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Abstract 

The current study used event-related potentials (ERPs) to investigate how motivational salience 

in the form of expectation violation influences spatial attention. The medial frontal negativity 

(MFN) ERP indexes expected value, being negative to unexpected punishments and positive to 

unexpected rewards. The P1 and N1 ERPs index spatial attention, being larger to stimuli in 

attended locations. This design attached motivational value to locations by making one visual 

hemifield economically rewarding (greater probability of a rewarding outcome) and the other 

punishing (greater probability of a punishing outcome). Keypresses to a dot probe following a 

reward-signifying stimulus were awarded money if correct, and penalized following a 

punishment-signifying stimulus if incorrect. We predicted that salience would be attached to 

visual hemifield, thus the MFN would be most negative to punishing outcomes in the rewarding 

hemifield and most positive to rewarding outcomes in the punishing hemifield. We also 

predicted that attention would be allocated to a location where expectation was violated, thus the 

P1 and N1 ERPs would be larger and RTs (reaction times) faster to dot probes appearing in the 

same side as an outcome that violated expected value. In a sample of 36 participants, there were 

no significant effects on the MFN, although the means were in the predicted direction, 

suggesting a lack of power. Contrary to our hypothesis, keypresses were slower, P1 smaller, and 

N1 larger to probes opposite the location where an expectation violation occurred. This 

suggested that expectation violation did not direct attention to a particular location, but produced 

general interference. 
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The Influence of Motivational Salience on Attention Selection: An ERP Investigation 

The current study investigated the influence of motivational salience on spatial attention 

through event-related potentials (ERPs). Perceptual salience drives attention, but so does 

motivational salience (Berridge & Robinson, 1998; Posner & Dehaene, 1994; Posner & Petersen, 

1990). Whereas perceptual salience is exogenously-driven by perceptual features of a stimulus, 

motivational salience is driven endogenously by imbuing value to an otherwise neutral stimulus 

(Berridge & Robinson, 1998). The current investigation used event-related potentials (ERPs) to 

measure salience and attention. Previously treated as separate components to error and attention 

selection, respectively, the MFN and P2a ERPs are suggested by more recent evidence to be 

manifestations of the same system responding to expectation violation and valence (Martin, 

Potts, Burton, & Montague, 2009; Potts, Martin, Burton, & Montague, 2006): specifically, the 

waveform is most negative to outcomes that are worse than expected (MFN), most positive to 

outcomes better than expected (P2a), and intermediate for as-expected outcomes (Potts et al., 

2006). If motivationally salient objects can grab attention, then so should motivationally salient 

spatial locations. To measure spatial attention, the study employed the P1 and N1 ERPs that are 

larger and keypresses that are faster to attended locations. 

The study addressed two specific aims: 

Aim 1. Motivational salience can be imbued onto spatial location. The attention-elicited 

P2a and expectation violation MFN ERP components index activity in the same neural system 

representing the same cognitive operations, thus the two components will occur at the same 

latency and possess the same scalp topography. Therefore, the differentiation of the waveform 
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into the positive P2a elicited by infrequent attended visual stimuli and the negative 

MFN elicited by outcomes that are worse than expected will be similarly elicited to spatial 

locations. 

Aim 2. Attention is allocated to motivationally salient spatial locations. The P1 and N1 

ERP indices of spatial attention will be larger and keypresses faster to probes in locations where 

an expectation violation occurred previously. 

Background and Significance 

Motivational Salience. 

The brain selects which information to prioritize over others for further processing 

through attention selection. Selection is a process of distinguishing relevant information from 

irrelevant information. One form of salience is perceptual salience, whereby an object possesses 

an extreme perceptual feature exogenous to the viewer, such as color, size, or shape, 

distinguishing it from its companions. Perceptual salience elicits a relatively fast orienting 

response from the viewer (Posner & Dehaene, 1994; Posner & Petersen, 1990). Another form of 

salience is motivational salience, whereby a stimulus is imbued with value through learning 

(Berridge & Robinson, 1998). Motivational salience elicits more controlled and effortful 

processing. Berridge and Robinson (1998) used the term incentive salience to describe the 

transformation of the brain’s percept of a learned stimulus from a neutral representation to a 

wanted incentive that can drive attention. 

Perceptual salience and motivational salience are related to distinct mechanisms of 

attention in the brain. Whereas the former involves the posterior attention system, the latter 

recruits an anterior attention system (Berridge, 2006; Petersen & Posner, 2012). Within the 

anterior system is a mesolimbic pathway mediated by dopamine, with projections from anterior 
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cingulate cortex (ACC) to both frontal and limbic areas; this suggests the ACC is well-

poised to use information from midbrain and limbic areas to guide behavior through executive 

functions housed in the frontal area (Berridge & Robinson, 1998; Bush, Luu, & Posner, 2000).  

Dopamine is suggested to be the primary agent in imbuing motivational salience in the 

anterior network. Schultz (Schultz, 1997) recorded the firing of dopaminergic neurons in 

monkeys’ ventral tegmental area (VTA), a structure with projections to the limbic and frontal 

cortices. VTA neurons either increased firing when monkeys received fruit juice uncued 

(unexpected reward), suppressed firing when a paired light cue previously paired with juice was 

presented but followed by no juice (unexpected non-reward), or maintained baseline firing when 

juice followed the light (predicted reward). Dopamine, then, does not simply respond to the 

presence or absence of absolute reward, but responds in a valenced manner to actual outcomes 

relative to their expected values.  

The monkey VTA firing behavior to outcomes in Schultz’s study (1997) can be 

compared to a similar response in humans using event-related potentials (ERPs). Ongoing 

activity from neurons acting in concert closest to the surface of the cortex generates coherent 

electromagnetic fields, captured by electroencephalography (EEG). EEG to a specific time-

locked event of interest such as a stimulus or motor response are then averaged to yield the ERP, 

which measures changes in electric fields related to an event. ERPs contain distinct voltage 

deflections reliably elicited by an event, termed components, characterized by their eliciting 

conditions, amplitude, polarity, and latency (Luck, 2014).  

One class of ERP components, the medial frontal negativities (MFN), has been 

implicated in indexing motivational value, and responds in a similar fashion to the monkey VTA 

neurons in Schultz (1997). The MFN was originally found to be elicited to motor errors (error-
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related negativity or ERN, (Gehring, Goss, Coles, Meyer, & Donchin, 1993) or 

feedback indicating an error has been committed (feedback-related negativity or FRN; for a 

review, see (Nieuwenhuis, Holroyd, Mol, & Coles, 2004), but recent evidence suggests that the 

MFN does not require explicit behavioral errors. Present over medial frontal scalp electrodes and 

occurring 80 milliseconds post-motor response or 250 milliseconds after feedback indicating a 

negative outcome, it has been source-localized to medial frontal cortex, elicited in passive 

viewing tasks (Martin & Potts, 2011), to monetary loss relative to gain, and to least optimal 

outcomes (Gehring & Willoughby, 2002), suggesting a sensitivity of the MFN to an endogenous 

appraisal to events. 

Potts, Martin, Burton, and Montague (Potts et al., 2006) employed a passive S1-S2 

viewing task resembling a slot machine where participants viewed stimuli (S1) that subsequently 

predicted rewarding or nonrewarding stimuli (S2) which served as outcomes. A valenced 

response to events similar to the monkey VTA neurons in Schultz (1997) was observed: the 

waveform was most negative to outcomes worse than expected, most positive to outcomes better 

than expected, and intermediate to as-expected outcomes. The neural generator of the waveform 

was estimated in the ACC, consistent with the model of the ACC as an intermediary between 

frontal and midbrain regions (Bush et al., 2000). 

The negative deflection in Potts et al. (2006) was an MFN, but its accompanying positive 

deflection to better-than-expected outcomes resembled another family of ERPs, the P2a. The P2a 

(anterior P2, also termed the frontal selection positivity or FSP, frontal polar component or FP) is 

elicited to targets that are instructed to be relevant (Potts & Tucker, 2001; Potts, Patel, & Azzam, 

2004). It is insensitive to stimulus frequency, distinguishing it from the frequency-sensitive P3 

(Potts, Liotti, Tucker, & Posner, 1996). The P2a and MFN have similar frontal scalp 
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topographies, occur at the same latency, and localize to medial frontal cortex. Treated 

previously as separate components to error and attention selection, respectively, the MFN and 

P2a are suggested to be reflections of the same behavior monitoring system housed in the ACC, 

which as noted before, is well-positioned between limbic and frontal structures (Bush et al., 

2000), with dopamine acting as a regulator in the informing of frontal executive about goal-

relevant behavior (Berridge & Robinson, 1998; Braver & Cohen, 2000). Attention then might be 

guided at least in part by motivationally-relevant information. 

Experimentally, we can induce motivational salience through reinforcement learning of 

value (Holroyd & Coles, 2002). Such value can differ in magnitude and probability. Both 

characteristics are components of the expected utility (EU) model, a formal theory of decision-

making in economics, in which the utility of a decision is equal to its value (magnitude) 

multiplied by its probability (von Neumann & Morgenstern, 1947, as cited in Sanfey, 

Loewenstein, McClure, & Cohen, 2006). Outcome magnitude can be manipulated by varying 

dollar amounts; it can also be positive or negative, indicative of valence. Outcome probability 

can be manipulated using percentages, thereby producing high (congruent or as-expected 

outcomes) or low predictiveness (incongruent or unexpected outcomes, a prediction violation). 

Influence on Attention. 

Motivational salience has been commonly imbued onto objects by pairing value in the 

manner described above with pictures (Potts et al., 2006; Yeung & Sanfey, 2004), gratings 

(Stolarova, 2005), faces (Pourtois, 2004), or words (Schacht, Adler, Chen, Guo, & Sommer, 

2012). For learning to occur, perceptual features of an object must be processed to identify it and 

subsequently associate it with learned value. If the identifying feature is not a physical 

characteristic of the object (what) but its spatial location (where), then meaning should be 
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instilled similarly. That is, meaning should be imbued onto spatial location, just as it can 

onto objects. Further, motivationally salient locations should direct attention similarly as can 

salient objects. Selection of spatial location is necessary for prioritizing stimuli (Petersen & 

Posner, 2012), so locations that are salient, whether perceptually or motivationally, should be 

attended to.  

To our knowledge, one study has directly tested the influence of motivational salience on 

spatial attention. In their study, (Chelazzi et al., 2014) observed better perceptual discrimination 

at spatial locations that were previously associated with greater probability of reward, especially 

when multiple targets were competing for attentional resources. Chelazzi et al. suggest that 

motivational salience can be attached to location, and that this attachment can affect subsequent 

attention to those locations. However, it is not known when in processing this influence occurs, a 

question that can be answered using ERPs. 

Attention to location can be indexed by ERPs. The P1 (occurring over 80 to 100 

milliseconds post-stimulus) and N1 (occurring 140 to 190 milliseconds post-stimulus) 

components, present over occipito-temporal electrodes, are larger for a stimulus occurring in an 

attended location relative to ignored locations (Hillyard, Vogel, & Luck, 1998). The P1 indexes 

the amplifying of early sensory gain that enhances processing at an already-attended location, 

prior to the delivery of a stimulus, while the N1 indexes orienting at a task-relevant location 

(Luck, Heinze, Mangun, & Hillyard, 1990; Mangun, 1995). Both components are invariant to 

stimulus content and are generated by extrastriate visual areas, indicating early perceptual 

selection (Luck et al., 1990; Luck, Woodman, & Vogel, 2000). If motivational salience drives 

the cognitive functions indexed by the P1 and N1, this finding might suggest that motivational 

salience operates on attention at a stage of early selection. 
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An often-used paradigm in studying spatial attention is the spatial cuing task 

(Posner, Cohen, & Rafal, 1982). In its fundamental version, two boxes stay on the screen, each 

flanking either side of a central fixation cross. One of the boxes brightens as a cue prior to a 

target (a dot) appearing in the same box (a valid trial), or the opposite box (an invalid trial). In 

some cases, the box does not brighten (uncued trial). The participant is instructed to press a 

button as soon as they see the dot. Participants’ keypresses are typically fastest and P1 and N1 

are largest on valid trials than on invalid trials, indicating a facilitation on the valid trials; 

reaction times and ERP amplitudes to uncued trials are intermediate (Mangun, 1995). These 

characteristic findings demonstrate attention to spatial location in a design using perceptual 

salience—a brightening box. The current study tests whether motivational salience would drive 

attention similarly. 

The Current Study 

The current study adapted the spatial cuing task by making one hemifield punishing and 

the other rewarding with the use of fixed probabilities, i.e. The right side was rewarding 40% of 

the time and punishing 10% of the time, and the left side punishing 40% of the time and 

rewarding 10% of the time. Through these fixed probabilities assigned to either hemifield, 

salience in the form of valence (Rewarding or Punishing) and expectation violation (Congruent, 

40%, or Incongruent with expectation, 10%) could be assigned to spatial location. To probe 

attention, a pair of dots appeared in the same (Valid) or the opposite (Invalid) hemifield as the 

outcome-signifying stimulus (angel for monetary reward, devil for monetary punishment). The 

participant’s objective was to indicate which hemifield, the left or right, the dot probe appeared 

in.  
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The two primary questions in the current study are whether motivational salience 

can be imbued onto spatial location, and whether such salience can direct spatial attention. 

Addressing the first question, we used the MFN to measure motivational salience. We predicted 

that the MFN would be most negative to punishing outcomes in the rewarding hemifield 

(Incongruent Punish condition) and most positive to rewarding outcomes in the punishing 

hemifield (Incongruent Reward condition). Punishing outcomes in the punishing hemifield 

(Congruent Punish) and rewarding outcomes in the rewarding hemifield (Congruent Reward) 

were predicted to be intermediate.  

As to the second question, we hypothesized that motivational salience in the form of 

expectation violation should, in turn, confer allocation of attention. Thus, we predicted that the 

dot probe occurring in the same hemifield where an unexpected outcome appeared (Incongruent 

Valid condition) would elicit shorter reaction times and larger P1 and N1 responses than probes 

replacing as-expected outcomes (Congruent Valid condition). 
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Method 

Participants 

63 participants were initially recruited from the SONA online participant pool at USF as 

dual-enrolled participants for a separate but related study. Both studies were approved by the 

Institutional Review Board. Of this set, 36 participants were included in the analysis for the 

current study.  

Participants in the current sample were 36 undergraduates (7 males and 29 females), ages 

18 through 31 (M = 19.8, SD = 2.99). All were right-handed, English-speaking, reported having 

no neurological abnormalities, and had normal or corrected-to-normal visual acuity. All gave 

consent prior to participating.   

Design 

We utilized a modified spatial cuing dot-probe task. In this task, incentives were 

rewarded (Reward), taken away (Punish), or neither, depending on the visual hemifield (right or 

left) in which a stimulus appeared. A yellow square cue appearing in one location in either the 

right or left hemifield initiated a trial. A blue angel or red demon icon appeared in its place, 

serving as the outcome-signifying stimulus. Following this outcome, a dot probe appeared 

equiprobably in the right or left hemifield. The dot was in the Valid condition if it appeared on 

the same side as the outcome, and Invalid if on the opposite hemifield as the outcome.  

The participant’s objective was to indicate whether the dot probe appeared in the right or 

left visual field using a right or left button on a keypad, as a two-alternative forced choice task. 

Figure 1 displays a sequence of events in one trial. 
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If the participant indicated the correct dot visual field after an angel outcome, 

they gained $0.25. If they were incorrect following a devil outcome, they lost $0.25. The 

participant was neither rewarded nor punished if they encountered all other combinations 

(correct after devil outcome, incorrect after angel outcome). One visual hemifield was potentially 

rewarding (angels occurred 40% of the time, devils 10%) and the other potentially punishing 

(devils occurred 40% of the time, angels 10%), serving as a manipulation of expectation 

violation. Figure 2 depicts fixed probabilities for a participant whose right hemifield was 

rewarding and left hemifield was punishing. 

Each participant encountered 448 trials total. The fixed probabilities were assigned across 

all 480 trials. The first 32 trials served as practice, during which EEG was not recorded and 

feedback about money gained or lost was given after each trial. EEG was recorded for the 

remaining 448 trials, which were divided into 7 blocks and did not include monetary feedback as 

in practice. The assignment of rewarded visual field was counterbalanced across participants. 

Each participant began each block with $5 in their “bank”. At the end of the experiment, 

participants rolled a die to determine which block’s winnings they would earn in cash.  

Incentives 

Participants were awarded SONA points for 2.5 total hours of participation in the study 

as they were dual-enrolled in a separate study (total of 5 SONA points). For the current study, 

participants were awarded money in an amount contingent on their performance in a particular 

block, serving as motivation to perform well and mirror the conditions of the game-like task in 

the experiment. The block from which they would earn their winnings was determined by rolling 

an 8-sided die; the amount from this block was multiplied by a fixed coefficient (0.098), and paid 

in cash. Although exact payment schedules were unknown, each participant could not earn a 
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final dollar amount greater than $3. Payment was disbursed after the participant 

completed the experiment. 

Procedure 

Participants volunteered to take part in the study through the SONA online research 

participant pool. After consent, participants were fitted with the appropriate EEG net then led to 

the testing room where they received instructions for the task. In between each block of trials, 

participants took a momentary break. After completing the task, the participant was asked about 

their performance on the task (e.g. “Which side do you think was more rewarding?”). The EEG 

net was removed from the participant’s head when they completed the entire session. Cash 

winnings according to the procedure described above (see Incentives) were disbursed. 

EEG Recording and Preprocessing 

E-Prime 2.0 was used to present stimuli to the participant. The LCD monitor displaying 

the stimuli to the participant was set at 1920 x 1080 pixel resolution, 32-bit color, and 60.04 Hz 

refresh rate. Viewing distance between the participant and the monitor was kept at 50 cm. 

Recording and preprocessing were performed on Net Station (Electrical Geodesics, 

Eugene, OR). EEG was acquired using a 128-channel geodesic sensor array net (HydroCel GSN 

128 1.0) on Net Station 5.1.2 for participants 1 through 43, and on Net Station 5.2.0 for 

participants 44 through 63. Continuous EEG was recorded with a 250 Hz sampling rate and 

vertical reference. Impedances were kept below 10 kOhms. EEG was re-referenced offline to the 

vertex and digitally filtered at 0.1 Hz highpass and 100 Hz lowpass. The resulting EEG was 

segmented into 1000-ms epochs spanning 200ms pre- and 800ms post-stimulus; this 

segmentation process was done separately on the appearance of the outcome-signifying stimulus 
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(angel or devil) to generate the MFN component, and on the appearance of the dot 

probe to generate the P1 and N1 components.  

Statistical Analyses 

Behavior. 

Trials where keypresses to the dot probe (in milliseconds) were erroneous, missing, or 

outliers (greater than the mean plus 3 SD of the individual’s own reaction times or RTs) were 

excluded from analyses to normalize the RT distribution, as RTs are notoriously skewed (Koster, 

Crombez, Verschuere, & De Houwer, 2004). RTs were averaged for each condition and each 

participant, and then cast into a 2 x 2 repeated measures ANOVA with Outcome Expectation 

(Congruent, Incongruent) and Dot Validity (Valid, Invalid) as factors. This yielded four 

conditions: Congruent Valid, Congruent Invalid, Incongruent Valid, and Incongruent Invalid. 

Paired t-tests identified contrasts within interactions. Table 1 lists the proportions of trials from 

each condition to the total number of trials. 

ERPs. 

Segmented EEG epochs were digitally screened for ocular and excess motor artifacts 

before getting sorted and averaged by condition. Average ERPs were then baseline-corrected to 

the prestimulus period of 200ms for each participant. Waveforms for each component—MFN, 

P1, N1—were averaged across all participants to create grand average ERPs.  

Mean amplitudes from each of the conditions extracted over electrode sites and time 

windows specific to the ERP component were cast into a repeated-measures ANOVA with 

paired t-tests identifying contrasts within interactions. 
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MFN. 

To produce the MFN component, the mean amplitude of the waveform 225-275ms post-

stimulus (after the appearance of the angel or devil outcome) was extracted over medial frontal 

leads. Mean amplitudes for all participants were cast into a 2 x 2 repeated-measures ANOVA 

with Outcome Expectation (Congruent, Incongruent) and Outcome Valence (Reward, Punish) as 

factors, producing four conditions: Congruent Reward, Congruent Punish, Incongruent Reward, 

Incongruent Punish. Due to the ordered predictions about the conditions (Incongruent Reward > 

Congruent Reward = Congruent Punish > Incongruent Punish), a Friedman test was performed. 

The Friedman test is the nonparametric equivalent of the one-way repeated-measures ANOVA 

and tests for variance in ranks between conditions that are believed to be ordinal. Paired 

Wilcoxon signed-rank tests were performed on pairs of conditions to determine the directions in 

which each condition compared to another. 

P1 and N1. 

The spatial attention ERP indices were extracted as the mean amplitude occurring 100-

135ms (P1) and 165-200ms (N1) post-stimulus (after the appearance of the dot probe) over 

occipitotemporal electrode leads. Mean amplitudes for each participant were cast into a 2 x 2 

repeated-measures ANOVA with Outcome Expectation (Congruent, Incongruent) and Dot 

Validity (Valid, Invalid) as factors. Paired t-tests identified contrasts within interactions.  
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Results 

Behavior 

Erroneous trials (range across participants: 3 to 66, M = 19.2, SD = 13.66) and trials 

without a keypress (range: 1 to 76, M = 11.33, SD = 13.88) were first excluded. Outlier trials for 

each participant were then removed (range: 1 to 9, M = 4.72, SD = 2.05). Table 2 gives the mean 

proportion of trials per condition to the original trial count included in the behavioral analyses. 

Tables 3, 4, and 5 depict the mean proportion of trials per condition excluded from the 

behavioral analyses due to error, nonresponse, and outlier analyses, respectively. 

Figure 3 illustrates the mean reaction times in each of the conditions. They are 

numerically depicted in Table 6. 

The ANOVA revealed a significant main effect of Dot Validity, F(1, 35) = 88.79, p < 

0.001, with Invalid RTs faster than Valid RTs. There was also a significant main effect of 

Expectation, F(1, 35) = 20.02, p < 0.001, with Congruent RTs faster than Incongruent RTs. 

There was a marginally significant interaction, F(1, 35) = 2.80, p = 0.10 (Table 7). 

Paired t-tests (Table 8) revealed that Incongruent Valid dots elicited the slowest RTs, 

being longer than RTs to each of the three other conditions (vs. Congruent Valid: t(35) = 4.23, p 

< 0.0001; vs. Incongruent Invalid: t(35) = 9.36, p < 0.0001; vs. Congruent Invalid: t(35) = 10.65, 

p < 0.0001). Congruent Invalid dots elicited the fastest RTs (vs. Congruent Valid: t(35) = 7.96, p 

< 0.0001). Responses to Invalid dots were slowed when the preceding outcome was incongruent; 

this effect approached significance (Congruent Invalid vs. Incongruent Invalid, t(35) = 1.82, p = 

0.08). 
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ERPs 

MFN. 

There were no main effects of Expectation, F(1, 35) = 0.04, p = 0.85, or of Valence, F(1, 

35) = 1.01, p = 0.32. There was no significant interaction (F(1, 35) = 1.25, p = 0.27). Figure 4 

depicts a plot of the waveform across time of the MFN over medial frontal electrodes. Figure 5 

illustrates the mean amplitude of the MFN in each of the conditions. See Table 9 for ANOVA 

results and Table 10 for paired t-test results. 

The Friedman test indicated a non-significant difference in MFN amplitude depending on 

condition, χ2(3) = 6.23, p = 0.10. Wilcoxon signed-rank tests indicated that the Incongruent 

Reward and Incongruent Punish conditions did not elicit a statistically significant change in 

MFN amplitude; this difference was marginal (Z = -1.68, p = 0.093). Differences between other 

combinations of conditions were not statistically significant (p’s > 0.2).  

In sum, although the means of MFN amplitude were in the predicted directions, the 

differences did not reach statistical significance.  

P1. 

Figure 6 shows the P1 and N1 waveforms across time over occipitotemporal electrodes.  

There was a significant main effect of Dot Validity, F(1, 35) = 8.82, p = 0.005 so that the 

P1 to dots occurring on the opposite side as an outcome (Invalid) was larger than to dots 

appearing on the same side (Valid). There was also a marginally significant main effect of 

Expectation, F(1, 35) = 2.77, p = 0.11 such that the P1 to dots occurring after outcomes 

Congruent with expectation was larger than to dots following Incongruent outcomes. The 

interaction was not significant, F(1, 35) = 0.14, p = 0.71 (Table 11). Figure 7 illustrates the mean 

amplitude of the P1 in each of the conditions.  
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According to the paired t-tests (Table 12), the P1 was smaller to dots in the 

Incongruent Valid condition when compared to Congruent Invalid, t(35) = -3.87, p < 0.0001. 

Incongruent Valid was not significantly different from Incongruent Invalid, t(35) = -1.72, p = 

0.09, or from Congruent Valid, t(35) = -0.95, p = 0.35. Congruent Invalid dots elicited a 

significantly larger P1 when compared to Congruent Valid, t(35) = -3.80, p = 0.001. When 

compared to Incongruent Invalid, this difference was non-significant, t(35) = -1.48, p = 0.15.  

N1. 

There was a significant main effect of Dot Validity, F(1, 35) = 4.87, p = 0.03, so that the 

N1 to dots occurring on the opposite side as an outcome (Invalid) was larger than to dots 

appearing on the same side (Valid). There was also a significant main effect of Expectation, F(1, 

35) = 5.91, p = 0.02, such that the N1 to dots occurring after Incongruent outcomes was larger 

than to dots occurring Congruent outcomes. There was a significant Dot Validity x Expectation 

interaction, F(1, 35) = 5.28, p = 0.03 (Table 13). Figure 8 depicts the mean amplitude of the N1 

in each of the conditions. 

Planned t-tests (Table 14) indicated a larger N1 to dots in the Incongruent Invalid 

condition when compared to each of the other three conditions (vs. Incongruent Valid, t(35) = 

2.69, p = 0.01; vs. Congruent Valid, t(35) =3.11, p = 0.004; vs. Congruent Invalid, t(35) = 3.66, p 

= 0.001). All other pairs did not reveal significant differences. 
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Discussion 

The current study investigated the impact of motivational salience on spatial attention. 

We predicted that salience in the form of economic expectation violation and valence could be 

attached to visual hemifield, and that this could direct subsequent attention. We used the MFN to 

measure motivational salience, predicting that it would be most negative to unexpected 

punishment-signifying stimuli in the rewarding hemifield and most positive to unexpected 

reward-signifying stimuli in the punishing hemifield. To measure attention, we used keypress 

speeds, and the P1 and N1 ERP responses to a probe occurring in the same or opposite hemifield 

as the outcome-signifying stimuli, hypothesizing that keypresses would be faster and P1 and N1 

responses larger to the probe when it appeared on the same side as an expectation-violating 

outcome.  

The MFN findings were in the predicted direction: most negative to unexpected 

punishments in the rewarding hemifield and most positive to unexpected rewards in the 

punishing hemifield, consistent with Potts et al. (2006) and Chelazzi et al. (2014). This effect, 

however, did not reach statistical significance potentially due to low power. Another possible 

reason for the small effect was the low perceived relevance of the outcome-signifying stimuli. 

The primary task for the participant was to pay attention to the visual field of the dots, not the 

outcome-signifying angels or devils. Instructed relevance has been shown to produce stronger 

MFN and P2a effects (Hajcak, Moser, Yeung, & Simons, 2005; Potts et al., 2004). Thus, the 

lessened instructed relevance of the ERP-eliciting stimuli may have weakened the potential 

effects in the MFN/P2a. 
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The behavioral results did not support our hypothesis that salience would direct 

spatial attention. Keypresses were slower, not faster, to the dot probes when they occurred in the 

same hemifield as an unexpected outcome. RTs were also faster to dots occurring on the opposite 

side as an outcome, regardless of that outcome’s predictiveness. This result indicates a potential 

inhibition of orienting towards locations that were previously attended, or an inhibition of return 

(IOR). This effect may have been due to the temporal interval between the outcome and dot 

probe falling within the time range where an IOR is observed, typically between 300 and 800ms 

(Posner, Rafal, Choate, & Vaughan, 1985). 

Interestingly, RTs to probes in the opposite (invalid) hemifield were slowed when the 

preceding outcome was incongruent. Attention was not drawn to the same (valid) hemifield in 

which something incongruent occurred. This suggests that violated economic expectation did not 

necessarily draw spatial attention, but slowed down general processing.  

The P1 results were not consistent with our hypothesis of attention allocation to a 

location where an expectation violation occurred. Although not significant, the P1 was smaller, 

not larger, to dots appearing in the same hemifield as an unexpected outcome, mirroring the 

behavioral finding. The P1 was also larger to dots in the opposite hemifield as an outcome, again 

reflecting the IOR effect in the behavior. When examining the P1 only to the dots opposite an 

outcome, we noted that the P1 was smaller when the preceding outcome was unexpected 

compared to when it was expected. Although this result was not statistically significant, it 

reflected the reduction of RTs. This suggests that violated expected value slowed processing, but 

did not limit this slowness to a specific location. This result could be interpreted to be consistent 

with the model of attention as a zoom-lens, in which attention causes the greatest enhanced 

processing of stimuli at focal locations, but may still exert a weaker enhancement on processing 
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stimuli that are adjacent to the focal location (Heinze et al., 1994). It is possible that 

the data showed an effect of expectation violation in the opposite (non-focal invalid) hemifield, 

not the focal (valid) hemifield, due to the overwhelming strength of the IOR effect (Taylor, 

Chan, Bennett, & Pratt, 2015).  

The N1 results showed an opposite effect of the P1 and behavioral results. Although the 

N1 displayed the IOR effect as previously seen in the behavior and P1 (larger amplitude to dots 

in opposite hemifield as any outcome), it was larger to dots appearing in the opposite hemifield 

as an unexpected outcome. The discrepancy in the attention indices might be explained by 

functional differences between the P1 and N1. Although both P1 and N1 are larger to attended 

locations, these components are dissociable. The P1 reflects a suppression of processing at 

ignored locations, amplifying sensory gain prior to a delivery of a stimulus, whereas the N1 

reflects enhanced processing at the attended location, enhancing discriminability at a location 

that has been processed as task-relevant (Hillyard et al., 1998; Luck et al., 1990). Considering 

this functional dissociation, we speculate that our N1 finding reflects attention to a location that 

has been deemed even more relevant following a violation of expected value. 

In sum, the data showed modest support for the predicted assignment of motivational 

salience to visual hemifield through the MFN. The data, however, was not consistent with the 

hypothesized attention allocation to locations where an expectation violation occurred, as 

indicated by the behavioral, P1, and N1 measures. The behavioral and P1 results indicated a 

potential general interference following a violation of economic expectation, by slowing down 

processing of the target stimuli after an unexpected outcome occurred. The slowed keypresses 

and reduced P1 to probes in the opposite hemifields were more pronounced following an 

expectation violation than when following an expectation confirmation, suggesting that the 
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interference due to value violation was not directed at a specific spatial location. While 

the P1 and RT results were consistent with general interference, the N1 result suggested 

orienting to a location that has been valuated as more relevant due to a violation of expected 

value.   

The findings on the attentional indices must be tempered due to limitations in the design. 

The behavioral, P1, and N1 results showed evidence of IOR, potentially due to timing issues 

between the delivery of the outcome and the probe. The experimental design could be improved 

to lessen the inter-stimulus interval and reduce IOR effects, or alternatively, statistically control 

for or use the IOR effect itself as a direct measure of attention in an alternative design. Future 

studies might investigate reaction times further through modeling, due to issues of skewedness in 

traditional RT analyses. This gives rise to problematic or incomplete interpretations about the 

cognitive phenomena being measured by response times (Balota & Yap, 2011).  

In conclusion, the data in the current study indicated that motivational salience in the 

form of expectation violation and valence was weakly attached to spatial location. Such salience, 

however, did not direct attention to locations where expectation was violated, but might have 

produced general interference in processing. 
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Table 1  

Proportion and Number of Trials per Condition 

 
Valid Invalid 

 
A B A B 

Congruent 38% [172] 41% [183] 41% [183] 38% [172] 
Incongruent 11% [48] 10% [45] 10% [45] 11% [48] 
 
Note. Since laterality of outcome was counterbalanced across participants, numbers of trials per 

condition differed; values are given for both versions of the task (A = right side rewarding, B = 

left side rewarding). Proportions are percentages out of 448 total trials. Frequencies are given in 

brackets. Conditions are from the Expectation x Dot Validity ANOVA.  

 

 

Table 2 

Proportion of Trials Included in the Final Behavioral Analyses to Total Trials 

 
Valid Invalid 

Congruent 36.0 (2.2) 37.2 (2.0) 
Incongruent 9.5 (0.8) 9.6 (0.7) 
 
Note. Proportion is given in percent (%) of 448 trials. Conditions are from the Expectation x Dot 

Validity ANOVA. Standard deviations in parentheses.  
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Table 3 

Proportion of Error Trials to Total Trials 

 
Valid Invalid 

Congruent 1.9 (1.5) 1.7 (1.2) 
Incongruent 0.6 (0.5) 0.5 (0.3) 
 
Note. Proportion is given in percent (%) of 448 trials. Conditions are from the Expectation x Dot 

Validity ANOVA. Standard deviations in parentheses. 

 

 

 

Table 4 

Proportion of Trials without a Response to Total Trials 

 
Valid Invalid 

Congruent 1.2 (1.3) 1.1 (1.5) 
Incongruent 0.6 (0.4) 0.5 (0.4) 
 
Note. Proportion is given in percent (%) of 448 trials. Conditions are from the Expectation x Dot 

Validity ANOVA. Standard deviations in parentheses. 

 



  23 

Table 5 

Proportion of Individual Subject Outlier Trials to Total Trials 

 
Valid Invalid 

Congruent 0.6 (0.4) 0.4 (0.2) 
Incongruent 0.3 (0.2) 0.2 (0.0) 
 
Note. Proportion is given in percent (%) of 448 trials. Conditions are from the Expectation x Dot 

Validity ANOVA. Standard deviations in parentheses.  

 

 

 

Table 6 

Mean RTs 

 
Valid Invalid 

Congruent 263.5 (26.5) 241.8 (33.8) 
Incongruent 269.7 (24.6) 244.4 (33.6) 
 
Note. RTs are in milliseconds (ms). Conditions are from the Expectation x Dot Validity 

ANOVA. Standard deviations in parentheses. 
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Table 7  

Repeated-Measures ANOVA Results for RTs 

Source SS df MS F p 
Expectation 705.59 1 705.59 20.02 < 0.0001 
Error(Expectation) 1233.63 35 35.25 

  
Dot Validity 19806.32 1 19806.32 88.79 < 0.0001 
Error(Dot Validity) 7807.67 35 223.08 

  
Expectation x Dot Validity 116.22 1 116.22 2.80 0.10 
Error(Expectation x Dot Validity) 1453.76 35 41.54 

   
Note. SS = sum of squares; df = degrees of freedom; MS = mean square. 

 

Table 8  

Paired t-test Results for RTs 

Pair Mean difference SD SEM t(35) p 
Incongruent Valid - 
Congruent Valid 6.22 8.83 1.47 4.23 < 0.0001 
Incongruent Valid - 
Incongruent Invalid 25.25 16.20 2.70 9.36 < 0.0001 
Incongruent Valid - 
Congruent Invalid 27.88 15.71 2.62 10.65 < 0.0001 
Congruent Valid - 
Incongruent Invalid 19.03 16.43 2.74 6.95 < 0.0001 
Congruent Valid - 
Congruent Invalid 21.66 16.34 2.72 7.96 < 0.0001 
Incongruent Invalid - 
Congruent Invalid 2.63 8.70 1.45 1.82 0.08 

 
Note. SD = standard deviation; SEM = standard error of the mean. 
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Table 9  

Repeated-Measures ANOVA Results for Mean MFN Amplitudes  

Source SS df MS F p 
Expectation 0.02 1 0.02 0.04 0.85 
Error(Expectation) 15.97 35 0.46 

  
Valence 0.41 1 0.41 1.01 0.32 
Error(Valence) 14.07 35 0.40 

  
Expectation x Valence 0.56 1 0.56 1.25 0.27 
Error(Expectation x Valence) 15.60 35 0.45 

   
Note. SS = sum of squares; df = degrees of freedom; MS = mean square. 

 

Table 10  

Paired t-test Results for Mean MFN Amplitudes 

Pair Mean difference SD SEM t(35) p 
Incongruent Reward - 
Congruent Reward 0.10 0.83 0.14 0.74 0.46 
Incongruent Reward - 
Congruent Punish 0.08 0.92 0.15 0.55 0.59 
Incongruent Reward -   
Incongruent Punish 0.23 1.06 0.18 1.31 0.20 
Congruent Reward -   
Congruent Punish -0.02 0.76 0.13 -0.14 0.89 
Congruent Reward -   
Incongruent Punish 0.13 0.93 0.15 0.83 0.41 
Congruent Punish -  
Incongruent Punish 0.15 1.06 0.18 0.83 0.41 

 
Note. SD = standard deviation; SEM = standard error of the mean. 
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Table 11  

Repeated-Measures ANOVA Results for Mean P1 Amplitudes 

Source SS df MS F p 
Expectation 0.68 1 0.68 2.77 0.11 
Error(Expectation) 8.58 35 0.25 

  
Dot Validity 3.25 1 3.25 8.82 0.005 
Error(Dot Validity) 12.89 35 0.37 

  
Expectation x Dot Validity 0.03 1 0.03 0.14 0.71 
Error(Expectation x Dot Validity) 7.53 35 0.22 

   
Note. SS = sum of squares; df = degrees of freedom; MS = mean square. 

 
 
Table 12  

Paired t-test Results for Mean P1 Amplitudes 

Pair Mean difference SD SEM t(35) p 
Incongruent Valid - 
Congruent Valid -0.11 0.68 0.11 -0.95 0.35 
Incongruent Valid - 
Incongruent Invalid -0.27 0.95 0.16 -1.72 0.09 
Incongruent Valid - 
Congruent Invalid -0.44 0.68 0.11 -3.87 < 0.001 
Congruent Valid - 
Incongruent Invalid -0.16 0.88 0.15 -1.12 0.27 
Congruent Valid - 
Congruent Invalid -0.33 0.52 0.09 -3.80 0.001 
Incongruent Invalid - 
Congruent Invalid -0.17 0.67 0.11 -1.48 0.15 

 
Note. SD = standard deviation; SEM = standard error of the mean. 

Table 13  
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Repeated-Measures ANOVA Results for Mean N1 Amplitudes 

Source SS df MS F p 
Expectation 1.05 1 1.05 5.91 0.02 
Error(Expectation) 6.20 35 0.18 

  
Dot Validity 4.88 1 4.88 4.87 0.03 
Error(Dot Validity) 35.03 35 1.00 

  
Expectation x Dot Validity 0.82 1 0.82 5.28 0.03 
Error(Expectation x Dot Validity) 5.42 35 0.16 

   
Note. SS = sum of squares; df = degrees of freedom; MS = mean square. 

 
 
 
Table 14  

Paired t-test Results for Mean N1 Amplitudes 

Pair Mean difference SD SEM t(35) p 
Incongruent Valid - 
Congruent Valid 0.02 0.62 0.10 0.19 0.85 
Incongruent Valid - 
Incongruent Invalid 0.52 1.16 0.19 2.69 0.01 

Incongruent Valid - 
Congruent Invalid 0.20 1.13 0.19 1.05 0.30 

Congruent Valid - 
Incongruent Invalid 0.54 1.04 0.17 3.11 0.004 

Congruent Valid - 
Congruent Invalid 0.22 0.99 0.16 1.32 0.20 
Incongruent Invalid - 
Congruent Invalid -0.32 0.53 0.09 3.66 0.001 

 
Note. SD = standard deviation; SEM = standard error of the mean.
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Figure 1. Trial Sequence Showing All Possible Scenarios.  

Slides not enclosed in a box stayed constant across participants. (The colored box enclosures 

themselves were not visible to the participant and are only used here for demonstration 

purposes.) A trial began with fixation, followed by a warning cue (yellow square) appearing to 

the left or right of fixation. This cue was then replaced by the outcome-signifying stimulus (angel 

or devil) in the same hemifield. For a participant whose right hemifield was potentially 

rewarding and the left side potentially punishing, trials enclosed in solid yellow were Congruent 

outcomes, while trials enclosed in dotted yellow boxes were Incongruent outcomes (for fixed 

probabilities of outcomes, see Figure 2.) Following the outcomes were the dot probes, which 

could either appear in the same hemifield as the previous outcome (Valid, violet boxes), or in the 

opposite hemifield as the previous outcome (Invalid, green boxes).  
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Figure 2. Distribution of Fixed Probabilities of Outcomes.  

Conditions arise from an Outcome Expectation x Valence interaction. The above example 

depicts probabilities for a participant whose right hemifield was potentially rewarding and left 

hemifield was punishing. The laterality of probabilities of conditions was reversed for a 

participant whose right hemifield was punishing and left hemifield was rewarding. Laterality of 

probabilities was counterbalanced across participants.  
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Figure 3. Mean RTs. 

Conditions are from the Expectation x Dot Validity ANOVA. Error bars represent standard error 

of the mean.  
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Figure 4. Waveform across Time over Medial Frontal Leads.  

The electrode layout used to extract the MFN is shown on the upper right corner. MFN mean 

amplitudes to each condition were extracted over 225-275ms (between dotted red vertical lines). 
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Figure 5. Mean MFN Amplitudes. 

Amplitudes were extracted over 225-275ms at each of the conditions in the Expectation x 

Valence ANOVA. Error bars represent standard error of the mean. 
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Figure 6. Waveform across Time over Occipitotemporal Leads.  

The electrode layout used to extract the P1 and N1 is shown on the upper right corner. P1 mean 

amplitudes to each condition were extracted over 100-135ms (between dotted red vertical lines). 

N1 mean amplitudes to each condition were extracted over 165-200ms (between dotted orange 

vertical lines). 
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Figure 7. Mean P1 Amplitudes. 

Amplitudes were extracted over 100-135ms at each of the conditions in the Expectation x Dot 

Validity ANOVA. Error bars represent standard error of the mean. 
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Figure 8. Mean N1 Amplitudes. 

Amplitudes were extracted over 165-200ms at each of the conditions in the Expectation x Dot 

Validity ANOVA. Error bars represent standard error of the mean. 
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