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SUMMARY 

 

Sphingolipids regulate numerous cell functions through the activation of specific signaling 

cascades. In mammalian cells, these lipid-mediated processes include proliferation, differentiation, 

apoptosis, and cell trafficking, while lower eukaryotes like yeast use them as crucial signaling 

molecules in cell cycle control and stress responses, as well as a host of other phenomena.  In most 

cases, proper signaling requires specific sphingolipids to assume altered concentrations or different 

sphingolipid species to be present in fine-tuned proportions, and detailed knowledge of particular 

alterations in sphingolipid profiles is therefore a prerequisite for understanding the control of 

fundamental cellular behaviors. Although the metabolism of sphingolipids has been investigated 

for several decades, such a detailed mechanistic and systemic understanding of the pathway system 

of sphingolipid biosynthesis and utilization is still lacking, due to the complicated topology of many 

the reaction steps in the system and to multiple means of regulation at the genomic, proteomic, and 

metabolic levels. As a consequence, it is still impossible to predict with reliability how cells will 

react and adapt to external stresses and which specific roles sphingolipids play in such stress 

responses.    

Mathematical models of sphingolipid metabolism have been developed over the past 

decade to assist in investigations of the pathway structure and its regulatory mechanisms. Among 

these, the modeling framework of Biological Systems Theory (BST) has proven very beneficial in 

capturing the nonlinear behavior of the pathway and its functionality. In this thesis, I am using BST 

to develop computational approaches that shed light on the regulatory mechanisms with which 

baker’s yeast responds to two types of stresses, namely heat and hydroxyurea (HU). The first of 

these represents a natural stress, while the second constitutes an artificial stress, which the cells had 
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never encountered before. This latter stress if of interest, as HU has been identified as a drug to 

treat various diseases, including sickle cell anemia and certain cancers. 

Strong external stresses typically mandate the transition of a cellular system from its 

normal steady state to a different state, which may be transient or constitute a new steady state. In 

the first project of this work (Chapter 2), I perform a theoretical state transition analysis, which in 

some sense encompasses all possible strategies for reaching a required new steady state. This 

analysis makes use of the uniquely beneficial features of S-systems within the BST framework. 

Based on this theoretical foundation, I propose a sophisticated piecewise optimization strategy that 

appropriately captures the sphingolipid dynamics in yeast under 30 minutes of heat stress (Chapter 

3). The large-scale simulations within this analysis reveal novel cellular response strategies. In 

particular, they demonstrate that the cells trigger a switch from an initial phase of sphingolipid 

biosynthesis to a later phase of sphingolipid retrieval from cell membranes.  

Recent research has emphasized the importance of distinct variants of the same ceramide 

molecules, which differ in their fatty acyl CoA chain lengths and have specific signaling functions. 

To address the roles of these distinct variants, I propose in Chapter 4 a new model specifically for 

the biosynthesis and utilization of the different ceramide variants. This much more detailed model 

uses the previous model (Chapter 3) as boundary conditions and permits a detailed analysis of the 

dynamics of all ceramide variants in response to heat stress. The simulations with this model reveal 

interesting patterns of ceramide dynamics that are different for variants with long fatty acyl groups 

and with very long fatty acyl groups.  

Stresses lasting only 30 minutes more or less exclude regulation via gene expression. 

Addressing this issue in Chapter 5, I analyze long-term, 20-hour exposure of yeast cells to 

hydroxyurea. The custom-tailored optimization approach I developed for this purpose, followed by 

a mass flow analysis, permits the novel identification and characterization of very subtle regulatory 

mechanisms of ceramide biosynthesis that are based on the cells’ distinction between ceramides 

with saturated or unsaturated fatty acyl groups.      
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Taken together, this dissertation work reveals novel, and often rather subtle control 

mechanisms with which yeast cells coordinate complex responses to external stresses. Beyond the 

analysis of sphingolipids, this work demonstrates how innovative techniques of dynamic modeling 

and optimization can assist in the extraction of detailed information from modern metabolomics 

data.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Cellular Stress Response 

 

Cells and organisms are regularly exposed to small fluctuations in their environments and have 

developed effective mechanisms of tolerance. Stronger perturbations lead to stresses, which are not as easily 

tolerated and require the cells to mount well-coordinated, multi-scale responses. These stress responses are 

very intriguing, because they offer superb windows into the complex strategies and mechanisms with which 

cells manage to live and thrive in a changing world. Understanding these responses in detail, however, is 

very difficult because of the complex coordination of intracellular processes, which include protein 

folding/unfolding, metabolic regulation, signaling transduction and gene expression. Furthermore, different 

environmental changes may trigger target genes through different functional paths.  For instance, increased 

temperature causes changes in protein folding or unfolding, which alters enzyme activities immediately and 

further triggers signaling intermediates, while toxic agents bind to cell membrane acceptors to transduce 

the stress signals into the cells. Integrating these factors into an in-depth understanding of cellular stress 

responses is a true challenge.  

Tremendous efforts over many decades have been devoted to understanding stress responses, and 

these have changed with the arrival of new and improved methods. Currently available experimental 

measurements of stresses and their consequences span a wide array of strategies, including assessments of 

correlations between the expression and prevalence of genes, enzymes, and metabolites. Furthermore, many 

attempts have been made to apply cellular responses beneficially to pharmaceutical product development, 

the maximization of biofuels production, and a variety of other targets. Nonetheless, a detailed, systemic 
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and mechanistic understanding of specific stress responses is by and large still missing, due to the 

complexity of cells and also due to the overall paucity of precise and sufficiently comprehensive data 

obtained at various different time scales. In this dissertation, I focus on a systemic understanding of stress 

responses in the baker’s yeast Saccharomyces cerevisiae. A particular focus is the role of important 

molecules from the family of sphingolipids. The main strategy of this work is the development of modeling 

techniques that allow me to extract regulatory information from limited metabolic time series 

measurements.   

   

1.2 Roles of Sphingolipids in Stress Responses of S. cerevisiae 

 

Decades of research on sphingolipids have documented the enormous importance of this class of 

lipids in mediating a variety of critical cell functions. Sphingolipids exist in eukaryotic cells, where they 

serve not only as constituents of membranes but also as second messengers in different signaling 

transduction pathways. These can trigger specific changes in gene expression in organisms like baker’s 

yeast and aid the control of cell proliferation, differentiation, cell trafficking and apoptosis in mammals [1-

4]. Different sphingolipids often mediate overlapping but distinct cell functions, and it is frequently the 

balance between different sphingolipid species that evokes a critical response. In particular, the balance 

among ceramide, sphingosine, and sphingosine-1-phosphate is critical for regulating stress responses, 

programmed cell death, cell proliferation, differentiation, and cancer survival [5].  

Baker’s yeast (Saccharomyces cerevisiae) is a commonly accepted model for sphingolipid research 

because its metabolism is similar to that in mammalian cells and it is much easier to handle in the laboratory. 

Testing yeast sphingolipids has therefore become an important research focus for identifying regulatory 

patterns in their prevalence upon stresses. Heat and hydroxyurea treatment were chosen for my research as 

representatives of natural and artificial stressors, respectively. Heat is a particularly useful stressor for 

microorganisms as it is easily applied and measured, and because cells and organisms have regularly 
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experienced changes in temperature throughout evolution and developed very effective defenses. Indeed, it 

is well known that yeast reacts to modest heat stress with responses at several levels of its biological 

organization [6-8]. Numerous genes are up- or down-regulated within a few minutes, heat shock proteins 

are mobilized, transcription factors relocate between the cytosol and nucleus, the protective disaccharide 

trehalose begins to accumulate to high concentrations, and the metabolic profile of sphingolipids undergoes 

drastic changes. All these changes commence essentially immediately after a sufficient shift in temperature 

and may last for an hour or more. Some of these alterations, in turn, are known to serve as signals effecting 

secondary responses, for instance, by activating transcription factors and stress elements that trigger the 

expression of genes associated with heat stress.  

Hydroxyurea is a chemotherapy drug that slows down or even halts DNA synthesis. The signaling 

roles of a specific sphingolipid species, ceramide, in mediating hydroxyurea stress responses have recently 

been identified. Although signaling roles of sphingolipids in mediating heat stress and hydroxyurea stress 

responses have been studied and understood to some degree, detailed metabolic and cellular response 

strategies of sphingolipids in these stress conditions have not yet been clearly identified, mainly because of 

the lack of a systemic understanding of the complex collective cellular responses upon stresses. In response 

to this situation, the main goal of this dissertation is to gain fundamental and systemic insights into yeast 

sphingolipid stress responses at the metabolic level. It is hoped that these insight will contribute to a detailed 

understanding of how critical sphingolipid species are altered upon environmental changes and how they, 

in turn, serve as signal transducers for further response actions.    

 

1.2.1 Sphingolipid metabolism in yeast 

Multiple environmental stresses, including heat or exposure to toxic agents, induce perturbations 

in sphingolipids concentrations, which secondarily result in the activation of distinct signaling pathways. 

Therefore, it is important to understand how different sphingolipid species are synthesized, transformed, or 

degraded, and how these processes are regulated upon stress.  
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Sphingolipids can be generated via two paths, namely de novo biosynthesis and the recycling of 

inositol phosphoceramide (IPC). De novo biosynthesis of sphingolipids is initiated by the condensation of 

serine and palmitoyl-CoA, a reaction which is catalyzed by serine palmitoyltransferase (SPT) (Figure 1.1). 

The product, 3-keto-dihydrosphingosine (3KDHS) is quickly reduced by KDHS reductase to 

dihydrosphingosine (DHS). DHS is the main source of so-called “ceramide backbone” compounds. It can 

be converted into different dihydroceramides (DHC), due to multiple variants of fatty acyl CoAs, which 

can serve as substrates for ceramide synthase. The reverse reaction, from DHC to DHS, is catalyzed by 

dihydroceramidase. DHC and DHS are key branch points in the sphingolipid biosynthesis pathway, because 

hydroxylases can irreversibly convert these compounds into phytoceramide (PHC) and phytosphingosine 

(PHS), respectively. PHC and PHS may undergo reversible reactions catalyzed by ceramide synthase (PHS 

to PHC) and phyotoceramidase (PHC to PHS); the forward reaction (PHS to PHC) requires one from among 

several different fatty acyl CoAs as substrate.  

 

 

Figure 1.1. Greatly simplified diagram of ceramide metabolism.  Key metabolites are shown in boxes; while enzymes 

are represented in italics. See Text for abbreviations. 
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De novo biosynthesis is not the only option for making sphingolipids available when needed. 

Equivalent to sphingomyelin in mammalian cells, yeast inositol phosphorylceramides (IPCs), which are 

also called complex sphingolipids, refer to a class of ceramides with one or two inositol groups attached. 

They can be formed from DHC and PHC substrates via catalysis by the enzyme IPC synthase. IPC can be 

irreversibly converted into mannose inositol phosphorylceramide (MIPC), which can furthermore form 

mannose di-inositol phosphorylceramide (MIP2C). Importantly, IPC, MIPC and MIP2C all can serve as 

sources of DHC and PHC, through catalysis by the enzyme IPCase. Thus, degradation of IPC compounds 

serves as the second path of ceramide production. Detailed diagrams of sphingolipid metabolism are shown 

in Chapters III and IV.    

Investigating dynamic stress responses of a complicated pathway like sphingolipid metabolism can 

be very difficult for our unaided mind because key regulatory mechanisms act at multiple scales of the 

system and the inter-conversions of materials are dynamic and context dependent. Assistance can be found 

in mathematical and computational modeling, which has gradually been gaining sufficient power and 

efficacy to shed light on complex biomedical systems.  

 

1.3 Mathematical modeling and reverse engineering 

 

Mathematical modeling uses mathematical concepts and techniques to describe phenomena in the 

real world. While modeling has been used and applied in physics and engineering for many years, its 

effective application to larger biomedical systems is relatively new. For instance, simulations of models 

can reliably predict what might happen to engineered systems and machines and help engineers to design 

robust strategies that avoid dangerous or undesirable situations. The space shuttle program is a successful 

example of this type of simulation analysis. By designing physics-based models and putting mechanical 

and environmental parameters into these models it has been possible to predict precisely how much power 

the space shuttle needs, how much wind shear it can tolerate, what the perfect reentry angle is, and so on. 
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These predictions are accurate enough to send an engineered machine successful into the orbit. While 

simulations of extremely complicated systems work in many engineering cases, one might ask why one 

cannot make similarly reliable predictions for biomedical systems, cells, or organisms. Why can’t we 

simply borrow the mature techniques and experiences from physics and engineering to gain an 

understanding of complex cellular machines?  

One main challenge of modeling cellular systems, and a significant difference between modeling 

engineered and biomedical systems, is that the building blocks of cells are not as well known as engineering 

objects. While engineers build cars or airplanes from basic components in a bottom-up approach, 

biomedical engineers are forced to work in the reverse, top-down manner. Looking at a complex system, 

they must dissect often ill-characterized links between genes, enzymes or metabolites from measurements 

of high-level expressions, activities or concentrations. Converting these measurements into properly scaled 

numbers and imputing parameter values for mathematical models requires specifically designed algorithms 

that are hoped to reveal the unknown machineries that govern the observed behaviors of biomedical 

systems.  

In this dissertation, I use a specific modeling framework for this reverse engineering task, namely, 

Biochemical Systems Theory (BST), which is based on favorably structured ordinary differential equations 

(ODEs). Based on power-law approximation, BST uses two main formulations. One is called a Generalized 

Mass Action (GMA) system and the other is called an S-system model. The base techniques for designing 

models in each formulation can be found in the following examples. Detailed descriptions can be found in 

Chapter 2 for S-system models and in Chapters III and IV for GMA systems.  

 

1.3.1 GMA model 

Building a GMA system of a metabolic pathway is intuitive and straightforward. First, one 

identifies the dependent variables, independent variables and reactions. For the illustration in Figure 1.2, 

𝑋1 to 𝑋4 are metabolites and 𝑋5 to 𝑋9 are enzymes with constant amounts and activities. The metabolites 

𝑋3 and 𝑋4 are defined as constant inputs, which means that they are independent variables, along with 𝑋5 
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to 𝑋9. Therefore, the model has two dependent and seven independent variables. Reactions describe how 

metabolites are converted, and the magnitudes of these conversions, referred to as fluxes, are the target of 

the model.  

The dynamics of any dependent variable can at first be described as the sum of influxes minus the 

effluxes. Taking the first dependent variable in Figure 1.2 as an example, one obtains  
𝑑𝑋1

𝑑𝑡
= 𝐹𝑙𝑢𝑥1 +

 𝐹𝑙𝑢𝑥2 − 𝐹𝑙𝑢𝑥3. Following this logic for all dependent variables, we can easily build a flux based model.  

Each flux can be described in many ways. In BST, the power-law function has been adopted to 

approximate any flux in the system. Using Figure 1.2 again as an example, metabolite 𝑋4 is converted to 

𝑋1, and the process is catalyzed by enzyme 𝑋6 and regulated by metabolite 𝑋2. In a GMA system, this 

𝐹𝑙𝑢𝑥2 is formulated as 𝛾1,2𝑋2

𝑓1,2,3𝑋4

𝑓1,4,4𝑋6

𝑓1,6,5 , where 𝛾1,2 is the rate constant and the indexed exponents 

𝑓𝑖,𝑗,𝑘 are kinetic orders that capture the strength of each variable on the flux. (Please see Figure 1.2 for 

details of the numbering scheme.) 

 

 

Figure 1.2. Example of a GMA model. 
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1.3.2 S-system model 

Technically speaking, an S-system model can be seen as a power-law approximation of a GMA 

model. The rationale for this approximation is that the resulting S-system structure is mathematically 

simpler and permits certain analyses that are difficult for GMA systems. (Please refer to Chapter 2 for 

details.)  

The key concept is that the rate of change of any dependent variable can be described as only one 

(aggregated) input term and one (aggregated) output term. These input and output term contain power-law 

representations of the contributions of variables associated with all influxes and all effluxes, respectively. 

As an example, consider Figure 1.3, which is the same metabolic pathway system as in Figure 1.2. We first 

consider dependent variable,  𝑋1 . To construct the S-system equation, one collects all dependent and 

independent variables associated with any of the inputs: 𝑋2 , 𝑋3 , 𝑋4 , 𝑋5  and 𝑋6 . The input term of 𝑋1 

therefore can be formulated as 𝛼1𝑋2

𝑔1,2𝑋3

𝑔1,3𝑋4

𝑔1,4𝑋5

𝑔1,5𝑋6

𝑔1,6 , and following the same rule, the output term 

of 𝑋1 can be formulated as 𝛽1𝑋1

ℎ1,1𝑋7

ℎ1,7 , where 𝛼𝑖 , 𝛽𝑖  are rate constants and 𝑔𝑖,𝑗 , ℎ𝑖,𝑗  are kinetic orders. 

Note that the degradation term of X1 is identical to the production term for X2, which imposes constraints 

on the parameter values. Here, it is identical to Flux3 in the GMA formulation. 

 

Figure 1.3. Example of an S-system model. Compare this representation with the GMA system in Figure 1.2. 
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1.4 Generic research strategy 

 

Sphingolipid metabolism is altered upon stresses in order to “shift” the metabolic state of 

sphingolipid species such that it initiates signaling transduction. Such shifts are mainly achieved by 

changing the activities of many enzymes simultaneously. In order to understand these state transition 

mechanisms, I establish in this dissertation work a theoretical and computational framework for the 

assessment of stress responses, using S-system and GMA models.  Chapter 2 contains a mathematically 

rigorous, theoretical analysis of system shifts to new steady states. Although the transitions in this case are 

exclusively between steady states, this fundamental research provides a solid platform for the further 

development of algorithms that will be used for lipidomics data in the form of actually measured wet-lab 

time series of concentrations. 

Sphingolipid stress responses are dynamically and collectively coordinated. An interesting aspect 

of the collective cellular responses is the fact that they occur at distinct time scales. Some are effective 

immediately, while others require involvement of the entire sequence of gene expression, transcription, 

translation and protein modification before the end result takes effect. In Chapters III and IV, I focus on the 

particular dynamic roles of sphingolipids and ceramides, respectively, in the heat stress response of the 

baker’s yeast Saccharomyces cerevisiae. Specifically, I investigate how the cell establishes the observed 

alterations in sphingolipid and ceramide profiles within a 30-minute time period of heat stress. It is clear 

that these altered metabolite profiles are the result of changes in the activities of some or all enzymes of 

sphingolipid metabolism. I will demonstrate that critical changes in activity can be inferred with novel 

computational approaches that use measured times series of different sphingolipid concentrations, 

combined with customized optimization strategies and the corresponding dynamic model that our 

laboratory has been developing and fine-tuning over the past decade [9-11]. 

Ceramide mediates cellular responses to the chemotherapy drug hydroxyurea (HU). Therefore, 

maintaining proper ceramide levels is a crucial task for cells when exposed to HU. In Chapter 5, I investigate 
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how cells manage to regulate levels of multiple ceramide species under 20 hours of HU stress. I use for this 

analysis a newly developed procedure that combines concepts of the optimization approach proposed in 

Chapter 3 with techniques of mass flow analysis.    
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CHAPTER 2 

 

ANALYSIS OF OPERATING PRINCIPLES WITH S-SYSTEM MODELS 1  

 

2.1 Biological Design and Operating Principles 

 

 Biological design principles refer to structural or regulatory features of biological systems that are 

observed more often than expected. They are thought to have survived evolution, thereby making them 

apparently superior to hypothesized alternative structures that a priori might seem equally reasonable and 

valid [12,13]. The typical question in the investigation of design principles is: What is the advantage of a 

particular structural or regulatory feature over an otherwise equivalent design that lacks this feature?   

 Design principles are identified and investigated through comparisons with reference cases. In 

static network analysis, a candidate structure is declared a motif [14-17] if it is found significantly more 

often than in random graphs, as they were originally proposed over fifty years ago by Erdös and Rényi [18]. 

Within Biochemical Systems Theory (BST; [12,19-21]), the approach of choice has been the Method of 

Controlled Mathematical Comparisons (MCMC), which compares the observed dynamical system with a 

reference system that differs only in the one feature of interest [13,22]. MCMC originally focused on 

algebraic analyses, but was subsequently augmented with computational and statistical methods [12,23-

26]. Dynamic biological systems that were successfully analyzed with respect to design principles include 

pathway topologies [12,23,24,27], immune cascades [23], gene regulatory circuits [28-30], signaling 

                                                            
1 Most of the material presented in this chapter was published in the article “Analysis of operating principles with S-system 

models”, Mathematical Biosciences, 231(1), pp49-60, 2011. 
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systems [31], and riboswitches [32]. A recent collection of papers on design principles can be found in a 

special issue on biological design principles in Mathematical Biosciences 231(1), 2011. 

 While design principles have become a fashionable topic of investigation in recent years, their 

dynamic counterparts, operating principles, have received only a small fraction of the attention. Operating 

principles address questions of the dynamics of a response as we observe or hypothesize it, in comparison 

to other, a priori equally valid alternatives [33]. The typical question asked in this case is: What is the 

advantage of utilizing or altering a particular process instead of an alternative process? As an example for 

this type of a question, the task was posed to optimize the product yield of a pathway by selecting and 

altering a small number of genes or enzymes. The results, which were not easy to predict without a 

quantitative analysis, demonstrated that the locations and magnitudes of optimal manipulations depend 

significantly on the regulatory signals in the pathway [33].  

 In a different context, the following question arose: If a system is forced to move to a new steady 

state, and if this state may be achieved either by drastically changing a few independent variables or by 

slightly changing many independent variables, which strategy is preferable? Alvarez and colleagues [34] 

analyzed this question heuristically for changes in yeast metabolism during the diauxic shift and came to 

the conclusion that many genes in the living yeast cell were changed to a modest degree. Yet a different 

aspect of operating principles was investigated in the response of yeast cells exposed to heat stress [25,35-

38]. In this case, the lead questions were: Which genes are actually up-regulated in expression and by how 

much? What are the metabolic consequences of this up-regulation? Are there alternative up-regulation 

scenarios that might perform better? Can we find objective criteria explaining the emergence of the 

observed strategy?   

 One might ask whether operating principles are truly different from design principles, because the 

possible space of dynamic responses is clearly constrained, if not determined, by the physical and regulatory 

structure of a system. While design and operation are clearly coupled to some degree, their distinction 

seems both reasonable and necessary, because a cell or organism could theoretically respond to the same 

demand in different ways, even within exactly the same structural confines, as the diauxic shift study [34] 
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demonstrates. Furthermore, cells can be exposed to drastically different demands, which require appropriate 

responses within the same structural design. A good example is the generation of energy in blue-green 

algae, which may occur autotrophically per photosynthesis or heterotrophically per consumption of 

carbohydrates. It has been shown that the numerical distribution of metabolic fluxes, and thus the operation 

of the system, shifts dramatically between these two modes [39]. In a different example, it was shown that 

plant cells use the same pathway system, but with distinctly different, dynamically changing flux 

distributions, to produce woody materials during their development or in different transgenic strains 

[40,41]. 

 As in the case of design principles, it is impossible to study operating principles in exhaustive 

generality. The analysis described here therefore focuses exclusively on one pertinent special case, namely, 

where a biological system must shift from its normal steady state to a new steady state, a response that is 

typical in the face of persistent changes in a cell’s or organism’s environment. While the two steady states 

will be at the center of the analysis, features of transients will also be discussed to some degree. In first 

approximation it may even be possible to consider slow-changing, longer-term trends as a series of different 

“almost-steady-states” [42].  

 Most analyses of design principles in the past had the benefit of clear reference systems that were 

topologically very similar to the system of interest. For instance, a system with feedback was compared to 

a system without this particular feedback. In the case of operating principles, it is not always a priori clear 

what the alternatives are. For instance, we cannot simply compare up-regulation of one process against 

unaltered operation, because the two would lead to different transients and steady states. Instead, the 

approach of a new steady state will almost always require alterations in larger sets of independent variables. 

Thus, the first important step in the analysis of operating principles is an exhaustive exploration of the 

admissible set of operating strategies. Once this set is characterized, the true discovery of operating 

principles consists of the selection of the one strategy that is superior to all others under the chosen criteria 

of optimality.  
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2.2 Methods and Theoretical Results 

 

Canonical models, and in particular S-systems within Biochemical Systems Theory [12,19], are especially 

well suited for analyzing operating principles. As in the case of design principles, the primary reasons are 

twofold. First, these systems have a fixed structure, in which each component has a well-defined meaning 

and where system features are mapped onto parameters in a one-to-one fashion [12,21]. Secondly, S-

systems permit a linear representation of their steady states within the language of linear algebra, upon a 

logarithmic transformation of all variables [43]. 

 As described many times, S-systems always have the format 

    









mn

j

mn

j

h

ji

g

jii
ijij XXX

1 1

 .       (2.1) 

Here, the Xi, i = 1, …, n are dependent variables, which may change under the action of the system, while 

Xi, i = n+1, …n+m are independent variables, which may affect the action of the system but are themselves 

not affected by the system. The parameters 𝛼𝑖 and 𝛽𝑖  are non-negative rate constants, and gij and hij are real-

valued kinetic orders. The literature on these systems is quite rich (e.g., see references in [21]).  

 The generic situation to be addressed here concerns a biological system, represented by S-system 

equations, that needs to respond to a changed environmental demand by assuming a new steady state. It is 

not difficult to imagine that this task usually has many solutions and that distinctly different settings of 

independent variables may lead to the same steady state with respect to the dependent variables. This 

multiplicity of possibilities is due to the fact that most systems contain many more processes than variables. 

Because these processes are usually under the control of independent variables, different choices of 

independent variables correspond to distinct solution strategies.  

 The non-trivial steady state of an S-system model can be formulated in matrix notation as 

 byAyA  IIDD          (2.2) 
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[44], where yD denotes the vector of the logarithms of the dependent variables at steady state, yI is the 

corresponding vector of independent variables, the elements of the matrices AD and AI are aij = gij – hij  for 

all i and j, separated into dependent and independent variables, and bi = log(𝛽𝑖/𝛼𝑖) for i = 1, …, n.    

 In a typical analysis, all parameter values are known and one computes the non-trivial steady state, 

which may then be used for other diagnostics like stability, sensitivity, and gain analysis [12,21,43]. This 

steady state can be expressed explicitly as 

 yD = S · b + L · yI        (2.3) 

[44], where S = 1

D

A  and L = 1

D I

A A  are the so-called sensitivity and logarithmic gain matrices, 

respectively.   

 For our purposes here, we must turn the task around. We assume that the system has to switch from 

some initial state to a target steady state that is mandated by new environmental demands. We furthermore 

suppose that we know the numerical values of the dependent variables at this target steady state. The 

question thus becomes how the independent variables should be changed to achieve this state (cf. [42,45]). 

Again using stress as an example, we might observe an altered metabolic steady state and ask which 

enzymes would have to be altered in activity to reach the stress state. 

 For ease of representation, we rewrite Eq. (2.3) as 

 bAyyAA
11   DDIID        (2.4)

 

and define  

 bAyy
1

DDD ,        (2.5) 
 

which yields the simplified representation 

 DI yLy  .         (2.6)
 

For the special case where m = n and L has full rank, we can invert the system of equations and express the 

vector of independent variables as a unique linear function of the dependent variables in logarithmic space; 

namely we obtain  
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 DI yLy  1
.            

 
       (2.7)                                                                                                                                             

Expressed in words, we can demand numerical values for the dependent variables of a particular target 

steady state, and Eq. (2.7) determines how the independent variables have to be set to reach this state. If the 

new state is stable, and if the system starts within its basin of attraction, one may actually reach this state 

by starting the system at the original steady state and resetting the independent variables according to Eq. 

(2.7). Of course, we do not know how much time the dynamic system will require to come sufficiently 

close to the target.  

 For cases where m < n, the matrix L is “tall,” which reflects an over-determined system that 

generally permits no solution. Nevertheless, for practical purposes we can compute a least squares solution, 

which minimizes the deviation from the target state and is given as the regression equation 

 
DLSI yLy  

_
.     

 
       (2.8) 

 In the most pertinent case, the number of independent variables is larger than the number of 

dependent variables (m > n). This relationship is not always true, but it usually holds, because most systems 

contain more processes than pools. The matrix equation (2.6) now can no longer be inverted directly, and 

if the rank of L is r, the solution consists of an m – r dimensional space. Even though an inversion is not 

directly possible, the solution space may be characterized with methods of linear algebra, where the starting 

point is the pseudo-inverse [46]. Specifically, the solution space, which consists of every admissible yI, can 

be spanned through the following steps. First, find a particular solution yI_PS. Then use yI_PS
 
and the span of 

the null space of L to describe the entire solution space as  

 
DPSI yLy  

_
        

 
       (2.9)     

  Byy PSII _
λ  

 
       (2.10) 

where λ is any given real-valued (m–n)-dimensional vector, rank(L) = n, and B is a matrix in which each 

column is a basis vector. Together, the set of these vectors constitutes a basis of the null space of L. 
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2.2.1 Illustration Examples 

The first example is a cascaded system (Figure 2.1), where the numbers of precursors and state 

variables are the same (n = m = 4) and the system has a unique solution. The cascade could describe the 

expression of a formerly inactive gene X5, which becomes activated (X1) and is subsequently transcribed; 

X6 could model nucleotides that are assembled into mRNA (X2); X7 could represent amino acids, which are 

assembled into an enzyme (X3), which subsequently catalyzed the conversion of a metabolic substrate X8 

into a product X4. The final product could indirectly lead to the reduction of gene expression. The generic 

S-system representation of the model is 

 

 

444843

333732

222621

141115

448344

337333

226122

411511

hgg

hgg

hgg

hhg

XXXX

XXXX

XXXX

XXXX

























       (2.11) 

 

Without loss of generality in this and the later illustration examples, all rate constants 𝛼𝑖 and 𝛽𝑖  

were arbitrarily set to 1 and the independent variables were initially defined as 1.2. By this definition we 

know that D D
 y y  because b = 0. The values of the kinetic order parameters in this and other systems are 

given in Table 2.1. 

 

 

Figure 2.1: A cascaded system with as many dependent (circles) as independent (squares) variables. 

X1

X2

X3

X4

X5

X6

X7

X8



18 

 

 

Table 2.1: Numerical Values of Kinetic Order Parameters of the Illustration Examples 

Cascade 1 

Figure 2.1 

Linear Pathway 

Figure 2.2 

Cascade 2 

Figure 2.4 

Branched Pathway 

Figure 2.7 

15g  0.24 15g  0.24 15g  0.24 15g  0.24 11h  0.2 

21g  0.4 21g  0.4 21g  0.4 21g  0.4 13h  0.1 

26g  0.3 
24g  0.3 

26g  0.3 
23g  0.1 

16h  0.16 

32g  0.5 
32g  0.5 

32g  0.5 
26g  0.3 1,11h  0.1 

37g  0.3 
36g  0.3 

37g  0.3 2,11g  0.3 
22h  1 

43g  0.1 43g  0.1 43g  1 32g  0.5 27h  0.33 

48g  0.2 47g  0.2 11h  0.2 39g  0.3 29h  0.1 

11h  0.2 11h  0.2 14h  0.16 42g  0.1 33h  0.4 

14h  0.16 14h  0.16 22h  1 47g  0.2 3,10h  0.05 

22h  1 22h  1 33h  0.4   3,11h  0.1 

33h  0.4 26h  0.33 44h  0.9   44h  0.2 

44h  0.2 33h  0.4     48h  0.25 

  37h  0.1       

  44h  0.2       

  48h  0.25       

 

The second example of a simple linear pathway with feedback and an exogenous demand for product 

(Figure 2.2) is again characterized by n = m = 4. Because of precursor-product relationships, effluxes and 

influxes associated with subsequent pools are constrained, but these constraints have no real bearing on the 
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characterization of a set of independent variables that moves the system to the target steady state. The 

generic S-system model is 

 

 

48443733

37332622

26221411

141115

8447334

7336223

6224112

411511

hhhh
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
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







      (2.12) 

 

Again, all rate constants 𝛼i and 𝛽i were arbitrarily set to 1 and the independent variables to 1.2. The values 

of the kinetic orders are given in Table 2.1. 

 

Figure 2.2: Linear pathway with feedback and an exogenous demand for product. The task of moving the system to a new 

steady state has a unique solution. 

 

For our illustration, we start both systems arbitrarily at (1, 1, 1, 1) and let them reach their nominal 

steady states. As a response to an altered environmental demand we assume that all variables in the cascade 

and the linear pathway must move to a target value of 2. Thus, after the initial steady state has been 

established, we evoke the unique solutions for the cascaded and the linear systems and reset the independent 

variables as XI = [2.8284  4.0  0.7937  1.4142]
T
 and XI = [2.8284  0.2607  0.7579  1.5583]

T
, respectively. 

The systems indeed respond by moving to the desired target states (Figure 2.3). The inverse solution does 

not convey anything about the transients. 
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Figure 2.3: Resetting the independent variables to the computed vector moves the cascaded (left) and linear (right) 

pathway systems from the initial state to the1 desired target. 

   

 The third and fourth examples are cascaded and linear pathways with fewer independent than 

dependent variables (Figure 2.4). S-systems models were constructed according to well-documented 

guidelines, and the values of the kinetic orders for the cascaded system are given in Table 2.1. It could seem 

that these scenarios are rather unrealistic, but they do occur in cases like the ones shown here as well as in 

cases of strongly connected pathways where not all genes or enzymes are accessible to manipulations. If it 

is infeasible or impossible to alter some of the independent variables, m is in effect decreased and may 

become lower than n.  

 

 

Figure 2.4: Over-determined cascaded and linear pathway systems with n = 4, m = 3. In the example of a linear pathway, 

the reaction between X1 and X2 may not be accessible to alterations. 
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 This “unsolvable” situation may be addressed in different ways. First, instead of searching for an 

exact solution, one may solve the corresponding regression problem and find a set of independent variables 

that moves the system to a steady state that is close to the target state (Figure 2.5). In this case, the solution 

vector is XI = [5.3889  9  0.6395]
T
, and we see that both X3 and X4 are not quite on target. 

 

 

Figure 2.5: Least squares solution for the over-determined cascaded system in Figure 2.4. 

 

 As a variation on this theme, closeness to the target state may be defined differently for each 

dependent variable, through the use of appropriate weights. This strategy allows that some “important” 

dependent variables can be selected to come as closely as possible to their target values, while others are 

possibly not. Finally, one may ignore some of the dependent variables, whose specific values are not 

considered as important as those of other variables, and restrict the optimization to a subset of important 

dependent variables, thereby in effect reducing n. Examples for less important variables might be 

intermediates in linear pathways, 

 To be specific, suppose it is most important that variable X4 of the cascaded pathway attain the 

target value, while other variables are of secondary importance. The original task can be written as 
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To enforce that X4 moves to the target, presumably at the cost of other variables, we separate the equation 

for X4 in Eq. (2.13) from the rest, which yields  

 

 

 
5

4 41 42 43 6
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L L L
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Using the notation

11 12 13

123 21 22 23

31 32 33

L L L

L L L

L L L

 
 


 
  

L  and 4 41 42 43[L L L ]L , the particular solution of yI 

based on this separated equation is now given as 

 _ 4I I PS  y y B λ ,         (2.15)
 

 

where 

 

 

_ 4 4I PS yy L ,
 
        (2.16)

  

4B  is a 32 matrix where each column is a basis vector of the null space of 4L , and λ  is any real-valued 

2-dimensional vector. Having enforced that the fourth variable will reach the target value, we still have 

options for the remaining independent variables. Namely, the equation 

 

 1 2 3 123

123 _ 4( )

T

I

I PS

y y y 

  

L y

L y B λ
     (2.17) 

allows us to define criteria such as a least-squares error for the remaining variables, which correspond to 

different choices for λ . For instance, we can use the pseudo-inverse to define 

 
  123 4 1 2 3 123 _( )

T

I PSy y y   λ L B L y ,    (2.18)
 

which yields the solution as 
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  _ 4 123 4 1 2 3 123 _( )

T

I I PS I PSy y y     y y B L B L y .   (2.19)
 

 

The result of this operation is shown in Figure 2.6. In comparison with Figure 2.5, X4 now reaches the target 

value 3 exactly, while the remaining variables approach the value 3 approximately. In particular, the 

improvement in X4 is “paid for” with decreased performance of X3. The solution vector of independent 

variables in this case is XI = [5.1962  9  0.5989]
T
. If X3 is most important in the same system, the solution 

vector is XI = [5.6367  9  0.6934]
T
 and X4 overshoots the target (plot not shown). 

 

 

Figure 2.6: Solution for the over-determined cascaded system in Figure 2.4, where X4 is forced to reach the target state 3. 

 

 

Figure 2.7: Branched pathway with a substrate cycle. The system contains four dependent variables (circles) and seven 

independent variables, which model the system input (X5) and catalyzing enzymes (X6, …, X11). The system is 

representative of the most prevalent situation where n < m. 
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 The most pertinent case is n < m. A representative example is the pathway shown in Figure 2.7, 

which has four dependent and seven independent variables. The S-system was constructed according to 

usual guidelines (see Table 2.1 for kinetic orders), and as before, the initial state was set to (1, 1, 1, 1) and 

all independent variables were initially set to 1.2. Furthermore, we assume that all target values for the 

dependent variables under the changed environmental demand are 2. The solution now consists of a space 

that can be expressed by a particular solution plus a linear span of a basis of the null space of 1

D I

 L A A

. The particular solution is computed as 

 D Iy Ly          (2.20) 

 _I PS D

y L y            (2.21) 

and any feasible solution can be characterized by the particular solution plus an arbitrary vector in the null 

space of L: 

            
_I I PS  y B λ y          (2.22) 

where λ  may be any 3-dimensional real-valued vector and B is a matrix in which each column is a basis 

vector of the null space of L.  

 Choosing any Iy  inside this solution space is guaranteed to lead to the target steady state. Two 

admissible solutions in Cartesian space are XI = [4.1059  0.9618  1.0410  0.7826  1.4962  2.8819  3.9459]
T
 

and XI = [3.1563  1.1943  0.6079  0.5089  0.9002  0.9657  1.4845]
T
. These and other solutions within the 

admissible space move the system to the target steady state of (2, 2, 2, 2) as expected, but the transient 

behaviors of these systems are different, and it is not a priori clear how to manipulate them. Interestingly, 

it is possible to alter any solution to some degree in a targeted fashion by controlling the basis vectors of 

the three-dimensional null space of L. In the given numerical case, the basis vectors are     

 B1 = [0.3907  0.4237  0.5878  0.4702  0.1110  0.1462  0.2599]
T
 

 B2 = [-0.0443  -0.0438  -0.1182  -0.0946  0.1504  0.9743  -0.0361]
T
      (2.23) 

 B3 = [-0.0835  -0.5963  0.0684  0.0547  0.2467  -0.0272  0.7538]
T
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These basis vectors can be computed directly in Matlab with the Null command, which applies singular 

value decomposition to obtain an orthogonal basis set. 

 Altering any of these basis vectors has different effects. For instance, increasing B1 by a positive 

factor causes all responses to speed up (Figure 2.8), while increasing B2 has the opposite effect (not shown). 

Increasing B3 causes X3 and X4 to accelerate while slowing down X1 and X2 (not shown). Thus, the transient 

behavior can be controlled to some degree through the basis vectors. However, the effects of such 

manipulations are difficult to predict, and it is more straightforward to use direct optimization methods as 

we will discuss them later.  

 

Figure 2.8: Manipulation of the basis vectors permits modest changes in transient speed.  

Here, increasing B1 causes all transients to accelerate. 

 

2.2.2 Functional Effectiveness 

A key component of the Method of Controlled Mathematical Comparisons is the prior establishment of 

objective criteria of functional effectiveness [22,23]. In other words, before the comparison of two system 

structures is performed and interpreted, one formulates metrics according to which either the system of 

interest or some alternative is deemed superior. Typical criteria are stability, robustness, a short response 

time to stimuli, adequate responsiveness to external demands, and maybe a transient response profile that 

does not deviate too far from the nominal profile. 
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 Operating principles have not yet been analyzed often enough to permit a listing of “typical” criteria 

of functional effectiveness, and judging by the case of design principles, they should be expected to change 

from one application to another. Among likely, generic criteria one might find similar measures of 

superiority as for design principles, because the different operating strategies discussed here lead to steady 

states that are characterized by the same sets of numerical values for the dependent variables, but different 

values for some of the independent variables. Thus, criteria might often include local stability, modest gains 

and sensitivities, and tolerance of the steady state to perturbations. Also as in the case of design principles, 

one might prefer fast response times and bounded transients. Another typical criterion in superior designs 

is a minimal accumulation of intermediates. Here, this criterion is automatically satisfied when the target 

profile of steady-state values is set, but if no target values for intermediates are specified, it may indeed 

serve as a criterion. 

 In addition to these rather evident criteria, different operating strategies are distinguishable in other 

respects. For instance, one might consider the metabolic burden, which is associated with the total mass of 

all protein (cf. discussion in [20]). Clearly, different operating strategies are likely to involve different 

amounts of enzymes, thereby affecting the total protein content of the cell. The metabolic burden can be an 

important issue of cellular protein economy because it was shown for the case of recombinant bacteria that 

the growth rate decreased monotonically with increasing numbers of introduced plasmid copies (e.g., [47-

49]). An increased metabolic burden can also be a disadvantage because it puts additional stress on the cell 

due to higher levels of transcription and translation. If minimal metabolic burden is indeed a pertinent 

criterion of functional effectiveness, the totality of changes in independent variables should be kept as small 

as possible. 

 A different criterion is the total number of changed independent variables. It is to be expected that 

most adaptations to a changed environmental demand will be implemented through the altered expression 

of key genes. If so, the more genes are involved in a response, the more transcription factors need to be 

mobilized, which must be expected to incur a physiological cost. 



27 

 

 In comparing viable operating alternatives, one should expect that it is easier to up- or down-

regulate some genes or enzyme activities than others. In fact, it might not be practically feasible to change 

some enzyme activities at all. If so, the corresponding independent variables in the model are off limits in 

the selection of any viable operating strategies. Other processes might be accessible to manipulations but 

limited in the degree of alteration. 

 In addition to these more or less generic criteria, some systems might require very specific 

constraints. As an example, we recently analyzed the biosynthesis of lignin in plant cell walls, where it is 

known that the monolignols, of which the lignin polymer is ultimately composed, have to be produced in 

certain ratios for an optimal cell wall composition [40]. These ratios could constitute a set of criteria of 

functional effectiveness that is germane to this very special case.  

 

2.2.3 Optimal Operating Strategies 

The computation of the pseudo-inverse in the S-system steady-state equations, along with the 

characterization of the null space, results in the space of all possible solutions, in which resetting the 

independent variables leads to a desired steady state in terms of the dependent variables. While it is 

mathematically and practically satisfying to have a concise representation of this solution space, one will 

wonder whether some admissible solutions are “better” than others. In other words, the question becomes 

how specific solutions within this space should be selected according to the chosen criteria of functional 

effectiveness. Clearly, the answer lies in some optimization procedure, which, interestingly, does not 

require an explicit characterization of the solution space per se.  

 The strategy is the following. We introduce a vector d  that represents the change in the vector of 

independent variables such that the system reaches the target steady state T

Dy , which is assumed to be 

known. With these definitions, we can write the task as  

 1 1 ( )T

D D D I I

   y A b A A y d .       (2.24) 

This expression can be reformulated as a linear constraint on d . Namely, we can write 



28 

 

 1 1( ) T

D I D I I D

   A A d A b A y y .      (2.25) 

Let 

  if the catalytic step coded by is induced to reach the steady state1

0 otherwise

i

i

d
z


 


(2.26) 

If all zi are set to 1, the optimization task allows every independent variable to change as long as the linear 

constraints are satisfied, but the identification of specific solutions still depends on the dimension and rank 

of  1

D I

A A  as well as the chosen criteria of functional effectiveness.  One of the most commonly used 

criteria for finding a particular solution is a minimized total squared error E, which in this case can be 

written as 

 
2

1 1( ) T

D I I D D IE     A b A y y A A d ,      (2.27)  

where ‖∙‖2  is the 2-norm. The minimization of E results in a target steady state where the collective 

deviation in independent variables from their nominal values is minimized.  

 By contrast, if we are looking for a so far unknown subset of indicators zi = 0 that satisfy some 

criteria of functional effectiveness, the task becomes a Mixed Integer Linear Programming (MILP) problem 

that allows us to find a minimum set of independent variables whose alteration is necessary for reaching 

the target steady state. This MILP has the form 

 

1

1 1

min  subject to

( )

0

  (D is an arbitrarily large positive number)

z : 0 /1

1,...,

m

i

i

T

D I D I I D

i

i i

i

z

d

d z D

i m



   





 



A A d A b A y y

    (2.28)  

The CPLEX solver in AMPL can be used to solve this type of MILP. 

 Similar to optimization tasks in the field of biotechnology, where the typical objective is the 

maximization of a metabolite pool or flux, it is here also possible to account for constraints on 
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concentrations and fluxes [50-53], as well as more complex limitations such as metabolic burden [20] or 

the feasibility of parameter regions that correspond to admissible physiological states [37]. 

 

2.3 Case Study 

 

As an illustrative case study, we consider the response of yeast cells to heat stress. The first indications of 

such a response are observable within minutes of the initiation of heat stress: transcription factors are 

mobilized and translocated [54], and numerous genes respond with strong changes in expression [55-57]. 

At the proteomic level, heat shock proteins emerge in high numbers [58-60]. At the metabolic level, a 

significantly altered profile of sphingolipids guides the expression of some key genes [61], and, most 

important for the following illustration, the protective disaccharide trehalose is produced in huge amounts 

[62,63]. 

 Several modeling studies have investigated the dynamics of trehalose upon heat shock in recent 

years [25,35,37,38,64], which allows us to keep the discussion of background information to a minimum. 

In a nutshell, material is siphoned off glycolysis at the level of glucose 6-phosphate and channeled toward 

the production of glucose 1-phosphate, UDPG, glycogen, trehalose 6-phospate and trehalose, which 

accumulates in large quantities. The enzyme trehalase splits trehalose into two glucose molecules and 

thereby completes the trehalose cycle (see Figure 2.9). Because the present study is focused on 

methodological advances rather than new biological insights, we take the S-system model of the trehalose 

cycle in [25] at face value and analyze alternative operating strategies.  
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Figure 2.9: Diagram of the trehalose cycle (solid blue arrows) in yeast. Solid brown arrows represent other pertinent 

reactions. The main glycolytic flux is presented with heavy arrows. Red dotted arrows with associated minus signs indicate 

inhibition, while green dotted arrows associated with plus signs indicate activation. Abbreviations: Glcext: external glucose; 

Glc: internal glucose (X1); G6P: glucose 6-phosphate (X2); G1P: glucose 1-phosphate (X3); UDGP: uridine diphosphate 

glucose (X4); glycogen (X5); T6P: trehalose 6-phosphate (X6); Tre: trehalose (X7); PPP: pentose phosphate pathway. X8, …, 

X19 represent independent variables (see Table 2.3). 

 

 The S-system equations describing the system were taken directly from [25]. They are 
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Glycogen: 
400.0
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3
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T6P: 18
200.0
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4
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2
300.0

16 0939.119424.0 XXXXXXX    

Trehalose: 19
300.0

718
200.0

67 2288.10939.1 XXXXX        (2.29) 

 

Of primary interest here is the response of yeast to heat stress, which affects most of the reactions steps in 

the pathway. According to literature studies (cited in [25]), the alterations among the dependent and 

independent variables under heat stress are distinctly different, with some variables and steps changing 

substantially and other not as much or not at all  (Tables 2.2 and 2.3).  

 

Table 2.2:   Dependent variables of the canonical model (Eq. 2.29) of the trehalose cycle. Steady-state values under optimal 

temperature conditions were collected from the literature [25]; heat-stress values (scaled by optimal steady-state values) 

computed with the S-system model upon changes in independent variables as shown in Table 2.3. 

 

Metabolite 
Variable 

Name 

Steady-State 

Concentration [mM] 

under Optimal 

Temperature Conditions 

(from the Literature) 

Computed Fold Change in 

Steady-State 

Concentration 

during Heat Stress 

(Scaled by Normal Steady State) 

Glucose X1 0.03 1.46 

Glucose 6-Phosphate X2 1 5.54 

Glucose 1-Phosphate X3 0.1 3.99 

Uridine Diphosphate 

Glucose 

X4 0.7 2.69 

Glycogen X5 1 55.8 

Trehalose 6-Phosphate X6 0.02 4.28 

Trehalose  X7 0.05 103 
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Table 2.3:   Enzyme activities and transport steps in the canonical model (Eq. 2.29) and their fold-increases in 

response to heat stress 

Catalytic or 

Transport Step 
Variable Name 

Heat-induced 

Fold-Increase in Activity 

Used in the Model 

Glucose Transport into Cell X8 8 

Hexokinase /  Glucokinase X9 8 

Phosphofructokinase X10 1 

G6P Dehydrogenase X11 6 

Phosphoglucomutase X12 16 

UDPG pyrophosphorylase  X13 16 

Glycogen synthase X14 16 

Glycogen phosphorylase X15 50 

Glycogen use X16 16 

𝜶, 𝜶 -T6P synthase X17 12 

𝜶, 𝜶 -T6P phosphatase X18 18 

Trehalase X19 6 

 

In this case, n = 7 and m = 12, which indicates quite a bit of flexibility among different solutions. 

Application of the pseudo-inverse method reveals the space of all admissible solutions, and a possible 

solution is XI = [5.4169 5.2877 0.9723 2.3770 2.3004 3.0197 2.8855 2.8574 2.1650 2.9739 4.4620 1.4873]
T
. 

Specifically, XI is computed using the pseudo-inverse of L and the original basis of the null space of L, 

which was obtained through singular value decomposition in MatLab, and λ = [1, 1 1 1 1]
 T

.  As to be 

expected, this vector of independent variables moves the system to the target steady state. However, the 

solution is much slower than the observed solution (Figure 2.10).  
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Figure 2.10: A possible solution within the space characterized by the pseudo-inverse method (dashed), in comparison 

with the nominal solution discussed in [25]. While both solutions reach the same steady state, the transient of the solution 

computed here is comparatively slow (see text for details). 

 

 The solution space obtained with the pseudo-inverse method is 5-dimensional, and a basis is 

B1 = [0.1635  0.1582  0.2144  -0.1562  0.0986  -0.1328  -0.1543  0.9026  0.1099  -0.0034  -0.0034  -0.0034]
T
 

B2 = [-0.2260  -0.2188  -0.3985  0.2716  0.3480  0.3708  0.4330  0.2639  0.3907  -0.0017  -0.0017  -0.0017]
T
 

B3 = [-0.2260  -0.2087  -0.1967  -0.7547  0.0363  0.0466  0.0021  0.0002  0.0016  0.3128  0.3128  0.3128]
T
 

B4 = [0.3576  0.3568  0.4235  0.1207  0.1771  0.2723  0.2627  -0.1569  0.1578  0.3301  0.3301  0.3301]
T
 

B5 = [-0.1451  -0.1291  -0.2276  0.5556  -0.1360  -0.2193  -0.3147  0.1558  -0.1971  0.3527  0.3527 0.3527]
T
 

 

 As in the illustrative example, it is to some degree possible to affect the transient speed by 

manipulating the basis vectors. Tuning B1 or B2 causes the glycogen concentration to speed up but has 

almost no effect on trehalose or the other variables. Increasing B3 accelerates trehalose and no other 

variables, increasing B4 speeds up both trehalose and glycogen, while increasing B5 speeds up trehalose but 

slows down glycogen production (Figure 2.11). 
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Figure 2.11: The solutions obtained with the pseudo-inverse method can be manipulated by modifying the basis 

vectors. In the left panel, basis vector B3 was multiplied with factors 1, …, 5 (in direction of the arrow); this action did not affect 

the glycogen profile. In the right panel, basis vector B5 was multiplied with factors 1, …, 5, in direction of the arrows. All 

solutions eventually reach the same target steady state. 

 

 In contrast to exploring the entire solution space, the direct optimization method allows us to select 

criteria of functional effectiveness a priori and to optimize the solution toward these criteria under the 

constraint that the target steady state is reached. As the first example, suppose the overriding criterion is to 

alter the independent variables as little as possible in magnitude. Least squares optimization toward this 

criterion yields a solution that of course reaches the target steady state and also exhibits only modest 

variations in enzyme activities (Table 2.4; column 3).  

 As a second example, we mandate to keep the number of altered independent variables to a 

minimum. MILP optimization reveals that this minimum number is 7, and the steady state is reached upon 

quite strong alterations in this minimum set (Table 2.4; column 4).  

 There are unlimited combinations on this theme, depending on the choice of criteria of functional 

effectiveness. For instance, we may consider a more complex scenario, which accommodates the following 

criteria. First, suppose that the phosphofructokinase step (X10) cannot be altered. This situation was actually 

observed in yeast (cf. [35]), and rationale for this restriction was presented based on different types of 

analyses [37,38]. The restriction is easy to implement by fixing X10 = 1. Secondly, 20 transporters are 

involved in glucose uptake and fine-tuned for different glucose concentrations in the medium, which may 
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mean that the glucose transport step cannot be altered from what is observed. Thus, we enforce X8 = 8, 

which corresponds to the observed level. Third, the rates of glycogen and trehalose production ( 

5V  and 



7V ) should be sufficiently large to achieve a timely response to elevated temperatures, which we 

implement by setting these flux rates to those actually observed and not permitting them to be altered. If 

subscript e indicates the nominal steady-state values under heat stress condition (as discussed in [25]), we 

obtain 
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These conditions impose further constraints on the system and are easily formulated in the MILP. The size 

of the solution space (number of free variables minus the number of linearly independent equality 

constraints) is now drastically reduced from 5 to 1. Within the constrained system, we can again identify 

the minimal set or least squares solution (Table 2.4, Columns 5 and 6) or could use some other criterion of 

function effectiveness.  

 Both results are interesting. First, the constrained least-squares solution turns out to be very similar 

to the nominal solution. Second, the minimum-set solution shows drastically different values than the 

nominal solution and identifies glycogen phosphorylase as the most dispensable reaction step. In an entirely 

different study [62], this same step was also identified as only modestly relevant for the trehalose response.  
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Table 2.4: Different implementations of computed heat stress responses, which all lead to exactly the same target 

steady state. 

Catalytic or Transport 

Step 
Nominal 

Least 

Squares 

Minimum 

Set 

Minimum Set 

(X8, X10, 


5V , 

and 

7V  fixed) 

Least Squares 

(X8, X10, 


5V , 

and 

7V  fixed) 

Glucose transport 8 2.0096 4.6155 8 (fixed) 8 (fixed) 

Hexokinase/Glucokinase 8 1.9440 4.4334 8 8 

Phosphofructokinase 1 0.3577 1 1 (fixed) 1 (fixed) 

G6P dehydrogenase 6 0.8745 1 1.6377 6.2371 

Phosphoglucomutase 16 0.8435 1.1046 38.0406 15.5916 

UDPG pyrophosphorylase 16 1.1110 1.5932 149.5541 14.9673 

Glycogen synthase 16 1.0616 1.4620 217.1534 14.8016 

Glycogen phosphorylase 50 1.0512 1 1 56.1937 

Glycogen use 16 0.7965 1 42.5464 15.5396 

α, α-T6P synthase 12 1.0942 2 12 12 

α, α-T6P phosphatase 18 1.6413 3 18 18 

Trehalase 6 0.5471 1 6 6 

 

 Table 2.4 seems to indicate that much “cheaper” solutions than the nominal solution can be found, 

which raises the question of why the nominal solution employs alterations in independent variables that are 

so much more dramatic than the least squares or minimum set solutions. At least one answer can be found 

in the response time: although all solutions reach exactly the same steady state, the nominal solution is more 

than ten times faster than the least squares and minimum-set solutions (Figure 2.12; note different time 

scales). 
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Figure 2.12: All solutions reach the exact same steady state and the transients have similar shapes, but the timing is 

quite different. While glycogen and trehalose in the nominal solution come close to their steady state values within about 5 time 

minutes (left panel), the same levels take ten or more times as long in the least squares (right panel; solid lines) and minimum 

set (right panel; dotted lines) solutions (note different time scales). Other variables respond on a more similar time scale (not 

shown). 

 

 The issue of drastically different transient speeds begs the question of whether and how the least 

squares and minimum set solutions could be accelerated. The most direct way of accomplishing acceleration 

arises if every flux contains its own independent variable. For instance, if every flux is governed by an 

enzyme which enters the flux with a kinetic order of 1, then multiplication by the same factor  > 1 will 

speed up the dynamics of the entire system by . This advance does not come for free though, because the 

cost of the solution with respect to the chosen criterion increases and the result may no longer be optimal. 

For instance, the metabolic burden, which can be defined as the sum of independent variables, increases -

fold. If the independent variables have different kinetic orders or appear in several equations, a systemic 

speed-up may still be possible. Specifically, one has to solve the equations 
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for all i = 1, …, n. In the trehalose case, these conditions result in a set of 14 linear equations with 12 

unknowns, which has no algebraic solution. Nevertheless, one can obtain a solution in a least squares sense, 

which indeed leads to an acceleration of the transients and approximately reaches the target steady state. 

The required changes in independent variables are presented in Table 5, where LS = 11.19 and MS = 6.29 

are the acceleration factors for the least squares and the minimum set solutions, respectively. These factors 

are computed based on the settling time τ, which here is the amount of time needed for trehalose to reach 

and stay within 95% of its nominal heat shock value. While the resulting trehalose profiles are essentially 

the same as in the nominal scenario, the glycogen trends are still slower (Figure 2.13). Interestingly, the 

steps directly associated with the dynamics of trehalose are very similar to the nominal solution, and the 

glycogen phosphorylase step is again much lower (Table 2.5). Also of note is that glucose transport and the 

hexokinase step are almost the same. 

 

 

Figure 2.13: Acceleration of the least squares (dotted lines) and minimum set (dashed lines) solutions in the trehalose 

example leads to similar solutions as the nominal case (solid lines), but the accelerated solutions reach the target only 

approximately. The trehalose trend is now essentially indistinguishable from that in the nominal solution, while the rise in 

glycogen is slower. Time courses of the other variables essentially match those of the nominal case.  
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Table 2.5: Accelerated least squares and minimum set solutions for the trehalose cycle. 

Catalytic or Transport 

Step 

Nominal 

Least Squares 

(accelerated) 

Minimum Set 

(accelerated) 

Glucose transport 8 22.4731 28.8238 

Hexokinase/Glucokinase 8 21.7616 27.7065 

Phosphofructokinase 1 5.2507 7.9468 

G6P dehydrogenase 6 1.2416 1 

Phosphoglucomutase 16 9.4252 6.8941 

UDPG pyrophosphorylase 16 12.4311 9.9536 

Glycogen synthase 16 11.8831 9.1365 

Glycogen phosphorylase 50 11.7559 6.2449 

Glycogen use 16 8.9158 6.2494 

α, α-T6P synthase 12 12.2458 12.4968 

α, α-T6P phosphatase 18 18.3691 18.7455 

Trehalase 6 6.1230 6.2485 

 

Distinctly different solutions to speeding up the transients could possibly be reached in two ways. First, the 

cell could initiate a fast transient toward a steady state with more extreme values than needed, and in a 

second phase relax these values toward the true target state. This strategy is expected to incur overshoots 

before the true target steady state is reached [42]. Second, it is possible to compute settings in independent 

variables that reach states that are not steady states. These computations require methods of nonlinear 

control theory, which were demonstrated for S-systems elsewhere [65]. 
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2.3 Discussion 

 

Deciphering how nature solves problems has been the dream of scientists for a long time. Consequently, 

enormous effort has been devoted to shining light on operating procedures in nature, dissecting systems, 

and identifying and characterizing processes that cells employ to solve specific problems. Given the 

seemingly unlimited variability and complexity of tasks that need to be addressed, a comprehensive 

understanding of operating procedures, let alone operating strategies or even operating principles, will not 

be gained in the foreseeable future. Nonetheless, the overwhelming magnitude of the challenge does not 

suggest that we give up, but that even small advances might be beneficial on our long journey. 

 We have shown in this article that a small sub-class of cellular tasks can be addressed quite 

efficiently with mathematical and computational tools. Namely, we propose methods for investigating the 

situation where a biological system is forced to move to a new steady state, which we assume to be known. 

For example, in the heat stress scenario discussed here, the cell must accumulate sufficient amounts of 

trehalose and possibly glycogen, while internal glucose and trehalose 6-phosphate need to be carefully 

controlled, because they cause adverse effects in high concentrations [63,66,67]. Thus, some pools in a 

pathway need to be altered substantially, while others must remain more or less at their nominal level. We 

show here that such tasks can be formulated rigorously in the language of linear algebra and constrained 

optimization. 

 The analysis yields two main results. First, it defines the entire solution space of the problem, and 

second, it allows a direct system optimization toward given criteria of functional effectiveness. The 

elegance of these solutions is primarily due to the special structure of S-system models, whose steady states 

are characterized by systems of linear equations. With the exception of Lotka-Volterra [68-70] and lin-log 

models [71,72], whose steady states are also governed by linear equations, it seems very difficult to obtain 

similarly general results with ad hoc models, such as pathway systems that are represented with Michaelis-

Menten rate laws and their generalizations.  
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 Interestingly, Generalized Mass Action (GMA) representations within BST [21,73], as well as other 

model structures, may permit numerical solutions under favorable conditions, although these solutions are 

not as general as in the case of S-systems. Namely, consider the important special case where each flux 

representation contains at most one independent variable, which enters the flux in a linear fashion, as it is 

typical for most enzymes. If all parameter values and the target steady state are known, all terms in the 

steady-state equations either become linear functions of one independent variable, or they do not contain 

an independent variable at all. Furthermore, outside the independent variables, all other components of each 

term combine to a single numerical value, so that the entire system of steady-state equations is linear in the 

independent variables. As in the cases shown here, this system may have a unique solution or be over- or 

underdetermined, and it can be analyzed in each case with methods of linear algebra and optimization. The 

condition of linearity with respect to independent variables can actually be further relaxed, for instance, to 

the requirement that the same independent variable, if it appears in different terms, always has the same 

kinetic order. 

 The tasks and solutions proposed here are reminiscent of optimization problems that have been 

analyzed in the field for two decades [20,37,50-53]. However, the two efforts represent different aspects of 

targeted alterations in pathways. In the typical optimization tasks in biotechnology or metabolic 

engineering, a metabolite pool or flux is to be maximized, while other features of the steady state profile 

are rather irrelevant as long as they remain within general physiological constraints. As a consequence, the 

task typically has a clearly defined, single optimal solution, although some cases permit alternative optima 

with the same value of the objective function. In the analysis here, the primary requirement is that the 

system must reach a specified steady-state profile. This task often admits an entire solution space, within 

which the system must operate. Within this space, questions of superiority of one solution over another 

with respect to selected criteria can be explored. Functional effectiveness is not usually considered in 

biotechnological optimization, but in the case analyzed here provides the metric for comparing alternative 

strategies and declaring one solution superior to another.   
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 An unresolved issue is the definition of criteria for functional effectiveness, which are not 

necessarily known a priori. Is it advantageous to up-regulate just a few genes substantially, or is it better to 

up-regulate many genes by a small amount? We do not yet have answers to such questions, but we have 

taken a first step by asking these questions and by suggesting that it might be advisable to observe how 

nature solves tasks in order for us to develop ideas for what types of operating strategies might be candidates 

for optimality. Moreover, the work presented here suggests tools for comparing different solutions with 

objectivity and for declaring superiority of different alternatives once criteria are established. 
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CHAPTER 3 

 

COORDINATION OF RAPID SPHINGOLIPID RESPONSES TO HEAT 

STRESS IN YEAST 2 

 

When yeast cells are exposed to heat, trehalose is produced in high quantities and sphingolipids 

respond rapidly and distinctly. The biochemical reactions governing this response form a complicated and 

dynamic metabolic system that regulates the concentrations of the key target sphingolipids, as well as their 

precursors and break-down products, in a highly coordinated and efficient manner. Changes in 

sphingolipids subsequently affect the expression of genes and, among a variety of response, the production 

of heat shock proteins (Figure 3.1). 

 

Figure 3.1. Multi-scale regulatory model of the heat stress response (from [74]). HS denotes location of direct action by 

heat stress; SL denote sphingolipid, while Tre refers to trehalose. 

 

                                                            
2 Most of the material presented in this chapter was published in the articles “Canonical modeling of the multi-scale   

regulation of the heat stress response in yeast. Metabolites 2(1), 221-241, 2012” and “Coordination of rapid sphingolipid 

responses to heat stress in yeast”, PLOS Computational Biology, 9(5), 2013. 
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   In this chapter, I build upon the state-transition analyses of S-system models in Chapter 2 and 

expand the concepts toward a more sophisticated modeling approach that effectively addresses the dynamic 

heat stress responses of sphingolipids.   

 

3.1 Introduction: Heat Stress Responses and the Roles of Sphingolipids 

 

Any substantial increase in temperature has a direct effect on the macromolecules in a cell. Among 

them, proteins and lipids are most strongly affected. Nucleic acids can denature upon exposure to heat, but 

this process requires much higher temperatures of about 75°C – 100°C [75], which are outside the realm of 

tolerable heat stress.  

Heat affects proteins in three ways. First, high temperature can modulate their synthesis from gene 

expression. In this context, Castells-Roca and colleagues investigated transcription rates and the stability 

of various mRNAs in S. cerevisiae following a temperature shift from 25°C to 37°C, and concluded that 

both were affected [76].  Second, processes of protein inactivation are temperature dependent. And third, 

heat can change a protein’s folding state, which in turn may affect its function, as well as its removal by the 

proteasome. In particular, if the protein is an enzyme, its activity is influenced directly by its ambient 

temperature, according to an empirical relationship commonly called the Arrhenius effect or the Q10 effect. 

Lipids are major constituents of membranes, and although the effects of heat are not completely 

understood, it appears that changes in temperature have an impact on membrane stiffness and fluidity [77].  

Jenkins and coworkers [78] were among the first to connect sphingolipids to heat stress responses in yeast, 

demonstrating that these lipids play several particularly important roles (see also [79-83]). They subdivided 

the heat stress response into two phases. During the first phase, the cell needs to gain thermotolerance, 

which is at least partially accomplished with an accumulation of trehalose and the induction of heat shock 

proteins. Furthermore, the cell arrests its cell cycle in G0/G1, and this arrest lasts for approximately one 
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hour, during which time there is no growth. Once thermotolerance is achieved, the cell culture starts 

growing again in the second phase of the response, even if the temperature is still elevated.  

The first response phase is directly associated with two distinct features of sphingolipids. First, the 

structural characteristics of complex sphingolipids, together with sterols, contribute to the physical 

organization of specific membrane microdomains within membranes, called lipid-rafts. These rafts are 

known to be associated with membrane fluidity, protein compartmentalization, and protein sorting and 

trafficking through membranes (e.g., [84-86]). As core components of rafts, sphingolipids are thus directly 

involved in organizational structures with potential signaling functions, and alterations in these functions 

are effective at a short time scale [87]. 

The second role of sphingolipids in the early heat stress response is their capacity to serve as 

bioactive signaling molecules. This signaling function influences the regulation of the cell cycle response, 

nutrient uptake, and the synthesis of proteins, which can have important secondary effects, especially if 

heat shock proteins are not available to serve as protectors of other proteins [88,89]. Indeed, the groups of 

Ferguson-Yankey and Meier demonstrated that sphingolipid synthesis is required for an efficient initiation 

of translation, especially during heat stress [90,91]. Specifically, the translation rate is increased if 

sphingoid bases are synthesized and accumulate. Jenkins and collaborators [92] and Dickson and co-

workers [79] showed that ceramides and simple sphingolipids, such as dihydrosphingosine and 

phytosphingosine (DHS and PHS), accumulate during heat stress in yeast. It appears that the short-term 

signaling role of sphingolipids is biphasic. In the first phase, sphingoid bases are required to regulate 

translation of heat shock mRNAs, a process that depends strongly on Pkh kinase, but not on Ypk kinases, 

which act downstream of Pkh. The second phase consists of a general increase in translation, which is 

dependent on the function of heat shock proteins. Without these heat shock proteins, the cell would run a 

severely elevated risk of protein aggregation or misfolding [91]. 

Sphingolipids also play roles over a longer time horizon. It has been known for a while that DHS 

induces the expression of a STRE-LacZ reporter gene, suggesting that the global stress element STRE can 

be activated by sphingolipid signals [79]. In particular, genes associated with the important trehalose stress 
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response contain multiple copies of STRE. Knock-outs or overexpression of genes coding for the synthesis 

of dihydrosphingosine-1-phosphate (DHS-1P) show changes that resemble thermotolerant and heat 

sensitive yeast phenotypes, indicating that DHS-1P is an important regulator of heat stress [93].  

Phytosphingosine-1-phosphate is involved with the regulation of genes required for mitochondrial 

respiration [94].  More generally, modulations in any of the sphingolipid enzymes cause ripple effects that 

change the concentrations of many sphingolipids and, possibly, the expression of a variety of genes. 

Futerman and Hannun [95] summarized the long-term signaling mechanisms of simple sphingolipids 

including sphingosine-1-phosphate, sphingosine, ceramide and ceramide-1-phosphate in yeast.   

Taken together it is evident that sphingolipids exert important roles within the coordinated heat-

stress responses of a cell, and that these roles are pertinent over short and long time horizons. However, it 

is so far unclear how the cell is able to establish an appropriate sphingolipid profile very quickly in response 

to heat stress. To answer this question, we propose a computational analysis based on observed heat stress 

time courses and a dynamic model of sphingolipid biosynthesis and degradation that allows us to investigate 

the dynamic profiles of critical enzymes involved in the sphingolipid pathway. 

 

3.2 Results 

 

If changes in enzyme activities, for instance in response to heat, could be measured directly, the 

altered values could readily be entered into computational model equations [10,11], and solving the 

equations would show the time trajectories of all pertinent metabolites. Our task here requires the opposite 

task, which is much more complicated. Namely, we ask: can we infer from the metabolite time courses 

which enzymes have to be altered dynamically, and by how much, in order for the model to generate the 

observed time-dependent metabolic profile? The optimization-simulation strategy proposed for this 

analysis, as detailed in the Methods section, answers this question and reveals for the first time how the 

activities of key sphingolipid enzymes are adjusted by the cell during the heat stress response.  
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Specifically, we performed over 4,400 Monte-Carlo optimizations with random instantiations and 

selected from among these the 2,004 best models, based on the sum of squared errors (SSEs). To test the 

validity of these results, we also used the Akaike Information Criterion (AICc) for model selection and 

found that models selected based on SSEs and AICc were highly similar. Over 99% of the models identified 

through SSE were also identified with AICc; Appendix 3 contains further information on this comparative 

analysis. The thus selected models yielded dynamic trends for each sphingolipid enzyme during the heat 

stress response. These sets of individual trajectories reveal interesting insights. Namely, the trajectories 

collectively form tight, time-dependent activity ranges for those enzymes that control the influx to, and 

efflux from, the core of the sphingolipid biosynthetic pathway system. In other words, these enzymes 

always exhibit essentially the same dynamic activity patterns, independent of the randomly initialized start 

values. Most of the enzymes at the periphery of the pathway system, by contrast, exhibit widely varying 

activity profiles that are thus not identifiable from the available metabolic time series data. These results 

are described and discussed in detail in the following sections. 

As a first validation of the collective results, we calculated the average of each computationally 

inferred enzyme activity at each time point and entered it into the pathway model (see Methods section) to 

check whether we were able to recoup the observed sphingolipid dynamics. The reconstructed sphingolipid 

dynamics indeed matches the original data quite well (Figure 3.2). This good match is by no means a priori 

guaranteed, because it is known that averages of parameter values from different good data fits do not 

necessarily correspond to good data fits themselves [96]. The averaged model was subsequently used for 

further interpretations of our results.  

 



48 

 

 

Figure 3.2. Data fit of the model with inferred enzyme activities. Using averaged trends in enzyme activities leads to 

simulated metabolic profiles (lines) that reflect the observations (symbols; averaged from two experiments) quite well. The lines 

are segmented, because the model is solved with enzyme activities that are constant from each time point to the next, when they are 

dynamically reset. The fold changes in DHS-P do not seem to be modeled very well. The reason is that the absolute concentration 

of this metabolite is very small (Figure 3.11) and any fold change becomes vastly amplified. 

 

As a second, independent validation experiment, we explored changes in the concentrations of the 

complex sphingolipids IPC, MIPC, and M(IP)2C with the computationally inferred enzyme activities after 

a shift in temperature. In contrast to the profiles of simple sphingolipids (Figure 3.2), these trend lines are 

essentially flat, indicating that the complex sphingolipids do not change much during the heat stress 

response (Figure 3.3). This finding is directly consistent with experimental data [78] that were not used in 

our optimization. 
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Figure 3.3. Concentration trends in complex sphingolipids. While the sphingoid bases and ceramides exhibit strong 

responses to heat stress (Figure 3.2), the complex sphingolipids IPC, MIPC, and M(IP)2C remain almost constant. The left and 

right panels show levels of members of the IPC family, derived from dihydroceramide and phytoceramide, respectively. 

 

As a final validation approach, and quasi as a negative control, we fixed those key enzymes that 

were inferred to have tight activity ranges (X34, X36, X41, X43, X50, X54, X57 and X59, see Figures. 3.4 and 3.5) 

at their nominal steady-state values and optimized all other enzyme activity profiles with the same methods 

as before. The resulting fit (Figure A3.7) is not good and much inferior to that in Figure 3.2; further details 

regarding this negative control are given in Appendix 3.   

More interesting than these overall validation results are the trends in the individual enzyme 

activities (Figs. 3.4 – 3.9). Each panel in each of these figures shows grey lines, which are often so dense 

that they seem to form shaded areas. Each line is one of 2,004 simulated trend lines and represents the 

computationally inferred activity of the given enzyme at time points 1, …, 30, given a random initialization 

at t = 0. The red line in each panel shows the mean of the trend lines, while the dotted blue lines enclose 

95% of the grey trend lines. The collective results from these panels are visualized in a different manner in 

Figure 3.10, where they are superimposed on the sphingolipid pathway system.  

The first enzyme of interest, serine palmitoyltransferase (SPT; X57) is the key bottleneck through 

which all de novo biosynthesis must pass (see red zone in Figure 3.10). The results show that the 

computationally inferred solution has SPT activity increasing briefly and then converging essentially to 
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zero within a few minutes (Figure 3.4). This pattern is seen in essentially all 2004 simulations with random 

initial settings (see Methods Section). The representation of fold changes seems most intuitive. However, 

the same results are also presented in Appendix 3 on a log2 scale, which stretches reduced activity levels. 

Changes in the subsequent, very fast step (3KDHS reductase; X27) are less defined. A possible explanation 

is that the substrate of this reaction is toxic [97] and therefore never present in large concentrations, so that 

the capacity of the enzyme is not limiting. As a consequence, this enzyme activity does not contribute much 

to the error function that is to be minimized. 

 

Figure 3.4. Trends in activities of enzyme at the entry point of sphingolipid biosynthesis. Serine palmitoyltransferase 

and 3-KDHS reductase are enzymes responsible for the production and degradation of 3-KDHS, which is the key initial metabolite 

of sphingolipid biosynthesis.  The enzymes are located in the red zone of Figure 3.10.  Grey lines are results of 2,000 individual 

iterations in the large-scale simulation. Red lines are ensemble averages, and dotted blue lines enclose 95% of the results. 

 

Similarly well defined as SPT are enzymes that catalyze the redistribution of material within the 

core of sphingolipid metabolism as well as the steps of sphingolipid removal (blue zone in Figure 3.10). 

These enzyme activities again rise quickly but approach a very small value shortly after (Figure 3.4). The 

very long chain fatty acid synthase and elongase (ELO1p; X59) is responsible for the delivery of fatty acid-

CoA to the sphingolipid system, while sphingosine-phosphate lyase (X50) and GPI remodelase (X43) are the 

only true exit routes out of central sphingolipid metabolism. The remaining enzymes in this group 

redistribute material within the pathway. Ceramide synthase (X34) shows the same pattern as X59, X50, and 
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X43, while sphingoid base kinase (X36), sphingoid-1-phosphate phosphatase (X41), and 4-hydroxylase (X54) 

exhibit the same initial phase, but begin to rise more or less strongly after about 25 to 28 minutes of heat 

stress. These late increases in activity apparently indicate the first consequence of heat-induced gene 

expression. Among these enzymes, sphingoid-1-phosphate phosphatase (X41) shows the strongest peak at 

28 to 30 minutes by far. This enzyme is known to be a key regulator of sphingolipid metabolism and, in 

particular, of stress responses [81]. It plays an important role in regulating the crucial balance between 

ceramide and phosphorylated sphingoid base levels and thereby modulates later stress responses.  

 

Figure 3.5. Trends in activities of enzymes in the core region of sphingolipid metabolism. After an initial spike, all 

enzyme activities in this region are reduced to almost nil. The enzymes are located in the blue zone of Figure 3.10.  Grey lines are 

results of 2,000 individual iterations in the large-scale simulation. Red lines are ensemble averages, and dotted blue lines enclose 

95% of the results. 

 

The two alkaline ceramidases exhibit rather different patterns. As with the previous enzymes, the 

activity of dihydroceramide alkaline ceramidase (dihydro-CDase; X29), which converts dihydroceramide 

into dihydrosphingosine, decreases to almost zero, but much later and in a less defined manner. By contrast, 
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the activity of phytoceramide alkaline ceramidase (Phyto-CDase; X53) shows tight trends consisting of three 

peaks, before returning to normalcy after about 30 minutes (Figure 3.6). These differences indicate that 

there is no “symmetry” between the function of dihydro- and phyto-forms of sphingolipids.   

 

 

Figure 3.6. Trends in activities of the two alkaline ceramidases. Dihydroceramide alkaline ceramidase and 

phytoceramide alkaline ceramidase, which convert the ceramide form into sphingosines, exhibit distinct activity patterns. The 

enzymes are shown with light blue circles in Figure 3.10.  Grey lines are results of 2,000 individual iterations in the large-scale 

simulation. Red lines are ensemble averages, and dotted blue lines enclose 95% of the results. 

 

The activity patterns of enzymes associated with complex sphingolipids are different; they are 

shown in Figure 3.7 (green zone in Figure 3.10). They all indicate a sustained level of hyper-activity for 

about 20 minutes, before becoming very low between about 20 and 28 minutes. These enzymes are inositol 

phosphorylceramide synthase (IPC synthase; X33), mannosyl inositol phosphoceramide synthase (MIPC 

synthase; X35), and mannosyl di-inositol phosphorylceramide synthase (M(IP)2C synthase; X55), as well as 

inositol phosphosphingolipid phospholipase C (IPCase; ISC1 X51), which returns IPC, MIPC and M(IP)2C 

to the dihydroceramide (DHC) and phytoceramide (PHC) pools.   



53 

 

 

Figure 3.7. Trends in activities of enzymes associated with complex sphingolipids. Enzymes interconverting complex 

sphingolipids are at first hyper-active, but tend to lose most activity at some point between 20 and 30 minutes. The enzymes are 

located in the green zone of Figure 3.10.  Grey lines are results of 2,000 individual iterations in the large-scale simulation. Red 

lines are ensemble averages, and dotted blue lines enclose 95% of the results. 

 

The remaining enzyme activities are not identifiable with our analysis. Some appear to be 

essentially unchanged throughout the measurement period of 30 minutes, during which the temperature 

remains elevated. Examples are fatty acid synthase (X52), acetyl-coenzyme A carboxylase (X60), and 

synthase (X63) (Figure 3.8; yellow zone in Figure 3.10). Other enzyme activity patterns (X26, X39, X42, X44, 

X46, X40, X45, X49, X31, X32, X38, and X56) exhibit larger degrees of variation (Figure 8; pink and tan zones in 

Figure 9). On average, each pattern exhibits an individual Q10 effect, and subsequently stays more or less 

constant, decreases somewhat, or continues to increase slightly, but the trends are not clear. One reason for 

the large variability in these trends may be that the available metabolite data are not informative enough. It 

is also to be expected that the different processes catalyzed by these enzymes allow for a large degree of 

redundancy. For instance, serine is not only used in the SPT reaction, but also for the production of 

phosphoserine and in the serine hydroxymethyl transferase reaction, so that computationally inferred 

excesses in one reaction may be compensated numerically by a lower activity of one of the other two. 

Finally, as we discussed elsewhere [10], it is possible that these processes are not as well modeled as those 

at the core of sphingolipid biosynthesis, because they also participate in other pathway systems, such as 

phsopholipid or ergosterol metabolism. 
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Figure 3.8. Trends in activities of enzymes associated with fatty acid CoA. The enzymes shown here are responsible for CoA 

enlongation. The enzymes are located in the yellow zone of Figure 3.10.  Grey lines are results of 2,000 individual iterations in the 

large-scale simulation. Red lines are ensemble averages, and dotted blue lines enclose 95% of the results. 

 

Figure 3.9. Trends in the remaining enzyme activities. Activities of enzymes at the periphery of the pathway system are not 

identifiable, mainly due to insufficient information and the fact that these enzymes are also involved in other pathways. Enzymes 

in the two upper panels are related to the phospholipid metabolism and enzymes in the lower panel are related to serine metabolism. 

The enzymes are located in the tan and pink zones of Figure 3.10.  Grey lines are results of 2,000 individual iterations in the large-

scale simulation. Red lines are averages, and dotted blue lines enclose 95% of the results. 
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The computationally inferred patterns in enzyme activities are collectively depicted as colored 

zones in Figure 3.10.  

 

Figure 3.10. Zones of similar changes in enzyme activities. The zones correspond to enzyme profiles in Figures. 3.4 (red), 3.5 

and 3.6 (blue), 3.7 (green), 3.8 (yellow) and 3.9 (tan and pink) respectively. Abbreviations are: Green boxes (sphingolipid 

metabolism): KDHS (3 Ketodihydrosphingosine), DHS (Dihydrosphingosine), DHS-P (Dihydrosphingosine 1-phosphate), PHS 

(Phytosphingosine), PHS-P (Phytosphingosine 1-phosphate), DHC (Dihydroceramide), PHC (Phytoceramide), IPC-g (Inositol 

phosphorylceramide), MIPC-g (Mannosylinositol phosphorylceramide), M(IP)2C-g (Mannosyldiinositol phosphorylceramide), 

IPC-m (Plasma membrane inositol phosphorylceramide), MIPC-m (Plasma membrane mannosylinositol phosphorylceramide), 

M(IP)2C-m (Plasma membrane mannosyldiinositol phosphorylceramide). Yellow boxes (phospholipid metabolism):  DAG (Sn-1,2-

diacylglycerol), CDP-D (Cytidine diphosphate DAG), PS (Phosphatidylserine), PA (Phosphatidic acid), PI (Phosphatidylinositol), 

CDP-E (Cytidine diphosphate ethanolamine). Blue boxes (fatty-acid metabolism): Pal-CoA (Palmitoyl-Coenzyme), C26-CoA (Very 

long chain fatty acid), Mal-CoA (Malonyl coenzyme), Ac-CoA (Acetyl coenzyme).  The base diagram was adapted from Alvarez-

Vasquez et al., Nature 433(7024): 425-430, 2005. 
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Most interesting are the red and blue zones, which control the influx to, redistribution within, and 

efflux out of the core of sphingolipid biosynthesis. The green zone contains the complex sphingolipds, 

which provide material for activities in the blue zone, even though their concentrations do not change much 

throughout the thirty minutes of heat stress (see Figure 3.3). The yellow, pink, and tan zones at the periphery 

contain fatty-acid CoAs, serine compounds and phospholipids, respectively. These are necessary for 

sphingolipid biosynthesis, but also for other pathways. Due to their multiple roles, they are presumably not 

modeled comprehensively, and their enzyme activities are not identifiable with the data and methods used 

here.  

 

The trend lines, as well as their averages, collectively suggest that the sphingolipid heat stress 

response is achieved with quite moderate changes in many enzymes rather than very extensive changes in 

just a few key enzymes. This result is consistent with earlier studies in the context of the diauxic shift, 

which implied that cells probably satisfy altered metabolic demands with many small, rather than a few 

large, adjustments [9,98]. While it is impossible to identify the true advantage of this strategy 

unambiguously, the avoidance of large changes in any of the system components might be expected to 

reduce the risk of undesired side effects in neighboring pathways.  

All trends in enzyme activities follow distinct patterns, which are the results of a balance among 

three forces induced by the shift in temperature from 30°C to 39°C: first, an essentially immediate increase 

in activity to a level of up to about four times the baseline, according to the enzyme’s (typically unknown) 

Q10 value, which quantifies the Arrhenius effect (see Table A3.3 in Appendix 3); second, a possibly 

diminished activity due to partial protein unfolding and/or an altered half-life of the corresponding protein 

and/or mRNA; and third, changes in enzyme activity due to regulation and/or gene expression. These forces 

may be active to different degrees in overlapping time windows. 

The three forces lead to different activity patterns. Most striking is the set of enzymes controlling 

the influxes and effluxes associated with the core of sphingolipid biosynthesis. Their pattern of heat 
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responses consists of enzyme activities that first exhibit a Q10 effect, which is subsequently counteracted 

by deactivation mechanisms that could be due to changes in RNA amounts, changes in half-lives or 

degradation rates of proteins or mRNAs, post-translational modifications, or heat induced gene depression 

[99]. Thus, after a few minutes, these enzyme activities essentially disappear.  

 

3.2.1 Overall Heat Stress Response Strategy 

Without any computational analysis, the measured data directly show which sphingolipids are 

apparently needed under heat stress at different points in time. Measured as absolute quantities, PHS 

increases by far the most in concentration, whereas PHS-P increases most relative to its baseline value. 

Interestingly, both adjustments are much stronger than in the corresponding dihydro-forms. For instance, 

the concentration of DHS-P remains very low throughout the observation period of 30 minutes (Figure 

3.11). DHS reaches its modest peak earlier than PHS and PHS-P, whereas PHC reaches its peak later. It is 

difficult to discern the rationale for this timing and the differences in peak heights.  

 

Figure 3.11. Smoothed time series data. Absolute changes in six key sphingolipid metabolites in response to a temperature shift 

from 30C to 39C at time 0. The raw data were smoothed with a standard spline technique. See also Figure 3.2.  



58 

 

 

Figure 3.12. Smoothed time series data. Absolute changes in six key sphingolipid metabolites in response to a temperature shift 

from 30°C to 39°C at time 0. The raw data were smoothed with a standard spline technique. See also Figure 3.1. 

 

What the computational analysis shown here suggests is how these observed adjustments are 

implemented by the cell. Initially, de novo biosynthesis increases quickly, but only for the first three or four 

minutes. The model actually allows us to quantify and compare the total amount of biosynthesis under 

optimal and heat stress conditions. Namely, we can record in the dynamic simulation the total production 

of 3-KDHS, while computationally omitting its degradation (Figure 3.12). Under optimal conditions, and 

with a constant influx of palmitate and serine, this accumulation is linear (blue line), and considering 

consumption as well, the concentration of 3KDHS is constant (results not shown). By contrast, under heat 

stress, the accumulation is faster for the first few minutes (red line), but it is increasingly reduced 

subsequently. Considering consumption as well, the concentration of 3KDHS decreases (results not 

shown).  

In the next five to ten minutes, the patterns diverge strikingly. Probably most intriguing, both the 

input to, and the exit from, central sphingolipid metabolism are almost completely shut down. During this 
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time period, the cell not only counteracts the unavoidable Q10 effect in SPT, but down-regulates this enzyme 

to a mere residual amount, as shown in top left panel of Figure 3.4. Similarly, the exit routes through the 

lyase and remodelase steps lose activity about 5 minutes into the heat stress (Figure 3.5). The second step 

of de novo biosynthesis, KDHS reductase, is less dramatically affected (right panel in Figure 3.4), but 

deprived of substrate. This substrate deprivation appears to be safer than enzyme down-regulation, as 

3KDHS is toxic [100] and any accumulation could be dangerous.  

The computational deductions imply that de novo sphingolipid biosynthesis appears to be up-

regulated only for the first few minutes [78]. To establish the needed changes in sphingolipid profile under 

heat stress, the cell appears to absorb and process residual substrate as vigorously as possible, but 

subsequently seems to count on the much more reliable use of existing complex sphingolipids for the 

generation of signaling molecules such as PHS, PHS-P and, to a lesser degree, DHS and DHC, and on a 

subsequent redistribution among the simple sphingolipid pools. This conclusion is based on the inferred 

reduction in biosynthesis after about five minutes, the shutting off of the lyase and remodelase steps, as 

well as three additional observations. First, IPCase (Figure 3.7) is strongly upregulated in a sustained 

manner for about 15 minutes.  Second, the hydroxylase, which converts DHC into PHC and DHS into PHS, 

loses almost all activity throughout the measured time period (Figure 3.5). Third, processes leading to the 

synthesis of complex sphingolipids, including IPC synthase and the synthesis of PI and DAG, are down-

regulated after about 15 minutes (Figure 3.7), thereby slowing down the genesis of new complex 

sphingolipids from simple sphingolipids. Several of the enzymes associated with complex sphingolipids 

begin to become active again about 28 minutes into the heat stress, which may be a consequence of changes 

in gene expression.  

After 30 minutes, the six measured sphingolipid concentrations essentially return to their baseline 

levels. In stark contrast, the enzyme system has not returned to its original state, and several enzymes still 

exhibit an activity that is quite distinct from the profile under optimal temperature conditions. Thus, the 

cell, which is still under heat stress, is regaining a close resemblance of normalcy with respect to its 

metabolites, but this state is achieved with a significantly different flux and enzyme profile. 
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3.3 Discussion 

 

In this part of the project, we have proposed a computational approach to analyze heat stress 

response strategies in yeast. Specifically, we have inferred how cells adjust their enzyme activities within 

sphingolipid metabolism, which has been demonstrated in numerous earlier reports as a heat sensitive 

signaling system.  Using experimental measurements of metabolite concentrations following a shift in 

temperature, combined with a detailed dynamical model, we computationally inferred adjustments in 

enzyme activities that appear to be both sufficient and necessary for mounting the observed metabolic 

response. Rather than computing a single solution to the inverse task, we computed a comprehensive 

ensemble of over 4400 independent solutions and selected from among them the best 2004 solutions, based 

on SSE and AICc metrics. These 2004 solutions led to very similar trends in the activities of key enzymes, 

although not of enzymes at the periphery of the pathway system.  

The computed results suggest, first, that the response to heat is not achieved by drastic changes in 

a few “key” enzymes, but that numerous enzymes are involved. Second, the dynamic alterations in activities 

differ substantially in both, magnitude and timing, as well as in the general shape of the enzyme activity 

trends throughout the observed 30-minute time window following the initiation of heat stress. The main 

surprise in our results is the deduction that the changes in sphingolipid profile are apparently not achieved 

by sustained increases in de novo biosynthesis but through a brief initial spike, followed by the retrieval of 

simple sphingolipids from membrane-associated complex sphingolipids, as well as a complicated 

redistribution scheme among the different ceramide and sphingosine forms. While this strategy was not 

expected, its seems to have merit, because the cell cannot be sure that new resources are quickly available 

for de novo synthesis of sphingolipids, while complex sphingolipids such as IPC, MIPC and M(IP)2C are 

integral components of membranes and therefore always available, with the possible exception of the most 

deprived situations. Thus, it seems that the cell sacrifices some of its membrane structures and recreates 
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them once the stress situation is under control. This sacrifice, however, is not very substantial, as the 

concentrations of complex sphingolipids change very little during the heat stress response (Figure 2). These 

results are consistent with experimental finding of Jenkins et al. [78], who studied different roles of 

sphingolipids during the heat stress response. Using isotope labeling, they showed that sphingoid bases and 

ceramides increase early on via de novo synthesis, but that IPC, MIPC and M(IP)2C remain essentially 

constant over a period of more than one hour. Wells et al. [83] also studied the formation of ceramide in 

response to heat stress and, using labeled phosphosphingolipids, and concluded that ceramide formation 

from IPC, MIPC, and M(IP)2C through the IPCase reaction was unlikely. However, the concentration 

profiles these authors observed were very different from those obtained by Cowart et al. [94], which we 

used here. In particular, under Wells’ 39C treatment, ceramide remained elevated at a level five times its 

baseline throughout the two-hour measurement period. Outside the fact that these authors studied a 

temperature shift from 24C to 39C, the differences in concentration profiles to those used here (Figure 1; 

Cowart et al. [94]) remain unexplained. 

Although the computational results were obtained without any particular assumptions, some 

uncertainties are associated with the fact that many of the intermediate sphingolipids had not been measured 

and that the mathematical approach may not have revealed the one truly optimal solution. For instance, all 

results are obtained from large-scale simulations with a dynamical model that has been validated to some 

degree but could certainly be improved. Given the present data, it is unlikely that further simulations of the 

same type as shown here would lead to different results. However, if other metabolite concentrations could 

be measured, or if it were possible to determine some internal metabolic fluxes independently of the 

metabolite concentrations, the degree of reliability of our results would greatly increase.  

The study presented here elucidates a systemic strategy with which the cell establishes the observed 

sphingolipid profile, but it does not address the specific roles of the various sphingolipids in the heat stress 

response. Interestingly, some of the simple sphingolipids that are known to have signaling roles do not 

change all that much, while others do. In particular, DHS, which activates the stress element STRE in the 
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expression of stress related genes, maximally rises to only about twice its normal level, about 5 minutes 

into the heat stress. Apparently, this increase is sufficient. By contrast, PHS-P, which was recently identified 

as an important gene regulator, rises to a level that corresponds to almost 10 times its baseline level and 

exhibits a sustained response that lasts over 20 minutes. PHS rises to a four-fold level. No direct signaling 

role is known, and it may just be that this compound is needed as a precursor of PHS-P.  

The experiments generating the data used here exposed the cells to persistent heat stress. At the end 

of the 30-minute observation period, all six key sphingolipids have essentially returned to their normal 

levels, except for DHC, which still seems to be very slightly elevated. By contrast, many of the enzyme 

activities are not “back to normal.” Expressed differently, the cell manages to mount a strong transient 

response, which is known to lead to longer-term genomic responses. Subsequently, within a total of just 30 

minutes, it is able to adjust its catalytic machinery to the persistent heat conditions in such a manner that 

the fluxes exhibit a distinctly different activity pattern which, nevertheless, re-establishes a favorable 

metabolic state that is remarkably close to that under optimal conditions. 

Our focus on sphingolipids sheds light on just one aspect of the well-coordinated, complex 

responses with which yeast adjusts to a new environmental condition. Nonetheless, this particular aspect is 

of special interest, as the roles of sphingolipids and their biosynthetic pathways have been preserved 

throughout evolution, from yeast to humans, where they are involved in numerous differentiation and 

disease processes (e.g., [101-104]). 
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3.4 Methods 

3.4.1 Data 

The data, previously obtained in one of our labs, were described in the literature (see Supplements 

of [94]). They consist of duplicate 30-minute time courses of six key sphingolipids, collected following a 

step increase in temperature from 30°C to 39°C. Specifically, changes in metabolite concentrations were 

measured at baseline (t = 0; normal temperature) and at 5, 10, 15, 20, 25, and 30 minutes of heat stress. We 

used these measurements, averaged the duplicates, and then applied a smoothing spline technique to 

interpolate the trend of each time course so that concentration values at 31 time points (0, 1, …, 30 minutes) 

became available for each sphingolipid. The smoothed transients are shown as absolute concentrations in 

Figure 3.13 (see also Figure 3.2 for fold changes, which shows the smoothed data as symbols, along with a 

model fit based on averaged enzyme activities). For our computational analysis we used relative changes 

in each sphingolipid with respect to the baseline steady state before heat stress, which we directly obtained 

from the time series measurements, and scaled these with steady-state values, which were described in 

earlier work [11], to obtain actual concentrations. 
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Figure 3.13. Changes in 3KDHS production under optimal and heat stress conditions. The model allows the computation of 

3KDHS accumulation without 3KDHS degradation. The accumulation patterns are distinctly different under optimal (blue) and 

heat stress (red) conditions.  

 

3.4.2 Mathematical Model  

The biosynthesis, metabolic conversions, and degradation of sphingolipids constitute a complex, 

highly regulated pathway system (Figure 3.10) that exceeds intuitive capabilities and suggests 

computational modeling for quantitative systemic analyses. Over the past decade, we have developed a 

series of such models using a General Mass Action (GMA) formulation within the modeling framework of 

Biochemical Systems Theory (BST) [9-11,105]. Because these models have been described in detail 

elsewhere, we can keep their description here to a minimum.  

The simple and complex sphingolipids, as well as other pertinent metabolites, are represented in 

the model as dependent variables, each of which satisfies an ordinary differential equation (ODE). Each 

ODE contains representations of the processes that produce or degrade this metabolite. According to the 

tenets of BST, each process is represented as a product of power-law functions, which consists of a rate 
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constant and of every variable directly affecting this process, raised to an exponent, called a kinetic order. 

Variable names and equations are presented in Appendix 3.  

As an example for how to design a system equation, consider the dependent variable 2X , which 

represents dihydrosphingosine (DHS). This metabolite is generated from three possible sources. First, 

KDHS reductase ( 27X ) catalyzes the reduction of 3-keto-dihydrosphingosine (KDHS; 1X ). The 

formulation of this process consists of a rate constant 21  , which is multiplied by 1X , raised to the kinetic 

order 
1,1,2f , and by 27X , raised to the kinetic order 

2,27,2f . Thus, the reduction process is modeled as 

2,27,21,1,2

27121

ff
XX  .  Second, DHS can be produced from dihydrosphingosine-1-phosphate (DHS-P; 4X ), a 

process catalyzed by sphingoid 1-phosphate phosphatase ( 41X ). In analogy to the first process, this step is 

represented with its own rate constant, as well as the substrate and enzyme, which are both raised to 

appropriate kinetic orders. Third, dihydroceramide alkaline ceramidase ( 29X ) converts dihydroceramide 

(DHC; 3X ) into DHS, and this process is formulated in an analogous manner. DHS is subject to three 

possible metabolic fates, namely through the ceramide synthase reaction toward DHC, through the 4-

hydroxylase reaction toward phytosphingosine (PHS), and through the sphingoid base kinase reaction 

toward DHS-P. Taken together, the ODE equation describing the dynamics of DHS contains three influx 

terms and three efflux terms as shown in Eq. (3.1).  
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
                            (3.1) 

 

All differential equations for dependent variables are formulated in this manner. Values for all 

parameters were determined from the literature [11,106].  The complete model consists of 25 ordinary 

differential equations, including those representing the six key sphingolipids of interest here, namely 
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dihydrosphingosine, dihydroceramide, dihydrosphingosine 1-phosphate, phytosphingosine, 

phytosphingosine 1-phosphate and phytoceramide. The model furthermore contains 41 independent 

variables, which represent enzyme activities and metabolites such as ATP, palmitate, acetate and 

phosphoserine, which were assumed to be constant or considered unaffected by the dynamics of the 

pathway system. The model was rigorously tested and validated against data not used for model 

construction [10].  It was also recently combined with a model of the sterol pathway, which has relevance 

for the composition of membrane rafts [105]. An SBML version of the model can be found as in Appendix 

3.  

 

3.4.3 Piecewise Optimization Approach 

As stated at the beginning of the Results section, it is our task to infer from the measured metabolite 

time courses which enzymes have to be altered dynamically, and by how much, in order for the model to 

generate the observed time-dependent metabolic profile? Mathematically, this inverse problem is 

underdetermined and furthermore complicated by the fact that the pathway is described by a system of 

nonlinear differential equations, as discussed before. If we were only concerned with a baseline steady state 

and the move of the system to a new steady state appropriate for heat stress conditions, we could use 

methods of linear algebra and pseudo-inverses, as we have demonstrated elsewhere [98]. However, here 

we are interested in the entire trajectories between stimulus (i.e., the beginning of heat stress) and the cell’s 

metabolic adjustments over 30 minutes.   

We solved this dynamic inverse problem with an iterative, piecewise optimization approach. 

Specifically, we estimated optimal enzymatic profiles by minimizing the distance between the smoothed 

sphingolipid data and the simulation results at each time point, with 1-minute time intervals, from 0 to 30 

minutes. At each time point, the optimization engine searched for the best set of enzyme activities, which 

were modeled as independent variables. To satisfy the specified objective function, we algorithmically 

minimized the distances between the six observed sphingolipid concentrations and the solutions produced 

by each trial set of independent variables. We executed this strategy 4144 times, using different random 
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values for initial settings. We then selected the 2004 best models based on residual errors (SSEs). In order 

to test the performance of this metric, we also selected models based on the Akaike criterion (AICc), and 

both criteria produced very similar results. Please see Appendix 3 for a detailed comparison of results using 

these two criteria. Subsequently, scanning all solutions throughout the 30-minute time period yielded 

dynamic alteration profiles in all enzymes as well as corresponding metabolite profiles that were consistent 

with the observed profiles throughout the experimental time period. Further details of this procedure are 

presented in the Appendix 3.  

Each optimization run produced a dynamic enzymatic profile throughout the time period from 0 to 

30 minutes. Due to the randomization of initial values and to the fact that the system is underdetermined, 

the solutions from different runs were different. Thus, instead of searching for a single unique solution, we 

studied an entire large ensemble of solutions and asked whether the solutions would reveal consistent trends 

of enzymatic profiles with in the potentially large solution space. Indeed, the overall result of this strategy 

was a set of surprisingly tight ranges for the key enzymes of sphingolipid biosynthesis 
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CHAPTER 4 

 

DYNAMICS OF THE HEAT STRESS RESPONSE OF CERAMIDES WITH 

DIFFERENT FATTY-ACYL CHAIN LENGTHS IN BAKER’S YEAST 3 

 

4.1 Introduction 

 

Recent experimental studies have demonstrated that not only the main sphingolipid metabolites in 

yeast differentially respond to heat stress, as it was discussed in Chapter 3, but that even variants of the 

same key sphingolipids, which differ in the lengths of their lipid backbones and fatty acyl head groups, can 

play distinct roles in cell signaling [107,108]. These alternate signaling roles of sphingolipids have been 

receiving increasing attention from academia and the biomedical industry. They also lead to the question 

of how exactly these different sphingolipid species are synthesized and how cells regulate and control the 

concentration of each sphingolipid variant. 

Again, an experimental investigation of the control strategies used by the cells seems difficult, and 

we therefore develop computational methods here that allow us to shed light on these strategies. Using the 

results from our previous analysis (Chapter 3) quasi as boundary conditions, we narrow our focus on the 

smaller system of ceramides and design a much more detailed model that accounts for different ceramide 

species. As in earlier studies, we use Biochemical Systems Theory (BST) as the modeling framework and 

design a combinatorial modeling approach that includes data preprocessing, dynamic flux estimation, and 

                                                            
3 Most of the material presented in this chapter was published in the article “Dynamics of the heat stress response of 

ceramides with different fatty-acyl chain lengths in baker’s yeast”, PLOS Computational Biology, accepted on 6/2/2015. 
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a modified multiple shooting optimization method. This custom-tailored method allows us to infer changes 

in enzymatic activities that lead to observed responses of the various ceramide species following heat stress.     

 

4.1.1 A Brief Review of Pertinent Details of Sphingolipid Metabolism 

Ceramides form a class of sphingolipids with a lipid backbone and a fatty acyl head group. Distinct 

variants of ceramides result from different backbones and fatty acyl CoAs. For example, C16-

dihydroceramide (C16-DHC) is a ceramide with a DHS backbone and a C16 fatty acyl CoA (palmitoyl 

CoA) head group. Recent research has revealed that DHC species with long fatty acyl chain lengths, such 

as C18-DHC, as opposed to very long chain based DHC species, such as C26-DHC, have distinct signaling 

roles [108,109]. To understand and explain these subtle differences, it is necessary to characterize the 

metabolic mechanisms of ceramide biosynthesis and degradation.   

Ceramide can be generated via two paths, namely de novo biosynthesis and conversion of inositol 

phosphoceramide (IPC). De novo biosynthesis of sphingolipids is initiated by the condensation of serine 

and palmitoyl CoA, a reaction which is catalyzed by serine palmitoyltransferase (SPT) (Figure 4.1). The 

product, 3-keto-dihydrosphingosine (3KDHS) is quickly reduced by KDHS reductase to 

dihydrosphingosine (DHS). DHS is a main source of ceramide backbone compounds. It can be converted 

into different dihydroceramides (DHC), due to multiple options for fatty acyl CoAs, which can serve as 

substrates for ceramide synthase [110,111]. The reverse reaction, from DHC to DHS, is catalyzed by 

dihydroceramidase [112]. DHC and DHS are key branch points in the sphingolipid biosynthesis pathway, 

because hydroxylases [113]can irreversibly convert these compounds into phytoceramide (PHC) and 

phytosphingosine (PHS), respectively. PHC and PHS may undergo reversible reactions catalyzed by 

ceramide synthase (PHS to PHC) and phyotoceramidase (PHC to PHS); the forward reaction (PHS -> PHC) 

requires one from among several different fatty acyl CoAs as substrate[114].  
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Figure 4.1. Greatly simplified diagram of ceramide metabolism.  Key metabolites are shown in boxes; while enzymes 

are represented in italics. See Text for abbreviations. 

 

De novo biosynthesis is not the only option for making sphingolipids available when needed. 

Equivalent to sphingomyelin in mammalian cells, yeast complex sphingolipids, including inositol 

phosphorylceramides (IPCs), refer to a class of ceramides with one or two inositol groups attached. They 

can be formed from DHC and PHC substrates via catalysis by the enzyme IPC synthase. IPC can be 

irreversibly converted into mannose inositol phosphorylceramide (MIPC), which can furthermore form 

mannose di-inositol phosphorylceramide (MIP2C). Importantly, IPC, MIPC and MIP2C all can serve as 

sources of DHC and PHC, through catalysis by the enzyme IPCase (Isc1). Thus, utilization of IPC 

compounds serves as the second path of ceramide production. [115]  

The reactions described in the previous paragraphs form a complex metabolic network, in which 

different enzyme systems exert subtle control over the proper concentration profile of the various 

sphingolipid species. Focusing on the ceramide species, namely, DHC and PHC, we can describe the 

biosynthesis and utilization of DHC and PHC as a cooperation among five enzyme systems consisting of 

ceramide synthases, ceramidases, IPC synthases, IPCases, and DHC hydroxylases. Ceramide synthases and 
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IPCases mediate the formation of DHC and PHC, while ceramidases and IPC synthases use DHC and PHC 

as substrates. The hydroxylation reaction, catalyzed by DHC hydroxylases, converts DHC into PHC.  

Our previous results [116] in Chapter 3 indicated that the enzymatic activities within the 

sphingolipid pathway can be grouped by their responses to heat stress, and thereby suggested that the 

various sphingolipid species are components of highly coordinated enzyme modules. An important detail 

we discovered is that the de novo biosynthesis of sphingolipids is activated immediately upon heat stress, 

but sustained only for a few minutes; this phase is followed by the activation of IPC utilization, which leads 

to the accumulation of sphingolipids that are retrieved from complex sphingolipids in the membranes. In 

this earlier, larger model, a single variable represented the concentration of all dihydroceramides (DHCs), 

irrespective of their fatty-acyl chain lengths, and a second variable represented the collective concentration 

of all phyotoceramides (PHCs). The DHC and PHC levels are controlled by five enzyme classes, namely 

ceramide synthase, dihydroceramidase and phyotoceramidase, IPC synthase, IPCase (Isc1), and 

dihydroceramide hydroxylase. A simplified representation is shown in Figure 4.1; for details of the 

sphingolipid pathway at large, see [10,11,116]. Ceramide synthase and DHC hydroxylase showed a similar 

pattern of activity changes, with a strong initial uptake of material followed by a weak profile toward the 

end. By contrast, dihydro- and phytoceramidase showed entirely different patterns. While 

dihydroceramidase exhibited very strong activation in the first 10 minutes, which then receded, 

phytoceramidase exhibited less pronounced peaks of activation. IPC synthase and IPCase had similar 

activities, again beginning with a sharp spike, which decreased much slower than for ceramide synthase.     

While these inferred activity patterns shed some light on how cells regulate their sphingolipid or 

ceramide contents, they are too coarse to account for changes in the regulatory patterns that govern 

distinct ceramide species. The present study fills this gap. 
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4.2 Results 

 

The enzyme activities inferred computationally in our previous study [116] and Chapter 3 

demonstrate how yeast resets its ceramide concentrations under heat stress. The alterations in activities are 

globally coordinated and grouped, and show distinct regulatory patterns across different enzymes and even 

ceramides with different fatty acid chains. In the following, we first briefly summarize pertinent findings 

from this previous research, which focused on heat-stress induced enzyme responses within the broader 

sphingolipid pathway system, and then zero in on details of the responses among enzymes directly 

associated with ceramides of different fatty acyl chain lengths.  

 

4.2.1 Alterations in Enzymatic Activities within the Ceramide Pathway System 

As mentioned above, the dynamics of ceramide species is governed by five groups of enzymes, 

which are shown in Figure 4.1 along with SPT and KDHS, which catalyze prior reactions steps.  Our overall 

strategy for zeroing in on this sub-pathway is similar to our previous approach, although the detailed 

account here requires several methodological modifications, which are detailed in the section Materials and 

Methods. As an illustrative example, consider dihydroceramidase. In our previous study, this enzyme 

catalyzed a single reaction step from DHC to DHS. Now, dihydroceramidase is involved in five reactions, 

from C14 and C16 DHC to DHS, C18 DHC to DHS, and so on, to the conversion of C26 and C26:1 DHC 

into DHS. The relationships between fluxes in the previous and in the present model are shown in the right 

panel of Figure 4.2. References regarding the enzymatic reactions can be found in the section Pertinent 

Details of Sphingolipid Metabolism. The refined ceramide model discussed here shares many reactions with 

the previous sphingolipid model, but is expanded toward details regarding the availability of specific 

substrates.   
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The reactions of this detailed subsystem are presented in the left panel of Figure 4.2. The left side 

of the diagram shows the different DHC species, categorized by chain lengths, and the right side the 

corresponding PHC species. The processes in the center are associated with elongation and desaturation. 

We designed a dynamic pathway model of this system with methods of Biochemical Systems Theory [117-

120], which have been widely documented in the literature.  

 

 

Figure 4.2. Structure of the proposed model of ceramide dynamics. Left panel: Detailed pathway of ceramide 

biosynthesis and utilization. The pathway consists of three major subsystems: synthesis and utilization of DHC (left column), 

synthesis and utilization of PHC (right column), and fatty acid elongation and desaturation (center column). V1, V6, V11, V16, 

V21, V26, V30, V34, V38 and V42 represent fluxes catalyzed by ceramide synthase. V3, V8, V13, V18, V23, and V28, V32, V36, 

V40 and V44 represent fluxes catalyzed by dihydroceramidase and phytoceramidase, respectively. Reactions exiting the system to 

the left or right, namely V5, V10, V15, V20, V25, V29, V33, V37, V41 and V45, represent fluxes catalyzed by IPC synthase, while 

reactions entering the system from the left or right, V2, V7, V12, V17, V22, V27, V31, V35, V39 and V43, represent fluxes catalyzed 

by IPCase (Isc1). V4, V9, V14, V19, V24 represent DHC hydroxylase. The vertically shown reactions represent reactions catalyzed 

by other enzymes, such as remodelase (V46), fatty acid elongases (V47, V48, V50, V51, V52, and V53), and desaturase (V49). The 

boxes marked “IPC” summarily account for the complex sphingolipids IPC, MIPC, and M(IP)2C and their interconversions. This 

simplification seems reasonable as all three, IPC, MIPC and M(IP)2C, can serve as sources for the production of DHC and PHC. 

Right panel: The dynamic flux estimation is partly based on some fluxes whose magnitudes we took from our previous model [116]. 

The table summarizes these fluxes and indicates on the right how they constrain fluxes in our present model. 
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Using the computational approach described in the Methods Section, we set out to infer detailed 

changes in enzymatic activities from time series measurements that had been generated specifically for the 

purpose of better understanding the heat stress response [107].  The data demonstrate that during the 30-

minute heat stress response, different ceramide species respond in dramatically different ways, with some 

accumulating, others being reduced over time, and yet others maintaining a relatively stable concentration. 

We used these data to parameterize the model, while allowing the enzyme activity levels to change every 

five minutes. Custom-tailored methods, reminiscent of multiple-shooting optimization, were used for this 

purpose.  

As a first diagnostics of the parameterization, we tested the goodness of fit of the model with time 

varying enzyme activities for the smoothed, interpolated ceramide data; the results are given in Figure 4.3, 

while the raw data are shown in Figure 4.10. Specifically, every three minutes the enzyme activities in the 

model were allowed to change, and this procedure yielded a reasonably good fit. The results are not entirely 

smooth due to the abrupt changes in enzyme activities between modeling windows. Even shorter windows 

were not considered necessary, considering the magnitude of noise in the data and our intent merely to 

characterize trends in enzyme activities, whereas longer windows (5 or 10 minutes) did not lead to 

satisfactory fits. As a consequence, the comparatively minor changes in sphingolipids do not seem to affect 

their levels much. Therefore, much smaller fluctuations in these major metabolites during stress 

environment should be expected in order for cells to minimize side effects in other pathways.  
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Figure 4.3. Smoothed and interpolated concentrations of ceramide species. The concentrations were reconstructed with 

the model, using inferred enzymatic activities; for raw data, see Figure 4.10. The X-axis represents the 30 minutes of heat stress, 

while the Y-axis represents the concentrations of pertinent ceramides. In each graph, red circles represent the smoothed and 

interpolated trends in experimental data, and the segmented blue lines represent the corresponding ceramide concentrations 

computed with the dynamic model using optimized enzymatic activities. The discontinuities are due to the optimization method, 

which was gleaned from multiple shooting methods. See Methods Section and Text for further details.  

 

The model with these optimized parameter values fits the smoothed, interpolated metabolite data 

quite well, and large-scale simulations (see 4.4 Materials and Methods) confirmed that the model settings 

are robust to moderate perturbations. Our computational inferences of enzyme activities, derived from these 

metabolic measurements, reveal the dynamic patterns that generate the various ceramide species with 

different carbon chain lengths. 

One should note that the shapes, rather than the magnitudes, of the inferred fold changes are more 

indicative of actual changes. The reason is that, due to insufficient experimental information, our method 

only infers the product of a rate constant and the corresponding enzyme activity, but cannot assign 
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numerical values to the two factors separately. This situation is analogous to determining Vmax in a 

Michaelis-Menten reaction, rather than kcat and the total enzyme concentration. 

 

1. Ceramide synthase  

Ceramide synthases are involved in ten model reactions that are associated with the synthesis of 

C14/C16, C18, C18:1, C24/C24:1 and C26/C26:1 DHC and PHC. Their dynamically changing activities 

are shown in Figure 4.4. All ceramide synthases are activated immediately when heat stress commences, 

which is presumably due to the Arrhenius effect, but this spike in activity only lasts for two or three minutes. 

This observation is directly consistent with our previously published results[116], as well as other 

experimental findings [83,92].  Furthermore, the dynamic pattern of ceramide synthases show a trend based 

on different fatty acyl CoAs that are used as substrates. While the activities of ceramide synthases that use 

C14/C16 more or less return to the baseline after a few minutes, it appears that the activities exhibit a 

modest second peak between 15 and 20 minutes, which however, could be an artifact. In strong contrast, 

the activity for C26 undershoots after the initial spike and only recovers toward the end of the heat stress 

experiment. It is known that there is only one ceramide synthase associated with three genes (LAC1, LAG1 

and LIP1) in yeast, which shows remarkably different substrate preferences [111,121,122]. 

The activities of ceramide synthase toward the synthesis of PHCs show different trends (shaded 

green in Figure 4.4). For substrates between C14 and 24, the activities gradually increase for about six to 

eight minutes and subsequently return slowly to their original values, which they reach after about 25 

minutes. Interestingly, the activity for the very long chain substrates C26 and C26:1 is very similar for the 

synthesis of C26 DHC: it spikes to about 4- or 5-fold and immediately drops back to the baseline.  

Note: The ceramide synthase activities we have estimated are actually products of ceramide 

synthase activities multiply by concentrations of corresponding fatty acyl CoAs. Since encountering 

difficulties finding measurements of fatty acyl CoAs in yeast under 30 minutes (short period) heat stress, 

we assumed concentrations of fatty acyl CoAs are close to their steady state in this short 30 minutes period 

so that these products directly refer to the ceramide synthase activities.  
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If fatty acyl CoAs concentration show a step change during heat stress, then the baseline activities of 

ceramide synthase would be changed, but the dynamic trends should be the same. If the fatty acyl CoAs 

exhibit dynamical changes in 30 minutes heat stress, then we would have to compensate the trend of 

ceramide synthase with the trend in fatty acyl CoA concentrations, which for now exceeds the capability of 

the current modeling approach.  

 

 

Figure 4.4. Trends in ceramide synthase activities. The upper panel shows ceramide synthase activities toward DHC, 

while the lower panel shows ceramide synthase activities toward PHC. The X-axis represents the 30 minutes of heat stress and the 

Y-axis represents fold changes in activities. In each plot, the blue and gray dots represent averaged and individual enzyme 

activities, respectively. The yellow and green shading marks similar enzyme activity patterns involved in DHC (top panel) and 

PHC (bottom panel) synthesis, respectively. 

 

2. Ceramidase 

Ceramidase catalyzes the reaction from ceramide to its sphingosine backbone. In our model, 

dihydroceramidase and phyotoceramidase are involved in five reactions that convert dihydroceramide 

species to dihydrosphingosines and phytoceramide species to phytosphingosines, respectively. Like the 

ceramide synthases, dihydroceramidase and phytoceramidase are activated immediately upon heat stress, 
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as it is shown in Figure 4.5. This result indicates the important fact that heat stress not only triggers the 

production of sphingolipids but also their degradation, and that these two events occur almost 

simultaneously.  

The enzyme activities of ceramidases can be grouped according to the DHC or PHC substrates they 

use. For dihydroceramidase, reactions involving C14/C16, C18, and C18:1 DHC as substrates show similar 

enzymatic activity patterns, which immediately rise, but by about time 12 stop being active  (shaded yellow 

in Figure 4.5). The reactions involving C24/C24:1 and C26/C26:1 DHC initially seem to change more 

slowly and peak slightly later than the enzymes for shorter-length substrates. For phytoceramidase, similar 

trends are observed for all chain lengths except C24 (shaded green in Figure 4.5), with peaks at about 5 

minutes and thus a little later than for DHC. The pattern with regard to C24 PHC is not very distinctive, but 

seems to peak late into the heat stress. Note again that the absolute magnitudes of fold changes are to be 

considered with caution. 

 

Figure 4.5. Trends in ceramidase activities. The upper and lower panels show activity trends of dihydroceramidase and 

phytoceramidase, respectively. The X-axis represents the 30 minutes of the heat stress experiment, while the Y-axis represents the 

fold changes in activities. In each plot, the blue and gray dots represent averaged and individual enzyme activities, respectively. 

The yellow and green shading marks similar enzyme activity patterns involved in DHC (top panel) and PHC (bottom panel) 

conversion, respectively. 
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3. IPC synthase  

IPC synthase controls a different pathway of ceramide utilization, which results in the synthesis of 

complex sphingolipids that are members of the IPC family. For long chain (C14 – C18) DHC, an initial 

activation of IPC synthases is again followed by low activity profiles during the last 10 to 15 minutes 

(Figure 4.6). The same is observed for C14 – C24 PHC. By contrast, activities associated with very long 

C24 – C26 DHC and C26 PHC peak between 10 and 15 minutes. The activities for DHC return to low 

values within the experimental time period, while the activity with respect to C26 PHC is still increased 

after 30 minutes. 

 

Figure 4.6. Trends in IPC synthase activities. The upper and lower panels show IPC synthase activities from DHC to 

IPC and from PHC to IPC, respectively. The X-axis represents the 30 minutes of the heat stress experiment, and the Y-axis 

represents the fold change in activities. In each plot, the blue and gray dots represent averaged and individual enzyme activities, 

respectively. The yellow and green shading marks similar enzyme activity patterns involved in DHC (top panel) and PHC (bottom 

panel), respectively. 
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4. ISC1/IPCase 

ISC1p breaks IPC into ceramides and thus constitutes another important process affecting the 

production of DHC and PHC in yeast. Figure 4.7 presents the inferred Isc1 activities. In all cases except for 

C26, the enzyme activities gradually increase upon heat stress and peak at about 10 minutes, before they 

return to the baseline. By contrast, the production of the very long chain (C26/C26:1) DHC and PHC are 

very low throughout the experiment.  

 

Figure 4.7. Trends in IPCase activities. The upper and lower panels show IPCase activities from IPC to DHC and from 

IPC to PHC respectively. The X-axis represents the 30 minutes of the heat stress experiment, and the Y-axis represents the fold 

change in activities. In each plot, the blue and gray dots represent averaged and individual enzyme activities, respectively. The 

yellow and green shading marks similar enzyme activity patterns involved in DHC (top panel) and PHC (bottom panel) side, 

respectively. 

 

5. Dihydroceramide hydroxylase 

DHC hydroxylase catalyzes the reaction from DHC to PHC. In our model, five reactions, associated 

with different substrate chain lengths, are catalyzed by this enzyme system. The inferred enzymatic 

activities are shown in Figure 4.8. Except for the initial burst that was also observed for other enzymes, 

reactions with long chain fatty acids show similar and rather low enzymatic activities. By contrast, reactions 
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involving very long chain fatty acid based DHC exhibit rather different dynamics. For C24/C24:1 DHC, 

the DHC hydroxylase is activated much later, and more strongly, than most other reaction steps, while for 

the C26/C26:1 substrate, the activity exhibits an immediate peak, as well as a second, low peak after about 

15 to 20 minutes.    

 

 

Figure 4.8. Trends in DHC hydroxylase activities.  The X-axis represents the 30 minutes of the heat stress experiment 

and Y-axis represents fold-changes in activities. In each plot, the blue and gray dots represent averaged and individual enzyme 

activities, respectively. The yellow shading marks similar DHC hydroxylase activities from DHC toward PHC. 

 

6. Other Enzymes 

Fatty acid elongation is crucial for the backbone of ceramide biosynthesis, because it supplies the 

necessary fatty acyl CoAs of different lengths, from C14 to C26. As no time series measurements are 

available for the fatty acyl CoAs under heat stress, we assumed that these fatty acyl CoAs only show limited 

activation or degradation around their steady state. The corresponding enzyme activities in this elongation 

processes and also other accessory enzyme activities (remodelase, desaturase) are presented in Figure 4.9. 
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Figure 4.9. Activities of fatty acid elongases, desaturase, and remodelase. The X-axis represents the 30 minutes of the 

heat stress experiment and the Y-axis represents fold-changes in activities. In each plot, the blue and gray dots represent averaged 

and individual enzyme activities, respectively. 

 

 

4.3 Discussion 

 

Recent research has indicated that yeast ceramides of different types and with different fatty-acyl 

chain lengths can exert distinct signaling functions [108]. It is therefore important to investigate how yeast 

cells manage to make the different ceramide variants available when needed. Our results shed light on this 

question. The computational inferences of dynamic enzymatic activities in ceramide biosynthesis are in 

agreement with previous insights into the control of sphingolipids under heat stress, but have a much higher 

resolution. The earlier results had suggested that essentially all enzymes in the pathway are involved in the 

adjustment of sphingolipid metabolism under heat stress, rather than just a few key enzymes, as one might 

have expected. The same observation holds again for the results obtained here, where we zero in on the 

much smaller but very important ceramide subsystem. Our simulations suggest that, for each ceramide 
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species, the accumulation or degradation is governed by all associated enzymes. The results also render it 

evident that the ceramide heat stress response is not a haphazard panic reaction by the cell, but a highly 

cooperative adaptation whose implementation is shared among all associated enzymes.   

The experimental metabolic time series data and our customized optimization method allowed us 

to infer trends in all five major enzymes: ceramide synthase, ceramidase, IPC synthase, IPCase, and DHC 

hydroxylase. Interestingly, these enzyme systems exhibit distinct dynamic activity patterns that strongly 

depend on the carbon chain lengths of their fatty acids.  

The initial activation of ceramide synthase confirms experimental and computational results 

indicating that heat stress induces the de novo biosynthesis of ceramides. In particular, our earlier results 

had shown that the production of dihydrosphingosine (DHS), the precursor of DHC, is immediately and 

strongly triggered by heat stress. The results here indicate that some of this newly synthesized DHS is 

directly channeled into long chain DHC. After just a few minutes, the activity of ceramide synthase for 

C14-C24 returns to the former baseline under optimal temperature conditions. Especially for C18:1 and 

C24, a second peak is detected after about 20 minutes, which coincides with the time when long chain DHC 

ceramidases cease to be active. The synthesis of the corresponding PHC increases more slowly and peaks 

about six to eight minutes into the heat stress. This short delay between DHC and PHC synthesis may be 

explained with the fact that phytosphingosine, the substrate of PHC synthase, must first be produced from 

DHS. In contrast to these patterns, the activities for very long chain substrates (C26 DHC and PHC) only 

flare up very briefly, but strongly, and then remain rather low. Although this activity trend is short-lived, a 

comparison with our earlier results suggests that this pattern actually dominates the overall trend in 

ceramide synthase. Indeed, this suggestion aligns well with the fact that C26 PHC is by far the most 

prevalent ceramide variant under normal conditions (Figure 4.3). 

By catalyzing the utilization of complex sphingolipids, IPCase is the second source for ceramides. 

In contrast to de novo biosynthesis, these processes initially increase much more slowly and exhibit a strong 

and long lasting activity peak between about 5 and 20 minutes (Figure 4.7). Subsequently, their activities 

essentially cease. Interestingly, the trends are very similar for DHC and PHC and for chain lengths up to 
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24, which may suggest that the same enzyme could catalyze all reactions for both DHC and PHC of chain 

lengths up to 24. The dynamics for C26 DHC and PHC is distinctly different. 

The DHC hydroxylase reaction facilitates an internal redistribution between DHCs and PHCs. It is 

activated instantly for long chain DHCs, with a subsequent decrease in activity, whereas C24 activity occurs 

mostly between 10 and 20 minutes (Figure 4.8). The activities with respect to C26/C26:1 DHC show a 

mixed pattern with a very small magnitude.  

The utilization of ceramides follows two routes, namely toward the sphingosine backbone via 

ceramidase, and toward IPC via IPC synthase. The long chain DHC ceramidases arguably exhibit the most 

striking pattern (Figure 4.5). Their activities rise immediately with heat stress and are sustained for about 

ten minutes, after which the activities drop quickly and cease altogether. As these activities are much higher 

than for the corresponding ceramide synthases, it appears that the cells are preferably channeling long chain 

material to DHS. The corresponding activities for PHC are not as clear-cut. They also increase, but not as 

quickly or strongly, and return to their baseline over the entire 30-minute time period. This difference 

between DHC and PHC substrates may again be explained with the fact that phytosphingosine and PHC 

must first be synthesized from dihydrosphingosine and DHC, respectively. Intriguingly, the activities for 

very long DHC substrates and for C26 PHC increase more gradually and peak between 5 and 10 minutes. 

As C26 PHC is the most prevalent ceramide species, this pattern dominates the overall trend in ceramidase. 

Finally, IPC synthase incorporates ceramides into complex sphingolipids. Here, the activities for 

long chain DHC and PHC substrates rise instantly, and the activities essentially cease after about 20 minutes 

(Figure 4.5). By contrast, the highest use for very long chain DHC and PHC occurs at about 10 minutes of 

heat stress.  As in other cases, these trends are in line with the overall trends we observed in our previous 

analysis. 

Taken together, it appears that the immediate response to heat stress is the de novo synthesis of 

long chain DHC, its conversion into the corresponding PHC, and the return of some material to DHS. Also, 

some long chain DHCs and PHCs are incorporated into complex sphingolipids. Between 5 and 10 minutes 

of heat stress, long and very long chain PHCs are generated. Around 10 minutes into heat stress, complex 
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sphingolipids are used to generate DHC and PHC of all lengths. Also at this time, C24/C24:1 DHC is 

converted into PHC. Most activities are back to normal at the end of the 30-minute period, which is 

consistent with our earlier findings [116]. 

The molecular and cell-physiological reasons for the differences in activity patterns towards 

substrates of different lengths are unknown. The most straightforward hypotheses might be that the 

differences are due to: 

(1) the existence of specific enzymes or isozymes for different substrates; 

(2) different affinities of the same enzymes to substrates with different N-acyl chain lengths; 

(3) compartmentalization of substrates and/or enzymes, which would allow the same enzyme to be 

regulated differently in its action on distinct substrates. 

In mammalian cells, at least five ceramide synthases were identified [123], and they perform 

different but overlapping functions with respect to different fatty acyl CoAs. In yeast, LIP1, LAC1 and 

LAG1 are known as genes coding for subunits of ceramide synthase, but otherwise not much is known 

about the reactions associated with different ceramide species. Our computational inferences indicate that 

reactions using substrates with different fatty acyl chain lengths are grouped, often into long chain and very 

long chain classes, which could suggest that ceramide associated enzymes are regulated in a  “fatty acyl 

chain length specific” manner. However, there is so far no evidence that different species of the enzymes 

in question, which seems to suggest that explanation (3) offers the most likely hypothesis. Further 

experimental research will be needed to support or refute this conclusion. 

Beyond the particular application to ceramide metabolism, the computational modeling and 

inference methods in this work demonstrate how metabolite profiles, obtained as time series data, may be 

used to decipher in vivo strategies with which cells organize their responses to environmental stimuli. 
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4.4 Materials and Methods 

 

4.4.1 Experimental Data 

Ceramide time series data for the present study were obtained de novo, as described in [94]. S. 

cerevisiae cells were cultured overnight at an optimal temperature of 30◦. In duplicate experiments, the cells 

were moved to a water bath that was kept 39◦ C, which causes heat stress in yeast, and sampled every 5 

minutes between 0 and 30 minutes. The samples were analyzed with High Performance Liquid 

Chromatography and Mass Spectrometry (HPLC-MS) to yield heat stress time series data of the following 

dihydro- and phyto-ceramide species: C14, C16, C18, C18:1, C20, C22, C24, C26; here the numbers refer 

to fatty acyl chain lengths and “:1” refers to an unsaturated fatty acid with one double bond. Considering 

that some datasets were missing or measurements fell below the detection limit, we used C14/C16, C18, 

C18:1, C24/C24:1 and C26/C26:1 DHC/PHC to construct our mathematical model.   

As in our previous study [116], we found it beneficial to interpolate the data in a smooth fashion. 

It seems reasonable to assume that the heat stress response is a continuous phenomenon, and that a 

minimally biased spline technique would reflect the true dynamics in acceptable approximation. The raw 

and smoothed, interpolated data are exhibited in Figure 4.10. One should note that the Y-axes in Figure 

4.10 are quite different, which indicates a large variation in prevalence of the various ceramide species. 
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Figure 4.10. Raw duplicate time series concentrations of ceramide species (connected blue symbols) and their means (red 

symbols). The red curves show the smoothing spline interpolations of each dataset. 

 

 

4.4.2 Previous Work on Enzyme Activity Inferences  

Yeast responds to heat stress within minutes. Among the different aspects to this response, the 

concentration profile of sphingolipids starts to change in less than two minutes. Due to the complexity of 

the pathway, these changes in synthesis and degradation, which result from activity changes in enzymes, 

can hardly be inferred with intuition alone. To shed light on the response strategy, we recently proposed a 

customized computational approach to infer the dynamic changes in enzymatic activities from sphingolipid 

time series data [116]. These data consisted of time course measurements that were taken under heat stress 

conditions every 5 minutes until the end of a 30-minute interval and contained concentration measurements 

of dihydrosphingosine (DHS), dihydrosphingosine 1-phosphate (DHS1P), phytosphingosine (PHS), 

phytosphingosine 1-phosphate (PHS1P), dihydroceramide (DHC) and phytoceramide (PHC). 
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In order to infer the heat-induced changes in enzymatic activities, we used a Generalized Mass 

Action (GMA) model, in which every process was represented as a product of a rate constant and of all 

variables that directly affected the process, raised to a power [117]. The specific model was adopted from 

our earlier work [10,11] and included 31 metabolites as dependent variables and 64 enzymes or cofactors 

as independent variables. With this model as base structure, we developed a piecewise optimization 

approach.  

First, the time series measurements were interpolated by smoothing splines and then re-sampled to 

produce time series values for every minute during the experimental time period. These values were entered 

into the GMA model. For each time interval, we formulated and solved the optimization problem of finding 

a set of enzymatic activities to establish the lipid profiles in that specific time frame. Given 31 time points, 

we thus found 30 corresponding sets of enzymatic activities that generated the observed dynamic metabolic 

profiles. An additional randomization scheme allowed us to infer solution spaces and confidence bands 

rather than point estimates. Several validation studies confirmed the results. The trajectories of the 

computed enzymatic activities revealed interesting regulatory mechanisms of sphingolipid metabolism, as 

described in the introduction.  

 

4.4.3 Methodological Alterations for Explaining the Dynamics of Ceramide Variants 

The basic concepts of the modeling method were taken from our previous study [116]. As before, 

we smoothed the heat stress time series data of the six DHC and PHC species with different chain lengths, 

considered one-minute time intervals, and developed a customized, piecewise optimization approach that 

allowed us to infer changes in enzyme activities in a step-by-step manner. Also as in earlier studies, the 

system was represented as a GMA model. The pathway system under investigation is depicted in Figure 2. 

It consists of three major parts: synthesis and utilization of DHC, synthesis and utilization of PHC, and fatty 

acid elongation.  

In comparison to the previous inference of all sphingolipid enzyme activities, the subsystem we 

consider here is relatively small. However, by accounting for the different chain-length variants, the system 
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is much more detailed and leads to surprising complexity. In particular, the fatty acid elongation process 

becomes critical, whereas it was modeled only coarsely in the earlier analysis. It is our goal here to tease 

out the details of fatty acid elongation and the synthesis and degradation of variant ceramide species with 

different fatty acyl groups.  

All responses outside the subsystem addressed here are expected to be the same as in the larger 

system, within normal biological variability, which allows us to use the previous model as a large set of 

dynamic boundary constraints that govern the sphingolipid system at large. For instance, fluxes entering 

the ceramide subsystem are directly taken from the large sphingolipid model. Similarly, the heat stress 

concentration of palmitoyl fatty acyl CoA can be directly imported from the sphingolipid model. The table 

in Figure 4.2 summarizes constraints on fluxes in the present model, imposed by the prior model. 

The resulting ceramide subsystem has 53 fluxes and 15 dependent variables (Figure 4.2). 𝑋1 to 𝑋5, 

𝑋6 to 𝑋10 , and 𝑋11 to 𝑋15 represent the corresponding species of C16-DHC to C26-DHC, C16-PHC to 

C26-PHC, and C16-fatty acyl CoA to C26-fatty acyl CoA, respectively.  

Details of the two core components of our approach, namely the estimation of dynamic fluxes and 

of enzyme activities, are shown in the flowchart of Figure 4.11. The first task, as shown in the upper panel 

of Figure 4.11, consists of checking the mass balances within the system and to construct the stoichiometric 

matrix that describes the production and degradation rates of the dependent metabolites. Because the system 

has considerably more fluxes than metabolites, we are faced with a highly underdetermined system. We are 

dealing with this situation by solving the system in 30 pieces, starting from the initial steady state to time 

1, from time 1 to time 2, all the way to the end of the heat stress experiment (30th minute). The following 

describes in more detail a customized optimization strategy with which we determine the flux distribution 

in each time point. 
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Figure 4.11. Details of the procedures of flux estimation and enzyme activity estimation. 

 

Each flux is determined such that the model as a whole matches the observed data within a 

sufficiently small range of noise. Furthermore, all subsets of these fluxes, for instance, those representing 

the DHC hydroxylases, must collectively be consistent with the known fluxes of our previous model (see 

table in Figure 4.2). Also, all fluxes should change relatively smoothly from one time interval to the next. 

Finally, all fluxes are subject to upper and lower bounds. These tasks are formulated as a constrained 

nonlinear optimization program. Specifically, at each time point, we use two types of constraints. First, we 

constrain the system by ensuring that the slopes of the dependent variables (𝑋) at a given time point t are 



  91 

sufficiently close to 𝑋(𝑡) − 𝑋(𝑡 − 1), which we accomplish by minimizing the sum of squared errors 

between these differences and the corresponding slopes of these 𝑋 variables. Second, we constrain the 

system by ensuring that the fluxes entering the system from the outside are collectively equivalent to those 

of the former model (cf. Table in Figure 4.2). These two constraints can be formulated as a combined, single 

objective function. To achieve robustness of the solution, the system is solved repeatedly by assigning for 

all unknown fluxes initial values that are drawn randomly from the uniform distribution U(0.01, 100). The 

results suggested that 1,000 simulations return sufficiently diverse ensembles.  

One could surmise that the rather strong variability in the time series data (Figure 4.10) would 

unduly affect the flux estimation. To test this hypothesis, we estimated fluxes based on interpolated 

concentration data that were perturbed in either direction by a random factor sampled from U(1/1.5, 1.5). 

We compared these estimated fluxes with those obtained from noise free interpolated data. The flux 

distributions show very similar patterns (Figure A4.1 and A4.2); detailed procedures are provided in the 

Appendix 4.  

As an example, the resulting fluxes of reactions catalyzed by ceramide synthase are given in Figure 

12; other fluxes are shown in the Appendix 4 (Figure A4.1). Once the flux distributions are computed for 

each time point, we examine the histogram of each flux in each time point to ensure that the solutions are 

well constrained; details are presented in the Appendix 4 (Figure A4.3). The analysis revealed that most of 

the flux distributions at any given time point were rather tightly bell shaped, suggesting the use of the mean 

value of each flux at each time point as an appropriate, time-dependent estimate (Figure 4.13). We also 

redid the analysis with medians, but the results were essentially the same. 
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Figure 4.12. Dynamic flux distributions of 10 reactions catalyzed by ceramide synthase. Each grey dot represents 

one simulation. The blue line indicates the means, the black asterisks show the medians, and blue bars represent 20th and 80th 

percentiles (blue bars). 

 

 

 
 

Figure 4.13. Histograms of ceramide synthase fluxes from C16 DHS to C16 DHC (upper panel) and from C16 PHS 

to C16 PHC (lower panel). Time 0 represents normal steady-state temperature conditions at the beginning of the heat stress 

experiment, which lasts for 30 minutes. 
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The method of Dynamic Flux Estimation [124] allows us to obtain important hints for how material 

flows within the system. The resulting flux estimates are also important for constructing a dynamic model 

of ceramide synthesis and degradation upon heat stress. For later purposes, we need to identify how 

substrates, enzyme, modulators and kinetic parameters contribute to the magnitude of a flux. Because the 

actual enzyme amounts and rate constants are not known, we assume, as it is commonly done, that enzyme 

activities enter a flux representation in a linear manner and that substrates contribute with a power of 1, 

which corresponds to a mass-action formulation. Given these assumptions we obtain coarse estimates of 

the product of the rate constant and the enzyme activity. This product is similar to a Vmax value, which by 

definition consists of the product of kcat and the total enzyme concentration. Some of these estimates are 

shown in Figure 14 as functions of time. (All estimates are presented in Figure A4.3 of the Appendix) 

Based on these time dependent estimates of flux magnitudes, we employed smoothing splines with 

proper degrees to obtain smooth time trends in enzyme activities (please refer to lower panel in Figure 

4.11). The functional representations of enzyme activities were entered into the ODE model in order to 

obtain trends in the different ceramide species. Under ideal conditions, these trends should match the 

observed concentration profiles. By using the residual errors between the results of the described modeling 

strategy and the data, we created an optimization strategy that iteratively refined the trends in enzyme 

activities. This strategy was gleaned from the method of Multiple Shooting, which is a well-documented 

methodology for fitting dynamical data in boundary value problems [125,126]. While most optimization 

methods that correspond to a single shooting strategy aim at searching for one parameter set to fit the 

observed dynamic trajectory in its entirety, multiple shooting splits the time series into successive time 

frames and initially searches for independent parameter sets that match the data one frame at a time. In 

many cases of complex dynamic systems, this type of multiple shooting has demonstrated a better 

performance than single shooting.  Here, we address a separate initial value problem for each time frame, 

and the last data point in each time frame is not defined as a condition for the subsequent frame.  

We applied the multiple-shooting inspired strategy to fit the various ceramide time series data. 

However, instead of searching for entirely new parameter sets for each time frame, the task here is simpler, 
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because the algorithm searches merely for slight adjustments of the coarse functional forms of enzyme 

activities that we had previously derived for each time frame to fit the ceramide data. Specifically, we 

associated unknown coefficients 𝐶 to the enzyme activities in the ODEs. For example, from the 3rd to the 

6th minute of heat stress, the functional representation of the enzyme activity,  𝑓3−6𝑚𝑖𝑛𝑢𝑡𝑒(𝑡), was replaced 

with 𝐶3−6𝑚𝑖𝑛𝑢𝑡𝑒 ∗ 𝑓3−6𝑚𝑖𝑛𝑢𝑡𝑒(𝑡). With all coefficients set equal to one, the ODEs are unchanged. However, 

by using the coefficients as free parameters, we are now capable of adjusting the system dynamics in each 

time frame. Thus, we subdivided the 30-minute time frame of the heat stress experiment into 3-minute 

intervals and fit the data separately in each interval.  Furthermore, to minimize bias, we executed the search 

algorithm with many random initial settings for each coefficient, each enzyme, and each timeframe so that 

we obtained ensembles of solutions within a larger solution space. The slightly adjusted enzyme activities 

were then collected for biological inference.  

 

 

Figure 4.14. Rough estimation of ceramide synthase activities. Each grey dot represents one simulation. The blue line 

indicates the means, the black asterisks show the medians, and blue bars represent 20th and 80th percentiles (blue bars) 
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CHAPTER 5 

 

ANALYSIS OF THE INVOLVEMENT OF DIFFERENT CERAMIDE 

VARIANTS IN THE RESPONSE TO HYDROXYUREA STRESS IN 

BAKER’S YEAST 

 

5.1 Introduction 

 

Mammalian sphingolipids actively participate in triggering crucial cell functions as second 

messengers. Within the sphingolipid family, ceramides have been investigated for several decades. More 

recently, they have been receiving increased attention because they are directly involved in signal 

transduction that ultimately leads to cell proliferation, differentiation, and apoptosis [107,109,127]. While 

the relationships between ceramide species, signaling cascades and gene expressions are gradually 

becoming clearer, it is still unknown how the concentrations of the various ceramide species are altered by 

cells in response to stresses. Two reasons for this lack in understanding are that sphingolipid metabolism 

constitutes a complex, highly regulated pathway system and that consistent metabolic and enzymatic time 

series measurements are difficult to obtain.  

In contrast to mammalian cells, yeast cells are much more easily investigated, and because they are 

also eukaryotic, they have become valuable model systems for mammalian stress responses. In particular, 

the metabolism of sphingolipids is highly conserved and quite similar between mammalian cells and yeast, 

and it is feasible to measure stress responses more or less directly and with a time resolution of a few 

minutes. However, these measurements alone do not reveal the strategies that cells evoke to respond to 

stresses. Thus, using similar methods as in Chapters III and IV, I am proposing here a computational 

approach that uses experimental time coarse data of different yeast ceramide variants and is designed to 
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reveal and characterize patterns of metabolic regulation within the ceramide pathway under hydroxyurea 

stress.  

The reasons for choosing hydroxyurea stress are the following. Hydroxyurea inhibits the enzyme 

ribonucleotide reductase and thereby decreases or even stalls DNA synthesis. Due to this property, 

hydroxyurea has been used increasingly as a treatment option for a variety of diseases including HIV 

infection and AIDS, sickle cell anemia, and myeloproliferative neoplasms. In spite of the growing interest 

in hydroxyurea, details of the mechanisms of action are not fully understood, and it is therefore not 

surprising that the investigation of cellular responses to hydroxyurea has become a highly interesting topic 

in biomedical research.  

Using baker’s yeast as a model organism, the roles of ceramides in signal transduction under 

hydroxyurea exposure are beginning to become clearer. For instance, the tolerance of yeast cells to 

hydroxyurea exposure decreases in knockouts of each one of several genes, including isc1 (IPCase) and 

sur4 (fatty acid elongation), in double gene knockouts such as lag1 and lac1 (ceramide synthase), as well 

as in strains overexpressing ydc1 (phytoceramidase) [108]. These findings strongly imply the involvement 

of ceramide in mediating hydroxyurea stress. Further research has suggested a signaling cascade, which 

starts with an increased concentration of C18:1 phytoceramide (C18:1 PHC, phytoceramide with a C18:1 

fatty acyl CoA), which triggers the activation of a sub-domain of Cdc55/PP2A (a regulatory subunit for 

protein phosphatase 2A) that leads to a decrease in Swe1 (a mitosis inhibitor protein kinase) level, causes 

dephosphorylation of Clb2-Cdc28 (which activates Cdc28p to promote the cell cycle transition from G2 to 

M), and ultimately activates the G2/M checkpoint.    

While it has thus been suggested that yeast C18:1 PHC mediates the hydroxyurea stress response 

via a multi-step signaling cascade, it is not clear which mechanisms alter the level of C18:1 PHC in the first 

place. These mechanisms are not easy to decipher with intuition alone, because the biosynthesis of C18:1 

PHC is embedded in the complicated pathway system of sphingolipid biosynthesis (Figure 5.1). This 

system, to which I will refer in the following sections as ceramide metabolism, actually consists of parallel 

pathways that generate and utilize saturated and unsaturated ceramides with different fatty acyl chain 
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lengths. When formulated in sufficient detail to account for all different ceramide variants, this pathway is 

so complicated that targeted alterations of specific ceramide molecules can hardly be predicted without a 

targeted computational analysis (Figure 5.2). Nevertheless, it is important to shed light on the details of the 

involved metabolic processes because very specific ceramide variants appear to be the first responders to 

stresses, including hydroxyurea exposure and heat. 

In the following, I will describe computational approaches that are based on a series of 

comprehensive sphingolipid pathway models that our team has been developing over the past decade 

[10,11,116]. In contrast to all previous studies, I focus here on the detailed cellular responses to hydroxyurea 

stress.   

 

Figure 5.1. Ceramide biosynthesis pathway in simplified representation. 
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Figure 5.2. Ceramide metabolism consists of numerous parallel and cross reactions that lead to the production of distinct 

saturated and unsaturated dihydro- (DHC) and phyto- (PHC) ceramide variants with different fatty acyl (FA) chain 

lengths.  

 

5.1.1 Ceramide Metabolism 

Ceramide is a crucially important species within the group of sphingolipids. It consists of a long 

chain base (LCB) backbone and a fatty acyl group. Long chain bases usually contain 18 carbon bases, but 
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may also have C20 bases. The most prevalent LCBs in mammalian cells are sphingosine, 

dihydrosphingosine (DHS) and phytosphingosine (PHS), whereas yeast only produces DHS and PHS. Most 

ceramide variants possess fatty acyl groups ranging from C12 to C26. Since we only consider C18 LCBs 

in this research, the distinct ceramide species can be named in accordance with their fatty acyl groups. For 

instance, C16 dihydroceramide (C16 DHC) denotes the ceramide N-palmitoyldihydrosphingosine or 

Cer(d18:0/16:0).  

In yeast, ceramides can be generated through de novo biosynthesis and through the degradation of 

complex sphingolipids (Figure 5.1). Sphingolipid biosynthesis begins with the condensation of serine and 

palmitoyl CoA, which is catalyzed by the enzyme serine palmitoyltransferase (SPT). This first step 

produces 3-keto-dihydrosphingosine (3KDHS), which is quickly reduced to DHS by the enzyme KDHS 

reductase. DHS is the key LCB and serves as a source for the other LCB, PHS, as well as for DHC. These 

reactions are reversible. Conversions between DHS and PHS are catalyzed by sphingoid base kinase (DHS 

to PHS) and sphingoid base phosphatase (PHS to DHS), respectively. DHS can also be converted to 

different variants of DHCs depending on the type of fatty acyl CoA the enzyme ceramide synthase uses. 

The reverse reaction from DHC to DHS is catalyzed by dihydroceramidase. PHS can be converted to PHC 

followed by the similar mechanism as between DHS and DHC, but the reverse reaction is catalyzed by the 

specific enzyme phytoceramidase. The final reaction of the pathway system is DHC hydroxylase, which 

catalyzes the reaction from DHC and PHC.  

The degradation of complex sphingolipids constitutes an alternative path toward ceramide species. 

Complex sphingolipids include inositol phosphoceramide (IPC), mannose inositol phosphorylceramide 

(MIPC) and mannose di-inositol phosphorylceramide (MIP2C); all of these can serve as sources of ceramide 

species. IPC can be converted reversibly into MIPC, and MIPC can be converted reversibly into MIP2C. 

The degradation of complex sphingolipids is catalyzed by the enzyme isc1 (IPCase), which is the yeast 

homologue to the mammalian neutral sphingomyelinases. The reverse reactions from DHC/PHC to IPC are 

catalyzed by the enzyme IPC synthase.  
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In summary, the ceramide levels are controlled by five enzymes, namely ceramide synthase, 

dihydroceramidase and phyotoceramidase, IPC synthase, IPCase (Isc1), and DHC hydroxylase. These 

reactions, combined with the array of different ceramide variants, form a complicated metabolic pathway 

system (Figure 5.2 and Methods section) that renders an intuitive understanding of the dynamic responses 

of hydroxyurea very challenging. To shed light on this system, we have developed a computational strategy 

that is based on an ordinary differential equation (ODE) model and uses experimental time series data as 

input (for details see Methods). This approach will assist us in the dissection of the regulatory strategies 

with which ceramide metabolism responds to hydroxyurea exposure.   

 

5.2 Results and Discussion 

The concentrations of ceramides depend on the fluxes that enter or leave each pool and contribute 

or utilize mass. The magnitudes of these fluxes are mainly determined by two main factors: the level of 

substrates and the activity of the catalyzing enzyme. Within the framework of mass action kinetics, as well 

as other frameworks, the latter is often subsumed into the rate constant of the reaction. Using the techniques 

described in the Methods section, we have inferred these rate constants for all enzymatic steps involved. 

Summaries of these inferences are provided below. They are sorted by the five key enzymes of ceramide 

metabolism, namely, ceramide synthase, dihydroceramidase and phytoceramidase, IPC synthase, IPCase 

(Isc1), and DHC hydroxylase. Furthermore, because substrate concentrations are known from interpolation 

of the measured data, we are able to compute flux magnitudes. Thus, in the second half of this Results 

section, we describe insights from a detailed mass flow analysis that is based on these estimated flux 

magnitudes and offers novel insights into the mass flow patterns of different groups of ceramides.    

 

5.2.1 Enzyme Activities 

Activity patterns of the key enzymes ceramide synthase, dihydroceramidase or phytoceramidase, 

IPC synthase, IPCase, DHC hydroxylase and other auxiliary enzymes were inferred and analyzed for the 
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20-hour experimental time period. Many factors can potentially influence these activities, including protein 

quantity, structure (folding/unfolding), metabolic regulation, and post-translational modifications. While it 

is impossible to characterize these secondary effects based on the currently available data, our 

computational approach reveals interesting regulatory strategies in several aspects, although it focuses on 

overall enzyme activities and rate constants.  

The main results consist of two types. Time series estimates are directly calculated from the 

optimization approach (see Methods). They are shown as gray dots, which represent individual simulation 

results, and blue lines, which depict simulation averages, as well as red linear regression lines. These 

regression lines immediately display the dynamic trends in enzyme activities during hydroxyurea exposure.  

As an additional visualization, color-coded maps are computed from the dynamic time series. 

Specifically, the trends are simplified by two linear regressions, the first for the time period [0, 3], and the 

second for the time period [3, 20]; the cut at 3 hours reflects the measurement time point in the data. The 

trend for the first time window is shown in the left box at the top of each display associated with a reaction, 

while the trend for the second time window is shown in the right box on top. The wider box below these 

two displays the trend over the entire time period [0, 20]. These simplified representations immediately 

visualize the similarities and differences of dynamic enzyme activities within pools of reactions that involve 

the same specific enzyme.  

 

1. Ceramide synthase 

Ceramide synthase shows different patterns of activities when using DHS or PHS as substrate. In 

detail, the activities of ceramide synthase using DHS as a substrate exhibit a gradually decreasing pattern 

for fatty acyl chain lengths up to C24 DHC, while the corresponding reactions using PHS as substrate show  

increasing trends (except for C24:1 PHC). This finding can be further analyzed by means of the color-code 

maps in Figure 5.3. Interestingly, the reaction rates of these groups show opposite directions over the entire 

20-hour experiment. Specifically, all color boxes at the bottom of each reaction for DHC are light blue, 

indicating a slight overall decrease, while they are pink for PHC, which indicates a slight overall increase. 
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In addition to these overall trends, one finds differences in activities during the [0, 3] and [3, 20] hour 

windows. 

The different patterns of ceramide synthase activities may be interpreted in two ways. First, the 

biosynthesis of sphingolipids is proceeding at a moderate pace, since most of the activities of ceramide 

synthase are within a 2-fold range.  At the same time, the slight but important trends of gradually decreasing 

or increasing ceramide synthase activities in DHS versus PHS may be due to competition between DHS 

and PHS toward ceramide synthase.   

 

 

Figure 5.3. Ceramide synthase activities. Left panel: Time series estimates of ceramide synthase activities. Gray dots 

represent individual simulation and blue lines are averaged activities. Each subplot contains two segments of red lines indicating 

linear regression over 0-3 hours and 3-20 hours intervals. Right panel: Color-coded map. Each array of boxes associated with 

a reaction step indicates average slopes of the dynamic trends shown in the left panel for three time intervals: 0-3 (top left box), 

3-20 (top right box) and 0-20 hours (wide bottom box). 
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2. Ceramidase 

Ceramidases (dihydroceramidase and phytoceramidase) and IPC synthase catalyze the effluxes of 

ceramides; expressed differently, up-regulation of these enzymes decreases the ceramide concentrations. 

The cellular strategy of increasing dihydroceramidase activity to regulate the amount of DHC under heat 

stress has been documented. Our simulation results suggest a similar strategy under hydroxyurea stress 

(Figure 5.4).  In a very consistent pattern, the activities of dihydroceramidase gradually increase while 

trends of phytoceramidase drop. These trends eventually result in a relatively low DHC level and a high 

PHC concentration.  

 

 

Figure 5.4. Dihydroceramidase and phytoceramidase activities. Left panel: Time series estimates of 

dihydroceramidase and phytoceramidase activities. Gray dots represent individual simulation and blue lines are averaged 

activities. Each subplot contains two segments of red lines indicating linear regression over 0-3 hours and 3-20 hours intervals. 

Right panel: Color-code map. Each array of boxes associated with a reaction step indicates average slopes of the dynamic trends 

shown in the left panel for three time intervals: 0-3 (top left box), 3-20 (top right box) and 0-20 hours (wide bottom box). 
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3. IPC synthase 

The activities of IPC synthase, which use DHC or PHC as substrate, show similar patterns as 

dihydroceramidase and phytoceramidase, respectively (Figure 5.5). This finding could suggest that IPC 

synthase might be a regulator for balancing DHC and PHC concentrations. However, the existence of only 

one IPC synthase in yeast limits this potential regulatory role. In fact, the color-code representation in the 

right panel of Figure 5.5 exhibits lower decreases in activities for almost all ceramide species compared 

with ceramidases. The distinct patterns of time-dependent activities might result from substrate competition 

toward IPC synthase or from compartmentalization.   

 

 

Figure 5.5. IPC synthase activities. Left panel: Time series estimates of IPC synthase activities. Gray dots represent 

individual simulation and blue lines are averaged activities. Each subplot contains two segments of red lines indicating linear 

regression over 0-3 hours and 3-20 hours intervals. Right panel: Color-code map. Each array of boxes associated with a reaction 

step indicates average slopes of the dynamic trends shown in the left panel for three time intervals: 0-3 (top left box), 3-20 (top 

right box) and 0-20 hours (wide bottom box). 
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Although the changes in activities of IPCase and the ceramidases look somewhat similar, the 

overall trends, as given in the color maps, are distinct. The strong contrast in ceramidase activity for DHC 

and PHC may suggest the existence of two enzyme variants (dihydroceramidase and phytoceramidase) 

while the similarity of IPC synthase activities suggests that there is only one IPC synthase enzyme in yeast.   

 

4. IPCase (Isc1) 

Under hydroxyurea stress, up-regulation of IPCase, or Isc1, has been reported in the literature. In 

our simulation, IPCase activities in most of the reactions match this finding over the 20-hour period, 

although the initial activity decreases in several cases. These cases, C22:1 DHC, C24:1 DHC, C18:1 PHC 

and C24:1 PHC, may be explainable with substrate competition toward IPCase, since IPC forms different 

substrates from IPC, MIPC and MIP2C, and each of these contains distinct fatty acyl groups. However, the 

transient lower activities in the first 5-7 hours are compensated by later activation, which results in increased 

long term activities (Figure 5.6).        

C18:1 PHC has been identified as a key signaling intermediate under hydroxyurea stress in yeast. 

Our simulation, instead of identifying a single key enzyme (such as IPCase) that would cause this increase, 

suggests a highly coordinated strategy that: (1) slightly increases ceramide synthase activity using PHS and 

C18:1 fatty acyl CoA as substrates (Figure 5.3); (2) slightly decreases phytoceramidase and IPC synthase 

activity using C18:1 PHC as substrate (Figure 5.4 and 5.5); and (3) subtly modulates IPCase activity 

(toward C18:1 PHC) to achieve the overall C18:1 PHC level (Figure 5.6). This postulated strategy suggests 

an energetically and metabolically effective way to control metabolites. A similar inference was made for 

changes in sphingolipid metabolism during the diauxic shift, where many enzyme activities were altered 

rather slightly, rather than a few enzymes that were altered much.   
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Figure 5.6. IPCase (Isc1) activities. Left panel: Time series estimates of IPCase (Isc1) activities. Gray dots represent 

individual simulation and blue lines are averaged activities. Each subplot contains two segments of red lines indicating linear 

regression over 0-3 hours and 3-20 hours intervals. Right panel: Color-code map. Each array of boxes associated with a reaction 

step indicates average slopes of the dynamic trends shown in the left panel for three time intervals: 0-3 (top left box), 3-20 (top 

right box) and 0-20 hours (wide bottom box). 

 

5. DHC Hydroxylase 

Simulations of DHC hydroxylase reveal no real trends, especially when the entire 3-20 hour 

experiment is considered (Figure 5.7). The activities do change somewhat for different DHC variants, but 

these slight changes may be compensatory.  
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Figure 5.7. DHC hydroxylase activities. Left panel: Time series estimates of DHC hydroxylase activities. Gray dots 

represent individual simulation and blue lines are averaged activities. Each subplot contains two segments of red lines indicating 

linear regression over 0-3 hours and 3-20 hours intervals. Right panel: Color-code map. Each array of boxes associated with a 

reaction step indicates average slopes of the dynamic trends shown in the left panel for three time intervals: 0-3 (top left box), 

3-20 (top right box) and 0-20 hours (wide bottom box). 

 

6. Other enzymes 

Enzymes associated with sphingolipid biosynthesis, fatty acid elongases and desaturase, are not as 

important as the enzymes listed above for regulating ceramide concentrations. However, these enzymes do 

affect the balances between auxiliary metabolites, such as DHS, PHS and fatty acyl CoAs, which are crucial 

for maintaining the appropriate ceramide concentrations. Therefore, it is beneficial to discuss the activities 

of these enzymes as well.  

 

Sphingolipid biosynthesis and utilization 

DHS biosynthesis (which here combines palmitate uptake, serine condensation and KDHS 

desaturation) remains constantly upregulated throughout the 20-hour experiment. This observation suggests 
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a persistent uptake of materials from the medium. The remaining enzymes, SBK (sphingoid base kinase), 

SB-PPase (sphingoid base phosphatase), lyases (which remove DHS-p and PHS-p from the system) and 

hydroxylase (which converts DHS into PHS), along with ceramide synthase and ceramidases, cooperatively 

maintain DHS, PHS, DHS-p and PHS-p concentrations at appropriate levels. (Figure 5.8). 

 

 

Figure 5.8. Enzyme activities of sphingolipid biosynthesis. Left panel: Time series activities of enzymes catalyzing 

sphingolipid biosynthesis. Gray dots represent individual simulation and blue lines are averaged activities. Each subplot 

contains two segments of red lines indicating linear regression over 0-3 hours and 3-20 hours intervals. Right panel: Color-

code map. Each array of boxes associated with a reaction step indicates average slopes of the dynamic trends shown in the left 

panel for three time intervals: 0-3 (top left box), 3-20 (top right box) and 0-20 hours (wide bottom box). 

 

Elongases and desaturase 

Yeast expresses three elongases, Elo1, Elo2 and Elo3, which catalyze elongation reactions from 

C12 to C18, C14 to C22, and C18 to C26 fatty acid, respectively.  Furthermore, desaturase (Ole1) catalyzes 

reactions from saturated to unsaturated fatty acyl CoAs. Time series estimates of these enzymes all show 

unremarkable patterns throughout the 20-hour experiment, even though the desaturase active rises slightly 

with time (Figure 5.9). The reason for their constancy might be that fatty acid elongation is an important 
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cellular event, and it appears that the demand for fatty acids of various chain lengths does not change much 

over time. 

 

 

Figure 5.9. Time series estimates of elongases and desaturase. 

 

5.2.2 Mass Flow Analysis 

The flux into or out of a metabolite pool is determined by the concentrations of substrates and the 

rate constant including the enzyme activity. Thus, in order to assess changes in flux magnitudes, it is not 

sufficient to study changes in rate constants alone. We considered this fact in our approach and conducted 

a mass flow analysis that estimates materials entering and leaving pools in the system from estimated rate 

constants (details in Methods) and measured or interpolated substrate concentrations.   

Once individual dynamic fluxes are computed, it is possible to assess the mass flow throughout the 

entire system during the 20 hours of hydroxyurea stress (see Methods for details).  The mass flow around 

ceramides, including DHCs, PHCs and fatty acyl CoAs, suggests how materials are synthesized, degraded 
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or recycled during the 0-3 hour and 3-20 hour time periods, and throughout the entire 20 hours of 

hydroxyurea stress.   

The flux distribution in Figure 5.10 indicates that sphingolipid biosynthesis is always active. DHCs 

and PHCs are maintained through two main fluxes. One is the net flux of the balance between ceramide 

synthase on the one hand and dihydroceramidase or phytoceramidase on the other. This net flux is always 

high, particularly during the [3, 20] hour time window. Interestingly, the net fluxes point from DHS to 

DHC, but from PHC to PHS. The other flux is controlled by DHC hydroxylase. It is similarly high and 

carries much more mass than the small positive net flow from IPC to PHCs in the first three hours, which 

is actually reversed during the second phase of the experiment. Thus, it is interesting to note that material 

flows in a consistent manner through the system from DHS to DHC to PHC to PHS to PHS-p, from where 

lyase removes material from ceramide metabolism. Expressed differently, there is no drastic change of this 

flux pattern throughout the 20 hours of stress, and there is no change in the direction of mass flow.  
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Figure 5.10. Mass flow through the pathway of ceramide biosynthesis (with different DHCs, PHCs and FAs merged into 

single pools). Red arrows indicate the main flow of material throughout 20 hours of hydroxyurea exposure.  

 

This result raises the question of how the cells manage these fluxes in such a manner that all 

ceramide species achieve their target levels. Specifically, one must ask: if there is no evidence indicating 

any flux reversal, how is it possible that distinct saturated or unsaturated fatty acyl CoAs can be channeled 

toward the accumulation of a key species like C18:1 PHC? 
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To assess this question, we analyzed the mass flow for saturated and unsaturated fatty acyl CoAs 

separately. Intriguingly, the flow patterns now are distinctly different. Figure 5.11 shows the mass flow of 

the pathway for saturated and unsaturated fatty acyl CoAs in the left and right panels, respectively.  

As a first result, one notices that ceramides with saturated fatty acyl group are mainly provided 

through the degradation of complex sphingolipids, whereas ceramides with unsaturated fatty acyl group are 

obtained from biosynthesis via DHCs.  

   

Figure 5.11. Mass flow analysis of the ceramide pathway separated for saturated and unsaturated fatty acyl groups. Red 

arrows indicate the main flow of mass in each system.  

 

This result in turn suggests that increased Isc1 (IPCase) activity during 20 hours of hydroxyurea 

treatment affects saturated and unsaturated ceramides differently, which might explain findings regarding 

Isc1 in the literature. Such a differential effect does not seem unreasonable as saturated and unsaturated 

ceramides have distinct molecular shapes. According to our analysis, hydroxyurea increases the net flow 

from IPC to those ceramides containing saturated fatty acyl CoAs, and the PHC pool is being recycled via 
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PHS, PHS-p, and the lyase reaction.  At the same time, Isc1 apparently prevents unsaturated ceramides 

from being channeled toward IPC. As a consequence, knocking down Isc1 indirectly permits the conversion 

of PHCs to IPC. PHCs, including C18:1 PHC, eventually become depleted, and cells are no longer tolerant 

to hydroxyurea and die.   

Figure 5.10 can also be interpreted from the perspective of fatty acyl CoAs (FACs). The left panel 

demonstrates a strong net flux into saturated FACs, while the right panel suggests a strong net efflux of 

unsaturated FACs. A possible interpretation is the following: under hydroxyurea exposure, saturated FACs 

are used for the conversion of saturated DHCs into PHCs and can be converted into unsaturated FACs 

through the desaturase reaction, which exhibits increased activity. Unsaturated FACs can then be used to 

provide corresponding DHCs and PHCs.  

These simulation results should be independently validated, but if they are correct, they provide 

novel insights into the regulatory mechanisms that govern—or at least contribute to—the control of distinct 

ceramide species. This regulation task is complicated by the fact that the system contains many metabolites 

but only a few enzymes, so that alterations in enzyme activities are quite limited when subtle changes of 

specific metabolites are needed. For example, increasing ceramide synthase activity elevates the rates of 12 

reactions toward synthesizing distinct ceramide species in our model and does not by itself allow a change 

in just one or a few reaction products.  

Our simulations suggest that cells manage to achieve hydroxyurea tolerance through the well-

coordinated, differential usage of saturated and unsaturated fatty acyl groups. In other words, the substrate 

affinity of enzymes toward saturated or unsaturated fatty acyl groups seems to be distinct and appears to 

constitute an additional mode of regulation, which ultimately permits the fine-tuning of a desired ceramide 

profile.  

While the analysis identifies Isc1 as an enzyme that differentiates substrates by saturation state, it 

is most likely not the only such enzyme. In fact, it seems that ceramide synthase, dihydro- and phyto-

ceramidase, IPC synthase, DHC hydroxylase all help establish and maintain the appropriate ceramide 

profile.  
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5.3 Methods 

 

5.3.1 Ceramide Time Coarse   

            Fold changes in ceramide concentrations, relative to the steady state at time 0, were measured in 

duplicate after 3 and 20 hours of exposure to hydroxyurea. Mean values of the duplicate measurements 

were interpolated with a smoothing spline function, and this interpolation constituted the baseline levels for 

the dynamic trends of ceramides. The interpolated mean trends do not reflect any variability in the raw data. 

Therefore, we allowed for 10% upper and lower boundaries relative to the interpolated baseline trends. The 

results are represented in Figure 5.11. The dataset we used to fit with our models,  was randomly sampled 

from this 20% range around the interpolated mean values.  

 

 

Figure 5.12. Duplicate time coarse data, mean data, interpolation of mean data and 10% variability tolerance bands are 

marked as blue circles, red circles, a thick blue line, and a thin blue line in each plot.  

 



  115 

 

 

5.3.2 Mathematical Model  

            The ceramide pathway model considered here contains 138 reactions (fluxes) and 42 dependent 

variables (Figure 5.2). The pathway system accounts for many parallel reactions, for which kinetic 

parameters are not known. Furthermore, absolute ceramide concentrations are not available. To minimize 

the consequences of this paucity of information, we chose a mass action model to infer coarse trends in 

enzyme activities.  

  

            As an example for the design of this mass action model, consider flux 𝑉1 in Figure 5.2, which 

represents the reaction from DHS + C16 Fatty acyl CoA to C16 DHC. The mass action model for this 

reaction is defined as 𝑉1 = 𝛾1 ∗ [𝐷𝐻𝑆] ∗ [𝐶16𝐹𝐴𝐶] , where [DHS]  and [C16 FAC]  represent the 

concentrations (or fold changes) of DHS and C16 Fatty acyl CoA (relative to their steady states), 

respectively, and 𝛾1  denotes the rate constant. Each rate constant is considered here to include the 

corresponding enzyme activity. This merging of factors is similar to the combination of kcat and the total 

enzyme concentration in the Michaelis-Menten formalism. In the mass action model resulting from these 

settings, the steady state flux distribution (and the rate constants) can be estimated and tested quite rapidly.  

 

5.3.3 Piecewise Optimization Approach & Linear Interpolation 

            Steady-state fluxes and steady-state enzyme activities were calculated with a constrained 

optimization approach. Using a resampling scheme for “data” from the range surrounding the first data 

point, averaged corresponding enzyme activities at the steady state were computed. They were tested by 

entering them into the mass action model and ensuring that they satisfied the steady state. If so, they were 

used as baseline activities.  

 



  116 

            Piecewise optimization, similar to the methods in our previous paper [116] and Chapter 4, was used 

to estimate dynamic trends in enzyme activities with a 1-hour resolution.  The main technical difference 

was that, instead of fitting mean values of duplicate data, we created variability of the “data” by introducing 

10% upper and lower bounds to the mean time courses, as discussed above. While this introduction of 

artificial variability increased the difficulties of fitting data, it constitutes a significant gain in confidence 

regarding the estimated enzyme activities. A flowchart of the process is presented in Figure 5.13.  

 

 

Figure 5.13. Flowchart of the piecewise optimization approach 

 

The results of the piecewise optimization throughout the 20 hours of hydroxyurea exposure were stored for 

further analysis. It turned out that many dynamic trends in enzyme activities were almost linear or piecewise 
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linear from 0-3 hours and from 3-20 hours, which may be due to the fact that only three measurement time 

points are available data. Nonetheless, we utilized this observation and computed linear regression lines 

from 0-3 hours, 3-20 hours and also 0-20 hours of the estimated enzyme activities and recorded the slopes 

of these functions as indications of trends.    

 

5.3.4 Dynamic Flux Re-estimation & Mass Flow Analysis 

            The piecewise optimization returned rate constants in one-hour intervals, but did not directly 

provide estimations of fluxes, which we needed for the mass flow analysis. Thus, fluxes were estimated as 

follows. Rate constants were estimated in a stepwise manner for each 1-hour interval. However, the fluxes 

within each 1-hour time interval are not constant because the substrate concentrations change. To obtain 

representative flux estimates for each 1-hour interval, we split each interval into 100 segments and 

calculated 100 sequential flux values per hour. Estimates of fluxes in each hourly interval were then 

represented as averages of these 100 flux segments. 

 For the mass flow analysis, we further averaged these fluxes from 0-3 hours, 3-20 hours and 0-20 

hours. Mass flow distributions for these time intervals were then estimated through appropriate weighting: 

[average of fluxes from 0-3 hours]*[3 hours], [average of fluxes from 3-20 hours]*[17 hours] and [average 

of fluxes from 0-20 hours]*[20 hours]. These mass flows were normalized and displayed in Figure 5.9 and 

5.10 of the 5.2 Results section.  
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CHAPTER 6 

 

CONCLUSION 

 

Biological Insights Regarding Heat Stress Responses, Gained by Reverse Engineering 

Sphingolipid concentrations, even if measured in dense time series, are not by themselves sufficient 

to reveal the complex system of regulatory mechanisms that coordinate responses to external stresses. In 

addition, computational analyses are required that create a quantitative, functional context for these data. 

As demonstrated in Chapters III, IV and V, my computational approaches have the capability of taking 

limited metabolic time series data and converting them first into key enzymatic activities and subsequently 

into a functional explanation of stress responses. Thus, through simulations of very many combinations of 

activities, and restrictive subsequent filtering of results, it is possible to can gain a robust understanding of 

how cells process stresses.  

Sphingolipids are key responders under a variety of stresses, and the regulatory strategies emerging 

from my computational analysis suggest a short period of sphingolipid biosynthesis followed by a phase of 

degradation of complex sphingolipids (Chapter 3). The cellular strategy furthermore seems to involve a 

short period of ceramide production (Chapter 4), which is well coordinated with distinct rates for long chain 

and very long chain fatty acyl CoAs groups under heat stress and a long-term production of ceramides 

(Chapter 5) that distinguishes between saturated and unsaturated fatty acyl CoAs. Under both types of 

stresses, sphingolipids and ceramides are maintained or controlled by: (1) alterations in the activities of 

important enzymes; (2) a fine-tuned balance between these enzyme activities and the metabolic fluxes 

associated with these enzymes; and (3) distinct substrates affinities toward these enzymes. The proposed 

modeling approaches clearly reveal these features of the response system from metabolic data, which are 

much easier to measure than fluxes or trends in enzyme activities over time.  Beyond sphingolipids, the 
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approaches I developed are expected to be significant advances for a host of other reverse engineering tasks 

associated with dynamic biomedical systems.  

 

Contributions to the Field of Modeling 

In this work, I have developed several computational approaches. Chapter 2 describes generic, and 

in a sense comprehensive, strategies for cells or organisms to shift from a normal steady state to a new 

steady state that is adapted to altered environmental conditions. While demonstrated with the trehalose heat 

stress response in yeast, the methods described in this chapter are very general. They were fully executed 

for S-system models, which have the almost unique advantage of permitting straightforward algebraic 

analyses of steady states. It was also discussed that other systems, such as GMA systems, might be amenable 

to a similar analysis. One should furthermore expect that Lotka-Volterra models can be analyzed in an 

analogous fashion. Future work should work out the details of these types of analyses and moreover explore 

to what degree generic stoichiometric flux system might be analyzed with respect to transitions between 

steady states. 

In Chapter 3, a novel piecewise optimization approach was developed and applied to the role of 

sphingolipids in heat stress responses; an expanded version of this strategy was used in Chapter 5.  This 

type of stepwise optimization has not been reported in this form in the literature. While applied to specific 

heat stress responses, the proposed methods appear to be more or less directly applicable to a wide variety 

of reverse-engineering inference tasks addressing systems that change successively over time and where a 

global optimized inference throughout an extended time frame is not feasible.  

Also in Chapter 4, a novel algorithm was proposed that bridge the methodology of dynamic flux 

estimation and the imputation of dynamic enzyme activity trends. This algorithm was successfully tested 

with a detailed analysis of ceramides under heat stress. The experiences gained from these modeling 

techniques will be beneficial for many types of future ensemble modeling and for the reverse engineering 

of metabolic—and possibly general biomedical—systems. Taken together, it is clear that the dynamic 
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responses of biomedical systems are complicated, and that purely computational inferences of their internal, 

governing mechanisms from global output data are even more challenging. Nonetheless, this work 

demonstrates that well-designed computational models and custom-tailored techniques can successfully 

address the inference of complex phenomena like stress responses. While the proposed techniques were 

demonstrated within the contexts of heat stress and sphingolipids, their applicability appears to be much 

broader.  
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Appendix A   

 

Accessary Details of the computational method of Chapter 3 

 

Model Equations 

The model equations (Eq. A3.1) were adapted from Alvarez et al. [10,11]. One exception was the use of a 

single representation of IPCase rather than two in the original papers. Furthermore, we expanded the model 

from the original IPC mechanism, consisting of reversible reactions between the IPC family and ceramides, 

to a refined mechanism that distinguished between dihydroceramide and phytoceramide forms. To achieve 

this new mechanism,  we included six more variables (X8b, X18b – X22b) into the system to represent the IPC 

family as it reacts with phytoceramide, while leaving the original IPC variables (X8, X18 – X22) to represent 

the IPC family reacting with dihydroceramide. The corresponding equations are given below; please refer 

to Table A3.1 for definitions of variables.  

𝑑𝑋1

𝑑𝑡
= 𝛾11𝑋12

𝑓1,12,1𝑋13

𝑓1,13,2𝑋57

𝑓1,57,3 − 𝛾12𝑋1

𝑓1,1,4𝑋27

𝑓1,27,5 

𝑑𝑋2

𝑑𝑡
= 𝛾21𝑋1

𝑓2,1,1𝑋27

𝑓2,27,2 + 𝛾22𝑋3

𝑓2,3,3𝑋29

𝑓2,29,4 + 𝛾23𝑋4

𝑓2,4,5𝑋41

𝑓2,41,6 − 𝛾24𝑋2

𝑓2,2,7𝑋23

𝑓2,23,8𝑋34

𝑓2,34,9

− 𝛾25𝑋2

𝑓2,2,10𝑋28

𝑓2,28,11𝑋36

𝑓2,36,12 − 𝛾26𝑋2

𝑓2,2,13𝑋54

𝑓2,54,14 

𝑑𝑋3

𝑑𝑡
= 𝛾31𝑋2

𝑓3,2,1𝑋23

𝑓3,23,2𝑋34

𝑓3,34,3 + 𝛾32𝑋8

𝑓3,8,4𝑋51

𝑓3,51,5 + 𝛾33𝑋18

𝑓3,18,6𝑋51

𝑓3,51,7 + 𝛾34𝑋19

𝑓3,19,8𝑋51

𝑓3,51,9

− 𝛾35𝑋3

𝑓3,3,10𝑋29

𝑓3,29,11 − 𝛾36𝑋3

𝑓3,3,12𝑋54

𝑓3,54,13 − 𝛾37𝑋2

𝑓3,2,14𝑋3

𝑓3,3,15𝑋5

𝑓3,5,16𝑋15

𝑓3,15,17𝑋33

𝑓3,33,18 

𝑑𝑋4

𝑑𝑡
= 𝛾41𝑋2

𝑓4,2,1𝑋28

𝑓4,28,2𝑋36

𝑓4,36,3 − 𝛾42𝑋4

𝑓4,4,4𝑋41

𝑓4,41,5 − 𝛾43𝑋4

𝑓4,4,6𝑋50

𝑓4,50,7 

𝑑𝑋5

𝑑𝑡
= 𝛾51𝑋2

𝑓5,2,1𝑋54

𝑓5,54,2 + 𝛾52𝑋6

𝑓5,6,3𝑋41

𝑓5,41,4 + 𝛾53𝑋7

𝑓5,7,5𝑋53

𝑓5,53,6 − 𝛾54𝑋5

𝑓5,5,7𝑋23

𝑓5,23,8𝑋34

𝑓5,34,9

− 𝛾55𝑋5

𝑓5,5,10𝑋28

𝑓5,28,11𝑋36

𝑓5,36,12 

𝑑𝑋6

𝑑𝑡
= 𝛾41𝑋2

𝑓4,2,1𝑋28

𝑓4,28,2𝑋36

𝑓4,36,3 − 𝛾42𝑋4

𝑓4,4,4𝑋41

𝑓4,41,5 − 𝛾43𝑋4

𝑓4,4,6𝑋50

𝑓4,50,7 
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𝑑𝑋7

𝑑𝑡
= 𝛾71𝑋2

𝑓7,2,1𝑋23

𝑓7,23,2𝑋34

𝑓7,34,3 + 𝛾72𝑋8𝑏

𝑓7,8𝑏,4𝑋51

𝑓7,51,5 + 𝛾73𝑋3

𝑓7,3,6𝑋54

𝑓7,54,7 + 𝛾74𝑋18𝑏

𝑓7,18𝑏,8𝑋51

𝑓7,51,9

+ 𝛾75𝑋19𝑏

𝑓7,19𝑏,10𝑋51

𝑓7,51,11 − 𝛾76𝑋7

𝑓7,7,12𝑋53

𝑓7,53,13 − 𝛾77𝑋2

𝑓7,2,14𝑋5

𝑓7,5,15𝑋7

𝑓7,7,16𝑋15

𝑓7,15,17𝑋33

𝑓7,33,18

− 𝛾78𝑋7

𝑓7,7,19𝑋43

𝑓7,43,20 

𝑑𝑋8

𝑑𝑡
= 𝛾82𝑋2

𝑓8,2,6𝑋3

𝑓8,3,7𝑋5

𝑓8,5,8𝑋15

𝑓8,15,9𝑋33

𝑓8,33,10 + 𝛾83𝑋20

𝑓8,20,11 − 𝛾85𝑋8

𝑓8,8,14𝑋35

𝑓8,35,15 − 𝛾86𝑋8

𝑓8,8,16𝑋51

𝑓8,51,17

− 𝛾87𝑋8

𝑓8,8,18 

𝑑𝑋9

𝑑𝑡
= 𝛾91𝑋11

𝑓9,11,1𝑋40

𝑓9,40,2 − 𝛾92𝑋2

𝑓9,2,3𝑋5

𝑓9,5,4𝑋9

𝑓9,9,5𝑋11

𝑓9,11,6𝑋13

𝑓9,13,7𝑋14

𝑓9,14,8𝑋15

𝑓9,15,9𝑋16

𝑓9,16,10𝑋38

𝑓9,38,11

− 𝛾93𝑋9

𝑓9,9,12𝑋16

𝑓9,16,13𝑋26

𝑓9,26,14
 

𝑑𝑋10

𝑑𝑡
= 𝛾10,1𝑋2

𝑓10,2,1𝑋5

𝑓10,5,2𝑋9

𝑓10,9,3𝑋11

𝑓10,11,4𝑋13

𝑓10,13,5𝑋14

𝑓10,14,6𝑋15

𝑓10,15,7𝑋16

𝑓10,16,8𝑋38

𝑓10,38,9 − 𝛾10,2𝑋10

𝑓10,10,10𝑋56

𝑓10,56,11 

𝑑𝑋11

𝑑𝑡
= 𝛾11,1𝑋10

𝑓11,10,1𝑋12

𝑓11,12,2𝑋49

𝑓11,49,3 − 𝛾11,2𝑋2

𝑓11,2,4𝑋5

𝑓11,5,5𝑋9

𝑓11,9,6𝑋11

𝑓11,11,7𝑋15

𝑓11,15,8𝑋39

𝑓11,39,9

− 𝛾11,3𝑋11

𝑓11,11,10𝑋40

𝑓11,40,11 

𝑑𝑋12

𝑑𝑡
= 𝛾12,1𝑋30

𝑓12,30,1𝑋58

𝑓12,58,2 + 𝛾12,2𝑋24

𝑓12,24,3𝑋25

𝑓12,25,4𝑋52

𝑓12,52,5 + 𝛾12,3𝑋4

𝑓12,4,6𝑋50

𝑓12,50,7 + 𝛾12,4𝑋6

𝑓12,6,8𝑋50

𝑓12,50,9

− 𝛾12,5𝑋12

𝑓12,12,10𝑋13

𝑓12,13,11𝑋57

𝑓12,57,12 − 𝛾12,6𝑋10

𝑓12,10,13𝑋12

𝑓12,12,14𝑋49

𝑓12,49,15

− 𝛾12,7𝑋12

𝑓12,12,16𝑋48

𝑓12,48,17 − 𝛾12,8𝑋12

𝑓12,12,18𝑋24

𝑓12,24,19𝑋59

𝑓12,59,20 

𝑑𝑋13

𝑑𝑡
= 𝛾13,1𝑋31

𝑓13,31,1𝑋37

𝑓13,37,2 + 𝛾13,2𝑋65

𝑓13,65,3𝑋66

𝑓13,66,4

− 𝛾13,3𝑋2

𝑓13,2,5𝑋5

𝑓13,5,6𝑋9

𝑓13,9,7𝑋11

𝑓13,5,8𝑋13

𝑓13,13,9𝑋14

𝑓13,14,10𝑋15

𝑓13,15,11𝑋16

𝑓13,16,12𝑋38

𝑓13,38,13

− 𝛾13,4𝑋12

𝑓13,12,14𝑋13

𝑓13,13,15𝑋57

𝑓13,57,16 − 𝛾13,5𝑋13

𝑓13,13,17𝑋32

𝑓13,32,18 

𝑑𝑋14

𝑑𝑡
= 𝛾14,1𝑋2

𝑓14,2,1𝑋5

𝑓14,5,2𝑋9

𝑓14,9,3𝑋11

𝑓14,11,4𝑋15

𝑓14,15,5𝑋39

𝑓14,39,6 + 𝛾14,2𝑋2

𝑓14,2,7𝑋5

𝑓14,5,8𝑋7

𝑓14,7,9𝑋15

𝑓14,15,10𝑋33

𝑓14,33,11

+ 𝛾14,3𝑋2

𝑓14,2,12𝑋3

𝑓14,3,13𝑋5

𝑓14,5,14𝑋15

𝑓14,15,15𝑋33

𝑓14,33,16 + 𝛾14,4𝑋15

𝑓14,15,17𝑋18

𝑓14,18,18𝑋55

𝑓14,55,19

− 𝛾14,5𝑋14

𝑓14,14,20𝑋17

𝑓14,17,21𝑋45

𝑓14,45,22 − 𝛾14,6𝑋14

𝑓14,14,23𝑋42

𝑓14,42,24 

𝑑𝑋15

𝑑𝑡
= 𝛾15,1𝑋9

𝑓15,9,1𝑋16

𝑓15,16,2𝑋26

𝑓15,26,3 − 𝛾15,2𝑋2

𝑓15,2,4𝑋5

𝑓15,5,5𝑋7

𝑓15,7,6𝑋15

𝑓15,15,7𝑋33

𝑓15,33,8

− 𝛾15,3𝑋2

𝑓15,2,9𝑋3

𝑓15,3,10𝑋5

𝑓15,5,11𝑋15

𝑓15,15,12𝑋33

𝑓15,33,13 − 𝛾15,4𝑋15

𝑓15,15,14𝑋28

𝑓15,28,15𝑋44

𝑓15,44,16

− 𝛾15,5𝑋15

𝑓15,15,17𝑋18

𝑓15,18,18𝑋55

𝑓15,55,19 

𝑑𝑋16

𝑑𝑡
= 𝛾16,1𝑋46

𝑓16,46,1𝑋47

𝑓16,47,2 − 𝛾16,2𝑋9

𝑓16,9,3𝑋16

𝑓16,16,4𝑋26

𝑓16,26,5 
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𝑑𝑋17

𝑑𝑡
= 𝛾17,1𝑋4

𝑓17,4,1𝑋50

𝑓17,50,2 + 𝛾17,2𝑋6

𝑓17,6,3𝑋50

𝑓17,50,4 − 𝛾17,3𝑋14

𝑓17,14,5𝑋17

𝑓17,17,6𝑋45

𝑓17,45,7 

𝑑𝑋18

𝑑𝑡
= 𝛾18,1𝑋8

𝑓18,8,1𝑋35

𝑓18,35,2 + 𝛾18,2𝑋21

𝑓18,21,3 − 𝛾18,3𝑋18

𝑓18,18,4𝑋51

𝑓18,51,5 − 𝛾18,5𝑋15

𝑓18,15,8𝑋18

𝑓18,18,9𝑋55

𝑓18,55,10

− 𝛾18,6𝑋18

𝑓18,18,11 

𝑑𝑋19

𝑑𝑡
= 𝛾19,1𝑋15

𝑓19,15,1𝑋18

𝑓19,18,2𝑋55

𝑓19,55,3 + 𝛾19,2𝑋22

𝑓19,22,4 − 𝛾19,3𝑋19

𝑓19,19,5𝑋51

𝑓19,51,6 − 𝛾19,5𝑋19

𝑓19,19,9 

𝑑𝑋20

𝑑𝑡
= 𝛾20,1𝑋8

𝑓20,8,1 − 𝛾20,2𝑋20

𝑓20,20,2 

𝑑𝑋21

𝑑𝑡
= 𝛾21,1𝑋18

𝑓21,18,1 − 𝛾21,2𝑋21

𝑓21,21,2 

𝑑𝑋22

𝑑𝑡
= 𝛾22,1𝑋19

𝑓22,19,1 − 𝛾22,2𝑋22

𝑓22,22,2 

𝑑𝑋23

𝑑𝑡
= 𝛾23,1𝑋12

𝑓23,12,1𝑋24

𝑓23,24,2𝑋59

𝑓23,59,3 − 𝛾23,2𝑋2

𝑓23,2,4𝑋23

𝑓23,23,5𝑋34

𝑓23,34,6 − 𝛾23,3𝑋5

𝑓23,5,7𝑋23

𝑓23,23,8𝑋34

𝑓23,34,9 

𝑑𝑋24

𝑑𝑡
= 𝛾24,1𝑋12

𝑓24,12,1𝑋23

𝑓24,23,2𝑋25

𝑓24,25,3𝑋28

𝑓24,28,4𝑋60

𝑓24,60,5 − 𝛾24,2𝑋12

𝑓24,12,6𝑋24

𝑓24,24,7𝑋59

𝑓24,59,8

− 𝛾24,3𝑋24

𝑓24,24,9𝑋25

𝑓24,25,10𝑋52

𝑓24,52,11 

𝑑𝑋25

𝑑𝑡
= 𝛾25,1𝑋12

𝑓25,12,1𝑋28

𝑓25,28,2𝑋61

𝑓25,61,3𝑋62

𝑓25,62,4𝑋63

𝑓25,63,5 − 𝛾25,2𝑋12

𝑓25,12,6𝑋23

𝑓25,23,7𝑋25

𝑓25,25,8𝑋28

𝑓25,28,9𝑋60

𝑓25,60,10

− 𝛾25,3𝑋24

𝑓25,24,11𝑋25

𝑓25,25,12𝑋52

𝑓25,52,13 

𝑑𝑋8𝑏

𝑑𝑡
= 𝛾26,1𝑋2

𝑓26,2,1𝑋5

𝑓26,5,2𝑋7

𝑓26,7,3𝑋15

𝑓26,15,4𝑋33

𝑓26,33,5 + 𝛾26,2𝑋20𝑏

𝑓26,20𝑏,6 − 𝛾26,3𝑋8𝑏

𝑓26,8𝑏,7𝑋35

𝑓26,35,8

− 𝛾26,4𝑋8𝑏

𝑓26,8𝑏,9𝑋51

𝑓26,51,10 − 𝛾26,5𝑋8𝑏

𝑓26,8𝑏,11 

𝑑𝑋18𝑏

𝑑𝑡
= 𝛾27,1𝑋8𝑏

𝑓27,8𝑏,1𝑋35

𝑓27,35,2 + 𝛾27,2𝑋21𝑏

𝑓27,21𝑏,3 − 𝛾18,3𝑋18𝑏

𝑓27,18𝑏,4𝑋51

𝑓27,51,5 − 𝛾18,4𝑋15

𝑓27,15,6𝑋18𝑏

𝑓27,18𝑏,7𝑋55

𝑓27,55,8

− 𝛾18,5𝑋18𝑏

𝑓27,18𝑏,9 

𝑑𝑋19𝑏

𝑑𝑡
= 𝛾28,1𝑋15

𝑓28,15,1𝑋18𝑏

𝑓28,18𝑏,2𝑋55

𝑓28,55,3 + 𝛾28,2𝑋22𝑏

𝑓28,22𝑏,4 − 𝛾28,3𝑋19𝑏

𝑓28,19𝑏,5𝑋51

𝑓28,51,6 − 𝛾28,4𝑋19𝑏

𝑓28,19𝑏,7 

𝑑𝑋20𝑏

𝑑𝑡
= 𝛾29,1𝑋8𝑏

𝑓29,8𝑏,1 − 𝛾29,2𝑋20𝑏

𝑓29,20𝑏,2 

𝑑𝑋21𝑏

𝑑𝑡
= 𝛾30,1𝑋18𝑏

𝑓30,18𝑏,1 − 𝛾30,2𝑋21𝑏

𝑓30,21𝑏,2 

𝑑𝑋22𝑏

𝑑𝑡
= 𝛾31,1𝑋19𝑏

𝑓31,19𝑏,1 − 𝛾31,2𝑋22𝑏

𝑓31,22𝑏,2                                                                                                        (A3.1) 
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Table A3.1: Metabolites, Enzymes, Abbreviations, and Variable Names  

 

Metabolites and their Representations in the Computational Analysis 

X1 3-Keto-Dihydrosphingosine 

(KDHS) 

X17 Cytidine Diphosphate-Ethanolamine (CDP-Eth) 

X2 Dihydrosphingosine (DHS) X18, 

X18b 

Mannosylinositol Phosphorylceramide (MIPC-g) 

from DHC or PHC, respectively 

X3 Dihydroceramide (Dihydro-C) X19, 

X19b 

Mannosyldiinositol Phosphorylceramide (M(IP)2C-

g) from DHC or PHC, respectively 

X4 Dihydrosphingosine-1-P (DHS-P) X20, 

X20b 

Plasma Membrane Inositol Phosphorylceramide  

(IPC-m) from DHC or PHC, respectively 

X5 Phytosphingosine (PHS) X21, 

X21b 

Plasma Membrane Mannosylinositol 

Phosphorylceramide (MIPC-m) from DHC or PHC, 

respectively 

X6 Phytosphingosine-1-P (PHS-P) X22, 

X22b 

Plasma Membrane Mannosyldiinositol  

Phosphorylceramide (M(IP)2C-m) from DHC or 

PHC, respectively 

X7 Phytoceramide (Phyto-C) X23 Very Long Chain Fatty Acid (C26-CoA) 

X8, 

X8b 

Inositol Phosphorylceramide (IPC-

g) from DHC or PHC, respectively 

X24 Malonyl-CoA (Mal-CoA) 

X9 CDP-Diacylglycerol (CDP-DAG) X25 Acetyl-CoA (Ac-CoA) 

X10 Phosphatidylserine (PS) X28 Adenosime-5’-Triphosphate (ATP) 

X11 Phosphatidic Acid (PA) X37 3-Phosphoserine (3-P-Serine) 

X12 Palmitoyl-CoA (Pal-CoA) X47 Glucose-6-P (G6P) 

X13 Serine X58 Palmitate 

X14 Sn-1,2-Diacylglycerol (DAG) X61 CoA 

X15 Phosphatidylinositol (PI) X62 Acetate 

X16 Inositol (I)   
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Table A3.1 Continued 

 

Enzymes and their Representations in the Computational Analysis 

X26 Phosphatidylinositol Synthase (PI Synthase) X45 DG-Ethanolamine Phosphotransferase 

(EthPT) 

X27 3-Ketodihydrosphingosine Reductase  

(KDHS Reductase) 

X46 Inositol-1-P Synthase (I-1-P-Synth.) 

X29 Dihydroceramide Alkaline Ceramidase  

(Dihydro-CDase) 

X48 Acyl-CoA-Binding Protein (ACBP) 

X30 Palmitoyl Transport & Palmitoyl-CoA 

Synthase (Transp./Palmitoyl CoA Synthase) 

X49 Glycerol-3-Phosphate Acyltransferase (G3P 

Acyltransferase) 

X31 Phosphoserine-Phosphatase (P-Serine-

PPase) 

X50 Sphingosine-Phosphate Lyase (Lyase) 

X32 Serine Hydroxymethyl Transferase (SHMT) X51 Inositol Phosphosphingolipid Phospholipase 

C (IPCase) 

X33 Inositol Phosphorylceramide Synthase  

(IPC Synthase) 

X52 Fatty Acid Synthetase (FAS) 

X34 Ceramide Synthase (Cer Synthase)  X53 Phytoceramide Alkaline Ceramidase 

(Phyto-CDase) 

X35 Mannosyl Inositol Phosphoceramide 

Synthase (MIPC Synthase) 

X54 4-Hydroxylase (Hydroxylase; SYR2p-

SUR2p) 

X36 Sphingoid Base Kinase X55 Mannosyldiinositol Phosphorylceramide 

Synthase (M(IP)2C Synthase) 

X38 Phosphatidylserine Synthase (PS Synthase) X56 Phosphatidylserine Decarboxylase (PS 

Decarboxylase) 

X39 Phosphatidate Phosphatase (PA-PPase) X57 Serine Palmitoyltransferase (SPT) 

X40 CDP-Diacylglycerol Synthase (CDP-DAG 

Synthase) 

X59 Very Long Chain Fatty Acid Synthase / 

Elongase (ELO1p) 

X41 Sphingoid-1-phosphate Phosphatase (SB-

PPase) 

X60 Acetyl-Coenzyme A Carboxylase (ACCp) 

X42 DG-Choline Phosphotransferase (ChoPT) X63 Acetyl-Coenzyme A Synthetase (ACSp) 

X43 GPI Remodelase (Remodeling) X65 Not yet identified 

X44 Phosphoinositol Kinase (PI Kinase) X66 Not yet identified 
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Optimization Procedure 

 

The optimization strategy of our approach can be broken down into several steps:  

 

1. Fix rate constants and kinetic orders in the GMA model, as reported in[10]. 

2. Set upper and lower bounds for changes in enzyme activities.  

3. Acquire smoothed heat stress metabolite measurements at time point t, where t = 1 … 30.  

4. At time point t, minimize the norm between the smoothed data and the simulation results of the 

GMA model with appropriate weights, as indicated in Eq. (A2), that give each metabolite equal 

importance. For the case t = 1, assign as initial guess the normal baseline value. For all other time 

points, assign the initial guess of each independent variable (enzyme) to the corresponding value 

in the previous solution. Thus, at each time point execute the following minimization:  

                  

   (A2) 

 

 

5. Check the GMA simulation results for each iteration. If the GMA model produces negative or 

imaginary values for any of the dependent variables, then randomize the initial guess of the 

independent variables and return to step 4. Continue with step 5 until the GMA simulation produces 

reasonable (positive) values.  

6. Collect the solutions of independent variables (enzymes) for the given time point. If t = 30, 

terminate. 

7. Execute this iteration many (4144) times. 

 

We randomly sampled the initial states (at the one-minute time point after the beginning of heat stress) of 

enzymatic activities in four-fold ranges (two-fold up and down) with respect to the normal steady-state 

values of enzyme activities. For example, the steady state for ceramide synthase is 1.65e-5 μM/min/mg, so 

that the initial guess for this enzyme was sampled from the range [0.825e-5, 3.3e-5]. This four-fold range 

only refers to the initial point. It is to be considered rather wide, because only one minute earlier the system 

had resided at its nominal steady state (under optimal temperature conditions). It would therefore seem 

7
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unrealistic to allow for, say, 10 or 100-fold changes. Once the system was initialized, the enzyme activities 

were allowed to vary much further from their optimal activity levels, namely within a 12-fold range. 

This setting of 12-fold activity ranges was inspired by experimental data showing that yeast seems to 

respond to stress by changing many enzyme activities moderately, rather than changing a few key enzymes 

very strongly. At least this strategy was observed in the sphingolipid response to the diauxic shift in yeast 

[9]. In addition to this heuristic rationale, extensive preliminary testing suggested upper and lower bounds 

for all enzyme activities of about 6 times and 1/6 times the baseline levels. Modest variations in these 

bounds (to 10 and 1/10) were not influential, whereas bounds selected too small (2 and 1/2) did not allow 

enough flexibility and led to inferior minimization results, while bounds selected much larger (100 and 

1/100) created solutions that appeared to be unrealistic.   

For the minimization we used the Active Set Algorithm implemented in Matlab. This method is a local 

optimization algorithm that is based on Lagrange multipliers. While it is mathematically possible that a 

local algorithm would miss other acceptable solutions, it seems in our case biologically reasonable to search 

for enzyme profiles in moderately wide neighborhoods of their normal activity states, which can be 

expected to correspond to the basin of attraction of the local algorithm. We preferred a local algorithm over 

one of the evolutionary algorithms, because the latter, while excellent for global searches, sometimes have 

problems identifying good solutions within moderate ranges. 

 

 

Log2 Representation of Trends in Enzyme Activities 

In order to provide greater resolution for reduced enzyme activities, Figures A3.1 to A3.6 show all 

simulation results with a log2 scale. These figures correspond to Figures. 3.4 to 3.9 in the main text.    
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FIGURE A3.1. Trends in activities of enzyme at the entry point of sphingolipid biosynthesis. Serine palmitoyltransferase 

and 3-KDHS reductase are enzymes responsible for the production and degradation of 3-KDHS, which is the key initial 

metabolite of sphingolipid biosynthesis.  Grey lines are results of 2,000 individual iterations in the large-scale simulation. Red 

lines are ensemble averages, and dotted blue lines enclose 95% of the results. The figure corresponds to Figure 3.4 of the main 

text. 

 

 

FIGURE A3.2. Trends in activities of enzymes in the core region of sphingolipid metabolism. After an initial spike, all 

enzyme activities in this region are reduced to almost nil. Grey lines are results of 2,000 individual iterations in the large-scale 

simulation. Red lines are ensemble averages, and dotted blue lines enclose 95% of the results. The figure corresponds to Figure 

3.5 of the main text. 

 



  129 

 

FIGURE A3.3. Trends in activities of the two alkaline ceramidases. Dihydroceramide alkaline ceramidase and phytoceramide 

alkaline ceramidase, which convert the ceramide form into sphingosines, exhibit distinct activity patterns. Grey lines are results 

of 2,000 individual iterations in the large-scale simulation. Red lines are ensemble averages, and dotted blue lines enclose 95% of 

the results. The figure corresponds to Figure 3.6 of the main text. 

 

 

FIGURE A3.4. Trends in activities of enzymes associated with complex sphingolipids. Enzymes interconverting complex 

sphingolipids are at first hyper-active, but tend to lose most activity between 20 and 30 minutes. Grey lines are results of 2,000 

individual iterations in the large-scale simulation. Red lines are ensemble averages, and dotted blue lines enclose 95% of the 

results. The figure corresponds to Figure 3.7 of the main text. 

 

 

FIGURE A3.5. Trends in activities of enzymes associated with fatty acid CoA. The enzymes shown here are responsible for 

CoA enlongation. Grey lines are results of 2,000 individual iterations in the large-scale simulation. Red lines are ensemble 

averages, and dotted blue lines enclose 95% of the results. The figure corresponds to Figure 3.8 of the main text. 
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FIGURE A3.6. Trends in the remaining enzyme activities. Activities of enzymes at the periphery of the pathway system are 

not identifiable, mainly due to insufficient information and the fact that these enzymes are also involved in other pathways. 

Enzymes in two upper panels are related to the phospholipid metabolism and enzymes in the lower panel are related to serine 

metabolism. Grey lines are results of 2,000 individual iterations in the large-scale simulation. Red lines are averages, and dotted 

blue lines enclose 95% of the results. The figure corresponds to Figure 3.9 of the main text. 

 

Table of Trends in Enzyme Activities 

Figure 3.10 of the main text summarizes the results in earlier figures in a visual manner. Table A3.2 

shows a different representation of the same results.  
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Table A3.2: Summary of Identifiable Dynamic Changes in Enzyme Activities in Response to Heat Stress. All enzyme activities 

initially climb to different degrees, presumably due to the Arrhenius effect. Subsequently, the trends are strikingly different. 

Numbers represent approximate fold changes in activities, while arrows and colors indicate the direction of change. 

 

 

Enzyme 

       

Time 

Var. 

 

0-5 

 

5-10 

 

10-15 

 

15-20 

 

20-25 

 

25-30 

3-keto-

dihydrosphingosine 

reductase  

X27 ↑ 2.8  ↓ 1.1  ↑ 1.2  ↓ 1 ↓ 0.5  ↓ 0.4  

Dihydroceramide 

aklaline ceramidase  

X29 ↑ 5.5  ↔ 0.3 ↑ 0.5 

Inositol 

phosphorylceramide 

synthase  

X33 ↑ 3.5  ↓ 1  ↓0.3 ↑ 0.4  

Ceramide synthase  X34 0-2.5 2.5-5 ↔ 0.3 ↑ 0.4  

↑ 1.8  ↓ 0.3  

Mannosyl inositol 

phosphoceramide 

synthase  

X35 0-2.5 2.5-5 ↑ 2.8 ↓ 0.3 

 

↔ 0.3  

↑ 3.5  ↓ 2.5  

Sphingoid base kinase  X36 0-2.5 2.5-5 ↔ 0.3  

 

25-28 28-

30 

↑ 1.1  ↓ 0.4  ↑ 1.8 ↓ 0.3 

Sphingoid 1 phosphate 

phosphatase  

X41 0-2.5 2.5-5 ↔ 0.3 25-29 29-

30 

↑ 1.2  ↓ 0.3 ↑ 6  ↓ 0.5  

GPI remodelase  X43 0-2.5 2.5-5 ↓ 0.3  ↔ 0.3  

 

↑ 0.4  ↑ 0.5  

↑ 2.2  ↓ 0.4  

Sphingosine phosphate 

lyase  

X50 ↓ 0.2 ↔ 0.3 25-28 28-

30 

↑ 2 ↓ 0.5 

Inositol 

phosphosphingolipid 

phospholipase C  

X51 0-2 2-5 ↑ 2.5 ↑ 3 ↓ 0.5  ↓ 0.3 25-28 28-

30 

↑ 3.4 ↓ 2.1 ↑ 1 ↓ 0.3 

Phytoceramide alkaline 

ceramidase  

X53 ↑ 4.5  ↓ 3.7 ↓ 2.2 ↑ 4.5  ↓ 3.7 25-28 28-30 

↑ 6 ↓ 2 

4 hydroxylase  X54 0-2 2-5 ↔ 0.3  

↑ 2 ↓ 0.3 

Mannosyldiinositol 

phosphorylceramide 

synthase  

X55 0-2 2-5 ↑ 2.7 10-

13 

13-

15 

↓ 0.5 ↓ 0.3  25-28 28-30 

↑ 3.5  ↓ 2.2 ↓ 

2.6  

↓ 

1.7 

↑ 0.6 ↓ 0.3 

Serine 

palmitoyltransferase  

X57 0-2 2-5 ↓ 0.3  ↔ 0.3  

↑ 2.2 ↓ 0.5 

Very long chain fatty 

acid synthase  

X59 0-2 2-5 ↓ 0.3  ↔ 0.3  

↑ 2.3 ↓ 0.5 
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Estimation of Q10 values for Enzymes of the Sphingolipid Pathway  

The “initial jump” of enzyme activities allows us to estimate Q10 values for the different enzymes. These 

values are computed from the definition 

𝑄10 = ⌈
𝑅1

𝑅0
⌉

10

𝑇1−𝑇0. 

Here, 𝑅0 is the base line enzyme activity under optimal conditions (30°C) and 𝑅1 is the enzyme activity 

immediately following the temperature change to (39°C); the difference between the two is 𝑇1 − 𝑇0. The 

computed Q10 values are summarized as in Table A3.3. Values were only estimated for identifiable 

enzymes. 

Table A3.3: Estimated Q10 Values, Based on the Initial Increases in Enzyme Activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enzyme Variabl

e 

Q10 

3-keto-dihydrosphingosine 

reductase  

X27 3.1394 

Dihydroceramide aklaline 

ceramidase  

X29 3.0150 

Inositol phosphorylceramide 

synthase  

X33 4.0227 

Ceramide synthase  X34 1.9215 

Mannosyl inositol phosphoceramide 

synthase  

X35 4.0227 

Sphingoid base kinase  X36 1.1117 

Sphingoid 1 phosphate phosphatase  X41 1.2246 

GPI remodelase  X43 2.4014 

Sphingosine phosphate lyase  X50 0.1673 

Inositol phosphosphingolipid 

phospholipase C  

X51 3.8952 

Phytoceramide alkaline ceramidase  X53 3.5153 

Hydroxylase  X54 2.1601 

Mannosyldiinositol 

phosphorylceramide synthase  

X55 4.0227 

Serine palmitoyltransferase  X57 2.4014 

Very long chain fatty acid synthase  X59 2.5230 
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Assessment of Simulation Results with a “Negative Control”  

The third assessment mentioned, but not detailed in the text, is a “negative control.” We fixed eight key 

enzymes (X34, X36, X41, X43, X50, X54, X57 and X59) at their optimal steady-state values and then performed the 

same optimization as before. The thus inferred enzyme activities of this “constrained model” do not produce 

good fits to the sphingolipid heat stress data (Figure A3.7). Specifically, the sum of squared errors (SSE) 

for Figure 3.2 is 5.79×10-4, whereas it is 2.79×10-2 for Figure A3.7. In order to assess the quality of fit 

further, it is useful to display the residual errors of the individual optimizations with the constrained model 

in comparison to those obtained with the model in the text. Figure A3.8 clearly demonstrates that the 

residual errors of the 2,004 original simulations are much lower than those of 200 constrained simulations. 

In this representation, the X-axis shows the index of each individual simulation and the Y-axis shows the 

corresponding SSE. Figure A3.9 shows distributions of the SSEs in the two scenarios. These assessments 

clearly show that the SSEs for the constrained model are much larger than the corresponding SSEs for the 

original model in the body of the paper and therefore suggest that the key enzymes in the sphingolipid 

system must respond to heat stress in a coordinated manner.  

One should note that SSEs of individual simulations are smaller than those of the averaged model fit. As 

mentioned in the text, parameterization with averaged values does not necessarily lead to good fits. In the 

present case, the averaged model in Figure 3.2 of the text is visually not all that different from the best 

individual simulation results (threshold: SSE < 1.25×10-5) displayed in Figure A3.2 (upper panel). The 

similarity of these fits is shown in Figure A3.10. The higher SSE of the averaged fit is presumably due to 

the fact that the plots show fold changes and X6 (PHS-P) has a low steady-state of 0.005, while X3 (DHC) 

has a substantially higher level (0.0366), but does not change all that much in actual value. 

 



  134 

 

Figure A3.7: When the key enzymes are locked into their normal activity values and all other enzyme activities are allowed to 

be optimized, the fit of the best model to the experimental data is not very good. 

 

 

Figure A3.8. Sums of squared errors for individual optimizations. Upper panel: SSEs for 2,000 simulations with the original 

model. Lower panel: SSEs for 200 simulations with the constrained model. The X-axis shows the index of each individual 

simulation, while the Y-axis shows the corresponding sum of squared errors (SSE); note different scales.  
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Figure A3.9. Distributions of sums of squared errors for individual simulations. The distribution on the left contains SSEs for 

the model in which all enzymes are allowed to change. The distribution on the right contains the corresponding SSE values 

for the constrained model. 

 

  

Figure A3.10. Comparison of data fits. Left panel: Data fitted with the unconstrained averaged model (identical to Figure 3.2 

of the text). Right panel:  179 data fits with individual model simulations that resulted in SSE < 1.25×10-5 (cf. Figure A3.8). 

 

 

 

 

 

 

 

 



  136 

Akaike Information Criterion  

The Akaike Information Criterion (AIC) provides a measure of goodness-of-fit for multi-model inferences. 

We used this criterion to assess the quality of our model. While we are only using one model, the AIC value 

result may be helpful for future comparisons with alternative models. The formulation of AIC was adapted 

from [128]. AIC is based on the Kullback-Leibler (K-L) information measure I(f, g) given below:  

𝐼(𝑓, 𝑔) = ∫ 𝑓(𝑥) 𝑙𝑜𝑔(
𝑓(𝑥)

𝑔(𝑥|𝜃)
)𝑑𝑥 

Here, f(x) refers to the true representation the model is supposed to capture and g(x|θ) is the model. I(f, g) 

can be written in terms of expectations as    

 

𝐼(𝑓, 𝑔) = ∫ 𝑓(𝑥) 𝑙𝑜𝑔(𝑓(𝑥))𝑑𝑥 − ∫ 𝑓(𝑥) 𝑙𝑜𝑔(𝑔(𝑥|𝜃))𝑑𝑥 

= 𝐸𝑓[𝑙𝑜𝑔(𝑓(𝑥))] − 𝐸𝑓[𝑙𝑜𝑔(𝑔(𝑥|𝜃))] 

Here, the first term refers to the true representation, which however is unknown and therefore replaced with 

an unknown constant 𝐶 =  𝐸𝑓[𝑙𝑜𝑔(𝑓(𝑥))]. The second term requires the estimation of the expectation of g 

given data y,  𝐸𝑦𝐸𝑥 [𝑙𝑜𝑔 (𝑔(𝑥|𝜃(𝑦)))], where 𝜃(𝑦) is the maximum likelihood estimator with respect to y.  

Akaike ([129,130]) found that the maximum likelihood estimator for  𝐸𝑦𝐸𝑥 [𝑙𝑜𝑔 (𝑔(𝑥|𝜃(𝑦)))] is biased, 

but that there is a relationship between the bias (called 𝐾) and the K-L information, namely: 

𝑙𝑜𝑔 (𝐿 (𝜃(𝑦))) − 𝐾 = 𝐶 − 𝐸𝜃̂[𝐼(𝑓, 𝑔̂)] 

Furthermore, the bias K is equal to the number of estimated parameters. Akaike thus introduced AIC as 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔 (𝐿(𝜃|𝑦)) + 2𝐾 

For least square estimation, this definition reduces to 
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𝐴𝐼𝐶 = 𝑛𝑙𝑜𝑔(𝜎2) + 2𝐾 

Where 𝑛 is the number of data, 𝜎2:
∑ (𝜀𝑖)2𝑛

𝑖=1

𝑛
  and ɛi is the sum of squared errors for each sample. To extend 

the applicability of AIC further, Akaike introduced AICc to deal with small samples, which are defined here 

as 
𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 𝑛

# 𝑝𝑎𝑟𝑎𝑚𝑡𝑒𝑟 𝐾
 < 40. The result is:  

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝐾(𝐾+1)

𝑛−𝐾−1
. 

We obtained the AIC and AICc values for our 4414 models by using the definitions given above. The 

parameter n represents the number ofdata, which in our case is 𝑛 = 30 ∗ 6 = 180. 𝜎2 is the mean sum of 

squared errors (SSE) for all simulations. As we have 30 points to fit in each simulation, 𝜎2 can be computed 

as  

 

𝜎2 =  
∑ (∑ (𝑋(𝑗) − 𝐷𝑎𝑡𝑎(𝑗))230

𝑗=1 )𝑛
𝑖=1

𝑛
 

 

Here, X is the vector of six sphingolipids and Data represents the vector with the corresponding smoothed 

data.   

 

In the text, we shown results of 2004 models selected from a much larger pool of initial models (4144 

models), based on the sum of squared errors (SSEs). Computing the averaged model from these 2004 

models, we further provided the validation for the averaged model by comparing the observed heat stress 

data with the heat stress profiles computed with this model. This comparison, yielding a good fit, supported 

the use of the averaged model for making inference regarding enzyme activities.  

Now we provided the comparison between the SSEs criterion and AICc criterion in model selection. We 

have computed AICc values for all 4144 models and binned them in a histogram in Figure A3.11. The 

histogram very nicely shows that 2018 models (left-most column) are superior to the others. Comparing 
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this set of models with the set identified by SSEs (2004 models), we found that 98.66% (1991) of the 2018 

models simultaneously satisfited both criteria, AICc and SSE. Now we can use either 2004 (SSE), or 2018 

(AICc) good fit models to make the same inference of enzyme activities.  

 

 
Figure A3.11: The histogram of 4144 models clearly indicates that the 2018 models in the left-most column are superior to all 

other parameterizations. 98.66% (1991) of the models from this column were also identified by SSEs, thereby demonstrating 

very strong consistency between the two measures of quality. 
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Appendix B   

 

Further details of the computational methods in Chapter 4 

 

Model equations  

The model equations below correspond to the pathway in Figure 4.2 of the main article. 𝑋1~𝑋5 represent 

C14/C16, C18, C18:1, C24 and C26 DHC, respectively, while 𝑋6~𝑋10 represent C14/C16, C18, C18:1, 

C24 and C26 PHC, respectively. 𝑋11~𝑋15 represent the corresponding C14/C16, C18, C18:1, C24 and C26 

fatty acyl CoA variants. DHS and PHS were coded as 𝑋16  and 𝑋17 . Each 𝑉𝑖  denotes a flux, which is 

modeled according to the Generalized Mass Action (GMA) framework within Biochemical Systems 

Theory[117]. For example, 𝑉1 = 𝛾1,1𝑋16

𝑓1,1,16𝑋11

𝑓1,1,11. In this formulation, 𝛾1,1 is a rate constant, and 𝑓1,1,16 

and 𝑓1,1,11 are kinetic orders. The rate constants are at first unknown and must be specified from the data, 

while the kinetic orders were obtained from the previously published paper or assumed to have a value of 

1, if they were unknown. 𝑋16 and 𝑋17 (DHS and PHS) are independent functions obtained from polynomial 

fitting of the data from published paper [94].  

 

𝑑𝑋1

𝑑𝑡
= 𝑉1 + 𝑉2 − 𝑉3 − 𝑉4 − 𝑉5 

𝑑𝑋2

𝑑𝑡
= 𝑉6 + 𝑉7 − 𝑉8 − 𝑉9 − 𝑉10 

𝑑𝑋3

𝑑𝑡
= 𝑉11 + 𝑉12 − 𝑉13 − 𝑉14 − 𝑉15 

𝑑𝑋4

𝑑𝑡
= 𝑉16 + 𝑉17 − 𝑉18 − 𝑉19 − 𝑉20 

𝑑𝑋5

𝑑𝑡
= 𝑉21 + 𝑉22 − 𝑉23 − 𝑉24 − 𝑉25 
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𝑑𝑋6

𝑑𝑡
= 𝑉4 + 𝑉26 + 𝑉27 − 𝑉28 − 𝑉29 

𝑑𝑋7

𝑑𝑡
= 𝑉9 + 𝑉30 + 𝑉31 − 𝑉32 − 𝑉33 

𝑑𝑋8

𝑑𝑡
= 𝑉14 + 𝑉34 + 𝑉35 − 𝑉36 − 𝑉37 

𝑑𝑋9

𝑑𝑡
= 𝑉19 + 𝑉38 + 𝑉39 − 𝑉40 − 𝑉41 

𝑑𝑋10

𝑑𝑡
= 𝑉24 + 𝑉42 + 𝑉43 − 𝑉44 − 𝑉45 − 𝑉46 

𝑑𝑋11

𝑑𝑡
= 𝑉47 − 𝑉1 − 𝑉26 − 𝑉48 

𝑑𝑋12

𝑑𝑡
= 𝑉48 − 𝑉6 − 𝑉30 − 𝑉49 − 𝑉50 

𝑑𝑋13

𝑑𝑡
= 𝑉49 − 𝑉11 − 𝑉34 − 𝑉51 

𝑑𝑋14

𝑑𝑡
= 𝑉50 + 𝑉51 − 𝑉16 − 𝑉38 − 𝑉52 

𝑑𝑋15

𝑑𝑡
= 𝑉52 − 𝑉21 − 𝑉42 − 𝑉53 

 

 

 

 

 

 

 

 

 

 



  141 

Flux distributions 

The distributions of fluxes contributing to the dynamics of the key sphingolipid species addressed in this 

paper are given in the main text. Figure A4.1 provides the remaining flux distributions. Each set of results 

was collected from 2,000 simulations. Gray dots, blue lines, blue bars and black asterisks represent single 

simulation results, mean values, 20th and 80th percentiles and median values, respectively.   

Ceramide synthase 
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Hydroxylase 

 

 

 

Elongases 1,2,3, Remodelase, and Desaturase 

 

Figure A4.1: Distributions of fluxes not shown in the main text. Compare with Figs. 4.4-4.9 in Chapter 4. 
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Magnitudes of Enzyme Activities 

It was already mentioned in the main text that the actual enzyme amounts and rate constants are not known. 

As it is typical, we assume that enzyme activities enter a flux representation in a linear manner. With this 

assumption we obtain coarse estimates of the product of the rate constant and the enzyme activity. This 

product corresponds to a Vmax value, which by definition consists of the product of kcat and the total enzyme 

concentration. Coarse estimates of the ceramide synthase activities are presented in the main text; all other 

enzyme activities are shown here. Gray dots (which merge into a grey region in each plot) show the 

individual simulation results; blue lines indicate the means; vertical blue bars correspond to the 20 th and 

80th percentiles; black asterisks are medians. It is clear that the means and medians are quite similar. 
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Dihydroceramidase & Phytoceramidase 

 

IPC synthase 

 

 

 

 

 

 



  146 

IPCase 

 

 

Hydroxylase 
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Elongases 1,2,3, Remodelase, and Desaturase 

 

Figure A4.2: Simulation results for enzyme activities over time, as well as means (blue), medians (black 

asterisks), and 20th and 80th percentiles (blue bars). Compare with Figure 4.11 in the Text. 
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Histograms 

All histograms of each flux, from time point 0 to 30, were examined in order to ensure that the estimated 

fluxes were unimodal and well constrained in terms of a small variance. The main text showed the 

histograms of fluxes from DHS to C16 DHC and PHS to C16 PHC at the 0th, 5th, 10th, 15th, 20th, 25th and 

30th minutes of heat stress. The histograms of all 53 fluxes are given here.  
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DHC Hydroxylase 

 

 

Elongases 1,2,3, Remodelase, and Desaturase 

 

Figure A4.3: Histograms of fluxes at all measured time points. Compare with Figure 4.12 in the Text. 
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Impact of data variability on estimated distributions of dynamic fluxes 

Results shown in the main text are calculated based on interpolation of mean of the duplicate raw data 

(Figure 4.10). In order to assess the impact of data variability, we performed the following step-wise 

analysis:  

A. Adopt the original, smoothed and interpolated mean data as the baseline concentration. 

B. Sample a uniformly distributed random variable from the range [1/1.5, 1.5].  

C. Perturb the original dataset from time point 0 to 30 by the drawn random number and repeat for 

1000 simulations. 

D. For each set of randomly perturbed data, redo the simulation in the “Methods” Section to obtain 

dynamic fluxes. 

E. Compare the fluxes based on perturbed data with the originally estimated fluxes.  

 

The perturbed data are presented in Figure A4.4, and the perturbed flux distributions are shown in Figure 

A4.5. Gray dots, blue lines, blue bars and black asterisks represent single simulations, mean values, 20th 

and 80th percentiles, and median values, respectively. The flux distributions obtained from perturbed data 

are similar to the originally estimated fluxes (used in the main text). Increased variances are observed, but 

they do not influence the further estimation of enzyme activities.   

 

Figure A4.4: Perturbed data set based on 1.5 fold variation of the interpolated mean data.  
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Dihydroceramidase and Phytoceramidase 
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Elongases 1,2,3, Remodelase, and Desaturase 

 

Figure A4.5: Flux distributions calculated from perturbed data set. 
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