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Abstract 

 Cyber-security is an ever-increasing problem in the 21st century. Though the majority of 

cyber-security breaches are a direct result of human error (Hu, Dinev, Hart, & Cooke, 2012), 

there is a dearth of research in psychology on the application of human decision-making for 

cyber-security compliance. Through an online inbox simulation, the present research examined 

the utility of a robust psychological model for decision-making, signal detection theory (SDT) 

for modeling decision-making in the context of receiving and responding to phishing and spear-

phishing email scams. The influence of individual differences, specifically conscientiousness, on 

phishing email detection was also examined. The results indicate that SDT is useful for modeling 

and measuring cyber-compliance behavior in terms of responding to phishing emails. This 

finding supports the feasibility of using SDT to monitor training effectiveness for individuals’ 

resistance to social engineering in phishing email detection. There were no significant 

relationships between participants’ scores on conscientiousness and their phishing and spear-

phishing email detection ability. Future research should explore predictors of cyber-compliance 

with regards to individuals’ phishing and spear-phishing susceptibility. 
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Chapter One 

Introduction 

 

As Dalal et al. (2010) pointed out, research on the decision-making process is imperative 

for those in the field of Industrial-Organizational (I-O) Psychology. Decisions drive human 

behavior in the workplace and are therefore centric to many of the areas of study for I-O 

researchers. Some decision-making approaches borrow from behavioral economics and examine 

the influence of human perceptions of risks and rewards associated with certain decision 

outcomes. Research ranges from modeling the processes through which individuals choose 

decision-making strategies (Beach & Mitchell, 1978) to evaluating the underpinnings of 

cognitive shortcuts, or heuristics, used in decision-making (Kahneman, 2011).  

One persistent finding in the decision-making literature is that humans do not always act 

in their best interests (Tversky & Kahneman, 1974). Sometimes their perceptions are skewed (or 

biased) about what the consequences of a decision might be; in other instances, they might fail to 

recognize the problems all together. Human performance resulting from these decisions is the 

subject of many different streams of research across various applications. A recent application of 

the errors in human decision-making exists in study of cyber-security behaviors (Guo, 2013). 

That is, human errors in recognizing the cost of certain consequences of their actions related to 

cyber-security issues (falling prey to social engineering, failing to create strong passwords, etc.) 

are pervasive. This misjudgment frequently exposes vulnerabilities in organizations’ cyber-

security, which leaves organizations susceptible to cyber-attacks. These errors are critical as 
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recent research suggests that over half of successful cyber-attacks are due to human error, not the 

result of inadequate technology (Hu et al., 2012). 

However, the current literature falls short in incorporating human factors (e.g. decision-

making) in examining common cyber-attacks, such as phishing (El-Din, Cairns, & Clark, 2015). 

Specifically, there is a lack of empirical and experimental research in this area. We know that 

employees represent serious threats to cyber-security, but just how susceptible are employees to 

cyber-threats? Are certain threats easier for employees to detect? Are there individual differences 

that cause some employees to be more susceptible than others? The present research will address 

the dearth of research on these human factors relevant to cyber-security vulnerabilities and, 

additionally, contribute to the overarching research in I-O psychology on cyber-security.  

The present research uses a psychological framework to model human error in decision-

making in order to better understand cyber-security issues. First, a review of the organizational 

context of performance in I-O psychology is presented in order to provide a basis for the 

importance of the present work. Next, current cyber-security issues are discussed in order to 

build a foundation for the subsequent section on the application of cyber-security issues to 

decision-making within the I-O framework. Finally, components specific to the present research 

are detailed and the utilization of Signal Detection Theory (SDT) for modeling cyber-security 

decisions is presented. Through this lens, employers have the opportunity to take measures for 

the prevention of employee non-compliance behaviors. Moreover, there exists the potential to 

impact behavior and increase employee compliance with cyber-security behaviors (Wiederhold, 

2014). As such, the application of cyber-security issues to the intersection of decision-making 

and I-O psychology has direct implications for national security, organizations of all types, and 

the individuals they employ.  
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Organizational Context 

 In I-O psychology, much research is devoted to figuring out how to predict and improve 

job performance through identifying individual differences that are associated with a difference 

in job performance (e.g. Dalal, 2005; Schmidt & Hunter, 1998). Though some researchers think 

of job performance as a unitary concept that broadly encompasses employee behaviors that are 

relevant to the goals of the organization, research, however, suggests that there are multiple 

components to job performance and that performance should be considered from a 

multidimensional perspective. Campbell, Gasser, and Oswald (1996) suggested job performance 

is a multidimensional construct and split the criterion into declarative knowledge, procedural 

knowledge, and motivation. Then, Viswesvaran and Ones (2000) found that job performance 

could be conceptualized as a hierarchy with a general factor at the primary level followed by 

various dimensions underneath. Currently, researchers conceptualize job performance as having 

three main components: task performance, counterproductive work behavior, and organizational 

citizenship behavior. Job performance is separated into these categories on the basis that the 

behaviors associated with each category either contribute to, or detract from, organizational goals 

for different reasons (Motowildo, Borman, & Schmit, 1997). 

Task performance is composed of what has been traditionally considered job 

performance. Specifically, task performance consists of the core job behaviors, those that 

directly contribute to the “technical core” of organizational goals. Often, behaviors associated 

with task performance are outlined in the occupation’s job description. The individual 

differences that best predict task performance are differences in cognitive ability. Higher scores 

on tests that measure cognitive ability (e.g. SAT, GRE, etc.) are associated with better task 

performance (Schmidt & Hunter, 1998). Borman and Motowidlo (1993) introduced 
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organizational citizenship behavior (OCB), or contextual performance, as another type of 

performance that is separate from task performance because the associated behaviors do not 

contribute directly to the technical core of the organization, but rather, they are prosocial 

behaviors that contribute to the organizational environment. OCBs are also more discretionary 

than task performance behaviors. Being positive and cooperating with coworkers are rarely 

behaviors that are considered a job requirement. Still, such prosocial behaviors are associated 

with general job performance. Individual differences in personality best predict contextual 

performance or OCBs.  

Since for the majority of employees (with the exception of those involved in computer 

security), cyber-security compliance (i.e., inappropriate response to phishing emails) is not a 

requirement of their job, it therefore aligns with the OCB dimension of job performance. It 

would follow that personality differences should predict this contextual performance. Still, there 

are mixed results from studies looking at the relationship between personality traits and phishing 

susceptibility (Parrish Jr, Bailey, & Courtney, 2009). The subsequent section will explore the 

importance of cyber-security compliance within the organizational context.  

Current Issues in Cyber-Security 

Cyber-security is receiving increased attention from the public. Between the widely 

publicized cyber-attacks at Sony, JP Morgan, Target, and more recently, the US Government’s 

Office of Personnel Management, it is difficult for the average US citizen to ignore news of 

current threats to information security. The cost of simply cleaning up and remediating the 

company’s affected servers is astronomical. For instance, a cyber-attack recently cost Sony $171 

million and this figure is excluding costs associated with lawsuits, loss of customers, etc. 

(Rosenbush, 2014). Moreover, it is not only large organizations that are affected by cyber-
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attacks. Ransomware is currently a popular cyber-attack that plagues small businesses. A 

ransomware attack involves hackers denying an organization access to information, files, or even 

smart appliances (e.g. refrigerators) until a sum of money is paid. Across both large corporations 

and small organizations, the average cost of a cyber-security breach is $412,000 per incident 

(Major, 2014). Given these increasingly widespread attacks, the federal government is investing 

billions of dollars in boosting cyber-security defenses (Shalal & Selyukh, 2015).  

In addition to the financial concerns, a breach represents a grave crisis for the 

organization’s public relations. CyberAlert (www.cyberalert.com) highlighted that organizations 

struggle to recuperate from the unfavorable company image resulting from breaches due to the 

tendency for reporters to mark trends in cyber-security breaches. That is, when news of another 

breach occurs, reporters echo previously reported breaches as well. Though the public tends to 

view these instances as a result of inadequate technologies, organizations’ vulnerabilities lie not 

only in their hardware and software defenses, but also in the individual vulnerabilities of the 

organizations’ employees. The typical employee will engage in many behaviors, often 

unknowingly, that pose cyber-security risks for themselves and their employing organizations. 

For instance, it is common for employees to engage in behaviors, such as creating simple, easy-

to-remember passwords like sequential numbers (e.g. “1234”) or, oftentimes “password.” Thus, 

cyber-security negligence poses insider threats that can result in the loss of revenue, reputation, 

and intellectual property.  

There are several advantages to investigating the human side of cyber-security along with 

the technical aspects. First, as aforementioned, the reality is that the majority of information 

security breaches result from employee behaviors (Hu et al., 2012). Second, as a consequence of 

the exponential growth of technology, the information about technical defenses that students 
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learn will likely be obsolete by the time they graduate and enter the workforce. Echoing this 

sentiment, Gelernter (2015) stated “University computer science departments are in miserable 

shape: 10 years behind in a field that changes every 10 minutes.” On the other hand, human 

behavior is much more constant. Thus, the argument can be made that, contrary to technical 

defenses, defenses construed by an understanding of employee behavior in the context of cyber-

security compliance will hold through evolutions of cyber-attacks. Finally, as the subsequent 

section highlights, it is evident that criminals have not only already recognized the role of human 

behavior in creating vulnerabilities in an organization’s system, but also created attacks centered 

on exploiting these human vulnerabilities.  

 The method through which criminals target known characteristics of human behavior and 

traits in order to gain access to sensitive information is called social engineering (Winkler & 

Dealy, 1995). Specifically, hackers take advantage of human trust to reveal sensitive information 

from the users by pretending to be legitimate members of the company, and thus, targeting the 

trust employees have in their coworkers, bosses, etc. For instance, one social engineering 

technique, called baiting, involves the infecting of USBs with computer viruses and scattering 

them across a parking lot. The social engineers preyed on the curiosity of employees in this 

example, knowing that some of them would insert the devices into their work computers, at 

which point, the login credentials of such employees would be recorded by a keylogger on the 

USB. Employees at Secure Network Technologies, Inc. found that when 20 USBs were 

dispersed in a clients’ company parking lot, within just three days, employees had collected and 

used fifteen of these USBs (Stasiukonis, 2006). 

Characteristics of social engineering that work to the hackers advantage include: the lack 

of use of high-end technologies, methods that are very easy for someone with low information 
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technology (IT) expertise to implement, and the vulnerability of end-users to these tactics. For 

instance, in the aforementioned baiting example, Stasiukonis (2006) emphasized the 

“convenience” of the tactic, stating that the technicians “never broke a sweat.” Effortlessness 

paired with a seventy-five percent success rate must make an attractive method for criminals!  

The widespread success and use of social engineering accentuates the fact that the 

firewalls and security measures companies invest in are worthless if employees leave the door 

wide open for hackers and social engineers to enter. The reason all end-users are vulnerable to 

social engineering is due to the fact that the tactics utilize known characteristics (e.g., biases) of 

human nature to ensure success. Thus, if criminals use the psychological manipulation of end-

users to gain sensitive information, it follows that tenants of psychology would also be useful in 

the detection and prevention of insider threat.  

Phishing 

Phishing email attacks are a common form of social engineering designed to influence 

recipients to open file attachments or click on embedded links that create vulnerabilities for 

hackers to exploit in order to gain access to sensitive information (Jagatic, Johnson, Jakobsson, 

& Menczer, 2007). Like baiting tactics, phishing provides social engineers with a low risk and 

low effort method that can yield great financial gains (Chandrasekaran, Narayanan, & 

Upadhyaya, 2006).  

 Social engineers typically conduct phishing attacks using a three-step process 

(Chandrasekaran et al., 2006). First, they decide on a business to target and collect the email 

addresses of potential customers or employees for that business, often using the same techniques 

that spammers use to collect victims’ email addresses. Second, the cyber criminals design and 

send out the emails scams (considered the “hook” of phishing attacks) in mass quantities to the 
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collected addresses. These emails either have links embedded in them that will direct the victims 

to an illegitimate website or they have an attachment that when downloaded will infect the 

victims’ devices. In the final step of the process, the social engineers collect credentials from 

victims (the “catch” from the phishing attack). When victims click on the embedded links and 

enter their information on the illegitimate websites, their information is stored for the social 

engineers’ use. Alternatively, the criminals gain access to the victims’ devices through a virus 

transmitted to the end-user’s computer through executable email attachments, at which point, 

criminals can access financial or otherwise sensitive information of the victims that can result in 

various personal or organizational costs.  

A typical phishing method is creating emails that mimic banks, credit card companies, or 

other business that involve monetary transfer (e.g., eBay). There are several different 

components (or “lures”) involved in phishing attacks that incentivize end-users to expose their 

sensitive information (see Appendix C for examples). The 2012 US-CERT Security Trends 

Report lists the most common lure themes as business logistical operations (i.e., packaging and 

shipping), financials (i.e., tax information), customer complaint claims, and travel (United States 

Computer Emergency Readiness Team, 2012).  

Spear-phishing 

Another cyber-security threat involves a tactic called spear-phishing, which is, as its 

name suggests, a more targeted form of phishing aimed at attacking specific individuals within 

an organization instead of the organization itself. Through this method, cyber criminals 

commonly impersonate trusted users and personalize messages for a more sophisticated and 

elaborate social engineering technique (see Appendix D for examples). Hong (2012) noted an 

example of spear-phishing in which a military official would be sent an invitation for a general’s 
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retirement party containing malicious links or attachments. In instances such as this, cyber 

criminals exploit specific information (often obtained through social networking sites) about the 

targeted end-users in order to gain access to their personal information. Understanding individual 

differences in employees’ decision-making processes regarding these risky behaviors will inform 

organizations of ways to maximize employee compliance with cyber-security policies and ward 

off such attacks. Before understanding the nature of the relationship between individual 

differences and cyber-security compliance, it is essential to define cyber-security compliance as 

a criterion.  

Measuring Cyber-Security Compliance 

 Though there exist numerous studies on phishing susceptibility, there is a lack of 

consistency in measurement techniques. Parrish et al. (2009) defined phishing susceptibility 

along two dimensions: 1) the likelihood that an individual will respond to a phishing email (offer 

his/her information) and 2) the time it takes for the individual to respond to the email. 

Susceptibility varies along the time continuum because the greater the amount of time after the 

phishing email is distributed, the smaller the probability that an individual will fall victim 

(Jagatic et al., 2007). Janet, Mitchell, Robert, and Bradley (2008) used 12 items detailing “risky 

behaviors” related to phishing emails to collect survey data on student phishing susceptibility. 

Vishwanath (2015) used a dichotomous measure of susceptibility, recording whether or not 

participants clicked a hyperlink in a phishing email that was sent to subjects. Sheng, Holbrook, 

Kumaraguru, Cranor, and Downs (2010) used a more conservative measure, only recording the 

number of participants that gave their information in response to a phishing email. 

One issue with the measures of susceptibility reviewed above is that none of them take 

into account expectancy factors. That is, researchers were unable to parse out whether the 
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susceptibility was due to misestimating the risk associated with falling for phishing scams or 

simply an individual’s ability to detect phishing scams. In the present experiment, signal 

detection theory (SDT) will be utilized to measure performance in detecting cyber-threats in 

emails. Signal detection theory includes biases such as expectations of risk in the mathematical 

model of the response process (Anderson, 2001). Lord (1985) made an argument for the 

improvement of behavioral measurement in applied psychology through the utilization of SDT, 

noting the superior operationalization for experimental studies and the availability of 

improvements for accuracy as the primary benefits. As both a model of decision-making and an 

analytical tool, the theory represents a strong measure for threat detection performance within the 

context of this experiment. The subsequent section provides an overview of the SDT model and 

framework.   

Signal Detection Theory 

SDT is a commonly employed model for describing decision-making cognition. 

Particularly, SDT is useful for mapping decision-making in conditions of uncertainty. At its 

simplest form, SDT measures a decision-maker’s ability to discriminate between two stimuli, 

that is to detect when a signal is present versus when there is no signal present—such as 

distinguishing between a tone versus background noise (Macmillan & Creelman, 2004). A 

knowledge of the underpinnings of the model allows researchers to quantify the decision-making 

process and, moreover, to influence the decision-maker in order to optimize performance. This 

section provides a brief historical background of SDT, an overview of the current model, and a 

discussion of current and potential applications of SDT. 
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Background 

SDT has a long, rich history and is sometimes considered one of the sources of cognitive 

psychology (Macmillan & Creelman, 2004). Radar researchers first introduced the framework 

for the model in the 1950s within the context of air traffic control (Marcum, 1947; Peterson, 

Birdsall, & Fox, 1954). Air traffic controllers have to detect, based on radar images on their 

screen, aircrafts that need to be monitored. The difficulty lies in the copious amounts of “ground 

clutter” or unwanted echoes in that are returned from things such as animals and atmospheric 

turbulence that make it more difficult to distinguish echoes that represent the target (an aircraft) 

versus noise (clutter). Peterson et al. (1954) provided a method for quantifying the ability to 

distinguish between targets and noise. The researchers outlined four distinct outcomes to any 

given decision: correct detection, correct rejection, miss, and false alarm. In the case of the air 

traffic controllers, they could correctly recognize an incoming plane (correct detection), correctly 

recognize that a flock of birds is not a plane (correct rejection), incorrectly perceive a plane to be 

a flock of birds (miss), or incorrectly perceive a flock of birds to be a plane (false alarm). 

 After early radar researchers (Marcum, 1947; Peterson et al., 1954) provided the 

inception of the idea of quantifying the ability to discern between signal and noise, cognitive 

researchers (Green & Swets, 1966; Tanner Jr & Swets, 1954) swiftly adapted this framework to 

fit the context of human decision-making. Much of their research stemmed from threshold 

theory, which is a probabilistic model of decision-making proposed in the 1800s. Threshold 

theory proved insufficient for modeling signal detection because its probabilistic nature caused 

the computed statistics to be variant to changes other than sensitivity (Macmillan & Creelman, 

2004). Threshold measures varied within person from trial to trial, even if the same stimulus was 

used across observations. To address this limitation, Green and Swets (1966) developed the 
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framework for SDT. This framework is advantageous over threshold theory because the latter 

proved unsuccessful at separating the influence of the sensitivity and response bias, whereas 

SDT uses a flexible decision criterion that accommodates variation in components of the model 

other than sensitivity (described below; Green & Swets, 1966; Macmillan & Creelman, 2004). 

Signal Detection Theory Model 

Visual representation facilitates the explanation of signal detection theory. As such, this 

section uses Figure 1 to depict a model of signal detection theory. Two normal distributions 

represent the probabilities the occurrence of two different events (signal and noise, and noise 

alone). The criterion (labeled neutral criterion in Figure 1 and commonly denoted by β) 

represents the cutoff point for the decision. That is, on the right side of the criterion, the person 

would decide to respond as if the signal were present while on the left side of the criterion, the 

person would decide to respond as if there were no signal present. The area under the two curves 

represents the four different possible outcomes (outlined in Table 1) to responding to one of the 

two events. On the left side of the criterion, where the decision-maker responds as if there is no 

signal, the individual would either make a correct rejection or miss the signal that was present 

(miss). Likewise, on the right side of the criterion, where the decision-maker responds as if there 

is a signal, he or she would either correctly detect the signal (hit) or respond when there was no 

signal present (false alarm).  

 

Table 1. The four outcomes of a decision, according to signal detection theory. 

 Respond “Absent” Respond “Present” 

Signal Present Miss Hit 
Signal Absent Correct rejection False Alarm 
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Criterion. The decision-maker’s biases determine the placement of the criterion (the 

vertical line in Figure 1 labeled Neutral criterion). That is, the criterion might move away from 

neutral toward the left if the decision-maker believes there is a greater cost to missing a signal 

than to responding to a signal that is not present. For instance, radar detectors in a warzone 

would likely perceive there to be a greater cost to missing an enemy plane than to mistaking a 

flock of birds for a plane. The shift of the criterion to the left represents a liberal bias. 

Alternatively, the criterion might shift right of the neutral position (a conservative bias) when the 

decision-maker perceives a greater cost to responding to a signal that is not present.  

 

 

Figure 1. Model of signal detection theory.  

 

D-prime. D-prime (d′) is the most commonly used sensitivity index for SDT (Green & 

Swets, 1966; Macmillan & Creelman, 2004). d′	represents the sensitivity of the decision-maker 
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to detection of the signal, where high sensitivity indicates a good ability to distinguish between 

signal and noise and low sensitivity indicated a poor ability (Macmillan & Creelman, 2004). That 

is, a high d′	would indicate that a radar detector is more sensitive to detecting the difference 

between a plane and a flock of birds. Mathematically, d′ measures the distance between the z-

score of the hit rate and the z-score of the false alarm rate and, thus, is a measure of the 

standardized difference between the proportion of hits and the proportion of false alarms 

(Macmillan & Creelman, 2004). Moreover, d′	can be conceptualized as the differences between 

the noise and the signal and noise distributions (see Figure 1). This means that the smaller the d′, 

the more overlap there is between the two events and the more difficult they are to distinguish. 

Alternatively, with greater distance between the two means (larger d′), it becomes easier for the 

decision-maker to distinguish between the signal and noise. Consequently, the similarity of the 

two events affects the size of d′.  

ROC curve. Another component of SDT is the Receiver Operating Characteristic (ROC) 

curve (see Figure 2). ROC curves plot the hit rate that would be obtained for every value of false 

alarm rate, given a certain d′	value. When d′ is equal to zero, it indicated that performance is at 

chance level, or the decision-maker has no ability to distinguish between the two signals (this is 

depicted by the line labeled “d′ = 0” in Figure 2). As the ability for the decision-maker to 

distinguish between the two signals increases, the curves shift toward the upper left corner, 

where accuracy is maximized, or the hit rate is always greater than or equal to the false-alarm 

rate (labeled “d′ = 3” in Figure 2). ROC is typically calculated “by asking participants to supply 

confidence ratings for their recognition memory decisions” (Wixted, 2007, p. 153).    

Payoff and base rate. Two other important components of SDT are payoff and base rate. 

Payoff is the evaluation of the costs and benefits of each decision (see Table 1). Correct 
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detections and correct rejections result in benefits to the decision-maker, while false alarms and 

missed detections result in costs to the decision-maker (Lynn & Barrett, 2014). Base rate is the 

probability of encountering signals relative to noise (Lynn & Barrett, 2014). As such, payoff and 

base rate influence the participant’s criterion placement or bias. 

 

 

Figure 2. ROCs for SDT on linear coordinates.* 

*The closer the curve gets to the upper left corner, the higher the d′ value and the greater the 

accuracy. 
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Important developments in SDT involve studies that considered the manipulation of base 

rate and payoff. Understanding the manipulation of payoff and base rate is important because it 

could lead the decision-maker to set the criterion closer the optimal placement where accuracy 

would be maximized. Healy and Kubovy (1981) conducted an influential study that manipulated 

each base rate and payoff for participants who were asked to decide whether given values 

reflected the heights of men or women. The researchers found that base rates had a greater 

influence on the participants’ criterion placement than payoff (Healy & Kubovy, 1981). Another 

important contribution was the support for the independence of the influences of base rate and 

payoff information on criterion placement (Bohil & Maddox, 2001; Stevenson, Busemeyer, & 

Naylor, 1991).  

 It is worth mentioning that, while the normal-distribution model of SDT discussed thus 

far is the most commonly used; there are other ways to model SDT (Macmillan & Creelman, 

2004). Namely, two other ways are threshold theory, discussed in the background section, and 

one-interval experiments, which broadens the detection framework to include situations that 

involve more than two different stimuli or more than two different response types (Macmillan & 

Creelman, 2004). 

Applications of Signal Detection Theory 

Traditional applications of signal detection theory involve the radar operators’ application 

(Marcum, 1947), which sparked the development of the theory and cognitive psychology 

applications (see Green & Swets, 1966; Pazzaglia, Dube, & Rotello, 2013). Currently, SDT is 

used widely across many fields. For instance, the medical field utilizes SDT to model diagnostics 

(Lusted, 1971) and alarm fatigue for nurses (Despins, Scott‐Cawiezell, & Rouder, 2010). 

Another application of SDT is found in detecting management fraud in the field of auditing 
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(Karim & Siegel, 1998). In the I-O psychology field, Baker and Schuck (1975) used signal 

detection theory to model rater accuracy in performance assessment for a simulated sales task. 

Moreover, the researchers found that, through the model, they were able to manipulate rater 

accuracy in a predictable way by varying base rate and payoff. Similarly, Lievens and Sanchez 

(2007) used d′ from SDT as a measure of rater accuracy for competency inferences in order to 

examine then influence of rater training.  

Signal Detection Theory and Cyber-Security 

Lynn and Barrett’s (2014) recent paper advocates for the application of signal detection 

theory (SDT) through a utility approach that incorporates behavioral economics principles 

instead of the traditional analytic method. In this way, SDT can be used to predict or explain 

behavior in decision-making. Lynn and Barrett (2014) mention the applicability of SDT to 

eyewitnesses’ identification of suspects, decisions to place children in foster homes, and cancer 

detection. In their paper, the authors specifically apply SDT to social-threat detection in 

evaluating whether a person is angry or not, based on the extent to which their face appears to be 

scowling. Thus, Lynn and Barrett (2014) advocate for the broadening of application of signal 

detection theory to wider range of disciplines through a utility approach. 

I argue principles from signal detection theory (SDT; Green & Swets, 1966) can measure 

how susceptible employees are to cyber-threats by disentangling employee decision-making. 

Thus, I explored potential applications of the SDT framework for measuring and modeling 

employee cyber-security compliance. SDT is particularly useful for studying decision-making in 

environments with perceptual uncertainty and risk. Uncertainty occurs when signals are difficult 

to discriminate from noise. For example, suppose an employee receives an email from the human 

resources department asking for his or her login information, and the employee is unsure whether 
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the email is legitimate or if it is a spear-phishing email. Risk is present when incorrectly 

classifying a signal as noise, and likewise classifying noise as a signal carries some cost. In this 

case, if the employee decides that it is a legitimate email and responds to the email with 

information, yet it actually is a phishing email, then the employee has likely cost the company 

important information and/or monetary resources by granting a hacker access to the 

organization’s database and servers.  

In psychophysics, classical (equal-variance) SDT uses two indexes to model decision-

making: sensitivity (d′) and response criterion (β; Green & Swets, 1966). Sensitivity (d′) reflects 

a person’s ability to detect signals relative to noise. In the context of cyber-security, sensitivity is 

an employee’s ability to discriminate between threats and non-threats. The response criterion 

reflects biases that influence a person’s tendency to respond to a signal. The placement of the 

criterion (β) is typically described as liberal, neutral, or conservative. A liberal criterion indicates 

that a person would be more likely to perceive a threat in an instance where an individual with a 

conservative criterion placement would perceive noise. That is, if an employee with a liberal 

criterion receives a borderline suspicious email, he or she would more likely perceive the email 

as a scam (or believe there is a cyber threat) than perceive the email as safe. This leads to the 

first research question: 

Research Question 1: Do individuals exhibit different sensitivity in detecting spear-

phishing and phishing emails?  

Though social engineers developed spear-phishing in the hopes of increasing their cyber-

attack success rates, there is little empirical research comparing the difference in success rates 

for spear-phishing versus phishing emails. (Hong, 2012) suggests that end-users are 4.5 times 

more likely to fall prey to spear-phishing attacks than to phishing attacks. It would make sense 
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that the use of social networking data to personalize the email and use existing contact 

information would effectively exploit end-users’ trust and cause them to fall prey to the spear-

phishing attack.  

On the other hand, one could make the argument that the use of private, personal 

information will create a sort of cocktail party effect (Cherry, 1953), where end-users’ will attend 

to the information in spear-phishing emails more carefully, as the email contains their personal 

information. In this way, they will be more careful in assessing whether or not the email reflects 

a threat. Thus, two competing models were proposed: 

Hypothesis 1a: Individuals have a lower sensitivity to detecting a threat in a spear-

phishing email than a phishing email. 

Hypothesis 1b: Individuals have a higher sensitivity to detecting a threat in a spear-

phishing email than a phishing email. 

Individual Differences in Conscientiousness  

I expected conscientiousness to predict phishing email sensitivity and spear-phishing 

email sensitivity as it is a strong predictor of organizational citizenship behaviors or extra-task 

performance that goes beyond core job performance (such as cyber-security compliance; 

(Chiaburu, Oh, Berry, Li, & Gardner, 2011). 

Hypothesis 2. Personality characteristics (specifically the trait of conscientiousness) 

predict individual’s sensitivity to detect phishing and spear-phishing emails, such that those 

higher on the conscientiousness trait will have a higher sensitivity to detect phishing and spear-

phishing emails.  

 Accompanying an understanding of human decision-making and organizational 

processes, the field of I-O psychology is in a unique position to address cyber-security issues that 
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result from social engineering methods. Furthermore, the nature of I-O psychologists’ work in 

handling sensitive employee data presents a need for increased cyber-security knowledge of best 

practices. The need for research at the intersection of psychology and cyber-security led to recent 

advances in the literature on the subject (see Chen et al., 2014; Crossler et al., 2013; Steinke et 

al., 2015; Willison, 2006). The present research extends the growing body of research on cyber-

security by addressing some of the critical junctures between these avenues of research through 

the use of the strong psychological paradigm, SDT. 
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Chapter Two 

Method 

 

Participants and Procedure 

The sample consisted of 344 individuals recruited though Amazon’s Mechanical Turk 

(MTurk) system. Although the use of MTurk for organizational research is fairly recent, there is 

initial support for its use (Landers & Behrend, 2015). Out of the 344 people sampled, 282 cases 

were included in the analyses because the cases had to meet several criteria for inclusion. First, 

participants that failed the attention check question (10.5%) were removed. Second, participants 

that spent less than 10 minutes on the survey (3.5%) were removed. Third, participants with 

more than 20% of their responses missing for the email task (4.7%) were removed.  

Of those participants included in the analyses, 50.2% were female and an average of 

35.27 years of age (SD = 9.75). Participants worked an average of 38.7 hours per week (SD = 

9.01). Almost half (43.0%) of participants had their bachelor’s degree as their highest form of 

education, 33.0% had some college, 10.8% had a high school education, 7.5% had vocational 

school education, 3.9% had a master’s degree, 1.1% had a professional or doctoral degree, and 

0.7% had less than a high school education. Moreover, 8.5% of participants either did hold or 

had held a computer security-related job.  

First, participants chose the HIT (human intelligence task) from a list on the MTurk 

website. They then received an anonymous link to the Qualtrics survey. They were prompted to 

give consent to participate in the study by reading and acknowledging the online consent form. 

The consent form also informed the participants that their compensation is contingent upon 
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correctly answering questions an attention check to see if they carefully read and understood 

instructions. Participants then proceeded to complete the survey, which consisted of an inbox 

task, conscientiousness items, and demographics. 

In order to evaluate the influence of two different types of phishing scams on decision-

making, an inbox simulation task was created through Qualtrics. Participants were given a 

prompt detailing an identity as a human resources assistant to role-play during the experiment 

(see Appendix E for the prompt) and instructed to go through all the emails in their inbox and 

respond to the corresponding questions. This experiment employed a 3 (type of email: no threat, 

spear-phishing, or phishing email) x 2 (response: safe or unsafe) stimulus-response design. The 

stimuli were presented with base rates that approximate the prevalence rate of non-threatening to 

threatening emails to the extent that design constraints allowed. That is, 40 emails were created 

that were non-threatening, as well as 10 emails for each the spear-phishing and phishing 

categories (see Appendixes C and D for sample stimuli). I adapted these emails from real 

phishing email scams provided in Cornell University’s “Phish Bowl” 

(http://www.it.cornell.edu/security/phishbowl.cfm). Thus, a series of 60 trials in the form of 

emails in an inbox were presented to each participant for judgment.  

These emails were presented to the participants in batches of 15 emails each. Due to the 

size of the email images, the survey was only available on a desktop computer (access from 

mobile devices was blocked through Qualtrics). The emails were randomized within each block 

to prevent order effects. The participants were not informed which emails were and were not 

threatening. After reading each email, the participants were prompted with two behavioral 

response options in which they would indicate how they would respond to the email. One 

response option listed behaviors that are safe responses to the email (e.g. responding to the 
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sender in person), while the other response option listed behaviors that are unsafe responses (e.g. 

click on a URL in the email or reply to the email). Participants then were prompted to estimate 

their confidence that they would perform the chosen response given the email. Participants next 

responded to items measuring conscientiousness and demographic questions. Participants were 

credited $3.00 through Amazon Turk within 48 hours of survey completion. This rate was based 

off of median rates offered for surveys 45 minutes in length on the MTurk site at the time of data 

collection. Participants spent an average of 36.09 minutes on the survey (SD = 17.03). 

Measures 

Threat Detection Performance 

After reading each email, the participant were prompted to answer the question “How 

would you handle this email?” with one of two behavioral response options: “Option 1: Reply by 

email, Download the attached file, AND/OR Click on the selected link in the email (the one that 

the browser hand is pointing to)” and “Option 2: Delete the email AND/OR Contact the sender 

by phone or in person.” The response information was used to calculate the d′ values for both 

phishing and spear-phishing emails as a metric for threat sensitivity or threat detection 

performance. More details on the calculation of this measure are provided in the analysis section 

below.  

Confidence ratings 

After answering the threat detection question, the participant was prompted with a slider 

confidence scale marked with percentages and asked, “On a scale from 0 to 100, how confident 

are you that this is an appropriate response to the email? (Note: values closer to 0 indicate you 

are fairly certain it is not an appropriate response and values closer to 100 indicate you are very 
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certain it is an appropriate response).” This measure was used to compute the group ROCs for 

analysis, as described below.  

Conscientiousness 

The personality trait, conscientiousness, was measured using International Personality 

Item Pool’s (IPIP) 20-item scale (see Appendix A; Goldberg, 1999; Goldberg et al., 2006). The 

scale had good internal consistency in this study, α = 0.95. 

Demographics 

There were three screening questions asking: 1) whether they have any education in 

computer security, 2) whether they hold, or have held, a job involving computer security, and 3) 

whether they have ever helped someone fix a computer problem (adapted from Downs, 

Holbrook, & Cranor, 2006). If they answered yes to any of these questions, they were asked to 

explain what they do/had done. Participants whose explanations include an indication of 

knowledge of computer security, such as ethical hacking, troubleshooting, repairs, or installation 

of computer systems, etc., were flagged as having security experience. Additionally, gender, age, 

and ethnicity demographics were collected (see Appendix B). 
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Chapter Three 

Results 

 

Modeling Phishing Email Detection 

Hit rates were computed in order to make a simple comparison of participants’ 

performance in threat detection, or threat sensitivity, across the different types of emails (see 

Table 2). This provided initial insight for the answer to research question 1. The hit rates were 

higher in the spear-phishing email conditions (40.1%) than phishing email conditions (65.9%), 

indicating people tend to be more accurate in detecting phishing scams than spear-phishing 

scams.  

Using the SDT model for classification experiment analysis (Macmillan & Creelman, 

2004), sensitivity (d′) was computed for each stimulus pair. Assuming unidimensionality of the 

stimuli—participants only judged the emails by the level of perceived threat—the sensitivity 

between the remote stimulus pair d'(S1,S3) and the sensitivity of the adjacent stimulus pair 

d'(S1,S2) was compared. In other words, the ability for participants to distinguish between no 

threat and a phishing email and to distinguish between no threat and a spear-phishing email was 

measured by using the hit rates and false alarm rates to compute each participant’s d' (for both 

spear-phishing and phishing emails) in Excel, as detailed in Table 4 (Macmillan & Creelman, 

2004; Sorkin, 1999; Stanislaw & Todorov, 1999).  

A paired samples t-test was used as a method for testing the significance of the difference 

in participants’ detection of spear-phishing (M = .42, SD = .86) and phishing emails (M = 1.10, 

SD = .93). Each participant’s d′ values were used to compare means corresponding to both the 
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spear-phishing and phishing stimulus pairs (d'(S1,S2) and d'(S1,S3)). The t-test indicated a 

significant difference in the detection level for the two different types of emails, such that spear-

phishing emails were more difficult to detect; t(281) = 17.97, p <.001. That is, participants have 

better threat discrimination, or higher sensitivity, with regard to phishing emails than spear-

phishing emails, consistent with Hypothesis 1a. 

Receiver Operating Curve (ROC) analysis was utilized for further comparison of the 

sensitivity of spear-phishing versus phishing emails. First, the frequency of each response 

corresponding to each stimulus was computed (see Table 3). The responses were not only 

divided into the two response options used for the hit rate, false alarm rate, and d′ calculations, 

but the confidence ratings were used to add additional criteria, which allowed for a closer 

estimation of the ROCs. The confidence ratings were dichotomized into “sure” and “unsure” 

response categories based on each participants’ average confidence rating. For instance, if a 

participant’s confidence rating for a spear-phishing email stimulus was 45 and their average was 

60, then that confidence rating was coded as “unsure”. Participants who did not use all the 

confidence ratings (for all 60 emails) were excluded from this analysis, leaving 207 participants. 

On average, the participants had 87.8% confidence in their responses (SD = 10.45). The 

frequency data for each stimulus-response pair are presented in Table 3. Then, in accordance 

with the rating design, the frequency data was used to compute proportions for each stimulus-

response pair, transforming the data into hit and false alarm rates (see Table 5). These values 

were cumulated for use in plotting the ROCs (see Table 6). The hit and false alarm rate pairs 

were then used to plot the observed data points for the ROCs (see Figure 3). 

Maximum-likelihood (ML) estimation was used to generate signal detection theory 

parameters that best fit the data (Dorfman & Alf, 1969). The parameter estimates for each model 
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are displayed in Table 7. A chi-square difference test was used between the chi-square statistics 

produced by the ML estimations for the ROC curve generated from the data and the constrained 

model where the mean performance (d′) is assumed equal for both spear-phishing and phishing. 

The difference test showed that there was a significant difference in model fit between the full 

model (see Figure 3) and the constrained model (see Figure 4); χ2 = 368.35, p<.0001. Thus, both 

the paired sample t-test and the ROC curve chi-square difference test supported Hypothesis 1a, 

demonstrating significant individual- and group-level differences in phishing email sensitivity 

and spear-phishing email sensitivity. 

Individual Differences 

Correlations were computed for the focal study variables and potential control variables 

to examine their relationships (see Table 9). Means, standard deviations, skewness, and kurtosis 

were also computed (see Table 8). Conscientiousness (M = 78.74, SD = 15.16) was not 

significantly related to phishing email sensitivity (M = 1.10, SD = .93) or spear-phishing email 

sensitivity (M = .42, SD = .86); r = -.02, p > .05, r = -.02, p > .05, respectively. Income, gender, 

and computer security experience were all significantly related to spear-phishing email 

sensitivity and computer security experience was also significantly related to phishing email 

sensitivity. Therefore, those variables were entered into the regression equations as controls to 

further test Hypothesis 2. The regression results (see Table 10) indicated that conscientiousness 

was not predictive of spear-phishing sensitivity (β = -.03, p > .05), even after controlling for 

income (β =.12, p <.05) and computer security experience (β =.13, p <.05), which were both 

significant predictors. Similarly, the regression results indicated that conscientiousness was not 

predictive of phishing sensitivity (β = -.03, p > .05), even after controlling for computer security 
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experience (β =.20, p <.01), which was a significant predictor. Therefore, Hypothesis 2 was not 

supported.  
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Chapter Four 

Discussion 

 

 The primary purpose of the present research is to examine the applicability of the robust 

psychological framework, signal detection theory, to certain cyber-security behaviors. ML 

estimation of SDT parameters showed that SDT parameters fit the observed data well, meaning 

that SDT parameters are useful for representing and interpreting decision-making in the context 

of phishing email detection. The SDT measure for sensitivity, d′ is used as a metric of spear- and 

phishing email detection performance. Consistent with prior research, both individual and group 

analyses of the difference between spear-phishing detection performance and phishing detection 

performance indicate that individuals are significantly more accurate at detecting phishing emails 

than spear-phishing emails (c.f. Hong, 2012). This is intuitive because spear-phishing emails are 

designed to target certain individuals by being more customized and thereby more persuasive. 

The ability for SDT measures and parameters to capture this difference in performance denotes 

the utility of SDT to model individual decision-making in the realm of cyber-security 

compliance.  

 In an examination of the role of personality, correlation and regression analyses reveal 

that conscientiousness is not significantly related to, or predictive of, phishing or spear-phishing 

email detection. It is, however, possible that range restriction attenuated the relationship between 

conscientiousness and phishing and spear-phishing email detection because very few individuals 

scored low on conscientiousness. This could be due to the attention check that filtered out 

participants based on proper reading of the instructions. Individuals who are less detail-oriented 
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likely failed the attention check and subsequently were removed from analyses. Still, this finding 

is inconsistent with the few studies that have examined this relationship (e.g., Hu et al., 2012; 

McBride, Carter, & Warkentin, 2012). For example, Hu et al.’s (2012) research showed that with 

survey responses from a sample of 148 MIS and MBA students, dutifulness—a facet of 

conscientiousness—was related to intention to comply with cyber-security behaviors. McBride et 

al. (2012), in a sample of 46 MBA students, similarly demonstrated that conscientiousness 

significantly and negatively predicts intention to violate cyber-security policies. Perhaps sample 

differences account for the difference in effect observed between these studies and the present 

research as only a small percentage of the sample in this study indicated they had a master’s 

level degree (3.9%). Also, the cited studies utilized business students whereas my sample was 

more heterogeneous. 

Moreover, Hu et al. (2012) and McBride et al. (2012) were looking more broadly at 

cyber-security compliance and deviance behaviors while the present study was concerned 

specifically with phishing emails. Perhaps cyber compliance and deviance are a different type of 

OCB performance, while phishing and spear-phishing detection not represent a type of OCB, and 

therefore are not predicted by conscientiousness. In fact, a recent study (Darwish, El Zarka, & 

Aloul, 2012) similarly revealed a null effect between conscientiousness and phishing 

susceptibility for 100 undergraduate students. Instead, they found that neuroticism was 

significantly related to phishing susceptibility. Darwish et al. (2012) suggested that this 

relationship might exist because of the relationship between individuals who score high on 

neuroticism tend to have a decreased ability to detect lies. Darwish and colleagues (2012) also 

found a significant relationship between openness to experience and sharing personal 

information on Facebook. This tendency to share personal information may translate into 
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entering credentials on a site found through a phishing email. Thus, there are conceivably other 

personality traits that are more important for predicting phishing email susceptibility.  

In addition to exploring these predictive relationships, future research should investigate 

the nature of cyber-security compliance as it relates to phishing and spear-phishing email 

detection. Further research into the nature of these compliance behaviors could provide insight 

into the potential predictors of increased detection performance. For instance, if threat detection 

performance is more closely related to task performance, research suggests that cognitive ability 

may predict detection performance (Motowildo et al., 1997).  

Implications 

The primary implication of the ability to utilize SDT to model phishing detection is the 

utility of the model for exploring the difference between how individuals actually perform with 

regard to cyber-security compliance versus how they should perform. By calculating the payoffs 

for difference decisions (according to the four stimulus response-pairs), organizations can 

pinpoint an optimal criterion level. For instance, as aforementioned, cyber-security breaches 

resulting from incorrectly responding to a phishing email (a miss in SDT) can be very costly to 

organizations ($412,000 on average; Major, 2014) in terms of information loss, negative public 

relations, and so forth. On the other hand, if an employee was very concerned about phishing 

emails and responded cautiously (e.g. calling the sender in person) to every email, this would 

undoubtedly hinder productivity. Furthermore, there are implications for the individual’s 

perception of cost. Specifically, the weightless, abstract nature of data loss through security 

breaches may cause employees to underestimate the cost of risky cyber-security behaviors. For 

instance, when evaluating the cost of changing a password an employee might contemplate the 

cost associated with the considerable time and effort needed to create and memorize a new 
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password while largely ignoring the potential cost to the organization if inaction results in a data 

breach.  

Thus, it is important to compute the optimum criterion placement to minimize the costs 

most important to the organization. Depending on which of the various costs (e.g., productivity, 

possibility of cyber-breach, etc.) that the organization is interested in minimizing, there will be a 

different minimum. Once this is computed, organizations will be able to determine how to 

achieve that optimal level of performance. Specifically, organizations could approach this by 

identifying individual characteristics that predict optimal performance either for selection 

purposes or for identifying individual to take part in training interventions. Moreover, SDT can 

be used to model improvements due to training interventions. Overall, SDT provides a powerful, 

proven, empirical tool (Lord, 1985) that offers superior operationalization for phishing detection 

performance and the ability to monitor improvements in accuracy. 

More broadly, SDT has many implications for the field of I-O psychology. Researchers 

and practitioners alike are interested in the measurement of accuracy. Whether it be accuracy in 

performance appraisal ratings (Baker & Schuck, 1975) or the accuracy of ratings used for job 

analysis (Lievens & Sanchez, 2007), or accuracy in detecting cyber-security threats in emails, 

SDT offers is useful tool for operationalizing accuracy and/or performance through d′. 

Furthermore, SDT could be applied to other topics relevant to the field of I-O psychology, such 

as selection and training. Specifically, Stillman and Jackson (2005) use SDT to analyze Task-

Based Assessment Center data to evaluate the reliability of checklist ratings. By using SDT, they 

were able to not only judge the accuracy and reliability, but also demonstrate, through the use of 

SDT’s bias measure, that checklist ratings tend to be lenient (Stillman & Jackson, 2005). This 

bias estimate is an invaluable aspect of SDT that other strategies of measuring and evaluating 
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accuracy and performance do not provide. Another potential application for SDT in the I-O field 

is the use of the “utilized SDT” model (Lynn & Barrett, 2014), which utilizes economic concepts 

to transform SDT into a predictive tool. This could be applied to the selection field where it 

would model the perceptual uncertainty surrounding the weighing of scores on different selection 

methods and the behavioral risk associated with choosing the wrong candidate. 

Limitations  

Though the present research addressed topics important for the growing interest in 

elevating cyber-security in today’s increasingly connected society, it has several limitations. 

First, this study relied on self-report for all the measures and participants could have been 

inaccurate, inattentive, or misleading in their responses. Although an attention check was used, 

there is no way to determine the extent to which participants could have been inaccurate, or 

misleading in their responses. For instance, though the prompt asked how participants “would” 

handle the email stimulus, participants may have responded with what they “should” do, which 

would not accurately capture their veridical phishing and spear-phishing email detection 

performance.  

Secondly, payoff perceptions in this simulation likely do not mirror those in reality. It is 

difficult to convey how much cost (behavioral risk) is associated with false alarms (responding to 

an email as if it were threatening when it actually is not a threat). Specifically, the cost associated 

with false alarms in the real world is principally time and productivity; however, in this 

simulation, participants were likely not as concerned with those variables as they would be if it 

were interfering with their actual work. Still, if this were the case, it is even more troubling how 

poorly individuals performed in terms of detecting both the phishing and spear-phishing emails. 

On average, participants detected about 7 out of the 10 phishing emails and only 4 out of the 10 
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spear-phishing emails. That makes 9 successful attacks on the average participant. Since it only 

takes one successful phishing attack to gain access to a system, this is very concerning! 

Furthermore, the sample was MTurk workers who use HITs (human intelligence tasks), such as 

surveys as a source of income; therefore, they may have been as concerned about time and 

productivity as employees answering emails outside of a simulation setting.  

 Thirdly, though the base rate for threatening emails was lower than that of non-

threatening emails, it was likely much higher than the base rate for threatening emails in the 

typical organization. For an analogue comparison of the impact of this disparity, research on 

bomb screening at the airport shows that a low base rate can result in what is called the 

prevalence effect and can greatly impact a person’s bias in decision-making (Wolfe et al., 2007). 

Future research should examine the influence of different base rates on phishing email detection.  

Finally, future research should explore the development of interventions in the form of 

training programs for employees to increase their detection and appropriate response to cyber-

security threats. Specifically, the development of incentive programs that utilize SDT principles 

could reduce the incidence of cyber-security breaches. Social engineering is a pervasive threat to 

organizations, regardless of the development of new methods of cyber-attacks and cyber-security 

defenses. Oftentimes, social engineering is the vehicle used to exploit vulnerabilities in a system. 

Organizations must take the initiative to train individuals to be resistant to social engineering 

tactics in order to properly defend themselves from costly attacks. More broadly, as a field 

specializing in human decision-making and organizational efficiency, addressing the scarcity of 

cyber-security research in the I-O Psychology literature is imperative because of the direct 

implications for national security, organizations of all types, and the individuals they employ.  

Conclusion 
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 The present study investigated the utility of signal detection theory as a method for 

measuring and interpreting differences in phishing email susceptibility and spear-phishing email 

susceptibility. A simulated inbox was used to measure phishing and spear-phishing susceptibility 

within the SDT framework. Results indicated that SDT was a useful framework for modeling 

decision-making regarding phishing and spear-phishing emails. Additionally, the present 

research examined the relationship between conscientiousness and phishing spear-phishing email 

susceptibility. Results indicated that conscientiousness is not a significant predictor of phishing 

susceptibility. Future research should further investigate individual differences that predict 

phishing susceptibility and investigate the utility of SDT for evaluating training effectiveness on 

cyber-compliance behaviors.  
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Tables 

 
Table 2. Stimulus-Response Matrix 
 

Stimulus Response to prompt (“How would you handle this email?”) 

 Safe Behavior Unsafe Behavior 

S1 = No threat False alarms 
(25.5) 

Correct rejections 
(74.5) 

S2 = Phishing email Hits 
(65.9) 

Misses 
(34.1) 

S3 = Spear-phishing email Hits 
(40.1) 

Misses 
(59.9) 

Note. Values are in percentages and reflect the aggregate of responses across participants.  
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Table 3. Frequency Stimulus-Response Table 
 

 Response  

 
Safe Behavior Unsafe Behavior Total 

 
"Sure" "Unsure" "Unsure" "Sure"   

No Threat 1232 874 1638 4536 8280 

Phishing 1030 332 271 437 2070 

Spear-phishing 504 325 371 870 2070 

Note. N = 207. Participants made a binary detection response indicating “Option 1” for safe 
behaviors and “Option 2” for unsafe behaviors. This response was immediately followed by a 
confidence judgment. The participants’ confidence judgments were coded into sure and unsure 
based on whether it fell above or below the participants’ mean confidence rating. Participants 
with less than 60 responses for the confidence questions were excluded. The values in each cell 
represent the number of responses for the stimulus-response pair.  
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Table 4. Formulas for Calculation of SDT Statistics for Sample Participant  
 

 

A (Labels Only) 

Formula (for Column B; Then copy to all other 

columns) B (Part. 1) 

1 # hits (S2) 5 
2 # hits (S3)  3 
3 # misses (S2) 5 
4 # misses (S3)  7 
5 # false alarms 8 
6 # correct rejections 32 
7 H1 (hit rate for S2) =IF(B3>0, B1/(B1+B3),(B1 – 0.5)/(B1+B3)) 0.500 

8 H2 (hit rate for S3) =IF(B4>0, B2/(B2+B4),(B2 – 0.5)/(B2+B4)) 0.700 

9 F (false alarm rate)  =IF(B5>0, B5/(B5+B6),0.5/(B5+B6)) 0.200 

10 z(H1) =NORMSINV(B7) 0.000 

11 z(H2) =NORMSINV(B8) 0.524 

12 z(F) =NORMSINV(B9) -0.842 

13 d'(S1,S2) =B10-B12 0.842 

14 d'(S1,S3) =B11-B12 1.366 

15 d'(S2,S3) =B14-B13 0.524 

Note. The d′ values for different stimulus pairs (d'(S1,S3) and d'(S2,S3)) represent the end user’s 
sensitivity for detecting the corresponding threat from the no threat condition, a higher value 

indicates higher sensitivity. The d′ value in row 15 (d'(S2,S3)) represents the difference in end-
user sensitivity between the spear-phishing and phishing email detection conditions. 
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Table 5. Proportion of Trials on which the Stimulus Yielded Each Response 
 

        

  Safe Behavior Unsafe Behavior Total 

  "Sure" "Unsure" "Unsure" "Sure" 
 

No Threat 0.15  0.10 0.20 0.55 1.00 

Phishing 0.50 0.16 0.13 0.21 1.00 

Spear-phishing 0.24 0.16 0.18 0.42 1.00 

Note. N = 208. Participants made a binary detection response indicating “Option 1” for safe 
behaviors and “Option 2” for unsafe behaviors. This response was immediately followed by a 
confidence judgment. The participants’ confidence judgments were coded into sure and unsure 
based on whether it fell above or below the participants’ mean confidence rating. Participants 
with less than 60 responses for the confidence questions were excluded. The values in each cell 
represent the number of responses for the stimulus-response pair.  
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Table 6. Hit and False-Alarm Rates: Cumulative Proportions 
 

   

 
Safe Behavior Unsafe Behavior 

 
"Sure" "Unsure" "Unsure" "Sure" 

No Threat 0.15 0.25 0.45 1.00 

Phishing 0.50 0.66 0.79 1.00 
Spear-phishing 0.24 0.40 0.58 1.00 

Note. N = 208. The values in each cell represent the cumulative frequencies of responses for the 
stimulus-response pair.  
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Table 7. Chi-Square Difference Test of Model Fit. 
 

 μ σ c1 c2 c3 χ2 df p 

Model 1: Full         

Phishing 1.06 1.11 
1.05 0.65 0.13 3.29 2 0.19 

Spear-phishing 0.36 1.03 

Model 2: Constrained          

Phishing .74 1.17 
1.05 0.65 0.13 371.64 4 <.0001 

Spear-phishing .74 1.17 

Model Comparison: Δ χ2      368.35 2 <.0001 

Notes. μ = parameter mean estimate, σ = parameter standard deviation estimate, c1-3
 = parameter criterion estimates. 
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Table 8. Means, Standard Deviations, Skewness, and Kurtosis of Study Variables 
 

  M SD Skewness Kurtosis 

1. Age 35.27 9.75 1.04 .78 

2. Gender 1.50 .50 -.01 -2.01 

3. Education 4.22 1.10 -.70 .26 

4. Response Duration (in minutes) 36.09 17.30 1.47 3.20 

5. Income 4.69 1.97 -.05 -.88 

6. Number of hours worked per week 38.70 9.01 -.44 2.46 

7. Computer and Technology Skills 31.37 18.94 -.09 -.99 

8. Computer Security Experience .61 .77 1.06 .38 

9. Conscientiousness 78.74 15.16 -.56 -.34 

10. Phishing Hit Rate .63 .22 -.57 -.18 

11. Spear-phishing Hit Rate .41 .23 .46 -.70 

12. False Alarm Rate .27 .15 .81 1.06 

13. Phishing Sensitivity: d'(S1,S2) 1.10 .93 -.40 .11 

14. Spear-Phishing Sensitivity: d'(S1,S3) .42 .86 .23 -.09 

15. Difference in sensitivity: d'(S2,S3) .68 .64 -.32 -.11 

Note. Number of hours worked per week does not include those that are unemployed. Gender is a 
dichotomous variable. 
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Table 9. Correlations among Study Variables. 
 

  1 2 3 4 5 6 

1. Age -           

2. Gender -0.23*** - 

3. Education -0.04 -0.03 - 

4. Response Duration (in minutes) 0.20*** 0.00 -0.06 - 

5. Income 0.05 -0.09 0.21* -0.06 - 

6. Number of hours worked  0.03 0.10 0.10 -0.07 0.20** - 

7. Computer and Technology Skills -0.07 0.15** 0.22*** -0.05 0.35*** 0.17** 

8. Computer Security Experience -0.04 0.13 0.05 0.05 0.09 0.01 

9. Conscientiousness 0.16** -0.14* -0.13* -0.04 0.07 0.05 

10. Phishing Hit Rate 0.06 0.12* -0.04 0.02 0.06 0.15* 

11. Spear-phishing Hit Rate -0.04 0.16** -0.02 -0.02 0.09 0.15* 

12. False Alarm Rate -0.05 0.04 -0.09 -0.06 -0.07 0.02 

13. Phishing Sensitivity: d'(S1,S2) 0.06 0.08 0.03 0.05 0.08 0.11 

14. Spear-Phishing Sensitivity: d'(S1,S3) -0.02 0.12* 0.04 0.01 0.12* 0.11 

15. Difference in sensitivity: d'(S2,S3) 0.10 -0.04 -0.01 0.05 -0.05 0.01 

Notes. N = 234-282. *p<.05, **p<.01, ***p<.001 
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Table 9, continued. Correlations among Study Variables 
 

  7 8 9 10 11 12 13 14 15 

1. Age                   

2. Gender 
         

3. Education 
         

4. Response Duration (in minutes) 
         

5. Income 
         

6. Number of hours worked  
         

7. Computer and Technology Skills - 
        

8. Computer Security Experience 0.29** - 
       

9. Conscientiousness -0.02 0.07 - 
      

10. Phishing Hit Rate 0.04 0.17* -0.04 - 
     

11. Spear-phishing Hit Rate 0.02 0.07 -0.05 0.56*** - 
    

12. False Alarm Rate -0.06 -0.13* -0.02 -0.20* 0.02 - 
   

13. Phishing Detection 0.06 0.19** -0.02 0.85*** 0.43*** -0.67*** - 
  

14. Spear-Phishing Detection 0.04 0.14* -0.02 0.58*** 0.80*** -0.56*** 0.75*** - 
 

15. Difference in detection ability 0.04 0.09 0.00 0.45*** -0.46*** -0.23*** 0.44*** -0.26*** - 

Notes. N = 234-282. *p<.05, **p<.01, ***p<.001 
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Table 10. Regression Results 
 

 Outcome 

Model Phishing Detection Spear-Phishing Detection 

Step 1: Controls   
Gender .06 .11 
Income .07 .12* 
Computer Security Experience .20** .13* 
Step 1 R2 .05 .05 
   
Step 2: Direct Effects   
Gender .06 .11 
Income .07 .12* 
Computer Security Experience .20** .13* 
Conscientiousness -.03 -.03 
Total F 3.636** 3.205* 
Total R2 .05 .05 

Δ R2 .00 .00 

Notes. N = 234-282. *p<.05, **p<.01. Standardized estimates. 
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Figures 

 
Figure 3. ROCs for Group-level Phishing and Spear-phishing Email Sensitivity Prediction, the 
full model.  
 
Note. This graph plots the false alarm rates for the non-threatening email stimuli and the hit rates 
for each the spear-phishing and phishing email stimuli. The blue dots indicate the observed 
spear-phishing email hit rate and false alarm points while the red dots indicate the observed 
phishing email hit rate and false alarm points. The dotted lines indicate the fitted ROC curve for 
the best-fitting signal detection theory parameters. The spear-phishing ROC is also closer to the 
chance line, indicating that participants were more sensitive to phishing emails. 
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Figure 4. ROCs for Group-level Phishing and Spear-phishing Email Sensitivity Prediction, the 
constrained model. 
 

Note. This graph plots the false alarm rates for the non-threatening email stimuli and the hit rates 
for each the spear-phishing and phishing email stimuli. The blue dots indicate the observed 
phishing email hit rate and false alarm points while the red indicated the observed spear-phishing 
email hit rate and false alarm points. The dotted lines indicate the fitted ROC curve for the best-
fitting signal detection theory parameters. In this constrained model, the means are constrained 
equal so the parameter estimates are the same. These SDT parameters, where the means are 
constrained to be equal, do not fit the observed data; χ2(4) = 371.64, p<.0001.  
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Appendix A: Conscientiousness Scale 

 

On the following page, there are phrases describing people's behaviors. Please use the 
rating scale below to describe how accurately each statement describes you. Describe yourself as 
you generally are now, not as you wish to be in the future. Describe yourself as you honestly see 
yourself, in relation to other people you know of the same sex as you are, and roughly your same 
age. So that you can describe yourself in an honest manner, your responses will be kept in 
absolute confidence. Please read each statement carefully, and then select an option on the scale. 

 

Response Options: 1 = “Very Inaccurate”; 2 = “Moderately Inaccurate”; 3 = “Neither Inaccurate 
nor Accurate”; 4 = “Moderately Accurate”; 5 = “Very Accurate”  
 

1. Am always prepared. 
2. Pay attention to details. 
3. Get chores done right away. 
4. Carry out my plans. 
5. Make plans and stick to them. 
6. Complete tasks successfully. 
7. Do things according to a plan. 
8. Am exacting in my work. 
9. Finish what I start. 
10. Follow through with my plans.   
11. Waste my time. 
12. Find it difficult to get down to work. 
13. Do just enough work to get by. 
14. Don't see things through. 
15. Shirk my duties. 
16. Mess things up. 
17. Leave things unfinished. 
18. Don't put my mind on the task at hand. 
19. Make a mess of things. 
20. Need a push to get started. 
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Appendix B: Demographic Questions 

 

Please indicate your highest level of education 

� Some high school 
� High school diploma/GED 
� Some college 
� Trade/technical/vocational training 
� Associate’s degree 
� Bachelor’s degree 
� Master’s degree 
� Professional degree 
� Doctoral degree 

 

Do you have any education in computer security? 

� Yes 
� No 

If yes, what type of education (certification, bachelor’s, etc.)? ________ 

 

Do you hold a job involving computer security? 

� Yes 
� No 

If yes, what is the job title? ______ 

 

Have you held a job involving computer security? 

� Yes 
� No 

If yes, what was the job title? ______ 

 

Have you ever helped someone fix a computer problem? 

� Yes 
� No 

If yes, what assistance did you provide? ________ 

 

What is your gender? 

� Male 
� Female 

 
What is your age (in years)? _____ 

 

On average, how many hours do you work per week? __________ 

 

What is your job title? Select*  

(*this response option branches through job trees from O*NET classification)  
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Appendix C: Phishing email examples 
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Appendix D: Spear-phishing examples 
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Appendix E: Prompt 

 
Please read the following scenario in order to familiarize yourself with your role for this study.  
 
You are a recruiter, named Jordan Smith, for a small government contracting company called 
FinanceGurus. Your role involves finding, corresponding with, and evaluating incoming talent, 
managing the LinkedIn, Taleo, and Monster profiles for the company, and coordinating with the 
other Human Resources personnel (Chloe) and external hiring services (e.g. Scout, Happie). You 
are also involved in some administrative work (e.g. company shipping) since it’s a small 
company. Currently, you’re sourcing for a candidate for a Senior Accountant position, a 
SharePoint position and Senior Financial Specialist position. Please read through the following 
60 emails and, based on the given information, evaluate the top candidates to suggest to the HR 
lead, Casey Johnson, for hire. 
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Appendix F: IRB Approval Letter  

 

 
January 3, 2017  

Jaclyn Martin Psychology Tampa, FL 33612  

RE: Exempt Certification IRB#: Pro00025966 Title: Computer Behavior at Work  

Dear Ms. Martin:  

On 1/3/2017, the Institutional Review Board (IRB) determined that your research meets criteria for 
exemption from the federal regulations as outlined by 45CFR46.101(b):  

(2) Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement), survey 
procedures, interview procedures or observation of public behavior, unless: (i) information obtained is 
recorded in such a manner that human subjects can be identified, directly or through identifiers linked to 
the subjects; and (ii) any disclosure of the human subjects' responses outside the research could 
reasonably place the subjects at risk of criminal or civil liability or be damaging to the subjects' financial 
standing, employability, or reputation.  

As the principal investigator for this study, it is your responsibility to ensure that this research is 
conducted as outlined in your application and consistent with the ethical principles outlined in the 
Belmont Report and with USF HRPP policies and procedures.  

Please note, as per USF HRPP Policy, once the Exempt determination is made, the application is closed 
in ARC. Any proposed or anticipated changes to the study design that was previously declared exempt 
from IRB review must be submitted to the IRB as a new study prior to initiation of the change. However, 
administrative changes, including changes in research personnel, do not warrant an amendment or new 
application.  

Given the determination of exemption, this application is being closed in ARC. This does not limit your 
ability to conduct your research project.  

We appreciate your dedication to the ethical conduct of human subject research at the University of South 
Florida and your continued commitment to human research protections. If you have any questions 
regarding this matter, please call 813-974-5638.  

Sincerely,  

 

Kristen Salomon, Ph.D., Vice Chairperson USF Institutional Review Board  
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