
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

2015

Energy-Efficient Content Delivery Networks
Vimal Mathew
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Part of the Digital Communications and Networking Commons, and the OS and Networks
Commons

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Mathew, Vimal, "Energy-Efficient Content Delivery Networks" (2015). Doctoral Dissertations. 480.
https://scholarworks.umass.edu/dissertations_2/480

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/480?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ENERGY-EFFICIENT CONTENT DELIVERY
NETWORKS

A Dissertation Presented

by

VIMAL MATHEW

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2015

College of Information and Computer Sciences

c© Copyright by Vimal Mathew 2015

All Rights Reserved

ENERGY-EFFICIENT CONTENT DELIVERY
NETWORKS

A Dissertation Presented

by

VIMAL MATHEW

Approved as to style and content by:

Ramesh Sitaraman, Co-chair

Prashant Shenoy, Co-chair

James Kurose, Member

David Irwin, Member

James Allan, Chair
College of Information and Computer Sciences

To my parents.

ACKNOWLEDGMENTS

I would like to thank Ramesh Sitaraman and Prashant Shenoy, my thesis advisors,

without whom I would not have received a doctorate. I am fortunate to have come in

contact with many great teachers both inside and outside the department, making my

time at Amherst an unforgettable experience. The town of Amherst itself has been

a revelation. I have spent many an hour walking along winding trails past gurgling

brooks where I have found solace when it was needed most. The winters though, I

could do without.

The time spent at UMass has been enriched by my fellow students and friends. I

have been fortunate to meet Sameer Singh, Gaurav Chandalia, Aditya Nemmaluri,

Manikandan Somasundaram, Nitai Giri, Chang Wang, Bruno Castro da Silva, Armita

Kaboli, Bo Liu, JP Mahalik, and Navin Sharma among many others. Shouts out to

Sir Iqbal, wherever he may be.

v

ABSTRACT

ENERGY-EFFICIENT CONTENT DELIVERY
NETWORKS

SEPTEMBER 2015

VIMAL MATHEW

B.Tech., COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY INDIA

M.S., INDIAN INSTITUTE OF TECHNOLOGY MADRAS INDIA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ramesh Sitaraman and Professor Prashant Shenoy

Internet-scale distributed systems such as content delivery networks (CDNs) op-

erate hundreds of thousands of servers deployed in thousands of data center locations

around the globe. Since the energy costs of operating such a large IT infrastructure

are a significant fraction of the total operating costs, we argue for redesigning them

to incorporate energy optimization as a first-order principle. We focus on CDNs and

demonstrate techniques to save energy while meeting client-perceived service level

agreements (SLAs) and minimizing impact on hardware reliability.

Servers deployed at individual data centers can be switched off at low load to save

energy. We show that it is possible to save energy while providing client-perceived

availability and limited impact on hardware reliability. We propose an optimal offline

algorithm and an online algorithm to extract energy savings and evaluate them on

real production workload traces. Our results show that it is possible to reduce the

vi

energy consumption of a CDN by 51% while ensuring a high level of availability and

incurring an average of one on-off transition per server per day.

We propose a novel technique called cluster shutdown that switches off an entire

cluster of servers, thus saving on both server and cooling power. We present an

algorithm for cluster shutdown that is based on realistic power models for servers and

cooling equipment and can be implemented as a part of the global load balancer of

a CDN. We argue that cluster shutdown has intrinsic architectural advantages over

server shutdown techniques in the CDN context, and show that it outperforms server

shutdown in a wide range of operating regimes.

To reduce energy costs, we propose a demand-response technique that responds

to pricing signals from a smart grid by deferring elastic load. We propose an optimal

offline algorithm for demand response and evaluate it on production workloads from

a commercial CDN using realistic electricity pricing models. We show that energy

cost savings can be achieved with no increase in the bandwidth cost.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 CDN architecture . 1
1.3 Prior work . 3
1.4 Contributions . 3
1.5 Roadmap . 4

2. BACKGROUND AND RELATED WORK . 6

2.1 Motivation . 6
2.2 Energy efficient data centers . 6
2.3 Large scale distributed systems . 8

3. ENERGY EFFICIENCY THROUGH SERVER SHUTDOWN 9

3.1 Our Contributions . 11
3.2 Roadmap . 13
3.3 Model Formulation and Methodology . 13
3.4 Local Load Balancing . 18

3.4.1 An Optimal Offline Algorithm . 18
3.4.2 Online Algorithms . 22

3.5 Global Load Balancing . 27
3.6 Related Work . 30
3.7 Conclusions . 30

viii

4. ENERGY EFFICIENCY THROUGH CLUSTER
SHUTDOWN . 32

4.1 Contributions . 35
4.2 Background, Models, and Methodology . 37

4.2.1 Content Delivery Networks . 37
4.2.2 Workload Model . 38
4.2.3 Algorithmic Model for Load Balancing . 38
4.2.4 Power consumption of clusters . 39

4.2.4.1 Server power model . 40
4.2.4.2 Cooling power model . 40
4.2.4.3 Total power consumed by a cluster 43

4.3 GLB Algorithms with Cluster Shutdown . 44
4.4 Combining Cluster and Server Shutdown . 47
4.5 Evaluation . 49

4.5.1 Empirical Data from the Akamai Network . 49
4.5.2 Overall energy savings . 50
4.5.3 Impact of server and cooling efficiency . 52
4.5.4 CDN Power Proportionality . 53
4.5.5 Impact of Outside Air Temperature . 53
4.5.6 Tradeoff between Energy and Performance . 55
4.5.7 Tradeoff between Energy and Bandwidth Costs 56
4.5.8 Impact of Limiting the Cluster Transitions . 58
4.5.9 Impact of inaccurate real-time load information 59
4.5.10 Finding a sweet-spot . 59
4.5.11 Cluster vs Server shutdown . 60
4.5.12 Integrating Server shutdown with Cluster shutdown 62

4.6 Related Work . 63
4.7 Conclusions . 64

5. REDUCING ENERGY COSTS USING DEMAND
RESPONSE . 65

5.1 Background . 67
5.2 An Optimal Algorithm for Demand Response . 72

5.2.1 Constructing the service load sequence λ̂ . 72
5.2.2 Constructing the load movement schedule L 74

5.3 Evaluating the Benefits of Demand Response . 76

ix

5.3.1 Empirical Data from the Akamai Network . 76
5.3.2 Time-of-use (TOU) Pricing Model . 77
5.3.3 Demand Pricing . 82
5.3.4 Hybrid Pricing . 83

5.4 Related Work . 86
5.5 Conclusions . 87

6. SUMMARY AND FUTURE WORK . 88

6.1 Future work . 89

BIBLIOGRAPHY . 91

x

LIST OF FIGURES

Figure Page

1.1 System components of a CDN . 2

3.1 Average load per server measured every 5 minutes across 22 Akamai
clusters in the US over 25 days. Note load variations due to day,
night, weekday, weekend, and holidays (such as low load on day
no. 8, which was Christmas). 17

3.2 Optimal Offline Energy Reduction. The median cluster achieved a
58% reduction. 21

3.3 Energy reduction attainable with bounded server transitions. About
98.6% of the optimal reduction can be achieved with just 1
transition per server per day. The dotted-line represents the
optimal reduction with unbounded transitions. 21

3.4 The three key metrics for algorithm Hibernate on typical CDN load
traces. 22

3.5 Variation of the three metrics with the target load threshold Λ 25

3.6 The behavior of Hibernate during a simulated global flash crowd 27

3.7 Energy reduction and transitions show only modest improvements
with global load balancing . 27

3.8 Availability improves drastically with global load balancing 28

4.1 Cooling power and its dependence on outside air temperature and
cooling efficiency. 41

4.2 Average load per server measured every 5 minutes across 22 Akamai
clusters in the US over 25 days. 50

4.3 CDN energy savings obtainable by cluster shutdown. 51

xi

4.4 Energy savings and power proportionality . 52

4.5 Cluster shutdown is more effective in saving energy at lower
temperatures than higher ones. 54

4.6 Relaxing performance results in greater energy savings. 46%, 93%
and 99.9% of the optimal energy savings are obtained at D values
of 300 km, 500 km and 795 km respectively . 55

4.7 Energy savings versus Bandwidth cost . 57

4.8 Impact of decision period and traffic prediction . 58

4.9 We can achieve 22% of the optimal savings even with switching each
cluster no more than once a day, allowing no increase in
bandwidth costs, and limiting the average distance from the user
to the cluster to be no more than 800 km. 60

4.10 GLB (cluster shutdown) vs LLB (server shutdown) 61

4.11 Integrating server shutdown with cluster shutdown 63

5.1 Average load per server measured every 5 minutes across 22 Akamai
clusters in the US over 25 days. 77

5.2 Time-of-use pricing . 78

5.3 Energy cost optimization without increasing bandwidth costs using
the max-load constraints. 80

5.4 Demand Pricing . 84

5.5 Hybrid Pricing . 85

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Large Internet-scale distributed systems deploy hundreds of thousands of servers

in thousands of data centers around the world. Such systems currently provide the

core distributed infrastructure for many popular Internet applications that drive busi-

ness, e-commerce, entertainment, news, and social networking. The energy cost of

operating an Internet-scale system is already a significant fraction of the total cost

of ownership (TCO) [9]. The environmental implications are equally important. A

large distributed platform with 100,000 servers will expend roughly 190,000 MWH

per year, enough energy to sustain more than 10,000 households. In 2005, the total

data center power consumption was already 1% of the total US power consumption

while causing as much emissions as a mid-sized nation such as Argentina. Further,

with the deployment of new services and the rapid growth of the Internet, the en-

ergy consumption of data centers is expected to grow at a rapid pace of more than

15% per year in the foreseeable future [20]. These factors necessitate rearchitecting

Internet-scale systems to include energy optimization as a first-order principle.

1.2 CDN architecture

An important Internet-scale distributed system to have emerged in the past decade

is the content delivery network (CDN, for short) that delivers web content, web and

IP-based applications, downloads, and streaming media to end-users (i.e., clients)

around the world. A large CDN, such as that of a commercial provider like Akamai,

1

GLB

DNS

Origin

Transport

system

Clients
CDN

LLB

LLB

Clusters

Figure 1.1: System components of a CDN

consists of hundreds of thousands of servers located in over a thousand data centers

around the world and account for a significant fraction of the world’s enterprise-quality

web and streaming media traffic today [35]. The servers of a CDN are deployed in

clusters where each cluster consists of servers in a particular data center in a specific

geographic location. The clusters are typically widely deployed on the “edges” of the

Internet in most major geographies and ISPs around the world so as to be proximal

to clients. Clusters can vary in size from tens of servers in a small Tier-3 ISP to

thousands of servers in a large Tier-1 ISP.

The primary goal of a CDN is to serve content such as web pages, videos, and

applications with high availability and performance to end users. The key component

that ensures availability and performance is the CDN’s load balancing system that

assigns each incoming request to a server that can serve that request. To this end, a

CDN’s load balancing system routes each user’s request to a server that is live and not

overloaded. Further, to enhance performance, a CDN ensures that each user request

is routed to a server that is proximal to that user. The proximity (in a network

sense) ensures that the network path between the user’s device and the CDN’s server

has low latency and loss. The process of routing user requests to servers is a two

stage process. A global load balancer (called GLB) assigns the user to a cluster of

servers based on the availability of server resources in the cluster, performance, and

2

bandwidth costs. A local load balancer (called LLB) assigns the user to a specific

server that is capable of serving the requested content within the chosen cluster. The

choice of server is dictated by server liveness, content footprint, and current server

loads with respect to their capacities. A comprehensive discussion of the rationale

and system architecture of CDNs is available in [35].

1.3 Prior work

Energy management in data centers has been an active area of research in recent

years [13]. Techniques that have been developed in this area include, use of DVFS to

reduce energy, use of very low-power servers [7], the use of renewable energy [46, 18],

routing requests to locations with the cheapest energy [42] and dynamically activating

and deactivating nodes as demand rises and falls [12, 50, 21]. A key difference between

much of this prior work with ours is the focus on CDNs, with a particular emphasis

on the interplay between energy management and the local/global load balancing

algorithms in the CDN. We also examine the impact of our energy saving techniques

on client SLAs, hardware reliability and operating costs.

1.4 Contributions

CDNs typically run at low utilization due to the high business cost of failing to

meet customer SLAs. Our focus in this thesis is reducing energy costs of CDNs with

minimal impact on SLAs and operating costs.

• We propose an optimal offline algorithm and an online algorithm for saving

energy that can be incorporated into the local load balancer within a cluster of

servers. Our results show that it is possible to reduce the energy consumption

of a CDN by 51% while ensuring a high level of availability and incurring an

average of one on-off transition per server per day. We also show the online

3

algorithm can handle load spikes caused by flash crowds, but at a cost of lower

energy savings.

• We propose and explore a novel technique called cluster shutdown that turns off

an entire cluster of servers of a CDN. We present an algorithm for cluster shut-

down that is based on realistic power models for servers and cooling equipment

and can be implemented as a part of the global load balancer of a CDN. We

argue that cluster shutdown has intrinsic architectural advantages over server

shutdown techniques in the CDN context, and show that it outperforms server

shutdown over a range of operating regimes.

• We propose a demand-response technique where the system temporarily reduces

its energy usage in response to pricing signals from a smart grid. Our proposed

demand-response technique involves deferring the load from elastic requests to

later time periods in order to reduce the server demand and the current energy

usage, and hence, energy costs. We propose an optimal offline algorithm for

demand response and evaluate it on production workloads from a commercial

content delivery network using realistic electricity pricing models. For a hybrid

pricing model that combines time-of-use and demand charges, we show that

32% energy cost savings can be achieved when only 40% of the load is elastic

and the service delay is at most 6 hours. Further, we show that almost all the

savings can be achieved with no increase in bandwidth cost.

1.5 Roadmap

The remainder of this thesis is as follows. Chapter 2 provides some background and

a description of related work. Chapter 3 describes our local load balancing algorithm

with server shutdown. In Chapter 4 we present our energy-aware global load balancer

4

for cluster shutdown. Chapter 5 presents our demand-response technique to reduce

energy costs. Chapter 6 concludes with future work.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides a brief overview of energy efficient techniques for data cen-

ters and large distributed systems. While a general overview is provided here, the

chapters that follow include a more detailed discussion on related work.

2.1 Motivation

The ideal for any energy efficient system is to attain energy-proportionality, where

the energy consumption scales linearly with the workload [9]. To achieve this ideal

requires the individual components of the system to be energy-proportional. Al-

ternately, the system could be redesigned to consolidate workload and dynamically

switch off idling resources to use less energy [10]. The challenge is to gain energy

efficiency without a loss in performance.

2.2 Energy efficient data centers

The trend towards energy efficiency of server hardware has led to lower energy

usage in data centers. Processors running in low-power modes can consume less than

one-third of their peak power while still executing instructions [9]. The availability of

such low-power active modes allow Dynamic Voltage and Frequency Scaling (DVFS)

techniques to save considerable energy with limited performance impact [37]. Dy-

namic Component Deactivation (DCD) techniques, where idling components such as

processor cores or storage subsystems are adaptively switched off, have also increased

the dynamic power range of server hardware leading to greater efficiency [37, 10, 16].

6

At a data center level, energy-aware scheduling algorithms can consolidate work-

load among fewer servers to reduce energy consumption while minimizing any loss

in performance [40, 12, 47]. In cases when individual applications deployed on the

data center are not energy-aware, virtualization techniques can be leveraged to pro-

vide energy management. Computing resources can be split into a number of Virtual

Machines (VMs), each of which provides a user-level view of a dedicated machine.

VMs can then be migrated between physical hosts or hibernated when not in use.

These capabilities facilitate consolidation and load-balancing even when the applica-

tions and corresponding workload within the VMs are not energy aware. A number

of frameworks that provide energy-efficient resource management in virtualized data

centers have been studied in the past [34, 43, 22, 49, 52].

Cooling can also contribute significantly to the energy costs in a data center. The

ratio of total energy to IT energy is a standard metric called PUE (Power Usage

Effectiveness) that has a typical value of about 2 implying cooling energy is roughly

equal to IT energy in typical data center deployments. But in more recent energy-

efficient designs, PUE is smaller but cooling energy is still a significant fraction of

the IT energy. Further, cooling energy consumption is not power-proportional since

cooling still takes a significant amount of energy even when the servers have low

utilization and are not producing much heat. Recent trends in data centers such

as self-contained, modular[45], or containerized[41] deployments have allowed fine-

grained control of cooling resources and greater energy efficiency. Cooling-aware

workload management techniques have been studied in the past [24]. Thermal-aware

workload placement techniques that place load on cool portions of the data center

have been studied in [33, 51].

Data centers handling elastic loads have an opportunity to reduce energy costs

when electricity is priced differently at different times of the day.Electricity grids in-

centivize their customers, through differential pricing, to reduce usage during peak

7

periods. Data centers can adapt to these pricing patterns through a technique called

demand-response where they reduce energy consumption during peak periods by shift-

ing load to times when electricity is priced cheaper [26, 27, 32, 53, 56] .

2.3 Large scale distributed systems

Large scale distributed systems deployed over geographically distributed data cen-

ters across the world have complex dependencies and requirements that need to be

met. Any change to the global load balancer could potentially map a user to a far-

ther off server, potentially increasing latency and impacting the user-level experience.

Consolidating load in specific data centers could increase bandwidth costs, reduce

reliability and impact the operating cost of the distributed system. Therefore re-

designing such systems for energy efficiency can be a challenging task. For instance,

CDNs impose their own set of SLA requirements and require an appropriate approach

[30, 31]. While increasing the energy efficiency of individual data centers is possible,

another approach focuses on reducing energy costs by leveraging differences in pricing

across geographically separated data centers. Recent research has shown the potential

for significant savings [42, 44, 54] while meeting performance requirements.

8

CHAPTER 3

ENERGY EFFICIENCY THROUGH SERVER
SHUTDOWN

Recent work in server energy management has suggested the technique of utilizing

deep-sleep power-saving modes or even completely turning off servers during periods

of low load, thereby saving the energy expended by idle servers [14, 23]. We explore

the potential applicability of this technique in the CDN context where it is important

to understand the interplay of the three objectives below.

• Maximize energy reduction. Idle servers often consume more than 50% of the

power of a fully-loaded one [9]. This provides the opportunity to save energy by

“rebalancing” (i.e., redirecting) the request traffic onto fewer servers and turning

the remaining servers off.

• Satisfy customer SLAs. Content providers who are the CDN’s customers would

like their content and applications to be served with a high level of availability

and performance to their clients. Availability can be measured as the fraction of

client requests that are successfully served. A typical SLA would require at least

“four nines” of end-to-end availability (i.e., 99.99%). To achieve this end-to-end

SLA goal, we estimate that any acceptable technique for powering off servers should

cause no more than a loss of 0.1 basis points of availability in the data center,

leading us to target 99.999% server availability with our techniques. In addition

to the availability SLA, the content providers also require good performance. For

instance, clients downloading http content should experience small download times

and clients watching media should receive high quality streams with high bandwidth

9

and few freezes. Since turning off servers to save energy reduces the live server

capacity used for serving the incoming request load, it is important that any energy

saving technique minimizes the impact of the decreased capacity on availability and

performance.

• Minimize server transitions. Studies have shown that frequently turning an elec-

tronic device on and off can impact its overall lifetime and reliability. Consequently,

CDN operators are often concerned about the wear and tear caused by excessive

on-off server transitions that could potentially decrease the lifetime of the servers.

Additionally, when a server is turned off, its state has to be migrated or replicated

to a different live server. Mechanisms for replicating content footprint and migrat-

ing long-standing TCP connections exist in the CDNs today [35] as well as in other

types of Internet-scale services [6, 14]. However, a small degree of client-visible per-

formance degradation due to server transitions is inevitable. Consequently an energy

saving technique should limit on-off server transitions in order to reduce wear and

tear and the impact on client-visible performance.

The three objectives above are often in conflict. For instance, turning off too many

servers to maximize energy reduction can decrease the available live capacity of the

CDN. Since it takes time to turn on a server and bring it back into service, an unex-

pected spike in the load can lead to dropped requests and SLA violations. Likewise,

turning servers on and off frequently in response to load variations could enhance

energy reduction but incur too many server transitions. Our goal is to design energy-

aware techniques for CDNs that incorporate all three objectives and to understand

how much energy reduction is realistically achievable in a CDN. Since CDNs are yet

to be aggressively optimized for energy usage today, our work hopes to guide the

future architectural evolution that must inevitably incorporate energy as a primary

design objective.

10

While we focus on CDNs, our work also applies to other CDN-like distributed

systems that replicate services within and across server clusters and employ some form

of load balancing to dynamically route requests to servers. On a different dimension, it

is also important to note that our focus is energy usage reduction rather than energy

cost reduction. Note that energy cost reduction can be achieved by dynamically

shifting the server load to locations with lower energy prices without necessarily

decreasing the total energy usage [42].

3.1 Our Contributions

Our work is the first to propose energy-aware mechanisms for load balancing in

CDNs with a quantification of the key practical tradeoffs between energy reduction,

hardware wear-and-tear due to server transitions, and service availability that im-

pacts customer SLAs. The load balancing system of a CDN operates at two levels

[35]. The global load balancing component determines a good cluster of the CDN for

each request, while the local load balancing component chooses the right server for

the request within the assigned cluster. We design mechanisms for energy savings,

both from the local and global load-balancing standpoint. Further, we evaluate our

mechanisms using real production workload traces collected over 25 days from 22

geographically distributed clusters across the US from a large commercial CDN. Our

specific key contributions are as follows.

• In the offline context when the complete load sequence for a cluster is known ahead

of time, we derive optimal algorithms that minimize energy usage by varying the

number of live servers required to serve the incoming load.

• On production CDN workloads, our offline algorithm achieves a significant system-

wide energy reduction of 59.5%. Further, even if the average transitions is restricted

to be below 1 transition per server per day, an energy reduction of 58.66% can be

11

achieved, i.e., 98.6% of the maximum energy reduction can be achieved with minimal

server wear-and-tear.

• We propose a load balancing algorithm called Hibernate that works in an online

fashion that makes decisions based on past and current load but not future load,

much like a real-life load balancing system. Hibernate achieves an energy reduction

of 56%, i.e., within 94% of the offline optimal.

• By holding an extra 10% of the servers as live spares, Hibernate achieves the

sweet spot with respect to all three metrics. Specifically, the algorithm achieves

a system-wide energy reduction of 51% and a service availability of at least five

nine’s (99.999%), while incurring an average of at most 1 transition per server per

day. The modest decrease in energy reduction due to the extra pool of live servers

is well worth the enhanced service availability for the CDN.

• In a global flash crowd scenario when the load spikes suddenly across all clusters

of the CDN, Hibernate is still able to provide five nine’s of service availability and

maintain customer SLAs as long as the rate at which load increases is commensurate

with the percentage of server capacity that the algorithm keeps as live spares.

• Energy-aware global load balancing can redistribute traffic across clusters but had

only a limited impact on energy reduction. Since load can only be redistributed

between proximal clusters for reasons of client performance, these clusters had load

patterns that are similar enough to not entail a large energy benefit from load redis-

tribution. However, a 10% to 25% reduction in server transitions can be achieved

by redistributing load across proximal clusters. But, perhaps the key benefit of

global load balancing is significantly increased service availability. In our simula-

tions, global load balancing enhanced service availability to almost 100%. In situa-

tions where an unpredictable increase in load would have exceeded the live capacity

12

of a cluster causing service disruption, our global load balancing spread the load

increase to other clusters with available live capacity.

In summary, our results show that significant energy reduction is possible in CDNs

if they are rearchitected with energy awareness as a first-order principle. Further,

our work also allays the two primary fears in the mind of CDN operators regarding

turning off servers for energy savings: the ability to maintain service availability,

especially in the presence of a flash crowd, and the impact of server transitions on the

hardware lifetimes and ultimately the capital expenditures associated with operating

the CDN.

3.2 Roadmap

After formulating our models and methodology (Section 5.1), we study local load

balancing (Section 3.4) in an offline setting with the assumption that the entire traf-

fic load pattern is known in advance (Section 3.4.1), and then extend it to the more

realistic online situation where future traffic is unknown (Section 3.4.2). Then, we

explore the gains to be had by moving traffic between clusters via global load balanc-

ing (Section 3.5). Finally, we discuss related work (Section 5.4) and offer conclusions

(Section 5.5).

3.3 Model Formulation and Methodology

CDN Model. Our work assumes a global content delivery network (CDN) that

comprises a very large number of servers that are grouped into thousands of clusters.

Each cluster is deployed in a single data center and its size can vary from tens to

many thousands of servers. We assume that incoming requests are forwarded to

a particular server in a particular cluster by the CDN’s load balancing algorithm.

Load balancing in a CDN is performed at two levels: global load balancing, where a

user request is sent to an “optimum” cluster, and local load balancing, where a user

13

request is assigned a specific server within the chosen cluster. Load balancing can be

implemented using many mechanisms such as IP Anycast, load balancing switches, or

most commonly, the DNS lookup mechanism [35]. We do not assume any particular

mechanism, but we do assume that those mechanisms allow load to be arbitrarily

re-divided and re-distributed among servers, both within a cluster (local) and across

clusters (global). This is a good assumption for typical web workloads that form a

significant portion of a CDN’s traffic.

Energy Model. Since our goal is to minimize energy usage, we model how servers

consume energy as a function of load. Based on our own testing of typical off-the-shelf

server configurations used by CDNs, we use the standard linear model [9] where the

power (in Watts) consumed by a server serving load λ is

power(λ)
∆
= Pidle + (Ppeak − Pidle)λ, (3.1)

where the load 0 ≤ λ ≤ 1 is the ratio of the actual load to the peak load, Pidle is

the power consumed by an idle server, and Ppeak is the power consumed by the server

under peak load. We use typical values of 92 Watts and 63 Watts for Ppeak and Pidle

respectively. Though we use the linear energy model above in all our simulations, our

algorithmic results hold for any power function that is convex.

In addition to the energy consumed by live servers that are serving traffic, we

also capture the energy consumed by servers that are in transition, i.e., either being

turned off or tuned on. Servers in transition cannot serve load but consume energy;

this energy consumption is due to a number of steps that the CDN must perform

during shutdown or startup. When a server is turned off, the load balancing system

first stops sending any new traffic to the server. Further, the CDN must wait until

existing traffic either dies down or is migrated off the server. Additionally, the control

responsibilities of the server would need to be migrated out by performing leader

election and other relevant processes. Once the server has been completely isolated

14

from the rest of the CDN, it can be powered down. When a server is turned on, these

same steps are executed in the reverse. In both cases, a server transition takes several

minutes and can be done automatically by the CDN software. To capture the energy

spent during a transition, we model a fixed amount of energy usage of α Joules for

each server transition, where α typically corresponds to 38 kilo Joules.

Workload Model. The workload entering the load balancing system is modeled

as a discrete sequence λt, 1 ≤ t ≤ n, where λt is the average load in the tth time

slot. We always express load in the normalized unit of actual load divided by peak

server capacity.1 Further, we assume that each time slot is δ seconds long and is

large enough for the decisions made by the load balancing algorithm to take effect.

Specifically, in our experiments, we choose a typical δ value of 300 seconds.

Algorithmic Model for Load Balancing. While a real-life load balancing system

is complex [35], we model only those aspects of such a system that are critical to

energy usage. For simplicity, our load balancing algorithms redistribute the incoming

load rather than explicitly route incoming requests from clients to servers. The major

determinant of energy usage is the number of servers that need to remain live (i.e.,

turned on) at each time slot to effectively serve the incoming load. The exact manner

in which load is distributed to those live servers is less important from an energy

standpoint. In fact, in the linear energy model described in Equation 3.1, the precise

manner in which load is distributed to the live servers makes no difference to energy

consumption.2 In reality, the precise manner in which the load is distributed to

the live servers does matter greatly from the perspective of managing footprint and

other server state. However, we view this a complementary problem to our own and

methods exist in the research literature [6, 14] to tackle some of these issues.

1For simplicity, we assume that the servers in the CDN are homogeneous with identical capacities,
though our algorithms and results can be easily extended to the heterogeneous case.

2In the more general model where the power function is convex, distributing the load evenly
among the live servers minimizes energy consumption.

15

The local load balancing algorithm of a CDN balances load between live servers

of a given cluster. In each time interval t, the algorithm distributes the load λt that

is incoming to that cluster. Let mt denote the number of live servers in the cluster.

Servers are typically not loaded to capacity. But rather a target load threshold Λ,

0 < Λ ≤ 1, is set such that the load balancing algorithm attempts to keep the load on

each server of the CDN to no more than the fraction Λ of its capacity. Mathematically,

if li,t is the load assigned to live server i at time t, then
∑i=mt

i=1 li,t = λt and li,t ≤ Λ,

for 1 ≤ i ≤ mt. In addition to serving the current load, the load balancing algorithm

also decides how many additional servers need to be turned on or off. The changes

in the live server count made in time slot t is reflected in mt+1 in the next time slot.

The global load balancing algorithm works in an analogous fashion and distributes

the global incoming load to the various server clusters. Specifically, the global incom-

ing load is partitioned between the server clusters such that no cluster receives more

than a fraction Λ of its capacity. Further, clients are mapped to proximal clusters to

ensure good performance.

Online versus Offline. The load balancing algorithms work in an online fashion

where decisions are made at time t without any knowledge of the future load λt′ ,

t′ > t. However, our work also considers the offline scenario where the load balancing

algorithm knows the entire load sequence λt, 1 ≤ t ≤ n ahead of time and can use

that knowledge to make decisions. The offline algorithms provide the theoretically

best possible scenario by making future traffic completely predictable. Thus, our

provably-optimal offline algorithms provide a key baseline to which realistic online

algorithms can be compared.

Metric Definitions. We are interested in the interplay of three metrics: energy

reduction, service availability as it relates to customer SLA’s, and server transitions.

The energy reduction achieved by an algorithm that can turn servers on or off equals

the percentage energy saved in comparison to a baseline where all servers remain

16

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Time (days)

L
o
a
d

Figure 3.1: Average load per server measured every 5 minutes across 22 Akamai
clusters in the US over 25 days. Note load variations due to day, night, weekday,
weekend, and holidays (such as low load on day no. 8, which was Christmas).

turned on for the entire period. Since most CDNs today are not aggressively optimized

for energy, the baseline is representative of the actual energy consumption of such

systems. A server cluster that receives more load than the total capacity of its live

servers cannot serve that excess load which must be dropped. The client requests that

correspond to the dropped load experience a denial of service. The service availability

over a time period is computed as 100∗(total served load)/(total input load). Finally,

the server transitions are expressed either as total amount over the time period, or

as an average amount expressed as the number of transitions per server per day.

Empirical Data from the Akamai Network. To validate our algorithms and to

quantify their benefits in a realistic manner, we used extensive load traces collected

over 25 days from a large set of Akamai clusters (data centers) in the US. The 22

clusters captured in our traces are distributed widely within the US and had 15439

servers in total, i.e., a representative sampling of Akamai’s US deployments. Our

load traces account for a peak traffic of 800K requests/second and an aggregate of

950 million requests delivered to clients.

The traces consist of a snapshot of total load served by each cluster collected

every 5-minute interval from Dec 19th 2008 to January 12th 2009, a time period that

includes the busy holiday shopping season for e-commerce traffic (Figure 3.1).

17

3.4 Local Load Balancing

We explore energy-aware algorithms for local load balancing in a CDN. First, we

derive optimal offline algorithms that provably provide the maximum energy reduc-

tion that is theoretically possible (Section 3.4.1). Then, we derive practical online

algorithms and evaluate them on realistic load traces from a CDN (Section 3.4.2),

paying particular attention to how well they do in comparison to the theoretical

baselines provided by the offline algorithms.

3.4.1 An Optimal Offline Algorithm

Given the entire input load sequence, λt, 1 ≤ t ≤ n, for a cluster of M servers

and a load threshold Λ, an offline algorithm produces a sequence mt, 1 ≤ t ≤ n,

where mt is the number of servers that need to be live at time slot t. Note that given

the output schedule, it is straightforward to create an on-off schedule for the servers

in the cluster to achieve the number of live servers required at each time step. The

global load balancing algorithm ensures that the input load sequence can be feasibly

served by the cluster if all M servers are live, i.e., λt ≤ ΛM for all 1 ≤ t ≤ n. In

turn, an energy-aware local load balancing algorithm orchestrates the number of live

servers mt such that load λt can be served by mt servers without exceeding the target

load threshold Λ, i.e., λt ≤ Λmt, for all 1 ≤ t ≤ n. Assuming that load λt is evenly

distributed among the mt live servers, the energy expended in the cluster for serving

the input load sequence equals

δ

t=n∑
t=1

mt · power(λt/mt) + α

t=n∑
t=1

|mt −mt−1|,

where the first term is the energy consumption of the live servers and the second is

the total energy for server transitions.

We develop an optimal offline local load balancing algorithm OPT using dynamic

programming. Algorithm OPT produces a schedule mt, 1 ≤ t ≤ n, that can serve

18

the input load with the smallest energy usage. We construct a two-dimensional ta-

ble E(t,m) that denotes the minimum energy required to serve the load sequence

λ1, λ2, · · · , λt while ending with m live servers at time t. We assume that the algo-

rithm begins at time zero with all M servers in live state. That is, E(0,m) = 0, if

m = M , and E(0,m) = +∞, if m 6= M . We inductively compute the table entries as

follows:

E(t,m) = min
0≤m′≤M

{E(t− 1,m′) + δm · power(λt/m)

+ α · |m−m′|}, if λt ≤ Λm (3.2)

= +∞, otherwise

Specifically, if it is feasible to serve the current load λt with m servers, we extend the

optimal solution for the first t− 1 steps to the tth step using Equation 3.2. The first

term in Equation 3.2 is the cost of a previously computed optimal solution for the

first t− 1 steps, the second term denotes the energy consumed by the live servers in

time slot t, and the third term denotes the energy consumed in transitioning servers

at time slot t. If it is infeasible to serve the current load with m servers, we set

the optimal cost E(t,m) to infinity. Once the table is filled, the optimal solution

corresponds to entry E(n,m) such that E(n,m) = min0≤s≤M E(n, s). The theorem

below follows.

Theorem 1. Algorithm OPT produces an optimal load balancing solution with the

smallest energy consumption in time O(nM2) and space O(nM), where n is number

of time slots and M is the number of servers in the cluster.

Since we are also interested in knowing how much energy reduction is possible

if we are only allowed a small bounded number of server transitions, we develop

algorithm OPT(k) that minimizes energy while maintaining the total number of server

transitions to be at most k. To this end, we use a three-dimensional table E(t,m, k),

19

0 ≤ t ≤ n, 0 ≤ m ≤M , and 0 ≤ k ≤ K. (For simplicity, we assume that all entries of

E(t,m, k) with arguments outside the allowable range equal +∞.) E(t,m, k) is the

optimum energy required to serve the input load sequence λ1, λ2, · · · , λt while ending

with m live servers at time t and incurring no more than k transitions in total. Since

we start with all servers live at time zero, E(0,m, k) = 0, for all 0 ≤ k ≤ K, provided

m = M . And, E(0,m, k) = +∞, for all 0 ≤ k ≤ K, if m 6= M . The table is filled

inductively using the following formula:

E(t,m, k) = min
m−k≤m′≤m+k

{E(t− 1,m′, k − |m−m′|)

+ δm · power(λt/m)

+ α · |m−m′|}, if λt ≤ Λm (3.3)

= +∞, otherwise

For each 0 ≤ k ≤ K, the optimal energy attainable with at most k transitions is

simply E(n,m, k) such that E(n,m, k) = min0≤s≤M E(n, s, k). The theorem follows.

Theorem 2. Algorithm OPT(k) produces the optimal solution with the least energy

and no more than k total server transitions. OPT (k) can be computed for all 0 ≤

k ≤ K in time O(nM2K) and space O(nMK).

Empirical Results. We ran algorithm OPT with a typical value of the load thresh-

old (Λ = 75%) on our CDN load traces from 22 geographically distributed clusters

of a large CDN over a span of 25 days. Figure 3.2 shows the y% of clusters that

achieved at least x% energy reduction, for 0 ≤ x ≤ 100. For each of the 22 clusters,

OPT achieved energy reduction in the range 52% to 87%. Further, viewing all the

clusters of the CDN as a single system, the system-wide energy reduction of OPT

across all the clusters was 59.5%. Thus, significant gains are possible in the offline

scenario by optimally orchestrating the number of live servers in each cluster.

20

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

% energy reduction

%
 o

f
s
e
rv

e
r

c
lu

s
te

rs

Figure 3.2: Optimal Offline Energy Reduction. The median cluster achieved a 58%
reduction.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

Average transitions (per server per day)

%
 e

n
e

rg
y
 r

e
d

u
c
ti
o

n

System−wide

First quartile

Third quartile

Figure 3.3: Energy reduction attainable with bounded server transitions. About
98.6% of the optimal reduction can be achieved with just 1 transition per server per
day. The dotted-line represents the optimal reduction with unbounded transitions.

Next, we study how much energy reduction is possible if the server transitions are

bounded and are required to be infrequent. Figure 3.3 shows the optimal system-wide

energy reduction for each value of the average transitions that is allowable. These

numbers were obtained by running algorithm OPT(k) for all clusters for a range

of values of k. As more transitions are allowed, more energy reduction is possible

since there is a greater opportunity to turn servers on and off in response to load

variations. As the transition bound become large the energy reduction asymptotically

reaches the maximum reduction possible for the unbounded case of 59.5%. The key

observation however is that even with a small number of transitions, say 1 transition

per server per day, one can achieve at least 58.66% system-wide energy reduction in

the offline setting. In other words, with an average of just 1 transition per server per

day one can obtain 98.6% of the energy reduction benefit possible with unbounded

21

5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Time threshold τ (in Hours)

%
 e

n
e
rg

y
 r

e
d

u
c
ti
o

n

κ = 0

κ = 0.10

(a) Energy reduction de-
creases as τ increases as
spare servers are kept live
longer.

5 10 15 20
0

0.5

1

1.5

2

2.5

Time threshold τ (in Hours)

A
v
e
ra

g
e
 t
ra

n
s
it
io

n
s

κ = 0

κ = 0.10

(b) Average Transi-
tions (per server per
day) is acceptably
small at about τ = 2.

5 10 15 20

99.99%

99.999%

99.9999%

Time threshold τ (in Hours)

A
v
a
ila

b
ili

ty
 %

κ = 0

κ = 0.10

(c) Availability is sig-
nificantly enhanced by
holding a 10% pool of
live spare servers.

Figure 3.4: The three key metrics for algorithm Hibernate on typical CDN load traces.

transitions. Besides system-wide energy reduction, Figure 3.3 also shows the variation

in the energy reduction across clusters by plotting the first and third quartile values

for each transition bound.

Note that algorithms OPT and OPT(k) never drop any load and achieve an SLA

of 100% availability, since they are offline algorithms with complete knowledge of the

entire load sequence. After computing the entire sequence of live servers, mt, 1 ≤

t ≤ n, an offline algorithm ensures that mt live servers are available at time t by

transitioning |mt −mt−1| servers at time t− 1.

3.4.2 Online Algorithms

In contrast to offline algorithms, an online algorithm knows only the past and

current load but has no knowledge of the future load. This accurately models any

real-life load balancing system. At time t, an online algorithm does not know load

λt+1 and must estimate the number of servers to transition at the current time step t

so that they are available to serve the load at t+ 1. Achieving a balance between the

three metrics of energy reduction, transitions, and service availability that impacts

customer SLAs is challenging. If the algorithm keeps a larger number of live servers

to serve future load than is necessary, then the energy consumption is increased. In

22

contrast, if the algorithm keeps too few live servers, then some load might have to be

dropped leading to decreased availability and potential customer SLA violations. Our

key contribution in this section is algorithm Hibernate that achieves the “sweet spot”

with respect to all three metrics, both for typical CDN traffic and flash crowds. While

Hibernate only uses the past and current load to make decisions, it is also possible

to use workload forecasting techniques to predict the future workload and use these

predictions to enhance the efficacy of Hibernate. The design of such a predictive

Hibernate is future work.

Algorithm Hibernate takes two parameters as input, a spare capacity threshold

0 ≤ κ ≤ 1 and a time threshold τ ≥ 0. A key aspect of the algorithm is that it

manages a pool of live servers that are considered “spare” in the sense that they are

in excess of what is necessary to serve the current traffic. Intuitively, spare servers

are kept as a buffer to help absorb unpredictable traffic surges in the future. For

simplicity, assume that the servers in the cluster are numbered from 1 to M . Further,

assume that the first mt servers are live at time t, while the rest of the servers are

turned off. At each time t, the algorithm does the following.

• Serve the current load λt using the current set of mt live servers. If λt > mt, the

live capacity of the cluster is insufficient to serve the input load. In this case, a load

amount of λt −mt is dropped and the rest of the load is served.

• The number of live servers deemed necessary to serve load λt is dλt/Λe , where Λ is

the target load threshold of the CDN. If mt > dλt/Λe, then the live servers numbered

dλt/Λe+ 1 to mt are marked as “spare”.

• The spares are managed according to two rules:

• Spare Capacity Rule: Target at least dκMe servers to be kept as spare, where

0 ≤ κ ≤ 1. Specifically, if the number of spares mt−dλt/Λe is smaller than dκMe,

then turn on min {dκMe+ dλt/Λe ,M} −mt servers. (The servers turned on in

23

the current time step t will be live and available to serve load only in the next

time step t+ 1.)

• Hibernate Rule: If a server was considered spare in each of the last τ time slots

it is a candidate for being turned off, similar to how a laptop hibernates after a

specified period of idleness. However, the hibernate rule is applied only to servers

in excess of the spare capacity threshold. Specifically, if the number of spares

mt−dλt/Λe is more than dκMe, then examine servers numbered dλt/Λe+dκMe+1

to mt and turn off any server that was marked as spare in all of the last τ time

steps.

Empirical Results. We ran algorithm Hibernate on typical CDN load traces col-

lected over 25 days and across 22 clusters for multiple values of τ and two values of

κ with the results summarized in Figure 3.4. Note that as the time threshold τ in-

creases, energy reduction and transitions generally decrease and availability generally

increases. The reason is that as τ increases, live servers that are spare are turned off

after a longer time period, resulting in fewer transitions. However, since more servers

are left in an live state, the energy reduction is smaller, but availability is larger as

the additional live servers help absorb more of the unexpected load spikes. The trade-

off between requiring no spare capacity (κ = 0) and requiring a 10% spare capacity

(κ = 0.1) is also particularly interesting. If we fix a typical value of τ = 2 hours,

Hibernate provides an acceptable number of transitions (< 1 transition per server

per day) with or without spare capacity. Requiring 10% spare capacity decreases the

energy reduction by roughly 10%, since a pool of spare servers must be kept live at all

times (Figure 3.4a). However, the modest decrease in energy reduction may well be

worth it for most CDNs, since availability is much higher (five nine’s or more) with

10% spare capacity than with no spare capacity requirement (Figure 3.4c).

Handling typical workload fluctuations: A key decision for a CDN operator is

the target utilization Λ that the system should be run at in order to handle typical

24

0.7 0.75 0.8 0.85 0.9 0.95
0

10

20

30

40

50

60

70

80

90

100

%
 e

n
e

rg
y
 r

e
d

u
c
ti
o

n

Target load threshold (Λ)

κ = 0

κ = 0.10

(a) % Energy reduction
increases if the servers
run hotter. The dotted
line represents the of-
fline optimal energy re-
duction.

0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 t
ra

n
s
it
io

n
s

Target load threshold (Λ)

κ = 0

κ = 0.10

(b) Average transitions
(per server per day) de-
creases with Λ as there
is more effective capac-
ity in each server.

0.7 0.75 0.8 0.85 0.9 0.95

99.9%

99.99%

99.999%

99.9999%

Target load threshold (Λ)

A
v
a
ila

b
ili

ty
 %

κ = 0

κ = 0.10

(c) Availability de-
creases as the system
is run hotter but is en-
hanced by the addition
of a 10% pool of live
spare servers.

Figure 3.5: Variation of the three metrics with the target load threshold Λ

workload variations. The value of Λ is typically kept “sufficiently” smaller than 1 to

provide some capacity headroom within each server to account for the inability to

accurately estimate small load variations. In Figure 3.5, we quantify the tradeoffs

associated with Λ as it pertains to our three metrics. Running the CDN “hotter” by

increasing Λ would increase the system capacity and the server utilization. Note that

as Λ increases, the effective capacity of each live server increases, resulting in fewer

live servers being needed to serve the load. This results in increased energy reduc-

tion (Figure 3.5a) as well as a smaller number of transitions (Figure 3.5b). However,

increasing Λ also decreases availability (Figure 3.5c) and potentially increases cus-

tomer SLA violations. Note that availability decreases when there is less unutilized

live server capacity in the cluster that can serve as a headroom for absorbing un-

predictable load spikes. When Λ is increased, the unutilized live server capacity in

the cluster decreases both due to the fact that fewer servers are kept live and due

to the fact that each live server is loaded closer to its capacity, resulting in a loss

of headroom and more load being dropped. Note also that requiring 10% spares

(κ = 0.1) allows the CDN operator to run the system hotter with a larger Λ than if

there were no spares (κ = 0) for the same availability SLA requirements. Thus, there

25

is a relationship between the target load/utilization Λ and the spares κ, since both

paramaters permit some capacity “headroom” to handle workload variations. The

hotter the system (higher Λs), the more κ needs to be to achieve the same SLA.

Handling Large Flash Crowds: A particular worry of CDN operators from the

standpoint of powering off servers is the global flash crowd scenario where there is a

large unexpected load spike across most clusters of the CDN. Note that a local flash

crowd scenario that only affects some of the clusters, say just the northeastern US,

is often easier to deal with, since the global load balancing system will redistribute

some of the traffic outside that local region at some cost to performance. Global

flash crowds that matter to a large CDN are rare but do occur from time to time.

Some examples include 9/11, and the Obama inauguration. Since it is critical from

the standpoint of a CDN operator to understand the behavior of any load balancing

algorithm in a global flash crowd situation and since our actual CDN traces lacked

a true global flash crowd event, we modified the traces to simulate one. To pick a

worst-case scenario, we chose a low traffic period in the night when servers are likely

to be turned off and introduced a large spike measuring 30% percent of the capacity of

the cluster and lasting for a 1 hour period (Figure 3.6a.) Further, to simulate a global

event we introduce the same spike at the same time in all the 22 clusters distributed

across the US. A critical factor in a flash crowd is the spike rate ρ at which the load

increases (or, decreases) in one time interval (Recall that the time interval models

the “reaction time” of the load balancing system which in our case is 300 seconds).

We ran algorithm Hibernate for different settings of the spike rate ρ and the spare

capacity threshold κ with the results summarized in Figure 3.6. As κ increases, more

servers need to be held live and the energy reduction decreases in a roughly linear

fashion in all the simulated scenarios (Figure 3.6b). The average transitions also

stayed within the accepted range of less than 1 transition per server per day in all

cases. However, a direct relationship was observed between the spike rate ρ and spare

26

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

Time (hours)

L
o
a
d

(a) A simulated
load spike in the
Ashburn cluster

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Spare capacity threshold (κ)

%
 e

n
e
rg

y
 r

e
d
u
c
ti
o
n

No spike

ρ = 5

ρ = 10

ρ = 15

ρ = 20

(b) % Energy re-
duction decreases
with additional
live spares

0 5 10 15 20
99.9%

99.99%

99.999%

99.9999%

Spare capacity threshold (κ)

A
v
a
ila

b
ili

ty
 %

No spike

ρ = 5

ρ = 10

ρ = 15

ρ = 20

(c) More live
spares help in-
crease availability

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

S
p
ik

e
 r

a
te

 (
ρ
)

Spare capacity threshold (κ)

(d) Spares (κ)
needed to absorb
a spike rate ρ
with 99.999%
availability

Figure 3.6: The behavior of Hibernate during a simulated global flash crowd

capacity threshold κ where a larger ρ was tolerable only with a corresponding larger

value of κ to sustain the required levels of service availability and meeting customer

SLAs (Figure 3.6c). To absorb a spike rate of ρ with at least five nine’s of availability

(99.999%) a commensurately large value of κ is required (Figure 3.6d). Since the

spike rate can be deduced from prior global flash crowds, this gives clear guidance to

CDN operators on how much spare capacity must be held live at all times to absorb

even large flash crowds.

3.5 Global Load Balancing

New York DC Bay area Texas
0

10

20

30

40

50

60

70

80

90

100

%
 e

n
e
rg

y
 r

e
d
u
c
ti
o
n

With GLB

Without GLB

(a) % Energy reduction

New York DC Bay area Texas
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 t
ra

n
s
it
io

n
s

With GLB

Without GLB

(b) Average Transitions
(per server per day)

Figure 3.7: Energy reduction and transitions show only modest improvements with
global load balancing

27

Cities With GLB Without GLB
New York 100% 99.9993%
DC 100% 99.9996%
Bay Area 100% 99.9995%
Texas 100% 99.9997 %

Figure 3.8: Availability improves drastically with global load balancing

In prior sections, we devised energy-aware schemes for local load balancing that

redistribute load across servers within the same cluster. A natural question is what

can be gained by energy-aware global load balancing that can redistribute load across

different clusters of the CDN. An important requirement for global load balancing

is that each request is served from a cluster that is “proximal” to the client, so as

to ensure good network performance. However, a large CDN with wide deployments

may have several clusters that can all provide equivalently good performance to a

given client. Thus, global load balancing typically has numerous choices of clusters

to serve a given portion of the incoming load. While there are other considerations

such as bandwidth costs[4] that come into play, we focus on energy consumption

and ask the following key question. Does redistributing load across clusters that can

provide equivalent performance further help optimize energy reduction, transitions,

and availability?

To answer the above question empirically using our CDN trace data, we create

cluster sets from the 22 clusters for which we have load traces. Each cluster set

consists of clusters that are likely to have roughly equivalent performance so as to

allow global load balancing to redistribute load between them. To form a cluster set

we choose clusters that are located in the same major metropolitan area, since network

providers in a major metro area tend to peer well with each other and can likely to

provide equivalently good performance to clients from the same area. For instance,

our Bay Area cluster set consisted of clusters located in Palo Alto, San Francisco, San

Jose, and Sunnyvale, our DC metro area cluster set consists of clusters in Ashburn

28

and Sterling, and our New York metro area cluster set consists of clusters in New

York and Newark. Further, since a large CDN is likely to have more than a dozen

clusters in each major metro area and since we only a have trace data for a subset

of the clusters of a large CDN, we simulate eight clusters from each actual cluster by

dividing up the traces into eight non-overlapping periods of 3-days each and aligning

the 3-day traces by the local time of day. To simulate the baseline scenario with no

energy-aware global load balancing, we ran our algorithm Hibernate individually on

each cluster. Note that in this case the incoming load to a cluster as represented in

the traces is served by the same cluster. Now, to simulate energy-aware global load

balancing, we viewed each cluster set as a single large cluster with the sum total of the

capacities of the individual clusters and sum total of the incoming load. We then ran

Hibernate on the large cluster. Thus we allow the incoming load to be redistributed

in an arbitrary fashion across the clusters within a cluster set.

The results of our evaluation are summarized in Figures 3.7 and 3.8. The ad-

ditional energy savings due to global load balancing were modest in the 4% to 6%

range. The reason is that clusters within the same cluster set are broadly similar in

the their load patterns, with the peak and off-peak loads almost coinciding in time.

Thus, global load balancing is not able to extract significantly more energy savings

by moving load across clusters (Figure 3.7a), over and above what can be saved with

local load balancing. However, a 10% to 25% reduction in the average transitions can

be achieved by global load balancing, since there are occasions where load spikes in

one cluster can be served with live spare capacity in a different cluster by redistribut-

ing the load rather than incurring server transitions (Figure 3.7b). But, perhaps the

key benefit of global load balancing is the increased availability (Figure 3.8). The

enhanced availability is due to an “averaging” effect where an unpredictable upward

load fluctuation that would have caused some load to be dropped within a single

cluster can be routed to a different cluster that happened to have a corresponding

29

downward load fluctuation leaving some spare live capacity in that cluster. In fact,

in our simulations, the availability was nearly 100% with global load balancing in all

cluster sets.

3.6 Related Work

Our work differs from prior work on energy management by the focus on CDNs

with a particular emphasis on the interplay between energy management and the

local/global load balancing algorithms in the CDN. We also examine the impact of

shutting servers on client SLA as well as the impact of server transitions on wear and

tear.

A recent effort related to our work is [23]. Like us, this paper also presents offline

and online algorithms for turning servers on and off in data centers. While [23] targets

data center workloads such as clustered mail servers, our focus is on CDN workloads.

Further, [23] does not emphasize SLA issues, while in CDNs, SLAs are the most

crucial of the three metrics since violations can result in revenue losses. Two recent

efforts have considered energy-performance or energy-QoS tradeoff in server farms

[17, 19]. Our empirical results also show an energy-SLA tradeoff with a primary

focus on choosing system parameters to obtain five 9s of availability in CDNs.

3.7 Conclusions

In this chapter we proposed energy optimization techniques to turn off CDN

servers during periods of low load while seeking to balance the interplay of three

key design objectives: maximize energy reduction, minimize the impact on client-

perceived availability (SLAs), and limit the frequency of on-off server transitions to

reduce wear-and-tear and its impact on hardware reliability. We proposed an optimal

offline algorithm and an online algorithm to extract energy savings both at the level

of local load balancing within a data center and global load balancing across data

30

centers. Our evaluation using real production workload traces from a large commer-

cial CDN showed that it is possible to reduce the energy consumption of a CDN by

51% while ensuring five nine’s of service availability and an average of just 1 transi-

tion per server per day. Further, we show that keeping even 10% of the servers as

hot spares helps absorb load spikes due to global flash crowds with little impact on

availability SLAs. Our future work will focus on the incorporation of workload pre-

diction techniques into our Hibernate algorithm, further optimizations of the global

load balancing algorithm from an energy perspective and techniques for managing

footprint (disk state) of CDN customers while turning servers on and off.

31

CHAPTER 4

ENERGY EFFICIENCY THROUGH CLUSTER
SHUTDOWN

In this chapter we propose and evaluate a novel CDN-specific technique called

cluster shutdown where an entire cluster of servers in a CDN data center can be

turned off. Cluster shutdown is easily integrated into the global load balancer (GLB)

that will now have the ability to move all load away from a cluster and shut it

down. However, since the granularity of energy management is to turn off entire

clusters or leave them entirely on, the technique does not have the ability to turn

off individual servers (e.g., a fraction of a cluster). In contrast, the server shutdown

technique studied in [29] has the ability to shutdown individual servers within the

cluster depending on the load, but has has no ability to control how much load enters

a cluster. Therefore, in this sense, the two techniques are complementary and may

be implemented together. While cluster shutdown has not been studied before in the

CDN context, it has certain natural advantages that make it worthy of consideration

for CDN energy reduction.

(1) Redundant deployments. Large CDNs such as Akamai can have over a thou-

sand clusters deployed in data centers around the world [35] with more than a dozen

redundant deployments in any given geographical area. Thus, when some clusters

near a user are shutdown during off-peak hours, other nearby active clusters can con-

tinue to provide CDN service to users and ensure good availability and performance.

In fact, one of the contributions of this work is determining the impact of cluster

shutdowns on user performance.

32

(2) Cluster shutdown is consistent with the original CDN architectural design.

Each cluster in a CDN is often architected to be a self-sufficient unit with enough

processing and disk storage to serve the content and application domains that are

assigned to it [35]. In particular, there is limited data dependency and resource

sharing across clusters. Thus, cluster shutdown can be implemented with little or no

changes to the CDN’s original architecture. In contrast, servers within a cluster are

closely linked in a fine-grained fashion and they cooperatively cache and serve the

incoming requests. For instance, servers within the same cluster cooperatively store

application state and content for user requests served by that cluster. Thus, shutting

down individual servers for energy savings requires greater migration of state and

content between servers in a cluster at levels not customary in a CDN today. Cluster

shutdown, in contrast, does not require state migration and cached content is already

replicated across clusters for fault-tolerance purposes, which ensures that availability

is not impacted by shutting down a cluster. In this sense, cluster shutdown is a better

architectural design choice for energy management than server shutdown.

(3) Cluster shutdown has the potential to save on cooling power in addition to IT

power. A key advantage of cluster shutdown is that the all of the energy consumed by

a cluster, which includes energy consumed by the servers, the network equipment, and

the cooling within that cluster, can be saved when a cluster is turned off. In contrast,

a server shutdown technique will typically turn off a fraction of the servers within the

cluster and will require the networking and cooling equipment to stay on. The cooling

equipment is not energy proportional—thus turning off a fraction of the servers only

saves energy consumed by those servers and does not yield a proportionate reduction

in cooling costs.

For cluster shutdown to be effective, a CDN would need to have control over all of

its energy consumption, i.e., both IT (such as servers) and cooling equipment. Such

a scenario is reasonable given the trend for CDN’s to opt for self-contained, modular

33

[45], or containerized [41] deployments. With such deployments a CDN can manage

the power consumption of its own cluster, independent of other tenants in the data

center – an advantage for a CDN that wants manage its power consumption closely.

The savings that can be obtained from reducing cooling costs can have a significant

impact on the total energy expenditure of a cluster. The key reason is that the energy

consumed by cooling equipment is a significant fraction of the energy expended by

the IT equipment1 such as servers. The ratio of total energy to IT energy is a

standard metric called PUE (Power Usage Effectiveness) that has a typical value2

of about 2 implying cooling energy is roughly equal to IT energy in typical data

center deployments. But in more recent energy-efficient designs, PUE is smaller but

cooling energy is still a significant fraction of the IT energy. Further, cooling energy

consumption is not power-proportional since cooling still takes a significant amount

of energy even when the servers have low utilization and are not producing much

heat, resulting in disproportional energy savings when cooling is shutdown entirely

(cf. Figure 4.1a).

Despite these advantages, a cluster shutdown technique is not without disadvan-

tages when compared to server shutdown [29]. Shutting down a cluster and moving

all its users to other clusters might degrade performance for users if they have to go

“farther away” in the network sense for their content. Further, moving traffic across

clusters has the potential of increasing the bandwidth cost, even if it reduces energy.

A primary focus of our work then is to evaluate the energy reduction provided by

cluster shutdown and how it trades off against potential degradation in performance

and increases in bandwidth costs.

1IT energy expenditure is primarily the energy consumed by the servers, since the networking
equipment consume significantly less. Likewise, cooling energy expenditure is dominated by the
energy consumed by the chillers[39].

2In a survey by the Uptime Institute [48] in July 2012 , data centers reported an average PUE
between 1.8 to 1.89. Other estimates place PUEs even higher.

34

4.1 Contributions

We propose algorithms for incorporating cluster shutdown in the GLB of a CDN

and quantify the energy savings achievable by this technique. Our evaluation uses

extensive real-world traces collected from 22 geographically distributed clusters over

25 days from one of the world’s largest CDNs. We show how energy savings are

impacted by the energy characteristics of servers, cooling equipment, and data cen-

ters. Further, we quantify the tradeoffs between three goals of CDN architecture:

saving energy, reducing bandwidth costs, and enhancing end-user performance. Fi-

nally, we compare the relative efficacy of cluster shutdown with the well-studied and

complementary approach of server shutdown. Our specific key contributions are as

follows.

• We propose a GLB algorithm that minimizes energy by routing traffic away from

certain clusters and switching them off. On production CDN workloads with typical

assumptions for server and cooling efficiencies, our algorithm achieved a significant

system-wide reduction in CDN energy consumption of 67%.

• When servers and cooling equipment are energy inefficient, the energy savings from

cluster shutdown can be as large as 73%. These savings can decrease to 61% if the

servers become perfectly power proportional, and can further become almost zero

if the cooling also becomes perfectly efficient.

• The outside air temperature has an impact on cooling efficiency and hence in-

fluences the energy savings achievable by cluster shutdown. Energy savings are

stable at about 67% for outside temperatures less than 85◦F but tapers off as the

temperature rises to 44% at 100◦F .

• To obtain the maximum possible energy savings, bandwidth costs of the CDN would

have to increase by a factor of 2. However, 73% of the maximum energy savings are

obtainable with no change in bandwidth costs at all. Likewise, 93% of the maximum

35

energy savings is obtainable with no significant performance degradation with each

user served from clusters within an average distance of 500 km.

• Frequent cluster shutdowns and the operational overheads that it would entail

are not necessary to achieve significant energy savings. Our technique is able to

extract 79% of the maximum savings even when limiting each cluster to at most

one shutdown per day and even when the incoming load is not known in real-time

and must be predicted.

• Realistic CDNs are required to operate under multiple constraints. We identify a

sweet spot where our technique provides 22% of maximum savings while limiting

each cluster to at most one shutdown per day, allowing no increase in bandwidth

costs and serving users from clusters within an average distance of 800 km.

• Cluster shutdown does better than server shutdown within a broad operating range

of outside air temperatures from 40◦F to 90◦F , while server shutdown is better

outside of this range. In general, cluster shutdown performs better during lower

periods of CDN utilization, while server shutdown has the edge at higher utilization.

• Augmenting cluster shutdown with server shutdown has limited impact under re-

laxed performance or bandwidth constraints because the CDN is already nearly

power proportional under these conditions with just cluster shutdown. However, if

either latency or bandwidth costs need to be kept low, server shutdown can provide

significant additional gains over a pure cluster shutdown strategy. If low latency is

required, server shutdown can provide an additional 46% in energy savings. Like-

wise, if no increase in bandwidth costs are allowed, the additional energy savings

is 34%.

36

4.2 Background, Models, and Methodology

4.2.1 Content Delivery Networks

Our work assumes a global content delivery network (CDN) that comprises a very

large number of servers that are grouped into thousands of clusters. Each cluster is

deployed in a single data center and its size can vary from tens to many thousands

of servers. The incoming requests are forwarded to a particular server in a particular

cluster by the CDN’s load balancing algorithm. As outlined earlier, load balancing

in a CDN is performed in two stages: global load balancing (GLB) that routes a

user’s request to an “optimum” cluster, and local load balancing (LLB) that assigns

the user request to a specific server within the chosen cluster. Load balancing can be

implemented using many mechanisms such as IP Anycast, load balancing switches, or

most commonly, the DNS lookup mechanism [35]. We do not assume any particular

mechanism, but we do assume that those mechanisms allow load to be arbitrarily

re-divided and re-distributed among servers, both within a cluster (local) and across

clusters (global). This is a good assumption for typical web workloads that form a

significant portion of a CDN’s traffic.

Our proposed technique of cluster shutdown is implemented in the GLB of a

CDN. First, GLB moves away all the traffic from a cluster, typically by setting the

cluster capacity to zero. Then, the cluster is shutdown by turning off all the relevant

components, inclusive of servers and cooling equipment. Since our focus is on GLB

algorithms that incorporate cluster shutdown, unless mentioned otherwise, we assume

that the LLB evenly distributes the incoming load assigned by the GLB across servers

within that cluster. In contrast, the server shutdown mechanism studied in [29] is

incorporated within the LLB system that turns off individual servers within a cluster.

37

4.2.2 Workload Model

The workload entering a CDN is generated by users around the world accessing

web pages, video content, and Internet-based applications. To model the spatial

distribution of the users, we cluster them according to their geographical location. In

particular, we define M client locations where each location is a compact geographical

area, example, Massachusetts, USA. The workload entering the CDN is modeled as a

discrete sequence3 λt,i, 1 ≤ t ≤ T and 1 ≤ i ≤M , where λt,i is the average load in the

tth time slot from users in client location i. We always express load in the normalized

unit of actual load divided by peak server capacity.4 Further, we assume that each

time slot is δ seconds long and is large enough for the decisions made by the global

load balancing algorithm to take effect. Specifically, in our experiments, we consider

δ = 5 minutes.

4.2.3 Algorithmic Model for Load Balancing

While a real-life load balancing system is complex [35], we model only those as-

pects of such a system that are critical to energy usage. For simplicity, our load

balancing algorithms redistribute the incoming load rather than explicitly route in-

coming requests from clients to servers. The major determinant of energy usage is

the number of clusters that need to remain active (i.e., turned on) at each time slot

to effectively serve the incoming load. Unless we mention otherwise, we assume that

local load balancer is not energy aware and does not turn servers on and off on its

own accord. But, rather, the LLB simply distributes the load assigned to each cluster

evenly among the servers in that cluster. However, the GLB is energy aware and can

3When the time slot is implicit, we often drop the time subscript from our notation. For instance,
we describe the incoming load simply λi, 1 ≤ i ≤M .

4For simplicity, we assume that the servers in the CDN are homogeneous with identical capacities,
though our algorithms and results can be easily extended to the heterogeneous case.

38

turn clusters on or off. Therefore a cluster is either active with all servers turned on,

or inactive with all servers turned off.

At each time slot, an energy aware GLB takes as input the incoming load λi,

1 ≤ i ≤M . The global load balancing algorithm of a CDN routes the incoming load

from each client location i to clusters that are active at that time step, i.e., GLB

determines the values µij that represents the load induced by client location i on a

server in the jth cluster, 1 ≤ j ≤ N , such that

∑
1≤j≤N

µijcj = λi,∀i,

where cj is the number of servers in that cluster. Servers are typically not loaded to

capacity. But rather a target load threshold µmax, 0 < µmax ≤ 1, is set such that the

load balancing algorithm attempts to keep the load on each server of the CDN to no

more than µmax. Mathematically,

∑
1≤i≤M

µij ≤ µmax,∀j.

We assume a typical value of µmax = 0.75 in our work, i.e., the target load for each

server is 75% of its capacity.

4.2.4 Power consumption of clusters

We model both the power consumed directly by the servers (IT power) and the

power consumed for cooling those servers (cooling power). By convention, we indicate

power draw for a single server by using a superscript “server”, while variables without

that superscript represent the power draw for the entire cluster. Also, note that while

we mostly discuss power draw (in Watts), integrating power draws over time provides

us the energy consumed (in Joules).

39

4.2.4.1 Server power model

First, we model the power consumed by a single server as a function of its load.

Based on our own testing of typical off-the-shelf server configurations used by CDNs,

we use the standard linear model[9] where the power (in Watts) consumed by a server

is

P IT,server =
[
P IT, server

idle + (P IT, server
peak − P IT, server

idle)λ
]

(4.1)

where the load (0 ≤ λ ≤ 1) is the server load, and P IT
peak is power consumed by the

server when it is loaded to its capacity (i.e., λ = 1). P IT,server
idle is the power consumed

by an idle server when it has no load (i.e., λ = 0). We define a quantity 0 ≤ α ≤ 1

called the server power proportionality factor where

α
∆
= 1− P IT, server

idle /P IT,server
peak .

Note that α = 1 represents a perfectly power proportional server—the ideal case

for an energy-efficient server—while α = 0 represents the opposite extreme. In our

empirical work, unless mentioned otherwise, we use P IT,server
peak = 92 Watts, α =0.31,

and P IT,server
idle = 63 Watts as typical values based on our measurements of a typical

deployed server today. However, we also vary α over a wide range to study the impact

of server power proportionality on our conclusions.

4.2.4.2 Cooling power model

The cooling systems deployed to cool a server cluster consist of a number of

components. An air handler transfers heat out of the server room. An air or water

based chiller cools down the hot air before it is pumped back into the server room.

40

The coolant, usually a combination of water and glycol5 is transferred from the chiller

to cooling towers that exchange heat with the outside air before returning it back to

the chiller. The chiller plant’s compressor accounts for the majority of the cooling

cost in most data centers [39].

To make our model assumptions realistic, we use a set of benchmark regression

curves provided by the California Energy Commission (CEC) [11] to model our cooling

power requirements. Assuming efficient heat exchange at the cooling towers, we take

the outside air temperature as a proxy for the temperature of the coolant on return.

The power consumed by the chiller PCOOL is a quadratic function of its utilization u

0 20 40 60 80 100
0

20

40

60

80

100

Utilization (%)

P
ow

er
 (

%
 o

f r
at

ed
 c

ap
ac

ity
)

100 F
85 F
60 F
40 F

(a) The chiller power
PCOOL gets larger and
steeper as outside tempera-
ture increases.

0 20 40 60 80 100
0

20

40

60

80

100

Utilization (%)

P
ow

er
 (

%
 o

f r
at

ed
 c

ap
ac

ity
)

β = 0.00
β = 0.33
β = 0.66
β = 1.00
β = 1.19

(b) As cooling efficiency β in-
creases the cooling power re-
quired PCOOL(β) is smaller.

Figure 4.1: Cooling power and its dependence on outside air temperature and cooling
efficiency.

as shown below [11], where u
∆
= Q

Qpeak
, Q is the heat removed by the chiller, and Qpeak

is maximum heat removal that the chiller is rated for.

PCOOL = PCOOL
peak ×

(
A+B · u+ C · u2

)
(4.2)

5For the purposes of modeling a typical cooling system, we assume that the chilled water coolant
is at 44◦F .

41

where u is the utilization of the chiller and the constants A, B, and C are depen-

dent on the capacity correction factor (CAP FT) and the efficiency correction factor

(EIR FT) that vary quadratically with the outside air temperature. Given a value

for the outside air temperature the constants A, B, and C can be derived from the

regression curves provided in the CEC manual [11]. It is worth noting that a chiller

consumes disproportionately more power at higher utilization than lower ones due to

the quadratic nature of the curve. Also, as shown in Figure 4.1a, as the outside air

temperature gets higher the power required PCOOL gets larger and curve becomes

more non-linear and steeper.

The chillers deployed in practice vary greatly in terms of their efficiency, ranging

from less efficient older systems to highly efficient next-generation ones. To study this

wide variation, we propose a family of chiller models that have the same quadratic

functional form for the relationship between utilization and power consumed as the

CEC chiller described in Equation 5.1 but different values for the constants. Specifi-

cally, we define a factor β that we call the chiller efficiency factor and each value of β

provides a different curve for the chiller power consumption PCOOL(β) as described

in the equation below.

PCOOL(β) = PCOOL
peak ×

(
Aβ +Bβ · u+ Cβ · u2

)
, (4.3)

where Aβ = max{(βA+ 1− β), 0}, Bβ = βB, and Cβ = βC.

We study five chillers by setting β to five different values as shown in Figure 4.1b.

The first three curves (0 ≤ β < 1) represents chillers that are less efficient than CEC’s

chiller. As can be seen from Equation 4.3, the fourth curve with β = 1 models the

CEC chiller exactly. And, the fifth curve with β > 1 models a next-generation chiller

that is more efficient than the CEC chiller and has power consumption of zero when

idle.

42

4.2.4.3 Total power consumed by a cluster

The total power consumed by a cluster is defined to the power needed to run

the servers and associated equipment and the power needed to cool the servers. We

define the IT power P IT of a cluster to be the aggregate power consumed by the c

servers of the cluster. In addition to the servers themselves, a cluster includes other

IT equipment such as network switches and power distribution units. Typically the

power consumed by networking and power distribution equipment is a small fraction

of that consumed by the servers of the cluster (studies have shown this portion to

be around 5-10% [39]). Our power model currently ignores the contribution of this

other IT equipment to the total IT power, but it is straightforward to extend our

models and algorithms to incorporate its contribution through a small multiplicative

constant.

Thus, the IT power P IT consumed by a server cluster consisting of c servers, each

running at utilization λ, is

P IT = c× P IT,server (4.4)

where P IT,server can be computed using Equation 4.1. And, the peak IT power of a

cluster P IT
peak = c× P IT,server

peak . Given the PUE of the data center in which the cluster

is deployed, we determine the peak cooling power PCOOL
peak = (PUE− 1)×P IT

peak. Since

the chiller removes the heat produced by the servers, the utilization of the chiller

u = P IT

P IT
peak

. Now, given the value of β that determines the cooling efficiency, we can

compute the total power consumed by the chiller PCOOL(β) using Equation 4.3. The

total power P consumed by the cluster is simply the sum of its IT and cooling power:

P = PIT + PCOOL(β) (4.5)

Note that the quadratic and non-energy proportional nature of the chiller-based cool-

ing model has interesting implications on cluster and server shutdown techniques.

43

When a server shutdown technique switches off a fraction of the servers within a

cluster, the non-energy proportional nature of the curve works “against” it and does

not yield a proportional reduction in cooling energy usage, while a full cluster shut-

down reduces the cooling costs to zero for that cluster. In contrast, cluster shutdown

“packs” the load from a region onto a smaller number of clusters (and turns off the

remaining clusters), but the quadratic nature of the curve yields more than linear in-

crease in cooling costs for the clusters that stay on; the higher the cluster utilization

due to such packing, the greater the increase in cooling cost due to the quadratic

nature of the curve. A similar effect comes into play due to the outside air tem-

perature, where increasing cluster utilization in hotter outside temperature causes a

disproportionately larger increase in cooling costs due to the quadratic curve.

4.3 GLB Algorithms with Cluster Shutdown

We now describe our algorithm for global load balancing that routes traffic from

client locations to clusters while turning clusters on or off with the goal of minimizing

the total energy consumed by the CDN. At any given time, the algorithm takes as

input the load λi from each individual client location i. Here we make the simplifying

assumption that the GLB knows precisely the load that it needs to route at each time

step and that it can instantaneously turn clusters on or off to minimize energy usage.

This is clearly not strictly true in practice where both sensing the load and shutting

down clusters incur a small delay. However, our algorithm provides a baseline on what

is achievable with the cluster shutdown technique, leaving a more complex model that

incorporates delays for future work. The output of our algorithm is two-fold. First, it

computes a binary variable uj that indicates whether the jth cluster should be turned

on (uj = 1) or turned off (uj = 0) in that time step. Next, it computes a quantity µij

that represents the load from client i that must be routed to cluster j at the given

time step.

44

Computing the assignment of load to clusters can be stated as a convex optimiza-

tion problem as follows. The IT power required by cluster j is

PIT
j = cj

[
P IT,server

idle × uj +
∑

1≤i≤M

(P IT,server
peak − P IT,server

idle)µij

]
,

where the value of uj is used to determine if the cluster is turned on and idle power

should be incurred. The chiller utilization of cluster j can be computed as
PIT
j

P IT
peak

. The

corresponding cooling energy for cluster j denoted by PCOOL
j can be computed using

Equation (4.3), given the chiller efficiency β. Our objective function is simply the

total power drawn by the CDN summed across all its N clusters and is stated below.

min
∑

1≤j≤N

(
PIT
j + PCOOL

j

)
(4.6a)

s.t.
∑

1≤j≤N

µijcj = λi, ∀i (4.6b)

∑
1≤i≤M

µij ≤ ujµmax, ∀j (4.6c)

The quantities that are varied in the minimization are the output variables µi,j and

uj. Equation 4.6b ensures that the all of the incoming load at the given time step is

assigned to some cluster. Further, Equation 4.6c ensures that no server is loaded by

more than the threshold µmax. We pick a typical value of µmax = 0.75 that implies

that no server is loaded to more than 75% of its capacity.

Besides the above constraints that always apply, we also study tradeoffs between

energy savings, performance and bandwidth costs by adding one or both of the con-

straints below.

45

∑
1≤i≤M

∑
1≤j≤N µijcjdij∑

1≤i≤M λi
≤ D, (4.7a)

∑
1≤i≤M

Bi
µijcj
λi
≤ BWmax(j), ∀j (4.7b)

Equation (4.7a) states that the average distance between the users and the cluster

to which they are assigned (weighted by load) is no more than some specified value

D, where dij is the geographical distance between client location i and cluster j.

For smaller values of D, this equation constrains the global load balancer to assign

users to server clusters that are proximal to them, so as to ensure good performance.

By making D larger, we are loosening the performance requirement by allowing the

users to be assigned to clusters that are farther away. We are particularly interested

in how the performance requirement D impacts energy savings. Note that as was

assumed in earlier work [42], we use geographical proximity as a rough proxy for

“network proximity” that governs user performance. Our formulation could equally

well accommodate network latency instead of geographical distance without signifi-

cant changes, though our empirical CDN traces do not provide the required network

information for such an evaluation.

A CDN pays for the bandwidth that their deployed servers utilize. Typically,

CDNs use 95/5 contracts for paying for their bandwidth use which works as follows

[4]. For each cluster j, the traffic from the CDN’s servers in the cluster is averaged over

5 minute intervals. Then the 95th percentile of those 5-minute averages over the billing

interval is computed. The cost of bandwidth for that cluster is proportional to the

computed 95th percentile. Since 95th percentile cannot be modeled and constrained

within a convex programming framework, we use the maximum value instead as a

proxy. Equation (4.7b) above is used to constrain the maximum bandwidth sent out

of cluster j to be no more than BWmax(j), hence also constraining the bandwidth

cost that is incurred by the CDN in cluster j. Choosing higher values for BWmax(j)

is tantamount to increasing the allowable bandwidth cost at cluster j. We use the

46

bandwidth constraint to study the impact of varying the bandwidth costs on energy

savings.

Converting the convex program to a mixed integer program (MIP). Note that as cur-

rently stated the objective of the optimization function in Equation 4.6 contains

the term PCOOL
j that is quadratic in variables µij. However, since MIPs are more

tractable than convex programs, we used a linear piecewise approximation of PCOOL
j

to rewrite the optimization with only linear constraints. The domain for the function

PCOOL
j (u) was split into equal sized segments. For each such segment [xi, xi+1] we

sampled the value of the function at its endpoints [yi, yi+1]. Computing the slope mi

and intercept ki, the linear approximation between the points (xi, yi) and (xi+1, yi+1)

takes the form PCOOL
j,(xi,xi+1)(u) = PCOOL

j,peak ×(mi ·u+ki). For each such segment we added

a constraint

PCOOL
j ≥ PCOOL

j,(xi,xi+1)

with cluster j running at a chiller utilization of u =
PIT
j

P IT
peak

. PCOOL
j is present in the

objective and lower bounded by the piecewise linear approximation. The absence of

any other constraint on the variable ensures that it equals its lower bound in the

optimal solution. Our implementation used 5 linear segments for an approximation

error of 0.25% at 85◦F .

4.4 Combining Cluster and Server Shutdown

Server shutdown is a complementary technique to cluster shutdown and turns off

individual idle servers within each cluster to save energy [55, 29]. We now devise a

combined approach of using server shutdown in conjunction with our cluster shutdown

algorithm to potentially provide even more energy savings. Our combined approach

first explores the possibility of shutting down entire clusters, thereby saving both

47

the IT and cooling energy consumed by those clusters. Note that a cluster shutdown

algorithm must maintain a distributed set of clusters in an active state at all times for

reasons of user-perceived performance. For instance, if all clusters in a geographical

region are shut down, GLB will be forced to assign users from that region to distant

clusters resulting in larger latencies and degraded performance. Server shutdown can

provide additional energy savings within clusters that are kept active by the cluster

shutdown algorithm. In particular, not all of the servers in an active cluster may be

required to serve its assigned load and a subset of these servers can be turned off to

save more energy.

To capture the additional benefit of server shutdown, we enhance the cluster shut-

down algorithm of Section 5.2 by incorporating server shutdown algorithms within

the LLB of individual server clusters. We propose a hierarchical strategy that consists

of the following two steps.

1. GLB decides which clusters should remain active and which need to be turned

off using the algorithm described in Section 5.2. GLB then reroutes global traffic

away from clusters that can be turned off and reassigns that traffic to clusters

that remain active.

2. The server shutdown algorithm is run independently and in parallel by the LLB

in each active cluster at each time step. For each active cluster, the LLB of that

cluster consolidates the load assigned to that cluster into the fewest number of

servers possible and turns off the remaining servers. Specifically, for a cluster of

c servers, a target load threshold µmax and load λ, LLB computes the optimal

number of live servers ct =
⌈

λ
µmax

⌉
that is required to serve the load. The

algorithm keeps c − ct servers inactive while keeping ct servers active to serve

the load λ.

48

In step (2) of our above algorithm, we make the simplifying assumption that servers

can be shutdown in one time step, providing a baseline for the savings possible.

A more complex server shutdown algorithm that takes into account the delay for

transitioning servers between active and inactive states is provided in [29].

4.5 Evaluation

To evaluate the benefits of integrating cluster shutdown in a CDN’s global load

balancer we used extensive traces from Akamai, perhaps the largest commercial CDN,

and ran the algorithms presented in Section 5.2. In our experiments, unless otherwise

indicated, we model chillers with β = 1, i.e., the same as CEC’s chiller model, and

we assume that the outside air temperature is 85◦F . Later, we vary these parameters

and show how energy savings vary with different parameter values.

4.5.1 Empirical Data from the Akamai Network

We used extensive load traces collected over 25 days from a large set of Akamai

clusters deployed in data centers in the US. The 22 clusters captured in our traces are

distributed widely within the US and had 15439 servers in total, i.e., a representative

sampling of Akamai’s US deployments. Our load traces account for a peak traffic of

800K requests/second and an aggregate of 950 million requests delivered to clients.

The traces consist of a snapshot of total load served by each cluster collected every 5-

minute interval from Dec 19th 2008 to January 12th 2009, a time period that includes

the busy holiday shopping season for e-commerce traffic (Figure 5.1). In the figure,

one may note load variations due to day, night, weekday, weekend, and holidays (such

as low load on day no. 8, which was Christmas) Since the clusters are restricted to

the US, we also restricted the trace to clients from North America. The trace consists

of samples taken every 5 minutes indicating the current load on each cluster, along

with a breakup of traffic from each client location. Specifically, for every 5 minutes,

49

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Time (days)

L
o
a
d

Figure 4.2: Average load per server measured every 5 minutes across 22 Akamai
clusters in the US over 25 days.

we measured the load induced by client location i on cluster j and the corresponding

bytes served by cluster j to users in client location i, for all relevant pairs of i and

j. In addition, we also measured the number of servers present and total capacity

of each cluster. In the course of our optimization, we assume that the load from

a client can be shifted to any cluster as long as the capacity constraints are met

and no server is overloaded. Our traces also capture the geographic location (city,

state, and country) of both the client location and cluster, which lets us estimate the

geographical distance between the users at a particular client and location the cluster

from which they are served. The geographical distance computed in this fashion is

used as a proxy for performance. The byte information captured in our traces is used

to compute the bandwidth usage of the CDN in each cluster that in turn determine

the bandwidth costs incurred by the CDN that we study in our work.

4.5.2 Overall energy savings

We emulated the GLB-based cluster shutdown algorithm in Section 5.2 on the

CDN traces described above. The algorithm minimizes the energy consumption of the

CDN in each time step by orchestrating which clusters should be on and which clusters

should be turned off. Then the total energy consumed by the CDN is computed by

adding the energy consumed at each time step across the entire trace. As a basis

50

0 5 10 15 20
0

20

40

60

80

100

E
ne

rg
y

sa
vi

ng
s

(%
)

Clusters

(a) Individual clusters save
between 37% to 84%. The
system-wide energy sav-
ings is 67%.

0 20 40 60 80 100
0

20

40

60

80

100

S
ys

te
m

−
w

id
e

sa
vi

ng
s

(%
)

% of clusters

(b) Applying cluster shut-
down to the top 45% clusters
is sufficient to obtain 94% of
the system-wide energy sav-
ings.

Figure 4.3: CDN energy savings obtainable by cluster shutdown.

for comparison, we used as a baseline the energy consumed by the user-to-cluster

assignment in the trace with no cluster shutdown, i.e., all clusters are assumed to be

on throughout the trace which is consistent with how CDNs operate today.

The system-wide energy savings that is possible with cluster shutdown incorpo-

rated into the CDN’s GLB is 67% in comparison with the baseline where all clusters

are always turned on. In performing this analysis, we make typical assumptions about

the energy efficiency of the data centers (PUE = 2), servers (α = 0.31) and chillers

(β = 1). We also do not constrain performance and bandwidth costs. Therefore,

these are the best case savings possible. However, we vary each of these assumptions

in subsequent sections to examine how these savings change under different scenar-

ios. To further breakdown the savings, in Figure 4.3a we show savings obtained by

individual server clusters. Savings vary between 37% to 84% with the median clus-

ter saving 63%. Further, most of the savings can be obtained by performing cluster

shutdown in a few key clusters. As shown in Figure 4.3b, applying cluster shutdown

to top 45% of the clusters is sufficient to obtain 94% of the optimal energy savings.

51

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Server power proportionality (α)

E
ne

rg
y

sa
vi

ng
s

(%
)

β = 0.00
β = 0.50
β = 1.00
β = 1.19

(a) Energy savings de-
crease as servers and
cooling equipment become
more energy efficient.

0 20 40 60 80 100
0

20

40

60

80

100

CDN utilization (%)

C
D

N
 P

ow
er

 (
%

 o
f p

ea
k)

Cluster shutdown
Baseline
Power proportional

(b) Cluster shutdown makes
the CDN power proportional
by aligning power values close
to the ideal 45-degree line.

Figure 4.4: Energy savings and power proportionality

4.5.3 Impact of server and cooling efficiency

CDNs operate with a wide range of server hardware and are deployed in a wide

range of data center facilities. Further, both server and cooling efficiencies are con-

stantly being improved over time. To capture these effects, we varied the power

proportionality factor of the servers (α) as well as the cooling efficiency of the chillers

(β) to study how energy savings vary with these parameters (cf., Figure 4.4a). When

both the servers and cooling are energy-inefficient (α = β = 0), the cluster shutdown

technique provides the most energy savings of 73%.

As servers become more energy-efficient the idle power usage gets lower, and thus

lowers cooling energy. This results in energy savings from cluster shutdown dropping

to 61% when servers are perfectly power proportional (α = 1). In fact for any chiller

efficiency β, energy savings decrease as servers become more efficient.

Likewise, for any given server efficiency α, increasing cooling efficiency β reduces

the energy savings. For perfectly power proportional servers (α = 1) energy savings

fall as β increases, dropping from 61% when β = 0 to 19% for β = 1. In the ideal world

with highly-efficient servers and cooling, e.g., α = 1 and β > 1, the energy savings

from cluster shutdown approaches zero, i.e., if the “hardware” is itself highly-efficient

there is no need for an explicit shutdown mechanism to reduce energy.

52

4.5.4 CDN Power Proportionality

To visualize how server shutdown makes a CDN more power proportional, it is

instructive to view the instantaneous power consumption of the entire CDN as a

function of its overall utilization. Specifically, in Figure 4.4b, we plot the CDN’s total

power consumption (as a percentage of its peak) and its overall utilization at each

time step as a single point of a scatter plot. Note that these plots are the exact

analogue of server proportionality described in Equation 4.1 that relates power to

utilization, but computed for the CDN as a whole. A perfectly power proportional

system would have all its points aligned along the 45-degree line shown in the figure.

The scatter plot of the total CDN power without cluster shutdown deviates from the

ideal 45-degree line significantly as the CDN consumes a lot of power even during

periods of low utilization during the non-peak hours. However, cluster shutdown

makes the scatter plot of the total CDN power much more closely aligned to the

ideal 45-degree line, i.e., cluster shutdown makes the CDN significantly more power

proportional.

4.5.5 Impact of Outside Air Temperature

The cooling equipment transfers heat from inside the server room to the external

atmosphere. Physical laws suggest that the heat transfer rate through convection is

larger when the temperature differential between the inside and outside air temper-

atures are greater. Thus, it takes less energy to cool when the outside temperature

is cooler (say, in the winter) than when the outside temperature is hotter (say, in

the summer). Further, as we saw in Figure 4.1a, the required power for cooling rises

more sharply in a quadratic fashion with increasing utilization when the outside air

temperature is hotter.

The interplay of outside air temperature with cooling power impacts what energy

savings are achievable by GLB via cluster shutdown. Specifically, as outside air

53

20 40 60 80 100
0

20

40

60

80

100

Temperature (F)

Average active capacity (%)
Average active server util (%)

(a) Avg. active server uti-
lization falls as tempera-
ture rises

20 40 60 80 100
0

20

40

60

80

100

Outside temperature (F)

E
ne

rg
y

sa
vi

ng
s

(%
)

(b) Energy savings drop from
67% at 85◦F to 44% at 100◦F

0 20 40 60 80 100
0

20

40

60

80

100

CDN utilization (%)

C
D

N
 P

ow
er

 (
%

 o
f p

ea
k)

85° F
Power proportional

Best fit for 85° F

(c) At 85◦F , the CDN
with cluster shutdown is
roughly power propor-
tional.

0 20 40 60 80 100
0

20

40

60

80

100

CDN utilization (%)

C
D

N
 P

ow
er

 (
%

 o
f p

ea
k)

100° F
Power proportional

Best fit for 100° F

(d) At 100◦F , cluster shut-
down is less effective.

Figure 4.5: Cluster shutdown is more effective in saving energy at lower temperatures
than higher ones.

temperature increases, the cluster (and server) utilization have to be kept low since

there is a greater cooling power penalty associated with higher utilization. Thus, as

shown in Figure 4.5a, at low temperatures the algorithm runs all active servers at

the maximum allowed utilization of µmax = 75%. At high temperatures cooling costs

rise rapidly with utilization, and the optimal solution at 100◦F corresponds to active

servers running at 39% utilization. Note that to continue to serve the same incoming

load, a lower cluster (or, server) utilization means more clusters (and, servers) need

to remain active. Thus, the fraction of total CDN capacity that is kept active, rises

54

400 600 800 1000
0

20

40

60

80

100

Average distance (km)R
el

at
iv

e
sa

vi
ng

s
(%

 o
f o

pt
im

al
)

Figure 4.6: Relaxing performance results in greater energy savings. 46%, 93% and
99.9% of the optimal energy savings are obtained at D values of 300 km, 500 km and
795 km respectively

from 27% at low temperatures, to 51% of total capacity at 100◦F . The increase in

active capacity with rising temperatures combined with lower utilization of active

servers has a negative impact on savings. Figure 4.5b shows that energy savings

drop from 67% at 85◦F to 44% at 100◦F . The energy savings achieved by cluster

shutdown at different outside air temperatures can also be viewed as a scatter plot

of the total CDN power versus its utilization. The scatter plots in Figures 4.5c and

4.5d correspond to 85◦F and 100◦F respectively. At 85◦F the best linear fit to the

power-utilization curve has a slope of 1.26, closer to the ideal 45-degree line with a

slope of 1, i.e., the CDN with cluster shutdown is roughly power proportional. At

100◦F the slope almost doubles to 2.46.

4.5.6 Tradeoff between Energy and Performance

CDNs host a wide range of applications. Some applications such as dynamic web

sites are highly sensitive to network latency, with even small increases in latency

causing significant degradation in the performance experienced by the user. Other

applications such as software downloads are weakly sensitive to latency and can even

be performed in the background. As in [42], we use geographical distance as a rough

proxy for the network latency between a user and the cluster assigned to that user

by GLB. To study the tradeoff between performance requirement and energy savings

we add Equation (4.7a) as a constraint where different latency requirements can be

55

modeled by varying the distance bound D. Specifically, larger values of D allow a

larger load-weighted average distance between the users and their assigned clusters.

Allowing larger user-cluster distances (and latencies) has the effect of degrading per-

formance, but allows for potentially more cluster-shutdown opportunities for GLB

and greater power savings. Figure 4.6 illustrates this tradeoff where setting D = 300

km provides 46% of optimal savings. Note that this distance bound is roughly the

distance between Boston and New York with network latencies often in the 10-15

ms range that is adequate for even applications with higher latency sensitive. When

D = 500, one can achieve 93% of the energy savings. This distance bound is roughly

the distance between Boston and Philadelphia where typical latencies are in the 20

ms range, suitable for most moderately latency-sensitive applications. Finally, when

D = 795 km, a suitable limit for weakly latency-sensitive applications such as back-

ground downloads, we achieve 99.9% of optimal savings.

4.5.7 Tradeoff between Energy and Bandwidth Costs

The operating expenditure (OPEX) of a CDN includes two major components:

the energy costs for powering the servers and the bandwidth cost for the traffic from

the server clusters to the users. Reducing energy usage by packing traffic into fewer

server clusters could cause increased bandwidth usage in those clusters, which in

turn could drive up the bandwidth cost at those clusters. The primary question is

whether energy savings can be achieved without significant increase in the bandwidth

cost. Note that if energy savings are only obtainable by significantly increasing the

bandwidth cost, that would serve as a disincentive for a CDN to implement cluster

shutdown.

As noted in Section 5.2, the bandwidth cost incurred by the CDN at each cluster

can be approximated by the maximum over all 5-minute time slots in the billing

56

period6 of the average traffic (in Mbps) transmitted in that time slot. We constrain

(through Equation (4.7b)) the maximum bandwidth for each cluster j to be at most

(1 + r)BWmax(j), where BWmax(j) is the maximum bandwidth value observed in the

trace and r is the BW relaxation factor that determines how much extra bandwidth

costs we are willing to allow. Figure 4.7a shows energy savings relative to optimal as

the bandwidth constraints are relaxed by varying r. With no increase in bandwidth

cost (r = 0), cluster shutdown can still achieve 73% of optimal savings. 47% of

the total CDN server capacity remains turned on, with active servers running at

an average utilization of 48%. Relaxing bandwidth constraints allows active server

utilization to rise to µmax = 75% at r = 100%. This allows the CDN to run with

27% of its server capacity turned on and achieve optimal energy savings. Overall,

our results indicate that cluster shutdown can still achieve significant energy savings

with little or no increase in bandwidth costs.

0 20 40 60 80 100
0

20

40

60

80

100

R
el

at
iv

e
sa

vi
ng

s
(%

 o
f o

pt
im

al
)

BW relaxation factor r (%)

(a) We get 73% of optimal
energy savings with no in-
crease in bandwidth cost

0 20 40 60 80 100
0

20

40

60

80

100

BW relaxation factor r (%)

Average active capacity (%)
Avg active server utilization (%)

(b) Average active server uti-
lization increases from 49% to
µmax = 75% as BW cost dou-
bles (r=100%)

Figure 4.7: Energy savings versus Bandwidth cost

6In our simulations, we assume that the billing period is length of the trace which is 25 days,
though in reality a billing period is typically one month.

57

5 min 4 hrs 8 hrs 12 hrs 24 hrs
0

20

40

60

80

100

Decision period (τ)

R
el

. s
av

in
gs

 (
%

 o
pt

im
al

)
(a) Switching clusters
once a day still achieves
80% of optimal savings

5 min 4 hrs 8 hrs 12 hrs 24 hrs
0

20

40

60

80

100

Decision period (τ)

R
el

. s
av

in
gs

 (
%

 o
pt

im
al

)

(b) With load prediction we
achieve 79% of optimal sav-
ings switching clusters once a
day

Figure 4.8: Impact of decision period and traffic prediction

4.5.8 Impact of Limiting the Cluster Transitions

Frequently switching server clusters on and off can impact the overall lifetime and

reliability of the equipment. Further, the mechanical nature of cooling equipment

limits the rate at which it can be switched on and off. Chillers, for example, require a

warm up at partial load before they can be incrementally ramped up to full capacity.

Thus it is neither desirable nor feasible to frequently turn entire clusters on and off,

and we study the amount of energy savings that can be extracted when limiting the

frequency of cluster shutdowns.

Suppose that cluster transitions are allowed to occur only once every τ time slots,

where τ is defined as the decision period and is required to be an integral multiple

of δ. In our experiments we vary τ from 5 minutes to 1 day. In Figure 4.8a the

left-most point in the graph corresponds to τ = 5 minutes which is the smallest time

granularity at which the trace data is collected. It is nearly infeasible to turn clusters

on or off every 5 minutes. However, the τ = 5 minutes measurement provides the

theoretical optimal of how much energy savings is possible in the best case that can

serve as a benchmark for comparing other values of τ . Increasing τ could decrease

energy savings as GLB has a lesser ability to turn clusters on or off in response to load

58

variations. However, as we see in Figure 4.8a, even with τ = 1 day where clusters are

transitions just once a day, we achieve 80% of the optimal savings possible. Thus, we

establish that frequent cluster transitions are not necessary for obtaining most of the

benefits of cluster shutdown.

4.5.9 Impact of inaccurate real-time load information

Thus far, we have assumed that the load for the current decision period τ is

accurately available and can be used for decision making for that period. This is

a reasonable assumption for smaller decision periods (say τ ≤ 30 minutes) but not

so much when the decisions are more infrequent and decision periods are longer.

Therefore we consider the situation where our algorithm does not know the current

load but would have to predict it for the purpose of deciding which clusters are

transitioned. When cluster transitions are made based on a prediction of load over

any extent of time there always exists the chance of insufficient active capacity and

users being denied service. We allow active CDN clusters to run to 100% utilization

before they drop incoming workload. We define availability as the ratio of workload

served to total workload. Under these assumptions, we define a simple algorithm that

predicts the load and computes the optimal cluster allocation under this prediction.

The predicted load equals the load at the previous decision period, for small decision

periods (τ ≤ 1 hour), or the load at the same decision period from the previous day,

for larger periods (τ > 1 hour). Using this simple prediction algorithm, Figure 4.8b

shows energy savings for decision period 5 minutes ≤ τ ≤ 1 day. Energy savings

dropped from 100% to 79% of optimal over this range. In each case, the algorithm

provided at least “three nines” of availability (i.e. 99.9%).

4.5.10 Finding a sweet-spot

So far we looked at the impact of individual parameters on the energy savings

obtained through cluster shutdown. In a realistic situation, we would expect CDNs

59

5 min 4 hrs 12 hrs 24 hrs
0

20

40

60

80

100

Decision period (τ)

R
el

. s
av

in
gs

 (
%

 o
pt

im
al

)

Without BW constraints
With BW constraints

Figure 4.9: We can achieve 22% of the optimal savings even with switching each
cluster no more than once a day, allowing no increase in bandwidth costs, and limiting
the average distance from the user to the cluster to be no more than 800 km.

to operate under multiple constraints. In this section we look at the combined im-

pact of cluster transitions, performance and bandwidth constraints on energy savings.

Figure 4.9 shows energy savings as a function of the decision period when the average

user-cluster distance is upper bounded at D = 800 km. With no increase in band-

width costs (corresponding to r = 0), for a decision period (τ) of 5 minutes, and a

performance constraint of 800 km we obtain 71% of optimal savings. This compares

favorably with the 73% savings without the performance constraints (Section 4.5.7).

Savings fall to 22% of optimal as the decision period (τ) increases to 1 day.

4.5.11 Cluster vs Server shutdown

We look at the relative energy savings of two complementary techniques: GLB

that incorporates cluster shutdown and an LLB that incorporates server shutdown.

We assume that, given a cluster with c servers getting incoming load λ, LLB always

keeps the exact number of servers dλ/µmaxe required to serve the incoming load for

that cluster and at every time step. This is of course an optimistic assumption but

it helps understand the best possible savings achievable using LLB. However, unlike

GLB, LLB is unable to move traffic across clusters to shutdown entire clusters. Figure

4.10 plots the difference between the energy savings of implementing cluster shutdown

60

in GLB and the corresponding savings from implementing server shutdown in LLB. In

Figure 4.10a, we see that at low outside air temperatures when cooling is relatively

inexpensive (cf., Fig 4.1a), LLB with server shutdown performs better due to its

greater impact on server energy. At high temperatures GLB with cluster shutdown

runs active clusters at lower utilization to reduce cooling energy. The limited ability

of GLB to shutdown clusters at higher temperatures implies that it performs worse

than LLB. Thus, GLB outperforms LLB at moderate temperatures outside of these

two extremes. The relative performance of GLB versus LLB also depends on the

CDN utilization. Figure 4.10b shows that when the CDN is lightly loaded, GLB

has greater flexibility to move traffic around and switch off clusters. There are fewer

such opportunities at higher system utilization, where larger clusters need to be kept

active for serving the incoming CDN load. At 85◦F , GLB out performs LLB in all

cases. But the additional energy savings drop from 42% to 4% as CDN utilization

increases from 7% to 35%. This trend is exaggerated when the temperature increases

to 100◦F . In this case, LLB is better than GLB but the additional savings provided

by LLB increases from 9% to 68% over the same range of utilization.

20 40 60 80 100
−60

−40

−20

0

20

Outside temperature (F)

R
el

at
iv

e
en

er
gy

 s
av

in
gs

 (
%

)

(a) GLB is better within
a broad temperature
range

0 20 40 60 80 100
−150

−100

−50

0

50

CDN utilization (%)

R
el

at
iv

e
en

er
gy

 s
av

in
gs

 (
%

)

85 F
100 F

(b) GLB is better at lower uti-
lization and outside tempera-
tures

Figure 4.10: GLB (cluster shutdown) vs LLB (server shutdown)

61

4.5.12 Integrating Server shutdown with Cluster shutdown

We evaluate the hierarchical strategy described earlier in Section 4.4 that incor-

porates energy-awareness at both the local and global load balancer by implementing

cluster shutdown and server shutdown. A pure cluster shutdown strategy is taken as

the baseline, and we study the incremental benefit of adding server shutdown.

We saw earlier in Section 4.5.7 that with no increase in bandwidth costs (r = 0), a

pure cluster shutdown strategy kept more clusters active with servers running below

the allowable peak utilization (µmax = 75%). Relaxing bandwidth constraints allowed

servers to run at higher utilizations and thus keeping a smaller fraction of its clusters

active. In fact, the CDN approached power proportionality for r = 100%. To study

the impact of adding server shutdown, we plot the incremental gains obtained in

Figure 4.11a. With no increase in bandwidth cost (r = 0), the combined strategy

saves 34% over pure cluster shutdown. Relaxing bandwidth constraints causes savings

to drop to a negligible 0.72% at twice the bandwidth cost (r = 100%).

Figure 4.11b shows incremental gains obtained as a function of performance. If low

latency is required, the energy savings over a pure cluster shutdown strategy is 46%,

with an average user-cluster distance of 300 km. These gains taper off as performance

constraints are relaxed and cluster shutdown approaches power proportionality.

Tight constraints limit the performance of the pure cluster shutdown strategy by

requiring the CDN to keep more clusters active and run at higher idle capacity. Server

shutdown targets this idle capacity to obtain additional gains. We quantify this in

Figure 4.11c by plotting savings against average idle capacity of an active server (as

a percentage of peak utilization µmax). The roughly power proportional nature of the

CDN after adding server shutdown implies that any idle capacity previously present

is converted directly into savings. This explains the approximate linear nature of the

graph.

62

0 20 40 60 80 100
0

20

40

60

80

100

BW relaxation factor r (%)

E
ne

rg
y

sa
vi

ng
s

(%
)

(a) Additional energy
savings over pure clus-
ter shutdown falls off
as bandwidth constraints
are relaxed. 34% savings
are achieved without any
increase in BW costs

400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

Average distance (km)

E
ne

rg
y

sa
vi

ng
s

(%
)

(b) 46% additional en-
ergy savings over pure
cluster shutdown can be
achieved at an average
distance of D = 300 km.

0 20 40 60 80 100
0

20

40

60

80

100

Idle cap. on avg. active server (% peak)

E
ne

rg
y

sa
vi

ng
s

(%
)

(c) Energy savings obtained
by adding server shutdown are
roughly linear to the idle ca-
pacity of an active server under
pure cluster shutdown

Figure 4.11: Integrating server shutdown with cluster shutdown

4.6 Related Work

Data center energy management has emerged as an active area of research in

recent years. Several approaches have emerged for reducing the energy consumption

of data centers, including server shutdown during off-peak periods [12, 50, 21, 13],

the use of low-power server nodes [7], OS-level energy management through methods

such as DVFS, the use of renewable energy [46, 18], and routing requests to locations

with the cheapest or greener energy [42]. Separately, there has also been work on

designing cooling-aware or thermal-aware algorithms for data centers. Cooling-aware

workload management techniques have been studied in [24]. Thermal-aware workload

placement techniques that place load on cool portions of the data center have been

studied in [33, 51]. Models for air- or chiller-based cooling data centers have been

studied in [24, 39]; the cooling models used here are inspired by this work and also

the data published by the California Energy Commission [11].

A key difference between the prior work and our work is our focus on content

delivery networks; the design choices made by a CDN require these ideas to be cus-

63

tomized to the CDN case, for instance by integrating energy management with the

CDN’s load balancing algorithms. Another key CDN-specific issue is to design energy

saving methods that minimize the impact on user performance and bandwidth costs.

Specifically we use realistic power and cooling models for clusters, based on prior

work, and use them to design cluster shutdown algorithms that can be implemented

in the CDN’s global load balancing algorithms. In this sense the approach also differs

from, and is complementary to, prior work on server shutdown technique for CDN

energy management [29].

4.7 Conclusions

We focused on the design of energy-efficient CDNs. Since a CDN could comprise

thousands of server clusters across the globe consuming a significant amount of energy,

we propose a new technique called cluster shutdown to turn off entire clusters to save

energy. Our experimental results using extensive traces from a commercial CDN

shows that cluster shutdown can reduce system-wide energy usage by 67% in the

optimal case, and most of these savings can be achieved without sacrificing end-

user performance and bandwidth costs. In addition, the technique works well even

when shutdown is limited to once per day for each cluster and when the load is

not known in real-time and must be predicted. We believe that cluster shutdown is a

strong candidate for implementation in an actual CDN, especially since it fits in more

easily with current CDN architectural principles in comparison with server shutdown

techniques studied in the past.

64

CHAPTER 5

REDUCING ENERGY COSTS USING DEMAND
RESPONSE

A recent trend is the emergence of the smart electric grid that supports many

technologies and features to encourage greater adoption of energy-efficiency tech-

niques. These include the availability of novel electricity pricing models to encourage

greater energy efficiency, the deployment of smart meters for fine-grain metering and

billing needed by such pricing models, and automated demand-response where the

grid provides explicit signals to consumers to reduce their usage during peak periods

of supply-demand imbalances. While demand-response involves explicit requests to

users to reduce usage, we note that variable pricing schemes provide an implicit form

of demand-response by discouraging users from using “too much” electricity when

the electricity prices are high.

In this chapter, we study how Internet-scale distributed systems can exploit smart

grid features such as demand response to reduce their energy costs. There are two

possible methods for reducing energy usage in an IDS in response to explicit or implicit

demand-response signals. Both methods involve reducing the load at the data center

that receives such a signal and then shutting down a subset of the servers to reduce

the total energy usage. One possible approach to reducing energy use is to move a

portion of the load to other nearby data centers and then shutting down a portion of

the servers; this is achieved by having the IDS redirect some of the incoming requests

to other nearby data centers and ensure that data is already replicated to service these

requests from alternate sites. This approach was studied in [42] where this mechanism

was employed to reduce electricity bills by redirecting load from data centers with

65

higher electricity prices to others with lower prices. This approach, and related ones,

implicitly assume that the incoming requests need to be serviced immediately (i.e.,

in “real-time”). We study an alternate approach that moves load in the temporal

dimension (rather than spatially or geographically, as has been done in prior work [42])

in order to reduce energy costs. Our approach assumes that not all of the incoming

requests need to be serviced immediately. While requests to interactive services such

as web requests do need immediate service, there are other classes of requests that

are elastic and can be delayed if necessary. Examples of such elastic requests include

background downloads of software updates by operating systems, distribution of OS-

level or security patches and content prefetching for local caching.1 In addition to

elastic content requests, Internet-scale distributed systems also see elastic requests for

computation—such as batch jobs like transcoding of videos [5], analytics processing,

nightly backups, or book-keeping operations such as accounting and billing. Thus

we assume that an IDS sees two types of requests: interactive requests that require

immediate service and elastic requests that can be delayed if necessary. We study

how such a system can respond to demand-response signals from the smart grid by

delaying elastic requests and shutting down some of the servers, thereby temporarily

reducing energy usage (and thus, energy costs).

We make the following contributions:

• In the offline context where the full load sequence is known ahead of time, we derive

provably optimal algorithms for demand-response that delay load to minimize the

overall cost.

• We evaluate our algorithm on a large CDN workload using an extensive set of pricing

contracts that include time-of-use energy pricing and peak demand pricing. We

1All major OS platforms—Mac, Windows and Linux—as well as many phone-based OSes rou-
tinely download software updates in the background.

66

achieve savings of 12% even when only 40% of the load is elastic and off-peak usage

is charged at half the rate of on-peak usage. We also demonstrate that almost all

the energy savings can be attained with no increase in the bandwidth costs.

• For a peak demand pricing contract the algorithm does significantly better, achieving

32% savings under similar constraints.

• For hybrid contracts where both energy usage and demand charges are included in

the energy costs, we show that 23% savings are possible for the case when energy

and demand contribute almost equally to the total cost.

• We find that upper-bounding the service delay by 6 hours is sufficient to achieve

the maximum possible savings for 40% elastic load under all the contracts evaluated

with our workload.

The rest of this chapter is structured as follows. Section 5.1 presents some back-

ground and the models assumed for the workload, power consumption and electricity

pricing. Our algorithm for optimizing energy costs via demand-response is presented

in Section 5.2. Results from our experimental evaluation are presented in Section 5.3.

We present related work in Section 5.4 and conclude in Section 5.5.

5.1 Background

Internet-scale Distributed Systems: Our work assumes an Internet-scale Dis-

tributed System (IDS) that provide service delivery or content delivery to its users.

Content distribution networks (CDNs) are an example of an Internet-scale distributed

system, and so are distributed cloud-based service delivery networks. A large IDS

employs tens of thousands of servers that are spread across a large number of data

centers; each data center houses a cluster of servers and the size of each cluster can

vary from hundreds to many thousands of servers [35]. Incoming requests for service

are assumed to be forwarded to an appropriate cluster by the IDS, and the request

67

is then serviced by one of the servers within that cluster. Our work assumes that a

request can be one of two types: interactive requests that require immediate service

and elastic requests that can be delayed if needed by the system. In this work, we

assume that each request, whether interactive or elastic, is always serviced by the

cluster to which it is sent by the IDS. That is, we do not consider the ability of the

IDS to redirect some of the load to other nearby clusters, and only look at temporal

load optimizations for elastic requests. While it is possible to combine techniques

for moving load across clusters with those that move load across time, we leave the

design of such hybrid techniques to future work.

We are interested in quantifying the potential energy savings that can result by

delaying elastic requests when performing smart-grid demand response. Demand

response (DR) is a technique by which a customer temporarily reduces electricity

usage in response to a signal from the grid; in our context, demand response refers to

any technique that the IDS can employ to reduce or defer its energy usage in response

to signals from the grid. We assume that the smart grid exposes variable electricity

prices to each customer; the exact pricing models considered in this study are detailed

later in this section. Since price of electricity is no longer flat, the varying prices serve

as implicit signals for demand-response When the electricity price is high or when

higher electricity usage will result in higher costs, the consumer (which, in our case,

is the IDS) is incentivized to temporarily curtail usage or shift usage to lower-price

periods, and thereby reduce costs. We study an optimization approach for performing

such demand-response in an IDS. Our work focuses only on implicit demand-response

(that responds to pricing signals) and we do not consider explicit demand response

here. Temporary deferral of elastic requests in response to an explicit DR signal from

the grid is an easier problem and it is straightforward to incorporate such DR signals

into our current work.

68

Workload Model: The workload of an IDS is generated by users and applications

around the world. The global load balancer of the IDS partitions the load and directs

a part of the load to each cluster of the IDS. Since our energy cost optimizations

do not move load across clusters, we model and optimize the load arriving at each

cluster independently. For each cluster, we model the load arriving at that cluster

by an arrival sequence λ = 〈λ0, λ1, . . . , λT−1〉, where λt is the load that arrives at the

cluster at time step t. We assume that a fraction κ of the incoming load is elastic

and that the elastic load can be served in a delayed fashion. Specifically, we assume

that the maximum allowed service delay for elastic load is τ . As a result of our

optimizations, the loads are processed by the servers in the cluster at times that are

potentially different from when they arrived. The output of our optimization is a

service sequence that we represent by λ̂ = 〈λ̂0, λ̂1, . . . , λ̂T−1〉, where λ̂t represents the

load that will be served by the cluster at time t.

Power consumption model for clusters: A power consumption model is used

to derive the instantaneous power drawn by the cluster, given its service load sequence

λ̂. Our cluster power model is based on our earlier work in [31]. We assume that the

cluster is fully power proportional and consumes power that equals u·Ppeak, where the

u is the utilization of the cluster defined as the ratio of the load served by the cluster

and its peak capacity. Ppeak is the maximum power that can be drawn by the cluster

that equals the product of the number of servers in the cluster and the peak power

draw of each server. Based on a typical deployed server used by IDNs, we assume

that each server can draw 97W of power at peak. Note that we assume that the

cluster is power proportional since a number of techniques such as server shutdown

[29] are known to make clusters close to power proportional. We also model the power

required for cooling the cluster as below.

PCOOL = PCOOL
peak ×

(
A+B · u′ + C · u′2

)

69

where u′ is the utilization of the chiller and the constants A, B, and C can be derived

from the regression curves provided by the California Energy Commission [11]. We

refer to our earlier work [31] for more details on our cooling model.

Electricity Pricing Models: The cost of electricity is often computed on the

basis of the four generic metrics described below. These metrics are themselves com-

puted from “instantaneous” measurements of electricity consumption made through-

out the billing period that is typically a month. Each metric below is either a demand

metric that is based on peak KW measurements or an energy usage metric that is

based on the energy consumed in KWHs. Further, some parts of the day are denoted

as peak, when energy consumption is usually high, and other parts of the day are

denoted as off-peak, when the energy consumption is usually low. We first derive

the integrated thirty-minute values by partitioning the billing period into 30-minute

intervals and computing both the average demand (KW) and the energy KWHs) in

each 30-minute interval. We then compute the four metrics below.

1. On-peak demand (Don): The maximum integrated thirty-minute demand (in

KWs) during on-peak periods.

2. Off-peak demand (Doff): The maximum integrated thirty-minute demand (in

KWs) during off-peak periods.

3. On-peak energy usage (Eon): Energy consumed (in KWHs) during on-peak

periods.

4. Off-peak energy usage (Eoff): Energy consumed (in KWHs) during off-peak

periods.

We consider three commonly used pricing models in our work. Let the cost of

electricity to serve a load sequence λ under a particular pricing model π be denoted

by costπ(λ). We compute costπ(λ) as follows. First we apply the cluster power model

70

to determine how much instantaneous power is drawn by the cluster to serve a given

load sequence. We then compute the four metrics above using the instantaneous

power draw and use it as follows.

1) The first model we consider is the time-of-use (TOU) pricing model[2] where

the utility computes the electricity bill based only on energy usage and does not

explicitly impose a demand price that depends on the peak consumption. If π is a

tariff that uses the TOU model then

costπ(λ) = αonEon + αoffEoff,

where αon the on-peak unit price (in $/KWH) and is more expensive than the off-

peak unit price αoff. Of particular interest is the ratio of off-peak to on-peak energy

prices ρE =
αoff

αon
. Small values of ρE imply a cheap off-peak price, while ρE = 100% is

equivalent to flat pricing.

2) The second model we consider is the demand pricing model where the utility

computes the electricity bill based only on the demand and does not explicitly charge

for the energy consumed. If π is a tariff that uses demand pricing then

costπ(λ) = βonDon + βoffDoff,

where βon the on-peak unit price (in $/KW) is more expensive than the off-peak unit

price βoff (in $/KW). Of particular interest is the the ratio of off-peak to on-peak

demand prices ρD =
βoff

βon
. Small values of ρD imply a much cheaper off-peak price,

while ρD = 100% is equivalent to flat demand pricing.

3) In the most general model which we call the hybrid pricing model [1, 3] all

four metrics above are used to compute the energy cost. In particular, costπ(λ) =

αonEon + αoffEoff + βonDon + βoffDoff. We define the mixing coefficient as the ra-

tio ρM = βon

αon
, where a value of 0 implies a pure energy usage pricing, while ∞

71

implies a pure demand pricing. Note that we can rewrite the incurred cost as

βon (Don + ρDDoff + ρM {Eon + ρEEoff}).

5.2 An Optimal Algorithm for Demand Response

We describe our algorithm for demand response that optimally delays load to

minimize the total energy cost of an IDS. The algorithm works individually for each

cluster of the IDS and does not move load across clusters. Let the incoming load at a

cluster be represented by an arrival sequence λ = 〈λ0, λ1, . . . , λT−1〉, where λt is the

load that arrives at the cluster at time step t. Further, let the fraction of the incoming

load that is elastic be κ and let the maximum allowed service delay for elastic load

be τ .

Our algorithm works in two steps. First, our algorithm creates a modified load

sequence called the service load sequence that we represent by λ̂ = 〈λ̂0, λ̂1, . . . , λ̂T−1〉,

where λ̂t represents the load that will be served by the system at time t. Note that λ̂

represents the load sequence obtained after the algorithm moves around the load to

optimize energy costs. (For simplicity, assume that λt = λ̂t = 0, for t < 0 and t ≥ T .

) Next, our algorithm uses the service sequence λ̂ and produces a set of specific load

movements Lt,t′ ≥ 0 that transforms the arrival sequence λ to the service sequence

λ̂. Specifically, Lt,t′ is the amount of elastic load that is moved from time t to time

t′, for all 0 ≤ t ≤ T − 1 and t ≤ t′ ≤ t+ τ . We describe each step in detail below.

5.2.1 Constructing the service load sequence λ̂

The algorithm delays processing some of the elastic load to minimize the energy

cost, while ensuring that no elastic load is delayed more than τ time steps and further

the cluster’s capacity bounds are met. Let ft be the elastic load that arrived at time

step t but was postponed to be processed at a later step by our algorithm. Since the

amount of elastic load arriving at time t is at most κλt, the following holds.

72

ft ≤ κ · λt,∀t (5.1)

The load that is delayed at a time step is assigned by the algorithm to be processed

at a later time step. Let pt represent the total elastic load that arrived at the cluster

at some time in the past but is assigned to be served at time t. We can write the

load served by the cluster at time t as

λ̂t = λt + pt − ft,∀t (5.2)

For simplicity, for values of t outside of our time window we set both pt and ft to

be zero, i.e., pt = ft = 0 for t < 0 and t ≥ T . Since the algorithm can only move

elastic load to a future time slot and never back to a past time slot, we require that

the total load served in every prefix in the service load sequence is upper bounded by

the corresponding load from the arrival load sequence. In other words,

t∑
i=0

λ̂i ≤
t∑
i=0

λi, ∀t (5.3)

By substituting for λ̂i from Equation 5.2, we get

t∑
i=0

fi −
t∑
i=0

pi ≥ 0,∀t (5.4)

Since service delay is at most τ , we require that the load in the arrival sequence

λ1, · · · , λt should be served by the cluster within time t+ τ . In other words

t+τ∑
i=0

λ̂i ≥
t∑
i=0

λi,∀t. (5.5)

Substituting for λ̂i, we get

t+τ∑
i=0

fi −
t+τ∑
i=0

pi ≤
t+τ∑
i=t+1

λi,∀t (5.6)

73

Let cluster capacity C represent the maximum load that a cluster can serve at

any given time . The cluster capacity is a function of server resources available at

each cluster. Since the served load cannot exceed C at any time step, we have

λ̂t ≤ C, ∀t (5.7)

Finally, we need the following variables to be non-negative.

λ̂t, pt, ft ≥ 0,∀t (5.8)

Let costπ(λ̂) represent the energy cost of serving load sequence λ̂ using energy

pricing policy π. We minimize costπ(λ̂) subject to the linear constraints represented

in Equations 5.1, 5.2, 5.4, 5.6, 5.7, and 5.8. Since the constraints are linear and we

know that the cost function costπ described in Section 5.1 is also linear for the tariffs

π that we consider, we can solve the minimization problem as a linear program (LP).

Theorem 3. For a given arrival load sequence λ, our linear program produces a

feasible service load sequence λ̂ that has the minimum energy cost.

Proof. Our LP formulation has a feasible solution since the input arrival sequence

λ satisfies the capacity constraints of Equation 5.7. Here we make the reasonable

assumption that the load balancer of the IDS distributes load to each cluster such

that arriving load satisfies the capacity constraint. Thus, λ̂t = λt and pt = ft = 0, for

all t, is a feasible solution for the LP. It follows that our algorithm yields a feasible

service sequence with minimum cost.

5.2.2 Constructing the load movement schedule L

The first step of our algorithm does not explicitly produce a schedule for how

much elastic load moves from each time t to each time t′, t′ > t. However, such a

74

schedule Lt,t′ can be computed given the output service sequence λ̂ and the input

arrival sequence λ as follows. We create a directed graph G = (V,E) with capacities

assigned to each edge as follows. The vertex set V = {s} ∪ U ∪ V ∪ {s′}, where s is

a source node, s′ is a sink node, U = {u0, u1, · · · , uT−1}, and V = {v0, v1, · · · , vT−1}.

The edge set E has an edge (s, ut) for each ut ∈ U with capacity w(u, st) = λt.

Likewise, it has an edge (vt, s
′) for each vt ∈ V with capacity w(st, s

′) = λ̂t. Finally,

we add edges (ut, vt′) with capacity +∞ as long as t ≤ t′ ≤ t+ τ . We then compute

the maximum flow from source s to sink s′ in graph G and compute the required load

movement schedule L(t, t′) to equal the flow routed on edge (ut, vt′).

Theorem 4. The above process finds a valid load movement schedule L that corre-

sponds to the arrival sequence λ and service sequence λ̂ in time O(τT 2).

Proof. First, we establish that all the load is successfully reassigned without any being

dropped. That is, the maximum flow routed equals the total load
∑

i λi that arrived

at the cluster. Since the maximum flow equals the minimum capacity of a cut that

separates the source s and sink s′ vertices, we compute the capacity of the minimum

cut of G. Note that the minimum cut will not contain any edge in U × V since those

edges have infinite capacity. Therefore, it suffices to consider cuts that place vertices

{s}∪{u0 · · ·ut}∪{v0, · · · , vt+τ} on one side and rest of the vertices on the other side,

for some 0 ≤ t ≤ T − 1. Such a cut has capacity

T−1∑
i=t+1

λi +
t+τ∑
i=0

λ̂t,

which using Equation 5.5 is at least
∑T−1

i=0 λi. Now noting there exists a cut of size∑T−1
i=0 λi, namely the cut with source s on one side and all other vertices on the other

side, we can conclude that the capacity of the minimum cut is
∑T−1

i=0 λi which in

turn equals the routed flow through G. Thus, all load that arrived at the cluster is

routed through G. Further, note that L constructed in this fashion obeys the delay

75

bound of τ , since we added only edges from a vertex ut to vertices {vt, · · · , vt+τ}

when constructing G. Thus, the load movement schedule L is valid and when L is

applied to the arrival load sequence λ we obtain the service load sequence λ̂. Finally,

note that using Orlin’s max flow algorithm, computing the load assignment L takes

O(|V ||E|) = O(τT 2) time.

5.3 Evaluating the Benefits of Demand Response

To evaluate the cost benefits of demand response (DR) in an IDS we used extensive

traces from Akamai [35], the largest commercial CDN, and ran the optimal demand

response algorithm presented in Section 5.2 for each Akamai cluster. We used each of

the three electricity pricing models described in Section 5.1 and analyzed the energy

cost benefits for the IDS. For all our evaluations, we report on system-wide cost

savings for the IDS by aggregating our results across all clusters. The system-wide

metrics capture the situation where demand response is implemented in all the clusters

of the IDS. As a baseline we compute the energy cost incurred by the IDS when no

demand response is implemented in any of the clusters, i.e., in the baseline no load is

shifted and the arrival load sequence and service load sequence are identical for each

cluster. Energy cost savings is the percent reduction in cost due to DR, i.e.,

100× ((baseline cost)− (cost with DR)/(baseline cost)).

5.3.1 Empirical Data from the Akamai Network

For our analysis, we used extensive load traces collected over 25 days from a large

set of Akamai clusters deployed in data centers in the US. The 22 clusters captured

in our traces are distributed widely within the US and had 15439 servers in total, i.e.,

it is a representative sampling of Akamai’s US deployments. Our load traces account

for a peak traffic of 800K requests/second and an aggregate of 950 million requests

76

delivered to clients. The traces consist of a snapshot of total load served by each

cluster collected every 5-minute interval from Dec 19th 2008 to January 12th 2009,

a time period that includes the busy holiday shopping season for e-commerce traffic

(Figure 5.1). In the figure, one may note load variations due to day, night, weekday,

weekend, and holidays (such as low load on day no. 8, which was Christmas).

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Time (days)

Lo
ad

Figure 5.1: Average load per server measured every 5 minutes across 22 Akamai
clusters in the US over 25 days.

5.3.2 Time-of-use (TOU) Pricing Model

We evaluate energy cost benefits of DR on a typical time-of-use energy contract

where the energy usage charge is a function of the time of day. The energy consumed

between 9 AM to 9 PM on weekdays is charged at the on-peak energy rate of αon

dollars per kWh. The energy consumed during the remaining duration is charged at

the off-peak rate of αoff dollars per kWh.

Varying ρE. Electric utility companies incentivize off-peak usage by providing

discounted pricing. We capture this through ρE =
αoff

αon
, the ratio of off-peak to on-

peak energy usage charge. ρE = 1 corresponds to flat pricing where the energy charge

is independent of the time of day. ρE = 0 corresponds to the case where off-peak usage

77

0 20 40 60 80 100
0

20

40

60

80

100

ρ
E
 (%)

C
os

t s
av

in
gs

 (
%

)

κ = 100%
κ = 40%

(a) Energy cost savings as
a function of ρE for dif-
ferent fractions of elastic
load (κ). 12% savings
when ρE = 50% for 40%
elastic load with τ = 12
hours.

0 20 40 60 80 100
0

20

40

60

80

100

Fraction of elastic load (κ %)

O
ff−

pe
ak

 lo
ad

 (
%

)

(b) 72% of the total load is
served at off-peak hours when
κ = 40% of the load is elastic
with τ = 12 hours.

0 20 40 60 80 100
0

20

40

60

80

100

Fraction of elastic load (κ %)

C
os

t s
av

in
gs

 (
%

)

ρ
E
 = 0 %

ρ
E
 = 30 %

ρ
E
 = 50 %

ρ
E
 = 70 %

ρ
E
 = 100 %

(c) Cost savings increase
linearly with the fraction
of elastic load.

0 5 10 15 20
0

20

40

60

80

100

Service delay τ (hours)

C
os

t s
av

in
gs

 (
%

)

ρ
E
 = 0 %

ρ
E
 = 30 %

ρ
E
 = 50 %

ρ
E
 = 70 %

ρ
E
 = 100 %

(d) At 40% elastic load, max
service delay τ = 6 hours is
sufficient to get maximum sav-
ings.

Figure 5.2: Time-of-use pricing

is free (such as in underutilized renewable sources of energy). To study the impact of

discounted pricing, we varied ρE and plotted it against the savings obtained by our

algorithm for τ = 12 hours. (Figure 5.2a). A service delay of half a day allows us to

move almost the entire load from peak periods to off-peak hours (ρ = 0), saving 99%

when κ = 100%, and 38% savings with κ = 40%. The savings drop to 0 when the

78

incentive is removed and off-peak is charged at the same rate as on-peak (ρE = 1).

For a typical value of ρE = 50% where off-peak energy charge is half of the on-peak

charge we are able to save 12% even when only 40% of the load is elastic.

Varying elastic load fraction κ. Any increase in the fraction of elastic load κ is

exploited by the algorithm by moving a larger fraction of the overall load to off-peak

hours. Figure 5.2b quantifies this by plotting κ against the fraction of overall traffic

served during off-peak hours over the duration of the entire trace. For interactive

loads, where κ = 0, about 55% of the entire load is handled during off-peak hours.

With increasing flexibility to delay load, the fraction of off-peak load increases linearly

with κ. For typical values of τ = 12 hours, κ = 40% the algorithm serves 72% of the

entire load during off-peak hours.

The linear relation between κ and the off-peak load gets reflected in the cost

savings as well, as seen in Figure 5.2c. Individual curves in the figure correspond to

different values of the energy usage pricing ratio ρE. The lower the value of ρE, the

higher the discount for off-peak usage and thus the greater savings.

Varying maximum allowable delay τ . Different elastic tasks processed by an IDS

have different delay sensitivities. A task such as billing is relatively insensitive to

delay, since it suffices that the monthly bills for customers of the IDS is ready by

the end of the month. However, other elastic tasks like a software update or video

transcoding is expected to complete within hours.The relation between maximum

allowable service delay τ and cost savings obtained by the algorithm are shown in

Figure 5.2d for κ = 40%. Individual curves in the figure correspond to different values

of the energy usage pricing ratio ρE. It is interesting to note that increasing τ beyond

a threshold provides little additional cost savings. In particular, a service delay τ =

6 hours is sufficient to obtain the maximum possible savings. Thus, adding elastic

loads with more laxity than 6 hours does not provide larger benefits. The six hour

79

threshold is a consequence of the time duration of the on-peak and off-peak time

periods in the TOU pricing.

Optimizing electricity costs without increasing bandwidth costs: The TOU pricing

0 20 40 60 80 100
0

20

40

60

80

100

ρ
E
 (%)

C
os

t s
av

in
gs

 (
%

)

κ = 100%
κ = 40%

(a) Energy cost savings as
a function of ρE for dif-
ferent fractions of elastic
load (κ). 12% savings
when ρE = 50% for 40%
elastic load with τ = 12
hours.

0 20 40 60 80 100
0

20

40

60

80

100

Fraction of elastic load (κ %)

O
ff−

pe
ak

 lo
ad

 (
%

)

(b) 72% of the total load is
served at off-peak hours when
κ = 40% of the load is elastic
with τ = 12 hours.

0 20 40 60 80 100
0

20

40

60

80

100

Fraction of elastic load (κ %)

C
os

t s
av

in
gs

 (
%

)

ρ
E
 = 0 %

ρ
E
 = 30 %

ρ
E
 = 50 %

ρ
E
 = 70 %

ρ
E
 = 100 %

(c) Cost savings increase lin-
early for κ < 70% and then
slowly plateaus

0 5 10 15 20
0

20

40

60

80

100

Service delay (hours)

C
os

t s
av

in
gs

 (
%

)

ρ
E
 = 0 %

ρ
E
 = 30 %

ρ
E
 = 50 %

ρ
E
 = 70 %

ρ
E
 = 100 %

(d) At 40% elastic load, max
service delay τ = 6 hours is
sufficient to get maximum sav-
ings.

Figure 5.3: Energy cost optimization without increasing bandwidth costs using the
max-load constraints.

model does not explicitly charge for the maximum power demand of a cluster. So

80

the cost optimizations we saw earlier in this section could potentially create new load

peaks when moving load from on-peak to off-peak hours. In fact, such peaks could

cause the maximum load of the service load sequence to be higher than that of the

arrival load sequence! Such a situation is untenable from the standpoint of other

operational costs incurred by an IDS. Besides electricity, a primary operating cost

for an IDS is bandwidth. Bandwidth is often priced using a 95/5 contract where the

billing period is divided into 5-minute intervals and the average bandwidth used by

the cluster is computed over each such interval. The bandwidth cost of the cluster

is then proportional to 95th percentile of the 5-minute averages [4]. We use the

maximum load of the service load sequence of a cluster as a reasonable proxy for

bandwidth costs incurred in that cluster. In particular, we assume more load means

proportionally more bandwidth usage. Further, as we did in [4], we use “maximum”

as a proxy for the “95th percentile” as the latter is difficult to analyze and optimize.

Note that if our energy cost optimization increases the bandwidth cost, that could

negate the economic incentive2 for the IDS performing such an optimization.

We now optimize demand response in the TOU pricing model with the additional

constraint that the bandwidth costs are not increased. To achieve this we add a

new constraint to our optimization algorithm mandating that the maximum load of

the output service load sequence λ̂ is no more than the maximum load of the input

arrival load sequence λ. Specifically, let the maximum load in the arrival sequence be

λmax =
T−1
max
i=0

λi. We require that ∀i, λ̂i ≤ λmax.

A limit on the maximum load decreases the ability to run at higher utilization

and thus exploit energy discounts effectively. Therefore we would expect cost savings

to decrease with the max-load constraints. Figure 5.3a shows that savings drops to

2It is also worth noting that any scheme that increases maximum load also increases the maximum
power demand, instead of decreasing it. This negates a primary purpose of an utility offering TOU
pricing to incentivize reduction in peak power demand.

81

84% when off-peak energy is free (ρE = 0) for pure elastic load (κ = 100%). It is

interesting to note however that the additional constraints have no impact for a lower

fraction of elastic load (κ = 40%). Comparing figures 5.2c and 5.3c we see that the

max-load constraint has no impact on the behavior of the algorithm for κ < 70%.

5.3.3 Demand Pricing

Demand pricing is an important component of most realistic electricity pricing

contracts, allowing electric utilities to directly manage the peak power demand by

charging on the basis of it. A demand pricing contract consists of an on-peak demand

charge βon and an off-peak demand charge βoff. The on-peak charge is applied to

the maximum integrated thirty-minute demand during on-peak periods (Don) seen

over the billing period. Similarly the off-peak charge is applied to the maximum

integrated thirty-minute demand during off-peak periods (Doff). The electricity cost

for a demand pricing policy π for a load sequence λ is

costπ(λ) = βonDon + βoffDoff.

Varying relative off-peak ratio ρD. Electric utilities are underutilized during off-

peak hours and can support higher demands from individual consumers and incen-

tivize them by discounted off-peak pricing. We capture this discounting through

ρD =
βoff

βon
, the relative price of off-peak demand. ρD = 0 corresponds to free usage

during off-peak hours, and ρD = 1 corresponds to time-insensitive demand pricing.

Figure 5.4a plots cost savings as a function of the relative off-peak price ρD. For a

maximum service delay of half a day the savings resemble those seen earlier for pure

energy usage contracts when ρD = 0. But for ρD = 100% savings are still possible

by smoothing out the peaks. When the entire load is capable of withstanding service

delays of τ = 12 hours, we see savings of 37%. For a lower value of κ = 40%, we still

82

get savings of 27% at ρD = 100%. For typical values of ρD = 50% and κ = 40% we

get 32% savings.

Varying percent of elastic load κ. Since pricing depends on peak demand, sub-

stantial savings can be obtained by smoothing out the largest peaks with relatively

low movement in load. As the peaks and valleys get shallower, more load needs to

be moved for incremental savings. We see this in Figures 5.4b and 5.4c where for low

values of κ, savings grow rapidly without moving load from on-peak to off-peak hours.

As κ increases beyond 30%, the gains obtained by local valley filling are exhausted

and additional gains are obtained by moving traffic to off-peak hours.

Varying maximum allowable service delay τ . The relationship between the max-

imum allowed service delay and cost savings are shown in Figure 5.4d for κ = 40%.

As in the case for time-of-use contracts, we see that maximum possible savings are

achieved by a service delay of at most 6 hours.

5.3.4 Hybrid Pricing

Electric utilities use a combination of energy usage and demand charges to increase

the usage during off-peak hours and at the same time decrease the peak power usage.

We capture this through a mixing coefficient ρM = βon

αon
, the ratio of on-peak demand

charge to on-peak energy charge. ρM = 0 corresponds to a pure energy usage contract

such as time-of-use, while as ρM tends to infinity the contract gets closer to a pure

demand pricing model.

Varying mixing coefficient ρM . In Figure 5.5a, we study the impact of demand

response as ρM is increased with κ = 100%. When energy usage costs dominate at low

values of ρM we see savings as observed earlier in Figure 5.2a with 0 savings for ρE =

100% and 31% for ρE = 50%. When the contribution of demand charges dominates

for large values of ρM we see savings rise to roughly 37% and 53% respectively for

ρD = 100% and ρD = 50% respectively, comparable to values seen in Figure 5.4a. It

83

0 20 40 60 80 100
0

20

40

60

80

100

ρ
D

 (%)
C

os
t s

av
in

gs
 (

%
)

κ = 100%
κ = 40%

(a) 32% savings when
ρD = 50% for κ = 40%
elastic load with τ = 12
hours.

0 20 40 60 80 100
0

20

40

60

80

100

Fraction of elastic load (κ %)

O
ff−

pe
ak

 lo
ad

 (
%

)

(b) 63% of the total load is
served at off-peak hours for
40% elastic τ = 12 hours

0 20 40 60 80 100
0

20

40

60

80

100

Fraction of elastic load (κ %)

C
os

t s
av

in
gs

 (
%

)

ρ
D

 = 0 %

ρ
D

 = 30 %

ρ
D

 = 50 %

ρ
D

 = 70 %

ρ
D

 = 100 %

(c) Cost savings flatten
out as the fraction of elas-
tic load increases

0 5 10 15 20
0

20

40

60

80

100

Service delay τ (hours)

C
os

t s
av

in
gs

 (
%

)

ρ
D

 = 0 %

ρ
D

 = 30 %

ρ
D

 = 50 %

ρ
D

 = 70 %

ρ
D

 = 100 %

(d) At 40% elastic load, 6
hours of service delay is suffi-
cient to get maximum savings

Figure 5.4: Demand Pricing

is interesting to note that savings increase as the contract tends towards a demand

pricing model.

We consider a typical hybrid contract where ρE = ρD = 50% in greater detail.

Figure 5.5b shows the contribution of energy charges as a fraction of the total cost

paid to the utility. We see the curve drop-off asymptotically from 99.6% to 3.3% as

ρM increases from 0.1 to 1024. Energy utilization charges contribute about the same

as demand charges when ρM = 32.

84

200 400 600 800 1000
0

20

40

60

80

100

ρ
M

C
os

t s
av

in
gs

 (
%

)

ρ
E
 = 50 %, ρ

D
 = 50 %

ρ
E
 = 100 %, ρ

D
 = 50 %

ρ
E
 = 50 %, ρ

D
 = 100 %

ρ
E
 = 100 %, ρ

D
 = 100 %

(a) 43% savings when
ρM = 32 for ρD = 50%,
ρE = 50%, κ = 100%
elastic load with τ = 12
hours.

0 200 400 600 800 1000
0

20

40

60

80

100

ρ
M

F
ra

ct
io

n
of

 e
ne

rg
y

co
st

 (
%

)

κ = 0 %
κ = 40 %
κ = 100 %

(b) Energy costs contribute
roughly half of the total cost
when ρM = 32 for κ = 40%
with τ = 12 hours

0 20 40 60 80 100
0

20

40

60

80

100

Fraction of elastic load (κ %)

C
os

t s
av

in
gs

 (
%

)

ρ
M

 = 1

ρ
M

 = 32

ρ
M

 = 1024

(c) The relation between
savings and the fraction
of elastic load κ becomes
non-linear as ρM increases

0 5 10 15 20 25
0

20

40

60

80

100

Service delay τ (hours)

C
os

t s
av

in
gs

 (
%

)

ρ
M

 = 1

ρ
M

 = 32

ρ
M

 = 1024

(d) At 40% elastic load, 6
hours of service delay is suffi-
cient to get maximum savings
of 23% at ρM = 32

Figure 5.5: Hybrid Pricing

Varying fraction of elastic load κ. Figure 5.5c shows the relation between the

fraction of elastic κ and cost savings for different values of the mixing coefficient ρM .

Low values correspond to linear relation, similar to pure energy contracts (Figure

5.2c) while high values mirror the non-linear relation observed in Figure 5.4c.

Varying maximum allowable delay τ . A high service delay τ allows greater freedom

to the algorithm to postpone load and thus increase savings. It is interesting to note

85

though that a maximum service delay of 6 hours is sufficient to obtain the maximum

possible savings through demand response. The savings obtained increases with the

value of ρM when the demand pricing component begins to dominate. Savings increase

from 13% to 31% as ρM increases from 1 to 1024 for κ = 40% elastic load.

5.4 Related Work

Recently the area of energy-aware (“green”) distributed system design has seen

significant research attention. Design of energy-aware techniques for data centers has

involved power management mechanisms at a server level [19] as well shutting down

servers when not needed [12, 13, 17]. Thermal-aware placement of workloads across

servers to reduce energy and cooling costs has also been studied [33]. FAWN uses

“wimpy” nodes to serve simple content and reduce cluster energy costs [7]. More

recent work has studied how to incorporate intermittent renewable energy to power

data center clusters [46, 18]. Design of energy-aware Internet-scale systems has also

seen recent attention. The use of server shutdown and cluster shutdown have been

proposed as mechanisms to turn off less utilized servers or clusters in a CDN and

reduce energy costs [29, 25, 31]. Separately techniques to move incoming load to other

nearby data centers with lower electricity prices has been proposed as a mechanism

to reduce the energy bills of an IDS [42]. Our approach is complementary since we

propose moving the load in the temporal dimension—by delaying elastic requests—

and thereby reducing electricity bills.

The use of automated demand response techniques have been studied in the con-

text of the smart grid [28]. However such techniques have been designed for smart

buildings where a building reduces its energy footprint by automatically switching

off less important loads upon receiving a DR signal from the grid. Integration of

demand-response directly into data centers or distributed systems is relatively new

idea and our approach takes an initial step in that direction.

86

5.5 Conclusions

In this chapter we studied techniques for reducing the energy costs in an IDS

by performing demand-response to respond to variable electricity prices. Our pro-

posed demand response approach consists of moving a portion of the incoming load—

comprising elastic requests—to a later point in time, thereby temporarily curtailing

the server demand and reducing energy costs. Such an approach is best suited for

elastic requests such as background downloads of software updates or background

computational tasks that do not always require immediate service. We presented an

optimization-driven algorithm for our demand-response approach and evaluated the

potential benefits of this approach for realistic workloads from a commercial CDN

and realistic electricity pricing models. Our results showed that our algorithm can

achieve 12% savings in the presence of time-of-use electricity pricing when only 40%

of the demand is elastic. The savings increase to 32% under peak-based demand

pricing and to 23% under a combination of time-of-use and demand pricing.Further,

most if not all of energy savings can be obtained without an increase in bandwidth

costs.

As part of future work, we plan to study hybrid techniques that combine the

ability to move load in the spatial dimension (by moving some load to nearby data

centers) as well as the temporal dimension (by deferring a portion of the load) to

achieve greater energy savings. It is likely that geographically separated data centers

will differ not just in the price of power but also the type of contract imposed by the

utility, which can provide greater scope for cost savings.

87

CHAPTER 6

SUMMARY AND FUTURE WORK

This thesis demonstrates that large distributed systems like CDNs can save on en-

ergy costs, by reducing energy usage or by exploiting differences in electricity pricing,

without increasing operating costs while still satisfying client-side SLAs.

We proposed an optimal offline algorithm and an online algorithm to extract

energy savings at the level of local load balancing within a data center. We show

that it is possible to reduce the energy consumption of a CDN by 51% while ensuring

five nines of service availability and an average of just 1 transition per server per day.

Further, we show that keeping even 10% of the servers as hot spares helps absorb

load spikes due to global flash crowds with little impact on availability SLAs.

Next we proposed a new technique called cluster shutdown to turn off entire

clusters to save energy. Our experimental shows that cluster shutdown can reduce

system-wide energy usage by 67% in the optimal case, and most of these savings

can be achieved without sacrificing end-user performance and bandwidth costs. In

addition, the technique works well even when shutdown is limited to once per day for

each cluster and when the load is not known in real-time and must be predicted. We

believe that cluster shutdown is a strong candidate for implementation in an actual

CDN, especially since it fits in more easily with current CDN architectural principles

in comparison with server shutdown techniques studied in the past.

Finally we studied techniques for reducing the energy costs in a CDN by perform-

ing demand-response to respond to variable electricity prices. Our proposed demand

response approach consists of moving a portion of the incoming load - comprising

88

elastic requests - to a later point in time, thereby temporarily curtailing the server

demand and reducing energy costs. We presented an optimization-driven algorithm

for our demand-response approach and evaluated the potential benefits of this ap-

proach for realistic workloads from a commercial CDN and realistic electricity pricing

models. Our results showed that our algorithm can achieve 12% savings in the pres-

ence of time-of-use electricity pricing when only 40% of the demand is elastic. The

savings increase to 32% under peak-based demand pricing and to 23% under a com-

bination of time-of-use and demand pricing. Further, most if not all of energy savings

can be obtained without an increase in bandwidth costs.

6.1 Future work

Recent developments in the area of renewable energy indicate that the combination

of solar and energy storage is gaining traction as an alternative to fossil fuels [15, 38].

While it may not be economically viable to move completely off-grid, renewables

are being used to clip the peak demand from industrial customers [38]. Batteries

help smooth out the intermittent nature of renewable power generation but there still

remain significant challenges to their adoption at a commercial scale. Initial attempts

have been made to redesign data centers and scheduling algorithms to use renewables

[8, 18, 36].

A direction of future work would be to reduce energy cost in CDNs where a portion

of server clusters are powered through renewables. The use of battery storage can

provide a lower bound on workload that can be handled at any specific deployment.

Further, the geographically distributed nature of data centers deployed reduces the

risk of renewable energy generation. The challenge would be to maintain SLAs while

reducing energy from the grid.

Another direction of future work would be to use net-metering contracts to reduce

energy costs. When renewable energy production is significant, a data center can

89

deliver energy to the grid and use it to offset energy use over the billing period.

Time-of-use pricing provide an opportunity to sell excess energy during peak hours

and reduce the load on the grid. The addition of energy storage and local energy

generation would be an extension to our earlier work on demand-response techniques

for CDNs.

90

BIBLIOGRAPHY

[1] Duke Energy : Schedule OPT. http://www.duke-energy.com/pdfs/

scscheduleopt.pdf.

[2] Ontario Hydro Rates. http://www.ontario-hydro.com/index.php?page=

current_rates.

[3] Wisconsin Electric Rates. http://www.we-energies.com/pdfs/etariffs/

wisconsin/elecrateswi.pdf.

[4] Adler, Micah, Sitaraman, Ramesh K., and Venkataramani, Harish. Algorithms
for optimizing the bandwidth cost of content delivery. Computer Networks 55,
18 (2011), 4007–4020.

[5] Akamai Technologies. VOD Transcoding, 2013. http://www.akamai.com/dl/

brochures/sola_vision_transcoding_brief.pdf.

[6] Amur, H., Cipar, J., Gupta, V., Ganger, G.R., Kozuch, M.A., and Schwan, K.
Robust and flexible power-proportional storage. In Proceedings of the 1st ACM
symposium on Cloud computing (2010), ACM, pp. 217–228.

[7] Anderson, D., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., and Va-
sudevan, V. Fawn: A fast array of wimpy nodes. In Proceedings of ACM SOSP
(October 2009).

[8] Arlitt, Martin, Bash, Cullen, Blagodurov, Sergey, Chen, Yuan, Christian, Tom,
Gmach, Daniel, Hyser, Chris, Kumari, Niru, Liu, Zhenhua, Marwah, Manish,
et al. Towards the design and operation of net-zero energy data centers. In
Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm),
2012 13th IEEE Intersociety Conference on (2012), IEEE, pp. 552–561.

[9] Barroso, L.A., and Holzle, U. The case for energy-proportional computing. Com-
puter 40, 12 (2007), 33–37.

[10] Beloglazov, Anton, Buyya, Rajkumar, Lee, Young Choon, and Zomaya, Al-
bert Y. A taxonomy and survey of energy-efficient data centers and cloud com-
puting systems. Advances in Computers 82 (2011), 47–111.

[11] California Energy Commission. Nonresidential Alternative Calculation Method
(ACM) approval manual for the 2008 building energy efficiency standards, De-
cember 2008.

91

[12] Chase, J., Anderson, D., Thakar, P., Vahdat, A., and Doyle, R. Managing energy
and server resources in hosting centers. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (SOSP) (October 2001), pp. 103–
116.

[13] Chen, A., Das, W., Qin, A., Sivasubramaniam, A., Wang, Q., and Gautam, N.
Managing server energy and operational costs in hosting centers. In Proceed-
ings of the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (June 2005).

[14] Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., and Zhao, F. Energy-
aware server provisioning and load dispatching for connection-intensive internet
services. In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation (2008), USENIX Association, pp. 337–350.

[15] Citigroup. Energy Darwinism II, September 2014. http://citi.us/1vJooWQ.

[16] Douglis, Fred, Krishnan, Padmanabhan, Bershad, Brian, et al. Adaptive disk
spin-down policies for mobile computers. Computing Systems 8, 4 (1995), 381–
413.

[17] Gandhi, A., Gupta, V., Harchol-Balter, M., and Kozuch, M. Optimality analysis
of energy-performance trade-off for server farm management. In Proc. 28th Intl.
Symposium on Computer Performance, Modeling, Measurements, and Evalua-
tion (Performance 2010) Namur, Belgium (November 2010).

[18] Goiri, I, Katsak, W, Le, K, Nguyen, T, and Bianchini, R. Parasol and
greenswitch: Managing datacenters powered by renewable energy. In Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS)
(2013).

[19] Kant, K., Murugan, M., and Du, D H. C. Willow: A control system for energy
and thermal adaptive computing. In Procedings of the 25th IEEE IPDPS (2011).

[20] Koomey, J.G. Worldwide electricity used in data centers. Environmental Re-
search Letters 3 (Sept 2008).

[21] Krioukov, A., Mohan, P., Alspaugh, S., Keys, L., Culler, D., and Katz, R.
Napsac: Design and implementation of a power-proportional web cluster. In
Proc. of ACM Sigcomm workshop on Green Networking (August 2010).

[22] Kusic, Dara, Kephart, Jeffrey O, Hanson, James E, Kandasamy, Nagarajan, and
Jiang, Guofei. Power and performance management of virtualized computing
environments via lookahead control. Cluster computing 12, 1 (2009), 1–15.

[23] Lin, M., Wierman, A., Andrew, L.L.H., and Thereska, E. Dynamic right-sizing
for power-proportional data centers. Proc. IEEE INFOCOM, Shanghai, China
(2011), 10–15.

92

[24] Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Z. Wang, M. Marwah, and
Hyser, C. Renewable and cooling aware workload management for sustainable
data centers. In Proceedings of ACM Sigmetrics (2012).

[25] Liu, Z., Lin, M., Wierman, A., Low, S., and Andrew, L. Greening geograph-
ical load balancing. In Preprint. Extension of a paper that appeared in ACM
Sigmetrics, 2011 (2012).

[26] Liu, Zhenhua, Liu, Iris, Low, Steven, and Wierman, Adam. Pricing data center
demand response. In The 2014 ACM International Conference on Measurement
and Modeling of Computer Systems (2014), SIGMETRICS ’14, pp. 111–123.

[27] Liu, Zhenhua, Wierman, Adam, Chen, Yuan, Razon, Benjamin, and Chen, Ni-
angjun. Data center demand response: Avoiding the coincident peak via work-
load shifting and local generation. Performance Evaluation 70, 10 (2013), 770 –
791. Proceedings of {IFIP} Performance 2013 Conference.

[28] Longbo, H., Walrand, J., and Ramchandran, K. Optimal demand response
with energy storage management. In Proceedings of IEEE SmartGrid Comm
(December 2012).

[29] Mathew, Vimal, Sitaraman, Ramesh K, and Shenoy, Prashant. Energy-aware
load balancing in content delivery networks. In INFOCOM, 2012 Proceedings
IEEE (2012), IEEE, pp. 954–962.

[30] Mathew, Vimal, Sitaraman, Ramesh K., and Shenoy, Prashant. Energy-efficient
content delivery networks using cluster shutdown. Sustainable Computing: In-
formatics and Systems, 0 (2014).

[31] Mathew, Vimal, Sitaraman, Ramesh K., and Shenoy, Prashant J. Energy-
efficient content delivery networks using cluster shutdown. In International
Green Computing Conference, IGCC 2013, Arlington, VA, USA, June 27-29,
2013, Proceedings (June 2013), pp. 1–10.

[32] Mathew, Vimal, Sitaraman, Ramesh K., and Shenoy, Prashant J. Reducing
energy costs in internet-scale distributed systems using load shifting. In Com-
munication Systems and Networks (COMSNETS), 2014 Sixth International Con-
ference on (Jan 2014), pp. 1–8.

[33] Moore, J., Chase, J., and Ranganathan, P. Making scheduling “cool”:
Temperature-aware workload placement in data centers. In Proc. USENIX ATC
(USENIX ’05) (2005).

[34] Nathuji, Ripal, and Schwan, Karsten. Virtualpower: coordinated power man-
agement in virtualized enterprise systems. In ACM SIGOPS Operating Systems
Review (2007), vol. 41, ACM, pp. 265–278.

93

[35] Nygren, E., Sitaraman, R.K., and Sun, J. The Akamai Network: A platform
for high-performance Internet applications. ACM SIGOPS Operating Systems
Review 44, 3 (2010), 2–19.

[36] Oró, Eduard, Depoorter, Victor, Garcia, Albert, and Salom, Jaume. Energy effi-
ciency and renewable energy integration in data centres. strategies and modelling
review. Renewable and Sustainable Energy Reviews 42 (2015), 429–445.

[37] Pallipadi, Venkatesh, and Starikovskiy, Alexey. The ondemand governor. In
Proceedings of the Linux Symposium (2006), vol. 2, pp. 215–230.

[38] Parkinson, Giles. How battery costs could plunge below $100/kWh.
REneweconomy, October 2014. http://reneweconomy.com.au/2014/

battery-storage-costs-plunge-below100kwh-19365.

[39] Pelley, S., Meisner, D., Wenisch, T.F., and VanGilder, J.W. Understanding and
abstracting total data center power. In Workshop on Energy-Efficient Design
(2009).

[40] Pinheiro, Eduardo, Bianchini, Ricardo, Carrera, Enrique V, and Heath, Taliver.
Load balancing and unbalancing for power and performance in cluster-based
systems. In Workshop on compilers and operating systems for low power (2001),
vol. 180, Barcelona, Spain, pp. 182–195.

[41] Pitchaikani, Bala. Strategies for the Containerized Data Center, Septem-
ber 2011. http://www.datacenterknowledge.com/archives/2011/09/08/

strategies-for-the-containerized-data-center/.

[42] Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., and Maggs, B. Cutting
the electric bill for internet-scale systems. In Proceedings of the ACM SIGCOMM
2009 conference on Data communication (2009), ACM, pp. 123–134.

[43] Raghavendra, Ramya, Ranganathan, Parthasarathy, Talwar, Vanish, Wang,
Zhikui, and Zhu, Xiaoyun. No power struggles: Coordinated multi-level power
management for the data center. In ACM SIGARCH Computer Architecture
News (2008), vol. 36, ACM, pp. 48–59.

[44] Rao, Lei, Liu, Xue, Xie, Le, and Liu, Wenyu. Minimizing electricity cost: opti-
mization of distributed internet data centers in a multi-electricity-market envi-
ronment. In INFOCOM, 2010 Proceedings IEEE (2010), IEEE, pp. 1–9.

[45] Rath, John. DCK Guide To Modular Data Centers: Why Modular?, Oc-
tober 2011. http://www.datacenterknowledge.com/archives/2011/10/20/

dck-guide-to-modular-data-centers-why-modular/.

[46] Sharma, Navin, Barker, Sean Kenneth, Irwin, David E., and Shenoy, Prashant J.
Blink: managing server clusters on intermittent power. In ASPLOS (2011),
pp. 185–198.

94

[47] Srikantaiah, Shekhar, Kansal, Aman, and Zhao, Feng. Energy aware consolida-
tion for cloud computing. Proceedings of the 2008 conference on Power aware
computing and systems 10 (2008).

[48] Stansberry, Matt, and Kudritzki, Julian. Uptime Institute 2012 Data Center
Industry Survey. Uptime Institute, 2012. http://www.uptimeinstitute.com/

images/stories/Uptime_Institute_2012_Data_Industry_Survey.pdf.

[49] Stillwell, Mark, Schanzenbach, David, Vivien, Frédéric, and Casanova, Henri.
Resource allocation using virtual clusters. In Cluster Computing and the Grid,
2009. CCGRID’09. 9th IEEE/ACM International Symposium on (2009), IEEE,
pp. 260–267.

[50] Tolia, N., Wang, Z., Marwah, M., Bash, C., Ranganathan, P., and Zhu, X. De-
livering energy proportionality with non energy-proportional systems-optimizing
the ensemble. In Proc of Workshop on Power-aware Computing Systems, San
Diego, CA (December 2008).

[51] Tolia, N., Wang, Z., Ranganathan, P., Bash, C., Marwah, M., and Zhu, X.
Unified thermal and power management in server enclosures. In Proceedings of
the ASME/Pacific Rim Technical Conference and Exhibition (InterPACK ’09)
(July 2009).

[52] Verma, Akshat, Ahuja, Puneet, and Neogi, Anindya. pMapper: power and
migration cost aware application placement in virtualized systems. In Middleware
2008. Springer, 2008, pp. 243–264.

[53] Wang, Hao, Huang, Jianwei, Lin, Xiaojun, and Mohsenian-Rad, Hamed. Ex-
ploring smart grid and data center interactions for electric power load balancing.
SIGMETRICS Perform. Eval. Rev. 41, 3 (2014), 89–94.

[54] Wendell, Patrick, Jiang, Joe Wenjie, Freedman, Michael J, and Rexford, Jen-
nifer. Donar: decentralized server selection for cloud services. ACM SIGCOMM
Computer Communication Review 41, 4 (2011), 231–242.

[55] Wierman, A., Andrew, L.L.H., and Tang, A. Power-aware speed scaling in
processor sharing systems. In INFOCOM 2009, IEEE (2009), IEEE, pp. 2007–
2015.

[56] Wierman, A., Liu, Zhenhua, Liu, I., and Mohsenian-Rad, H. Opportunities and
challenges for data center demand response. In Green Computing Conference
(IGCC), 2014 International (Nov 2014), pp. 1–10.

95

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2015

	Energy-Efficient Content Delivery Networks
	Vimal Mathew
	Recommended Citation

	tmp.1441331236.pdf.Da9qr

