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ABSTRACT

APPLICATION-AWARE RESOURCE MANAGEMENT FOR
CLOUD PLATFORMS

SEPTEMBER 2016

XIN HE

B.E., TSINGHUA UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy

Cloud computing has become increasingly popular in recent years. The benefits of

cloud platforms include ease of application deployment, a pay-as-you-go model, and the

ability to scale resources up or down based on an application’s workload. Today’s cloud

platforms are being used to host increasingly complex distributed and parallel applications.

The main premise of this thesis is that application-aware resource management techniques

are better suited for distributed cloud applications over a systems-level one-size-fits-all

approach. In this thesis, I study the cloud-based resource management techniques with a

particular emphasis on how application-aware approaches can be used to improve system

resource utilization and enhance applications’ performance and cost.

I first study always-on interactive applications that run on transient cloud servers such

as Amazon spot instances. I show that by combining techniques like nested virtualization,

live migration and lazy restoration together with intelligent bidding strategies, it is feasible

vii



to provide high availability to such applications while significantly reducing cost. I next

study how to improve performance of parallel data processing applications like Hadoop

and Spark that run in the cloud. I argue that network I/O contention in Hadoop can impact

application throughput and implement a collaborative application-aware network and task

scheduler using software-defined networking. By combining flow scheduling with task

scheduling, our system can effectively avoid network contention and improve Hadoop’s

performance. I then investigate similar issues in Spark and find that task scheduling is

more important for Spark jobs. I propose a network-aware task scheduling method that can

adaptively schedule tasks for different types of jobs without system tuning and improve

Spark’s performance significantly. Finally, I study how to deploy network functions in the

cloud. Specifically, I focus on comparing different methods of chaining network functions.

By carrying out empirical evaluation of two different deployment methods, we figure out

the advantages and disadvantages of each method. Our results suggest that the tenant-

centric placement provides lower latencies while service-centric approach is more flexible

for reconfiguration and capacity scaling.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivations

Cloud platforms have been increasingly popular for hosting applications in recent years.

The pay-as-you-go model and on-demand resource allocation abilities save customers’ time

and money to build IT infrastructure themselves and provide a more cost-effective way

for them to run applications and deploy services. Currently, there are multiple categories

in cloud computing: Infrastructure-as-a-Service (IaaS), Platform-as-a-service (PaaS) and

Software-as-a-Service (SaaS). In an IaaS cloud, customers can share computing, storage

and network resources in large data centers provided by cloud providers, which increases

the effectiveness of the shared resources and reduces the management effort of customers.

Users can deploy all kinds of applications and enjoy the low cost and high variety of re-

source choices in the cloud. PaaS provides a platform for users to develop and deploy their

applications where users do not need to configure the development environment. SaaS uses

the web to deliver applications that are managed by a third-party vendor and users do not

need to install or maintain the software locally. Given the benefits provided by clouds,

more and more individuals and enterprises are moving their applications from traditional

individual PCs and in-house data centers to the cloud.

The first challenge is that there is no one-for-all solution for all cloud applications

because they have different characteristics and resource demand varies even for the same

application. For example, online web services are generally CPU intensive when they

process queries from users, while most MapReduce jobs running in Hadoop and Spark

are usually data intensive. But online video web services are data intensive and requires
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high I/O throughput, while some MapReduce jobs like K-Means and Pagerank are CPU

intensive and usually limited by CPU capacity. Therefore, mechanisms that can benefit

one type of applications may not be helpful for others. Thus we need to study resource

management in an application-aware fashion.

The second challenge is how to choose the best deployment method for a specific ap-

plication. As we know, customers pay for specific CPU, memory, storage and network

resources that they use in the cloud. Cloud platforms provide servers of differetn types to

satisfy different applications’ demand. For example, in Amazon EC2, there are general

purpose instances as well as compute optimized, memory optimized and storage optimized

instances. There are also low-cost transient servers that enable cloud providers to sell the

idle servers during the off-peak periods or periods of low demand. It’s important to know

the tradeoffs among these choices and which type or what combinations of multiple types

should be chosen.

The last challenge is, given specific resources, how can we make the resource manager

understand application demands and use this information to achieve better performance.

For example, in MapReduce clusters, network contention may happen because MapReduce

doesn’t know the underneath network conditions while network is unaware of MapRe-

duce’s demand. Hence we want to investigate these problems in deploying applications in

the cloud and enable coordination between resource manager and applications.

These problems are important for both cloud providers and customers. From cloud

providers’ perspective, by tackling these problems, they can provide more efficient and re-

liable services for users. From customers’ perspective, by understanding their applications’

demands and cloud platforms’ resource management mechanisms, they can choose cheaper

and more suitable cloud services for their own scenario.
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IaaS SaaSPaaS

Figure 1.1. The topics and systems described in this thesis spans IaaS, PaaS and SaaS
clouds.

1.2 Thesis Contributions

This thesis focuses on techniques to deployment and resource management problems in

current cloud environment. I propose novel techniques that combine system-level mecha-

nisms and application-level methods with intelligent algorithms and modeling techniques.

1.2.1 Contribution Summary

This thesis proposes application-aware techniques to improve resource management for

cloud platforms. The fundamental theme of this thesis is that by making the cloud be aware

of application demands and using both system-level and application-level mechanisms, we

can effectively enhance the performance and reduce the cost of cloud applications. As

illustrated in Figure 1.1, this thesis covers IaaS, PaaS and SaaS clouds:

• Cost optimization in an IaaS cloud, which focuses on using spot markets to reduce

the cost of hosting always-on online services [42].

• Performance optimization in PaaS platforms, which focuses on improving the per-

formance of two big data platforms – Hadoop and Spark by making network and

applications collaborate with each other [83, 43].

• Network Function Virtualization in a SaaS cloud, where I study the advantages and

disadvantages of placement strategies in a NFaaS cloud.
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1.2.2 Optimizing cost of online services using spot markets

The use of cloud servers to host modern Internet-based services is becoming increas-

ingly common. Today’s cloud platforms offer a choice of server types, including non-

revocable on-demand servers and cheaper but revocable spot servers. A service provider

requiring servers can bid in the spot market where the price of a spot server changes dy-

namically according to current supply and demand for cloud resources. Spot servers are

usually cheap, but can be revoked by the cloud provider when cloud resources are scarce.

While it is well-known that spot servers can reduce the cost of performing time-flexible

interruption-tolerant tasks, we explore the novel possibility of using spot servers for re-

ducing the cost of hosting an Internet-based service such as an e-commerce site that must

always be on and the penalty for service unavailability is high.

In Chapter 3, I show that by using the spot markets, it is feasible to host an always-on

Internet-based service using dedicated revocable servers and achieve significant savings. I

propose a cloud scheduler that reduces the cost by intelligently bidding for spot servers.

Further, the scheduler uses novel VM migration mechanisms to quickly migrate the service

between spot servers and on-demand servers to avoid potential service disruptions due to

spot server revocations by the cloud provider.

1.2.3 Optimizing performance of big data platforms

Hadoop and Spark are popular choices for executing big data workloads over large

datasets on clusters of commodity machines. Due to the distributed nature of such appli-

cations, network resource bottlenecks can adversely affect performance, especially when

multiple applications share the network. Fortunately, the emergence of software-defined

networking (SDN) is removing the barriers to cooperation between cluster computing plat-

forms and the network. To explore this opportunity, I focus on how we can use the capabil-

ities of a SDN to create a more collaborative relationship between Hadoop/Spark and the

network underneath.
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In Chapter 4, I present techniques to avoid network contention and improve Hadoop’s

performance when there is neighborhood traffic in data center. I use a SDN controller to

gather global network information and control the path of network flows. Then I modify the

task scheduler of Hadoop to enable it to communicate with SDN controller. By combining

task scheduling and flow scheduling, I implement Cormorant – a system that can efficiently

optimize network bandwidth utilization in a Hadoop cluster.

Since disk I/O is generally the bottleneck of data intensive jobs, Resilient Distributed

Datasets (RDDs) was proposed to provide stable in-memory data storage and implemented

in Apache Spark [88]. Since local I/O is improved in Spark, network I/O may be the

bottleneck even in dedicated networks.

In Chapter 5, I first discuss existing task schedulers and why network congestion can oc-

cur in the presence of background applications. Then I propose a network-aware scheduling

method that adaptively schedules tasks according to network conditions and task demands.

I implement this method in Firebird – a Spark-based system running on SDNs. Compared

with Spark, this system can achieve good performance in different network conditions for

both data intensive and CPU intensive jobs.

1.2.4 Placement of virtualized network functions in the cloud

Network functions virtualization (NFV) offers a new way to design, deploy and man-

age networking services. NFV decouples the network functions, such as network address

translation (NAT), firewall, intrusion detection and web caching from proprietary hardware

appliances so they can run in software. A virtualized network function (VNF) may consist

of one or more virtual/physical machines running different software and processes, on top

of standard high-volume servers or cloud computing infrastructure.

In Chapter 6, I discuss how multiple virtualized network functions should be deployed

in cloud environments, which is also called Network-Functions-as-a-Service (NFaaS). In

this component of my thesis, I compare two methods of chaining network functions by
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performing a series of experiments: tenant-centric and service-centric. Our results enable

a cloud provider to understand the tradeoffs in deploying network functions and make ju-

dicious deployment decisions.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides background on

cloud computing, cloud-based applications and related resource management techniques.

Chapter 3 describes how to host always-on interactive applications using cloud spot mar-

kets. Chapter 4 describes the challenges of deploying Hadoop cluster in networks shared

with other applications and propose Cormorant that makes network and Hadoop collaborate

with each other to achieve better performance. In Chapter 5, I discuss the resource man-

agement problems in Spark and propose Firebird that implements a novel network-aware

task scheduling method which fits different types of jobs in different network conditions.

In Chapter 6, I discuss how to deploy network functions in cloud environment and present

two different placement strategies for deploying them. Finally, Chapter 7 summarizes my

thesis contributions and discusses future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents background material on cloud platforms, virtualization techniques

and data center networks to set the context for the rest of this thesis. More detailed related

work is also discussed in each chapter.

2.1 Cloud Platforms

Cloud platforms are platforms that manage shared resources in a centralized manner

and provides them to different users on demand. There are different types of clouds de-

pending on what kind of resources are offered, for example, infrastructure as a service

(IaaS), platform as a service (PaaS) and software as a service (SaaS). Figure 2.1 shows the

difference between these three clouds.

An IaaS cloud is a virtualized data center where the cloud provider allocates virtual

machines (also referred to as virtual servers) to customers using the underlying physical

servers1. Users can run their own unmodified applications and processes on these servers.

Currently there are many infrastructure cloud platforms such as Amazon’s EC2 [2], Mi-

crosoft Azure [3] and Google Compute Engine [4]. An infrastructure cloud typically sup-

ports different types of virtual machines that vary in their hardware configurations—for

instance, Amazon’s EC2 cloud supports over a dozen different virtual server configura-

tions that differ in the amount of CPU, memory, disk and network allocations [2]. When

using an infrastructure cloud, customers can request cloud servers on demand and the cost

1Some cloud platforms like IBM’s Softlayer [1] also directly provide physical servers to users
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Figure 2.1. Responsibilities of different types of cloud

of a cloud server depends on the chosen configuration and is billed based on usage time.

Besides providing on-demand servers, cloud providers also provide transient servers, which

are significantly cheaper than on-demand servers but may be revoked at any time. These

transient servers exist because they enable cloud providers to sell unused server capacity

during off-peak periods. Amazon has been offering transient servers in the form of spot

servers since 2009 [5]. Spot servers have a variable price determined by market conditions

of the cloud such as supply and demand. By setting up a bid price that they can afford,

customers can request a spot server and use it when the spot price is lower than his bid

price. The spot server is revoked when the spot price goes above his bidding. Google in-

troduced another form of transient server called preemptible VM in 2015 [6]. In contrast

to an Amazon’s spot server, a preemptible VM has a fixed price. A preemptible VM has a

maximum life time for at most 24 hours and may also be revoked at any time.
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In contrast to an IaaS cloud, a PaaS cloud doesn’t provide the entire infrastructure to

users. Instead, PaaS cloud only provides a platform and key services for their customers

to build, run and manage applications. PaaS saves the time of managing and configuring

development environment such as runtime, middleware, operating system, virtualization,

servers, storage and networking. Most PaaS platforms are geared toward software devel-

opment. For example, Google App Engine [7] and IBM Bluemix [8] support multiple

languages and services to build and host web applications on the cloud. Altiscale [9] and

Amazon EWR [10] provide MapReduce platforms such as Hadoop and Spark for develop-

ing and running big data applications.

Finally, SaaS applications are hosted in the cloud and can be accessed by users remotely.

SaaS removes the need for users to install and run applications on their own computers.

This eliminates the expense of hardware purchasing and maintenance, as well as software

licensing and support. Generally, customers pay for this service on a monthly basis using

a pay-as-you-go model. There are many common SaaS applications such as GMail which

is a web based email service and Google Drive which allows users to edit their documents

online and store them in the cloud.

This thesis spans all three types of cloud. Chapter 3 discusses how to deploy always-

on services on spot instances in IaaS cloud. Chapter 4 and Chapter 5 optimize big data

platforms which forms PaaS clouds. Chapter 6 discusses placement problems of network

functions as a service (NFaaS) which are SaaS applications.

2.2 Cloud Data Center

Cloud providers supply physical or virtual machines, as well as storage and network

resources for users to run their applications. These resources are provided on-demand from

their large pools of servers installed in data centers. Figure 2.2 shows the architecture of a

cloud data center. This section provides a brief introduction on network and virtualization

techniques being used in cloud data centers.
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Figure 2.2. A general cloud data center topology

2.2.1 Multi-rooted tree topologies

Today’s data centers contain thousands of connected servers. Recent research advocates

multi-rooted tree topologies [16], where there is a large number of parallel paths between

any given source and destination edge switches. One rationale for the existence of multiple

paths is to achieve fault tolerance.

For example, Figure 4.1 shows two layers of switches, i.e., edge layer and aggregation

layer. The edge layer switches directly connect to the servers. We can see that there are

a larger number of parallel paths between any given source and destination edge switches.

Note that, although high speed links are used in the network, it is currently very hard to

achieve full bisection bandwidth due to the high oversubscription factor [16].

2.2.2 Software-defined network

Software-defined network (SDN) is an approach to networking that decouples the con-

trol plane from the data plane. The control plane is responsible for making decisions about

where traffic is sent and the data plane forwards traffic to the selected destination. This
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separation allows network administrators and application programs to manage network ser-

vices through abstraction of lower level functionality by using software APIs [60].

OpenFlow is a standard communication interface among the layers of an SDN architec-

ture, which can be thought as an enabler for SDN [56]. An OpenFlow controller commu-

nicates with an OpenFlow switch. An OpenFlow switch maintains a flow table, with each

entry defining a flow as a certain set of packets by matching on 10 tuple packet information.

In this thesis, I use SDN techniques to help build a collaborative relationship between

network and big data platforms, which improves network bandwidth utilization of big data

clusters. From a big data platform point of view, the abstraction and SDN’s control APIs

allow it to (1) monitor the current status and performance of the network, and (2) modify

the network with directives, for example, setting the forwarding path for non-local tasks.

2.2.3 Virtualization technologies

Server virtualization techniques are widely used in cloud computing since it provides

a mechanism to partition physical resources, allowing multiple applications run on one

single server with isolated computing, storage and network resources. Virtualzation pro-

vides flexible resource management mechanisms for cloud but also introduces some new

challenges.

There are multiple popular virtual machine hypervisors such as Xen, KVM, VMWare

annd Hyper-V [18, 50, 76, 78]. For example, Amazon EC2 uses Xen-based VMs while Mi-

crosoft Azure uses Hyper-V as its hypervisor. These hypervisors support para-virtualization

or full virtualization that allows multiple operating systems to run in separate virtual ma-

chines. Since the emergence of virtual machines, there has been a lot of research on en-

hancing flexibility, stability and efficiency of VMs. Migration and backup are important

features of VMs which increase VMs’ flexibility and fault tolerance and there have been

a lot of related techniques. Among these techniques, live migration [31], bounded time

migration [74] and lazy restoration [44, 89, 52] are used in this thesis. For security consid-
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eration, cloud providers don’t provide fully access of VM hypervisor to users. Thus, users

can not migrate their VMs provided by IaaS providers arbitrarily. Nested virtualization

techniques address this problem by adding a nested hypervisor inside the VM provided by

cloud providers and hence users can have full control of the nested VM [80].

VM placement in IaaS clouds havs been well investigated to improve data center re-

source utilization and reduce allocating time [25, 22, 47, 57, 37, 59]. Network-aware VM

placement and application-aware VM placement methods are also proposed to provide so-

lutions for specific demand [49, 20, 40].

In this thesis, we use advanced VM techniques to reduce downtime of running always-

on services on transient servers. We also discuss how VM placement strategies impact the

deployment of virtualized network functions in the cloud.

2.3 Application-aware Resource Management

Resource management is a hot research topic in the cloud computing. Application-

aware resource management means the resource manager should be aware of applications’

demand and make decisions accordingly. Optimizing the efficiency of IaaS cloud for spe-

cific applications has been studied by multiple effects. An energy-aware online provision-

ing approach for HPC applications on consolidated and virtualized computing platforms

was proposed in [67]. Energy efficiency is achieved using a workload-aware dynamic pro-

visioning mechanism. The usability of compute clouds to speed up executions of scientific

workflows was investigated in [61]. Optimal resource allocation for multimedia services

and applications running in the cloud based on queuing model was studied in [58]. These

papers all focus on optimizing performance or resource management for specific appli-

cations in cloud environment. Their results show that application-aware mechanisms can

efficiently benefit specific applications running in the cloud.

Application-aware networking in data centers has been well investigated. Wang et

al. [79] propose application-aware networking and argue that distributed applications can
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benefit from communicating their preferences to the network control-plane. Yap et al. have

also advocated for an explicit communication channel between applications and software-

defined networks, in what they called software-friendly networks [84]. Coflow [28] is a

networking abstraction that expresses the communication requirements of prevalent data

parallel programming paradigms. Coflows make it easier for the applications to convey

their communication semantics to the network, which in turn enables the network to better

optimize common communication patterns. PANE [36] proposes design, implementation,

and evaluation of an API for applications to control a software-defined network. These

papers focus on creating an application-aware network in system level, while in this the-

sis, we use both system-level and application-level techniques to create a tight relation-

ship between MapReduce platforms and underlying networking. Our work is inspired by

Xiong et al. who use network-aware planning to improve query processing in traditional

databases [82].
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CHAPTER 3

CUTTING THE COST OF HOSTING ONLINE SERVICES USING
CLOUD SPOT MARKETS

Today’s cloud platforms offer a variety of server types to meet the diverse needs of

their hosted services. In the first part of the thesis, we consider how to use revocable spot

servers to host always-on online services and reduce the cost. Since spot servers can be

revoked at any time, such a revocation can potentially cause unavailability of the service for

which the penalty is high. We propose to use OS and virtualization techniques to quickly

move a service between revocable spot and non-revocable on-demand servers to reduce

the revocation penalty. We also propose to use clever bidding strategies to reduce risk of

revocations.

3.1 Background and Motivation

Cloud computing has become the paradigm of choice for building low-cost, scalable

Internet-based services. Cloud providers such as Amazon AWS, Microsoft Azure [3],

and Google Compute Engine [4] operate large, distributed computing infrastructures that

provide computing and storage resources that can be leased by service providers. Cloud

providers offer a number of benefits to service providers such as a pay-as-you-go model and

flexible, on-demand allocation of resources to hosted services. A key business driver for

the rapid adoption of cloud computing by service providers is the reduction in infrastruc-

ture costs. Unlike the traditional method of buying dedicated infrastructure, which must
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be provisioned in advance for the peak demand, leasing cloud servers enables the service

provider to scale the service as it grows over time and also exploit just-in-time allocation

of capacity to handle peak workloads. Consequently, leasing cloud servers is often more

economical than building dedicated infrastructure, especially for services with dynamic or

growing workloads.

Today’s cloud platforms offer a variety of server types to meet the diverse needs of their

hosted services. Cloud servers vary in offered resource configurations, leasing cost and

service model offered to customers. For instance, on-demand servers offer a fixed rental

cost and a non-revocable model, where the customers pay a fixed cost and can voluntarily

relinquish the server when they no longer need it. In contrast, spot servers offer a variable

rental cost and a revocable model, where the customer bids an upper limit on the price they

are willing to pay for a server. The cost of these spot servers fluctuates over time and an

allocated spot server may be revoked by the cloud provider when its price rises above the

bid price the customer is willing to pay for the server. Spot servers allow a cloud provider

to offer unused server capacity at a lower price to customers, while allowing the cloud

provider to revoke these servers at any time in order to fulfill requests for higher-priced

on-demand servers.

Internet-based services that use the cloud vary significantly in their service require-

ments. At one end of the spectrum lie data-intensive cloud applications that use cloud

servers to run large data analytics tasks (e.g., using MapReduce); such ”big data” appli-

cations often run in batch mode with the results made available within a specified time

period. As noted in Amazon’s description of their cloud service [2], spot servers are a

popular choice for reducing the cost of running “interruption-tolerant” and “time-flexible”

tasks, such as data-intensive batch analytics and scientific computing. Indeed, there has

been recent research [26] [75] [86] [54] on using spot markets to provide non-realtime

services that can be performed in batch mode at a reduced cost.
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At the other end of the spectrum are always-on Internet-based services that serve user

requests in real-time. Providers of web content such as CNN, video content such as NetFlix,

application portals such as Salesforce, e-commerce portals such as Walmart.com, and social

networking sites such as Facebook all belong in this category. Traditionally always-on

Internet-based services have relied on dedicated deployed servers owned by the service

provider or a third-party content delivery network. Recently, in part to reduce costs, there

has been a trend for always-on services to use non-revocable on-demand servers from the

cloud markets to meet their infrastructure needs. For instance, Netflix uses Amazon’s on-

demand cloud services to operate their backend origin infrastructure that stores and serves

out videos [11].

Conventional wisdom has held that always-on services should be hosted using either

dedicated hardware or non-revocable on-demand servers and that spot servers may not be

suitable for this purpose due to potential service interruptions caused by server revocations.

In contrast, batch jobs such as MapReduce-style data analytics tasks that have highly elastic

deadlines can exploit spot servers to lower their costs while potentially increasing comple-

tion time; such tasks can employ checkpointing methods to periodically save their state to

disk and resume from the most recent checkpoint if the computation was interrupted by

the revocation of spot servers. Thus, as noted by Amazon, spot servers were designed for

performing time-flexible and interruption-tolerant tasks.

In this chapter, we study the feasibility and benefits of using spot servers for running

always-on Internet services, which are neither time-flexible nor interruption-tolerant. We

study how a service provider can exploit recent advances in OS and virtualization tech-

niques such as nested virtualization and fast migration of virtual machine state to quickly

move a service from spot servers to on-demand servers upon revocation and back to spot

servers when they are available again. We seek to design clever bidding algorithms that

exploit the low costs of spot servers and yet proactively migrate the service to on-demand

instances when faced with risk of revocation. We also seek to quantify the service un-
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availability due to downtimes when the cloud platform revokes spot servers. Our overall

objectives are to quantify the cost savings and service unavailability and determine whether

combining clever bidding and migration technique enable spot servers to be used in a novel

fashion for always-on services.

3.2 Cloud Platforms and Markets

Our work targets infrastructure clouds that lease server resources to service providers.

An infrastructure cloud is a virtualized data center where the cloud provider allocates vir-

tual machines (also referred to as virtual servers) to customers using the underlying physi-

cal servers. An infrastructure cloud typically supports different types of virtual servers that

vary in their hardware configurations—for instance, Amazon’s EC2 cloud supports over a

dozen different virtual server configurations that differ in the amount of CPU, memory, disk

and network allocations. The cost of a cloud server depends on the chosen configurations

and is billed based on time of usage (e.g., hourly).

A cloud service provider can request any server type in one of two modes: on-demand

and spot. On-demand cloud servers incur a fixed cost and are non-revocable. For instance,

the fixed hourly price of on-demand server varies from 6 cents per hour for the small config-

uration to as much as $2.19 per hour for the double-extra large configuration. Importantly,

once allocated, on-demand servers are non-revocable and the service provider is guaran-

teed availability to a server until it is no longer needed and voluntarily terminated. Since

cloud platforms are provisioned with sufficient capacity to handle peak seasonal demands,

they often have many unallocated and unutilized servers, which results in lost revenues due

to lack of usage. Cloud providers such as Amazon have begun to offer this unused server

capacity at significantly lower prices in the form of spot servers. Spot markets were first

introduced by Amazon’s EC2 cloud in 2009. Unlike on-demand servers, a spot server in-

curs a variable price and is revocable. A cloud-based service provider may request a spot

server of any configuration by specifying the maximum hourly price they are willing to
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pay for such a server (also known as the bid price). Since the price of spot servers varies

continuously, the request is granted only if the current price is below the customer’s bid

price. Furthermore, if the spot price rises above the bid price at any point in the future, the

server is revoked. As shown in Figure 3.1, the price of a spot server fluctuates over time

based on supply-demand considerations. Prices are low when there is plenty of unused ca-

pacity in relation to demand and the price rises when there is more demand for spot servers

or increased demand for on-demand servers, both of which causes the customers with the

low bid prices to lose these allocated servers (which are then re-allocated to higher paying

on-demand customers).

Researchers have studied the dynamics of spot markets. Each server configuration has

its own spot market with fluctuating prices. The different spot markets exhibit different

types of dynamics and the price can also spike up during periods of extreme scarcity. As

shown in Figure 3.1, the price of a large server can be as low as few cents per hour for

long periods and can spike to as much as $3/hr during high-demand periods. Other than the

variable price and revocable nature, spot servers are identical to on-demand servers in all

other respects such as their resource configurations. They are also billed on an hourly basis,

based on the spot price (not the bid price) at the beginning of each hour. Partial hours are

not billed if a spot server is revoked before the end of an hourly billing period. Researchers

have also observed that upon being revoked, a spot server is given upto a 2 minute grace

period to save all unsaved memory state to disk and execute a graceful shutdown (failing

which it is forcibly terminated) [53]—while this was an ”undocumented” feature of spot

servers, Amazon has recently made this grace period official policy by providing an explicit

two minute warning prior to revoking a spot server.

3.3 A Cloud Scheduler for Always-On Services

We design a cloud scheduler that procures servers in the cloud markets to host an

always-on Internet-based service while minimizing both the cost and the unavailability of
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Figure 3.1. Spot prices over a month long period in Amazon’s US East-1 region. The
prices across markets even within the same region are not strongly correlated, a fact we use
in our multi-market bidding algorithms.
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the service. A naive approach for using spot servers to host an always-on service is depicted

in Figure 3.3. In this case, the service runs on a spot server for a period of time and the

spot server is then revoked by the cloud provider, resulting in the service to be unavailable.

Upon revocation, the cloud scheduler immediately requests an on-demand server to replace

the revoked spot server. When the on-demand server is (eventually) allocated by the cloud

provider, the Internet service is restarted on the new server. This naive baseline approach

has two limitations: (i) any memory state of the spot server is lost upon revocation, and

(ii) the service is unavailable from the time of revocation to the instant where the service

is restarted on a new on-demand server. Note that even in this naive approach, the disk

state of the service is preserved, since we assume that networked storage volumes are used

by the service, so all data on the storage volume is preserved when the server is revoked

and the volume can simply be re-attached to the new on-demand server (such networked

storage volumes are referred to as EBS volumes in Amazon’s EC2 cloud).

Our cloud scheduler uses a combination of intelligent bidding strategies and OS and

virtualization-based techniques to address the two drawbacks of the naive approach. Our

scheduler seeks to (i) eliminate any loss of memory state by migrating any such state to

the new server, and (ii) reduce service unavailability or eliminate it completely in some

scenarios. Figure 3.2 provides an overview of the server transitions implemented by the

cloud scheduler. We next describe the two key components of the scheduler.

3.3.1 Bidding Algorithms

The cloud scheduler’s bidding algorithm seeks to achieve two goals: (i) determine what

prices to bid when acquiring spot servers so as to reduce the frequency of revocations

and achieve cost savings over solely using on-demand servers, and (ii) determine when to

transition from spot servers to on-demand servers and vice versa. As noted earlier, when

requesting a spot server, the cloud platform requires a maximum price pb to be specified by

the service provider. Since the cost of a spot server fluctuates over time based on supply
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and demand considerations, this maximum price pb, also known as the bid price, is the

upper limit that the service provider is willing to pay for the spot server. Hence, when the

instantaneous spot price psp(t) rises above the bid price pb, the spot server is revoked by

the cloud provider.

The bidding algorithm must intelligently choose the bid price pb to achieve its goals. In

general, a higher bid price reduces the chances that the spot price will rise above the bid

and reduces the chances (and frequency) of server revocation. However, there is a risk that

the spot price could increase but still stay below in the bid price, resulting in more cost and

lower savings when compared to a pure on-demand model. In contrast, a lower bid price

increases the chances of a revocation but can also lower costs.

The cloud scheduler implements two variants of the bidding algorithm. Note that when-

ever the spot price rises above the price of an on-demand servers, the cost savings vanish

and it is more cost-effective to transition to an on-demand server and pay the fixed on-

demand price over paying a even higher spot price. In the reactive version, the bid price is

set to the price of an on-demand server i.e., pb = pon, where pon denotes the cost of an on-

demand server. Hence, setting pb = pon ensures that the cloud platform will revoke the spot

server whenever the spot price increases above the on demand price–forcing a migration

(transition) to an on-demand server.

An alternative approach, which we refer to the proactive version, the bid price is set to

a value higher than the on-demand price: pb = k · pon, k > 1. In this case, the bidding

algorithm continuously tracks the fluctuating spot price psp(t) and whenever the spot price

rises above the on-demand price, the algorithm voluntarily and proactively transitions to

an on-demand server to pay the fixed on-demand price over paying the higher spot price.

Since the migration to an on-demand server is voluntary, the cloud scheduler has more

time and flexibility to make the transition, which in turn allows service unavailability to be

virtually eliminated. Note that in the reactive approach, the transition must be made within

a limited time duration before the server is revoked, while in the proactive case, the cloud
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scheduler can wait until the migration has completed before relinquishing the spot server.

In the extreme case of the proactive version, the bidding algorithm can bid the highest bid

that is allowed by the cloud platform (e.g., a large multiple k of the on-demand price) which

gives the greatest flexibility1 Regardless of the actual bid, a large sharp spike of the spot

price above the bid price will cause the spot server to be revoked by the cloud platform

before the proactive algorithm can begin (or finish) its voluntary migration.

After transitioning to an on-demand server, the bidding algorithm continues to monitor

the spot price psp(t) and can again request a spot server when psp(t) falls below the on-

demand price pon and initiate a reverse migration from an on-demand to the spot server;

such migrations are also voluntary and can take as long as needed to migrate the service.

Thus, both the reactive and proactive version of the bidding algorithms involve the

following steps:

1. Forced Migration. If the psp(t) > pb and the algorithm holds a spot server, then the

spot instance is terminated by the cloud provider. The algorithm is forced to migrate

the spot server to an on-demand server.

2. Planned Migration. If pb ≥ psp(t) ≥ pon near the end of a billing period (i.e., billing

hour) and the algorithm holds a spot server, it reduces cost by voluntarily migrating

to an on-demand server.

3. Reverse Migration. If pon > psp(t) near the end of a billing hour and the algorithm

currently holds an on-demand server, it reduces cost by re-procuring and migrating

back to a spot server.

Note that planned migrations are more desirable than forced migrations, since there is

more time to migrate the service in the former, resulting in less disruption to the service.

1Note that cloud providers do not allow an infinite bid price. The largest bid price currently allowed by
Amazon is four times the on-demand price which we use in our proactive algorithm.
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Figure 3.4. Nested virtualization and live migration of a nested virtual machine.

Whereas with a forced migration there is only a short time window before the spot server

is terminated.

3.3.2 OS Mechanisms

The cloud scheduler uses four well-known OS-level mechanisms to implement migra-

tions from spot servers to on-demand servers and vice versa. While these OS-level mech-

anisms were proposed elsewhere, they have not been used in cloud platforms previously,

nor has this novel combination been studied previously in the cloud context.

We assume that migrations from spot to on-demand servers and back is implemented

at the virtual machine level. Virtual machine migration is transparent to the OS and the

applications and does not require any modifications to either, allowing the technique to

apply to all applications (here, cloud services) and operating systems unmodified. Our

cloud scheduler employs three variants of virtual machine migration, as described below,

to achieve different goals.

Nested virtualization. All common cloud platforms are virtualized and allocate virtual

servers in the form of virtual machines. As a result, migration of virtual machines (VMs)

is feasible in cloud platforms. Unfortunately, however, today’s cloud platforms do not

expose migration capabilities of virtual machines to customers and retain this control for

themselves. Since the ability to migrate virtual machines from spot to on-demand servers
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and back is central to our approach, the cloud scheduler uses a mechanism called nested

virtualization to achieve this goal in today’s cloud platforms. Nested virtualization involves

running a virtual machine inside another virtual machine and the application runs inside

the nested virtual machine (see Figure 3.4). The advantage of nested virtualization is that

it allows complete control of the nested virtual machine to the user without requiring any

privileged access to the native virtual machine. Since cloud platforms allow a customer to

run any OS kernel inside their virtual servers, a customer can easily run a nested virtual

machine kernel, instead of a regular OS kernel, and run the second, nested VM inside the

virtual server. In such a scenario, we only need to migrate the nested virtual machine from

one virtual server to another (e.g., spot to on-demand) without migrating the outside virtual

machines. Nested virtualization was proposed in [80] and has been implemented in Xen,

a widely used open-source virtualization platform, in the form of Xen-Blanket, which is

compatible with Amazon’s cloud servers that also use Xen. Experiments reported in [80]

show only a modest overhead due to the second nested virtualization layer.

Live migration. Live virtual machine migration is a technique where an entire virtual

machine is migrated from one physical server to another while the OS and resident applica-

tions continue to execute without requiring any downtime. Live VM migration techniques

were proposed over a decade ago and are now supported by most common commercial

and open-source virtual machine products (e.g., VMWare, Xen) [30]. Live migration is

implemented by interactively copying the memory pages of the virtual machine from the

source server to a destination server while the OS and applications continue to run. Since

the VM is running during this migration process, memory pages will continue to be modi-

fied. Hence, live migration operates in rounds, where each round involves sending memory

pages modified since the previous round. After several round of incremental transfers, the

difference between the source and destination servers shrinks, and the virtual machine is

momentarily paused to send the final set of changed memory pages. The VM at the des-

tination is resumed and the source VM is terminated. This allows the application and its

24



Physical Server

VM Allocated
To Customer

Nested VM

Nested Hypervisor 
(Xen-Blanket)

VM Kernel (Xen Hypervisor) 

Application

OS kernel

Checkpoint 
Memory State

(a) Checkpoint

Migrated 
Nested VM

Nested Hypervisor 
(Xen-Blanket)

VM Kernel (Xen Hypervisor) 

Physical Server

(Lazy) Restore 
Checkpointed State

Checkpointed State

(b) Restore
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network connections to smoothly transition to the new server and no network reconfigu-

ration is needed (the IP address remains unmodified when transferring the VM within a

LAN). We note that VM migration techniques typically only transfer memory state of the

virtual machine and do not transfer disk state since disk state is assumed to be stored on

a network disk that can simply be re-attached to the destination server. By using nested

virtualization, our cloud scheduler can live migrate nested virtual machines as shown in

Figure 3.4. Further, the cloud scheduler uses techniques such as virtual private cloud [2]

that allow customer control over the assignment of IP addresses to one’s virtual machines

to ensure that the address assigned to the nested VM on a spot server can be transparently

reassigned to an on-demand server upon migration and vice versa.

Bounded memory checkpointing. Live migration is an attractive and straightforward

method for transparently migrating a virtual machine from one server to another. The main

limitation of this approach, however, is the potential large latency involved in memory

copying, especially for larger server configurations that have substantial amount of memory

(e.g., tens of GB of RAM). While these larger latencies can be easily accommodated during

planned or reverse migrations initiated by the bidding algorithm, where there is flexibility in

determining how much in advance to start the migration process, they may not be feasible

for forced migrations. When a cloud platform revokes a spot server, there is a limited

window of time to execute a graceful shutdown and this period may not suffice to live

25



migrate a nested VM with large amounts of memory. Consequently a different approach is

needed to quickly save memory state during forced migrations.

Memory checkpointing of a virtual machine in the form of suspend-resume involves

writing out the entire memory contents of a VM to disk prior to suspending the virtual

machine, and then resuming it at a later time by loading the checkpointed memory state (see

Figure 3.5). Such suspend-resume support is already built into all virtual machine products

and is an alternate approach to live migration for capturing memory state and resuming the

VM on a different machine. However, writing of the memory contents of a virtual machine

to a network disk can also involve a substantial latency for servers with substantial amounts

of RAM. Fortunately, we need not wait to initiate memory checkpointing until a revocation

is in progress and can instead checkpoint memory periodically in the background. In this

case, memory contents are asynchronously written to disk in the background periodically

and upon a renovation, only the incremental modified memory state since the most recent

checkpoint needs to be written out, making the capturing of memory state very quick (and

well suited to the limited time window available during a forced migration). Our cloud

scheduler uses a recently proposed checkpointing technique called Yank [74] that provides

an upper bound on the time needed to complement a checkpoint – given a bound τ , it

dynamically adjusts the periodicity of the background checkpointing process to ensure that

the incremental state does not exceed a threshold and can always be written out within

the bound of τ seconds. By setting the bound to a small time window allowed by the

cloud platform during a revocation, our cloud scheduler can ensure that all of the memory

contents are safely captured to disk and the nested VM can be resumed on a different cloud

server; we assume that network disks are used for the purpose of capturing memory state

so that the disk is still available after a spot server has terminated.

Lazy VM restore. While bounded memory checkpointing allows suspension of the

VM’s memory state to complete within a small, bounded time period, the resume part

of the suspend-resume process can still incur a latency of tens of seconds—since it requires
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reading the saved memory state from disk into RAM prior to the resumption of the nested

VM. For larger cloud server configurations, this may involve reading tens of gigabytes of

RAM state from disk. Hence, we employ an OS mechanism called lazy restore that sub-

stantially speeds up the resumption of a virtual machine from its saved memory state. Lazy

restore [44, 89, 52] involves reading in only a small subset of the memory pages and resum-

ing execution. The remaining memory state is read concurrently in the background as the

VM executes. In the event the executing VM accesses a memory page that has not yet been

read from disk, the corresponding memory page is fetched on-demand from disk (akin to

how a page fault is handled in traditional operating systems). Lazy restore only requires a

small fraction of the memory state to be read from disk before execution can be resumed,

allowing for fast resumes and very small downtimes. Of course a downside is that the VM

execution may be slower for a period of time due to the page faults that are seen while the

remaining memory state is being loaded from disk in the background.

This novel combination of the four OS mechanisms makes it feasible to implement

forced, planned and reverse migrations of our bidding algorithm in today’s cloud platforms.

3.4 Evaluation of the Cloud Scheduler

We use empirical micro-benchmark measurements on Amazon’s EC2 cloud as well as

simulations seeded by Amazon’s spot price traces to drive our evaluation. We evaluate the

bidding algorithms and migration mechanisms employed by our cloud scheduler in three

different scenarios. The simplest is the single-region single-market scenario where the

cloud scheduler procures servers of a single size from a single spot market at a single geo-

graphical region, migrating to on-demand servers of the same size when necessary. More

complex is the single-region multi-market scenario where the cloud scheduler has the op-

tion to buy servers of different sizes from different spot markets, though all of the servers

are hosted at a single region. The most complex situation is the multi-region multi-market

scenario where the cloud scheduler can procure servers of different sizes from different
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Instance type US east (s) US west (s) EU west (s)
On-demand 94.85 93.63 98.08
Spot 281.47 219.77 233.37

Table 3.1. Average Start-up Time of On-demand and Spot instances

Live Memory Disk
migrate (s) checkpointing (s) copy (s)

Inside US East 58.5 28.9 –
Inside US West 57.1 28.8 –
Inside EU West 58.2 28.05 –
US East to US West 73.7 – 122.4
US East to EU West 74.6 – 140.5
US West to EU West 140.2 – 171.6

Table 3.2. Overhead of migration mechanisms.

markets across any of the regions offered by the cloud provider. Intuitively, the attain-

able cost reduction should increase with each scenario since the cloud scheduler has more

options for lowering the cost. However, the migration becomes more complex—a multi-

market strategy involves packing multiple nested VMs onto a larger spot or on-demand

server, while multi-region involves migration across regions that could be more complex

and expensive.2

3.4.1 Microbenchmarks

We ran the XenBlanket nested hypervisor on Amazon’s cloud servers and conduct a

series of micro benchmark measurements to capture the overheads of various migration

mechanisms; these measured values are then used to parameterize subsequent simulation

experiments. We first measure the latency to allocate an on-demand and spot server of

different sizes in different regions. Table 3.1 shows the mean measured values across mul-

tiple runs and shows that typical allocation times are around 1.5 minutes for an on demand

2WAN VM migration across regions involves additional network reconfigurations [81] that also add to the
overheads.
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Figure 3.6. A comparison of proactive versus reactive bidding algorithms.

server and between 3.5 to 4.5 minutes for spot servers. Next, we measure the latency to live

migrate a nested VM with 2GB of RAM within and across regions. Table 3.2 shows that

live migration latency is around 1 minute for intra-data center migration and varies from

73 to 140 seconds for cross region migrations. While LAN migration can use networked

storage and does not require disk state transfers, cross-region WAN migration does and the

table shows that cross-datacenter copying of disk state take between 2 to 3 minutes per

GB of disk state. We also benchmark the latency of memory checkpointing, which involve

writing memory pages sequentially to a network attached disk and observe a latency of 28s

per GB of memory state (VM restoration latencies which read this data back from disk are

similar). In contrast, we assume a lazy restoration latency of 20s, which is independent of

memory size, based on measurements reported in [44].

In our microbenchmarks, we conducted multiple runs to obtain estimated startup times

and migration times. In addition to these measured parameters, we also gathered published
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spot price history for Amazon’s spot servers. In our simulations, we sampled the empiri-

cally observed distributions and used a different sample for each simulation run. We report

results for small, medium, large and xlarge spot servers at four Amazon regions: US East

1A, US East 1B, US West 1A and Europe West 1A.

3.4.2 Proactive versus Reactive Bidding

We start with the simplest scenario where our bidding algorithm described in Sec-

tion 3.3.1 uses a single market (either small, medium, or large) in a single region (us-east).

The bidding algorithm alternately uses servers procured in the chosen spot market in the

us-east region or an on-demand server obtainable at the same region. We study the two vari-

ants of the bidding algorithm described earlier, proactive and reactive, both using bounded

checkpointing with lazy restore for migration.3 To estimate cost savings from using the

spot market, we use the cost of using only on-demand servers to host the service as the

baseline. As shown in Figure 3.6(a), both proactive and reactive approaches show a sig-

nificant reduction in cost achieving 17% to 33% of the baseline cost of not using the spot

market at all. However, proactive does achieve a slightly smaller cost than reactive in all

three markets. More importantly, the proactive algorithm achieves significantly less service

unavailability than the reactive algorithm in all markets (cf. Figure 3.6(b)). Specifically,

the unavailability of the proactive algorithm is smaller by a factor that ranges from 2.5 to 18

when compared to the reactive algorithm. The reason is that the proactive algorithm signif-

icantly reduces the number of forced migrations in comparison with the reactive algorithm

as shown in Figure 3.6(c). Specifically, the proactive algorithm migrates its servers from

the spot market to the on-demand market before it is forced to do so, giving it more time

to perform the migration, in turn reducing the possibility of the service being unavailable

during the migration process. Figure 3.6(d) shows that proactive and reactive algorithms

have similar number of planned/reverse migrations.

3Results for planned live migrations are similar and omitted here.
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The results for other regions are also similar to what we presented above for us-east.

Thus, we conclude that it is better to be proactive rather be reactive, both from the perspec-

tives of cost and unavailability. Henceforth, we will use the proactive bidding algorithm

and its variants in all our subsequent evaluations.

3.4.3 Evaluating the Migration Mechanisms

We next evaluate the efficacy of four different combinations of migration mechanisms

for the proactive bidding algorithm: memory checkpointing (with standard restore), mem-

ory checkpointing with lazy restore, live migration with checkpointing and live migration

with checkpointing and lazy restore. The service unavailability of each combination is

shown in Figure 3.7 for small servers in the US East 1a region; we report results for nor-

mal case as well as a pessimistic case where all migration mechanisms exhibit worst case

behavior. Pure checkpointing alone has the worst unavailability of 0.018% due to the long

latency needed to read the save memory state from disk prior to resuming the virtual ma-

chine. The unavailability improves significantly to 0.004% when lazy restore is used to

speed up the resumption of a checkpointed VM. Similarly live migration with checkpoint-

ing has higher unavailability of 0.0095% since any forced migrations employ checkpointing

with its longer downtimes. The final combination of using live migration when possible,

and checkpointing with lazy restore for any forced migration has the smallest unavailabil-

ity of 0.002% (roughly factor of two better than checkpointing with lazy restoration alone).

According to [31] and [68], in the worst case, the downtime during migration of a 4GB

virtual machine can be 10s, and migration of a 2GB VM causes down time of as much as

4s. The worst case of memory restore is copying the whole memory to the new VM while

restoring. In our measurement, the time to copy a 2GB disk file which is less than 120s

inside a region. The pessimistic scenarios, which assume pessimistic values of a 10s outage

for live migration, and 120s latency for lazy restoration, see uniformly higher unavailability

for all mechanisms, with the best unavailability of 0.017% for live migration with check-
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Figure 3.7. Comparison of different migration mechanisms using proactive bidding. (Un-
availability percent is plotted in log-scale)

pointing and lazy restore. Thus we conclude that pure checkpointing is not desirable due to

its higher unavailability, when used alone or in combination with live migration. However,

when used with lazy restoration, the technique provides unavailability values that make it

feasible for always-on services, with live migration further halving the unavailability of the

service.

3.4.4 Multi-Market Bidding Strategies

We study the benefit of bidding in multiple spot markets in comparison with bidding in

a single spot market within a given region. The intuitive reason why multiple markets can

decrease the cost is that when one spot market has a price rise the other markets in the same

region may not experience a similar rise. So, our cloud scheduler can move its servers from

the pricier spot market to one of the cheaper ones.

We modified our proactive bidding algorithm of Section 3.3.1 to use multiple markets

within the same region as follows. In the planned migration step, we look to see if there is

any spot market in the same region that has a cheaper price than the on-demand price. If so,

the algorithm bids in the cheapest available spot market in that region and migrates the spot

server to that market. If not, the algorithm migrates the spot server to the on-demand server
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Figure 3.8. The benefits of bidding in multiple markets within the same region.

as it is currently cheaper than any of the spot servers. The forced and reverse migration

steps work the same as before.

We evaluated our multi-market bidding algorithm in all regions and show the results

in Figure 3.8. As shown in Figure 3.8(a), a multi-market scheme was able to reduce the

cost by 8% for us-west-1a to 52% for us-east-1b in comparison with the average cost of

the single-market schemes in those regions. The reason for the reduction is that price

correlation between the different markets is low as shown in Figure 3.8(b), i.e., when the

price spikes up in one of the spot markets, another of the spot markets in the same region

may not have an equivalent increase. Our multi-market bidding algorithm exploits the lack

of correlation to move servers from the costlier to the cheaper spot market.
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3.4.5 Multi-Region Bidding Strategies

We study multi-region bidding algorithms that can move servers between spot markets

both within a given region as well as across different regions. Our multi-region algorithm is

identical to the multi-market algorithm described in Section 3.4.4 except that the algorithm

looks for the cheapest market both within and across regions for migration. We evaluate our

multi-region bidding algorithm on pairs of regions and we show the results in Figure 3.9. To

normalize the cost achieved by our multi-region algorithm, we use the lowest on-demand

cost available in the two allowable regions as the baseline. As we show in Figure 3.9(a), our

multi-region strategy achieves 12-17% of the baseline cost, resulting in a significant cost

reduction in comparison to the baseline of not using the spot markets at all. Further, our

multi-region algorithm results in a normalized cost that is 5-28% smaller than the average

cost achieved by the single-region bidding algorithm operating in each of the two regions.

The reason for the additional cost savings is that the prices across two regions have a low

correlation as shown in Figure 3.9(b). Therefore, when the spot price increases in one

region, our multi-region algorithm is able find cheaper prices in the other region.

However, service unavailability can actually increase in some cases with multi-region

bidding as can be seen in Figure 3.9(c). The reason is that regions such as us-east-1a and

us-east-1b that tend to have cheaper prices, also have greater variability in those prices (cf.

Figure 3.10). Whereas the eu-west region tends to be more expensive but the prices are

more stable. Since our multi-region bidding algorithm migrates its servers to spot markets

primarily based on a lower price, it can sometimes migrate to lower cost regions (such

as us-east) with more volatile prices. Markets with larger price volatility can cause more

migrations as the prices fluctuate making these markets more expensive at times than the

other markets. The increased migration causes more unavailability. Bidding algorithms

that also consider price stability instead of greedily opting for the cheapest price is a topic

for future research.
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3.5 Cost and Availability Analysis

In the previous section, we show that by using nested VMs and migrating between

on-demand instances and spot instances, we can achieve a significant reduction in cost

over using on-demand instances alone. In this section, we go a step further to show the

advantage of our method over current spot market.

Figure 3.11 compares our proactive method with using spot instances alone. We find

that although using spot instances reduce cost in some markets, its availability is quite bad.

In small, medium and large markets, unavailability can exceed 1% which is not acceptable

for always-on internet services. Further, since the price may be over bid limit for a long

period, services can be unavailable for hours or even days. Hence, using spot instances

alone are not a good choice for hosting always-on internet services, as conventional wisdom

has held.

As table 3.3 shows, our method combines the advantage of on-demand and spot mar-

ket and provides a solution with low cost and high availability to host always-on internet

services in current cloud platforms.
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Cost Availability
Only On-demand High High
Only Spot Low Low
Using migration mechanisms Low High

Table 3.3. By using a combination of on-demand and spot servers, we can achieve low cost
and high availability for online services

Amazon VM (Mbps) Nested VM (Mbps)
Network TX 304 304
Network RX 316 314
Disk Read 304.6 297.6
Disk Write 280.4 274.2

Table 3.4. Network and Disk I/O performance of nested VMs is comparable to Amazon’s
native VMs

3.6 Impact of System Performance on Cost

Although nested VMs on spot instances provide good savings, nested virtualization

can also impose system performance overheads. In this section, we quantify these system

performance overheads and study their impact on the eventual cost savings.

3.6.1 Disk and Network I/O Overheads

Since we use a second hypervisor to host our nested VMs, our system will incur per-

formance overheads. We compare the system performance of Amazon VMs and nested

VMs (using the xen-blanket nested hypervisor). In our experiments, we use Amazon EC2

m3.medium VMs which has 1 virtual CPU and 3.75 GB memory, using HVM virtualization

instances and Elastic Block Store (EBS). When creating a nested VM, we only distribute 3

GB memory to it because dom0 needs some memory to hold its service. Network address

translation (NAT) is used to provide transparent network access to the nested VMs.

We first measure the network I/O and disk I/O overhead. We use iperf to get a measure-

ment of network throughput. From Table 3.4 we can see that both the transmitting rate and
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Figure 3.12. The overhead of nested VM depends on the type of service it provides

receiving rate of nested VM matches the throughput of Amazon VM. Then we ran dd to

measure disk I/O. System caches at all layers were flushed before reading and writing 2GB

of data from the root file system. Table 3.4 shows that disk I/O performance is only de-

graded by 2%. These results show that disk and network I/O performance of nested virtual

machine instances is close to Amazon’s native VMs.

3.6.2 CPU Overhead Benchmarking

The original Xen-blanket paper [80] provided detailed results on the CPU overheads

imposed by the Xen-blanket nested hypervisor. We use TPC-W as an example benchmark

application to verify their results in Amazon’s EC2 cloud. TPC-W is a web benchmark that

emulates an online e-commerce store. We use a Java servlets-based multi-tiered config-

uration of the TPC-W shopping website. Our experiment injects an ”ordering workload”

where 50% of the clients only browse the website and the remaining 50% execute order

transactions. TPC-W allows us to measure the influence of the extra xen-blanket hypervi-

sor on the response time perceived by the clients of an interactive web application.

We perform the above experiment with two common configurations: 1) browsers fetch

images from the server while browsing 2) browsers don’t fetch images from the server

while browsing. The first configuration emulates a case where the entire website, including
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the images, is served by our server VMs. The second configuration emulates a case where

only the base web page is served by our server VMs and the embedded images are cached

and served by a third-party content delivery service. Figure 3.12 shows the response time

under a varying load imposed by different number of emulated browsers. Figure 3.12(a)

shows the result under the first configuration. We can see that nested VMs can achieve

similar performance as Amazon VMs. This is because when browsers get images from

the server, the benchmark is I/O bound and xen-blanket can provide efficient I/O. Figure

3.12(b) gives the result under the second CPU-intensive configuration; in this case, the

CPU overhead depends on the load and in the worst case, we see that nested VMs incur up

to a 50% overhead over Amazon VMs.

From our system measurements, we observe that disk and network intensive services

will see close to native performance and achieve most of the cost savings. For CPU-

intensive workloads, the overheads depends on the actual load and can reduce the cost

savings (since additional capacity is needed to service a particular load). In the worst case,

performance may be halved, yielding actual savings of 12%-34% of the baseline cost. Of

course, Xen-Blanket is a research prototype of a nested hypervisor and a commercial ested

hypervisor implementation may be able to optimize the performance overhead and yield

better savings.

3.7 Related Work

There has been recent research on cloud spot servers, but much of prior work has fo-

cused on interrruption-tolerant batch jobs. The use of spot servers to reduce the cost of

data-intensive MapReduce batch jobs has been studied in [53] and [26]. Optimal bidding

strategies that minimize completion times of short batch jobs have also been studied in

[86], [72], and [75]. Checkpointing techniques for batch jobs running on spot servers were

studied in [85]. In contrast, our work focuses on using spot instances of always-on services

that interact with users in real-time.
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Our work builds on a large body of work in virtualization techniques [18]. Live mi-

gration of virtual machines was studied in [30], while checkpointing techniques for virtual

machines have been studied in [32, 74]. Nested virtualization in the context of the Xen vir-

tual machine platform was proposed in [80]. Lazy restoration methods have been studied

in [89, 44, 52]. SpotCheck [70] is a system that uses nested virtualization and migration

mechanisms to manage server pools based on spot and on-demand servers. Our work as-

sumes the presence of such system level mechanisms and examines a range of bidding and

migration policies that use these mechanisms in the cloud context.

3.8 Conclusions

In this chapter we studied the efficacy of using spot servers to lower the cost of hosting

always-on Internet services. We proposed a cloud scheduler that combines bidding algo-

rithms and migration techniques to reduce, or nearly eliminate, unavailability by migrating

a spot server to an on-demand server when needed. Our results demonstrated the feasibility

of using our proactive approach to provide availability levels that are close to levels desir-

able for always-on services, at nearly one-third to one-fifth of the cost of the traditional

approach of using on-demand servers. As part of future work, we plan to design more

sophisticated bidding strategies that take spot price stability into account to further reduce

server revocation frequency, and hence, service unavailability.
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CHAPTER 4

OPTIMIZING MAPREDUCE WITH COLLABORATIVE
SOFTWARE-DEFINED NETWORKING

MapReduce is a popular choice for executing analytic workloads over large datasets on

clusters of commodity machines. Due to the distributed nature of such systems, network

resource bottlenecks can adversely affect performance, especially when multiple applica-

tions share the network. In this chapter, we propose to improve network utilization by using

the capabilities of SDN to create a collaborative relationship between MapReduce and the

network underneath.

4.1 Background and Motivation

Running analytic queries on large, diverse, and ever-growing datasets, so-called big

data processing, has become an essential part of business processes for enterprises. MapRe-

duce [33] (and Hadoop as the open source version of MapReduce) has emerged as a frame-

work for processing large amounts of structured and unstructured data in parallel across

a large number of machines, in a reliable and fault-tolerant manner. However, due to the

distributed nature of the framework, network bandwidth has always been a scarce resource

that limits the MapReduce’s performance [15]. Moreover, this problem becomes even more

challenging if the network is shared with other applications as well [73].

One cause of the problem is the current separation between the decisions MapReduce

and networking make with respect to resource allocation. MapReduce does not explicitly

monitor underlying network status, nor does it try to modify its activities due to this status.

Similarly, the networking layer does not base its resource allocation on any insight into the
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specific expected behavior of a MapReduce task. As a result, when the network is shared

with other applications, it simply tries to deliver equal network service to all applications.

In this chapter we explore the issue of whether or not better performance can be obtained

by changing the fundamental relationship between MapReduce and network routing by

exploiting the cooperative capabilities offered by software-defined networking (SDN) [56,

60]. We focus on MapReduce workloads generated by Hive as representative of a widely

used approach to executing decision support queries over large data sets.

Data center applications initiate connections between a diverse range of hosts and can

require significant aggregate bandwidth. Data center topologies often implement a mul-

tirooted tree with increasing speed links but decreasing aggregate bandwidth moving up

the hierarchy1. These multi-rooted trees have many paths between all pairs of hosts. A

key challenge is to simultaneously and dynamically forward flows along these paths to

minimize or reduce link oversubscription and to deliver acceptable aggregate bandwidth.

Unfortunately, existing network forwarding protocols are optimized to select a single path

for each source/destination pair in the absence of failures. Such static single-path forward-

ing can significantly underutilize multi-rooted trees. The state of the art forwarding in

data center environments uses ECMP [45] (Equal Cost Multipath) to statically stripe flows

across available paths using flow hashing. This static mapping of flows to paths does not

account for either current network utilization or individual flow size.

Recently, Hedera [15] has been proposed as a dynamic flow scheduling system for

generic workloads in data centers with multi-rooted tree topologies. Hedera is a substantial

improvement over the network status and flow size oblivious ECMP algorithm. In view of

this, we have chosen Hedera as flow scheduler for our experiments.

However, Hedera only goes part of the way to collaborative, network-aware scheduling

between task managers and flow schedulers. That is, Hedera is invoked after the tasks

1Cisco Data Center Infrastructure 2.5 Design Guide. www.cisco.com/univercd/cc/td/doc/solution/dcidg21.pdf.
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have already been selected, and seeks to schedule and route the resulting flows given that

the tasks selected are fixed. In this work we aim to discover if completing the transition

is effective – that is, if an even tighter integration between the task manager and the flow

scheduler can yield better performance.

Another important general idea in reducing the impact of bandwidth limitations in Map

Reduce computations is to place jobs “close to” their data, thus reducing the amount of data

that must be transferred. A relevant piece of work along these lines is Mantri [17]. Mantri

can yield much better performance than location-oblivious placement of tasks; in view of

this, we have implemented Mantri as our task scheduler. However, while Mantri impacts

the flows that a particular application will generate, it does not manage those flows, nor does

it monitor or react to the status of the network. As such, Mantri is also complementary to

our work.

Thus, the main goal of this section is to explore the following: given that we are using

a state-of-the-art flow scheduling algorithm (Hedera) and a state-of-the-art task-placement

algorithm (Mantri), is there still room for further improvement by exploiting the capabilities

of software-defined networking (SDN) to establish a collaborative relationship between a

system executing decision support queries over Hadoop and the network providing the

communication below? We provide an initial answer of “yes” and also lay the groundwork

for future follow-on work exploring this question.

Leveraging SDN for better performance of analytical queries was also considered in [82].

However, the scenarios considered in [82] are limited to traditional relational query pro-

cessing, while our work focuses on MapReduce systems. One important difference is that

in relational systems, query processing and the storage management are tightly coupled,

whereas in Hadoop-based systems they are managed separately (MapReduce processing

and HDFS file system). This separation calls for different management and optimization

techniques for task and flow scheduling, which we study in this work.
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4.2 Data Center Networks and SDN

In this section, we give a brief background on some components to help presentation of

the methods in the sequel.

4.2.1 Multi-rooted tree network topologies

Today’s data centers could consist of thousands of connected servers. The recent re-

search advocates multi-rooted tree topologies [16], where there are a larger number of

parallel paths between any given source and destination edge switches. One rational for the

existence of multiple paths is to achieve fault tolerance.

For example, Figure 4.1 shows three layers of switches, i.e., edge layer, aggregation

layer, and the core layer. The edge layer switches directly connect to the servers. We can

see that there are a larger number of parallel paths between any given source and destination

edge switches. Note that, although 10Gb links are used in the aggregation layer and the

core layer, which are more powerful than 1Gb links in the edge layer, it is currently very

hard to achieve full bisection bandwidth due to the high oversubscription factor [16].
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4.2.2 Software-defined networking and OpenFlow

SDN is an approach to networking that decouples the control plane from the data plane.

The control plane is responsible for making decisions about where traffic is sent and the

data plane forwards traffic to the selected destination. This separation allows network ad-

ministrators and application programs to manage network services through abstraction of

lower level functionality by using software APIs [60]. From the Hadoop point of view,

the abstraction and the control APIs allow it to (1) monitor the current status and perfor-

mance of the network, and (2) modify the network with directives, for example, setting the

forwarding path for non-local tasks.

OpenFlow is a standard communication interface among the layers of an SDN architec-

ture, which can be thought of an enabler for SDN [56]. An OpenFlow controller commu-

nicates with an OpenFlow switch. An OpenFlow switch maintains a flow table, with each

entry defining a flow as a certain set of packets by matching on 10 tuple packet information.

When a new flow arrives, according to OpenFlow protocol, a “PacketIn” message is

sent from the switch to the controller. The first packet of the flow is delivered to the con-

troller. The controller looks into the 10 tuple packet information, determines the egress

port (the exiting port) and sends “FlowMod” message to the switch to modify a switch

flow table. When an existing flow times out, according to OpenFlow protocol, a “FlowRe-

moved” message is delivered from the switch to the controller to indicate that a flow has

been removed.

For example, we show a 4-port OpenFlow switch SE0 serving as an edge switch in

Figure 4.2. Two nodes N0,1 are connected to SE0 at ports 0,1 and two aggregation switches

SA0 and SA1 are connected to the switch at ports 2,3, respectively. There is a receiver and a

transmitter behind each port of the switch. When a new flow Flow0(fromN0 toN2) arrives,

a “PacketIn” message is sent from the switch SE0 to the controller. The controller looks

into the 10 tuple packet information, determines the egress port and sends a “FlowMod”

message to the switch to modify a switch flow table. The following packets in the same
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Figure 4.2. Inside an OpenFlow switch

flow will be sent through the same egress port. Because there are two aggregation switches,

i.e., two paths from N0 to N2, the OpenFlow controller can have two options to determine

the egress port. That is, the egress port can be 1 or 2, which means the flow can go through

the aggregation switch SA0 or the aggregation switch SA1.

4.3 Cormorant Design

In this section, we describe the system that we designed and implemented to evaluate

the promise of SDN for improved Hadoop MapReduce query processing.

4.3.1 System architecture

Figure 4.3 shows the overall system architecture. The system is mainly comprised of

Hadoop (with Master/NameNode and Slave/DataNode servers deployed in separate nodes),

a network information manager, and an OpenFlow controller.

The basic operation of the system is as follows: The OpenFlow controller collects all

the flow information from all the OpenFlow switches and periodically generates a snapshot

of current network status. This information is stored at the Network Information Manager

(NIM) and can be shared by the task scheduler, the replica scheduler and the flow scheduler.

When Hive receives a query, it translates the query into several map reduce jobs and submits

the jobs to the Hadoop master. Based on the network status snapshot, the task scheduler at
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Table 4.1. Notations

Cap port capacity (1Gbps in our setting)
N a physical node
Flow a network flow defined by 10 tuples
Flow a set of all the flows
PFlow a random variable that denotes a path for Flow

PFlow a sample space of all candidate paths for Flow

pFlow a physical path in a sample space PFlow

A(pFlow) available bandwidth of path pFlow
t ∈ Task a task in a task set

the master node assigns tasks to different slaves; the replica scheduler at each slave node

selects replicas; and the flow scheduler schedules the flows. After all the jobs finish, the

query results are returned to the user.

Table 4.1 lists the notations for the rest of the chapter.

4.3.2 Network Information Manager (NIM)

The NIM updates and inquires about the information on the current network state by

communicating with the OpenFlow controller. Network information includes the network

topology, queues, links, and their capabilities. It is important to keep this information up-

to-date as inconsistencies can lead to under-utilization of network resources as well as bad
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query performance. The NIM maintains a network status snapshot by collecting traffic

information from OpenFlow switches. When a scheduler sends an inquiry to the NIM to

inquire A(pFlow), it will return the current available bandwidth of the flow by finding out

the hop along the whole path that has the minimum available bandwidth (bottleneck).

Besides inquiring A(pFlow), i.e., the available bandwidth for Flow with a specific path

pFlow, the schedulers can also ask for a list of candidate paths. In this case, the NIM can

select the best path that has the maximum A(pFlow). Based on the best path information,

the OpenFlow controller can send a “FlowMod” message to the switch to modify the switch

flow table to add the best path.

4.3.3 Task/Replica scheduler

We follow the basic idea for task scheduler proposed in Mantri [17], i.e., placing a task

close to its data. Compared with the default task scheduler which uses the static node-

local, rack-local, and non-local tags, the improved tasks scheduler uses real-time global

network status information for all the tasks. It greedily selects a task with the most available

bandwidth from the data node to the taskTracker. Note that we assume that more available

bandwidth may make the task finish faster and this approach is only “local” optimal for this

task but may not be “global” optimal for all the tasks.

We apply Algorithm 1 for task sets. It picks the one that has the maximum available

bandwidth (line 9). Finally, it compares the maximum available bandwidth with a threshold

(a configurable system parameter). It returns the task if the maximum available bandwidth

is more than the threshold and return no task if the maximum available bandwidth is less

than the threshold (which means there is serious network congestion and/or there is no

available slots and it may be better to postpone executing this task until the situation im-

proves).

There is one key parameter P in Algorithm 1, which denotes an “abstract” path from

Nd to Nc. It is called an “abstract” path because it is defined from a “MapReduce” point
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Algorithm 1: Select task from a task set
1 Input: taskTracker at node Nc which is asking the master for a task to execute. task set
Task;

2 Output: the task texec ∈ Task to be executed;
3 Max = −infinity; texec = null;
4 for t ∈ Task do
5 NodeSet Datanode=t.getSplitLocations();
6 for Nd ∈ Datanode do
7 Path P = new Path(Nd, Nc);
8 if A(P ) > Max then
9 Max = A(P ); texec = t;

10 end
11 end
12 end
13 if Max > Threshold then
14 Return texec;
15 end
16 else
17 Return null;
18 end

of view, which is different from a physical path that is defined from a “Network” point of

view. We use a discrete random variable P to denote an abstract path and use p to denote a

physical path. We use P = {p1, p2, ..., pn} to denote the sample space of all the n candidate

physical paths. A(P ) is calculated as the average of the available bandwidth of all the n

candidate physical paths.

When a task is executed, which of its replicas to choose is determined by the slave.

This means the replica scheduler work independently with task scheduler which could

cause inconsistency. So we also modified the source code of HDFS to make them work

collaboratively. When a taskTracker needs to read a chuck, it also selects the replica that

has the most available bandwidth to the taskTracker.

4.3.4 Flow scheduler

We adopt the flow scheduler design in Hedera [15], i.e., the scheduler aims to assign

flows to nonconflicting paths.When a new flow arrives at one of the edge switches, accord-

ing to OpenFlow protocol, a “PacketIn” message is sent from the switch to the controller.

The first packet of the flow is delivered to the controller. The controller then chooses a
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path whose available bandwidth can best accommodate this flow and schedule the flow to

that path. Note that, we again assume that more available bandwidth will make the flow

run faster and this approach is only “local” optimal for this flow but may not be “global”

optimal for all the flows.

4.3.5 Collaborative schedulers

We described three improved schedulers in the previous three subsections. However,

they may not be able to deliver the best optimized performance if they work separately

rather than working collaboratively as shown below. (1) Task/replica scheduler only. Al-

though we select a task with the most available bandwidth from the data node to the task-

Tracker, the most available bandwidth is not guaranteed at run-time if the task scheduler

does not work collaboratively with a flow scheduler. (2) Flow scheduler only. If none of the

candidate paths has enough available bandwidth due to neighbor traffic, the flow scheduler

will not have good choice and the scheduled task may be take long to be executed.

In order to improve this, we build the collaborative schedulers as shown in Figure 4.4.

(1) Network status snapshot is built by leveraging SDN. (2) The collaborative task sched-

uler chooses the best task with the most available bandwidth based on network status and

Algorithm 1. A(P ) is calculated as the maximum available bandwidth of all the n candi-

date physical paths. (3) The replica scheduler chooses the replica accordingly. (4) The flow

scheduler leverages the path configuration handler and schedules the physical path that has

the maximum available bandwidth which corresponds to the task scheduler’s choice.

Note that, collaborative schedulers are not simply putting the improved task/repli-

ca/flow schedulers all together. For example, in the improved task scheduler, A(P ) is

calculated as the average because the scheduler is uncertain about the physical path. How-

ever A(P ) is calculated as the maximum in the collaborative one because the collaborative

task scheduler is sure about the physical path.
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Figure 4.4. Collaborative relationship among schedulers

4.4 Experimental Setup

In this section, we describe our experimental setup and system implementation details.

4.4.1 Hardware and Topology

Our test bed as shown in Figure 4.5 consists of 17 physical nodes N0−16. Each of

the machines has an Intel Xeon E5-2440 2.4GHz Hexa-Core CPU, 32GB of RAM, 1TB

7200rpm disk running Linux with kernel 2.6.32. Six of the machines N10−15 are installed

with a 4-port Gigabit NetFPGA card and perform as OpenFlow switches. Seven of the

machines N0−3,5−7 are used for Hadoop MapReduce deployment with one master (at N0)

and six slaves (at N1−3,5−7). N0 and N4 are also used for generating neighbor network

traffic. N8, N9 and N16 are used to run network information manager(NIM), Openflow

Controller, and client emulator, respectively.

4.4.2 Benchmark and Traffic

We run Hadoop MapReduce 1.2.1 and apply most of the default settings. We use Hive

0.11 and run an OLAP benchmark TPC-H with a scaling factor of 100. We report the query

execution time and we do not consider loading time as part of the benchmark results. All

query results are saved into Hive tables, which are also stored in HDFS.
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Figure 4.5. Hadoop MapReduce Setup

We use nodesN0 andN4 to create the neighbor contention traffic emulated by iperf 2.

Neighbor contention traffic emulates the shared network environment where Hadoop (the

main application) is running along with other applications whose network traffic is captured

in the neighbor contention traffic. More specifically, we create 12 flows in total. Ni→j

denotes a flow from nodeNi to nodeNj . The 12 flows areN0→1,N0→2,N0→3,N1→0,N2→0,

N3→0, N4→5, N4→6, N4→7, N5→4, N6→4, N7→4. We define several levels of contention as

show in Table 4.2. For example, when the contention traffic is “Low”, we have 3 large

flows N3→0, N7→4 and N0→2 with 800Mbps each, and 9 small other flows with 50Mbps

each. We have 4 large flows with 800Mbps and 850Mbps each in “Medium” and “High”

levels, respectively.

2http://iperf.sourceforge.net/
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Table 4.2. Contention traffic levels

Levels Large flow Small flow Util.
(800Mbps) (50Mbps)

None - - 0%
Low N3→0, N7→4, N0→2 Others 36%

Medium N3→0, N7→4, Others 45%
N0→2, N4→6

High Medium with 850Mbps Others 48%

The NIM collects network status information from the OpenFlow controller at a 5 sec-

ond polling rate. We set the threshold for Algorithm 1 to 100Mbps. Note that, we adopt

these settings in order to run our experiments. We do not claim that they are the best

settings.

4.5 Evaluation

In this section, we report our experimental results with TPC-H benchmark with a scal-

ing factor of 100. Each experiment is run three times and the average (with the stan-

dard deviation if applicable) is reported. In Section 4.5.1, we first summarize all TPC-H

queries’ performance under 5 different scenarios as shown in Table 4.3, i.e., default (de-

fault Hadoop), task/replica scheduler only, flow scheduler only, collaborative and no

traffic (default Hadoop without any neighbor traffic).
Table 4.3. Schedulers used in different scenarios

Scenarios Task Scheduler Flow Scheduler Traffic
default default ECMP yes

task/rep. sched. improved ECMP yes
flow sched. default improved yes

collaborative collaborative collaborative yes
no traffic default ECMP no

4.5.1 Summary of TPC-H queries’ performance

In this section, we discuss the experimental results for all TPC-H queries (Q1-Q22) as

shown in Figure 4.7. The y-axis is the query execution time and x-axis shows 5 different
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Figure 4.7. Details of TPC-H benchmark query execution time

scenarios for each query. Besides the other default settings of Hadoop, we set the number

of replica to one, the chunk size to 512MB, the number of map slots to three and the number

of reduce slots to three. Neighbor network traffic is medium, i.e., 45% network bandwidth

utilization. More case studies under different settings can be found in Section 4.5.3.

We summarize and compare the whole TPC-H benchmark execution time in Figure 4.6

and we enumerate the details of each query execution time in Figure 4.7. We have the fol-

lowing observations: (1) Figure 4.6 shows that it takes on average 17757s, 16043s, 16090s,

13756s and 11191s for default, task/replica scheduler only, flow scheduler only, collabora-

tive and no traffic scenarios. That is, the overhead brought by network traffic is 58.677%,

43.363%, 43.777% and 22.925% for default, task/replica scheduler only, flow scheduler
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only and collaborative. Although the overhead is reduced when task/replica scheduler or

flow scheduler is used, the reduction is quite limited (only about 15%). When all the sched-

ulers are working collaboratively, we can achieve benefits even more than simply adding

up their own benefits (35%). (2) From Figure 4.7, we observe that all the query execution

times are reduced when we use task/replica scheduler or flow scheduler alone. Across all

of the benchmark queries, the collaborative case always delivers the best performance. For

different queries, different improvements are achieved. For some of the queries, e.g., Q3,

the flow scheduler achieves greater improvement than the task/replica scheduler. However,

for some other queries, e.g., Q6, the task/replica scheduler achieves greater improvement

than the flow scheduler. We study and compare task/replica vs. flow scheduler contribu-

tions with respect to Q3 and Q6 in the next subsection.

4.5.2 Task/replica vs. flow scheduler contributions

First, we study the task/replica scheduler and flow scheduler contributions for Q3. Q3

involves “join” operations among customer, orders, and lineitem tables followed

by “group by” and “order by” operations. Accordingly, when the query is submitted, it is

transformed into four MapReduce jobs: (job 1) Join customer and orders tables on

c.c custkey = o.o custkey with predicate c.c mktsegment = ’BUILDING’. (job 2) Join the

result of job 1 with lineitem table with predicates and calculate the value inside “sum”.

(job 3) Calculate the sum value according to the “group by” operator. (job 4) Order the

final results and return the top 10 rows. We use default task/replica/flow schedulers, turn

off the contention traffic and run the query. It is observed that, 89% of the total execution

time is spent on join with predicates (jobs 1 and 2, especially job 2) while 11% of the time

is spent on aggregation (jobs 3 and 4).

Because most of the execution time is spent on join, especially job 2, we record the

total number of map and reduce tasks in a single run for job 2. There are 170 map tasks and

81 reduce tasks. Of all the map tasks, 17 tasks are non-local ones in which a taskTracker
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needs to load data remotely from a separate data node. We denote the time interval between

the first map task begins and the last map task ends as “Map” and the time interval between

the last map task ends and the last reduce task ends as “Reduce” for job 2 of Q3 in the left

part of Figure 4.8. The “Total” is the sum of the two, which is the execution time of the

job. We also compare the four scenarios in “Map”, “Reduce” and “Total” intervals. Note

that, because we have one master(jobTracker) and six slaves(taskTrackers), the maximum

number of usable reduce slots is 18. Since there are 81 reduce tasks, at most 18 reduce tasks

are running during the “Map” time interval and at least 63 reduce tasks are running during

the “Reduce” time interval. This means the shuffling phase (Shuf.) spans across both the

“Map” and the “Reduce” time intervals. We can see that, due to the different design of

task/replica scheduler and flow scheduler, (1) Task/replica scheduler contributes almost the

same as flow scheduler for the reduction of the execution time for the “Map” interval. (2)

Flow scheduler contributes significant more than task/replica scheduler for the “Reduce”

interval. (3) As a result, the flow scheduler contributes more than the task/replica scheduler

for the “Total” job execution time.

Second, we study the task/replica scheduler and flow scheduler contributions for Q6.

When the query is submitted, it is transformed into a single MapReduce job: (job 1) scans

lineitem table with predicates and then calculates the sum of revenues. We also compare

the four scenarios in “Map”, “Reduce” and “Total” intervals for job 1 of Q6 in the right

part of Figure 4.8. This job is comprised of 148 map tasks and 1 reduce task. We have

similar observations (1) and (2) for this job as for the job 2 of Q3. However, the length

of “Map” interval (around 170s to 200s) is much longer than that of the “Reduce” interval

(around 5 seconds) in this job. As a result, task/replica scheduler contributes more than

flow scheduler for the “Total” job execution time.

Finally, we can summarize the different contributions of task/replica scheduler and flow

scheduler for different TPC-H queries. Assume that we can decompose the query execution

time into “Map” and “Reduce” parts. If the “Map” part is smaller than or comparable to
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the “Reduce” part, then the flow scheduler generally contributes more than the task/replica

scheduler. Otherwise, the task/replica scheduler contributes more than the flow scheduler.

It is important to note that our collaborative schedulers cover the benefits of both.
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Figure 4.8. Comparison of schedulers’ contribution to reduce Q3 and Q6’s job execution
time

4.5.3 Case studies of Q3 in TPC-H

In this section we present the experimental results for Q3 for a set of case studies. The

main motivation is to study how much improvement our collaborative method provides

when the system environment or settings changes. More specifically, we systematically

change the system settings to generate the cases as shown in Table 4.4. We compare the

query performance under (1) different levels of traffic in Section 4.5.3.1. (2) different

number of replicas in Section 4.5.3.2. (3) different chunk sizes in Section 4.5.3.3. For

each case, we report on 4 scenarios (default, task scheduler only, flow scheduler only,

collaborative). We choose Q3 for case studies due to two reasons: (1) it is complicated,

which involves selection, projection, join, and aggregation operations; (2) its performance

improvement based on the schedulers is in the middle of all the queries that we consider in

Figure 4.7.
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Table 4.4. Summary of case studies

# Contention traffic # of replicas Chunk size(MB)
1 Change 1 512
2 medium Change 512
3 medium 1 Change
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Figure 4.9. Comparison of Q3’s execution time with different levels of neighbor traffic

4.5.3.1 Case 1: different levels of neighbor traffic

In this case we compare the query execution time of Q3 with different levels of neigh-

bor traffic emulated by iperf as shown in Figure 4.9. We can see that, (1) When the levels

of neighbor traffic increases from none to low until medium and high, the query execu-

tion time increases accordingly. (2) The improvement based on task/replica scheduler and

flow scheduler over the default becomes more obvious when the levels of neighbor traffic

increases. (3) When all the schedulers work collaboratively, we can achieve the most im-

provement. (4) The previous observation also applies to the improvement of collaborative

scheduler under dynamic traffic (not shown in the figure), which is in-between of low and

high levels of neighbor traffic.

4.5.3.2 Case 2: different number of replicas

In this case we compare the query execution time of Q3 with different numbers of repli-

cas as shown in Figure 4.10. We can see that, (1) When the number of replicas increases

from 1 to 3, the query execution time with default schedulers remains nearly constant. On
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Figure 4.10. Comparison of Q3’s execution time with different number of replicas

one hand, more replicas provides the default schedulers with more replica candidates to

choose from and avoids network congestion. On the other hand, more replicas implies

more copies of intermediate results to be written (because HDFS enforces the same num-

ber of copies of intermediate results), which increases the chance of encountering network

contention. (2) When the number of replicas increases from 1 to 3, the contribution of

task/replica schedulers becomes less significant. This is because more replicas means more

replica candidates to choose from. Therefore the impact of task/replica schedulers becomes

less significant. (3) Because of (2), although there is still improvement based on task/replica

scheduler and flow scheduler over the default, the improvement is offset when the number

of replicas increases. And we observe less improvement of collaborative schedulers when

the number of replicas increases.

4.5.3.3 Case 3: different chunk sizes

In this case we compare the query execution time of Q3 with different chunk sizes as

shown in Figure 4.11. We make the following observations. (1) When chunk size increases

from 64MB to 512MB, query execution time of Q3 with default schedulers, task/replica

schedulers only and flow scheduler only cases decreases. The decrease is mainly due to

the decrease in the scheduling overhead, which is reported in related work [48]. For ex-

59



 0

 200

 400

 600

 800

 1000

 1200

 1400

128MB 256MB 512MB 1GB 1.5GB

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Comparison of Q3 execution time with different schedulers 
 under different settings of chunk size

Default
Task/Replica scheduler only

Flow scheduler only
Collaborative

Figure 4.11. Comparison of Q3’s execution time with different chunk sizes

ample, as reported in [48], a micro-benchmark shows that the processing time for scanning

a 10GB file with 5GB chunk size is more than thrice faster than scanning the same file

with 64MB chunk size. (2) However, when chunk size increases from 512MB to 1.5GB,

query execution time of Q3 with default schedulers, task/replica schedulers only and flow

scheduler only cases increases. The main reason for this is that, the number of total map

tasks decreases due to the increase in the chunk size. This results in a decreased number of

non-local tasks and decreased chance of network traffic contention. (3) We still observe the

improvement based on task/replica scheduler, flow scheduler and collaborative schedulers

over the default schedulers.

4.6 Related work

We discuss related work from two areas – the databases and the networking.

From the database perspective: there are a plethora of work on optimizing Hadoop/MapRe-

duce performance. CoHadoop [34] extends HDFS and adds metadata to NameNode so that

it allows applications to control where data are stored. HaLoop [24] caches the reused data

on local disks and then improves performance by leveraging this data locality in the sched-

uler. Hyracks [21] is a data-parallel runtime platform designed to perform data-processing

tasks on large amounts of data using large clusters. Because data is processed in a pipelined
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manner, Hyracks can push a very large amount of data to the network thereby potentially

creating extreme network contention during the run-time. (A similar observation has been

made in other recent large scale data processing systems, such as Apache Spark.) All of

the above work treats the network as a black box. Our contribution is orthogonal and is

complementary to this, making network work collaboratively with Hadoop/MapReduce.

The work that is most related to ours is [17], [15] and [82]. We have discussed our

differentiation from these work in the introduction.

From the networking perspective: Wang et al. [79] propose application-aware network-

ing, and argue that distributed applications can benefit from communicating their prefer-

ences to the network control-plane. Yap et al. have also advocated for an explicit commu-

nication channel between applications and software-defined networks, in what they called

software-friendly networks [84]. PANE [36] proposes design, implementation, and evalua-

tion of an API for applications to control a software-defined network. Sinbad [27] proposes

a network balanced data placement method. Varys [29] uses coflows to optimize network

scheduling. Both [27] and [29] assume data center is dedicated and all network flows can

be controlled by their system. While our work focuses on how to improve Hadoop perfor-

mance in a shared network environment with dynamic uncontrolled flows. The work that

is most related to ours is [15]. [15] focuses on the flow scheduler work-alone case where

the flow scheduler has to “estimate” the demand of a flow. However, in our work, the flow

scheduler consistently follows the scheduling decisions made by the task scheduler. As a

result, our collaborative schedulers achieve much more improvement over their work-alone

flow scheduler.

4.7 Conclusions

In this chapter, we propose Cormorant, a Hadoop-based system with collaborative

software-defined networking for executing analytic queries. Unlike previous work, in

which Hadoop works independently from the network underneath, our system enables
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Hadoop and the networking layer to work together to improve network utilization and

reduce query execution times. As our experiments with an implementation show, this

improvement goes beyond that achievable by the state of the art approach of combining

optimizing task schedulers and flow schedulers without collaboration. We believe that our

work shows early promise for achieving one of the often-cited goals of SDN, i.e., tightly

integrating applications with the network to improve performance
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CHAPTER 5

NETWORK-AWARE TASK SCHEDULING FOR SPARK

Recently Spark has become a popular data processing platform that runs on commod-

ity cluster because of its fast in-memory computing which allows users to cache data in

servers’ memory and query it repeatedly. However, since network I/O is much slower than

local memory I/O in Spark, network can be a bottleneck for data intensive jobs. Current de-

lay scheduling method can’t solve this problem because it’s agnostic to network conditions

of the cluster. In this section, I propose a network-aware scheduling method to solve cur-

rent scheduling issues and improve the performance of Spark. We implement our method

in a system called Firebird running on top of SDNs.

5.1 Background and Motivation

Running analytic queries on large, diverse, and ever-growing datasets, also referred to

as big data processing, has become an essential part of business processes for enterprises.

MapReduce [33] has emerged as a framework for processing large amounts of structured

and unstructured data in parallel across a large number of machines, in a reliable and fault-

tolerant manner. Hadoop and Spark are two popular platforms that implement MapReduce

framework.

MapReduce platforms provide computation, storage and network resources to users

and efficient management of these resources is essential for platform performance. Current

resource managers like Yarn and Mesos mainly focus on managing computing and memory

resources in a cluster. Recent research has found that for data intensive jobs, network and
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disk I/O are major performance bottlenecks in MapRedce platforms like Hadoop [41]. But

these aspects are not handled by current resource managers.

As server memory grows in size, it has been feasible to use persistent memory structure

to address the issue of slow disk I/O. Resilient Distributed Datasets (RDDs) have been

proposed to provide high efficiency data reuse which reduces disk I/O by using in-memory

data storage. RDD is implemented in Apache Spark which performs up to 100 times faster

than Hadoop [88].

However, due to the distributed nature of the MapReduce framework, the network I/O

has always been a scarce resource that limits MapReduce’s performance [15]. Neither

Spark nor Hadoop explicitly manage network resources. Unbalanced data locality can

cause biased network utilization, which means data contention can happen and harm a

cluster’s performance during job execution [17]. Moreover, this problem becomes even

more challenging when the network is shared with other applications [73].

The main cause of the problem is the separation between the current resource manager

and the network i.e., the resource manager is agnostic to the underlying network while the

network neglects any MapReduce-specific customization requests. As a result, if there is

a node with adequate computing resources, but limited network bandwidth, the network

becomes the bottleneck when many non-local tasks are scheduled to and executed on this

node. In traditional MapReduce frameworks like Hadoop, this problem is not severe be-

cause local disk I/O is slow. But in Spark, in-memory data storage accelerates local data

I/O so that network I/O is more likely to be the bottleneck and network congestion will

largely impact the performance of Spark jobs.

In this context, we focus on the problem of how to create a more collaborative relation-

ship between Spark and networking in order to improve the performance by exploiting the

capabilities offered by software-defined networking (SDN) [56, 60].

It is desirable to create a more collaborative relationship between Spark query process-

ing and the underlying networking where there is a more direct and continuous communi-
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cation between those two components for improved data processing. It is intuitive that if

the state of the network is more visible to Spark, it can make better decisions on scheduling

tasks across the distributed nodes. As pointed out earlier, the problem is that, data pro-

cessing and network are separate entities that do not directly communicate with each other

and network is generally managed distributedly which makes it hard to create the rela-

tionship between network and Spark. However, the emerging software-defined networking

(SDN) can remove those communication barriers by providing direct APIs for applications

to monitor and control the state of the network. Our goal in this chapter is to explore SDN

to create an efficient collaborative distributed query processing environment with Spark.

In this chapter, we analyze scheduling problems of existing task schedulers in MapRe-

duce frameworks and then propose a network-aware scheduling method that optimizes task

scheduling based on network status of a cluster. We model different scheduling methods

and analyze their performance under unbalanced data locality. Then we implement our

method in Spark and build an actual system running on top of software-defined network-

ing. In contrast to previous work, our work aims at building a collaborative relationship

between Spark and a SDN-based network.

5.2 Spark and SDN

In this section, we describe Spark and SDNs by way of background for subsequent

sections.

5.2.1 Spark Background

Apache Spark is a MapReduce-like cluster computing framework that can execute data-

parallel tasks. When a Spark job is submitted, the Spark master divides it into stages

according to shuffle operations (one stage per shuffle operation). Figure 5.1 shows how

one Spark stage is executed. The input data is RDD partitions stored on disk or in memory.

Each RDD partition corresponds to one map task in Spark. Map tasks are assigned to
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executors by a Spark master and processed into key-value pairs. Then the shuffle operation

deals with values for each unique key and generates output.

In contrast to traditional MapReduce engines, Spark introduces a distributed memory

abstraction called Resilient Distributed Dataset (RDD). Each RDD is a read-only data struc-

ture created from data in stable storage or through a transformation on existing RDDs. Each

RDD is divided into partitions that can be stored in memory or disk on individual servers.

Users can explicitly cache RDDs in memory by using persist() or cache() function in Spark

API. When servers have enough memory, a lot of data can be kept in memory which makes

Spark much faster for jobs that need to iteratively read the same dataset, e.g. machine learn-

ing jobs and SQL queries. Experimental results show that Spark can be up to 100 times

faster than Hadoop for specific jobs [88]. To deal with data lost during failures, Spark uses

a directed acyclic graph (DAG) to record transformations that created the RDD. Impor-

tantly, transformations are coarse-grained in that they apply the same operation to each of

an RDD’s partition in parallel. Thus, if a node fails, the RDD partitions on this node can

be re-generated on other nodes.

p1

p2

p3

task1

task2

task3

<K,V>
Data

<K,V>
Data

<K,V>
Data

output

output

output

node1

node2

node3

Rdd partitions Map Shuffle

Figure 5.1. Execution of a Spark stage
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If the distribution of RDD partitions is not well balanced among nodes, e.g. one node

has all RDD partitions or one node has no RDD partitions, there can be data shipping

between nodes during execution (in Fig 5.1 p2 is shipped from node1 to node2). Data dis-

tribution on a Spark cluster may be unbalanced for two reasons: 1) the data distribution in

stable storage such as HDFS is not balanced 2) some nodes lose data because of node fail-

ures. To deal with this unbalanced data distribution, the task scheduler should judiciously

schedule tasks to make full use of computation resource of the cluster as well as reduce

latency caused by data shipping. Similar to Hadoop, Spark uses a locality-aware scheduler

which divides tasks into 5 different locality levels and schedule tasks with high locality

first. The five locality groups are:

PROCESS LOCAL: the data is in the same JVM as the current executor. Data in this

level is already deserialized and cached in memory, so it’s very fast.

NODE LOCAL: the data is on the same server as the current executor. Data can either be

in local disk or HDFS directory on the node. If data has been used recently, it may also be

cached in memory by OS file caching.

NO PREF: the data has no locality preference which means data is not on the same node

as the current executor and it’s also not on other nodes that have executors. One example

is that data is stored in Amazon S3.

RACK LOCAL: the data is not stored on the same node as the current executor but on the

same rack as the current executor. This level assumes the data shipping within a rack is

faster than that between different racks.

ANY: the data is neither on the same node nor on the same rack as the current execu-

tor. Different from NO PREF, data has its locality preference which generally means the

node who owns the data can also execute this task. Therefore, this task may potentially

be executed as PROCESS LOCAL or NODE LOCAL if it’s not scheduled to the current

executor.
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For simplicity, in this chapter, we treat PROCESS LOCAL and NODE LOCAL as

“local” and the other 3 levels as “non-local”. To monitor the network status of the whole

cluster, we assume input data is stored in the cluster nodes rather than file systems like

Amazon S3.

5.2.2 Software-defined networking

SDN is a new approach to networking that decouples the control plane from the data

plane. The control plane is responsible for making decisions about where traffic is sent and

the data plane forwards traffic to the selected destination. This separation allows network

administrators and application programs to manage network services through abstraction

of lower level functionality by using software APIs [60]. From Spark’s point of view, the

abstraction and the control APIs allow it to (1) monitor the current status and performance

of the network, and (2) modify the network with directives, for example, setting the for-

warding path for non-local tasks.

OpenFlow is a standard interface among the layers of an SDN architecture, which can

be thought of an enabler for SDN [56]. An OpenFlow controller communicates with an

OpenFlow switch. An OpenFlow switch maintains a flow table, with each entry defining a

flow as a certain set of packets by matching on 10 tuple packet information as shown below.

Flow ::= [InPort, V LANID,MACSrc,MACDst,

MACType, IPSrc, IPDst, IPProto, PortSrc, PortDst]

When a new flow arrives, according to OpenFlow protocol, a “PacketIn” message is sent

from the switch to the controller. The first packet of the flow is delivered to the controller.

The controller looks into the 10 tuple packet information, determines the egress port (the

exiting port) and sends “FlowMod” message to the switch to modify a switch flow table.

When an existing flow times out, according to the OpenFlow protocol, a “FlowRemoved”

message is delivered from the switch to the controller to indicate that a flow has been
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removed. The controller can also send a “PortStatus” message to switches to get statistics

like TX data and RX data. By periodically enquiring port status of all switches, controller

can compute current network utilization and available bandwidth of all links in the cluster.

5.3 Task Scheduling

In MapReduce platforms like Hadoop and Spark, data may not be on the same node as

the executor, resulting in network traffic between nodes. For reduce tasks, since each task

reads roughly equal amounts of data from all nodes [87], data locality based scheduling

doesn’t provide much benefit. However, since each map task is executing data on a specific

node, if data locality of a cluster is not well balanced, map tasks can cause network con-

gestion which may harm the performance of whole system. So in this chapter, we mainly

focus on scheduling of map tasks. In this section, we’ll first introduce current scheduling

methods and describe the problems of these schedulers. Then we propose our network-

aware scheduling method based on knowledge of network status of a cluster. Finally, we

create models of these scheduling methods to analyse their performance under unbalanced

data locality.

5.3.1 Naive Scheduling

Naive scheduling was implemented in early versions of Hadoop. In naive scheduling,

tasks are divided into different locality sets based on distance to the executor. When the

scheduler receives a heartbeat from an idle node, it searches for available tasks from node-

local set first, then rack-local set and at last non-local set. It does so because it believes that

closer tasks can have better data transfer rate. Algorithm 2 shows the pseudo code of naive

task scheduling.

There are several drawbacks to naive scheduling. The first one is that whenever the task

scheduler receives a heartbeat from a node that has an idle slot, a task is scheduled to it

instantly. If a job’s data is only stored on a small fraction of nodes, during job execution,
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Algorithm 2: Naive task Scheduling
Input: Node n that has an idle slot
Output: Task t to be assigned to n

1 for j in jobs do
2 if j has unassigned task t with data on n then
3 return t;
4 end
5 else if j has unassigned task t with data on nodes in the same rack with n then
6 return t;
7 end
8 else if j has unassigned task t then
9 return t;

10 end
11 end
12 return null;

a task is scheduled to the node that sends the first heartbeat rather than the node with data.

Therefore task locality can be very poor. For example, if a job has data on 20% of nodes,

only 20% tasks are local tasks on average.

The second problem is that in rack-local and non-local task sets, naive scheduling sim-

ply picks the first available task without further considering current cluster status, especially

network conditions. The execution time of some tasks may be longer than other similar

tasks because of network congestion and these outlier tasks will influence the performance

of the whole system.

5.3.2 Delay Scheduling

Delay scheduling [87] was proposed to solve the first problem in naive scheduling. The

main idea of delay scheduling is to delay launching a non-local task. During the delay, the

task scheduler may find a data-local node to execute the current task. Algorithm 3 shows

the pseudo code of delay task scheduling being used in Apache Spark.

Using a simple technique, delay scheduling solves the locality problem of naive schedul-

ing in small jobs. But in large jobs, if the data distribution is unbalanced, the second prob-

lem of naive scheduling still exists. For example, in Figure 5.2 if a job has no data partition

on node A and twenty partitions in other nodes, and each node has ten slots to execute
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Algorithm 3: Delay task Scheduling
Input: Node n that has an idle slot, rack-local waiting time Tr, non-local waiting time Tna

Output: Task t to be assigned to n
1 Initialize j.lastlaunchtime to current time for all jobs j.
2 for j in jobs do
3 if j has unassigned task t with data on n then
4 set j.lastlaunchtime to current time ;
5 return t;
6 end
7 else if j has unassigned task t with data on nodes in the same rack with n then
8 if currenttime− j.lastlaunchtime > Tr then
9 return t;

10 end
11 end
12 else if j has unassigned task t then
13 if currenttime− j.lastlaunchtime > Tna then
14 return t;
15 end
16 end
17 end
18 return null;

tasks. We assume the size of each partition is 1Gb. Here we use a concept called data

processing rate (hereinafter referred to as DPR) to measure the computation intensity of a

task. DPR means the amount of data that can be processed per second by the current CPU

if the data I/O is unlimited. This metric is influenced not only by task type but also by

CPU capability. So we usually say DPR under current environment. We assume the DPR

of the tasks in the current environment is 1Gb/s. If node A is not in the cluster, all tasks are

executed locally and it only takes 4 seconds to complete them. But when we add node A to

the cluster, tasks will be scheduled to node A after waiting a small amount of time. Node

A will have 10 non-local tasks to execute. If the incoming network bandwidth of node A

is only 1Gb/s, the tasks will congest on node A which means their actual executing rate is

only 100Mb/s. It will take 10 seconds to finish them in this case. From this scenario, we

see that unbalanced data distribution hurts the performance of the cluster. It takes longer to

finish the tasks when we add a new node to the cluster which makes data unbalanced. This

task scheduling is worse than ignoring node A and executing all tasks locally. And it can

be even worse if there is neighborhood traffic from other nodes to node A.
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Figure 5.2. Examples of unbalanced data distribution

In delay-based scheduling, one method to solve this problem is to increase the waiting

time to achieve better locality. Figure 5.3 shows an example of the relationship between

waiting time and locality. According to Algorithm 3, if the waiting time is larger than

task execution time, no non-local task will be scheduled and all tasks will be local tasks.

However, although longer waiting time increases data locality, it also means wasting of

computing resource. So in practice, we need to balance these two factors and find the

optimal waiting time to obtain the best performance. Since for different jobs (data intensive,

CPU intensive) and different data locality (well balanced, unbalanced) the optimal waiting

time is different, it’s impossible to find an best value that fits all scenarios. It’s also hard to

find the best waiting time each time before a job starts because this requires knowledge of

the CPU DPR before a job starts but CPU DPR varies even in different stages of the same

job.

5.3.3 Network-aware Scheduling

The problems in existing schedulers occur because they don’t consider network status

in a cluster. We observed that network congestion mainly occurs at nodes with few data

blocks or with large incoming neighborhood traffic, which results in network congestion

at the node. To solve this problem, we propose a new network-aware scheduling method
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Figure 5.3. Relationship between waiting time and locality

which aims to avoid network congestions and achieve efficient scheduling to increase the

throughput of the whole system. Our network-aware task scheduler is implemented based

on a delay scheduler and uses the global network status to help make scheduling decisions.

When a node requires a task, if there is no local task to schedule, the scheduler will first

check if the node has enough available bandwidth to accommodate a new non-local task.

If so, the scheduler finds a task with enough available bandwidth from data node to the

executor node, otherwise, no task is scheduled at this time. The pseudo code of our method

is shown in Algorithm 4.

Compared with current delay scheduling method, our method has three advantages. The

first is that while scheduling non-local tasks, it considers the network overhead of the node

that has idle slots, which can prevent scheduling too many non-local tasks to the same node.

The second advantage is that since the scheduler can get global network status, it can pick a

non-local task that will not experience congestion during data shipping, which accelerates

the execution process. Finally, our method can achieve better performance than existing

scheduling methods without any system tuning or parameter adjustment when executing

different kind of jobs.
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Algorithm 4: Network-aware task Scheduling
Input: Node n that has an idle slot, rack-local waiting time Tr, non-local waiting time Tna

Output: Task t to be assigned to n
1 Initialize j.lastlaunchtime to current time for all jobs j.
2 for j in jobs do
3 if j has unassigned task t with data on n then
4 set j.lastlaunchtime to current time ;
5 return t;
6 end
7 else if currenttime− j.lastlaunchtime > Tr then
8 for task t in j.rack-local do
9 compute t.DPR

10 compute availableCapacity which equals bandwidth of the best path from t.split to n
11 if availableCapacity¿t.DPR then
12 return t;
13 end
14 end
15 end
16 else if currenttime− j.lastlaunchtime > Tna then
17 for task t in j do
18 compute t.DPR
19 compute availableCapacity which equals bandwidth of the best path from t.split to n
20 if availableCapacity¿t.DPR then
21 return t;
22 end
23 end
24 end
25 end
26 return null;
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5.3.4 Analysis of scheduling methods

The previous sections provide an overview of different scheduling method. In this sec-

tion, we analyse and compare these methods in detail. We first summarize these schedulers

as three classes of scheduling models and then analyse their performance in theory.

5.3.4.1 Scheduling Models

In Spark, scheduling methods can be separated into three classes based on how they

deal with unbalanced data locality.

Non-local preferred scheduling. The key idea of this model is that when there is no

local task on the idle executor, non-local preferred scheduling prefers to schedule a non-

local task. Both naive scheduling and delay scheduling with small waiting time can be

seen as non-local preferred scheduling. If network capacity is adequate and there is no data

contention, then there is no overhead caused by unbalanced locality because non-local tasks

can be executed at the same processing rate as local tasks. If the data processing rate is too

large or network capacity is inadequate, there will be overhead because network capacity

is not sufficient to accommodate non-local tasks and data contention will cause delay of

non-local tasks.

Local preferred scheduling. In this model, when there is no local task on the idle

executor, it prefers waiting to schedule a non-local task. Thus, most tasks are executed

locally and non-local tasks are avoided during processing. Delay scheduling with long

waiting times can be seen as local preferred scheduling. Since extra data on some nodes

can not be digested by other nodes and nodes with fewer data chunks are not well utilized,

the overhead will be high if data locality is highly unbalanced.

Adaptive scheduling. The key idea of adaptive scheduling is that while scheduling

non-local tasks, the scheduler considers network capacity and DPR of current tasks to avoid

data contention caused by either unbalanced locality or limited network capacity. Our

network-aware scheduling can be seen as adaptive scheduling.
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5.3.4.2 Scheduling Analysis

In this section, we analyze different scheduling models for unbalanced-locality datasets.

Table 5.1 lists the notations for this subsection.

M Number of servers
D Data size (bytes)
R DPR of all cores of a server (bytes/s)
C Network bandwidth of a server (bytes/s)
α Percentage of local tasks

Table 5.1. Notations

In Spark, the execution time of a job is determined by the last finished task. Unbalanced

locality means that some nodes have more data chunks while others have less. If one node

has a lot more data chunks than the other nodes, then it has to ship its data to other nodes so

that its outgoing network can be a bottleneck. If one node has fewer data chunks than the

other nodes, then it has to get data from other nodes so that its incoming network can be a

bottleneck. Thus we analyze how scheduling methods perform and how a network-aware

scheduler achieves optimal scheduling in these two scenarios.

We first analyze an extreme version of the first scenario: one node has all of the data

and there is no data on other nodes. These tasks can either be scheduled as local tasks or

non-local tasks. We assume α is the percentage of local tasks and (1−α) is the percentage

of non-local tasks. The execution time of tasks on Node 1 is αD
R

and the execution time of

tasks on other nodes is (1−α)D
min(C,(M−1)R)

. So the execution time of all tasks should be

T = max(
αD

R
,

(1− α)D
min(C, (M − 1)R)

) (5.1)

According to this equation, we find that the only difference among different scheduling

methods is α and we’ll see how α is determined in different scheduling models.
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Under non-local preferred scheduling, α is generally 1
M

which means tasks are evenly

distributed to all nodes. And the execution time is:

Tnp =


D
MR

if (M − 1)R < C,

(M−1)D
MC

if (M − 1)R ≥ C

Under local preferred scheduling, α is generally close to 1, so we just use 1 here. This

means that no non-local task is assigned and all tasks are executed locally. The execution

time is:

Tlp =
D

R

Under network-aware scheduling, α is determined by data processing rate and network

capacity. If (M − 1)R < C which means network capacity is sufficient for all non-local

tasks, α = 1
M

. If (M − 1)R ≥ C which means network capacity is not enough, we only

assign non-local tasks that can be digested by network. Since local task DPR is R and

non-local task DPR is C, the fraction of local tasks is α = R
R+C

. So the execution time is:

Tna =


D
MR

if (M − 1)R < C,

D
R+C

if (M − 1)R ≥ C

Table 5.2 gives a comparison of the three models. From this table, we can find that

while (M − 1)R < C, non-local preferred and network-aware methods performs M times

better than local preferred method because they make use of those nodes without data to

help accelerate execution. But while (M −1)R ≥ C, there is difference between non-local

preferred method and network-aware method. If we assume M is very large, the execution

time of non-local preferred method is approximately D
C

. For some data-intensive jobs like

TPC-H queries, C << R, so non-local preferred method can be much worse than local pre-

ferred method because of data contention. Network-aware method can double outperform

both non-local preferred method and local preferred method under the condition C ≈ R.
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(M − 1)R < C (M − 1)R ≥ C

Non-local Preferred D
MR

(M−1)D
MC

Local Preferred D
R

D
R

Network-aware D
MR

D
R+C

Table 5.2. Execution time of three scheduling models in scenario 1

Next in the second scenario, most nodes have the same amount of data and there is no

data on one node (Fig 5.2). We assume that α is the fraction of local tasks and all non-local

tasks are executed by Node 1. The execution time of tasks on Node 1 is (1−α)D
min(R,C)

and the

execution time of tasks on other nodes is αD
(M−1)R . So the execution time of all tasks should

be

T = max(
(1− α)D
min(R,C)

,
αD

(M − 1)R
) (5.2)

We will also analyze different methods by finding how α is determined.

Under non-local preferred scheduling, α is generally M−1
M

which means tasks are evenly

distributed to all nodes. And the execution time is:

Tnp =


D
MR

if R < C,

D
MC

if R ≥ C

Under local preferred scheduling, α is generally larger, so we just use 1 here. This means

that no non-local task is assigned and all tasks are executed locally. The execution time is:

Tlp =
D

(M − 1)R

Under network-aware scheduling, if R < C which means network capacity is sufficient for

all non-local tasks, α = M−1
M

. If R ≥ C which means network capacity is not enough, we

only assign non-local tasks that can be digested by network. The fraction of local tasks is

α = (M−1)P
(M−1)P+C

. So the execution time is:
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(M − 1)R < C (M − 1)R ≥ C
Non-local Preferred D

MR
D
MC

Local Preferred D
(M−1)R

D
(M−1)R

Network-aware D
MR

D
(M−1)R+C

Table 5.3. Execution time of three scheduling models in scenario 2

Tna =


D
MR

if R < C,

D
R+C

if R ≥ C

Table 5.3 gives a comparison of the three models in this scenario. From this table, we

find that while (M − 1)R < C, the 3 methods performs almost the same when M is large.

But while R ≥ C, especially if R >> C, the execution time of non-local preferred method

is much worse than the other 2 methods.

From our above analysis, we see that non-local preferred method is weak in data-

intensive jobs and local preferred method is weak in CPU-intensive jobs. But our network-

aware method performs well in both cases and achieves optimal scheduling. Here we only

picks 2 simple scenarios to show a theoretical comparison. In practice, there can be more

complicated circumstances and the randomness of task assignment may also affect the per-

formance. We do not claim network-aware scheduling can always achieve optimal schedul-

ing. And usually in real data centers, there is data on every node, so all nodes would execute

local tasks at the beginning, and non-local tasks emerge when there is no more local task

on an idle node. So the difference between the three scheduling methods may be observed

in the latter portion of a stage’s execution.

5.4 Implementation

In this section, we first introduce the overall architecture of our implementation and

then describe the functionality of each component in detail. Finally we show how they

work together to achieve network-aware scheduling in a real Spark cluster.
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Figure 5.4. System Architecture of Firebird

5.4.1 Architecture

We implemented a system called Firebird using Spark 1.3.1 in conjunction with software-

defined network. Our system consists of two modules: network module and scheduling

module. The network module is a network information manager (NIM) and flow sched-

uler. The scheduling module consists of two components: DPR estimator and task sched-

uler. Figure 5.4 shows the architecture of our system.

5.4.2 Network Information Manager

The NIM obtains and updates information and state of the current network by com-

municating with the OpenFlow controller. The network information includes the network

topology (hosts, switches, ports), queues, links, and their capabilities. The NIM also hosts

the switch information such as its ports’ speeds, configurations, and statistics. It is impor-

tant to keep this information up-to-date as inconsistencies can lead to under-utilization of

network resources as well as poor task scheduling. The NIM maintains a network status

snapshot by collecting traffic information from OpenFlow switches periodically.
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When a scheduler sends an inquiry to the NIM to inquire the available bandwidth be-

tween M and N , the NIM returns the maximum bandwidth of all paths from M to N .

5.4.3 Flow scheduler

In NIM, we follow the flow scheduler design of Hedera [15], i.e., the scheduler aims to

assign flows to nonconflicting paths.When a new flow arrives at one of the edge switches,

according to OpenFlow protocol, a “PacketIn” message is sent from the switch to the con-

troller. The first packet of the flow is delivered to the controller. The controller examines

the 10 tuple packet information and forwards the information to the flow scheduler. Based

on the packet information, the flow scheduler identifies the source and the destination of the

flow. The flow scheduler compares the available bandwidth for all the candidate physical

paths for this flow. It then chooses the path that has the maximum available bandwidth.

The best path is decomposed into multiple hops. For each hop, the flow scheduler uses

the path change handler to configure the path, i.e., asks the OpenFlow controller to send

a “FlowMod” message to the switch to modify a switch flow table. Note that, we again

assume that more available bandwidth will make the flow run faster and this approach is

only “locally” optimal for this flow but may not be “globally” optimal for all the flows.

In our initial experiments, we find that in a dedicated network, the network bottleneck is

usually the node network capacity rather than intermediate path capacity. So flow scheduler

shows little improvement. But when network is shared with other applications, the flow

scheduler can significantly reduce the risk of network contention. So we implement flow

scheduler to enable our system to fully utilize network resource in both cases.

5.4.4 DPR Estimator

In traditional cluster computing platforms like Hadoop, since the bottleneck for data

intensive jobs is disk I/O, it’s hard to estimate CPU data processing rate. Since network

capacity is not a problem, it’s also unnecessary to schedule non-local tasks according to

DPR. But in in-memory cluster computing platforms such as Spark, things are different.
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Memory I/O replaces disk I/O which means local I/O is much faster and is no longer the

bottleneck. Hence we can compute CPU DPR of a finished task by simply dividing data size

by execution time. For simplicity, we assume that all nodes in the cluster are homogeneous.

We observe that the DPRs of tasks in the same stage of a job are similar. So the DPR of a

new task can be estimated as the average DPR of finished tasks in current stage.

5.4.5 Task Scheduler

For process-local and node-local tasks, since they don’t generate network traffic, our

task scheduler follows the design of default task scheduler. According to Algorithm 4,

when a node is idle, the scheduler first searches for tasks in node-local sets. If there is no

task returned, it continues to search in rack-local and non-local task set. For each task in

rack-local and non-local task sets, DPR estimator first estimates the bandwidth that the task

requires. Then task scheduler inquires NIM to get the available bandwidth between data

node and execution node. Since the real flows are generated several seconds after tasks

are scheduled, to avoid contention of simultaneously scheduled tasks, task scheduler also

records the reserved bandwidth for scheduled tasks before the real flows are generated. By

combining NIM’s bandwidth information and reserved bandwidth, task scheduler computes

the real available bandwidth to see if it is enough to accommodate this task. If so, the task

is scheduled to the idle executor, and if not, it tries the next task. If there are no tasks that

can be scheduled, the executor remains idle until next heartbeat.

5.5 Experimental Evaluation

In this section, we describe our experimental settings and the experimental results.

5.5.1 Experimental Settings

5.5.1.1 Hardware settings

Our experimental testbed as shown in Figure 5.5 consists of 17 physical nodes N0−16.

Each of the machines has an Intel Xeon E5-2440 2.4GHz six core CPU, 32GB of RAM,
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Figure 5.5. Spark Cluster Setup

1TB 7200rpm disk running Linux with kernel 2.6.32. Each of the machines has two Giga-

bit ethernet NICs. Six of the machines N10−15 are installed with a 4-port Gigabit NetFPGA

card serving as a 4-port OpenFlow switch. Hence, N10−15 operate as OpenFlow switches.

Seven of the machines N1−3, N5−7 are used for both Spark and HDFS deployment with

one master (at N0) and six slaves (at N1−3, N5−7). N4 is used for generating neighbor-

hood network traffic. N8, N9 and N16 are used to run network information manager(NIM),

Openflow Controller, and client emulator, respectively.

There are two networks in our testbed, a management network and an OpenFlow net-

work. The first NIC of each machine is connected by a Gigabit Cisco switch, which forms

the management network. The second NIC of N0−7 is connected by a 4-port Gigabit NetF-

PGA OpenFlow switch, which forms the OpenFlow network. All Spark traffic goes through

the OpenFlow network. We use an open source OpenFlow controller Beacon 1 as our Open-

Flow controller. The OpenFlow network is built following a similar network topology in

prior work [15] to enable multiple paths from a source host to a destination host.

1https://openflow.stanford.edu/display/Beacon/Home
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5.5.1.2 Benchmark

We use three different types of jobs: TPC-H Q6, Kmeans and Word Count as examples

to evaluate the performance of our method.

TPC-H Query 6. TPC-H queries are known as data intensive jobs and the DPR of core

is 500Mb/s-800Mb/s in our experimental environment. We pick Query #6 (Q6) because

it’s easy to analyze: its reduce phase is very short and most of execution time is spent on

map tasks. We show details of Q6 below.

select
sum(l_extendedprice*l_discount) as revenue

from
lineitem

where
l_shipdate >= ’1994-01-01’
and l_shipdate < ’1995-01-01’
and l_discount >= 0.05 and l_quantity < 24
and l_discount <= 0.07;

We use TPC-H dataset with scaling factor of 100GB generated by dbgen and a chunk

size of 512MB. This query is a single-stage job with a lot of map tasks but only 1 reduce

task.

Word Count. Word count is a less data intensive job compared with TPC-H queries.

The DPR of one core is 250Mb/s-350Mb/s in our experimental environment. In our experi-

ment, the dataset of word count is 50G and the chunk size is 512MB. It’s also a single-stage

job.

Kmeans. In contrast to TPC-H and Word Count, Kmeans is a multi-stage CPU in-

tensive job. Since it’s multi-stage, the DPR varies in different stages, but in the range of

10Mb/s-200Mb/s in our experimental environment. In our experiment, the dataset size is

5GB and consist of 30 clusters of 3D points. The chunk size of the dataset is 64MB.

We run each job multiple times and discard the result of the first run because in the first

run data is not cached in memory.
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5.5.2 Dedicated Network

In this section, we first consider an idle (dedicated) network that only sees Spark traffic.

We compare the performance of three types of schedulers mentioned in section 5.3.4. De-

fault delay scheduler with a delay of three seconds performs as non-local preferred sched-

uler. Local preferred scheduler is implemented by setting the waiting time longer than task

execution time so that non-local tasks are not scheduled. In order to test Firebird’s perfor-

mance under different environment, we vary the number of cores that can be used on each

server by varying the configuration file of Spark.

Table 5.4 shows the number of data chunks on each node for each workflow. We can

see from the table that naturally distributed data is not well balanced.

S1 S2 S3 S4 S5 S6
TPC-H Q6 28 21 17 24 31 28
Word Count 22 19 12 16 19 18
K-Means 15 11 10 19 12 16

Table 5.4. Number of chunks on each node.

Figure 5.6 shows the performance of the three schedulers with different number of

cores. From figure 5.6(a), we can see that network-aware scheduler performs almost the

same as local preferred scheduler and up to 39% better than non-local preferred scheduler

in 4 core and 6 core scenarios. Network-aware scheduler performs 5-20% better than the

other two schedulers in 2 core and 3 core scenarios.

From Figure 5.6(b), we observe that our network-aware scheduler is 10% better than

local preferred scheduler in 4-core and 6-core scenarios and is 10% better than non-local

preferred scheduler in 2-core, 3-core and 4 core scenarios.

From Figure 5.6(c), we can see that for CPU intensive jobs like KMeans, local pre-

ferred scheduler performs worse than the other 2 schedulers. In 2-core scenario, local

preferred scheduler is 24% worse than the other 2 schedulers. This result justifies our

conclusion in Section 5.3.4.2.
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The experimental results are in line with our analysis in Section 5.3.4.2 that non-local

preferred method is weak in data-intensive jobs and local preferred method is weak in

CPU-intensive jobs. From these three graphs, we can also see that our network-aware

scheduler is always the best of the three schedulers no matter the job is data intensive or

CPU intensive. When the job is CPU intensive and the number of cores is small, network-

aware scheduler performs similar to non-local preferred scheduler. When the job is data

intensive and the number of cores is larger, network-aware scheduler performs similar to

local preferred scheduler. Also network scheduler performs better than both for scenarios

in between.

Figure 5.7 shows the average execution time of tasks in TPC-H Q6. We observe that as

the number of cores increases, when non-local preferred scheduler is used, the execution

time of non-local tasks increases because of network contention. While using network-

aware scheduler, the execution time of non-local tasks doesn’t increase and is still close to

local tasks. This means that scheduling tasks according to available bandwidth is reason-

able and it can avoid outlier tasks efficiently.

These experiments show that our network-aware scheduler is efficient for both CPU

intensive and data intensive jobs. Hence it doesn’t need any system tuning while executing

different jobs which is very convenient to users in practice.

5.5.3 Shared Network

In real data centers, network is often shared by different types of applications. The

performance of Spark can be influenced by network traffic generated by other applications.

We expect that by being aware of current network status, our network-aware scheduler can

improve Spark’s performance under shared network.

To create background traffic, we add a flow generated by iperf from an idle node (traffic

generator) to N3. From figure 5.8, we can see that as the iperf flow becomes larger, the

execution time of using default scheduler is highly influenced. Since N3 has less data than
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Figure 5.8. Network traffic generated by other applications can largely influence the per-
formance of Apache Spark

other nodes, after local tasks are finished, it would be assigned non-local tasks and read data

from other nodes. Since the background traffic limits the available bandwidth that N3 can

use, the data transfer speed of these non-local tasks is slow and the execution time of the

whole job is influenced. While the iperf flow is 800Mb/s, the execution time becomes five

times longer in TPCH Q6 and 3 time longer in Word Count than that with no background

traffic. But network-aware scheduler is not influenced much by this background traffic

because it can acquire the network status and avoid assigning non-local tasks to N3. The

experiment shows that network-aware scheduler performs nine times better in TPCH Q6

and three times better in Word Count than default scheduler under 800Mb/s background

traffic.

5.6 Related Work

In this section, we discuss related work from two areas: scheduling and networking.

In the scheduling context, there has been a plethora of work on optimizing MapReduce

performance. CoHadoop [34] extends HDFS and adds metadata to NameNode so that it

allows applications to control where data are stored. HaLoop [24] caches the reused data on

local disks and then improves performance by leveraging this data locality in the scheduler.

Hyracks [21] is a data-parallel runtime platform designed to perform data-processing tasks
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on large amounts of data using large clusters. Because data is processed in a pipelined

manner, Hyracks can push a very large amount of data to the network thereby potentially

creating extreme network contention during the run-time.

All of the above work treats the network as a black box. Our contribution is comple-

mentary by considering network status when scheduling task.

From the networking perspective, Wang et al. [79] propose application-aware network-

ing, and argue that distributed applications can benefit from communicating their prefer-

ences to the network control-plane. Yap et al. have also advocated for an explicit commu-

nication channel between applications and software-defined networks, in what they called

software-friendly networks [84]. PANE [36] proposes design, implementation, and eval-

uation of an API for applications to control a software-defined network. Sinbad [27] is

a system that identifies imbalance and adapts replica destinations to navigate around con-

gested links. It can be seen as a network-aware data placement method. Coflows [28] is

a a networking abstraction that allows cluster applications to convey their communication

semantics to the network. Based on [28], Varys [29] enables data-intensive frameworks to

use coflows to optimize network scheduling. Both [27] and [29] assume data center is

dedicated and all network flows can be controlled by their system. While our system can

work in both dedicated and shared network environments with dynamic uncontrolled flows.

Ousterhout et al. [62] argue that network bandwidth doesn’t have significant impact on

the performance of big data platforms because disk is generally the bottleneck of data I/O.

However, Trivedi et al. [77] show that network bandwidth matters for Spark jobs. We find

that Ousterhout’s opinion is true when all data is stored on disk and network bandwidth is

adequate. But if input data is stored in memory, their opinion doesn’t hold and network

bandwidth becomes important for improving Spark’s performance.
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5.7 Conclusions

In this chapter, we propose a network-aware scheduling method that exploits software-

defined networking and implement it in Spark. Unlike previous work, in which Spark works

independently from the network underneath, our system enables Spark and the networking

layer to work together to improve network utilization and reduce job execution times. As

our experiments show, this improvement can be huge when network contention is heavy.

We show that our network-aware scheduling method doesn’t require any system tuning

when facing different kind of jobs.
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CHAPTER 6

PLACEMENT STRATEGIES FOR A NFAAS CLOUD

Enterprises that host services in the cloud need to protect their cloud resources using

network services such as firewalls and deep packet inspection systems. While middleboxes

have typically been used to implement such network functions in traditional enterprise net-

works, their use in cloud environments by cloud tenants is problematic due to the bound-

ary between cloud providers and cloud tenants. Instead we argue that network function

virtualization is a natural fit in cloud environments, where the cloud provider can imple-

ment Network Functions as a Service using virtualized network functions running on cloud

servers, and enterprise cloud tenants can employ these services to implement security and

performance optimizations for their cloud resources. In this chapter, we focus on placement

issues in the design of a NFaaS cloud and present two placement strategies—tenant-centric

and service-centric—for deploying virtualized network services in multi-tenant settings.

We discuss several tradeoffs of these two strategies. We implement a prototype NFaaS

testbed and conduct a series of experiments to show to quantify the benefits and drawbacks

of our two strategies.

6.1 Introduction

Traditionally enterprises have used middleboxes to implement various security and per-

formance functions in their enterprise networks. These network functions include firewalls,

deep packet inspection systems, and proxy caches among others.

As enterprise networks have become more dynamic in their needs, the use of special-

ized hardware middleboxes to implement network functions has become a drawback rather

91



than a benefit. Network function virtualization (NFV) has emerged as a potential solution

to enable enterprises to flexibly deploy and reconfigure network functions on-demand to

handle network dynamic, scalability and security needs.

At the same time, enterprises have begun to move backend applications from in-house

data centers to the cloud. The cloud’s pay-as-you-go model and on-demand resource al-

location abilities are attractive to enterprises for hosting their application in a more cost-

effective fashion while also handling workload dynamics. Indeed many new enterprises are

entirely cloud-based where their entire IT infrastructure—both internal and external facing

applications—are cloud based.

In such scenarios, an enterprise needs to implement network security and performance

functions in the cloud to guard their cloud-based servers—in order to implement the same

network security and performance policies they would have implemented in their enterprise

network. Since deploying or leasing middleboxes in a public cloud is not always possible,

the use of NFV to implement these functions using commodity cloud servers is an attractive

option.

In many cases, the cloud providers may themselves offer network functions as a service

(NFaaS) to cloud-based enterprises so that they can lease storage and servers as well as

appropriate network services to configure and guard their resources.

Motivated by such scenarios, in this chapter, we study the design of a NFaaS cloud.

Specifically we assume that a NFaaS cloud provides different network functions (e.g., fire-

wall, IDS, caching, etc) that can be leased by a cloud-based enterprise for their cloud IT

infrastructure.

We specifically examine how a cloud provider should design a multi-function multi-

tenant NFaaS cloud from the placement perspective. We propose two different placement

strategies for a multi-tenant NFaaS cloud and discuss the advantages and disadvantages of

each approach. We conduct an experimental evaluation of these approaches using a small

prototype NFaaS cloud and quantify their benefits and overheads. We believe that our
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insights can provide design guidelines on the placement of virtualized network functions

in future NFaaS clouds.

6.2 Background and Related Work

In this section, we present background on cloud computing and network function vir-

tualization.

6.2.1 Cloud Computing Background

We consider an enterprise that hosts its IT needs using cloud resources. The enterprise is

assumed to acquire servers and storage resources from an Infrastructure-as-a-Service (IaaS)

cloud to run its applications on this cloud-based infrastructure. Such a cloud-based IT in-

frastructure needs to incorporate network security policies and performance optimization—

like an in-house enterprise network. That is, network traffic coming into the enterprise’s

cloud servers needs to undergo security checks (e.g., using firewalls, deep packet inspec-

tion systems, virus scanners, etc.) and may be subject to performance optimization (e.g.,

using in-network caches).

Traditionally such features have been implemented using middleboxes—dedicated hard-

ware devices that are deployed in the network—to perform these functions.

In a cloud-based setting, we assume that the infrastructure cloud provider provides these

functions as cloud services—allowing the enterprise to lease firewalls, caches, etc. similar

to leasing servers and storage. We assume that the cloud provider supports a rich mix of

network services that may be needed by an enterprise. The same benefit as infrastructure

clouds hold in this case such as the pay as you go model, the ability to scale up service

capacity, and on-demand resource allocation.
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6.2.2 Network Function Virtualization

While the cloud provider can provide cloud-based network services by deploying mid-

dleboxes on behalf of cloud custom, it is more effective to use network function virtualiza-

tion to implement these services using commodity servers.

In this case, a service such as a firewall, IDS or a cache is implemented as software that

runs inside a virtual machine and the VM runs on commodity servers. Virtualizing net-

work functions has become popular since it offers a number of benefits over the middlebox

approach – such as reducing capital cost, shortening deployment cycles and the ability to

handle the needs of a dynamic network.

In our scenario, NFV is a natural fit since the cloud provider is already leasing servers

and can use these commodity servers to deploy virtualized functions and offer the network

functions as a service (NFaaS) to customers.

A customer can lease various network functions as cloud services and chain them to-

gether to implement the desired network security policies and performance optimization.

For instance, the customer (i.e., the enterprise) could lease a firewall service, an IDS ser-

vice, a DNS service, a cache service and configure them so that network traffic flow through

them transparently.

6.3 Placement Issues in a NFaaS Cloud

Many design issues arise in deploying a NFaaS cloud. In this chapter, we specifically

focus on placement issues in a multi-tenant NFaaS cloud, which we discuss next.

6.3.1 Placement Strategies

A cloud provider can employ one of two placement strategies in a multi-function multi-

tenant NFaaS cloud: tenant-centric and service-centric.

In a tenant-centric approach, VMs comprising all network services leased by a tenant

are mapped onto a single server or a group of co-located servers (e.g., servers on the same
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Figure 6.1. Two placement strategies of deploying network functions in a multi-tenant
NFaaS cloud

network rack). Fig 6.1(a) shows tenant-centric placement for three different tenants, each

of whom is using three different network services. While the figure shows all services

resident on a single server, higher capacity services may require multiple servers that are

co-located.

In contrast, a service-centric placement approach maps VMs running the same service

for different tenant on the same server or on a co-located group of servers. Fig 6.1(b) which

depicts this approach shows that each server (or rack(s)) hosting the same service.

6.3.2 Tradeoffs

The two placement strategies offer a number of tradeoffs – both from a cloud provider’s

and a cloud tenant’s perspective.

Network latency: The primary advantage of customer-centric service placement is that

it optimizes network latencies of packets as they traverse from one network function to
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the next (e.g., from firewall to IDS). Since the services belonging to a tenant are resident

on the same server or the same rack, network latency is minimized. In the service-centric

placement approach, services belonging to a tenant may reside on different racks, requiring

packets to traverse to multiple switches when going from one service to the next.

Flexibility and Scaling: In many scenarios, existing network functions might need to

be updated. For example, a tenant may want to implement new network functions in their

network, or may choose to replace one IDS with another. In scenarios where a tenant’s net-

work traffic is increasing, the resource allocated to a NF may have to be scaled up (“elastic

scaling”). In a tenant-centric approach, such reconfiguration require free resources on the

server or rack hosting the tenant’s current services. If such idle capacity is unavailable,

either other tenant have to be moved to other servers/racks to free up resources or the new

service has to be placed on a more “distant” server, diminishing the latency advantage of

the approach. A service-centric approach does not suffer from such a drawback, since

new services (or resizing of existing ones) can be achieved by choosing any server with

sufficient capacity without regard to network proximity.

Packing and Resource Utilization: A tenant-centric approach enables hosting of hetero-

geneous services on the same server. This enable a CPU-intensive (but less I/O intensive)

service to be co-located with an I/O-intensive (but less CPU-intensive) one, yielding better

utilization of various resources of potentially a denser packing—a strategy that has been

successfully employed in general-purpose VM placement.

A service-centric approach hosts homogeneous services (belonging to different tenants)

on a server of packing density is determined by the most bottlenecked resources of each

service. However, homogeneity of services is not without advantage. Since all service on a

server run the same code, it provides opportunities for better memory and cache utilization

(e.g., page cache sharing across services). It may also be possible to employ containers

(lightweight VMs) rather than VMs to further exploit this homogeneity.
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Performance Interference: Whenever multiple services reside on a physical server,

there is the potential for performance interference. In the service-centric case, such in-

terference will be cross-tenant, while in the tenant-centric case, the interference will be

cross-service interference. Fortunately, resource partitioning features of VMs (or contain-

ers) can isolate co-resident services and minimize the impact of such interference.

In summary, whether to user tenant-based or service-based placement depends on the

cloud provider’s objective – tenant-based deployment has better latency, potentially bet-

ter packing but less flexibility for reconfigurations, capacity scaling than a service-based

approach and vice versa.

6.4 Experimental Evaluation

In this section, we quantify the benefits and overheads of the two placement strategies

using an experimental evaluation.

6.4.1 Prototype NFaaS Cloud

We have built a prototype NFaaS cloud using several open-source components. Out

prototype provides three network services: (i) a network firewall that is implemented using

Linux IPtables, (ii) an intrusion detection system that is implemented using Snort 2.9.8.2,

and (iii) an in-network web cache that is implemented using Squid 3.3.8. All three com-

ponents are popular and widely-used system that we deploy as virtualized services inside

virtual machines. The use of virtualization enables benefits such as rapid deployment,

flexible placement and flexible resizing when needed. Further, we implement both tenant-

centric and service-centric placement in our NFaaS prototype. In both cases, we use Linux

bridging to enable a tenant to ”chain” network functions as per their needs (see Figure 6.2).

We do so by appropriately configuring routing tables on each VM. In tenant-centric place-

ment, services belonging to a cloud tenant are placed on the same server when possible (or
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Figure 6.2. Experimental Setup

on nearby servers when VMs are too large to pack onto a single server). In service-centric

placement, VMs belonging to a service are packed together for co-location.

6.4.2 Experimental Setup

We deployed our NFaaS prototype on a testbed of five physical server as shown in

Figure 6.2. Each server has an Intel Xeon X3430 2.4GHz Quad-Core CPU, two gigabit

physical NICs, 8 GB of RAM and 1TB 7200 RPM disk. All machines run Ubuntu 12.04

and use KVM as a virtual machine (VM) hypervisor. We use one server to house clients

and one to house web servers belonging to tenants. The other three servers run virtualized

network functions inside VMs. Each VM is pinned to a physical CPU core with 2048 MB

RAM allocated. We also create two virtual NICs that allow network traffics to traverse

from one NIC to the other. Client HTTP traffic is generated using httperf [12] on one

server, and this traffic traverses through a tenant’s three network services before reaching

the web server. We monitor and measure resource utilization of various VMs using the

dstat [13] tool.

We configure the iptables firewall with 1000 rules and configure Snort 2.9.8.2 with the

default rule set 2982. Finally, we configure Squid 3.3.8 to cache frequently accessed web

pages. In tenant-based deployment, each physical server contains three VMs belonging to

a tenant running different network functions connected as a chain through Linux bridges

as illustrated in Figure 6.1(a). In service-based deployment, each physical server contains

three VMs running the same network function belonging to different tenants as illustrated

in Figure 6.1(b).
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6.4.3 Network Function Micro Benchmark

We first configure our network service based on Figure 6.2 in which each network runs

inside its own VM. Client VMs are instructed to contact the web server, at a specified

workload intensity, to get a 50 KB web page for 1 minute. All HTTP traffic traverses

through these three NFs, and we measure the average resource utilization of NFs on their

corresponding VMs. As we increase network traffic, from 100 to 500 connections per sec-

ond, the CPU utilization of all network functions increase linearly as shown in Figure 6.3.

Specifically, the web proxy is more sensitive to increasing network traffic than the firewall

and IDS, with up to 60% more CPU consumption. The network utilization also grows di-

rectly with increasing network traffic. In addition, we find the disk and memory utilization

vary only slightly with increasing network traffic. This is because the memory state of the

firewall and IDs depend on factors such as the size of the rules set and not on the workload.

Also, while the cache size depends directly on the number of frequently accessed pages, it

is not strongly related to the request rate. We thus omit these measurement results but use

them in our simulation (see Table 6.1).

Result: The CPU and network utilization of our services increase nearly linearly with

the workload while memory and disk utilization are less sensitive to the request rate.
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6.4.4 Virtualization Overhead

As shown in 6.4.3, NFs are heavily CPU and network consuming. In this experiment,

we measure underlying hypervisor’s CPU and network utilization for both placement ap-

proaches. We set up bare-bone VMs for tenant-based and service-based respectively as

shown in Figure 6.1. The network traffic of each tenant is configured to be the same for

both approaches. We instrument the hypervisors in both tenant-based and service-based

deployments to measure the utilization.

In Figure 6.4(a), we show that the NIC bandwidth consumed by tenant-based deploy-

ment is only 1/3 of that consumed by service-based deployment. This is because in tenant-

based approach, traffic between network functions goes through internal bridges within

a physical server’s boundary while in service-based approach, the traffic goes between

physical servers through physical NICs. This makes tenant-based approach much more

bandwidth efficient than service-based approach. However, this bandwidth saving is not

acquired for free. From Figure 6.4(b), we can see that although NIC throughput of service-

based approach is three time than that of tenant-based, the CPU utilization of service-based

approach is only slightly higher. When network throughput of physical server is fixed, the

CPU utilization of tenant-based approach is three times of service-based approach (Fig-

ure 6.4(c)). This is because forwarding packets through internal bridges in tenant-based

approach is CPU consuming and brings overhead for the hypervisor.

Conclusion: Tenant-based deployment is less NIC bandwidth consuming than tenant-

based deployment because packets go through internal bridges between network functions.

Both tenant-based and service-based deployment incur non negligible hypervisor CPU

overhead that increases linearly with network traffics. Specifically, to achieve the same

throughput for each tenant, service-based deployment requires much more network band-

width and slightly more CPU resources than service-based deployment.
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Figure 6.4. Hypervisor CPU and Network utilization of the two deployments.

6.4.5 Packing Efficiency

Next, we compare the packing efficiency of the tenant-based and service-based ap-

proaches. The packing efficiency is measured as the number of servers required to handle

the same workload level—that is, we simulate different scenarios in which NFaaS cus-

tomers request different resources for their network functions. Specifically, we divide

NFaaS customers into three groups, i.e., small, medium and large, based on their resource

requirements. In Table 6.1, we list resource requirements of different customers in the

form of CPU and Memory. These requirement values are taken directly from our micro

benchmarks and correspond to NFs handling 300, 600 and 1200 connections per second

respectively. In addition, the NFaaS cloud is simulated with four different types of physical

servers and we show the corresponding configurations in Table 6.2. Finally, we choose to

use best fit algorithm that places all network functions of next customer to eligible servers
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with smallest amount of available CPU cores, for both deployment modes. Here a server is

eligible only if it has enough available CPU and memory capacity.

We first look at the total number of small physical servers required to place large-

sized customers. As shown in Figure 6.5(a), deploying NFs service-basedly can save up

to 30% server resources compared to tenant-based deployment. In essence, service-based

deployment outperforms tenant-based deployment because it has more eligible servers to

choose from during each placement decision. For example, any physical server with less

than 1.4 CPU cores is not eligible for tenant-based deployment.

Next we compare the number of large servers required to host a thousand customers

with different resource requirements. We observe that the benefits of service-based de-

ployment over tenant-based deployment increase from 3% to 30% when we need to handle

customers with more resource demands. Similarly, this is because a larger customer leads

to more potential waste of spare server resources.

Finally, we total the number of servers required to run NFs for one thousands customers

of varying resource requirements.

In Figure 6.5(c), we show that tenant-based placement performs worse when only has

access to small servers with limited resources. As we increase the server size, the difference

between tenant-based and service-based placements converges. This is because having

access to larger servers offsets the resource constraints exerted by tenant-based placement.

After packing efficiency simulation, we perform a following simulation to compare the

elasticity of the two approaches. We assume that a user may change the size of his VMs in

use in two scenarios. In the first scenario, a user upgrades or degrades a single VMs because

he wants to change the configuration of a specific network function (e.g., add or delete rules

in firewall) . In the second scenario, a user upgrades or degrades his VM suite because of

network throughput change. If a physical server does not have enough resource to host an

upgraded VM, the VM is migrated to another physical server. When using tenant-based

method, VMs of the same user should still be on the same physical server after migration.
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Degraded VM remains on the same physical server but extra CPU, memory and bandwidth

resources are released. In our simulation, each user chooses to upgrade, hold or degrade

his VMs with equal probability after VMs start. Each simulation is executed 100 times and

we use the average number of migrations to measure the two methods’ ability to handle

elasticity of demand.

In Figure 6.5(d), we show that tenant-based placement performs 58% more migrations

in single VM modification scenario and 104% more migrations in VM suite modifica-

tion scenario than service-based placement. Tenant-based placement performs bad because

whenever resources are insufficient for upgraded VMs, tenant-based placement has to mi-

grate all three VMs of a user while service-based placement may only need to migrate one

VM. Tenant-based placement performs worse in VM suite modification scenario because

it’s more possible to cause resource insufficiency when three VMs on the same physical

server upgrade at the same time.

Result: The service-centric approach has higher packing efficiency than a tenant-

centric deployment, with up to 30% fewer physical servers. In particular, tenant-based

approach has poor packing efficiency when placing customers with higher resource de-

mands or on to smaller servers.

6.4.6 End-to-end Performance

In this experiment, we evaluate the end-to-end response time and bandwidth of deploy-

ing a network service using either tenant-centric or service-centric placement. We create

a logical topology where user generated requests have to traverse firewall, IDS and then

web proxy in sequence. Similar to Figure 6.1, for the tenant-centric approach, we place

all three services on the same quad-core server, while for the service-centric approach, we

place these services on three different servers.

For each physical topology, either tenant-based or service-based, we begin the experi-

ment by sending HTTP requests to fetch web pages from the web server. Specifically, we
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Customer Type Throughput Firewall IDS Web Proxy
Small 250Mbps (0.1, 71) (0.1, 462) (0.5,147)

Medium 500Mbps (0.2, 71) (0.2, 470) (1, 151)
Large 1Gbps (0.4, 71) (0.4, 485) (2, 160)

Table 6.1. NFaaS customer configuration for simulations. Resource re-
quirements are specified in the form of network throughput. We also
show the corresponding number of CPU cores and memory (MB) re-
quired by each network function in the table.

Server Type Cores Memory (GB) Network Bandwidth
Small 4 8 10Gbps

Medium 6 12 15Gbps
Large 8 16 20Gbps
Xlarge 12 24 30Gbps

Table 6.2. Server configurations for our simulations.

limit the request rate to 100 connections per second to avoid bandwidth congestion and

make sure that all user requests go through all three middleboxes. We run each experi-

ment for one minute and measure the average response time over all requests. As shown

in Figure 6.6, tenant-centric placement incurs up to 20% lower latency, for both web page

sizes, under similar server load. The response time difference is because packets traversing

through multiple physical servers in the service-centric placement. We expect to observe

an even higher performance gap if middleboxes were running in different racks for service-

based deployment.

Result: Deploying network functions using a tenant-centric approach can lead to better

end-to-end response time than the service-centric approach.

6.5 Related Work

The promise of implementing software-based network functions and running them on

commodity high-volume servers has attracted significant attention from the research com-
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Figure 6.5. Comparison of packing efficiency and elasticity for tenant-based and service-
based deployment under different scenarios.

munity [35]. In NFV, individual network functions are implemented in software and use

virtualization to replace its hardware counterpart. Efforts to improve packet processing

performance using commodity NICs [14, 65] and packet transfers in the virtualized envi-

ronments [66, 46] have significantly improve the performance of running virtualized NFs

in the commodity settings. Almost always, NFs are used in combination to form network

services and these end-to-end services introduce new problems in managing the end-to-end

performance [55, 69, 63, 38], especially in the multi-tenant cloud environments [71, 23]

. In addition, it is beneficial to provide dynamic scaling ability to cloud-based NFs by

either migrating to a more powerful VM [19, 51] or replicating network states with and

without explicitly considering state consistency [64, 39]. Unlike traditional VM place-

ment [25, 22, 47, 57] where the VM resource needs may not be known in advance, in
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Figure 6.6. Comparison of response time. Tenant-based deployment can achieve up to
20% improvement comparing to service-based deployment when all network functions run
in the same rack.

our case, the characteristics of each network function is known in advance, enabling more

optimal placement.

6.6 Conclusions

In this chapter, we studied how network functions as a service can be deployed in cloud

environments. We studied two different placement strategies, tenant-centric and service-

centric, for deploying network functions in the cloud. Our experimental evaluation using a

NFaaS prototype and simulations show that tenant-centric placement can achieve better net-

work performance because it avoids cross-service traffic from traversing network switches,

which saves physical bandwidth and reduces network delay. In contrast, the service-centric

approach is easier to manage and deploy; simulations using real measurements show that

this approach yields better resource utilization in the cloud. Our results demonstrate the

tradeoffs of the two approaches and provide guidance on which approach to choose based

on the overall design goals.
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Thesis Summary

This thesis has explored how application-aware technologies can be used to improve

resource management for the cloud. I have proposed a set of automated techniques to

reduce cost or enhance performance of different applications that run in the cloud.

First we proposed to use bidding strategies together with virtualization techniques to

run always-on internet services on cloud spot markets. Our evaluation demonstrated the

feasibility of using our proactive approach to provide availability levels that are close to

levels desirable for always-on services, at nearly 1/5 to 1/3 of the cost of the traditional

approach of using on-demand servers.

Next, we proposed to use software-defined network to help create a communication

channel between networks and applications. We apply this technique to big data platforms

which require a lot of data shipping between nodes.

We found that for data intensive jobs in a Hadoop cluster, network contentions may

happen and influence the performance of the whole cluster. We demonstrated that by en-

abling Hadoop and underneath network work with each other, the network contention in

Hadoop cluster can be effectively avoided. By using collaborative schedulers in Hadoop,

the performance of Hadoop is improved by up to 37% and the impact of neighborhood

traffic can be reduced by 60%.

Then we presented the task management problems in current Spark platform. We found

that previous schedulers can not achieve good performance for different tasks in different

network conditions. I proposed a network-aware scheduling method that can adaptively
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schedule tasks according to current network conditions and tasks’ network demand. The

evaluation results show that our system that implemented network-aware scheduling out-

performs default Spark by up to 9 times in some cases and can always achieve good per-

formance in different scenarios without system tunning.

Finally, we discussed how network as a service can be deployed in cloud environment.

We proposed two placement methods of chaining network functions. By conducting a

series of experiments and simulations, we showed the trade-offs between the two methods

and provide guidance for cloud service providers to make the choice.

7.2 Future Work

In this section we discuss some future research directions that have emerged from the

work in this dissertation.

Potential of transient servers: In Chapter 3, we showed how to use transient servers

in spot market to deploy always-on services. Transient servers also exist in other forms like

Google’s preemptible VMs. Traditionally, people use these transient servers to run batch

jobs. However, our study shows that with replication, migration and backup mechanisms,

transient servers can be used for applications in a larger range. In this thesis, we only

discuss how to use VM migration and backup to deploy web services on transient servers.

There are several interesting extensions to our work: how to deploy other applications

on transient servers, how these applications are impacted by server revocations and how

to use other mechanisms such as application level backup and replication to make these

applications cheaper to deploy and more fault tolerant in use.

Advanced scheduling in big data platforms: In Chapter 4 and Chapter 5, we used

network-aware task scheduling to improve big data platforms’ performance. Besides network-

aware task scheduling, we can also use cluster structure and network information to fur-

ther improve these platforms performance. For example, currently we only focus on task

scheduling of a single job. It could be interesting to find how to optimally schedule tasks
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of different jobs with different locality properties. Furthermore, if the jobs have different

priority, the problem becomes more complicated and new policies need to be designed.

We can also make the data storage scheduling network-aware and proactively transfer data

between nodes according to current conditions and future job schedule. If these schedulers

could collaborate with each other, we can maximize the resource utilization and optimize

the performance of big data platforms.

Design and Implementation of a NFaaS Cloud: In Chapter 6, we discussed the place-

ment strategies for provisioning network functions as service in the cloud. To provide a

real NFaaS cloud, there is still a lot of work to do. We need to consider what virtualization

techniques should be used and what scheduling algorithms can be applied. The aiming of

NFaaS clouds is to provide stable and secure network functions in an on-demand manner

with high flexibility and performance.

109



BIBLIOGRAPHY

[1] IBM’s Softlayer http://www.softlayer.com/.

[2] Amazon EC2 http://aws.amazon.com/.

[3] Microsoft Azure https://azure.microsoft.com/.

[4] Google computing platform https://cloud.google.com/.

[5] Amazon EC2 Spot Instanceshttp://aws.amazon.com/ec2/
purchasing-options/spot-instances/.

[6] Preemptible Virtual Machines https://cloud.google.com/
preemptible-vms/.

[7] Google App Engine https://cloud.google.com/appengine/.

[8] IBM Bluemix http://www.ibm.com/cloud-computing/bluemix/.

[9] Altiscale Big Data Platform urlhttps://www.altiscale.com/big-data-platform.

[10] Amazon EWR https://aws.amazon.com/elasticmapreduce/.

[11] http://aws.amazon.com/solutions/case-studies/netflix/.

[12] https://sourceforge.net/projects/httperf/.

[13] http://dag.wiee.rs/home-made/dstat/.

[14] Intel Data Plane Development Kit. http://dpdk.org.

[15] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vahdat, A. Hedera:
Dynamic flow scheduling for data center networks. In Proc. of NSDI (2010).

[16] Al-Fares, Mohammad, Loukissas, Alexander, and Vahdat, Amin. A scalable, com-
modity data center network architecture. In Proc. of SIGCOMM (2008).

[17] Ananthanarayanan, Ganesh, Kandula, Srikanth, Greenberg, Albert, Stoica, Ion, Lu,
Yi, Saha, Bikas, and Harris, Edward. Reining in the outliers in map-reduce clusters
using mantri. In Proc. of OSDI (2010).

[18] Barham, Paul, Dragovic, Boris, Fraser, Keir, Hand, Steven, Harris, Tim, Ho, Alex,
Neugebauer, Rolf, Pratt, Ian, and Warfield, Andrew. Xen and the art of virtualization.
ACM SIGOPS Operating Systems Review 37, 5 (2003), 164–177.

110



[19] Barham, Paul, Dragovic, Boris, Fraser, Keir, Hand, Steven, Harris, Tim, Ho, Alex,
Neugebauer, Rolf, Pratt, Ian, and Warfield, Andrew. Xen and the art of virtualization.
In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(New York, NY, USA, 2003), SOSP ’03, ACM, pp. 164–177.

[20] Biran, Ofer, Corradi, Antonio, Fanelli, Mario, Foschini, Luca, Nus, Alexander, Raz,
Danny, and Silvera, Ezra. A stable network-aware vm placement for cloud systems. In
Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012) (2012), IEEE Computer Society, pp. 498–506.

[21] Borkar, Vinayak, Carey, Michael, Grover, Raman, Onose, Nicola, and Vernica, Rares.
Hyracks: A flexible and extensible foundation for data-intensive computing. In Proc.
of ICDE (2011).

[22] Breitgand, David, and Epstein, Amir. Sla-aware placement of multi-virtual machine
elastic services in compute clouds. In 12th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2011) and Workshops (2011), IEEE, pp. 161–
168.

[23] Bremler-Barr, Anat, Harchol, Yotam, Hay, David, and Koral, Yaron. Deep packet in-
spection as a service. In Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies (New York, NY, USA, 2014),
CoNEXT ’14, ACM, pp. 271–282.

[24] Bu, Yingyi, Howe, Bill, Balazinska, Magdalena, and Ernst, Michael D. Haloop:
Efficient iterative data processing on large clusters. In Proc. of VLDB (2010).
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