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Zhuang Hao 

CAUSAL ANALYSIS USING TWO-PART MODELS: A GENERAL FRAMEWORK 

FOR SPECIFICATION, ESTIMATION AND INFERENCE 

The two-part model (2PM) is the most widely applied modeling and estimation 

framework in empirical health economics.  By design, the two-part model allows the 

process governing observation at zero to systematically differ from that which determines 

non-zero observations.  The former is commonly referred to as the extensive margin 

(EM) and the latter is called the intensive margin (IM).  The analytic focus of my 

dissertation is on the development of a general framework for specifying, estimating and 

drawing inference regarding causally interpretable (CI) effect parameters in the 2PM 

context.  Our proposed fully parametric 2PM (FP2PM) framework comprises very 

flexible versions of the EM and IM for both continuous and count-valued outcome 

models and encompasses all implementations of the 2PM found in the literature.  Because 

our modeling approach is potential outcomes (PO) based, it provides a context for clear 

definition of targeted counterfactual CI parameters of interest.  This PO basis also 

provides a context for identifying the conditions under which such parameters can be 

consistently estimated using the observable data (via the appropriately specified data 

generating process).  These conditions also ensure that the estimation results are CI.  

There is substantial literature on statistical testing for model selection in the 2PM context, 

yet there has been virtually no attention paid to testing the “one-part” null hypothesis.  

Within our general modeling and estimation framework, we devise a relatively simple 

test of that null for both continuous and count-valued outcomes.  We illustrate our 
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proposed model, method and testing protocol in the context of estimating price effects on 

the demand for alcohol. 
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Chapter 1. 

Introduction, Background and Significance, Summary 

 The two-part model (2PM), introduced by Cragg (1971), is the most widely 

applied empirical modeling and estimation framework in empirical health economics and 

is gaining in popularity in a variety of other fields.
1
  It applies to cases in which the 

outcome of interest is nonnegative with a non-trivial probability of having an observed 

value of zero.  By design, the 2PM allows the process governing observation at zero (e.g. 

whether or not the individual drinks alcohol; whether or not the individual decides to visit 

a health care facility) to systematically differ from that which determines non-zero 

observations (e.g. how much the individual drinks given that he has chosen to become a 

drinker;  how much the individual spends on health care if he or she spends at all).  The 

former is commonly referred to as the extensive margin (EM) and the latter is called the 

intensive margin (IM). 

 The objectives of the dissertation are four-fold.  First, we place our analytic focus 

on specifying, estimating and drawing inference regarding causally interpretable (CI) 

policy effect parameters in the 2PM context.  Empirical modeling often begins with 

specification of relevant aspects of the data generating process (DGP) – e.g. the 

                                                 
1
 Applications of the 2PM are too numerous to list.  Since (Duan et al. 1983), 2PMs have 

been conducted in a wide range of health care and service research recently (Burney et al. 

2016, Hyun et al. 2016, Li et al. 2016, Liu et al. 2010, Madden 2008, Morozumi and Ii 

2006, Buntin and Zaslavsky 2004, Ross and Chaloupka 2003, and Bradford et al. 2002).  

There are also numerous applications of the 2PM in health related fields, like medical 

research and biostatistics (Fang et al. 2017, Taylor and Pollard 2009, Kim and Muthén 

2009, and Han and Kronmal 2006).  2PM is also a commonly used framework in many 

other applied economics literature such as agricultural economics (Chang and 

Meyrhoefer 2016 and Hertz 2010), demographic economics (Gurmu and Trivedi 1996), 

tourism economics (Arulampalam and Booth 1997), and financial economics (see Brown 

et al. 2015 and J.S. Ramalho and Silva 2009). 



 

2 

probability density function (pdf) [or, the probability mass function (pmf)] of the 

observed outcome of interest conditional on a vector of observed covariates; or, the 

conditional mean of the outcome.  Here we diverge from usual practice by commencing 

the modeling discussion at a deeper level – in the potential outcomes (PO) framework.  

By beginning the modeling at the PO level, we can clearly and rigorously specify the 

parameter of interest (the estimation objective of most applied economic research) in a 

way to ensure that it is CI. 

 Secondly, we propose a very general fully parametric 2PM (FP2PM) framework 

for the PO and DGP that encompasses all continuous and count-valued outcome studies 

found in the literature.  Within this encompassing framework, we specify very general 

and flexible versions of the EM and IM for both the continuous and count-valued cases.  

Moreover, our proposed framework obviates the “cake debates”
 2

 of the early and mid-

1980’s. 

 Third, not only does our PO-based framework allow us to clearly specify the 

targeted counterfactual CI parameter of interest, but it also provides a context where to 

derive the requisite conditions under which this parameter can be consistently estimated 

using the observable data (via the appropriately specified DGP).  By the same token, 

these conditions ensure that the estimation results are CI.  We note that said conditions 

                                                 
2
 “Cake debates” refers to a thread of econometrics literature debating on the relative 

strengths and weaknesses of two frequent approaches dealing with limited dependent 

variables: the Sample Selection Model by Heckman (1976, 1979) and the 2PM by Duan 

et al. (1983, 1984, 1985). The studies are not conclusive in the literature, however the 

simulation results slightly favor the 2PM (see Dow and Norton 2003, Leung and Yu 

1996, Jones 1989, Manning, Duan and Rogers 1987, Hay, Leu and Rohrer 1987 and Hay 

and Olsen 1984). This paper does not attempt to further discuss the “cake debates” but 

the general framework provided here incorporates both models. A brief note on “cake 

debates” can be found in Appendix I. 
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are not generally satisfied but are seldom discussed.  Thus, this aspect of our analysis 

constitutes an important contribution to applied research in health economics. 

 Finally we note that, although there has been much discussion in the literature 

regarding statistical testing and inference in the 2PM context, there has been virtually no 

attention paid the most important of all to the relevant null hypotheses:
 3

 

 0H : No substantive EM/IM distinction – a two-part structure is not needed. 

Within our general modeling and estimation framework, as an extension of the approach 

by Mullahy (1986), we devise a relatively simple test of the above null hypothesis. 

 The remainder of the dissertation is organized as follows. 

 In Chapter 2, we cast the 2PM in the PO context and thereby explicitly specify the 

targeted counterfactual CI policy effect parameter of interest.  We propose a general 

FP2PM PO framework, which is very flexible, can be used for both continuous and 

count-valued outcomes, and allows for an easy-to-implement statistical test on 2PM 

specification in empirical context ( oH  above).  We also specify two commonly 

encountered policy effect parameters [average incremental effect (AIE) and average price 

elasticity of demand (AED)] in the FP2PM. 

 In Chapter 3, we detail the conditions under which the counterfactual CI 

parameters of interest (here, AIE and AED) can be estimated with observed (factual) data 

using the appropriately specified DGP.  Therein we also show that the conventional 

                                                 
3
 There are some other tests proposed in the 2PM context.  Examples include Taylor and 

Pollard (2009)’s test on equality of two distributions in the 2PM setting, Santos Silva and 

Winmeijer (2001)’s test on single spell hypothesis, and Leung and Yu (1996)’s test on 

model choice between Sample Selection Model and 2PM.  But none of them explicitly 

considers the misspecification issue of the 2PM structure.  The misspecification test 

proposed by Mullahy (1986) in the count-valued data is an exception, however, the 

Mullahy’s test was not paid much attention by the literature. 
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versions of the FP2PM for the continuous outcomes and the count-valued can be cast as 

special cases of our general framework.  We also offer details for the very general 2PM 

versions for both the continuous and count-valued cases (models that accommodate the 

likelihood flexibility in the continuous case and omni-dispersion in the count-valued 

case).  Along with four conventional FP2PM, this chapter concludes with formulations 

for the key conditional mean functions corresponding with the general model and all of 

its aforementioned particular versions (the conventional and flexible models for the 

continuous and count-valued cases). 

 Chapter 4 details the affordable likelihood ratio test on the 2PM specification as 

oH  above.  In order to develop the test, we propose four versions (2 cases for continuous 

outcomes and 2 cases for count-valued outcomes) of the general FP2PM PO framework 

assuming there is no structural difference between the EM and IM (NSD).  The FP2PM 

with the NSD assumption allows for the 2PM specification, however, the relative 

robustness of these models remains unclear.  We make use of several simulation studies 

to provide the evidence that imposition of the FP2PM with NSD does not materially 

affect the estimation of policy effect parameters.  At the end of the chapter, we cast the 

2PM specification test for count-valued outcomes by Mullahy (1986) into our FP2PM 

with NSD and extend the test to continuous case.   

 Chapter 5 illustrates the aforementioned models, methods, and testing protocols in 

the context of estimating price effects on the demand for alcohol using a real dataset. 

 Chapter 6 summarizes and concludes the dissertation. 
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Chapter 2. 

The Fully Parametric Two-Part Model (FP2PM) and Causal Inference 

in the Potential Outcomes (PO) Framework 

 The main motivation for nearly all empirical economic research is to provide 

scientific evidence that can be used to assess past, current, and future policy.
4
  Essential 

to such assessments is the rigorous specification and accurate estimation of parameters 

that characterize the causal relationship between a policy variable of interest, which to 

some degree is (or can be brought) under the control of a policy maker, and a specified 

outcome of policy interest.  The PO framework which takes account of the counterfactual 

nature of such effect analyses provides a means of clearly and coherently defining the 

relevant parameters such that they are causally interpretable. 

 This chapter will present the general PO framework and give examples of two CI 

parameters that are relevant estimation objectives in a variety of empirical contexts.  We 

then show how these counterfactual parameters can be rewritten so as to make them 

amenable to estimation via observable (factual) data.  Next, the details of general PO 

framework as it pertains to 2PM are given for the continuous and count-valued outcome 

versions of the model.  For each of these versions, the conventional specification is 

shown to be a special case of the general framework.  We also detail flexible variants of 

the continuous and count-data models (a flexible likelihood specification for continuous 

outcomes and an omni-dispersed specification for count-valued models).  The 

overarching goal of this chapter is the specification of the key conditional mean function 

to be implemented in rewriting the relevant CI parameter in a way that makes it estimable 

                                                 
4
 We use the term policy very broadly to mean any exogenous action taken by an 

economic agent aimed at achieving a specified effect.  
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using observable data (as mentioned earlier).  The chapter concludes by offering a very 

general statistic, based on this conditional mean formulation, which is consistent for the 

CI parameter of interest.  The implementation of this statistic, however, is predicated on 

the existence of a consistent estimator for the “deep” parameters of the underlying 2PM.  

Consistent estimation of such deep parameters in the context of 2PM is the subject of 

Chapter 3. 

 

2.1 Specifying the Parameter of Interest in the PO Framework
5
 

 The focus here are the rigorous specification and the accurate estimation, in a 

2PM context, of a parameter that characterizes the causal relationship between a policy 

variable of interest (
pX ), which to some degree is (or can be brought) under the control 

of a policy maker, and a specified outcome of policy interest (Y ).
6
  In 2PMs, it is typical 

that the observed data on Y  is characterized by a large proportion of zeros and it is 

reasonable to believe that the component of the structural model and data generating 

process (DGP) pertaining to such null values is distinguishable from the other aspects of 

the model and DGP.  Later, to illustrate our proposed methods and tests, we consider the 

case in which Y  is beer consumption and pX  is the market price of beer.  Because there 

is a substantial proportion of individuals in the population who do not drink beer and 

because the decision and motivation to be a beer drinker (or non-drinker) may be 

systematically distinguishable (i.e., modeled differently from the decision as to how 

                                                 
5
 See Terza (2018) for a detailed and more general discussion of the potential outcomes 

framework. 
6
 
pX  and Y are to be taken as global replacements for the phrases “policy variable of 

interest” and “outcome of policy interest”, respectively. 
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much beer to drink if one is a beer drinker), the alcohol demand analysis is best cast in a 

2PM context. 

 We first draw the distinction between two versions of pX :
7
 

 pX  ≡ the random variable representing the observable (factual) version of the 

distribution of pX  (sampled values of the policy variable are drawn from the distribution 

of pX ) 

and, 

 
*
pX  ≡ the random variable representing the hypothetical (counterfactual) 

exogenously mandated version of the distribution of pX  that might result from a policy 

intervention (
*
pX  is, by design, independent of all other variates germane to the present 

discussion).
 8

 

 Likewise, we distinguish two versions of Y : 

 Y ≡ the random variable with support of [0, ∞) representing the factual version of 

the distribution of Y  (the sampled values of the outcome are drawn from the distribution 

of Y) 

and, 

                                                 
7
 Henceforth, we will adhere to the following notational conventions: (1) uppercase 

letters for random variables (e.g., A, B, Z); (2) lowercase letters for particular values in 

the support of the random variable in a specific question (e.g., a, b, z); and (3) uppercase 

letters with a subscript “i” for the sampled version of the random variables in a specific 

question (e.g. Ai, Bi, Zi with i = 1, …, n indicating the i
th

 observation from a sample of 

size n). 
8
 In the present context, we use the term counterfactual in reference to random variables 

that are not able to be, to some extent, observed. 
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 *
pX

Y  ≡ the random variable with support of [0, ∞) representing the distribution of 

potential outcome, defined as the distribution of values of Y  that would have manifested 

for a particular 
*
pX  (an exogenously mandated version of pX ). 

 Throughout the remainder of the discussion, we will explicitly and implicitly 

reference a hypothetical (counterfactual) policy intervention in which pX  is 

exogenously changed from 
pre
pX  to 

post
pX  (from pre-policy to post-policy).  Without loss 

of generality, we write 
post pre
p pX X Δ  , where Δ is an observable random variable 

representing the policy induced (i.e., exogenous) change in the distribution of pX  for the 

relevant population.  Note that 
pre
pX  and 

pre
pX Δ  are both specific versions of 

*
pX , 

therefore, they are independent of all other variates germane to the discussion.  So is Δ. 

 In our illustrative empirical analysis of alcohol demand presented in  Chapter 5, 

we will focus on the following two common causal parameters cast in the above PO 

framework: 

 average incremental effect of price on demand for alcohol (AIE)  

 

  pre pre
p pX Δ X

AIE(Δ) E[Y ] E[Y ]


       (1) 

 

and 

 average price elasticity of demand for alcohol (AED) 

 

  
pre
p

pre
p

X

E[X ]
AED(Δ) AIE(Δ)

E[Y ]
  .     (2) 
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Unfortunately, parameters defined like (1) and (2) cannot be estimated from data 

straightforwardly because both pre
pX

Y  and pre
pX Δ

Y


 are counterfactual; in other words, they 

do not represent observable statistical populations from which samples are drawn.  Let us 

suppose, however, that the continuous (count-valued) potential outcome *
pX

Y  has the 

following conditional probability density function [pdf] (probability mass function [pmf]) 

given a vector of observable covariates oX , 

 

 * *
* op pXp

*
o (Y |X ) p oX X

pdf (Y | X ) f (Y ,X ,X ; π)      (3) 

 

where, 
* oXp

(Y |X )f ( )  has a known form and π is a vector of unknown (or, “deep”) 

parameters.  It follows from (3) that 

 

 *
p

*
o p oX

E[Y | X ] m(X ,X ; π) .       (4) 

 

Note that the conditional mean function has a known form.  Using the law of iterated 

expectations as well as (4), we can rewrite (1) and (2) as 

 

 
pre pre
p o p oAIE(Δ) E[m(X Δ,X ;π)] E[m(X ,X ;π)]       (5) 

 

and 

 

  
pre
ppre pre

p o p o pre
p o

E[X ]
AED(Δ) E[m(X Δ,X ; )] E[m(X ,X ; π)]

E[m(X ,X ; π)]
     .  

           (6) 
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 We now introduce a very general 2PM framework which encompasses all the 

2PMs in the literature, and the estimation strategy for the counterfactual policy effect 

parameters (5) and (6) using observable data. 

 

2.2 The General FP2PM PO Framework: The Relevant Conditional Probability 

Density/Mass Function (pdf/pmf) and Corresponding Conditional Mean Function 

 To fix ideas and to motivate the formulation of our proposed general 2PM 

specification, we begin the discussion by casting the “classical” continuous 2PM of 

Cragg (1971) in the PO framework.  Here the EM and IM are specified, respectively, as: 

 

 *
pX

Y 0       iff 1
* EM
p 1p ooβ 0X β X ε     

           (7) 

 

 * *
p p

* IM
p 2p o 2oX X

ln(Y )|Y 0 X X β εβ     iff 1
* EM
p 1p ooβ 0X β X ε     

           (8) 

 

where,   * *
p pX X

ln(Y )|Y 0  denotes the log of the observed strictly positive outcome 

values, i.e.,  * *
p pX X

ln(Y )|Y 0  is defined if and only if 1
* EM
p 1p ooβ 0X β X ε   ; 

1 1p 1oβ [β β ]   and 2 2p 2oβ [β β ]   are vectors of coefficient parameters; and, 
EM

o(ε | X )  

and 
IM

o(ε | X )  have known distributions.  Typically, 
EM

o(ε | X ) is assumed to be standard 

normally distributed and 
IM

o(ε | X )  is taken to be normally distributed with mean of 0 

and variance of 
2σ .  Under these assumptions, the relevant specification for the potential 

outcome *
pX

Y  is, 
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*Xp

*
* o pXp

I(Y 0)
* *

(Y |X ) p o p 11p oX of (Y ,X ,X ; π) [1 X βΦ( β X )]


    

   
*Xp

*
p

1 I(Y 0)
* * 2
p 1p o ln p1o 2o2p oX

Φ(X β X ) φ (Y ; X β X ,σβ )β
 

     (9) 

 

where,  Φ(  ) denotes the cumulative distribution function (cdf) of the standard normal 

distribution, lnφ (a;b,c)  denotes the log-normal pdf with the argument a  and location and 

scale parameters of b  and c , and 
2

1 2π [β β      is the vector of parameters.  

Henceforth, we will refer to this model as the classical two-part model. 

 As stated in the introduction, one of the objectives of this paper is to find generic 

and very parametrically flexible two-part model specifications for the continuous and 

count-valued outcome cases that afford both easy parametric estimation and relatively 

simple tests of the one-part null hypothesis (i.e., 0H : A two-part structure is not needed).  

For example, in the continuous case we seek a very flexible generic specification for the 

pdf of the PO [made explicit in equation (3)] that nests a version of the model in which 

there is in some sense no substantive distinction between the EM and the IM (the so-

called “one-part” null model).  If we could construct such a “nestable” version of (3), 

then we would be able to apply a relatively simple likelihood ratio test of the one-part 

null hypothesis.  We note here that it is not possible to construct such a “nestable” 

version of (9).  This is probably why the question of testing the one-part null never arises 

in the context of applications of the classical two-part model. 

 With this main motivation, we propose a general and very flexible fully 

parametric 2PM (FP2PM) specification for (3) that, as we will later show, does nest a 

plausible one-part version and, therefore, affords a likelihood ratio test of the pertinent 
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null hypothesis.  Our proposed FP2PM generally applies to both continuous and count-

valued outcome models.  We will highlight specific differences between the continuous 

and count-valued cases as necessary. 

  

2.2.1 Extensive Margin (EM) 

 

 *
pX

Y 0    iff  U   *
EM o

EM *
EM p o EM(ζ |X )

(ζ , X , X ; τ )G   (10) 

 

where, U is uniformly distributed on the unit interval and  *
EM o

EM *
EM p o EM(ζ |X )

(ζ , X , X ; τ )G  is 

the conditional cdf of 
*
EMζ | oX , written as a function of 

*
EMζ , 

*
pX , oX , and the vector 

relevant parameters for the EM ( EMτ ), evaluated at EMζ  (an unobserved parametric 

threshold point), and (A|C)(A,B,C;ψ)G  denotes the cdf of A conditional on C, written as a 

function of A, B, C with a parameter vector, ψ. 

 

2.2.2 Intensive Margin (IM) 

 

 * *
p p

IMX X
(Y | Y ζ )  has the cdf *

p

IM*

X
(Y )G    iff   *

EM o

EM *
EM p o EM(ζ |X )

U (ζ , X , X ; τ )G  

           (11) 

 

where, *
p

IM*

X
(Y )G is a shorthand notation for 

 

 
* *
IM o p

*
* * IM o pX Xp p *

IM o

IM *
p o IM(ζ |X ) XIM* *

(Y | Y ζ ,X ) p o IM IM IM *X
IM p o IM(ζ |X )

(Y , X ,X ; τ )
(Y , X ,X ,ζ ; τ )

1 (ζ , X ,X ; τ )
 



G
G

G
. (12) 
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*
IM o

IM *
IM p o IM(ζ |X )

(ζ , X ,X ; τ )G  is the specified conditional cdf of 
*
IMζ  given oX , written as a 

function of IMζ , oX , and the vector of relevant parameters for the IM ( IMτ ); and IMζ  is a 

scalar.  When *
pX

Y  is continuous, IMζ  is an unknown parametric scalar.  When *
pX

Y  is 

count-valued, IMζ  is often set equal to 0.  Note that our specification of the IM [(11) and 

(12)] diverges slightly from that of the classical two-part model discussed above in that it 

is written in terms of a truncated continuous (count) pdf (pmf) whose truncation point is 

parametric and unknown.  The reason for such truncation will be made clear later in the 

discussion. 

 

2.2.3 Pdf (Pmf) of the Continuous (Count-Valued) PO 

 The relevant version of (3) then becomes 

 

 
*Xp

* *
* o p EM oXp

I(Y 0)
* EM *

(Y |X ) p o EM p o EMX (ζ |X )
f (Y ,X ,X ; π) (ζ , X , X ; τ )G     

   *
EM o

EM *
EM p o EM(ζ |X )

1 (ζ , X , X ;τ )G   

    

*Xp

* *
IM * IM o pXp

1 I(Y 0)

IM* *
p o IM IM(ζ | Y ,X ) X

(Y , X ,X , ; τ )G   

           (13) 

 

where, * *
IM * IM o pXp

IM* *
p o IM IM(ζ | Y ,X ) X

(Y , X ,X , ; τ )G  denotes the continuous pdf (count pmf) 

corresponding to *
IM * IM oXp

IM* * *
IM p o IM IM(ζ | Y ,X )

(ζ , X ,X , ; τ )G  evaluated at *
pX

Y  for *
p

IMX
Y

; i.e., 
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* *
IM * IM o pXp

* *
IM * IM o pXp *

IM o

IM *
p o IM(ζ |Y ,X ) X

IM* *
p o IM IM IM *(ζ | Y ,X ) X

IM p o IM(ζ |X )

(Y , X ,X ; τ )

(Y , X ,X , ; τ )
1 ( , X ,X ; τ )

G
G

G
.  

           (14) 

 

* *
IM * IM o pXp

IM *
p o IM(ζ |Y ,X ) X

(Y , X ,X ; τ )G  is the continuous pdf (count pmf) corresponding to 

*
IM o

IM * *
IM p o IM(ζ |X )

(ζ , X ,X ; τ )G  evaluated at *
pX

Y  for *
p

IMX
Y .  Later we will give 

conditions under which (13) affords a version that comports with an one-part version of 

the model so that a straightforward likelihood ratio test of the “key” null hypothesis can 

be applied. 

 

2.2.4 Conditional Mean Function for the PO 

 In the continuous case we have 

  

 *
p

*
o p oX

E[Y | X ] m(X , X ; π)  

 

  
* * * *
p IM o p p

IM
*
EM o

*
IM o

IM *
p o IMX (ζ |X ) X X

ζEM *
EM p o EM IM *(ζ |X )

IM p o IM(ζ |X )

Y (Y , X ,X ; τ )dY

1 (ζ , X , X ; τ )
1 (ζ , X ,X ; τ )



 

  


G
G

G
 

           (15) 

 

whereas in the count-valued case 

 

 *
p

*
o p oX

E[Y | X ] m(X , X ; π)  

   
*
p

*
EM o

*
IM o

oXEM *
EM p o EM IM *(ζ |X )

p o IM(ζ |X )

E[Y | X ]
1 (ζ , X , X ;τ )

1 (0, X ,X ; τ )

 
  
 
 

G
G

 (16) 
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noting that 

 

 * *
p IM o

IM *
o p o IMX (ζ |X )

1

E[Y | X ] ( , X ,X ; τ )





  

a
a G a . 

 

2.2.5 Conventional Two-Part Model 

 

 We refer to the case, in which (10) through (16) hold and it assumes that 

 

 *
EM o

EM * *
EM p o EM p p1 o o1(ζ |X )

(ζ , X , X ; τ ) = 1 Φ(X β X β ) G    (17) 

 

as the conventional two-part model, where, Φ(  ) denotes the standard normal cdf.  Note 

that this comports with the EM assumption of the classical continuous two-part model.  

In the conventional two-part model, the relevant versions of (13) and (16) are 

 

 
*Xp

*
* o pXp

I(Y 0)
* *

(Y |X ) p o p p1 o o1X
f (Y ,X ,X ; π) [1 Φ(X β X β )]    

  

*Xp

* *
IM * IM o pXp

1 I(Y 0)

* IM* *
p p1 o o1 p o IM IM(ζ | Y ,X ) X

× Φ(X β X β ) (Y , X ,X , ; τ )G   

           (18) 

 

and 

 

 *
p

*
o p oX

E[Y | X ] m(X , X ; π)  

  

* * * *
p IM o p p

IM

*
IM o

IM *
p o IMX (ζ |X ) X X

ζ*
p p1 o o1 IM *

IM p o IM(ζ |X )

Y (Y , X ,X ; τ )dY

Φ(X β X β )
1 (ζ , X ,X ; τ )



 

  


G

G
 (19) 

 

whereas for the count-valued case, from (16), we get 

 

 *
p

*
o p oX

E[Y | X ] m(X , X ; π)  
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*
p

*
IM o

oX*
p p1 o o1 IM *

p o IM(ζ |X )

E[Y | X ]
Φ(X β X β )

1 (0, X ,X ; τ )

 
  
 
 

G
.   (20) 

 

2.2.6 Examples   

 

 Two examples of the conventional two-part model may help fix ideas. 

 

 

Continuous Outcome Conventional Two-Part Model – Log-Normal IM: 

 

 Here we specify the relevant pdf as in (18) with 

 

 * *
IM * IM o pXp

IM *
p o IM(ζ |Y ,X ) X

(Y , X ,X ; τ )G  

 

  *
p

* 2
ln p p2 o o2 2X

= φ (Y ;X β X β ,σ )  

   *
p

*
p

2
*
p p2 o o22 X2

22X

1 1
exp ln Y (X β X β )

2σY 2πσ

 
    

 
  (21) 

and 

 

 *
IM o

*
IM p p2 o o2IM *

IM p o IM(ζ |X )
2

ln(ζ ) (X β X β )
(ζ , X ,X ; τ ) Φ

σ

  
  

 
 

G .  (22) 

 

The relevant version of the conditional mean in (19) is
9
 

 

 *
p

*
o p oX

E[Y | X ] m(X , X ; π)  

  

2
* 2 IM
p p2 o o2 2

2*
p p1 o o1 *

IM p p2 o o2

2

σ ln(ζ )
exp X β X β 1 Φ σ

2 σ
Φ(X β X β )

ln(ζ ) (X β X β )
1 Φ

σ

    
       

      
  

  
 
 

. 

           (23) 

                                                 
9
 See Lemma 1 through Lemma 3 in the Appendix II for derivation of (23). 



 

17 

 

Count-Valued Outcome Conventional Two-Part Model – Poisson IM: 

  

 Here we specify the relevant pmf as in (18) with 

 

  

 * *
IM * IM o pXp

IM *
p o IM(ζ |Y ,X ) X

(Y , X ,X ; τ )G  

 

  *
p

*
p o 2X

= poi(Y ,X ,X ; )  

  

*Xp

*
p

Y

2 2

X

exp( )

Y !

 
        (24) 

 

where, 
*

2 p p2 o o2exp(X X )      and 

 

 *
IM o

IM * *
p o IM p o 2 2(ζ |X )

(0, X ,X ; τ ) poi(0,X ,X ; ) exp( )   G .   (25) 

 

The relevant version of the conditional mean in (20) is 

 

 *
p

*
o p oX

E[Y | X ] m(X , X ; π)  

  
* 2
p p1 o o1

2

Φ(X β X β )
1 exp( )

 
   

  
.    (26) 

 

2.2.7 The Generic Two-Part PO Specification Revisited 

 The generic FP2PM specification detailed in section 2.2.1 and 2.2.2 above can be 

summarized in an instructive and useful way as follows. 
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Continuous Outcome Models: 

 

 Based on (10), (11), and (12), for continuous *
pX

Y , we get 

 

  * *
p EM o

EM *
EM p o EMX (ζ |X )

Y I U (ζ , X , X ;τ ) G  

    EM *
* EM p o EM o(ζ |X )EM o

IM* 1 *
p o IM IM(U (ζ , X , X ;τ ),X )

(U, X ,X ,ζ ;τ )




G
G   

           (27) 

 

where, EM *
* EM p o EM o(ζ |X )EM o

IM* 1 *
p o IM IM(U (ζ , X , X ;τ ),X )

(U, X ,X ,ζ ;τ )

G
G  denotes the inverse of the cdf 

*
* * IM o pX Xp p

IM* *
(Y | Y ζ ,X ) p o IM IMX

(Y , X ,X ,ζ ; τ )G  whose main argument U  (unit uniform) is 

restricted to the interval  *
EM o

EM *
EM p o EM o(ζ |X )

(ζ , X , X ;τ ),X ), 1G . 

 

Count-Valued Outcome Models: 

 

 Based on (10), (11), and (12), for count-valued *
pX

Y , ( *
pX

Y 0, 1, 2, . . .,  ), we 

get 

 

 * *
p EM o

EM *
p o EMX (ζ |X )

Y j I (0, X , X ;τ )  G  

   *
EM o

EM *
p o EM(ζ |X )

1 (0, X , X ;τ ) G  

   
* *
IM o IM o

*
IM o

IM IM

M

IM * IM *
p o p o(ζ |X ) (ζ |X )

IM *
p o(ζ |X ) I

( , X , X ; ) ( Xj 1 τ )0 τ

0

, , X ;

1 ( , X , X ; )τ

 
 
 
 

G G

G
   

    *
EM o

EM *
p o EM(ζ |X )

(0, X , X ;τ )U  G  

    *
EM o

EM *
p o EM(ζ |X )

1 (0, X , X ;τ ) G  

    
* *
IM o IM o

*
IM o

IM * IM *
p o p o(ζ |X ) (ζ |X )

IM *
p o(ζ )

IM IM

I| MX

( , X , X ; ) ( , X ,j τ 0 τ

0 τ

X ; )

1 ( , X , X ; )

 
 
 

 

G G

G
 

           (28) 
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for j 1, 2, . . .,  . 

 As soon as we propose the FP2PM in (10), (11), and (13), it is worth mentioning 

that the general framework does not restrict the error terms in the EM and IM [like in (7) 

and (8)] to be jointly distributed (e.g., bivariate normal distribution), however, the 

framework allows the two error terms to have any specific distribution(s).  In addition, 

the general FP2PM allows for extent flexibilities of the EM and IM’s distributions, which 

are most likely unknown in applied research.  And thus, the general FP2PM framework 

eliminates the model selection concerns regarding “cake debate”.  Please refer to 

Appendix I for more details regarding the “cake debate”. 
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Chapter 3. 

Estimating Targeted Causal Parameters of Interest in the FP2PM PO Framework 

 Now we have the relevant functional forms for m(   ) in both the continuous and 

count-data versions of the FP2PM PO framework.  If we also have a consistent estimator 

for the vector of the “deep” parameters   (say, π̂ ), we will be able to consistently 

estimate (5) and (6) using their following sample analogs
10

 

 

 2 1
ˆ ˆAIE(Δ)  k k         (29) 

 

and 

 

 
p

2 1

1

Xˆ ˆAED(Δ) ( )
ˆ

 k k
k

       (30) 

 

where, 
n

1 pi oi
i 1

1ˆ ˆm(X , X ; π)
n

k , 
n

2 pi oi
i 1

1ˆ ˆm(X Δ, X ; π)
n

 k , and 
n

p pi
i 1

1
X X

n
 .  It is 

to the consistent estimation of the vector of deep parameters, π, which we now turn.  We 

begin our discussion by establishing conditions under which the PO pdf (pmf) in (13) 

implies a similar form for the DGP in the continuous (count-valued) case. 

 

3.1. Reconciling the PO with the Data Generating Process (DGP) in the FP2P Modeling 

Framework 

 Our first inclination here is to simply replace *
pX

Y  and 
*
pX  with Y and pX  

respectively in (13) for the continuous (count-valued) case, and then assume that the 

                                                 
10

 The asymptotic standard errors of (7) and (8) can be obtained using the approach of 

Terza (2017). 
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resultant conditional pdf (pmf) represents the true DGP.  In fact, in most applications of 

the 2PM, there is no discussion at all about the underlying PO framework and, therefore, 

no clear and rigorous specification given for the targeted causal parameter to be 

estimated.  In such applications, model specification simply begins with an assumed form 

for the true DGP.  This approach ignores the fact that a policy relevant causal parameter 

characterizes a counterfactual feature of interest and, therefore, can only be coherently 

specified in a counterfactual framework, like the PO framework.  Moreover, it fails to 

acknowledge the fact that the relevant PO, e.g., characterized as (13) in the FP2PM 

context, may not coincide with the true DGP under the aforementioned substitutions.  

Such coincidence between the relevant PO and the DGP holds only under certain 

conditions that can only be specified in the PO framework.  See Terza (2018) for a 

detailed discussion of said conditions.  Placing Terza’s (2018) discussion in the present 

context, we can show that these conditions are sufficient to ensure that given oX , *
pX

Y  

and pX  are conditionally independent.  This implies that the true DGP is 

 

 
* oXp

p o (Y | X ) p opdf (Y | X , X ) f (Y, X , X ; π)      (31) 

 

where, 
* oXp

(Y |X )f ( )  is defined as in (13).  Two points to be made in review: first, equation 

(31) only holds under conditions that are specified in the relevant PO framework; and 

second, 
* oXp

(Y | X )f ( )  is defined and specified in the relevant PO framework. 

 

  



 

22 

3.2 Full Information Maximum Likelihood Estimation of the Deep Parameters 

 We begin this section by detailing the generic log-likelihood function of the form 

 

 
* oXp

n

p o (Y | X ) i pi oi
i 1

L(π | Y,X ,X ,ζ) = ln f (Y ,X ,X ; π)



 
 
 

   (32) 

 

where, iY , piX  and oiX  are the values of Y, pX  and oX  observed for the i
th

 individual 

in the sample (for i = 1, ..., n) for the continuous and count-data cases that would follow 

from the appropriately specified versions of (31).  In each of these two relevant contexts, 

we also give the details of said log-likelihood functions for both the conventional version 

of the model and a more flexible specification.  We then turn to a discussion of causal 

effect estimation in each of these four cases, i.e., two for continuous data and two for 

count-valued outcome data. 

 

3.2.1 Log-Likelihood Function and Conditional Mean Function – Continuous Model 

 The generic log-likelihood function in the continuous case is based on the version 

of (31), in which 

 

 i
*

* o EM oXp

I(Y 0)EM
(Y | X ) i pi oi EM pi oi EM(ζ |X )

f (Y ,X ,X ; π) (ζ , X ,X ;τ )


G   

  *
EM o

EM
EM pi oi EM(ζ |X )

1 (ζ , X ,X ;τ )G  

   

i

*
IM * IM oXp

*
IM o

1 I(Y 0)
IM

i pi oi o IM(ζ |Y ,X )

IM
IM pi oi IM(ζ |X )

(Y ,X ,X ,X ; τ )

1 ( , X ,X ; τ )

G

G
.  (33) 
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As we will later show, EMζ  and IMζ  can be consistently estimated using the minimum 

order statistic for the sample values of Y at the extensive margin.
11

 

 

Case I: Continuous Conventional Two-Part Model with Probit EM and Log-Normal IM 

 Combining (18) with (21), under the requisite conditions (Terza, 2018), yields the 

following version of (33) 

 

 i

* oXp

I(Y 0)
(Y |X ) i pi oi pi p1 oi o1f (Y ,X ,X ; π) [1 Φ(X β X β )]


    

  

i

IM

1 I(Y 0)

2
ln [Y ζ ] i pi p2 oi 2

pi p1 oi o1
IM pi

2

o2

o o2p2 i

φ (Y ; X β X ,σ )
Φ(X β X β )

ln(ζ ) (X β X )
1 Φ

σ

β

β

 



 
 

  
   

   
  

(34) 

 

where, 
2

1 2 2π [β β σ ]    is the vector of parameters and 

 
IM

22
ln [Y ζ ] i pi p2 oi o2 2 i pi p2 oi o222

2i 2

1 1
φ (Y ;X β X β ,σ ) exp ln Y (X β X β )

2σY 2πσ


 
     

 
 

           (35) 

 

is the log-normal pdf with domain restricted to IMY ζ .  The relevant estimated 

conditional mean function for causal effect estimation is 

 

 pi oi
ˆm(X , X ; π)    

 

2
2 IM

pi p2 oi o2 2

2

pi p1 oi o1

IM pi p2 oi o2

2

ˆσ̂ ln(ζ )ˆ ˆ ˆexp X β X β 1 Φ σ
ˆ2 σ

ˆ ˆΦ(X β X β )
ˆ ˆ ˆln(ζ ) (X β X β )

1 Φ
σ̂

    
                  

   
    
  

 

           (36) 

                                                 
11

 Minimum order statistic refers to the smallest value in the sample. 
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where, 
2

1 2 2
ˆ ˆˆ ˆπ [β β σ ]    is the MLE estimator of π obtained via (34) and IMζ̂  is the 

minimum order statistic for the IM subsample on Y. 

  

Case II: Continuous Conventional Two-Part Model with Probit EM and Generalized 

Gamma IM 

 Here, under the requisite conditions (Terza, 2018), we replace the log-normal 

specification for the IM in (34) with the three parameter generalized gamma distribution 

(GG) to obtain 

 

 i

* oXp

I(Y 0)
(Y |X ) i pi oi pi p1 oi o1f (Y ,X ,X ; π) [1 Φ(X β X β )]


     

  

i

IM

1 I(Y 0)

[Y ζ ] i pi p2 oi 2 2

pi p1 oi o1

IM pi p2 oi 2 2

o2

o2

gg (Y ;X β X , κ ,σ )
× Φ(X β X β )

1 GG(ζ ;X β X , ,σβ κ )

β
 

 
 

   

   

           (37) 

 

where, 
2

1 2 2 2π [β β κ σ ]    ( 1 1p 1oβ [ ]     and 2 2p 2oβ [ ]    ) is the vector of 

parameters; [A a]gg (A;b,c,d)  denotes the pdf of a generalized gamma variate A with 

parameters b, c and d, and domain restricted to A a ; and GG(A; b, c, d) is the 

generalized gamma cdf with parameters b, c and d, evaluated at A.  Specifically, 

 

 
ν

i pi p2 oi 2 2o i i

2 i

2

ν
gg(Y ;X β X , κ ,σ ) exp[z ν u ]

σ Y νΓ(ν)
β     (38) 

 

and 

 



 

25 

 

p
IM i

IM pi p2 oi 2 2

p
IM i

o2

SG(ν, ( / α ) ) if p 0

GG( ;X β X , κ ,σ )

1 SG(ν, ( / α ) ) if p 0

 (39) 

 

where,
2ν | κ | , i i pi p2 oi o2 2z sign(κ)[log(Y ) (X β X β )] / σ   , i iu ν exp(|κ|z )  , 

pi p2 oi o2

i 1

p

exp(X β X β )
α






, 2

2

κ
p

σ
 , and SG(h, j)  denotes the cdf of the standard 

gamma distribution evaluated at h with shape parameter j, specifically 

 

 

j
h 1 t

0

t e dt

SG(h, j)
Γ(h)

 


  

 

[see (Yang 2016): Section 2.4.1].  The relevant estimated conditional mean function for 

causal effect estimation is 

 

 pi oi
ˆm(X , X ; π)  

  
* IMXp

IM

i [Y ] i pi p2 oi o2 2 2 i
ζ̂

pi p1 oi o1

IM pi p2 oi o2 2 2

ˆ ˆ ˆ ˆY gg (Y ;X β X β , κ ,σ )dY

ˆ ˆΦ(X β X β )
ˆ ˆ ˆ ˆ ˆ1 GG(ζ ;X β X β , κ ,σ )




 

 
  
  
 
 

 

  

           (40) 

 

where, 
2

1 2 2 2
ˆ ˆ ˆˆ ˆπ [β β κ σ ]    is the MLE estimator of π obtained via (37) and IMζ̂  is the 

minimum order statistic for the IM subsample on Y. 

 The three-parameter GG has been discussed and utilized in applied econometrics 

due to its high degree of model flexibility (Manning et al. 2005 and Liu et al. 2010).  
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Corresponding to different parameter configurations, the GG nests several common 

distributions, such as gamma, Weibull, exponential, and log-normal. 

 

3.2.2 Log Likelihood Function and Conditional Mean Function – Count-Data Model 

 The generic log-likelihood function in the count-data case is based on the version 

of (31), in which 

 

 i
*

* o EM oXp

I(Y 0)EM
(Y | X ) i pi oi EM pi oi EM(ζ |X )

f (Y ,X ,X ; π) (ζ , X ,X ;τ )


G   

  *
EM o

EM
EM pi oi EM(ζ |X )

1 (ζ , X ,X ;τ )G   

   

i

*
IM * oXp

*
IM o

1 I(Y 0)
IM

i pi oi o IM(ζ |Y 0,X )

IM
pi oi IM(ζ |X )

(Y ,X ,X ,X ; τ )

1 (0, X ,X ; τ )

G

G
  (41) 

 

recalling in this case that *
IM o

IM
i pi oi o IM(ζ |X )

(Y ,X ,X ,X ; τ )G  is a count-data pmf. 

 

Case III:  Count-Valued Conventional Two-Part Model with Probit EM and Poisson IM 

 Combining (18) with (24), under the requisite conditions (Terza, 2018), yields the 

following version of (41) 

 

 i

* oXp

I(Y 0)
(Y |X ) i pi oi pi p1 oi o1f (Y ,X ,X ; π) [1 Φ(X β X β )]


     

    

i1 I(Y 0)

[Y 0] i pi oi 2i

pi p1 oi o1

2i

poi (Y ,X ,X ; )
Φ(X β X β )

1 exp( )

 

  
  

  
 

           (42) 

 

where, 2i pi p2 oi o2exp(X β X β )   , 
2

1 2 2π [β β σ ]    ( 1 1p 1oβ [ ]     and 

2 2p 2oβ [ ]    ) is the vector of parameters and 
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iY

2i 2i
[Y 0] i pi oi 2i

i

exp( )
poi (Y ,X ,X ; )

Y !


 
       (43) 

 

is the Poisson pmf with domain restricted to Y 0 .  The relevant estimated conditional 

mean function for causal effect estimation is 

 

 
2i

pi oi pi p1 oi o1

2i

ˆ
ˆ ˆˆm(X , X ; π) Φ(X β X β )

ˆ1 exp( )

 
      

   (44) 

 

where, 
2

1 2 2
ˆ ˆˆ ˆπ [β β σ ]    is the MLE estimator of π obtained via (42), and 

2i pi p2 oi o2
ˆ ˆˆ exp(X β X β )   . 

 

Case IV: Count-Valued Conventional Two-Part Model with Probit EM and Conway-

Maxwell Poisson IM  

 Here, under the requisite conditions in (Terza, 2018), we replace the Poisson 

specification for the IM in (42) with the Conway-Maxwell Poisson (CMP) to obtain 

 

 i

* oXp

I(Y 0)
(Y |X ) i pi oi pi p1 oi o1f (Y ,X ,X ; π) [1 Φ(X β X β )]


     

  

i1 I(Y 0)

[Y 0] i pi p2 oi 2

p

o2

o2

pi p1 oi o1

i p2 oi 2

cmp (Y ;X β X ,σ )
× Φ(X β X β )

1 cmp(0;X β X ,σ )

β

β

 

 
 

   

  (45) 

 

where, 
2

1 2 2π [β β σ ]    ( 1 1p 1oβ [ ]     and 2 2p 2oβ [ ]    ) is the vector of 

parameters;  and [A a]cmp (A;b,c)  denotes the pmf of a Conway-Maxwell Poisson variate 

A with parameters b and c, and domain restricted to A a .  Specifically, 
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i

2

Y
2i

i pi oi 2i 2 σ
i 2i 2

cmp(Y ,X ,X ; ,σ )
(Y !) Z( ,σ )


 

 
     (46) 

 

where, 2i pi p2 oi o2exp(X β X β )   and 
2

j
2i

2i 2 σ
j 0

Z( ,σ )
( j!)







  .  Note also that for this 

random variable, 

 

 
2

2

j 1
2
σ

j 1

p o 2 j
2
σ

j 0

j

( j!)
Y X ,X

( j!)













 
 
     
 
 
 

.       (47) 

 

According to (Sellers et al. 2010), the mean function in (47) can be also approximated by 

 

 2

1

σ 2
p o 2

2

σ 1
Y X ,X

2σ


      .      (48) 

 

The relevant estimated conditional mean function for causal effect estimation is 

 

 

2

1

σ̂ 2
2i

2
pi oi pi p1 oi o1

22i 2

σ̂ 1ˆ
ˆ2σˆ ˆˆm(X , X ; π) Φ(X β X β )

1
1

ˆ ˆZ( ,σ )

 
  
 

   
 

 
 

.   (49) 

 

where, 
2

1 2 2
ˆ ˆˆ ˆπ [β β σ ]    is the MLE estimator of π obtained via (45) and 

2i pi p2 oi o2
ˆ ˆˆ exp(X β X β )   . 

 The CMP nests the standard Poisson distribution when 2σ 1 .  The data is over-

dispersed if 2σ 1 , and under-dispersed if 2σ 1 .  In addition, the limiting case of a 
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CMP includes two other common count-valued specifications: the Geometric distribution 

when 2σ 0  and 2λ 1 , and the Bernoulli distribution when 2σ   with probability 

of 2

2

λ

1 λ
.  The fact that the Poisson is nested in the CMP allows for a simple statistical 

test of whether or not the specification varies significantly from the standard Poisson.  

Another advantage of using the CMP distribution in the IM is that the CMP is 

theoretically unlimited in the range of dispersion, and is even to model binary outcomes, 

which gives it an unmatched flexibility among fully parametric models. 
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Chapter 4. 

Testing the Non-Two-Part Model Null 

 There is a vast literature on model specification testing in the 2PM setting.  

Nearly all of it, however, focuses on testing the 2PM specification against the classical 

sample selection model of Heckman (1976).
12

  By the same token, this literature virtually 

ignores what should be the key null hypothesis related to model selection in the 2PM 

context, viz. that a 2PM is not warranted in a particular empirical context ( 0H  as given in 

the Introduction above).
13

  Formally, 

 0H : The 2PM is not needed – special modeling consideration need not be given 

to the zero-valued outcomes.  

 AH :  The zeros warrant special consideration in modeling – as in the 2PM. 

 In this section, within the context of our general 2PM framework, we propose a 

statistical test of this key null.  In developing this test, we re-cast the approach of Mullahy 

(1986) for count-data models and extend it to accommodate models with continuous 

outcomes.  In all of the 2PM specifications considered above, we have assumed that the 

EM and IM have essentially distinct stochastic structures.  As background for the 

development of our proposed testing protocol, we first examine whether such a structural 

distinction is necessary.  We begin by defining the term no structural difference (NSD) in 

reference to the EM and IM in a 2PM. 

 

                                                 
12

 See the footnote 2 for a list of literature of tests in the 2PM context. 
13

 (Mullahy 1986) is an early paper that takes account of the misspecification of the 2PM 

specification but it has been virtually ignored. As far as we can find, (Arulampalam and 

Booth 1977) is the only paper which applies Mullahy’s misspecification test on the 2PM 

structure. 
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4.1 No Structural Difference between the EM and the IM (NSD) 

 We begin this section by recalling the generic form of the relevant log-likelihood 

function is given in (32), specific versions of which for continuous and count-valued 

outcomes would follow from the appropriately specified versions of (31).  In (33) [(41)], 

the generic version of the relevant pdf [pmf] underlying (32) for the continuous [count-

valued] case is given.  Cases I through Case IV detail various EM specifications for the 

conventional version of the 2PM (Probit IM).  In all of these cases, we see that the 

specifications for the EM and IM may differ both structurally and parametrically.  

Structural difference amounts the possibility that *
EM o

EM *
EM p o EM(ζ |X )

(ζ , X , X ; τ )G  in (13) 

may have a functional form that is different from that of *
IM o

IM *
IM p o IM(ζ |X )

( , X ,X ; τ )G .  

Similarly, parametric difference amounts to the possibility that in parametrization of 

(13), EMτ  may differ from IMτ . 

 In the remainder of this chapter, we explore the plausibility (robustness) of 

assuming that there is no structural difference (NSD) (but possibly parametric difference) 

between the EM and IM in both the continuous and count-data cases.  We begin by 

developing the NSD versions of all the specific continuous and count-data cases detailed 

above (continuous – Cases I and Case II; count-data – Case III and Case IV). 

 

4.1.1 Log-Likelihood Function and Conditional Mean Function – Continuous Outcome 

Model with NSD 

 The log-likelihood function for the generic NSD continuous case follows from the 

version of (33) in which 

 
o o

EM * IM *
( |X ) p o ( |X ) p o( , X ,X ; ) = ( , X ,X ; )a aG a b G a b     (50) 
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where, a denotes the argument of the function and b denotes the parameter vector.  We 

now detail the versions of (50) that correspond with Cases I and II discussed above. 

 

Case V: Continuous Two-Part Model with Log-Normal EM and IM (NSD) 

 Here, 
o

IM *
( |X ) p o( , X ,X ; )aG a b  in (50) is the cdf of a log-normal variate with 

location and scale parameters c and d in the parameter vector b [under the NSD 

condition (50), 
o

EM *
( |X ) p o( , X ,X ; )aG a b  has the same functional form].  Therefore, the 

distinction between the EM and IM in this case is purely parametric.  In the EM, the 

location parameter is 
o o

pi p1 oi o1X β X β  and the scale parameter is 
2
1σ .  Whereas in the IM, 

the location parameter is pi p2 o o2iX X ββ   and the scale parameter is 
2
2σ .  Here, (33) 

becomes 

 

   i

* oXp

I(Y 0)
† †

(Y |X ) i pi oi pi p1 oi o1f (Y ,X ,X ; π) 1 Φ(X β X β )


     

  IM

1 I(Y 0)

2
ln [Y ζ ] i pi p2 oi 2† †

pi p1 oi o1
I p

o2

i o2M p 2 oi

2

φ (Y ; X β X ,σ )
× Φ(X β X β )

ln(ζ ) (X β X )
1

β

β
Φ

σ

 



  
  

  
    
     

   

  

           (51) 

 

where, † 2
1 2 2π [β β σ ]   ( † † †

1 p1 poβ = [β β ] , 2 p2 o2β = [β β ] ,
† o
p1 p1 1β = β / σ  and 

†
poβ  is 

the same as 
o
po 1β / σ with the intercept term shifted by 1ln(ζ) / σ ).

14
  The relevant 

estimated conditional mean function for causal effect estimation is 

                                                 
14

 See Lemma 1 through Lemma 3 in the Appendix II for derivation of (51). 
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 pi oi
ˆm(X , X ; π)  

 

2
2 IM

pi p2 oi o2 2

2† †
pi p1 oi o1

IM pi p2 oi o2

2

ˆσ̂ ln(ζ )ˆ ˆ ˆexp X β X β 1 Φ σ
ˆ2 σ

ˆ ˆΦ(X β X β )
ˆ ˆ ˆln(ζ ) (X β X β )

1 Φ
σ̂

    
                  

   
    
  

 

           (52) 

 

where, † 2
1 2 2

ˆ ˆˆ ˆπ [β β σ ]   is the MLE estimator of π obtained via (51) and IMζ̂  is the 

minimum order statistic for the IM subsample on Y. 

 

Case VI: Continuous Two-Part Model with Generalized Gamma EM and IM (NSD) 

 

 Here, 
o

IM *
( |X ) p o( , X ,X ; )aG a b  in (50) is the cdf of a generalized gamma variate with 

two shape parameters of c and d, and one scale parameters of e in the parameter vector 

b [under the NSD condition (50), 
o

EM *
( |X ) p o( , X ,X ; )aG a b  has the same functional form].  

Therefore, as in Case V, the distinction between the EM and IM in this case is purely 

parametric.  For reasons that will become clear subsequently, we begin the discussion in 

this section at the level of the PO.  In this case, the pdf of the PO, given in general form 

as in (13), is 

 

 
*Xp

*
* o pXp

I(Y 0)
* *

(Y |X ) p o EM p p1 o o1 1 1X
f (Y ,X ,X ; π) GG( ;X β X β , κ ,σ )     

   *
EM p p1 o o1 1 11 GG( ;X β X β , κ ,σ )   

    

*
* IM *pX Xp p

*
[Y ] p p2 o 2 2 1 I(Y 0)

p

o2

o

X

*
IM p 22 o 2 2

gg (Y ;X β X , κ ,σ )

1 GG( ;X β X , κ ,σ )
 

           (53) 
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where 
2 2

1 2 1 1 2 2π [β β κ σ κ σ ]    ( 1 1p 1oβ [ ]     and 2 2p 2oβ [ ]    ) is the vector 

of parameters; the EM shape and scale parameters are 
*
p p1 o o1X β X β , 1κ  and 1σ , 

respectively; and the IM shape and scale parameters are pi p2 o o2X β X β , 2κ  and 2σ , 

respectively.  The relevant conditional mean function for causal effect specification is 

 

 *
p

*
o p oX

E[Y | X ] m(X , X ; π)  

   *
EM p p1 o o1 1 11 GG(ζ ;X β X β , κ ,σ )    

   

* * *
* IMp p pXp

IM

*
[Y ζ ] p p2 o 2 2 iX X X

ζ̂

*
I 2

o2

o2M p p2 o 2

Y gg (Y ;X β X , κ ,σ )dY

β1 GG(ζ

β

;X β X , κ ,σ )




 

 
 
  
 
 

. (54) 

 

We postpone the further discussion of this case until section 4.2, in which we discuss the 

robustness of the NSD condition (50) in the various cases. 

 

4.1.2 Log-Likelihood Function and Conditional Mean Function – Count-Valued Outcome 

Model with NSD 

 Here, as in the previous section, the log-likelihood function for the generic NSD 

continuous case follows from the version of (33) in which the condition in (50) holds. 

 

Case VII: Count-Data Two-Part Model with Poisson EM and IM (NSD) 

 Here, 
o

IM *
( |X ) p o( , X ,X ; )aG a b  in (50) is the cdf of a Poisson variate a with location 

parameter b.  [under the NSD condition (50), 
o

EM *
( |X ) p o( , X ,X ; )aG a b  has the same 

functional form].  Therefore, the distinction between the EM and IM in this case is purely 
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parametric.  In the EM, the location parameter is 1 pi p1 oi o1exp(X β X )β   ; and in the 

IM, the location parameter is 2 pi p2 oi o2exp(X β X )β   .  Here, (33) becomes 

 

 i

* oXp

I(Y 0)
(Y |X ) i pi oi 1if (Y ,X ,X ; π) exp( )


   

   
i1 I(Y 0)

[Y 0] i pi oi 2i

1i

2i

poi (Y ,X ,X ; )
1 exp( )

1 exp( )

 

  
   

  
   (55) 

 

where, 1 2π [β β ]    ( 1 1p 1oβ [ ]     and 2 2p 2oβ [ ]    ) is the vector of parameters.  

The relevant estimated conditional mean function for causal effect estimation is 

 

   2i
pi oi 1i

2i

ˆ
ˆˆm(X , X ; π) 1 exp( )

ˆ1 exp( )

 
       

    (56) 

 

where, 1 2
ˆ ˆπ̂ [β β ]    is the MLE of π obtained via (55), 1i pi p1 oi o1

ˆ ˆˆ exp(X β X β )   and 

2i pi p2 oi o2
ˆ ˆˆ exp(X β X β )   .

15
 

 

Case VIII: Count-Data Two-Part Model with Conway-Maxwell Poisson EM and IM 

(NSD) 

 Here, 
o

IM *
( |X ) p o( , X ,X ; )aG a b, c  in (50) is the cdf of a Conway-Maxwell Poisson 

variate a with location parameter b and dispersion parameter c [under the NSD 

condition (50), 
o

EM *
( |X ) p o( , X ,X ; )aG a b, c  has the same functional form].  Therefore, the 

distinction between the EM and IM in this case is purely parametric.  In the EM, the 

location and dispersion parameters are 1i pi p1 oi o1exp(X β X )β    and 1σ , respectively; 

                                                 
15

 This is the model considered by Mullahy (1986). 



 

36 

and in the IM, the location and dispersion parameters are 2i pi p2 oi o2exp(X β X )β    and 

2σ , respectively.  Here, (33) becomes  

 

 i

* oXp

I(Y 0)
(Y |X ) i pi oi pi oi 1i 1f (Y ,X ,X ; π) cmp(0;X ,X , ,σ )


    

   
i1 I(Y 0)
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1 cmp(0;X ,X , ,σ )

 

 
   

   

  

   

iI(Y 0)

1 1

1

Z( ,σ )


 

  
 

  

    

i1 I(Y 0)

[Y 0] pi oi 2i 2

1 1

2 2

cmp (Y;X ,X , ,σ )1
1

Z( ,σ ) 1
1

Z( ,σ )

 



  
  

                   

  

           (57) 

 

where, 1 2 1 2π [β β σ σ ]    ( 1 1p 1oβ [ ]     and 2 2p 2oβ [ ]    ) is the vector of 

parameters.  The relevant estimated conditional mean function for causal effect 

estimation is 

 

 

2

1

σ̂ 2
2i

2
pi oi

1i 1

2i 2

σ̂ 1ˆ
ˆ2σ1

ˆm(X , X ; π) 1
ˆZ( ,σ ) 1

1
ˆ ˆZ( ,σ )

 
  

   
            

   

   (58) 

 

where, 1 2 1 2
ˆ ˆˆ ˆ ˆπ [β β σ σ ]    is the MLE estimator of π obtained via (57),  

1i pi p1 oi o1
ˆ ˆˆ exp(X β X β )    and 2i pi p2 oi o2

ˆ ˆˆ exp(X β X β )   . 
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4.2 Exploring the Robustness of Maintaining NSD 

 As the likelihood expressions in (51), (53), (55), and (57) clearly demonstrate, 

under the NSD assumption, the “no 2PM needed” null (the one-part model null) is nested 

in the general framework as the case in which the parameters of the EM and IM are set 

equal to each other.  We will later discuss the likelihood ratio test that follows naturally 

from this fact.  With a view to implementing this very simple test of the very important 

“no 2PM needed” null hypothesis, we here conduct a preliminary examination of the 

restrictiveness of the NSD assumption based on theoretical considerations and simulated 

data.  As a by-product of this analysis, we will develop and validate data generation 

software: Case VI in the continuous outcome context and Case IV for count-valued 

outcome models.  Moreover, we develop and test MLE software for Cases VI, IV, and 

VIII.  We begin by examining continuous two-part models. 

 

4.2.1 Robustness of NSD in a Continuous Two-Part Model: Case II vs. Case VI 

 We focus here on a comparison of Cases II (Probit EM – GG IM) and VI (GG 

EM and IM).  We will show there is no need for data simulation in making this 

comparison by showing that Case VI effectively nests Case II.  Thereby we show that the 

Case VI model (which imposes NSD) cannot possibly be restrictive.  We will, however: 

1) give full analytic details of an “approximate” MLE for Case VI; 2) develop Stata/Mata 

software for its implementation; 3) develop relevant (Case VI) data simulation software; 

4) assess the statistical consistency of our approximate MLE estimator/software (with 

regard to AIE estimation) by applying it to samples of increasing size produced by our 

simulation software. 
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Analytic Argument for Robustness of Case VI vis-a-vis Case II 

 Recall that the GG distribution nests the log-normal as a special case.  Therefore, 

if the NSD is imposed as in Case VI, we know that the corresponding GG EM 

specification is exactly amenable to (capable of representing) the log-normal EM 

specification as in the EM for Case V.  The EM specification in Case V is, however, 

identical in all relevant respects to the Probit EM specification in Case II.  Therefore, 

Case VI (NSD) is robust vis-a-vis Case II. 

 

Approximate MLE for Case VI 

 

 It is easy to see from (53) that 1κ  and 1σ  are unidentified parameters.  Moreover, 

an admissible reduction of the original parameter vector that effectively eliminates all 

“non-coefficient” parameters in the specification, does not appear to exist.
16

  We can, 

however, re-parameterize the model in a useful way.  Our focus here is on the EM for 

Case VI.  In particular, we seek to re-parameterize 

 

 *
p

* *
EM EM EM p p1 o o1 1 1X

Pr(Y 0) Pr(ζ ζ ) GG(ζ ;X β X β , κ ,σ )      

 

where, 
*
EM o(ζ | X )  is GG distributed with parameters 

*
p p1 o o1X β X β , 1κ  and 1σ , and cdf 

* *
EM p p1 o o1 1 1GG(ζ ;X β X β ,κ ,σ ) .  Let  

 

 
1

1

*
p p1 o o1

2
1

exp(X β X β )
α

1

| |








 
 
 

, 
2

1

1
ν 

  
 and 1

1

p





, 

                                                 
16

 See Terza (1985) for a discussion of admissible reductions. 
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and note that 

p
*
EMζ

α

 
 
 

is standard gamma distributed with shape parameter ν.  We have 

that 

 

 
*
EM EMζ ζ  

  

  

p p*
EM EMζ ζ

α α

   
   
  

. 

 

Now 

 

 

p p

EM EMζ ζ
exp ln

α α

     
             

 

  EMζ
exp p ln

α

  
   

  
 

    *
EM p p1 o o1exp pln(ζ ) p ln exp(X β X β ) ln(const)    

 
  

   *
EM p p1 o o1exp p ln(ζ ) p ln(const) p(X β X β )     

   *
EM p p1 o o1exp p[ln(ζ ) ln(const) (X β X β )]     

  
* o o
p p1 oi o1exp(X β X β )   
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where, 

1

1

σ

κ

2
1

1
const

κ

 
 
 
 

, 
o
p1 p1β pβ  and 

o
o1β  is the same as o1pβ  with its constant term 

shifted by EMp[ln(ζ ) ln(const)]  .  Therefore, we have 

 

 
* * * o o
EM EM EM p p1 o o1 1 1 p p1 o o1Pr(ζ ζ ) GG(ζ ;X β X β ,κ ,σ ) SG(exp(X β X β ); ν)       

           (59) 

 

where, SG(   ) denotes the cdf of the standard gamma random variable with shape 

parameter ν.  Given (59), we propose the following approximation to (53) 

 

 
*Xp

*
* o pXp

I(Y 0)
~ * * o o
(Y |X ) p o p p1 o o1X

f (Y ,X ,X ; π) SG(exp(X β X β ); 1)


      

     * o o
p p1 o o11 SG(exp(X β X β ); 1)     

    

*
* IM *pX Xp p

o2

o

*
[Y ζ ] p p2 o 2 2 1 I(Y 0)X

*
IM p p 22 o 2 2

gg (Y ;X β X , κ ,σ )

1 GG

β

β(ζ ;X β X , κ ,σ )

 




  


 

           (60) 

 

where, o 2
1 2 2 2π [β β κ σ ]   ( o o o

1 1p 1oβ [ ]     and 2 2p 2oβ [β ]  ) is the vector of 

parameters; 
* o o
p 1p o 1oX X    is the EM index and the IM parameters are 2

*
p op2 oX X ββ  , 

2κ  and 2σ , respectively.  We then base our approximate MLE on the following 

 

 i

* oXp

I(Y 0)~ o o
(Y |X ) i pi oi pi p1 oi o1f (Y ,X ,X ; π) SG(exp(X β X β ); 1)   

   
o o

pi p1 oi o11 SG(exp(X β X β ); 1)  

    

i

IM

1 I(Y 0)

[Y ] i pi p2 oi o2 2 2

IM pi p2 oi o2 2 2

gg (Y ;X β X β , κ ,σ )

1 GG( ;X β X β , κ ,σ )
. (61) 
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The relevant estimated conditional mean function for causal effect estimation is 

 

  o o
pi oi pi p1 oi o1

ˆm(X , X ; π) 1 SG(exp(X β X β ); 1)    

  
* IMXp

IM

i [Y ζ ] i pi p2 oi o2 2 2 i
ζ̂

IM pi p2 oi o2 2 2

Y gg (Y ;X β X β , κ ,σ )dY

ˆ1 GG(ζ ;X β X β , κ ,σ )




 

 
 
  
 
 

  (62) 

 

where, o 2
11 2 2 2

ˆ ˆ ˆˆ ˆπ [β β κ σ ]   is the approximate MLE estimator of π obtained via (61) 

and IMζ̂  is the minimum order statistic for the IM subsample on Y. 

 

Simulating Case VI Data 

 An issue here is the statistical consistency of the AIE estimator based on (29), 

(60), and (62).  Although we conjecture that this estimator is indeed consistent, we do not 

(as yet) have formal proofs.  For this reason, we developed Stata/Mata code to simulate 

data for the true Case VI model.  The protocol for the simulator is as follows: 

 1)  Choose values for the elements of the parameter vector     

  
2 2

1 2 1 1 2 2π [β β κ σ κ σ ]    ( 1 1p 1oβ [ ]     and 2 2p 2oβ [ ]    ) 

  and 

  IM . 

 2) Generate a sample of simulated data on pX  and oX ; each assumed to be 

uniformly distributed with means and variances chosen as part of the sampling design. 

 3) Generate a sample of outcomes at the extensive margin (Y = 0 or not) using 

   EM p p1 o o1 1 1EM I U GG(ζ ;X β X β , κ ,σ )    
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 4) Complete the construction of the simulated sample by generating a subsample 

of Y values at the IM (i.e., only for those whose EM = 1). 

 

 This last step warrants some discussion because these IM values of Y must be 

drawn from an appropriately specified truncated GG distribution.  Recall equation (39) 

from which it follows that (for the case in which 2 2/  > 0) 

 

  
1

1 1
p

p p2 o o2 2 2GG ( ; X β X β , , ) α SG ; ν,1  
     

 
P P    (63) 

 

where, P is a value in the unit interval 

 

 
2

2

p p2 o o2

2
2

exp(X β X β )
α

1

| |








 
 
 

, 
2

2

1
ν 

  
, 2

2

p





. 

 
1GG ( ; ) c, d, eP  represents the inverse cdf of the GG cdf with parameters c, d, and e 

evaluated at P.  Now recall that (in a shorthand version of our notation above) 

 

 IM[ζ Y] p p2 o o2 2 2*
p p2 o o2 2 2

IM p p2 o o2 2 2

GG (Y; X β X β , , )
GG (Y; X β X β , , )

1 GG(ζ ; X β X β , , )

   
   

   
 (64) 

 

where, 
*GG (Y; ζ)c, d, e,  denotes the cdf of the GG with parameters c, d, and e 

truncated at ζ; and GG(Y; )c, d, e represents the cdf of the GG with parameters c, d, and 

e.  Now (64) implies that we can generate a truncated GG random variable Y based on 
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IMIM p p2 o o2 2 2 [ζ Y] p p2 o o2 2 2[1 GG(ζ ; X β X β , , )] U[0, 1] GG ( ; X β X β , , )        Y . 

           (65) 

 

Ultimately, we want to be able to use 
1GG ( ; ) c, d, eP  to generate the desired random 

variate, but not 
1

[ζ Y]GG ( ; )
 c, d, eP .  With this in mind, note that adding 

IM p p2 o o2 2 2GG(ζ ; X β X β , , )    to both sides of (65), we get 

 

 IM p p2 o o2 2 2 IM p p2 o o2 2 2[1 GG(ζ ; X β X β , , )] U[0, 1] GG(ζ ; X β X β , , )          

   

  [ζ Y] p p2 o o2 2 2 IM p p2 o o2 2 2GG ( ; X β X β , , ) + GG(ζ ; X β X β , , )      Y  

           (66) 

 

but 

 

 [ζ Y] p p2 o o2 2 2 IM p p2 o o2 2 2GG ( ; X β X β , , ) + GG(ζ ; X β X β , , )      Y .  

   p p2 o o2 2 2= GG( ; X β X β , , )  Y .     (67) 

 

Therefore, based on (66) and (67), we have 

 

IM p p2 o o2 2 2 IM p p2 o o2 2 2[1 GG(ζ ; X β X β , , ))] U[0, 1] GG(ζ ; X β X β , , )           

  p p2 o o2 2 2GG( ; X β X β , , )   Y , 

 

from which, it follows that the desired pseudo-random variate Y can be generated as 

 

  1
p p2 o o2 2 2GG A;X β X β , ,   Y .     (68) 
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where, 

IM p p2 o o2 2 2 IM p p2 o o2 2 2A [1 GG(ζ ; X β X β , , )] U[0, 1] GG(ζ ; X β X β , , )           

and  1GG ; , ,
is defined as in (63).  Therefore, to complete Step 4 above, we need 

to 

 4-a) Generate a unit uniform (U[0,1]) for the full sample 

 4-b) Calculate A using the design parameters, pX , oX  and the unit uniform in 4-a 

 4-c) Generate Y for the full sample using (68) 

To complete the sample simulation, generate the full sample of Y values as 

 

 Y = EM × Y. 

 

Validating the Consistency of the Approximate MLE of the AIE Using Simulated Data 

 To validate the statistical consistency of the AIE estimator based on (29), (61) and 

(62), we simulated samples of increasing size using the data generator detailed in the 

previous section and applied the approximate MLE (AMLE) estimator of the AIE to each 

of them. 

 As for the sampling design, 1  and 1  for the GG distribution determining the 

EM are selected to be 4 and 1, and EM  is chosen to be 0.5.  It is not necessary to change 

the EM , 1  and 1  values for the EM in different sampling designs because, as is 

shown in the above discussion (Approximate MLE for Case VI) they are not individually 

identified.  Both pX  and oX  are drawn from the unit uniform distribution with mean of 1 
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and variance of 1.  1 2β  and β   are both set to be [0.5 0.5 0.25] .  However, the 

sampling design varies along three margins: 

 1) 4 sets of { 2 , 2 } pairs are used to determine the shape and scale of the 

truncated GG distribution and its other variants in the IM: 

  { 2 , 2 } = {1.5, 2} (truncated Generalized Gamma), 

  { 2 , 2 } = {2, 2} (truncated Gamma), 

  { 2 , 2 } = {1, 2} (truncated Weibull), 

  { 2 , 2 } = {0.1, 2} (truncated Log-normal); 

 2) 3 chosen IM  values in the IM determining the minimum order statistic of the 

outcome in the IM: 

  IM  = 0.1, 

  IM  = 1, 

  IM  = 10; 

 3) 9 sample sizes testing the estimation consistency of NSD models: 

  n = 1,000, 

  n = 2,500, 

  n = 5,000, 

  n = 10,000, 

  n = 25,000, 

  n = 50,000, 

  n = 100,000, 

  n = 250,000, 
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  n = 500,000. 

 

 Based on the above sampling design, we are going to conduct 4×3×9 = 108 

experiments.  In each experiment, we 

 1) Calculate the true AIE, which should be the same regardless of different 

sample sizes;  

 2) Estimate the deep parameters using 2PMs with NSD assumption; 

 3) Calculate the estimated AIEs, which are compared to the true AIE. 

The comparison criteria is Absolute Percentage Bias (APB) calculated by the following 

formula, 

 

 APB 
AIE(Δ) AIE(Δ)

AIE(Δ)
AIE(Δ)


       (70) 

 

where, AIE(Δ)  denotes the estimated AIE with the increment being equal to Δ  and 

AIE(Δ)  denotes the true AIE value.  Without loss of generality, we choose Δ 1 .  Table 

1-(1) through Table 1-(4) display the simulation results, which empirically validate the 

theoretical consistency of approximate MLE based AIE estimator [(29), (61) and (62)].  

In addition, the results in Table 1-(1) through Table 1-(4) have other important 

implications.  First, the zeta values in the IM do not play an important role in order to 

obtain the unbiased estimated AIEs.  In other words, the minimum order statistic in the 

IM should not be a concern while estimating the policy parameters.  This supports the 

practicality of the approximate MLE based AIE estimator (AMLE-AIE) for real data 

analyses, wherein the minimum order statistic may vary widely across empirical 
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estimation contexts.  Second, the AMLE-AIE works well for continuous outcomes 

having different distributions. 

 

4.2.2 Robustness of NSD in a Count-Valued Two-Part Model:  Case IV vs. Case VIII 

 To shed light on the robustness of the NSD assumption in two-part models with 

count-valued outcomes, we compare Case IV (Probit EM – CMP IM; the conventional 

two-part model with CMP IM) with case VIII (CMP EM and IM).  Unlike the continuous 

case discussed in section 4.3.1, there is no clear way to conclusively make this 

comparison analytically.  Instead, we base the present comparison on simulated data.  We 

do this by: 1) generating data based on a sampling design that comports with Case IV (the 

conventional two-part model with Probit EM and CMP IM); 2) calculating the true AIE 

based on the chosen sampling design, the true AIE formulation in (5), and the 

specification of the relevant conditional mean given in (49); 3) applying the MLEs based 

on (45) and (57) to this Case IV simulated data; 4) estimating the AIE as in (29) using the 

deep parameter estimates from step (3), based first on (49) and then on (58).  If step (4) 

yields similar (near identical) results we will conclude that the NSD assumption is not 

restrictive (is robust) in this count-valued context. 

 

Simulating Case IV Data 

 In order to conduct the simulation study, we developed Stata/Mata code to 

simulate data for the true Case IV model.  The protocol for the simulator is as follows: 

 1) Choose values for the elements of the parameter vector 

  1 2 2[ ]        ( 1 1p 1o[ ]      and 2 2p 2o[ ]     ). 
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 2) Generate a sample of simulated data on pX  and oX ; each assumed to be 

uniformly distributed with means and variances chosen as part of the sampling design. 

 3) Generate a sample of outcomes at the extensive margin ( Y 0  or not) using 

   EM
p p1 o o1EM I X X ε 0       

 4) Complete the construction of the simulated sample by generating a subsample 

of Y values at the IM (i.e., only for those whose EM 1 ). 

 This last step warrants some discussion because these IM values of Y must be 

drawn from an appropriately specified truncated CMP distribution.  Here, expression (28) 

serves as the template.  From (28) it follows that simulated outcome draws for the IM can 

be obtained from the following 

 

EM EM EM
0 0 0

EM EM EM EM
0 0 0 0

j 1 j

EM EM EM EMm 1 m 1
0 0 0 0

cmp(1)
1 iff U (1 )

1 cmp(0)

cmp(1) cmp(1) cmp(2)
2 iff (1 ) U (1 )

1 cmp(0) 1 cmp(0)

...

cmp(m) cmp(m)

j iff (1 ) U (1 )
1 cmp(0) 1

G G G

G G G G

Y

G G G G
cmp(0)

...

  

           (71) 

 

where, 
EM
0G  is shorthand for 

o

EM
(0|X ) p o EM(0, X ,X ; τ )G  which, in the Case IV model, is 

replaced by p p1 o o11 Φ(X β X β )  , and cmp( )Y  is shorthand for the CMP pmf, 

p p2 o o2 2cmp( ;X X β , ) Y  for 1,...,Y .  Therefore, to complete Step 4 above, we 

need to 
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 4-i) Generate a unit uniform (U[0,1])  for the full sample 

 4-ii) Calculate 

  

j 1

EM EM m 1
0 0

cmp(m)

(1 )
1 cmp(0)

G G  

for all relevant values of j using the design parameters, pX  and oX  

 4-iii) Use U[0,1]  from 4-i) and the values obtained from 4-ii) to generate Y  for 

the full sample via (71) 

To complete the sample simulation, generate the full sample of Y values as 

 

 Y = EM × Y. 

 

Investigating the Robustness of the NSD (Case IV vs. Case VIII) Using Simulated Data 

 To investigate the robustness of the AIE estimator by the count-valued 2PM with 

NSD assumption, we simulated different samples using the data generator detailed in the 

previous section and applied the MLE-based estimator of the AIE to each of them. 

 As for the sampling design, both pX  and oX  are drawn from unit uniform 

distributions with mean and variance equal to 1.  The sampling design varied along two 

margins: 

 1) 4 EM specifications, i.e., 1 1p 1o[ ]      corresponding to different 

probabilities for non-zero outcome values: 

  1 [0.5 2 1]       85% of non-zero outcome values, 

  1 [0.5 2 0.25]      68% of non-zero outcome values, 
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  1 [0.5 0.5 0.25]      43% of non-zero outcome values, 

  1 [1 0.5 0.25]     13% of non-zero outcome values;   

 2) 5 values of the dispersion parameter corresponding to the count-data dispersion 

scenarios: 

  2 1   , 

  2 0.5   , 

  2 0  , 

  2 0.5  , 

  2 1  . 

For simplicity, 2  is set equal to 1 .
17

  The 20 resulting sampling designs are detailed in 

Table 2-(1).  For each of these designs, 100 samples of size 10,000 were generated.  Two 

performance criteria were used: the grand average of the estimated AIEs 

 

  
100

j
j 1

1
Average AIE(Δ) × AIE(Δ)

100 
          (72) 

 

where, j denotes the j
th

 replication, and the grand average of the absolute percentage bias 

 

 AAPB 
100 j

j 1

AIE(Δ) AIE(Δ)1
AIE(Δ) ×

100 AIE(Δ)



 .    (73) 

 

                                                 
17

 In this simulation study, the true specifications of EM and IM have different functional 

forms: more specifically, Probit and truncated GG.  Thus, 2  in the IM can be any values 

because they are of no special interest. 
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The policy increment Δ is set equal to 1.  True AIE, Average AIE(Δ)  and AAPB 

AIE(Δ)  for each design are shown in Table 2-(2).  The main take-away from the results 

in Table 2-(2) is that the AIE estimates obtained from the version of the model with the 

incorrect NSD assumption imposed are virtually the same as those obtained using the 

unrestricted model that comports with the design used to simulate the data.  We take this 

as preliminary evidence that imposition of the NSD condition may not materially affect 

the results. 

 

4.3 A Test of No Parametric Difference between EM and IM with NSD Maintained 

 If, as the preliminary simulation results of the previous sections support, 

estimation of the targeted causal effect is robust to the assumption of NSD between the 

EM and IM, then it is clear from the likelihood specifications in (53) and (61), for the 

continuous case, and (57), for the count-data case, that a conventional likelihood ratio 

statistic can be used to test the null hypothesis that a 2PM structure is not needed (the 

one-part model null).  In the GG-based context for the continuous case, this null is 

tantamount to imposing the restriction that 1 1 1 2 2 2[β κ σ ] [β κ σ ]   and EM IMζ ζ  

on (53).  Similarly, in the CMP-based context for the count-valued case, the one-part null 

corresponds to imposing the restriction that 1 1 2 2[β σ ] [β σ ]   on (57).  In this section, 

we detail the one-part null versions of the relevant continuous and count-data models, 

along with the corresponding likelihood ratio tests. 

 

4.3.1 Generalized Gamma Model with NSD Under the One-Part Null 

 Recall that the likelihood function of the GG model with NSD (Case VI) follows 

from the specification in (53).  Under the one-part null hypothesis  
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( o 1 1 1 2 2 2H : [β κ σ ] [β κ σ ] [β κ σ]     and EM IMζ ζ ζ  ),  (53) becomes 

 

 
*Xp

*
* o pXp

I(Y 0)
* *

(Y |X ) p o p p o oX
f (Y ,X ,X ; π) GG( ;X β X β , κ,σ)     

   *
p p o o1 GG( ;X β X β , κ,σ)  

   

*
* *pX Xp p

*
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where, π [β κ σ]   ( p oβ [ ]    ).  Therefore, in the continuous (GG-based) case, 

the relevant log-likelihood function under the one-part null follows from 
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(Y |X ) i pi oi pi p oi of (Y ,X ,X ; π) GG( ;X β X β , κ,σ)  

     i

i

1 I(Y 0)
[Y ] i pi p o oigg (Y ;X β X , κ,σ) . (75) 

 

Given (75) and (61), a simple likelihood ratio (LR) statistic can be used to test the NSD 

(unconstrained) specification against the one-part (constrained) specification, viz., 

 

 one-part NSD
ˆ ˆLR 2 (L L )           (76) 

 

where, one-partL̂  denotes the maximized version of the log-likelihood function with (75) 

with respect to   and ̂  being its maximizer; NSDL̂  denotes the maximized version of 

the log-likelihood function with (61) with respect to   and ̂  being estimated 
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parameters by the NSD model.  In this case, the LR follows 
2
qχ  distributions with degrees 

of freedom q being the difference in dimensionality of deep parameters between two 

model specifications in (75) and (61). 

 

4.3.2 Conway-Maxwell Poisson Model with NSD Under the One-Part Null 

 Recall that the likelihood function of the Conway-Maxwell Poisson model with 

NSD (Case VIII) follows from the specification in (57).  Under the one-part null 

hypothesis ( o 1 1 2 2H : [β σ ] [β σ ] [β σ]     which implies 1 2λ λ λ   ), (57) 

becomes 
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    pi oi icmp(Y;X ,X , ,σ)      (77) 

 

where, π [β κ σ]   ( p oβ [ ]    ) and i pi p oi oexp(X X )     .  Therefore, in the 

count-valued (CMP-based) case, the relevant log-likelihood function under the one-part 

null is that of the simple CMP model.  Given (77) and (57), a simple likelihood ratio (LR) 

statistic akin to (76) for the continuous (GG-based) case can be used to test the NSD 

(unconstrained) specification against the one-part (constrained) specification. 



 

54 

Table 1-(1). Simulation Results of Continuous 2PM with NSD 

2 2, } {1.5, 2}    

  Zeta=0.1 Zeta=1 Zeta=10 

True AIE 1.0711 1.3839 2.4714 

n Est AIE Abs Pct Bias Est AIE Abs Pct Bias Est AIE Abs Pct Bias 

1,000 1.1670 8.95% 1.4117 2.00% 2.2734 8.01% 

2,500 0.8663 19.12% 1.1508 16.84% 2.1379 13.49% 

5,000 1.0276 4.07% 1.3575 1.91% 2.5723 4.08% 

10,000 1.0431 2.61% 1.3633 1.49% 2.5893 4.77% 

25,000 1.0279 4.04% 1.3323 3.73% 2.3713 4.05% 

50,000 1.0940 2.14% 1.4197 2.58% 2.5676 3.89% 

100,000 1.0664 0.44% 1.3773 0.48% 2.4402 1.26% 

250,000 1.0892 1.68% 1.4052 1.54% 2.5182 1.90% 

500,000 1.0903 1.79% 1.4056 1.56% 2.4959 0.99% 
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Table 1-(2). Simulation Results of Continuous 2PM with NSD 

2 2, } {2, 2}    

  Zeta=0.1 Zeta=1 Zeta=10 

True AIE 0.8669 1.1544 2.0749 

n Est AIE Abs Pct Bias Est AIE Abs Pct Bias Est AIE Abs Pct Bias 

1,000 0.9434 8.82% 1.1557 0.12% 1.8422 11.21% 

2,500 0.7188 17.08% 0.9935 13.94% 1.7963 13.42% 

5,000 0.8408 3.02% 1.1477 0.58% 2.1763 4.89% 

10,000 0.8570 1.14% 1.1523 0.18% 2.2051 6.28% 

25,000 0.8316 4.07% 1.1150 3.41% 1.9680 5.15% 

50,000 0.8873 2.34% 1.1869 2.82% 2.1438 3.32% 

100,000 0.8665 0.04% 1.1501 0.37% 2.0364 1.85% 

250,000 0.8801 1.52% 1.1704 1.39% 2.1023 1.32% 

500,000 0.8801 1.52% 1.1698 1.34% 2.0749 0.00% 
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Table 1-(3). Simulation Results of Continuous 2PM with NSD 

2 2, } {1, 2}    

  Zeta=0.1 Zeta=1 Zeta=10 

True AIE 1.4275 1.7800 3.1621 

n Est AIE Abs Pct Bias Est AIE Abs Pct Bias Est AIE Abs Pct Bias 

1,000 1.5386 7.78% 1.8578 4.37% 3.0000 5.13% 

2,500 1.1157 21.85% 1.4064 20.99% 2.6570 15.98% 

5,000 1.3547 5.10% 1.7142 3.70% 3.2129 1.61% 

10,000 1.3634 4.49% 1.7196 3.39% 3.2202 1.84% 

25,000 1.3709 3.96% 1.7052 4.20% 3.0353 4.01% 

50,000 1.4514 1.68% 1.8185 2.16% 3.2787 3.68% 

100,000 1.4113 1.13% 1.7663 0.77% 3.1261 1.14% 

250,000 1.4542 1.87% 1.8118 1.79% 3.2219 1.89% 

500,000 1.4569 2.06% 1.8134 1.87% 3.2075 1.43% 

  



 

57 

Table 1-(4). Simulation Results of Continuous 2PM with NSD 

2 2, } {0.5, 2}    

  Zeta=0.1 Zeta=1 Zeta=10 

True AIE 2.1254 2.5414 4.4353 

n Est AIE Abs Pct Bias Est AIE Abs Pct Bias Est AIE Abs Pct Bias 

1,000 2.2328 5.05% 2.7645 8.78% 4.4559 0.46% 

2,500 1.6022 24.61% 1.8870 25.75% 3.5214 20.60% 

5,000 2.0109 5.39% 2.3948 5.77% 4.3440 2.06% 

10,000 1.9995 5.92% 2.4086 5.23% 4.3963 0.88% 

25,000 2.0351 4.25% 2.4090 5.21% 4.2170 4.92% 

50,000 2.1416 0.76% 2.5777 1.43% 4.5778 3.21% 

100,000 2.0806 2.11% 2.5103 1.23% 4.4041 0.70% 

250,000 2.1691 2.06% 2.5984 2.24% 4.5311 2.16% 

500,000 2.1721 2.20% 2.5967 2.18% 4.5195 1.90% 
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Table 2-(1). Simulation Parameter Design of Count-Valued 2PM with NSD 

Design 0P  1 (EM)  2 (IM)    

[1] 84.82% [0.5, -2, -1] [0.5, -2 -1] 

1; 0.5; 0; -0.5; -1 
[2] 68.33% [0.5, -2, 0.25] [0.5, -2, 0.25] 

[3] 42.83% [0.5, -0.5, 0.25] [0.5, -0.5, 0.25] 

[4] 12.79% [1, 0.5, 0.25] [1, 0.5, 0.25] 
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Table 2-(2). Simulation Results of Count-Valued 2PM with NSD 

   
CMP – Unrestricted CMP – With NSD 

Design ν True AIE 
Average 

AIE(Δ)  

AAPB 

AIE(Δ)  

Average 

AIE(Δ)  

AAPB 

AIE(Δ)  

[1] 

-1 1.865 1.655 10.25% 1.680 8.95% 

-0.5 0.749 0.663 10.46% 0.671 9.44% 

0 0.277 0.250 9.29% 0.249 9.43% 

0.5 0.142 0.135 5.79% 0.134 6.21% 

1 0.089 0.091 4.80% 0.090 4.46% 

[2] 

-1 7.524 7.268 3.69% 7.249 3.80% 

-0.5 3.397 3.265 3.31% 3.264 3.32% 

0 0.968 0.928 3.37% 0.927 3.53% 

0.5 0.322 0.314 3.00% 0.312 3.25% 

1 0.157 0.157 2.98% 0.156 2.93% 

[3] 

-1 8.601 8.108 4.74% 8.268 2.92% 

-0.5 3.382 3.221 3.81% 3.280 2.35% 

0 1.063 1.040 2.59% 1.055 2.45% 

0.5 0.455 0.472 4.87% 0.477 5.92% 

1 0.241 0.274 14.43% 0.275 15.20% 

[4] 

-1 140.085 141.526 3.94% 141.561 3.95% 

-0.5 64.458 64.790 2.90% 64.797 2.91% 

0 17.670 17.742 1.83% 17.742 1.84% 

0.5 3.033 3.038 1.33% 3.038 1.31% 

1 0.933 0.923 1.33% 0.922 1.31% 
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Chapter 5. 

An Application: Estimating Price Effects on Alcohol Demand 

 This chapter illustrates the econometric issues discussed in the previous chapters 

by presenting an empirical analysis of price effects on alcohol demand.  Accurate 

estimation of price effects is especially important to the assessment of policies aimed at 

reducing alcohol abuse and alcoholism (Coate and Grossman 1988, Manning et al. 1995 

and Chaloupka et al. 2002).  As Manning et al. (1995) point out, alcohol demand is well-

suited to two-part modeling because many individuals choose not to drink and that pick-

up decision may differ systematically from quantity of consumption decisions made by 

those who have chosen to drink.  We will focus on the two potential outcomes based 

causally interpretable price effect parameters defined in (1) and (2) – the average 

incremental effect of price on demand for alcohol (AIE) and the average price elasticity 

of demand for alcohol (AED).  We will estimate the aforementioned effect parameters 

under two different model specifications: 1) the conventional 2PM with Probit EM and 

GG IM using MLE based on (37) (Case II); 2) the GG 2PM with NSD assumption using 

the approximate MLE based on (61) (Case VI); 3) the GG one-part model using MLE 

based on (75).  In the Case II context, for the AIE we have 
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and its corresponding estimator can be specified as 
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For the AIE in the Case VI context, we have 
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and its corresponding estimator can be specified as 
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In the Case II context for the AED we have 
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and its corresponding estimator 
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For the AED in the Case VI context we have 
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and its corresponding estimator can be specified as 
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5.1 Data 

 The data used in this chapter combines the Uniform Product Code (UPC) and the 

National Epidemiological Survey of Alcohol and Related Conditions (NESARC).  This 

combined dataset has been recognized as a reliable dataset for estimating the price 

elasticity of alcohol demand and has been widely used in the economics research (Ruhm 

et al., 2012; Terza et al., 2016).  The UPC dataset collected by AC Nielsen in grocery 

stores from 51 U.S. markets provides accurate information on beer prices by type of 

beverage and packaging size and it is also a reliable dataset to estimate price elasticity of 

beer consumption.  As Ruhm et al. (2012) mention, beer price as provided by the UPC is 

a volume-weighted average price in the available grocery stores.  The NESARC dataset 

sponsored by the National Institute on Alcohol Abuse and Alcoholism has two waves 

(NESARC1 2001-2002 and NESARC2 2004-2005) and provides nationally 

representative information regarding alcohol consumption, alcohol use disorders, 

treatment services as well as demographic characteristics of respondents.  Due to inherent 

limitations on the UPC data, only NESARC2 can be merged with UPC beer price 

information. The sample size for this study is 23,743. 

 The outcome variable is average daily ethanol consumption in ounces from beer 

during the past year.  The policy variable of main interest is the nominal price of beer in 

U.S. dollars per ounce of ethanol.  The other covariates include respondent’s gender, 

marital status, age, race, family size, education, census region, occupation, and household 

income.  The descriptive statistics for analysis variables can be found in Table 3.  It is 

noticed that 36% of respondents report any beer consumption in the past year and there 
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are slight differences in the sample means of the covariates for beer drinkers and non-

drinkers. 

 

5.2 Empirical Results 

 Table 4 presents fully parametric maximum likelihood estimation results based on 

the conventional 2PM (Case II), 2PM with NSD (Case VI), and one-part model 

characterized in (37), (59) and (75) respectively.  Column (1) and Column (2) present 

coefficient estimations for whether the respondent is a beer drinker or not, i.e., the EM of 

the 2PM, for the Probit EM and GG EM, respectively.  There is not much sense to 

compare the signs and magnitudes of estimators in these two columns due to their 

different functional forms.  Column (3) presents coefficient estimation results for the 

level of beer consumption conditional on any positive consumption, i.e., the GG IM.  The 

price of beer per ounce of ethanol has significant negative effects on both being a beer 

drinker and the volume of beer consumed if one is a drinker.  Column (4) presents 

coefficient estimation results for the GG one-part model, assuming that there is no 

systematic difference between drinkers and non-drinkers.  Only in the GG one-part 

model, beer price does not show a statistically significant effect on alcohol consumption. 

 Table 5 presents the AED and AIE estimates, the parameter estimates of 

particular policy interest, which are calculated using the regression results and the 

formulations in (78) through (85) given above.  The estimated AEDs for Cases II and VI 

are -0.6838 and -0.6762, respectively.  Estimated AIEs are -0.0950 and -0.0926, which 

are also quantitatively and qualitatively similar between the two models; in other words, a 

hypothetical increase in beer price by 1 dollar will cause the overall mean of daily beer 

consumption to decrease by similar amount of ounces under both models.  As the 
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empirical results show, the estimated parameters for the Case II and Case VI are very 

close to each other.  However, under the GG one-part model, estimated AED and AIE are 

very different from 2PMs in magnitudes.  Even though we  do not know the true DGP in 

this case, Chapter 4.4 provides a statistical test on whether the two-part structure is 

needed. 

 

5.3 Likelihood Ratio Test on One-Part Null 

 As shown in Chapter 4.4, we apply the likelihood ratio test in this application to 

test whether the distinction between the EM and IM is necessary.  one-partL̂ 11770.42  , 

NSDL̂ 8996.97 , one-part NSD
ˆ ˆLR 2 (L L ) 5546.9 , and 

2
21Pr(χ 5546.9) 0 .  

Based on the LR statistic, the null hypothesis that no two-part structure is needed gets 

rejected.  The AED and AIE estimations under the 2PMs should be considered in this 

empirical study. 
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Table 3. Descriptive Statistics 

Variable Name 
Full Sample Beer Drinker Non-Beer Drinker 

Mean SD Mean SD Mean SD 

Outcomes 
      

  If Any Beer 0.360 0.480 
    

  Beer Ethanol Consumption 0.153 0.694 0.424 1.106 
  

Policy Variable 
      

  Nominal Beer Price 1.253 0.104 
    

Covariates 
      

  ln (Age) 3.818 0.365 3.742 0.341 3.861 0.371 

  ln (Income) 10.580 0.923 10.782 0.895 10.467 0.920 

  ln (Family Size) 0.819 0.578 0.847 0.566 0.804 0.585 

Proportion of Sample That Is: 
      

  Female 0.581 0.493 0.403 0.490 0.681 0.466 

  Married 0.505 0.500 0.520 0.500 0.496 0.500 

  Black 0.207 0.405 0.152 0.359 0.237 0.426 

  Hispanic 0.220 0.414 0.218 0.413 0.221 0.415 

  Other Race 0.044 0.206 0.039 0.194 0.047 0.212 

  No High School 0.156 0.363 0.114 0.318 0.180 0.384 

  Some College 0.317 0.465 0.328 0.470 0.311 0.463 

  College 0.275 0.446 0.328 0.470 0.245 0.430 

  Midwest Region 0.215 0.411 0.229 0.420 0.207 0.406 

  South Region 0.390 0.488 0.358 0.479 0.408 0.492 

  West Region 0.249 0.433 0.271 0.444 0.237 0.425 

  Blue Collar 0.152 0.359 0.186 0.389 0.133 0.340 

  White Collar 0.538 0.499 0.591 0.492 0.509 0.500 

  Service Occupation 0.151 0.358 0.140 0.347 0.157 0.364 

N 23,743 8,542 15,201 
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Table 4. Regression Results 

 Probit EM GG EM GG IM GG One-Part Model 

 Column (1) Column (2) Column (3) Column (4) 

 beta s.e.  beta s.e.  beta s.e.  beta s.e. 
 

beerprice -0.272 0.119 ** 0.257 0.120 ** -0.631 0.280 ** -0.504 0.370  

female -0.667 0.019 *** 0.695 0.020 *** -1.290 0.046 *** -1.761 0.069 *** 

married -0.103 0.030 *** 0.121 0.022 *** -0.285 0.053 *** -0.384 0.069 *** 

lnage -0.474 0.029 *** 0.501 0.031 *** -1.105 0.075 *** -1.360 0.112 *** 

black -0.294 0.025 *** 0.283 0.024 *** 0.003 0.063 
 

-0.259 0.082 *** 

hispanic -0.113 0.024 *** 0.120 0.025 *** -0.352 0.058 *** -0.510 0.076 *** 

other -0.305 0.044 *** 0.305 0.043 *** -0.241 0.112 ** -0.490 0.140 *** 

lnincome 0.129 0.012 *** -0.125 0.012 *** -0.062 0.028 ** -0.029 0.038  

lnfamsize -0.030 0.019 
 

0.036 0.020 * -0.146 0.047 *** -0.038 0.059  

nohs -0.063 0.030 ** 0.056 0.029 * 0.116 0.073 
 

0.321 0.095 *** 

somecllg 0.032 0.024 
 

-0.029 0.024  -0.249 0.057 *** -0.040 0.075  

college 0.118 0.026 *** -0.117 0.027 *** -0.440 0.065 *** -0.406 0.084 *** 

midwest 0.015 0.037 
 

-0.018 0.037  0.168 0.089 * 0.203 0.116 * 

south -0.054 0.029 * 0.053 0.029 * 0.298 0.071 *** 0.305 0.091 *** 

west 0.075 0.029 *** -0.074 0.030 ** 0.183 0.072 ** 0.195 0.093 ** 

bluecllr 0.283 0.035 *** -0.240 0.034 *** 0.428 0.087 *** 0.620 0.110 *** 

whitcllr 0.265 0.031 *** -0.227 0.028 *** 0.070 0.080 
 

0.270 0.094 *** 

servwrkr 0.253 0.035 *** -0.222 0.032 *** 0.191 0.088 ** 0.491 0.106 *** 

_cons 0.687 0.227 *** -1.243 0.231 *** 3.887 0.547 *** 4.628 0.736 *** 

Ancillary Parameters 

sigma       1.926 0.019 *** 4.237 0.065 *** 

kappa       0.028 0.042 *** 4.412 0.086 *** 

N 23,743 23,743 8,542 23,743 

Note: *** p<0.01, ** p<0.05, * p<0.1 
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Table 5. Estimated Price Effects on Alcohol Consumption 

 

Conventional 2PM 

Probit EM and GG IM 

2PM with NSD 

GG EM and IM 

One-Part Model 

GG 

 beta s.e.  beta s.e.  beta s.e.  

AED(1 dollar) -0.6838 0.1631 *** -0.6762 0.1672 *** -0.4655 0.3006  

AIE(1 dollar) -0.0950 0.0225 *** -0.0926 0.0230 *** -0.0586 0.0379  

Note: *** p<0.01, ** p<0.05, * p<0.1 
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Chapter 6. 

Summary, Discussion and Conclusions 

 The Fully Parametric Two-Part Model (FP2PM) is one of the most widely applied 

estimation frameworks in empirical economics research.  It is applied to cases in which 

the outcome of interest is nonnegative with a large fraction of zeros.  By the model 

design, the FP2PM allows for two systematically different data generating processes: the 

Extensive Margin (EM) governs zero or not and the Intensive Margin (IM) determines 

positive levels given non-zero.  The conventional 2PM in the literature genuinely 

assumes a Probit EM and another distribution with positive support for the IM.  This 

dissertation provides a general FP2PM potential outcomes (PO) framework, in which 

causally interpretable policy effect parameters can be identified and estimated in the 2PM 

context.  Except for taking account of causal policy effect parameters, the framework 

presented in this dissertation also permits an alternative 2PM with non-structural 

difference between the EM and IM (NSD), in which the EM and the IM have the same 

underlying distribution.  Several simulation studies compare the policy effect parameter 

estimations fit by the 2PM with NSD to those fit by the conventional 2PM, and 

simulation results show that the 2PM with NSD is a reliable model and not inferior to the 

conventional 2PM.  Maintaining the same structural assumption, the 2PM with NSD 

allows an easy-to-implement likelihood ratio test on the null hypothesis that the two-part 

structure is not needed, which is a fundamental model specification question researchers 

should ask.  An empirical study on alcohol demand is used to illustrate the 

aforementioned econometric issues.  In virtually all 2PM instances, we suggest that the 
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affordable likelihood ratio test on the null hypothesis that the two-part structure is not 

needed should be implemented before any further analysis. 
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Appendix I. 

A Brief Note on “Cake Debate” 

 It should be noticed that in Cragg’s model, 
EM  and 

IM  are assumed to have two 

separate distributions, as in all types of 2PMs, rather than a bivariate normal distribution 

with a significant correlation, as in Sample Selection Models.  Both 2PMs and Sample 

Selection Model are well known to deal with limited dependent variables, e.g., the 

outcome variable of interest having a significant number of zeros.  2PMs have been 

favored due to more structural flexibilities and more robust statistical properties, 

however, Sample Selection Model and its two-step estimation procedure have also been 

employed in numerous applied microeconomic studies since Heckman (1976, 1979).  

Applied researchers are often confused about model selections and have almost never 

discussed any convincing reason why they choose one model over another.  In the 

econometrics literature, there have been a series of intense debates regarding the model 

selection between 2PMs and Sample Selection Models since 1980s. 

 Duan et al. (1983, 1984, 1985) and Manning, Duan and Rogers (1987) are the 

early works showing that 2PMs dominate in the scenarios of limited dependent variables 

by providing theoretical and practical evidence, supported by simulation results.  Duan 

and his associates have the following main arguments to advocate 2PMs.  First, the 

structures of two parts are not restricted to any joint distribution in 2PMs, and it is hard to 

prove there to be a specific correlation between the two parts in most empirical works, 

and thus the model structures of 2PMs are more flexible.  Second, the inverse Mill’s ratio 

that is used to correct the selection bias is likely to be highly correlated with other 

regressors in the second step, which leads to the weaker statistical power of coefficient 
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estimates in Sample Selection Models.  Third, the comprehensive Monte Carlo 

simulation experiments show that despite the situation where Sample Selection Model is 

the true specification, 2PMs have better performance in prediction powers if there is not a 

strong exclusion restriction, i.e., the same set of regressors are used in participation and 

level decisions.  In addition, there is never a certain reason to believe the true 

specification is a Sample Selection Model in practice, which makes using data-analytic 

2PMs more convincing.  Last but not least, as clarified by Duan et al. (1983) and Dow 

and Norton (2003), predictions on actual outcome are more interesting in many studies 

particularly on health related outcomes, for example, health care expenditure, where zero 

means actual outcome rather than missing values. 

 It is worth bearing in mind that there is another thread of literature defensing for 

Sample Selection Models.  Hay and Olsen (1984) starts the “cake debate” and attacks the 

theoretical framework of 2PMs by arguing that 2PMs are nested in generalized Sample 

Selection Models.  However, Hay, Leu and Rohrer (1987) use Monte Carlo simulation 

results based on an individual-level health care expenditure data to support the claim that 

estimators of 2PMs are more robust and thus 2PMs outperform the Sample Selection 

Model.  By redesigning Monte Carlo simulation experiment based on (Manning, Duan 

and Rogers, 1987), Leung and Yu (1996) show that Sample Selection Models perform 

better than 2PMs only on the conditions that Sample Selection Models are true models 

and there is no collinearity problem.  But they conclude that the results do not support the 

superiority of either model to another since each model has its advantage under different 

settings. 
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Appendix II. 

Three Lemmas 

Lemma 1:  If z is log-normal with pdf f(z) and parameters a and b then 

 

 
d

a ln(d)
f(z) dz Φ

b
 

 

and 

 

 
d

0

a ln(d)
f(z) dz 1 Φ

b
 

 

where, a, b and d are scalar constants. 

Proof: 

Because z is log-normal we know 
ln(z) a

b
 is standard normal. So 
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ln(z ) a ln(d ) a
f(z) dz Pr(z d) Pr

b b
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It can similarly be shown that 
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Lemma 2:  If z is normal with mean a and variance b then 
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exp(cz) f(z) dz exp ca+ c b 1 Φ d c b
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where, c and d are scalar constants. 

Proof: 

 

 
2

d d

1 1
exp(cz) f(z) dz exp(cz) exp (z - a) dz

2b2πb
. 

 

Now make the substitution 
z a

q
b

 and get 
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But 
21 1

exp q c b
22π

 is the density of a normal random variable with mean 

c b  and variance 1, so 
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d

1 1
exp q c b dq 1 Φ d c b

22π
 

 

and 
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d
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exp(cz) f(z) dz exp ca+ c b 1 Φ d c b
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. 

 

It can similarly be shown that 
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Lemma 3:  If z is log-normal with pdf f(z) and parameters a and b then 

 

 
d

b ln(d)
z f(z) dz exp a 1 Φ b

2 b
 

 

Proof: 

We have 
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Using the change-of-variable 

 

 
ln(z) a

y
b

 

 

we get 

 

 z exp( b y a)  

 

with Jacobian 

 

 
dz

exp( b y a) b
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Now using Lemma 2 we get 
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