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ABSTRACT 

In automated production lines, were the mass of single product must be maintained 
within predefined weight narrow range; a dynamic weight system is required to attain 
this objective. Checkweigher is integrated in the production line to reduce the 
overweight and underweight of the product by acquiring the weight signal from the load 
cell which affected by different sources of noise and vibration and extracts the correct 
weight. The main objective of this thesis is to design and implement a Kalman filter that 
reduces the fluctuation and vibration of product weight and enhance the dynamic 
weighing system performance, which is observed in the real time, and extract the 
correct weight of the product. This will increase weighing accuracy while maintaining 
or increasing the production speed. Furthermore, a mathematical model of the 
checkweigher and load cell is derived and presented. 

The simulation and experimental results are presented and compared. The results 
achieved, show that the Kalman filter may provide effective alternative to the 
conventional methods especially when the system is nonlinear and low frequency noise 
is incorporated in the bandwidth of the useful signal. 

 
Keywords: checkweigher, load cell, MATLAB, Kalman filter.  
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 ملخص

 بإستخدام مرشح كالمان أنظمة الوزن الديناميكية تحسين أداء

 منعفي خطوط الإنتاج المؤتمتة هناك حاجة ماسة  للمحافظة على وزن المنتج ضمن نطاق محدد ي
 حسب معايير الجودة و الإنتاج. ,صان في الوزنمن الزيادة أو النق

يستخدم نظام "فحص الوزن" ضمن خطوط الإنتاج للوصول الى الغاية المطلوبة و ذلك من خلال 
الحصول على إشارة الوزن و تتأثر هذه الإشارة من العديد من مصادر التشويش و  الضجيج مما 

سة إلى دراسة و تطبيق نظام ترشيح للإشارة تهدف هذه الدرا. يؤثر على القراءة الحقيقية للوزن
للتخلص من التشويش و الحصول على الوزن الحقيقي للمنتج   Kalman Filterبإستخدام 

مع المحافظة على  قياس الوزنالمتحرك على نظام فحص الوزن, و هذا سوف يساهم في زيادة دقة 
 سرعة عملية التوزين و الإنتاج.
صول على النموذج الرياضي لنظام فحص الوزن و خلايا الوزن, ضمن عملية التصميم , تم الح

، م الحصول عليهاالنتائج التي تمع  ومقارنتهابالإضافه  لعرض النتائج لعملية التحليل و المحاكاة, 
قد توفر بديلا فعالا للأساليب التقليدية وخاصة عندما يكون النظام   Kalman Filterوتبين أن 

 وضاء منخفضة التردد في عرض النطاق الترددي للإشارة مفيدة.ضو يحتوي على  خطيغير 
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( )w t  Mass of the desired item. 

lm  The equivalent mass of the load cell. 

c  Damping coefficient. 

  The position of the weigh table. 

( )x t  the system input 

( )u t  Controller transfer function 

( )z t  Stochastic disturbances (system noise with covariance Rv). 

( )y t  System output (position of balance beam). 

( )v t  measurement noise 

F  Force in (N) 

K  Stiffness in (N/m). 

x  The deflection 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation  

The process of product weighing is an essential part of modern industry. There is a 
constant need for knowing the exact weight of many items, e.g., food, ingredients for 
production, pharmacology, chemistry, technology, etc.[1]. The type and the number of 
products that require weight control are increasing. Consequently, the legal 
requirements of government bodies need developing to guarantee the exact weight. In 
production, this means high accuracy and efficiency of weighing. Continuation of this 
trend brings benefits for both the customer and the producer. That is, manufacturing 
efficiency is increased; hence, profitability whilst package quality and quantity are 
assured to the customer’s satisfaction. 

The weighing process and weighing instruments are very crucial to the industrial 
and public sectors in Gaza. Electronic weighing based systems are replacing the 
mechanical, volumetric and time based mass and quantity measurements; with 
increasing demand on performance and accuracy. The weighing systems have 
applications in almost all local industries in Gaza Strip such as retail, automation, 
logistic & transport, postal & courier, R&D, health etc. 

1.2 Background  

A weighing scale is a measuring instrument that is used for determining the weight or 
mass of an object. Many traditional instruments are used as weighing scales such as 
scale spring and balance spring. Weighing scales are used in many industrial and 
commercial applications, and products such as loaded tractor-trailers and medical scales. 

In the area of mass production, products are weighed using industrial weighing 
systems, which are machines that weigh a package dynamically. The weight of the 
package is estimated while the product has been carried over a loadcell weigh-table by a 
transport system. Normally the transport system is of a conveyer belt type. The weigh-
table is mounted on a load cell, which is the uncontrollable weighing device capable of 
weighing an item. A signal-processing module (SPM) acquires the electrical signal from 
weighing device and estimates a value of weight for the passing product as its output. 

Development of software and technological innovations in manufacturing 
activities have changed the face of the weighing balance industry in Gaza Strip. This 
industry is moving towards developing integrated weighing solutions instead of stand-
alone weighing balances. Weighing solutions include weighing balances that are 
integrated to the manufacturing and inventory systems of an enterprise. These solutions 
can provide various benefits such as enabling advanced inventory management, Just-in-
time “JIT” manufacturing, reduction in inventory holding cost and inventory holding 
period, e-ordering, vendor and customer relationship management. These solutions also 
enable automatic and accurate recording of transactions. 

Weight in motion (WIM) systems fall into two groups [2]: 

 Low speed motion (LSM) which the speed less than 15km/h. 

 High speed motion (HSM) which the speed faster than 15km/h. 
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The two main reason for LSM and HSM systems are functionality and accuracy. 
The functional requirement is simply aimed at fulfilling low or high-speed applications. 
The accuracy requirement is based on the current technical inability of high-speed 
systems to weigh accurately enough for enforcement or fee payment purposes. In this 
thesis, we will be applying the first method practically. 

The checkweigher is one of the most common dynamic weighing system used in 
almost all modern production lines, different types of products will be passed on the 
conveyor with different infeed velocities to collect enough data for analysis and 
simulation. A digital weight indicator is required to interface the weight transducer. 

Checkweigher system components  

A typical checkweigher dynamic weight system incorporates a series of conveyor belts. 
Checkweighers are known also as belt weighers, in-motion scales, conveyor scales, 
dynamic scales, and in-line scales. In filler applications, they are known as check scales. 
Generally, checkweigher has three belts or chain beds: 

 Infeed Conveyor: An infeed belt that may change the speed of the 
package and bring it up or down to a speed required for weighing. The 
infeed is also sometimes used as an indexer, which sets the gap between 
products to an optimal distance for weighing. It, sometimes, has special 
belts or chains to position the product for weighing. 

 A Weigh Belt. This is typically mounted on a weight transducer which 
can typically be a strain-gauge load cell or a servo-balance (also known 
as a force-balance), or sometimes known as a split-beam. Some older 
machines may pause the weigh bed belt before taking the weight 
measurement. This may limit line speed and throughput. 

 A Reject Belt that provides a method of removing an out-of-tolerance 
package from the conveyor line. The reject can vary by application. 
Some require an air-amplifier to blow small products off the belt, but 
heavier applications require a linear or radial actuator. Some fragile 
products are rejected by "dropping" the bed so that the product can slide 
gently into a bin or other conveyor. 

Weigh table Consists of the conveyor belt attached with a module for weight 
measurement, which includes transducer and the signal conditioner unit to feed the 
weight signal to the computerized control. Figure (1.1) shows the checkweigher in 
production environment. 
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Figure (1.1): Product Flow in Typical Checkweigher  

1.3 Previous Study 

Through many years, many papers proposed and discussed the weighing systems and 
checkweigher in motion and investigated in many ways how to filter the electrical 
signal from the associated noises. Some of them proposed various filters such as 
Kalman filter, LQG filter and fuzzy logic estimator. These filter techniques gave 
satisfactory results for their authors. The next paragraph discusses proposed solutions 
since 1965. 

Tariq and Balachandran [3] presented two-checkweigher systems. The first is a 
robot checkweigher and the second is a conventional checkweigher system. The former 
is considered as an intelligent system compared to the later in transporting and weighing 
the objects, which the latter is a conveyor belt driven system. They proved that the robot 
checkweigher is an interesting method in sorting the products without any significant 
reduction in the product rate. The solution to filter the signal from load cell based 
dynamic weighing system is proposed based on Kalman filter. Simulations performed 
on the model of the dynamic weighing system showed that Kalman filter can be 
employed in a practical system. 

This method was successfully implemented on a specific system setup, however 
it not suitable for general industrial dynamic weighing systems. It requires tuning the 
entire system and conducting repeated measurement cycles. In addition, this method did 
not explaining how to integrate the measured signal into the system controller, and uses 
complicated embedded control systems, which is the current trend in modern industrial 
control systems, and needs simplification and modification for a proper hardware 
realization.  

Balachandran et al [3] presented two main aims to improve the weighing 
process: (1) increase the speed of weighing process and (2) achieve good measurement 
accuracy.  They used an integrated control and filtering approach. The Linear Quadratic 
Gaussian (LQG) was used to combine the design of control and filtering the weighing 
process. Finally, a simulation result showed that the LQG design method was suitable 
for practical dynamic weighing systems.  
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Halimic, et al [4] presented an optimal integrated control and filtering approach 
to improve the performance of a weighcell based dynamic weighing system. They were 
derived an analytical solution for weigh filter. Finally, the results in this paper was 
compared to the results of [3] and the comparison showed that an improved 
performance could be achieved by adopting the LQG design method. 

Halimic, et al [5] fuzzy logic estimator for dynamic weighing system was 
designed. Applying this type of filter increased the precision of weighing; hence, 
improving the results for repeated measurement. However, increase in the accuracy for 
the single measurement depended heavily on the granularity of the filter. This method 
depended heavily on the characteristics of product, the initial settings of dynamic 
weighing system needs to be modified for each product. 

Correia and Couto [6] presented a data acquisition solution using RISC type 
microcontroller. The weighing test showed error below 100 g in 400 kg for an industrial 
platform of 8 smart load cells. In [7] Fukuda, Tottori, Kameoka, Ono, and Yoshida were 
proposed method to improve the accuracy of measured axle weight of an In-motion 
vehicle. They confirmed by processing the simulated results that the new method is 
superior to conventional method concerning the range and standard deviation in the 
error of the estimated axle weight taking into account the transient vibration. In this 
paper they clarified that the new method depends on processing the output signal that 
obtained from the axel weighing system contaminated with the noise due to the 
vibration of the vehicle. 

Halimic, et al [8] presented an adaptive deconvolution filter to suppress the 
noise within the Bandwidth of the desired signal. The obtained results shows an 
improvement of the accuracy , but there were less improvement in the signal 
measurement results. Therefore an additional noise filter was employed to improve the  
signal measurement.  

In order to suppress the noise, classical signal processing techniques were 
extensively used in [9]. Higino and Couto based on linear and stationary mathematical 
models. However, practical dynamic measurement systems are inherently non-linear 
and their characteristics vary with time. Yamazaki, et all [10] suggested a continuous 
weighing by multi-stage conveyor belt scale, in this method, raising throughput of the 
conveyor line without increasing the conveyor belt speed by the use of two or three 
conveyor belt scale (called a multi-stage conveyor belt scale) that were arranged in the 
line in direct sequence to each other. Through the new measuring technique, a weighing 
scale can be created which adjusts the conveyor belt length to the product length. This 
method added extra cost on the system, and had a limit on its maximum throughput. 

1.4 Problem Statement 

Generally, the weighing process has nonlinear characteristics, large time-delay and 
noticeable uncertainty. As an example, the checkweigher influences by many factors 
such as sensitivity to temperature, noise contributed by low frequency and airflow 
which causes error readings. Therefore, we must reduce and eliminate these factors 
using various filtering methods. 

The traditional measuring principle and feeding method cannot satisfy the 
increasing control requirements; the noise superimposed on the weight signal will cause 
a great distortion in the output signal. On the other hands, the increased performance of 
the position control loop (smaller steady-state error) improves the accuracy of a 
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dynamic weighing system. However, high performance of the position control loop 
slows down the overall transient response. 

To eliminate these sources of inaccuracy and resolve the contradictory effects 
we propose an integrated digital control and filtering design module, which will be 
placed between the weigh-table and the microcomputer module. It can be implemented 
in the weighing control software. 

1.5 Thesis Objective  

The overall objective is to design, simulate and implement a load cell based dynamic 
weighing system with improved throughput and accuracy. This work is undertaken in 
the following developments stages: first, analyze the main factors that affect the 
accuracy of the dynamic weighing system. Then derive and present the exact model of 
the load cell based dynamic weighing system. The next stage is studying different 
approaches to identify, minimize or extract error signal from weighing signal. The 
fourth stage is to Implement the selected approach (Kalman/PID) using MATLAB and 
simulate the system with a friendly graphical user interface (GUI), where we can 
change the system parameters. 

Finally develop a prototype for the designed system with onboard algorithm for 
error extracting. Then discuss the results and compare with previous methods. 

1.6 Thesis Contribution 

This study contributes to the area of practical application of weighing systems, and 
implements a working model for dynamic weighing noise filtering and correct weight 
extraction. The system is based on a general type Loadcell to reach the required 
accuracy without any additional electronic or mechanical modules. 

The main contribution of this research is to study how to reduce and filter noise 
in dynamic weight systems using general typed load-cell without any special modules to 
reduce mechanical noise such as oil damper used in high profile and expensive load-
cells. In addition, any load-cell can be defined and implemented as part of the 
checkweigher by using the mass, stiffness and damping parameters of the load-cell. 

 The study includes design and implementation of Kalman filter integrated 
dynamic weight controller for any commercial loadcell. The research includes 
simulation and hardware implementation on real time system. The weight signal and the 
effect of several noise types are investigated. The developed model is tested and the 
results will be compared with standard weight tests.  
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CHAPTER 2 WEIGHING SYSTEMS AND MATHEMATICAL 

MODELING 

2.1 Introduction 

Measuring load is an important and essential part of many industrial and commercial 
operations. It is crucial to have accurate measurements of the load, as small errors, 
occurring repeatedly, and lead to substantial loss of revenue. Therefore, weighing 
systems have an important device; it is denoted as load cell [11]. A load cell is 
uncontrollable weighing device capable of weighing an article. It is used in a variety of 
industrial weighing applications. 

The weight used for weighing at check weighing, called a ribbon weight or tape 
weight and consists primarily of a mechanical transport system and an electronic 
weighing system. The mechanical transport system used to transport the subject across 
the weight and further in the production system. The electronic weighing system is used 
to measure the weight of the item when the item transported across it. An image of a 
weighing conveyor is shown in Figure 2.1. Weighing unit consists of a conveyor system 
and the electronic weighing system. 

In this chapter the hardware components of the electronic checkweigher is 
presented, in addition to the mathematical model of the loadcell . 

 

 

Figure (2.1): Weighing Unit in Tape Weight. 

2.2 Checkweigher System. 

A checkweigher is a system that weighs items as they pass through a production line, 
classifies the items by preset weight zones, and ejects or sorts the items based on their 
classification. Checkweighers weigh 100% of the items on a production line. Typically, 
an infeed section, scale section, discharge section, rejecter or line divider, and 
computerized control comprise the physical checkweighing system. Checkweighers and 
their components vary greatly according to how they are used, the items being weighed, 
and the environment surrounding them. 
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2.2.1. Typical Uses of a Checkweigher 

Many possible uses for a checkweigher include: 

- Check for under and/or overweight filled packages. 

- Insure compliance with net contents laws for prepackaged goods 

- Check for missing components in a package including labels, instructions, lids, 
coupons, or products 

- Verify count by weight by checking for a missing carton, bottle, bag, or can in a 
case. 

- Check package mixes against weight limits to keep the solid to liquid ratio 
within established standards. 

- Reduce product giveaway by using checkweigher totals to determine filler 
adjustments 

- Classify products into weight grades. 

- Measure and report production line efficiency 

- Keep production printouts as a record of settings for management and regulatory 
agencies. 

- Analyze filler head performance for both single and multi-head fillers 

- Print production totals for a day, shift, hour, batch or product run 

- Monitor short and long-term filler performance through statistics. 

- Provide Statistical Process Control (SPC) charts for manual feedback and 
process adjustments. 

- Provide SPC for closed loop control, feedback, and automatic process 
adjustments 

-  Link packaging line data to upstream control and information systems 

- Interface with computers and Programmable Logic Controllers (PLCs) to link 
the checkweigher to the production process, including controlling the 
checkweigher through a remote PLC station 

-  Save Quality Control labor 

2.2.2. Statistical Uses of a Checkweigher: 

Today’s technology makes checkweighers more reliable and accurate than ever 
before. The information that a quality team had to collect by hand can now be collected 
in the blink of an eye by the checkweigher system. The primary value in checkweighing 
is in achieving “100% sampling” compared to intermittent sampling off-line. 

Statistical uses of a checkweigher include: 

- Analyze production by weight zone or classification. 

- Use 5 or more zones to get detailed fill weight information. 

- Monitor overall production efficiency through total count and total weight. 

- Monitor overall production speed efficiency (items per minute) 
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- Monitor standard deviation to alert operator or filler of an out of tolerance 
condition 

2.3 Checkweigher Electronic System 

Weigh scales have wide range of uses in industrial, commercial and consumer 
applications. Electronic weight scales design is based on using a load cell as the primary 
transducer. Load cell designs can be distinguished according to the type of output signal 
generated (pneumatic, hydraulic, electric). Strain-gage load cells convert the load acting 
on them into electrical signals with the output in range of mV/V. The signal chain has to 
handle the small signal accurately in presence of noise. The signal then has to be 
processed for non-linearity, temperature dependency and offset errors and drifts. Hence, 
the signal chain consists of appropriate excitation technique, signal conditioning, signal 
acquisition and processing and interface and communication. 

The most important parameters to consider when designing a weigh-scale system are 
internal count, ADC dynamic range, noise-free resolution, update rate, system gain, and 
gain-error drift. The system must be designed to be ratio metric, hence independent of 
supply voltage. 
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Figure (2.2): Checkweigher Electronic System. 

Excitation Technique: The sensor needs an accurate and a highly stable excitation 
source. Many pressure sensor designs use the same common reference for the excitation 
circuitry and the ADC for better accuracy and the thus the sensor output is ratio metric.  

Signal Conditioning: In most Load cells, the output range of a strain gauge is very 
small and thus the signal needs to be amplified before processing to prevent 
introduction of errors. The Signal Conditioner module should provide a wide selection 
of Low Noise Amplifiers with high CMRR and high gain at low frequencies to be 
suitable for the small signal output of the sensor. Additionally, since the signal 
bandwidth is low, the 1/f noise of the amplifiers can introduce errors 

Signal Acquisition and Processing: Modern high resolution differential ADCs have 
low temperature and offset drifts required for Weigh Scale application before it is sent 
to a MCU. Modern 8bits or 32 bits microcontroller can be used to perform calibration 
and compensation in addition to using the on-chip data converters for data acquisition. 
It also provides functions including calculation and signal processing, friendly user 
interface such as LCD display and keypad control, and wireless/wired data transfer and 
connectivity interfaces. 

Interface and Communication: Traditional RS-232/RS-485 interfaces remain popular 
choices for weigh scale application. Special application based weigh scales include 
wired options of Ethernet or USB connectivity and wireless options based on IEEE 
802.15.4 protocols 

Power: The Weigh Scale can be Line Powered (AC Mains supply) or Battery Powered. 
power management portfolio includes LDOs, DC/DC converters and buck boost 
regulators giving flexibility to the user to configure a power solution that meets the 
system requirements. The DC/DC buck converters offer over 95% efficiency over a 
wide battery voltage range, even with input voltage down to 1.8 volts extending battery 
life. Special Buck-Boost converters generate a stable required output voltage, supply 
constant current for over- and under-input voltage conditions, and support various 
battery configurations. 

2.4 Micro computer controlled load cell digitizer 

Almost all modern weighing instruments are utilizing microcomputers to control the 
operations and to calculate the weights, and the principles of operation for a typical load 
cell digitizer will be described around the block diagram in Figure 2.3. The digitizer can 
be divided into four main blocks: 

 Front end analogue signal conditioning 
 Analogue/Digital conversion 
 Microcomputer and digital processing. 
 Front panel control and display block 
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Figure (2.3): Block Diagram of typical Load Cell Digitizer. 

 

2.4.2. Front End Analogue Signal Conditioning 

The analogue front-end functions are performed in the blocks: 

 Bridge supply (Excitation of the load cells), 

 Sense amplifier, 

 Offset (of zero) and 

 Signal amplifier. 
These blocks together generate two signals: 

 a scaled , off-set corrected DC signal input, and 

 a reference DC signal, 
Which alternatively are switched to the input of the dual slope integrating A/D 

converter. 

The bridge supply unit supplies stabilized 10-15 volts DC to the load cell system. 

The sense amplifier block senses the voltage level at the load cells and generates 
reference voltages of 2 V for use by the A/D converter. 

The zero offset blocks develop a calibrated voltage to compensate for the user 
application dead load. The offset voltage is obtained from the sense amplifier so that it 
will "track" the changes in load cell excitation at the load cell connection box terminals. 

The signal amplifier block receives the load cell signal output and the offset voltage 
(from the zero offset blocks) and scales the combined voltages according to the SPAN 
gain calibration. The resulting DC signal is the input to the A/D converter unit. 
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2.4.3. Analog/Digital conversion 

ADC Internal Count : The  resolutions of typical weigh-scale systems, as seen by the 
user, range from a count of 1:3,000 at the low end up to 1:10,000 for high-end solutions. 
For example, a weigh scale that can measure up to 5 kilograms with a count of 1:10,000 
has a weight resolution of 0.5 grams. This resolution, as seen on the LCD display, is 
generally referred to as the external count. In order to guarantee that this resolution is 
met accurately, the internal resolution of the system must be better by at least an order 
of magnitude. In fact, some standards dictate that the internal count of the system be a 
factor of 20 times better than that of the external count. For the example above, the 
internal count would need to be 1:200,000. 

 

Figure (2.4): Typical Weigh-Scale System ADC Interface 

 
ADC Dynamic Range  

In weigh-scale applications using standard high-resolution A/D converters, the entire 
full-scale range of the ADC is unlikely to be used. In real applications if the load cell 
has a 5-V supply and a full-scale output of 10 mV. The linear range is 6 mV. Using a 
gain-of-128 stage on the front end, the ADC input will see about 768 mV full-scale. If a 
standard 2.5-V reference is used, only 30% of the ADC’s dynamic range is used. 

If the internal count needs to be 1:200,000 accurate for the full-scale range of 
770 mV, the ADC therefore needs to be of the order of 3× to 4× better in order to meet 
the performance requirements. In this case, for a count of 1:800,000, the ADC would 
require 19 bits to 20 bits of accuracy. The practical challenge posed by the signal-
processing requirement can now be understood. 

Gain and Offset Drift 

Industrial weigh-scale systems typically operate over a 50-degree (Celsius) temperature 
range. Designers must consider the accuracy of the system at temperatures beyond room 
temperature, since gain drift with temperature can be a dominant source of error. For 
example, a 20-bit stable system with a 1-ppm/°C gain-error drift will have 50 LSBs of 
error over a 50-degree range. Even though the system may be 1-LSB stable at 25°C, it is 
in effect only 50-LSBs accurate over the full temperature range. Choosing an ADC with 
low gain drift is thus a very important consideration when designing weigh scales. 

Offset drift is not as big a consideration. Most sigma-delta ADCs are designed 
with inherent chopping-mode techniques, which give the advantage of lower drift and 
better immunity to 1/f noise—useful features for weigh-scale designers. For example, 
the AD7799  A/D converter has an offset drift specification of 10 nV/°C. In a 20-bit 
system, this would contribute a total of only 1/4-LSB error over the full 50-degree 
operating range. 
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Noise-Free Resolution 

One common mistake when reading data sheets is lack of attention as to whether noise 
is specified as root mean square (rms) or peak-to-peak (p-p). For weigh-scale 
applications, the most important specification is p-p noise, which determines noise-free-
code resolution. The noise-free-code resolution of an ADC is the number of bits of 
resolution beyond which it is impossible to distinctly resolve individual codes due to the 
effective input noise—associated with all ADCs. This noise can be expressed as an rms 
quantity, often as a number of LSB units (counts, 2–n of full scale). Multiplying by 6.6 
(to capture 99.9% of all values in a standard distribution) provides a reasonable 
equivalent peak-to-peak value (expressed in LSBs). Data sheets for most Analog 
Devices sigma-delta ADCs specify both the rms- and the p-p, or noise-free, codes. 

Update Rate 

In Figure 4, it can be seen that the noise-free resolution of the system depends 
on the update rate of the ADC. For example, using a 2.5-V reference and an update rate 
of 4.17 Hz, the resolution is 20.5 bits p-p (gain of 128); whereas at 500 Hz, the 
resolution decreases to 16.5 bits. In weigh-scale systems, the designer needs to balance 
the lowest update rate at which the ADC can be sampled with the output data rate 
needed to update the LCD display. For high-end weigh scales, a 10-Hz ADC update rate 
is generally used. 

2.4.4. Weigh-Scale Reference Design 

The best ADC architecture to use for weigh-scale applications is sigma-delta, due to its 
low noise and its high linearity at low update rates. A further benefit is that noise 
shaping and digital filtering are implemented on-chip. The integration in the high-
frequency modulator shapes the quantization noise so that the noise is pushed toward 
one half of the modulator frequency. The digital filter then band-limits the response to a 
significantly lower frequency. This greatly reduces the need for complex post-
processing of the ADC data by the user. 

The ADC should also contain a low-noise programmable-gain amplifier (PGA) 
with high internal gain to magnify the small output signal from the load cell. An 
integrated PGA can be optimized to give low temperature drift, as compared to a 
discrete amplifier with external gain resistors. With a discrete configuration, any errors 
due to temperature drift will get amplified through the gain stage. The AD7799, 
specifically designed for weigh-scale applications, has an excellent noise specification 
(27 nV/rt-Hz) and a front-end gain stage with a maximum gain of 128 mV/mV. The 
load cell can be directly interfaced to this ADC. 

Figure 2.5 is a block diagram of a reference design, a weigh-scale system 
evaluation board designed at Analog Devices. It consists of an AD7799 ADC, 
controlled by an ADuC847 microcontroller. Besides providing, the digital interface to 
the AD7799 and implementing the post processing, the ADuC847 microcontroller itself 
also contains a 24-bit, high-performance sigma-delta ADC. This will allow users to 
compare test results between a system containing the AD7799 ADC, and a completely 
self-contained system using the ADuC847 ADC, with the same hardware connections, 
so as to choose a design that best meets the requirements. 
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Figure (2.5): Weigh Scale Reference-Design Block Diagram 

2.5 Load Cell Description  

An electronic weighing system is the electronic system used for dynamic weighing. A 
weighing system consists of one or more sensors and an intelligent module. The sensor 
is usually called a load cell and is available in several different types. In industrial 
weighing systems, there are three types of load cell: Magnetic transducer which 
measures change in magnetic permeability, oscillating string transducer which measures 
changes in frequency and the third one is the strain gauge transducer which measure 
changes in resistance [12]. The three types of load cell are called transducers because it 
converts the force into a measurable data. In the weighing system used in this thesis we 
will use the third type.  

Majority of the industrial weighing systems use the strain gauge load cell in 
various types such as bending beam, shear beam, canister, and S beam load cell, etc., as 
shown in Figure 2.2. It is considered the most common type of load cells in industry due 
to their low price and great loads area. In addition, it is suitable to be used in the dusty 
and moist workshop environments. 

 

Figure (2.6): Load Cell Types 

Figure 2.3 shows the structure of the load cell. It has four arms Whetstone 
bridge.  
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Figure (2.7): Wheatstone Bridge Load Cell 

This configuration allows for temperature compensation and cancellation of 
signals caused by forces not directly applied to the axis of the applied load. A regulated 
5 to 20 volt DC is required as input that applied between points A and D. When force is 
applied to the transducer, the Whetstone Bridge is unbalanced which causing an output 
voltage between points B and C. The emerging voltage between point B and C is 
proportional to the applied force on steal body, which is measured very precisely. 

As mentioned above load cells are blocks of metal that have been machined in 
such a way that specific areas are put under high strain when weight is applied to them. 
These areas have strain gauges attached to them with a high strength adhesive. The most 
common materials used to manufacture loadcell are Aluminum Alloy, Steel Alloy, and 
Stainless steel. Strain gauges themselves consist of thin wire or foil elements that are 
glued to the loadcell body. Strain gauge load cell are cunningly shaped so that even very 
small movements or “stretching” of the gauge results in comparatively large changes in 
resistance.  

The loadcell usually have four or six wires coming out of them. Two of these 
wires are to power the loadcell. This is called the excitation, whereas the excitation 
voltage of the loadcell ranges from 5 volts to 15 volt DC. Two of the other wires return 
a signal to the weight indicator. These are called the signal wires. If the loadcell has a 6-
wire connection, the extra two wires are called sense wires. The weight indicator to 
compensate for voltage drop in the excitation over long distances uses these. The sense 
wires are connected to the same point as the excitation wires. 

2.6 Load cell modeling  

In order to control checkweigher system, it is necessary to have a model that describes 
its dynamic behavior. Therefore, if we consider up and down motion of the conveyer 
belt of the checkweigher, we may apply two-spring mass to model this system as shown 
in Figure (2.4). 
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Figure (2.8): Load Cell Modeling 

When a product comes onto the weightable, it causes the weighable to move, 
and this can be described by the following differential equation: 

 •• •( ) ( ( ) ) ( ) ( ) ( )lw t g w t m t c t k t       (2.1) 
Or 
 

 •• • ( )( ) ( ) ( )
( ) ( ) ( )l l l

c k w t g
t t t

w t m w t m w t m
    

  
 (2.2) 

where:  
( )w t  = mass of the desired item. 

lm  = the equivalent mass of the load cell. 
c = damping coefficient.  
 = the position of the weigh table. 

 = the velocity. 
 = the acceleration. 

 
Defining the state variables 1( ) ( )t t   and 2( ) ( )t t   , the state differential 
equation of the system combined with equation (2.2) becomes: 
 

 2 2 1
( )( ) ( ) ( )

( ) ( ) ( )l l l

c k w t g
t t t

w t m w t m w t m
  


  
  

 (2.3) 

Equation (2.3) becomes:  

 2 2 1
( )( ) ( ) ( )

( ) ( ) ( )l l l

c k w t g
t t t

w t m w t m w t m
 (2.4) 

 
Equation (2.4) may be rewritten as state space equation as follows: 
 

 1 1

2
2

0 1 0
( )( )

( )
( )( ) ( ) ( ) ( )l l l

tt
w tk c g

t
t w t m w t m w t m

 (2.5) 
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and the controlled variable y(t) be the position of the weightable. 

Then the state differential equation in the matrix form is: 

 
0 1 0

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) 1 0 ( ) ( )

x t x t u t z t
t t t

y t x t v t

 (2.6) 

Where u(t) = w(t) 

The above equation rewritten in another form as follows: 

 

 
•
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

x t A t x t B t u t z t

y t Cx t v t

  

 
 (2.7) 

 
Where: 
x(t) is the state space of the mechanical system. 
u(t) is the system input (w(t) unknown mass of a product). 
z(t): stochastic disturbances (system noise with covariance Rv). 
y(t): system output (position of balance beam). 
v(t):  measurement noise (Gaussian zero mean white noise with covariance &). 
A(t) & B(t)   time varying matrices, and C is a constant matrix. 
 

The performance of a load cell depends primarily on its ability to deflect under 
highly repeatable conditions when load is applied or removed. Through this thesis, we 
will use 10kNF207 loadcell. The typical deflection for a 10kN F207 loadcell at full 
rated load is 9µm, or 9 microns. 

The relation between the stiffness and deflection in load cell determined by the 
equation: 

 F K x  (2.8) 

where: 

F= force (N). 

K= stiffness (N/m). 

x  is the deflection.  

From eq (2.8) the stiffness K is equal 91.1 10  N m  
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CHAPTER 3 KALMAN FILTER 

3.1 Kalman Filter 

Kalman filter method is an estimation method that widely applied in real time 
applications such as tracking objects, economics, navigation, and others. It used to 
estimate the state of the dynamic model (system) or part of it based on the measurement 
of the system inputs and output, and the relation between them [13].  

Dynamic model estimation has two steps: prediction and correction. In the first 
step, the state is predicted with the dynamic model describing the behavior of the state 
vector of the system. The second step is the correction was the observation model 
establishes the relationship between the measurement and the state vector. Therefore, 
the error covariance of the estimator is minimized. These steps are repeated each time 
with the state of the previous time as initial value. 

Kalman filter is a model that combines measured data and prediction of data to 
find the optimal estimate of the state of a system or state. The filter estimates the 
process state at some time and then obtains feedback in the form of (noisy) 
measurements [14]. The general state-space model can be written as (3.1). 

 1 


   

  

t t t t tt

t t t t t t

x A x B u

y C x D u
 (3.1) 

Where ,  ,  ,  and t t t tA B C D  are matrices, which describe the model. tx  is the 
state vector, describes the state of the system. ty  is observations vector describing 
measured data from system, tu  is an external input. Two different noises  t  and t  
added to the state and observation equations respectively. The state equation has 
covariance matrix ( )vR x and the observation matrix has covariance matrix ( )wR x . The 
two random variable ( )vR x and ( )wR x  assumed to be independent of each other. In 
addition, they are used to characterize the uncertainty in the state and observation model. 

Kalman filter works with a prior estimate of the state vector ˆ x , and a posteriori 
estimate of the state vector x̂ . Note the difference in the minus sign. A priori estimate 
can be considered as a prediction of state vector from the model in equation 3.1, and a 
posteriori estimate can be considered as the reconstruction of the actual state vector 
from the information in the observation, resort, and the model in equation 3.1. ˆ x and 
x̂ are random vector with covariance ˆ P and P̂ are given by equation 3.2:  

 
ˆ ˆ

ˆ ˆ

T

t t t t t

T

t t t t t

P E x x x x

P E x x x x

  (3.2) 

Where  ˆ  t t te x x and  ˆ t t te x x . 

Kalman filter equations are divided into two groups: time update equations and 
measurement update equations. The two groups of equation are divided into the next 
equations. 
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The time update equations or prediction are responsible for projecting forward 
(in time) the current state and error covariance estimates to obtain the a priori estimates 
for the next time step. They are based on the following equations: 

 

 1ˆ ˆ

 t t tx Ax Bu   (3.3) 
 1



 T

t tP AP A Q   (3.4) 

The measurement update equations or corrector  are responsible for the feedback 
as example, for incorporating a new measurement into the a priori estimate to obtain an 
improved a posteriori estimate. In addition, it based on the following equations: 

 

 1( )   T T

t t tK P C CP C R   (3.5) 
 ˆ ˆ ˆ( )   t t t t tx x K y Cx   (3.6) 
 (1 )  t t tp K C P   (3.7) 

Figure 3.1 shows Kalman filter cycle using time update and measurement update 
states.  

 

Figure (3.1): Kalman Filter Cycle 

The term in equations (3.5) and (3.6) corresponds to the previously mentioned 
linear projection and (3.7) is A calculation of the variance of the estimate of the state 
vector, which is obtained by the measurement equation. The difference in equation (3.6) 
is called the measurement innovation, or the residual. The residual reflects the 
discrepancy between the predicted measurement and the actual measurement. A residual 
of zero means that the two are in complete agreement. 

The time update equations can also be thought of as predictor equations, while 
the measurement update equations can be thought of as corrector equations. The 
predictor equation has a state estimate tx and error covariance tP . Both of them 
propagated at each time step. After that, the corrector equation provides feedback with 
new measurement to improve the previous estimation. 
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Figure (3.2): A Complete Picture of the Operation of the Kalman Filter 

3.2 Simple Kalman Filter 

Simple Kalman filter was presented in [4]. The model is shown as: 

 1 


  

 

t tt

t t t

m m

y m
  (3.8) 

Where ty  indicates the sum of the four load cells and tm  is the mass of the 
subject. The problem in this model that it estimates the position of the object not the 
object weight. Kalman filter denoted as an attractive method to estimate the weight of 
the object not only reducing the signal noise that accompanying the signal as this is 
done by simple filter.  

The filter can be initialized and started every time and the final estimate can be 
taken when the object starts moving on the belt again, as it must be assumed that the 
best estimate is obtained if all samples from the weighing are used to obtain the 
estimate. 

It can be expected that a pre-filter is required to remove the heavy vibrations at 
the resonance frequency of the simple model. The pre-filter is used the same way as 
used for the low-pass filtering. Figure 3.3 shows the use of model on a weighing of a 35 
kg subject. It appears that the method immediately appears to provide a good estimate 
of the mass, but it can also be seen that the remaining vibrations can be seen in 
estimates. This is because it is a poor assumption that the vibrations can be modeled as 
white noise. 
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Figure (3.3): Estimation of Weight with Kalman Filter- Simple Model 

35Kg load 

3.3 Kalman Filter 4 Phases: 

The weighing process on a weighing conveyor can be divided into four phases. The first 
phase is before the package enters the weighing area and this is considered the zero 
point, so you have a reference for weighing. In the second phase the package moves into 
the weigh feeder, in the third phase the package runs over the weigh feeder and in the 
fourth and final phase, the package leaves the weigh feeder. The model used in the 
Kalman filter will look different for each of the three phases, the Kalman filter is to be 
used in all phases. 

A solution to this problem is to implement the Kalman filter using a finite state 
machine, where the model changes depending on which state you are in. Photo sensors 
can be used to switch between states, and Figure 3.4 shows a diagram of the state 
machine. 

  

Figure (3.4): Overview of the Requirements for Changing the Phases of 

the State Machine 
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State-vector in the Kalman filter extended with two states. One is tdm , 
indicating an estimate of the change in mass on the weighing plane per sample, when 
the subject is moving on the weighing belt. The other ist indicates the estimate of the 
zero point. The new states are state-vector in the Kalman filter is given 
 

T

t t t tn m dm  . 

3.3.2. State "0" - No Package on Belt 

In the first phase, called state "0" in the state machine, the zero point is estimated to 
achieve a reference point for weighing. The following model is used: 
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 The model describes a zero, which is changed only by white noise. In addition, 
a shaping filters in the model to describe the vibrations from weighing belt. The 
observation is the sum of zero and the vibrations from weighing belt. 

3.3.3. State "1" – Package Moving into the Weighing Belt 

In the second phase, called state "1" in the state machine, the Kalman filter depends on 
the mass. While the subject is entering the belt, a rough estimate is obtained when the 
subject is brought into the belt. In this state, it is assumed that the mass of the subject is 
evenly distributed over the whole subject, and that the derivative of the measured mass 
will thus be approximately constant while the subject is moving. 

 

1

1

1

1

1 1 0 1

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0

tt

tt
t

tt

tt SF

t

t
t t

t

t

n n

m m

dm dm

n

m
Y

dm

A
  (3.10) 

The model describes mass as the final estimated mass plus the estimated 
derivative of the mass. The zero point and the vibrations described as in state 0 The 
observation is the sum of belt vibrations, zero and the mass of the belt. 

3.3.4. State "2" - The Whole Package on the Weighing Belt 

The third stage is called state "2" in the state machine. This state is used to estimate the 
mass of the subject when the subject is on the belt. In this state, we have the following 
model. 
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In this state, it is assumed that the item weight does not change. The model for 
the zero point and belt vibration is the same as in the other two states. The observation 
is the sum of zero, weight and belt vibration. 

3.3.5. State "3" –The Package Leaving the Weighing Belt  

In the fourth phase, called state "3" in the  state machine, the Kalman filter depends on  
the mass weight on the belt changing down to zero, while the subject is moving on  the 
weighing belt. This state is very similar to state "1" and it is assumed again that the 
mass of the subject is evenly distributed over the subject, and that the derivative of the 
measured mass will thus be approximately constant while the subject moving of the 
weighing belt. 
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The model describes mass as the final estimated mass minus the estimated 
derivative of the mass. The zero point and the vibrations described as in the other states. 
The observation is the sum of belt vibration, zero and the mass of the belt. 

Figure 3.5 shows the use of the Kalman filter with four stages on data from a 
12.4 kg item that is filtered with a pre-filter.  
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Figure (3.5): Estimate of Weight with Kalman Filter - 12.4 Kg Weight 

3.4 Tracking of zero 

The zero point in the model can cause problems during the use of data. This is due to 
zero constant shifts upwards with a few grams when the item is moving on the weighing 
belt unless the variance of the noise on the zero point is set very low. The actual origin 
of the electronic system is as stable as zero in the model introduces a constant error in 
the form of a variable offset rather than to compensate for a small almost negligible 
error if not zero point variance is set very low or zero. 

3.5 Kalman smoothing 

Kalman filter is causal, but as the result of the balance is not needed immediately after 
subject is moving on the weighing belt, then a non-causal Kalman smoother is used to 
update the current estimates of the weight. You can choose between three different 
types of smoother [15]. 
- Fixed lag smoother 
- Fixed point smoother 
- Fixed interval smoother 

A fixed layer smoother updates all metrics based on a certain number of 
measurement points out in "the future". A fixed-point smoother retrieve a specific 
measuring point relative to the available data, and a fixed interval smoother updates all 
endpoints in the range of use of all measuring points. If a fixed interval smoother is 
chosen, it is not known in advance when smooth transferee obtains the best result. 
Smoothing requires all state vector tx and variance matrices tP stored and smooth 
transferee initialized with [15]. 

 ,

,

ˆ ˆ
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Then all the measurement points' recursively with the following updates [5]. 
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Smoothing calculates the result is: 

 [ | (1: )] for 1 tE x y N t N   (3.15) 

The model used for the Kalman filter, describes the mass as a constant mass. Kalman 
smooth transfer is the expected value of this constant conditional on all measurements y 
(1: N), as described in equation (3.14). This means that all the Kalman smooth estimates 
of the mass will be the same if the process noise is set to zero, and this estimate will be 
the same as the last estimate in the Kalman filter. This means that there is no reason to 
apply Kalman smooth transfer provided the process noise of the mass is set to zero or 
close to zero.  
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CHAPTER 4 SIMULATION AND ANALYSIS  

Matlab program has been written to simulate weight graphs and to apply Kalman filter 
method to extract the weight of an item. Graphical User Interface (GUI) is shown in 
Figure (4.1). 

 

Figure (4.1): GUI Screen 

The GUI system has four screens, signal, autocovarience, distribution and 
histogram respectively. These four screens show the form of input and output signal of 
the object and the effect of the load cell parameters. The result displayed at GUI for 
calculates the weight from the output graph using Kalman filter method. 

Through GUI the user enters the product mass and then runs simulation to get the 
information about noise effects and how Kalman filter reduces the noise and improves 
the signal. 

Matlab was used as it encompasses a numerical computing environment which 
allows the implementation of algorithms, plotting of functions and data, creation of user 
interfaces and interfacing with programs written in other languages (Mathworks, 2012). 

Load cell has three parameters the load cell mass (M), spring constant (S) and 
damping factor (D). These parameters are entered. For investigating the effect of 
different load cell, the damping effect and spring, constant values were varied. Fig (4.2) 
compares two outputs of two different values of load cells for the same weight.  
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Figure (4.2): Load Cell Output 

 

The first quart of GUI shows the input or noisy signal (Blue) and the signal after 
filtering using Kalman filter (Red). The weight signal was generated to simulate a 
passing object over a checkweigher; this was implemented by feeding a rectangular 
pulse u(k) to the system mathematical model of the checkweigher, and adding 
measurement and process noise. Figure (4.3) shows block diagram of the Kalman filter 
in Simulink. 

 

Figure (4.3): Block Diagram of Kalman Filter 

We consider here the common case of noisy sensor measurements. There are 
many sources of noise in such measurements. For example, each type of sensor has 
fundamental limitations related to the associated physical medium, and when pushing 
the envelope of these limitations the signals are typically degraded. In addition, some 
amount of random electrical noise is added to the signal via the sensor and the electrical 
circuits. The time varying ratio of “pure” signal to the electrical noise continuously 
affects the quantity and quality of the information. The result is that information 
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obtained from any one sensor must be qualified as it is interpreted as part of an overall 
sequence of estimates, and analytical measurement models typically incorporate some 
notion of random measurement noise or uncertainty as shown above. 

There is the additional problem that the actual state transform model is 
completely unknown. While we can make predictions over relatively short intervals 
using models based on recent state transforms, such predictions assume that the 
transforms are predictable, which is not always the case. The result is that like sensor 
information, ongoing estimates of the state must be qualified as they are combined with 
measurements in an overall sequence of estimates. In addition, process models typically 
incorporate some notion of random motion or uncertainty as shown above. 

The second shows the autocovarience. Practical implementation of the Kalman 
filter is often difficult due to the inability in getting a good estimate of the noise 
covariance matrices Q and R. Extensive research has been done in this field to estimate 
this covariance from data. Varying Q and R affect the performance of the output signal. 

The third quart shows the distribution. A Gaussian distribution can be used to 
model the error in a system where the error is caused by relatively small and unrelated 
events. This distribution is a curve which is symmetric about the mean (i.e. a Bell 
shaped curve) and has a range measured by standard deviations above and below the 
mean of the data set.  

Figure (4.4) shows possible Gaussian distribution, where the mean (μ) is 10 and 
standard deviation (σ) is 2. F(x) is the number of times a certain value of x occurs in the 
population. The mean is simply the numerical average of all the samples in the 
population, and the standard deviation is the measure of how far from the mean the 
samples tend to deviate.  

 

Figure (4.4): Gaussian Distribution Function 

The following sections explain how and why a normal distribution curve is used 
in control and what it signifies about sets of data. 

Distribution curves can be used to determine the probability, P(x), of a certain 
event occurring. When this is done, the distribution curve is known as a Probability 
Density Function (PDF). In the figure (4.4), the x-axis represents the range of possible 
events (the magnitude of noise generated by the loadcell sensor). The y-axis represents 
the number of times a certain x value occurs in a population. The PDF can be described 
mathematically as follows: 

 
2 2( ) 2

2

1( )
2

xP x e
  (4.1) 

https://controls.engin.umich.edu/wiki/index.php/File:NormalDistribtutionPDF.JPG
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Note that one standard deviation of a Gaussian noise distribution is equivalent to 
the rms noise of the distribution. 

The last quart is the histogram. Histogram use to computes the frequency 
distribution of the elements in the input and output signal. From the plot one can easily 
see that the data exhibits a Normal (also called Gaussian or bell-shaped distribution) 
which is what should be expected if one is observing thermal noise. The histogram 
shows that there are two bell shaped distributions, the first around the zero weight value 
which represents the checkweigher without the weight of the object and the second 
distribution when the object is passing over the checkweigher. We can observe the 
difference between the noisy weight signal before and after the Kalman filter applied.  

As example we will enter 2Kg as product weight and load cell parameters 
M=1Kg, S=9.39N/m and damping ratio D=0.57 respectively. Figs 4.5 show the results 
after simulation. 

GUI shows that the product of the weight associates with noise equal 2.12Kg. 
After using Kalman filter the signal is filtered and the weight becomes 1.997Kg. This 
means that the error is reduced 0.123%. 

 

Figure (4.5): Simulation of Load Cell Measurement 

The following tables show the results for testing and varying mass of product 
and load cell parameter. As example in table (4.1) fixing load cell parameters and 
varying product mass. The results in Table (4.1) show that Varying Mass Product will 
not have much effect on the Kalman filter output. 

 
Mass (Kg) 0 0.5 1 2 3 5 10 

M (Kg) 1 

S (N/m) 9.659 

D (kg/s) 0.57 

Error %  0.0003 0.0055 0.0032 0.006 0.0067 0.009 
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For investigating the effects of different load cells, the damping coefficient and 
spring constant values were varied , Table (4.2) shows that by changing the loadcell 
mass the system output error will increase. As example in Table (4.2) when product 
Mass =1Kg and M=100 the error equal 5.087. This means that when the object passing 
through the conveyer the load cell cannot recognize the mass.  

 
Table (4.2) Varying Load Cell Mass 

 
Mass (Kg) 1 

M (Kg) 1 0.5 1 10 20 50 100 

S (N/m) 9.659 

D (kg/s) 0.57 

Error %  0.0486 0.0055 -1.263 -1.835 0.466 5.087 

 

To simulate  load cells with different stiffness values, Table (4.3) illustrates running a 
fixed load over load cells with different spring constant values. The results show 
running a 1kg product weight over a 1kg load cell with a damping coefficient of 
0.57kg/s. The stiffer load cell has less deflection as expected  

Table (4.3) Varying Spring Constant 

 
Mass (Kg) 1 

M (Kg) 1 

S (N/m) 9 9.3 9.659 9.7 9.9 10 11 

D (kg/s) 0.57 

Error % -7.101 -2.8 0.0055 0.4496 2.619 3.706 14.651 

 
 

To simulate the effect of changing the damping coefficients of the loadcell , table (4.4)  
compares different damping coefficient on a 1kg load cell with 9.659N/m spring 
constant using a 1kg load 

Table (4.4) Varying Damping Factor 

Mass (Kg) 1 

M (Kg) 1 

S (N/m) 9.659 

D (kg/s) 0.5 0.54 0.57 0.6 0.63 0.66 0.7 

Error % -0.288 -0.120 0.0055 0.1321 0.2590 0.3863 0.5565 

 

For example by entering 0.5Kg as product weight and load cell parameters 
M=1Kg, S=9.39N/m and damping ratio D=0.57 respectively. Fig 4.6 shows the results 
after simulation. 
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Figure (4.6): Simulation of Load Cell with Mass= 0.5Kg, M=1kg, 

S=9.39N/m and D=0.57 

Figure (4.6) shows that the Kalman filter could be used for optimal filtering in 
dynamic weighing systems. The uncontrollable input signal in the dynamic weighing 
system, which represents the weight input on the weightable (Blue). And the output 
signal (Red) which represent the controllable signal using Kalman filter. 

The covariance of the system noise, R, is considered a measure of the level of 
confidence in the given model of the load cell. It arises from the state error covariance 
between the system and the model of the system. Its value will be determined using 
performance indices as quality of filter Q. In our case, the values of the covariance 
matrices for system and measurement noise are Q= 2 and R= 1, respectively. If a 
particular application needs a faster system response or smaller steady-state error, it can 
be achieved by changing the values of the weighting matrices. Finally, increasing the 
value of Q and/or decreasing the value of R, the system response and steady-state error 
are improved. The above figure shows that the best values for Q and R. there values are 
0.98 and 0.002 respectively. 
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CHAPTER 5 WEIGHING SYSTEM TESTING & ANALYSIS 

5.1 Introduction  

An experiment setup was designed to acquire the weight raw signal from a 
Checkweigher with single load cell; a block diagram that describes the signal flow is 
shown in Figure 5.1 

Checkeigher 

Mechanical 

system

Loadcell
Digital Weight 

Transmitter

RS232 to USB 

converter

PC interface portMatlab codeDisplay

 

Figure (5.1): Experimental System Setup 

 

5.2 Checkweigher Mechanical system 

A general type checkweigher machine was used to test the filtering algorithm, the 
machine design is suitable for testing different sizes of product, in addition of product 
feed speed, the machine in Figure 5.2 has a built in digital weight transmitter which has 
a communication interface to transmit the weight signal to the computer running the 
filtering code. 

 

Figure (5.2): Checkweigher machine setup 
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Different weight samples were tested on the checkweigher Figure 5.3 ,and in different 
conditions especially in the noisy industrial environment with different sources of 
mechanical vibration from nearby machines. 

 

 

Figure (5.3): Checkweigher weight sample testing 

 

5.3 Digital Weight Transmitter 

A digital weight transmitter is used to convert the loadcell signal to a digital 
form, and store it in the device’s memory, the unit has a built in RS232/RS485 
converter which allow for direct connection to PC or PLCs Figure 5.4. 

The weight data is sent continuously to the computer via Rs232/RS485 interface, or sent 
on demand using ASCII format. 

 

 

Figure (5.4): Digital Weight Transmitter interfacing 
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5.4 Checkweigher signal display 

After capturing and storing the checkweigher signal in the Matlab ‘mat’ file format, we 
can plot this data before filtering  as shown in Figure 5.5.  

 

 

Figure (5.5): Checkweigher Signal before Filtering 

In Figure 5.6 we plot the weight signal after implementing the Kalman filter algorithm. 
 

 

Figure (5.6): Checkweigher Signal after Filtering 
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CHAPTER 6 RESULTS AND DISCUSSIONS 

This chapter presents simulations and results. Mathematical modeling of a commercial 
checkweigher was carried out in this study. The loadcell was mathematically modeled 
with spring-mass-damper approximation method. Simulation and practical experiments 
were carried out to test the Kalman filtering algorithm. The Kalman filter technique was 
introduced to reduce the noise and distortion in the weight signal. The developed 
software included a simulator part to test the loadcell model and to show the relevant 
result to the hardware model. A typical example, calculated with the generated software, 
was included. 

6.1 Simulation results 

The simulation method allowed the testing and investigating of loadcell parameters on 
the stability and performance of the system model, changing these parameters is based 
on the construction of the loadcell. 

The simulations were successful in providing an easy and quick comparison for 
different load cell parameters while presenting a visual graph of the load cell output for 
the weight applied. The real world testing allowed for a better understanding of external 
and internal variables unaccounted for using the simulations. 

Simulations done on Matlab of different weigh graphs running with different 
weights between 0.5 and 10kg. It show that the Kalman filter output error and error 
percentage is between 0.0003 and 0.009%. The error is slightly increased with 
increasing product weight, while any change to the loadcell parameters from the actual 
values resulted in large error. The Kalman method implemented on the simulation 
model proved to improve the weighing accuracy. 

We compare our out values with the output values in [16] for six weights of 57g, 
145g, 197g, 242g, and 378g were run through simulation. The results are presented in 
Table (6.1), Table (6.2) and Figure 6.1, Figure 6.2. 

 

Table (6.1) Simulation results of Kalman filter compared with three method 

 

Actual weight Frequency 
method 

Averaging 
method 

Damping 
method 

Kalman filter 
method 

57 gm 57.122 56.709 57.179 57.2 

145 gm 144.66 144.050 145.5990 144.9 

197 gm 197.640 194.780 196.270 197.102 

242 gm 242.690 245.490 241.1 242.12 

272 gm 272.560 267.400 272.960 272.4 

378 gm 377.170 366.730 376.360 377.5 
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Table (6.2) Simulation results of Kalman filter error compared with three method 

 

Actual weight Frequency 
method error 

Averaging 
method error 

Damping 
method error 

Kalman filter 
method error 

57 gm 0.122 0.291 0.179 0.2 

145 gm -0.43 -0.95 0.5990 -0.1 

197 gm 0.640 -2.22 -0.73 0.102 

242 gm 0.690 3.490 -0.9 0.12 

272 gm 0.560 -4.6 0.960 0.4 

378 gm -0.83 -11.27 -1.64 -0.5 
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Figure (6.1): Object Weight error comparison 
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Figure (6.2): Actual Weight VS measured weight 

6.2 Experimental Results 

After implementing the developed model using single point of load cell with DGTQ 
data acquisition card and Kalman, filter on the computer, the experimental results of the 
checkweigher system showed a great dependence of the system on the loadcell 
parameters. Without having, the correct parameters of the loadcell used in the system 
would result in a very bad performance of the filtering algorithm. 

In our study, we had the approximated parameters of the load cell after trying different 
implemented techniques, which gave a good performance of the Kalman filter algorithm. 

A comparison of the implemented model and three other methods for six 
weights of 57g, 145g, 197g, 242g, and 378g. The results are presented in Table (6.3), 
Table (6.4) and Figure 6.3, Figure 6.4. 

 

Table (6.3) Experimental results of Kalman filter compared with three method 

 

Actual weight Frequency 
method 

Averaging 
method 

Damping 
method 

Kalman filter 
method 

57 gm 57.122 56.709 57.179 56.88 

145 gm 144.66 144.050 145.5990 145.14 

197 gm 197.640 194.780 196.270 197.16 

242 gm 242.690 245.490 241.1 241.9 

272 gm 272.560 267.400 272.960 271.7 

378 gm 377.170 366.730 376.360 378.25 
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Table (6.4) Experimental results of Kalman filter error compared with three 

method 

 

Actual weight Frequency 
method error 

Averaging 
method error 

Damping 
method error 

Kalman filter 
method error 

57 gm 0.122 0.291 0.179 -0.22 

145 gm -0.43 -0.95 0.5990 0.14 

197 gm 0.640 -2.22 -0.73 0.16 

242 gm 0.690 3.490 -0.9 -0.1 

272 gm 0.560 -4.6 0.960 -0.3 

378 gm -0.83 -11.27 -1.64 0.25 

 

 

 

 
 

Figure (6.3): Actual Weight VS measured weight 
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Figure (6.4): Object weight error comparison. 
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CHAPTER 7 CONCLUSION 

In dynamic weighing systems conventional control and filtering methods employed 
have limitation in improving the accuracy and throughput rate. In this study, Kalman 
filtering technique has been explored to find a solution that will enable measurement 
accuracy and throughput rate of article weighing to be increased. 

The simulation for a Dynamic Weighing System (DWS), was successfully 
implemented, with the model of the checkweigher is described in detail. The results 
generated by the simulator were compared to the ones obtained in the real system and 
they were quite alike. The mathematical model was approximated by a spring-mass-
damper system, and the model parameters were identified by the experimental data for 
open-loop response.  

A GUI was designed to simulate Kalman filtering for a real load cell signal. The 
parameters can be entered and changed according to the load cell type. It is possible to 
discover and to quantify improvements in the DWS, without having to make 
unnecessary and expensive changes in the real process. The simulator can manipulate 
parameters of the system model used in signal generation and filter design.  

Future work will be on solving the load cell parameters identification problem, 
using more theoretical approach. 
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APPENDIX A: DYNAMIC WEIGHING SYSTEM 

Dynamic weighing hierarchy 

 
Figure (A.1) General Hierarchy of Weighing Systems 
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APPENDIX B: ECONOMIC COST AND MATLAB 

FUNCTIONS 

Economic Cost 

Economic cost of the project  is listed in Table (B.1) showing the software cost and 
hardware cost. 

Table (B.1) Software Cost And Hardware Cost. 

 Item Cost ($) 

1 Damped Load Cells Tedea-Huntleigh Model 240 1000 

2 Digital Weight indicator 1000 

3 NI- USB DAQ 1000 

4 Personal Computer 800 

5 Checkweigher Hardware 2400 

6 Mathworks Matlab software student 

package 

300 

7 Miscellaneous expenditure 500 

 Total 7000 
 

MATLAB function description 

 

MATLAB File Description 

DWS.m Main MATLAB file 
DWS.fig Main GUI file 

DWS_Init.m Initialize System parameters 
SerStart.m Start Serialport capture loop 
SerStop.m Stop Serialport capture loop 
KMB.m Loadcell dynamic simulation 

LoadDWS.m Load saved capture file 
KalmanFilter.m Kalman filter Algorithm 

 


