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ABSTRACT 

 
During the last decade, a large research effort has been devoted to the 
problem of designing robust controllers capable of guaranteeing stability in 
the face of plant uncertainty. In spite of large research efforts, this problem 
is not completely resolved. 

 
Alternatively, mixed objective control problems have attracted 

much attention lately since they allow for directly capturing different 
performance specifications without resorting to approximations or the use 
of weighting functions; thus, eliminating the need for trial and error type 
iterations. Of course, it is not always possible to capture all the desired 
performance specifications in a single norm constraint, and so a number of 
researchers have considered mixed norm minimization problems, including 

2 /H H ∞ , 1 /l H ∞ , 1 2/l H  and 2 1/H l . 

 

This thesis, considers the problem of minimizing the 1l  norm of a 
certain closed-loop transfer function, while maintaining the 2H norm 
(mixed 1 2/l H ), or the H∞  norm (mixed 1 /l H ∞ ), of a different transfer 
function below a pre-specified level for an autopilot pitch aircraft. 

 
The main results of this thesis show that a two-stage process can 

synthesize suboptimal controllers, involving a convex optimization 
problem, which optimizes the 1l  norm, internal characteristic of controller 
and H∞  or 2H  optimization that optimize the external characteristic of the 
system. Furthermore, this approach also provides a CVX-based 
parameterization of all suboptimal output feedback controllers, including 
reduced order, for mixed 1 /l H ∞  and 1 2/l H problems. The developed 
approach is tested by designing a control with multi-objective autopilot 
controlling the pitch of an aircraft. 
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:  ملخص
 

منذ العقد السابق ، أجريت أبحاث ومجهودات كبيرة لتصميم وإنجاز متحكم متماسك وله القدرة 
مان إستقرارية عالية أمام التغيرات المفاجئة التي تحدث نتيجة الإرتيابات التي يمكن أن ضعلى 

و  2Hثل وكنتيجة لهذا الهدف تم تطوير طرق فعالة ودقيقة م. تستجد على نظام التحكم بأكمله
H∞نظام ذو طويلة-لابة النظام بوجود إرتيابات في حيث تم توجيه أبحاث الإستقرارية وص 

  .بوساالحلول باستعمال الحالحصول على فعالية عالية باستخلاص كنتيجة و  .محدودة

 
ير من الإنتباه مأخراَ حيث انها شدت الكث إشكالية التحكم ذات الهدف المزدوجلمقابل ، اب

تقريب أو إستعمال دوال من الحصول مباشرة على مميزات مختلفة بدون اللجوء إلى ال تمكن
بالطبع لايمكن دائما الحصول على كل . عدم الحاجة إلى عملية التجريب والخطأ الوزن، وبالتالي

ن الابحاث أخذت بعين الإعتبار إشكالية ومنه العديد م, ملزمة بإستعمال طويلة واحدة الخصائص
2تصغير الطويلة المزدوجة ، وتتظمن الابحاث  /H H ∞،1 /l H ∞،1 2/l H  2و 1/H l .

 

ذات حلقة تحكم  لدالة تحكم 1lبعين الإعتبار إشكالية تصغير طويلة  في هذا البحث أخذنا

1المزيج ( 2Hطويلة الة على مغلقة، مع المحافظ 2/l H ( طويلةال، أوH∞) 1المزيج /l H ∞(،  
. وال الإنتقال تحت مستويات معرفة مسبقالمختلف د
 

 حولنظرية التحكم الكلاسيكية، فإن قياس الكفائة لنظام تحكم ذو دائرة مغلقة تتمركز في 
الإظطرابات المعروفة، الضجيج، أو قياسات الخطأ ) في حالة الإستقرار(على إلغاء النظام قدرة 

، أو المشغل الميكانيكيالمجسات،  التي يمكن أن تظهر في مختلف قطاعات الحلقة المغلقة، حيث أن
. التحكم في بعض المشاكل لاتملك دالة حل رياضي، ومنه الحاجة إلى طرق حل أمثل ارجخم

 
ومن هنا يدخل مفهوم الحل الأمثل، . هي تقنية الحل الأمثل  LMI  الأمثلية هي الجواب؛ 

إحدى الطرق لحل هذا النوع من الإشكاليات هي . وبالتالي تضييق الإشكالية إلى حل أمثل محدب
LMI  )أو) فة الخطية الغير متساويةالمصفوCVX بهدف الوصول إلى  الحل الامثل لدالة محدبة

حل امثل إن كان موجودا أصلا، وتصميم متحكم أمثل يقلل من تأثيرات إشارات الضجيج، وخطأ 
. إشارات الضجيجالقياسات أو يلغي تماما 

 
دُوَيْنَ تركب المتحكم أن النتائج الاساسية لهذا البحث تظهر أن مستويين من المعالجة يمكن 

1lللإشكالية الذي يجد الحل الامثل لطويلة حل أمثل محدب، مما يستدعي الأمَْثلَ  باعتبارها 

∞H المميزة الداخلية للمتحكم و الطويلة  , 2H  زة الخارجية باعتباره الممي الحل الامثلالتي تجد
مخارج مرتكزة على الحلول الرياضية لكل   CVXبالإظافة إلى أن هذه الطريقة توفر . للنظام

لكل من , للتغذية الخلفية للمتحكم بالإظافة إلى تصغير رتبة كل منهادُوَيْنَ الأمَْثلَ 
1 /l H 1و∞ 2/l H .  نصمم جهاز طيران تلقائي الذي سوف يتحكم  وكمثال على التطبيق سوف

.  لطائرة ) pitch(في زاوية 
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CHAPTER 1 INTRODUCTION 

 

The principle of control and feedback control are more and more 
penetrated in our daily life. Technologies based on complexity, precision, 
performance and security of systems give big place to build-in regulators 
and control loops. Control is, generally speaking, the activity that affects a 
system to behave in a desired way. In feedback control, the system 
behavior is continuously measured or monitored, and compared to the 
desired behavior. Yet, the world as we know is unimaginable without 
control. 

1.1. Background  
To design a controller, we should approximate our system to model-based 
approach. This model approach becomes complex whilst the control 
engineering addresses complex tasks. The model-based approach is 
mathematical formulations that describe the characteristic and behavior of 
our system. These mathematical models are used to predict, take decision, 
and define a control method to our system. 

It is necessary we use the simulation to study the system behavior 
and prediction before implementing our controller. The difference result 
between the practical model and the mathematical model may be called 
uncertainty. The uncertainty of the system should be taken into account 
when building-in our controller to ensure the stability of the system over 
plant uncertainty and disturbances. These studies lead to the field of robust 
control. 

If multi-objective design is desired, we are oriented to use more 
powerful techniques to attract distinctive performances possible. These 
studies lead to the field of linear matrices inequality (LMI) by utilizing 
convex optimization (CVX). 

1.2. Robust Disturbance Attenuation 
Skogestad, Postlethwaite (2005) [1] and Sanchez-Pena, Sznaier (1998) [2] 
gave good introductions and overviews on robust control. The majority of 
the results in this area considered quadratic-type performance and stability 
criteria. Well-known examples are least squares, 2L signal norms, 2H and 
H∞ system norms, and integral quadratic constraints. Related performance 
frameworks like H∞ control were applied to many real problems in 
academic and industry. The Interpretations of the corresponding system 
behavior in terms of energy, dissipativity, or frequency-domain properties 
contributed to the attraction of quadratic criteria. 
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In practice, it is more desirable to influence directly the maximum 
control error, the response overshoot, the maximum values of control 
inputs, or other time domain properties of system response. Such goals can 
be achieved generally by quadratic-type approaches in principle, but often 
by indirectly and with numerous design iterations. 

Norms are considered as measures that can be utilized to constraint 
the behavior of systems. Examples of such measures are 1L , 2L , L∞ , 2H and  
H∞ norms. 

To address the mentioned time-domain properties of a system 
response more directly, it is natural to consider performance in terms of the 
L∞  signal norm 

 
itt

v v tsupmax ( )


  (1.1) 

The L∞ -norm measures the maximum amplitude of the components 

i
v  of a signal vector v  over time t. To obtain a corresponding measure for 
a stable system G, the so-called amplitude gain or L∞ -gain is used. 

 
0ind w

Gw
G

w
: sup





  


  (1.2) 

This gain characterizes the worst-case amplitude of the system 
output z Gw= normalized by the maximum amplitude of the input w  
under the assumption of zero initial conditions. In other words, the L∞ -
gain describes how well a system attenuates persistent disturbances. The 
gain notion is shown in Figure 1.1(a). One speaks of L∞ -gain based 
disturbance attenuation if a stabilizing controller is look for such L∞ -gain 
of the closed-loop system is minimized or bounded. 
Where: 

 
1 2

11 12
1 11 12

21 22
2 21 22

      B       B
( )   ( )

( )      D     D
( )   ( )

     D     D

A
G s G S

G s C
G s G s

C

 
   = =       

 (1.3) 

As a common situation, think of z being the control error, the 
amplitude of which is supposed to be maintained as small as possible as 
showed in Figure 1.1(b). It can be shown that; for LTI systems, the L∞ -
gain is equal to the 1L -norm of the system’s impulse response. Therefore, 
the name 1L - optimal control is used for the field of L∞ -gain based 
disturbance attenuation. Except the rejection of disturbances, many other 
control goals can be formulated in such a framework.  
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(a)  L∞ -gain Open-loop without feedback                          (b) L∞ -gain with output feedback. 

Figure (1.1): L∞ -gain 

 
In Figure 1.1 (a) the input w of the system G is assumed to be the 

worst-case input in terms of the L∞ -gain. Then the L∞ -gain G


is equal 
to the maximum amplitude of the corresponding output signal Z divided by 
the maximum amplitude of w . In  Figure 1.1 (b) If  G is compensated by a 
controller K such that the L∞ -gain decreases, then the maximum  
amplitude of Z normalized by the worst-case input w  is smaller than in 
Figure 1.1 (a) or equal. 

Set point control, following of reference commands, minimization 
of resource consumption, or filtering problems are examples of control 
problems. The related literature treats almost only discrete-time design 
methods. Since in this case, it is possible to formulate tractable synthesis 
conditions that can be solved on a computer. The corresponding measures 
for discrete-time signals and systems are denoted L∞ - and 1L -norms, 
respectively. The same idea carries over to performance considerations for 
uncertain systems. With help of the above norm descriptions, it is 
furthermore possible to quantify uncertainties in terms of their input/output 
behavior and their maximum gain. If control goals are formulated in terms 
of several norm constraints, or when different norms are used within one 
control design problem, we call that  multi-objective control.  

While the vast amount of contributions in the field of robust linear 
control is concerned with H∞ and 2H  control, the 1L  paradigm has also 
seen a number of basic and promising results. The 1L  control literature 
treats analysis and synthesis of systems both with and without 
uncertainties. The available analysis results are straightforward norm 
computations in the nominal case, whereas for models with uncertainties, 
small-gain theory in combination with scaling is applied. The synthesis 
methods proposed so far treat nominal control design in terms of linear 
programs (LPs). The literature moreover discusses robust design of LTI 
controllers with respect to structured dynamic uncertainties using iterations 
over LPs. 

1L  Performance objectives allow to specify desired control goals in 
the time-domain and to address robustness issues. Although there have 
been a number of basic results, the literature has paid less attention to 1L  
control than to quadratic-type performance frameworks. 
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1.3. Statement of the Problem:  
We have two problems: The first problems is concerned with  

1 2/l H problem  where the system is controllable ( )1A, B and 
observable ( )2A,  C We wish to find an internally stabilizing controller such 
that the mixed objective 1 2/l H is minimized. 

In the 1l problem, the design of an internally stabilizing controller 

minimizes the l∞ norm of the regulated output due to the worst case 
magnitude bounded disturbances. 

The 2H problem is minimizing the energy contained in the pulse 
response of the closed loop transfer function from disturbance to the 
measured regulated output. 

Here we address the problem of minimizing the two norm of an 
input-output transfer function while keeping the two induced norm of 
another transfer function below a certain level. 

 

The second problem is concerned with 1 /l H∞ problem where the system is 
controllable ( )1A, B  and observable ( )2A,  C . 

We wish to find an internally stabilizing controller such that the 
mixed objective 1 /l H∞ is minimized. 

In the 1l problem, the design of an internally stabilizing controller 

minimizes the l∞ norm of the regulated output due to the worst case 
magnitude bounded disturbances. 

The H∞ problem is minimizing the worse case energy contained in 
the pulse response of the closed loop transfer function from disturbance to 
the measured regulated output. 

Here we address the problem of minimizing the two norm of an 
input-output transfer function while keeping the two induced norm of 
another transfer function below a certain level. 

1.4. Literature Review 
 

• In the mid to late 70’s, optimal control enjoyed tremendous success 
solving variety of control application problems. The modern optimal 
control paradigm for feedback design, the LQG problem, however, had 
relatively little impact on practical control design. 
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• At about the same time, singular values or the H ∞ , norm was proposed 
for robustness analysis of multivariable systems. This point of view added 
necessity to the small gain methods of the 1960s [3, 4, 5]. That is, whereas 
small gain gave sufficient conditions for stability for a set of uncertainty, 
the robust control interpretation was that the same condition was 
necessary and sufficient for a particular set. One of the motivations for the 
original introduction of H ∞ , methods by Zames [6] was to emphasize 
plant uncertainty. The H ∞ , norm was found to be appropriate for 
specifying both the level of plant uncertainty and the signal gain from 
disturbance inputs to error outputs in the controlled system. The H ∞ , 
norm gives the maximum energy gain (the induced 2l  system gain), or 
sinusoidal gain of the system.  

 
• Simple state space H ∞ controller formulae were first announced in Glover 

and Doyle [7]. However, the very simplicity of the new formulae and their 
similarity with the 2H  ones suggested a more direct approach. 

    
•  Independent encouragement for a simpler approach to the H ∞  problem 

came from papers by Khargonekar, Petersen, Rotea, and Zhou [8, 9], Zhou 
et al. [10]. They showed that for the state feedback H ∞ problem one can 
choose a constant gain as an (sub) optimal controller. In addition, a 
formula for the state-feedback gain matrix was given in terms of an 
algebraic Riccati equation. Also, these papers established connections 
between H ∞ -optimal control, quadratic stabilization, and linear-quadratic 
differential games. They showed that the state-feedback H ∞  problem can 
be solved by solving an algebraic Riccati equation and completing the 
square. Relations between H ∞  was established with many other topics in 
modern control: e.g. risk sensitive control of Whittle (1981, 1990); 
differential games (see Bagar and Bernhard (1991) [11], Limebeer et al 
(1992) [12], Green and Limebeer (1995) [13]. The state-space theory of 
H ∞  was also carried much further, by generalizing time-invariant to time 
varying, infinite horizon to finite horizon, and finite dimensional to 
infinite dimensional and even to some nonlinear results. Most of these 
results used fairly conventional modern optimal control techniques. 

 
• In Sadati study (2003) [14], the author used a new approach for controller 

order reduction based on minimization of the rank of a matrix variable, 
subject to linear matrix inequality constraints. The proposed approach was 
applied to an  H ∞  high order controller, which was designed for an active 
suspension system. The performance and stability achieved by the reduced 
order controller was compared with those achieved by the high-order 
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controller. The comparison was based on both simulation and 
experimental results obtained by digital controller implementation. 

 
• In Alireza Khosravi (2007) [15], the main purpose of this paper, was 

performing a new solution on the basis of Linear Matrix Inequality (LMI) 
for designing induced L∞ optimal controllers. Induced L∞  optimal control 
allowed directly time-domain specifications into the controller synthesis 
procedure and furnished a complete solution to the robust performance 
problem. The new technique, which was proposed as an algorithm, 
combined the original concept of peak-to-peak gain of designed system 
with optimal control theory and employed a free design parameter 
allowing for a flexible management of the tradeoff between robustness to 
disturbance signals and magnitude of the worst peak-to-peak gain of the 
designed system. For the convergence of this algorithm, a scope was 
found on the basis of the H ∞  norm. If the length of this interval was 
small, we had a good estimate of the actual optimal peak-to-peak gain that 
was achievable by control. 

 

• The 1l  control problem was formulated in Barabanov and Granichin 
(1984) [16], Vidyasagar (1986) [17]. The 1l  control literature generally 
treats discrete-time problems, since only these lead to numerically 
tractable synthesis conditions. 1l  framework is attractive for controller 
synthesis. More elaborate discussions can be found in Vidyasagar (1986) 
[17]; Dahleh and Khammash (1993) [18]; Dahleh and Diaz- Bobillo 
(1995) [19]. 

 
• Current drawbacks of the 1l  framework are the often high order of the 

resulting controllers, and the possibly large size of the LPs. Accounts on 
how the 1l  framework can be used for practical applications are found in 
e.g. Spillman and Ridgely (1997) [20]; Tadeo et al. (1998) [21]; Malaterre 
and Khammash (2000) [22]; Rieber et al. (2005) [23]; Stemmer et al. 
(2005) [29]; Rieber and Allgower (2006) [24]. 

 
• Some interesting properties of 1l -optimal synthesis are that the optimal 

controller may be nonunique, that the optimal controller may be dynamic 
even in the state-feedback case, that nonlinear static state-feedback 
performs as well as linear dynamic feedback, and that nonlinear 
controllers may result in better performance than the optimal linear 
controller (Diaz-Bobillo and Dahleh (1992) [25]; Dahleh and Shamma 
(1992) [26]; Shamma (1993) [27]; Blanchini and Sznaier (1995) [28]; 
Stoorvogel (1995) [29]; Shamma (1996) [30]. Relations to continuous-
time controllers and sampled-data implementations are established in 
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Dullerud and Francis (1992) [31]; Ohta et al. (1992) [32]; Blanchini and 
Sznaier (1994) [33]; Chen and Francis (1995) [34]. 

 

• The l∞ -gain of linear systems subject to time-varying parametric 
uncertainties was analysed by Rieber et al. (2006) [35]; Rieber et al. 
(2007) [36]. The time-domain response of an uncertain system is 
characterized in terms of linear fractional transformations. Such a 
characterization enables robustness analysis of uncertain system 
responses. 
 

• Introductions and overviews on the topics of  2H  , H∞ , 1l , and multi-
objective control are given in Dahleh and Diaz-Bobillo (1995) [37]; Zhou 
et al. (1996)[38]; Sanchez-Pena and Sznaier (1998) [39]; Skogestad and 
Postlethwaite (2005) [40]; Rieber and Allgower (2006) [41]. 

 
• In Murti V. Salapaka et.al. (1995) [42], the problem of minimizing the 1l  

norm for internally stabilizing controllers while keeping its 2H  norm 
( 1 2L /H ) under a specified level was considered in this paper. The problem 
was analysed for the discrete-time, SISO, linear time invariant case. 
Duality theory was employed to show that any optimal solution is a finite 
impulse response sequence and an a priori bound is given on its length. 
The problem was reduced to a finite dimensional convex optimization 
problem with an a priori determined dimension. Finally it was shown that, 
in the region of interest of the 2H  constraint level the optimal was unique 
and continuous with respect to changes in the constraint level. However, 
the paper did not tackle the continuous MIMO system. 

 
• In Mario Szneir et.al. (1998) [43], a methodology for designing mixed 

1L /H∞  controllers for MIMO systems was considered in this paper. These 
controllers allow for minimizing the worst case peak output due to 
persistent disturbances, while at the same time satisfying an H∞ -norm 
constraint upon a given closed loop transfer function. The main results of 
the paper showed that 1) contrary to the case 2 /HH ∞ , the 1L /H∞  problem 
admits a solution in 1l , and 2) rational suboptimal controllers can be 
obtained by solving a sequence of problems, each one consisting of a 
finite-dimensional convex optimization and a four-block H∞  problem. 
Moreover, this sequence of controllers converges in the 1l  topology to an 
optimum. However, the paper did not tackle the continues time. 

 
• In Takeshi Amishima et.al. (1998) [44], the problem of minimizing the 1l  

norm of a closed-loop transfer function while keeping its 2H  norm ( 1 2L /H ) 
under a specified level was considered in this paper. It was showed that 
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the optimal closed-loop impulse response has finite support, and thus a 
non-rational Laplace transform. To solve this difficulty a method for 
synthesizing rational controllers with performance arbitrarily close to 
optimal was proposed. However, the paper did not tackle the MIMO 
system. 
 

• In M. Sznaier et.al. (2000) [45], a solution to general continuous-time 
mixed 2H /H∞ problems, based upon constructing a family of 
approximating problems was considered, obtained by solving an 
equivalent discrete-time problem. Each of these approximations can be 
solved efficiently, and the resulting controllers converge strongly in the 

2H topology to the optimal solution. However, the paper did not tackle the 
continuous time. 

 
• In Jun Wu et.al.(2002) [46], the general discrete-time single-input single-

output (SISO) mixed 2 1H /L control problem was considered in this paper. 
It was found that the existing results of duality theory could not directly be 
applied to this infinite dimensional optimization problem; however, the 
approach based on duality theory was useful in research on the mixed 

2 1H /L optimization problem, as it was often that the dual problem could be 
solved for more easily than the primal problem. However, the paper did 
not tackle the MIMO system. 

 
• In Xiaofu Ji et.al. (2009) [47], the mixed 1L /H∞  control problem for a 

class of uncertain linear singular systems was considered using a matrix 
inequality approach. The purpose was to design a state feedback control 
law such that the resultant closed-loop system is regular, impulse-free, 
stable and satisfies some given mixed 1L /H∞  performance. A sufficient 
condition for the existence of such control law was given in terms of a set 
of matrix inequalities by the introduction of inescapable set and norms. 
When these matrix inequalities are feasible, an explicit expression of the 
desired state feedback control law was given. However, the paper did not 
tackle the MIMO system. 

 
1.5. Motivation 

Continuous-time and discrete time multiobjective 1 2/l H  and 1 /l H∞  
problem can be solved using the youla parameterization; however, the 
order of the optimal controller is not bounded by the order of the plant 
[Salapaka et al. (1995), sznaier & Bu (1998)]  [42, 44]. 

Recent development in convex optimization motivated this work to 
cast this problem using bounds on the 1l , 2H or H∞ norms to produce low 
order suboptimal controllers. 

 



9 

1.6. Thesis contribution 
The main contribution of this thesis is the application of mixed objective 
problems 1 2/L H  and  1 /L H∞   for SISO system, linear time invariant to 
designing controller for Autopilot pitch Aircraft. In this thesis, the 
Lagrange duality principle methodology proposed by Slapaka and Dahleh 
(1995) [42] will be used, but with introducing some change to this method 
as follow: 

 
First, this thesis will consider the minimizing sensitivity of the 

output system to the input disturbance by the method of 2-norm and 
infinity norm, this minimization will considered as primal Lagrange 
multiplier. The reason of using ZWK s

T
2

min
  

and
 ZWK s

Tmin


is to minimize 

or reject the effect of disturbance to our system. 
 
 

 
In the Second objective of the dual Lagrange multiplier problem, 

this thesis will consider the minimizing of bounded norm output of the 
controller designed by using the 1L  norm theory, this lead to use convex 
optimization approach. The solution of this problem can be obtainable by 
using CVX-toolbox built by Stephen Boyd. The reason for using the 
bounded-norm output as dual problem is to minimize the cost function of 
the output controller and limit the brusque variation introduced to the 
system by the input control, which lead to BIBO system. 

 
The formation of the mixed objective problems are resolved by 

using the primal problem as constraint to the dual problem for the two 
methods 1 2/L H and 1 /L H∞ .  

 

1.7. Preliminaries and Notation 
This section briefly introduces some preliminary definitions and basic 
notation to enable a compact and precise statement of problem 
formulations and results. Related definitions are found in Dahleh and Diaz-
Bobillo (1995) [37]; Zhou et al. (1996) [38]; Skogestad and Postlethwaite 
(2005) [40]. 

      1.7.1. General 

| · | is the absolute value of a number, and Tv v v  denotes the 
Euclidean vector norm. Co(S) represents the convex hull of a set S. 
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     1.7.2. Matrices 

The symbols I and  0 denote the identity and zero matrices of appropriate 
dimension, respectively. To address components of matrices, we use

i
M to 

denote the ith row of a matrix M, 
j

M for the jth column, and
ij

M for the 

element with index (i, j). TM  and M *  denote transposition and complex 
conjugate transposition of M, respectively, and TM   represents the 
transpose of the inverse of M. A square matrix M is called symmetric if M 
= TM  , and Hermitian if  M = M * .M M†( ‡) is a left-inverse (right-inverse) 
of  M with the property M M I MM I† ( ‡ )  . A Hermitian matrix is said to 
be negative (semi-)definite, denoted by M < 0 (M ≤ 0), if 0x Mx*   
( 0x Mx*  ) for all nonzerox , which is equivalent to all eigenvalues of M 
being less than (less than or equal to) zero. Analogue definitions for 
positive (semi )definiteness hold. The notation  M  N<  stands for 
M N 0− < , and T[*] MN 0< is used to abbreviate TN MN 0< .The notation 
A   B
*    C

 
 
 

 represents 
T

A    B
B   C

 
 
 

, 1 2diag(M ,M )  abbreviates the block-diagonal 

form 1

2

M   0
0    M

 
 
 

, and 1 2col(M ,M )  represents 1

2

M
M

 
 
 

, similarly for more than 

two arguments. max M  min M( ) ( ( ))  is the largest (smallest) eigenvalue of 

a Hermitian matrix M. 
max

M M M*
max

( ) : ( )   denotes the maximum 
singular value of a matrix 

i i
M M max M. ( ) : | ( ) |  is the spectral radius of 

a matrix M. The kernel and the image of a matrix M are denoted by ker(M) 
and im(M), respectively. 

      1.7.3. Systems and Interconnections 

An operator (or a map) representing a dynamic system is denoted by a 
capital letter such as G. If G acts on an objectw , the outcome is denoted by 
z = Gw . The impulse response corresponding to an operator G is also 
denoted by G (with a slight abuse of notation), whereas the corresponding 
transfer function (if existing) is calledĜ . An operator G is said to be causal 
(or proper) if 0

k k k
PG PGP  for all k  . An operator G is said to be time-

invariant ifSG GS . A state-space realization of a transfer function Ĝ is 
occasionally written as: 

 1A  B
z C zI A B D G z

C   D
ˆ( ) : ( ) ( ).

 
      
  

 

Regular letters (G,A,B,  ...) are used for open-loop systems, whereas script 
letters (𝒢𝒢 , , ,  ...)A B are used for closed-loop systems with a controller 
connected. 
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The upper linear fractional transformation (LFT) of two matrices ∆ and M 
with appropriate partitioning shown in Figure (1.2) (a) is defined as: 

1
u

A  B
f M D C I A B

C   D
( , ) * : ( ) .

 
        
  

 

Provided the inverse 1I A( ) exists. The lower LFT shown in Figure 
(1.2) (b) is defined similarly as 

1
l

A  B
f M A B I D C

C   D
( , ) * : ( ) .

 
        
  

 

LFTs are a way of describing feedback interconnections as depicted in 
Figure (1.2) and are special cases of the star product, see e.g. Zhou et al. 
(1996, Section 10.4) [10]. Maps are also used to represent interconnections 
of systems. For example, G1G2 stands for a series connection of two 
systems represented by the maps G1 and G2 as depicted in Figure (1.3)(a), 
G1 +G2 for a parallel connection as depicted in Figure (1.3)(b), and      
G1*G2 for an LFT interconnection, like it is common for transfer 
functions. 

 
Figure (1.2): LFT   (a) upper LFT ∆*M. (b) lower LFT M*∆. 

 

 
Figure (1.3): connections a) serial connection   b) parallel connection 

 
1.8. Thesis Outline (Structure of the Thesis) 

Chapter 2 gives details on norms of signals and systems. It also defines the 
1 2, ,H  and Hl l∞ ∞ norms and shows how compute them using CVX 

optimization toolbox and setup the problem formulation. Chapter 3 covers 
methodologies and approach. Chapter 4 covers a practical example for an 
autopilot that controls the pitch angle of an aircraft. Chapter 5 concludes 
this thesis and suggests recommendations for future work. 
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CHAPTER 2 NORMS OF SIGNALS AND SYSTEMS 

 
 
2.1. Norms of signals and systems 

Norms of signals and systems are used to quantify the performance and 
robustness of a control system. They are used in robust optimal control 
theory. 

      Vector and Matrix Norms 

In finite-dimensional vector spaces, it is very useful to define norms to 
measure the length of vectors, and matrix norms to measure the maximum 
"gain" of the matrix. The 2-norm (or Euclidean norm) of an n-dimensional 
complex vector nx C is defined as: 

 
        =

n

x x x

x x x

* 1/2

2
2 2 2 1/2

1 2

( )

( ... )



  
 (2.1) 

where *x denotes the conjugate transpose of x . The spectral norm of 
an n×m complex matrix. n mQ C   is defined as its maximum singular 
value 

max
 : 

                   max
Q Q Q Q* 1/2

max
( ) [ ( )]                                      (2.2) 

Where 
max

 denotes the maximum eigenvalue. This matrix norm 
represents the maximum input-output gain in terms of 2-norms of input 
and output vectors. One can show that, with mx R : 

 
x x x

Qx
Q Qx Qx

x 2 2

2

2 20 1 1
2

max max max
  

    (2.3) 

2.2. L
2

The 

 Norm for Finites Energy Signals 

L
2

-norm (or 2 norm) of signal x (t) is the square 

                                           

root of its total 
energy over  -∞ < t <+∞ and is defined as: 

x x t dt
2 1/2

2
( ( ) )





                                                (2.4) 

The set of all finite energy signals is called the L
2
 space: 

                                          L x x
2 2
: { : }  

                                        
 (2.5) 
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A "large" signal would have a large L
2

-norm, therefore it is a 
measure of the size of a signal. In a servo system, the objective is to 
minimize the tracking error signal e(t) = yd (t) − y(t).  It makes sense to try 
to minimize itsL

2
-norm e

2
   if the reference signal yd (t) belongs toL

2
. 

The following result allows us to compute the L
2

-norm in the 
frequency domain using the Fourier transform X jwˆ( )of the signal. 

 
Parseval's Theorem 

 x x t dt x jw dw
2 2 2

2

1
ˆ( ) ( ) .

2

 

 

    (2.6) 

 
2.3. 2L Norm of LTI Systems and the Spaces H

2

We consider the class of LTI causal systems. The input-output equation for 
such systems has the form of a convolution showed in Figure (2.1): 

 of Stable Causal 
Systems 

 

 
Figure (2.1): Input-output system representation 

 

  y t x h t d( ) ( ) ( )  




   (2.7) 

Where h(t)  is the impulse response of the system. For MIMO 
systems, h(t) is a matrix function. The transfer function of the system is 
given by: 

 stH s h t e dt( ) ( )






   (2.8) 

and its frequency response is simply s jw
H s H jw( ) | ( ).   Recall 

that in the Laplace domain and in the frequency domain, we have much 
simpler input-output relationships given by: 

      y s H s x sˆ ˆ  (2.9) 
 
 y jw H jw x jwˆ ˆ( ) ( ) ( )  (2.10) 
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We will consider finite-dimensional differential LTI systems so that 
their transfer functions are rational. We say that: 

H(s) is proper if H (j∞) is finite. 

H(s) is strictly proper if H (j∞) = 0. 

H(s) is biproper if H(s) and  1H s are both proper (if  0 < H (j∞) < ∞). 

 Also, recall that H(s) is BIBO stable if and only if all of its poles 
are in the left half-plane and it is proper. 
 

The L
2
-norm (or 2-norm) of a system is defined as: 

 H trace H jw H jw dw* 1/2

2

1
( { ( ) ( )} )
2





   (2.11) 

The set of all systems with finite L
2

 -norm is called L
2

: 
mathematically it is the same space as defined by (2.6). Parseval's theorem 
gives us a way to compute the L

2
 -norm in the time domain from the 

impulse response matrix: 

                 
H trace H jw H jw dw trace h t h t dt* 1/2 * 1/2

2

1
( { ( ) ( )} ) ( { ( ) ( )} )
2

 

 

    (2.12) 

If H(s) causal, then 

              
H trace H jw H jw dw trace h t h t dt* 1/2 * 1/2

2
0

1
( { ( ) ( )} ) ( { ( ) ( )} )
2

 



   (2.13) 

The space H
2
 is the space of all stable, causal systems with finite 

L
2
 -norm: 

  causal, stable : H H H
2 2
: { }.    (2.14) 

Another way to define H
2
is to say that, it is the subspace of systems 

in L
2
 that are analytic in the closed RHP. The orthogonal complement of 

H
2
 is denoted as H

2
 . It consists of systems in L

2
 that are analytic in the 

closed LHP, so that L H H
2 2 2

  . The systems in H
2
  are actually 

anticausal (h (t) = 0, t < 0), stable systems with finite L
2
 -norm. 

 

2.4. How to Compute the L
2

Suppose that H(s) is stable and strictly proper (so that it has a finite 

-Norm of Stable Systems 

L
2
 -

norm). Further assume that we have a state-space realization (A, B, C, D) 
of H(s). Define the controllability and observability grammian matrices: 
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TAt T A t

C
L e BB e dt

0

: .


   (2.15) 

 TA t T At
O

L e C Ce dt
0

: .


   (2.16) 

It can be shown that 
O

L and 
C

L satisfies the Lyapunov equation: 

 T T
O O

AL L A C C 0    (2.17) 
 T T

C C
AL L A BB 0    (2.18) 

Then a formula to compute the L
2
-norm of the system (also called H

2
-

norm since the system is stable and hence belongs toH
2
) is given by: 

 
T T

o c
H trace CLC trace B L B1/2 1/2

2
[ ( )] [ ( )]   (2.19) 

Thus, the procedure consists of computing the controllability and 
observability grammian matrix 

O
L and 

C
L  by solving the Lyapunov 

equation (2.15) and (2.16) and then to compute H
2
using (2.19). 

2.5. L∞ Norm of LTI Systems and the Space H  of Stable Systems 

The L -norm (or ∞-norm) of a system is defined as: 

 
w R

H H jwsup ( )
 

  (2.20) 

It is the maximum gain of the frequency response of the system. 
The set of all systems with finite L -norms is called L and is defined by 

 L H H
:

{ : } 
    (2.21) 

The space H


 is the space of all causal, stable systems with finite L -
norm: 

   causal, stable H H H
:

{ : }. 
    (2.22) 

 
2.6. How to Compute the L

Suppose that H(s) is stable and proper, and assume that we have a state-
space realization (A,B,C,D) of H(s) . Define the 2n ×2n Hamiltonian 
matrix: 

-Norm of Stable Systems 

 
                

      

T

T T

A BB
J

C C A

 
      

 (2.23) 
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We have the following result telling us whether the L -norm of the 
system (also called H -

H

norm since the system is stable and hence belongs 
to ) is less than 1. 

Theorem:  

H 1

  if and only if J  has no eigenvalues on the jω -axis. 

Proof can be found in  [2] ∎ 
 

This result suggests a bisection search to find theH -norm of the 

transfer matrix: Try a large positive value
0

  first to see if H
0



  

which is equivalent to H1
0

1


 .That is, check if  

                                  

               
          - A

T

T T

A BB
J

C C

2
0

0
( ) :




 
     

                                          (2.24)

 
has no eigenvalues on the jω -axis. If it doesn't, then select a new 

1 0

1
2

   and check again if  J
1

( )  has no eigenvalues on the jω -axis. If it 

doesn't, then reduce gamma by half again. if it does have eigenvalues on 

the jω -axis, then select the middle value 
2 0 1

1
( )

2
    , and continue 

the iteration until two consecutive values of gamma representing lower and 
upper bounds on H


are found to be close enough. 

 

2.7. Relationships Between System Norms 

The maximum gain of a system from the L
2
-norm of its input signal x(t) to 

the L
2

-norm of its output signal y(t) is given by the H  -norm of its 
transfer matrix: 

 
X XX

Y
H H jw X jw H jw X jw

X 2 2

2

2 21 10
2

ˆ ˆsup max ( ) ( ) max ( ) ( )
  

    (2.25) 

It turns out that the H -norm is also the maximum power gain of the 
system: 

  

pow X pow Xpow X

pow Y
H pow H jw X jw pow H jw X jw

pow X ( ) 1 ( ) 1( ) 0

( ) ˆ ˆsup max [ ( ) ( )] max [ ( ) ( )].
( )  

   (2.26) 
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For SISO systems, this means that the H  -norm, seen as the peak 
value of the magnitude of the Bode plot at some frequency w

0
, is the 

maximum amplification of a sinusoidal input (a power signal) at  
frequencyw

0
. 

The H
2
-norm of a system equals the L

2
 -norm of the output Y

2
  

for an impulse δ(t) at its input . 
 

2.8. Parameterization of Stabilizing Controllers 
The basic configuration of the feedback systems considered in this chapter 
is an LFT as shown in Figure (2.2). 

 

 
Figure (2.2): General System Interconnection 

 
Where G is the generalized plant with two sets of inputs: the 

exogenous inputs w, which include disturbances and commands, and 
control inputs u. The plant G also has two sets of outputs: the measured (or 
sensor) outputs y and the regulated outputs z. K is the controller to be 
designed. A control problem in this setup is either to analyze some specific 
properties,  stability or performance, of the closed-loop or to design the 
feedback control K such that the closed-loop system is stable in some 
appropriate sense, the error signal z is specified, and some performance 
condition is satisfied. We are only concerned with the basic internal 
stabilization problems. Suppose that a given feedback system is feedback 
stabilizable, then the problem we are mostly interested is parameterizing 
all controllers that stabilize the system. The construction of the controller 
parameterization is done via considering a sequence of special problems, 
which are so-called full information (FI) problems, disturbance 
feedforward (DF) problems, full control (FC) problems and output 
estimation (OE) problems. 

      2.8.1. Existence of Stabilizing Controllers 

Consider a system described by the standard block diagram in Figure (2.2). 
Assume that G(s) has a stabilizable and detectable realization of the form 
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1 2

11 12
1 11 12

21 22
2 21 22

      B       B
( )   ( )

( )      D     D
( )   ( )

     D     D

A
G s G S

G s C
G s G s

C

 
   = =       

 (2.27) 

The stabilization problem is to find feedback mapping K such that the 
closed-loop system is internally stable; the well-posedness is required for 
this interconnection. This general synthesis question will be called the 
output feedback (OF) problem. 
Definition: A proper system G is said to be stabilizable through output  
feedback if there exists a proper controller K internally stabilizing G as 
shown in Figure (2.2). Moreover, a proper controller K(s) is said to be 
admissible if it internally stabilizes G. 

Can be found in [10].∎ 

Lemma: There exists a proper K achieving internal stability iff ( )2A,  B is 
stabilizable and ( )2C , A is detectable. Further, let F and L be such that 

2A B F+  and 2A LC+ are stable, then an observer-based stabilizing 
controller is given by 

   

 2 2 22    
( )

                                          0
A B F LC LD F L

K S
F

+ + + − 
=  

 
 (2.28) 

           The proof can be found in [10].∎ 
 

The stabilizability and detectability conditions of ( )2 2A,  B ,  C are 
assumed. It follows that the realization for 22G is stabilizable and 
detectable, and these assumptions are enough to yield the following result: 

 
 

Figure (2.3): Equivalent Stabilization Diagram 
 

Lemma: Suppose ( )2 2A,  B ,  C  is stabilizable and detectable 

and 2
22

2 22

    
  

A B
G

C D
 

=  
 

. Then the system in Figure (2.2) is internally stable iff  the 
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one in Figure (2.3) is internally stable. In other words, K(s) internally 
stabilizes G(s) if and only if it internally stabilizes 22G . 

The Lemma and proof can be found in [10].∎ 

      2.8.2. Duality and Special Problems 

We will discuss four problems from which the output feedback solutions 
are constructed via a separation argument. These special problems are 
fundamental to the approach taken for synthesis in this thesis, and, as we 
shall see, they are also of importance in their own right. 

 
          Algebraic Duality and Special Problems 

The notion of duality can be generalized to a general setting. Consider a 
standard system block diagram 

 
Figure (2.4): General System Interconnection 

 
Where the plant G and controller K are assumed to be linear time 

invariant. Now consider another system shown below 

 
Figure (2.5): Dual General System Interconnection 

 
Whose plant and controller are obtained by transposing G and K. 

We can check easily that [ ( ,  K)] ( ,  K )T T T T
Zw l l ZwT F G F G T= = =





. It is not 
difficult to see that K internally stabilizes G iff TK  internally stabilizes TG . 
And we say that these two control structures are algebraically dual, 
especially, TG and TK  which are dual objects of G and K, respectively. 
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The special problems considered here all pertain to the standard 
block diagram, but to different structures of G. The problems are labeled 
as: 
FI. Full information, with the corresponding plant 

 

1 2

1 11 12

      B       B
     D     D

( )
0 0

         
0 0

FI

A
C

G s
I

I

 
 
 
 =
 
      
            

 (2.29) 

FC. Full control, with the corresponding plant 

 
[ ]
[ ]
[ ]

1

1 11

2 21

      B         0

( )      D      0  

     D     0  0
FC

A I

G s C I

C

 
 

=  
 
 

 (2.30) 

DF. Disturbance feedforward, with the corresponding plant 

 
1 1 2

1 11 12

2

       B           B
( ) C        D          D

                    0
DF

A
G s

C I

 
 =  
  

 (2.31) 

OE. Output estimation, with the corresponding plant 

 
1 2

1 11

2 21

      B       B
( )      D       I

     D      0
OE

A
G s C

C

 
 =  
  

 (2.32) 

We say that these special problems are special cases of  OF 
problems in the  sense that their structures are specified in comparison to 
OF problems.The structure of transfer matrices shows clearly that FC, OE 
(and OI) are duals of FI, DF (and SF), respectively. These relationships are 
shown in the following diagram: 

 
Figure (2.6): The relationships between the four special problems 
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     2.8.3. Full Information (FI) and Disturbance Feedforward (DF) 

In the FI problem, the controller is provided with Full Information 
since ( )

( )
( )

X t
y t

w t
 

=  
 

. For the FI problem, we only need to assume that ( )2A,  B is 

stabilizable to guarantee the solvability. It is clear that if any output 
feedback control problem is to be solvable then the corresponding FI 
problem has to be solvable. 

To motivate the name Disturbance Feedforward, consider the 
special case with 2C  0= . Then there is no feedback and the measurement is 
exactly w, where w is generally regarded as disturbance to the system. 
Only the disturbance w, is fed through directly to the output. As we shall 
see, the feedback caused by 2C  0≠  does not affect the transfer function 
from w to the output z, but it does affect internal stability. In fact, the 
conditions for the solvability of the DF problem are that ( )2A,  B  is 
stabilizable and ( )2C ,  A is detectable. 

Now we examine the connection between the DF problem and the 
FI problem and show the meaning of their equivalence. Suppose that we 
have controllers FIK and DFK and let FIT  and DFT denote the closed-loop zwT  
in 

  
Figure (2.7): The connection between the DF problem and the FI problem 

 
 

Given either the FIK or the DFK controller, can we construct the 

other in such a way that FI DFT   T= .  Actually, we have the following: 

 
Lemma: Let FIG  and DFG  be given as above. Then 
 

i. DF FI
2

  0  0
G ( ) G ( )

0   
I

S S
C I

 
=  

 
. 

ii. FI DF DFG (G , )S P=  (where S(. , .) denotes the star-product) 
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Figure (2.8): Star-product S DF DF(G , )P  

 

 
1 2 1 2

2

B        B           B
( )     0                0            

   0 0
                    

0

DF

A C
P s I

I
C I

 
 − 
 =
 
      
      −      

 (2.33) 

      The proof can be found in [10].∎ 
 

       Theorem: Consider FIG , DFG  and DFP  be given as above. 

i. 2K K [   I]FI DF C=  internally stabilizes FIG  if DFK internally stabilizes 
DFG .Furthermore, 2( ,  K [   I]) ( ,  K )l FI DF l DF DFF G C F G= . 

ii. Suppose that 1 2A B C−  is stable. Then ( , )DF l DF FIK F P K=  as shown 
below 

 
  

Figure (2.9): ( , )DF l DF FIK F P K= diagram 

Internally stabilizes DFG  if ( )FIK s  internally stabilizes FIG . Furthermore, 
( ,  K ) [ ,  ( ,  K )]l FI FI l DF l DF FIF G F G F G=  

The proof can be found in [2].∎ 

      2.8.4.Full Control and Output Estimation 

The term Full Control is used because the controller has full access to both 
the state through output injection and the output z. The only restriction on 
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the controller is that it must work with the measurement y. This problem is 
dual to the FI case and has the dual solvability condition to the FI problem, 
which is also guaranteed by the assumptions on OF problems. 

The solutions to this kind of control problem can be obtained by 
first transposing FCG , and solving the corresponding FI problem, and then 
transposing back. 

On the other hand, problem OE is dual to DF. Thus the discussion 
of the DF problem is relevant here, when appropriately dualized. And the 
solvability conditions for the OE problem are that ( )2A,  B  is stabilizable 
and ( )2C ,  A  is detectable. To examine the physical meaning of output 
estimation, first note that 

 1 11= C  + D  + Z x w u  

where z is to be controlled by an appropriately designed control u. 
In general, our control objective will be to find a u that will estimate 

1 11C Dx w+  in such defined mathematical sense. So this kind of control 
problem can be regarded as an estimation problem. We are focusing on this 
particular estimation problem because it is the one that arises in solving the 
output feedback problem. A more conventional estimation problem would 
be the special case where no internal stability condition is imposed and 

2B   0= . Then the problem would be that of estimating the output z given 
the measurement y. This special case motivates the term output estimation 
and can be obtained immediately from the results obtained for the general 
case. 

We will explain the meaning of equivalence between FC and OE 
problems. Consider the following FC and OE diagrams: 

 
Figure (2.10): Equivalence between FC and OE problems 

 

        Lemma: Let FCG and OEG be given as above. Then 

i. 2

  0
( ) ( ) 0  B

0   I
OE FC

I
G s G s

 
 =  
  

 

ii. ( ,  P )FC OE OEG S G= , where POE  is given by 
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[ ]
[ ]
[ ]

2 1 2

1

2

   0   

( )              0    0     I

             I    0     I
OE

A B C I B

P s C

C

 − −
 

=  
 
 

 (2.34) 

The proof can be found in [10].∎ 

        Theorem: Let FCG , OEG and OEP  be given as above. 

i. 2
FC OE

B
K K

I
 

=  
 

 internally stabilizes FCG  if OEK  internally stabilizes GOE . 

Furthermore, 2( , ) ( , ).l FC OE l OE OE

B
F G K F G K

I
 

= 
 

 

ii.  Suppose 2 1A- B C  is stable. Then ( , )OE l OE FCK F P K= , as shown below 
 

 
Figure (2.11): ( , )OE l OE FCK F P K= diagram 

 

internally stabilizes OEG  if FCK  internally stabilizes FCG . 
Furthermore, OE OE FC FC FCF (G ,F (P ,K )) = F (G ,K )l l l . 

 

The proof can be found in [10].∎ 

2.9. 2H Optimal Control 

 H
2

 Optimal control is a theory to design finite-dimensional LTI 
controllers that minimize the H

2
-norm of the closed-loop system. But first 

we will study the algebraic Riccati equation which is present everywhere 
in optimal control theory. 

     2.9.1. Algebric Riccati Equations 

Let A, Q, R  be real  n×n matrices with Q, R symmetric. Then an algebraic 
Riccati equation (ARE) is the following matrix equation: 

 A X XA XRX Q* 0     (2.35) 

Associated with this ARE is the 2n ×2n Hamiltonian matrix: 

 
          R

-Q      - A
A

H *:
 
   
  

 (2.36) 
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We considerX
1
 and X

2
  are solutions of algebraic Riccati equation, 

If X
1
 is nonsingular, then we can define X X X 1

2 1
:  and the Hamiltonian 

matrix H uniquely defines X. where X
1
and X

2
are the eigenvectors that 

corresponds to the stable eigenvalues. These eigenvectors is divided into 
X

1
upper square matrix (nxn) and the rest (lower part) is termedX

2
 .   

The following X X X 1
2 1

:   result states that is a solution to the 
algebraic Riccati equation: 

          Theorem: ARE 
Suppose that H ∈dom{Ric}, and X =Ric(H) . Then: 

(i)   X  is real symmetric, 
(ii)   X  satisfies the ARE, 
(iii) A +RX is stable (all of its eigenvalues are in the open LHP). 

          The proof can be found in  [2].∎ 

      2.9.2. Example Using 2H Norm 

Consider the general block diagram of a feedback control system shown in 
Figure (2.12). 

 
Figure (2.12): Typical setup for 2H -optimal control 

This system can be recast as a linear fractional transformation (LFT) 
as mentioned in Figure (2.13), with P(s) given such that 

 

 
Figure (2.13): Standard LFT diagram for 2H -optimal control design 
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1 2

1 11 12

2 21 22

      B       B
( )      D     D

     D     D

A
P s C

C

 
 =  
  

 (2.37) 

We consider the four special cases of the general structure (2.37), 
commonly referred to as full information (FI), disturbance feedforward 
(DF), full control (FC), and output estimation (OE). The desired 
parameterization for the general output feedback case will be obtained by 
combining these cases. 

Considering the equation (2.37), where
P s     P s

P s
P s     P s

11 12

21 22

( ) ( )
( ) :

( ) ( )

 
   
  

, and 

the transfer matrix entries of this generalized plant are readily obtained 
from the paths relating each input signal to each output signal. Here, we 
have: 

 
u

e

o

P s

W
P s

WG

P s W

P s G

11

12

21

22

( ) 0

( )

( )

( )


 
   
  


 

 (2.38) 

The weighting function Wu(s) can be used to constrain the control 
signal while We(s) can be used to reduce the sensitivity at low frequencies. 
Weighting function Wo(s) can be used to model the power spectral density 
or energy-density spectrum of the output disturbance. Once the control 
system is put in the form of the so-called standard H

2
problem (in LFT 

form), the minimization problem becomes: 

 
ZWK s

T
2

min


 (2.39) 

Where 

 
ZW L

T s P s K s P s P s K s I P s K s P s1
11 12 22 21

( ) [ ( ), ( )] ( ) ( ) ( )[ ( ) ( )] ( )   F  (2.40) 

Is the closed-loop transfer matrix from the exogenous input w to the 
output z. One can then use the following result onH

2
optimal control (very 

similar to LQG). 
 Suppose that a state-space realization of P(s) is given by: 

 
1 2

1 12

2 21

      B   B
( )      0   D

    D   0

A
P s C

C

 
 =  
  

 (2.41) 
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Notice the special off-diagonal structure of D:D
22

 is assumed to be 
0 so that P s

22
( ) is strictly proper, and D

11
 is assumed to be 0 so that P s

11
( )  is 

also strictly proper (which is a necessary condition for P s
11
( )  to be in H

2
). 

First define R D D*
1 12 12
 and R D D*

2 21 21
  , and the two Hamiltonian 

matrices: 

 
1 * 1 *

2 1 12 1 2 1 2
2 * 1 * 1 * *

1 12 1 12 1 2 1 12 1

A                           B
:

( )          (A )

B R D C R B
H

C I D R D C B R D C

− −

− −

 − −
=  

− − − −  
 (2.42) 

 

 
* 1 * * 1

1 21 2 2 2 2 2
2 * 1 * * 1 *

1 21 2 21 1 1 21 2 2

(A )                           
 J :

( )          (A )

B D R C C R C
B I D R D B B D R C

− −

− −

 − −
=  

− − − −  
 (2.43) 

Note that H
2
, J

2
∈ dom (Ric) andX

2
:=Ric(H

2
) ≥0, Y

2
:=Ric(J

2
 ) ≥  

0. Let us introduce the concepts of stabilizability and detectability. These 
are weaker versions of controllability and observability: they only require 
that the unstable modes be controllable and observable. 

The proof can be found in  [2].∎ 

Definition: The pair ( )1,A B is said to be stabilizable if there exists a state 
feedback gain matrix K such that 1A B K+ is stable (all eigenvalues have a 
negative real part). 

          Definition can be found in [2].∎ 

Definition: The pair ( )2,A C is said to be detectable if there exists an 
observer gain matrix L such that 2A LC+ is stable. 

         Definition can be found in [2].∎ 

       2.9.3.Theorem: H
2
-Optimal Controller:  

If the following assumptions hold: 

1.  The pair (A,B
2
) is stabilizable and the pair (A,C

2
) is detectable 

2.  R D D*
1 12 12

0   (meaning that all of its eigenvalues are positive)  

 andR D D*
2 21 21

0   

3. 
A jwI      B

    C         D
2

1 12

  
 
  

  has full column rank for all ω 

4.  
A jwI      B

    C         D
1

2 21

  
 
  

  has full row rank for all ω 
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Then, the unique H
2
-optimal controller minimizing 

ZW
T

2
 is given 

by:[ 

                                                   
opt

A     -L
K s

F      0
2 2

2

( )
 
   
  



                                   (2.44) 

 
          Where matrix L

2
 is given byL YC B D R* * 1

2 2 2 1 21 2
: ( )    , and F

2
 is given by 

          F R B X D C1 * *
2 1 2 2 12 1
: ( )   , and A A B F LC

2 2 2 2 2
ˆ : .    

Proof can be found in  [2].∎ 
Notes: 

• Assumptions 3 and 4 ensure that H
2
 , J

2
∈ dom(Ric) 

• The assumptions usually hold when the problem is well posed. For 
example, there should always be biproper weighting functions on the 
control signals; otherwise, the optimal controller would produce 
infinite control signals. This corresponds to matrix D

12
 having full 

column rank. Likewise, there should be an output disturbance or a 
measurement noise defined that couples right into the measured signal 
used by the controller. This corresponds to matrix D

12
 having full 

column rank. 
2.10. H∞ Optimal Control 

H  optimal control is a theory to design finite-dimensional stabilizing LTI 
controllers that minimize the H -norm of the closed-loop system. H -
norm methods are used in control theory to synthesize controllers 
achieving robust performance or stabilization. To use H -norm methods, a 
control designer expresses the control problem as a mathematical 
optimization problem and then finds the controller that solves this. 

H  optimization of control systems deals with the minimization of 
the peak value of certain closed-loop frequency response functions. To 
clarify this, consider the basic SISO feedback system of Figure (2.14). 

 
 

Figure (2.14): Siso feedback loop 
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The plant has transfer function P and the compensator has transfer 
function C. The signal v represents disturbance acting on the system and z 
is the control system output. Then from the signal balance equation 
z v pcz= −    with the circumflex denoting the Laplace transform, it 

follows that : z sv= 

where:             1
1

s
pc

=
+

 

Is the sensitivity function of the feedback system. As the name 
implies, it’s characterizes the sensitivity of the control system output to 
disturbances. Ideally, s = 0 

The problem originally considered by Zames (1979, 1981) is that of 
finding a compensator C that makes the closed-loop system stable and 
minimizes the peak value of the sensitivity function. This peak value (See 
Figure (2.15) is defined as: 

        
Figure (2.15): S

∞
Peak value 

 
 max ( )

R
S S j

ω
ω

∞ ∈
=  (2.45) 

Where R denote the set of real numbers. Because for some 
functions the peak value may not be assumed for any finite frequency, we 
replace the maximum here and in the following by the supremum or least 
upper bound, so that:  

 sup ( )
R

S S j
ω

ω
∞

∈
=  (2.46) 

The justification of this problem is that if the peak value S
∞  of 

the sensitivity function S is small, then the magnitude of  S necessarily is 
small for all frequencies, so that disturbances are uniformly attenuated over 
all frequencies.  

Minimization of S
∞  is worst-case optimization, because it 

amounts to minimizing the effect on the output of the worst disturbance 
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(namely, a harmonic disturbance at the frequency where S has its peak 
value). 

The worst-case model has an important mathematical interpretation. 
Suppose that the disturbance v has unknown frequency content, but finite 

energy
2

2
S . The number  

 2
2

( )v v t dt
+∞

−∞

= ∫  (2.47) 

is known as the 2-norm of the disturbance  v.  The energy of v is the 
square of the 2-norm. Then the norm  S  of the system S as in Figure 
(2.16) with input v and output z induced by the 2-norm is defined as 

 
Figure (2.16): System Input-output related with sensitivity 

 

 
2

2

: 2

sup
v v

z
S

v∞
=



 (2.48) 

Hence, in engineering terms the norm is directly related to the 
energy gain for the input with the worst possible frequency distribution. 
Using Parseval's Theorem, it is not difficult to recognize that :                                 

 S S
∞

=  (2.49) 

Hence, the peak value is precisely the norm of the system induced 
by the 2-norms on the input and output signals. This norm is known as the 
∞-norm of the system. 

     2.10.1. Example  Using H Norm 

Consider the block diagram of a feedback control system shown in Figure 
(2.17). 

 
 

Figure (2.17): Typical feedback control system 
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Again, an important step in the H controller design process is to select 
reasonable weighting functions d e y u

W W W W, , ,  . These weighting 
functions have a clearer meaning as design parameters than they do in 
H

2
control because of the definition of the H norm of a system. For 

instance, if the H norm of a weighted closed-loop transfer matrix is less 
than some positive real number γ , if

ZW
W s T s( ) ( ) 


 , where W(s) is a 

scalar transfer function, then we have the bound at each 
frequency

ZW
T jw W jw1( ) ( )  . The weighting functions are used to 

achieve a good tradeoff between concurrent/conflicting closed-loop 
objectives such as sensitivity minimization and reduction of measurement 
noise. For simplicity, we again assume that 

i
d  n=00,  , and we consider 

the regulator problem where the effect of the output disturbanced
0
 on the 

weighted output Y must be minimized. After simplification, the system 
become as mentioned in Figure (2.18). 

 
Figure (2.18): Typical setup for H -optimal control design 

This system can be recast as a linear fractional transformation (LFT) 
as shown in Figure (2.19). 

 
Figure (2.19): Standard LFT diagram for H -optimal control design 

Where P s     P s
P s

P s     P s
11 12

21 22

( ) ( )
( ) :

( ) ( )

 
   
  

, and the transfer matrix entries of this 

generalized plant were given in (2.30) and repeated for convenience 
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 u

e

o

P s

W
P s

WG

P s W

P s G

11

12

21

22

( ) 0

( )

( )

( )


 
   
  


 

 (2.50) 

The weighting function Wu(s) can be used to constrain the control 
signal while We(s) can be used to reduce the sensitivity at low frequencies. 
Weighting function Wo(s) can be used to model the power spectral density 
or energy-density spectrum of the output disturbance. Once the control 
system is put in the form of the so-called standard H problem (in LFT 
form), the minimization problem becomes:    

                                                 ZWK s
Tmin


                                                   (2.51) 

Where
ZW L

T s P s K s( ) [ ( ), ( )] F  is the closed-loop transfer matrix 
from the exogenous input w to the output z . The optimization of (2.51) is 
very difficult theoretically and numerically. Virtually everybody uses the 
solution to the suboptimal H problem stated as Given γ > 0, find an 
admissible controller (if there exists any) such that 

ZW
T 


 . We will 

present the solution to this problem, and it should be clear that an iterative 
bisection procedure for reducing  γ while checking that a suboptimal 
controller exists will lead to a controller as close to the optimal controller 
as desired. 

    2.10.2. Solution to SimplifiedH  Suboptimal  

The solution to the simplified suboptimal H problem is obtained from the 
solutions of a pair of Riccati equations. However, the difference with the 
H

2
problem is that these Riccati equations cannot be solved independently 

from one another, making the H problem more difficult. But first, let's 
discuss the simplifying assumptions that we will use here. The general 
problem is more involved mathematically, and does not provide much 
more insight. Therefore, we will stick with the simplified problem. 
 Suppose that a state-space realization of the generalized plant P(s) is given 

by:                 
1 2

1 12

2 21

      B   B
( )      0   D

    D   0

A
P s C

C

 
 =  
                                       

           (2.52) 

Notice the special off-diagonal structure assumed for D (just like 
theH

2
case). Given 0γ > , define the two Hamiltonian matrices:  

 
2 * *

1 1 2 2
* *
1 1

A                    B  B
:

                      A

B B
H

C C
γ −

∞

 −
=  

− −  
 (2.53) 
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* 2 * *

1 1 2 2
*

1 1

   A           
 J :

              A

C C C C
B B

γ −

∞

 −
=  

− −  
 (2.54) 

Assume that: 

1. The pair (A,B
1
) is stabilizable and the pair  (A, C

1
) is detectable. 

2. The pair (A,B
2
) is stabilizable and the pair  (A, C

2
) is detectable. 

3. TD C     D   I
12 1 12

0          (meaning that D
12

is orthogonal to C
1
) and no 

coupling in D
12

 

4. T
B

D
D I

1
21

21

0   
      
      

(meaning D
21

is orthogonal toB
1
) and no coupling inD

21
 

The proof can be found in [2].∎ 
Notes: 

• Assumption 2 is required if we want to stabilize the plant with the 
controller 

• Assumption 1 simplifies the theoretical developments and usually 
holds in practice 

• Assumptions 3 and 4 are also made for technical reasons and 
practical problems can be set up so that these assumptions hold. 

 
    2.10.3. Theorem: H Controller:  

There exists an admissible controller such that 
ZW

T 

 if and only if the 

following three conditions hold: 

1. H dom Ric   and  X Ric H( ) : ( ) 0;      
2. J dom Ric   and  Y Ric J( ) : ( ) 0;      
3. X Y 2( )     (the spectral radius of the product X Y  ). 

When these conditions hold, one such controller is 

 
A      -Z L

K s
F           0

( ) :   




 
   
  



 (2.55) 

Where 

 A A B B X B F Z L C2 *
1 1 2 2

: 
         (2.56) 

 F B X*
2

:    (2.57) 
 L Y C *

2
:    (2.58) 

 Z I Y X2 1: ( ) 
     (2.59) 

The proof can be found in [2].∎ 
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Notes:  
• Solutions: X Ric H Y Ric J: ( ), : ( )     of the Riccati equations. 

• The theorem suggests an iterative way to find a controller that minimizes 
the H -norm of the closed-loop system, based on the bisection idea to 
compute an H  -norm given earlier. Namely, given a large enough 
starting value for γ , solve the two Riccati equations and check whether 
the spectral radius X Y  is less than 2  . Then reduce gamma by half in a 
bisection scheme, backtracking if needed. Continue the iteration until two 
consecutive values of gamma representing lower and upper bounds on 

ZW
T


 are found to be close enough. Finally, the controller can be 

computed using the state-space matrices given in (2.55). 

 
2.11. Convex Optimization Problems 

 
    2.11.1. Optimization Problems 

We use the notation  

 
0

0
0

i

i

minimize    f x

subject to f x   i=1,...,m

               h x   i=1,...,p

  ( ) 

      ( ) ,  

( ) ,  




 (2.60)                                        

To describe the problem of finding an x  that minimizes 0f x( )  among 
all x  that satisfy the conditions: 

0
i
f x   i=1,...,m( ) ,      ;   0

i
h x   i=1,...,p( ) ,  

 nx R   the optimization variable. 

 0
nf R R:   the objective function or cost function. 

 0
i
f x( )   inequality constraints.  

n
i
f R R:   the inequality constraint functions. 

0
i

h x( )   are called the equality constraints and corresponding functions 
n

i
h R R:   the equality constraint functions. 

If there are no constraints (m = p = 0) we say the problem (2.60) is 
unconstrained. 

The set of points for which the objective and all constrained 
functions are defined, 

 
0 1

pm

i i
i i

D dom f   dom h
 

 
 

 (2.61) 
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And D is called the domain of the optimization problem (2.60).  A 
point x D is feasible if it satisfies all constraints. The problem (2.60) is 
said to be feasible if there exists at least one feasible point, and infeasible 
otherwise. The set of all feasible points is called the feasible set or the 
constraint set. 
The optimal value is defined as: 

   
 0 i i

p = inf {f (x) | f (x)  0, i = 1, . . . ,m, h (x) = 0, i = 1, . . . , p}*   (2.62) 

We allow p*  to take on the extended values ±∞. If the problem is 
infeasible, we have p*     

If there are feasible points 
k

x with 0 k
f x( )    as k → ∞, then 

p*   and we say the problem (2.60) is unbounded below. 

      2.11.2. Globally and Locally Optimal Points: 

A fundamental property of convex optimization problems is that any 
locally optimal point is also (globally) optimal. Suppose that x is locally 
optimal for a convex optimization problem, x is feasible and 

 
 0 0 2

f (x) = inf {f (z) | z feasible, z x R}   (2.63) 

for some R > 0. Now suppose that x  is not globally optimal, there is 
a feasible y such that 

0 0f y  f x( ) ( ). evidently
2

y x  R  , since otherwise 

0 0f x f y( ) ( ).  Consider the pointz given by:                              

 
2

1         
2

R
z x y

y x
( ) ,     


 (2.64) 

Then we have
2

2z x R  R/   , and by convexity of the 

feasible set, z is feasible. By convexity of 0f we have:   

 0 0 0 0f (z) (1- )f (x) + f (y) < f (x)   (2.65) 

Which contradicts (2.63) . Hence there exists no feasible y  with 

0 0f y  f x( ) ( ) . x is globally optimal. 

     2.11.3. An Optimality Criterion for Differentiable 0f : 

Suppose that the objective 0f  in a convex optimization problem is 
differentiable, so that for all x  , y ∈ dom 0f , 
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 0 0 0
Tf (y) f (x) + f (x) (y-x)   (2.66) 

 
Let X denote the feasible set, Then x  is optimal if and only if x ∈ 

X and: 
 
 0

T�f (x)  (y-x) 0 for all y X    (2.67) 
 

This optimality criterion can be understood geometrically: 
If 0 0f x( )  , it means that 0f x( ) defines a supporting hyperplane to the 
feasible set at x  . 

 
 

Figure (2.20): Geometric interpretation of the optimality condition [48] 
 

Figure (2.20) shows the feasible set X as shaded area. Some level 
curves 0f  are shown as dashed lines. The point x  is optimal: 0f x( )  
define a supporting hyperplane (shown as a solid line) to X at x . 

      2.11.4. Quasiconvex Optimization: 

A quasiconvex optimization problem has the standard form: 

 
0

0
i

maximize  f x

subject to  f x  i  1     m

              Ax b,

( )

( ) , , . . . , 


 (2.68) 

Where the inequality constraint functions 1 m
f      f, . . . ,  are convex, 

and the objective 0f is quasiconvex. 

      2.11.5. Locally Optimal Solutions and Optimality Conditions 

The most important difference between convex and quasiconvex 
optimization is that a Quasiconvex optimization problem can have locally 
optimal solutions that are not (globally) optimal. 
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Figure (2.21): A Quasiconvex function f on R, with a locally optimal point x 

 
2.12. Problem Formulation 

Now we present a Lagrange duality theorem that applies to the 
minimization of a convex functional subject to both equality and inequality 
constraints. Asensitivity result which follows directly from the Lagrange 
duality is presented. First we need the following definitions. 

 
Definition 1: Let P be a convex cone in a vector space X. We write 

  if  .x y x y P≥ − ∈  We write 0x > if int( )x P∈ . 

 Similarly   if  : .x y x y P N≤ − ∈ − =  and  0x < if int( )x N∈ . 

 
Definition 2: Let X be a vector space and Z be a vector space with positive 
cone P. A mapping G: X→Z is convex if  

( (1 ) ) ( ) (1 ) ( )G tx t y tG x t G y+ − ≤ + −  for all x y≠  in X and t with 0< t <1. 

The following is lagrange duality theorem where we denote the 
interior of a set by int.  

 
Theorem 1: Let X be a Banach space, Ω be a convex subset of X,Y be a 
finite dimensional space, Z be a normed space with positive cone P. Let 

:f RΩ →  be a real valued convex functional, :g X Z→ be a convex 
mapping, H: X⟶Y be an affine linear map and 0 [ ( )].int range H∈  Define  

 0= inf {f(x) : g(x)  0, H(x)=0, x }     (2.69) 

Suppose there exists 1x    such that 1g(x )  0  and 1H(x )=0  and 
suppose 0 is finite. Then, 

 0 0z  y  z  z Z  y Y* * * *max{ ( , ) : , , }      (2.70) 
 

Where z  y inf f x g x z H x y x* *( , ) : { ( ) ( ), ( ), : }          and 
the maximum is achieved for some * * *

0 0 00,  ,  y .z z Z Y≥ ∈ ∈  

Furthermore if infinimum in (3.69) is achieved for some 0x   then 
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 *
0 0 0 0( ), ( ), 0g x z H x y< > + < >=  (2.71) 

And 0x  minimizes 

 *
0 0 0 0( ) ( ), ( ), 0 over all f x g x z H x y x+ < > + < >= ∈Ω  (2.72) 

We refer to (3.69) as the primal problem and (3.70) as the Dual 
problem . 

 
Corollary: Let , , , , , ,X Y Z f H g Ω  be as in Theorem 1. Let 0x be the 
solution to the problem 

 
0

 ( )
  ,  H( )=0, g( )

minimize f x
subject to x x x z∈Ω ≤

 

With ( *
0z , 0y ) as the dual solution. Let 1x be the solution to the 

problem 

1

 ( )
  ,  H( )=0, g( )

minimize f x
subject to x x x z∈Ω ≤

 

 

With ( *
1z , 1y ) as the dual solution. Then, 

 * *
1 0 1 0 1 1 0 0, ( ) ( ) ,z z z f x f x z z z< − >≤ − ≤< − >  (2.73) 

     2.12.1. Problem Formulation for 1 2/l H  

Consider the standard feedback problem represented in Figure (2.13).  
Where P and K are the plant and the controller respectively.  Let w 
represent the exogenous input, z represent the output of interest, y is the 
measured output and u is the control input where z, w  are assumed scalar. 
Let ∅ be the closed loop map which maps w → z. From Youla 
parametrization it is known that all achievable closed loop maps under 
stabilizing controllers are given by  

∅ = h - u*q (* denotes convolution), where h, u , q ∈ 1l ; h, u depend only 
on the plant P and q is a free parameter in 1l . 

 
Let the zeros of u which are inside the unit disc be given by 

1 2 3,  z ,  z ,...,  z .nz  Let  

 1 1: { :  there exists q  with * }.l l h u qφ φ φΘ = ∈ ∈ = −  
 

Θ  is the set of all achievable closed loop maps under stabilizing 
controllers. Let 1: nA l R→ be given by: 
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2 3
1 1 1

2 3
2 2 2

2 3

1  z   z   z

1  z   z   z
            

1  z   z   zn n n

A

 
 
 =  
 
 
 





    



 

and nb R∈  be given by: 

 

1

2

ˆ( )
ˆ( )
  
ˆ( )n

h z

h zb

h z

 
 
 

=  
 
 
 



 

Theorem: the following is true 

1

1

ˆˆ{ : ( ) ( ) for all i=1,...,n}.
    ={ : }.

il z h z
l A b

φ φ
φ φ

Θ = ∈ =
∈ =

 

Proof can be found in [42].∎ 
 

The following problem 

  

 
11

11

: { * : }

     = { :  and A }

inf h u q q l

inf l b

ν

φ φ φ
∞ = − ∈

∈ =  (2.74) 

Is the standard 1l  problem. This problem has a solution which is 
possibly non-unique. Optimal solutions are shown to be finite impulse 
response sequences. Let 

 

 
2

12
2

12

: { * : },

     = { :  and A }

inf h u q q l

inf l b

µ

φ φ φ

∞ = − ∈

∈ =
 (2.75) 

 
which is the standard 2H  problem. The solution to this problem is 

unique but the solution is an infinite impulse response sequence. Define 

 2
2

1 1
A ,

:
b

m inf
φ φ µ

φ
∞= ≤

=
 (2.76) 

which is the 1l  norm of the unique optimal solution of the standard 
2H  problem. Let 
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1

2
2 2

A ,
:

b
m inf

φ φ ν
φ

∞= ≤
=

 (2.77) 

which is the infimum over the 2l norms of the optimal solutions of 

the standard 1l  problem. 

The problem of interest is : Given a positive constant γ µ∞>  obtain 
a solution to the following mixed objective problem: 

 

 
11

11

: { * :  and < * , * > }

     = { :  and A  and < , > }.

inf h u q q l h u q h u q

inf l b

ν γ

φ φ φ φ φ γ
∞ = − ∈ − − ≤

∈ = ≤
 (2.78) 

 

Where   .,.< > is the inner product associated with 2l . 

      2.12.2. Problem Formulation for 1 /l H∞  

The following problem 

 
11

11

: { * : }

     = { :  and A }

inf h u q q l

inf l b

ν

φ φ φ
∞ = − ∈

∈ =
 (2.79) 

Is the standard 1l  problem. This problem has a solution which is possibly 
non-unique. Optimal solutions are shown to be finite impulse response 
sequences. Let 

 
1

1

: { * : },

     = { :  and A }

inf h u q q l

inf l b

µ

φ φ φ
∞ ∞

∞

= − ∈

∈ =
 (2.80) 

which is the standard 2H  problem. The solution to this problem is unique 
but the solution is an infinite impulse response sequence. Define 

 1 1
A ,

:
b

m inf
φ φ µ

φ
∞∞= ≤

=
 (2.81) 

which is the 1l  norm of the unique optimal solution of the standard H∞  
problem. Let 

 
1

2
A ,

:
b

m inf
φ φ ν

φ
∞

∞
= ≤

=
 (2.82) 
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which is the infimum over the 2l norms of the optimal solutions of 

the standard 1l  problem. 

The problem of interest is: Given a positive constant γ µ∞>  obtain 
a solution to the following mixed objective problem: 

 
 

 
11

11

: { * :  and < * , * > }

     = { :  and A  and < , > }.

inf h u q q l h u q h u q

inf l b

ν γ

φ φ φ φ φ γ
∞ = − ∈ − − ≤

∈ = ≤
 (2.83) 

 
Where   .,.< > is the inner product. 
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CHAPTER 3 METHODOLOGY AND APPROACH 

 
 
3.1. Problem Setup: 

      3.1.1. Problem Setup for 2H  Optimal Control 

Figure (3.1) show the standard LFT diagram for 2H
 optimal control design 

 
Figure (3.1): Standard LFT diagram for 2H optimal control design 

 

First, we desire to minimize the 2H  norm of the system: 

We have         

 
P s     P s

P s
P s     P s

11 12

21 22

( ) ( )
( ) :

( ) ( )

 
   
  

 (3.1) 

Where                      

 
u

e

o

P s

W
P s

WG

P s W

P s G

11

12

21

22

( ) 0

( )

( )

( )


 
   
  


 

 (3.2) 

The control system is put in the form of the so-called standard 
H

2
problem (in LFT form), the minimization problem becomes: 

ZWK s
T

2
min


 

     3.1.2. Problem Setup forH Optimal Control 

Figure (3.2) show the standard LFT diagram forH optimal control design 
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Figure (3.2): Standard LFT diagram for H optimal control design 

First, we desire to minimize the H  norm of the system: 

We have         

 
P s     P s

P s
P s     P s

11 12

21 22

( ) ( )
( ) :

( ) ( )

 
   
  

 (3.3) 

Where                      

 u

e

o

P s

W
P s

WG

P s W

P s G

11

12

21

22

( ) 0

( )

( )

( )


 
   
  


 

 (3.4) 

We want to design finite-dimensional stabilizing LTI controllers 
that minimize the H -norm of the closed-loop system: 

Consider the block diagram as mentioned before in Figure (3.2). 
The control system is put in the form of the so-called standard H problem 

(in LFT form), the minimization problem becomes:  
 ZWK s

Tmin
  

 

The solution to the suboptimal H problem stated as given   0γ > , 
find an admissible controller (if there exists any) such that 

ZW
T 


 . We 

will present the solution to this problem, and it should be clear that an 
iterative bisection procedure for reducing γ  while checking that a 
suboptimal controller exists will lead to a controller as close to the optimal 
controller as desired. 

     3.1.3. Problem Setup for l
1
Optimal Control 

Definition 1: A continuous function 0 0a: [ , ) [ , )   is said to belong to 
class K if it is strictly increasing and 0 0( )  . It is said to belong to class 
K ifa    and r   as  r  .( )      

 Definition2: A mapping  :  m q
e eH L L→    is  L  stable if there exist a class 

K functionα , defined on [0, ∞ )  and a nonnegative constant β  such that 



44 

 ( )
L L

Hu uτ τα β≤ +  (3.5) 

and for all  ).m
eu L and τ∈ ∈ ∞  [0,  

It is finite gain L stable if there exist nonnegative constants 
γ β and  such that                                

 ( )
L L

Hu uτ τγ β≤ +  (3.6) 

for all  ).m
eu L and τ∈ ∈ ∞  [0,  

The constant β  is called the bias term. It is included in the 
definition to allow for systems where Hu  does not vanish at  u = 0. When 
inequality (3.6) is satisfied, we are usually interested in the smallest  γ  for 
which there is β  such that (3.6) is satisfied. When this value of γ is well 
defined, we will call it the gain of the system. 

Then, the problem setup for 1l norm is to minimize γ  to its optimal 
value, this is called optimal solution of problem. 

Remark: γ is the 1l norm. 

 

3.2. Approach 

      3.2.1. Approach for 2H Optimal Control 

We consider the state space realization witch named full information 
realization (FI) 

 
1 2

1 12

2 21

      B   B
( )      0   D

    D   0

A
P s C

C

 
 =  
  

 (3.7) 

with 11 22 0D D  , which mean that 11P s( )  and 22P s( )  is strictly 
proper. We  define R D D*

1 12 12
 and R D D*

2 21 21
  , and the two Hamiltonian 

matrices: 

 
1 * 1 *

2 1 12 1 2 1 2
2 * 1 * 1 * *

1 12 1 12 1 2 1 12 1

A                           B
:

( )          (A )

B R D C R B
H

C I D R D C B R D C

− −

− −

 − −
=  

− − − −  
 (3.8) 

  

 
* 1 * * 1

1 21 2 2 2 2 2
2 * 1 * * 1 *

1 21 2 21 1 1 21 2 2

(A )                           
 J :

( )          (A )

B D R C C R C
B I D R D B B D R C

− −

− −

 − −
=  

− − − −  
 (3.9) 

Note that  

 2 2H J dom Ric  ,   and 2 2 2 2: Ric(  )  0,  : Ric(  )  0.X H Y J= ≥ = ≥  
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The proof can be found in [2].∎ 
 
Theorem: H

2
-Optimal Controller:  

If the following assumptions hold: 

1.  The pair (A,B
2
) is stabilizable and the pair (A,C

2
) is detectable. 

2. R D D*
1 12 12

0   (meaning that all of its eigenvalues are 
positive). andR D D*

2 21 21
0   

3. 
A jwI      B

    C         D
2

1 12

  
 
  

  has full column rank for all w 

4. 
A jwI      B

    C         D
1

2 21

  
 
  

  has full row rank for all w 

Then, the unique H
2
-optimal controller minimizing 

ZW
T

2
 is given by 

                                                   
opt

A     -L
K s

F      0
2 2

2

( )
 
   
  



 (3.10) 

                                    
          Where matrix L

2
 is given byL YC B D R* * 1

2 2 2 1 21 2
: ( )     , matrix F

2
 is given 

          by F R B X D C1 * *
2 1 2 2 12 1
: ( )   , and A A B F LC

2 2 2 2 2
ˆ : .    

          The proof can be found in [2].∎ 

      3.2.2. Approach for H Optimal Control 

We consider the state space realization witch named full information 
realization (FI) 

 
1 2

1 12

2 21

      B   B
( )      0   D

    D   0

A
P s C

C

 
 =  
  

 (3.11) 

  
Notice the special off-diagonal structure assumed for D (just like 

theH
2
case). Given γ > 0, define the two Hamiltonian matrices: 

 
2 * *

1 1 2 2
* *
1 1

A                    B  B
:

                      A

B B
H

C C
γ −

∞

 −
=  

− −  
 (3.12) 

 
* 2 * *

1 1 2 2
*

1 1

   A           
 J :

              A

C C C C
B B

γ −

∞

 −
=  

− −  
 (3.13) 

The proof can be found in [2].∎ 
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Theorem: H Controller 

There exists an admissible controller such that 
ZW

T 

 if and only if the 

following three conditions hold: 

1. H dom Ric   and  X Ric H( ) : ( ) 0;      
2. J dom Ric   and  Y Ric J( ) : ( ) 0;      
3. X Y 2( )     (the spectral radius of the product X Y  ). 

When these conditions hold, one such controller is 

 
A      -Z L

K s
F           0

( ) :   




 
   
  



 (3.14) 

Where 

 

A A B B X B F Z L C

F B X

L Y C

Z I Y X

2 *
1 1 2 2

*
2

*
2

2 1

:

:

:

: ( )






    

 

 
 

  

   

 

 

 



 (3.15) 

The proof can be found in [2].∎ 

      3.2.3. The Approach for 1 2 1l H   and  l H/ /  Optimal Control   

After minimizing
ZW ZWK s K s

T  and  T
2

min min
 

, at this step we have 

optimized the external characteristic of the system. Now we want to realize 
the mixed objective by fixing the values obtained for 2H -norn and H -
norm which means fixing the external characteristic and minimizing 1l -
norm which means internal characteristic of the system. 

We use convex optimization approach to find the optimal solution 1l that 
minimize the cost function. 

      3.2.4. Affine set 

Line through 1 2,  x x : all points 

   1 2 (1 )         ( R)x x xθ θ θ= + − ∈                  (3.16) 
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 affine set contains the line through any two distinct points in the set. 

 
Example: solution set of linear equations {x | Ax = b} 
Conversely, every affine set can be expressed as solution set of system of 
linear equations. 

      3.2.5. Convex Set 

Line segment between 1 2 and x x : all points 

1 2 (1 )        0 1x x xθ θ θ= + − ≤ ≤ . Convex set contains line segment 
between any two points in the set 

 ( )1 2 1 2,  C,  0 1   1 Cx x x xθ θ θ∈ ≤ ≤ ⇒ + − ∈  (3.17) 

Examples (one convex, two nonconvex sets) 

 

      3.2.6. Convex Combination and Convex hull 

Convex combination of 1 k,. . . ,  x x   of any point x  of the form 

 1 1 2 2 1 2 +  + · · · +  With    + + · · · + 1  , 0 k k k ix x x xθ θ θ θ θ θ θ= = ≥  (3.18) 

Convex hull of a convex Set Is a set of all convex combinations of points 
in Set. 
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      3.2.7. Convex Cone 

Conic (nonnegative) combination of 1 2 and  x x  is any point of the form:  

 1 1 2 2 1 2 +        with = 0 , 0x x xθ θ θ θ= ≥ ≥  (3.19) 

 
 

Convex cone is set that contains all conic combinations of points in the set. 

      3.2.8. Hyperplanes and Halfspaces 

Hyperplane is set of the form T{ | a   b}(a 0)x x = ≠  

 

Halfspace is set of the form T{ | a   b}(a 0)x x ≤ ≠  

 
1. a  is the normal vector. 
2. hyperplanes are affine and convex. 
3. halfspaces are convex. 

      3.2.9. Polyhedra 

Polyhedron is a solution of set of finitely many linear inequalities and 
equalities. 

 ,       CAx b x d≤ =  
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 x p x (A R , C R )m n n∈ ∈ , ≤ is componentwise inequality 

 
polyhedron is intersection of finite number of halfspaces and hyperplanes. 

      3.2.10. Linear Optimization Problems  

When the objective and constraint functions are all affine, the problem is 
called a linear program (LP). A general linear program has the form: 

 

Tminimize    c x d;

subject to   Gx h;

               Ax b;





 (3.20) 

Where p nA R   and m nG R  . Linear programs are, of course, 
convex optimization problems. 

It is common to omit the constant d in the objective function, since 
it does not affect the optimal (or feasible) set. Since we can maximize an 
affine objective Tc x d , by minimizing Tc x d   (which is still convex), 
we also refer to a maximization problem with affine objective and 
constraint functions as an LP. 

The geometric interpretation of an LP is illustrated in Figure (3.3). 
The feasible set of the LP (3.3) is a polyhedron P; the problem is to 
minimize the affine function Tc x d  (or, equivalently, the linear 
function Tc x ) over P. 

 
Figure (3.3): Geometric interpretation of an LP [48 ] 

In Figure (3.3) the objective is linear, so its level curves are 
hyperplanes orthogonal to C. the point x * is optimal; it is the point in P as 
far as possible in the direction –C 
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CHAPTER 4 SIMULATIONS AND RESULTS 

 
 
4.1. Introduction  

In This thesis, the application of mixed objective problems 1 2/L H  and  
1 /L H∞   are considered for SISO system, linear time invariant to designing 

controller for Autopilot pitch Aircraft. The Lagrange duality principle 
methodology proposed by Slapaka and Dahlah (1995) [42] is used, but 
with introducing some change to this method as follow: 
 

This thesis considers the problem of minimizing the sensitivity of 
the output system to the input disturbance by the method of 2-norm and 
infinity-norm, this minimization has considered as primal Lagrange 
multiplier. The reason of use 

ZWK s
T

2
min

  
and

 ZWK s
Tmin


is to minimize or 

reject the effect of disturbance to our system. 
 
 

 
In the dual Lagrange multiplier problem minimizing the bounded 

norm output of the controller designed by using the 1L  norm theory is 
considered, this lead to use convex optimization approach. To solve this 
problem, the CVX-toolbox built by Stephen Boyd is used. The reason for 
using the bounded-norm output as dual problem is to minimize the cost 
function of the output controller and limit the brusque variation introduced 
to the system by the input control, which lead to BIBO system.  

 
The realization of the mixed objective are achieved by using the 

primal problem as constraint to the dual problem for the two methods 
1 2/L H and 1 /L H∞ . 

 

4.2. Physical Setup and System Equations autopilot pitch Aircraft 
 

The equations governing the motion of an aircraft are a very complicated 
set of six non-linear coupled differential equations. However, under certain 
assumptions, they can be decoupled and linearized into the longitudinal 
and lateral equations. Pitch control is a longitudinal problem, and in this 
example, we will design an autopilot that controls the pitch of an aircraft. 

The basic coordinate axes and forces acting on an aircraft are shown 
in the Figure (4.1) and Figure (4.2): 
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Figure (4.1): Pitch-yaw-roll coordinate axes of aircraft [59] 

 

 
Figure (4.2): The basic coordinate axes and forces acting on an aircraft [59] 

 
Assume that the aircraft is in steady-cruise at constant altitude and 

velocity; thus, the thrust and drag cancel out and the lift and weight 
balance out each other. Also, assume that change in pitch angle does not 
change the speed of an aircraft under any circumstance (unrealistic but 
simplifies the problem a bit). Under these assumptions, the longitudinal 
equations of motion of an aircraft can be written as: 

1

1
2

L D Lq w e LR

M L D Mq Ms L w e e
yy

C C C q C C

q C C C C C C q C
i

q

[ ( ) ( / ) ( sin ) ]

{[ ( )] [ ( )] ( sin ) }

 

 

      


      



       


      

 







    (4.1) 

Equations can be found [59]. 
And the variables used in the pitch controller modeling equations 
α= Angle of attack 
q= Pitch rate 
θ= Pitch angle 
δe= Elevator deflection angle 
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4
eSc
m

ρµ =  

    eρ  = Density of the surrounding air 

    S   = Planform area of the wing 
    c   = Average chord length 
    m   = Mass of the aircraft 

2U
c

Ω =  

 U = Equilibrium flight speed 

TC = Coefficient of thrust 

DC = Coefficient of drag 

ZC = Coefficient of lift 

WC = Coefficient of weight 

MC = Coefficient of pitch moment 

eγ = Flight path angle 

1
1 ZaC

σ
µ

=
+

= Constant sigma 

,,i = Normalized moment of inertia 

jkCη µσ= = Constant nu 

For this system, the input will be the elevator deflection angle, and 
the output will be the pitch angle. 

 

4.3. Design Requirements 
The next step is to set some design criteria. We want to design a feedback 
controller so that the output has an overshoot of less than 10%, rise time of 
less than 2 seconds, settling time of less than 10 seconds, and the steady-
state error of less than 2%. For example, if the input is 0.2 rad (11 degress), 
then the pitch angle will not exceed 0.22 rad, reaches 0.2 rad within 2 
seconds, settles 2% of the steady-state within 10 seconds, and stays within 
0.196 to 0.204 rad at the steady-state. [59]. 
Overshoot: Less than 10%  
Rise time: Less than 2 seconds  
Settling time: Less than 10 seconds  
Steady-state error: Less than 2% 
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4.4. Transfer Function and the State-Space of aircraft 
Before finding transfer function and the state-space model, let's plug in 
some numerical values to simplify the modeling equations (4.1) shown 
above. 

  

 
0 313 56 7 0 232
0 0139 0 246 0 0203

56 7

e

e

q

q q

q

. . .

. . .

.

  
 



   
   









 (4.2) 

These values are taken from the data from one of the Boeing's 
commercial aircraft. 
Equations can be found [59]. 

 

4.5. Transfer Function of aircraft 
To find the transfer function of the above system, we need to take the 
Laplace transform of the above modeling equations (4.2). When finding a 
transfer function, zero initial conditions must be assumed. The Laplace 
transform of the above equations are shown below. 

 

 
0 313 56 7 0 232
0 0139 0 426 0 0203

56 7

e

e

s s s q s s

sq s s q s s

s s q s

( ) . ( ) . ( ) . ( )

( ) . ( ) . ( ) . ( )

( ) . ( )

  
 



   
   


 (4.3) 

After few steps of algebra, we should obtain the following transfer 
function. [59]. 

 

 
3 2

1 151 0 1774
0 739 0 921e

s s
s s s s

( ) . .
( ) . .







 
 (4.4)

  
4.6. State-Space of aircraft 

Knowing the fact that the modeling equations (4.3) are already in the state-
variable form, we can rewrite them into the state-space model. 

 
0 313 56 7 0 0 232
0 0139 0 426 0 0 0203

0 56 7 0 0
e

             

q       q

                   

. . .

. . .

.

 




              
                             
             







 (4.5) 

Since our output is the pitch angle, the output equation is: 

 0 0 1 0
e

y       q






 
 
                   
  

 (4.6) 
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4.7. Original Representation of Open-Loop Response of aircraft 
The open loop representation of the air craft without controller are shown 
in Figure (4.3) 

 
Figure (4.3): Original open-loop response 

From the plot, we see that the open-loop response does not satisfy 
the design criteria at all. In fact, the open-loop response is unstable. 

 

4.8. Original Representation of Close-Loop Response of aircraft 
The original close loop response of the system without any controller are 
shown in Figure (4.4) 

 
Figure (4.4): Original closed-loop step response 

 
From the plot, we see that the closed-loop response does not satisfy 

the design criteria at all. In fact, the closed-loop response is stable but with 
high steady state error. 

 
4.9. Original Root-Locus Plot of aircraft 

A root-locus plot shows all possible closed-loop pole locations for a pure 
proportional controller. Since not all poles are acceptable. The two 
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arguments Natural frequency (Wn) and damping ratio (zeta) can be 
determined from the rise time, the settling time, and the overshoot 
requirements and  the three equations shown below. 

 

 

2

2

ln
4.6 1.8;  ;  

ln
1

p

n n
s r p

M

T T M
π

ξω ω ξ

π

 
 
 ≥ ≥ ≥

 
+  

 

 (4.7) 

Equations can be found [59]. 
Where 
Wn=Natural frequency 
zeta=Damping ratio 
Ts=Settling time 
Tr=Rise time  
Mp=Maximum overshoot 
  

From these three equations, we can determine that the natural 
frequency (Wn) must be greater than 0.9 and the damping ratio (zeta) must 
be greater than 0.52. 

 
Figure (4.5): Original root-locus 

From the Figure (4.5), we see the two dotted lines in an angle 
indicate the locations of constant damping ratio, and the damping ratio is 
greater than 0.52 in between these lines. The dotted semi-ellipse indicates 
the locations of constant natural frequency, and the natural frequency is 
greater than 0.9 outside the semi-ellipse. As you may notice, there is no 
root-locus plotted in our desired region. We need to bring the root-locus in 
between two dotted lines and outside the semi-ellipse by modifying the 
controller. 
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4.10. Original Bode Plot of aircraft 
Our system is unstable in open loop; however, we can still design the 
feedback system via frequency response method. You should see a Bode 
plot similar to the one showed in Figure (4.6): 

 
Figure (4.6): Original bode diagrams 

4.11.   1 2/L H  Simulation 

     4.11.1. Closed-Loop Transfer Function 

To solve this problem, a feedback controller will be added to improve the 
system performance. Figure (4.7) shown below is the block diagram of a 
typical unity feedback system. 

 
Figure (4.7): Close-loop feedback with controller and plant 

 
A dynamic controller needs to be designed so that the step response 

satisfies all design requirements. 
The state space equations of the controller are: 

                             
( ) * ( ) * ( )
( ) * ( ) * ( )

k k

k k

X t A X t B u t
Y t C X t D u t

= +
= +



 

Where: 
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-0.4226   -1.1547         0         0            0.0000
1.1547   -1.5774          0          0          -0.0000

Ak = 0.0000   -0.0000   -0.3097   56.6233   -0.6448
0.0000   -0.0000   -0.0136   -0.4327   

 
-0.0042

   0             0              0        56.7000  -0.6655

 
 
 
 
 
 
  

; 

 0.5373
-0.5373

Bk = -0.6409
-0.0039
-0.6655

 
 
 
 
 
 
  

 

 
           [ ]Ck = 0.0001   -0.0001    0.0141   -0.3308   -0.0166 ;  [ ]Dk = 0   
 
From the state space model, we get the transfer function of the controller: 
 

 
4 3 2

5 4 3 2

0.003393 0.009139 0.01448 0.01069 0.005914
3.408 6.455 6.274 3.637 0.358

( ) s s s s
s s s s

K s
s

+ + + +
+ + + + +

=  (4.8) 

 
The transfer functions of the plant with considering the weighted function of 
signal disturbance: 
 

( ) 3 2

1.151 0.1774P s
0.739 0.921

s
s s s

+
=

+ +
 

 
Where the weighted function of signal disturbance is: 
 

1oW =  
Then the transfer function of the output Z to disturbance w is: 
 

 11 [1 ( )* ( )]
1 ( )* ( )zwT P s K s

P s K s
−= = +

+
 

 

     4.11.2 Building the program 2H -optimal controller 

First, we build the program 2H -optimal controller, this program can find 
the optimal external optimization of our system. 

 
1. Use the values of state space system (A, B, C, D) we generate G(s). 
2. Define the weighting functions for the system showed in Figure (2.12). 
3. Build the system interconnection to obtain the generalized plant P(s).  
4. Extact the portioned state-space matrices from the plant P(s) and we 

got [Ap, Bp, Cp, Dp]. 
5. Decompose of Ap, Bp, Cp and Dp using linear fractional 

transformation to Bp1, Bp2, Cp1, Cp2, Dp11, Dp12, Dp21 and Dp22.  
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1 2

1 11 12

2 21 22

   B    B
   B

  D  D
   D

  D  D

p p p
p p

p p p
p p

p p p

A
A

C
C

C

 
   

⇔   
    

 
 

6. Test stabilizability of (Ap, Bp2) and (Ap, Bp1). 
7. Test detectability of  (Cp2, Ap) and (Cp1, Ap). 

8. Test the matrix A jwI      B

    C         D
2

1 12

  
 
  

  has full column rank for all ω. 

9. Test the matrix A jwI      B

    C         D
1

2 21

  
 
  

  has full row rank for all ω. 

10. Compute 2H  optimal controller using the function H2sys we extract all 
characteristics of systems as output of this function, this function has 
to work as follow: 

       [K, Tzw, Kfi, CL, GAM, INFO]=H2SYN (P, NMEAS, NCON) 
This function is from robust toolbox, it takes as input the matrix P 

and number of measurements and gives us all characteristic of the system. 
After execution of this function, the results obtained are: 

 

• 2H  optimal controller: 

 

-0.4226   -1.1547         0         0    0.0000    0.5373    5.0000

1.1547   -1.5774         0         0   -0.0000   -0.5373         0

0.0000   -0.0000   -0.3097   56.6233   -0.6448   -0.6409        

K =

 0

0.0000   -0.0000   -0.0136   -0.4327   -0.0042   -0.0039         0

0         0         0   56.7000   -0.6655   -0.6655         0

0.0001   -0.0001    0.0141   -0.3308   -0.0166         0         0

0         0         0         0         0         0      -Inf

 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

• The 2H -norm optimal controller 
2zw

T : 
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-0.4226   -1.1547         0         0   -0.5373         0         0         0      0         0    0.5373         0   10.0000

1.1547   -1.5774         0         0    0.5373         0         0     

Tzw =

    0       0         0   -0.5373         0         0

0         0   -0.3130   56.7000         0    0.0000   -0.0000    0.0033     -0.0767   -0.0039         0    0.2320         0

0         0   -0.0139   -0.4260         0    0.0000   -0.0000    0.0003     -0.0067   -0.0003         0    0.0203         0

0         0         0   56.7000         0         0         0         0              0         0                0         0         0 

0         0         0         0   -0.5373   -0.4226   -1.1547         0           0    0.0000        0.5373         0         0

0         0         0         0    0.5373    1.1547   -1.5774         0           0   -0.0000       -0.5373         0         0 

0         0         0         0    0.6409    0.0000   -0.0000   -0.3097      56.6233   -0.6448   -0.6409         0         0

0         0         0         0    0.0039    0.0000   -0.0000   -0.0136      -0.4327   -0.0042   -0.0039         0         0

0         0         0         0    0.6655         0         0         0           56.7000   -0.6655   -0.6655         0         0

0         0         0         0         0    0.0016   -0.0024    0.4235       -9.9236   -0.4993         0           0         0

0.5373  0.5373    0       0        0         0         0             0            0          0              0            0         0   

0         0         0         0         0         0         0         0               0           0             0            0        -Inf

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

• Full information-state feedback control law: 

                    Kfi = 1.7948    0.1628    1.8021         0     
 

• Full information-state feedback closed-loop system: 

            Gfi = 0.0001   -0.0001    0.0141   -0.3308   -0.0166     
• Closed-loop system CL= LFT (P,K): 
 

 

-0.4226   -1.1547         0         0   -0.5373    0.5373         0    5.0000

    1.1547   -1.5774         0         0    0.5373   -0.5373         0         0

    0.0000   -0.0000   -0.3097   56.623

CL =

3   -0.0039         0    0.2320         0

    0.0000   -0.0000   -0.0136   -0.4327   -0.0003         0    0.0203         0

         0         0         0   56.7000         0         0         0         0

    0.0016   -0.0024    0.4235   -9.9236   -0.4993         0         0         0

    0.5373    0.5373         0         0         0         0         0         0

         0         0         0         0         0         0         0      -Inf

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

 
• X Hamiltonian matrix HAMX: 

 

-0.4226   -1.1547         0         0   -0.5373         0         0         0        0         0       

    1.1547   -1.5774         0         0    0.5373         0         0         0     0     

hamx =

    0

         0         0   -0.3130   56.7000         0         0         0   -0.0001   -0.0000         0

         0         0   -0.0139   -0.4260         0         0         0   -0.0000   -0.0000         0

         0         0         0   56.7000         0         0         0         0         0            0  

   -0.2887   -0.2887         0         0         0    0.4226   -1.1547         0     0           0

   -0.2887   -0.2887         0         0         0    1.1547    1.5774         0      0         0

         0         0         0         0         0         0         0    0.3130      0.0139         0

         0         0         0         0         0         0         0  -56.7000    0.4260  -56.7000

         0         0         0         0         0    0.5373   -0.5373         0     0       

  

    0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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• Y Hamiltonian matrix HAMY: 

   
   -0.4226    1.1547         0         0         0         0         0         0     0         0

   -1.1547   -1.5774         0         0         0         0         0         0     0         0

  

hamy =

       0         0   -0.3130   -0.0139         0         0         0         0     0         0

         0         0   56.7000   -0.4260   56.7000         0         0         0   0         0

         0         0         0         0         0         0         0         0       0   -1.0000

         0         0         0         0         0    0.4226    1.1547         0    0         0

         0         0         0         0         0   -1.1547    1.5774         0    0         0

         0         0   -0.0538   -0.0047         0         0         0    0.3130   -56.7000         0

         0         0   -0.0047   -0.0004         0         0         0    0.0139    0.4260         0

         0         0         0         0         0         0         0         0        -56.7000         0





































 
 
 
 
 

 

From the results output program we plot all different diagrams who 
clarify characteristic of system: the diagrams that clarify the system 
characteristics are as follows: 

• Output Plant and Controller Response:  
 
The plot of the plant and controller response when introducing a 
disturbance signal is shown in Figure (4.8). 

 
Figure (4.8): Plant and controller response due to introduced disturbance input 
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 For test the efficacity of the system in minimizing and rejecting the 
disturbance signal we have introduced a noise signal, as result, we see that 
The curve of controller is compensative to the curve of the plant for reason 
minimizing the error which mean that our system functionality have 
satisfaction to exclude the noise disturbance signal.  

• Step Response Closed-Loop System CL= LFT (P, K) and output 
response to disturbance: 
The plot of the output response to disturbance signal and output response 
to input when using the close loop feedback is shown in Figure (4.9).  

 
                    Figure (4.9): Step response close-loop system and output disturbance 

 
We have inject a disturbance signal with step input of 0.3 radian 
disturbance in angle and we see from the first plot the output response of 
this disturbance at value 0.003 radian with mean the input signal 
disturbance minimized 100 time. Moreover, we conclude that our system is 
stable because it returns to the zero after it is subjected by a temporary 
disturbance. 

From the second plot, we see the powerful of our method since the 
system go directly to the steady state and all results satisfies the design 
requirements. 
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• Bode Diagram for Close-Loop System: CL = LFT (P, K): 

From the plot in Figure (4.10), we see the robustness of the system and the 
smoothness variation of the phase. In addition, if we see the Bode plot, the 
low frequency gain has increased while keeping the bandwidth frequency 
the same, this is a good low pass filter we can use it for tracking of signal 
input. This tells us that steady-state error has reduced while keeping the 
same rise time. The above step response shows that the steady-state error 
got eliminated. Now all design requirements are satisfied. 

Figure (4.10): Bode diagram for close loop system 

• Rout-Locus Output Plant Response 
 

         
Figure (4.11): Rout-locus output plant response 
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From the plot of Figure (4.11), we see the powerful of the method used and 
the robustness of the system and the pole placement of the poles to the 
region between -1 and 0 to ensure stability of the system and we can define 
the position of poles inside the design region by fixing the controller gain. 

And from all this results we have the minimized the 2H -norm 
optimal controller   

2zw
T 1.802e+000 . 

Now we want to realize the mixed objective by fixing the values 
obtained for 2H -norm which means fixing the external characteristic and 
minimizing 1l -norm which means internal characteristic of the system. 

We use convex optimization approach to find the optimal solution 1l  
that minimize the cost function. 

 
The state space equations of the controller are: 

                               ( ) * ( ) * ( )
( ) * ( ) * ( )

k k

k k

X t A X t B u t
Y t C X t D u t

= +
= +



 

Where: 
 

-0.4226   -1.1547         0         0            0.0000
1.1547   -1.5774          0          0          -0.0000

Ak = 0.0000   -0.0000   -0.3097   56.6233   -0.6448
0.0000   -0.0000   -0.0136   -0.4327   

 
-0.0042

   0             0              0        56.7000  -0.6655

 
 
 
 
 
 
  

;   

 0.5373
-0.5373

Bk = -0.6409
-0.0039
-0.6655

 
 
 
 
 
 
  

 

 
[ ]Ck = 0.0001   -0.0001    0.0141   -0.3308   -0.0166 ;   [ ]Dk = 0   

We want to minimize ( ) * ( ) * ( )k kY t C X t D u t= +  where this function 
considered as cost function: 

 
 
 
 
 
 
 

 
 

[Ak,Bk,Ck,Dk]=unpck(K) 
cvx_begin 
 variable x(5) 
  minimize norm(Ck*x+Dk,1) 
 subject to 
 Tzw<=1.802; 
cvx_end 
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     The output program is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then the optimal value and the solution 1l  that minimize the cost 
function. Optimal value (cvx_optval): +8.39798e-009 

4.12. 1 /L H∞  Simulation 

      4.12.1. Closed-Loop Transfer Function 

To solve this problem, a feedback controller will be added to improve the 
system performance. Figure (4.12) shown below is the block diagram of a 
typical unity feedback system. 

 
Figure (4.12): Close-loop feedback with controller and plant 

 

Calling SDPT3: 2 variables, 0 equality constraints 
------------------------------------------------------------ 
 num. of constraints =  1 
 dim. of socp   var  =  2,   num. of socp blk  =  1 
 dim. of linear var  =  1 
*************************************************************** 
   SDPT3: Infeasible path-following algorithms 
*************************************************************** 
 0|0.000|0.000|4.8e-011|1.1e+000|7.7e+000| 1.414214e+000| 0:0:00| chol  1  1   
 3|0.989|0.989|5.2e-007|7.8e-004|7.2e-005| 5.857996e-004| 0:0:00| chol  1  1  
 4|0.989|0.989|6.4e-008|8.6e-006|7.9e-007| 6.428092e-006| 0:0:00| chol  1  1  
   stop: max(relative gap, infeasibilities) < 1.49e-008 
------------------------------------------------------------------- 
 number of iterations   =  5 
 primal objective value =  8.39797738e-009 
 dual   objective value = -2.90430783e-009 
 gap := trace(XZ)       = 1.14e-008 
 relative gap           = 1.14e-008 
 actual relative gap    = 1.13e-008 
 rel. primal infeas     = 4.78e-010 
 rel. dual   infeas     = 4.81e-011 
 Total CPU time (secs)  = 0.3   
 CPU time per iteration = 0.1   
 termination code       =  0 
 DIMACS: 4.8e-010  0.0e+000  4.8e-011  0.0e+000  1.1e-008  1.1e-008 
------------------------------------------------------------------- 
Status: Solved 
Optimal value (cvx optval): +8.39798e-009 
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A dynamic controller needs to be designed so that the step response 
satisfies all design requirements. 
The state space equations of the controller are: 

          
( ) * ( ) * ( )
( ) * ( ) * ( )

k k

k k

X t A X t B u t
Y t C X t D u t

= +
= +



 

Where: 
 

               

   -0.2519   -0.5547         0           0           0.0000
    0.5547   -2.7481         0           0                0

Ak =    -0.0658    0.0138   -0.1611   49.7586   -0.8683
   -0.0058    0.0012   -0.0

 
006   -1.0334   -0.0238

         0            0            0          56.7000  -0.6655

 
 
 
 
 
 
  

; 

-0.7448
 0.7448

Bk = -0.9064
-0.0055
-0.9412

 
 
 
 
 
 
  

 

 
               [ ]Ck = -0.2007    0.0420    0.4630  -21.1565   -0.6931 ;  [ ]Dk = 0   
 

From the state space model, we get the transfer function of the controller: 
 
   

 
4 3 2

5 4 3 2

0.5298 1.93 1.93 1.485 0.2578(
4.86 8.921 9.201 3.296

)
0.3185

s s s s
s s s s s

K s + + + +
+ + + + +

=  (4.9) 

 
The transfer functions of the plant with considering the weighted 

function of signal disturbance: 

( ) 3 2

1.151 0.1774P s
0.739 0.921

s
s s s

+
=

+ +
 

Where the weighted function of signal disturbance is: 
 1oW =  

Then the transfer function of the output Z to disturbance w is: 
 

 11 [1 ( )* ( )]
1 ( )* ( )zw

ZT P s K s
w P s K s

−= = = +
+
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     4.12.2. Building the program H∞ -optimal controller 

Second, we build the program H∞ -optimal controller, this program can 
found the optimal external optimization of our system. 
1. Use the values of state space system (A, B, C, D) we generate G(s). 
2. Define the weighting functions for the system showed in Figure (2.18). 
3. Build the system interconnection to obtain the generalized plant P(s). 
4. Extact the portioned state-space matrices  from the plant P(s) and we 

got[Ap, Bp, Cp, Dp] 
5. Decomposition of Ap, Bp, Cp and Dp using linear fractional 

transformation to Bp1, Bp2, Cp1, Cp2, Dp11, Dp12, Dp21and Dp22.  

1 2

1 11 12

2 21 22

   B    B
   B

  D  D
   D

  D  D

p p p
p p

p p p
p p

p p p

A
A

C
C

C

 
   

⇔   
    

 

 

6. Test stabilizability of (Ap, Bp2) and (Ap, Bp1). 
7. Test detectability of (Cp2, Ap) and (Cp1, Ap). 

8. TD C     D   I
12 1 12

0           (meaning that D
12

is orthogonal to C
1
) and no 

coupling in D
12

.  

9. T
B

D
D I

1
21

21

0   
      
      

 (meaning D
21

is orthogonal toB
1
) and no coupling inD

12
.  

10. Compute H∞ optimal controller using the function HINFSYN we 
extract all characteristics of systems as output of this function, this 
function has to work as follow: 

              [K, CL, GAM, INFO] = HINFSYN (P, NMEAS, NCON) 
This function is from robust toolbox; it takes as input the matrix P 

and number of measurements and gives us all characteristic of the system. 
After execution of this function, the results obtained are: 

 

• H∞  optimal controller: 

 

-0.2519   -0.5547         0         0    0.0000   -0.7448    5.0000
    0.5547   -2.7481         0         0         0    0.7448         0
   -0.0658    0.0138   -0.1611   49.7586   -0.8683   -0.9064

K =
         0

   -0.0058    0.0012   -0.0006   -1.0334   -0.0238   -0.0055         0
         0         0         0   56.7000   -0.6655   -0.9412         0
   -0.2007    0.0420    0.4630  -21.1565   -0.6931         0         0
         0         0         0         0         0         0      -Inf

 
 
 
 
 
 
 
 
 
  
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• Gamma and 
zwK S

Tmin


value: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

From the results output program, we plot all different diagrams that clarify 
characteristic of system: the diagrams who clarify the systems 
characteristics are as follows: 

 

• Output Plant and Controller Response:  
 

The plot of the plant and controller response when introducing a 
disturbance signal is shown in Figure (4.13). 
 
To test the efficacity of the system in minimizing and rejecting the 
disturbance signal we have introduced a noise signal, as result, we see that 
The curve of controller is compensative to the curve of the plant for reason 
minimizing the error which mean that our system functionality have 
satisfaction to exclude the noise disturbance signal. Moreover, we 
conclude that our system is stable because it returns to the zero after it is 
subjected by a temporary disturbance. 

Test bounds:      0.0000 <  gamma  <=   1000.0000 
 
  gamma    hamx_eig  xinf_eig  hamy_eig   yinf_eig   nrho_xy   p/f 
1.000e+003  1.2e-001  4.0e-003  1.2e-001   0.0e+000    0.0000    p  
  500.000  1.2e-001  4.0e-003  1.2e-001   0.0e+000    0.0000    p  
  250.000  1.2e-001  4.0e-003  1.2e-001   0.0e+000    0.0000    p  
  125.000  1.2e-001  4.0e-003  1.2e-001   0.0e+000    0.0000    p  
   62.500  1.2e-001  4.0e-003  1.2e-001   0.0e+000    0.0001    p  
   31.250  1.2e-001  4.0e-003  1.2e-001   0.0e+000    0.0005    p  
   15.625  1.2e-001  4.0e-003  1.2e-001   0.0e+000    0.0019    p  
    7.813  1.2e-001  4.0e-003  1.2e-001   0.0e+000    0.0076    p  
    3.906  1.2e-001  4.1e-003  1.2e-001   0.0e+000    0.0314    p  
    1.953  1.2e-001  4.3e-003  1.2e-001   0.0e+000    0.1464    p  
 
 Gamma value achieved:     1.9531 
norm between 1.5818 and 1.5834 
achieved near 0 
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Figure (4.13): Plant and controller response due to introduced disturbance input 

• Rout-Locus Output Plant Response: 
From the plot of Figure (4.14), we see the powerful of the method used and 
the robustness of the system and the pole placement of the poles to the 
region between -1 and 0 to ensure stability of the system and we can define 
the position of poles inside the design region by fixing the controller gain.  

 
Figure (4.14): Rout-locus output plant response 
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And from all this results we have the minimized the H -norm 
optimal controller.    5834

zwK S
1 5818 T  1. min .


   

Now we want to realize the mixed objective by fixing the values 
obtained for H -norm which means fixing the external characteristic and 
minimizing 1l -norm which means internal characteristic of the system. 

We use convex optimization approach to find the optimal solution 1l  
that minimize the cost function. 

 
The state space equations of the controller are: 

                   
( ) * ( ) * ( )
( ) * ( ) * ( )

k k

k k

X t A X t B u t
Y t C X t D u t

= +
= +



 

Where: 
 

              

   -0.2519   -0.5547         0           0           0.0000
    0.5547   -2.7481         0           0                0

Ak =    -0.0658    0.0138   -0.1611   49.7586   -0.8683
   -0.0058    0.0012   -0.0

 
006   -1.0334   -0.0238

         0            0            0          56.7000  -0.6655

 
 
 
 
 
 
  

; 

-0.7448
 0.7448

Bk = -0.9064
-0.0055
-0.9412

 
 
 
 
 
 
  

 

 
               [ ]Ck = -0.2007    0.0420    0.4630  -21.1565   -0.6931 ;  [ ]Dk = 0   
 

We want to minimize ( ) * ( ) * ( )k kY t C X t D u t= +  where this function 
considered as cost function: 

 
                                                              
 
 
 
 
 
 
 
 

 

[Ak,Bk,Ck,Dk]=unpck(K) 
>> cvx_begin 
  variable x(5) 
   minimize norm(Ck*x+Dk,1) 
   subject to 
  >> Tzw<=1.5818; 
  >> Tzw>=1.5834; 
 cvx_end 
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The output program is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then the optimal value and the solution 1l  that minimize the cost 
function for infinity norm:  Optimal value (cvx_optval)=  +8.39798e-009 

 

4.13. Comparison between 1 2/l H and 1 /l H∞  

The results of 1 /l H∞  are more flexible compared to the results of 1 2/l H  
because the H∞ work to the worse case and can accept all solutions. 

From another viewpoint, the 1 2/l H  method has more exactitude 
results compared to 1 /l H∞  since it works to the average energy value, 
which mean solution close to optimal.  

 
 

Calling SDPT3: 2 variables, 0 equality constraints 
------------------------------------------------------------ 
 num. of constraints =  1 
 dim. of socp   var  =  2,   num. of socp blk  =  1 
 dim. of linear var  =  1 
******************************************************************* 
   SDPT3: Infeasible path-following algorithms 
******************************************************************* 
------------------------------------------------------------------- 
   stop: max(relative gap, infeasibilities) < 1.49e-008 
------------------------------------------------------------------- 
 number of iterations   =  5 
 primal objective value =  8.39797738e-009 
 dual   objective value = -2.90430783e-009 
 gap := trace(XZ)       = 1.14e-008 
 relative gap           = 1.14e-008 
 actual relative gap    = 1.13e-008 
 rel. primal infeas     = 4.78e-010 
 rel. dual   infeas     = 4.81e-011 
 norm(X), norm(y), norm(Z) = 1.0e+000, 2.9e-009, 1.0e+000 
 norm(A), norm(b), norm(C) = 2.0e+000, 2.0e+000, 2.0e+000 
 Total CPU time (secs)  = 0.3   
 CPU time per iteration = 0.1   
 termination code       =  0 
 ------------------------------------------------------------------- 
Status: Solved 
Optimal value (cvx_optval): +8.39798e-009 
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CHAPTER 5 CONCLUSIONS, RECOMMENDATIONS 
AND PERSPECTIVES 

5.1. General Conclusion 
Resolving the problem of robust controllers design capable of guaranteeing 
stability in the face of plant uncertainty was addressed in this Thesis. More 
specifically the problem of designing a linear time invariant stabilizing 
controllers that minimize the 1l  norm of a certain closed-loop transfer 
function and maintain the 2H  norm (mixed 1 2/l H ), or the H ∞ , norm 
(mixed 1 /l H ∞ ), of a different transfer function below a pre-specified level 
was addressed. 

Our main research direction was the application of new and 
computationally tractable analysis and synthesis methods for uncertain 
systems. In particular, we considered LTI systems, and based on convex 
optimization approach. 

To test the efficacity of the system in minimizing or rejecting the 
disturbance signal. I have introduced a noise signal, as result, our system 
functionality has successfully excluded the noise disturbance signal and 
minimized the input disturbance by 100 times.  Moreover, our system is 
stable because it returned to the zero after it was subjected by a temporary 
disturbance. This method is powerful since the system goes directly to the 
steady state and all results satisfy the design requirements. In addition to 
that, I got a good low pass filter that can be used in many applications for 
tracking of signal input. The powerful of the method show the robustness 
of the system and the pole placement to the region between -1 and 0. 

From all these results, I have minimized the 2H -norm and H -norm 
optimal controller by using convex optimization approach, I found the 
optimal value and the solution 1l  that minimized the cost function. 

The main result of this thesis showed that, a two-stage process can 
synthesize suboptimal controllers, involving a convex optimization 
problem, which optimizes the internal characteristics of the controller, 
an H∞ , 2H  optimization, which optimize the external characteristic of the 
system. Furthermore, this approach also provides a CVX-based 
parameterization of all suboptimal output feedback controllers, for mixed 

1 /l H ∞  and 1 2/l H  problems. Results showed that mixed 1 /l H ∞  and 1 2/l H  
objectives produced robust optimal solutions. 

5.2. Recommendations and Future Work 
With the fact that systems come more and more complicated, we 
recommend the development of this method to Mutli-objective, linear time 
variant (LTV) control synthesizing problems for systems with time delays. 
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APPENDICES 

This m-file used to compute and simulate the optimal H-2 controller 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

% Author: niazi Abouhwaij 
% This m-file was used to compute and simulate the optimal H-2 
controller 
% for the pich controller process 
% 1-input, 1-output plant state-space matrices 
  
A=[-0.313  56.7  0 ; -0.0139   -0.426   0; 0  56.7   0]; 
B=[0.232 ; 0.0203 ; 0]; 
C=[0   0  1]; 
D=[0]; 
G=pck(A,B,C,D); 
  
% weighting functions 
numWo=[1]; 
denWo=[1]; 
Wo=nd2sys(numWo,denWo); 
numWi=[1]; 
denWi=[1]; 
Wi=nd2sys(numWi,denWi); 
numWe=[1]; 
denWe=[1 1]; 
We=nd2sys(numWe,denWe); 
numWu=[30]; 
denWu=[1]; 
Wu=nd2sys(numWu,denWu); 
  
% Build the system interconnection to obtain the generalized 
plant P(s) 
% using the "sysic" command 
  
systemnames='Wo Wi Wu We G '; 
inputvar='[ w1; w2 ; u ]'; 
outputvar='[ Wu; We; Wo - G ]'; 
input_to_Wo='[ w1 ]'; 
input_to_Wi='[ w2 ]'; 
input_to_Wu='[ u ]'; 
input_to_We='[Wo - G ]'; 
input_to_G='[ u + Wi ]'; 
sysoutname='P'; 
  
cleanupsysic='yes'; 
sysic; 
% Extract partitioned state-space matrices 
[AP,BP,CP,DP]=unpck(P); 
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BP1=BP(:,1:2); 
BP2=BP(:,3); 
CP1=CP(1:2,:); 
CP2=CP(3,:); 
DP11=DP(1:2,1:2); 
DP12=DP(1:2,3); 
DP21=DP(3,1:2); 
DP22=DP(3,3); 
  
% Stabilizability of (AP,BP2) and (AP,BP1) 
% PBH test: [-AP+sI BPi] must not lose rank at closed RHP 
eigvals of AP 
  
rhpeigs=[]; 
[V,EIGS] = eig(AP); 
eigs = diag(EIGS); 
for i=1:length(AP) 
if real(eigs(i)) >= 0 
rhpeigs=[rhpeigs;eigs(i)]; 
end 
end 
p = length(rhpeigs); 
r = length(AP); % Rank of [sI-AP] for s not eigval(AP) 
rkb1=[]; % ranks at rhp eigenvalues 
rkb2=[]; % ranks at rhp eigenvalue 
for j=1:p 
rkb1=[rkb1 ; rank([(rhpeigs(j)*eye(length(AP)))-AP BP1])]; 
rkb2=[rkb2 ; rank([(rhpeigs(j)*eye(length(AP)))-AP BP2])]; 
end 
if min(rkb1) < length(AP) 
sprintf('PROBLEM: (AP,BP1) IS NOT STABILIZABLE') 
stop 
end 
if min(rkb2) < length(AP) 
sprintf('PROBLEM: (AP,BP2) IS NOT STABILIZABLE') 
stop 
end 
% Detectability of (CP2,AP) and (CP1,AP) 
% PHB test: [(-AP+sI)' CP2']' must not lose rank at closed RHP 
eigvals of AP 
rkc1=[]; % ranks at rhp eigenvalues 
rkc2=[]; % ranks at rhp eigenvalues 
for j=1:p 
rkc1=[rkc1 ; rank([(rhpeigs(j)*eye(length(AP)))-AP; CP1])]; 
  
rkc2=[rkc2 ; rank([(rhpeigs(j)*eye(length(AP)))-AP; CP2])]; 
end 
if min(rkc1) < length(AP) 
sprintf('PROBLEM: (CP1,AP) IS NOT DETECTABLE') 
stop 
end 
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if min(rkc2) < length(AP) 
sprintf('PROBLEM: (CP2,AP) IS NOT DETECTABLE') 
stop 
end 
% There are two more condition that should be checked. The 
matrices 
% [AP-jwI BP2; CP1 DP12] and [AP-jwI BP1; CP2 DP21] must have 
full column 
% and row rank respectively for all w. 
ww = logspace(-2,4,200); 
for i=1:200 
rk = rank([sqrt(-1)*ww(i)*eye(length(AP))-AP BP2; CP1 DP12]); 
if rk < (length(AP)+length(BP2(1,:))) 
sprintf('PROBLEM: FIRST MATRIX IS RANK DEFICIENT AT FREQ. 
=%g',ww(i)) 
stop 
end 
end 
for i=1:200 
rk = rank([sqrt(-1)*ww(i)*eye(length(AP))-AP BP1; CP2 DP21]); 
if rk < (length(AP)+length(CP2(:,1))) 
sprintf('PROBLEM: SECOND MATRIX IS RANK DEFICIENT AT FREQ. 
=%g',ww(i)) 
stop 
end 
end 
% compute the H2 optimal controller 
nmeas=1; % number of measurements to controller 
ncon=1; % number of control signals from controller 
ricmethod=1; 
[K,Tzw,Kfi,Gfi,CL,hamx,hamy]=h2syn(P,nmeas,ncon,ricmethod) 
  
% H2-norm achieved 
h2norm(Tzw) 
  
% closed-loop sensitivity from output disturbance to process 
output. 
% i.e. S(s)=(I+GK)^(-1) 
S=starp(abv(sbs(0,1),sbs(1,mmult(-1,G,K))),1); 
%S=starp(abv(sbs(0,1),sbs(1,mmult(-1,G,K))),1); 
% closed-loop system from output disturbance to process inputs 
% i.e. SK(s)=-(I-GK)^(-1)K 
  
KS=starp(abv(sbs(1,eye(1)),sbs(1,G)),mmult(K,-1)); 
%KS=starp(abv(sbs([0],eye(1)),sbs(1,G)),mmult(K,-1)); 
% simulate the output response to a change in setpoint for 
delta 
tfinal=2000 ; % final time for simulation 
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intstep=0.25; % integration step 
step_input=0.01 ; % step input: 0.3 rad disturbance in angle 
% simulate plant response first 
plant_output_resp=trsp(mmult(S,Wo,0.0001),step_input,tfinal,intstep); 
K_output_resp=trsp(mmult(KS,Wo,0.0001),step_input,tfinal,intstep); 
% plot the output and actuator responses 
figure(1) 
%subplot(211) 
  
vplot(plant_output_resp,'b'); 
grid 
title('plant Output Response') 
XLABEL('Time (sec)') 
YLABEL('pitch angle(rad)') 
%subplot(212) 
figure(2) 
vplot(sel(K_output_resp,1,1)); 
grid 
title('Controller output  Response') 
XLABEL('Time (sec)') 
YLABEL('pitch angle(rad)') 
[Ac,Bc,Cc,Dc]=unpck(CL); 
figure(3) 
step(Ac,Bc,Cc,Dc); 
[Nc Dc]=ss2tf(Ac,Bc,Cc,Dc,1) 
Nc=Nc(1,:); 
CPlant=tf(Nc,Dc); 
grid 
figure (4) 
 Bode(CPlant); 
grid 
[Ak,Bk,Ck,Dk]=unpck(K); 
[Ng Dg]=ss2tf(Ak,Bk,Ck,Dk); 
G=tf(Ng,Dg);     
[Ap,Bp,Cp,Dp]=unpck(P); 
[N D]=ss2tf(Ap,Bp,Cp,Dp,1); 
N=N(3,:); 
Plant=tf(N,D); 
XLABEL('Time (sec)') 
YLABEL('pitch angle(rad)') 
 figure(5) 
 zeta=0.52; 
 Wn=0.9; 
 rlocus (Plant,G); 
  
 sgrid (zeta,Wn); 
axis ([-1 0 -2 2]); 
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This m-file was used to compute and simulate the 
optimal H-infinity controller 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

% Author: niazi Abouhwaij 
% This m-file was used to compute and simulate the optimal H-
infinity controller 
% for the pich controller process 
% 1-input, 1-output plant state-space matrices 
  
A=[-0.313  56.7  0 ; -0.0139   -0.426   0; 0  56.7   0];% 
B=[0.232 ; 0.0203 ; 0]; 
C=[0   0  1]; 
D=[0]; 
G=pck(A,B,C,D); 
  
% weighting functions 
numWo=[1]; 
denWo=[1]; 
Wo=nd2sys(numWo,denWo); 
numWi=[1]; 
denWi=[1]; 
Wi=nd2sys(numWi,denWi); 
%Wi=daug(Wi1,Wi1); 
numWe=[1]; 
denWe=[1 1]; 
We=nd2sys(numWe,denWe); 
numWu=[1]; 
denWu=[1]; 
Wu=nd2sys(numWu,denWu); 
  
% Build the system interconnection to obtain the generalized plant 
P(s) 
% using the "sysic" command 
  
systemnames='Wo Wi Wu We G '; 
inputvar='[ w1; w2 ; u ]'; 
outputvar='[ Wu; We; Wo - G ]'; 
input_to_Wo='[ w1 ]'; 
input_to_Wi='[ w2 ]'; 
input_to_Wu='[ u ]'; 
input_to_We='[Wo - G ]'; 
input_to_G='[ u + Wi ]'; 
sysoutname='P'; 
  
cleanupsysic='yes'; 
sysic; 
% Extract partitioned state-space matrices 
  
[AP,BP,CP,DP]=unpck(P); 
BP1=BP(:,1:2); 
BP2=BP(:,3);  
CP1=CP(1:2,:); 
CP2=CP(3,:); 
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DP11=DP(1:2,1:2); 
DP12=DP(1:2,3); 
DP21=DP(3,1:2); 
DP22=DP(3,3); 
  
% Stabilizability of (AP,BP2) and (AP,BP1) 
% PBH test: [-AP+sI BPi] must not lose rank at closed RHP 
eigvals of AP 
rhpeigs=[]; 
[V,EIGS] = eig(AP); 
eigs = diag(EIGS); 
for i=1:length(AP) 
if real(eigs(i)) >= 0 
rhpeigs=[rhpeigs;eigs(i)]; 
end 
end 
p = length(rhpeigs); 
r = length(AP); % Rank of [sI-AP] for s not eigval(AP) 
rkb1=[]; % ranks at rhp eigenvalues 
rkb2=[]; % ranks at rhp eigenvalue 
for j=1:p 
rkb1=[rkb1 ; rank([(rhpeigs(j)*eye(length(AP)))-AP BP1])]; 
rkb2=[rkb2 ; rank([(rhpeigs(j)*eye(length(AP)))-AP BP2])]; 
end 
%if min(rkb1) < length(AP) 
% sprintf('PROBLEM: (AP,BP1) IS NOT STABILIZABLE') 
% stop 
%end 
if min(rkb2) < length(AP) 
sprintf('PROBLEM: (AP,BP2) IS NOT STABILIZABLE') 
stop 
end 
% Detectability of (CP2,AP) and (CP1,AP) 
% PHB test: [(-AP+sI)' CP2']' must not lose rank at closed RHP 
eigvals of AP 
rkc1=[]; % ranks at rhp eigenvalues 
rkc2=[]; % ranks at rhp eigenvalues 
for j=1:p 
rkc1=[rkc1 ; rank([(rhpeigs(j)*eye(length(AP)))-AP; CP1])]; 
rkc2=[rkc2 ; rank([(rhpeigs(j)*eye(length(AP)))-AP; CP2])]; 
end 
if min(rkc1) < length(AP) 
sprintf('PROBLEM: (CP1,AP) IS NOT DETECTABLE') 
stop 
end 
  
if min(rkc2) < length(AP) 
sprintf('PROBLEM: (CP2,AP) IS NOT DETECTABLE') 
stop 
end 
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% There are two more condition that should be checked. The matrices 
% [AP-jwI BP2; CP1 DP12] and [AP-jwI BP1; CP2 DP21] must have full column 
% and row rank respectively for all w. 
ww = logspace(-4,2,200); 
for i=1:200 
rk = rank([sqrt(-1)*ww(i)*eye(length(AP))-AP BP2; CP1 DP12]); 
if rk < (length(AP)+length(BP2(1,:))) 
sprintf('PROBLEM: FIRST MATRIX IS RANK DEFICIENT AT FREQ. = %g',ww(i)) 
stop 
end 
end 
for i=1:200 
rk = rank([sqrt(-1)*ww(i)*eye(length(AP))-AP BP1; CP2 DP21]); 
if rk < (length(AP)+length(CP2(:,1))) 
sprintf('PROBLEM: SECOND MATRIX IS RANK DEFICIENT AT FREQ. = %g',ww(i)) 
stop 
end 
end 
  
% compute the H-infinity optimal controller 
nmeas=1; % number of measurements to controller 
ncon=1; % number of control signals from controller 
ricmethod=2; 
[K,Tzw,CL,X,GAM,hamx,hamy]=hinfsyn(P,nmeas,ncon,0,1000,ricmethod); 
% Hinf norm achieved 
hinfnorm(Tzw) 
% closed-loop sensitivity from output disturbance to process output. 
% i.e. S(s)=(I+GK)^(-1) 
S=starp(abv(sbs(0,1),sbs(1,mmult(-1,G,K))),1); 
% closed-loop system from output disturbance to process inputs 
% i.e. SK(s)=-(I-GK)^(-1)K 
KS=starp(abv(sbs([0],eye(1)),sbs(1,G)),mmult(K,-1)); 
% simulate the output response to a change in setpoint for delta 
tfinal=10000; % final time for simulation 
intstep=5; % integration step 
step_input=0.003; % step input: 0.3 rad disturbance in angle 
  
% simulate plant response first 
plant_output_resp=trsp(mmult(S,Wo,0.01),step_input,tfinal,intstep); 
K_output_resp=trsp(mmult(KS,Wo,0.01),step_input,tfinal,intstep); 
% plot the state responses 
figure(1) 
vplot(plant_output_resp,'b'); 
title('plant Output Response') 
XLABEL('Time()') 
YLABEL('Amplitude') 
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figure(2) 
vplot(sel(K_output_resp,1,1)); 
grid 
title('Controller output  Response') 
XLABEL('Time()') 
YLABEL('Amplitude') 
[Ac,Bc,Cc,Dc]=unpck(CL); 
figure(3) 
step(Ac,Bc,Cc,Dc); 
[Nc Dc]=ss2tf(Ac,Bc,Cc,Dc,1) 
Nc=Nc(1,:); 
CPlant=tf(Nc,Dc); 
grid 
figure (4) 
 Bode(CPlant); 
grid 
[Ak,Bk,Ck,Dk]=unpck(K); 
[Ng Dg]=ss2tf(Ak,Bk,Ck,Dk); 
G=tf(Ng,Dg);  
[Ap,Bp,Cp,Dp]=unpck(P); 
[N D]=ss2tf(Ap,Bp,Cp,Dp,1); 
N=N(3,:); 
Plant=tf(N,D); 
 figure(5) 
 zeta=0.52; 
 Wn=0.9; 
 rlocus (Plant,G); 
  
 sgrid (zeta,Wn); 
axis ([-1 0 -2 2]); 
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Function:HINFSYN  H-infinity controller synthesis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%HINFSYN  H-infinity controller synthesis. 
% [K,CL,GAM,INFO] = HINFSYN(P,NMEAS,NCON) or  
% [K,CL,GAM,INFO] = HINFSYN(P,NMEAS,NCON,KEY1,VALUE1,KEY2,VALUE2,...) 
%    computes H-infinity controller K for partitioned plant P via the 
%    gamma-iteration, computing the minimal cost GAM in [GMIN,GMAX] for 
%    which the closed-loop system CL= LFT(P,K) satisfies  
%                 HINFNORM(CL) < GAM. 
%    NMEAS is the number of measurement outputs from the plant and NCON is 
%    the number of control inputs to the plant; these may be omitted if   
%    P=MKTITO(P,NMEAS,NCON) or P=AUGW(SYS,W1,W2,W3).  
%  
%       KEY     |VALUE   | MEANING 
%     ---------------------------------------------------------------- 
%      'GMAX'   | real   | initial upper bound on GAM (Inf default) 
%      'GMIN'   | real   | initial lower bound on GAM (0 default) 
%      'TOLGAM' | real   | relative error tolerance for GAM (.01 default) 
%      'METHOD' |        | H-infinity solution method:  
%               |'ric'   | - (default) standard 2-Riccati solution, DGKF1989 
%               |'lmi'   | - LMI solution, Packard 1992, Gahinet 1994 
%               |'maxe'  | - maximum entropy, HINFSYNE, Glover-Doyle 1988 
%      'S0'     | real   |  (default=Inf) frequency S0 at which entropy is 
%               |        |      evaluated, only applies to METHOD 'maxe'     
%      'DISPLAY'|'on/off'| display synthesis information to screen, 
%               |        |  (default = 'off')    
%        ---------------------------------------------------------------- 
%      outputs: 
%        K     -  H-infinity controller 
%        CL    -  lft(P,K) (closed-loop system) 
%        GAM   -  H-infinity cost 
%        INFO  -  Structure array containing possible additional information   
%                 depending on 'METHOD': 
%                 INFO.AS  - all solutions controller, LTI two-port LFT 
%                 INFO.KFI  - full information gain matrix (constant 
%                             feedback U2 = KFI*[X; U1] ) 
%                 INFO.KFC  - full control gain matrix (constant  
%                             output-injection; KFC is the dual of KFI) 
%                 INFO.GAMFI - H-infinity cost for full information KFI 
%                 INFO.GAMFC - H-infinity cost for full control KFC 
%     See also: AUGW, H2SYN, LOOPSYN, MKTITO, NCFSYN, LTI/NORM  
% OLD HELP 
% function [k,g,gfin,ax,ay,hamx,hamy] =                 
hinfsyn(p,nmeas,ncon,gmin,gmax,tol,ricmethd,epr,epp,quiet) 
%  This function computes the H-infinity (sub) optimal n-state 
%  controller, using Glover's and Doyle's 1988 result, for a system P. 
%  the system P is partitioned: 
%                          | a   b1   b2   | 
%              p    =      | c1  d11  d12  | 
%                          | c2  d21  d22  | 
%   where b2 has column size of the number of control inputs (NCON) 
%   and c2 has row size of the number of measurements (NMEAS) being 
%   provided to the controller. 
%   Copyright 1991-2005 MUSYN Inc. and The MathWorks, Inc. 
$Revision: 1.1.8.5 $ 
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Function:H2SYN  H2 controller synthesis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%H2SYN  H2 controller synthesis. 
% 
% [K,CL,GAM,INFO]=H2SYN(P,NMEAS,NCON)   
% [K,CL,GAM,INFO]=H2SYN(MKTITO(P,NMEAS,NCON))) 
%  Calculates the H2 optimal controller K and the closed loop 
%  system CL=LFT(P,K).  NMEAS and NCON are the dimensions of  
%  the measurement outputs from P and the controller inputs to P. 
%   
%     inputs: 
%       P    -   LTI two-port plant  
%       NMEAS   -   measurement outputs from plant to controller 
%       NCON    -   control inputs to plant from controller 
%     outputs: 
%       K    -  H2 optimal controller 
%       CL   -  closed-loop system CL=LFT(P,K) 
%       GAM  -  GAM = H2NORM(CL)  
%       INFO -  struct array with various information, such as 
%               NORMS  -  norms of 4 different quantities, full  
%               information control cost (FI), output estimation 
%               cost (OEF), direct feedback cost (DFL) and full 
%               control cost (FC).  NORMS = [FI OEF DFL FC];                         
%     KFI    -  full information/state feedback control law 
%     GFI    -  full information/state feedback closed-loop  
%     HAMX   -  X Hamiltonian matrix 
%     HAMY   -  Y Hamiltonian matrix 
% 
%     Comment:  For discrete plants and for continuous plants 
%               zero feedthrough term (D11 = 0),  
%               GAM =sqrt(FI^2 + OEF^2+ trace(D11*D11')); 
%               otherwise, GAM is infinite 
%  
%     See also: AUGW, HINFSYN, LTI/NORM, LTRSYN 
%   Copyright 1991-2004 MUSYN Inc. and The MathWorks, Inc. 
% $Revision: 1.1.6.2 $ 
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