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ABSTRACT 

To control various response biases and rater errors in noncognitive assessment, 

multidimensional forced choice (MFC) measures have been proposed as an alternative to single-

statement Likert-type scales. Historically, MFC measures have been criticized because 

conventional scoring methods can lead to ipsativity problems that render scores unsuitable for 

inter-individual comparisons. However, with the recent advent of classical test theory and item 

response theory scoring methods that yield normative information, MFC measures are surging in 

popularity and becoming important components of personnel and educational assessment 

systems. This dissertation presents developments concerning a GGUM-based MFC model 

henceforth referred to as the GGUM-RANK. Markov Chain Monte Carlo (MCMC) algorithms 

were developed to estimate GGUM-RANK statement and person parameters directly from MFC 

rank responses, and the efficacy of the new estimation algorithm was examined through 

computer simulations and an empirical construct validity investigation. Recently derived 

GGUM-RANK item information functions and information indices were also used to evaluate 

overall item and test quality for the empirical study and to give insights into differences in 

scoring accuracy between two-alternative (pairwise preference) and three-alternative (triplet) 

MFC measures for future work. This presentation concludes with a discussion of the research 

findings and potential applications in workforce and educational setting
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CHAPTER ONE:  

 

INTRODUCTION 

 

Over the last two decades, there has been increasing interest in noncognitive constructs in 

educational and occupational settings. This increase stems in part from legal and societal 

concerns about adverse impact associated with cognitive ability testing (Hough & Oswald, 2008; 

Sinha, Oswald, Imus, & Schmitt, 2011) and evidence that noncognitive constructs provide 

incremental validity for many outcomes (Lievens, Buyse, & Sackett, 2005; Ployhart & Holtz, 

2008; Schmidt & Hunter, 1998). In industrial-organizational (I-O) psychology, for example, 

personality has been shown to predict citizenship and counterproductive work performance 

(Barrick, Mount, & Judge, 2001; Berry, Ones, & Sackett, 2007; Borman et al., 2001b; Hurtz & 

Donova, 2000), leadership (Bono & Judge, 2004), career success (Judge & Hurst, 2007), and 

creativity (Bartram, 2005). In addition, other noncognitive constructs, such as emotional 

intelligence (Van Rooy & Viswesvaran, 2004), vocational interests (Morris, 2003), values 

(Schwartz, 2012), and social skills (Semadar, Robins, & Ferris, 2006) have been linked to 

important job criteria.  

Historically, noncognitive constructs have been measured predominantly using Likert-

type scales, which require respondents to indicate their level of agreement with a set of 

statements using, for example, a 1 (Strongly Disagree) to 5 (Strongly Agree) format. However, 

this methodology has been criticized due to its susceptibility to various types of response biases. 

In particular, socially desirable responding, which is also known as impression management or 

faking good, tends to inflate scale means and intercorrelations, and it can reduce the validity and 
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utility of measures used for high-stakes decision making (e.g., Griffith, Chmielowski, & Yoshita, 

2007; Hough, Eaton, Dunnette, Camp, & McCloy, 1990; Schmitt & Oswald, 2006; Stark, 

Chernyshenko, Chan, Lee, & Drasgow, 2001; White & Young, 1998). Likert-type scales are also 

susceptible to rater errors (e.g., leniency, halo) and cultural-specific response biases (e.g., central 

tendency, extremity or acquiescence), which may inflate cross-dimension correlations (Baron, 

1996; Borman et al., 2001a; Brown & Maydeu-Olivares, 2014; Meade, 2004; Stark & Drasgow, 

2002) or attenuate relationships with outcomes in cross-cultural research contexts (e.g., 

Ferrando, Anguiano-Carrasco, & Chico, 2011; He & van de Vijver, 2013). 

To control response biases and rater errors, multidimensional forced choice (MFC) 

measures have been proposed as an alternative to Likert scales for noncognitive assessment. 

MFC measures commonly present statements in blocks of two (pair), three (triplet), or four 

(tetrad). Within the blocks, statements representing different constructs may be matched on 

social desirability and/or extremity. The respondent’s task is to choose the statement in each 

block that is “most like me”, or to rank the statements in each block from “most like me” to 

“least like me”. In theory, matching on social desirability and/or extremity makes the “best” 

answers difficult to discern, and by forcing respondents to choose between alternatives, rather 

than indicating their level of agreement with each statement, response biases and rater errors may 

be reduced (see Bowen, Martin, & Hunt, 2002; Cheung & Chan, 2002; Christiansen, Burns, & 

Montgomery, 2005; Ferrando et al., 2011; He, Bartram, Inceoglu, & van de Vijver, 2014; 

Jackson, Wroblewski, & Ashton, 2000; Vasilopoulos, Cucina, Dyomina, Morewitz, & Reilly, 

2006).  

Like Likert scales, MFC measures have been criticized, but primarily because 

conventional MFC scoring methods can lead to ipsativity problems that render scores unsuitable 
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for inter-individual comparisons (i.e., ipsativity problems; see Hicks, 1970; Johnson, Wood, & 

Blinkhorn, 1988; Meade, 2004). However, with the advent of classical test theory (CTT; White 

& Young, 1998) and item response theory (IRT) scoring methods (e.g., Brown & Maydeu-

Olivares, 2011; de la Torre et al., 2012; Stark, 2002; Stark, Chernyshenko, & Drasgow, 2005) 

that yield normative information and studies showing MFC scores based on these methods 

predict important criteria (e.g., Brown & Bartram, 2009a; Salgado & Táuriz, 2014), MFC 

measures are surging in popularity and becoming important components of personnel and 

educational assessment systems.  

At present, research is needed to answer questions concerning the optimal configuration 

of MFC tests for reducing response biases and rater errors. There is also interest in computerized 

adaptive testing to increase efficiency, parallel test forms to prevent overexposure of items and 

provide backup in the event of a test compromise, and measurement invariance methods for 

fairness evaluations and cross-national comparisons. For these purposes, IRT methods are more 

desirable than CTT methods because they provide test constructors with more statistical 

information and can support a wider range of testing applications.  

Within the IRT framework, only a few MFC psychometric models have been proposed. 

Stark et al. (2005) proposed the Multi-Unidimensional Pairwise Preference (MUPP; Stark, 2002) 

model for constructing and scoring multidimensional pairwise preference items. They estimated 

parameters for individual personality statements using the Generalized Graded Unfolding Model 

(GGUM, Roberts, Donoghue, & Laughlin, 2000) and used those statement parameters, in 

conjunction with social desirability ratings, to construct and score Multidimensional Pairwise 

Preference (MDPP) test forms for assessment purposes. (This is referred to as a two-step process, 

because a statement pool is calibrated in step 1, and MFC tests are built and administered to 
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examinees for assessment in step two).  

As an alternative, Brown (2010) and Brown and Maydeu-Olivares (2011) proposed the 

Thurstonian IRT (TIRT) MFC model, which applies not only to “more like me” judgments 

associated with pairwise preference items, but also to rank-order judgments involving blocks of 

three or more statements. This approach transforms rank-order judgments among a set of stimuli 

into a set of binary judgments that are scaled and scored using a multidimensional normal ogive 

IRT model via the Mplus (Muthén & Muthén 1998–2015) statistical program. (Because item 

parameter estimation and scoring can be accomplished with a single data collection, this is 

referred to as a one-step, or direct, estimation process (Seybert, 2013)). 

Finally, de la Torre and colleagues (de la Torre et al., 2012; Hontangas et al., 2015) 

generalized Stark’s (2002) GGUM-based MUPP model to apply to MFC rank responses. This 

approach views rank-order responses as a sequence of independent “most like” judgments among 

a set of diminishing alternatives (e.g., most like me among four statements, then among three, 

then among two). Statement and person parameters are estimated via a combination of Bayesian 

methods (Markov chain Monte Carlo [MCMC] for statement parameters and MCMC or expected 

a posteriori [EAP] estimation for person parameters). Seybert (2013) used this approach as a 

template for developing an alternative MFC rank model based on Andrich and Luo’s (1993) 

hyperbolic cosine model (HCM), because the HCM produces IRFs similar to the GGUM with a 

somewhat simpler mathematical form. Henceforth, to differentiate these multi-unidimensional 

MFC rank models, de la Torre et al.’s (2012) RANK model will be referred to as the GGUM-

RANK, which was further developed and tested in this dissertation.  
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Limitations and Opportunities for Research 

The models described above approach MFC testing differently and are not without 

limitations. Stark (2002) proposed a two-step strategy for MUPP parameter estimation due to the 

complexities of “direct” marginal maximum likelihood estimation of MFC statement parameters. 

Although time consuming and perhaps costly to pretest and calibrate statements before an MFC 

test administration, this approach is advantageous for computerized adaptive testing (CAT), 

because any number of different tests can be built and scored once a statement pool has been 

calibrated. In contrast, direct MFC estimation obviates statement pretesting and may provide 

more accurate statement parameter estimates by taking into account potential interactions among 

the statements within a block (see Brown, 2010). If such interactions occur, however, statements 

cannot be shuffled to create new MFC items or test forms without re-estimation. This has 

interesting and important implications for measurement invariance or, conversely, differential 

item functioning; if statement parameters depend on context, then it is impossible to classify 

individual statements as good or bad and designate them for revision or exclusion from future 

tests; instead, each potential block of statements would need to be examined. Finally, neither de 

la Torre and colleagues (2012) nor Seybert (2013) presented information functions for MFC 

blocks involving triplets or tetrads of statements. Information functions are helpful in creating 

effective MFC items and developing measures that meet reliability goals.  

 

The Present Investigation 

This dissertation had three aims. First, it aimed to develop a MCMC algorithm for 

estimating statement and person parameters directly from MFC triplet (three-alternative) rank 

responses, based on the GGUM-RANK model. In contrast to previous Monte Carlo simulations 
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that focused exclusively on scoring (e.g., Hontangas et al., 2015) using idealized distributions of 

statement parameters for data generation, MFC measures were constructed using statement 

parameters that were systematically varied across conditions likely to be encountered in practice. 

Second, newly derived methods for computing GGUM-RANK item and test information (Joo, 

Lee, & Stark, 2016) were used to examine how manipulating statement parameters influenced 

estimation error and test reliability, with the larger goal of developing empirically-based 

guidelines for future MFC test construction. The third aim of this dissertation was to compare 

GGUM-RANK parameter estimation and test information across two- and three- alternative 

MFC formats. This phase of research addressed the potential psychometric benefits of using 

formats more complex than pairs in response to interest in MFC triplet measures expressed in 

recent articles (e.g., Anguiano-Carrasco, MacCann, Greiger, Seybert, & Roberts, 2014; Brown & 

Bartram, 2009b; Brown & Maydeu-Olivares, 2011; Bartram & Burke, 2013). The final goal of 

this dissertation was to demonstrate the viability of the developed GGUM-RANK MCMC 

method using empirical data. An overarching goal was to provide practitioners with tools and 

guidelines for constructing effective MFC measures in applied settings. 

This dissertation is divided into seven sections. Section 1 discusses MFC triplet measures 

and an illustrative classical test theory scoring method. Section 2 reviews the MUPP (Stark et al., 

2005) and GGUM-RANK (de la Torre et al., 2012) models. Section 3 focuses specifically on the 

GGUM-RANK model for MFC triplets. Section 4 presents newly derived GGUM-RANK 

information functions and describes how test information was calculated in the proposed 

simulations. Section 5 presents a new MCMC algorithm for estimating GGUM-RANK 

parameters. Section 6 describes two simulation studies and an empirical study that were 

conducted. Study 1 examined GGUM-RANK statement and person parameter recovery and item 
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and test information as a function of sample size, test length, intrablock discrimination, and 

intrablock location parameter variability. Study 2 compared GGUM-RANK parameter recovery 

and test information for MFC pair and triplet measures for different test lengths and sample 

sizes. The results informed MFC test construction practices. Study 3 examined convergent and 

predictive validity evidence for MFC and Likert-type personality measures, which were 

administered to a large sample of online research participants, and scored using the GGUM-

RANK MCMC and classical test theory methods, respectively. Finally, Section 7 of this 

presentation summarizes key findings, limitations, and implications for future research and 

practice. 

 

Classical Test Theory Scoring of MFC Responses 

MFC measures require respondents to rank or choose statements from multiple 

alternatives representing different psychological traits within a block. As described by Hontangas 

et al. (2015), MFC response formats can be categorized into three types: PICK (choose the 

statement that is most like you), MOLE (choose the most like and least like statements), and 

RANK (rank the statements from most to least like you). Hontangas et al. (2015) found that the 

RANK response format yielded better latent trait (person parameter) recovery than the MOLE 

and PICK response formats. This dissertation focuses on RANK responses. An example MFC 

triplet item for rank responses is shown below. 

For each block of statements that follow, rank the statements from most like you (1) to 

least like you (3). 

 

Rank 

Order 

Classical 

Score 

(A) I always turn in my assignments on time. (+C) 3  1  

(B) I generally perform well under pressure. (+Em) 1  2  

(C) I enjoy learning about other cultures. (+O) 2  3  
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Note: A MFC triplet item for rank responses involving positively (+) keyed statements    

representing Conscientiousness (C), Emotional Stability (Em), and Openness to Experience (O).  

 

With MFC measures, simple classical scoring methods can produce ipsative data that 

exhibit negative scale-intercorrelations and distorted reliability and validity estimates (e.g., 

Baron, 1996; Clemans, 1966; Hicks, 1970; Meade, 2004). Ipsative data support only intra-

individual comparisons (Hicks, 1970). If, for example, one simply assigns points corresponding 

to the inverted ranks of statements within MFC blocks, the points for each block would sum to a 

constant (6 in the example above), and the sum of the scale scores would be the same for every 

examinee, making inter-individual comparisons problematic (Hicks, 1970; Meade, 2004; Stark, 

2002; Stark et al. 2005). However, by taking steps to introduce variation in scale scores (e.g., by 

including distractor statements that are not scored, or by varying the number of statements 

representing each dimension in an MFC measure), it is possible to produce partially ipsative 

scores (Hicks, 1970; White & Young, 1998; Stark, 2002; Stark et al., 2005) that can predict 

important organizational outcomes (Salgado & Táuriz, 2014). Importantly, as discussed by 

Brown and Maydeu-Olivares (2014), ipsativity is not an inherent property of MFC measures. 

Classical test theory (White & Young, 1998; McCloy, Heggestad, & Reeve, 2005) and item 

response theory MFC methods (e.g., Brown & Maydeu-Olivares, 2011; Stark, 2002; Stark et al., 

2005; de la Torre et al., 2012) can yield normative scores that are useful for applications, such as 

personnel screening (Stark et al., 2014; White & Young, 1998). 
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Item Response Theory Models for MFC Responses 

 The Multi-Unidimensional Pairwise Preference (MUPP) Model.  

 Stark (2002) proposed the MUPP model for MFC test construction and scoring. The 

model assumes that when a respondent is presented with a pair of statements (j and k) and is 

asked to choose the statement that is more descriptive of him/her, the respondent considers each 

statement separately. A preferential decision is equivalent to agreeing with one statement and 

disagreeing with the other. If the respondent agrees with both statements, then he/she must 

reevaluate them independently until a preference is reached. This preference is represented 

mathematically as a joint probability, which depends on the respondent’s trait scores and the 

parameters associated with the statements based on a unidimensional IRT model. The probability 

of preferring statement j over statement k is given by, 

𝑃(𝑗>𝑘)𝑖 (𝜃𝑑𝑗,𝜃𝑑𝑘) =  
𝑃𝑗𝑘{1,0}

𝑃𝑗𝑘{1,0}+𝑃𝑗𝑘{0,1}
=

𝑃𝑗{1}𝑃𝑘{0}

𝑃𝑗{1}𝑃𝑘{0}+𝑃𝑗{0}𝑃𝑘{1}
                                                        (1) 

where, 

“>” means “preferred,”  

i = index for items, i = 1, 2, …, I, 

j, k = indices for first and second statements in item (MFC block) i, 

d = index for dimensions (constructs) represented by the statements, d = 1, 2, …., D, 

𝜃𝑑𝑗,𝜃𝑑𝑘= latent trait scores for a respondent on dimensions 𝑑𝑗, 𝑑𝑘, respectively, 

𝑃𝑗𝑘{1, 0} = joint probability of endorsing statement j and not endorsing statement k at  

 (𝜃𝑑𝑗,𝜃𝑑𝑘), 

𝑃𝑗𝑘{0, 1} = joint probability of not endorsing statement j and endorsing statement k at  

 (𝜃𝑑𝑗,𝜃𝑑𝑘), 
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𝑃𝑗{1}, 𝑃𝑗{0} = probability of endorsing / not endorsing statement j at 𝜃𝑑𝑗, 

𝑃𝑘{1}, 𝑃𝑘{0} = probability of endorsing / not endorsing statement k at 𝜃𝑑𝑘 , and  

𝑃(𝑗>𝑘) (𝜃𝑑𝑗,𝜃𝑑𝑘) = probability of a respondent preferring statement j to statement k in 

                   item (block) i, given his or her scores on the respective dimensions. 

Based on model-data fit investigations showing that ideal point models and, particularly, 

the GGUM fit ordered-categorical personality data well (Chernyshenko et al., 2001; Stark et al., 

2006), Stark (2002) suggested using the dichotomous version of the GGUM (Roberts et. al., 

2000) for computing MUPP statement endorsement probabilities (𝑃𝑗{1}, 𝑃𝑗{0}, 𝑃𝑘{1}, 𝑃𝑘{0} in 

Equation 1), which are henceforth referred to as component probabilities. He proposed a two-

step process for MFC testing: 1) Individual personality statements representing different 

dimensions are administered to a large sample of examinees (N>400) using a four-point ordinal 

response format. The response data are dichotomized and calibrated for each dimension 

separately using a program that provides GGUM statement parameters (e.g., GGUM2000; 

Roberts, 2000). 2) Multidimensional pairwise preference measures are then created by forming 

MFC items using MUPP information functions and separately obtained social desirability 

ratings. The MFC measure is administered for assessment purposes and the response data are 

scored using a multidimensional Bayes modal estimation algorithm. Research since 2002 has 

shown that this algorithm can adequately recover latent trait scores with multidimensional 

pairwise preference tests involving as many as 25 dimensions (Stark et al., 2005; 2012). (For 

reference, the next section provides a short description of the dichotomous GGUM.) 
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 Generalized Graded Unfolding Model (GGUM) 

 The GGUM is a unidimensional ideal point model that can be applied to dichotomous 

and polytomous responses. Stark (2002) provided the simplified version for dichotomous data 

shown below:  

 𝑃(0) = 𝑃(𝑍 = 0|𝜃) = 
1+exp(𝛼[3(𝜃−𝛿)])

γ
, and                      (2a) 

 𝑃(1) = (𝑍 = 1|𝜃) = 
exp(𝛼[(𝜃−𝛿)−𝜏])+exp(𝛼[2(𝜃−𝛿)−𝜏])

γ
,         (2b) 

where, 

𝛼 = the discrimination parameter for a particular statement, 

𝛿 = the location of the statement on the latent trait continuum, 

𝜏 = the location of the subjective response category threshold on the latent trait   

  continuum, and 

γ= 1 + exp(𝛼[3(𝜃 − 𝛿)]) + exp(𝛼[(𝜃− 𝛿) − 𝜏]) + exp(𝛼[2(𝜃 − 𝛿) − 𝜏]) is a normalizing  

  factor equal to the sum of the numerators in Equations (2a) and (2b). 

The GGUM assumes that when respondents evaluate statements to make endorsement 

(agree/disagree) decisions, they consider the distance between their location and the location of 

the statements on the trait continuum (i.e., |𝜃 − 𝛿|). As |𝜃 − 𝛿| increases, the probability of 

agreement decreases, leading to bell-shaped item response function (IRFs) that peak at 𝜃 = 𝛿. In 

other words, respondents are most likely to agree with statements that express attitudes, feelings, 

beliefs, or actions similar to their own, and they tend to disagree as perceived dissimilarity 

grows.  

Figure 1 displays a GGUM IRF for a hypothetical statement having parameters 𝛼 = 1.50, 

𝛿 = 0.00, and 𝜏 = −1.00, respectively. The vertical axis represents the probability of agreeing 

with the statement, and the horizontal axis indicates the latent trait scores. The figure shows that 
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the probability of agreement peaks at |𝜃 − 𝛿| = 0 and decreases in both directions, yielding a 

nonmonotonic symmetric function. The location of the peak on the latent trait continuum is 

determined by the location (a.k.a., extremity) parameter, 𝛿. The steepness of the IRF is 

determined by the discrimination parameter (𝛼) and the subjective response category threshold, τ 

(Roberts et al., 2000). For details concerning the use of the GGUM in connection with the MUPP 

model, see Stark (2002) and Stark et al. (2005). 

  
 

Figure 1. Item response function (IRF) for the dichotomous GGUM. 

 

 The PICK, RANK, and MOLE Models.  

 de la Torre et al. (2012) extended the MUPP model to more complex MFC formats. The 

PICK model is a generalized version of Stark’s (2002) MUPP model for MFC items (blocks) 

involving 2 to M statements per block. For example, if a respondent is presented with a block of 

four statements labeled A, B, C, and D (a tetrad), and is instructed to select the statement that is 

“most like you,” the model assumes that the respondent evaluates the statements independently 

https://www.youtube.com/watch?v=xZEwLS5bK4Q
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until he/she agrees with just one. If a respondent chooses statement A, the probability of the 

decision would be given by: 

 𝑃(A>B,C,D) = 
𝑃{1,0,0,0}

𝑃{1,0,0,0}+𝑃{0,1,0,0}+𝑃{0,0,1,0}+𝑃{0,0,0,1}
 ,                                                          (3) 

where P{1,0,0,0} represents the joint probability of agreeing with statement A and 

disagreeing with statements B, C, and D. If the respondent were to choose statement B, the 

numerator would become P{0,1,0,0}, and similar logic would apply for choosing statements C or 

D as “most like.” Note that the denominator is the same in each case – representing the sum over 

all possible outcomes. As with the MUPP, the independence assumption allows the joint 

probability terms in the numerator and denominator to be separated into their component 

probabilities and computed using a unidimensional model for dichotomous responses, such as 

the GGUM (Roberts et al., 2000). 

Next, following Luce (1959), who proposed that the probability of a set of ranks can be 

viewed as sequence of independent “most like” (PICK) decisions among a set of diminishing 

alternatives (M, M-1, …, 2), de la Torre et al. (2012) developed the RANK model for MFC rank 

responses. For the tetrad example above, the probability of the hypothetical ranking A>D>B>C 

would be given by the following sequence of PICK decisions:   

 𝑃(A>D>B>C) = 𝑃(A>B,C,D) ∗ 𝑃(D>B,C) ∗ 𝑃(B>C) .                                             (4) 

Finally, for MFC formats involving partial ranks, corresponding to instructions such as, 

“in each block, choose one statement that is ‘most like you’ and one statement in each block that 

is ‘least like you’ (e.g., White & Young, 1998)”, the probability of choosing statement A as 

‘most like’ and statement C as ‘least like’ would be given by adding the RANK probabilities,  

  𝑃(A∗∗C) = 𝑃(A>B>D>C) + 𝑃(A>D>B>C) ,                                                                            (5)                                                        

which takes into account the unknown preference regarding statements B and D. 
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The GGUM-RANK Model for MFC Triplet Measures 

This section provides a detailed description of a GGUM-based RANK model for MFC 

triplets, referred to henceforth as the GGUM-RANK, for which parameter estimation algorithms 

were developed and tested in this research. For a block of three statements labeled (A, B, C), the 

respective PICK probabilities are:   

𝑃(A>B,C)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) =
𝑃A(1)𝑃B(0)𝑃C(0)

𝑃A(1)𝑃B(0)𝑃C(0)+𝑃A(0)𝑃B(1)𝑃C(0)+𝑃A(0)𝑃B(0)𝑃C(1)
                  (6a) 

𝑃(B>A,C)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) =
𝑃A(0)𝑃B(1)𝑃C(0)

𝑃A(1)𝑃B(0)𝑃C(0)+𝑃A(0)𝑃B(1)𝑃C(0)+𝑃A(0)𝑃B(0)𝑃C(1)
                   (6b) 

𝑃(C>A,B)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) =
𝑃A(0)𝑃B(0)𝑃C(1)

𝑃A(1)𝑃B(0)𝑃C(0)+𝑃A(0)𝑃B(1)𝑃C(0)+𝑃A(0)𝑃B(0)𝑃C(1)
                   (6c) 

where, 

“>” means “preferred,”  

i = the index for each item (block of three statements; triplet), i = 1 to I, 

A, B, C = the labels for the statements in block i, 

d = the index for dimensions represented by the statements, d = 1, … , D, 

θ𝑑A , θ𝑑B , θ𝑑C  = the respondent’s latent trait scores on the dimensions represented by the  

  statements A, B, and C in block i, 

𝑃A(1), 𝑃B(1) , 𝑃C(1) = the probabilities of endorsing statements A, B, and C,

 𝑃A(0), 𝑃B(0), 𝑃C(0) = the probabilities of not endorsing statements A, B, and C, 

𝑃(A>B,C)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = the probability of a respondent preferring statement A over  

  statements B and C in block i, 

𝑃(B>A,C)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = the probability of a respondent preferring statement B over  

  statements A and C in block i, and 
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𝑃(C>A,B)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = the probability of a respondent preferring statement C over  

  statements A and B in block i. 

With MFC blocks involving three or more dimensions, PICK probabilities cannot be 

displayed using a single three-dimensional surface. However, for the special case in which all 

statements represent the same underlying dimension, the PICK probabilities can be displayed for 

all statements simultaneously using plots like Figure 2. In this case, statement A is most likely to 

be chosen by respondents having trait scores, between -4 and -1, statement B is most likely to be 

chosen by respondents having trait scores between -1 and +1, and statement C is most likely to 

be chosen by respondents having higher trait scores. 

 

 

Figure 2. GGUM-PICK response functions for a block involving three statements (A, B, and C) 

measuring the same dimension. In the panel, 𝛼=2, 𝛿= -2, 𝜏= -1 for statement A;  

𝛼=2, 𝛿= 0, 𝜏= -1 for statement B; 𝛼=2, 𝛿= 2, 𝜏= -1 for statement C. 
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With MFC triplet items, there are 6 possible ways a respondent can rank the statements: 

1) A>B>C, 2) A>C>B, 3) B>A>C, 4) B>C>A, 5) C>A>B, 6) C>B>A.  The GGUM-RANK 

probabilities are computed as follows:  

𝑃(A>B>C)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = 𝑃(A>B,C) ∗ 𝑃(B>C) = 

𝑃A(1)𝑃B(0)𝑃C(0)

𝑃A(1)𝑃B(0)𝑃C(0)+𝑃A(0)𝑃B(1)𝑃C(0)+𝑃A(0)𝑃B(0)𝑃C(1)
∗

𝑃B(1)𝑃C(0)

𝑃B(1)𝑃C(0)+𝑃B(0)𝑃C(1)
                        (7a) 

𝑃(A>C>B)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = 𝑃(A>C,B) ∗ 𝑃(C>B) = 

𝑃𝐴(1)𝑃𝐵(0)𝑃𝐶(0)

𝑃𝐴(1)𝑃𝐵(0)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(1)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(0)𝑃𝐶(1)
∗

𝑃𝐵(0)𝑃𝐶(1)

𝑃𝐵(1)𝑃𝐶(0)+𝑃𝐵(0)𝑃𝐶(1)
                           (7b) 

𝑃(B>A>C)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = 𝑃(B>A,C) ∗ 𝑃(A>C) = 

𝑃𝐴(0)𝑃𝐵(1)𝑃𝐶(0)

𝑃𝐴(1)𝑃𝐵(0)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(1)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(0)𝑃𝐶(1)
∗

𝑃𝐴(1)𝑃𝐶(0)

𝑃𝐴(1)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐶(1)
                            (7c) 

𝑃(B>C>A)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = 𝑃(B>C,A) ∗ 𝑃(C>A) = 

𝑃𝐴(0)𝑃𝐵(1)𝑃𝐶(0)

𝑃𝐴(1)𝑃𝐵(0)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(1)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(0)𝑃𝐶(1)
∗

𝑃𝐴(0)𝑃𝐶(1)

𝑃𝐴(1)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐶(1)
                            (7d) 

𝑃(C>A>B)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = 𝑃(C>A,B) ∗ 𝑃(A>B) = 

𝑃𝐴(0)𝑃𝐵(0)𝑃𝐶(1)

𝑃𝐴(1)𝑃𝐵(0)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(1)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(0)𝑃𝐶(1)
∗

𝑃𝐴(1)𝑃𝐵(0)

𝑃𝐴(1)𝑃𝐵(0)+𝑃𝐴(0)𝑃𝐶(1)
                            (7e) 

𝑃(C>B>A)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = 𝑃(C>B,A) ∗ 𝑃(B>A) = 

𝑃𝐴(0)𝑃𝐵(0)𝑃𝐶(1)

𝑃𝐴(1)𝑃𝐵(0)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(1)𝑃𝐶(0)+𝑃𝐴(0)𝑃𝐵(0)𝑃𝐶(1)
∗

𝑃𝐴(0)𝑃𝐵(1)

𝑃𝐴(1)𝑃𝐵(0)+𝑃𝐴(0)𝑃𝐵(1)
                            (7f) 

where 

“>” means “preferred,”  

i = the index for each item (block of three statements; triplet), i = 1 to I, 

A, B, C = the labels for the statements in block i, 

d = the index for dimensions represented by the statements, d = 1, … , D, 
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θ𝑑A , θ𝑑B , θ𝑑C  = the respondent’s latent trait scores on the dimensions represented by the  

  statements A, B, and C in block i, 

𝑃A(1), 𝑃B(1) , 𝑃C(1) = the probabilities of endorsing statements A, B, and C,

 𝑃A(0), 𝑃B(0), 𝑃C(0) = the probabilities of not endorsing statements A, B, and C, 

𝑃(A>B>C)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = the probability of a respondent ranking statements A, B, and  

  C as their 1st, 2nd, and 3rd choices, respectively, in block i,  

𝑃(A>C>B)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = the probability of a respondent ranking statements A, C, and  

  B as their 1st, 2nd, and 3rd choices, respectively, in block i,  

𝑃(B>A>C)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = the probability of a respondent ranking statements B, A, and  

  C as their 1st, 2nd, and 3rd choices, respectively, in block i, 

𝑃(B>C>A)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = the probability of a respondent ranking statements B, C, and  

  A as their 1st, 2nd, and 3rd choices, respectively, in block i, 

𝑃(C>A>B)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = the probability of a respondent ranking statements C, A, and  

  B as their 1st, 2nd, and 3rd choices, respectively, in block i, 

𝑃(C>B>A)𝑖(𝜃𝑑A , 𝜃𝑑B , 𝜃𝑑C) = the probability of a respondent ranking statements C, B, and  

  A as their 1st, 2nd, and 3rd choices, respectively, in block i. 

For the special case of MFC triplets with statements representing the same dimension, the 

probabilities of the six possible ranks can be displayed like ordinary option response functions. 

In Figure 3, the vertical axis represents the probability of a ranking given a respondent’s trait 

scores (𝜃) and the statements’ parameters. Because there are six possible ranks, there are six 

response functions, labeled as shown to the right of the graph. Note that at low trait scores, the 

ranking A>B>C is most probable, and the probabilities peak for rankings B>A>C, B>C>A and 



 

 
 

 

18 

C>B>A, respectively, as 𝜃 increases. Note also that A>C>B and C>A>B have very low 

probabilities of being observed throughout the range of trait scores.  

 

 
 

Figure 3. GGUM-RANK option response function selecting each possible rank response in a 

triplet. In the panel, 𝛼=2, 𝛿= -2, 𝜏= -1 for statement A;𝛼=2, 𝛿= 0, 𝜏= -1 for statement B; 𝛼=2, 𝛿= 

2, 𝜏= -1 for statement C. 
 

 

GGUM-RANK Item and Test Information Indices 

This section describes an analytical solution and numerical approximation methods for 

GGUM-RANK item information and test information index developed by Joo, Lee, and Stark 

(2016). Also presented are new scalar (unconditional) information indices to facilitate 

comparisons across blocks involving different numbers of statements as well as mixed format 

measures (i.e., a mix of pairs, triplets, and tetrads). Due to the complexity of these functions, the 

numerical approximations may be preferred in practice. 
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GGUM-RANK information functions were derived starting with the general definition of 

item information 𝐼𝑖(𝜃) for unidimensional polytomous models provided by Samejima (1974): 

                                            𝐼𝑖(𝜃) = ∑ 𝐼𝑖𝑚(𝜃)𝑃𝑖𝑚(𝜃)
𝑀
𝑚=1 ,                                             (8a) 

where  

i is the index for items (i=1, 2, … , I), 

m is the index for response categories (m=1, 2, …, M), and 

𝐼𝑖𝑚(𝜃) = −
𝜕2 ln𝑃𝑖𝑚(𝜃)

𝜕𝜃2
= −

𝜕

𝜕𝜃

(
𝜕𝑃𝑖𝑚(𝜃)

𝜕𝜃
)
2

𝑃𝑖𝑚(𝜃)
  is the item category information function. 

By substitution, it follows that: 

                                         𝐼𝑖(𝜃) = ∑ (−
𝜕

𝜕𝜃

(
𝜕𝑃𝑖𝑚(𝜃)

𝜕𝜃
)
2

𝑃𝑖𝑚(𝜃)
)𝑃𝑖𝑚(𝜃)

𝑀
𝑚=1 ,                               (8b) 

                                   𝐼𝑖(𝜃) = ∑ (
(
𝜕𝑃𝑖𝑚(𝜃)

𝜕𝜃
)
2

−𝑃𝑖𝑚(𝜃)
𝜕2𝑃𝑖𝑚(𝜃)

𝜕𝜃2

[𝑃𝑖𝑚(𝜃)]2 
)𝑃𝑖𝑚(𝜃)

𝑀
𝑚=1 ,                          (8c)  

and, 

                                            𝐼𝑖(𝜃) = ∑ [
(
𝜕𝑃𝑖𝑚(𝜃)

𝜕𝜃
)
2

𝑃𝑖𝑚(𝜃)
−

𝜕2𝑃𝑖𝑚(𝜃)

𝜕𝜃2
]𝑀

𝑚=1 .                                 (8d) 

Applied to the GGUM-RANK model with three statements per block (triplets), there are M=6 

possible rankings or response categories. Consequently, Equation 8d can be rewritten as: 

                                     𝐼𝑖(𝜽) = ∑ [
(
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜽
)
2

𝑃𝑖𝑚(𝜽)
−

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜽𝜕𝜽𝑻
]𝑀=6

𝑚=1  ,                                           (9a) 

                     =
(
𝜕𝑃𝑖1(𝜽)

𝜕𝜽
)
2

𝑃𝑖1(𝜽)
−

𝜕2𝑃𝑖1(𝜽)

𝜕𝜽𝜕𝜽𝑻
+

(
𝜕𝑃𝑖2(𝜽)

𝜕𝜽
)
2

𝑃𝑖2(𝜽)
−

𝜕2𝑃𝑖2(𝜽)

𝜕𝜽𝜕𝜽𝑻
+⋯+

(
𝜕𝑃𝑖6(𝜽)

𝜕𝜽
)
2

𝑃𝑖6(𝜽)
−

𝜕2𝑃𝑖6(𝜽)

𝜕𝜽𝜕𝜽𝑻
  ,    (9b) 

where 

𝜽 = (𝜃𝐴, 𝜃𝐵 , 𝜃𝐶), the vector of trait scores for the dimensions measured in block i,  
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𝑃𝑖1(𝜽) = 𝑃𝐴>𝐵>𝐶(𝜽), 

𝑃𝑖2(𝜽) = 𝑃𝐴>𝐶>𝐵(𝜽) , 

𝑃𝑖3(𝜽) = 𝑃𝐵>𝐴>𝐶(𝜽), 

𝑃𝑖4(𝜽) = 𝑃𝐵>𝐶>𝐴(𝜽), 

𝑃𝑖5(𝜽) = 𝑃𝐶>𝐴>𝐵(𝜽),  

𝑃𝑖6(𝜽) = 𝑃𝐶>𝐵>𝐴(𝜽), 

𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜽
 is the Gradient vector of first partial derivatives, and 

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜽𝜕𝜽𝑻
 is the Hessian matrix of second partial derivatives.   

The Gradient vector mentioned above is obtained by taking partial derivatives of the GGUM-

RANK probability function with respect to 𝜽 = (𝜃𝐴, 𝜃𝐵 , 𝜃𝐶) as shown:   

                                         
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜽
= (

𝜕𝑃𝑖𝑚(𝜃𝐴,𝜃𝐵,𝜃𝐶)

𝜕𝜃𝐴

𝜕𝑃𝑖𝑚(𝜃𝐴,𝜃𝐵,𝜃𝐶)

𝜕𝜃𝐵

𝜕𝑃𝑖𝑚(𝜃𝐴,𝜃𝐵,𝜃𝐶)

𝜕𝜃𝐶
)   .     (10a) 

To compute GGUM-RANK item information using Equation 9a, we need the “squares” of the 

first partial derivatives, given by the inner product of the vector expression in Equation 10: 

                                          (
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜽
)
2

= (
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴
)
2

+ (
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵
)
2

+ (
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶
)
2

  .       (10b) 

Next, we need the Hessian matrix of second partial derivatives of the GGUM-RANK probability 

function with respect to 𝜽 = (𝜃𝐴, 𝜃𝐵 , 𝜃𝐶):   

       
𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜽𝜕𝜽𝑻
=

𝜕

𝜕𝜽𝑻
(
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴

𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵

𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶
) =

(

  
 

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴
2

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴𝜕𝜃𝐵

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴𝜕𝜃𝐶

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵𝜕𝜃𝐴

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵
2

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵𝜕𝜃𝐶

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶𝜕𝜃𝐴

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶𝜕𝜃𝐵

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶
2 )

  
 

  (11a) 

Because it is assumed that the statements measuring each dimension are evaluated independently 

by a respondent, the mixed partial derivatives can be set to zero, as shown in Equation 11b:  
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𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜽𝜕𝜽𝑻
=

(

  
 

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴
2 0 0

0
𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵
2 0

0 0
𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶
2 )

  
 

 ,                       (11b) 

To combine this result with the numerator term on the left side of Equation 9a for GGUM-

RANK item information, the trace of the Hessian is needed: 

 
𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜽𝜕𝜽𝑻
= 𝑡𝑟

(

  
 

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴
2 0 0

0
𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵
2 0

0 0
𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶
2 )

  
 

 =
𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴
2 +

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵
2 +

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶
2  .  (12) 

By substituting Equations 10b and 12 into 9a, we obtain item information for GGUM-RANK 

triplets:  

𝐼𝑖(𝜽) = ∑
(
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴
)
2

+(
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵
)
2

+(
𝜕𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶
)
2

𝑃𝑖𝑚(𝜽)
𝑀=6
𝑚=1 − (

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐴
2 +

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐵
2 +

𝜕2𝑃𝑖𝑚(𝜽)

𝜕𝜃𝐶
2 )  .       (13) 

GGUM-RANK test information, 𝐼(𝜽), is then obtained by summing the item information 

functions: 

                                                                𝐼(𝜃) = ∑ 𝐼𝑖(𝜃)
𝐼
𝑖=1  .                                          (14) 

 

 Numerical Solution for GGUM-RANK Overall Item Information 

 Note that examples of first and second partial derivatives of the GGUM-RANK 

probability function with respect to 𝜽 = (𝜃𝐴, 𝜃𝐵 , 𝜃𝐶) are provided in Appendix A. Because the 

analytical solution for item information is complex, an Ox computer program (Doornik, 2009) 

that numerically approximates the Gradient (Equation 10) and Hessian (Equation 11a) was 

developed and tested by Joo et al. (2016) for special cases that could be vetted. An overall item 

information (OII) index was also developed to allow comparisons of item quality with MFC 
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blocks involving different numbers of statements and/or dimensions. To compute OII, 10,000 

random vectors of trait scores are drawn from a multivariate standard normal distribution, item 

information conditional on the trait scores is computed, and the information values are averaged 

over samples and dimensions to obtain a scalar index of item quality that can be used to judge 

the benefit of administering one item relative to another in the examinee population. Because OII 

is a scalar quantity, the values can then be summed across items to compute an overall test 

information (OTI) index that varies in association with the precision of estimated trait scores. 

More specifically, items and tests having larger OII and OTI values should allow, on average, 

more accurate assessment of examinees.    

 

Estimating GGUM-RANK Item Parameters 

To date, multiple methods have been developed to estimate item and person parameters 

in the context of IRT. Joint Maximum Likelihood (JML) and Marginal Maximum Likelihood 

(MML) estimation are well known examples. In JML estimation, the likelihood is jointly 

maximized in terms of item and person parameters through an alternating sequence of steps. 

More specifically, JML starts by assuming initial values for the item parameters. These 

“provisional” item parameters are used with observed data to estimate person parameters via 

maximum likelihood; then these person parameter estimates are used to obtain better item 

parameter estimates. This alternating sequence of maximization steps continues until the changes 

across iterations fall below some predetermined threshold, indicating that the algorithm has 

converged.   

In contrast to this back and forth process for estimating parameters, which sometimes 

leads to convergence problems, MML estimation uses an Expectation-Maximization (EM) 
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algorithm (Bock & Aitken, 1981), which begins by assuming a prior distribution of trait scores 

(e.g., standard normal) that serves to identify the scale of measurement. The trait continuum is 

divided into a series of discrete points (quadrature nodes). At each node, the expected number of 

responses and the expected number of correct responses are computed, and these “pseudocounts” 

are used to compute the likelihood of the observed data matrix (E-step). Next, the likelihood of 

the data is maximized by using a numerical method, such as Newton-Raphson iterations, which 

requires starting values for the item parameters and first and second derivatives of the likelihood 

function (M-step). The values that maximize the likelihood are used as the item parameters for 

the next E-step, and this process continues until the changes across cycles are sufficiently small, 

indicating convergence. Research has shown that this approach is effective and produces item 

parameter estimates that are consistent. However, as with JML, the need for derivatives in the M-

Step makes this approach difficult to implement with complex IRT models. 

In the last decade, Markov Chain Monte Carlo (MCMC) estimation emerged as a viable 

alternative to JML and MML methods that is well suited for complex IRT models, such as the 

GGUM-RANK (e.g., Bolt & Lall, 2003; de la Torre, Stark, & Chernyshenko, 2006; Sinharay, 

Johnson, & Stern, 2006; Johnson & Junker, 2003; Patz & Junker, 1999). Like JML, MCMC 

methods estimate item and person parameters in tandem; however, MCMC methods do not 

require derivatives. Instead, prior distributions for the item and person parameters are assumed, 

the likelihood of the data are computed at “candidate” values sampled from those distributions, 

and probabilistic decisions are made concerning the acceptability of the candidate values over 

many (e.g., 50,000) iterations. After a “burn in” period of several hundred to several thousand 

iterations, which are needed for the algorithm to reach a steady state, the item and person 

parameters accepted/retained on each iteration are averaged to obtain the MCMC parameter 
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estimates, and the standard deviation of these post-burn-in values gives their standard error. At 

this point, various diagnostics can be examined to determine whether the algorithm converged, 

or whether the starting values, priors, and number of cycles need to be adjusted for a subsequent 

run.  

Several different MCMC methods have been explored (e.g., Gibbs sampling (Geman & 

Geman, 1984; Metropolis-Hastings (MH; Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, 

Teller, & Teller, 1953), and Metropolis-Hasting within Gibbs (MHWG; Tierney, 1994)). They 

differ in how a new draw in the Markov chain is sampled based on the previous draw. As 

discussed by Patz and Junker (1999), MHWG is a flexible approach combining MH and Gibbs 

sampling that is amenable to IRT applications. For that reason, the MHWG method was chosen 

for estimating GGUM-RANK triplet item and person parameters in this research.  

 

 The MHWG Algorithm  

 To implement the MHWG algorithm for the GGUM-RANK model, the likelihood of the 

rank response data given all model parameters (𝜽, 𝛼, 𝛿, 𝜏) must be specified: 

P(𝑿 |𝜽, 𝛼, 𝛿, 𝜏) =  ∏ ∏ 𝑃𝑛𝑖(𝜽𝑛)
𝐼
𝑖

𝑁
𝑛 ,                                                                                          (15) 

where  

n = índex for respondents, n =1, 2, …, N, 

i = index for items (blocks), i = 1, 2, …, I, 

𝑿 = (NxI) matrix of rank responses, and 

𝑃𝑛𝑖(𝜽𝑛) = the GGUM-RANK probability for person n’s ranking of the statements  

  in item i, computed using Equations (7a) through (7f). 
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In the MHWG algorithm, all model parameters are updated individually on each iteration. A 

step-by-step description is provided below. 

 For each parameter, initial values (𝜃0, 𝛼0,  𝛿0, 𝜏0) are determined based on prior information. 

 Each model parameter is updated sequentially on each iteration t: 

 Proposed candidate values (θ*), for ten sets of latent trait scores, are drawn from 

independent normal distributions with mean of value at the t-1 state and specified 

variances to yield adequate acceptance rates (Patz & Junker, 1999a): θ * ~ N(θ t-1, σ²). 

o For each set of θ*, an acceptance probability is obtained by dividing the posterior 

probability at the proposed state by the posterior probability at the current state 

(i.e., 
𝑃(𝜃𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃(𝜃𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
).  

o If  
𝑃(𝜃𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃(𝜃𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
> 1, the proposed values of θ* is accepted. 

o If  
𝑃(𝜃𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃(𝜃𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
< 1 , the proposed values of θ* is accepted probabilistically. That 

 is, if the acceptance probability is greater than the random uniform number, the 

 proposed set of θ* is accepted. If not, the proposed value at previous state (t-

 1) is retained. 

o This process can be expressed in Equation 16: 

P(𝜽𝑡−1, 𝜽∗) = 𝑚𝑖𝑛 {
(𝑋|𝜽∗, 𝛼(𝑡−1), 𝛿(𝑡−1), 𝜏(𝑡−1))𝑃(𝜽∗)

𝑃(𝑋|𝜽(𝑡−1), 𝛼(𝑡−1), 𝛿(𝑡−1), 𝜏(𝑡−1))𝑃(𝜽(𝑡−1))
, 1}.                     (16) 

 Proposed candidate values (𝛼∗) for statement discrimination parameters are drawn from 

N(𝛼 t-1, σ²).  
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o An acceptance probability for each 𝛼∗ is obtained by dividing the posterior 

probability at the proposed state by the posterior probability at the current state (i.e., 

𝑃(𝛼𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃(𝛼𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
). 

o If  
𝑃(𝛼𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃(𝛼𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
> 1, the proposed values of 𝛼* is accepted. 

o If  
𝑃(𝛼𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃(𝛼𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
< 1 , the proposed values of 𝛼* is accepted probabilistically.  

o This process can be expressed  in Equation 17: 

P(𝛼𝑡−1, 𝛼∗) = 𝑚𝑖𝑛 {
𝑃(𝑋|𝜃𝑡 , 𝛼∗, 𝛿(𝑡−1), 𝜏(𝑡−1))𝑃(𝛼∗)

𝑃(𝑋|𝜃𝑡 , 𝛼(𝑡−1), 𝛿(𝑡−1), 𝜏(𝑡−1))𝑃(𝛼(𝑡−1))
, 1}.                           (17) 

 Proposed candidate values (δ*) for statement location parameters are drawn from N(δt-1, 

σ²). 

o An acceptance probability for each 𝛿* is obtained by dividing the posterior 

probability at the proposed state by the posterior probability at the current state (i.e., 

𝑃(𝛿𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃( 𝛿𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
). 

o If  
𝑃(𝛿𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃( 𝛿𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
> 1, the proposed values of δ* is accepted. 

o If  
𝑃(𝛿𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃( 𝛿𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
< 1 , the proposed values of δ* is accepted probabilistically.  

o This process can be expressed  in Equation 18: 

 P(𝛿𝑡−1, 𝛿∗) = 𝑚𝑖𝑛 {
𝑃(𝑋|𝜃𝑡, 𝛼𝑡, 𝛿∗, 𝜏(𝑡−1))𝑃(𝛿∗)

𝑃(𝑋|𝜃𝑡, 𝛼𝑡, 𝛿(𝑡−1), 𝜏(𝑡−1))𝑃(𝛿(𝑡−1))
, 1}.                          (18) 

 Proposed candidate values(τ*) for statement location parameters are drawn from N(τ t-1, 

σ²). 
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o An acceptance probability for each τ* is obtained by dividing the posterior probability 

at the proposed state by the posterior probability at the current state (i.e., 
𝑃(𝜏𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃( 𝜏𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
). 

o If  
𝑃(𝜏𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃( 𝜏𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
> 1, the proposed values of τ* is accepted. 

o If  
𝑃(𝜏𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑃( 𝜏𝐶𝑢𝑟𝑟𝑒𝑛𝑡)
< 1 , the proposed values of τ* is accepted probabilistically.  

o This process can be expressed  in Equation 19: 

P(𝜏𝑡−1, 𝜏∗) = 𝑚𝑖𝑛 {
𝑃(𝑋|𝜃𝑡 , 𝛼𝑡, 𝛿𝑡, 𝜏∗)𝑃(𝜏∗)

𝑃(𝑋|𝜃𝑡, 𝛼𝑡, 𝛿𝑡, 𝜏(𝑡−1))𝑃(𝜏(𝑡−1))
, 1}.                                     (19) 

 This procedure continues until a specified number of cycles is reached and the estimated 

model parameters are recorded on each cycle. The values before the burn-in period are 

typically excluded. The parameter estimates, standard errors, and covariances were obtained 

using means, variances, and covariances of model parameters after burn-in period. 

An Ox (Doornik, 2009) computer program was created to estimate GGUM-RANK 

parameters using this MCMC algorithm. Prior distributions for the model parameters (𝜽, 𝛼, 𝛿, 𝜏) 

and proposal variances for the specific simulation conditions in this research were chosen by 

following the recommendations of Patz and Junker (1999) and examining some pilot testing 

results. The next section describes the simulation design and process to evaluate the recovery of 

GGUM-RANK item and person parameters using this MHWG approach. 
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CHAPTER TWO: 

METHOD 

 

Study1 

Study 1 investigated the accuracy of MCMC parameter recovery using an MHWG 

algorithm developed for GGUM-RANK triplet responses. Simulation conditions were chosen to 

reflect choices made in practice concerning MFC test construction, and generating parameters 

were obtained in accordance with other MFC scoring and GGUM estimation studies (e.g., 

Hontangas et al., 2015; Koenig & Roberts, 2007; Roberts et al., 2000).  

For this study, MFC test dimensionality was set at 10 dimensions, because tests in the 

field usually involve 10 or more dimensions (e.g., Stark et al., 2014), and tests of higher 

dimensionality would require more items and lead to excessive run-times. Four independent 

variables, shown below, were fully crossed to produce 16 experimental conditions. Because pilot 

testing revealed that one replication would take 11-47 hours, depending on the condition, the 

number of replications in each condition was set at 20.   

 

 Simulation Study Design 

1) Sample size (2): 

a) N = 250, and 

b) N = 500. 

2) Test length (2): 
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a) 30-Triplet, and 

b) 60-Triplet (the first 30 triplets were duplicated). 

3) Intrablock discrimination (2): 

a) Low: α sampled randomly from uniform distribution, U(0.75, 1.25), and 

b) High : α sampled randomly from uniform distribution, U(1.75, 2.25). 

4) Intrablock location parameter variability (2): 

a) Low: 𝛿 standard deviation (SD) ≈ 0.3, and 

b) High: 𝛿 standard deviation (SD) ≈ 1.3. 

The same threshold (τ) parameters were used in each experimental condition; these were 

sampled from a uniform distribution, U(-1.4, -0.4). In the intrablock location parameter 

variability conditions, half of the 𝛿 parameters were sampled from a U(-2, 0), and the other half 

were sampled from a U(0, 2). Then the large variability (𝛿 SD = 1.3) and small variability (𝛿 SD 

= 0.3) conditions were fulfilled by mixing the generated 𝛿 parameters.  

 MFC Tests Constructed for this Simulation. To prepare for this study, 10-D MFC tests 

were built in accordance with the study design. Appendices B1 through B4 present the 

specifications for the 30-Triplet measures. On the left side of each table, column 1 shows the 

triplet (item) number, column2 shows the statement number, column 3 shows the dimension 

number represented by the statement, columns 4 through 6 show the generating statement 

discrimination, location, and threshold parameters, respectively (𝛼, 𝛿, and 𝜏), and so on for the 

remaining columns. 

With 10-D MFC tests, there are 120 possible combinations of three dimensions that could 

be chosen for test construction (excluding repeats within blocks). 30-Triplet measures were 

created by choosing from these combinations, so that each dimension appeared in 9 different 
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blocks. Item parameters were selected to satisfy the design specifications in the particular 

conditions. Next, 60-Triplet measures were formed by duplicating the item parameters in the 30-

Triplet measures, while assigning different dimension numbers to make well-balanced tests. The 

dimensionality specifications for the 30-Triplet and 60-Triplet MFC tests are shown in Table 1.  
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Table 1. Dimension Specification of 30-Triplet and 60-Triplet Tests. 

 

 

 

Block # A B C Block # A B C Block # A B C

1 1 2 3 1 1 2 3 31 1 2 4

2 1 6 9 2 1 6 9 32 1 2 9

3 4 5 8 3 4 5 8 33 1 3 7

4 6 7 8 4 6 7 8 34 1 8 9

5 2 6 7 5 2 6 7 35 2 3 6

6 8 9 10 6 8 9 10 36 2 5 8

7 2 3 5 7 2 3 5 37 3 4 10

8 1 4 9 8 1 4 9 38 3 9 10

9 1 2 10 9 1 2 10 39 4 7 8

10 3 6 8 10 3 6 8 40 4 9 10

11 4 8 9 11 4 8 9 41 5 7 8

12 6 7 9 12 6 7 9 42 6 8 9

13 2 7 10 13 2 7 10 43 7 8 10

14 1 9 10 14 1 9 10 44 1 2 6

15 1 2 7 15 1 2 7 45 1 4 7

16 4 6 10 16 4 6 10 46 1 6 10

17 5 8 10 17 5 8 10 47 2 3 7

18 3 4 5 18 3 4 5 48 2 4 5

19 1 7 10 19 1 7 10 49 3 5 8

20 1 3 5 20 1 3 5 50 4 6 8

21 5 6 7 21 5 6 7 51 4 6 7

22 3 4 6 22 3 4 6 52 5 6 8

23 7 8 9 23 7 8 9 53 6 9 10

24 3 8 10 24 3 8 10 54 7 9 10

25 2 3 9 25 2 3 9 55 1 2 5

26 1 5 10 26 1 5 10 56 1 3 10

27 4 5 6 27 4 5 6 57 2 5 6

28 4 5 9 28 4 5 9 58 3 5 7

29 2 3 4 29 2 3 4 59 3 4 9

30 2 7 8 30 2 7 8 60 5 9 10

30-Triplet 60-Triplet

Statements Statements Statements
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In Table 1, note that triplets 1-30 represent the same dimensions in the 30- and 60- triplet 

tests. However, triplets 31-60 in the longer tests involve different combinations of dimensions. 

Also, in the 60-Triplet tests, each dimension is represented 18 times, as compared to 9 times in 

the 30-Triplet tests.  

In sum, 8 MFC tests were created for this study with characteristics shown:  

1) 30-Triplet Tests (4):  

a) low 𝛼 / low 𝛿 SD,  

b) low 𝛼 / high 𝛿 SD,  

c) high 𝛼 / low 𝛿 SD, and 

d) high 𝛼 / high 𝛿 SD. 

2) 60-Triplet Tests (4):  

a) low 𝛼 / low 𝛿 SD,  

b) low 𝛼 / high 𝛿 SD,  

c) high 𝛼 / low 𝛿 SD, and 

d) high 𝛼 / high 𝛿 SD. 

Table 2 shows the average generating parameters by dimension for the 8 test designs to 

illustrate that the psychometric properties of the statements representing the dimensions are 

similar. 
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Table 2. Average Generating Parameter by Each Dimension. 

 

 

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9 Dim10 Total

avg.α 0.98 0.97 0.97 0.99 0.94 1.01 0.98 1.03 0.96 0.88 0.97

avg.δ 0.02 0.08 0.03 0.08 0.07 0.06 -0.06 -0.04 -0.09 0.09 0.02

avg.τ -0.89 -0.96 -0.83 -0.89 -0.82 -0.87 -1.04 -0.80 -0.97 -0.78 -0.88

avg.α 0.98 0.97 0.97 0.99 0.94 1.01 0.98 1.03 0.96 0.88 0.97

avg.δ -0.09 0.08 0.04 -0.01 0.05 0.09 -0.08 -0.05 0.09 0.01 0.01

avg.τ -0.89 -0.96 -0.83 -0.89 -0.82 -0.87 -1.04 -0.80 -0.97 -0.78 -0.88

avg.α 2.00 1.99 1.95 1.98 2.01 2.05 1.97 1.98 1.92 2.03 1.99

avg.δ 0.02 0.08 0.03 0.08 0.07 0.06 -0.06 -0.04 -0.09 0.09 0.02

avg.τ -0.89 -0.96 -0.83 -0.89 -0.82 -0.87 -1.04 -0.80 -0.97 -0.78 -0.88

avg.α 2.00 1.99 1.95 1.98 2.01 2.05 1.97 1.98 1.92 2.03 1.99

avg.δ -0.09 0.08 0.04 -0.01 0.05 0.09 -0.08 -0.05 0.09 0.01 0.01

avg.τ -0.89 -0.96 -0.83 -0.89 -0.82 -0.87 -1.04 -0.80 -0.97 -0.78 -0.88

avg.α 0.97 0.95 0.99 0.99 0.98 0.95 0.91 1.00 1.01 0.93 0.97

avg.δ -0.22 0.11 0.23 -0.02 0.05 0.12 -0.07 -0.15 -0.09 -0.05 -0.01

avg.τ -0.92 -0.92 -0.86 -0.91 -0.88 -0.88 -0.99 -0.77 -0.99 -0.73 -0.89

avg.α 0.97 0.95 0.99 0.99 0.98 0.95 0.91 1.00 1.01 0.93 0.97

avg.δ -0.22 0.12 0.19 -0.28 0.12 0.03 -0.17 0.02 -0.07 0.04 -0.02

avg.τ -0.92 -0.92 -0.86 -0.91 -0.88 -0.88 -0.99 -0.77 -0.99 -0.73 -0.89

avg.α 1.99 2.00 2.00 1.98 1.98 2.02 1.97 1.98 1.93 2.04 1.99

avg.δ -0.22 0.11 0.23 -0.02 0.05 0.12 -0.07 -0.15 -0.09 -0.05 -0.01

avg.τ -0.92 -0.92 -0.86 -0.91 -0.88 -0.88 -0.99 -0.77 -0.99 -0.73 -0.89

avg.α 1.99 2.00 2.00 1.98 1.98 2.02 1.97 1.98 1.93 2.04 1.99

avg.δ -0.22 0.12 0.19 -0.28 0.12 0.03 -0.17 0.02 -0.07 0.04 -0.02

avg.τ -0.92 -0.92 -0.86 -0.91 -0.88 -0.88 -0.99 -0.77 -0.99 -0.73 -0.89

High α / Low 

δ SD

High α / High 

δ SD

60-

Triplet

Low α / Low 

δ SD

Low α / High 

δ SD

High α / Low 

δ SD

High α / High 

δ SD

30-

Triplet 

Low α / Low 

δ SD

Low α / High 

δ SD
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 Simulation Details 

 Data Generation. GGUM-RANK response data were generated using an Ox (Doornik, 

2009) computer program. For each respondent, a vectors of 10 latent trait scores (θ) were 

sampled from a multivariate standard normal distribution with the covariance among dimensions 

set to zero for this initial study. Using these trait scores and statement parameters for each 

experimental condition, GGUM-RANK probabilities were computed using Equations 7a-7f. 

These response probabilities were compared to random uniform numbers, and ranks were 

assigned using a decision scheme analogous to data generation with polytomous IRT models.   

1. Order the six possible rankings for MFC triplets as: 

r1 = Ranking1 = A>B>C with numerical code 123 

r2 = Ranking2 = A>C>B with numerical code 132 

r3 = Ranking3 = B>A>C with numerical code 213 

r4 = Ranking4 = B>C>A with numerical code 231 

r5 = Ranking5 = C>A>B with numerical code 312 

r6 = Ranking6 = C>B>A with numerical code 321 

2. Compare the probabilities of Rankings 1-6 to a randomly sampled uniform number 

(“rand”) and assign response codes as follows:   

a. If {1P(r1)} < rand, then code response as A>B>C or 123. 

b. If {1P(r1)+ P(r2))} < r, then code response as A>C>B or 132. 

c. If {1P(r1)+P(r2)+P(r3))} < r, then code response as B>A>C or 213. 

d. If {1P(r1)+ P(r2)+P(r3)+P(r4))} < r, then code response as B>C>A or 231. 

e. If {1P(r1)+ P(r2)+P(r3)+P(r4)+P(r5))} < r, then code response as C>A>B or 312. 

f. Otherwise, code response as C>B>A or 321. 
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 MCMC Convergence Checks. Convergence implies that a chain has reached a stationary 

state so that samples are being drawn from the desired posterior distributions. Before examining 

parameter recovery, the convergence of the MCMC algorithm was assessed using the Gelman-

Rubin diagnostic index (�̂�) (for details, see Gelman & Rubin, 1992).  This index uses the 

samples from multiple (e.g., three) independent chains after the burn-in periods. For any given 

parameter, the �̂� statistic assesses the ratio of the between-chain variation to the within-chain 

variation. If the chains have converged, the between-chain and within-chain variation will be 

near 1; otherwise, larger ratios will be observed. Strict convergence is met when �̂� < 1.20 for all 

parameters (de la Torre et al., 2012).  

In preparation for this study, pilot simulations were conducted to examine the 

convergence of the new MHWG algorithm in various conditions. It was found that convergence 

occurred at approximately 30,000 iterations. Thus, 30,000 iterations with three Markov chains 

were performed in the proposed study, and the first 15,000 iterations from each chain were 

discarded as a burn-in period. Post-burn-in samples were used to compute the mean and standard 

deviation of the posterior distributions. 

 Indices of Estimation Accuracy. To evaluate the efficacy of GGUM-RANK parameter 

estimation, several indices were used. First, Pearson correlations were computed between the 

true parameters (α, δ, τ, and θ) and estimated parameters (�̂�, 𝛿, �̂�, and �̂�) on each replication. 

These correlations were then averaged across replications, recorded, and averaged across 

dimensions to obtain a single indicator of parameter recovery.   

Second, absolute biases (ABS) for parameters (α, δ, τ, and θ) were computed as follows: 

𝐴𝐵𝑆 (�̂�) =  
∑ |�̂�𝑗 −𝛼|

𝑛
, 
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𝐴𝐵𝑆  (�̂�) =  
∑ |�̂�𝑗 −𝛿|

𝑛
, 

𝐴𝐵𝑆 (�̂�) =  
∑ |�̂�𝑗 −𝜏|

𝑛
, and 

𝐴𝐵𝑆  (𝜃𝑑) =  
∑ |�̂�𝑑𝑗 −𝜃𝑑|

𝑛
, 

where  

j is the statement number,  

n is the total number of statements, and 

d represents the dimension associated with trait score 𝜃.  

The absolute biases of the statement parameters were averaged across replications, recorded, and 

then averaged across dimensions. Smaller absolute biases indicate better parameter recovery.  

Third, root mean square errors (RMSE) was computed for statement and person 

parameter estimates as follows: 

𝑅𝑀𝑆𝐸 (�̂�) =  √
∑ (�̂�𝑗 −𝛼)2

𝑛
, 

𝑅𝑀𝑆𝐸 (𝛿) = √
∑ (�̂�𝑗 −𝛿)2

𝑛
 , 

      𝑅𝑀𝑆𝐸 (�̂�) = √
∑ (�̂�𝑗 −𝜏)2

𝑛
 , and 

𝑅𝑀𝑆𝐸 (𝜃𝑑) =  √
∑ (�̂�𝑑𝑗 −𝜃𝑑)

2

𝑛
. 

The computed RMSEs for parameters were averaged across replications. Particularly, RMSEs for 

trait scores involving the 10 dimensions were reported individually and then averaged across 

dimensions.  Smaller RMSEs indicate better parameter recovery. 
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Fourth, posterior standard deviations (PSDs) were computed for the parameter estimates. 

PSDs were obtained by taking the square root of the variance of the posterior samples after burn-

in. Smaller PSDs indicate better parameter recovery. 

 

MCMC Estimation Prior Distribution and Initial Parameter Values 

 Prior Distributions for MCMC Estimation. Prior distributions must be specified for all 

item and person parameters. For this investigation, the following prior distributions were chosen: 

𝑃(𝜃𝑑)~𝑁(0,1), 

𝑃(𝛼)~𝐵𝑒𝑡𝑎(𝑣𝛼, 𝜔𝛼, 𝑎𝛼 , 𝑏𝛼), 

𝑃(𝛿)~𝐵𝑒𝑡𝑎(𝑣𝛿 , 𝜔𝛿 , 𝑎𝛿 , 𝑏𝛿), and 

𝑃(𝜏)~𝐵𝑒𝑡𝑎(𝑣𝜏, 𝜔𝜏, 𝑎𝜏, 𝑏𝜏), 

where 𝐵𝑒𝑡𝑎(𝑣, 𝜔, 𝑎, 𝑏) is the four-parameter beta distribution with shape parameters 

(𝑣, 𝜔) and support parameters (𝑎, 𝑏), which define the lower and upper bounds of the probability 

region. One attractive feature of the four-parameter beta distribution is its flexibility; by 

changing the shape and support parameters, probability functions of many different forms can be 

produced, making it an excellent choice for MCMC applications. In this study, the four-

parameter beta priors {1.5, 1.5, .25, 4}, {2, 2, -4, 4} and {2, 2, -3, 1} were used for α, δ, and τ 

estimation, respectively. For the person parameters associated with each dimension (d), i.e., 

(𝜃𝑑), a N(0, 1) prior was used. 

 Initial Parameter Values. To start MCMC estimation, initial values must be set for all 

parameters. In this study, all 𝜃 parameters were initialized to zero. δ parameters were initialized 

to -1 or 1, in accordance with the sign of the true parameter. (This follows other simulation 

studies, which have assumed that subject matter experts can readily determine whether a 
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statement is positive or negative by looking at its content (e.g., Seybert, 2013). All α parameters 

were initialized to 1, and all τ parameters were initialized to -1. 

 

 Overview of the Simulation Process 

1) GGUM-RANK triplet responses were generated for samples of 250 and 500 

 respondents, for 10-D 30-Triplet and 60-Triplet tests, using the statement parameters 

 in Appendix B Tables 1-4 and person parameters randomly sampled from a 

 multivariate standard normal distribution.  

2) Statement and person parameters were estimated directly from the GGUM-RANK 

 triplet responses, using the MHWG algorithm developed for this dissertation, and the 

 results were saved. 

3) Steps 1 and 2 were performed 20 times.  

4) Upon completion of the 20 replications, a convergence assessment was performed. 

 Individual parameters that did not show convergence (e.g., �̂�>1.2) were excluded 

 from subsequent parameter recovery evaluation.  

5) Indices of parameter recovery (correlations between estimated and true values, 

 RMSEs, absolute biases, posterior standard deviations) were computed and evaluated 

 for each experimental condition. Also the overall item and test information (OII and 

 OTI) values were averaged over replications and reported.  

 

Hypotheses 

For this study, the following hypotheses were proposed.   
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1) More accurate parameter recovery will be obtained in the larger sample (N = 500) 

 conditions than in the small sample (N = 250) conditions, as indicated by larger 

 Pearson correlations with true parameters and lower absolute bias, RMSE and PSD 

 statistics.  

2) More accurate parameter recovery will be observed with the longer (60-Triplet) tests 

 than with the shorter (30-Triplet) tests, because longer tests provide more 

 information. (Each dimension is represented 18 times in the long tests vs. 9 times in 

 the short tests.) 

3) More accurate parameter recovery will be observed with tests having high intrablock 

 discrimination than with tests having low intrablock discrimination, because higher 

 discrimination is associated with higher item and test information. 

4) More accurate parameter recovery will be observed with tests having large intrablock 

 location variability than with tests having small intrablock location variability.  

 

Using SPSS version 22, these hypotheses were tested using MANOVA with sample size, 

test length, intrablock discrimination, and intrablock location variability as the between subject 

factors, and the correlations, absolute biases, RMSEs, and PSDs as dependent variables. Partial 

eta squared (𝜂𝑝
2) was used to evaluate effect size. (Note that partial eta squared (𝜂𝑝

2) equals eta 

squared (𝜂2) in one-way ANOVA as there is only one factor (Lakens, 2013)). Values of .01, .06, 

and .14 represent small, medium, and large effects, respectively (Cohen, 1998). Additionally, 

parameter recovery and information plots were visually inspected.  

 

  



 

 
 

 

40 

Study2 

In applied settings, there is growing interest in the benefits of MFC triplet measures with 

respect to pairwise preference tests that have been used for noncognitive assessment (Stark et al., 

2014). Triplet measures may be more cognitively demanding and will almost certainly take 

longer to complete, so there must be some demonstrated psychometric benefits to justify the 

more complex format. Study 2 explored these potential psychometric benefits by comparing 

GGUM-RANK test information and parameter recovery with 10-dimension MFC triplet and 

pairwise preference measures in a select set of conditions.  

 

Simulation Study Design 

1) Sample size (2): 

a. N = 250, and 

b. N = 500. 

2) MFC “test type” (3): 

a. 30-Pair  

b. 90-Pair  

c. 30-Triplet 

Fully crossing these two independent variables led to the 6 conditions that were explored. 

 MFC Test Design. From Study 1, the 30-Triplet test in the high intrablock 

discrimination, high intrablock location variability condition was selected. The 30 triplets were 

decomposed into the 90 possible pairs to create a 90-Pair MFC test for this study. A 30-Pair 

MFC test was then created by selecting two statements in each of the 30 triplet blocks. Table 3 

displays the average α, δ, and τ parameters by dimension for the 30-Pair and 90-Pair tests to 
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illustrate that the psychometric properties of the statements representing the dimensions are 

similar. 

Table 3. Average Generating Parameters for Each Dimension in the 30-Pair and 90-Pair Test  

Conditions. 

 

 

 

Table 4 displays the dimension specifications for the 30-Triplet, 30-Pair, and 90-Pair 

MFC tests. As described above, the first two statements in triplet 1, representing dimensions {1, 

2, 3}, were selected to create the first item in the 30-Pair test, representing dimensions {1, 2}. A 

similar process was used to create the remaining pairwise preference items. In contrast, the 90-

Pair test was created by breaking each triplet into all possible pairs. For example, triplet 1 

involving dimensions {1, 2, 3} was decomposed into three pairs involving dimensions {1,2}, 

{1,3}, and {2,3}, respectively. The statement parameters for the 30-Pair and 90-Pair tests used in 

Study 2 are presented in Appendix C. 

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9 Dim10 Total

avg.α 2.01 1.99 1.96 1.96 1.97 2.00 1.98 1.95 1.94 2.08 1.98

avg.δ 0.02 -0.02 0.16 0.36 -0.14 -0.04 -0.19 -0.10 0.39 0.19 0.06

avg.τ -0.89 -0.92 -0.92 -0.73 -0.82 -0.81 -1.05 -0.82 -1.07 -0.76 -0.88

avg.α 2.00 1.99 1.95 1.98 2.01 2.06 1.98 1.98 1.92 2.03 1.99

avg.δ -0.09 0.08 0.04 -0.01 0.05 0.09 -0.10 -0.05 0.09 0.01 0.01

avg.τ -0.89 -0.96 -0.83 -0.89 -0.82 -0.87 -1.04 -0.80 -0.97 -0.78 -0.88

30-Pair 

90-Pair
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Table 4. Dimension Specification of 30-Triplet, 30-Pair, and 90-Pair Tests. 

 

 
 

Overview of the Simulation Process 

1) GGUM-RANK pair responses were generated for samples of 250 and 500 

 respondents, for 10-D 30-Pair and 10-D 90-Pair tests, using the statement parameters 

 in Appendix C and person parameters randomly sampled from a multivariate standard 

 normal distribution.  

Block # A B C Block # A B Block # A B Block # A B Block # A B

1 1 2 3 1 1 2 1 1 2 31 4 8 61 5 6

2 1 6 9 2 6 9 2 1 3 32 4 9 62 5 7

3 4 5 8 3 5 8 3 2 3 33 8 9 63 6 7

4 6 7 8 4 7 8 4 1 6 34 6 7 64 3 4

5 2 6 7 5 6 7 5 1 9 35 6 9 65 3 6

6 8 9 10 6 9 10 6 6 9 36 7 9 66 4 6

7 2 3 5 7 3 5 7 4 5 37 2 7 67 7 8

8 1 4 9 8 1 9 8 4 8 38 2 10 68 7 9

9 1 2 10 9 1 10 9 5 8 39 7 10 69 8 9

10 3 6 8 10 6 8 10 6 7 40 1 9 70 3 8

11 4 8 9 11 4 9 11 6 8 41 1 10 71 3 10

12 6 7 9 12 6 9 12 7 8 42 9 10 72 8 10

13 2 7 10 13 2 10 13 2 6 43 1 2 73 2 3

14 1 9 10 14 9 10 14 2 7 44 1 7 74 2 9

15 1 2 7 15 2 7 15 6 7 45 2 7 75 3 9

16 4 6 10 16 4 6 16 8 9 46 4 6 76 1 5

17 5 8 10 17 8 10 17 8 10 47 4 10 77 1 10

18 3 4 5 18 4 5 18 9 10 48 6 10 78 5 10

19 1 7 10 19 1 7 19 2 3 49 5 8 79 4 5

20 1 3 5 20 1 3 20 2 5 50 5 10 80 4 6

21 5 6 7 21 5 6 21 3 5 51 8 10 81 5 6

22 3 4 6 22 3 4 22 1 4 52 3 4 82 4 5

23 7 8 9 23 7 8 23 1 9 53 3 5 83 4 9

24 3 8 10 24 3 8 24 4 9 54 4 5 84 5 9

25 2 3 9 25 2 3 25 1 2 55 1 7 85 2 3

26 1 5 10 26 1 10 26 1 10 56 1 10 86 2 4

27 4 5 6 27 4 5 27 2 10 57 7 10 87 3 4

28 4 5 9 28 4 5 28 3 6 58 1 3 88 2 7

29 2 3 4 29 2 3 29 3 8 59 1 5 89 2 8

30 2 7 8 30 2 7 30 6 8 60 3 5 90 7 8

30-Triplet 30-Pair 90-Pair

Statements Statements Statements
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2) Statement and person parameters were estimated directly from the GGUM-RANK 

 pair responses, using the MHWG algorithm developed for this dissertation, and the 

 results were saved. 

3) Steps 1 and 2 were performed 20 times.  

4) Upon completion of the 20 replications, a convergence assessment was performed. 

 Individual parameters that did not show convergence (e.g., �̂�>1.2) were excluded 

 from subsequent parameter recovery evaluation.  

5) Indices of parameter recovery (correlations between estimated and true values, 

 RMSEs, absolute biases, posterior standard deviations) were computed and evaluated 

 for each experimental condition. Overall item and test information (OII and OTI) 

 values were averaged across replications and reported. The results for the 30-Pair and 

 90-Pair tests were compared to the results for the 30-Triplet test. 

 

Hypotheses 

The following hypotheses were proposed. 

 

1) Parameters will be estimated more accurately in the large sample (N=500) conditions 

 than in the small sample (N=250) conditions across MFC pair tests, as indicated by 

 lower absolute bias, RMSE and PSD statistics.  

2) Parameters will be estimated more accurately with the 90-Pair test than with the 30-

 Pair test, because each dimension appears more times in the longer measure (6 times 

 vs. 18 times, respectively). Accuracy will be comparable (no significant difference) 

 for the 30-Triplet and 90-Pair tests. 
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3) Test information will be higher for the 90-Pair test than the 30-Pair test. Information 

will be comparable (no significant difference) for the 30-Triplet and 90-Pair tests.  

 

Using SPSS version 22, these hypotheses were tested using MANOVA with sample size 

and MFC test type as the between subject factors, and the absolute bias, RMSEs, PSDs, and test 

information index as dependent variables. Partial eta squared (𝜂𝑝
2) was used to evaluate effect 

size in the MANOVA and eta squared (𝜂2) in the follow-up one-way ANOVA. Values 

of .01, .06, and .14 represent small, medium, and large effects, respectively (Cohen, 1998). 

Additionally, parameter recovery and information plots were visually inspected1.  

 

Study 3 

Study1 and Study 2 examined statement and person parameter recovery and information 

values using GGUM-RANK MFC triplet and pair measures. Although these simulation studies 

provided insights into MFC test construction practices, they provided no evidence concerning the 

comparability of GGUM-RANK MFC and Likert-type CTT scores with real examinees. To 

address that limitation, a small validity study was conducted. MFC and Likert-type Big Five 

personality measures were constructed and administered to online research participants along 

with some criterion measures to examine convergent and criterion-related validity. 

 

Participants 

 The sample consisted of 495 college students within the United States. Data were 

collected via an Amazon’s Mechanical Turk online survey, which included MFC and Likert-type 

measures of Big Five (Goldberg, 1992) personality factors, as well as measures of life 
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satisfaction, positive and negative affect, aggression, and RIASEC vocational interests (Holland, 

1985). Each respondent was paid $.75 for participation. The average age of the participants was 

25.3 years (SD = 4.7). The sample was 47.4% males. 61.1 % were Caucasians, 16.6 % were 

African Americans, 10.1% were Hispanics, 5.7% were Asians, and 6.3% selected “Other” as 

their ethnicity.   

 

 Measures 

 Single-Statement (SS) Personality Measure. A single-statement (Likert-type, ordinal 

response) Big Five personality measure was created by sampling 60 statements from Goldberg’s 

(1992) International Personality Item Pool (IPIP; Goldberg, 1992). 12 statements were selected 

to measure each of the five factors (Openness, Conscientiousness, Extraversion, Agreeableness, 

and Neuroticism). In total, 18 of the statements were negatively worded and 42 were positively 

worded. The measure was administered using a 5-point Likert-type format (i.e., 1 = strongly 

disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree). Negatively worded 

statements were reverse scored, and total scores for each personality factor were obtained by 

summing the respective item scores. The 60-item SS personality measure is displayed in 

Appendix D1. 

 MFC Personality Measure. A 20-triplet MFC measure was created by organizing the 

statements composing the 60-item Likert-type personality measure into blocks of three, with 

each statement in a block representing a different personality trait and each block containing a 

mix of positively and negatively worded statements. Respondents were instructed to rank the 

statements in each block from 1= most like you to 3 = least like you. This MFC Big Five 

measure is shown in Appendix D2. 
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 Criterion Measures. Several measures were used to examine convergent and criterion 

validity of the personality measures. The 5-item, 7-point Satisfaction with Life Scale (SWLS, 

Diener, Emmons, Larsen, & Griffin, 1985) was used to assess satisfaction with life. Positive and 

negative affect were measured using the 12-item, 7-point Scale of Positive and Negative 

Experience (SAPNE, Diener et al., 2010). Aggression was measured using the 12-item, 5-point 

Buss-Perry Aggression Questionnaire (Bryant & Smith, 2001). Lastly, RIASEC (Realistic, 

Investigative, Artistic, Social, Enterprising, and Conventional) vocational interests were 

measured with 10-item 5-point subscales of the O*NET Interest Profiler (Rounds, Su, Lewis, & 

Rivkin, 2010). The criterion measures for this study are shown in Appendices D3 to D6.  

 

 Analytic Approach 

The SS personality measure was scored using the conventional summative approach. To 

score the MFC triplet measure, the GGUM-RANK model was fitted to triplet rank response data 

using the Ox program developed for this dissertation. Initial parameter values and four-parameter 

beta priors {1.5, 1.5, .25, 4}, {2, 2, -4, 4} and {2, 2, -3, 1} were specified for α, δ, and τ 

estimation. 40,000 iterations with three Markov chains were performed, and the first 20,000 

iterations from each chain were discarded as burn-in. Convergence of the MCMC algorithm was 

evaluated using the Gelman-Rubin diagnostic index (�̂�). Estimated item parameter and item 

information and test information indices were recorded.  

The reliabilities of the SS personality and criterion measures were computed using 

coefficient alpha. The reliability of the MFC triplet measure was calculated using the marginal 

reliability equation provided by Brown & Croudace (2015): 

�̅� = 1 −
�̅�𝑒
2

𝜎
�̂�
2 , 
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where 𝜎�̂�
2  = variance of estimated trait scores = 

1

𝑁
∑ (𝜃�̂� − 𝜃�̂�

̅)2𝑁
𝑗=1 , 

          𝜎𝑒
2 = average squared posterior standard deviation of estimate trait scores =   

                   
1

𝑁
∑ 𝑃𝑆𝐷2(𝜃�̂�)
𝑁
𝑗=1 . 

The correspondence between SS and MFC personality scores was examined via a multi-

trait multi-method (MTMM) analysis and by comparing criterion-related validity coefficients. To 

assess convergent validity, monotrait-heteromethod correlations were examined. To assess 

discriminant validity, heterotrait-monomethod correlations were examined. Predictive validity 

was assessed by comparing the pattern of correlations of the SS and MFC personality scores with 

the criterion variables. 
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CHAPTER THREE: 

RESULTS 

 

Study1 

Table 5 presents average convergence rates across the experimental conditions. In 

general, convergence occurred within 30,000 iterations, with convergence rates ranging from .93 

to 1.00. (Individual parameters that did not achieve convergence (e.g., �̂� > 1.2) were excluded 

from parameter recovery index calculations.) 

 

Table 5. Average Convergence Rates across the Experimental Conditions. 

 

 

Test Length
Sample 

Size

Intrablock 

Discrimination

Intrablock 

Location SD
Alpha Delta Tau Average

Large 1.00 .97 .98 .98

Small 1.00 .99 .97 .98

Large .99 .93 .97 .96

Small 1.00 .98 .99 .99

Large 1.00 .98 .87 .95

Small 1.00 .97 .91 .96

Large .91 .89 .97 .93

Small .87 .90 .97 .91

Large 1.00 .98 .98 .99

Small 1.00 .98 .97 .98

Large 1.00 1.00 1.00 1.00

Small 1.00 1.00 1.00 1.00

Large 1.00 .98 .88 .95

Small 1.00 .98 .88 .95

Large 1.00 1.00 .98 .99

Small 1.00 1.00 .98 .99

High

Small

High

Small

High

Small

High

Small

250

500

250

500

30-Triplet

60-Triplet
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Table 6 presents the parameter recovery results for GGUM-RANK statement parameter 

estimation, averaged over replications. Across all conditions, absolute bias (ABS) ranged from 

.13 to .23, .11 to .27, and .16 to .21 for 𝛼, 𝛿, and 𝜏, respectively. The corresponding root mean 

squared errors (RMSE) ranged from .16 to .31, .14 to .35, and .20 to .26. The correlations 

(CORR) between true and estimated 𝛿 parameters ranged from .96 to .99, but were lower for 𝜏 

and quite low for 𝛼 in some conditions. As expected, recovery of 𝛼 and 𝛿 parameters improved 

with test length (60-Triplet better than 30-Triplet), sample size (500 better than 250), and 

intrablock discrimination level (high better low), although the pattern of results for 𝜏 was 

inconsistent. Surprisingly, intrablock location variability did not seem to influence the recovery 

results. It can be seen that ABS, RMSE, PSD, and CORR values are nearly the same across the 

small and large intrablock location SD conditions.  
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Table 6. Statement Parameter Recovery across the Experimental Conditions for Study 1. 

 

 
  

Test Length Sample Size
Intrabock 

Discrimination

Intrablock 

Location SD

Recovery 

Statistics
Alpha Delta Tau

ABS .22 .17 .18

RMSE .28 .22 .22

PSD .31 .22 .51

CORR .37 .99 .80

ABS .21 .17 .19
RMSE .27 .21 .23

PSD .30 .23 .51

CORR .41 .99 .78

ABS .23 .27 .21

RMSE .30 .34 .26

PSD .29 .42 .53

CORR .46 .96 .69

ABS .23 .27 .20

RMSE .31 .35 .25

PSD .29 .42 .53

CORR .44 .96 .69

ABS .16 .12 .19

RMSE .20 .16 .23

PSD .21 .16 .51

CORR .46 .99 .79

ABS .16 .13 .20

RMSE .20 .16 .23

PSD .21 .17 .50

CORR .54 .99 .80

ABS .18 .23 .20

RMSE .23 .29 .25

PSD .24 .36 .52

CORR .61 .97 .74

ABS .18 .23 .19

RMSE .22 .30 .24

PSD .23 .36 .53

CORR .54 .97 .71

High

Large

Small

Large

Small

250

Low

Large

Small

Large

Small

500

30-Triplet

High

Low
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Table 6 (Continued) 

 

 
Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 
CORR = correlation between true and estimated parameters. 

 

Test Length Sample Size
Intrabock 

Discrimination

Intrablock 

Location SD

Recovery 

Statistics
Alpha Delta Tau

ABS .19 .15 .17

RMSE .24 .19 .20

PSD .23 .19 .52

CORR .42 .99 .82

ABS .19 .16 .16
RMSE .25 .20 .20

PSD .23 .20 .51

CORR .42 .99 .81

ABS .21 .24 .19

RMSE .26 .30 .24

PSD .27 .35 .52

CORR .58 .97 .72

ABS .20 .23 .20

RMSE .25 .30 .24

PSD .27 .35 .52

CORR .58 .97 .74

ABS .13 .11 .18

RMSE .16 .14 .21

PSD .16 .13 .51

CORR .53 .99 .82

ABS .13 .11 .19

RMSE .16 .14 .22

PSD .16 .14 .51

CORR .55 .99 .80

ABS .16 .19 .19

RMSE .20 .24 .23

PSD .20 .26 .52

CORR .69 .98 .76

ABS .15 .19 .19

RMSE .19 .25 .23

PSD .20 .26 .52

CORR .68 .98 .74

500

60-Triplet

High

Low

High

Large

Small

Large

Small

250

Low

Large

Small

Large

Small
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To more clearly see how RMSE varied as a function of test length, sample size, 

intrablock discrimination, and intrablock location SD, these results are presented using bar 

graphs in Figure 4.  

 

 
Figure 4. Average RMSEs of statement parameters across simulation conditions. 

 

Table 7 presents parameter recovery statistics for latent trait scores (𝜃), averaged over 

replications. The averages across dimensions, Dim1 – Dim10, are shown in the last column. In 

general, parameter recovery improved as test length and intrablock discrimination increased, as 

these factors are integrally connected to test information. However, there was no noteworthy 

improvement with larger samples or location parameter SDs. 
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Table 7. Person Parameter Recovery Statistics across the Experimental Conditions for MFC Triplet Measure. 

 

 
 

 

Test 

Length

Sample 

Size

Intrablock 

Discrimination

Intrablock 

Location SD

Recovery 

Statistics
Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9 Dim10 Average

ABS .34 .34 .32 .32 .32 .35 .32 .32 .33 .34 .33

RMSE .45 .48 .43 .42 .44 .49 .42 .43 .44 .47 .45

PSD .43 .42 .41 .41 .41 .43 .40 .41 .42 .42 .43

CORR .89 .88 .91 .91 .90 .88 .91 .90 .90 .88 .90

ABS .33 .33 .34 .34 .34 .33 .33 .34 .34 .33 .34

RMSE .45 .44 .44 .44 .45 .43 .44 .49 .45 .44 .45

PSD .42 .41 .42 .43 .42 .41 .42 .43 .43 .42 .42

CORR .89 .90 .90 .90 .89 .91 .90 .87 .89 .90 .90

ABS .49 .50 .50 .49 .49 .50 .48 .49 .49 .55 .50

RMSE .64 .65 .64 .65 .65 .66 .62 .63 .65 .74 .65

PSD .58 .58 .58 .58 .59 .60 .56 .56 .58 .65 .59

CORR .76 .76 .76 .76 .75 .74 .79 .78 .77 .68 .75

ABS .49 .51 .51 .50 .51 .48 .50 .50 .53 .55 .51

RMSE .64 .66 .65 .65 .67 .62 .66 .66 .70 .71 .66

PSD .60 .57 .57 .57 .61 .61 .58 .54 .56 .81 .60

CORR .78 .75 .76 .76 .75 .78 .75 .75 .71 .70 .75

ABS .32 .33 .31 .32 .32 .35 .31 .32 .32 .33 .32

RMSE .43 .45 .40 .43 .45 .49 .41 .42 .43 .45 .44

PSD .41 .41 .39 .40 .40 .42 .39 .40 .41 .41 .40

CORR .90 .90 .92 .90 .90 .87 .91 .91 .90 .90 .90

ABS .32 .32 .33 .33 .33 .32 .33 .33 .34 .33 .33

RMSE .44 .43 .43 .43 .44 .44 .44 .46 .45 .43 .44

PSD .41 .41 .42 .42 .42 .40 .41 .42 .42 .41 .41

CORR .90 .90 .90 .90 .90 .90 .90 .89 .89 .90 .90

ABS .48 .49 .48 .48 .49 .49 .47 .47 .48 .55 .49

RMSE .63 .64 .62 .64 .66 .64 .61 .62 .64 .72 .64

PSD .59 .61 .59 .59 .61 .61 .57 .58 .60 .67 .60

CORR .77 .77 .78 .77 .75 .76 .79 .79 .76 .68 .76

ABS .49 .50 .50 .49 .50 .47 .50 .50 .54 .53 .50

RMSE .64 .65 .65 .64 .66 .62 .67 .66 .70 .69 .66

PSD .59 .60 .59 .59 .61 .58 .61 .61 .65 .65 .61

CORR .77 .76 .77 .77 .75 .78 .74 .76 .71 .72 .75

Small

30-Triplet

250

High 

Large

Small

Low

Large

Small

500

High 

Large

Small

Low

Large
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Table 7 (Continued) 

 

 
Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; CORR = correlation between true 

and estimated parameters.

Test 

Length

Sample 

Size

Intrablock 

Discrimination

Intrablock 

Location SD

Recovery 

Statistics
Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9 Dim10 Average

ABS .24 .23 .22 .22 .24 .26 .23 .22 .23 .23 .23

RMSE .33 .33 .30 .29 .35 .39 .31 .29 .29 .31 .32

PSD .31 .29 .28 .29 .29 .32 .29 .29 .28 .29 .31

CORR .94 .94 .96 .96 .94 .92 .95 .96 .96 .95 .95

ABS .24 .24 .24 .25 .25 .25 .23 .26 .24 .25 .24

RMSE .31 .30 .31 .31 .34 .32 .30 .38 .32 .34 .32

PSD .30 .30 .29 .31 .30 .31 .30 .31 .30 .30 .30

CORR .95 .96 .95 .95 .94 .95 .95 .92 .95 .94 .95

ABS .39 .38 .36 .36 .38 .39 .38 .35 .35 .39 .37

RMSE .49 .49 .45 .45 .49 .50 .49 .45 .44 .50 .48

PSD .44 .44 .42 .42 .43 .45 .45 .41 .40 .44 .43

CORR .87 .87 .88 .89 .87 .85 .87 .89 .89 .86 .87

ABS .37 .38 .37 .37 .38 .39 .40 .39 .37 .40 .38

RMSE .47 .47 .47 .48 .49 .49 .52 .50 .50 .50 .49

PSD .43 .44 .44 .43 .45 .44 .46 .45 .43 .47 .44

CORR .88 .87 .88 .88 .87 .87 .85 .85 .86 .85 .87

ABS .24 .23 .22 .22 .23 .25 .22 .22 .22 .23 .23

RMSE .32 .34 .30 .29 .33 .42 .30 .29 .28 .30 .32

PSD .30 .28 .27 .28 .28 .30 .28 .28 .28 .29 .28

CORR .95 .94 .95 .96 .94 .91 .96 .96 .96 .95 .95

ABS .23 .23 .24 .24 .23 .24 .23 .24 .24 .23 .24

RMSE .31 .30 .32 .31 .32 .32 .30 .33 .31 .30 .31

PSD .29 .29 .29 .30 .29 .30 .29 .30 .29 .29 .29

CORR .95 .95 .95 .95 .95 .95 .96 .94 .95 .95 .95

ABS .37 .37 .36 .35 .36 .39 .38 .35 .34 .38 .36

RMSE .49 .48 .46 .45 .47 .50 .50 .46 .43 .51 .47

PSD .46 .45 .42 .42 .44 .46 .45 .42 .41 .46 .44

CORR .87 .88 .89 .90 .88 .87 .87 .89 .90 .86 .88

ABS .37 .38 .37 .36 .36 .38 .39 .38 .37 .39 .37

RMSE .48 .49 .47 .47 .47 .49 .51 .50 .48 .51 .49

PSD .45 .47 .42 .40 .44 .47 .45 .43 .41 .44 .44

CORR .88 .88 .88 .88 .88 .87 .86 .86 .88 .86 .87

Small

60-Triplet

250

High 

Large

Small

Low

Large

Small

500

High 

Large

Small

Low

Large
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In the most favorable conditions, for example, the 60-Triplet, High Intrablock 

Discrimination conditions, ABS ranged from .23 to .24, RMSE ranged from .31 to .32, PSD 

ranged from .28 to .31, and Average CORRs were .95. In the 30-Triplet High Intrablock 

Discrimination conditions, Average CORRs were still good (0.9), but the estimation errors were 

larger: ABS ranged from .32 to .34, RMSE ranged from .44 to .45, and PSD ranged from .40 to 

.43. In the least favorable conditions, for example, 30-Triplet, Low Intrablock Discrimination 

conditions, the worst results were observed: ABS ranged from .49 to .51, RMSE ranged from .64 

to .66, PSD ranged from .59 to .61, and Average CORR ranged from .75 to .76. For quick 

comparisons across conditions, the RMSE and Average CORR results are presented graphically 

in Figures 5 and 6, respectively.     

 

 
Figure 5. Average RMSEs of person parameters across simulation conditions. 
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Figure 6. Average correlations between true and estimated person parameters across simulation 

condition. 

 

To shed additional light on the person parameter recovery results, Table 8 presents the 

average overall item information (OII) and overall test information (OTI) values for the MFC 

triplet measure in each experimental condition. Recall that OTI is the sum of the OII values. The 

results clearly show that the OII was driven by intrablock discrimination, which is consistent 

with conventional item response theory findings. In the High Intrablock Discrimination 

conditions, Average OII was approximately 2.5 times greater than in the Low Intrablock 

Discrimination conditions. Also, consistent with the test design, OTI was about twice as large in 

the corresponding 60-Triplet vs. 30-Triplet conditions. These findings are echoed in Figures 7 

and 8, which present the average OII and OTI values visually to facilitate comparisons with the 

RMSE and CORR results in Figures 4 – 6.   
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Table 8. Average OII and OTI across the Experimental Conditions. 

 

 
Note. OII = Overall Item Information; OTI = Overall Test Information. 
 
  

Test Length Sample Size
Intrablock 

Discrimination

Intrablock 

Location SD

Average 

OII
OTI

Large 2.50 75.07

Small 2.64 79.06

Large 1.05 31.64

Small 1.09 32.59

Large 2.57 77.15

Small 2.70 80.88

Large 0.91 27.44

Small 0.94 28.11

Large 2.48 148.77

Small 2.62 157.05

Large 1.00 60.09

Small 1.06 63.33

Large 2.54 152.53

Small 2.66 159.48

Large 0.92 55.01

Small 0.94 56.43
Low

60-Triplet

30-Triplet

250

High

Low

500

High

Low

Low

250

500

High

High
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Figure 7. Average overall item information across simulation conditions. 

 
 

 
 

Figure 8. Overall test information across simulation conditions.
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Statistical Significance Tests of Study 1 Hypotheses.  

 To buttress the interpretation of the parameter recovery results shown in Table 6 and 7, 

and to address the specific hypotheses that were proposed, MANOVAs were conducted 

separately for statement and person parameters using ABS, RMSE, PSD, and Average CORR as 

dependent variables. Hypothesis 1 posited that parameters would be estimated more accurately in 

the larger sample size (N=500) conditions than in the small sample (N=250) conditions. 

Hypothesis 2 posited that parameters would be estimated more accurately with longer (60-

Triplet) tests than with shorter (30-Triplet) tests. Table 9 presents the multivariate test results 

indicating that Sample Size had a statistically significant effect (p < .05) on statement parameter 

recovery, and Test Length had a statistically significant effect (p < .05) on person parameter 

recovery. 

 

Table 9. Multivariate Tests of Between Subjects Effects for Study 1 Hypotheses 1 and 2. 

 

 

 

As a follow-up, ANOVAs were conducted on the parameter recovery indices for 

statement and person parameters to see where the significant differences lie. These results are 

presented in Table 10, which shows that Sample Size had statistically significant effects on 𝛼 

Hypothesis Effect Parameter 
Wilks’ 

Lambda
F Hypothesis df Error df Sig

Statement 

Parameter
.09 6.83 9.00 6.00 .01 .91

Person 

Parameter
.95 .16 4.00 11.00 .95 .06

Statement 

Parameter
.22 2.35 9.00 6.00 .15 .78

Person 

Parameter
.35 5.06 4.00 11.00 .02 .65

Hypothesis 1

Hypothesis 2

Sample Size

Test Length

𝜂 
2
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ABS, 𝛼 RMSE, and 𝛼 PSD, with large effect sizes (𝜂2) of .73, .72, and .63, respectively. 

However, Sample Size had no statistically significant effects on parameter recovery indices for 𝛿 

or 𝜏, most likely because these parameters were estimated fairly well in the N=250 conditions 

(see Table 6). Also note that Sample Size did not have a statistically significant effect on the 

indices of person parameter (𝜃) recovery. This finding is consistent with previous IRT parameter 

recovery studies (e.g., Reise & Yu, 1990), although the hypotheses were framed broadly to allow 

for the possibility that factors typically influencing either statement or person parameter 

estimation could have reciprocal effects due to joint estimation in this MCMC algorithm. Thus, 

Hypothesis 1 was partially supported. 

Table10 also shows that Test Length had a statistically significant effect on person 

parameter (𝜃) recovery statistics, and effect sizes were quite large: 𝜂2= .35, .39, .42, and .34 for 

ABS, RMSE, PSD, and Average CORR, respectively. On the other hand, Test Length had little 

influence on the recovery of statement parameters. Therefore, Hypothesis 2 was also partially 

supported.  
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Table 10. Univariate Tests of Between Subjects Effects for Study 1 Hypotheses 1 and 2. 

 

  
Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard  

deviation; CORR= correlations between true and estimated parameters. 

 

Table 11 shows multivariate test results for Hypotheses 3 and 4. Hypothesis 3 posited 

that parameters would be estimated more accurately with tests having high (vs. low) intrablock 

discrimination, and Hypothesis 4 posited that parameters would be estimated more accurately 

with tests having large (vs. small) intrablock location SD. As above, these hypotheses were 

tested separately with statement and person parameter ABS, RMSE, PSD and Average CORR as 

dependent variables using MANOVAs followed by univariate ANOVAs. The result shows that 

Intrablock Discrimination had a statistically significant effect on indices of statement and person 

parameter recovery (p < .05), but Intrablock Location SD did not (p = .90 and .68, respectively).   

 

  

Hypothesis Effect Parameter
Dependent 

 Variable
SS df

Mean 

Square
F Sig. 

𝛼 ABS .01 1.00 .01 36.88 .00 .73

𝛿 ABS .01 1.00 .01 2.92 .11 .17

𝜏 ABS .00 1.00 .00 .35 .56 .03

𝛼 RMSE .02 1.00 .02 35.80 .00 .72

𝛿 RMSE .01 1.00 .01 2.61 .13 .16

𝜏 RMSE .00 1.00 .00 .00 1.00 .00

𝛼 PSD .02 1.00 .02 23.98 .00 .63

𝛿 PSD .02 1.00 .02 1.97 .18 .12

𝜏 PSD .00 1.00 .00 .72 .41 .05

θ ABS .05 1.00 .05 7.46 .02 .35

θ RMSE .09 1.00 .09 8.77 .01 .39

θ PSD .08 1.00 .08 10.13 .01 .42

θ CORR .03 1.00 .03 7.27 .02 .34

Person 

Parameter
Hypothesis 2

Test 

Length

Hypothesis 1
Statement 

Parameter

Sample 

Size

𝜂2
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Table 11. Multivariate Tests of Between Subjects Effects for Study 1 Hypotheses 3 and 4. 

 

 
 

Since the multivariate tests for Hypothesis 3 were significant, follow-up univariate tests 

were conducted to examine the effects of Intrablock Discrimination on individual parameter 

recovery statistics. Table 12 shows that Intrablock Discrimination had a statistically significant 

effect on recovery statistics for 𝛿, 𝜏, and 𝜃, but not 𝛼. The effect sizes for 𝛿, 𝜏, and 𝜃 recovery 

were large, ranging from .33 to .77, whereas they ranged from just .06 to .09 for 𝛼. Thus, 

Hypothesis 3 was partially supported. Finally, Intrablock Location SD had no statistically 

significant effects on parameter recovery. Therefore Hypothesis 4 was not supported.  

 

Hypothesis Effect Parameter
Wilks’ 

Lambda
F Hypothesis df Error df Sig

Statement 

Parameter
.01 61.65 9.00 6.00 .00 .99

Person 

Parameter
.23 9.11 4.00 11.00 .00 .77

Statement 

Parameter
.63 .39 9.00 6.00 .90 .37

Person 

Parameter
.83 .58 4.00 11.00 .68 .17

Hypothesis 3
Intrablock 

Discrimination

Hypothesis 4
Intrablock 

Location SD

𝜂 
2
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Table 12. Univariate Tests of Between Subjects Effects for Study 1 Hypotheses 3.  

 

 
Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 

CORR= correlations between true and estimated parameters. 

 

 

Study2 

Table 13 presents average convergence rates for Study 2. As in Study 1, overall 

convergence approached 100% within 30,000 iterations, and individual parameters that did not 

converged (e.g., �̂� > 1.2) were excluded from the computation of parameter recovery statistics. 

 

Table 13. Average Convergence Rates across the Experimental Conditions. 

 

 
 

 

Hypothesis Effect Parameter
Dependent 

Variable
SS df

Mean 

Square
F Sig. 

𝛼 ABS .00 1.00 .00 1.35 .26 .09

𝛿 ABS .03 1.00 .03 42.06 .00 .75

𝜏 ABS .00 1.00 .00 6.89 .02 .33

𝛼 RMSE .00 1.00 .00 1.22 .29 .08

𝛿 RMSE .06 1.00 .06 46.08 .00 .77

𝜏 RMSE .00 1.00 .00 18.42 .00 .57

𝛼 PSD .00 1.00 .00 .91 .36 .06

𝛿 PSD .11 1.00 .11 44.45 .00 .76

𝜏 PSD .00 1.00 .00 27.32 .00 .66

θ ABS .09 1.00 .09 24.78 .00 .64

θ RMSE .14 1.00 .14 21.34 .00 .60

θ PSD .11 1.00 .11 18.12 .00 .56

θ CORR .03 1.00 .03 7.27 .02 .34

Intrablock 

Discrimination
Hypothesis 3

Person 

Parameter

Statement 

Parameter

𝜂2

Test Length Sample Alpha Delta Tau Average

250 .99 .91 1.00 .97

500 1.00 1.00 1.00 1.00

250 .91 .91 1.00 .94

500 1.00 .99 1.00 1.00

30-Pair

90-Pair
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Table 14 presents the 30-Pair and 90-Pair parameter recovery results. (Findings for the 

30-Triplet measure in Study 1 are presented at the top of the table for easy comparison.) The 

main finding is that the 30-Triplet measure exhibited better recovery statistics than the 90-Pair 

measure, so there is a distinct advantage in using a shorter triplet measure over a much longer 

pairwise preference measure for statement calibration. In the corresponding N=250 and N=500 

conditions, the 30-Triplet measure had higher CORR and lower ABS, RMSE, and PSD values.  

Next, and of somewhat lesser importance, is the comparison of recovery statistics for the 

30-Pair and 90-Pair tests. As was the case with the triplet measures, the best results were found 

for δ, with CORR near 1 in all conditions and ABS and RMSE below .3 in the N=500 

conditions. Results for 𝛼 and 𝜏 were not as good. For 𝜏, CORR ranged from just .56 to .71 and 

PSD values exceeded .6. For 𝛼, CORR ranged from just .13 to .38, due in part to the restricted 

range of discrimination parameters, but PSD ranged from a low of .29 (90-Pair, N=500) to a high 

of .48 (30-Pair, N=250). 
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Table 14. Statement Parameter Recovery across the Experimental Conditions. 

 
Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 
CORR =correlation between true and estimated parameter. 

 

Table 15 presents the 𝜃 parameter recovery results averaged over replications. As in 

Study 1, 𝜃 recovery results were highly similar across dimensions, and sample size had little to 

no effect on estimation accuracy. As expected, 𝜃s were estimated better with 90-Pair tests than 

30-Pair tests. And, perhaps most importantly, 90 pairs were needed to achieve similar levels of 

ABS, RMSE, PSD, and CORR to the 30-Triplet test. Specifically, with N=500, ABS, RMSE, 

Test Length Sample Size Recovery Statistics Alpha Delta Tau

ABS .22 .17 .18

RMSE .28 .22 .22

PSD .31 .22 .51

CORR .37 .99 .80

ABS .16 .12 .19

RMSE .20 .16 .23

PSD .21 .16 .51

CORR .46 .99 .79

ABS .31 .30 .24

RMSE .39 .36 .28

PSD .48 .46 .63

CORR .13 .97 .56

ABS .25 .21 .20

RMSE .36 .27 .24

PSD .42 .37 .62

CORR .29 .98 .62

ABS .32 .28 .17

RMSE .38 .33 .20

PSD .37 .28 .62

CORR .24 .98 .69

ABS .21 .20 .13

RMSE .32 .24 .16

PSD .29 .20 .61

CORR .38 .99 .71

30-Pair

250

500

90-Pair

250

500

30-Triplet in 

Study1

250

500
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PSD and CORR were .32, .44, .40 and .90 for the 30-Triplet test and .30, .40, .38 and .92 for the 

90-Pair test, respectively.  

 

Table 15. Person Parameter Recovery Statistics across the Experimental Conditions. 

 

 
Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 

CORR = correlation between true and estimated parameter. 

 

 

Table 16 presents the average overall item information (OII) and overall test information 

(OTI) results, averaged across 20 replications. Not surprisingly, OTI was about three times 

higher for the 90-Pair test than the 30-Pair test, and MFC triplets provided about 2.8 times the 

Average OII versus MFC pairs.  

Test 

Length

Sample 

 Size

Recovery 

Statistics
Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9 Dim10 Average

ABS .34 .34 .32 .32 .32 .35 .32 .32 .33 .34 .33

RMSE .45 .48 .43 .42 .44 .49 .42 .43 .44 .47 .45

PSD .43 .42 .41 .41 .41 .43 .40 .41 .42 .42 .43

CORR .89 .88 .91 .91 .90 .88 .91 .90 .90 .88 .90

ABS .32 .33 .31 .32 .32 .35 .31 .32 .32 .33 .32

RMSE .43 .45 .40 .43 .45 .49 .41 .42 .43 .45 .44

PSD .41 .41 .39 .40 .40 .42 .39 .40 .41 .41 .40

CORR .90 .90 .92 .90 .90 .87 .91 .91 .90 .90 .90

ABS .56 .56 .51 .51 .50 .53 .51 .50 .50 .51 .52

RMSE .76 .76 .68 .69 .66 .71 .68 .67 .67 .69 .70

PSD .71 .69 .66 .65 .63 .66 .65 .63 .64 .63 .65

CORR .64 .65 .74 .72 .74 .71 .73 .74 .75 .73 .72

ABS .55 .54 .51 .51 .50 .51 .51 .50 .49 .50 .51

RMSE .74 .74 .67 .67 .66 .68 .71 .66 .66 .70 .69

PSD .70 .68 .63 .68 .64 .64 .63 .63 .63 .65 .65

CORR .68 .66 .76 .73 .77 .73 .73 .76 .76 .72 .73

ABS .32 .30 .30 .30 .31 .33 .30 .30 .31 .31 .31

RMSE .43 .41 .38 .39 .42 .47 .39 .39 .42 .42 .41

PSD .41 .39 .39 .38 .40 .40 .39 .38 .39 .41 .39

CORR .90 .91 .92 .92 .91 .88 .92 .92 .91 .91 .91

ABS .31 .30 .29 .29 .30 .30 .30 .30 .30 .31 .30

RMSE .42 .40 .37 .38 .41 .42 .39 .39 .41 .45 .40

PSD .39 .38 .37 .37 .38 .38 .37 .38 .38 .39 .38

CORR .91 .92 .93 .92 .92 .91 .92 .92 .91 .89 .92

30-Pair

250

500

90-Pair

250

500

30-

Triplet in 

Study1

250

500
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Table 16. Average Overall Item Information and Overall Test Information across the 

Experimental Conditions. 

 

 
Note. OII = Overall Item Information; OTI = Overall Test Information.  

 

 

Finally, to facilitate comparisons across conditions, the parameter recovery results 

described above are presented graphically in Figures 9 (a-c) and 10. First, the plots show that 

sample size influenced statement parameter recovery with MFC pair tests, as indicated by the 

lower ABS, RMSE, and PSD and higher CORR values in the N=500 conditions, but the indirect 

effect on θ recovery was minimal. Statement parameter recovery was generally worst for 𝛼; the 

results were less consistent for 𝛿 and 𝜏. Second, Figure 10 shows a marked difference in θ 

recovery between the 30-Triplet and 30-Pair tests, regardless of sample size; the most striking 

difference is the CORR values - .90 for triplets and approximately .70 for pairs. As suggested 

earlier, about 90 pairs are needed to score as accurately as 30 triplets. This finding has important 

implications for testing in personnel settings where examinee motivation and fatigue are 

important concerns. 

 

Test Length Sample Size Average OII OTI

250 2.50 75.07

500 2.57 77.15

250 0.86 25.67

500 0.91 27.32

250 0.92 82.72

500 0.96 86.37

30-Triplet in 

Study1

30-Pair

90-Pair
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Figure 9a. Absolute biases of item parameters for study 2 hypothesis 1 

 

 

Figure 9b. RMSEs of item parameters for study 2 hypothesis 1 
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Figure 9c. PSDs of item parameters for study 2 hypothesis 1 

 

 
 

Figure 10. Person parameter recovery for study 2 hypothesis 1 
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 Statistical Significance Tests of Study 2 Hypotheses.  

 Hypothesis 1 proposed that parameters would be estimated more accurately in the larger 

sample size (N=500) conditions than in the small sample size (N=250) conditions. This 

hypothesis was tested by running MANOVAs using the ABS, RMSE, PSD, and CORR values as 

dependent variables and sample size as between subjects factors for each 30-Pair and 90-Pair 

tests. Consistent with expectations, the results indicated that Sample Size had a beneficial effect 

on statement parameter recovery (Wilk’s 𝜆 =.07, F (9, 30) = 44.06, p < .05,  𝜂
 
2 = .93 for the 30-

Pair test; Wilk’s 𝜆 =.00, F (9, 30) = 1257.35, p < .05,  𝜂
 
2 = .99 for the 90-Pair test) but there was 

no significant effect on person parameter (θ) recovery (Wilk’s 𝜆 =.90, F (4, 35) = .93, p = .46, 

 𝜂
 
2 = .10 for the 30-Pair test; Wilk’s 𝜆 =.95, F (4, 35) = .43, p = .79,  𝜂

 
2 = .05 for the 90-Pair 

test). A follow-up univariate test revealed that there was a significant univariate effect of sample 

size on 𝛼 ABS (p < .05), 𝛼 RMSE, (p < .05), 𝛼 PSD, (p < .05), 𝛿 ABS (p < .05),  𝛿 RMSE (p 

< .05), 𝛿 PSD, (p < .05) for both 30- and 90- Pair Tests. Therefore, Hypothesis 1 was partially 

supported.  

Hypothesis 2 proposed that parameters would be estimated more accurately with the 90-

Pair tests than with the 30-Pair tests, but 30-Triplet and 90-Pair tests would be comparable (no 

significant difference). Hypothesis 2 was tested using separate MANOVAs for statement and 

person parameters with Test Type (30-Pair, 90-Pair, 30-Triplet) as a between subject factor and 

ABS, RMSE, PSD, CORR. The results shown in Table 17 indicate that Test Type had a 

statistically significant effect (p < .05) on person parameter recovery, but not on statement 

parameter recovery (p > .05).    
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Table 17. Multivariate Tests of Between Subjects Effects for Study 2 Hypothesis 2. 

 

 
 

 

A follow-up univariate test was conducted for person parameter (𝜃) recovery to see 

where the differences lie, and these results are shown in Table 18. There was a significant 

univariate effect of Test Type on 𝜃 ABS (p < .05), 𝜃 RMSE, (p < .05), 𝜃 PSD (p < .05), and 𝜃 

CORR (p < .05).  

 

Table 18. Univariate Tests of Between Subjects Effects for Study 2 Hypothesis 2. 

 

 
Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 

CORR = correlation between true and estimated parameters. 

 

In addition, Bonferroni post-hoc multiple comparison tests were performed to examine pairwise 

differences as a function of Test Type. Table 19 shows the mean differences and associated p-

values. It can be seen that the 90-Pair test provided better results than the 30-Pair test in every 

case (p < .05), and the 30-Triplet test provided better results than the 30-Pair test in every case (p 

Hypothesis Effect Parameter
Wilks’ 

Lambda 
F

Hypothesis 

df

Error 

df
Sig

Statement 

Parameter
.03 1.76 6.00 2.00 .41 .84

Person 

Parameter
.00 12.01 6.00 2.00 .01 .97

Hypothesis 2 Test Type

𝜂 
2

Hypothesis Effect Parameter
Dependent 

Variable
SS df

Mean 

Square
F Sig. 

θ ABS .05 2.00 .03 537.33 .00 1.00

θ RMSE .10 2.00 .05 988.00 .00 1.00

θ PSD .08 2.00 .04 252.70 .00 .99

θ CORR .05 2.00 .02 669.50 .00 1.00

Hypothesis 2 Test Type
Person 

Parameter

𝜂2
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< .05). Also, as expected, there were no significant differences between the 30-Triplet and 90-

Pair tests (p > .05). Therefore, Hypothesis 2 was supported. 

 

Table 19. Multiple Comparisons with Test Type for Study 2 Hypothesis 2. 

  
Note. Bonferroni Correction was used. 

 

 

Hypothesis 3 proposed that test information would be higher for the 90-Pair test than the 

30-Pair test, but 30-Triplet and 90-Pair tests would be comparable (no significant difference). 

Hypothesis 3 was tested using one-way ANOVA with three test types as the between subject 

factors and the test information as dependent variable. A univariate test revealed a significant 

effect of test type on test information, F (2, 3) = 579.50, p <. 001, 𝜂2 = .99. Also, Bonferroni 

multiple comparison test was conducted for test information by three test types. Table 20 shows 

that the 90-Pair test yielded significantly higher test information than the 30-Pair test (p < .05), 

and the 30-Triplet test yielded significantly higher test information than the 30-Pair test (p < .05). 

-.19 .00

.02 .20

.21 .00

-.25 .00

.04 .06

.29 .00

-.24 .00

.03 .31

.27 .00

.18 .00

-.02 .24

-.19 .00

Dependent 

Variable
Comparison Mean Difference Sig.

θ ABS

30-Triplet - 30-Pair

30-Triplet - 90-Pair

30-Pair - 90-Pair

θ CORR

30-Triplet - 30-Pair

30-Triplet - 90-Pair

30-Pair - 90-Pair

θ RMSE

30-Triplet - 30-Pair

30-Triplet - 90-Pair

30-Pair - 90-Pair

θ PSD

30-Triplet - 30-Pair

30-Triplet - 90-Pair

30-Pair - 90-Pair



 

 
 

 

73 

Also, there was no significant difference between the 30-Triplet and 90-Pair tests, which 

indicates they have comparable test information. Therefore, hypothesis 3 was supported. 

 

Table 20. Multiple Comparisons with Test Type for Study 2 Hypothesis 3. 

 
Note. OTI = Overall Item Information index; Bonferroni Correction was used. 

 

Although it was not a proposed hypothesis, one-way ANOVA results also revealed a 

significant effect of test type on average item information, F (2, 6) = 1177.01, p <. 001, 𝜂2= .99. 

The multiple comparison test result shown in Table 21 also indicates that significantly higher 

average item information was found for the 30-Triplet test than the 30-Pair and 90-Pair tests.  

 

Table 21. Multiple Comparisons of Three Test Types on Average OII. 

 

 
Note. OII = Overall Item Information index; Bonferroni Correction was used. 

 

 

Study3 

Table 22 presents descriptive statistics for the single-statement (SS) and MFC Big Five 

personality measure and the criterion measures. All of the ordinal response (Likert-type) 

49.62 .00

-8.44 .06

-58.05 .00

OTI

30-Triplet - 30-Pair

30-Triplet - 90-Pair

30-Pair - 90-Pair

Dependent 

Variable
Comparisons Mean Difference Sig.

1.65 .00

1.60 .00

-.05 .75

Dependent 

Variable
Comparisons

Mean 

Difference
Sig.

Average OII

30-Triplet - 30-Pair

30-Triplet - 90-Pair

30-Pair - 90-Pair
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measures were scored using the traditional summative approach: reverse score responses to 

negatively worded items and sum values corresponding to the endorsed item categories to obtain 

a scale score. The MFC personality measure was scored using the GGUM-RANK MCMC 

algorithm. In Table 22, note that the mean of the personality traits for the MFC measure are 

approximately zero because multivariate standard normal priors were used for estimation. The 

reliability of the MFC personality scales was computed using the marginal reliability equation 

described in Method. For all other measures, reliability was estimated using coefficient alpha.  

As can be seen in Table 22, the coefficient alphas for SS Openness, Conscientiousness, 

Extraversion, Agreeableness, and Neuroticism scales were .80, .87, .86, .79, and .87, 

respectively. The MFC marginal reliabilities for the same traits were .69, .68, .60, .70, and .68, 

respectively. The lower marginal reliabilities are consistent with other studies involving MFC 

personality measures (e.g., Brown, 2010; Chernyshenko et al., 2009). This might be explained by 

reduced variance in trait scores due to regression to the mean associated with Bayesian 

estimation and short (20-triplet) tests, or possibly somewhat low intrablock discrimination (see 

Table 25). Conversely, the marginal reliabilities could be better indicators of reliability than the 

SS alpha values, which may be inflated by single subject response consistency bias (Stark et al., 

2014). 
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Table 22. Descriptive Statistics for Personality and Criterion Measures. 

 

 
Note. O = Openness; C = Conscientiousness; E = Extraversion; A = Agreeableness; N = 

Neuroticism; SWLS = Life Satisfaction; PA = Positive Affect; NA = Negative Affect; AGG = 

Aggression; HR = Holland Realistic; HI = Holland Investigative; HA = Holland Artistic; HS = 

Holland Social; HE = Holland Enterprising; HC = Holland Conventional. SS = Single Statement 

Likert-type Measure, MFC = Multidimensional Forced Choice Measure Reliability estimates for 

triplet MFC personality measures are marginal reliabilities, but reliability estimates for the other 

measures are Cronbach's coefficient alpha. 

 

 Construct validity 

 Table 23 presents the multi-trait multi-method (MTMM) correlations between the SS and 

MFC Big Five scores. Convergent validity correlations between the corresponding SS and MFC 

constructs are shown in bold. These monotrait heteromethod correlations ranged from .50 to .68; 

they are lower than the .75 to .87 correlations found by Heggestad et al. (2006), with measures 

composed of the same statements. However, those authors used an unpacking and repackaging 

Measure
# of Items or 

statements
N M SD Min. Max. Reliability

O-SS 12 495 45.22 7.29 19.00 60.00 0.80

O-MFC 12 495 0.00 0.83 -2.16 2.13 0.69

C-SS 12 495 44.50 7.81 19.00 60.00 0.87

C-MFC 12 495 0.00 0.83 -2.53 2.12 0.68

E-SS 12 495 39.01 8.38 14.00 60.00 0.86

E-MFC 12 495 0.00 0.80 -2.12 1.61 0.60

A-SS 12 495 44.76 6.63 18.00 60.00 0.79

A-MFC 12 495 0.00 0.83 -2.27 2.67 0.70

N-SS 12 495 30.84 8.98 12.00 59.00 0.87

N-MFC 12 495 0.00 0.82 -1.75 2.23 0.68

SWLS 5 495 22.86 7.04 30.00 5.00 0.90

AGG 12 495 29.94 10.61 48.00 12.00 0.91

PA 6 495 25.69 5.82 28.00 7.00 0.93

NA 6 495 18.11 6.89 32.00 8.00 0.92

HR 10 495 27.86 9.78 40.00 10.00 0.90

HI 10 495 33.08 9.50 40.00 10.00 0.90

HA 10 495 34.46 9.58 40.00 10.00 0.90

HS 10 495 34.16 9.35 40.00 10.00 0.90

HE 10 495 30.75 9.30 40.00 10.00 0.89

HC 10 495 31.16 9.73 40.00 10.00 0.92

Scale Statistics
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strategy to score the MFC measure, rather than an MFC IRT model. In contrast, the correlations 

are closer to those reported in Chernyshenko et al. (2009), who used the MUPP IRT model 

(Stark et al., 2005) to score MFC measures having a moderate degree of overlap.   

Of greater concern in this study is the high heterotrait monomethod correlations for MFC 

triplets which relate to discriminant validity. For example, the correlations between Openness 

and Agreeableness and between Conscientiousness and Neuroticism were .78 and -.75. This is 

intriguing because the Likert-type correlations were much lower and respondents had no 

incentives to try to distort their answers by answering in a socially desirable way. More research 

is needed to investigate whether the manner with which statements were combined in the MFC 

measure induced a response set that adversely affected discriminant validity (no attempt was 

made to control socially desirability responding); whether the placement of the MFC 

questionnaire in the online survey invoked a response set; and whether aspects of the MCMC 

algorithm led to inflated trait correlations because of the brevity of the measure.
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Table 23. Correlations Between Single Statement (SS) and Multidimensional Forced Choice (MFC) Big Five Scores. 

 

 
Note. N= 495, * = p < .05; ** = p < .01; Bold coefficients indicate monotrait heteromethod correlations; Values enclosed in 

parentheses are reliabilities; SS= singe-statement responses via Likert type sum scores; MFC = Multidimensional RANK responses 

via GGUM-RANK scores; O = Openness; C = Conscientiousness; E = Extraversion; A = Agreeableness; N = Neuroticism. 

 

Format Construct O C E A N O C E A N

Openness (.80)

Conscuentiousness .34** (.87)

Extraversion .26** .37** (.86)

Agreeableness .46** .46** .31** (.79)

Neuroticism -.18** -.61** -.53** -.47** (.87)

Openness .53** .15** .03 .33** -.10* (.69)

Conscuentiousness .13** .61** .24** .29** -.43** .42** (.68)

Extraversion .12** .24** .68** .22** -.40** .17** .36** (.60)

Agreeableness .36** .32** .25** .50** -.37** .78** .63** .46** (.70)

Neuroticism -.06 -.47** -.46** -.28** .66** -.20** -.75** -.64** -.55** (.68)

SS

MFC

SS MFC
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 Criterion-Related Validity 

 Table 24 shows the correlations of the SS and MFC personality scores with the criterion 

variables (e.g., life satisfaction, aggression, positive and negative affect, and vocational 

interests). Overall, the correlations are consistent with previous meta-analytic findings. For 

example, Schmidt and Shultz (2008) found significant relationships between Conscientiousness, 

Extraversion, Agreeableness, and Neuroticism with life satisfaction (r = .25, .28, .14, and -.38), 

positive affect (r = .27, .44, .12, and .30), and negative affect (r = -.20, -.18, -.20, and .54). 

Barrick, Mount and Gupta (2003) found significant relationships between Openness to 

Experience and Investigative (r = .25), Artistic (r = .39), and Social (r = .12) interests; between 

Extraversion and Social (r = .29) and Enterprising (r = .41) interests; and between Agreeableness 

and Social (r = .15) interests. Several studies have also found that Agreeableness and 

Neuroticism correlate with aggression (Gleason et al., 2004; Graziano et al., 1996; Miller et al., 

2003; Suls et al., 1998). Overall, the results in Table 24 indicated that the SS and MFC measures 

exhibited a similar pattern of correlations with outcomes, but the MFC correlations were 

generally lower. Ordinarily, this findings might be used to suggest that the correlations between 

SS (Likert-type) Big Five measures and Likert-type criterion variables were inflated by common 

method bias, but the better discriminant validity of the SS measure casts doubt on this 

explanation. Clearly, more research is needed to understand the intricacies of MFC triplet test 

construction and how discriminant validity may affect criterion-related validities in applied 

settings.  
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Table 24. Criterion-Related Validity Coefficients of Personality Traits using Single Statement 

Responses and MFC Responses.  

 

 
Note. N = 495; values in bold are statistically significant (p < .05); SWLS = Life Satisfaction; 

PA = Positive Affect; NA = Negative Affect; AGG = Aggression; HR = Holland Realistic; HI = 

Holland Investigative; HA = Holland Artistic; HS = Holland Social; HE = Holland Enterprising; 

HC = Holland Conventional; O = Openness; C = Conscientiousness; E = Extraversion; A = 

Agreeableness; N = Neuroticism. 

 

For readers interested in the estimated GGUM-RANK statement parameters and standard 

errors (PSD) values for the items of the MFC triplet personality measure, the detailed results are 

shown in Table 25. It can be seen that many of the 𝜏 PSD values were quite large, suggesting that 

a larger sample might have been helpful for parameter estimation to handle the potential effects 

of unmotivated, careless, or socially desirable responding among the online (Amazon 

Mechanical Turk) participants. Alternatively, the PSDs may have been large because the average 

intrablock discrimination was 1.07 (values ranged from .68 to 1.47), which would fall into the 

category of low intrablock discrimination in the Study 1 simulation. 

 

Crietrion 

Variables
O C E A N O C E A N

SWLS .06 .47 .43 .28 -.59 -.01 .32 .32 .18 -.42

AGG -.28 -.42 -.16 -.55 .46 -.31 -.42 -.18 -.46 .38

PA .22 .53 .49 .42 -.67 .04 .33 .33 .24 -.46

NA -.21 -.53 -.35 -.36 .68 -.11 -.43 -.28 -.30 .48

HR .03 .00 .19 -.04 -.11 -.07 -.08 .07 -.08 .01

HI .21 .11 .13 .09 -.07 .11 .02 .02 .06 .01

HA .39 .00 .17 .19 .01 .27 -.05 .07 .17 .04

HS .26 .18 .39 .35 -.19 .12 .07 .22 .20 -.11

HE .09 .23 .40 .09 -.26 -.05 .08 .24 .04 -.20

HC .01 .19 .21 .09 -.18 -.08 .05 .04 -.03 -.09

SS MFC
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Table 25. Item Parameters and Standard Errors for 20-Triplet MFC Personality Measure. 

 

 

Item Alpha PSD Delta PSD Tau PSD Item Alpha PSD Delta PSD Tau PSD

1.83 0.23 0.98 0.15 -1.33 0.31 2.00 0.27 1.23 0.28 -1.96 0.39

0.61 0.12 2.21 0.41 -0.83 0.81 0.73 0.18 -1.57 0.51 -0.53 0.81

1.00 0.15 2.22 0.32 -1.30 0.58 1.69 0.22 2.19 0.30 -1.44 0.46

1.15 0.17 1.97 0.36 -2.03 0.48 0.88 0.14 -1.84 0.42 -0.84 0.57

0.91 0.15 1.90 0.49 -0.82 0.65 0.67 0.11 -2.00 0.42 -1.50 0.66

0.99 0.15 -2.24 0.34 -0.25 0.52 0.60 0.16 1.23 0.43 -0.65 0.70

1.57 0.21 -1.64 0.45 -1.65 0.59 1.89 0.23 1.01 0.16 -1.60 0.29

1.16 0.16 -2.28 0.33 -0.69 0.66 1.11 0.16 2.10 0.31 -2.24 0.42

0.85 0.14 -2.03 0.39 -0.85 0.79 0.72 0.15 2.04 0.47 -0.03 0.58

1.41 0.22 1.38 0.31 -1.48 0.44 1.59 0.23 1.57 0.41 -1.57 0.59

1.21 0.17 1.73 0.28 -1.96 0.46 0.96 0.16 -2.22 0.37 -1.01 0.77

0.66 0.15 -2.00 0.42 -0.34 0.70 1.31 0.20 2.22 0.32 -0.60 0.59

1.55 0.33 1.02 0.35 -0.86 0.47 0.63 0.19 -1.23 0.57 -1.04 0.70

0.62 0.15 -1.47 0.47 -0.77 0.80 0.84 0.16 -1.46 0.42 -0.31 0.52

1.50 0.20 2.16 0.31 -1.66 0.46 0.81 0.14 1.76 0.44 -1.59 0.55

1.32 0.17 -2.09 0.35 -0.67 0.48 0.65 0.11 -2.07 0.43 -0.80 0.84

0.67 0.13 1.78 0.51 -0.94 0.74 0.95 0.16 1.58 0.47 -1.38 0.64

0.75 0.13 2.26 0.36 -1.24 0.70 1.67 0.21 2.14 0.32 -1.26 0.48

0.60 0.13 -1.71 0.44 -0.88 0.74 1.77 0.26 1.10 0.23 -1.91 0.32

0.84 0.15 -1.35 0.43 -0.27 0.54 1.02 0.18 -1.74 0.43 -0.90 0.58

0.82 0.13 2.10 0.38 -1.73 0.55 0.54 0.17 -0.91 0.46 -0.82 0.86

1.33 0.21 0.91 0.21 -0.55 0.55 0.84 0.14 2.33 0.33 -0.98 0.78

1.07 0.17 1.58 0.36 -0.87 0.66 1.16 0.15 2.04 0.36 -1.13 0.59

1.26 0.17 2.00 0.33 -1.43 0.56 1.47 0.18 1.37 0.19 -0.94 0.49

1.02 0.19 1.52 0.42 -1.35 0.68 0.49 0.16 0.13 0.45 -0.40 0.72

1.60 0.26 -2.09 0.42 -0.35 0.52 0.69 0.13 -1.79 0.44 -1.62 0.56

0.96 0.15 2.15 0.36 -1.04 0.71 0.87 0.14 1.85 0.37 -1.32 0.51

1.06 0.19 -1.73 0.39 -0.51 0.60 1.76 0.22 -2.21 0.36 -0.91 0.47

0.73 0.15 -1.50 0.49 -0.94 0.79 1.14 0.16 1.92 0.40 -1.38 0.70

1.13 0.18 1.43 0.39 -1.44 0.59 0.83 0.13 -2.02 0.47 -0.51 0.71
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Table 25 shows estimated statement parameters and standard errors for the MFC triplet 

personality measure. Result suggest that statement parameters were well estimated based on 

standard error. Comparing to alpha and delta item parameters, tau parameter showed somewhat 

higher standard errors. This is consistent with the simulation findings. Average intrablock 

discrimination of the MFC triplet measure was 1.07 (ranging from .68 to 1.47), which belongs to 

the low intrablock discrimination condition in the simulation study. 

Finally, Figure 11 shows the overall item information (OII) values of the 20-triplet MFC 

personality measure. It is readily apparent that four of the items provided very little information 

– Item 7 (OII = 0.59), Item 12 (OII = 0.54), Item 15 (OII = 0.56), and Item 19 (OII = 0.49) – 

which is problematic with such a short measure. (The corresponding average intrablock item 

discrimination values were: Item 7 (avg. 𝛼 =0.75), Item 12 (avg. 𝛼 =0.72), Item 15 (avg. 𝛼 = 

0.76), and Item 19 (avg. 𝛼 =0.68). The important implication is that to ensure adequate 

measurement precision, item pretesting may remain an important step in MFC test construction, 

despite the ability to simultaneously estimate statement parameters and score responses with the 

MCMC algorithm developed in this research.  
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Figure 11. Individual item information for 20-triplet MFC personality measure 
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CHAPTER FOUR: 

DISCUSSION AND CONCLUSION 

This dissertation research had multiple goals. The first aim was to develop an MCMC 

algorithm for estimating GGUM-RANK statement and person parameters simultaneously from 

MFC rank responses. The second aim was to investigate the recovery of statement and person 

parameters with MFC triplet tests and compare with the results for MFC pair tests in select 

conditions. The third aim was to investigate how manipulating statement parameters influences 

overall item and test information and compare the information provided by MFC triplet and pair 

measures. The fourth aim was to examine the correspondence between GGUM-RANK MFC 

triplet and SS Big Five personality scores using data collected from online research participants. 

An overarching goal of this dissertation is to provide practitioners and researchers with practical 

guidelines for constructing effective MFC measures. 

 

Findings and Implications from Proposed Studies 

The main findings and practical implications of these studies are as follows. First, with 

regard to sample size, larger sample size yielded more accurate statement parameter estimates, 

but sample size had little influence on person parameter estimates. The results suggest that at 

least 250 respondents are needed for GGUM-RANK estimation with MFC triplets test involving 

highly discriminating statements, and larger samples (e.g., N=500) are recommended for 

statement parameter estimation when measures are developed for high-stakes decision making.  
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Second, with regard to test length, 30-Triplets may be sufficient for scoring with 10-

dimension MFC measures, provided that the triplets are pretested to ensure adequate intrablock 

discrimination and OII. For example, in the 30-Triplet, High Intrablock Discrimination 

conditions of Study 1, the average correlation between true and estimated person parameters was 

above .90. Importantly, using short MFC triplet measures should decrease the “cognitive load” 

on respondents, relative to long MFC triplet measures, and in turn reduce test fatigue, careless 

responding, and completion time.  

Third, intrablock discrimination was found to be of primary importance for estimation 

accuracy. MFC items involving statements with high discrimination parameters produced more 

accurate parameter estimation and higher overall item and test information. Thus, researchers 

and practitioners are strongly encouraged to create MFC tests comprising highly discriminating 

statements to ensure sufficient measurement precision. Importantly, the GGUM-RANK MCMC 

direct estimation process will help practitioners to more accurately evaluate item discrimination 

by taking into account potential interactions among statements within a block. This should also 

lead to more effective MFC item analysis and facilitate construction of parallel MFC test forms.  

Fourth, intrablock location variability had little to no effect on overall item and test 

information statistics and parameter recovery. This result has implications for creating fake-

resistant MFC measures, because it shows that statements within a block can be matched more 

closely on location (extremity) and social desirability without adversely affecting the 

psychometric quality of the items.  

Fifth, MFC triplet measures will outperform MFC pair measures of similar length and 

intrablock discrimination in terms of estimation accuracy. In this research, 30-Triplet tests 

consistently yielded better discrimination and location parameter recovery than 30-Pair tests, and 



 

 
 

 

85 

the 30-Triplet tests were nearly as good as 90-Pair tests in terms of overall test information and 

person parameter recovery. In addition, triplet measures had approximately 2.8 times higher 

average overall item information than pair measures. Together, these results show the potential 

psychometric benefits of using the triplet format, provided that perceived item “difficulty” does 

not lead to aberrant responding with real examinees.   

Lastly, this dissertation not only developed GGUM-RANK estimation methods but also 

illustrated their viability for applied use. Although questions were raised concerning discriminant 

validity of the MFC measure in the empirical investigation using online research participants, the 

study showed that an MFC measure, which was not pretested with real examinees to ensure item 

quality, could yield patterns of correlation with outcomes similar to Likert-type Big Five 

measures that have been widely in applied research. This empirical example will open the way 

for practical applications of the GGUM-RANK IRT model.  

 

Limitations and Suggestions for Future Research 

First, due to extremely long simulation run-times, Study 1 and Study 2 considered a 

limited number of simulation conditions out of all possibilities that may be seen in real MFC 

testing applications. These simulations explored parameter recovery exclusively with 10-

dimension tests, but MFC tests of higher dimensionality are used in some applied settings. For 

example, TAPAS personality tests (Stark et al., 2014) used for military personnel testing have 

measured 13-15 dimensions with multidimensional pairwise preference items, and the 

Occupational Personality Questionnaire (OPQ32; Brown & Bartram, 2009b) measures up to 32 

work-related behaviors using MFC triplets. Thus, simulation research is needed to explore the 

accuracy of GGUM-RANK scoring with measures involving more than 10 dimensions (e.g., 20 
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dimensions or 30 dimensions). In addition, this dissertation considered just two levels of 

intrablock location parameter variability (large and small SD). Future simulation research should 

examine a wider variety of location parameter variability conditions; e.g., the effect of using all 

positive or all negative location parameters within MFC blocks on overall item and test 

information and parameter recovery. Brown and Maydeu-Olivares (2011) suggested that MFC 

items should be created by mixing positively and negatively worded statements to ensure more 

accurate parameter estimation with their Thurstonian model. That is analogous to mixing 

statements with positive and negative GGUM-RANK location (𝛿) parameters within MFC 

blocks. However, the results of this investigation do not directly support or contradict that 

recommendation. If future GGUM-RANK research finds that all positive or all negative 

statements can be used in MFC blocks without adversely affecting parameter estimation, then 

there will be potentially greater resistance to faking and related forms of response distortion.  

Second, empirical Study 3 showed that the MFC and SS personality measures had similar 

patterns of correlation with criterion variables, but the discriminant validity of the MFC measure 

was questionable. As previously mentioned, the MFC measure was constructed by recombining 

the statements of a SS Big Five measure with emphasis on balancing positive and negative 

wording across MFC blocks. Had the measure been constructed from a pool of discriminating 

statements following the guidelines of Stark et al. (2005), for example, better results may have 

been observed. To address similar problems in future MFC applications, practitioners should 

carefully pretest statement pools and select statements with good psychometric properties for 

creating MFC measures. It may also be beneficial to match statements within blocks on location 

and social desirability if there is any potential for deliberate or unintentional socially desirable 
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responding. Thus, there remains a need for validity research using GGUM-RANK MFC triplet 

measures with real examinees in research and organizational settings. 

Third, this research suggests that MFC triplet tests provide greater measurement precision 

MFC pairs. However, it has been suggested that block size (i.e., number of statements within an 

MFC block), is positively associated with a respondent’s “cognitive load” (Brown & Maydeu-

Olivares, 2011). That is, it is more cognitive demanding to respond to a triplet than a pair. The 

potential positive relationship between cognitive load and block size may affect test-taking 

anxiety, positive affect, applicant reaction, test fairness, and adverse impact (e.g., Converse et al., 

2008). Future empirical research should, therefore, examine the effect of MFC block size (e.g., 

pairs vs. triplets vs. tetrads) on respondents’ perceived cognitive load, reactions toward testing, 

test fairness, and adverse impact in high-stake contexts.  

Lastly, this research focused on single-sample parameter estimation and scoring. To 

facilitate applications, research is needed to develop methods for assessing GGUM-RANK 

model-data fit, linking item and person parameters across different subpopulations, and equating 

MFC test forms comprising different subsets of items. The development of differential item and 

test functioning methods for GGUM-RANK measures would help to support multinational 

testing efforts and permit meaningful cross-cultural comparisons.   

In closing, there is increasing interest in the use of MFC measures for noncognitive 

measurement in I-O and educational settings. This research has extended methods developed in 

previous investigations (e.g., Hontangas et al., 2015; Seybert, 2013; Stark et al., 2005) by 

introducing an MCMC algorithm for estimating GGUM-RANK person and statement parameters 

from MFC triplet responses and by examining how parameter recovery is influenced by overall 
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item and test information. It is hoped that this research provides a solid foundation for applied 

research and a springboard for future psychometric development efforts. 
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Appendix A: Derivatives for GGUM-RANK Item Information Functions (IIFs) 

For IIFs, the first and second partial derivatives of Equation 13 are needed for cases involving 

statements on different dimensions. Begin by defining the rank response probabilities and their 

derivatives with respect to dimension d1, d2, and d3 as: 

𝐴 = 𝑃𝑑1(1), 𝐴′ = 𝑃𝑑1
′ (1) &        𝐴′′ = 𝑃𝑑1′′(1)  

𝐵 = 𝑃𝑑2(1), 𝐵′ = 𝑃𝑑2
′ (1) &       𝐵′′ = 𝑃𝑑2′′(1) 

𝐶 = 𝑃𝑑3(1), 𝐶′ = 𝑃𝑑3
′ (1) &        𝐶′′ = 𝑃𝑑3′′(1) 

𝐷 = 𝑃𝑑1(0) = 1 − 𝑃𝑑1(1) 𝑎𝑛𝑑 𝐷
′ = 𝑃𝑑1′(0) = −𝑃𝑑1′(1) = −𝐴′ 

𝐸 = 𝑃𝑑2(0) = 1 − 𝑃𝑑2(1) 𝑎𝑛𝑑 𝐸
′ = 𝑃𝑑2′(0) = −𝑃𝑑2′(1) = −𝐵′ 

𝐹 = 𝑃𝑑3(0) = 1 − 𝑃𝑑3(1) 𝑎𝑛𝑑 𝐹
′ = 𝑃𝑑3′(0) = −𝑃𝑑3′(1) = −𝐶′ 

where, d1 = first dimension 1, d2= second dimension, d3 = third dimension. 

 

First partial derivatives of GGUM-RANK triplet probability functions follow: 

𝝏𝑷𝒎=𝟏(𝜽)

𝝏𝜽𝒅𝟏
=

𝜕

𝜕𝜃𝑑1
(

𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
)  

= (
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
)
′

(
𝐵𝐹

𝐵𝐹+𝐸𝐶
)  

= (
(𝐴′𝐸𝐹)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴′𝐸𝐹+𝐷′𝐵𝐹+𝐷′𝐸𝐶)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
) . 

 

𝝏𝑷𝒎=𝟏(𝜽)

𝝏𝜽𝒅𝟐
=

𝜕

𝜕𝜃𝑑2
(

𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
)  

= (
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
)
′

(
𝐵𝐹

𝐵𝐹+𝐸𝐶
) + (

𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
)
′
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= (
(𝐴𝐸′𝐹)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸′𝐹+𝐷𝐵′𝐹+𝐷𝐸′𝐶)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
)  

+(
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

(𝐵′𝐹)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵′𝐹+𝐸′𝐶)

(𝐵𝐹+𝐸𝐶)2
) . 

 
𝝏𝑷𝒎=𝟏(𝜽)

𝝏𝜽𝒅𝟑
=

𝜕

𝜕𝜃𝑑3
(

𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
)  

= (
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
)
′

(
𝐵𝐹

𝐵𝐹+𝐸𝐶
) + (

𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
)
′

  

= (
(𝐴𝐸𝐹′)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸𝐹′+𝐷𝐵𝐹′+𝐷𝐸𝐶′)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
)  

+(
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

(𝐵𝐹′)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵𝐹′+𝐸𝐶′)

(𝐵𝐹+𝐸𝐶)2
) . 

 

For the second partial derivatives of GGUM-RANK triplet probability functions: 

𝝏𝟐𝑷𝒎=𝟏(𝜽)

𝝏𝜽𝒅𝟏
𝟐 =

𝜕

𝜕𝜃𝑑1
[(

(𝐴′𝐸𝐹)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴′𝐸𝐹+𝐷′𝐵𝐹+𝐷′𝐸𝐶)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
)] . 

Let us define 

α1
2 = [(𝐴′′𝐸𝐹)(𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶) + (𝐴′𝐸𝐹)(𝐴′𝐸𝐹 + 𝐷′𝐵𝐹 + 𝐷′𝐸𝐶) − (𝐴′𝐸𝐹)(𝐴′𝐸𝐹 + 𝐷′𝐵𝐹 +

𝐷′𝐸𝐶) − (𝐴𝐸𝐹)(𝐴′′𝐸𝐹 + 𝐷′′𝐵𝐹 + 𝐷′′𝐸𝐶)](𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶)2 − 2(𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶)(𝐴′𝐸𝐹 +

𝐷′𝐵𝐹 + 𝐷′𝐸𝐶)[(𝐴′𝐸𝐹)(𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶) − (𝐴𝐸𝐹)(𝐴′𝐸𝐹 + 𝐷′𝐵𝐹 + 𝐷′𝐸𝐶)] . 

Therefore, 

𝜕2𝑃𝑚=1(𝜽)

𝜕𝜃𝑑1
2 =

α1
2

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)4
(

𝐵𝐹

𝐵𝐹+𝐸𝐶
) , 

 

𝝏𝟐𝑷𝒎=𝟏(𝜽)

𝝏𝜽𝒅𝟐
𝟐 =

𝜕

𝜕𝜃𝑑2
[(

(𝐴𝐸′𝐹)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸′𝐹+𝐷𝐵′𝐹+𝐷𝐸′𝐶)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
) +

(
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

(𝐵′𝐹)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵′𝐹+𝐸′𝐶)

(𝐵𝐹+𝐸𝐶)2
)]   

Let us define 
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𝛽1
2 = [(𝐴𝐸′′𝐹)(𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶) + (𝐴𝐸′𝐹)(𝐴𝐸′𝐹 + 𝐷𝐵′𝐹 + 𝐷𝐸′𝐶) − (𝐴𝐸′𝐹)(𝐴𝐸′𝐹 + 𝐷𝐵′𝐹 +

𝐷𝐸′𝐶) − (𝐴𝐸𝐹)(𝐴𝐸′′𝐹 + 𝐷𝐵′′𝐹 + 𝐷𝐸′′𝐶)](𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶)2 − 2(𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶)(𝐴𝐸′𝐹 +

𝐷𝐵′𝐹 + 𝐷𝐸′𝐶)[(𝐴𝐸′𝐹)(𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶) − (𝐴𝐸𝐹)(𝐴𝐸′𝐹 + 𝐷𝐵′𝐹 + 𝐷𝐸′𝐶)] , 

δ1 = [(𝐵′′𝐹)(𝐵𝐹 + 𝐸𝐶) + (𝐵′𝐹)(𝐵′𝐹 + 𝐸′𝐶) − (𝐵′𝐹)(𝐵′𝐹 + 𝐸′𝐶) − (𝐵𝐹)(𝐵′′𝐹 + 𝐸′′𝐶)](𝐵𝐹 +

𝐸𝐶)2 − 2(𝐵𝐹 + 𝐸𝐶)(𝐵′𝐹 + 𝐸′𝐶)[(𝐵′𝐹)(𝐵𝐹 + 𝐸𝐶) − (𝐵𝐹)(𝐵′𝐹 + 𝐸′𝐶)]. 

Therefore, 

𝜕2𝑃𝑚=1(𝜽)

𝜕𝜃𝑑2
2 =

𝛽1
2

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)4
(

𝐵𝐹

𝐵𝐹+𝐸𝐶
) +

(
(𝐴𝐸′𝐹)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸′𝐹+𝐷𝐵′𝐹+𝐷𝐸′𝐶)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

(𝐵′𝐹)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵′𝐹+𝐸′𝐶)

(𝐵𝐹+𝐸𝐶)2
) +

(
(𝐴𝐸′𝐹)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸′𝐹+𝐷𝐵′𝐹+𝐷𝐸′𝐶)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

(𝐵′𝐹)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵′𝐹+𝐸′𝐶)

(𝐵𝐹+𝐸𝐶)2
) +

(
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

δ1

(𝐵𝐹+𝐸𝐶)4
)   

=
𝛽1
2

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)4
(

𝐵𝐹

𝐵𝐹+𝐸𝐶
) +

2 (
(𝐴𝐸′𝐹)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸′𝐹+𝐷𝐵′𝐹+𝐷𝐸′𝐶)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

(𝐵′𝐹)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵′𝐹+𝐸′𝐶)

(𝐵𝐹+𝐸𝐶)2
) +

(
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

δ1

(𝐵𝐹+𝐸𝐶)4
) . 

𝝏𝟐𝑷𝒎=𝟏(𝜽)

𝝏𝜽𝒅𝟑
𝟐 =

𝜕

𝜕𝜃𝑑3
[(

(𝐴𝐸𝐹′)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸𝐹′+𝐷𝐵𝐹′+𝐷𝐸𝐶′)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

𝐵𝐹

𝐵𝐹+𝐸𝐶
) +

(
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

(𝐵𝐹′)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵𝐹′+𝐸𝐶′)

(𝐵𝐹+𝐸𝐶)2
)] . 

Let us define 

𝛾1
2 = [(𝐴𝐸𝐹′′)(𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶) + (𝐴𝐸𝐹′)(𝐴𝐸𝐹′ + 𝐷𝐵𝐹′ + 𝐷𝐸𝐶′) − (𝐴𝐸𝐹′)(𝐴𝐸𝐹′ +

𝐷𝐵𝐹′ + 𝐷𝐸𝐶′) − (𝐴𝐸𝐹)(𝐴𝐸𝐹′′ + 𝐷𝐵𝐹′′ + 𝐷𝐸𝐶′′)](𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶)2 −

2(𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶)(𝐴𝐸𝐹′ + 𝐷𝐵𝐹′ + 𝐷𝐸𝐶′)[(𝐴𝐸𝐹′)(𝐴𝐸𝐹 + 𝐷𝐵𝐹 + 𝐷𝐸𝐶) −

(𝐴𝐸𝐹)(𝐴𝐸𝐹′ + 𝐷𝐵𝐹′ + 𝐷𝐸𝐶′)] , 
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ε1 = [(𝐵𝐹′′)(𝐵𝐹 + 𝐸𝐶) + (𝐵𝐹′)(𝐵𝐹′ + 𝐸𝐶′) − (𝐵𝐹′)(𝐵𝐹′ + 𝐸𝐶′) − (𝐵𝐹)(𝐵𝐹′′ +

𝐸𝐶′′)](𝐵𝐹 + 𝐸𝐶)2 − 2(𝐵𝐹 + 𝐸𝐶)(𝐵𝐹′ + 𝐸𝐶′)[(𝐵𝐹′)(𝐵𝐹 + 𝐸𝐶) − (𝐵𝐹)(𝐵𝐹′ + 𝐸𝐶′)] . 

Therefore, 

𝜕2𝑃𝑚=1(𝜽)

𝜕𝜃𝑑3
2 =

𝛾1
2

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)4
(

𝐵𝐹

𝐵𝐹+𝐸𝐶
) +

(
(𝐴𝐸𝐹′)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸𝐹′+𝐷𝐵𝐹′+𝐷𝐸𝐶′)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

(𝐵𝐹′)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵𝐹′+𝐸𝐶′)

(𝐵𝐹+𝐸𝐶)2
) +

(
(𝐴𝐸𝐹′)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸𝐹′+𝐷𝐵𝐹′+𝐷𝐸𝐶′)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

(𝐵𝐹′)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵𝐹′+𝐸𝐶′)

(𝐵𝐹+𝐸𝐶)2
) +

(
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

ε1

(𝐵𝐹+𝐸𝐶)4
)  

=
𝛾1
2

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)4
(

𝐵𝐹

𝐵𝐹+𝐸𝐶
) +

2 (
(𝐴𝐸𝐹′)(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)−(𝐴𝐸𝐹)(𝐴𝐸𝐹′+𝐷𝐵𝐹′+𝐷𝐸𝐶′)

(𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶)2
) (

(𝐵𝐹′)(𝐵𝐹+𝐸𝐶)−(𝐵𝐹)(𝐵𝐹′+𝐸𝐶′)

(𝐵𝐹+𝐸𝐶)2
) +

(
𝐴𝐸𝐹

𝐴𝐸𝐹+𝐷𝐵𝐹+𝐷𝐸𝐶
) (

ε1

(𝐵𝐹+𝐸𝐶)4
) . 

The same process can be applied to obtain the first and second partial derivatives for m=2 to 

m=6 in Equation 13.  
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Appendix B: Item Parameters for 10-D MFC Triplet Tests in Study 1 

Table B1. 
Test Specification for the 10-Dimension Triplet Test with Low Alpha and Low Delta SD condition 

 

Item 

Block #
Statement Dimension Alpha Delta Tau

Item 

Block #
Statement Dimension Alpha Delta Tau

1 1 0.97 1.10 -1.37 46 4 0.76 -1.18 -1.14

2 2 1.03 0.56 -0.98 47 6 0.96 -1.63 -0.56

3 3 0.88 0.79 -0.55 48 10 1.16 -1.73 -0.69

4 1 0.95 -1.23 -0.55 49 5 0.82 1.40 -1.05

5 6 1.04 -1.56 -0.80 50 8 1.24 1.91 -0.68

6 9 0.82 -1.87 -1.28 51 10 0.78 1.87 -1.12

7 4 0.85 -1.91 -1.22 52 3 1.22 -1.89 -0.97

8 5 0.90 -1.61 -0.67 53 4 0.95 -1.45 -1.27

9 8 0.77 -1.31 -0.54 54 5 0.75 -1.97 -0.43

10 6 1.09 0.59 -1.17 55 1 1.10 1.25 -0.73

11 7 1.00 0.11 -0.99 56 7 1.06 0.91 -1.21

12 8 1.16 0.64 -0.67 57 10 0.83 1.50 -0.48

13 2 0.82 0.88 -0.99 58 1 1.07 -1.04 -0.80

14 6 0.97 1.01 -1.24 59 3 0.77 -1.25 -1.13

15 7 0.79 1.36 -0.53 60 5 0.83 -1.63 -0.41

16 8 0.77 -0.75 -1.04 61 5 0.94 0.82 -0.84

17 9 1.12 -0.25 -0.94 62 6 0.96 1.40 -0.57

18 10 0.80 -0.95 -0.79 63 7 0.77 1.11 -1.05

19 2 0.85 1.30 -1.29 64 3 1.15 1.54 -0.84

20 3 1.21 1.56 -0.94 65 4 0.98 1.91 -1.12

21 5 1.09 1.92 -0.48 66 6 1.21 1.35 -0.51

22 1 0.80 1.05 -0.69 67 7 1.06 -1.80 -0.95

23 4 1.02 0.72 -1.31 68 8 1.12 -1.50 -1.33

24 9 0.77 1.34 -0.72 69 9 1.04 -1.10 -0.80

25 1 1.04 -0.76 -1.31 70 3 0.78 0.18 -0.85

26 2 0.82 -0.41 -0.86 71 8 0.96 0.77 -0.66

27 10 0.75 -0.97 -0.51 72 10 1.09 0.47 -1.20

28 3 0.80 -1.22 -0.54 73 2 1.08 -1.38 -0.59

29 6 1.14 -0.90 -1.12 74 3 0.78 -1.09 -0.76

30 8 1.13 -0.69 -0.65 75 9 1.05 -0.81 -1.24

31 4 1.19 -0.77 -0.46 76 1 0.79 0.04 -1.22

32 8 1.01 -0.35 -1.20 77 5 1.09 0.39 -1.00

33 9 1.07 -0.18 -0.91 78 10 0.77 -0.28 -0.46

34 6 0.91 -1.16 -0.95 79 4 0.92 1.81 -0.48

35 7 1.18 -0.78 -0.90 80 5 1.15 1.22 -1.27

36 9 0.98 -0.60 -1.13 81 6 0.78 1.45 -0.87

37 2 1.18 -1.10 -0.56 82 4 1.03 0.26 -0.58

38 7 1.11 -0.83 -1.13 83 5 0.91 0.13 -1.25

39 10 0.85 -0.53 -0.45 84 9 0.76 0.71 -0.81

40 1 1.20 1.62 -0.62 85 2 1.08 1.94 -1.22

41 9 1.03 1.91 -0.91 86 3 1.09 1.61 -0.86

42 10 0.88 1.40 -1.31 87 4 1.22 1.33 -0.41

43 1 0.93 -1.85 -0.73 88 2 0.87 0.34 -0.84

44 2 0.97 -1.39 -1.30 89 7 1.08 0.66 -1.20

45 7 0.78 -1.31 -1.39 90 8 1.06 0.89 -0.47

15 30

13 28

14 29

19

5 20

Statement Parameters Statement Parameters

1 16

2 17

12 27

9 24

10 25

11 26

6 21

7 22

8 23

3 18

4
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Table B2 
Test Specification for the 10-Dimension Triplet Test with Low Alpha and High Delta SD Condition 

  

Item 

Block #
Statement Dimension Alpha Delta Tau

Item 

Block #
Statement Dimension Alpha Delta Tau

1 1 0.97 0.6 -1.37 46 4 0.76 0.35 -1.14

2 2 1.03 -1.89 -0.98 47 6 0.96 1.56 -0.56

3 3 0.88 -1.4 -0.55 48 10 1.16 -1.08 -0.69

4 1 0.95 -1.23 -0.55 49 5 0.82 1.35 -1.05

5 6 1.04 -0.26 -0.80 50 8 1.24 -0.29 -0.68

6 9 0.82 1.37 -1.28 51 10 0.78 -1.25 -1.12

7 4 0.85 -0.69 -1.22 52 3 1.22 -0.1 -0.97

8 5 0.90 0.74 -0.67 53 4 0.95 -1.91 -1.27

9 8 0.77 1.89 -0.54 54 5 0.75 0.63 -0.43

10 6 1.09 -0.6 -1.17 55 1 1.10 1.25 -0.73

11 7 1.00 1.36 -0.99 56 7 1.06 0.91 -1.21

12 8 1.16 1.87 -0.67 57 10 0.83 -1.18 -0.48

13 2 0.82 1.16 -0.99 58 1 1.07 -1.63 -0.80

14 6 0.97 1.96 -1.24 59 3 0.77 -0.68 -1.13

15 7 0.79 -0.59 -0.53 60 5 0.83 0.95 -0.41

16 8 0.77 -1.63 -1.04 61 5 0.94 -1.15 -0.84

17 9 1.12 0.99 -0.94 62 6 0.96 1.45 -0.57

18 10 0.80 -0.41 -0.79 63 7 0.77 0.26 -1.05

19 2 0.85 0.57 -1.29 64 3 1.15 1.91 -0.84

20 3 1.21 1.92 -0.94 65 4 0.98 1.23 -1.12

21 5 1.09 -0.7 -0.48 66 6 1.21 -0.61 -0.51

22 1 0.80 1.08 -0.69 67 7 1.06 -1.47 -0.95

23 4 1.02 -1.37 -1.31 68 8 1.12 -1.72 -1.33

24 9 0.77 -1.25 -0.72 69 9 1.04 0.65 -0.80

25 1 1.04 -0.97 -1.31 70 3 0.78 -1.87 -0.85

26 2 0.82 0.69 -0.86 71 8 0.96 0.18 -0.66

27 10 0.75 1.6 -0.51 72 10 1.09 0.54 -1.20

28 3 0.80 -1.09 -0.54 73 2 1.08 -1.73 -0.59

29 6 1.14 -1.54 -1.12 74 3 0.78 0.85 -0.76

30 8 1.13 0.98 -0.65 75 9 1.05 -0.69 -1.24

31 4 1.19 1.45 -0.46 76 1 0.79 0.04 -1.22

32 8 1.01 0.11 -1.20 77 5 1.09 -0.97 -1.00

33 9 1.07 -1.16 -0.91 78 10 0.77 1.71 -0.46

34 6 0.91 -0.49 -0.95 79 4 0.92 1.18 -0.48

35 7 1.18 1.89 -0.90 80 5 1.15 -1.33 -1.27

36 9 0.98 1.62 -1.13 81 6 0.78 -0.64 -0.87

37 2 1.18 -1 -0.56 82 4 1.03 0.37 -0.58

38 7 1.11 -1.67 -1.13 83 5 0.91 0.97 -1.25

39 10 0.85 0.85 -0.45 84 9 0.76 -1.55 -0.81

40 1 1.20 1.91 -0.62 85 2 1.08 1.94 -1.22

41 9 1.03 0.81 -0.91 86 3 1.09 0.82 -0.86

42 10 0.88 -0.68 -1.31 87 4 1.22 -0.68 -0.41

43 1 0.93 -1.85 -0.73 88 2 0.87 0.48 -0.84

44 2 0.97 0.47 -1.30 89 7 1.08 -1.71 -1.20

45 7 0.78 0.34 -1.39 90 8 1.06 -1.86 -0.47

13 28

14 29

15 30

11 26

12 27

7 22

8 23

9 24

4 19

5 20

6 21

Statement Parameters

10 25

Statement Parameters

1 16

2 17

3 18
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Table B3 
Test Specification for the 10-Dimension Triplet Test with High Alpha and Low Delta SD Condition 

 

Item 

Block 

#

StatementDimension Alpha Delta Tau
Item 

Block #
StatementDimension Alpha Delta Tau

1 1 1.81 1.10 -1.37 46 4 1.95 -1.18 -1.14

2 2 1.85 0.56 -0.98 47 6 1.83 -1.63 -0.56

3 3 2.00 0.79 -0.55 48 10 2.17 -1.73 -0.69

4 1 1.83 -1.23 -0.55 49 5 2.05 1.40 -1.05

5 6 2.12 -1.56 -0.80 50 8 1.92 1.91 -0.68

6 9 2.11 -1.87 -1.28 51 10 1.98 1.87 -1.12

7 4 2.19 -1.91 -1.22 52 3 2.06 -1.89 -0.97

8 5 2.22 -1.61 -0.67 53 4 1.92 -1.45 -1.27

9 8 1.84 -1.31 -0.54 54 5 1.82 -1.97 -0.43

10 6 1.94 0.59 -1.17 55 1 2.00 1.25 -0.73

11 7 1.77 0.11 -0.99 56 7 2.19 0.91 -1.21

12 8 1.88 0.64 -0.67 57 10 1.89 1.50 -0.48

13 2 1.84 0.88 -0.99 58 1 2.01 -1.04 -0.80

14 6 2.20 1.01 -1.24 59 3 2.13 -1.25 -1.13

15 7 2.12 1.36 -0.53 60 5 2.15 -1.63 -0.41

16 8 2.09 -0.75 -1.04 61 5 1.96 0.82 -0.84

17 9 1.82 -0.25 -0.94 62 6 1.97 1.40 -0.57

18 10 1.94 -0.95 -0.79 63 7 1.81 1.11 -1.05

19 2 1.93 1.30 -1.29 64 3 1.85 1.54 -0.84

20 3 1.76 1.56 -0.94 65 4 1.88 1.91 -1.12

21 5 1.86 1.92 -0.48 66 6 2.08 1.35 -0.51

22 1 2.23 1.05 -0.69 67 7 1.76 -1.80 -0.95

23 4 1.83 0.72 -1.31 68 8 1.92 -1.50 -1.33

24 9 1.82 1.34 -0.72 69 9 1.92 -1.10 -0.80

25 1 1.93 -0.76 -1.31 70 3 1.76 0.18 -0.85

26 2 1.94 -0.41 -0.86 71 8 1.75 0.77 -0.66

27 10 2.23 -0.97 -0.51 72 10 2.00 0.47 -1.20

28 3 1.91 -1.22 -0.54 73 2 1.96 -1.38 -0.59

29 6 1.93 -0.90 -1.12 74 3 1.98 -1.09 -0.76

30 8 2.15 -0.69 -0.65 75 9 1.88 -0.81 -1.24

31 4 2.11 -0.77 -0.46 76 1 2.15 0.04 -1.22

32 8 2.20 -0.35 -1.20 77 5 2.05 0.39 -1.00

33 9 1.78 -0.18 -0.91 78 10 2.17 -0.28 -0.46

34 6 2.24 -1.16 -0.95 79 4 1.93 1.81 -0.48

35 7 2.05 -0.78 -0.90 80 5 2.16 1.22 -1.27

36 9 1.94 -0.60 -1.13 81 6 2.13 1.45 -0.87

37 2 2.13 -1.10 -0.56 82 4 1.85 0.26 -0.58

38 7 1.99 -0.83 -1.13 83 5 1.83 0.13 -1.25

39 10 2.11 -0.53 -0.45 84 9 1.84 0.71 -0.81

40 1 2.09 1.62 -0.62 85 2 2.04 1.94 -1.22

41 9 2.13 1.91 -0.91 86 3 2.09 1.61 -0.86

42 10 1.80 1.40 -1.31 87 4 2.16 1.33 -0.41

43 1 1.90 -1.85 -0.73 88 2 2.00 0.34 -0.84

44 2 2.18 -1.39 -1.30 89 7 1.88 0.66 -1.20

45 7 2.17 -1.31 -1.39 90 8 2.03 0.89 -0.47

15 30

13 28

14 29

4 19

5 20

12 27

9 24

10 25

11 26

6 21

7 22

8 23

3 18

Statement Parameters Statement Parameters

1 16

2 17
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Table B4 
Test Specification for the 10-Dimension Triplet Test with High Alpha and High Delta SD Condition 

 
  

Item 

Block #
Statement Dimension Alpha Delta Tau

Item 

Block #
Statement Dimension Alpha Delta Tau

1 1 1.81 0.60 -1.37 46 4 1.95 0.35 -1.14

2 2 1.85 -1.89 -0.98 47 6 1.83 1.56 -0.56

3 3 2.00 -1.40 -0.55 48 10 2.17 -1.08 -0.69

4 1 1.83 -1.23 -0.55 49 5 2.05 1.35 -1.05

5 6 2.12 -0.26 -0.80 50 8 1.92 -0.29 -0.68

6 9 2.11 1.37 -1.28 51 10 1.98 -1.25 -1.12

7 4 2.19 -0.69 -1.22 52 3 2.06 -0.10 -0.97

8 5 2.22 0.74 -0.67 53 4 1.92 -1.91 -1.27

9 8 1.84 1.89 -0.54 54 5 1.82 0.63 -0.43

10 6 1.94 -0.60 -1.17 55 1 2.00 1.25 -0.73

11 7 1.77 1.36 -0.99 56 7 2.19 0.91 -1.21

12 8 1.88 1.87 -0.67 57 10 1.89 -1.18 -0.48

13 2 1.84 1.16 -0.99 58 1 2.01 -1.63 -0.80

14 6 2.20 1.96 -1.24 59 3 2.13 -0.68 -1.13

15 7 2.12 -0.59 -0.53 60 5 2.15 0.95 -0.41

16 8 2.09 -1.63 -1.04 61 5 1.96 -1.15 -0.84

17 9 1.82 0.99 -0.94 62 6 1.97 1.45 -0.57

18 10 1.94 -0.41 -0.79 63 7 1.81 0.26 -1.05

19 2 1.93 0.57 -1.29 64 3 1.85 1.91 -0.84

20 3 1.76 1.92 -0.94 65 4 1.88 1.23 -1.12

21 5 1.86 -0.70 -0.48 66 6 2.08 -0.61 -0.51

22 1 2.23 1.08 -0.69 67 7 1.76 -1.47 -0.95

23 4 1.83 -1.37 -1.31 68 8 1.92 -1.72 -1.33

24 9 1.82 -1.25 -0.72 69 9 1.92 0.65 -0.80

25 1 1.93 -0.97 -1.31 70 3 1.76 -1.87 -0.85

26 2 1.94 0.69 -0.86 71 8 1.75 0.18 -0.66

27 10 2.23 1.60 -0.51 72 10 2.00 0.54 -1.20

28 3 1.91 -1.09 -0.54 73 2 1.96 -1.73 -0.59

29 6 1.93 -1.54 -1.12 74 3 1.98 0.85 -0.76

30 8 2.15 0.98 -0.65 75 9 1.88 -0.69 -1.24

31 4 2.11 1.45 -0.46 76 1 2.15 0.04 -1.22

32 8 2.20 0.11 -1.20 77 5 2.05 -0.97 -1.00

33 9 1.78 -1.16 -0.91 78 10 2.17 1.71 -0.46

34 6 2.24 -0.49 -0.95 79 4 1.93 1.18 -0.48

35 7 2.05 1.89 -0.90 80 5 2.16 -1.33 -1.27

36 9 1.94 1.62 -1.13 81 6 2.13 -0.64 -0.87

37 2 2.13 -1.00 -0.56 82 4 1.85 0.37 -0.58

38 7 1.99 -1.67 -1.13 83 5 1.83 0.97 -1.25

39 10 2.11 0.85 -0.45 84 9 1.84 -1.55 -0.81

40 1 2.09 1.91 -0.62 85 2 2.04 1.94 -1.22

41 9 2.13 0.81 -0.91 86 3 2.09 0.82 -0.86

42 10 1.80 -0.68 -1.31 87 4 2.16 -0.68 -0.41

43 1 1.90 -1.85 -0.73 88 2 2.00 0.48 -0.84

44 2 2.18 0.47 -1.30 89 7 1.88 -1.71 -1.20

45 7 2.17 0.34 -1.39 90 8 2.03 -1.86 -0.47

13 28

14 29

15 30

10 25

11 26

12 27

7 22

8 23

9

4 19

5 20

6 21

Statement Parameters

1 16

2 17

3 18

24

Statement Parameters
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Appendix C: Item Parameters for 10-D MFC Pair Tests in Study 2 

Table C1 

Test Specification for 30-Pairs Test with 10-Dimension  

  

Item 

Block #
StatementDimension Alpha Delta Tau

Item 

Block #
StatementDimension Alpha Delta Tau

1 1 1.81 0.6 -1.37 31 6 1.83 1.56 -0.56

2 2 1.85 -1.89 -0.98 32 10 2.17 -1.08 -0.69

3 1 1.83 -1.23 -0.55 33 8 1.92 -0.29 -0.68

4 9 2.11 1.37 -1.28 34 10 1.98 -1.25 -1.12

5 5 2.22 0.74 -0.67 35 3 2.06 -0.1 -0.97

6 8 1.84 1.89 -0.54 36 5 1.82 0.63 -0.43

7 6 1.94 -0.6 -1.17 37 1 2.00 1.25 -0.73

8 7 1.77 1.36 -0.99 38 7 2.19 0.91 -1.21

9 2 1.84 1.16 -0.99 39 1 2.01 -1.63 -0.80

10 7 2.12 -0.59 -0.53 40 3 2.13 -0.68 -1.13

11 8 2.09 -1.63 -1.04 41 5 1.96 -1.15 -0.84

12 9 1.82 0.99 -0.94 42 6 1.97 1.45 -0.57

13 3 1.76 1.92 -0.94 43 4 1.88 1.23 -1.12

14 5 1.86 -0.7 -0.48 44 6 2.08 -0.61 -0.51

15 1 2.23 1.08 -0.69 45 7 1.76 -1.47 -0.95

16 4 1.83 -1.37 -1.31 46 8 1.92 -1.72 -1.33

17 2 1.94 0.69 -0.86 47 3 1.76 -1.87 -0.85

18 10 2.23 1.6 -0.51 48 8 1.75 0.18 -0.66

19 6 1.93 -1.54 -1.12 49 3 1.98 0.85 -0.76

20 8 2.15 0.98 -0.65 50 9 1.88 -0.69 -1.24

21 4 2.11 1.45 -0.46 51 1 2.15 0.04 -1.22

22 9 1.78 -1.16 -0.91 52 10 2.17 1.71 -0.46

23 6 2.24 -0.49 -0.95 53 4 1.93 1.18 -0.48

24 9 1.94 1.62 -1.13 54 5 2.16 -1.33 -1.27

25 2 2.13 -1 -0.56 55 4 1.85 0.37 -0.58

26 10 2.11 0.85 -0.45 56 5 1.83 0.97 -1.25

27 9 2.13 0.81 -0.91 57 3 2.09 0.82 -0.86

28 10 1.80 -0.68 -1.31 58 4 2.16 -0.68 -0.41

29 2 2.18 0.47 -1.30 59 2 2.00 0.48 -0.84

30 7 2.17 0.34 -1.39 60 7 1.88 -1.71 -1.20

13 28

7 22

8 23

9 24

4 19

5 20

6 21

1 16

2

14 29

15 30

10 25

11 26

12 27

17

3 18

30-Pair 30-Pair
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Table C2 

Test Specification for 90-Pairs Test with 10-Dimension 

 

 

  

Item Block 

#
Statement Dimension Alpha Delta Tau

1 1 1.81 0.6 -1.37

2 2 1.85 -1.89 -0.98

3 1 1.81 0.6 -1.37

4 3 2.00 -1.4 -0.55

5 2 1.85 -1.89 -0.98

6 3 2.00 -1.4 -0.55

7 1 1.83 -1.23 -0.55

8 6 2.12 -0.26 -0.80

9 1 1.83 -1.23 -0.55

10 9 2.11 1.37 -1.28

11 6 2.12 -0.26 -0.80

12 9 2.11 1.37 -1.28

13 4 2.19 -0.69 -1.22

14 5 2.22 0.74 -0.67

15 4 2.19 -0.69 -1.22

16 8 1.84 1.89 -0.54

17 5 2.22 0.74 -0.67

18 8 1.84 1.89 -0.54

19 6 1.94 -0.6 -1.17

20 7 1.77 1.36 -0.99

21 6 1.94 -0.6 -1.17

22 8 1.88 1.87 -0.67

23 7 1.77 1.36 -0.99

24 8 1.88 1.87 -0.67

25 2 1.84 1.16 -0.99

26 6 2.20 1.96 -1.24

27 2 1.84 1.16 -0.99

28 7 2.12 -0.59 -0.53

29 6 2.20 1.96 -1.24

30 7 2.12 -0.59 -0.53
15

13

14

11

12

9

10

7

8

5

6

3

4

1

2

90-Pair
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Table C2 (Continued) 

 

  

Item Block 

#
Statement Dimension Alpha Delta Tau

31 8 2.09 -1.63 -1.04

32 9 1.82 0.99 -0.94

33 8 2.09 -1.63 -1.04

34 10 1.94 -0.41 -0.79

35 9 1.82 0.99 -0.94

36 10 1.94 -0.41 -0.79

37 2 1.93 0.57 -1.29

38 3 1.76 1.92 -0.94

39 2 1.93 0.57 -1.29

40 5 1.86 -0.7 -0.48

41 3 1.76 1.92 -0.94

42 5 1.86 -0.7 -0.48

43 1 2.23 1.08 -0.69

44 4 1.83 -1.37 -1.31

45 1 2.23 1.08 -0.69

46 9 1.82 -1.25 -0.72

47 4 1.83 -1.37 -1.31

48 9 1.82 -1.25 -0.72

49 1 1.93 -0.97 -1.31

50 2 1.94 0.69 -0.86

51 1 1.93 -0.97 -1.31

52 10 2.23 1.6 -0.51

53 2 1.94 0.69 -0.86

54 10 2.23 1.6 -0.51

55 3 1.91 -1.09 -0.54

56 6 1.93 -1.54 -1.12

57 3 1.91 -1.09 -0.54

58 8 2.15 0.98 -0.65

59 6 1.93 -1.54 -1.12

60 8 2.15 0.98 -0.65
30

28

29

26

27

24

25

22

23

20

21

18

19

16

17

90-Pair
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Table C2 (Continued) 

 

  

Item Block # Statement Dimension Alpha Delta Tau

61 4 2.11 1.45 -0.46

62 8 2.20 0.11 -1.20

63 4 2.11 1.45 -0.46

64 9 1.78 -1.16 -0.91

65 8 2.20 0.11 -1.20

66 9 1.78 -1.16 -0.91

67 6 2.24 -0.49 -0.95

68 7 2.05 1.89 -0.90

69 6 2.24 -0.49 -0.95

70 9 1.94 1.62 -1.13

71 7 2.05 1.89 -0.90

72 9 1.94 1.62 -1.13

73 2 2.13 -1 -0.56

74 7 1.99 -1.67 -1.13

75 2 2.13 -1 -0.56

76 10 2.11 0.85 -0.45

77 7 1.99 -1.67 -1.13

78 10 2.11 0.85 -0.45

79 1 2.09 1.91 -0.62

80 9 2.13 0.81 -0.91

81 1 2.09 1.91 -0.62

82 10 1.80 -0.68 -1.31

83 9 2.13 0.81 -0.91

84 10 1.80 -0.68 -1.31

85 1 1.90 -1.85 -0.73

86 2 2.18 0.47 -1.30

87 1 1.90 -1.85 -0.73

88 7 2.17 0.34 -1.39

89 2 2.18 0.47 -1.30

90 7 2.17 0.34 -1.39
45

43

44

41

42

39

40

37

38

35

36

33

34

31

32

90-Pair
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Table C2 (Continued) 

 
  

Item Block # Statement Dimension Alpha Delta Tau

91 4 1.95 0.35 -1.14

92 6 1.83 1.56 -0.56

93 4 1.95 0.35 -1.14

94 10 2.17 -1.08 -0.69

95 6 1.83 1.56 -0.56

96 10 2.17 -1.08 -0.69

97 5 2.05 1.35 -1.05

98 8 1.92 -0.29 -0.68

99 5 2.05 1.35 -1.05

100 10 1.98 -1.25 -1.12

101 8 1.92 -0.29 -0.68

102 10 1.98 -1.25 -1.12

103 3 2.06 -0.1 -0.97

104 4 1.92 -1.91 -1.27

105 3 2.06 -0.1 -0.97

106 5 1.82 0.63 -0.43

107 4 1.92 -1.91 -1.27

108 5 1.82 0.63 -0.43

109 1 2.00 1.25 -0.73

110 7 2.19 0.91 -1.21

111 1 2.00 1.25 -0.73

112 10 1.89 -1.18 -0.48

113 7 2.19 0.91 -1.21

114 10 1.89 -1.18 -0.48

115 1 2.01 -1.63 -0.80

116 3 2.13 -0.68 -1.13

117 1 2.01 -1.63 -0.80

118 5 2.15 0.95 -0.41

119 3 2.13 -0.68 -1.13

120 5 2.15 0.95 -0.41
60

58

59

56

57

54

55

52

53

50

51

48

49

46

47

90-Pair
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Table C2 (Continued) 

 
  

Item Block # Statement Dimension Alpha Delta Tau

121 5 1.96 -1.15 -0.84

122 6 1.97 1.45 -0.57

123 5 1.96 -1.15 -0.84

124 6 1.97 1.45 -0.57

125 6 1.97 1.45 -0.57

126 7 1.81 0.26 -1.05

127 3 1.85 1.91 -0.84

128 4 1.88 1.23 -1.12

129 3 1.85 1.91 -0.84

130 6 2.08 -0.61 -0.51

131 4 1.88 1.23 -1.12

132 6 2.08 -0.61 -0.51

133 7 1.76 -1.47 -0.95

134 8 1.92 -1.72 -1.33

135 7 1.76 -1.47 -0.95

136 9 1.92 0.65 -0.80

137 8 1.92 -1.72 -1.33

138 9 1.92 0.65 -0.80

139 3 1.76 -1.87 -0.85

140 8 1.75 0.18 -0.66

141 3 1.76 -1.87 -0.85

142 10 2.00 0.54 -1.20

143 8 1.75 0.18 -0.66

144 10 2.00 0.54 -1.20

145 2 1.96 -1.73 -0.59

146 3 1.98 0.85 -0.76

147 2 1.96 -1.73 -0.59

148 9 1.88 -0.69 -1.24

149 3 1.98 0.85 -0.76

150 9 1.88 -0.69 -1.24
75

73

74

71

72

69

70

67

68

65

66

63

64

90-Pair

61

62



 

 
 

 

111 

Table C2 (Continued) 

  

Item Block # Statement Dimension Alpha Delta Tau

151 1 2.15 0.04 -1.22

152 5 2.05 -0.97 -1.00

153 1 2.15 0.04 -1.22

154 10 2.17 1.71 -0.46

155 5 2.05 -0.97 -1.00

156 10 2.17 1.71 -0.46

157 4 1.93 1.18 -0.48

158 5 2.16 -1.33 -1.27

159 4 1.93 1.18 -0.48

160 6 2.13 -0.64 -0.87

161 5 2.16 -1.33 -1.27

162 6 2.13 -0.64 -0.87

163 4 1.85 0.37 -0.58

164 5 1.83 0.97 -1.25

165 4 1.85 0.37 -0.58

166 9 1.84 -1.55 -0.81

167 5 1.83 0.97 -1.25

168 9 1.84 -1.55 -0.81

169 2 2.04 1.94 -1.22

170 3 2.09 0.82 -0.86

171 2 2.04 1.94 -1.22

172 4 2.16 -0.68 -0.41

173 3 2.09 0.82 -0.86

174 4 2.16 -0.68 -0.41

175 2 2.00 0.48 -0.84

176 7 1.88 -1.71 -1.20

177 2 2.00 0.48 -0.84

178 8 2.03 -1.86 -0.47

179 7 1.88 -1.71 -1.20

180 8 2.03 -1.86 -0.47
90

88

89

86

87

84

85

82

83

80

81

78

79

90-Pair

76

77
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Appendix D1: Single-Statement Personality Items 

Below are sixty statements representing Big 5 personality constructs. Using a 1-5 scale (1 = 

strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree), indicate your level of 

agreement with each statement by placing the appropriate number on the line preceding that 

item. Please be open and honest in your responding. 

1. Have a good word for everyone. 

2. Believe that others have good intentions. 

3. Respect others. 

4. Accept people as they are. 

5. Am concerned about others. 

6. Trust what people say. 

7. Sympathize with others' feelings. 

8. Treat all people equally. 

9. Cut others to pieces. 

10. Get back at others. 

11. Contradict others. 

12. Am out for my own personal gain. 

13. Am always prepared. 

14. Get chores done right away.  

15. Carry out my plans. 

16. Complete tasks successfully. 

17. Do things according to a plan. 

18. Am exacting in my work.  

19. Finish what l start. 

20. Follow through with my plans. 

21. Waste my time. 

22. Find it difficult to get down to work. 

23. Don't put my mind on the task at hand. 

24. Need a push to get started. 

25. Feel comfortable around people. 

26. Make friends easily. 

27. Am the life of the party. 

28. Know how to captivate people. 

29. Start conversations. 

30. Warm up quickly to others. 

31. Talk to a lot of different people at parties. 

32. Cheer people up. 

33. Keep in the background. 

34. Would describe my experiences as somewhat dull. 

35. Don't like to draw attention to myself. 
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36. Find it difficult to approach others. 

37. Often feel blue. 

38. Dislike myself. 

39. Am often down in the dumps 

40. Have frequent mood swings. 

41. Feel threatened easily. 

42. Seldom feel blue. 

43. Feel comfortable with myself. 

44. Rarely get irritated. 

45. Am not easily bothered by things. 

46. Am very pleased with myself. 

47. Am relaxed most of the time. 

48. Am not easily frustrated. 

49. Believe in the importance of art. 

50. Have a vivid imagination. 

51. Carry the conversation to a higher level. 

52. Enjoy thinking about things. 

53. Enjoy wild flights of fantasy. 

54. Get excited by new ideas. 

55. Have a rich vocabulary. 

56. Am not interested in abstract ideas. 

57. Do not like art. 

58. Do not enjoy going to art museums. 

59. Rarely look for a deeper meaning in things. 

60. Am not interested in theoretical discussions.  
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Appendix D2: Triplet Multidimensional Forced Choice Personality Measure 

Below are 20 triplets measuring Big 5 personality constructs. Please rank the following 

statements on a scale of 1, 2, 3 from “most like me” to “least like me”. Please be open and honest 

in your responding. 

 

  MFC Items RANK 

1 

Respect others.   

Have a rich vocabulary.   

Follow through with my plans.   

2 

Get excited by new ideas.   

Warm up quickly to others.   

Do not put my mind on the task at hand.   

3 

Feel comfortable with myself.   

Do not enjoy going to art museums.   

Keep in the background.   

4 

Am always prepared.   

Accept people as they are.   

Seldom feel blue.   

5 

Am the life of the party.   

Am out for my own personal gain.   

Often feel blue.   

6 

Rarely look for a deeper meaning in things.   

Cheer people up.   

Carry out my plans.   

7 

Rarely get irritated.   

Am not interested in abstract ideas.   

Know how to captivate people.   

8 
Have a good word for everyone.   

Am exacting in my work.    
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Have a vivid imagination.   

9 

Do things according to a plan.   

Cut others to pieces.   

Feel comfortable around people.   

10 

Find it difficult to get down to work.   

Am relaxed most of the time.   

Enjoy thinking about things.   

11 

Treat all people equally.   

Would describe my experiences as somewhat dull.   

Am often down in the dumps   

12 

Waste my time.   

Find it difficult to approach others.   

Trust what people say.   

13 

Am concerned about others.   

Believe in the importance of art.   

Feel threatened easily.   

14 

Complete tasks successfully.   

Do not like to draw attention to myself.   

Have frequent mood swings.   

15 

Am not easily bothered by things.   

Contradict others.   

Carry the conversation to a higher level.   

16 

Am not interested in theoretical discussions.    

Talk to a lot of different people at parties.   

Dislike myself.   

17 

Finish what l start.   

Get back at others.   

Am not easily frustrated.   

18 

Enjoy wild flights of fantasy.   

Get chores done right away.    

Sympathize with others' feelings.   

19 Believe that others have good intentions.   
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Am very pleased with myself.   

Make friends easily.   

20 

Do not like art.   

Start conversations.   

Need a push to get started.   
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Appendix D3: O*NET Interest Profiler Short Form 

Rounds, J., Su, R., Lewis, P., & Rivkin, D. (2010). O*NET Interest Profiler Short Form 

Psychometric Characteristics: Summary, The National Center for O*NET Development. 

 

Below are sixty statements representing vocational interest constructs. Using a 1-5 scale below, 

indicate your level of agreement with each statement by placing the appropriate number on the 

line preceding that item. Please be open and honest in your responding. 

 

1 = Dislike, 2 = Slightly dislike, 3 = Neither like not dislike, 4 = Slightly enjoy, 5 = Enjoy 

 

1. Build kitchen cabinets 

2. Lay brick or tile 

3. Repair household appliances 

4. Raise fish in a fish hatchery 

5. Assemble electronic parts 

6. Drive a truck to deliver packages to offices and homes 

7. Test the quality of parts before shipment 

8. Repair and install locks 

9. Set up and operate machines to make products 

10. Put out forest fires 

11. Develop a new medicine 

12. Study ways to reduce water pollution 

13. Conduct chemical experiments 

14. Study the movement of planets 

15. Examine blood samples using a microscope 

16. Investigate the cause of a fire 

17. Develop a way to better predict the weather 

18. Work in a biology lab 

19. Invent a replacement for sugar 

20. Do laboratory tests to identify diseases 

21. Write books or plays 

22. Play a musical instrument 

23. Compose or arrange music 

24. Draw pictures 
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25. Create special effects for movies 

26. Paint sets for plays 

27. Write scripts for movies or television shows 

28. Perform jazz or tap dance 

29. Sing in a band 

30. Edit movies 

31. Teach an individual an exercise routine 

32. Help people with personal or emotional problems 

33. Give career guidance to people 

34. Perform rehabilitation therapy 

35. Do volunteer work at a non-profit organization 

36. Teach children how to play sports 

37. Teach sign language to people with hearing disabilities 

38. Help conduct a group therapy session 

39. Take care of children at a day-care center 

40. Teach a high-school class 

41. Buy and sell stocks and bonds 

42. Manage a retail store 

43. Operate a beauty salon or barber shop 

44. Manage a department within a large company 

45. Start your own business 

46. Negotiate business contracts 

47. Represent a client in a lawsuit 

48. Market a new line of clothing 

49. Sell merchandise at a department store 

50. Manage a clothing store 

51. Develop a spreadsheet using computer software 

52. Proofread records or forms 

53. Load computer software into a large computer network 

54. Operate a calculator 

55. Keep shipping and receiving records 

56. Calculate the wages of employees 

57. Inventory supplies using a hand-held computer 

58. Record rent payments 

59. Keep inventory records 

60. Stamp, sort, and distribute mail for an organization 
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Appendix D4: Satisfaction With Life Scale 

Diener, E. D., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The satisfaction with life 

scale. Journal of personality assessment, 49(1), 71-75. 

 

Below are five statements that you may agree or disagree with. Using the 1 - 7 scale below, 

indicate your agreement with each item by placing the appropriate number on the line preceding 

that item. Please be open and honest in your responding. 

 

1 = Strongly disagree,  2 = Disagree,  3 = Slightly disagree, 4 = Neither agree nor disagree, 

5 = Slightly agree, 6 = Agree,   7 = Strongly agree     

 

 
1. In most ways my life is close to my ideal.                  

2. The conditions of my life are excellent.                    

3. I am satisfied with my life.                              

4. So far I have gotten the important things I want in life.        

5. If I could live my life over, I would change almost nothing.    
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Appendix D5 : Buss-Perry Aggression Questionnaire 

Bryant, F. B., & Smith, B. D. (2001). Refining the architecture of aggression: a measurement 

model for the Buss-Perry Aggression Questionnaire. Journal of Research in Personality, 35, 138–

167. 

 

Below are twelve statements that you may agree or disagree with. Using the 1 - 7 scale below, 

indicate your agreement with each item by placing the appropriate number on the line preceding 

that item. Please be open and honest in your responding. 

 

1 = Strongly disagree, 2 = Disagree, 3 = Slightly disagree, 4 = Neither agree nor disagree,  

5 = Slightly agree 

 

1. Given enough provocation, I may hit another person. 

2. There are people who pushed me so far that we came to blows. 

3. I have threatened people I know. 

4. I often find myself disagreeing with people. 

5. I can’t help getting into arguments when people disagree with me. 

6. My friends say that I’m somewhat argumentative. 

7. I flare up quickly but get over it quickly. 

8. Sometimes I fly off the handle for no good reason. 

9. I have trouble controlling my temper. 

10. At times I feel I have gotten a raw deal out of life. 

11. Other people always seem to get the breaks. 

12. I wonder why sometimes I feel so bitter about things. 
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Appendix D6: SPANE Questionnaire 

Diener, E., Wirtz, D., Tov, W., Kim-Prieto, C., Choi, D. W., Oishi, S., & Biswas-Diener, R. 

(2010). New well-being measures: Short scales to assess flourishing and positive and negative 

feelings. Social Indicators Research, 97(2), 143-156. 

 

Please think about what you have been doing and experiencing during the past 4 weeks. Then 

report how much you experienced each of the following feelings, using the scale below. For each 

item, select a number from 1 to 5, and indicate that number on your response sheet. 

 

1 = Very rarely or never,    2 = Rarely,    3 = Sometimes,  

4 = Often,    5 = Very often or always    

 

1. Joyful 

2. Happy 

3. Comfortable 

4. Contented 

5. Pleasant 

6. Positive 

7. Good 

8. Negative 

9. Irritated 

10. Helpless 

11. Sad 

12. Unpleasant 

13. Unpleasant 

14. Bad 

15. Afraid 

16. Angry 
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