the is system requirement satisfied dimension, the three options are: their con-

straint, our constraint, or our query. Their search-based counterexample generation

algorithm provides a BFS-based worklist and two different DFS-based worklists, one

uses a stack and the other uses a query prioritized by longest path. The JPF work-

lists are implemented slightly differently than the FLAVERS worklists but affect the

ordering of the reachability nodes stored in the worklist in a similar manner. For the

take N steps further dimension, we used our code for the learner’s option but not the

iterative search-based options. We set N to 0, 1, and 2. For a very preliminary eval-

uation, we used the 8 JPF subjects to evaluate the 27 JPF heuristics in terms of the

115

permissiveness of the derived requirements and the performance of the requirement

deriver.

For both the FLAVERS and JPF learning-based requirement derivers, we used

the same experimental platform in terms of the two PCs, Linux operating system,

and Linux time command. Since the JPF learning-based requirement deriver is im-

plemented in Java 6, we needed to use version 1.6.0 65 of the Sun JDK and not

version 1.8.0 91of the Open JDK. We ran each of the 27 JPF heuristics once. Each

experimental run bounded the Java maximum memory at 2 GB and the time at 8

hours. In Section 5.1.1, we described the following three permissiveness evaluation

metrics: containment, coverage, and FSA size. For this evaluation, we only col-

lected the containment and FSA size. In that same section, we also described the

performance evaluation metrics that quantify the space in terms of the maximum

node-tuples generated on a single iteration and the sum of the node-tuples generated

on all iterations along with the time in seconds. For JPF, we replaced the number of

FLAVERS node-tuples generated with the number of Java instructions executed.

The FLAVERS learning-based requirement deriver was applied to concurrent sys-

tems where the procedures may have input parameters and either output parameters

or exceptions thrown. On the other hand, the JPF learning-based requirement deriver

was applied to sequential systems where the procedures may have input parameters

but no output parameters or exceptions thrown. The procedures, however, may have

assertion violations thrown. For exceptional situations, the FLAVERS system mod-

els throw exceptions, handle those exceptions, and then continue executing. On the

other hand, the Java component models throw assertion violations and then stop

executing. This means that the FLAVERS heuristics generally need to do substan-

tially more work than the JPF heuristics. To illustrate, 7 of the 8 JPF subjects

only slightly varied the maximum number of Java instructions on a single iteration,

specifically the maximum changed by at most 2%. These same subjects, however,

116

more widely varied the sum of the number of Java instructions on all iterations. The

remaining JPF subject, which is the largest subject, ranged the maximum number of

Java instructions from 16,162 to 24,598 while the sum of the Java instructions ranged

from 505,585 to 3,372,595. In the previous section, we described that the FLAVERS

heuristics that applied the query-based option for the is system requirement satisfied

dimension widely varied the requirement deriver results in terms of permissiveness

of the derived requirements and the performance of the requirement deriver. These

FLAVERS heuristics that are query-based needed to apply particular options for the

remaining dimensions to produce the best derived requirements, meaning the derived

requirement are safe and adequately permissive. For all 8 of the JPF subjects, the JPF

heuristics could apply any of the three options for the is system requirement satisfied

dimension to produce the best derived requirements. For 7 of the 8 subjects, the JPF

heuristics that are query-based slightly worsened the performance of the requirement

deriver. For the remaining largest subject, the JPF heuristics that are query-based

could significantly improve the performance of the requirement deriver. For the work-

list dimension, the two DFS-based options generally had slightly better performance

than the BFS-based option. For the take N steps further dimension, every increase

in the N value significantly worsened performance. Based on these preliminary re-

sults, the best JPF heuristic in terms of permissiveness as well as performance is

Learner(TheirConstraint,DFS-Queue,Unique,TermAndPre,0), which differs from the

original JPF heuristic of Learner(TheirConstraint,DFS-Stack,Unique,TermAndPre,0).

In practice, both the FLAVERS heuristics that are constraint-based and the JPF

heuristics produce the derived requirements that are safe and adequately permissive.

Both the FLAVERS and JPF heuristics appeared to favor a DFS-based worklist over

a BFS-based one. The FLAVERS constraint-based heuristics and the JPF heuristics

did not need to apply the take N steps further method to improve permissiveness and

applying this method significantly worsened performance. Because our learning-based

117

requirement deriver that employs FLAVERS was applied to concurrent systems while

their learning-based requirement deriver that employs Java Pathfinder was applied

to sequential systems, the heuristics effect on performance was more noticeable for

FLAVERS than for JPF.

5.5 Threats to Validity

For the FLAVERS and JPF evaluations, the fact that the experimental subjects

were drawn from only two domains of human-intensive systems is clearly a threat to

the external validity of our work. For the direct requirement deriver and learning-

based requirement derivers that employ FLAVERS, the small number of systems and

their overall system requirements is also clearly a threat to the external validity of this

work. For the learning-based requirement deriver that employs JPF, we could only

consider the subset of the subjects from the component perspective where the overall

system requirement employed the “never E” property pattern. In related work, Beyer

et. al [12] discuss how the component model design influences the interface synthesis

methods in terms of the performance of the requirement derivers. For our subjects, all

of the component models were designed to be modal, meaning the component enables

different behaviors depending on various settings of the component. For example, a

“smart” infusion pump is modal since after the pump is configured with a given drug

library that pump will only allow the administration of a pre-defined set of drugs and

for each drug there are pre-defined dosing limits.

For the heuristics, it is clearly important to take into account the affect of each

dimension of the heuristics and the interactions among the dimensions on the per-

missiveness of the derived requirements as well as the performance of the require-

ment deriver. The extent to which our experimental results would generalize to other

model checkers, however, is not entirely clear. For the take N steps further dimension,

the FLAVERS query-based heuristic results appear to be consistent with the SMV

118

heuristic results published by Alur et. al. For that same dimension, the FLAVERS

constraint-based heuristic results and the JPF constraint-based heuristic results also

seem to be consistent. For the worklist dimension, the FLAVERS and JPF heuristic

results both seem to favor a DFS-based worklist over a BFS-based one. Based on

all of the heuristic results, we expect that other model checkers (e.g., Spin) would

produce similar results.

119

CHAPTER 6

DERIVED REQUIREMENT VIEWS

The derived requirements need to be readily understandable to various stakehold-

ers responsible for developing, certifying, and using the component. Our preliminary

investigation of the HIS-based requirement derivation approach, however, illustrated

that the derived requirements represented as FSAs often became less understandable

as the FSAs increased in complexity. For instance, the largest derived requirement

represented as a minimal deterministic FSA has 94 states and 2538 transitions. Since

the FSAs provide a very low-level representation of the interface between the selected

component and the process, it can be very challenging to understand the FSAs. Thus,

we built views of the derived requirements that take advantage of higher-level fea-

tures such as abstraction and decomposition to decrease the cognitive load placed on

the stakeholders. In what follows, we will use the the surgery derived requirement to

illustrate the views even though this requirement is not particularly large. The re-

quirement, represented as a deterministic minimal FSA, contains 12 events, 27 states,

and 324 transitions. We chose this illustrative example because it is relatively easy

to understand and the FSA will fit on a single page.

Each view employs a particular higher-level feature to abstract away or highlight

certain aspects of the derived requirements to improve their understandability. In

the Background chapter, we mentioned one simple view of the derived requirements

represented as FSAs that hide the violation states and their transitions to simplify

the FSAs to improve their understandability. If a state does not have an explicit

transition on a given event in the alphabet, then there exists an implicit transition on

120

that event to the violation state. We call this the implicit violation view. Figure 6.1

shows the implicit violation view of the surgery derived requirement represented as

an FSA that contains 12 events, 26 states, and 64 transitions. This figure is to give

a sense of the complexity of that FSA and is not meant to clearly show the lower-

level details of the FSA. In the following sections, we describe another three views:

procedure abstraction view, modal abstraction view, safe alternatives view. Since these

four views of the derived requirements complement each other, it is beneficial to apply

multiple views to the same derived requirement to further improve understandability

of that requirement.

�

�

�������������������

�

�������������������

�

�������������������

�

�������������������

�

�������������������

�

��������

��������������������

�

��������������������

�

���������������������

���������������������

�������������������

��������

��

�������������������

��

�������������������

��

�������������������

��

�������������������

��

�������������������

�������������������

�������������������

��

��������������������
�������������������

��

�������������������

��

��������

�������������������

�������������������

������������������� �������������������

��

�������������������

��

��������

��

��������������������� ���������������������

�������������������

��

���������������������

���������������������������

�������������������

�������������������

��

�������������������

��

�������������������

�������������������

��������

�������������������

�������������������

�������������������

�������������������

��

�������������������

�������������������

�������������������

��������������������
�������������������

��

�������������������

��

��������

���������������������

�������������������

�������������������

�������������������

�������������������

�������������������

��������

�������������������

��

�������������������

�������������������

Figure 6.1: Implicit violation view of the surgery derived requirement

6.1 Procedure Abstraction View

In the Background chapter, we described in detail how each HIS model repre-

sents the use of a given procedure (e.g., setDose) by pairing a call to that pro-

cedure (e.g., call(setDose,HIGH)) with a return from the procedure (e.g., re-

turn(setDose,DoseAlert)). Additionally, there may be different calling contexts for

that procedure represented as the entrance to a given calling context (e.g., enterICU),

121

the procedure’s use as described above, and then the exit from that calling context

(e.g, leaveICU). The procedure abstraction view represents each procedures use as

the pairing of the call to and return from that procedure surrounded by any calling

context. For instance, one concrete event sequence is: enterICU , call(setDose,HIGH)),

return(setDose,DoseAlert), leaveICU . This event sequence would be abstracted

to: enterICU , setDose(HIGH) DoseAlert, leaveICU .

Procedure Call-Return Event Pair Procedure Abstraction Event
call(setLib, ICU), return(setLib, OK) setLib(ICU) OK
call(setLib, OR), return(setLib, OK) setLib(OR) OK
call(setDose, LOW), return(setDose,OK) setDose(LOW) OK
call(setDose, LOW), return(setDose,DoseAlert) setDose(LOW) DoseAlert
call(setDose,HIGH), return(setDose,OK) setDose(HIGH) OK
call(setDose,HIGH), return(setDose,DoseAlert) setDose(HIGH) DoseAlert
call(start), return(start, OK) start() OK
call(start), return(start,DoseAlert) start() DoseAlert

Table 6.1: Mapping for the surgery derived requirement from call-return event pairs
to procedure abstraction events

The procedure abstraction view builder takes as input the derived requirement

represented as an FSA, a set of calling context events, and a map from the procedure

call and return event pairs to the procedure abstraction events. To illustrate, this

builder is given the surgery derived requirement shown in Figure 6.2, the set of calling

context events { enterICU, leaveICU }, and the map from the call-return event pairs to

procedure abstraction events shown in Table 6.1. The builder produces the procedure

abstraction view shown in Figure 2.5. At a high-level, the procedure abstraction view

builder creates an output FSA with an alphabet that contains the calling context

events and the procedure abstraction events. This builder conceptually uses two event

sequence patterns to create the procedure abstraction view. The first event sequence

pattern searches for each single transition labeled with a calling context event (e.g.,

enterICU). Such single transitions in the input FSA are copied to the output FSA.

122

The second event sequence pattern searches for pairs of call-return transitions defined

as follows. The call transition must be labeled with a call event to method m (e.g.,

call(setDose,HIGH)) and the return transition must be labeled with a return event

from method m (e.g., return(setDose,DoseAlert)). Additionally, the target state of

the call transition must be the same as the source state of the return transition. For

each call-return transition pair in the input FSA, the builder creates a new procedure

abstraction transition in the output FSA. That procedure abstraction transition is

from the source state of the call transition to the target state of the return transition.

The procedure abstraction transition is labeled with the mapping from the pair of

the call and return events (e.g., call(setDose,HIGH), return(setDose,DoseAlert))

to its corresponding procedure abstraction event (e.g., setDose(HIGH) DoseAlert).

For this work, the derived requirements are represented as minimal deterministic

FSAs. Since the procedure abstraction view builder usually modifies the inputs FSA’s

alphabet, states, and transitions, this builder needs to minimize the output FSA.

6.2 Modal Abstraction View

For our case studies, we observed that the HIS components are often modal, mean-

ing the component enables different behaviors depending on various settings of the

component. For example, a “smart” infusion pump is modal since after the pump

is configured with a given drug library that pump will only allow the administration

of a pre-defined set of drugs and for each drug there are pre-defined dosing limits.

The pump will issue alerts if a drug is not within that set or if for a given drug the

entered dosage exceeds the limits for that drug. For the modal abstraction view, the

derived FSA is decomposed into pieces based on the modes. Each piece describes a

given mode’s behaviors. For instance, the pump behaviors can be decomposed based

on the two modes, one for the ICU and another for the OR. Since stakeholders such

as developers, certifiers, and users can now consider each piece separately, the cog-

123

�

��
��
��
��
�
��
��

��
��
�

��
��

�
��
��

��
�
��
�
��
��

��
��
�

��
��
��
��
�
�
��
�
�

�
��
��
��
�
�

�

��
��

��
��
�
�
�

��
�
�

�

��
��
��
��

�
��
�
�

��
��

��
�
�

��
��
��
��
�
��
��

��
��
�

��
��

��
��
�
��

�
��
�
��
��

��
��
�

��
��
��
��
�
�
��
�
�

�

��
��

��
��
�
�
�

��
�
�

�
��
��
��
��

�
��
�
�

��
��

�
��
��

��
�
��
�
��
��

��
��
�

��
��
��
��
�
�
�

��
��
��
��
�
�
��
�
�

��
��

��
��
�
�
�

��
�
�

��
��
��
��

�
��
�
�

��
��
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��
�
��
��

��
��
�

��
��
��
��

�
��
�
�

��
��
��
�
�

�

��
��

��
��
�
��

�
��
�
�
�

��
��

��
��
�
�
�

��
�
�

��
��

�
��
��

��
�
��
�
��
��

��
��
�

��
��
��
��
�
�
�

��
��
��
��
�
�
��
�
�

��
��

��
�
�

��
��

��
��
�
�
�

��
�
�

��
��
��
��

�
��
�
�

��
��
��
��
�
�
��
�
�

��
��

��
�
�

��
��
��
��
�
��
��

��
��
�

��
��
��
��

�
��
�
�

�

��
��

��
��
�
�
�

��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��

�
��
�
�
�

��
��
��
��
�
�

��
��

��
��
�
��

�
��
�
�
�

��
��

��
��
�
�
�

��
�
�

��
��
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��

�
��
�
�
�

��
��
��
��
�
�

��
��

��
�
�

��
��

��
��
�
�
�

��
�
�

F
ig

u
re

6.
2:

P
ro

ce
d
u
re

ab
st

ra
ct

io
n

v
ie

w
of

th
e

su
rg

er
y

d
er

iv
ed

re
q
u
ir

em
en

t
(t

h
at

w
as

al
so

sh
ow

n
in

F
ig

u
re

2.
5)

124

nitive load for the stakeholders should be reduced. We first demonstrate the modal

abstraction view on the pump example and then describe our modal abstraction view

tool that automatically creates such a view.

For the modal abstraction view, the analyst needs to specify the mode change

events that correspond to the procedures that can change the mode within the com-

ponent model. For the pump example, the mode change events are to configure

the pump to use the ICU library (i.e. setLib(ICU) OK) or the OR library (i.e.

setLib(OR) OK). Based on the mode change events, the derived FSA is hierarchi-

cally decomposed into a set of abstracted FSAs. We create one abstracted FSA to

show the mode changes and one abstracted FSA for each mode to show that mode’s

enabled behaviors. For the motivating example, we built the modal abstraction view

of the surgery derived requirement shown in Figure 6.1. Figure 6.3a shows the ab-

stracted FSA for the mode changes. Figure 6.3b shows the abstracted FSAs for each

mode, in this case the ICU mode shown on the left and the OR mode shown on the

right. In these figures, the mode change transitions are shown as dashed lines.

We developed a modal abstraction view tool that takes as input a derived FSA

and a mapping from each set of mode change events to its corresponding mode.

The sets of mode change events must be disjoint. This tool essentially produces a

mapping from every mode to a set of subgraphs for that mode. Each subgraph is

represented by the set of states where the device is configured for that mode. This

tool iterates through each state s in the FSA. If state s is the violation state or already

contained in a subgraph, then the tool continues to the next state. When state s has

an incoming transition labeled with a mode change event e, this tool looks up the

corresponding mode m for event e and then creates a new subgraph gm for mode m.

First, subgraph gm is created by finding all states reachable from state s by following

outgoing transitions labeled with an event not in the set of mode change events. The

tool next updates the output mapping to associate mode m with subgraph gm. After

125

��
�

��
��
��
��
�
�
��
�
�

�
�

��
��
��
��
�
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��
�
��
�
�

(a
)
A
b
st
ra
ct
ed

F
S
A

fo
r
th
e
m
o
d
e
ch
an

ge
s
in

th
e
su
rg
er
y
d
er
iv
ed

re
q
u
ir
em

en
t

�
�
�
�
��

�

�
�
�
�
��
�
�

�

��
��
��
��
�
��
��

��
��
�

��
��

��
��
�
��

�
��
�
��
��

��
��
�

��
��
��
��
�
�
��
�
�

�

��
��
��
�
�

�

��
��

��
��
�
�
�
��
�
�

�

��
��
��
��

�
��
�
�

��
�
��
��

�

��
��
��
��
�
��
��

��
��
�

��
��

��
��
�
��

�
��
�
��
��

��
��
�

��
��
��
��
�
�
��
�
�

�

��
��

�
��
��
�
�
��
�
�

�

��
��
��
��

�
��
�
�

��
��

��
��
�
��

�
��
�
��
��

��
��
�

��
��
��
��
�
�
��
�
�
�

��
��
��
��
�
�

��
��

��
��
�
�
�
��
�
�

��
��
��
�
�

��
��
��
��

�
��
�
�

��
��

��
��
�
��

�
��
�
��
��

��
��
�

��
��
��
��
�
�
��
�
�
�

��
�
��
��
�
�
�

��
��
��
�
�

��
��

��
��
�
�
�
��
�
�

��
��
��
��

�
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��
�
�
��
�
��
��
�

��
��
��
��

�
��
�
�

��
��
��
�
�

���
��

��
��
�
��

�
��
�
�
�

��
��

��
��
�
�
�
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
�
�

��
��
��
��
�
��
��

��
��
�

��
��
��
��

�
��
�
�

�

��
��

��
��
�
�
�
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��

�
��
�
�
�

��
��
��
��
�
�

��
��

��
��
�
�
�
��
�
�

��
��
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��

�
��
�
�
�

��
��
��
��
�
�

��
��
��
�
�

��
��

��
��
�
��

�
��
�
�
�

��
��

�
��
��
�
�
��
�
�

(b
)
A
b
st
ra
ct
ed

F
S
A

fo
r
ea
ch

m
o
d
e
in

th
e
su
rg
er
y
d
er
iv
ed

re
q
u
ir
em

en
t

F
ig

u
re

6.
3:

M
o
d
al

ab
st

ra
ct

io
n

v
ie

w
of

th
e

su
rg

er
y

d
er

iv
ed

re
q
u
ir

em
en

t

126

iterating through all of the states, this tool does the following special processing. The

tool checks whether or not the start state is associated with any mode. If not, then

a special NONE mode is created and added. That mode is then associated with the

subgraph reachable from the start start by following transitions labeled with events

not in the set of mode change events. The modal abstraction view benefits from

taking the modes into account because the mode changes can be highlighted and the

larger FSA can be decomposed into smaller subgraphs.

In a complementary way, the analyst can use the mode change events to specify

the different phases of the process model in which that component will be used. Such

phases correspond to the various calling contexts of the procedures of the component.

For the pump example, the two phases of the in-patient surgery process model in

which the pump will be used are performing the operation in the OR and administer-

ing care in the ICU. Thus, the mode (or phase) change events are to move the patient

and their attached pump in to the ICU (i.e. enterICU) or out from the ICU (i.e.

leaveICU). Based on the phase change events, the FSA will then be decomposed

into one abstracted FSA to show the phase changes and one abstracted FSA for each

phase to show how that phase will use the component.

6.3 Safe Alternatives View

From a component perspective, our HIS-based requirement derivation approach

takes as input a system requirement and a HIS model composed of a model of the

component of interest and a very permissive model of the process in which that com-

ponent will be used. The derived process requirement describes the range of processes

in which the component can be safely used, in other words a safety envelope for the

component. Given a particular process model, the safe alternatives view partitions

the behaviors of the derived process requirement into those behaviors that the given

process model recommends and the other behaviors that are safe alternatives to those

127

recommended behaviors. The safe alternatives view was inspired by the work by Yas-

meen and Gunter [77] that defines a safety envelope (in their terminology a protection

envelope). Since domain experts often want very flexible processes that do not overly

constrain the alternative ways to perform their tasks, this view could be used to

modify a given process model to increase its flexibility by permitting more of the safe

alternatives. We first illustrate the safe alternatives view on the pump example and

then describe how to automatically create such a view.

For the safe alternatives view, we highlight the recommended behaviors that ex-

actly follow the given process model and satisfy the system requirement. For the

pump example, the recommended process model may state that the nurse should set

the drug library once before using the pump. Also we highlight the safe alternative

behaviors that vary from the recommended process model but do not violate the sys-

tem requirement. For the pump example, the nurse may vary from the recommended

process model by repeatedly setting the drug library but this repetition would not

harm the patient. Figure 6.4 shows the safe alternatives view of the surgery derived

requirement that was shown in Figure 6.3b where the recommended behaviors are

shown in green and the safe alternative behaviors are shown in orange.

Given a derived process requirement that captures the safe alternative ways to use

the component of interest and a particular process model in which that component will

be used, we developed a safe alternatives view tool that basically employs data flow

analysis to partition the safe alternatives into the alternatives recommended by that

process model and those not recommended by it. This tool runs the FLAVERS state

propagation algorithm on a new FLAVERS subject that consists of the system TFG

that corresponds to the HIS model composed of the component model and the given

process model, the constraints that are the system constraints plus the derived process

requirement, and the property is the system requirement. During this algorithm, the

tool marks all states and transitions of the derived process requirement that are

128

�
�
�
�
��
�
�

�
�
�
�
��
�

�
��
��
��
��
�
�
��
�
��
��
�

��
��
��
��
�
��
�
��
�
��
��
��
��
�

��
��
��
��
�
�
��
�
�

�

��
��
��
�
�

�

��
��
��
��
�
�
�
��
�
�

�

��
��
��
��
�
��
�
�

��
��
��
�
� ��
��
��
��
�
�
��
�
��
��
�

��
��
��
��
�
��
�
��
�
��
��
��
��
�

��
��
��
��
�
�
��
�
�

�

��
��
��
��
�
�
�
��
�
�

�

��
��
��
��
�
��
�
�

��
��
��
��
�
��
�
��
�
��
��
��
��
�

��
��
��
��
�
�
��
�
�
�

��
��
��
��
�
�

��
��
�
��
��
�
�
��
�
�

��
��
��
�
�

��
��
��
��
�
��
�
�

��
��
��
��
�
��
�
��
�
�
��
�
��
��
�

��
��
��
��
�
�
��
�
�
�

��
��
��
��
�
�

��
��
��
�
�

��
��
��
��
�
�
�
��
�
�

��
��
��
��
�
��
�
�

��
��
��
��
�
�
��
�
�

��
�
��
��
��
��
��
��
��
�

��
��
��
��
�
��
�
�

��
��
��
�
�

���
��
�
��
��
��
�
��
�
�
�

��
��
��
��
�
�
�
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
�
�

��
��
��
��
�
��
��
��
��
�

��
��
��
��
�
��
�
�

�

��
��
��
��
�
�
�
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��
�
��
�
�
�

��
��
��
��
�
�

��
��
��
��
�
�
�
��
�
�

��
��
��
�
�

��
��
��
��
�
�
��
�
�

��
��
��
��
�
��
�
�
�

��
�
��
��
��
�

��
��
��
�
�

��
��
��
��
�
��
�
��
�
�
�

��
��
�
��
��
�
�
��
�
�

F
ig

u
re

6.
4:

S
af

e
al

te
rn

at
iv

es
v
ie

w
of

th
e

su
rg

er
y

d
er

iv
ed

re
q
u
ir

em
en

t

129

visited by the process model. After the algorithm reaches a fixed point, the visited

states and transitions are recommended by the process model while the unvisited ones

are not recommended. Based on the visited information, this tool creates the safe

alternatives view of the derived process requirement that is annotated with whether

or not each state or transition is recommended.

6.4 Evaluation

In Chapter 5, we discussed our evaluation of the optimizations and heuristics that

measures the usefulness of the derived requirements in terms of permissiveness. In

this chapter, we discuss our evaluation of the views that measures the usefulness

of the derived requirements in terms of understandability. For this evaluation, we

applied the following four views in order: implicit violation, procedure abstraction,

modal abstraction (based on modes or phases), and safe alternatives. We measured

the complexity of each FSA using a set of simple evaluation metrics that includes the

number of events, states, and transitions in that FSA. For our HIS subjects, there were

23 derived requirements represented as minimal deterministic FSAs. These FSAs were

made total by adding a violation state and transitions. From the process perspective,

there are 9 derived component requirements. From the component perspective, there

are 14 derived process requirements. In these derived requirements, the number of

events ranged from 5 to 27, the number of states ranged from 5 to 94, and the number

of transitions ranged from 25 to 2,538. Table 6.4 summarizes the applicability of the

4 views to the derived requirements. For each view, we present our proposed rules

for when that view is applicable, briefly describe any necessary inputs for the builder

for that view, and summarize the evaluation metrics for the built views.

Both the implicit violation and procedure abstraction views could be applied to

all 23 of the derived requirements. Since the implicit violation view only removes a

single state but often removes many violation transitions, we measure the reduction

130

Table 6.2: Summary of the applicable views for the derived requirements

of
VIEW PERSP. SUBJECTS

Implicit violation Both 23 / 23 (100%)
Procedure abstraction Both 23 / 23 (100%)
Modal abstraction Both 12 / 23 (52%)
Phase abstraction Comp. 7 / 23 (30%)
Safe alternatives Comp. 14 / 23 (61%)

ALL Comp. 7 / 23 (30%)

in the complexity of a given FSA as the number of non-violation transitions divided

by the number of all possible transitions. This reduction ranged from 9% to 25%

with an average of 16%. Section 6.1 describes the procedure abstraction view that

employs component-based development concepts. Specifically, a selected component

defines a set of procedures. The process then uses (or calls) those procedures perhaps

in different calling contexts. Table 6.3 enumerates the calling context events for the

subjects that are from the process perspective. Since the procedure abstraction view

pairs each transition labeled with a call event with its matching transition labeled with

a return event, this reduces the number of states and transitions. For a given derived

requirement represented as an FSA, we measure the reduction in the complexity of

that FSA as the number of non-violation states in the procedure abstraction view of

that derived requirement divided by the number of non-violation states in the implicit

violation view of the same requirement. This reduction ranged from 12% to 67% with

an average of 38%.

Section 6.2 describes how the modal abstraction view decomposes a given derived

requirement based on either modes or phases. We used the following rules to decide

whether or not this view is applicable to a given derived requirement represented as an

FSA. If the derived requirement defines modes or phases, the view is applicable. Ad-

ditionally, we checked whether or not that FSA has more than 3 non-violation states.

If so, this view is applied to reduce complexity and hence increases understandability.

131

Table 6.3: Sets of Calling Context Events

SYSTEM PERSP. CALLING CONTEXT EVENTS

Pump, Proc. enterICU,
PumpS leaveICU
ICD, Proc. enterHCF,
ICDWD leaveHCF
Scanner, Proc. voterArrives,
DRE voterLeaves

If not, the view is not applied because it increases complexity and therefore would

decrease understandability. Since all of the components that we considered defined

2 or more modes, the modal abstraction view was applicable to 12 of the 23 derived

requirements. For the applicable derived requirements, Table 6.4 shows the mapping

from mode change events to mode name. The number of modes ranged from 2 to 5.

Table 6.4 shows a summary of the modal abstraction views for the applicable derived

requirements. In this table, the first column contains the name of the system, the sec-

ond column contains the derivation perspective, the third column contains the name

of the system requirement, and the fourth column contains the number of non-modal

events (defined to be the events that are not mode change events) over the number of

all events in the view. The fifth column contains the maximum number of states in

any mode over the number of states in the entire view. On the other hand, the sixth

column contains the number of non-modal transitions (defined to be the transitions

labeled with non-modal events) over the number of all transitions in the view. The

reduction in the number of states ranges from 33% to 71% with an average of 52%

while the reduction in the number of transitions ranges from 48% to 96% with an

average of 70%.

From the component perspective, the requirement derivers produce the derived

process requirements that contain the phases. The modal abstraction view was ap-

132

Table 6.4: Mapping from Mode Change Events to Mode Name

SYSTEM PERSP. MODE MAPPING

Pump, Both {setLib(ICU) OK}=ICU,
PumpS {setLib(OR) OK}=OR
ICD, Both {activate() OK}=ACTIVATED,
ICDWD {deactivate() OK}=DEACTIVATED
Scanner Comp. {insertCard(BD) OK}=PREPOLLING,

{insertCard(STARTER) OK}=POLLING,
{insertCard(ENDER) OK}=POSTPOLLING

Scanner Proc. {insertCard(STARTER) OK}=POLLING,
{insertCard(ENDER) OK}=POSTPOLLING

DRE Comp. {enterAccessCode() OK,
changes() OK}=BALLOTPAGE,
castVote() OK=REVIEWPAGE,
{accept() OK, reject() OK}=FLAGPAGE

DRE Proc. {enterAccessCode() OK,
isFlagPage() FALSE}=BALLOTPAGE,
{castVote() OK}=REVIEWPAGE,
{enterAccessCode() Alert,
isFlagPage() TRUE}=FLAGPAGE

plicable to 7 of the 9 derived process requirements. For the applicable derived re-

quirements, Table 6.4 shows the mapping from mode (or phase) change events to

phase name. The phase change events all correspond to the calling context events

shown in Table 6.3. Table 6.4 shows a summary of the modal (or phase) abstraction

views for the applicable derived requirements. In this table, the first column contains

the name of the system, the second column contains the derivation perspective, the

third column contains the name of the system requirement, and the fourth column

contains the number of non-phase events (defined to the events that are not phase

change events) over the number of all events in the view. The fifth column contains

the maximum number of states in any phase over the number of states in the entire

view. On the other hand, the sixth column contains the number of non-phase transi-

tions (defined to be the transitions labeled with a non-phase event) over the number

of all transitions in the view. The reduction in the number of states ranges from

133

T
ab

le
6.

5:
S
u
m

m
ar

y
of

M
o
d
al

A
b
st

ra
ct

io
n

V
ie

w
R

es
u
lt

s

S
Y

S
T

E
M

P
E

R
S
P

.
S
Y

S
T

E
M

#
of

#
of

#
of

N
A

M
E

R
E

Q
.

N
O

N
-M

O
D

A
L

S
T

A
T

E
S

N
O

N
-M

O
D

A
L

E
V

E
N

T
S

T
R

A
N

S
.

P
u
m

p
C

om
p
.

al
w

ay
sP

u
m

p
A

le
rt

s
6

/
8

(7
5%

)
2

/
4

(5
0%

)
11

/
19

(5
8%

)
P

u
m

p
S

C
om

p
.

al
w

ay
sP

u
m

p
A

le
rt

s
8

/
10

(8
0%

)
4

/
8

(5
0%

)
30

/
46

(6
5%

)
P

u
m

p
S

P
ro

c.
al

w
ay

sP
u
m

p
A

le
rt

s
6

/
8

(7
5%

)
3

/
7

(4
3%

)
20

/
30

(6
7%

)
IC

D
C

om
p
.

sa
fe

T
es

tM
o
d
e

7
/

9
(7

8%
)

2
/

4
(5

0%
)

12
/

18
(5

7%
)

IC
D

P
ro

c.
n
ev

er
D

ea
ct

iv
at

eF
ai

ls
5

/
7

(7
1%

)
5

/
7

(7
1%

)
10

/
15

(6
7%

)
IC

D
W

D
C

om
p
.

sa
fe

T
es

tM
o
d
e

9
/

11
(8

8%
)

2
/

4
(5

0%
)

18
/

22
(7

3%
)

IC
D

W
D

P
ro

c.
n
ev

er
D

ea
ct

iv
at

eF
ai

ls
7

/
9

(7
8%

)
5

/
7

(7
1%

)
16

/
21

(7
6%

)
S
ca

n
n
er

C
om

p
.

at
M

os
tO

n
eV

ot
e

11
/

14
(7

9%
)

3
/

9
(3

3%
)

25
/

52
(4

8%
)

S
ca

n
n
er

C
om

p
.

n
ev

er
O

ve
rv

ot
e

13
/

16
(8

1%
)

6
/

15
(4

0%
)

32
/

50
(6

4%
)

S
ca

n
n
er

P
ro

c.
n
ev

er
O

ve
rv

ot
e

10
/

12
(8

3%
)

3
/

7
(4

3%
)

43
/

45
(9

6%
)

D
R

E
C

om
p
.

at
M

os
tO

n
eV

ot
e

23
/

28
(8

2%
)

6
/

12
(5

0%
)

14
1

/
15

5
(9

1%
)

D
R

E
P

ro
c.

at
M

os
tO

n
eV

ot
e

21
/

26
(8

1%
)

10
/

14
(7

1%
)

47
/

64
(7

3%
)

134

Table 6.6: Mapping from Phase Change Events to Phase Name

SYSTEM PERSP. SYSTEM REQ. PHASE MAPPING

Pump, Comp. alwaysNecPumpAlerts enterICU=insideICU,
PumpS leaveICU=outsideICU
ICD, Comp. safeTestMode enterHCF=insideHCF,
ICDWD leaveHCF=outsideHCF
Scanner Comp. atMostOneVote, voterArrives=voterVoting,

neverOvervotes voterLeaves=voterNotVoting
DRE Comp. atMostOneVote voterArrives=voterVoting,

voterLeaves=voterNotVoting

50% to 67% with an average of 55% while the reduction in the number of transitions

ranges from 78% to 92% with an average of 83%.

At a high-level, our requirement derivers from the process perspective take as

input a given recommended process model and produce a derived component re-

quirement that by construction should contain all possible safe alternatives from that

process model. The safe alternatives view could be applied to the derived component

requirements. This view, however, would consider all of the safe alternatives to be

recommended and therefore would not improve understandability. Thus, we do not

apply the safe alternatives view to any derived component requirement. On the other

hand, the requirement derivers from the component perspective take as input a partic-

ular component model and produce a derived process requirement that should contain

all possible safe alternatives from all possible recommended process models. Given

a particular process model, the safe alternatives view can then be applied to parti-

tion all possible safe alternatives into the alternatives recommended by that process

model and the other alternatives not recommended by the model. For a given system

(e.g., pump), the safe alternatives view builder takes as input the system requirement

from the component perspective along with a HIS model composed of the component

model from the component perspective and the recommended process model from the

process perspective. The HIS model consists of that system requirement, the TFG for

135

T
ab

le
6.

7:
S
u
m

m
ar

y
of

P
h
as

e
A

b
st

ra
ct

io
n

V
ie

w
R

es
u
lt

s

S
Y

S
T

E
M

S
Y

S
T

E
M

#
of

#
of

#
of

N
A

M
E

P
E

R
S
P

.
R

E
Q

.
N

O
N

-P
H

A
S
E

S
T

A
T

E
S

N
O

N
-P

H
A

S
E

E
V

E
N

T
S

T
R

A
N

S
.

P
u
m

p
C

om
p
.

al
w

ay
sP

u
m

p
A

le
rt

s
6

/
8

(7
5%

)
2

/
4

(5
0%

)
15

/
19

(7
9%

)
P

u
m

p
S

C
om

p
.

al
w

ay
sP

u
m

p
A

le
rt

s
8

/
10

(8
0%

)
4

/
8

(5
0%

)
38

/
46

(8
3%

)
IC

D
C

om
p
.

sa
fe

T
es

tM
o
d
e

7
/

9
(7

8%
)

2
/

4
(5

0%
)

14
/

18
(7

8%
)

IC
D

W
D

C
om

p
.

sa
fe

T
es

tM
o
d
e

9
/

11
(8

2%
)

2
/

4
(5

0%
)

18
/

22
(8

2%
)

S
ca

n
n
er

C
om

p
.

at
M

os
tO

n
eV

ot
e

12
/

14
(8

6%
)

6
/

9
(6

7%
)

43
/

52
(8

3%
)

S
ca

n
n
er

C
om

p
.

n
ev

er
O

ve
rv

ot
e

14
/

16
(8

7%
)

7
/

14
(5

0%
)

43
/

49
(8

8%
)

D
R

E
C

om
p
.

at
M

os
tO

n
eV

ot
e

26
/

28
(9

3%
)

8
/

12
(6

7%
)

14
3

/
15

5
(9

2%
)

136

that system model, and the set of constraints for the model along with an additional

constraint that is the derived process requirement. We applied the safe alternatives

view to all 14 of the derived process requirements. Table 6.4 shows a summary of the

safe alternatives views for the applicable derived requirements. In this table, the first

column contains the name of the system, the second column contains the name of the

system requirement, the third column contains the number of events in the view. The

fourth column contains the number of non-violation states in the view recommended

by the process model over the number of all non-violation states in the view. In a

similar manner, the fifth column contains the number of non-violation transitions in

the view recommended by that model over the number of all non-violation transitions

in the view. For the healthcare HIS models with small to medium sizes, the reduction

in the number of transitions ranged from 32% to 100% with an average of 60%. For

the election administration HIS models with larger sizes, the reduction in the number

of transitions ranged from 15% to 26% with an average of 21%. This illustrates that

the recommended process models are reducing the complexity of the process to try

to prevent system requirement violations.

Our direct and learning-based requirement derivers that employ the FLAVERS

model checker produce derived requirements represented as minimal deterministic

FSAs. We applied the following views in order whenever possible: implicit viola-

tion, procedure abstraction, modal abstraction, safe alternatives. In Chapter 5, we

also described Giannakopoulou and Pasaraneu’s learning-based requirement deriver

that employs the Java pathfinder model checker to produce derived requirements

represented as minimal deterministic FSAs. Their requirement deriver essentially

automatically applies the implicit violation and procedure abstraction views to the

derived requirements before returning those requirements. In general, these views

can be applied to any derived requirements that are represented as FSAs. For this

evaluation of the views, we applied each view, whenever possible, to the derived re-

137

T
ab

le
6.

8:
S
u
m

m
ar

y
of

S
af

e
A

lt
er

n
at

iv
es

V
ie

w
R

es
u
lt

s

S
Y

S
T

E
M

S
Y

S
T

E
M

#
of

#
of

#
of

N
A

M
E

R
E

Q
.

E
V

E
N

T
S

R
E

C
O

M
M

E
N

D
E

D
R

E
C

O
M

M
E

N
D

E
D

S
T

A
T

E
S

T
R

A
N

S
.

C
P

O
E

n
ev

er
L

og
ou

tF
ai

ls
3

2
/

2
(1

00
%

)
2

/
3

(6
7%

)
C

P
O

E
A

D
n
ev

er
A

cc
es

sD
at

aF
ai

ls
5

2
/

2
(1

00
%

)
3

/
5

(6
0

%
)

C
P

O
E

A
D

n
ev

er
L

og
ou

tF
ai

ls
5

2
/

2
(1

00
%

)
3

/
5

(6
0%

)
P

u
m

p
al

w
ay

sN
ec

P
u
m

p
A

le
rt

s
8

4
/

4
(1

00
%

)
12

/
19

(6
3%

)
P

u
m

p
n
oP

u
m

p
A

le
rt

s
6

2
/

2
(1

00
%

)
7

/
7

(1
00

%
)

P
u
m

p
S

al
w

ay
sN

ec
P

u
m

p
A

le
rt

s
10

8
/

8
(1

00
%

)
26

/
46

(5
7%

)
P

u
m

p
S

n
oP

u
m

p
A

le
rt

s
8

4
/

4
(1

00
%

)
16

/
18

(8
9%

)
IC

D
n
ev

er
D

ea
ct

iv
at

eF
ai

ls
7

2
/

2
(1

00
%

)
4

/
7

(5
7%

)
IC

D
sa

fe
T

es
tM

o
d
e

9
3

/
4

(7
5%

)
6

/
18

(3
3%

)
IC

D
W

D
n
ev

er
D

ea
ct

iv
at

eF
ai

ls
9

2
/

2
(1

00
%

)
5

/
9

(5
6%

)
IC

D
W

D
sa

fe
T

es
tM

o
d
e

11
3

/
4

(7
5%

)
7

/
22

(3
2%

)
S
ca

n
n
er

at
M

os
tO

n
eV

ot
e

14
5

/
9

(5
6%

)
12

/
52

(2
3%

)
S
ca

n
n
er

n
ev

er
O

ve
rv

ot
e

16
7

/
14

(5
0%

)
14

/
49

(2
9%

)
D

R
E

at
M

os
tO

n
eV

ot
e

28
7

/
12

(5
8%

)
23

/
15

5
(1

5%
)

138

quirements and observed that each view seemed to improve their understandability.

Additionally, we applied multiple views, whenever possible, which seemed to further

improve their understandability and showed that the views can complement each

other. In the conclusions chapter, we describe some possible directions for future

work involving the views.

139

CHAPTER 7

RELATED WORK

In this chapter, we first briefly describe compositional verification approaches that

try to improve the scalability of the verification approaches by employing a divide

and conquer strategy to decompose the verification of the overall system into the

individual verification of each subsystem, subject to an assumption about the behavior

of the rest of the system. Some of these approaches have used automated techniques

similar to ours to generate the appropriate assumptions. Second, we describe various

automated synthesis methods that produce either component or process behavioral

models that are represented as automata (e.g., FSAs, statecharts [45], or labeled

transition systems). Lastly, we discuss other approaches that determine requirements

about the human participants’ interactions with components used in HISs.

7.1 Compositional Verification

Compositional verification approaches, e.g., [39, 59], employ a divide and con-

quer strategy to decompose the verification of the overall system into the individual

verification of each subsystem to try to improve the scalability of the verification

approach. Assume-guarantee reasoning techniques, e.g, [59], are one widely adopted

composition verification approach. The key idea is to provide an assumption about

the environments in which each subsystem is guaranteed to be used appropriately.

For the assume-guarantee reasoning techniques, the simplest case is when the overall

system S is decomposed into two subsystems1. To verify that system S, which is

1This can be generalized from 2 to N subsystems.

140

composed of subsystems S1 and S2, satisfies RS, such techniques need to verify both

that: 1) S2 satisfies the assumption A, and 2) for all behaviors of S1 that satisfy A,

S1 satisfies RS. For our work, the HIS models are decomposed into a selected compo-

nent model and a process model in which that component will be used. The derived

requirements can be thought of as assumptions. From the process perspective, our

approach treats the process model as S1, the selected component model as S2, and

the derived component requirement as A. On the other hand from the component

perspective, this approach treats the component model as S1, the process model as

S2, and the derived process requirement as A. For the assume-guarantee reasoning

techniques, the assumptions are often difficult to provide. Thus, many researchers

developed assumption generation methods to support these techniques.

The assumption generation methods may be based on reachability analysis (e.g.,

[36]), counterexample-guided abstraction refinement (e.g., [33]), or a combination of

a learning algorithm and model checker (e.g., [3,17,20]). Such assumption generation

methods incorporate various optimizations (e.g., [3], [15]). Like the assumption gen-

eration approaches, our approach also considers a decomposition of the overall system

model. We separate the overall system model into the component model and the pro-

cess model in which that component will be used, and then the assumption learned is

a derived requirement of the interactions between the component and process. Since

the assumption generation methods are performing verification, these methods of-

ten stop learning the assumption after encountering the first execution of the system

model that violates the given requirement of that system. In our case, this means

that the learned assumptions are often not permissive enough to be useful, and so

instead we build on the interface synthesis methods.

Conceptually, the interface synthesis methods are performing assumption gener-

ation where the component is known but the particular environment in which that

component is used is usually unknown. Unlike some of the assumption generation

141

methods, the interface synthesis algorithms do not stop when the first violation is

found and thus the interfaces should be permissive enough to be useful requirements.

Thus the interface synthesis methods and compositional verification approaches com-

plement each other because the synthesized interfaces can be provided as assumptions

to such verifiers.

7.2 Automated Synthesis Methods

For the automated synthesis methods, the system models define the system exe-

cution traces to be sequences of interactions between the selected component and the

remaining system (most commonly represented by the procedure call/return pairs).

A positive system execution trace describes the intended system behaviors. Thus, the

synthesized behavioral models must allow the positive traces. A negative system ex-

ecution trace, however, describes the unintended system behaviors so the synthesized

behavioral models must disallow the negative scenarios. In what follows, we use the

terminology from Henzinger et. al [46]. The synthesized behaviorial model is safe if no

actual negative system execution traces are allowed. The model is most permissive if

all potential positive system execution traces are allowed. We separate the automated

synthesis methods into the scenario-based development approaches, the specification

mining methods, and the interface synthesis methods. The scenario-based develop-

ment approaches elicit, synthesize, and analyze overall system models. On the other

hand, the specification mining approaches generalize from a sample set of system ex-

ecution traces to produce a synthesized interface automaton that captures the most

general way to use the component. Alternatively, the interface synthesis methods

take as input a (partial) system model along with its requirement(s) and whenever

possible produce a synthesized interface automaton that captures the most general

way to use the component without violating any system requirements. In the follow-

142

ing sections, we provide an overview of the scenario-based development approaches,

the specification mining methods, and the interface synthesis methods.

7.2.1 Scenario-based Development Frameworks

The scenario-based development frameworks are centered around scenarios that

describe either the intended or unintended behaviors of the system under develop-

ment. (These scenarios are essentially the system execution traces describe above.)

Each scenario is a partial system description where the system components interact

among themselves often by message passing. The scenarios are typically represented

as variations of message sequence charts (MSCs) [62]. The scenario-based develop-

ment frameworks are often evaluated on HISs, for example HISs in the aeronautics

domain or the healthcare domain. Such frameworks iteratively perform three main

phases: elicitation, synthesis, and analysis. The elicitation phase tries to help the

developer create a “complete” set of scenarios to provide to the synthesis phase.

The synthesis phase takes as input a set of scenarios and produces an overall sys-

tem model. The analysis phase tries to gain assurance about the synthesized system

models. Next, we provide further details about the elicitation, synthesis, and analysis

phases.

During the elicitation phase, various stakeholders such as customers or developers

provide an initial set of scenarios based on insights gained from domain expertise.

On later iterations, new scenarios may be manually provided by the stakeholders or

may be automatically generated by the framework. Uchitel et al. [70] automatically

generate a set of implied scenarios from a given set of scenarios. Various researchers,

e.g., [2, 27, 68], automatically generate scenarios from a given set of system require-

ments or goals and the synthesized system model. Our proposed approach similarly

employs the model checker to generate positive and negative execution traces based

on the system requirement, the system model, and the current derived requirement.

143

In more recent work, Shokry [63] proposes using modes and mode-classes during the

elicitation and synthesis phases. The modes and mode-classes will be used during

the elicitation phase as a coverage metric to ensure that each mode is considered and

during the synthesis phase to merge the scenarios into an overall system model that

is decomposed into the modes and mode-classes. Alternatively, we post-process the

derived requirements to create the modal abstraction views.

The synthesis phase takes as input a set of positive scenarios that describe the

intended system behaviors where the known set of system components can be identi-

fied based on the given scenarios. This phase produces an overall system model that

is a composition of the component behavioral models that allows all of the positive

scenarios, e.g., [26, 55, 69, 75]. In later work, the synthesis phase was extended to

take as input a set of positive scenarios and a set of negative scenarios and produces

as output an overall system model that allows the positive scenarios but disallows

the negative scenarios, e.g., [26, 71]. To make the synthesized system models more

precise, the synthesis phase was further extended to not only take as input the pos-

itive and negative scenarios but additionally take as input system requirements or

goals, e.g., [2,27,68] and then produce as output an overall system model that allows

the positive scenarios, disallows the negative scenarios, and satisfies the given system

requirements or goals. This last extension is the most similar to our approach. As

an alternative way to make the system models more complete and accurate, Makinen

and Systä [55] develop a synthesis phase that employs the L* learning algorithm and

has the developer take on the role of the teacher to answer queries about the syn-

thesized system model. In a similar manner, our learning-based requirement deriver

employs a teacher that uses the FLAVERS model checker to answer the queries about

the component or process model.

The analysis phase validates the synthesized system model by applying such tech-

niques as manual reviews, simulation, and static analyses. One static analysis tech-

144

nique commonly employed is model checking. For the manual reviews, the customers

and developers need to readily understand the synthesized system models. Systä [66]

explores a scenario-based development framework that takes as input scenarios and

produces an overall system model represented as a statechart. To improve the un-

derstandability of the synthesized statecharts, he develops techniques to collapse the

statecharts to reduce their size and to layout the statecharts to improve their readabil-

ity. Other researchers (e.g., [74]) investigate scenario-based development frameworks

that take into account high-level abstractions such as class diagrams or interaction

overview diagrams. Thus, the synthesized statecharts can reflect the abstractions

with hierarchy, orthogonal regions, and composite states. We similarly created views

of the derived requirement FSAs that employ higher-level features such as abstraction

and decomposition to improve the understandability of the FSAs.

7.2.2 Specification Mining Methods

Such methods take as input a set of positive system execution traces and generalize

from those traces to produce an interface automaton that summarizes all of those

traces. This corresponds to our component perspective. The system execution traces

are usually either collected during run-time monitoring or extracted from logs. The

synthesized interface automata are commonly used for program understanding and

bug finding. The specification mining methods were primarily evaluated on C and

Java programs ranging from component libraries such as java.util to full applications

such as a web-based email system.

These methods basically try to generalize from the sample traces by employing

various techniques such as compiler analyses (e.g., [73]), passive learning algorithms

(e.g., [5, 54]), and partition refinement techniques (e.g., [11]). But if the synthesized

interface automaton is over-generalized then the automaton is not safe. On the other

hand, if the synthesized interface automaton is under-generalized then the automaton

145

may not be permissive enough to be useful. Since our derivation approach is being

applied to HISs often in critical domains, the derived requirements must be safe so

we cannot build on the specification mining methods.

The evaluations of the specification mining methods often compare the FSAs in

terms of precision and recall (e.g., [53]). Such methods take as input an expected

FSA and then compute the precision and recall of the synthesized FSA against that

expected FSA. On the other hand, we compared the derived requirements repre-

sented as FSAs in terms of permissiveness as described in Section 5.1.1. Specifically,

we quantified the permissiveness using regular language containment, code coverage,

and the FSA size in terms of the number of states and transitions. To improve the

usefulness of the FSAs in terms of their understandability, some of the specification

mining methods annotate the FSAs’ transitions with the probabilities of their occur-

ring. These annotations can be used to identify the sequences of transitions that are

least or most likely to occur. Alternatively, our safe alternatives view annotates the

labels, states, and transitions with whether or not they occur in a given recommended

process model.

7.2.3 Interface Synthesis Methods

These methods are solving the submodule construction problem [56] that uses

a divide-and-conquer strategy to decompose an overall system into N subsystems.

Given an overall system requirement and a model for each of N - 1 of the subsys-

tems, a model for the Nth subsystem is automatically synthesized that ensures that

the overall system composed of the N subsystem models satisfies the overall sys-

tem requirement. Specifically, these methods are solving the submodule construction

problem for N is 2 where the given subsystem is for the component and the synthe-

sized subsystem is for the process. This corresponds to our component perspective.

146

Some interface synthesis methods are automated with such techniques as reacha-

bility analysis (e.g, [12]), counterexample guided abstraction refinement (e.g., [4, 46,

65]), or game theory (e.g., [4, 77]). Other methods are based on learning algorithms

(e.g., [4,35,65]), as in our approach. All of the model-driven interface synthesis meth-

ods guarantee that the synthesized interface is safe. Some of them guarantee that the

synthesized interface is also most permissive. In Section 4.2, we described how some

of the learning-based interface synthesis methods employ permissive counterexample

generation heuristics that guarantee the derived requirements are safe but not nec-

essarily adequately permissive or most permissive. In practice, various evaluations

of such methods (e.g., [12]), including our evaluation, show the derived requirements

produced are both safe and either adequately permissive or most permissive. Next,

we briefly describe two of the learning-based interface synthesis methods that don’t

employ heuristics and thus have stronger guarantees about the permissiveness of the

derived requirements.

Howar, Giannakopoulou, and Rakamaric [50] explore an interface synthesis method

that builds on techniques for learning along with static, dynamic, and symbolic analy-

sis. In particular, they employ the L∗ learning algorithm that interacts with a teacher

that can answer both membership and equivalence queries. Their teacher employs

static, dynamic, and symbolic analysis to answer the queries. The symbolic analysis

must be provided with the maximum length of any event sequence generated (de-

noted k). Their goal is for the synthesized interface to be k-permissive, meaning the

interface is most permissive for all event sequences up to length k. The synthesized

interface is guaranteed to be safe, k-permissive, and minimal. In the worst case, the

method may ask an exponential number of membership queries. This means that the

provided k often needs to be relatively small.

Alternatively, Singh, Giannakopoulou and Păsăreaunu [65] investigate an interface

synthesis method that builds on techniques for learning and counterexample guided

147

abstraction refinement. For an infinite-state component, the synthesized interface is

created by iteratively refining a MAY predicate abstraction of the component and

a MUST predicate abstraction of the component by adding new predicates auto-

matically generated based on counterexamples provided by the model checker. The

synthesized interfaces are guaranteed to be safe, most permissive, and minimal. The

interface synthesis method, however, only terminates when the infinite-state compo-

nent has a finite bisimulation quotient that will be computed as the MAY predicate

abstraction.

7.3 Determining Requirements about the Human Partici-

pants Interactions with Components Used in HISs

All of the approaches discussed below attempt to help the human participants

appropriately use the components so that the HIS satisfies its system requirements.

In the following, we describe selected approaches proposed in the area of human

computer interaction (HCI) and in the area of software engineering.

In the area of HCI research, Gimblett and Thimbleby [37] explore a user interface

(UI) model discovery approach. The UI model discovery approach takes into account

an interactive component, consisting of a UI and usually an underlying component

implementation, but does not take into account the system or component require-

ment(s). This approach synthesizes a component model that captures the user’s

knowledge about how to interact with the component. In our approach, a derived

process requirement also captures how to interact with a component of interest with-

out violating a given system requirement. Gimblett and Thimbleby evaluated their

UI discovery approach on two case studies: an air conditioner and an infusion pump.

The UI model discovery method instruments the UI to synthesize a component model

represented as an FSA. First, the analyst must define the component internal state.

For instance for the pump example, a component internal state needs to encode the

148

variables that store whether the pump is on, the entered dose for the infusion, whether

an internal error occurred, etc. Next, the synthesis employs a brute-force search to

explore all possible component internal states. Since a component may have a large

number of internal states, the synthesis often does not scale well.

To improve scalability, Gimblett and Thimbleby mention that the analyst may

narrow the focus to a particular aspect of the system. For instance for the pump

example, the analyst may only be interested in the keypad entry procedures. The

component state should only model variables relevant to that aspect to decrease the

number of variables stored. Additionally to improve scalability, they utilize user-

defined abstractions to project a given concrete component state into an abstract

component state to reduce the number of possible values for each variable stored.

For instance, the entered dose that is concretely represented as an integer type could

be abstracted as an enumeration type consisting of low and high. Our HIS-based

requirement derivation approach incorporates an optimization that only models the

variables relevant to the given system requirement. We also compacted the HIS mod-

els by utilizing user-defined abstractions selected based on the system requirement.

One identified limitation for both the UI model discovery approach and our approach

is that the synthesized FSAs are not readily understandable when the FSAs are large

and complex.

Combéfis and Pecheur [21] formally define a full-control abstraction that basically

ensures that for each abstract component state the user knows exactly what com-

mands may be sent to the component and how to update the abstract component

state based on any observations received from the component. In other words, the

commands can be thought of as inputs to the component and the observations can

be thought of as outputs from the component. The full-control abstraction considers

all of the possible behaviors of the component and not only the behaviors relevant to

a given system requirement. For our approach, the derived requirements also ensure

149

that for each current state the user knows exactly what actions may be performed

without violating a given HIS requirement. Combéfis and Pecheur develop a full-

control abstraction synthesis method that takes as input a system model and tries

to produce as output a full-control abstraction represented as a minimal determin-

istic automaton. The synthesis is automated with a bisimulation-based algorithm

that whenever possible returns a synthesized full-control abstraction automaton and

otherwise reports that no full-control abstraction exists.

In later work, Combéfis et al. [22] develop another full-control abstraction synthesis

method that employs a learning algorithm and a model checker. Like our approach,

the learning-based full-control abstraction synthesis approach adapts the interface

synthesis method developed by Giannakopoulou and Păsăraneu [35]. If such a full-

control abstraction automaton exists, then the full-control abstraction method will

return one, otherwise this method returns a counterexample that illustrates how the

component is not full controllable. Additionally, Combéfis et al. discuss how both

versions of the full-control abstraction synthesis method can incorporate the modal

concept so that the component states track the mode and the transitions change

the mode when necessary. They then illustrate how the full-control abstractions can

illustrate mode errors where the user believes that the component is in one mode but

the component is actually is another mode. For our case studies, we also show how the

derived process requirements could help prevent mode errors, e.g., the derived surgery

requirement ensures a pump is configured for the appropriate care area before using

the pump in that care area. Additionally, we created the modal abstraction view

of the derived requirements that emphasize the modes and their behaviors to help

prevent mode errors.

In the area of software engineering, C. Gunter et al. [42] explore modeling and

analyzing HISs in the healthcare domain. They model the HISs in CSP (Commu-

nicating Sequential Processes). Their case study is an automated identification and

150

data capture system employed in a hospital. C. Gunter et al. define a HIS model to be

composed of the sub-processes for each human participant’s recommended behaviors,

e.g., nurse’s recommended procedure to identify a particular patient and collect data

from a medical device attached to the patient, and each component, e.g., electronic

health record or wireless medical device. In contrast, our HIS model is composed

of the process model that captures the recommended behaviors and the component

models. Additionally, C. Gunter et al. define a protection envelope that captures

safe deviations from the recommended behaviors. They manually create a protection

envelope. Alternatively in our proposed approach, a process requirement can auto-

matically be derived that determines the class of processes in which the component

of interest may be safely used without violating a given system requirement. For

instance, our automated requirement derivation approach could take as input the

“never overdose” system requirement and a HIS model composed of a particular in-

fusion pump implementation and an imprecise process model in which that pump is

used. The derived process requirement would restrict the wide range of behaviors of

the process to prevent violations of the “never overdose” system requirement. Thus,

the requirement could be used to determine the different in-patient surgery processes

that safely use the given pump. Additionally, this thesis explored the safe alterna-

tives view that was inspired by the protection envelope to illustrate for a given process

model the difference between the recommended behaviors and the safe deviations.

In subsequent work, Yasmeen and E. Gunter [77] investigate a HIS modeling and

analysis framework centered around the protection envelope. They develop a syn-

thesis method based on game theory that takes as input a HIS model written as a

concurrent game structure and a protection envelope requirement specified in tem-

poral logic and produces as output a synthesized protection envelope represented

as an FSA. This method employs game theory techniques to iteratively refine the

synthesized protection envelope to disallow negative counterexamples generated by a

151

model checker. Yasmeen and E. Gunter apply this game-based synthesis method to

a small case study and report on the synthesized protection envelope automaton but

do not report on the synthesis performance in terms of space or time. Unlike the pro-

posed requirement derivation approach, this synthesis approach does not incorporate

optimization to reduce the size of the system model or the cost of the requirement

derivation algorithm. Therefore, this game-based synthesis method does not seem as

if it would scale up well.

In later work, Yasmeen [76] investigates an automated synthesis method that

takes as inputs a HIS model that captures the recommended behaviors and a set of

system requirements and then produces as output a synthesized protected envelope

requirement specified in temporal logic. At a high-level, the method mutates the

given HIS model to synthesize the protection envelope requirement. First, Hollnagell’s

patterns of human behavior deviations [48] are employed to propose a set of mutations

to the HIS model, for instance one pattern mutates by omitting an activity and

another pattern mutates by repeating an activity. Then, the synthesized protection

envelope requirement is essentially the union of the set of proposed mutations that

are safe, meaning the mutations prevent violations of the given system requirements.

Since the patterns do not cover all possible deviations, the synthesized protection

envelope requirement may be missing some safe deviations. Yasmeen implemented

the synthesis method and evaluated it on one case study. For the case study, she does

show the synthesized protection envelope requirement but does not provide any data

about the performance of the synthesis method.

152

CHAPTER 8

CONCLUSIONS

Human-intensive systems are increasingly prevalent in critical domains such as

healthcare. Since such systems are often complex, frequently involving concurrency,

non-determinism, and exceptional situations, it is challenging to determine require-

ments for the components used in these systems that ensure the overall system re-

quirements are still satisfied. For our automated requirement derivation approach, a

HIS is modeled as the composition of the selected component model and the process

model. The process model describes the recommended ways to achieve the system

mission, including how that component should be used. This approach employs in-

terface synthesis methods to produce derived requirements that restrict the interface

between the component and process to prevent any violations of the overall system

requirements. These derived requirements are represented as minimal deterministic

FSAs. The derived requirements are guaranteed to be safe but may or may not be

adequately permissive. For this work, we defined adequately permissive to mean that

the derived requirement allows all actual system executions that always satisfy the

overall system requirement.

Conceptually from the process perspective, this approach takes a process model

in which a selected component will be used and produces a derived component re-

quirement that determines the class of such components that can safely be used in

the process. Such requirements can be employed to safely develop a new compo-

nent, modify an existing component, or switch components. In a complementary way

from the component perspective, the approach takes a selected component model

153

and produces a derived process requirement that determines the class of processes

in which the component can be safely used. These requirements can be employed

to safely develop a new process or modify an existing process. In previous work, we

investigated such an automated requirement derivation approach that employed an

interface synthesis method based on regular language learning algorithms and model

checking techniques. This learning-based requirement deriver employs the learning

algorithm to iteratively refine the current derived requirement based on counterexam-

ples generated by the model checker. The learning algorithm guarantees that the final

derived requirement is represented as a minimal deterministic FSA. This algorithm

also guarantees that the derived requirement is safe but not necessarily adequately

permissive.

Our preliminary evaluation showed that the performance of the learning-based re-

quirement deriver may not scale well as the HISs increase in complexity. To try to ad-

dress scalability, we extended this requirement deriver to incorporate several learning

and model checking optimizations. These optimizations improved the performance of

the requirement deriver. Some of the model checking optimizations, however, could

negatively impact the counterexample generation techniques employed by the model

checker, decreasing the permissiveness of the derived requirements. We therefore

investigated a class of permissiveness counterexample generation heuristics to study

their impact on both the performance of the requirement deriver as well as the permis-

siveness of the derived requirements. Additionally, we investigated a direct interface

synthesis method that employs the model checker to build the full reachability graph,

refines that graph, and then converts the graph, which is often non-deterministic, to

a derived requirement represented as a minimal deterministic FSA. This requirement

deriver produces derived requirements that are guaranteed to be safe and adequately

permissive. For the direct and learning-based requirement derivers, we created sev-

eral views of the derived requirements that use higher-level features to abstract away

154

or highlight certain aspects of the requirements to improve their understandability.

We evaluated our approach on portions of real-world human-intensive systems in two

important domains: healthcare and election administration.

Both the direct and learning-based requirement derivers produced derived require-

ments represented as minimal deterministic FSAs that provided insights about the

component, the process, or both. The direct requirement deriver guarantees that

that the derived requirement is safe and adequately permissive. This requirement

deriver, however, may blow up converting from a non-deterministic FSA to a deter-

ministic one and exceed all available space. For the direct requirement deriver, our

evaluation showed that all of the model checking optimizations should be applied

to obtain the best performance. The learning-based requirement deriver guarantees

that the derived requirements are safe but not necessarily adequately permissive. The

iterative learning tries to significantly reduce the maximum space needed. For the

learning-based requirement deriver, our evaluation showed that each of the model

checking optimizations should be applied to obtain the best performance in terms of

space. Additionally, this evaluation showed that each learning optimization should

be applied to obtain the best performance in terms of overall time.

For our HIS model where the component models were modal, both the direct and

learning-based requirement derivers could produce the derived requirements that are

safe and adequately permissive within a space bound of 2 GB and a time bound of 8

hours. For the learning-based requirement deriver, this evaluation shows that differ-

ent combinations of the optimizations and permissiveness counterexample generation

heuristics can significantly impact the derived requirements’ permissiveness and the

requirement deriver’s performance. The evaluation identified a small number of com-

binations that seem to provide the best trade-offs in terms of permissiveness and

performance. We expect that our results will generalize to different system modeling

languages, requirement (or property) specification languages, and model checkers.

155

Many of the interface synthesis methods represent the derived requirements as

minimal deterministic FSAs. We created a library of derived requirement views that

use various high-level features to abstract away or highlight certain aspects of the

requirements to improve their understandability. This library was shared by the direct

and learning-based interface synthesis methods and could be shared by other interface

synthesis methods. Additionally, the library allowed the same derived requirement to

have different complementary views applied to further improve its understandability.

For a better understanding of the impact of the different interface synthesis meth-

ods, optimizations, and permissiveness counterexample generation heuristics on the

derivation results in terms of permissiveness and performance, a more extensive eval-

uation is needed. This evaluation should consider more complex components, more

detailed processes, a larger range of properties, and other domains than the two dis-

cussed here. Additionally, the evaluation should consider not only how to safely use a

single component but also how to safely use multiple components together to achieve

that system mission. For instance, a cardiac surgery process often needs to carefully

use both a ventilator and a heart lung machine to ensure that the patient contin-

ues breathing during the process. The evaluation should also consider other quality

metrics for the derived requirements, beyond their size, permissiveness, and under-

standability. Given the same inputs, the interface synthesis methods often produce

different FSAs. Thus, it is also important to consider various FSA comparison tech-

niques such as FSA size, code coverage, language containment, and precision/recall.

For model checking used primarily for verification, only the existence or non-

existence of a counterexample is significant. Many other applications of model check-

ing, for such things as test generation, bug finding and understanding, and certainly

interface synthesis, do depend on the characteristics of the counterexamples found.

Our work demonstrates not only how a number of different aspects of the coun-

terexample generation algorithm may affect those characteristics, but also points to

156

the interactions among these aspects and between these aspects and standard opti-

mizations often applied for model checking. This automated requirement derivation

approach employs a learning-based interface synthesis method. As mentioned in the

related work chapter, there exist interface synthesis methods based on counterexample

guided abstraction refinement that may benefit from the permissiveness counterex-

ample generation heuristics.

In Chapter 6, we discussed our library of derived requirement views that includes:

an implicit violation view, a procedure abstraction view, a modal abstraction view,

and a safe alternatives view. For the modal abstraction view, we mentioned that the

analyst must provide either modes (or phases) to decompose the FSA into subgraphs.

To further investigate the modal abstraction view, the view could be extended to de-

compose each mode into sub-modes. The modal abstraction view currently builds on

FSAs. We may be able to build on other higher-level requirement specifications such

as modecharts [52], which provide support for transitions among subgraphs in addi-

tion to transitions among states. Other views may similarly benefit from converting

the FSAs into a higher-level requirement specifications such as statecharts. In the

background chapter, we manually annotated the states of the derived requirements

with the internal state invariants of the component model. We could automatically

compute such annotations by creating a state invariant view based on data flow anal-

ysis. Our evaluation of the views used simple quantitative evaluation metrics such

as the FSA size in terms of the number of labels, states, and transitions. It would

be beneficial to perform an evaluation of the views that uses qualitative evaluation

metrics such as human judges scoring the FSAs in terms of understandability.

Although other work (e.g., [16]) has shown that the effort to define and vali-

date human-intensive system models is challenging and time consuming, this effort

is worthwhile since these models could also potentially be employed to train medical

personnel, be the subject of both static and dynamic analyses, and support guidance

157

when performing the systems in the real-world settings. Such a continuous process

improvement framework can be used to gain assurance that these human-intensive

systems are being safely developed and safely performed in the real-world settings.

158

APPENDIX A

BUILD NODE-TUPLE GRAPH ALGORITHM
DESCRIPTION

The build node-tuple graph algorithm shown in Figure A.1 takes as input a FLAVERS

subject and generates the full node-tuple graph along with the verification result. As

described in the FLAVERS section, the node-tuple graph is a labeled directed graph

G = (N , E, ninit, F , ΣG, L) where N is the set of node-tuples, E is the set of edges

among the node-tuples, ninit is the unique initial node-tuple, F is the set of final node-

tuples, ΣG is the alphabet of system events, and L is a mapping from each node-tuple

to either a system event or τ . The verification result is either CONCLUSIVE or

INCONCLUSIVE. The build node-tuple graph algorithm uses a worklist to store the

node-tuples to be expanded. Initially, the set of node-tuples, edges, final node-tuples,

and the worklist are all empty. The algorithm first creates the initial node-tuple ninit

and adds it to the set of node-tuples N and the worklist Wlist. Figure A.1 shows

the pseudo-code for build node-tuple graph algorithm that iteratively generates the

reachable node-tuples until the worklist is empty (lines 1 to 16 inclusive) and then

determines the verification result by interpreting the final-node tuples (lines 17 to 29

inclusive).

On each iteration, the build node-tuple graph algorithm removes a current node-

tuple pcurr from the worklist Wlist (line 2). This algorithm then iterates through the

possible next TFG nodes based on the edges of pcurr’s node (line 3). For each next

TFG node nnext, the algorithm algorithm then iterates through the possible next

tuples produced by the tuple generation function on the node nnext and the tuple

from pcurr (line 4). This tuple generation function will prune away any infeasible

159

node-tuples and only return the feasible node-tuples. The build node-tuple graph

algorithm then checks whether or not the next node-tuple consisting of the next TFG

node nnext and the next tuple tnext is contained is the set of node-tuples N (line 5).

If so, then this algorithm gets that existing next node-tuple (line 6). If not, then the

algorithm creates a new next node-tuple consisting of nnext and tnext and adds that

next node-tuple to the set of node-tuples N and the worklist Wlist (line 8). The build

node-tuple graph algorithm then checks whether or not the next node-tuple is a final

node-tuple, meaning that the TFG node is the unique final node of the TFG (line 9).

If so, then this algorithm adds the next node-tuple to the set of final node-tuples F

(line 10). Finally, the algorithm creates an edge from the current node-tuple pcurr to

the next node-tuple pnext and adds that edge to the set of edges E (line 13). The build

node-tuple graph algorithm then re-checks whether or not the worklist is empty (line

1). If not, then this algorithm continues iterating. If so, then the algorithm stops

iterating and determines the verification result by examining the final node-tuples.

The build node-tuple graph algorithm iterates through each of the final node-

tuples (line 18) looking for violating node-tuples (line 19) and satisfying node-tuples

(line 21). If a violating node-tuple is found, then the verification result is “INCON-

CLUSIVE (Counterexample path exists)” (denoted as INC-CEX at line 20). If no

satisfying node-tuples are found, then the verification result is “INCONCLUSIVE

(No potential terminating paths exist)” (denoted as INC-NOTUPLES at line 26) and

otherwise the verification result is “CONCLUSIVE” (denoted as CON at line 28).

160

1: while (Wlist is not empty) do
2: Remove a current node-tuple pcurr from Wlist
3: for all (next node nnext of the node from pcurr) do
4: for all (next tuple tnext generated from nnext and the tuple from pcurr) do
5: if (there exists a node-tuple in P with nnext and tnext) then
6: Get that node-tuple pnext
7: else
8: Create next node-tuple pnext and add it to N and Wlist
9: if (pnext is a final node-tuple) then
10: Add pnext to the final node-tuples set F
11: end if
12: end if
13: Add an edge from pcurr to pnext and add that edge to E
14: end for
15: end for
16: end while
17: existsSatisfyingNodeTuple← FALSE
18: for all (final node-tuple pfinal in F) do
19: if (pfinal is a violating node-tuple) then
20: return G along with INC-CEX
21: else if (pfinal is a satisfying node-tuple) then
22: existsSatisfyingNodeTuple← TRUE
23: end if
24: end for
25: if (not existsSatisfyingNodeTuple) then
26: return G along with INC-NOTUPLES
27: else
28: return G along with CON
29: end if

Figure A.1: Pseudo-code for the build node-tuple graph algorithm

161

APPENDIX B

LOW-LEVEL DERIVED REQUIREMENT ALPHABET
DESCRIPTION

In Section 3.2, we described how the system translator computes the derived re-

quirement alphabet based on the overall system requirement, the requirement deriver

perspective, and the HIS model. We presented the high-level derived requirement al-

phabet where the system events included the component procedure execution events

(that pair the component procedure calls with their returns) and the calling context

events. In the Little-JIL section, we discussed how the component executions are

modeled as remote procedure calls over (communication) channels. Each channel

stores messages of a given type. A message can then be sent to that channel or re-

ceived from the channel. Specifically, each remote procedure call from the process to

the select component consists of the following five system activities:

1.1) the process sends a procedure call message to the component on the procedure

call channel

1.2) the component receives that procedure call message from the process on the

procedure call channel

2) the component executes the procedure

3.1) the component sends a procedure return message to the process on the procedure

return channel

3.2) the process receives that procedure return message from the component on the

procedure return channel

162

Thus, the low-level derived requirement alphabet will contain the system events re-

lated to the remote procedure calls involving the channels.

In the following, we define the channel operations to be the sends to and receives

from the channels. Before we can intersect the process alphabet that contains channel

operation events with the component alphabet that also contains channel operation

events, we need to “complement” the channel operation events. The complement of a

send to a given channel is a receive from that channel (e.g., 1.1’s complement is 1.2).

In a dual manner, the complement of a receive from a specific channel is a send to

that channel (e.g., 1.4’s complement is 1.3). For the illustrative example, the system

requirement alphabet is:

• enterICU // Calling context for setDose

• leaveICU // Calling context for setDose

• RCV(pumpCallChn, call(setDose,HIGH))

• SND(setDoseRetChn, return(setDose,DoseAlert))

• SND(setDoseRetChn, return(setDose,OK))

Table B.1 shows the alphabet for the process (on the left) and the component (on the

right). From the component perspective, the derived process requirement alphabet is

shown on the left. From the process perspective, the derived component alphabet is

shown on the right. As mentioned above, the derived component alphabet does not

contain all of the system requirement alphabet, specifically the calling context events

enterICU and leaveICU are missing.

163

Table B.1: Alphabets for the process and the component

Process Alphabet Component Alphabet

SND(pumpCallChn, RCV(pumpCallChn,
call(setLib, ICU)) call(setLib, ICU))
SND(pumpCallChn, RCV(pumpCallChn,
call(setLib, OR)) call(setLib, OR))
RCV(setLibRetChn, SND(setLibRetChn,
return(setLib, OK)) return(setLib, OK))
SND(pumpCallChn, RCV(pumpCallChn,
call(setDose, LOW)) call(setDose, LOW))
SND(pumpCallChn, RCV(pumpCallChn,
call(setDose,HIGH)) call(setDose,HIGH))
RCV(setDoseRetChn, SND(setDoseRetChn,
return(setDose,OK)) return(setDose,OK))
RCV(setDoseRetChn, SND(setDoseRetChn,
return(setDose,DoseAlert)) return(setDose,DoseAlert))
SND(pumpCallChn, RCV(pumpCallChn,
call(start)) call(start))
RCV(startRetChn, SND(startRetChn,
return(start, OK)) return(start, OK))
RCV(startRetChn, SND(startRetChn,
return(start,DoseAlert)) return(start,DoseAlert))
enterICU
leaveICU

164

BIBLIOGRAPHY

[1] Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D. Compilers: principles,
techniques, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

[2] Alrajeh, Dalal, Kramer, Jeff, Russo, Alessandra, and Uchitel, Sebastin. Learning
operational requirements from goal models. In ICSE ’09: Proceedings of the 2009
IEEE 31st International Conference on Software Engineering (Washington, DC,
USA, 2009), IEEE Computer Society, pp. 265–275.

[3] Alur, Rajeev, Madhusudan, P., and Nam, Wonhong. Symbolic compositional
verification by learning assumptions. In CAV (2005), Kousha Etessami and
Sriram K. Rajamani, Eds., vol. 3576 of Lecture Notes in Computer Science,
Springer, pp. 548–562.

[4] Alur, Rajeev, Černý, Pavol, Madhusudan, P., and Nam, Wonhong. Synthesis of
interface specifications for Java classes. SIGPLAN Not. 40, 1 (2005), 98–109.

[5] Ammons, Glenn, Bod́ık, Rastislav, and Larus, James R. Mining specifications.
In POPL (2002), John Launchbury and John C. Mitchell, Eds., ACM, pp. 4–16.

[6] Angluin, Dana. Learning regular sets from queries and counterexamples. Inf.
Comput. 75, 2 (1987), 87–106.

[7] Avrunin, George S., Clarke, Lori A., Henneman, Elizabeth A., and Osterweil,
Leon J. Complex medical processes as context for embedded systems. SIGBED
Rev. 3, 4 (2006), 9–14.

[8] Avrunin, George S., Clarke, Lori A., Osterweil, Leon J., Christov, Stefan C.,
Chen, Bin, Henneman, Elizabeth A., Henneman, Philip L., Cassells, Lucinda,
and Mertens, Wilson. Experience modeling and analyzing medical processes:
Umass/baystate medical safety project overview. In Proceedings of the 1st ACM
International Health Informatics Symposium (New York, NY, USA, 2010), IHI
’10, ACM, pp. 316–325.

[9] Avrunin, George S., Corbett, James C., Dwyer, Matthew B., Păsăreanu, Co-
rina S., and Siegel, Stephen F. Comparing finite-state verification techniques for
concurrent software.

[10] Berg, Therese, Jonsson, Bengt, Leucker, Martin, and Saksena, Mayank. Insights
to Angluin’s learning. Electron. Notes Theor. Comput. Sci. 118 (Feb. 2005),
3–18.

165

[11] Beschastnikh, Ivan, Brun, Yuriy, Schneider, Sigurd, Sloan, Michael, and Ernst,
Michael D. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering (New York,
NY, USA, 2011), ESEC/FSE ’11, ACM, pp. 267–277.

[12] Beyer, Dirk, Henzinger, Thomas, and Singh, Vasu. Algorithms for interface
synthesis. In CAV (2007), Lecture Notes in Computer Science, Springer, pp. 4–
19.

[13] Cass, Aaron G., Lerner, Barbara Staudt, Sutton, Jr., Stanley M., McCall,
Eric K., Wise, Alexander, and Osterweil, Leon J. Little-JIL/Juliette: a pro-
cess definition language and interpreter. In ICSE ’00: Proc. of the 22nd Int.
Conf. on Software Eng. (New York, NY, USA, 2000), ACM, pp. 754–757.

[14] Chaki, Sagar, Clarke, Edmund, Sharygina, Natasha, and Sinha, Nishant. Ver-
ification of evolving software via component substitutability analysis. Form.
Methods Syst. Des. 32, 3 (June 2008), 235–266.

[15] Chaki, Sagar, and Strichman, Ofer. Optimized l*-based assume-guarantee rea-
soning. In Proceedings of the 13th international conference on Tools and algo-
rithms for the construction and analysis of systems (Berlin, Heidelberg, 2007),
TACAS’07, Springer-Verlag, pp. 276–291.

[16] Chen, Bin. Improving processes using static analysis techniques, Doctoral Thesis,
Department of Computer Science, University of Massachusetts, Amherst, MA
01003, September 2010.

[17] Chen, Yu-Fang, Farzan, Azadeh, Clarke, Edmund M., Tsay, Yih-Kuen, and
Wang, Bow-Yaw. Learning minimal separating dfa’s for compositional verifica-
tion. In Proceedings of the 15th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems: Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2009, (Berlin,
Heidelberg, 2009), TACAS ’09, Springer-Verlag, pp. 31–45.

[18] Cimatti, Alessandro, Clarke, Edmund M., Giunchiglia, Enrico, Giunchiglia,
Fausto, Pistore, Marco, Roveri, Marco, Sebastiani, Roberto, and Tacchella, Ar-
mando. Nusmv 2: An opensource tool for symbolic model checking. In Pro-
ceedings of the 14th International Conference on Computer Aided Verification
(London, UK, UK, 2002), CAV ’02, Springer-Verlag, pp. 359–364.

[19] Clarke, Edmund M., Grumberg, Orna, and Peled, Doron A. Model Checking.
The MIT Press, 1999.

[20] Cobleigh, Jamieson M., Giannakopoulou, Dimitra, and Păsăreanu, Corina S.
Learning assumptions for compositional verification. In TACAS ’03: Proceedings
of the Ninth International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (New York, NY, USA, 2003), vol. 2619 of Lecture
Notes in Computer Science, Springer-Verlag Berlin Heidelberg, pp. 331–346.

166

[21] Combéfis, S., and Pecheur, C. A bisimulation-based approach to the analysis of
human-computer interaction. In Proceedings of the ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (New York, 2009), ACM.

[22] Combéfis, Sébastien, Giannakopoulou, Dimitra, Pecheur, Charles, and Feary,
Michael. Learning system abstractions for human operators. In Proceedings
of the International Workshop on Machine Learning Technologies in Software
Engineering (New York, NY, USA, 2011), MALETS ’11, ACM, pp. 3–10.

[23] Conboy, Heather M., Avrunin, George S., and Clarke, Lori A. Process-based
derivation of requirements for medical devices. In Proceedings of the 1st ACM
International Health Informatics Symposium (New York, NY, USA, 2010), IHI
’10, ACM, pp. 656–665.

[24] Corbett, James C., and Avrunin, George S. Using integer programming to verify
general safety and liveness properties. Form. Methods Syst. Des. 6, 1 (Jan. 1995),
97–123.

[25] Corbett, James C., Dwyer, Matthew B., Hatcliff, John, Laubach, Shawn,
Păsăreanu, Corina S., Robby, and Zheng, Hongjun. Bandera: Extracting finite-
state models from Java source code. In ICSE ’00: Proceedings of the 22nd
International Conference on Software Engineering (New York, NY, USA, 2000),
ACM Press, pp. 439–448.

[26] Damas, Christophe, Lambeau, Bernard, Dupont, Pierre, and van Lamsweerde,
Axel. Generating annotated behavior models from end-user scenarios. IEEE
Trans. Softw. Eng. 31, 12 (Dec. 2005), 1056–1073.

[27] Damas, Christophe, Lambeau, Bernard, and van Lamsweerde, Axel. Scenarios,
goals, and state machines: a win-win partnership for model synthesis. In Pro-
ceedings of the 14th ACM SIGSOFT international symposium on Foundations of
software engineering (New York, NY, USA, 2006), SIGSOFT ’06/FSE-14, ACM,
pp. 197–207.

[28] Dwyer, Matthew B., Avrunin, George S., and Corbett, James C. Patterns in
property specifications for finite-state verification. In ICSE ’99: Proceedings of
the 21st International Conference on Software Engineering (Los Alamitos, CA,
USA, 1999), IEEE Computer Society Press, pp. 411–420.

[29] Dwyer, Matthew B., Clarke, Lori A., Cobleigh, Jamieson M., and Naumovich,
Gleb. Flow analysis for verifying properties of concurrent software systems. ACM
Transactions on Software Engineering and Methodology (TOSEM) 13, 4 (2004),
359–430.

[30] Dwyer, Matthew B., Person, Suzette, and Elbaum, Sebastian. Controlling fac-
tors in evaluating path-sensitive error detection techniques. In Proceedings of
the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (New York, NY, USA, 2006), SIGSOFT ’06/FSE-14, ACM, pp. 92–
104.

167

[31] election office, Marin County. Marin county pollworker guides,
http://www.co.marin.ca.us/depts/rv/main/pollworkers/guides.html.

[32] Fu, Kevin. Research notes about implantable medical devices, 2006.

[33] Gheorghiu, Mihaela, Giannakopoulou, Dimitra, and Păsăreanu, Corina S. Refin-
ing interface alphabets for compositional verification. In TACAS (2007), Orna
Grumberg and Michael Huth, Eds., vol. 4424 of Lecture Notes in Computer Sci-
ence, Springer, pp. 292–307.

[34] Giannakopoulou, Dimitra. Personal correspondence, 2016.

[35] Giannakopoulou, Dimitra, and Păsăreanu, Corina S. Interface generation and
compositional verification in JavaPathfinder. In FASE ’09: Proc. of the 12th Int.
Conf. on Fundamental Approaches to Software Eng. (Berlin, Heidelberg, 2009),
Springer-Verlag, pp. 94–108.

[36] Giannakopoulou, Dimitra, Păsăreanu, Corina S., and Barringer, Howard. As-
sumption generation for software component verification. In ASE ’02: Proceed-
ings of the 17th IEEE International Conference on Automated Software Engi-
neering (Washington, DC, USA, 2002), IEEE Computer Society, pp. 3–12.

[37] Gimblett, Andy, and Thimbleby, Harold. User interface model discovery: towards
a generic approach. In Proceedings of the 2nd ACM SIGCHI symposium on
Engineering interactive computing systems (New York, NY, USA, 2010), EICS
’10, ACM, pp. 145–154.

[38] Godefroid, Patrice, and Wolper, Pierre. Using partial orders for the efficient
verification of deadlock freedom and safety properties. Form. Methods Syst.
Des. 2, 2 (Apr. 1993), 149–164.

[39] Graf, Susanne, and Steffen, Bernhard. Compositional minimization of finite
state systems. In IN PROC. 2ND INTERNATIONAL CONFERENCE OF
COMPUTER-AIDED VERIFICATION (1991), pp. 186–196.

[40] Groce, Alex, Peled, Doron, and A, Mihalis Yannakakis. Adaptive model checking.
In TACAS ’02: Proceedings of the Eighth International Conference on Tools and
Algorithms for Construction and Analysis of Systems (2002), vol. 2280 of Lecture
Notes in Computer Science, Springer-Verlag Berlin Heidelberg, pp. 357–370.

[41] Groce, Alex, and Visser, Willem. Model checking java programs using structural
heuristics. In Proceedings of the 2002 ACM SIGSOFT International Symposium
on Software Testing and Analysis (New York, NY, USA, 2002), ISSTA ’02, ACM,
pp. 12–21.

[42] Gunter, Elsa L., Yasmeen, Ayesha, Gunter, Carl A., and Nguyen, Anh. Specify-
ing and analyzing workflows for automated identification and data capture. In
HICSS ’09 (2009), pp. 1–11.

168

[43] Halperin, Daniel, Heydt-Benjamin, Thomas S., Fu, Kevin, Kohno, Tadayoshi,
and Maisel, William H. Security and privacy for implantable medical devices.
IEEE Pervasive Computing 7, 1 (2008), 30–39.

[44] Halperin, Daniel, Heydt-Benjamin, Thomas S., Ransford, Benjamin, Clark,
Shane S., Defend, Benessa, Morgan, Will, Fu, Kevin, Kohno, Tadayoshi, and
Maisel, William H. Pacemakers and implantable cardiac defibrillators: Soft-
ware radio attacks and zero-power defenses. In SP ’08: Proceedings of the 2008
IEEE Symposium on Security and Privacy (Washington, DC, USA, 2008), IEEE
Computer Society, pp. 129–142.

[45] Harel, David. Statecharts: A visual formalism for complex systems, 1987.

[46] Henzinger, Thomas A., Jhala, Ranjit, and Majumdar, Rupak. Permissive inter-
faces. In ESEC/FSE-13: Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering (New York, NY, USA, 2005), ACM, pp. 31–
40.

[47] Holley, L. Howard, and Rosen, Barry K. Qualified data flow problems. In
Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming languages (New York, NY, USA, 1980), POPL ’80, ACM, pp. 68–
82.

[48] Hollnagel, Erik. The phenotype of erroneous actions. Int. J. Man-Mach. Stud.
39, 1 (July 1993), 1–32.

[49] Holzmann, Gerard J. The model checker SPIN. IEEE Transactions on Software
Engineering 23 (1997), 279–295.

[50] Howar, Falk, Giannakopoulou, Dimitra, and Rakamarić, Zvonimir. Hybrid learn-
ing: Interface generation through static, dynamic, and symbolic analysis. In Pro-
ceedings of the 2013 International Symposium on Software Testing and Analysis
(New York, NY, USA, 2013), ISSTA 2013, ACM, pp. 268–279.

[51] Hungar, Hardi, Niese, Oliver, and Steffen, Bernhard. Domain-specific opti-
mization in automata learning. In CAV (2003), Warren A. Hunt Jr. and
Fabio Somenzi, Eds., vol. 2725 of Lecture Notes in Computer Science, Springer,
pp. 315–327.

[52] Jahanian, Farnam, and Mok, Aloysius K. Modechart: A specification language
for real-time systems. IEEE Transactions Software Engineering 20, 12 (Dec.
1994), 933–947.

[53] Krka, Ivo, Brun, Yuriy, and Medvidovic, Nenad. Automatic mining of specifica-
tions from invocation traces and method invariants. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (New York, NY, USA, 2014), FSE 2014, ACM, pp. 178–189.

169

[54] Lo, David, and Khoo, Siau-Cheng. Smartic: towards building an accurate, robust
and scalable specification miner. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering (New York,
NY, USA, 2006), SIGSOFT ’06/FSE-14, ACM, pp. 265–275.

[55] Mäkinen, Erkki, and Systä, Tarja. MAS : an interactive synthesizer to support
behavioral modelling in UML. In Proceedings of the 23rd International Confer-
ence on Software Engineering (Washington, DC, USA, 2001), ICSE ’01, IEEE
Computer Society, pp. 15–24.

[56] Merlin, Philip, and Bochmann, Gregor V. On the construction of submodule
specifications and communication protocols. ACM Trans. Program. Lang. Syst.
5, 1 (1983), 1–25.

[57] Naumovich, Gleb, and Avrunin, George S. A conservative data flow algorithm
for detecting all pairs of statements that may happen in parallel. SIGSOFT
Softw. Eng. Notes 23, 6 (Nov. 1998), 24–34.

[58] Naumovich, Gleb, Avrunin, George S., and Clarke, Lori A. Data flow analysis
for checking properties of concurrent Java programs. In ICSE ’99: Proceedings
of the 21st international conference on Software engineering (New York, NY,
USA, 1999), ACM, pp. 399–410.

[59] Pnueli, Amir. In transition from global to modular temporal reasoning about
programs. In Logic and Models of Concurrent Systems (New York, NY, USA,
1984), K. Apt, Ed., vol. 13, Springer-Verlag, pp. 123–144.

[60] Proebstel, Elliot, Riddle, Sean, Hsu, Francis, Cummins, Justin, Oakley, Freddie,
Stanionis, Tom, and Bishop, Matt. An analysis of the Hart Intercivic DAU
eslate. In EVT ’07: Proceedings of the USENIX/ACCURATE Electronic Voting
Technology Workshop (2007), USENIX Press.

[61] Rivest, R. L., and Schapire, R. E. Inference of finite automata using homing
sequences. In STOC ’89: Proceedings of the twenty-first annual ACM symposium
on Theory of computing (New York, NY, USA, 1989), ACM, pp. 411–420.

[62] Sector, ITU Telecommunication Standardization. ITU-T recommendation Z.120
- message sequence charts (MSC’96), May 1996.

[63] Shokry, Hesham. Towards behavior elaboration and synthesis using modes. In
Proceedings of the eighteenth ACM SIGSOFT international symposium on Foun-
dations of software engineering (New York, NY, USA, 2010), FSE ’10, ACM,
pp. 349–352.

[64] Simidchieva, Borislava I., Marzilli, Matthew S., Clarke, Lori A., and Osterweil,
Leon J. Specifying and verifying requirements for election processes. In dg.o ’08:
Proceedings of the 2008 international conference on Digital government research
(2008), Digital Government Society of North America, pp. 63–72.

170

[65] Singh, Rishabh, Giannakopoulou, Dimitra, and Păsăreanu, Corina. Learning
component interfaces with may and must abstractions. In Proceedings of the 22nd
international conference on Computer Aided Verification (Berlin, Heidelberg,
2010), CAV’10, Springer-Verlag, pp. 527–542.

[66] Systä, Tarja. Static and dynamic reverse engineering techniques for Java, PhD
thesis, Dept. of Computer and Information Sciences, University of Tampere.

[67] Tan, Jianbin, Avrunin, George S., Clarke, Lori A., Zilberstein, Shlomo, and
Leue, Stefan. Heuristic-guided counterexample search in flavers. In Proceedings
of the 12th ACM SIGSOFT Twelfth International Symposium on Foundations
of Software Engineering (New York, NY, USA, 2004), SIGSOFT ’04/FSE-12,
ACM, pp. 201–210.

[68] Uchitel, Sebastian, Brunet, Greg, and Chechik, Marsha. Behaviour model syn-
thesis from properties and scenarios. In Proceedings of the 29th international
conference on Software Engineering (Washington, DC, USA, 2007), ICSE ’07,
IEEE Computer Society, pp. 34–43.

[69] Uchitel, Sebastian, and Kramer, Jeff. A workbench for synthesising behaviour
models from scenarios. In Proceedings of the 23rd International Conference on
Software Engineering (Washington, DC, USA, 2001), ICSE ’01, IEEE Computer
Society, pp. 188–197.

[70] Uchitel, Sebastian, Kramer, Jeff, and Magee, Jeff. Detecting implied scenarios
in message sequence chart specifications. In In ACM Proceedings of the joint 8th
ESEC and 9th FSE (2001), ACM Press, pp. 74–82.

[71] Uchitel, Sebastian, Kramer, Jeff, and Magee, Jeff. Negative scenarios for implied
scenario elicitation. SIGSOFT Softw. Eng. Notes 27, 6 (Nov. 2002), 109–118.

[72] Weiser, Mark. Program slicing. In Proceedings of the 5th International Con-
ference on Software Engineering (Piscataway, NJ, USA, 1981), ICSE ’81, IEEE
Press, pp. 439–449.

[73] Whaley, John, Martin, Michael C., and Lam, Monica S. Automatic extraction of
object-oriented component interfaces. In Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis (New York, NY, USA,
2002), ISSTA ’02, ACM, pp. 218–228.

[74] Whittle, Jon, and Jayaraman, Praveen K. Synthesizing hierarchical state ma-
chines from expressive scenario descriptions. ACM Trans. Softw. Eng. Methodol.
19, 3 (Feb. 2010), 8:1–8:45.

[75] Whittle, Jon, and Schumann, Johann. Generating statechart designs from sce-
narios. In Proceedings of the 22nd international conference on Software engi-
neering (New York, NY, USA, 2000), ICSE ’00, ACM, pp. 314–323.

171

[76] Yasmeen, Ayesha. Formalizing operator task analysis, Doctoral Thesis, Depart-
ment of Computer Science, University of Illinois at Urbana-Campaign, Urbana,
IL, June 2011.

[77] Yasmeen, Ayesha, and Gunter, Elsa L. Automated framework for formal operator
task analysis. In Proceedings of the 2011 International Symposium on Software
Testing and Analysis (New York, NY, USA, 2011), ISSTA ’11, ACM, pp. 78–88.

172

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2017

	Automatic Derivation of Requirements for Components Used in Human-Intensive Systems
	Heather Conboy
	Recommended Citation

	tmp.1494513780.pdf.F0Hl9

