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Introduction

Instantaneous rate models, although theoretically satisfying, are less

so in practice. Instantaneous rates are not observable and calibra-

tion to market data is complicated. Hence, the need for a market

model where one models LIBOR rates seems imperative. In this

modeling process, we aim at regaining the Black-76 formula[7] for

pricing caps and floors since these are the ones used in the market.

To regain the Black-76 formula we have to model the LIBOR rates

as log-normal processes. The whole construction method means

calibration by using market data for caps, floors and swaptions

is straightforward. Brace, Gatarek and Musiela[8] and, Miltersen,

Sandmann and Sondermann[25] showed that it is possible to con-

struct an arbitrage-free interest rate model in which the LIBOR

rates follow a log-normal process leading to Black-type pricing for-

mulae for caps and floors. The key to their approach is to start

directly with modeling observed market rates, LIBOR rates in this

case, instead of instantaneous spot rates or forward rates. There-

after, the market models, which are consistent and arbitrage-free[6],

[22], [8], can be used to price more exotic instruments. This model

is known as the LIBOR Market Model.
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In a similar fashion, Jamshidian[22] (1998) showed how to con-

struct an arbitrage-free interest rate model that yields Black-type

pricing formulae for a certain set of swaptions. In this particular

case, one starts with modeling forward swap rates as log-normal

processes. This model is known as the Swap Market Model.

Some of the advantages of market models as compared to other

traditional models are that market models imply pricing formulae for

caplets, floorlets or swaptions that correspond to market practice.

Consequently, calibration of such models is relatively simple[8].

The plan of this work is as follows. Firstly, we present an em-

pirical analysis of the standard risk-neutral valuation approach, the

forward risk-adjusted valuation approach, and elaborate the pro-

cess of computing the forward risk-adjusted measure. Secondly, we

present the formulation of the LIBOR and Swap market models

based on a finite number of bond prices[6], [8]. The technique used

will enable us to formulate and name a new model for the South

African market, the SAFEX-JIBAR model.

In [5], a new approach for the estimation of the volatility of the

instantaneous short interest rate was proposed. A relationship be-
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tween observed LIBOR rates and certain unobserved instantaneous

forward rates was established. Since data are observed discretely in

time, the stochastic dynamics for these rates were determined un-

der the corresponding risk-neutral measure and a filtering estimation

algorithm for the time-discretised interest rate dynamics was pro-

posed.

Thirdly, the SAFEX-JIBAR market model is formulated based on

the assumption that the forward JIBAR rates follow a log-normal

process. Formulae of the Black-type are deduced and applied to the

pricing of a Rand Merchant Bank cap/floor. In addition, the corre-

sponding formulae for the Greeks are deduced. The JIBAR is then

compared to other well known models by numerical results.

Lastly, we perform some computational analysis in the following

manner. We generate bond and caplet prices using Hull’s [19] stan-

dard market model and calibrate the LIBOR model to the cap curve,

i.e determine the implied volatilities σi’s which can then be used

to assess the volatility most appropriate for pricing the instrument

under consideration. Having done that, we calibrate the Ho-Lee

model to the bond curve obtained by our standard market model.

We numerically compute caplet prices using the Black-76 formula
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for caplets and compare these prices to the ones obtained using the

standard market model. Finally we compute and compare swaption

prices obtained by our standard market model and by the LIBOR

model.
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Chapter 1

Probability Measures

The market price of risk of a variable determines the growth rates

of all securities dependent on the variable. As we move form one

market price of risk to another, the expected growth rates of security

prices change, but their volatilities remain the same. Choosing a

particular market price of risk is also referred to as defining the

probability measure.
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1.1 Risk Neutral Probability Measures:- Discrete

Case

1.1.1 Discrete Single-period market

Consider a discrete single-period securities market with the follow-

ing model specifications[28].

- Initial date t = 0, terminal date t = 1.

- A finite sample space Ω = {ω1, ω2, . . . , ωk} where ωi, i = 1, . . . , k

is a possible state of the world realized at time t = 1.

- A probability measure P on Ω.

- A bank account process Bt(ωi), t = 0, 1 with B0 = 1 and B1 ≥ 1.

- Define interest rate as r = B1−B0

B0
= B1 − 1 which is deterministic

if B1 is deterministic.

- A price process Sn(t) = {Sn(0), Sn(1)} for risky securities Sn,

n = 1, . . . , N .

- A trading strategy H = (H0, H1, . . . , HN) determining an in-

vestor’s portfolio over the period.

- A value process Vt = {V0, V1} giving the total value of the portfolio.

It is given by

Vt = H0Bt +
N∑

n=1

HnSn(t). (1.1)
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- A gains process G giving the profit/loss generated by the portfolio

over the period, where

G = V1 − V0 = H0r +
N∑

n=1

Hn∆Sn, (1.2)

with ∆Sn = Sn(1)− Sn(0).

To compare the movement in prices, we need a reference asset. We

get normalized price processes by discounting prices at time t = 1

with respect to the bank account B1 . This normalization process is

called discounting and the bank account process is then called the

numeraire. We then define the following:

- A discounted price process S∗ where S∗(0) = S(0) and S∗(1) =

(S1(1)
B1

, . . . , SN (1)
B1

).

- A discounted value process Vt
∗ = Vt/Bt.

- A discounted gains process G∗ = V ∗
1 − V ∗

0 =
∑N

n=1 Hn∆Sn
∗.

Definition 1.1 An arbitrage opportunity is a trading strategy H

such that:

(i) V0 = 0,

(ii) V1 ≥ 0,

(iii) EP [V1] > 0.

Definition 1.2 A non-negative linear probability measure Q on Ω
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is a risk-neutral probability measure iff

(i) Q(w) > 0,∀ω ∈ Ω, and

(ii) EQ[∆S∗n] = 0, n = 1, 2, . . . , N, i.e EQ[S∗n(1)] = S∗n(0).

We state without proof the following theorem[28].

Theorem 1.3 There are no arbitrage opportunities if and only if

there exists a risk-neutral probability measure Q.

Proposition 1.4 If Q is any risk-neutral probability measure, then

for every trading strategy H one has V0 = EQ[V1/B1].

Proof

V0 = V ∗
0 = EQ[V ∗

0] = EQ[V ∗
1 −G∗]

= EQ[V ∗
1]− EQ[

N∑

n=1

Hn∆Sn
∗]

= EQ[V ∗
1]−

N∑

n=1

HnEQ[∆Sn
∗]

︸ ︷︷ ︸
=0

= EQ[V ∗
1]

= EQ[V1/B1].

The statement in the underbrace gives zero because of the fact

that Q is a risk-neutral measure and (ii) of Definition 1.2 applies.

The subscript Q in EQ indicates that we are using the specifically
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computed no-arbitrage pricing probability Q, commonly known as

the risk-neutral probability measure.

A contingent claim is a random variable X representing a payoff

at terminal time, say t = 1. It is said to be attainable or marketable

if there is some trading strategy H, called the replicating portfolio,

such that V1 = X.

Attainability of a contingent claim means that its initial value re-

mains constant for every risk-neutral probability measure. In fact,

we have the following theorem.

Theorem 1.5 (Risk Neutral Valuation Principle) If the single-

period market is free of arbitrage opportunities, then the time t = 0

value of an attainable contingent claim X is EQ[X/B1], where Q is

any risk-neutral probability measure.

Clearly, the above theorem says that by the attainability of X we

mean that there exists a portfolio V with V1 = X such that

V0 = EQ[V1/B1]

= EQ[X/B1]

= X0 (1.3)
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since V0 = X0 by the no-arbitrage argument.

The measure P in Definition 1.1, though it defines arbitrage, plays

no role in the pricing of claims.

As an example to illustrate what we have seen so far, consider

the following problem:

[28]Suppose K = 2, N = 1 and the interest rate is a scalar parameter

r ≥ 0. Also, suppose S0 = 1, S1(ω1) = u and S1(ω2) = d, u >

d > 0. For what values of r, u and d does there exist a risk neutral

probability measure? Otherwise, what arbitrage opportunities are

there?

Solution

S1(0) = 1, S1(1, ω1) = u, S1(1, ω2) = d and therefore S1
∗(1, ω1) =

u/(r + 1), S1
∗(1, ω2) = d/(r + 1). Let Q(ω) be a risk neutral prob-

ability measure. Thus from the definition of a probability and the

risk neutral valuation principle, we need to solve the system:

Q(ω1) + Q(ω2) = 1

u

r + 1
Q(ω1) +

d

r + 1
Q(ω2) = 1
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from which we get the solution:

Q(ω1) =
r + 1− d

u− d

Q(ω2) =
u− r − 1

u− d
.

There exists a risk neutral probability measure Q = ( r+1−d
u−d

; u−r−1
u−d

)

if Q > 0, that is if d < r + 1 < u with u− d > 0.

For any other values not satisfying the above, there are arbitrage

opportunities which we calculate below.

Let H = (H0, H1) be the trading strategy. Then we wish to find

(H0, H1) satisfying V0 = 0 and V1 ≥ 0, with at least one V1(ωi) > 0.

V0 = H0 + H1S1(0)

= H0 + H1 = 0 ⇒ H0 = −H1.

But the discounted value process is given by:

V1
∗ = H0 + H1S1

∗(1).

Thus

V1
∗(ω1) = H0 +

u

r + 1
H1 ⇒ V1

∗(ω1) = H1(
u

r + 1
− 1)

V1
∗(ω2) = H0 +

d

r + 1
H1 ⇒ V1

∗(ω2) = H1(
d

r + 1
− 1).

So the arbitrage opportunities are all the situations H = (H0, H1)

satisfying
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H0 = −H1; H1(
u

r+1
− 1) ≥ 0; H1(

d
r+1

− 1) ≥ 0;, with at least one

equality being strict.

A market in which every contingent claim X can be generated by

some trading strategy is called a complete market. Otherwise it is

called an incomplete market. In a complete market, all the funda-

mental goods or instruments have a fair price.

1.1.2 The multiperiod case

With all the definitions from the above section, consider t = 0, 1, . . . , T .

- A finite sample space Ω = {ω1, . . . , ωk}.

- A filtration F = {Ft; t = 0, . . . , T}.

- N risky security processes Sn = {Sn(t); t = 0, . . . , T}, where Sn(t)

is a non-negative stochastic process for each n = 1, 2, . . . , N , adapted

to F.

- A bank process Bt.

- Pt, a time-t partition of Ω.

In many cases, money cannot be added to or withdrawn from a

portfolio except at time t = 0 and time t = T . Such is the case

of a fixed account. In such cases, any change in the portfolio value
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is attributed to internal gains and losses in the instrument. Such

a portfolio receives the name of ”self-financing” portfolio. Mathe-

matically, the value of such a portfolio at any given time t is given

by

Vt = H0(t + 1)Bt +
N∑

n=1

Hn(t + 1)Sn(t), t = 1, . . . , T − 1,

where H is the trading strategy.

In the multi-period case, a trading strategy H = (H0, H1, . . . , HN)

is an N + 1-dimensional vector whose components are stochastic

processes of the form

Hn = {Hn(t); t = 1, 2, . . . , T} , n = 0, 1, . . . , N.

Each Hn is said to be predictable with respect to the filtration F

if each Hn(t) is measurable with respect to Ft−1,∀t = 1, 2, . . . , T .

Since Ft−1 ⊆ Ft, all predictable stochastic processes are adapted.

An adapted stochastic process

Hn = {Hn(t); t = 1, 2, . . . , T}

is called a supermartingale if

EQ[Hn(t + s)|Ft] ≤ Hn(t), ∀s, t ≥ 0,
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and is called a submartingale if

EQ[Hn(t + s)|Ft] ≥ Hn(t), ∀s, t ≥ 0.

If equality holds, then Hn is called a martingale and Q is then called

a martingale measure.

Theorem 1.6 (Risk neutral valuation principle) [28] The time

t value of a marketable contingent claim X is equal to Vt, the time

t value of the portfolio which replicates X. Moreover,

Vt
∗ = Vt/Bt = EQ[X/Bt|Ft], t = 0, 1, . . . , T (1.4)

for all risk-neutral probability measures Q.

In view of what we know for single-period models, corresponding

to each underlying single period model is a risk-neutral probability

measure. For example, corresponding to each A ∈ Pt for t < T

there is a probability measure, denoted by Q(t, A), on the single

period space. This probability measure gives positive mass to each

cell A′ ⊆ A in the partition Pt+1, sums to one over such cells, and

satisfies EQ(t,A)[∆Sn
∗(t + 1)] = 0, for each n = 1, . . . , N .

Q(t, A) is a conditional risk-neutral probability such that

EQ[S∗(t + 1)|Pt] = EQ(t,A)[S
∗(t + 1)] = S∗(t).
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This equation defines Q in terms of Q(t, A).

Theorem 1.7 The probability measure Q is a martingale.

Proof

Since EQ(t,A)[∆Sn
∗(t + 1)] = 0 for n = 1, . . . , N ; A ∈ Pt and t < T ,

it follows from the construction of Q that

EQ[∆Sn
∗(t + 1)|Ft] = 0, n = 1, . . . , N, t < T. (1.5)

Taking arbitrary s, t ≥ 0 and n and using the above equation:

EQ[Sn
∗(t + s)|Ft] = EQ[∆Sn

∗(t + s) + . . . + ∆Sn
∗(t + 1) + Sn

∗(t)|Ft]

= EQ[EQ[∆Sn
∗(t + s)|Ft+s−1]|Ft] + . . .

+ EQ[EQ[∆Sn
∗(t + 1)|Ft]|Ft] + Sn

∗(t)

= EQ[0|Ft] + . . . + EQ[0|Ft] + Sn
∗(t)

= Sn
∗(t).

Hence Q is a martingale measure.

We show through an example[28] how to compute Q in a multi-

period environment with more than two states of the world.

Consider a simple model with T = 2 and K = 4. Suppose r = 0

and the risky security is as follows:
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ωk t = 0 t = 1 t = 2

ω1 S0 = 5 S1 = 8 S2 = 9

ω2 S0 = 5 S1 = 8 S2 = 6

ω3 S0 = 5 S1 = 4 S2 = 6

ω4 S0 = 5 S1 = 4 S2 = 3

Let (Qu, Qd) be the martingale measure in the first period. Since

r = 0, the discounted price process is equal to the price process. To

find (Qu, Qd) we solve the linear system:

Qu + Qd = 1

8Qu + 4Qd = 5

which gives (Qu, Qd) = (1/4, 3/4). In period 2 we solve two systems

namely,

Quu + Qud = 1

9Quu + 6Qud = 8

and

Qdu + Qdd = 1

20



6Qdu + 3Qdd = 4.

The solutions to these systems are

(Quu, Qud) = (2/3, 1/3)

(Qdu, Qdd) = (1/3, 2/3).

Then the risk neutral probability measure (or martingale measure)

is

Q = (QuQuu, QuQud, QdQdu, QdQdd)

= (1/6, 1/12, 1/4, 1/2).

1.2 Forward Risk Neutral Probability Measures

- Discrete Case

We follow the exposition in [28].

1.2.1 A fundamental probability relation

For some τ ≤ T , consider a random variable Mτ ∈ Fτ , Mτ > 0 such

that EQ[Mτ ] = 1 for some risk neutral probability measure Q. Now,

define

Pτ ≡ Mτ (ω)Q(ω), ∀ω ∈ Ω.
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Clearly Pτ is a legitimate measure :

EQ[Mτ ] = 1, Q(ω) > 0 ⇒ Pτ (Ω) = 1, Pτ (ω) > 0.

Let Eτ be the expectation operator corresponding to Pτ . Define

M = {Mt : t = 0, . . . , τ} with Mt = EQ[Mτ |Ft], t = 0, . . . , τ.

That is, by construction {Mt} is a martingale w.r.t Q, and Mt ∈ Ft.

Also, M0 = EQ[Mτ |F0] = EQ[Mτ ] = 1.

Theorem 1.8 If X is a random variable, then Eτ [MtX|Ft] = EQ[MτX|Ft], t =

0, . . . , τ.

Proof

• Suppose X ∈ Ft. Then MtX = XEQ[Mτ |Ft], and the theorem is

proved. Otherwise:

• For t = 0,M0 = 1 and

Eτ [M0X|F0] = Eτ [1 ·X|F0]

= Eτ [X]

=
∑
ω

X(ω)Pτ (ω)

=
∑
ω

X(ω)Mτ (ω)Q(ω), ∀ω ∈ Ω

= EQ[MτX]

= EQ[MτX|F0].
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• For the general case, take A ∈ Pt, and then show that

Eτ [MtX|A] = EQ[MτX|A].

In this case,

Eτ [MtX|A] =

∑
ω∈A X(ω)Mt(ω)Pτ (ω)∑

ω∈A Pτ (ω)

=

∑
ω∈A X(ω)Mt(ω)Mτ (ω)Q(ω)∑

ω∈A Mτ (ω)Q(ω)
.

But, on A, Mt is constant and this constant is

Mt(ω) = EQ[Mτ |A],

=

∑
ω′∈A Mτ (ω

′)Q(ω′)
Q(A)

, ∀ω ∈ A,

since M is a martingale with respect to Q.

Substituting for Mt(ω) and simplifying we have

Eτ [MtX|A] =

∑
ω′∈A Mτ (ω

′)Q(ω′)∑
ω∈A Mτ (ω)Q(ω)

∑
ω∈A Mτ (ω)Q(ω)X(ω)

Q(A)

=

∑
ω∈A X(ω)Mτ (ω)Q(ω)

Q(A)

= EQ[MτX|A].¦

Theorem 1.9 (Fundamental Relationship in probability theory)

The stochastic process Y M = {YtMt, t = 0, 1, . . . , τ} is a martingale

under Q if and only if the stochastic process Y = {Yt, t = 0, . . . , τ}

is a martingale under Pτ .
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Proof

Y M is a martingale under Q if and only if YtMt = EQ[YτMτ |Ft], ∀t.

In Eτ [MtX|Ft] = EQ[MτX|Ft], (Theorem 1.8) take X = Yτ and see

that

Eτ [MtYτ |Ft] = EQ[MτYτ |Ft],∀t, Mt ∈ Ft.

But Eτ [MtYτ |Ft] = MtEτ [Yτ |Ft] so that Y M is a martingale under

Q iff

EQ[MτYτ |Ft] = YtMt

⇔ Eτ [MtYτ |Ft] = Eτ [MtYτ |Ft]

⇔ MtEτ [Yτ |Ft] = YtMt

⇔ Yt = Eτ [Yτ |Ft],∀t.

⇔ Y is a martingale underPτ .

1.2.2 Term-structure model

We now include zero-coupon bonds in our market model.

Let p(t, τ) define the time-t price of a zero-coupon bond with ma-

turity τ, τ = 1, . . . , T and 0 ≤ t ≤ τ . If we assume the model to be

arbitrage-free, there must exist a risk-neutral measure Q such that

p(s, τ) = EQ[Bsp(t, τ)/Bt|Fs], 0 ≤ s ≤ t ≤ τ.
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or

p(s, τ) = BsEQ[p(t, τ)/Bt|Fs].

That is, under a risk neutral probability measure Q, the discounted

prices of the zero-coupon bonds are martingales. But p(τ, τ) = 1

and

Bt/Bs = (1 + rs+1) . . . (1 + rt),

where rt is the spot interest rate over the period (t − 1, t]. Taking

t = τ we see that zero-coupon bonds must satisfy the important

relationship

p(s, τ) = EQ[Bs/Bτ |Fs]

= EQ[1/ {(1 + rs+1) . . . (1 + rτ )} |Fs],

for any Q. In particular, p(s, s+1) = 1
1+rs+1

, since rs is a predictable

process.

1.2.3 Forward prices

Suppose at time s one enters into an agreement to purchase a unit

of some security at some future time t, at some future price Os.

The price Os is called the forward price. Now suppose it is time s
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and consider the forward price Os of the asset Z (e.g a τ -maturity

zero-coupon bond), delivered at time t ,where s ≤ t ≤ τ .

Theorem 1.10 The time s forward price Os of security Z, which

is received and paid for at time t > s and which pays no dividend,

is

Os =
Zs

EQ[Bs/Bt|Fs]
. (1.6)

Proof

The time s cost of replicating Os is simply the present value of Os,

that is

EQ[OsBs/Bt|Fs] = OsEQ[Bs/Bt|Fs].

This is the cost of an agreement which pays out Os at time t. You

then buy and receive security Z with value Zt at time t. Its time

s present value is simply Zs, by the definition of the martingale

measure Q. So by the law of one price, the time s value of the two

replicating strategies must be equal, that is, Zs = OsEQ[Bs/Bt|Fs].¦

In view of the relations

p(s, τ) = EQ[Bs/Bτ |Fs], and
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Os =
Zs

EQ[Bs/Bt|Fs]
,

we see that if Z is a τ -maturity zero-coupon bond, received and paid

for at time t, then its forward price is

Os =
Zs

p(s, t)
(1.7)

=
p(s, τ)

p(s, t)
, 0 ≤ s ≤ t ≤ τ ≤ T. (1.8)

For the special case τ = t + 1, we see that

Os =
p(s, t + 1)

p(s, t)
, 0 ≤ s ≤ t ≤ T (1.9)

must be the time-s forward price of a zero-coupon bond that is

delivered at time t and matures one period later. The yield at time

s, for the bond delivered at t and maturity at t + 1 is

f(s; t, t + 1) =
1−Os

Os

=
1

Os

− 1

=
p(s, t)

p(s, t + 1)
− 1. (1.10)

This is the LIBOR forward rate for the period [t, t+1] contracted at

time s and denoted simply by f(s, t). Since f(s, t) is associated with

a single future period, it will be called the ”forward spot interest

rate”, or simply, ”forward interest rate”. Clearly for t = s we see
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that

f(s, s) = rs+1, 0 ≤ s ≤ T

which is the spot rate over the time interval (s, s + 1].

1.2.4 Constructing the forward measures

We now return to to Section 1.2.1.

Let the stochastic process π = {πt, 0 ≤ t ≤ s} represent the price of

an asset such as a stock, a zero-coupon bond or a contingent claim,

where τ ≤ s ≤ T . Set Yt = πt/p(t, τ) and recall that Yt represents

the time-t forward price for a delivery of the asset at time τ . Using

our standard notation for forward prices, we therefore will some-

times write Ot for Yt = πt/p(t, τ). With Q the risk neutral proba-

bility measure, set Mτ = [Bτp(0, τ)]−1. Note that Mτ (ω) > 0 and

EQ[Mτ ] = [1/p(0, τ)]EQ[1/Bτ ] = 1, because p(0, τ) = EQ[1/Bτ ].

Hence we can define the Q-martingale M as

Mt = EQ[Mτ |Ft]

=
1

p(0, τ)
EQ[1/Bτ |Ft]

=
p(t, τ)

p(0, τ)Bt

=
B0

p(0, τ)
· p(t, τ)

Bt

. (1.11)
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Definition 1.11 (forward risk adjusted probability measure)

We define the forward risk adjusted probability measure, also called

the τ forward probability measure as

Pτ (ω) = Mτ (ω)Q(ω)

=
Q(ω)

p(0, τ)Bτ (ω)
. (1.12)

By observing that

YtMt ≡ OtMt

= (πt/p(t, τ)) p(t, τ)/[p(0, τ)Bt]

=
πt

p(0, τ)Bt

=
πt

Bt

· 1

p(0, τ)
. (1.13)

the process (Y M)t represents the Bt-discounted price of the asset

divided by the constant p(0, τ), and is thus a martingale under the

risk neutral probability measure Q. From Theorem 1.9 we thus have

that Yt (or Ot) is a martingale under Pτ . To summarise:

Theorem 1.12 The time-t forward price Ot for delivery of an asset

at time τ is a martingale under the forward risk-adjusted probability

measure Pτ , that is,

Ot = Eτ [Oτ |Ft]. (1.14)
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Now, because Oτ = πτ

p(τ,τ)
we have:

Ot =
πt

p(t, τ)
= Eτ [Oτ |Ft] = Eτ [πτ |Ft], t ≤ τ. (1.15)

Multiplying through by p(t, τ) yields the following result :

Theorem 1.13 If πt is the time-t price of a security, then

πt = p(t, τ)Eτ [πτ |Ft], t ≤ τ. (1.16)

Remark: This shows that a price process πt, discounted with re-

spect to numeraire process p(t, τ), is a martingale with respect to

the associated measure Pτ . To calculate the time-t price of a secu-

rity , formula (1.16) only requires the conditional distribution of πτ

under the forward risk adjusted probability measure corresponding

to time τ . For this reason, this new formula is applicable even in

the case of stochastic interest rates, which is the case with many

interest rate derivatives. This is not the case with the traditional

risk neutral valuation formula which is a convenient formula when

the interest rates are a known or deterministic quantity. The tradi-

tional risk-neutral valuation approach states that the time t value

of a marketable contingent claim X is equal to Vt, the time t value

of the portfolio which replicates X, i.e

Vt = BtV
∗
t
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= BtEQ[X/BT |Ft], t = 0, 1, . . . , T,

for all risk-neutral probability measures Q.

Note that the above equation is just

πt = BtEQ[πτ/Bτ |Ft]

= (Bt/Bτ )EQ[πτ |Ft].

1.2.5 Summary

We take time out to reiterate the steps involved in the computation

of the forward risk-adjusted probability measures. These steps could

be developed into an algorithm that can be illustrated numerically.

• Calculate the bond price processes using the formulae:

p(t, t + 1) =
1

r(t) + 1
, t = 0, 1, . . . , T − 1.

p(t, τ) =
1

r(t + 1) + 1
EQ [p(t + 1, τ)|Ft] .

• Calculate the yield processes

Y (t, τ) = [p(t, τ)]
−1
τ−t − 1, t = 0, 1, . . . , T − 1.

where Y (t, t + 1) = r(t + 1) is the current spot interest rate.

• Calculate the term structure of forward interest rates

f(s, t) =
p(s, t)

p(s, t + 1)
− 1, s = 0, . . . , T − 1; t = 0, . . . , T − 1,
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where f(s, s) = r(s + 1), 0 ≤ s < T , i.e forward and spot rates

coincide if delivery occurs right away.

• Choose Q such that Q(ω) > 0, ∀ω ∈ Ω.

• Compute the bank process:

B(t) = r(t)B(t− 1) + B(t− 1), B(0) = 1.

• Compute the random variable M(t)

M(t) =
p(t, τ)

p(0, τ)B(t)
.

• Finally compute the required forward risk-adjusted probability

measure

P τ (ω) = M(τ ; ω)Q(ω)

= M(t)Q(ω).

32



Chapter 2

LIBOR Market Models

2.1 Defining the LIBOR rate

Suppose we have a zero-coupon bond maturing at time T when it

pays $1. At time t it has value p(t, T ). Applying a constant rate of

return y (yield) between t and T , one dollar received at time T has

a present value of p(t, T ) at time t, where

p(t, T ) = 1 · e−y(T−t). (2.1)

It follows then that the continuously compounded spot rate is given

by

y =
− ln p(t, T )

T − t
. (2.2)

Consider the following situation for a T -bond. T is the maturity
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date, t is the contract date to invest $1 and S is the date of invest-

ment of $1. Let p(t, T ) be the price at time t of a zero-coupon bond

with maturity T .

At time t, we raise $p(t, S) from the sale of one S-bond. With this

income, we purchase exactly p(t,S)
p(t,T )

T -bonds which brings us to a net

investment of

−$p(t, S) +
p(t, S)

p(t, T )
· $p(t, T ) = 0

at time t. When the S-bond matures, we invest $1 and when the

T -bonds mature at $1 each, we will receive an income of p(t,S)
p(t,T )

. Thus

in summary, we went into an agreement at time t guaranteeing a

risk-less rate of interest for the future time period [S, T ]. Such an

interest rate is called a forward interest rate.

Definition 2.1 (LIBOR rate) The simple forward rate or LIBOR

forward rate L for [S, T ] contracted at time t, is the solution to the

equation

1 · (1 + (T − S) · L) = 1 · p(t, S)

p(t, T )
(2.3)

where time T is the maturity time of the forward LIBOR, T − S

is called the tenor and 1/(T − S) is the ”accrued factor” or the

”day-count fraction”.
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Note that

L(t, S, T ) =
1

T − S

[
p(t, S)

p(t, T )
− 1

]

=
1

T − S

[
p(t, S)− p(t, T )

p(t, T )

]
. (2.4)

If t = S,

L(S, T ) = L(S, S, T )

=
1

T − S

[
p(S, S)− p(t, T )

p(t, T )

]

=
1

T − S

[
1− p(t, T )

p(t, T )

]
(2.5)

= − p(S, T )− 1

(T − S)p(S, T )

is called the simple spot LIBOR at time S.

Similarly, with continuous compounding, the equivalent of Equation

(2.3) is

eR(T−S) =
p(t, S)

p(t, T )
.

This defines R(t; S, T ) and R(S, T ) as continuous compounded for-

ward and spot rates respectively. Taking the limit as S → T gives

1 = p(t,T )
p(t,T )

. Based on certain economic assumptions, equilibrium

models derive a process for the short rate and explore its effect on

bond and option prices. The short rate at time t is the rate that

applies to an infinitesimally short period of time at time t. It is
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also known as instantaneous short rate. Derivative, bond and op-

tion prices depend only on the process followed by the instantaneous

short rate in a risk-neutral world.

Similarly, instantaneous forward rate is a forward rate for a very

short period of time in the future.

2.1.1 LIBOR market model

Instantaneous short and forward rates are nice to handle from a

theoretical point of view but have the disadvantages that they can

never be observed in the market and worse still, the numerical cal-

ibration of the related models is generally complicated. Our aim is

therefore not to model instantaneous rates but discrete market rates

like the LIBOR rates and discrete forward swap rates to produce,

respectively, formulae for caps and floors (the LIBOR models), and

formulae for swaptions (the swap market models). The advantage

is that these models give valuation formulae of the Black-76[7] type

and hence are easily acceptable in the financial industry. Secondly,

they are easy to calibrate to market data. [LIBOR stands for Lon-

don Interbank Offer Rate].

In theory, the rate at which money is borrowed or lent when there
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is no credit risk is the risk-free rate. This rate is often thought of

as the Treasury rate, i.e, the rate at which a particular government

borrows in its own currency. In practice though, large financial in-

stitutions usually set this risk-free rate equal to the LIBOR. This

practice is based on the fact that financial institutions invest surplus

funds in the LIBOR market and borrow from this market to meet

their short-term funding requirements. They regard LIBOR as their

opportunity cost of capital.

The exposition in the next section is based on [6].

Caps: Definition and Market Practice

Definition 2.2 (Caplet) A caplet is a European call option on the

spot interest rate, in this case on the spot LIBOR rate L at a fixed

point in time.

Definition 2.3 (Cap) A cap is a strip or portfolio of caplets all

having common strike rate R which is the cap rate, and with one

caplet for each time period in a given interval of time.

Basically a cap is an option that protects a borrower against an

increase in interest rates by giving the buyer of the cap the right

but not the obligation, to borrow at an agreed rate, called the strike
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or cap rate, for a certain future period. If a borrower has floating

interest rate liabilities and wishes to protect against an increase in

short term interest rates, buying a cap would allow the borrower

to limit his maximum rate of borrowing. If, however, the market

rate is lower, the option is not exercised and the borrower pays the

lower market rate. Thus the borrower is protected against rising

interest rates but can still benefit from falling interest rates. In the

South African market, settlement on the cap takes place against the

3-month JIBAR rate.

Consider a fixed set of increasing maturities T0, T1, . . . , TN and

define αi by αi = Ti − Ti−1, i = 1, . . . , N . αi is the tenor and 1/αi

is the day-count factor. Let pi(t) ≡ p(t, Ti) and Li(t) ≡ L(t, Ti) ≡

L(t, Ti−1, Ti) denote the LIBOR forward rate contracted at t for the

period [Ti−1, Ti], i.e, from Equation (2.4):

Li(t) =
1

Ti − Ti−1

[
pi−1(t)− pi(t)

pi(t)

]
, i = 1, ..., N.

Definition 2.4 (Cap) A cap with cap rate R and resettlement dates

T0, T1, ...., TN is a contract which at time Ti gives the holder of the
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cap the amount

Xi = αi ·max [Li(Ti−1)−R, 0] (2.6)

where Li(t) is the floating rate and R is the fixed strike or cap rate.

Li(Ti−1) ≡ L(Ti−1, Ti) is in fact the spot rate for [Ti−1, Ti].

Thus for i = 1, ...., N caplets we have the following payoffs at

times Ti, i = 1, . . . , N respectively,

X1 = α1 max [L1(T0)−R, 0]

X2 = α2 max [L2(T1)−R, 0]

...
. . .

...

XN = αN max [LN(TN−1)−R, 0] .

Note that the amounts Xi are already determined at times Ti−1 but

are only paid out at times Ti. The portfolio {X1, X2, ...., XN} is the

cap.

Since Xi is the payoff from a call option on the underlying spot

rate Li(Ti−1), the market practice is to use the Black-76[7] formula

for a call option to price a caplet.

Definition 2.5 (Black-76 formula for caplets) The Black-76 for-
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mula (Eqn 16 of [7])for the caplet whose payoff is

Xi = αi ·max [L(Ti−1, Ti)−R, 0] (2.7)

is given by the expression

CaplBi (t) = αipi(t){Li(t)N [d1]−RN [d2]} (2.8)

where

d1 =
1

σi

√
Ti − t

{
ln

(
Li(t)

R

)
+

σ2
i

2
· (Ti − t)

}

d2 =
1

σi

√
Ti − t

{
ln

(
Li(t)

R

)
− σ2

i

2
· (Ti − t)

}

= d1 − σi

√
Ti − t

where σi is the volatility of the interest rate of the period (Ti−Ti−1).

In this case,

αipi(t) = (Ti − Ti−1)e
−y(Ti−t). In Equation (2.8) there is the im-

plicit assumption that the Li(t) are log-normally distributed in some

sense. Our model will thus have to capture this property.

In the market, cap prices are quoted as implied volatilities, flat

volatilities or as spot volatilities, also known as forward volatilities.

Let t ≤ T0 be fixed and R, the cap rate, be fixed. Assume that for

each i there is a traded cap with resettlement dates T0, T1, ...., TN .
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Denote the corresponding observed cap market price by Capm
i . Then

Caplmi (t) = Capm
i (t)− Capm

i−1(t), (2.9)

where Capm
0 (t) = 0 and Caplm1 (t) = Capm

1 (t). Clearly

Capm
i (t) = Caplmi (t) + Capm

i−1(t).

Thus

Capm
2 (t) = Caplm2 (t) + Capm

1 (t)

= Caplm2 (t) + Caplm1 (t).

Capm
3 (t) = Caplm3 (t) + Caplm2 (t) + Caplm1 (t).

(2.10)

In general

Capm
i (t) =

i∑

k=1

Caplmk (t). (2.11)

Definition 2.6 Given market price data as above, the implied Black

volatilities are defined as follows:

(a) The implied Black flat volatilities σ̄1, . . . , σ̄N are defined as the

solutions to the equations

Capm
i (t) =

i∑

k=1

CaplBk (t, σ̄i). (2.12)
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(b) The implied Black forward or spot volatilities σ̄1, . . . , σ̄N are

defined as the solutions to the equations

Caplmi (t) = CaplBi (t, σ̄i). (2.13)

The sequence of implied volatilities σ̄1, . . . , σ̄N (flat or spot) is called

”volatility term structure”.

Note that equation (2.12) can be written in matrix form as




Capm
1 (t)

Capm
2 (t)

...

Capm
N(t)




=




CaplB1 (t, σ̄1) 0 . . . 0

CaplB1 (t, σ̄1) . . . . . . 0

...
...

. . .
...

CaplB1 (t, σ̄1) . . . . . . 0

CaplB1 (t, σ̄1) . . . . . . CaplBN(t, σ̄N)







1

1

...

1




.

(2.14)

2.2 The LIBOR market model: Risk Neutral

Valuation Approach

The log-normal model for an asset price S at terminal time T is

given by

ST = S0e
σWT +(µ−σ2/2)T (2.15)
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where WT is a normal random variable with mean 0 and variance

T .

The parameter µ is the annual expected continuously compounded

return earned by an investor. Investors who are not risk-averse usu-

ally require higher expected returns, i.e higher µ to induce them to

take higher risks. Consequently, the value of µ should depend on the

risk of the return of a stock, i.e, µ depends on the non-diversifiable

risk.

The parameter σ is the stock price volatility and plays a crucial part

in the valuation of most derivatives. The standard deviation of the

proportional change in the stock price in a short time interval δt

is σ
√

δt. The approximate standard deviation of the proportional

change in stock price over a relatively long period of time T is σ
√

T .

Hence, volatility can simply be interpreted as the standard devia-

tion of the change in the stock price in a year. Taking the natural

logarithm on both sides of the above equation we get

ln ST = ln S0 + σWT + (µ− σ2

2
)T. (2.16)

The expression ln S0 + (µ − σ2

2
)T is just the formula for a straight

line and the random term σWT jiggles the points about the line.
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In continuous time, the solution to the stochastic differential equa-

tion

dS = µSdt + σSdB (2.17)

is the Geometric Brownian Motion (GBM)

St = S0 exp[σBt + (µ− σ2/2)t], (2.18)

where Bt at each t is a normal random variable with mean 0 and

variance t. Clearly,

ln
(

St

S0

)
= σBt +

(
µ− σ2

2

)
t. (2.19)

The right hand side expression is a normal random variable with

mean (µ− σ2

2
)t and variance σ2t.

2.2.1 The LIBOR market model for Caps

Consider the theoretical no-arbitrage pricing of caps. The price ci(t)

or capli(t) of caplet number i is given by the standard risk neutral

valuation formulae

Capli(t) = αiE
Q

[
e−

∫ Ti
t

r(s)ds ·max[Li(Ti−1)−R, 0]|Ft

]
, i = 1, . . . , N

= αipi(t)E
Ti [max[Li(Ti−1)−R, 0]|Ft] ,

where we use the forward measure QTi , donoted by Qi. Therefore

ETi denotes the expectation with respect to the forward measure, or
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EQTi . This follows from Theorem 1.13 with Pτ = Qi and Eτ = ETi .

Lemma 2.7 For every i = 1, . . . , N , the LIBOR process Li is a

martingale under the corresponding forward measure Qi on the in-

terval [0, Ti−1].

Proof

We wish to show that EQi [Li(s)|Ft] = Li(t) for 0 ≤ t ≤ s ≤ Ti−1.

αiLi(t) =
pi−1(t)

pi(t)
− 1

Li(t) =
1

αi

[
pi−1(t)

pi(t)
− 1

]

EQi [Li(s)|Ft] = EQi

[
1

αi

{
pi−1(s)

pi(s)
− 1

}
|Ft

]

=
1

αi

[
EQi

{
pi−1(s)(t)

pi(s)(t)
− 1

}
|Ft

]

=
1

αi

[
pi−1(t)

pi(t)
− 1

]

= Li(t)

because pi is the numeraire associated with Qi and pi−1(s) is a price

process over [0, Ti−1]. ¦

From the above proof, we convince ourselves that Li must have

dynamics of the form

dLi(t) = Λ(t)dW i(t)
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with Λ(t) being of the form σi(t)Li(t) so that we can hope to capture

the Black type formula. If for each i, the LIBOR rate Li(t) is log-

normal under its own measure Qi = QTi , that is, if

dLi(t)

Li(t)
= σi(t)dW i(t), (2.20)

where W i is a Qi Wiener process, then we say we have a LIBOR

market model, because in this case we will have the simple distri-

bution of Li(Ti−1) and hence easily find ETi [(Li(Ti−1)−R)+|Ft].

Now, assume we have a LIBOR market model. In the following

section we show how to obtain the Black-76 formulae for caps and

floors.

Since the equation in the expression (2.20) is just a GBM, we

obtain

Li(T ) = Li(t)e
∫ T

t
σi(s)dW i(s)− 1

2

∫ T

t
||σi(s)||2ds.

=⇒ ln

(
Li(T )

Li(t)

)
=

∫ T

t
σi(s)dW i(s)− 1

2

∫ T

t
||σi(s)||2ds.(2.21)

The right hand side of the above equation is a normal random vari-

able with mean

mi(t, T ) = −1

2

∫ T

t
||σi(s)||2ds (2.22)
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and variance

v2
i (t, T ) =

∫ T

t
||σi(s)||2ds. (2.23)

A few calculations give us the following proposition which gives us

the price of a caplet with cap rate R.

Proposition 2.8

Capli(t) = αipi(t) {Li(t)N [d1(t, Ti−1)]−RN [d2(t, Ti−1)]}

= αipi(t) {Li(t)N [d1]−RN [d2]} (2.24)

where

d1 =
1

vi(t, Ti−1)

{
ln

(
Li(t)

R

)
+

1

2
v2

i (t, Ti−1)

}

d2 = d1 − vi(t, Ti−1).

Proof Since

Li(T ) = Li(t) exp

[∫ T

t
σi(s)dW i(s)− 1

2

∫ T

t
||σi(s)||2

]
ds, (2.25)

the value of caplet i is given by

Capli(t) = αipi(t)E
Ti




(
Li(t) exp

{∫ T

t
σi(s)dW i(s)− 1

2

∫ T

t
||σi(s)||2ds

}
−R

)+

|Ft


 .

(2.26)

Write
∫ T
t σi(s)dW i(s) as vix where X ∼ N(0, 1). Thus

Capli(t) =
αipi(t)√

2π

∫ ∞

−∞

[
Li(t) exp(vix− vi

2/2)−R
]
e−x2/2dx

47



and

Li(t) exp(vix− vi
2/2)−R > 0 ⇔ exp(vix− vi

2/2) >
R

Li(t)

⇔ vix− vi
2/2 > ln

(
R

Li(t)

)

⇔ x > a =
ln(R/Li(t)) + vi

2/2

vi

.

Hence

Capli(t) =
αipi(t)√

2π

∫ ∞

−∞

[
Li(t) exp(vix− vi

2/2)−R
]
e−x2/2dx

becomes

Capli(t) =
αipi(t)√

2π

∫ ∞

−∞

[
Li(t) exp(vix− vi

2/2)−R
]
e−x2/2dx

=
αipi(t)√

2π

∫ ∞

a
Li(t) exp(vix− vi

2/2)e−x2/2dx− αipi(t)√
2π

R
∫ ∞

a
e−x2/2dx.

Let

II = −αipi(t)√
2π

R
∫ ∞

a
e−x2/2dx

= −αipi(t)R(1−N(a))

= −αipi(t)R(N(−a)).

I =
αipi(t)√

2π

∫ ∞

a
Li(t) exp(vix− vi

2/2)e−x2/2dx

=
αipi(t)Li(t)√

2π

∫ ∞

a
evixe−vi

2/2e−x2/2dx

=
αipi(t)Li(t)√

2π
e−vi

2/2
∫ ∞

a
evix−x2/2dx.
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Now completing the square,

vix− x2/2 = −1

2

[
x2 − 2vix

]

= −1

2
(x− vi)

2 + v2
i /2.

Thus

I =
αipi(t)Li(t)√

2π
e−vi

2/2
∫ ∞

a
e−

(x−vi)
2

2
+

v2
i
2 dx

=
αipi(t)Li(t)√

2π
e−vi

2/2
∫ ∞

a
e−

(x−vi)
2

2 e
v2
i
2 dx

=
αipi(t)Li(t)√

2π
e0

∫ ∞

a
e−

(x−vi)
2

2 dx.

Let y = x− vi. Then dy = dx and

I =
αipi(t)Li(t)√

2π

∫ ∞

a−vi

−ey2/2dy

= αipi(t)Li(t) [1−N(a− vi)]

= αipi(t)Li(t)N(−(a− vi)).

Hence

Capli(t) = I + II

= αipi(t)Li(t)N(−(a− vi))− αipi(t)R(N(−a))

= αipi(t) [Li(t)N(−(a− vi))−RN(−a)] . (2.27)

Since

a =
ln(R/Li(t)) + v2

i /2

vi

,
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−a =
ln(Li(t)/R)− v2

i /2

vi

and

−(a− vi) = −
[
ln(R/Li(t)) + v2

i /2

vi

− vi

]

= −
[
ln(R/Li(t))− v2

i /2

vi

]

=
ln(Li(t)/R) + v2

i /2

vi

.

Now letting d2 = −a and d1 = −(a− vi), we have, as required that

Capli(t) = αipi(t) [Li(t)N(d1)−RN(d2)] .¦ (2.28)

The above proposition shows that;

ETi [max[Li −R, 0]|Ft] = call price in Black-Scholes framework

in a world with zero short rate,

= call price in Black-76 model framework.

So Black’s model can be justified via forward measures and Lemma

2.7, assuming Li satisfies (2.20) for each i.

2.3 Floors: Definition and Market Practice

Definition 2.9 (Floorlet) A floorlet is a European put option on

the spot rate, the LIBOR rate in this case, at a fixed point in time.
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Definition 2.10 (Floor) A floor is a portfolio of floorlets all hav-

ing common exercise rate R which is the floor rate and with one

floorlet for each period in a given interval of time.

A floor provides investors with a guaranteed minimum rate of return.

It protects investors against falling interest rates but allows them to

benefit should interest rates firm.

If an investor has floating interest rate assets and wishes to pro-

tect against a decrease in short-term interest rates, buying a floor

would allow the investor to ensure a minimum rate of return. If the

market rate is higher than the floor rate, the option is not exercised

and the investor invests at the higher market rate. In this way, the

floor protects the investor against falling interest rates. In the South

African market, settlement takes place on a quarterly basis against

3-month JIBAR and the purchase of the floor is paid either upfront

or over the life of the floor.

Now consider a fixed set of increasing maturities T0, T1, . . . , TN

and define the tenor αi by αi = Ti−Ti−1, i = 1, . . . , N and the day-

count factor by 1/αi. Define the LIBOR forward rate contracted at
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t for the period [Ti−1, Ti] by

Li(t) =
1

Ti − Ti−1

[
pi−1(t)− pi(t)

pi(t)

]
. (2.29)

Then a floor with floor rate R and resettlement dates T0, T1, . . . , TN

is a contract which at time Ti gives the holder of the floor the amount

Xi = αi ·max [R− Li(t), 0] . (2.30)

Recall that Li(t) ≡ L(t, Ti) ≡ L(t, Ti−1, Ti). Thus for i = 1, ...., N

floorlets we have the following pay-offs.

X1 = α1 ·max [R− L1(t), 0]

X2 = α2 ·max [R− L2(t), 0]

...
. . .

...

XN = αN ·max [R− LN(t), 0] .

(2.31)

The portfolio {X1, X2, ...., XN} is the floor.

Definition 2.11 (Black-76 Formula for floorlets) The Black-76

formula for the floorlet whose pay-off is given by

Xi = αi ·max [R− L(Ti−1, Ti), 0] (2.32)

is given by the expression

FloorlBi (t) = αipi(t){RN [−d2]− Li(t)N [−d1]} (2.33)
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where

d1 =
1

σi

√
Ti − t

{
ln

(
Li(t)

R

)
+

1

2
σ2

i · (Ti − t)

}

d2 = d1 − σ1

√
Ti − t

where σi is the volatility of the interest rate of the period (ti− ti−1).

Analogous to caps, if we denote the corresponding observed market

price by Floorlmi (t), then

Floorlmi (t) = Floorm
i (t)− Floorm

i−1(t) (2.34)

where Floorm
0 (t) = 0 and Floorlm1 (t) = Floorm

1 (t). In general,

Floorm
i (t) =

i∑

k=1

Floorlmk (t). (2.35)

The implied Black flat volatilities σ̄1, . . . , σ̄N are defined as the so-

lutions to the equations

Floorm
i (t) =

i∑

k=1

Floorlmk (t, σ̄i) (2.36)
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which are equivalent to




Floorm
1 (t)

Floorm
2 (t)

...

Floorm
N (t)




=




FloorlB1 (t, σ̄1) 0 . . . 0

FloorlB1 (t, σ̄1) FloorlB2 (t, σ̄2) . . . 0

...
...

. . .
...

FloorlB1 (t, σ̄1) . . . . . . 0

FloorlB1 (t, σ̄1) . . . . . . F loorlBN(t, σ̄N)







1

1

...

1




(2.37)

2.3.1 Floors: The LIBOR market model

With all the assumptions from the section on the pricing of caps in

the LIBOR market, we state without proof the following proposition.

(The proof is similar to that of Proposition 2.9.)

Proposition 2.12 (Price of a floorlet)

Floorli(t) = αip(t) {RN(−d2)− Li(t)N(−d1)} , (2.38)

where

d1 =
1

vi(t, Ti−1)

[
ln(

Li(t)

R
) +

1

2
v2

i (t, Ti−1)

]
,

d2 = d1 − vi(t, Ti−1).
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2.4 Terminal Measure Dynamics and Existence

of LIBOR market model

Consider deterministic volatilities σ1, . . . , σN and for all the LIBOR

rates Li, choose QN as the common measure. Also consider a deter-

ministic function µi such that

dLi(t) = Li(t)µi(t, L(t))dt + Li(t)σi(t)dWN(t) (2.39)

where L(t) = [L1(t), . . . , LN(t)]′. We wish to show that for some

suitable choice of µi, the QN dynamics above will imply Qi dynam-

ics of the form seen in the previous chapter.

Denoted by η: ηj
i (t) = dQj

dQi the likelihood process on Ft with

i, j = 1, . . . , N .

Then the Radon-Nikodym derivative ηj
i is given by

ηj
i (t) =

pi(0)

pj(0)

pj(t)

pi(t)
. (2.40)

In particular, for j = i− 1,

ηi−1
i (t) =

pi(0)

pi−1(0)

pi−1(t)

pi(t)

= ai
pi−1(t)

pi(t)
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= ai[1 + αiLi(t)], (2.41)

where ai = pi(0)
pi−1(0)

.

Then the ηi−1
i dynamics under Qi are given by

dηi−1
i (t) = aiαidLi(t). (2.42)

RECALL: Li(t) = 1
αi

pi−1(t)−pi(t)
pi(t)

= 1
αi

[
pi−1(t)
pi(t)

− 1
]
.

Assuming the Li - dynamics are as in the previous chapter, i.e,

dLi(t) = Li(t)σi(t)dW i(t), (2.43)

and using RECALL we get the ηi−1
i (t) dynamics as

dηi−1
i (t) = aiαiLi(t)σi(t)dW i(t)

= aiαi

[
1

αi

(
pi−1(t)

pi(t)
− 1

)]
σi(t)dW i(t)

= ai

[
pi−1(t)

pi(t)
− 1

]
σi(t)dW i(t)

= ηi−1
i (t)ai

1

ηi−1
i (t)

[
pi−1(t)

pi(t)
− 1

]
σi(t)dW i(t)

= ηi−1
i (t)ai

1

ai(1 + αiLi(t))

[
pi−1(t)

pi(t)
− 1

]
σi(t)dW i(t)

= ηi−1
i (t)

1

1 + αiLi(t)
αiLi(t)σi(t)dW i(t)

= ηi−1
i (t)

αiLi(t)

1 + αiLi(t)
σi(t)dW i(t). (2.44)

Thus the Girsanov kernel for ηi−1
i is given by

αiLi(t)

1 + αiLi(t)
σi

?(t) (2.45)
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where W i is k-dimensional and each σi is a k-dimensional vector

σi = [σi
1, σi

2, . . . , σi
k]. σi

? is the transpose of σi

From the Girsanov theorem we have

dW i(t) =
αiLi(t)

1 + αiLi(t)
σi

?(t)dt + dW i−1(t). (2.46)

Inductively ,

dW i(t) = −
N∑

k=i+1

αkLk(t)

1 + αkLk(t)
σk

?(t)dt + dWN(t), (2.47)

and

dLi(t) = Li(t)σi(t)dW i(t)

= Li(t)σi(t)


−

N∑

k=i+1

αkLk(t)

1 + αkLk(t)
σk

?(t)dt + dWN(t)


 (2.48)

= −Li(t)




N∑

k=i+1

αkLk(t)

1 + αkLk(t)
σk

?(t)σi(t)dt


 + Li(t)σi(t)dWN(t),

which is the following proposition.

Proposition 2.13 Let σ1, . . . , σN , be a given volatility structure

where each σi is assumed to be bounded. Also, consider a probability

measure QN and a standard QN -Wiener process WN and define the

processes L1, . . . , LN by

dLi(t) = −Li(t)




N∑

k=i+1

αkLk(t)

1 + αkLk(t)
σk

?(t)σi(t)dt


+Li(t)σi(t)dWN(t),

(2.49)
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with i = 1, . . . , N . Then,

(1) the Qi - dynamics of Li are given by equation (2.20).

(2) there exists a LIBOR model with the given volatility structure.

Proof

(1) We prove that the Qi - dynamics of Li are given by equation

(2.20). We will use the convention that
∑N

N+1(· · ·) = 0. For i = N

we see that

dLN(t) = −LN(t)




N∑

k=N+1

αkLk(t)

1 + αkLk(t)
σk

?(t)σN(t)dt




︸ ︷︷ ︸
=0

+LN(t)σN(t)dWN(t),

= LN(t)σN(t)dWN(t).

which is just equation (2.20)!

(2) Now we show that there exists a LIBOR model with the given

volatility structure, i.e, that there exists a solution for equation 2.49.

We prove by mathematical induction.

dLN(t) = LN(t)σN(t)dWN(t) is just a GBM. Since, by assumption,

σN is bounded, a solution does exist. Assume that the solution

exists for k = i + 1, . . . , N . We can then write the i-th component

of the equation as

dLi(t) = Li(t)µi [t, Li+1(t), . . . , LN(t)] dt + Li(t)σi(t)dWN(t),

(2.50)
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where µi only depends on Lk for k = i + 1, . . . , N and not on Li.

Denote (Li+1, . . . , LN) by LN
i+1. Then we have the explicit solution

Li(t) = Li(0) exp
{∫ t

0

(
µi[s, Li+1]

N(s)]− 1

2
||σi(s)||2

)
ds

}
×

× exp
{∫ t

0
µi[s, L

N
i+1(s)]dWN(s)

}
.¦

2.5 Interest Rate Collars: Market Practice

[27] The buyer of an interest rate collar purchases an interest rate

cap while selling a floor indexed to the same interest rate. Borrowers

with variable-rate loans buy collars to limit effective borrowing rates

to a range of interest rates between some maximum, determined by

the cap rate, and a minimum, which is fixed by the floor strike

price; hence the term ”collar”. Although buying a collar limits a

borrower’s ability to benefit from a significant decline in market

interest rates, it has the advantage of being less expensive than

buying a cap alone because the borrower earns premium income

from the sale of the floor that offsets the cost of the cap. A zero-

cost collar results when the premium earned by selling a floor exactly

offsets the cap premium.

The amount of the payment (pay-off) due to or owed by a buyer
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of an interest rate collar is determined by the expression

N

(
dt

360

)
[max(r − rc, 0)−max(rf − r, 0)] , (2.51)

where

N - is the notional principal of the agreement,

rc - is the cap rate,

rf - is the floor rate,

dt - is the term of the index days, i.e number of days,

r - is the index interest rate.

Note that depending on the usual conventions, 365 is also used

instead of 360.

If the index interest rate r is less than the floor rate rf on the interest

rate reset date, the floor is in-the-money and the collar buyer (who

has sold a floor) must pay the collar counter-party an amount equal

to N dt
360

(rf − r). When rf < r < rc, both the floor and the cap are

out-of-the-money and no payments are exchanged. Finally, when

the index is above the cap rate the cap is in-the-money and the

buyer receives N dt
360

(r − rc).

A special case is the zero-cost collar that results from the simul-
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taneous purchase of a one-period cap and sale of a one-period floor

when the cap and floor rates are equal. In this case the combined

transaction replicates the pay-off of a FRA with a forward interest

rate equal to the cap/floor rate. This result is a consequence of a

property of option prices known as put-call parity.

2.5.1 Pricing collars in the LIBOR market models

Consider a fixed set of increasing maturities T0, T1, . . . , Tn and define

αi = Ti − Ti−1 as the tenor and 1/αi as the day-count factor.

Definition 2.14 (Collar) A collar, with resettlement dates T0, T1, . . . , TN ,

is a combination of a cap with cap rate Rc and a floor with floor rate

Rf . It pays off the amount

Xi = αi [max(Li(Ti−1)−Rc, 0)−max(Rf − Li(Ti−1), 0)] . (2.52)

But, since

Xi = αi [max(Li(Ti−1)−Rc, 0)−max(Rf − Li(Ti−1), 0)]

= αi [max(Li(Ti−1)−Rc, 0)]− αi[max(Rf − Li(Ti−1), 0)] ,

the price of a collar is given by the expression

CollarB
i (t) = αipi(t) {[Li(t)N(d1)−RcN(d2)]− [RfN(−d2

′)− Li(t)N(−d1
′)]}

(2.53)
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where

d1 =
1

vi(t, Ti−1)

[
ln(

Li(t)

Rc

) +
1

2
v2

i (t, Ti−1)

]
,

d2 = d1 − vi(t, Ti−1),

d1
′ =

1

vi
′(t, Ti−1)

[
ln(

Li(t)

Rf

) +
1

2
vi
′2(t, Ti−1)

]
,

d2
′ = d1

′ − vi
′(t, Ti−1).

Note that the above equation for the price of a collar can be written

as

CollarB
i (t) = αipi(t) {Li(t)[N(d1) + N(−d1

′)]− [Rc + Rf ][N(d2)−N(−d2
′)]} .

(2.54)
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Chapter 3

The Swap Market Model

3.1 Swaps

Definition 3.1 A swap is an agreement between two parties to ex-

change cash-flows in the future, at some agreed dates.

The most common type of swap is a ”plain vanilla” interest rate

swap. Here company B agrees to pay company A cash flows equal

to interest at a pre-determined fixed rate on a notional principal (it

is not exchanged but used only for the calculation of interest pay-

ments) for a number of years. At the same time company A agrees

to pay company B cash-flows equal to interest at a floating rate,

which, in many interest rate swap agreements, is the LIBOR (or the
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JIBAR in the South African market[Chapter 4]). Exchanging the

same amount makes no sense, hence the principal is not exchanged.

3.1.1 Valuation of Interest rate swaps: Market Practice

When swaps and other over-the-counter derivatives are valued, the

cash-flows are usually discounted using LIBOR zero-coupon interest

rates. This is because LIBOR is the cost of funds for a financial

institution.

Relationship of swaps to bonds

A swap is the same as an agreement in which

1. Company B has lent company A a certain amount (not principal)

at the x-month LIBOR rate.

2. Company A has lent company B the same amount at a fixed rate

per annum.

The value of the money to B is therefore the difference between the

values of the two bonds. Define

Bfix - time 0 value of fixed-rate bond underlying the swap,

Bfloat - time 0 value of floating-rate bond underlying the swap. Then
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V , the value of the swap to company B is

Vswap = Bfloat −Bfix. (3.1)

If all interest and principal are realized at the end of the period, say

n years, then the rate involved is called an n-year zero rate, also

known as zero-coupon rate or n-year spot rate. Define:

ti: time when ith payments are exchanged, i = 1, . . . , n,

L: notional principal in swap agreement,

Li = Li(0) = L(0, ti): LIBOR zero- rate for a maturity ti,

K: fixed payment made on each payment date.

Then,

Bfix =
n∑

i=1

Ke−Liti + Le−Lntn . (3.2)

For the floating rate bond, immediately after a payment date, we

have Bfloat = L because this is now identical to a newly issued

floating rate bond. But, immediately before the next payment date,

we have Bfloat = L plus floating rate payment, say K∗, to be paid

on the next payment date. Today’s swap value is its value before

tomorrow’s payment discounted at the LIBOR rate L1 for time t1,

i.e,

Bfloat = (L + K∗)e−L1t1 (3.3)
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where K∗ is the floating-rate payment already known.

Substituting the two equations into Vswap we get

Vswap = −
(

n∑

i=1

Ke−Liti + Le−Lntn

)
+ (L + K∗)e−L1t1 . (3.4)

The value of the swap to A will be negative. K∗ is, in precise form,

calculated taking into account the accrual day-count convention (out

of 365 or 360 days).

TERMINOLOGY

The set of floating rate payments is called the floating leg while that

of fixed rate payments is called the fixed leg.

Receiver swap: in this case the holder of a receiver swap receives

the fixed leg and pays the floating leg.

Payer swap: the holder of this one pays the fixed leg and receives

the floating leg.

3.1.2 General Theory of Swaps

Now consider resettlements dates T0, T1, . . . , TN ; αi = Ti − Ti−1.

Definition 3.2 The payments in a Tn × (TN − Tn) payer swap are

as follows:

66



- Payments will be made and received at Tn+1, Tn+2, . . . , TN .

- For every elementary period [Ti, Ti+1], i = 1, . . . , N−1, the LIBOR

rate Li+1(Ti) is set at time Ti and the floating leg αi+1Li+1(Ti) is

received at Ti+1. We assume a notional principal of L ≡ 1.

- For the same period the fixed leg αi+1K is paid at Ti+1, where K

is a fixed rate (swap rate). This K is not quite the same as the one

on page 63.

If an amount of

αi+1Li+1(Ti) =
p(Ti, Ti)− p(Ti, Ti+1)

p(Ti, Ti+1)

is received at time Ti+1, then αi+1Li+1(Ti)p(t, Ti+1) is received at

time Ti. But this is just p(Ti, Ti) − p(Ti, Ti+1). If payoff of this

contract at time Ti is p(Ti, Ti) − p(Ti, Ti+1), then because of no-

arbitrage, the value of the floating payment at time t is given by the

expression

p(t, Ti)− p(t, Ti+1). (3.5)

Hence, the total value of the floating side at time t for t ≤ Tn is

p(t, Tn)− p(t, Tn+1) + p(t, Tn+1)− p(t, Tn+2) + · · ·+ p(t, TN−1)− p(t, TN)

=
N−1∑

i=n

[p(t, Ti)− p(t, Ti+1)]

67



= p(t, Tn)− p(t, TN)

= pn(t)− pN(t).

The total value on the fixed side is

N−1∑

i=n

p(t, Ti+1)αi+1K = K
N∑

i=n+1

αip(t, Ti)

= K
N∑

i=n+1

αipi(t).

The net value PSN
n (t,K) of the Tn × (TN − Tn) payer swap at time

t < Tn is

Bfloat −Bfix = p(t, Tn)− p(t, TN)−K
N∑

i=n+1

αipi(t)

i.e PSN
n (t,K) = pn(t)− pN(t)−K

N∑

i=n+1

αipi(t). (3.6)

But

pn(t)− pN(t)−K
N∑

i=n+1

αipi(t) = 0

⇔ K =
pn(t)− pN(t)
∑N

i=n+1 αipi(t)
.

Definition 3.3 The par or forward swap rate RN
n (t) of the Tn ×

(TN − Tn) swap is the value of K for which PSN
n (t,K) = 0, i.e,

K = RN
n (t,K) =

pn(t)− pN(t)
∑N

i=n+1 αipi(t)
. (3.7)

Definition 3.4 For each pair n, k with n < k, the process in the
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denominator of the above equation, Sk
n(t), defined by

Sk
n(t) = Sk(t, Tn) =

k∑

i=n+1

αipi(t) (3.8)

is known as the accrual factor or as the present value of a basis

point.

Note that Sn
k(t) represents the value at time t of a portfolio of bonds

with different maturities.

It is clear that

RN
n (t) =

pn(t)− pN(t)

SN
n (t)

, 0 ≤ t ≤ Tn. (3.9)

Hence, the arbitrage-free price of a payer swap with swap rate K is

PSN
n (t,K) = pn(t)− pN(t)−K

N∑

i=n+1

αipi(t)

= pn(t)− pN(t)−KSN
n (t)

= RN
n (t,K)

N∑

i=n+1

αipi(t)−KSN
n (t)

= RN
n (t,K)SN

n (t)−KSN
n (t)

=
[
RN

n (t,K)−K
]
SN

n (t)

=
[
RN

n (t)−K
]
SN

n (t) (3.10)

Equally, the price of a receiver swap is given by

RSN
n (t) =

[
K −RN

n (t)
]
SN

n (t).
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3.2 Swaptions: Definition and Market Practice

Definition 3.5 A Tn × (TN − Tn) payer swaption with strike K is

a contract which at the exercise date Tn gives the holder the right

but not the obligation to enter into a Tn× (TN −Tn) swap with fixed

swap rate K.

We see from the definition that a payer swaption is a contingent

Tn-claim that pays

XN
n = max

[
PSN

n (Tn, K), 0
]

= max
[(

RN
n (Tn, K)−K

)
SN

n (Tn), 0
]

= SN
n (Tn) max

[
(RN

n (Tn)−K), 0
]

(3.11)

which is a call option on RN
n with strike K. Hence,

Definition 3.6 (Black’s formula for swaptions) The Black-76 for-

mula for a Tn × (TN − Tn) payer swaption with strike K is defined

as

PSN
n (t) = SN

n (t)
{
RN

n (t)N [d1]−KN [d2]
}

, (3.12)

where

d1 =
1

σn,N

√
Tn − t

[
ln

(
RN

n (t)

K

)
+

1

2
σ2

n,N(Tn − t)

]
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d2 = d1 − σn,N

√
Tn − t.

The constant σn,N is known as the Black volatility. Given a market

price for the swaption, the Black volatility implied by the Black for-

mula is referred to as the implied Black volatility.

The task at hand is to build an arbitrage-free model with the prop-

erty that the theoretical prices derived within the model has the

structure of the Black formula in the above definition.

3.3 The Swap Market Models

Lemma 3.7 Denote the martingale measure for the numeraire Sk
n(t)

by Qk
n. Then the forward swap rate Rk

n is a Qk
n - martingale.

Proof 3.8 We are required to prove that E
(
Rk

n(s)|Ft

)
= Rk

n(t).

EQk
n

(
Rk

n(s)|Ft

)
= EQk

n

[
pn(s)− pk(s)

Sk
n(s)

|Ft

]
, 0 ≤ t ≤ s

=
pn(t)− pk(t)

Sk
n(t)

= Rk
n(t)

since Rk
n is the value of a self-financing portfolio ( a long Tn bond and

a short Tk bond), divided by the value of the self-financing portfolio

Sk
n(t).
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Definition 3.9 Consider resettlement dates T0, . . . , TN , with 0 ≤

n < k ≤ N . Furthermore, consider a deterministic function of time

σn,k(t). A swap market model with volatilities σn,k(t) is specified by

assuming that the par swap rates have dynamics of the form

dRk
n(t) = Rk

n(t)σn,k(t)dW k
n (t), (3.13)

where W k
n (t) is Wiener under Qk

n.

3.3.1 Pricing Swaptions in the Swap Market Model

The swap market model price of a Tn × (TN − Tn) swaption is

PSNN
n (t) = SN

n (t)En,N
[
max

[
RN

n (Tn)−K, 0
]
|Ft

]
, 0 ≤ t ≤ Tn.

(3.14)

Since the equation in (3.13) describing the dynamics of RN
n is a

GBM, then

RN
n (Tn) = RN

n (t)e
∫ Tn

t
σn,N (t)dW k

n (s)− 1
2

∫ Tn

t
||σn,N (s)||2ds. (3.15)

And, since σn,N is deterministic, then conditional on Ft, the process

RN
n (Tn) is log-normal, that is we can write

RN
n (Tn) = RN

n (t)eY N
n (t,Tn), (3.16)
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where Y N
n (t, Tn) is normally distributed with expected value

mN
n (t, Tn) = −1

2

∫ Tn

t
||σn,N(s)||2ds, (3.17)

and variance

vN
n

2
(t, Tn) =

∫ Tn

t
||σn,N(s)||2ds. (3.18)

These results give rise to the following swaption pricing formula.

Proposition 3.10 In the swap market model, the Tn × (TN − Tn)

payer swaption price with strike K is given by

PSNN
n (t) = SN

n (t)
{
RN

n (t)N [d1]−KN [d2]
}

, (3.19)

where

d1 =
1

vN
n

√
Tn − t

[
ln

(
RN

n (t)

K

)
+

1

2
vN

n

2

]

d2 = d1 − σn,N

which is of the form of the Black-76 formula in Definition 3.6.

Equation (3.19) shows that the numeraire for pricing swaptions is

SN
n (t), whereas the numeraire for pricing caplets (floorlets) is αipi(t).

Proof

The pay-off of a payer swaption is given by

PSNN
n (t) = SN

n (t)En,N
[
max[RN

n (Tn)−K, 0]|Ft

]
. (3.20)
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But since RN
n (t) is a GMB,

RN
n (Tn) = RN

n (t) exp

{∫ Tn

t
σn,N(t)dW k

n (s)− 1

2

∫ Tn

t
||σn,N(s)||2ds

}

= RN
n (t)eY N

n (t,Tn), (3.21)

by the deterministic character of σn,N and the log-normality of

RN
n (Tn).

Here

Y N
n (t, Tn) ∼ N(µ, σ) = N

(
−1

2

∫ Tn
t ||σn,N(s)||2ds, (

∫ Tn
t ||σn,N(s)||2ds)1/2

)
.

Now letting

mN
n (t, Tn) = −1

2

∫ Tn

t
||σn,N(s)||2ds,

vN
n

2
(t, Tn) =

∫ Tn

t
||σn,N(s)||2ds,

the value of the payer swaption is given by

PSNN
n (t) = SN

n (t)En,N max
[
[RN

n (Tn)−K, 0]+
]
. (3.22)

Write
∫ Tn
t σn,N(t)dWN

n (t) as vN
n x where X ∼ N(0, 1). Then

PSNN
n (t) =

SN
n (t)√
2π

∫ ∞

−∞



RN

n (t) exp


vN

n x− vN
n

2

2


−K





+

e−x2/2dx

(3.23)

and

RN
n (t) exp


vN

n x−
∑N

n

2

2


−K = 0
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⇔ exp




N∑
n

x−
∑N

n

2

2


 =

K

RN
n

.

Solve the following equation for x:

exp


vN

n x− vN
n

2

2


 =

K

RN
n

vN
n x− vN

n
2

2
= ln

(
K

RN
n

)

x = a =
ln

(
K

RN
n

)
+ vN

n
2

2

vN
n

. (3.24)

Thus

PSNN
n =

SN
n (t)√
2π

∫ ∞

−∞



RN

n (t) exp


vN

n x− vN
n

2

2


−K





+

e−x2/2dx

=
SN

n (t)√
2π

∫ ∞

a
RN

n (t)evN
n xe−

vN
n

2

2 e−x2/2dx− SN
n (t)√
2π

∫ ∞

a
Ke−x2/2dx.

Let

II = −SN
n (t)√
2π

∫ ∞

a
Ke−x2/2dx

= −SN
n (t)K

[
1√
2π

∫ ∞

a
e−x2/2dx

]

= −SN
n (t)K(1−N(a)).

And let

I =
SN

n (t)√
2π

∫ ∞

a
RN

n (t)evN
n xe−

vN
n

2

2 e−x2/2dx

=
SN

n (t)RN
n (t)e−

vN
n

2

2√
2π

∫ ∞

a
evN

n x−x2/2dx.
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But

vN
n x− x2/2 = −1

2

[
x2 − 2vN

n x
]

= −1

2

[
x2 − 2vN

n x + (−vN
n )2 − (−vN

n )2
]

= −1

2

(
x− vN

n

)2
+

vN
n

2

2
.

I =
SN

n (t)RN
n (t)e−

vN
n

2

2√
2π

∫ ∞

a
e−

1
2(x−vN

n )
2
+

vN
n

2

2 dx

=
SN

n (t)RN
n (t) · 1√
2π

∫ ∞

a
e−

1
2
(x−vN

n )2dx. (3.25)

Let y = x − vN
n . Then dy = dx and a − vN

n ≤ y < ∞ as

a ≤ x < ∞. Hence

I =
SN

n (t)RN
n (t)e−

vN
n

2

2√
2π

∫ ∞

a−vN
n

e−
y2

2 e
vN
n

2

2 dy

= SN
n (t)RN

n (t)

[
1√
2π

∫ ∞

a−vN
n

e−
y2

2 dy

]

= SN
n (t)RN

n (t)
[
1−N(a− vN

n )
]

= SN
n (t)RN

n (t)N
(
−(a− vN

n )
)
.

PSNN
n (t) = I + II

= SN
n (t)RN

n (t)N
(
−(a− vN

n )
)

+ SN
n (t)K(1−N(a))

= SN
n (t)

[
RN

n (t)N
(
−(a− vN

n )
)

+ K(1−N(a))
]
.

Now if we let d1 = −(a − vN
n ) and d2 = −a = ln(RN

n /K)−vN2
n

vN
n

, we get

that

PSNN
n = SN

n (t)
[
RN

n (t)N(d1)−KN(d2)
]
.¦ (3.26)
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In the same manner we obtain that the price of a receiver swaption

is given by

RSNN
n (t) = SN

n (t)
[
KN(−d2)−RN

n (t)N(−d1)
]
. (3.27)

3.4 Compatibility of LIBOR and Swap market

models

Consider an elementary period [Ti, Ti+1]. Then

Ri
i+1(t) =

pi(t)− pi+1(t)

Si
i+1(t)

=
pi(t)− pi+1(t)

αi+1pi+1

=
pi(t)− pi+1(t)

pi+1

1

αi+1

= Li+1(t)

= L(t, Ti, Ti+1).

This shows that over each elementary period [Ti, Ti+1], the swap rate

is just the LIBOR rate.

Now consider [Tn, TN ] and let wi(t) = αipi(t)
SN

n (t)
. Then,

N∑

i=n+1

wi(t)Li(t) =
N∑

i=n+1

αipi(t)

SN
n (t)

Li(t)

=
N∑

i=n+1

αipi(t)

SN
n (t)

1

αi

[
pi−1(t)− pi(t)

pi(t)

]
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=
N∑

i=n+1

pi−1(t)− pi(t)

SN
n (t)

=
1

SN
n (t)

[pn(t)− pn+1(t) + pn+1 − pn+2 + . . . + pn−1 − pN ]

=
pn(t)− pN(t)

SN
n (t)

= Rn
N(t).

This shows that the swap rate is a stochastic combination of LIBOR

rates.

However, if we model Li(t) as log-normal, it does not necessarily

imply that Rn
N(t) will be log-normal too, and vice versa. This

shows that the LIBOR and swap market models are incompatible,

implying that one cannot actually use Black type formuale to price

both caps/floors and swaps simultaneously, in contrast with market

practice. For at-the-money strike rates, the inconsistency is sup-

posedly small. Swap market models are much more complex than

LIBOR market models. A detailed account on how to recover swap-

tion prices using the LIBOR rate model is given in Chapter 10 of

[29].

78



Chapter 4

South African Market

4.1 Historical background

The discovery of the Witwatersrand goldfields in 1886 and the sub-

sequent establishment of mining and financial companies triggered

the need for a platform on which to trade shares. As a result,

the Johannesburg Stock Exchange (JSE) was founded in Novem-

ber 1887 by Benjamin Woollan. From there on, the JSE went from

strength to strength gaining membership of the Federation Interna-

tional Bourses de Valeurs (FIBV) and the African Stock Exchanges

Association in 1963 and 1993, respectively. In April 1987, Rand

Merchant Bank (RMB) started an informal futures market oper-
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ating as both an exchange and a clearing house. In September

of the following year, an agreement was reached to form SAFEX

(South African Futures Exchange) and the SAFEX Clearing Com-

pany (Pty) Limited (Safcom). May 15 1996 saw the passing of the

formal bond market from the JSE to the Bond Exchange of South

Africa. This entity was licensed as a financial market in terms of

the Financial Markets Control Act. Among others, most of the

products listed on the JSE were futures contracts on the All Share,

Gold and Industrial indices as well as the E168 Eskom bond. The

introduction of options-on-futures in October 1992 triggered a huge

market growth that saw volumes growing in the excess of 700% in 12

months and by December of 1993, volumes exceeded a record 1 mil-

lion contracts. Currently options account for approximately 50% of

volumes. May 2001 saw SAFEX and JSE Securities Exchange agree-

ing to a buy-out of SAFEX by the JSE with the JSE retaining the

SAFEX branding and transferring the Financial Products business

into an independent division known as SAFEX Financial Derivatives

Division. After 119 years, the Johannesburg Securities Exchange is

now a publicly traded company, with a listing on its own bourse.

Attending the listing ceremony at the exchange’s glass-clad offices
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in Sandton on 5 June 2006 was South Africa’s deputy president,

Phumzile Mlambo-Ngcuka. After long being a mutual institution

owned by those who made use of it, the exchange was de-mutualized

in July 2005, becoming an unlisted public company known as JSE

Limited. Following just under a year of over-the-counter trade, the

company is now listed and for the first time anybody who is not a

stockbroker or an authorised user of the JSE can own shares. Public

trading of JSE Limited shares commenced on the same listing day

Monday (5 June 2006) morning at a price of R26 per share, raising

some R2,1-billion.

4.1.1 The JIBAR rate

Each day at 10h30 each of the 14 South African and South African-

based foreign banks are asked to provide the midpoint between Bid

and Offer of their 1, 3, 6, 9 and 12 month deposit National (Nego-

tiable) Certificate of Deposit (NCD) rates quoted as yield. In each

category, e.g, in the 1 month category, the 14 rates are arranged

in order. The top two and the bottom two are eliminated and the

remaining 10 are averaged and rounded to 3 decimal places. The re-

sulting rate is termed a k-month JIBAR rate where k = 1, 3, 6, 9, 12.
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JIBAR stands for Johannesburg Inter Bank Agreed Rate. It is the

rate at which banks buy and sell short-term money among them-

selves and is traditionally a wholesale and not a retail rate. The

JIBAR is reset daily but for a swap contract, the 3-month JIBAR

is reset every quarter and is fixed for the duration of the quarter.

Let Jk represent the k-month SAFEX-JIBAR rate. Then

Jk =
1

n

n∑

i=1

Mpti
k, k fixed,

where k = 1, 3, 6, 9, 12, n = 10, Mpti = Bidi+Offeri

2
is the midpoint

corresponding to bank i.

4.2 Interest rate caps and floors: The South

African context

In many circumstances, corporate treasurers in South Africa are

hesitant to enter into interest rate derivative agreements which in-

volve an element of optionality. The main deterrent factor is that

many of them, besides the Black model, do not necessarily have

other sophisticated pricing models to accurately price these deriva-

tives. However, for many corporate treasurers, caps and floors have

been the preferred method of achieving disaster insurance against
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incidents like the 1998 emerging markets crisis. This sterms from

the fact that caps and floors are highly adaptable to the particu-

lar needs and requirements of companies wishing to manage and

hedge against interest rate reset risk on interest-sensitive assets and

liabilities. On the exercise date of the cap or floor agreement, the

pre-specified strike rate is compared to the standard reference float-

ing rate, that is the 3-month SAFEX-JIBAR rate. The interest

differential is then applied to the contractually specified notional

principal amount (amount to be borrowed/lent) in order to calcu-

late the amount to be paid by the writer/seller to the holder/buyer

(the settlement). The notional principal amount is normally at least

R1 million.

Settlement of a single period cap/caplet is done in the following

manner. The seller of a cap agrees to pay the buyer the differ-

ence between the fixed strike rate and the reference floating rate

(JIBAR), based on the notional principal amount, when the JIBAR

reset exceeds the fixed strike rate. Settlement occurs on each reset

date according to the formula:

S =
(J −Kc)Ld

36500
,
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where S is the settlement amount in Rands, J is the JIBAR rate

for that period/quarter, Kc is the cap strike rate, L is the notional

principal amount, and d is the exposure period in days (usually 91

or 92).

In the majority of cases, settlement takes place in arrears, in which

case the settlement amount is then present-valued to the exercise

date. Consider the not-in-arrears case and for illustrative purposes,

take a company that feels it might need to borrow R1 million in

3 months’ time for a period of 3 months. However, this company

fears that rates might go up and wishes to hedge against this risk.

The company then buys a T3m-T6m at-the-money (ATM) caplet,

i.e the right to borrow R1 million in 3 months’ time for 3 months.

Assume the following data:

Current 3-month SAFEX-JIBAR: 7.30%

T3m-T6m ATM caplet strike rate: 7.50%

3-month SAFEX-JIBAR in 3 months’ time: 8.25%

Premium: R1 500

Then settlement amount is

S =
(J −Kc)Ld

36500
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=
(8.25− 7.50)1000000× 91

36500

= 1869.

The holder’s (buyer) benefit is

S - Premium = R1869 - R1500 = R369.

A 3-month SAFEX-JIBAR of less than or equal to the strike

would make the ATM caplet expire out-the-money and no settle-

ment would take place. This would be the case if in the above we

were considering an in advance caplet. By premium we mean the

total cost to the client (corporate) of the full period of the cap. It

is the sum of all the caplets, both in- and out-the-money making up

the cap.

In a similar fashion, the settlement amount of a single period

floor/floorlet is given by the formula:

S =
(Kf − J)Pd

36500

where S is the settlement amount in Rands, J is the JIBAR rate for

that period, Kf is the floor strike rate, L is the notional principal

amount, and d is the exposure period in days.

In this case, the seller of a floor agrees to pay the buyer the differ-

ence between the fixed strike rate and the SAFEX-JIBAR, based on
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the notional principal amount, when the SAFEX-JIBAR rate resets

below the fixed strike rate. Settlement also takes place on each reset

date. To get a better feeling of this, take a company that expects

a surplus cash receipt of R1 million in a month’s time which it will

wish to invest. The company fears rates will be lower in future and

therefore decides to buy a T1m-T4m at-the-money floorlet with a

maturity of 3 months, to hedge against the risk of losing money. For

illustrative purposes, consider the following data:

Current 3-month SAFEX-JIBAR rate: 7.30%

T1m-T4m ATM floorlet strike rate: 7.35%

3-month SAFEX-JIBAR rate in 1 month’s time: 6.95%

Premium: R2000

The settlement amount is therefore

S =
(Kf − J)Ld

36500

=
(7.35− 6.95)× 1000000× 91

36500

= 997.

The holder’s benefit in this case is:

R2000 - R997 = R1003.

86



The need by most floating rate corporate borrowers to reset

their debt quarterly or semi-annually leads them into wanting to

fix borrowing rates for multiple periods. They would therefore pre-

fer a string of caplets. A 1-year cap resetting against the 3-month

SAFEX-JIBAR rate would therefore be a series of options on the

3×6, 6×9 and the 9×12 forward rate agreements (FRAs), all with

a common strike.

Saying that a corporate treasurer purchases a 3-year cap reset-

ting against 3-month SAFEX-JIBAR with a cap strike rate of Kc%,

means that for every 3-month reset period over the next 3 years,

he will be reimbursed, by the seller, the differential recorded be-

tween the 3-month SAFEX-JIBAR rate and the cap rate of Kc%,

calculated on the notional principal amount. Settlement would only

take place on those reset dates where the 3-month SAFEX-JIBAR

exceeds the cap rate of Kc%, otherwise the particular caplet would

expire worthless.

4.2.1 Pricing caps, floors and collars

Each caplet/floorlet is priced from the implied 3-month forward rate

for that period, from the yield curve. Hence, the at-the-money price
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of a caplet/floorlet is just the forward rate for that period. A strike

price lower than that implied by the forward rate will result in an

in-the-money caplet with both intrinsic and time values, whereas a

strike price above the forward rate will result in an out-the-money

caplet. Similarly as with most option-styled derivative instruments,

the more time to expiry, the greater the time value inherent in the

option. This means that a T3m-T6m period caplet has time value

of 3 months while a T21m-T24m period caplet has time value of

21 months. Volatility (annualized) is another factor that affects

the value of a cap/floor. There is a positive correlation between

volatility and the price of both caps and floors. The more volatile

the price or rate of an asset, the more likely it is to reach the op-

tion strike price, and so the more valuable the option. In brief,

higher volatility implies higher option value. Standard option pric-

ing theory postulates that the spot price or rate of the underlying

follows a log-normal random walk. The fact that there are so many

factors impacting on the price of a cap/floor makes it difficult for

market-makers to hedge caps and floors. Basically, the pricing of

caps and floors in the South African market follows an extension

of the Black-Scholes option valuation formula and is done in the
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following manner.

All the major players in the South African cap/floor/swap market

use the Black’s formula and other models for the valuation of caps

and floors. Next we recap on how they employ the Black formula.

Suppose we have an interest rate cap with strike rate K and reset at

times t1, t2, . . . , tN , with a final payment to be made at time tN+1.

If we let λk = tk+1 − tk and R be the λk maturity forward rate

observed at time tk, 1 ≤ k ≤ N . Then the time-0 price of the kth

caplet ck is given by

ck = λkLe−rtk+1 [N(d2)R−N(d1)K], (4.1)

where L is the nominal amount.

Similarly for a floor, the price of the kth floorlet fk with strike K is

given by

fk = λkLe−rt(k+1)[N(−d2)K −RN(−d1)]. (4.2)

In both cases,

d1 =
ln R

K
+ σ2

2
tk

σ
√

tk
,

d2 = d1 − σ
√

tk.

r is the continuously compounded rate at the caplet/floorlet pay-

ment time tk+1. The cap/floor price is the sum of the prices of the
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caplets/floorlets.

4.3 The SAFEX-JIBAR market model

Consider a fixed set of increasing maturities T0, T1, . . . , TN such that

Ti − Ti−1= exposure period in days. Define βi = Ti−Ti−1

365
, i =

1, 2, . . . , N as the day-count factor (usually 91/365 or 92/365). De-

note by Ji the 3-month SAFEX-JIBAR rate corresponding to the

period [Ti−1, Ti]. We can therefore define a caplet with strike K

and resettlement dates T0, T1, . . . , TN as a contract which at time Ti

gives the holder a pay-off or settlement amount of

Si = βi ·max[Ji −K, 0], (4.3)

where Ji is the reference floating SAFEX-JIBAR rate for the period

[Ti−1, Ti]; K is the caplet strike. βi is normally termed the tenor.

Both the floating and strike rates are in decimal form.

Thus, for a portfolio of N caplets we would have the following

settlements:
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S1 = β1 ·max[J1 −K, 0]

S2 = β2 ·max[J2 −K, 0]

S3 = β3 ·max[J3 −K, 0]

... =
...

. . .
...

. . .

SN = βN ·max[JN −K, 0]

Since by definition, Ji is an average, for every i = 1, 2, . . . , N , the

JIBAR-SAFEX process Ji is a martingale under the corresponding

forward measure QTi on the interval [Ti−1, Ti]. (See Section 2.2.1).

As mentioned earlier, standard option pricing theory postulates that

the spot price or the rate of the underlying follows a log-normal

random walk. If for each i the SAFEX-JIBAR rate Ji(t) is log-

normal under its measure, we assume Ji(t) satisfies (2.20), then we

have

dJi(t)

Ji(t)
= σi(t)dW i(t) (4.4)

Ji(T ) = Ji(t)e
∫ T

t
σi(s)dW i(s)− 1

2

∫ T

t
||σi(s)||2ds.

=⇒ ln

(
Ji(T )

Ji(t)

)
=

∫ T

t
σi(s)dW i(s)− 1

2

∫ T

t
||σi(s)||2ds. (4.5)

Define qi(t) = Le−r(Ti−t) where r is the continuously compounded
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forward rate for the period [Ti−1, Ti] and L is the notional amount.

We extend the theory in Chapter to propose the following results

the proofs of which follow without loss of generality from the proof

of Proposition 2.8. These results should help practitioners in the

South African market in the following manner:

1. The formulae for caps, floors and collars should help them price

these instruments in a clearer way as they are purely JIBAR based.

2. The formulae for the Greeks should be of good help in hedging

and risk management purposes.

Proposition 4.1 In the SAFEX-JIBAR market, the time-t price of

a caplet with strike K is given by

Capli(t) = βiqi(t) {Ji(t)N [d1(t, Ti−1)]−KN [d2(t, Ti−1)]}

= βiqi(t) {Ji(t)N [d1]−KN [d2]} (4.6)

where

d1 =
1

vi(t, T )

{
ln

(
Ji(t)

K

)
+

1

2
v2

i (t, Ti−1)

}

d2 = d1 − vi(t, Ti−1).

Just as in Section 2.2.1,

mi(t, T ) = −1

2

∫ T

t
||σi(s)||2ds
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and

v2
i (t, T ) =

∫ T

t
||σi(s)||2ds.

Definition 4.2 A floorlet with strike K and resettlement dates T0, T1, . . . , TN

is a contract which at time Ti gives the holder a settlement amount

of

Si = βi ·max[K − Ji(t), 0]. (4.7)

Proposition 4.3 In the SAFEX-JIBAR market, the price of a floor-

let whose settlement amount is given by

Si = βi ·max[K − Ji(t), 0], (4.8)

is given by the formula

Floorli(t) = βiqi(t){KN [−d2]− Ji(t)N [−d1]} (4.9)

where

d1 =
1

vi(t, T )

{
ln

(
Ji(t)

K

)
+

1

2
v2

i (t, Ti−1)

}

d2 = d1 − vi(t, Ti−1).

where σi is the volatility of the interest rate of the period (ti−1, ti).

Proposition 4.4 The time-t price of a SAFEX-JIBAR collar with

resettlement dates T0, T1, . . . , TN is given by

Collari(t) = βiqi(t)
{
[Ji(t)N(dc

1)−KcN(dc
2)]− [KfN(−df

2)− Ji(t)N(−df
1)]

}
,
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where Kc and Kf are the cap and floor strike rates respectively,

dc
1 =

1

vi(t, T )

{
ln

(
Ji(t)

Kc

)
+

1

2
v2

i (t, Ti−1)

}

dc
2 = d1 − vi(t, Ti−1),

df
1 =

1

vi(t, T )

{
ln

(
Ji(t)

Kf

)
+

1

2
v2

i (t, Ti−1)

}

df
2 = d1 − vi(t, Ti−1),

σi is the volatility of the interest rate of the period (ti−1, ti).

Equations (4.6) and (4.9) show that the numeraire for the pricing

of caps and floors in the JIBAR market is βiqi(t).

4.3.1 The Greeks

In this section, we intend to derive formulae for some hedging mea-

sures for our model. Most traders employ sophisticated hedging

schemes which involve the calculation of such measures as delta,

gamma and vega. The delta of an option measures the rate at

which the option price changes with respect to the price of the un-

derlying forward rate. Gamma is the rate of change of the option’s

delta with respect to the forward rate. Vega is the rate of change

of option price with respect to the volatility of the underlying. If

vega is high in absolute terms, then the option value is sensitive to
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small changes in volatility. In contrast, if vega is small in absolute

terms, volatility changes have relatively little impact on the value

of the option. We will recall that[17]

N ′(x) =
1√
2π

e−
x2

2

and that since

ln
JiN

′(d1)

KcN ′(d2)
= ln

Ji

Kc

+
1

2
[d2

1 + u2
i − 2vid1 − d2

1]

= ln
Ji

Kc

+
1

2
[v2

i − 2 ln
Ji

Kc

− v2
i ]

= 0

we have

JiN
′(d1)−KcN

′(d2) = 0.

This fact will help us deduce our measures in the following manner.

For a caplet,

∆ =
∂C

∂Ji

= βiqi(t){N(d1) + JiN
′(d1) · ∂d1

∂J
−KcN

′(d2) · ∂d2

∂Ji

}

= βiqi(t){N(d1) + JiN
′(d1) · 1

Jivi

−KcN
′(d2) · 1

Jivi

}

= βiqi(t){N(d1) +
JiN

′(d1)−KcN
′(d2)

Jivi

}

= βiqi(t)N(d1).
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Γ =
∂2C

∂Ji
2

= βiqi(t)N
′(d1) · ∂d1

∂Ji

=
βiqi(t)N

′(d1)

Jivi

.

vega =
∂C

∂vi

= βiqi(t){JiN
′(d1) · ∂d1

∂vi

−KcN
′(d2) · ∂d2

∂vi

}

= βiqi(t){JiN
′(d1)(− 1

vi
2

ln
Ji

Kc

+ vi)−KcN
′(d2)(− 1

vi
2

ln
Ji

Kc

+ vi − 1)}

= βiqi(t){JiN
′(d1)(− 1

vi
2

ln
Ji

Kc

vi)−KcN
′(d2)(− 1

vi
2

ln
Ji

Kc

+ vi) + KN ′(d2)}

= βiqi(t){(− 1

vi
2

ln
Ji

Kc

+ vi)[JiN
′(d1)−KcN

′(d2)] + KN ′(d2)}

= βiqi(t)KN ′(d2).

Similarly, it can be shown that for floorlets,

∆ = −βiqi(t)N(−d1).

Γ =
βiqi(t)N

′(−d1)

Jivi

.

vega = βiqi(t)KN ′(−d2).

Note that the delta, gamma and vega of a cap/floor is simply the

arithmetic sum of the respective delta, gamma and vega for the

caplets involved.
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Chapter 5

Computational Analytics

In this Chapter, we intend to perform some numerical comparisons

between the JIBAR model and some well known models for pricing

caps and floors.

The data used in the following tests was obtained from Rand

Merchant Bank. Historical data on JIBAR rates was obtained from

the SAFEX website. The following MATLAB codes were used to

calculate the price of the cap/floor with the following specifications:

Instrument: Quarterly resetting year-long cap/floor

Notional amount: 100 000 000

Cap/Floor strike rate: 12.95%

Volatility: 15%
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The inputs to the JIBAR code are defined below:

1. J : the 3 month JIBAR

2. Kf is the floorlet strike

3. Kc is the caplet strike

4. v is the volatility (flat)

5. L is the notional amount in South African Rands

6. ”Days” is the number of days (91 or 92 for each quarterly re-

setting cap/floor)

7. β is the tenor
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8. Df is the discount factor

9. r is the continuously compounded forward rate.

J =; Kc =; v = 0.15; L = 100 000 000; Days =; β = Days/365;

t = 0.25; r =; qi = L ∗Df ;

JIBAR Caplet

d1 = 1/(v2 ∗ β) ∗ (log(J/Kc) + 0.5 ∗ β ∗ v2);

d2 = d1 − (v2 ∗ β);

N1 = 0.5 ∗ (1 + erf(d1/(
√

(2))));

N2 = 0.5 ∗ (1 + erf(d2/(
√

(2))));

Caplet value = β ∗ qi ∗ (J ∗N1 −Kc ∗N2);

disp(′Caplet value is′), disp(Caplet value)

JIBAR Floorlet

d1 = 1/(v2 ∗ β) ∗ (log(J/Kf ) + 0.5 ∗ v2);

d2 = d1 − (v2 ∗ β);

N1 = 0.5 ∗ (1 + erf(−d1/(
√

(2))));

N2 = 0.5 ∗ (1 + erf(−d2/(
√

(2))));
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Floorletvalue = β ∗ qi ∗ (Kf ∗N2 − J ∗N1);

disp(′Floorlet value is′), disp(Floorlet value)
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The Black formula was coded as follows:

1. L = 100 000 000; Notional amount;

2. K =; The cap strike;

3. R = 0.07; the zero curve is flat at this rate/floating rate

4. r=; the continuously compounded zero rate (for all maturities)

5. T=; starting in T years

6. λ = 0.25; =tenor for quarterly resetting caplet

7. σ=; volatility
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Black Caplet

d1 = (log(R/K) + (0.5 ∗ σ2) ∗ T )/(σ ∗ √T );

d2 = d1 − σ ∗ √T ;

N1 = 0.5 ∗ (1 + erf(d1/
√

2));

N2 = 0.5 ∗ (1 + erf(d2/
√

2));

Capletvalue = λ ∗ L ∗ exp(−r ∗ t) ∗ (R ∗N1 −K ∗N2)

Black Floorlet

d1 = (log(R/K) + (0.5 ∗ σ2) ∗ T )/(σ ∗ √T );

d2 = d1 − σ ∗ √T ;

N1 = 0.5 ∗ (1 + erf(−d1/
√

2);

N2 = 0.5 ∗ (1 + erf(−d2/
√

2));

Floorletvalue = λ ∗ L ∗ exp(−r ∗ t) ∗ (K ∗N2 −R ∗N1)

The expression exp(−r ∗ t) is the discount factor.
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In Fig.5.1, the 3-month JIBAR rates are those calculated on the

start date and effective for the next 3 months. It is important to

note that the forward rates are increasing with time. This is not the

case with the JIBAR rates. This fact will be reflected in the cor-

responding prices as reflected in the upcoming Figures. Settlement

for the in advance cap/floor is made at the start date.

Caplet/Floorlet Start date Maturity date Days 3-month JIBAR Forward rate

1 16 Feb 04 17 May 04 91 7.750 7.949

2 17 May 04 16 Aug 04 91 7.669 8.016

3 16 Aug 04 15 Nov 04 91 7.243 8.290

4 15 Nov 04 15 Feb 05 92 7.450 8.770

Figure 5.1: Data on an RMB year-long in advance cap/floor starting on 16 Feb

2004 and ending on 15 Feb 2005. The JIBAR rates were obtained from the

SAFEX historical data file. Despite concerted efforts to find out the reason

for the increasing nature of the forward rate process or how it was obtained,

bank confidentiality issues were repeatedly cited and no further explanation

was given. As mentioned above, this process will impact on all future figures

where it is inherent.
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Caplet Disc. factor JIBAR price RMB DerivaGem

1 0.9781 11.9070 0.00

2 0.9589 21.9339 0.00

3 0.9395 4.3927 1.34

4 0.9192 9.8527 154.86

Cap price 48.0863 156.20 0.00

Figure 5.2: Comparison of the price of the in advance cap using different models.

Obviously this cap will not be exercised. It is important to note that the price of

the last caplet looks incorrect. Again, the data has been accepted and presented

in good faith.

Floorlet Disc. factor Black price JIBAR price RMB DerivaGem Average

1 0.9781 1 222 925 1 268 075 1 219 536

2 0.9589 1 182 871 1 263 625 1 179 512

3 0.9392 1 094 670 1 336 763 1 091 132

4 0.9192 961 103 1 260 446 968 020

Floor price 4 461 570 5 128 909 4 458 200 5 469 006 4 879 421

Figure 5.3: Comparison of the price of the in advance floor using different

models. This floor is exercisable.
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Caplet/Floorlet Start date Maturity date Days 3-month JIBAR Forward rate

1 16 Feb 04 17 May 04 91 8.097 7.949

2 17 May 04 16 Aug 04 91 7.389 8.016

3 16 Aug 04 15 Nov 04 91 7.450 8.290

4 15 Nov 04 15 Feb 05 92 7.300 8.770

Figure 5.4: Data on an RMB year-long in-arrears cap/floor starting on 16 Feb

2004 and ending on 15 Feb 2005. The JIBAR rates were obtained from the

SAFEX historical data file.

Caplet Disc. factor JIBAR price RMB DerivaGem

1 0.9781 0.00 0.00

2 0.9589 0.00 0.00

3 0.9395 0.00 1.34

4 0.9192 0.00 154.86

Cap price 0.00 156.20 0.00

Figure 5.5: Comparison of the price of the in-arrears cap using different models.

This cap will not be exercised. The reason for the discrepancy in the price of

the last caplet follows from Figure 5.2.
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Floorlet Disc. factor Black price JIBAR price RMB DerivaGem Average

1 0.9781 1 222 925 1 183 429 1 219 536

2 0.9589 1 182 871 1 329 458 1 179 512

3 0.9392 1 094 670 1 287 862 1 091 132

4 0.9192 961 103 1 309 042 968 020

Floor price 4 461 570 5 109 790 4 458 200 5 469 006 4 874 642

Figure 5.6: Comparison of the price of the in-arrears floor using different models.

This floor will be exercisable.

In Figure 5.2, the Black price is the price as calculated by a

MATLAB code of the Black formula. DerivaGem[19] is a software

that can be used to price interest rate instruments, including caps

and floors using the Black model for a European-type option. The

only inputs to this software are (for a cap/floor): settlement fre-

quency, principal, start and end dates in years, strike, pricing model,

volatility. The RMB price was reportedly also calculated based on

the Black model but clearly their caplet prices point to some error.

The software used is unknown. Note that (Fig. 5.2) DerivaGem

gives a cap price consistent with economic reality (for a cap strike

as high as 12.95%) while the JIBAR price is not far off the mark.
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The increasing nature of the RMB prices of the caplets seem to

emanate from the increasing forward rate process and the decreas-

ing discount process. The discount factors were also obtained from

RMB. It is important to note that in Figure 5.3, the Black and the

RMB prices are comparable. Again the decreasing nature of the

floorlet prices can be attributed to the same fact as in Figure 5.2.

The 3-month JIBAR rates in Figure 5.4 are of the next period. For

example, 8.097% is the JIBAR rate calculated on 17 May 2004 and

valid for the next three months. Settlement is made on maturity

date, i.e on 17 May 2004 for caplet 1, for example. However, the

forward rates remain unchanged. Since it is not known whether the

RMB prices are for an in advance or in arrear cap/floor, Figures 5.5

and 5.6 contain these as they were in Figures 5.2 and 5.3. It is not

a simple task to get all the information one needs from the local

banks as each time confidentiality issues are raised when further en-

quiries are made. DerivaGem also does not distinguish between the

in advance-in arrear cases. So the JIBAR prices are the only ones

reflecting this fact. Again, it is important to note that DerivaGem

and JIBAR methods give a cap price consistent with economic sense

for the given data. Obviously the seller of a floor wants a bigger price
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and the two methods provide exactly that. Moreso, the correspond-

ing floor prices for these two methods are relatively comparable, a

fact which is also notable in the RMB and Black prices. See Figure

5.6.

Why are the prices different? This can be attributed to a variety

of reasons, including but not limited to model risk and minor dif-

ferences in inputs. The major question then arises: What/which is

the best price? Obviously the best price depends on your position.

The seller of a floor wants a higher price while the buyer of a cap

is interested in paying less. Instead of sticking to one method, it

would be advisable to combine methods and maybe the average of

the resulting prices can be deemed best price. The last columns in

Figures 5.3, 5.5 and 5.6 give the average prices.

5.0.2 Concluding Remarks

The LIBOR model uses the LIBOR. The analytic results in this

Chapter seem to support our earlier claim in Section 4.3. The

JIBAR model can provide South African practitioners with a much

more relevant and alternative model to price caps, floors and collars

in a South African context. Firstly, the formulae for caps, floors
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and collars should help practitioners to price these instruments in a

clearer way as they are purely JIBAR based. Secondly, the JIBAR

based Greek formulae deduced can be of substantial help for hedging

and risk management purposes.
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5.1 SAFEX-JIBAR Swap and Swaptions models

Consider an elementary period [Ti, Ti+1], that is, a quarter of a year.

Then by Section 3.4, the swap rate Ri+1
i (t) is just the JIBAR rate

Jt(t) = J i+1
i (t).

Recall: Si+1
i (t) is the accrual factor or the present value at time

t of a self-financing portfolio of bonds.

Similarly as in Chapter 3,

J i+1
i (Ti) = J i+1

i (t)e
∫ Ti

t
σi,i+1(t)dW k

i (s)− 1
2

∫ Ti
t
||σi,i+1(s)||2ds. (5.1)

And by the deterministic nature of σi,i+1, conditional on Ft, J i+1
i (Ti)

is log-normal,

J i+1
i (Ti) = J i+1

i (t)eY i+1
i (t,Ti), (5.2)

where Y i+1
i (t, Ti) is normally distributed with expected value

mi+1
i (t, Ti) = −1

2

∫ Ti

t
||σi,i+1(s)||2ds, (5.3)

and variance

vi+1
i

2
(t, Ti) =

∫ Ti

t
||σi,i+1(s)||2ds. (5.4)

Proposition 5.1 The arbitrage-free SAFEX-JIBAR price of a payer

swap with swap rate K is

PSi+1
i (t,K) =

[
J i+1

i (t)−K
]
Si+1

i (t). (5.5)

110



Similarly, the price of a receiver swap with strike K is given by

RSi+1
i (t) =

[
K − J i+1

i (t)
]
Si+1

i (t).

The SAFEX-JIBAR swap market model price of a Ti×(Ti+1−Ti)

swaption is

PSN i+1
i (t) = Si+1

i (t)Ei,i+1 max
[[

J i+1
i (Ti)−K, 0

]
|Ft

]
, 0 ≤ t ≤ Ti.

(5.6)

Proposition 5.2 In the swap market model, the Ti × (Ti+1 − Ti)

payer swaption price with strike K is given by

PSN i+1
i (t) = Si+1

i (t)
{
J i+1

i (t)N [d1]−KN [d2]
}

, (5.7)

where

d1 =
1

vi+1
i

√
Ti − t

[
ln

(
J i+1

i (t)

K

)
+

1

2
vi+1

i

2

]

d2 = d1 − σi,i+1

which is of the Black-76 type.

Similarly, the price of a receiver swaption with strike K is given by

RSN i+1
i (t) = Si+1

i (t)
[
KN(−d2)− J i+1

i (t)N(−d1)
]
. (5.8)

The proofs of the above propositions follow from the proof of Propo-

sition 3.10.
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5.2 Calibration and Other Issues

Generally, there is a one-to-one correspondence between option prices

and the volatility parameter. So far we have considered constant

volatility. The process of obtaining the appropriate volatility pa-

rameter for pricing an instrument is called calibration. Given some

data, say market data, and a model to calibrate, one seeks for the

most appropriate volatility such that the model produces the market

prices.

5.2.1 The Hull-White and Ho-Lee Models

An often used model in interest rate modeling is the Hull-White

model. Two main reasons justify its popularity. Firstly, it provides

closed-form solutions for bond and plain vanilla European option

pricing and hence there is no need for time-consuming simulations.

Secondly, and more importantly, this model, in contrast to equilib-

rium models such as the Vasicek, Cox-Ross-Ingersoll models, belongs

to the class of no-arbitrage interest rate models.This means that it

succeeds in fitting a given term-structure by having at least one

time dependent parameter. In this way, today’s bond prices can be

perfectly matched.
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Like any other model, the Hull-White has its own problem in that

it sometimes results in a negative interest rate. It has however been

shown that with up-to-date calibrated parameters which are used

for a shorter period, the probability of obtaining negative interest

rates is minimized.

Hull and White (1990) showed that the instantaneous interest rate

follows a mean-reverting process also known as an Ornstein-Uhlenbeck

process:

dr(t) = [θ(t)− a(t)r(t)]dt + σ(t)dz(t) (5.9)

or

dr(t) = a(t)

(
θ(t)

a(t)
− r(t)

)
dt + σ(t)dz(t) (5.10)

where z(t) is a standard Brownian motion under the risk-neutral

measure Q, and, a(t), σ(t) and θ(t) are time dependent parameters.

a(t) is the rate of mean reversion where the mean is θ(t)/a(t), and

σ(t) is the volatility. The function θ(t) can be calculated from the

initial term structure according to the formula

θ(t) = Ft(0, t) + aF (0, t) +
σ2

2a

(
1− e−2at

)
, (5.11)

where F (0, t) is the instantaneous forward rate curve observed in the

market at time zero with maturity t, and Ft is the first derivative
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with respect to time. Here a(t) = a and σ(t) = σ and the t has been

dropped for abbreviation purposes.

Bond prices at time t in the Hull-White model are given by

P (t, T ) = Â(t, T )e−B̂(t,T )R(t) (5.12)

where

Â(t, T ) = exp

{
ln

P (0, T )

P (0, t)
− B(t, T )

B(t, t + δt)
ln

P (0, t + δt)

P (0, t)

}
×

× exp

{
−σ2

4a
(1− e−2at)B(t, T )[B(t, T )−B(t, t + δt)]

}

and R(t) is the δt-period rate at time t, and

B̂(t, T ) =
B(t, T )

B(t, t + δt)
δt, (5.13)

B(t, T ) =
1− e−a(T−t)

a
, (5.14)

P (0, T ) = e−R(0)T , (5.15)

P (0, t) = e−R(0)t. (5.16)

P (0, T ) and P (0, t) can be observed in the market.

If in the Hull-White a(t) = 0, we get the Ho-Lee model. In this

case, the expression for the price of a zero-coupon bond at time t in

terms of the δt-period interest rate R(t) is

P (t, T ) = Â(t, T )e−R(t)(T−t) (5.17)
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where

Â(t, T ) = exp

{
ln

P (0, T )

P (0, t)
− T − t

δt
ln

P (0, t + δt)

P (0, t)
− 1

2
σ2t(T − t)[(T − t)− δt]

}
.

In order to use the Hull-White model or the Ho-Lee model, we

need to find credible parameter values for a and σ. The process of

obtaining these values is called calibration. In our case, we intend

to use the Ho-Lee so the parameter of interest is σ.

5.2.2 The Standard Market Model

Consider a cap/floor expiring at time T , with principal L and cap/floor

rate RK . Here, the subscript K only serves to relates to the strike.

Define Rk as the interest rate for the period [tk, tk+1] observed at

time tk, 1 ≤ k ≤ n. Here ti, 1 ≤ i ≤ n are the reset dates with

tn+1 = T and δk = tk+1 − tk.

In [19], Hull showed that a standard market model for a cap/floor

is given by

caplet price = LδkP (0, tk+1)[FkN(d1)−RKN(d2)] (5.18)

floorlet price = LδkP (0, tk+1)[RKN(−d2)− FkN(−d1)](5.19)

where

d1 =
ln(Fk/RK) + σk

2tk/2

σk

√
tk
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d2 = d1 − σk

√
tk,

and Fk is the forward rate for the period [tk, tk+1], σk is the volatility

of Rk. P (0, tk+1) is the price at time 0 of a zero coupon bond

maturing at time tk+1.

The put-call parity relationship

cap price = floor price + swap value (5.20)

holds and will help us in determining the swap values from cap and

floor prices.

The time tk value of a zero-coupon bond that pays L(1 + RKδk)

at time tk+1 is

P (tk, tk+1) =
L(1 + RKδk)

1 + δkRk

. (5.21)

Now, consider a swap option that lasts n years starting in T ′ years.

The cashflows are received m times per year. The payment dates

are T1, T2, . . . , Tmn. If s0 is the forward swap rate and sK is the

strike rate and σ is the volatility, then, defining A as the value of

a contract that pays 1/m at times Ti, 1 ≤ i ≤ mn, the value of the

swaption is given by

payer swaption value = LA[sKN(−d2)− s0N(−d1)] (5.22)
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where L is the principal, and

d1 =
ln(s0/sK) + σ2T ′/2

σ
√

T ′ (5.23)

d2 = d1 − σ
√

T ′ (5.24)

A =
1

m

mn∑

i=1

P (0, Ti). (5.25)

For the receiver swaption,

receiver swaption value = LA[s0N(d1)− sKN(d2)]. (5.26)

5.2.3 Calibration Procedure

Among others, in this section we generate bond and caplet prices

using Hull’s standard market model and calibrate the LIBOR model

to the cap curve, i.e determine the implied volatilities σi’s which can

then be used to assess the volatility most appropriate for pricing the

instrument under consideration. Having done that, we calibrate the

Ho-Lee model to the bond curve obtained by our standard market

model. We numerically compute caplet prices using the Black-76

formula for caplets seen in Chapter 2 and compare these prices to

the ones obtained using the standard market model. Finally we

compute and compare swaption prices obtained by our standard
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market model and by the LIBOR model.

Consider a contract that caps/floors the interest on a principal

loan amount of L = 10000 at RK = 8% per annum starting now.

Consider σk = 0.20, δk = 0.25 and T = 5. Suppose the continuously

compounded rates Fk are given in Fig. 5.7. The interest rates for

the δt period are given in column 2 of Figure 5.8.

On the other hand, for our swaption numerics, we will consider

a 5 year swaption starting in one year, i.e T ′ = 1. Thus m =

2, n = 5 and mn = 10. The payments are semiannually. The other

parameters are as in the cap/floor case.

In Fig 5.13, the LIBOR model is calibrated to the cap curve as

given by column 4 of Fig 5.8. That is, the caplet prices are equated

to the LIBOR model keeping all the other parameters constant ex-

cept the the volatility. The resulting ”appropriate” volatilities are

given here in decimal form. The ”NaN” results from division by 0.

Column 2 of Fig 5.14 is generated from Equation (5.21). With

all the other parameters fixed, the Ho-Lee model, Equation (5.17),

is equated to the second column of Fig 5.14. The resulting bond

volatilities are given above in the last column. In Fig 5.16, the for-

ward rates are given. Column 3 is generated from Equation (5.22).
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Column 4 is generated by the LIBOR model seen Chapter 2.

5.2.4 Concluding Remarks

Firstly, it is evident that the caplet price curves in Figs. 5.8 and

5.9 manifest the same behaviour. The results of Fig. 5.12 point to

a decrease in volatilities with an increase in maturities. Figs. 5.13

and 5.14 suggest that as the bond prices steadily increase, the bond

price volatilities curve seem to follow an upward opening parabola.

More so, medium-term bonds seem to have lower volatilities than

shorter and longer ones. Figs 5.16 and 5.17 suggest consistence

between the two models under consideration there. One is just a

slight vertical shift of the other. The difference might be attributed

to the computational effects filtered in by the forward swap rates

(See Chapter 3).

The interest rates for each period were randomly generated using

MATLAB’s rand function. The bond prices P (0, tk+1) are generated

according to Equation (5.16). The caplet, floorlet and swap prices

are generated according to Equations (5.18), (5.19) and (5.20) re-

spectively. The last column is a result of the Black’s formula for

caplets seen in Chapter 2.
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Continuously compounded rates Fk

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165.

Figure 5.7: The above were generated by a MATLAB code starting from 0.07

and ending at 0.165 with an increment of 0.005.
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Maturities Int Rates Rk P (0, tk+1) Caplet Prices Floorlet Prices Swap value Black Caplet

0 0.0894 0.9778 0 24.4473 -24.4473 76.47

0.25 0.0896 0.9562 2.8971 14.8495 -11.9524 76.09

0.5 0.0897 0.9350 10.5411 10.5411 0 77.89

0.75 0.0896 0.9143 19.5150 8.0864 11.4286 82.77

1.0 0.0893 0.8943 28.8575 6.4988 22.3587 88.27

1.25 0.0889 0.8752 38.2161 5.3976 32.8185 93.81

1.5 0.0883 0.8568 47.4382 4.5978 42.8404 98.90

1.75 0.0876 0.8393 56.4501 3.9966 52.4535 103.60

2.0 0.0868 0.8225 65.2212 3.5327 61.6885 107.84

2.25 0.0860 0.8065 73.7355 3.1667 70.5688 111.74

2.5 0.0852 0.7912 81.9939 2.8728 79.1211 115.24

2.75 0.0843 0.7765 89.9917 2.6329 87.3588 118.51

3.0 0.0835 0.7624 97.7321 2.4346 95.2975 121.54

3.25 0.0827 0.7486 105.2076 2.2684 102.9392 124.45

3.5 0.0820 0.7353 112.4241 2.1276 110.2966 127.19

3.75 0.0813 0.7223 119.3755 2.0071 117.3684 129.80

4.0 0.0808 0.7095 126.0612 1.9031 124.1581 132.27

4.25 0.0803 0.6969 132.4738 1.8124 130.6613 134.62

4.5 0.0798 0.6844 138.6223 1.7329 136.8893 136.80

4.75 0.0795 0.6721 144.4907 1.6625 142.8281 138.84

5.0

Figure 5.8: Data generated from the standard market model. Rk is the interest

rate for the period [tk, tk+1]. P (0, tk+1) is the time-0 price of a zero-coupon

bond maturing at time tk+1. The caplet, floorlet and swap values are calculated

by the standard market model.
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Figure 5.9: Caplet prices curve as generated by the standard market model.

This is column 1 against column 4 in Fig 5.7.
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Caplet Prices computed from the Black−76 caplet model

Figure 5.10: Caplet prices curve as generated by the Black-76 model. This is

column 1 against the last column of Fig 5.8.
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Figure 5.11: Time-0 zero-coupon bond curve. This results from plotting Column

1 against column 3 as seen in Fig 5.8.
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Figure 5.12: Term structure of interest rates as seen in column 2 of Fig 5.8.
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Caplet Maturities Caplet Volatilities as decimals

0 NaN

0.25 0.5612

0.50 0.5000

0.75 0.4338

1.00 0.3887

1.25 0.3191

1.50 0.1865

1.75 0.1253

2.00 0.0896

2.25 0.0660

2.25 0.0495

2.75 0.0372

3.00 0.0279

3.25 0.0208

3.50 0.0153

3.75 0.0111

4.00 0.0078

4.25 0.0052

4.50 0.0033

4.75 0.0018

5.00 0.0007

Figure 5.13: Results of calibrating the LIBOR model to the cap curve.
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Maturities P (tk, tk+1) Bond Volatilities

0 0.9977 Inf

0.25 0.9977 0.3980

0.50 0.9976 0.2896

0.75 0.9977 0.2437

1.00 0.9977 0.2176

1.25 0.9978 0.2009

1.50 0.9980 0.1897

1.75 0.9981 0.1821

2.00 0.9983 0.1771

2.25 0.9985 0.1743

2.25 0.9987 0.1735

2.75 0.9989 0.1746

3.00 0.9991 0.1778

3.25 0.9993 0.1838

3.50 0.9995 0.1932

3.75 0.9997 0.2080

4.00 0.9998 0.2317

4.25 0.9999 0.2746

4.50 1.0000 0.3767

4.75 1.0001 Inf

5.00

Figure 5.14: Results of calibrating the Ho-Lee model to the bond curve.
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Figure 5.15: Time t bond prices as seen in column 2 of Fig. 5.13.
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Payment Dates Ti Forward Rates Swaption values(non-LIBOR) Swaption values(LIBOR)

1.5 0.0700 83.84 108.10

2 0.0750 148.59 191.60

2.5 0.0800 237.27 305.90

3 0.0850 348.88 449.80

3.5 0.0900 480.56 619.50

4 0.0950 628.50 810.20

4.5 0.1000 788.82 1016.90

5 0.1050 958.07 1235.10

5.5 0.1100 1133.47 1461.20

6 0.1150 1312.95 1692.60

Figure 5.16: Payer swaption values computed from the standard non-LIBOR

market model and from the swap market model (LIBOR).
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Payer Swaption Prices as computed by our standard model

Figure 5.17: Payer swaption curve generated from the standard (non-LIBOR)

market model. The curve results from plotting column 3 of Fig. 5.15 against

maturities.
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Payer Swaption Prices as computed by the swaption (LIBOR) market model

Figure 5.18: Payer swaption curve generated from the swaption (LIBOR) market

model. The curve results from plotting column 4 of Fig 5.15 against maturities.
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Chapter 6

New directions in interest

rate theory

The slowness of Monte Carlo simulation within the LIBOR model

framework is one of the main obstacles faced by market practition-

ers. To combat this, approximation formulae are widely used to

price derivative instruments. In [33], Schellhorn and Chen suggest

a new approach, the Double Layer Forward (DLF) simulation and

show that the simulations in this scheme can be much faster than

the traditionally used schemes. This methodology had earlier been

applied to the swap market model by Jamshidian in [22]. An in-

teresting observation is the fact that the approach by Schellhorn
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and Chen [33] can also most probably be extended to the valuing of

risky bonds and credit sensitive derivatives as well as exchange rate

derivatives.

Obviously, for coupon-bearing instruments, things change slightly.

In [2], Baaquie proposed another new approach called the quantum

field theory approach. Amongst its advantages over the Black’s for-

mula is the fact that a single volatility function can price a coupon

bond option whereas in the Black’s formula each caplet has its own

volatility function. The quantum field approach looks very attrac-

tive and further research might be directed in extending this theory

to other derivatives. This could include the risk management of

both zero-coupon and coupon bonds. In actual fact, Baaquie and

colleagues showed in [4] that using the quantum field theory, hedge

parameters for risk management purposes of caps and floors can be

provided.

In [3], Baaquie and Liang compare the Black’s formula for a

caplet/floorlet to the new field theory pricing formula, and they

show that the field theory formulae have many advantages over

Black’s formulae. The market practice for pricing caplet/floorlet

is the Black’s formula. With the obvious advantages stated in [3], it
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remains to be seen how the market will react to this new approach.

The quantum field theory approach seems appealing and further re-

search could explore possibilities of its extension to the valuation of

swaptions. Another direction of research could be a comparison of

the field theory model to the LIBOR market model. This could be

done by calibrating techniques.
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Chapter 7

Conclusion

The present work has made a few notable contributions in the LI-

BOR market model. An explicit account of the theory underly-

ing the forward risk-adjusted (neutral) valuation model was pre-

sented. This model is an improvement of the traditional securities

risk-neutral valuation approach. Besides it being numerically labour

intensive, it only needs a single data input, i.e the spot interest rate

process. Future research could go a long way in trying to extend

and apply this model in the pricing of a SAFEX-JIBAR cap/floor.

Efforts should be directed in gaining confidence with the financial

services companies so that they can release the much needed data for

research purposes since they are the ultimate beneficiaries of such
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research results.

With the LIBOR market model now enjoying a pivotal role in

modern interest rate derivative modeling, a detailed analysis of the

relevant theory was presented. By analogue, this enabled an easy

extension of the same ideas to the proposition of the JIBAR mar-

ket model which, according to the numerical analytics, gives prices

consistent with both economic practicality and with other models

too. The biggest draw-back in this research was the unavailability

of data. Data is a well-kept rare commodity among the competing

players in the South African financial services sector. The unavail-

ability of implied volatilities simply denies one the opportunity to

follow the calibration route. See among others [9], [8] for calibration

issues.

We showed that the swap and swaptions theory is much more

complex than the cap and floor theory. Even though the two theo-

ries are generally incompatible, we showed that compatibility could

be achieved if the swap life-span is partitioned into elementary quar-

terly periods. This reasoning enabled the proposition of the SAFEX-

JIBAR swap and swaptions model on elementary periods.

Our numerical analytics suggest that a good quantitative analyst
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should not solely rely on one model. Besides not providing the trader

with the best price, depending on one model exposes one to model

risk also.

The results of calibrating the LIBOR model to the cap curve gave

us the implied volatility structure appropriate to price the caplets,

and hence the cap (Fig. 5.13). In the same manner, calibrating the

Ho-Lee model to the bond curve (Fig 5.14). Figs. 5.17 and 5.18

show a similar shape for the payer swaption prices. However, the

swaption values given by the non-LIBOR model are slightly lower

than the LIBOR ones. This difference might be attributed to some

minor input errors. Again, these results seem to support our earlier

suggestions of combining models.
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