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SUMMARY

Pneumatic actuation is frequently applied to situations that warrant inherent

compliance, such as prostheses, orthoses or walking robots, i.e., natural motions and appli-

cations in which interaction with humans/the environment are anticipated. However, com-

pliance, as well as friction, lead to position control challenges that are commonly countered

using aggressive controllers like sliding mode (SMC) or high-gain PID control, resulting

in stiff system dynamics. Even hybrid force-position controller dynamics are ultimately

subject to a clear trade-off of compliance and accuracy. In this thesis, this challenge is

addressed via a constrained Model Predictive Controller that treats compliance as a bound

rather than a target to achieve compliant tracking. A comprehensive literature review ex-

plores the state-of-the-art and defines performance targets, and a set of 1 degree of freedom

(DoF) tests is established to compare controllers and convert qualitative controller goals

into quantitative design specifications. Four benchmark controllers that span the stiffness-

accuracy spectrum – SMC, Linear Quadratic Regulation/Tracking, PID, and Impedance

Control – are implemented in simulation and on hardware, and are used to produce base-

line results and verify performance targets. The predictive controller is implemented with

admittance and impedance constraints and compared to benchmarks on the 1-DoF system.

Additionally, new friction compensation methods are introduced that leverage the predictive

structure to improve friction compensation for slow systems, and are compared to additive

compensation methods. Results show that constrained MPC enforces impedance bounds

on a tracked system, and achieve results with accuracy comparable to the best benchmark

performance at a given compliance bound. Additionally, because compliance is enforced

as a bound rather than a target, the highest tracking accuracy achieved with MPCs ul-

timately happens at the minimum necessitated impedance, without a-priori knowledge of

that impedance bound. Results are shown to extend to a multi-DoF system using a planar

robotic arm with simultaneously actuated joints and subject to unexpected disturbances.

xv



CHAPTER I

INTRODUCTION

The objective of this dissertation is to develop a controller for safe and accurate position

control of pneumatic systems in the presence of humans and environmental interaction. For

systems moving freely in the presence of humans, intrinsic safety is critical: unexpected col-

lisions should involve low impact forces and be resolved by a stable, non-oscillatory return to

desired motion. This behavior is ensured by using a compliant actuator and keeping output

impedance low; impulse and force are kept to a minimum in the case of unexpected contact

with users. Accuracy implies the minimization of position error with respect to a reference

for free space tracking. Broadly, the goal is to develop an optimal position controller for

naturally compliant actuators without unnecessarily sacrificing system stiffness.

Using a constrained model predictive controller (MPC), the system effectively decouples

closed-loop impedance and error minimization by treating impedance as a constraint on an

optimal tracking controller. The primary MPC approach uses a low-level force controller to

simplify system dynamics, then applies impedance or admittance constraints, coupled with

friction compensation as needed. The controllers were verified at distinct points in hardware

and more thoroughly in a corresponding simulation, first on a single single degree-of-freedom

(DoF) actuator, and then on a multi-DoF robotic platform.

1.1 Motivation

This research stems from the need for accurate, compliant control in applications near

humans. It originated from work on the Compact Rescue Robot (CRR) [19, 25], shown in

Figure 1, a six degree of freedom pneumatically actuated robot that uses two three-link arms

to move about and interact with its surroundings. The robot is supported by a wheeled

cart, and moves around by dragging the cart with its arms, which may function as front

legs.
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Figure 1: The Compact Rescue Robot (CRR).

The goal of the CRR is to demonstrate the benefits that fluid power could offer rescue

robotics, particularly when combined with compact, lightweight power sources [38, 68, 69].

The robot is intended to be capable of rescue tasks, move freely, and interact with victims

and the environment. Pneumatic power is a natural solution: it provides high power density

for untethered operation, high force density when large force output is required, it is clean

and safe, and it offers compliance for interaction and locomotion [10, 11, 51, 84]. In the

specific case of moving near and around humans, the robot must be accurate, reliable, and

inherently safe.

Pneumatic systems are prevalent among platforms intended to interact with humans and

the environment. Several robots were developed prior to the CRR’s inception [54,55,64], as

well as systems for prostheses [44], and rehabilitation [8]. These applications are well-suited

for pneumatic actuation, especially in terms of motion speed and bandwidth. Pneumatic

systems are typically verified over trajectories changing at 2 - 5 Hz, which is on par with

natural motions like walking, as well as human motions such as those employed in classic

Human-Robot Interaction (HRI) situations.
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However, even when the actuator is appropriately selected for the application, compli-

ant control generally necessitates a trade-off. In the absence of additional sensing, most

controllers sacrifice compliance for accuracy, as shown in Figure 2. The figure shows a

preview of the benchmark controller parameter variation test results, detailed in Chapter

4, and illustrates a trade-off between compliance and accuracy among different controllers.

Each dot represents a different set of controller and input parameters, and the coloring

corresponds to particular types of benchmark controllers, as indicated in the figure. Com-

pliance is measured by observed stiffness resulting from response to disturbance inputs (a

component of the output impedance), and accuracy is indicated by tracking error from a

separate reference-following test; therefore, the dots shows the comparative performance of

a controller on each test. Ideally, a compliant controller would be in the lower left-hand

corner. An aggressive controller like sliding mode control, while robust, will result in a cor-

respondingly high-impedance closed loop system. Conversely, an impedance controller may

be used to lower output-impedance, but in the absence of added force sensing, will result

in a corresponding drop in accuracy. Other controllers can be used, but as evidenced in the

figure, they are generally subject to the same trade-off between compliance and accuracy.

One solution is to add sensors and actuators [76]; however, in a robot such as the

CRR, these added capabilities take up valuable space and operating power, especially as

the degrees of freedom are increased. Additionally, it is useful to study the effect that

control alone may have on system capability, since added sensing can then be used more

efficiently. This thesis seeks to show how a pure controls solution can be used to increase

compliance for a given accuracy (or vice versa), and there are two clear opportunities to do

so. First, the capabilities of compliant control could be improved by generating controllers

that are better than the benchmarks, i.e., that are able to reach the lower-left hand corner

in Figure 2. Controllers like those seen in Figure 2 generally have a bandwidth greater than

the necessary 2 - 5 Hz, and track well in this region, but are too stiff. One hypothesis, then,

is that these controllers leave gaps in the low-frequency applications that could be filled

by a more intelligently designed controller. However, a clearer opportunity is indicated by

the dashed magenta box in the bottom-right side of the figure: there is a certain stiffness
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Figure 2: General trade-off of accuracy and compliance among controllers.

at which point the increase in accuracy is negligible. For compliant tracking, a controller

should reach but not exceed this maximum required stiffness, ideally without requiring a

priori knowledge of that target stiffness value. Similarly, the controller should obtain the

best tracking for a given stiffness.

In this thesis, a constrained model predictive controller is used to achieve these goals

an improve compliant control for pneumatic systems. Model Predictive Control provides

an obvious framework: by coupling a low-level linearizing force controller with an MPC

that treats impedance as a constraining upper bound (rather than a target), comparable

accuracy can be achieved in the desired frequency regions without an equivalent rise in

system stiffness, unless necessary for better tracking. The controller is applied to a standard

pneumatic actuator consisting of a cylinder, one 5 port/3-way valve, pressure and position

sensing, and the corresponding extensions to multiple linkages. The resultant controller is

designed specifically for pneumatic systems, but may also be used for the broader category

of actuators with intentional inherent compliance, notably Series Elastic Actuators (SEAs)

and Variable Stiffness Actuators (VSAs).
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1.2 Research Goals & Contributions

The primary asset of MPC for this application is its ability to include and enforce

constraints on system behavior. By setting compliance constraints, MPC can be used to

provide good tracking while preserving low-output impedance properties. However, the

controller design is limited by implementation and theoretical requirements. Therefore, the

research goals are intended to explore controller design and capability, and have associated

contributions:

1. Design of predictive controller to enforce desired tracking on a compliant

system without significantly increasing system stiffness/impedance

� Definition of linearized state models

� Derivation of constraints for compliance enforcement

� Derivation of constraints that define limiting dynamics over prediction horizon

2. Analysis of friction compensation needs and benefits

� Development of a predictive estimator that leverages MPC properties

� Comparison of predictive and classical friction compensation

3. Practical & Theoretical Considerations

� Stability & performance analysis

� Hardware implementations with multiple DoF

These are realized in the form of 6 key components:

1. Literature review of needs, standards, and a set of proposed tests to establish clear

design specifications for controllers

2. High fidelity simulation to compare controllers

3. Performance of benchmark controllers on 1-DoF system in simulation & hardware

4. Compliant control of a 1-DoF system with MPC in simulation & hardware
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5. Compliant control of a 2-DoF system with MPC

6. Overview of explored extensions to further improve performance through control

1.3 Thesis Organization

The thesis structure first familiarizes the reader with problem detail and system dynam-

ics, then introduces the controller, and then discusses theoretical analysis, implementation

details, necessary extensions and results. The subsequent chapters primarily correspond to

the the 6 key results introduced in section 1.2.

Chapter 2 provides a more detailed literature review on the state-of-the-art in compliant

control, as well as needs and the particular applicability of pneumatic actuation. Chapter

3 discusses the dynamics of pneumatic systems and introduces testbed platforms and an

equivalent simulation for model comparison. Next, Chapter 4 proposes a set of tests used

to translate qualitative aims to design specifications for each controller, provides several

benchmark controllers to span a performance baseline, and compares their capabilities.

In Chapter 5, MPC design is detailed for a single degree of freedom system, and friction

compensation, performance, and stability guarantees, are discussed, and the application to

a multi-degree of freedom planar robot is addressed in Chapter 6. Finally, Chapter 7 will

provide conclusions and discuss topics for future work.
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CHAPTER II

BACKGROUND, MOTIVATION, & TARGETS

This chapter provides an overview of position control methods in pneumatic systems,

the role of position control in the broader field of compliant systems and its relation to

pneumatics, and the gaps that exist in the literature. Performance of comparable control

strategies is discussed and used to derive specific target behaviors, and the use of MPC as

a solution is heuristically justified.

2.1 Pneumatic actuator control

Pneumatic actuation has been widely employed in industry because of its many benefits,

including power and force density, clean, safe actuation, and low cost [11,84], especially com-

pared to electric motors [10]. Inherent compliance and light weight has made pneumatics

a good choice for platforms geared at interaction with humans and the surrounding envi-

ronment, such as walking robots [26,55] or prostheses [44]. Pneumatics is further appealing

because of its potential to actively control stiffness or impedance properties [44,85].

However, many of these high performance applications have faced challenges in actuator

control. The inherent compliance can cause vibrations and even instability. Control is

particularly limited by friction. This must be compensated for or reduced through the use

of low-friction cylinders [35], which are often more costly and fragile than regular cylinders.

Friction compensation typically involves some form of feedback linearizing additive terms

that are added to the control effort, though the success of this method is limited by the

respectively slow pressure dynamics of the actuator, particularly when compensating for

stiction, which occurs instantaneously. Further, pneumatic systems are highly nonlinear,

including discontinuities resulting from flow direction, non-smooth transitions resulting from

sonic flow conditions, and a number of nonlinear terms, especially in the case of choked flow.

As a result, numerous control strategies have been attempted to achieve good position
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and force tracking, and to bypass issues of friction and nonlinear behavior. As with many

fields, there is no singular best control; instead, some controllers are more prevalent for

specific applications.

2.1.1 Position & Force Tracking

Control for position and force tracking with pneumatic systems has been extensively ex-

plored over the past several decades. Simple control approaches have been investigated,

such as Proportional-Integral-Derivative (PID) or Position-Velocity-Acceleration (PVA)

control [44,51,93], but even well-tuned controllers of this form rarely achieve the tracking or

robustness possible with more advanced controllers. The most successful basic controllers

have used an inner loop on pressure and high proportional and derivative gains, thereby ef-

fectively transforming the system into a stiffer one with higher output impedance. More ad-

vanced controllers have been designed for position tracking, such as fuzzy state feedback [73],

impedance control [100], neural networks [16], and adaptive control [10], though the best

results have generally been achieved using sliding mode controllers [11], which enforce a

level of robustness that seems particularly beneficial to the pneumatic servo control appli-

cations. These results have mostly been limited to single degree of freedom applications. In

systems where human or environmental interaction is desired and force tracking is of inter-

est, researchers have tested passivity-based control [31] and impedance control [67,90,100],

which also enhances passivity [75], to ensure a safer and more stable interface.

Optimal control has been minimally explored as an option for control of pneumatic actu-

ators, primarily for energy efficiency, as was done by Ke et al [49]. A few recent efforts have

looked at model predictive control (MPC) – a subset of optimal control – for pneumatic

systems, primarily because of the potential to enforce constraints while implementing an

optimal control policy [6,18,57,85]. These papers typically use a stabilizing control loop on

pressure or force, but differ in overall system design. Todorov et al. [85] applied MPC to

determine two control inputs to a two-valve/single cylinder actuator that formed one joint

of a 38-DoF pneumatic robot. They used an iterative Linear Quadratic Gaussian observer
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to estimate the MPC reference input states based on the desired force reference. Asche-

mann and Schindele [6] designed a special nonlinear model predictive controller (NMPC)

for a pneumatic muscle actuator that was mechanically simplified by a valve that internally

regulated mass flow. They also included a disturbance model in their reference that com-

pensated for un-modeled parameters, such as friction. Matousek [57] applied an adaptive

predictive controller that used recursive least squares to update the linearized model at each

time step, resulting in generally successful control but periodically observed sudden high

magnitude deviations from the reference seemingly after steady state had been reached.

Finally, Chickh et al. [18] demonstrated that a feedback linearized pneumatic actuator can

be reformulated into a particular form (CARIMA) for use in General Predictive Control

(GPC), a particular implementation of MPC. MPC has also been successfully applied to

related but structurally very different industrial pneumatic systems [99].

2.1.2 Friction Compensation

Friction, and particularly static friction, is prevalent in pneumatic control, and is often a

main hindrance reaching desired, low error tracking behavior. Friction in pneumatic systems

occurs because of the interaction between the seal and lubricant with the cylinder, as well

as at distinct operating points, such as at the end stops. In pneumatic systems, friction

is further troubling because it exists as a nonlinear term sandwiched between the pressure

and position dynamics, commonly known as a Sandwich System [82,83,96]. A sandwiched

nonlinearity is problematic because it can lead to oscillations or even instability [83]. When

the nonlinearity is invertible, a control loop with an inversion term can be used to eliminate

the nonlinearity [83]. However, past efforts have usually worked with static nonlinearities,

such as a dead zone, which are simpler and likely more easily characterized than friction.

Another method, for use with input saturation, is a scheduled low-gain approach [96],

essentially a specialized gain scheduling effort.

Low-friction cylinders are useful for some applications, e.g. in-MRI surgery [35]. These

minimize material friction by design, such as with graphite and glass as piston and cylinder

materials, but are often more fragile and expensive than other pneumatic actuators. Further,
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the problem of friction compensation extends beyond pneumatics to a wide variety of similar

mechanical systems, so a controls solution is more broadly applicable.

An alternative approach is to use a software-based compensation method. Armstrong-

Helouvry et al provide a good overview of research on friction modeling, analysis, and

compensation in their survey paper [5]. One method is to mitigate friction rather than

actively compensate for it, such as via integral control, joint-torque control, stiff PD con-

trol, impulse control, or dither. Alternatively, a feed-forward term can offset the effects

of friction [5, 42, 47, 72, 89]. Variations differ in choice of friction model and methods for

including parameter uncertainty. Some treat friction as a periodic disturbance that may

be identified in the frequency domain, then apply repetitive control to effectively adapt

the compensation method over multiple iterations [72, 89]. Others use approaches such as

feedback linearization to attempt to cancel the friction term, then recursively adapt the

friction model.

One of the challenges with feed-forward compensation is that the system must be fast

enough to provide the compensation term almost instantaneously. The best success is

generally achieved using high bandwidth systems, such as electric motors [47, 89]. In the

case of a pneumatic actuator, the pressure dynamics are slow compared to the switching

nature of the stiction nonlinearity. Optimal control could address this concern, but its

application has been limited largely due to the challenge of discontinuous co-states [30],

which makes an analytical solution practically impossible. Recent efforts [79] have found

that by designing problem-specific numerical methods, a computationally practical solution

can be found, yet this requires a solver specially designed for that problem.

2.2 Pneumatics & Compliant Position Control

The properties of pneumatic actuators are particularly appealing to applications that

involve interaction with humans and the environment, including search and rescue robotics

[25, 64], prostheses [44], and rehabilitation [8]. Such applications often require compliant

position control: the actuator or arm must be able to be accurately positioned using ideally

smooth motions, but if obstructed by a user or object, interaction forces must be minimized
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to avoid damage and ensure user safety [67,88]. The rescue application is a particularly apt

application – in previous work, the authors developed 6-DoF pneumatic rescue robot [25,26]

to demonstrate how force and power density could be coupled with lightweight power sources

to provide rescue machines that are capable yet also reassuring to a victim, and that possess

a natural compliance that makes them safe to interact with.

2.2.1 Compliant Position Control: Demand, Definition, and Applications

Numerous researchers have pointed to the need for a compliant actuator and control

scheme. In one of their introductory Series Elastic Actuator (SEA) papers, Pratt et al.

stated that “for natural tasks where small motion bandwidth is not paramount concern, ac-

tuator to load interfaces should be significantly less stiff than in most present designs” [65].

They later elaborated on the concept of a “natural task”, giving examples such as walking

or manipulation, and offering benefits of compliant actuation, such as shock tolerance, lower

reflected inertia, less damage during inadvertent contact, and energy storage. Other gen-

eral application areas include physical therapy and gait/motion rehabilitation [60,67,88,91],

prostheses [91], walking robots [4,66,91], as well as several efforts to create “human-friendly

robots” [9, 27, 39, 41, 101]. These typically refer to almost-industrial robots: robots for in-

dustrial settings intended for use around humans, which are usually either more lightweight,

smaller, or slower than state-of-the-art industrial systems. In rehabilitation and physical

therapy applications, the user must often by trained in “natural motions” by a robot, but

is prone to spasms to which the systems must be compliant. Therefore, these applications

specifically require “compliant tracking” [88] or motion that is compliant to a user’s mo-

tion [67]. To achieve compliant motion, it is common for robots for rehabilitation, physical

therapy, and walking to apply impedance control or use series elastic actuators (which in-

cludes some effective impedance-lowering control), while the modern physical Human-Robot

Interaction (pHRI) applications, such as extensive work at the DLR [39], tend to measure

safety using more empirical strategies, such as the Head Impact Criterion and other severity

indices, which are then used to define constraints on acceptable robot behavior. In general,

the goal of a robot that possesses intrinsic safety, i.e. inherently safe dynamics, is highly
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desirable; the Robotics Handbook authors go so far as to call it the “holy grail” of safe

human-robot interaction [9].

2.2.2 Safety & Impedance Standards

Most target compliant control applications either aim for compliant tracking, or for

motion with safety guarantees for a user in the workspace. Both of these aims can be

quantified in a number of ways.

One approach is to specify actuator (joint space) compliance [4], though for impedance

control cases, it is much more common to cite the desired compliance at the end effector

(task space compliance) [4, 67, 88]. This is an important distinction, as an actuator might

have a stiffness in the 1000 - 10000 N/m range [4], but be significantly more compliant in

the task space, with stiffnesses of 30 - 250 N/m [67], as corresponds to measured human

impedance [88]. For industrial manipulators, linear stiffnesses are typically quite high–

for example Ferretti et al. develop an impedance controller for elastic joints in industrial

manipulators, and set an end effector target of k = 2000N/m, ζ = 13, ω = 10rad/s, as well

as some lower angular impedances [33]. Several researchers, especially those focusing on

variable stiffness actuators (VSAs), emphasize the need for dynamic range. For example,

Tsagarakis et al. [87] developed a soft actuator for small-scale robots using springs with

62 kN/m stiffness, though based on their robots’ geometry, these instead held a rotary

stiffness of 150-160 Nm/rad. Using control, they modulated the stiffnesses from 30 to 600

Nm/rad (corresponding to 10 to 240 kN/m linear stiffness), or 0.5 - 4 x the mechanical

stiffness, while tracking a 0.8 Hz signal. Several of these authors also examined the force

step response to get an idea of the dynamics of the system [4,101].

It is rather unclear from the literature how well the target impedances correspond to

achieved impedances. While theory has been well established for some actuators, e.g. SEAs,

and impedances can be analyzed qualitatively [80], most authors set a target and observe

the response, but don’t necessarily assess the correspondence between desired and target

impedance. Instead, authors comment on qualitative or individual aspects, such as the peak

force due to contact [100], RMSE error, or steady state contact force.

12



Researchers dealing more broadly with the concept of human-friendly robots or safe

robots have instead investigated other types of safety measures. There are several safety

indices: empirically deduced, quantitative metrics for danger, usually based on impact with

some body part. One common example is the Head Impact Criterion (HIC) [9,27,39,41,60],

which has been used by several researchers to define a speed constraint for a robot (typically

a large, industrial robot). Haddadin et al. performed biomechanical tests onto further

investigate the actual dangers of robotic collisions [41] and relate HIC to velocity criteria

based on robot specifications. There are also ISO 10218 standards [1], though they have

been suggested to be limiting by prominent researchers in the field [9, 39].

In short, there is no singular unifying standard that defines idealized compliant control.

However, there are guiding metrics, established performance goals, and a bevy of results

from past researchers that may be sourced to define numeric targets for a new compliant

controller.

2.2.3 Performance of Comparable Systems

While the need for compliant control has been clearly established, it is necessary to

know the typical operating ranges to understand why pneumatic actuators are a reasonable

choice for this application. The following sections seek target performance ranges as seen

in current compliant control applications. Furthermore, these targets are compared to the

aims of pneumatic tracking systems and applications. The results from this survey will be

used in section 2.2.4 to define target performance ranges.

2.2.3.1 Speeds and Frequencies

Many researchers in the compliant motion domain [27, 41, 46] reference the solution

to the safe brachistochrone problem [36]: given a variable impedance system with state

(velocity) constraints, find the stiffnesses that enable a path to be followed in minimal time

(brachistochrones are minimum time problems; this one is specific to safety). The general

solution consists of stiff slow motion and flexible fast motion. Bicchi et al. further investigate

a number of optimal control solutions to variations on the safe brachistochrone problem

[36], though of course they all deal with a minimum time solution. These investigations
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have resulted in some general guidelines: Haddadin et al. [41] found linear relationships

between (mass,velocity,curvature) and injury, and general velocity bounds for robots have

been suggested at 4.5 m/s [41], 3.3 m/s [97], or below.

While these speeds are limiting for robots with industrial aims, robots for walking,

rehabilitation, physical therapy, etc., and other tasks in the “human-friendly” arena are

generally subjected to slow tests. Tsuji & Tanaka [88] test tracking up to about 10 rad/s

for a rehabilitation robot. Another physical therapy robot by Richardson et al., which

used pneumatic actuation [67], tested excitations up to 2 Hz, and in fact filtered the input

reference at 6 Hz. Some more general cases also include slower references: Pratt & Krupp

state that while small-force SEA bandwidth is up to 50 Hz, the large-force bandwidth is

in the 7-10 Hz range. In their introduction of Distributed Macro-Mini (DM2) actuation,

Zinn et al. [101] display position tracking at 1 and 2 Hz, and show error results for 5 Hz

sinusoid tracking over a 15 cm range. In fact, compared to human motions, these rates are

appropriate; one heuristic on bounding rates can be obtained from elite Olympic curlers,

who sweep the floor (a rapid, oscillatory motion) at about 4.5 Hz [61], which matches the

suggested upper bound on fast human motion.

As with human-like (“natural”) motions, pneumatic tracking motions are typically slow.

Pneumatic tracking is usually validated on reference curves up to 2 Hz [11, 52, 63, 100],

rarely going higher, though some human-operated or walking position trajectories, while

dominated by sub-2 Hz content, may contain some higher frequency content [31,67,90], and

good tracking results have been measured at 4 Hz [76]. Most pneumatic tracking is tested

along the actuator (no geometric stroke amplification) and following smooth sinusoidal

curves, but other results have also looked at tracking S-curves over a 2 second span [94],

human-guided or human-like motion [31], which follows slow, smooth curves, step responses

[93], or curve tracking for walking motions [90], which are not necessarily smooth, but

generally slow: 0.5 - 2 Hz over a 10 cm range, with a few immediate velocity changes.
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2.2.3.2 Stiffness & Impedance Performance Expectations

Section 2.2.2 provided some example impedance and stiffness targets of HRI and human-

like motion applications. This category is broadly defined and exact targets are largely

dependent on application. Systems that use pneumatic actuators, however, are much more

well-defined, since they have similar bounds on feasible performance. Accordingly, actuators

of similar dimension are also more likely to be applied to similar scenarios: walking and

motion of small- and medium-scale robots, rehabilitation, orthoses, etc.

Several authors that have applied impedance control to pneumatic systems. Najafi and

Hejrati [63] examined impedance control for a fast on/off switching control of solenoid valves

and tested tracking on sinusoids ranging from 0.1 to 1 Hz, a unit step, and a ramp tracking

with sudden wall contact. They did so at target impedances with stiffnesses from 4 to 10

x 103 N/m, and damping ranging from 25 to 100 Ns/m. Similarly, Zhu and Barth [100]

looked at impedance control for contact tasks, recording motion tracking (in free space) at

1.5 Hz, as well as a ramp response that is then obstructed by a wall. They used three sets of

target impedances (m [kg], b [Ns/m], k [N/m]): (0.5, 200, 800), (1, 400, 1600), and (2, 400,

3200). While it wasn’t clear how well the target impedance compared to observed dynamic

behavior, they did note that the stiffer impedance controlled systems tended to track the

ramp better prior to contact, and higher impedances resulted in higher steady-state contact

forces. Shen & Goldfarb used two valves to simultaneously control force and stiffness of a

pneumatic actuator in [76], and where able to achieve stiffnesses ranging from 2000-3000

N/m to about 14000 N/m, while tracking a position signal over a -20 to 20 mm range, using

an 80 psig supply pressure. These results, which possess an extra degree-of-freedom (DoF)

over the single valve model investigated here, should be considered upper and lower bounds

for pneumatic stiffness, though they cautioned that a greater range might be achievable

with a higher supply pressure. Their position errors were in the 5 - 10% range. Richardson

et al. [67] observed a 5 mm tracking error for an impedance controlled pneumatic system,

as well as step responses with 0.1 - 0.2 second rise times.
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2.2.3.3 Pneumatic Tracking Control

The previous sections have noted position error and tracking RMSE. It is useful to define

the standard for tracking in the absence of any additional aims (e.g., compliance).

Bone & Shing [11] offer the most widely cited (and arguably best) direct comparison

of controllers for the aim of general, minimum-error position control. They compared a

number of controllers to their own, which yielded errors under 1 mm over a 70 mm stroke,

at speeds from 0.25 - 1 Hz, an improvement over comparisons that had RMSE errors of 2 -

3 mm. Researchers who look at step response measurements generally look at the steady-

state error [93], which has been as small as 0.05 mm, though time constants can also be

extracted and are generally as low as 0.2 s for closed loop position tracking. The effect of

stroke length and speed was addressed somewhat by Lee et al. [52], tracking over a 70 mm

range, they measured errors of 2-7 mm (3-10%) on tests varying from 0.2 - 0.5 Hz, and for

a test at 0.2 Hz with 30-70 mm stroke, they measured 2-3 mm error. This last point may

help to show that for tracking measured at the stroke, the actual error should be used for

comparison, not necessarily the percentage error. This is not necessarily true if the stroke

is amplified by some linkage geometry and position error is measured at an end effector.

2.2.4 Numeric Performance Targets

Using the previous research as a guide, performance target ranges were established:

1. Tracking Signals: At minimum the controller should track a sinusoidal reference

over a majority of the stroke at up to 2 Hz with good accuracy (2-5 mm RMSE).

Ideally, it should track these signals excellently (under 1 mm RMSE), and also track

a sinusoidal reference up to 5 Hz well (up to 10% error, as a base).

2. Disturbance Response: The system should be backdriveable by a human pushing

on the joint without exerting significant force. Significant force is based on heuristics:

maximum forces applied by the elbow range from 50 100 N and 70 100 N by the

shoulder [81], and injury from static collisions often occurs in excess of 50 N [48],

so a threshold for significant force is set at 50 N. This is also 33% of the maximum
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force for chest impact based on ISO standards for safe industrial robots [1,40]. Force

guidelines are fairly generous for the single DoF test case, as they’re generally derived

for safe robot-human interaction and are designed for larger scale industrial robots [40];

therefore, impedance targets must also be satisfied. Further, the system’s response

to disturbance may be assessed by seeing how it behaves when the disturbance is

removed, using standards such as overshoot, settling time, steady state and RMS

error.

3. Target Impedance & Dynamic Stiffness: The bounds from [76] of 2 - 14 N/mm

can be used here, or can be calculated from the mechanical stiffness equation derived

in [76]. Stiffnesses should be low – under 4 N/mm at the actuator, with damping

constants under 100 Ns/m. Ideally, a high dynamic range of the closed loop stiffness

should be achievable1.

2.2.5 Controllers for Compliant Pneumatic Control

This thesis aims to define a controller for pneumatic systems capable of compliant po-

sition tracking; that is: position tracking that is as accurate as possible in the absence

of interaction, but is compliant to accidental interaction. The aim is to do so via a con-

trols solution, i.e. without requiring additional contact sensors, and on a standard single

valve-single cylinder implementation.

One approach is to simply try and minimize error, and hope that the impedance or

stiffness characteristics of the closed loop system fall into the target range. With this

strategy, it is most logical to apply either an optimal controller (e.g., LQR/LQT), or a

Sliding Mode controller. As noted in section 2.2.3.3, Sliding Mode Control (SMC) has

consistently provided the most robust approach for achieving good tracking [11]. SMC uses a

switched control law to drive a system to a sliding surface defined by the performance targets

(e.g., zero state error), then keeps the state on the surface using a feedback-linearizing

control input [78]. In fact, in a system with multiple inputs, the sliding surface could be

1A factor of 6 is good for pneumatics, factors of 10-100 are good for SEA comparison, and a factor of
about 20 is about normal for VSAs
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extended to include target impedance profiles, as was done by Shen and Goldfarb using a

two-cylinder implementation [76]. However, for the SISO case, the use of the switching law,

and the associated robustness, result in a high-impedance closed loop system and very large

interaction forces, making it undesirable for compliant control.

A second approach would be to use an infinite-horizon optimal controller, such as the

Linear Quadratic Regulator (LQR – or it’s tracking extension) coupled with a low-level

linearizing force controller. As long as impedance goals are sufficiently high and modeling

error can be bypassed, this should minimize tracking error. The main challenge with LQR

is finding the right balance of tuning parameters that both minimizes tracking error without

requiring too aggressive an input.

Alternatively, a user could try impedance control, which sets uses an impedance filter to

ensure a particular force-position profile for the system. Impedance control has been previ-

ously implemented on pneumatic systems intended for contact and interaction [67,90,100].

In impedance control, the user specifies a transfer function for the output impedance,

F (s)/x(s), typically as a mass-spring-damper model. The downside is that without ad-

ditional force sensing, a low impedance results in a correspondingly slower system and

higher tracking error. Further, impedance control is heavily reliant on the system model;

depending on the linearity, the inherent model dynamics may be difficult to counter, thereby

limiting the range of achievable impedances. Additional force sensing can also be used to

filter inherent dynamics.

2.3 MPC for compliant position control

There is some mismatch among intent of researchers investigating compliant systems

and safe robotics. While many researchers cite the need for a variable stiffness actuator,

the stiffness is often varied according to some impedance profile, obtained based on some-

what arbitrary guidelines. By contrast, for industrially oriented applications, the minimum

time optimal control problem is a natural motivating source for target impedances, but

it doesn’t apply especially well to physical therapy, walking, or manipulation that follows

natural motions (natural motions can be characterized by optimality principles, but these
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typically are not minimum time [86]). Instead, there is a need for modulating stiffness

to optimize tracking while still maintaining compliant dynamics, online, of a given path,

and not in minimum time. In pneumatic systems, the compliance is inherently related to

tracking control – in fact, in all closed loop systems, the output impedance is affected by

the controller. Rather than using fixed gains, the control should be selected to minimize

tracking error while maintaining compliance that satisfies some safety constraints. Optimal

control has been used for off-line impedance control gain tuning [60], but reference tracking

in human-motion scenarios often happens online and is subject to user safety constraints.

It is valuable to recognize this problem as a constrained optimal control problem (er-

ror minimization with impedance constraints). In fact, the time optimal problem seen in

industry offers a clear parallel in the related field of safe, fast motion control: The Safe

Brachistochrone Problem. This is the challenge of velocity-constrained, time-optimal con-

trol: given a system with [velocity] state constraints, determine a control strategy such

that the closed-loop impedance/velocity combination satisfies some safety criterion, e.g.

the HIC, and completes the point-to-point motion in minimum time. The general solution

consists of stiff, slow motion and flexible, fast motion, and has been cited by numerous

researchers in the compliant motion domain [27,41,46]. Bicchi et al. further investigated a

number of optimal control solutions to variations on the safe brachistochrone problem [36],

though of course they all deal with a minimum time solution.

By recognizing the parallels between safe time-optimal control and compliant tracking

(safe position-error-optimal control), it is clear that a constrained optimal controller would

be a logical solution choice. Model Predictive Control is therefore a clear solution choice;

MPC enables real-time constrained position control.

2.3.1 MPC Background

The basic implementation to MPC is that a system model is used to solve a finite-time

optimal control problem over a time horizon termed the prediction horizon, Np. The control

input is assumed to have a length Nc <= Np – the control horizon. This control problem is

solved at each time-step, updating state and model information as time progresses, but only
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ever using the first control input. A thorough overview of MPC implementation, stability,

robustness, and other properties is provided in the seminal 2000 survey paper by Mayne,

Rawlings, Rao, and Scokaert [59]. Lee’s 2011 survey paper on MPC provides more recent

updates [53] to the application domain, which has been aided through implementation-

oriented tutorials, textbooks, etc. [12, 14,95].

For the unconstrained, linear case, an analytical solution exists; for most practical real-

izations, however, a numerical solver is used to solve the constrained optimization problem.

Constrained control is important; results from [28] showed that for control of a system with

input saturation, an [unconstrained] Linear Quadratic Regulator (LQR) could lead to in-

stability due to lack of constraint awareness, whereas a constrained MPC resulted in better

and stable performance.

Historically, Model Predictive Control, and the related control variety, Receding Horizon

Control (RHC) originated in chemical process control applications – slow systems with fixed

steady-state setpoints, where fast optimization is not critical. However, recent advances in

optimization [59, 98], as well as explicit MPC2 [3] have broadened the application domain.

As observed in section 2.1.1, MPC for pneumatic applications has been limited to a few

specific cases, and is largely chosen to include operating constraints in position and force

control aims.

2.3.2 Predictive Friction Compensation with MPC

Predictive control offers a feasible way to design an optimal friction compensation strat-

egy. MPC may be coupled with feedforward or mitigation techniques like those discussed

above [20], but a more appealing planning-based method can be used in the form of a dis-

turbance observer [62]. Disturbance models augment the state matrix with estimates of

the unknown parameters, described as a series of known discrete values over the prediction

horizon that are then included in the solution to the finite time optimal control problem. In

this thesis, it is suggested that by using cascaded predictive controllers, state estimates can

be found that are used as inputs to an observer that estimates friction over the prediction

2where as solution is computed off-line and a lookup table is used to implement the solution to the
constrained optimization
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horizon. This can then be used as a disturbance model in a second predictive controller.

This approach bears resemblance to two past friction compensation methods. Runzi et

al [72] modeled friction as a periodic disturbance and used a predictive controller coupled

with repetitive compensation. A disturbance model was updated at each friction occurrence

by subtracting the error, converging to a good estimate over several iterations. The planned

nature of MPC is also similar to impulse control, which works by supplying properly timed

impulse inputs to overcome the stiction effect [5]. Researchers have also designed general

adaptively updated disturbance models intended to compensate for friction, among other

properties, e.g. with stochastic estimation techniques [62], but did not explicitly model or

address friction.

2.3.3 Configuration and Research Aims

It is evident that MPC can offer a novel take on design for compliant position control.

The primary assets of MPC are that it enables online solution of a constrained optimal

control problem, and because its predictive structure is conducive to improving friction

compensation for slow systems.

In this thesis, the MPC framework will be leveraged to solve the minimum error tracking

problem while subjecting the system to force and impedance constraints. However, present

tools for realtime control with MPC largely require either custom, specialized solvers, or

linearized systems. Similarly, constraints must be designed that are straightforward, sci-

entifically justified, and effective. MPC also comes with trade-offs; it is computationally

expensive and requires a fairly involved implementation. Therefore, it is necessary to ex-

amine how much MPC can affect control, and how it compares to controllers with similar

or related aims, both at the single- and multi-DoF implementation level. The following

research goals will be discussed in subsequent chapters:

� What kind of system models are sufficient for control? Pneumatic system

representation will be addressed and simplified to a form that is usable in controllers.

The model must be valid over a prediction horizon and sufficiently describe the desired

performance characteristics of the system.
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� What MPC configuration is most effective in the desired target behavior?

Predictive controller designs will be put forth that combine low-level force control

with appropriately selected constraints.

� Can predictive estimation be used to improve friction compensation rel-

ative to additive methods? A predictive estimator will be developed and imple-

mented to calculate friction disturbance over the prediction horizon based on expected

state behavior. It will be compared to traditional friction compensation techniques

through feedforward terms based on an instantaneous model, and assessed both ana-

lytically and in practice.

� How does performance of an MPC-controlled system compare to that of

benchmark controllers? The controller is compared to benchmark controllers that

offer different balances in the categories of tracking, safety, and ease-of-implementation.

Performance is examined using well-established tests and over a range of tuning and

operating points in simulation, as well as at discrete checkpoints in hardware, and

trade-offs are discussed.

� How effective is MPC for the multi-DoF hardware implementation? The

predictive controller is applied to a two-DoF robotic arm and subjected to some

application-based tasks.

� What stability and performance statements can be made about the MPC-

controlled system?
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CHAPTER III

PNEUMATIC ACTUATOR DYNAMICS & MODELS

A thorough understanding of system dynamics and key behavior exhibited by the plant

is critical to successful model-based control. This chapter first introduces the standard non-

linear approach to modeling pneumatic actuator dynamics, then addresses detail variations

for high fidelity models. The resultant model has been used to develop a MATLAB/Simulink

simulation for controller development and analysis, which will be validated and will continue

to be referenced throughout the thesis. Lastly, some simplifying assumptions that improve

the model for use in control will be explored.

3.1 Core State Equations

A model for the actuator was developed using the “standard” academic model for a

pneumatic actuator [2, 77, 84], based on a physical setup consisting of a valve and cylinder

with position and pressure feedback.

The actuator model has four primary components: a conversion of voltage input to

orifice area, an equation for mass flow through an orifice, an energy balance to relate mass

flow to change in pressure, and a force balance to derive output force from the pressure and

friction. The resulting model is a nonlinear, third-order system. A block diagram is shown

in Figure 3.

3.1.1 Pressure Dynamics

Mass flow, ṁ, is calculated as a function of upstream and downstream pressure, Pu

and Pd, respectively, orifice area, A(u), a discharge coefficient, cd, and several predefined

constants, and is of the form

ṁ = A(u)cdΨ(Pd, Pu) (1)
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The choice of upstream and downstream pressure is dependent on the direction of flow, as

defined by the valve command. For each chamber, the mass flow can be defined as

Discharging (flow out of the chamber): Pd = PSupply, Pu = PChamber (2)

Charging (flow into the chamber): Pd = PChamber, Pu = PAtmosphere (3)

The function Ψ(Pd, Pu) is piecewise-defined and depends on critical pressure ratio, Pcr =

(Pd/Pu)cr, which determines whether the system is experiencing choked or un-choked flow

(Pcr = 0.528 for air):

For Pd/Pu > Pcr (un-choked flow): Ψ(Pd, Pu) = C1
Pu√
Tu

(
Pd
Pu

)1/k
√

1−
(
Pd
Pu

)(k−1)/k

(4)

For Pd/Pu <= Pcr (choked flow): Ψ(Pd, Pu) = C2
Pu√
Tu

(5)

where Tu and Td refer to upstream and downstream temperature. These quantities are

calculated using the ideal gas law and the instantaneous total mass and pressure in the

cylinder

T =
PAxabs
mR

(6)

A is the cross-sectional area of the chamber and xabs is the absolute position of the rod,

defined as the distance of the piston from the end caps, i.e. the chamber length (this

distance includes the dead space inherent to each chamber of the cylinder). The constant

terms C1 and C2 are functions of the universal gas constants R and the ratio of specific

heats k, (k = 1.4 and R = 287 J/Kg K for air):

C1 =

√
2k

R (k − 1)
and C2 =

√
k

R
(
k+1

2

)(k+1)/(k−1)
(7)

The previous equations govern the dynamics of the valve. The next step, an energy balance,

defines the link that connects mass flow through the valve to changes in pressure within the

chambers of the cylinder. Under an adiabatic assumption, the change in pressure in each

chamber of the cylinder can be found using the ideal gas law:

Ṗ =
kRTṁ

xabsA
− Pẋ

xabs

(
kR

cp
+ 1

)
(8)

where cp = 1012 J/Kg K is the specific heat of room temperature air. Equation (8) is

applied to both sides of the cylinder and integrated to get rod-side and cap-side pressures .
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Figure 3: Actuator block diagram.

3.1.2 Force and Position Dynamics

A force balance is used to determine the amount of force exerted by the actuator. There

are some losses that affect the actual force experienced by the system. The most critical

of these is friction, which is dependent on the internal construction and lubrication of the

cylinder, as well as the rates at which the system is excited, and will be discussed further

in section 3.2.2. The net force is found using equation (9):

Fnet = PcapAcap − ProdArod − PatmApiston − Ffriction (9)

where Acap and Arod refer to the cap-side and rod-side cylinder cross-sectional areas,

Apiston refers to the area of the piston, and the pressures used are absolute.

3.2 Detail Modeling Variations

While the core state equations are fixed, accurate representation of pneumatic dynamics

also relies heavily on a several components that can be subjected to significant tuning and

adjustment. Notably, these include valve and friction dynamics.

First, the discharge coefficient, cd, and orifice area, A(u) are closely related and essen-

tially describe valve behavior. Additionally, constraints on valve bandwidth and response

speed must be incorporated into a realistic simulation model. Friction also plays a signifi-

cant role in the position dynamics, and can be described in a number of ways that generally

require a balance of accuracy and ease-of-implementation.
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3.2.1 Valve Dynamics

In section 3.1.1, the valve dynamics are described by a discharge coefficient, cd, a signed

orifice area, A(u), and a flow function, Ψ(Pu, Pd). The pressures depend on direction of

flow, as in equation (2), and are chosen using an overlapped valve assumption: the spool

is larger than the orifice, so each chamber can be hooked up to either the supply or the

exhaust; never both.

Figure 4: Comparison of underlapped (top) and overlapped (bottom) valve models.

A(u) is modeled as a function of voltage that is zero at the offset voltage (the voltage

about which the valve is centered), and is then signed based on the direction of flow.

However, because the valve is under-lapped, this approach fails to cover the range of actual

dynamics, as seen in Figure 4. Instead, Figure 5, which displays a characteristic pressure

response to a voltage step input near the offset voltage: chamber pressures settle to steady

state values before the limiting values – supply and exhaust – are reached. This behavior

requires that (1) |A(u)| not equal zero at any time, and (2) Ṗ = 0 before either supply or
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Figure 5: Characteristic pressure & position response to a voltage step. The red line shows
the point at which stiction is overcome and motion begins.

exhaust are reached, which is impossible to achieve using an overlapped model.

Past researchers have dealt with this problem in different ways. Many simply ignore

it, especially those constructing a model for control, rather than simulation. Others use a

linear estimate of A(u) and an offset area, as in Figure 6, which reduces error. However, the

affected region spans approximately +/- 0.75 V about the valve offset and has been shown

to be very active in servo control tasks, so its dynamics cannot be simplified without first

investigating effects on model integrity.

Since the exact geometry of the changing orifice area, A(u), was initially unknown, an

equivalent orifice area, Aeq, was used instead. Aeq is the product of discharge coefficient

and signed orifice area, Aeq = cdA(u), which is easily fitted to the known model data.

The area modeling approaches must also drive Ṗ to zero before supply or exhaust are

reached. Four situations were investigated to model this loss of mass flow:

1. Assume a constant mass flow loss and offset the overall ṁ function by this amount

2. Assume zero mass flow loss except when cylinder does not fully charge/discharge

3. Model net mass flow as a sum of positive and negative flows through a more accurate
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Figure 6: Linear area model with offset area.

valve orifice model

4. Ignore the transients and focus on the steady state values by changing the magnitude

of the valve’s input port pressures.

All of the modeling approaches were tried. Methods (1) and (2) worked consistently

only for a small range of pressures; trends were difficult to observe. Method (3) relies on an

exact knowledge of the valve geometry and the inner flow dynamics, which was unavailable.

Ultimately, method (4) proved to be the most successful. This approach treats supply

and exhaust pressures as continuous functions of the voltage instead of discrete values that

switch at the offset voltage.

Figure 7: Input pressure trends.

Pressure curves were found by measuring the steady state pressure in each chamber that

resulted from a series of voltage step commands to a cylinder with a fixed piston (so motion

dynamics didn’t play a factor). Figure 7 shows the functions used to model pressure and
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the data points to which they were matched. A hyperbolic tangent function was found to

model observed trends:

Pinput = yoffset + Cscaletanh (KPress (u− xoffset)) (10)

where the constants are defined in terms of the supply pressure, PS , the exhaust Pres-

sure, Pe, the low Pressure cutoff, CLP (the voltage/x-axis value at which curve transitions

from the constant minimum pressure to a changing one), and the high pressure cutoff,

CHP (the voltage/x-axis value at which curve transitions from the constant maximum pres-

sure to a changing one). These constants are defined as yoffset = 1
2(PS + PE), xoffset =

1
2(CHP + CLP ), Cscale = 1

2sign(CHP − CLP )(PS − PE), and KPress = 2π/|CLP − CHP |.

To determine equivalent orifice area curves, step tests were run on the cylinder test

rig, always starting from the opposite voltage limit and then calculating equivalent orifice

area from the observed steady state behavior. The resulting equivalent area curves, seen in

Figure 8, were fit using fifth order splines for use in simulation. However, the curves also

match an orifice area model Aeq = cdA that uses two constant, chamber-specific values for

cd and an orifice area model for A based on expected geometry: Ageom is the area of a circle

segment:

Ageom = R2
Ocos

−1

(
RO − hspool

RO

)
− (RO − hspool)

√
2ROh− h2

spool + Ycorr (11)

where hspool is the segment width affected by the advancing spool, mapped from input

voltage u by constants C1 and C2: h = C1u + C2. RO is the orifice radius, and Ycorr

is a correction factor since the curves are not exactly centered. Values were found using

approximate measurements of the geometry as initial values and then computing a least

squares fit. From a simulation perspective, either curve produces approximately the same

detail-oriented result.

3.2.2 Friction Modeling

To avoid issues with stiff solvers, a continuously differentiable friction model was used to

represent Stribeck and viscous effects. This model is based on a hyperbolic tangent curve,
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Figure 8: Equivalent area curve fit for one valve port.

Figure 9: General form of friction as a function of velocity: (a) Stribeck friction model and
(b) Stribeck-Tanh friction model.

defined by equation (12):

FFriction =
[
FC + (FS − FC)e−(|v|/vS)i

]
tanh(ktanhv) + Cvv (12)

The effects of the parameters on the shape of the curve are seen in Figure 9. FC and FS

represent Coulomb and static friction, respectively, v is the velocity, and vS is the sliding

speed coefficient, which sets the velocity at which stiction transitions to other forms of

friction. The exponent, i, affects the rate at which slope changes from the post-stiction

drop to steady state viscous and Coulomb friction. The slope between the friction peaks is

governed by ktanh, and Cv is the coefficient of viscous friction.
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FC , FS , and Cv were found experimentally using a series of open loop step tests at dif-

ferent supply pressures and in various orientations. A force sensor measured the observed

force, and pressure sensors provided the differential force in the cylinder. Stiction measure-

ments were derived from the force difference at the start of the motion, and the viscous

friction was plotted as a function of steady state velocity so that curves could be fit to the

data. Once Coulomb, Viscous, and Static friction parameters were found, the remaining

parameters were matched to the data based on the overall fit, as detailed in [25].

One challenge with friction is that it does not necessarily stay constant in time, due to

lubrication and wear. This research spanned several years, and multiple cylinders, and while

the model was found to be a consistently strong representation of the stiction behavior, the

exact parameters varied. In the original analysis seen in [25], the final model parameters

used FS = 20.0 N (4.5 lbf), FC = 13.3 N (3.0 lbf), CV = 4.4 Kg/s (0.5 lbf·s/in), i = 5,

VS = 0.1, and ktanh = 1580 s/m (40 s/in). The accuracy of that friction model is shown

in Figure 10. A more recent fit, used in the simulations in the later chapters of this Ph.D.,

found that the magnitude had decreased: FS = FC = 5.3 N (1.2 lbf), CV = 5.3 Kg/s (0.6

lbf·s/in), and held all other parameters to their earlier values.

Figure 10: Performance of friction model. Regions during cylinder motion are highlighted
in green.
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3.3 Model Validation & Hardware Performance

The model was validated against numerous physical comparisons in both open and

closed loop settings, exhibiting a strong resemblance between position, velocity, and pressure

states, particularly in the operating region close to the valve equilibrium, where most closed

loop control took place. Two primary testbeds were used:

� The hardware testbed found in [24–26] and shown in figure 11. This variation was

predominantly used for simulation validation, including numerous tests at various

levels. The actuator uses a FESTO MPYE-M5 5 port, 3-way valve connected to the

chambers of a Bimba PFC low friction cylinder with internal position feedback. Two

SSI P51 pressure sensors monitor chamber pressure. A third pressure sensor measures

supply pressure near the source.

� The testbed seen in figure 12, cited in [21–23] and used for 1-DoF controller verification

in subsequent thesis chapters. This testbed uses a cart mounted atop an air-bearing to

ensure that horizontal motion is free of side-loading a friction due to external sources.

The same pressure sensors used in the previous testbed are mounted at each chamber

(supply pressure is unmeasured, but a regulator is located just before the input to

the valve), and the Bimba-PFC actuator has its own internal position sensing, as in

the previous testbed. Additionally, a shaker, on the left, may apply external axial

loading, and interaction forces are measured by a force sensor. The two are connected

by several inches of plastic 10-32 threaded rod, which will bend and snap if the system

overloads or fails, to avoid damage to the shaker, sensor, and actuator.

Both platforms were run using a target computer equipped with xPC Target / Real-Time

Workshop, MATLAB’s real-time operating system. For the most recent set of single degree-

of-freedom tests, since tests were performed on a borrowed shaker, a mobile platform needed

to be designed, and a separate target was used. Thus, while the first system and multi-DoF

platform used a PC104 with 2 GB of RAM and integrated D/A and A/D cards, the single

DoF tests were primarily operated on a desktop PC connected to a Quanser Q8 Board. The

details of these platforms is provided in appendix A.3.
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Figure 11: Hardware testbed used for original model validation. Modifiable to vertical and
horizontal configurations. Not shown: mass and force sensor.

Figure 12: Hardware testbed used for 1-DoF benchmark and MPC tests in later chapters
of this thesis.
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3.3.1 Primary Simulation Validation Tests

Figure 13: Actuator model validation: response to sequence of open loop voltage steps
from 6 to 4 V.

An initial set of simulations focused on the individual actuator model, validated on

the original test rig. Figure 13 displays position and pressure response to a series of open

loop voltage step inputs, including points not used for curve fitting earlier. These results

show that the adjusted orifice area model represents observed trends accurately. Simulated

and actual dynamics match closely, even without feedback control, and in regions near the

valve offset. The accuracy of the friction model and pressure constants can be viewed by

looking at the time it takes for the position to begin changing (or its resistance to change

if the pressures are not high enough), the pressures needed to do so, and the duration of

the step thereafter. The only place where position correspondence deviates significantly

is exactly at the offset voltage, 5.25 V. This is viewed as an outlier, particularly since

the curves near it demonstrate good correlation of measured and simulated values. These

methods also lead to high accuracy within a PID control loop on position, as seen in Figure

14, which demonstrates simulated and actual results of sine tracking at various frequencies.

Figure 15 shows similarly well-matched results for a closed loop position step reference. The

model exhibits rise and settling times near those of the actual system, as well as oscillations

characteristic to a third order system, as seen in the zoomed-in step response.
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Figure 14: Actuator model validation: sine tracking.

3.3.2 Simulation and Second 1-DoF Hardware Testbed

Because this project lasted for several years, the hardware testbed and properties

changed somewhat over time. A secondary validation was carried out to demonstrate the

validity of the updated simulation on the newer testbed.

The changes were limited to three main areas:

1. A transition from a continuous model to an entirely discrete one: While

the simulation above was run at 1000 Hz with continuous simulation states (but

continuous and discrete controller states), the later version was entirely discrete for

more robust numerical results and controller interaction. To better represent the

continuous nature despite the transition, the simulation was run at 5000 Hz, while

controllers were simulated at 100 - 300 Hz.

2. Addition of valve spool dynamics: In most pneumatic actuator models, it is

assumed that the spool can move infinitely fast; that is, it has no dynamics. However,

Festo provides a limiting spool bandwidth of 125 Hz for free motion (presumably

without any pressurized air flow), and in frequency response experiments, it has been

observed that an additional integrator must be present above 30 Hz. Therefore, the

35



Figure 15: Actuator model validation: step reference.

spool subject to airflow was assumed to act like a first order low-pass filter with a

45 Hz cutoff frequency, found by best fit over several frequency response tests. In

general, 45 Hz is well outside the achievable bandwidth of a pneumatic controller, but

it may still affect simulation validity, so the dynamics were included in the model.

3. Updated friction parameters: Because seal and lubrication properties vary with

time, friction parameters are subject to change. The old values were tested and up-

dated based on time-domain tests, resulting in new Coulomb and Static friction mag-

nitudes (the underlying velocity relationships were left as originally derived): FS = FC

= 5.3 N (1.2 lbf), CV = 5.3 Kg/s (0.6 lbf·s/in).

The simulation was validated by comparing the outputs to measured hardware data.

Figures 16 shows the position tracking responses of the actuator controlled by a PID con-

troller with identical gains in hardware and simulation. It is evident that the behaviors are

very similar and, in particular, the reader should note the qualitative behavior: the time

constant and overshoot of the step response match, as do the magnitude and time of the

delay caused by friction in the step and sinusoidal responses. A more comprehensive vali-

dation is seen in Figure 18, which shows measured and simulated frequency response plots
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Figure 16: Position PID tracking step response.

for several important transfer functions, found using MATLAB’s tfestimate() function.

First, in Figure 17, the open loop force dynamics are validated: by exciting the voltage

with a chirp signal and measuring the corresponding force signal, the transfer function for

the force dynamics is obtained. A simple PD controller was used to shift the voltage signal

to keep the actuator piston from hitting the end stops. Figure 18 illustrates the similarity

in performance of the closed loop system. The PID controller is the same as that used in

Figure 16, and which will be used as a PID controller later in this paper. The controller has

two loops – the first controls force; its transfer function is displayed on the left in Figure

18. The second PID control loop is on position, and has similarly well-matched dynamics

between the hardware and simulation, as seen in the figure on right. In all cases, the mag-

nitude behaviors match well over the frequency spectrum, and while phase is also similar,

it tends to deviate in the high frequency range. These effects are likely due in part to the

effect of the hardware testbed support on the hardware; the hardware stand is clamped to a

table that, at medium-high frequencies, begins to shake with the hardware stand. However,

the behavior of the system at high frequencies is unimportant: in this thesis, the focus is on

human-like tasks (under 5 Hz bandwidth) and pneumatic controller performance – which

is typically under 10 Hz (in literature, high-performance pneumatic tracking can be found

up to about 15 Hz).
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Figure 17: Effective open-loop frequency response validation: force/voltage. A PD control
loop is used to prevent the system from hitting the end stops.

Figure 18: Closed loop frequency response validation – hardware results are shown in blue,
while simulation data is in green. From left to right: (1) force PID (F/Fref ), and (2)
position PID (X/Xref ) frequency response.
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3.4 Alternative Models for Control

The standard model works well to accurately describe the behavior of a single-ended

pneumatic cylinder controlled by a 5/3 servo-valve, following the typical configuration.

However, the model includes multiple discrete components and other nonlinearities that

make it inappropriate for control application. Instead, models are desired that are linear,

continuous, and represent the true dynamics as closely as possible.

To derive these models, three primary steps are necessary: (1) eliminate unnecessary

nonlinearities, (2) address friction, and (3) determine appropriate methods for system lin-

earization.

The complete state dynamics for a system connected to chambers a and b can be de-

scribed by a system with states x1 = xa = L− xb, x2 = ẋa = −ẋb, Pa, and Pb, representing

the piston position and velocity, and pressures in chambers a amd b. The input is given by

voltage, u. In abbreviated form, this system is shown to be:

ẋ1 = x2 (13)

ẋ2 = (Pa − Pb)/Msys (14)

Ṗa =
kRTṁa

xaA
− Paẋa

xa

(
kR

cp
+ 1

)
=
kRTa
Aax1

ga(u)cd,aψa(Pd, Pu)− Pax2

x1

(
kR

cp
+ 1

)
(15)

Ṗb =
kRTṁb

xbA
− Pbẋb

xb

(
kR

cp
+ 1

)
= − kRTb

Ab(L− x1)
ga(u)cd,bψb(Pd, Pu) +

Pbx2

(L− x1)

(
kR

cp
+ 1

)
(16)

In the above equations, Msys is the mass of the system being actuated, and the signed

orifice area, ga = −gb, is a function of the input, u. Temperatures can be assumed constant

or may be state-dependent. For the latter case, the following equations are needed:

Ta =
PaAaxa
mR

=
PaAax1

mR
(17)

Tb =
PbAbxb
mR

=
PbAb(L− x1)

mR
(18)
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3.4.1 Isolation of Unnecessary Nonlinearities

In the equations above, there is a direct, one-to-one mapping from the signed orifice

area, ga(u) = Aeq(u), to the input voltage, u, as defined in Section 3.2.1 with splines and

equation 11. Since the mapping is clearly defined, it is sufficient to treat the equivalent

orifice area as the input in lieu of the voltage and simply convert the input as necessary. In

practice, this is easily done using zero-finding methods, such as Newton-Raphson.

3.4.2 Friction

Rather than address friction in the model, the novel controllers developed in this thesis

will use explicit friction compensation: additive or MPC-based compensation will be used

to counter the effects of friction. Therefore, friction can be removed from the model used

for control.

3.4.3 Linearization

There are two common approaches for linearization. The first is to use a closed loop

controller to attempt to cancel out the nonlinearities. The closed loop system can then

be approximated by some third or fourth order system (depending on the order of the

valve dynamics) obtained via a system identification procedure or model-based transfer

function. This will be discussed in Chapter 4 using input-output linearization and PID

control. While straightforward, however, low-level feedback control is a non-ideal solution:

it may alter the system dynamics, reduce bandwidth, and can reduce the capability of an

outer-loop controller to affect actuator performance by creating state dependencies through

feedback control.

Alternatively, the model can be linearized about an operating point using classical meth-

ods such as a Taylor Series approximation. At first glance, this may seem daunting for a

pneumatic system, which appears to have prominent discontinuities due to the choked/un-

choked flow transition. However, a closer look will demonstrate that mass flow, while

non-smooth, is a continuous function of input and pressure, and can be quite nicely charac-

terized using third- to fifth-order polynomial representations, as well as local linearizations
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Figure 19: 5th order polynomial fit to mass flow data.

thereof (2nd order polynomials), as shown in Figure 19.

As defined in equation (1), mass flow is a function of u, Pu, and Pd, and while the

assignments of these pressures (to supply, exhaust, and chamber pressure) may vary, it can

be equivalently stated that ṁ is a function of Pchamber = P(a,b), PS , and PE , where a and b

refer to each of the cylinder chambers. If supply pressure, PS and exhaust pressure, PE are

presumed constant, then ṁ can be defined as a function ṁ(a,b) = f(u, P(a,b)).

The figure shows mass flow parametrized two ways: on the left, in terms of chamber

pressure (P(a,b)) and input voltage, u, and on the right, in terms of chamber pressure and

equivalent orifice area Aeq(u) = g(u). The difference further supports the assertion stated

in section 3.4.1 – that the mapping from input to orifice area makes the model much more

workable. In fact, the surface is actually quite smooth; the only non-differentiable points

occur in a line near the offset voltage (when Aeq = 0). Further, change in slope is gradual.

Using the parametrization on the right, a fifth order polynomial is used to approximate

mass flow.
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ṁ(A,P ) = c00

+ c10A+ c01P

+ c20A
2 + c11AP + c02P

2

+ c30A
3 + c21A

2P + c12uP
2 + c03P

3

+ c40A
4 + c31A

3P + c22A
2P 2 + c13AP

3 + c04P
4

+ c41A
4P + c32A

3P 2 + c23A
2P 3 + c14AP

4 + c05P
5 (19)

It is easy to obtain symbolic linearizations of the above polynomial representation that

are accurate at any operating point. Further, the simulation can be used to verify that

both the polynomial and linear representations are good approximations over the prediction

horizon, as seen in Figure 20.
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Figure 20: Comparison of mass flow functions.

The figure shows the mass flow for a simulated PID-controlled system following a po-

sition chirp signal. The yellow line depicts the mass flow, based on dynamics introduced

earlier, while the green dashed line shows the mass flow as defined by a polynomial fit of

42



equivalent orifice area and chamber pressure. Further, the dashed purple line illustrates the

behavior of the linearized mass flow, re-initialized every 15 time steps (0.15 s for the 100

Hz controller) from the polynomial model. The time horizon is chosen to demonstrate that

the linear model will be sufficient for use in a model predictive controller with NP = 15. It

is evident that the polynomial model is an accurate approximation for the exact dynamics-

based approach, and that the linearized model is well-defined over the prediction horizon,

so the models will be well suited for all the desired controllers.

Given these mass flow dynamics and the equations provided in section 3.1, the system

can be compactly written as

d

dt



x1

x2

Pa

Pb


=



x2

PaAa−PbAb
m

(PaAax2 + ṁ(A(u), Pa)RT ) 1
x1Aa

(PbAbx2 + ṁ(A(u), Pb)RT ) 1
(L−x1)Aa


(20)

where mass flow is approximated by local linear functions ṁ(A(u), Pa,b) = K1A(u) +

K2Pa,b. K1 and K2 are constants that are easily obtained from equation (19). Then

Taylor Series methods can be used to obtain a linear state representation. In practice,

non-dimensionalization and scaling may be required to ensure numerically robust results.
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CHAPTER IV

PERFORMANCE ANALYSIS OF BENCHMARK CONTROLLERS

Several performance measurement tools were developed to properly understand the chal-

lenges of controlling pneumatic and similarly compliant systems. The tools were used to

quantify and compare the performance of several benchmark controllers and the proposed

novel model predictive control strategies.

4.1 Benchmark Tools

It is important to establish quantitative metrics to use to assess target qualities of

comparable controllers. Using metrics for similar force-control-oriented actuation analyses

as a guide [70, 80], benchmark tests were determined to analyze properties of tracking

performance, safety & compliance, and disturbance response. Four tests were designed

using the hardware and simulation tools described in Chapter 3: Tracking bandwidth,

Tracking of a 1 Hz sinusoidal signal, impedance frequency response, and static disturbance

& release. The first two tests measure tracking performance, while the latter tests measure

safety & compliance, and disturbance response, respectively. In each case, several hardware

tests were carried out, and simulation was used to run wide-ranging parameter variation

studies. The following sections will define each benchmark test and detail its purpose,

describe the hardware/simulation configuration used to obtain it, and discuss the metrics

extracted from the test.

4.1.1 System Bandwidth

The closed loop tracking bandwidth is obtained from the frequency response function

of the reference tracking transfer function

FBW (s) =
Y (s)

R(s)
(21)
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Figure 21: Position tracking hardware configuration (left) & block diagram (right).
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Figure 22: Example bandwidth plot result: Bode plot of hardware (blue) and simulation
(green) Y/R transfer function for a position-PID controlled pneumatic cylinder.

where Y is the system output, and R is the desired reference trajectory. To obtain this

transfer function, several sine sweeps were provided as a reference to the single-DoF hard-

ware system, seen in Figure 21, and a spectral analysis, performed in MATLAB (detailed

in the Appendix in sections A.1 and A.2), is used to obtain the transfer function of the

averaged resultant data. An example output is shown in Figure 22, which compares hard-

ware and simulation tracking of a position PID controller. The bandwidth is defined as the

frequency at which the magnitude of the transfer function moves outside of the [-3 dB, 3

dB] range. The process was automated by applying MATLAB’s find() function on the

vector of magnitude values.
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Figure 23: Example 1 Hz sinusoidal reference tracking plot. The LQR controller is used to
track a sine wave, and RMSE is calculated from t = 12.5 to 25 s.

4.1.2 Tracking a 1 Hz Sinusoidal Reference

While the bandwidth offers a convenient measure of the range of signals that can be

tracked, it is not a useful judge of accuracy. Though it is possible to examine the root

mean squared error (RMSE) of sine sweeps, such results are inherently dependent on the

bandwidth. Instead, the system illustrated in Figure 22 was used to track a 1 Hz sine

wave – a slow, continuous, and changing signal that should be well within the bandwidth of

any well-suited pneumatic controller, as defined by the numeric targets set in section 2.2.4.

The RMSE of the tracked signal was measured and stored for each run, and used as an

accuracy comparison. The aim of this metric is to provide comparable accuracy metrics for

tracking of a changing reference; therefore, it is desirable to ignore any error caused by initial

conditions and startup. Accordingly, only the second half of the time series data is used

to calculate the RMSE. An annotated example output is shown in Figure 23. In addition

to the RMSE of the 1 Hz sine, the RMSE of the different frequency sweep runs are also

recorded, but data from sine sweeps that exceed the measured bandwidth is generally less

reliable as a general tracking accuracy measure. Instead, the two tests provide independent
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measures of complementary performance attributes.

It is worth noting that RMSE alone is not always a great indicator of tracking per-

formance. As the controller tuning parameters approach an unstable region, tracking can

become increasingly oscillatory without significantly affecting RMSE. Similarly, an oscilla-

tory system can have a similar or lower position RMSE than a system that simply has a

small phase delay. To get rid of these problem cases, a metric to assess the velocity error,

termed normalized velocity error, was used. The metric, abbreviated as nRMSvE is the root

mean squared velocity error, normalized by a standard factor proportional to the maximum

reference velocity. For a position measurement signal x and reference r with N samples,

nRMSvE =
1

Fnorm

(
1

N

N∑
i=1

(ẋi − ṙi)2

)1/2

(22)

The normalizing factor was chosen by looking at the maximum reference velocity, which is

found by differentiating a reference position signal with amplitude Aref and frequency fref ,

r = Aref sin(fref t):

ṙmax = max

(
d

dt
(Aref sin(fref t))

)
(23)

= max (Areffref cos(fref t)) = Areffref (24)

For the 1 Hz sine tests, the frequency is constant, fref = 2π(1), so the only the reference

amplitude, Aref affects the maximum reference velocity, and it is chosen as the normalizing

factor in equation (22), Fnorm = Aref .

4.1.3 Output Impedance

The safety, force properties, or compliance of a system can be generally understood by

examining its output impedance. The output impedance is characterized by the transfer

function

Z(s) =
Fl(s)

Xl(s)
(25)

where Fl is the load force due to external environmental effects (i.e., external forces acting on

the load, not necessarily equivalent to the actuator input force), and Xl is the load position,

which refers to the load displacement. An ideal force source has zero output impedance
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Figure 24: Position disturbance hardware configuration (left) & block diagram (right).

(i.e., the applied force is independent of any applied perturbation) and provides perfect force

tracking; generally, mechanical actuators can be described as mass-spring-damper systems.

The displacement is taken with respect to some equilibrium point, which, in a closed loop

system, is likely the reference. For the block diagram shown in Figure 24, the load force is

the reaction force incurred by the shaker, and the load displacement is the error from the

position controller setpoint caused by shaker perturbation, Xl = R−Y , when the shaker is

active.

While it is common to define mechanical output impedance in terms of velocity, Z(s) =

Fl(s)/Vl(s) = Fl(s)/sXl(s), the distinction between position- and velocity-based impedance

is merely that of an added integrator, and for pneumatic systems, it is more convenient to

define position as the input, as defined in equation (25).

Among papers that focus on impedance properties, it is common to examine the closed

loop impedance transfer function of a system [13,70,80], which can be obtained analytically

or experimentally and visualized using frequency domain methods. For linear systems

with well-defined controller and plant models, obtaining the impedance transfer function is

simply a matter of writing out the closed loop system transfer function and rearranging the

terms to related load force and load position. The resultant transfer function can then be

visualized by drawing a corresponding Bode Plot.

For nonlinear systems and controllers, a comprehensive frequency-domain form is more

difficult to acquire. The primary issue is that nonlinear systems can be input-dependent, and
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therefore an experimentally acquired Bode plot will only be a fair comparison within some

input amplitude range. Additionally, as Buerger noted in [13], the magnitude plots are much

more informative than phase plots for this application and suffice to perform impedance

assessments. Therefore, it is necessary to compare numerous magnitude responses and

compare them. This process was achieved by fitting the responses to an expected low-

frequency transfer function and then comparing individual parameters.

The impedance transfer function was obtained using the system shown in Figure 24.

The test may be run two ways – using either position or force as the input:

1. Position error as the input: In the first case, the controlled pneumatic actuator is

first given a position setpoint. Then a position chirp is provided to the PD-controlled

shaker, so that it perturbs the mass from its initial setpoint value along a chirp

disturbance, and the corresponding environmental interaction force is obtained from

force sensor attached to the cart on the piston, Fenv = Fshaker = Fl. The cylinder’s

internal position sensor measures the corresponding position, X, which can in turn

be used to calculate load displacement, Xl = E = X − R. Then the impedance

is obtained from the relationship of measured interaction force to error from the

pneumatic actuator’s desired setpoint.

2. Force as the input: Once again, the position controlled pneumatic actuator is

first given a position setpoint. Next, a voltage chirp is converted to a current by an

amplifier, which produces a force chirp on the shaker. The impedance is obtained

from the relationship of the measured interaction force (which should be a chirp with

a slowly varying DC value) and the error caused by the disturbance from the actuator

setpoint.

The position input case is more systematic and easily enforced in simulation, while the

force-input method is a fairly standard approach to approximating interaction behavior of

a nonlinear system with linear impedance transfer functions. However, the first version is

difficult to implement over a broad frequency range in hardware1, while the second version

1This problem requires accurate PD control of a shaker, subject to disturbance by a pneumatic actuator,
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is hard to represent consistently and systematically in simulation (it requires some hand-

tuning and several manual inputs). Therefore, simulation was predominantly conducted

using the first method, and hardware tests were conducted using force-input. A comparison

of the methods showed that they provided similar results, and that the hardware results were

verified in simulation by both types of experiment. A detailed overview of this problem,

the testing methods, and comparative results with the different tests is provided in the

appendix in section A.4.2.
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Figure 25: Example impedance fits (system under impedance control). Left: position
data during three sine sweep trials. Right: corresponding impedance transfer function and
automated fit.

Unlike the metrics posed in sections 4.1.1 and 4.1.2, there is no single quantitative value

that results from the impedance transfer function. However, most output impedances take

the form of a mass-spring-damper within the target frequency range (under 10 Hz):

Z(s) =
Fl(s)

Xl(s)
= (Kfit +Bfits+Mfits

2) (26)

which means that it is possible to extract parameter fits for stiffness, damping, and inertial

with a bandwidth up to 15 Hz, which is straightforward in simulation using an ideal force source with
infinite input capability, but challenging on current-limited hardware.
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terms (Kfit, Bfit, and Mfit, respectively). This was achieved in MATLAB using a least-

squares best fit approach over a range from 0 to 5-10 Hz, using the algorithm provided

in section A.2. The frequency upper bound was determined by best fit to a magnitude

matching equation (26), as judged by root mean square error.

Some sample outputs are seen in Figure 25. For most trials (over numerous controllers),

this fit is quite good (within the 5-10 Hz range), especially for stiffness and damping match-

ing. Periodically, however, fits are observed that do not match the mass-spring-damper

model very well, which can cause misleading fits to be recorded. An example is seen in

the bottom plot of Figure 25, which fits a much higher stiffness value at the low frequency

than the controller actually exhibits. These cases are largely outliers2, but are nonetheless

a caveat worth considering. Additionally, in the sliding mode case, the observed transfer

function moves considerably in the low frequency range, as shown in Figure 26, which often

leads to low stiffness estimates. For these reasons, it’s desirable to have a secondary measure

by which to check impedance properties; the disturbance/release test, discussed in section

4.1.4 does so by examining impact force, rather than overall impedance.
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Figure 26: Example impedance fits for the system subject to sliding mode control. Left:
position data during three sine sweep trials. Right: corresponding impedance transfer
function and automated fit.

4.1.4 Steady Disturbance & Release

In past research efforts focusing on force or impedance qualities, researchers have of-

ten bypassed the issues resulting from frequency-domain tests by using time-domain tests

that relate impedance to actual outputs: force, or perturbation. For example, Buerger [13]

2This statement can confidently be made by observing hundreds of available datasets
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Figure 27: Example disturbance release simulation). Top plot: set point (blue), disturbance
reference (red), and perturbed/released position (orange). Bottom plot: interaction force
(due to shaker).

featured a test that used a commanded set point, and then provided low velocity distur-

bances, measured corresponding reaction forces, and used the force-perturbation distance

relationship to estimate a stiffness. Richardson et al. used a similar approach to study the

effectiveness of an admittance controller [67]. They provided sinusoidal force disturbances

at a number of amplitudes and compared the observed disturbance to the expected distur-

bance with the target impedance. The equivalent approach with impedance control would

be to administer sinusoidal position disturbances of varying amplitude and frequency, and

plot observed load force against expected load force.

An example application of this concept is shown in Figure 27. The position behavior

is shown in the top plot, while the bottom plot shows the axial interaction force. In the

test, the controller was initially commanded to move the actuator piston to a set point,

shown in blue. However, after a standard initialization period, the PD-controlled shaker

perturbed the piston/mass to instead follow a disturbance reference. The shaker controller

was designed using classical methods and a model obtained via a system identification of

the shaker and attached unpressurized cylinder/cart, as detailed in the appendix in section

A.4.3. Following completion of the test, automated scripts were run to define the results in
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terms of individual, comparable parameters, such as the average interaction force, as well

as the response to unexpected interaction: post-release RMS error, overshoot, settling time,

and steady state error.

A continuous disturbance was used for two reasons: (1) in simulation, collisions are not

modeled, so a square acceleration profile is used, and (2) the force sensor used in hardware

is a piezo-based sensor with built-in filtering, meaning it has a significant time constant –

i.e., when subjected to impulsive loads, the sensor’s transient behavior is not representative

of the true interaction forces.

4.1.5 Other Methods for Measuring Stiffness

In a mechanical system, stiffness may be easily approximated by the presence of elastic

elements. By contrast, a pneumatic system’s stiffness is characterized by the pressures in

either chamber.

Following the derivation in & Goldfarb [76], K = −∂Fnet
∂X1

can be found by differentiating

the force balance and assuming that ∂FFriction
∂X1

= 0. For a cylinder with chambers a and b,

denoted by corresponding subscripts,

∂Fnet
∂X1

= −Aa
∂Pa
∂X1

+Ab
∂Pb
∂X1

(27)

P(a,b) can be redefined as a function of x using the ideal gas law,

P(a,b) =
m(a,b)RT

A(a,b)(L/2± x)
(28)

where L is the stroke length, x is the position measured from center of the stroke, and

ma and mb are mass of the air in chambers a and b of the cylinder. By expanding the

differentiation, it is possible to solve for stiffness as a function of mass and position, both

measurable simulation states:

K = RT

(
ma(

L
2 + x

)2 +
mb(

L
2 − x

)2
)

(29)

In practice, however, mass is not easily measured. Instead, a second implementation of the

ideal gas law enables the stiffness to be rewritten in terms of pressure and position, which
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can both be measured using sensors on the testbed:

K =
PaAa(
L
2 + x

) +
PbAb(
L
2 − x

) (30)

4.2 Baseline & Benchmark Controllers

Four position controllers were used as benchmarks: position-integral-derivative (PID)

control, linear quadratic regulation (and its tracking extension, LQR/LQT), impedance

control, and Sliding Mode Control (SMC). Since the desired performance is a trade-off be-

tween precise positioning, compliant actuator dynamics, and ease of implementation, the

benchmark controllers were selected to span a broad spectrum of this range. PID control is

easy to design, non-model-based, and should span a range of operation. LQR is similarly

straightforward to implement and offers a baseline comparison for model predictive control:

whereas the proposed MPCs use constrained optimal methods to achieve compliant, accu-

rate tracking, LQR offers a linear and computationally lightweight benchmark comparison,

and also provides an assessment of the necessity and benefits of constraints. Impedance

control prioritizes a certain force interaction profile and should therefore supply the low-

est achievable compliance profile, while Sliding Mode Control (SMC) uses robust control

methods to minimize error, without regard for the effects on compliance.

4.2.1 PID Control

The PID controller is designed to have two loops: one is placed on net force in the

cylinder, obtained from measurements of the pressure in each cylinder chamber, and the

other is placed on position, found using a linear potentiometer in the cylinder. A block

diagram is shown in Figure 28. Gains were designed first for a force control loop based

on the nonlinear dynamics discussed in Chapter 3 and valve dynamics. Once a stable,

responsive force control loop was achieved, it was modeled with first or second order closed

loop dynamics (since the spool was shown to have first order dynamics with a 45 Hz cutoff

frequency, a 2nd order approximation was possible as well), and used to design a PID

controller that ensured stable, responsive system (rise times to a step input within 0.1 s

and zero steady-state error), good tracking of continuous reference signals, and minimal
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valve chatter.

Figure 28: PID control block diagram.

4.2.2 Force Control Variations

Several of the benchmark controllers require a low-level force controller. In general, a

PID controller was shown to suffice, but feedback-linearization, a model-based approach

was also explored for comparison.

4.2.2.1 Input-Output Linearization

Input-output linearization can be used to replace the nonlinear force dynamics with a

linear behavior by choosing an input that cancels out the undesired dynamics. The basic

principle is to replace some of the output dynamics with some desired (linear) dynamics.

In this case, the nonlinear cylinder internal force dynamics, ḞPress = Ṗa(x, ẋ, Pa, Aeq)Aa −

Ṗb(x, ẋ, Pb, Aeq)Ab, are replaced by some desired force tracking dynamics, w. An appropriate

input is then found by taking derivatives until the control input appears, at which point it

can be defined algebraically in terms of modeled and desired behavior.

The desired dynamics, w, were set such that the force error dynamics have first order

convergence,

ė = −β0e where e = F − Fd (31)

Then each individual actuator is described by:

ẋ1 = x2

ẋ2 = F/m

Ḟ = w = Ḟd − β0 (F − Fd)

(32)

where x1, x2, and F are the position, velocity, and force due to differential pressures,

respectively.
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The input appears after one derivative of the force dynamics: Ṗ is replaced by an

input-dependent term from the pressure dynamics, such that:

ḞPress =

(
RT

Va(x)
Aeq,a(u)(cd)aΨa(Pd, Pu)− Pa

Va(x)
V̇a (ẋ)

)
Aa (33)

−
(
RT

Vb(x)
Aeq,b(u)(cd)bΨb(Pd, Pu)− Pb

Vb(x)
V̇b (ẋ)

)
Ab (34)

=ḞDes − β0 (FDes − FPress) = w (35)

where w represents the desired force dynamics in eqn. (35). An overlapped valve configu-

ration is assumed for control, so that flow direction is determined by spool position and is

opposite in each of the two chambers (since each chamber is always connected exclusively to

the supply or exhaust). Then the orifice area, Aeq(u), is signed according to flow direction,

with Aeq,a(u) = −Aeq,b(u). Setting Aeq(u) = Aeq,a(u),

Aeq(u) =
w + Pa

Va(x) V̇a (ẋ)Aa + Pb
Vb(x) V̇b (ẋ)Ab

RT
Va(x)Aa(cd)aΨa(Pd, Pu) + RT

Vb(x)Ab(cd)bΨb(Pd, Pu)
(36)

The values of cd and Ψ in the denominator of equation (36) will vary depending on flow

direction. However, since the terms in the denominator are all positive, flow direction of

Aeq(u) is determined by the numerator, which must be calculated first. The desired orifice

area, Aeq(u), is converted to a voltage input u using the known, one-to-one mapping Aeq.

This can be achieved using geometry-based equations or spline approximations, as discussed

in section 3.2, or with a simple linear approximation. In practice, the spline and geometry

fits were shown to be effectively the same, and a zero-finding method was used to quickly

map singed orifice area to voltage.

4.2.3 Linear Quadratic Tracking

In theory, an unconstrained MPC operating on a linear system should be equivalent to

an LQR controller that is truly optimal for the given cost function. Accordingly, an LQR

controller provides a baseline of achievable optimality. This system is of course not linear,

but the LQR controller still offers a glimpse at what type of response might be expected for

a given cost function and set of weights. In general, the LQR problem is defined as follows:
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given a dynamical system

ẋ(t) = A(t)x(t) +B(t)u(t)

x(T0) = x0 (37)

find the optimal control input u∗(t) that minimizes a cost function J(T0, Tf , x0, u(t)). Since

the controller used in this thesis was implemented as a discrete controller, the LQR real-

ization varied slightly from the continuous representation. Instead, the problem is to find a

control input uk for the system

xk+1 = Axk +Buk

yk = Cxk +Duk

x(T0) = x0 (38)

to minimize the quadratic cost function:

Jk =
1

2
(CxN − rN )TP (CxN − rN ) +

1

2

N−1∑
k=1

(Cxk − rk)TQ(Cxk − rk) + uTkRuk (39)

A control input is found to satisfy

uk = −Kkxk (40)

where Kk is the optimal gain, found using the discrete Riccatti Equation:

§k = ATk (Sk+1 + Sk+1Bk(B
T
k Sk+1Bk +R−1

k )BT
k Sk+1)Ak + CTQkC (41)

where SN = P is given. Then the gain matrix is found via:

Kk = (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak (42)

For general, finite-time LQ regulation, this control is executed by first solving equation (41)

backwards in time for Sk. Variations exist for discrete, infinite horizon, and tracking cases.

Since this thesis uses a time-invariant model, it is sufficient to follow the infinite time

horizon application. Further, we are interested in a tracking application, rather than ref-

erence. It is important to distinguish the tracking case, where the reference, ỹ(t) is known

∀t ∈ [0, Tf ] but has not been fitted to a model, from the servo case, where ỹ(t) has known
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dynamics that may be estimated. It can be shown that a feedforward term will solve the

modified problem of tracking. A term containing a time-dependent variable vk is added to

the input

uk = −Kkxk +Kv
kvk (43)

where vk is the solution to

vk = (A−BKk)
T vk+1 + CTQrk vN = CTPrN (44)

and rk is the reference.

However, this application still requires that the reference be known over some prediction

horizon. The most general case, used in this controller, is to simply reorganize system states

into tracked states, XT , and other states, XN :

X =

 XT

XN

 and uk = −K


 XT

XN

−
 rk

0


 (45)

It is further important to include integral compensation. Therefore, the system is aug-

mented to included integral states in the model and cost function. A system with tracking

and integral compensation would have the form:


XT

XN

XI


k+1

=


ATT ATN 0

ANT ANN 0

dt 0 I



XT

XN

XI


k

+


BT

BN

0


−K


XT − r

XN

XI −
∫
r


k

 (46)

The state penalty in the cost function, Q, is augmented to include a penalty on the integral

state as well.

4.2.4 Impedance Control

Impedance control is a type of indirect force control. The idea is that a manipulator’s

impedance completely describes how it will interact with a variety of environments; in fact,

ideally, the environment doesn’t matter [13]. More broadly, if an arbitrary impedance can

be achieved, then an arbitrary behavior can be achieved [43]. Further, unlike stiffness con-

trol, which affects stationary behavior, impedance control imposes an objective on dynamic

behavior, specified by a mass-spring-damper system [92].
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Figure 29: Pure force source (left) vs. system with inherent impedance (right).

Many impedance-based controllers are designed with the aim of lowering the appar-

ent (closed-loop) impedance of the controlled system. Generally, the ideal goal is zero

impedance, such that the system should behaves as a pure force source. However, most

systems have some inherent impedance, resulting in a resistance to motion, as illustrated

in Figure 29. Further, impedance control of systems is affected by a number of properties,

including the inherent impedance in the actuator (generally related to its inertia, among

other things), which can affect achievable apparent inertia. Achieving low impedance using

high-force actuators can be particularly difficult, as noted by Stephen Buerger [13], in his

dissertation on the topic. Therefore, it is common to set achievable target impedances using

some combination of mass, spring, and damper elements:

Zdes = Kdes +Bdess+Mdess
2 (47)

As noted in section 4.1.3, position-based impedance will be used here for consistency.

There are two types of impedance control: position-based impedance control, also known

as admittance control, and force-based impedance control. In position-based impedance

control, an inner position loop is used and positions are specified based on a measured or

observed exerted force & environment force, and in force-based impedance control, an inner

force loop tracks a force commanded based on position tracking error.

Admittance control is used when the goal is to select a compliant position based on

a measured force and a desired position. The advantage of this approach is that it leads

to robust position control (robust to noise and non-environmental disturbances) that also

exhibits the desired impedance properties. However, the causality of admittance control

is reversed from impedance control, meaning that if the aim is backdriveability, the use
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of admittance control essentially opposes controller goals [13]. Therefore, the benchmark

controller is a force-based impedance controller.

The basic impedance controller can be demonstrated on a system with dynamics

M(x)ẍ+B(x, ẋ) +K(x) + Fn(x, ẋ) = Fa + Fe (48)

where M , B, and K are inertial, damping, and stiffness terms, and Fn represents system

friction. Fa is the desired actuator force and Fe is the force from interaction with the

environment. Then Fa is chosen to obey some impedance relationship, e.g. Fa = K(xa−x),

where xa is a “virtual reference” – a suggested but not necessarily realizable trajectory that

is the basis for the position error. The aim of the virtual reference is to influence the “feel”

of the impedance control, i.e. which direction the user feels resistance from. Then the aim

is for the controlled system to exhibit some target impedance behavior

Fe = sZdes(s)(Xa −X) (49)

where Fe is the force due to the environment, also called the load force, Fl, as in section

4.1.3. Impedance control in this simple format (no additional terms to compensate for

inherent system dynamics) is commonly termed simple impedance control, and is effectively

an extension of PD control. It has been used by several past researchers, such as [80] to

control SEAs. However, it is clear from equation (48) that the inherent actuator dynamics,

if significant, will preclude the controller from achieving the target performance:

To reduce the effects of the open-loop system dynamics, compensatory terms are added

to the control law, as in [100]. This strategy leads to the control law defined by equation

(50), which results in closed dynamics defined by equation (51).

Fd = (M̃ − m̂)ẍ+ (B̃ − b̂)ẋ+ m̂ẍa + b̂ẋa + k̂(xa − x) + F̃f (50)

Fe = m̂(ẍ− ẍa) + b̂(ẋ− ẋa) + k̂(x− xa)

−
(

(M̃ −m)ẍ+ (B̃ − b)ẋ+ (F̃f − Ff )
)

(51)

M̃ , B̃, and F̃f are the estimated mass, damping, and friction parameters. As long as these

are reasonably close to the true values, Fe will exhibit the desired impedance characteristics.
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Figure 30: Simplified impedance control block diagram, adapted from [80].

It is worth nothing that impedance control may be improved through the addition of

force feedback [43]. A useful form for incorporating force feedback distributes the accom-

panying force gain, Kf , over several impedance terms:

Fa = K(xa − x) +B(ẋa − ẋ) +Kf [Fe +K(xa − x) +B(ẋa − ẋ)] (52)

where x is actuator position and r is the virtual position (the end-effector equivalent of

virtual reference). Substituting Fa into equation (48), it is evident that the force gain will

serve to minimize effects caused by the initial system impedance:

m

1 +Kf
ẍ+

b

1 +Kf
ẋ+

Fn(x, ẋ)

1 +Kf
+K(x− xa) +B(ẋ− ẋa) = Fe (53)

However, the addition of force sensors for each degree-of-freedom, which is outside the

scope of this thesis, which instead seeks to investigate the impact that improved control

can make on a standard system, with position and pressure sensing. Presumably, most

controllers could be improved via expanded sensing capabilities.

4.2.5 Sliding Mode Control

Figure 31: Sliding mode control block diagram.

The goal of Sliding Mode Control is the relate the problem of tracking for nth order

systems to the much simpler challenge of stabilizing a 1st order system, as described in [78].
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The idea is to represent the error dynamics as a surface, s = 0, known as the sliding surface.

s is defined as a function of the error state and time:

s =

(
d

dt
+ λ

)n−1

e (54)

where λ is a strictly positive constant and n is the number of times that the output must be

differentiated to obtain the input term. Then a control law is devised such that the states

stays on the sliding surface, i.e. x−xd = s = 0, and ṡ = 0 once s = 0. This control term, an

equivalent input ueq, may be found by setting s = 0 and substituting equations of motion,

differentiating until the input appears, and then solving for u.

For the pneumatic system, which relates orifice area to position, n = 3 (even though

the spool has dynamics, they may be ignored, since the expected bandwidth is well under

45 Hz). Then s = ë+ 2λė+ λ2e where e = x− xd. By setting ë = ẍ− ẍd and substituting

for ẍ, the sliding surface is defined in terms of system states:

s =
1

M
(PaAa − PbAb − PatmAr −Bẋ)− ẍd + 2λė+ λ2e (55)

This equation is differentiated, and equations for Ṗ(a,b) are substituted in so that the input

appears in the equation. The system is solved for the signed equivalent input area, ueq =

Aeq = cdA, and a control law u is defined:

u = Aeq −Ksat

(
s

φ

)
(56)

Aeq =
M
(
x

(3)
d − 2λë− λ2e

)
+Bẍ+

(
PaA2

a
Va

+
PbA

2
b

Vb

)
ẋ

RT
(

ΨaAa
Va

+ ΨbAb
Vb

) (57)

In this equation, Ksat is a gain that drives the error state back onto the sliding surface

if it deviates, i.e. if s 6= 0. The use of the saturation term and φ variable serve to enforce

a boundary layer: outside the range of φ, the control is saturated, and within it, the added

term is effectively a proportional controller. This reduces the instance of chatter in the

system. It can also be shown that λ affects error dynamics: the related quantity 1/λ is the

system’s time constant. Exact controller parameters vary, but a good fit was found using

the parameters K = 3e− 7, Φ = 10, and λ = 50.
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As noted in sections 4.2.2.1, 3.2.1, and 3.4.3, the equivalent orifice area may be mapped

to voltage input using either polynomial fits or geometric methods. Further, the sign can be

determined from the numerator alone, since the denominator is always positive. Finally, in

theory, the discharge coefficient varies depending on the chamber side, but a comparison of

the approaches in both hardware and simulation showed that level of detail to have negligible

performance benefits, and that an averaged discharge coefficient provides the same tracking

results.

4.2.6 Filtering and Derivatives

The benchmark (and MPC) controllers use various derivatives of the references and

position states – up to third order, in the sliding mode case. In simulation, it is sufficient

to approximate these with two-step derivatives and – in the case of high order derivatives,

some low pass filters, enforced via Butterworth filters.

In hardware, these filtering methods were largely insufficient. While they were ac-

ceptable for reference derivatives, they failed on state measurements, which of course are

obtained from the hardware. These signal processing challenges are primarily due to error

propagation: even though the position signal is generally very clean (the potentiometer uses

a wiper built into the actuator piston), very small errors and discrete realization propagate

and cause errors in the second and third order derivatives. Additionally, cylinder force is

measured by pressure sensors, meaning that it only encompasses differential force (i.e., it

does not include friction), and is notably noisier than position. Therefore, a Kalman Filter

was used to obtain acceleration and jerk, using a linear model that approximated the static

friction with high coulomb-viscous terms. Velocity was obtained by differentiating posi-

tion, but acceleration was measured via the Kalman filter and a four-step averaging filter.

These methods markedly improved performance of all the controllers requiring higher-order

derivatives (all controllers other than PID).
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4.3 Benchmark Results

To better define the state-of-the-art in compliant tracking of pneumatic systems, the

controllers introduced in section 4.2 were applied to the single-DoF pneumatic actuator.

Hardware tests were used to assess performance and establish trends, while parameter

variation studies, conducted in simulation were used to more extensively verify performance

trends and demonstrate controller limits and capabilities.

4.3.1 Controller Tuning

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03
SMC

Tuning Parameter, Lambda

R
M

S
E

 (
m

)

0 2000 4000 6000 8000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Impedance

Tuning Parameter, Zk

R
M

S
E

 (
m

)

10
−2

10
0

10
2

0

1

2

3

4

5

6
x 10

−3 LQR

Tuning Parameter, Q1

R
M

S
E

 (
m

)

0 2000 4000 6000 8000 10000
0

0.002

0.004

0.006

0.008

0.01
PID

Tuning Parameter, Kp

R
M

S
E

 (
m

)

Figure 32: Benchmark controller fine-tuning. Clockwise, from top left: sliding mode con-
trol, impedance control, PID control, and linear quadratic tracking. Gray dots: all simulated
points. Colored simulated dots: points meeting the tuning requirements, and used in later
results. Hardware validation represented by X’s.
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To ensure that the hardware results provided a fair controller comparison, it was neces-

sary to first ensure that an appropriate range of tuning parameters was used. The simulation

was used to rapidly explore the space of controller parameters over several operating points,

which included parameters such as reference bias and amplitude, and – in some cases – other

controller tuning parameters. After several runs, good parameters and acceptable parame-

ter ranges were identified, and dominant tuning parameters – selected based on theory and

observation – were determined and varied to demonstrate performance impact. Addition-

ally, hardware tests, indicated by ’Xs’, were used to verify performance trends. The targeted

parameter tuning ranges are illustrated in Figure 32, which shows how error is reduced as

the dominant parameter, indicated on the x-axis, is increased. In the figure, the y-axis

RMS error is taken from the 1 Hz sine reference. The pastel-colored dots show the range

of all selected simulated parameter combinations, while the bold dots indicate parameter

combinations that match the runs observed in hardware (with some slight differences on

exact tuning parameter values in some cases, as evident in the figure).

4.3.2 Data Selection & Parameter Variation

Figure 33: Usage of normalized RMS velocity error (nRMSVE) to get rid of undesirable
cases. Top plot: nRMVE = 15.4. Bottom plot: nRMVE = 18.9.
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In some cases, over-tuning the parameter can lead to chatter/oscillation, which is unde-

sirable. While this ultimately leads to diverging error, it is important to also remove false

positives – tracking in which the position oscillates about the reference, but the RMS error

remains quite small. Normalized velocity error was used as a bound to remove these cases:

by observation, a bound on root mean square normalized velocity error, ((ė/ṙ)2)1/2 was set

at 15.5. An example application of this metric is shown in Figure 33; effectively, it removes

marginally stable cases using a simple numerical test.

Further, both these tests and the later ones are tested on 10 operating points, defined

by different bias and amplitude values of the respective sinusoid, chirp, or disturbance

reference. These include small and large amplitudes and biases near the actuator center

position and extremes, with respect to the stroke length.

The hardware tests were performed over less extensive ranges and operating points

than the simulation, and were primarily in place to validate the simulation results. In

general, trends observed in simulation were verified in hardware, though actual controllers

slightly underperformed the simulated ones. In the SMC case, the error divergence seen in

simulation didn’t occur until approximately λ = 300, though audible valve chatter began

right near λ = 50 – the point at which simulation error began to diverge again. These

differences are likely due to differences in the friction model; harsher friction conditions

in practice would lead to lower performance, but reduced impact of valve chatter on error

divergence, as observed in the SMC case.

The benchmark controller performance was evaluated using the selected operating points

and controller parameter ranges indicated by the respective colored dots in Figure 32, and

assessed on the basis of the performance metrics introduced in section 4.1. A complete

overview of the collected data and individual results is provided in section A.4. The relative

performance of the controllers among different metrics was observed using a parametric

plotting approach detailed in Section A.4.5.
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4.3.3 Compliant Tracking with Benchmark Controllers

Figures 34 - 37 depict the performance of the benchmark controllers in the areas of

compliance, accuracy, and safety. From the impedance fits, the stiffness measurement was

shown to be parameter that most dominantly defined system behavior in the low-bandwidth

regions; therefore, stiffness was selected as a choice parameter to evaluate compliance.
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Figure 34: Accuracy vs. compliance of benchmark-controlled systems. Depicted
by RMS error of 1 Hz sine tracking (x-axis) and observed stiffness parameter from the
impedance frequency response fits (y-axis).

First, the evident trade-off of compliance and accuracy is illustrated in Figures 34 and

35. Accuracy is represented by RMSE from the 1 Hz sine tracking test, while compliance

is illustrated by stiffness – obtained from and impedance frequency response fit in Figure

34, and using the stiffness from the force-perturbation ratio in Figure 35. As anticipated,

sliding mode control is always stiff, never dropping below 5000 N/m, and with no clear

trade-off, though the majority of results are accurate, falling below 4 mm RMS error. By

contrast, impedance, PID, and LQR control all fall along a distribution that demonstrates

a clear trade-off of accuracy and compliance, and appear to primarily be different means

to the same end. Impedance control more clearly spans the range (likely due to the ease of
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Figure 35: Accuracy vs. compliance of benchmark-controlled systems. Depicted
by RMS error of 1 Hz sine tracking (x-axis) and observed stiffness parameter from the
force-position error relationship in the perturbation test (y-axis).

targeting a desired performance), while LQR – the only full-state feedback used – is simply

unable to achieve very low stiffness tracking with any reasonable normalized RMS velocity

errors.

In hardware, it was impossible to recreate the low errors observed with LQR seen in

simulation, but the trend that Q had only a minimal impact on performance and plateaued

after a certain point – seen in Figure 32 – was clearly observed. The discrepancies between

hardware and simulation are caused by un-modeled effects (e.g., the difference in friction

representation between hardware and simulation), and suggested that a more aggressive

controller is needed to bypass these effects. One asset of MPC is the ability to effectively

solve an overly aggressive optimal control problem, but limit the input and input rates via

constraints, potentially bypassing this issue. The LQR controller also demonstrated that

a stiff closed-loop system was required to even approach desired target tracking perfor-

mance. The behavior of the LQR controller is important: it implies that optimality alone
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is insufficient to create a compliant system.
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Figure 36: Force response to unexpected disturbance for benchmark controllers.
Gray dots show performance of all benchmark controllers, while colored dots highlight
performance of the selected controller. On the x-axis: RMS error from 1 Hz sine tracking.
On the y-axis: Disturbance force to unexpected disturbance.

Similar behaviors are evident by simply examining the average disturbance force when

these benchmark controlled systems are subjected to an unexpected disturbance. In Figure

36, it is seen that the most accurate systems produce the highest interaction force, on

the order of 150-200 N. In the figure, sliding mode Control is shown to be subject to the

same trade-off of accuracy and compliance observed in the other controller performance,

though the trend is less well-defined. This test was impossible to verify in hardware: 4 of

the 5 sliding mode controllers caused the shaker to exceed its maximum current allowance

and thereby fail at the maximum allowable force, as seen in the figure. In general, sliding

mode controllers result in a very stiff behavior, as verified in several tests throughout this

thesis. Additionally, PID and impedance control have lower upper bounds, and LQR has a

very narrow performance region, though the simulation produced larger values for different

operating parameters.
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Another desirable performance quality is a good return to tracking following a distur-

bance. Figure 37 quantifies the behavior of a tracked system after it has been subjected to

a disturbance. The position-controlled actuator returns to the setpoint, eventually reaching

a steady state error, but has some overshoot in doing so. The figure compares the overshoot

(on the x-axis) to the steady-state RMS error (on the y-axis). Since the response to setpoint

is from a positive disturbance, a negative overshoot value indicates an under-damped re-

sponse (and an actual overshoot), while a positive value indicates an over-damped response.

Here, the target behavior would be near zero. Unfortunately, this test could not truly be

verified in hardware: to perfectly recreate it, the shaker would need to be completely dis-

connected from the system (e.g., by cutting the stinger). However, this would damage the

shaker and is potentially dangerous, so instead, the shaker was merely turned off. Since the

shaker is a sizable mass (more than twice that of the cart) and generally acts as a damped

system, it effectively impedes the response; therefore, hardware results were overly con-

servative. Nonetheless, the simulation responses provide an overview of behavior varieties,

and demonstrate that only the impedance controller can really approach the target desired

performance response following a perturbation.

Finally, the tracking ability is inherently correlated with the system bandwidth. Figure

38 shows how the bandwidth varies as a function of stiffness gleaned from an impedance fit.

While there is no clear relationship between stiffness and bandwidth for sliding mode con-

troller, it is always quite stiff: the observed controller stiffness never falls below 5000 N/m.

Similarly, LQR always falls in the 3-5 Hz bandwidth domain, but is never able to achieve

stiffnesses below 3 kN/m. Impedance and PID control both display a trend of increasing

bandwidth with increasing stiffness, culminating in a 4-10 Hz observed bandwidth, easily

satisfying the target range of 2-5 Hz. However, among the impedance and PID controllers,

there is a low-bandwidth, low-stiffness region that is very sparse compared to the remainder

of the accessible range, indicated by the dashed orange circle in figure 38. This opening sup-

ports the hypothesis that there is some room for improvement in the compliance-accuracy

trade-off in exchange for reduced bandwidth, but that it is effectively inaccessible using the

benchmark control methods.
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Figure 37: Response of benchmark controllers following an unexpected distur-
bance. Controlled systems are perturbed to a point above the setpoint, then released. The
x-axis shows overshoot (positive values indicate an over-damped response, and negative
values indicate under-damped response), and steady-state error following release is shown
on the y-axis. Clockwise, from top left: sliding mode, impedance, PID, and LQR control.

4.3.4 Performance Gaps

The benchmark results suggest that there is room for improvement. It is clear from

Figures 34 and 35 that there is a maximum stiffness above which the increase in accuracy

is negligible. For compliant control, it would be desirable to limit the stiffness so that

it reaches, at most, this maximum value, ideally without explicitly including the value

in control. Furthermore, if a known stiffness limit is provided, the tracking should be

comparable to the best result observed by the benchmark controllers at a similar stiffness,

as observed in section 4.3.3. Finally, there are certainly some performance gaps that would

be desirable to close. Specifically, it is difficult to impossible for existing controllers to

reach stiffnesses below 5000 N/m while also maintaining tracking RMS error below 4 mm,

or about 10% of the stroke. Additionally, for safety, a 50 N interaction force is generally

a well-regarded upper bound: injury from static collisions often occurs in excess of 50

N [48]. This is also 33% of the maximum force for chest impact based on ISO standards for
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Figure 38: Stiffness vs. bandwidth of benchmark-controlled systems. Bandwidth
found using frequency response tests, and stiffness taken from impedance fits.

safe industrial robots [1, 40]. These improvements are certainly plausible; for example, the

performance of the benchmark controllers could be improved upon by trading bandwidth

for lower stiffnesses at high accuracy, as noted at the end of section 4.3.3.

The stiffness and tracking error target performance is corroborated by looking to an

alternative solution approach: improved performance though actuator design. Shen &

Goldfarb [76] used two valves to simultaneously control force and stiffness of a pneumatic

actuator. They observed control from 2000-3000 N/m to about 14000 N/m, while tracking

a position signal over a -20 to 20 mm range, using an 80 psig supply pressure, with position

errors in the 5 - 10% range. In this thesis, the aim is to verify that control can be used

in lieu of actuator modifications to achieve similar performance gains. Therefore, for the

new controller, the most accurate tracking should be achievable with a stiffness of at most

5000 N/m. Additionally, with constraints, a controller should be designed that can achieve

lower stiffnesses, ideally as low as 2000 N/m is desirable, with tracking error under 5-10%,

or under 2-4 mm.
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CHAPTER V

COMPLIANT TRACKING OF A 1-DOF PNEUMATIC SYSTEM

WITH MODEL PREDICTIVE CONTROL

Chapter 4 examined the performance of a number of controllers for pneumatic actuators

with respect to the trade-off between accurate position control and compliant actuator

dynamics. In this chapter, a Model Predictive Controller is designed that couples impedance

constraints with optimal control to handle this trade-off and explicitly define the desired

performance on a single Degree-of-Freedom (DoF) system.

First, an overview of Model Predictive Control (MPC) is provided, and the particular

implementation tools and their limitations are discussed. Next, the MPC architecture

for compliant control is introduced using two approaches to compliant constraints: one

that uses impedance constraints, and a second one that uses admittance constraints. A

dual mode structure is proposed as a means to provide theory-backed stability guarantees.

Friction compensation strategies are compared, and an appropriate friction compensation

method is selected for use with the MPC. Finally, the controller performance is compared

to benchmark controllers and among architecture variations.

5.1 Model Predictive Control

In its general form, illustrated in Figure 39, MPC computes solutions to a constrained,

finite-time, optimal control problem over a prediction horizon of length Np time steps. The

state equations are supplied with Nc control inputs, where Nc denotes the control horizon,

though in the execution, only the first calculated control input is used. After each execution,

states are updated based on plant sensor readings and estimator outputs, and the process

starts over.

The controller can be written as a constrained optimal control problem at each sampling
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Figure 39: Overview of MPC structure.

instant, consisting of a cost function, state equations, and system constraints:

min J = min

Np∑
k=T0

Fk(x, u) subject to



xk+1 = f(xk, uk) k = 1..Nc

uk = 0 k = Nc + 1..Np

g1(xk) ≤ bconstr

g2(uk) ≤ dconstr

(58)

5.2 Implementation Tools and Limitations

An added challenge is incurred by the tools used for on-line optimization. While general

MPC is not restricted to any particular subset of systems, for practical application, it is

necessary to use numerical optimization tools that can be solved quickly in real-time

There are a number of optimization tools that are free for academic use, which are of

varying ease-of-use and speed. CVXgen [58] is a tool that generates custom, high-speed

convex optimization scripts for problems that can be represented in Quadratic Problem

(QP) form. This requires quadratic cost functions and constraints that are either con-

vex inequalities or affine equalities (i.e., linear), resulting in the following, slightly more

restricted, generalized form:

min

Np∑
k=T0

(
xTkQkxk + uTkRkuk

)
subject to



xk+1 = Gxk +Huk k = 1..Nc

xk+1 = Gxk k = Nc + 1..Np

Aconstrxk ≤ bconstr

Cconstruk ≤ dconstr

(59)
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Qk and Rk are positive semi-definite matrices, xk is the state vector, uk is the input vector,

and (Aconstr, Cconstr) and (bconstr, dconstr) are matrices and vectors, respectively, governing

state and input limits.

These form requirements can easily be limiting. For example, a direct realization of

the posed compliant control problem of optimal tracking with impedance constraints would

include constraints of the form Z ≤ Zmax, or potentially a cost function including minimiza-

tion of an impedance term, ZTQZ. However, any direct impedance or stiffness definition

requires state division: Z = F/x2 or K = F/x1. Similarly, a time-domain realization of

the frequency-domain property necessitates nonlinear operators, and even physical inter-

pretations, e.g. pneumatic stiffness based on properties of the air, at least requires some

nonlinear relation, such as quadratic terms and state division (see eq. (30) in section 4.1.5).

Furthermore, simple term manipulation, e.g. F ≤ Kmaxx, is not an acceptable substitute

since the sign of the state, sign(x) at an arbitrary time is unknown. Instead, constraints

have to be designed that approximate this behavior over the prediction horizon, which is

achieved by limiting state quantities (e.g. force, where the force limit is updated based on

impedance constraints) or by relating states in a way that enforces an impedance/admit-

tance relationship.

5.3 MPC Formulations for Compliant Pneumatic Tracking

Given the afore-mentioned limitations, several problems must be solved in order to

feasibly implement a constrained MPC for pneumatic tracking. First, the low-level system

needs to be describable by a linear system. Next, the optimal control problem must be

defined using a quadratic cost function with constraints that are convex, concave, or affine.

Additional cost and constraint terms can be added to ensure stability.

5.3.1 Linear Plant Model for MPC

For a pneumatic system, where most of the nonlinearities arise in the force dynamics,

linearization is achieved via numerical or analytical methods, or via closed-loop force control,

as discussed in section 4.2.2. The MPC realizations here use a PID force controller, and
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represent the closed loop dynamics with an under-damped second-order system:

d

dt



x1

x2

F1

F2


︸ ︷︷ ︸

ẋ

=



0 1 0 0

0 0 1/m 0

0 0 0 1

0 0 −ω2
n −2ζωn


︸ ︷︷ ︸

A



x1

x2

F1

F2


︸ ︷︷ ︸

x

+



0

0

0

ω2
n


︸ ︷︷ ︸

B

Fd︸︷︷︸
u

+



0

Ffrict(x, x1, F1)/m

0

0


︸ ︷︷ ︸

D

(60)

As will be discussed in section 5.4, friction is explicitly compensated for, so it can be

effectively removed from consideration in the model provided to the predictive controller,

resulting in a linear system:

ẋ = Ax+Bu, where A =



0 1 0 0

0 0 1/m 0

0 0 0 1

0 0 −ω2
n −2ζωn


, B =



0

0

0

ω2
n


(61)

ẋ = Ax+Bu. Since the MPC is a discrete controller, the system is discretized by partitioning

the matrix exponential of the augmented state transfer matrix:

φ =

 A(n x n) B(n x m)

0(m x n) 0(m xm)

 (62)

Φ = eφdt =

 G(n x n) H(n x m)

Φn+1:n+m,1:n Φn+1:n+m,n+1:n+m

 (63)

This results in a discrete, linearized system of the form

xk+1 = Gxk +Buk (64)

An alternative approach that was also investigated was the use of an analytical linearization

of the full state dynamics, which would eliminate the use of a restrictive low-level controller

and replace the free variables in optimization with terms that directly affect pneumatic

dynamics. This extension will be explored in slightly further detail in section 7.3.1.

Next, constraints are defined – first on system performance, and then on compliant

tracking, and associated with an appropriate cost function.
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5.3.2 Pneumatic System Input & State Constraints

An over-constrained problem is numerically challenging and potentially impossible to

solve, so it is necessary to only impose constraints that directly improve performance. As a

result, performance constraints were imposed on the input (force reference), u, in the form

of a rate constraint, ||∆u||max and saturating values, umin and umax. This limit effectively

enabled the MPC to be over-tuned without leading to instability, i.e., it eliminated the

need for a well-selected R matrix. Other operating limits, such as position and velocity

constraints, were instead implicitly enforced via feasible reference generation.

Upper and lower bounds for force reference can actually be found from the pressure

supply: umax = PsAcap − PeArod and umin = PeAcap − PaArod. In theory, these could be

higher, since u is a reference and not the actual force state, F , though it was found that

treating them as the same and imposing constraints on u was a more robust, if potentially

more conservative (and thus limiting) approach. Additionally, since u was used in place of

F to enforce constraints on the actuator force, the constraints on u were largely overridden

by the impedance/admittance constraints, discussed in sections 5.3.3 and 5.3.4.

A heuristic for ||∆u||max was found by treating closed loop force tracking as a feedback

linearized system, discretizing the system, and then calculating limits on uk+1 at each

time step as a function of the known maximum valve orifice area, the valve bandwidth, and

system dynamics, as detailed in Appendix B. While it would have been possible use dynamic

constraints that update ∆u at each time step, such constraints proved to be unreliable and

problematic, rather than performance enhancing. Instead, a fixed value of ∆u = 10/dt was

selected as a rate limit, based on observed changing rate limits and fine-tuning.

5.3.3 Version 1: Impedance Constraints

Due to the limits on implementation configuration discussed in section 5.2, it is not

possible to directly apply compliance constraints. However, since compliance is simply a

relation of force and position/velocity states, it is possible to update state constraints that

indirectly affect system compliance.

One approach is to use an impedance constraint, enforced via a maximum internal
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actuator force. With this approach, the internal actuator force reference at each time step

is subjected to a state constraint, Fmin ≤ Fd ≤ Fmax. The maximum and minimum force

values are found using the force limits that would be provided by the instantaneous error,

e, and desired maximum impedance (Kmax, Bmax, Mmax):

min J = min

Tf∑
i=T0

eTact,iQeact,i + F Td,iRFd,idt

ẋ = Ax+Bu

x ≤ bconstr u ≤ uconstr

e = [e0 eI ], e = x1,ref − x1, ėI = e0

Fd ≤ ||Zmaxe||t=0

= ||Kmaxet=0 +Bmaxėt=0 +Mmaxët=0||

(65)

Note that the error has been augmented with an integral error term, meaning that Q is at

minimum a 2 x 2 matrix that penalizes position and integral error. The error terms can

be written as an output in state space form by augmenting the state to include an integral

term, ẋI = x, and treating the known reference and integrated reference values as inputs: e

eI

 =

 1 0

0 1


 x

xI

+

 xref

xref,I

 (66)

In practice, a clamping method is used to counteract integral windup, and the integration

acts over a moving horizon.

With this constraint approach, the force limits are constant over the prediction hori-

zon. While the method directly enforces the desired behavior at each initial time step, the

impedance relation could vary over the prediction horizon as error margins change, but the

force limit stays the same. As a result, the constraint is less appropriate over the duration

of the prediction horizon. This can also lead to unexpected or undesired results, such as a

delayed force response over the prediction horizon.

5.3.4 Version 2: Admittance Constraints

The main issue with the impedance constraint introduced in section 5.3.3 is that it

does not enforce the condition over the prediction horizon. One way improve upon this
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constraint is to implement an admittance relationship over the prediction horizon, in which

the tracking error is directly tied to the force limit:

min J = min

Tf∑
i=T0

eTact,iQeact,i + F Td,iRFd,idt

subject to



ẋ = Ax+Bu

x ≤ bconstr u ≤ uconstr

||Ke+Bė+Më|| ≤ Fmax|t=0..Np

e = [e0 eI ], e = x1,ref − x1, ėI = e0

Fmax = ||Zmaxe||t=0

= ||Kmaxet=0 +Bmaxėt=0 +Mmaxët=0||

(67)

This implementation uses the same cost function and error states introduced in the previ-

ous section, but with the proposed constraint changes. The force limit is, of course, still

determined using the instantaneous error at the start of each time step, so to some extent,

the problem persists. However, the added admittance relation also provides redundancy,

which can improve the MPC’s chance of finding a feasible solution that satisfies compliance

constraints, despite being provided only indirect constraints on compliance relations.

5.3.5 Terminal Cost and Constraints for Stability

A common method for ensuring a stable predictive controller is through the use of an

infinite-horizon cost, using a method known as the dual mode predictions [56,71]. The basic

premise is to design a realizable controller that may be evaluated over an infinite prediction

horizon despite requiring a finite number of MPC variables. This is achieved by splitting

the predictions into two modes (hence, “dual mode”):

uk =

 mode 1: uk determined by MPC optimization, k = 1..Np

mode 2: Kxk, k > Np

(68)

Mode 1 acts over the length of the prediction horizon, and mode 2 is in place thereafter,

effectively splitting the prediction horizon into near transients (mode 1) and asymptotic

behavior (mode 2) [71]. The second mode is enforced using a terminal cost, and terminal

constraints are applied to ensure recursive feasibility.
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It is important to clarify that the dual mode formulation exists only in the predictions,

not the control: the second mode is implicit; it is required to improve stability, and to

provide a ‘hot’ start for the optimal control problem [59,71]. The dual-mode prediction has

the effect of allowing a finite horizon optimization to be used to solve an optimal control

problem over an infinite horizon. It also ensures that the tail – the parts of the predictions

made at the previous sample which have yet to take place – are included in the current

prediction class [71].

5.3.5.1 General Implementation & Stability Theory

The generalized form of a MPC with terminal cost and constraints based on dual-mode

predictions (for the linear case) is seen in equation (69):

min J = min

Np∑
k=T0

(
xTkQkxk + uTkRkuk

)
+ xTNp

Q̄xNp

subject to



xk+1 = Gxk +Huk k = 1..Nc

uk = 0 k = Nc + 1..Np

Aconstrxk ≤ bconstr

Cconstruk ≤ dconstr

AxxNp ≤ bx

AuxNp ≤ bu

(69)

While any state feedback law may be used for mode 2, it is common and convenient to

apply an LQR controller. Since the MPC must remain finite, this is done by choosing

a terminal cost that is equivalent to the infinite horizon cost of the mode 2 controller.

Then the terminal cost weighting matrix, Q̄ is found to be the solution of the Lyapunov

equation [56]:

Q̄− (A+BK)T Q̄(A+BK) = Q+KTRK (70)

The second requirement is recursive feasibility : since the LQR controller acting over

the tail does not inherently obey performance constraints, it is possible for an incarnation

of the MPC with dual-mode predictions to be infeasible at a given time-step. However,

since the controller is stable and converges asymptotically, as long as the LQR starts from
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a sufficiently constrained region, it will remain in that region for t = T0..∞. Since the

second controller in the dual-mode prediction – the LQR controller – is state-dependent, its

control action, and the state at any time past the prediction horizon kx,u = t−Np can be

explicitly defined as u = K(A + BK)kuxNp and xk = (A + BK)kxxNp , respectively. Then

the aim is to find the number of terminal constraint applications (the values of kx and ku)

such that the infinite horizon controller inherently satisfies operating constraints for all time

T > Np + max(kx, ku). This is found recursively, by solving two linear programs at each

time step beyond the prediction horizon, k, until ku and kx are found:

Given input constraints umin ≤ u ≤ umax

find ku = min
k

such that

umax ≥
(

max
x

K(A+BK)k+1x s.t. umin ≤ K(A+BK)kx ≤ umax, k = 1..ku

)
umin ≤

(
min
x
K(A+BK)k+1x s.t. umin ≤ K(A+BK)kx ≤ umax, k = 1..ku

)
(71)

and for state constraints:

Given state constraints xmin ≤ x ≤ xmax

find kx = min
k

such that

xmax ≥
(

max
x

(A+BK)k+1x s.t. xmin ≤ (A+BK)kx ≤ xmax, k = 1..kx

)
xmin ≤

(
min
x

(A+BK)k+1x s.t. xmin ≤ (A+BK)kx ≤ xmax, k = 1..kx

)
(72)

Stability can be shown in the Lyapunov sense by using J(k) as a Lyapunov function:

V (x(k)) = J(k). Provided J(k) is a positive definite function of x(k) and the terminal

weight is chosen so that J(k) is equal to the infinite horizon cost, and the optimal predicted

input sequence at time k is feasible at each subsequent time step, then the optimal predicted

cost is non-increasing and satisfies J(k+ 1)− J(k) ≤ −[xTkQxk + uTkRuk] along closed-loop

trajectories. Together, these conditions ensure asymptotic convergence , i.e. −[xTkQxk +

uTkRuk] −→ 0 as k −→ ∞. A clear, thorough overview of the stability approach used

here may be found in [15], though it is also more thoroughly documented in sources such

as [56,71].
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5.3.5.2 Implementation for Compliant Control

For the compliant control MPCs introduced in sections 5.3.3 and 5.3.4, a predictive

controller was designed that uses dual-mode predictions mode 2 defined by the LQ-optimal

feedback control law, as discussed in the previous section. Since input constraints exist

on the input and its rate change, the state was augmented to treat ∆u as the input, and

include u as a state:

xk = [ x1 x2 F1 F2 Fd ]T , uk = ∆Fd (73)

Then the state relation was found using an augmented matrix:

x̂k+1 =

 G H

0 1


︸ ︷︷ ︸

Ĝ

x̂k +

 0

1


︸ ︷︷ ︸

Ĥ

ûk (74)

min J = min

Np∑
k=T0

(
eTkQkek + uTkRkuk

)
+ eTNp

Q̄eNp

subject to



x̂k+1 = Ĝx̂k + Ĥûk k = 1..Nc, Nc = Np = 15

Aconstrxk ≤ bconstr

umin ≤ uk ≤ umax

AxxNp ≤ bx

umin ≤ AuxNp ≤ umax

(75)

Ideally, the linear programs would be solved on-line at each time-step, but such a solution

is computationally expensive and very possibly unnecessary. Instead, for time-varying con-

straints (Fmax, Zmax), low values were provided and used to estimate a maximum set of

constraints, for which it was found that, at 100 Hz, ku = 4 and kx = 3, using the script

found in the Appendix in section B.2.

5.3.5.3 Effect on Performance

The use of a terminal cost and added constraints did increase the prevalence of CPU

overload problems with the target. As detailed in the Appendix in section B.3, CPU over-

loads occur when hardware delays cause unexpected jumps in the computational workload,
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Figure 40: Comparison of MPC with and without dual-mode predictions (terminal cost
and constraints) in simulation and hardware.

leading to sudden program failure. It is somewhat random and hardware dependent, and

part of the problem is that – due to constraints on the project – the targets used for this

work are relatively old, less robust than newer targets running Real-Time Workshop, and

have fairly modest specifications. However, CPU overloads are also affected by general

computational load, and the increase in CPU overloads suggests that the added cost and

constraints make the optimization harder to solve for an arbitrary initial state.

As a result, while simulated results using the predictive controller with a terminal cost

and constraints were easily obtained, hardware results were limited. Frequency-fitted stiff-

ness values are unavailable, so instead, the stiffness was found using the force perturba-

tion test (by dividing the observed interaction force by the position error incurred by the

perturbation). Additionally, the admittance constrained version (v2) could only be run

consistently in hardware at a slower sampling rate of 50 Hz. Therefore, the overall results

are compared across three tests: simulation and hardware at 100 Hz, simulation at 100 Hz,

and simulation and hardware at 50 Hz.

Figure 40 illustrates how the addition of the dual-mode cost and terminal constraint
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Figure 41: Comparison of compliance constraints on MPC with and without dual-mode
control configuration in simulation and hardware.

affected basic performance. A simulation comparison showed that the MPC without dual-

mode characteristics already behaved in a stable manner, though it did improve simulated

accuracy when coupled with friction compensation. Additionally, it improved the simu-

lated Version 2 (Admittance Constraint), making it behave more like the expected version,

meeting an impedance limit until the maximum impedance asymptote was achieved.

While the control with dual-mode predictions did improve accuracy in simulation, it

was again shown that at the recorded stiffnesses, these results were optimistic. Primarily,

the addition of the terminal constraint served to make the simulated admittance constraint

more reflective of the trend seen in hardware – that MPC obeys the performance constraints,

given some modeling error, as illustrated in Figure 41. In general, the MPC with dual-mode

predictions didn’t change performance significantly relative to the lighter MPC versions

without added terminal constraints. In other words, the addition of the terminal cost and

constraints was overly conservative for this system, a trend that has been observed on a

number of systems documented in literature. One explanation is that with a sufficiently

long prediction horizon, the impact of the mode 2 controller on the predicted states will be

small and the terminal constraints effectively enforced by the horizon length, thus making
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its addition negligible [71]. This suggests that for this system, a 15 step prediction horizon

at 100 Hz is sufficient to adopt infinite horizon properties and ensure system stability. The

implications for the broader set of general systems is discussed next in section 5.3.5.4.

5.3.5.4 Limitations and Alternatives

The predictive controller formulation introduced in sections 5.3.5.1 and 5.3.5.2 has all

the elements necessary for stability guarantees in the Lyapunov sense for the most general

MPC case, as outlined by Mayne, Rawlings, and Scokaert in their seminal paper [59]: an ap-

propriate terminal cost or, if possible, a sufficiently large horizon, and terminal constraints.

Naturally, these guarantees require that several assumptions are satisfied: the prediction

assumptions must be reproducible at subsequent sampling instants, the references must be

feasible, and the hardware/software must have the capability to solve the larger optimization

problem.

First, in order for the infinite horizon cost to be accurate, the system model must be

a good representation of the actual state dynamics, such that it can fairly be represented

with a linear time-invariant model, and the reference should be sufficiently smooth to treat

the tracking problem like an error regulation one. Furthermore, the supplied references

must have feasible solutions with the provided state and input constraints. While input

constraints are easily satisfied, state constraints are more difficult to satisfy and may conflict

with input constraints [71]. If the constraints cannot be satisfied, the stability proof is

invalid. Finally, while a well-designed dual-mode prediction configuration is effective (as

observed with the system tested in this thesis), the addition of terms to the cost function

and added constraints can make computation more difficult, which in turn requires better

solvers or more computational power [74].

In the absence of applicability of the dual-mode criteria, there are a number of ap-

proaches that would provide suitable alternatives. For example, early MPC researchers

showed that by choosing a sufficiently long horizon, a predictive controller acting on a sta-

ble plant achieves the properties associated with an infinite horizon [59]. Alternatively, if the

underlying plant is stable, the system may be treated as a “reference governor” [7,32,37,50]:
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the optimal component (MPC) is used to generate feasible references that the underlying

system, a stable plant, can follow. If that system is linear, then it is stable independent

of the provided reference, and the governor’s primary aim is to ensure performance. If

the system is nonlinear, the reference governor may use an algorithm to select a feasible

reference that is both satisfactory and preserves stability of the modeled system. In these

cases, successful stability guarantees necessitate that the system model is well-defined and

representative of the actual behavior (e.g., that the system dynamics are fairly described by

an LTI model), and the constraints on performance must be well-characterized and clearly

communicated in the controller to ensure generation of feasible references.

In general, researchers have tended towards the explanation that feasibility is sufficient

[74]. Chen [17] offers a more relaxed stability criterion based on the observation that

many predictive controllers without terminal constraints are nonetheless stable. He points

out that while in the classic case the terminal constraint is intended to cover the cost-

to-go for the remaining horizon, a simpler condition requires only that the stage cost at

time k + N be less than at time k, which relies on the monotonicity of the associated

Lyapunov function. From there, a number of theorems are developed that span most

controller variations – from unconstrained, linear MPC to constrained, nonlinear MPC –

that essentially define feasibility conditions required for stability. In general, this result –

feasibility implies stability – appears to provide a good guiding intuition.

5.3.5.5 Summary of Stability for Compliant MPC

The dual-mode formulation provides theory-backed stability guarantees for the pre-

dictive controllers introduced in sections 5.3.3 and 5.3.4, while preserving the benefits of

compliant control seen without its addition. However, parameter variation studies show

that its addition is unnecessary, and that the original MPC formulation is already stable.

The lack of necessity is effectively explained by less restrictive MPC stability theory, which

suggests that feasibility implies stability. Furthermore, the underlying system consists of

a stable force controller and position dynamics that are marginally stable the absence of

damping, but are stable in any practical system with friction, viscous damping, etc. (as
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was used in both the model and in hardware). The stability of the internal model dynam-

ics, coupled with the conservative constraints on feasible force references defined in section

5.3.2, is sufficient to ensure stability and verify the performance shown in simulation and

practice.

For general systems, it is advisable to design low-level dynamics that are inherently

stable, either via mechanical design or feedback control. Then a reference governor can be

designed to ensure stability, or a sufficiently large prediction horizon may be found that

provides stable performance. Alternatively, if the dynamics are well described by an LTI

model and the system is sufficiently capable, a dual-mode formulation provides stability

guarantees while preserving compliance constraints.

5.4 Friction Compensation

Friction is one of the most evident disturbances that exists in pneumatic tracking. It is

inherently in the system due to seal dynamics, and while most manufacturers have made

strides in reducing contact friction, it is still prevalent – e.g., the Bimba PFC cylinders used

in this thesis were “low-friction” cylinders, yet they still experience 1 -5 N of friction even

under idealized operating conditions, as discussed in Chapter 3. Additional friction sources

may exist due to interacting platform components, system geometry, etc.

Friction is commonly offset using an additive feed-forward term based on a friction

model – here termed “additive” compensation. The method is especially effective when the

friction model is well-sourced, consistent, and the system is responsive, i.e. a fast system

can offset sudden stiction disturbances better than a slow system. The most significant

problem, then, is static friction, or stiction, which arises suddenly, at key times (changes in

direction and starting motions), and is typically relatively large in magnitude, compared to

viscous friction. Alternatively, methods such as high-frequency dither – where the actuator

is pulsed a small distance at a high frequency – may be used to attempt to prevent the

system from ever really stopping, and thereby keep the system out of the stiction regime.

This method can be effective on repeatable, motion control platforms, but necessitates a

constant input, and its effect tends to be dampened by significant actuated geometry (e.g.,

87



Figure 42: Friction prediction & compensation.

a robot arm).

In model predictive control, disturbances are treated as additional actuator inputs with

some estimated known value over the prediction horizon, Dk:

xk+1 = Gkxk +Hkuk +Dk (76)

Given a well-constructed estimated signal, this approach allows the system dynamics to be

included in the compensation effort, which improves compensation for slow systems. In

fact, predictive control can be used to design an estimator in this way that improves the

compensation capability of pneumatic systems in certain cases, as will be shown in section

5.4.1. However, the effect comes at added cost, and does not extend well to systems that are

already operating at their constrained optimal limits – as is the case with compliant control

– though, it could be improved with possible architectural changes. Instead, an additive

compensation method, detailed in section 5.4.2, was used with satisfactory results.

5.4.1 Cascaded Compensation

In the cascaded MPC approach to friction compensation, two predictive controllers are

sequenced, so that the first one acts as an estimator, and the second as a controller. Outputs

from the first controller generate state estimates over the prediction horizon that are used by

a friction model to estimate the friction dynamics over that horizon. The second controller

then produces an output that considers these predicted friction effects.

A diagram of this approach is shown in Figure 42. There are three steps:
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1. The first MPC minimizes the specified cost function, subject to linear discrete system

dynamics, i.e. it solves the optimal control problems defined by either (65) or (67),

depending on constraint choices, subject to model dynamics xk+1 = Gxk +Huk.

2. A friction model uses the Np time steps of state information to approximate friction

over the prediction horizon, which is passed on to the second MPC.

3. The second MPC again minimizes the same cost function as in step 1, but subject to

slightly modified state dynamics; the state equation is described by

xk+1 = Gkxk +Hkuk +Dk (77)

where Dk is an offset vector, consisting of the expected friction values. The second

MPC now produces an input that will compensate for the disturbance effect caused

by friction, but still subject to optimality and performance constraints as specified in

the predictive controller design.

One way to look at this system is as a linear system with a prescribed input, i.e. rather

than treating Dk as a separate term in equation (77), it could be lumped into the vector

Hkuk as a prescribed value at each time step.

It is relatively straightforward to demonstrate the value of a cascaded MPC, both ana-

lytically and in simulation.

5.4.1.1 Value Demonstrated by Analysis

A standard derivation of unconstrained MPC, including friction as an unknown distur-

bance term, Dk, shows how a disturbance estimate affects inputs for slow systems.

For a system that satisfies

xk+1 = Axk +Buk +Dk, yk+1 = Cxk (78)

the goal is to find an input, u∗k, that minimizes a cost function, J :

J(X) = (Yc − Ỹ )T (Yc − Ỹ ) + UTRU (79)

where Y and Ỹ are the actual and expected outputs for the next Np time steps, and U is

the matrix of corresponding inputs. Np is the prediction horizon.
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For the unconstrained case, the input is easily found by setting ∂J
∂U = 0 and solving for

U . However, this requires defined expected outputs Ỹ =
[
ỹk+1 ỹk+2 ỹk+3 ... ỹk+Np

]T
over

the prediction horizon, which are presented in matrix form:

Ỹ =



CA

CA2

CA3

...

CANp


︸ ︷︷ ︸

KCA

xk +



CB 0 0 . . . 0

CAB CB 0 . . . 0

CA2B CAB CB . . . 0

...
...

...
. . .

...

CANp−1B CANp−2B CANp−3B . . . CB


︸ ︷︷ ︸

MCAB



uk

uk+1

uk+2

...

uk+Np−1


︸ ︷︷ ︸

U

+



C 0 0 . . . 0

CA C 0 . . . 0

CA2 CA C . . . 0

...
...

...
. . .

...

CANp−1 CANp−2 CANp−3 . . . C


︸ ︷︷ ︸

MCA



Dk

Dk+1

Dk+2

...

Dk+Np−1


︸ ︷︷ ︸

D

(80)

Using this syntax, the cost function derivative – a vector derivative – can be expanded:

∂J

∂U
= 0 =

∂f

∂Z

∂Z

∂U
+
∂g

∂U
where J = ZTZ︸ ︷︷ ︸

f(U)

+UTRU︸ ︷︷ ︸
g(U)

(81)

= ZT (I + IT )(−MCAB) + UT (R+RT ) (82)

= 2(Yc − Ỹ )T (−MCAB) + 2UTR (83)

= 0/2 = (Yc −KCAxk −MCABU −MCAD)T (−MCAB) + UTR (84)

= 0/2 = (−MCAB)T (Yc −KCAxk −MCABU −MCAD) +RTU (85)

= −(MCAB)T (Yc −KCAxk −MCAD) + (MT
CABMCAB +RT )U (86)

Since R is a scalar, RT = R. Making this substitution, and solving for U ,

U = (MT
CABMCAB +R)−1MT

CAB︸ ︷︷ ︸
KMPC

(Yc −KCAxk −MCAD) (87)

KMPC is the MPC gain. It is possible to extend this solution to consider a state cost, Q,
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which results in the modified result:

U = (MT
CABQMCAB +R)−1MT

CABQ︸ ︷︷ ︸
MPC

(Yc −KCAxk −MCAD) (88)

Clearly, U is affected by the presence of the disturbance, D.

To obtain a better understanding of how much a jump discontinuity affects a slow system

vs. a fast one, a simple system with first order force tracking (defined by a time constant,

τ : Ḟ = 1
τ (Fref − F )) is assumed. Using a (standard) single term matrix exponential

approximation of eA∆t ≈ I +A∆t:
x1

x2

F


k+1

=


1 ∆t 0

0 1 ∆t

0 0 1− ∆t
τ



x1

x2

F


k

+


0

0

∆t
τ

uk +


0

dk

0

 (89)

yk+1 =

[
1 0 0

]
xk+1 (90)

As an example, U is calculated for t = 1 . . . Np = 4:

U =

[
u11 u12 0 0

]T
where

u11 =

(
Rdt3 y3 + 3Rdt3 y4

)
τ3 +

(
−Rdt4 y4

)
τ2 +

(
dt9 y3

)
τ

R2 τ4 +
(
11Rdt6

)
τ2 +

(
−6Rdt7

)
τ +

(
dt12 +Rdt8

)
−

dt4 τ
(
dt6 − 2Rdt τ + 7Rτ2

)
R2 τ4 +Rdt8 − 6Rdt7 τ + 11Rdt6 τ2 + dt12 D2

−
dt4 τ

(
3Rτ2 −Rdt τ

)
R2 τ4 +Rdt8 − 6Rdt7 τ + 11Rdt6 τ2 + dt12 D3

−
dt4 τ

(
2 dt6 − 3Rdt τ + 11Rτ2

)
R2 τ4 +Rdt8 − 6Rdt7 τ + 11Rdt6 τ2 + dt12 D1

u12 =

(
Rdt3 y4

)
τ3 +

(
dt9 y4 − 3 dt9 y3

)
τ + dt10 y3

R2 τ4 +
(
11Rdt6

)
τ2 +

(
−6Rdt7

)
τ +

(
dt12 +Rdt8

)
−

dt4
(
dt7 − dt6 τ + 2Rτ3

)
R2 τ4 +Rdt8 − 6Rdt7 τ + 11Rdt6 τ2 + dt12 D2

−
dt4

(
dt6 τ +Rτ3

)
R2 τ4 +Rdt8 − 6Rdt7 τ + 11Rdt6 τ2 + dt12 D3

−
dt4

(
2 dt7 − 3 dt6 τ + 3Rτ3

)
R2 τ4 +Rdt8 − 6Rdt7 τ + 11Rdt6 τ2 + dt12 D1 (91)

As R → 0 and input is not penalized, the significance of the time constant becomes more
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evident:

U =



(
y3
dt3
− 1

dt2
D2 − 2

dt2
D1

)
τ

y3
dt2
− 3 y3−y4

dt3
τ − τ

dt2
D3 − dt−τ

dt2
D2 − 2 dt−3 τ

dt2
D1

0

0


(92)

For comparison, in the direct (additive) compensation case, the inputs are found assuming

Dk = 0, and then Dk/dt is added to each step of the input, uk. As τ → dt, these values

become closer to each other. However, if τ is very large, then the compensation required

by terms is significantly higher than what will be provided by direct compensation, and the

lack of compensation for later disturbance terms has notably more impact.

5.4.1.2 Value Demonstrated by Simulation

Alternatively, the impact of predictive friction compensation for systems with slow dy-

namics may be tested by implementing the controller on systems with different levels of

responsiveness. A generic system is defined with dynamics:

ẋ1 = x2

ẋ2 = F/m

Ḟ = Ḟd − β0 (F − Fd)

(93)

where x1, x2, and F are the position, velocity, and force due to differential pressures, respec-

tively. Compensation methods are compared for three values of β0, with three approaches

to friction compensation:

1. MPC with no friction compensation (baseline)

2. MPC using a feed-forward friction compensation term based on an instantaneous

estimate of the friction

3. MPC with predictive friction compensation, termed “Cascaded MPC” for its use of

sequenced predictive controllers

In all cases, the friction models used for simulation and control – a Stribeck-tanh model –

were the same, so the simulation is essentially a best-case scenario for the simplest version

92



Figure 43: Friction compensation comparison for a system with varying β0.

of each compensation technique. The results are illustrated in Figure 44. The plots on the

left show tracking error, while those on the right give an idea of the general shape of system

tracking. It can be clearly seen that as β0 is decreased and the system becomes slower, the

cascaded compensation approach becomes superior to the additive compensation method,

resulting in better tracking and significant error reduction.

5.4.1.3 Application to Pneumatic Systems

The cascaded compensation method was applied to the pneumatic actuator model in

simulation, which verified that it behaves like a slow system, and that the predictive fric-

tion compensation strategy provides similarly promising results, as seen in Figure 44. It is

worth pointing out that the error levels observed by the predictive friction in simulation are

unprecedented; the 1-mm order tracking accuracy achieved by the feed-forward (Additive)

compensation is comparable to the best state-of-the-art, and certainly sufficient. Therefore,

the added gains, while significant, are possibly unnecessary, given the additional compu-

tational cost. When applied the the compliant control architecture presented in section

5.3, the predictive compensation failed to significantly improve error tracking. Instead, it
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Figure 44: Friction compensation comparison for a simulated pneumatic positioning system.

simply reached the same error as achieved by the system without predictive compensation,

as illustrated in Figure 45. Presumably, this is because the MPC for compliant tracking is

already subjected to stringent constraints, thereby limiting freedom for dealing with pre-

dictive compensation. An alternate strategy would be to also adjust constraints at each

operating point to reflect friction needs, though that would potentially violate impedance

limitations. Additionally, the predictive compensator doubles the computational load due

to on-line optimization, which can have a significant impact on performance. Ultimately,

Figure 45: Left: MPC (v2) without friction compensation is compared to MPC with
predictive friction compensation. Right: MPC with additive friction compensation. All
results shown are from simulation.

the predictive compensator was viewed as an asset for general application, but was not

further applied for compliant tracking, which instead used an additive approach.
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5.4.2 Additive Compensation

In direct compensation, friction is simply estimated using a pre-existing friction model,

and then a counter-term is provided to the force reference signal:

(Fd)act = Fd − Ffrict (94)

Then the extra term will cancel out friction, as seen by substituting equation (94) into

equation (60). Several models were investigated, including velocity dependent models like

Stribeck friction and approximate versions, discussed in Chapter 3, and an exponential

decay based approximation previously used by [89]:

Ffriction = −sign(ẋ)
(
a0 + a1e

−b|ẋ|
)

(95)

In equation (95), the sum of a0 and a1 is the stiction force, and b is the slip constant, and

simple Coulomb friction: A force-dependent model was also tested:

Ffriction = −sign(ẋ)min (FPress, Fs) (96)

where Fs is a constant representing the stiction force. In simulation and hardware, however,

the Stribeck-Tanh model provided the best results, and thus was used throughout.

The results observed in hardware in section 5.5 actually use the reference as a model

source rather than the measured sensor readings. This need arises from a lack of relevant

sensors: since the friction models are velocity-based, they require velocity measurements,

but the hardware only achieves velocity signals via differentiation of the actuator position

measurement, which incurs both added noise and time delays. This hypothesis was verified

by the fact that the actual signal was effective in simulation – which is free of the delay

and noise problems encountered in hardware – and with the reference-based signals, which

are equivalent to a phase-lag-free, clean sensor measurement for the observed tracking.

Further implementation would be improved through velocity measurements, or potentially

integrated accelerometer measurements, coupled with velocity estimation.
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Figure 46: Left: summary of benchmark stiffness vs. accuracy. Right: MPC stiffness
vs. accuracy. Legends show colors that correspond to each controller. In both plots, dots
represent simulation data from parameter variation studies, and X’s represent hardware
data. The convex hull of simulation results from each respective controller is indicated by
the shaded region in the corresponding color.

5.5 Results: Comparison to Benchmarks

The goal of MPC for compliant control is to ensure that the system follows an explicit

approach to handling accuracy and compliance trade-offs: safe interaction is defined as a

bound, and optimal tracking is desired within that prescribed limit. Good performance is

achieved if the constraints are enforced. Additionally, the MPC should optimize tracking at

each performance bound, so it should improve or match tracking achieved by benchmarks

subject to a compliance bound. Finally, if there is a critical minimum impedance needed for

optimal tracking, the MPC should obtain it automatically, i.e. the impedance constraint

should act as an upper limit, not a target impedance.

Results showed that most of these aims were achieved. Figure 46 shows the overall trend

of stiffness vs. accuracy for benchmarks and MPC-controlled systems. As the benchmark

analysis in Chapter 4 demonstrated, most controllers experience a clear trade-off of accuracy

and compliance. MPC is no exception, but the compliance is low, and the best tracking

capability at least matches – or even improves upon – benchmark tracking.

The performance for each individual MPC is laid out in Figures 47 - 51. From Figure

47, it is evident that while hardware validated the observed trends seen in simulation, the

simulated accuracy was generally lower than what was measured in hardware – a trend
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Figure 47: Breakdown of MPC variations: stiffness vs. accuracy.

mostly matched among benchmark controllers. The one exception was impedance control,

which did better in practice than in simulation, due predominantly to well-tuned parameter

compensation terms.

The tests also verified that friction compensation is a critical and necessary component to

improving tracking performance among predictive controllers. While some of the benchmark

controllers were able to obtain peak accuracy without an explicit friction compensation

model, it is evident from Figures 46 and 47 that friction compensation is necessary to obtain

the best MPC performance. The best results are achieved using the admittance constraint,

and the added friction terms have minimal downside on other performance metrics.

The MPCs also offered other benefits – for example, good bandwidth for low-stiffness

systems. The admittance constrained system performed slightly better, providing a 3-4 Hz

bandwidth for tracking subject to a 2000 - 4000 N/m stiffness bound, as observed in Figure

48, whereas impedance control suffers very low bandwidth (< 1 Hz) for stiffnesses under

3000 N/m.
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Figure 48: Breakdown of MPC variations: stiffness vs. bandwidth.

It is also useful to point out that interaction forces among MPCs are characteristically

low: as illustrated in Figure 49, they are generally under 50 N, even with friction compen-

sation.

Finally, a major asset of the MPC is that it converges to the minimum impedance

needed to ensure optimal performance, as shown in Figures 50 and 51. In the figures, the

four MPCs are compared to the impedance controller and tuned using a stiffness bound

(for the impedance controller, the stiffness is a target). It is clear from the earlier plots that

peak performance is achieved between 3000 and 5000 N/m. At that point, the MPC levels

off, as further stiffness is unnecessary. However, in the impedance controller, the impedance

continues to rise, as it is a target. In other words, the controllers satisfy the prescribed

stiffness bounds and provide decreased stiffness for the same tracking performance where

possible. An a-priori system understanding beyond the model is unnecessary – i.e., while it

would certainly be possible to conduct this analysis and then define an impedance controller

with gains that reflect the minimum impedance, it would be inconvenient and non-conducive
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.
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Figure 50: Impact of impedance constraint on MPC, and comparison to impedance con-
troller with target stiffness. Stiffness judged by frequency response fit.

to systems with changing or more complex dynamics. The MPC eliminates this step by

simply ensuring that a constraint that exceeds the critical value will converge to the critical

impedance required for optimal tracking.

One limitation of the frequency response fit impedance is that, while it is an accurate

assessment of the target property, it isn’t really reflective of how the impedance constraints

were defined. The impedance-constrained systems perform well under a compliance met-

ric test like that employed in Figure 50, but the admittance-constrained systems are less

satisfactory for low maximum stiffnesses. Instead, stiffness observed from perturbation is

a much closer relationship to the admittance formulation (though it is less reflective of

dynamic interactions). In fact, as illustrated in Figure 51, when measured using this sec-

ondary stiffness metric, the admittance-constrained MPCs appear to more strictly respect

the provided stiffness bound. Impedance control generally closely approaches its targets

with either bound.

Clearly, the constraint formulation has a significant impact on the observed results. One

observed trend was that the stiffness term dominates the impedance constraint – especially
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Figure 51: Impact of impedance constraint on MPC, and comparison to impedance con-
troller with target stiffness. Stiffness judged by equivalent stiffness, found via perturbation.

within the operating bandwidth. As a result, it is difficult to set impedance targets that

are more reflective of dynamic goals, such as a target damping parameter, without having

them either negatively affect accuracy or stiffness at low frequencies. Part of this is due

to the afore-mentioned fact that impedance is really a frequency-domain quantity, and

the time-domain approximations used for constraint definition may replace actual target

behavior with an implied internal trade-off of stiffness and damping. Thus, a particularly

useful extension would be the creation of a custom solver that allowed nonlinear constraint

definitions.

Overall, the MPC improves tracking for compliant, low-bandwidth systems relative to

benchmark controllers, and provides a natural framework for compliant control by using

impedance bounds rather than targets.
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CHAPTER VI

COMPLIANT MPC FOR SYSTEMS WITH MULTIPLE ACTUATORS

AND DEGREES OF FREEDOM

6.1 Overview

One of the aims of compliant control is practical implementation – ideally in a robotic

system like the compact rescue robot (CRR). Realistically, this requires application to a

system with multiple degrees of freedom (DoF) and non-trivial geometry and inertias. The

additional complexity introduces several challenges, such as obtaining an acceptable system

model, maintaining robustness to interaction between links, and avoiding computational

load limits.

This chapter will discuss the implementation steps and qualitative performance of a

two degree-of-freedom planar pneumatic arm controlled with MPC. First, the mechanical

system will be described, labeled, and kinematics and dynamics will be derived. Next, an

overview of the MPC design and alternatives for the multi-DoF cases is presented. Finally,

the performance of the MPC-controlled pneumatic arm is discussed.

6.2 Planar Arm Geometry & Motion

The CRR has two 3-DoF arms. To avoid unnecessary complexity, only the bottom two

joints, which constitute planar motion, will be assessed in this chapter.

6.2.1 Notation and Labeling

An illustration of the planar arm is shown in Figure 52, and then broken down into the

top and bottom joint in Figures 53 and 54, respectively. The basic labeling scheme uses

seven bodies and five body-fixed frames. The bodies are numbered, with each actuator

split into two parts: part (a), the cylinder, and part (b), the piston. Since the pneumatic

actuator cylinders and pistons operate along a common axis, they share a reference frame.
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Figure 52: 2 DoF system overview.

Angles are denoted by Greek letters: θ is used to refer to coordinates, and corresponds

to the link rotations, and φ represents the rotation of the pneumatic actuator. These angles

are listed in the form θij , referring to the angle from frame i to frame j. For angles used

in derivations: α is used in derivations to refer to variable angles, and γ refers to constant

angles with known values. Angles in derivations are specific to the local geometry and

include a corresponding subscript.

Points are labeled with capital letters, and distances are specified with lIJ , referring to

the length from point I to point J . For clarity, since the distances lPQ and lST vary, they

are instead referred to by the variable distances d1 and d2. There are two input forces, F1

and F2, which act at points Q and T , and potential for an end effector disturbance force

F3, at point V .

6.2.2 Kinematics

In the CRR implementation, the goal is typically to place the end effector in a particular

location in the X-Y plane. To do so, the forward and inverse kinematics of the leg are used
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Figure 53: Geometric view to relate θ13 and d1.

to relate joint angles to end effector positions and vice versa. These are shown in detail in

the appendix in section D.1. However, they also require clearly established relationships

between the linear motion of the prismatic actuators, and the angles of rotation of the

joints.

In order to effectively use prismatic actuators, the actuators must pivot within the

joint during piston motion, which leads to some geometric complexities. However, using

trigonometric relations, the piston motion is easily related to angles of rotation between the

links. The notation follows that used in Figures 53 and 54:
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Figure 54: Geometric view of the middle link, relating θ35 and d2.

d1 =
√
l2PA + l2AR + 2lPAlAR cos (θ13 + (γA1 + γA2))− lQR (97)

d2 =
√
l2SB + l2BU + 2lSBlBU cos (θ35 − γB)− lTU (98)

where γA1, γA2, and γB are known angles, as described in the appendix. Conversely,

joint angles are defined as functions of actuator position:

θ13 = π − (γA1 + γA2)− cos−1

(
l2PA + l2AR − (lQR + d1)2

2lPAlAR

)
(99)

θ35 = −π + γB + cos−1

(
l2SB + l2BU − (d2 + lTU )2

2lSBlBU

)
(100)

Arm dynamics were derived as well, as described in section D.3.

6.2.3 Dynamics Models

Planar arm dynamics were calculated using an analytical mechanics approach executed

through MATLAB, as described in the Appendix in section D.3. The primary aim was

to produce a set of dynamic equations that could be used to benchmark simplified model

approaches. The results highlight part of the reasoning for limiting the multi-DoF analysis

to two joints: because of the robot’s complexity, a full dynamic model is already quite

complex, even with only two actuators.
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To check the validity of the derived arm dynamics, results were compared to a SimMe-

chanics model that made use of SolidWorks body properties, using both time and frequency

domain comparisons. These results were then compared to a simpler model based on a dou-

ble pendulum approximation. The simple model treated each link as a fixed mass of set

inertia (i.e. φ̇12 = 0 and φ̇34 = 0), measured position in terms of the angles, θ13 and θ35,

and used simple force-to-torque conversion equations:

τ13 = −lARsin(θ13) (101)

τ35 = −lBUsin(θ35) (102)

(103)

Comparisons to the detail model in the time and frequency domain showed that this model

and simplified force-torque relations closely approximated system behavior,and would likely

be sufficient for use in control.

6.3 MPC Implementation

As seen in chapter 5, the primary asset of the MPC-based control is that it enforces

an impedance bound, such that accurate tracking is achieved at the minimum required

impedance. Similarly, a lower impedance bound enforces the limit and achieves the tracking

given the allowable impedance limit. To preserve these results in the multi-DoF implemen-

tation, an architecture must be used that enables this relationship to remain enforceable as

time changes.

For example, one logical approach is to use a single MPC that contains all the state

dynamics, linearized at each time instant. However, the end effector impedance constraint

will be a distinctly nonlinear function of the states, so its linearization is unlikely to enforce

any meaningful state relation, especially if the system geometry is rapidly changing. One

alternative would be to change the optimization problem into a tracking problem with clear

admittance constraints by using two low-level position controlled cylinders, with position

provided in θ13 and θ35. Then the optimization problem could be used as a reference
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trajectory generator, aimed to minimized tracking error while keeping errors below a time-

varying but specified admittance relation. The use of position control at each actuator would

enable the use of a state model that doesn’t require explicit relations between position states

and forces, provided the force controllers are robust to external disturbances.

Instead, the approach used here is to preserve as much of the 1-DoF architecture as

possible and eliminate nonlinearities with mappings rather than linearizations wherever

possible. Each joint is outfitted with a predictive controller that minimizes tracking error,

subject to an impedance constraint. Instead of calculating dynamics linearly along the

piston motion, they are calculated in angular position θ with an input torque, τ , and the

conversions specified in equations (101) and (102) are used to produce force references.

Since the joint is modeled as a rigid joint, the simplified, linearized actuator dynamics are

dominated by an inertial term and a stiffness term due to gravity. Using the linearization

of the simplified actuator dynamics as a guide, constant values may be selected to define

each actuator dynamics as one with parameters θ̈ = (K(g)θ + τ)/I.

6.3.1 Joint-Level Implementation

The MPC configuration at each joint follows from a reconfiguration of the v1/impedance

constraint version introduced in section 5.3.3:

min J = min

Tf∑
i=T0

eTact,iQeact,i + τTd,iRτd,idt

ẋ = Ax+Bu

x ≤ bconstr u ≤ uconstr

e = [e0 eI ], e = θref − θ1, ėI = e0

||τd|| ≤ ||Zmaxe||t=0

= ||Kmaxet=0 +Bmaxėt=0 +Mmaxët=0||

(104)
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u

+
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0

1
IFfrict + fe1(xjt2)

fe2(xjt2)

0


︸ ︷︷ ︸

D
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Here, fe1 and fe2 are disturbance terms caused by the dynamics from the other joint, xjt2,

i.e. x13 for the bottom joint, and x35 for the top joint. The MPC model used was simplified

by ignoring disturbance terms, with acceptable results. Nonetheless, this possible extension

will be discussed in section 7.3.2.

In equation (104), θ1 is the angular position, and θ2 is the angular velocity. Since there

are two joints, the implementation described in equation (104) is applied twice, once to

(θ13, τ13), and once to (θ35, τ35). It would also be possible to linearize the simplified model

dynamics (equations (221) and (222)) at each operating instant.

6.3.2 Performance and Impedance Constraint Conversions

Because the joint dynamics for the multi-DoF implementation have been converted to

to angular dynamics, it is necessary to also convert performance and stiffness constraints.

Maximum forces are easily converted using the relation introduced in equations (101) and

(102):

(τ13)max = lAR sin(θ13)F1,max (106)

(τ35)max = lBU sin(θ35)F2,max (107)

Of course, since these equations are dependent on the angle, the limits are actually changing.

In practice, it was found that setting too high a limit could be actively detrimental, the

average (1/2 the maximum value) was used for the controller on θ35, and the full value was

used for θ13.
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The rates are slightly more complicated, since the angular position changes with time:(
dτ13

dt

)
max

=

(
lAR sin(θ13)

dF1

dt
+ lAB θ̇13 cos(θ13)F1

)
max

(108)(
dτ35

dt

)
max

=

(
lBU sin(θ35)

dF1

dt
+ lBU θ̇35 cos(θ35)F2

)
max

(109)

Again, it would be possible to update the constraint in real time, but given the poor results

observed with such an approach (as noted in section 5.3.2), a constant value was instead

used that ignored the angular-velocity dependent term and simply assumed the maximum

value from the sinusoidal term:(
dτ13

dt

)
max

≡ lAR(
dF1

dt
)max (110)(

dτ35

dt

)
max

≡ lBU (
dF2

dt
)max (111)

The minimum bounds are simply the negative maximum values.

6.4 Performance

Tracking performance was compared with several tests, focusing on tracking accuracy,

response to unexpected disturbance, interaction between the joints, and the effect of chang-

ing actuator stiffness properties.

6.4.1 Tracking

With the planar arm, most robotic tasks consist of tracking motions, e.g. a line in space,

which requires simultaneous, continuous motion at differing amplitudes. As a sample, two

sinusoidal motions were provided to the actuators so that they would span a greater range

of inertias. Results are shown in Figure 55, and are plotted in degrees. As the figure shows,

while tracking is not smooth, error minimization is quite good; for reference, the linear

root-mean-square error values (error as measured by comparing piston position to position

reference) can be compared to results on the significantly less complex 1-DoF model. From

the hardware results in section 5.5, or from the raw data collection in the appendix in

section A.4, the best tracking had RMS errors on the order of 1-2 mm, whereas the tracking

seen in the figure on the multi-DoF model is similarly under 2 mm.
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Figure 55: Simultaneous tracking θ13 and θ35 using MPC with high impedance constraints.

These results also point to MPC’s inherent robustness to model error: despite the fact

that the models used for control made significant simplifying assumptions including linear

time-invariant dynamics, the control still functions fairly well. However, it also exposes a

flaw – while the RMS error minimization is good, tracking is not as smooth as desired. A

penalty on velocity error may be used to reduce this effect, but in general, this induces a

trade-off that can be difficult to tune.

Next, the compliance of the controller will be tested by subjecting it to known but

unexpected external loads.

6.4.2 Interaction & Disturbance Response

An important system quality is that it responds well to unexpected interaction: the

system should be backdriveable without applying significant force, and once the external

load is removed, it should return to tracking without significant overshoot or oscillation.

Obviously, the location of the disturbance matters as well. To test the value of the MPC

to general safety, a spring scale was used to perturb the system by 9 N, and the associated

disturbances were measured, as seen in Figures 56 and 57. First, the external load was

applied to the middle link, by hooking onto m3, as labeled in Figure 54.

The perturbations are annotated in Figure 56, and correspond to peak disturbances of
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Figure 56: Simultaneous tracking θ13 and θ35 while subjecting middle link to 9 N distur-
bances (annotated).

20-30 degrees, or 30 - 50% of that joint’s over 61-degree range. In other words, even with

a stiffness bound capped only by the force limit (10 Nm, acting over a 5-50 mm moment

arm), the system proved very backdriveable and with an impact force 1/5th that of the

dangerous bound suggested in 2.2.4.

Figure 57 is a similar test, but the 9 N perturbation is instead applied to the bottom

link, m5. Interestingly, while the system is similarly compliant, most of the compliance is

observed in the first actuator, θ13, though this may be partly due to the system geometry.

One important question is whether it is possible to render the system defunct through

impact. Figure 58 shows the system subject to large impacts to the bottom link (executed by

repeatedly and rapidly hitting m5 by hand). While the system responds well to disturbance

and quickly returns to good tracking, the top link, which has significantly more inertia

and therefore experiences greater joint stiffness due to gravity, occasionally overshoots on

the return. Additionally, while no tests were observed in which an impact destabilized the

system, it is evident that a large enough disturbance will make the controller on θ13 useless.

As seen in the figure, disturbances that drive the top joint too close to the minimum moment

arm exceed the controller’s force capability by effectively placing the robot in a singular
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Figure 57: Simultaneous tracking θ13 and θ35 while subjecting bottom link to 9 N distur-
bances (annotated).

position. However, this generally requires a prolonged interaction – as seen in Figure 59,

θ13 can be tracked over most of its 61-degree range (11 - 72 degrees) and subjected to

disturbances, without entering into the singular position. Obviously, this problem could

also be avoided through mechanical design changes.

Another interesting question is how MPC interacts with other controllers. For example,

Figure 60 shows the performance of the planar arm, with θ13 controlled using MPC, and

θ35 controlled using a PID controller that has been intentionally tuned to be comparatively

stiff. As a result, almost all of the compliance is deflected to the MPC-controlled joint. The

perturbations in the figure were achieved by pushing the robot (by hand) and were prolonged

(the system returned to tracking as soon as it was released), which further emphasizes the

result that the MPC will be backdriveable as necessary. A multi-link system could be

smartly designed to apply compliant joints only where necessary, as in the DM2 approach

[101] to leverage this effect.
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Figure 58: Simultaneous tracking θ13 and θ35 while subjecting bottom link to large impacts.

6.4.3 Effect and Performance of Impedance Constraints

The previous sections have shown that MPC carries over well to the multi-DoF system,

is compliant to interaction, and safe for operation near a user. However, part of this is

due to the fact that even the high impedance achieved with MPC is fairly compliant on

the provided system, as the controllers above all use an unbounded stiffness and instead

just apply a force limit. A further question is whether the use of impedance constraints

translate to the multi-DoF case.

Figure 61 shows how joint tracking is affected as the stiffness bound on the MPC control-

ling θ35 is reduced. The annotations in the figure show the period over which a particular

angular joint stiffness – 15, 10, and 5 Nm/rad – is enforced. It is clear that reducing the

stiffness does gradually impact performance, especially at the peaks where friction has a

more significant impact. Interestingly, the changing stiffness in θ35 control has a negligible

effect on θ13 control, which continues without effect.

Similarly, impedance bounds may be used to affect θ13, as seen in Figure 62. In the figure,

the stiffness constraint on the top joint is reduced to 50 Nm/rad, which increases position

RMS error. The second joint, θ35, is first held constant (i.e., it’s inertia is unchanged), and
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Figure 59: Simultaneous tracking θ13 and θ35. Disturbance forces are applied to m5 at T
= 10, 15, and 22 seconds.

then suddenly moved to follow a sinusoidal pattern. This change has a negligible effect on

control of the first joint, despite its decreased stiffness and corresponding increased tracking

error.

6.4.4 Performance Observations

As shown in the last few sections, even a fairly straightforward multi-DoF implementa-

tion with multiple MPCs and simplified dynamic models is quite effective in achieving the

goal of compliant control – accurate control and safe operating circumstances. Of course,

there are clear concerns to be addressed.

First, the computational load is not insignificant. For this controller, at 100 Hz, the

computational load could be measured using Task Execution Time, or TeT – a measure of

how long it takes Real Time Workshop (RTW) / xPC Target to compute at each time step

For a prototypical system operating a single MPC, an example average TeT was 0.0015 s

with a max TeT of 0.003 , while with two MPCs, the average and maximum TeTs increased

to 0.0043 s and 0.006 s, respectively. For the modest target used with this hardware,

featuring 1 GB RAM and 1.4 GHz speed, this means that operation would likely be capped

at 3 joints, given the current system configuration. Of course, the PC104 is a nearly 8

114



Figure 60: Tracking θ13 with MPC and θ35 with a stiff PID controller while subjecting
bottom link unexpected disturbances.

year old computer, and the primary limitation on xPC Target / RTW execution speed is

memory, so it could easily be upgraded to be more capable.

Computational concerns will also likely be alleviated as more fast solvers are produced;

CVXgen is one of several similar solvers [29,45] that are becoming ever more capable.

It was seen in the multi-DoF case that the biggest tracking errors happen when direc-

tion changes, i.e. when stiction is the most prevalent. Elsewhere, tracking proved to be

fairly unaffected by friction, though it’s possible that the non-smooth results are actually

benefiting the MPC and act as a sort of dither signal. Results could be improved by adding

friction compensation, and improving the model to more accurately reflect the changing

inertial and gravitation dynamics, and the effects due to other joints.
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Figure 61: Simultaneous tracking θ13 and θ35 while changing the stiffness bound on the
MPC controlling θ35.

Figure 62: Effect of significant changes in the motion of θ35 while θ13 is tracking and
subjected to a lower stiffness bound of 40 Nm/rad.
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CHAPTER VII

CONCLUSIONS & FUTURE WORK

This thesis presents a new approach to compliant tracking, in which a constrained model

predictive controller (MPC) enforces optimal tracking control while satisfying impedance

bounds.

7.1 Summary of Contributions

The thesis has six primary contributions:

1. A complete analysis of the needs, standards, and design specifications (in the form

of well-defined performance tests and associated metrics) for compliant pneumatic

control, based on a literature review of applications and comparable tasks, and per-

formance of a set of benchmark controllers that span the range of possible target

performance characteristics.

2. A high-fidelity actuator model validated against several hardware platforms in the

time and frequency domains.

3. Development and analysis of a novel predictive friction compensation scheme that

improves tracking for slow systems, and comparison to standard friction compensation

approaches.

4. Two approaches to MPC for compliant tracking that enforce impedance/admittance

constraints in simulation and in hardware and meet the design targets laid out in

contribution (1): they have bandwidth within the desired 2-5 Hz range, achieve track-

ing errors comparable to the best benchmark controllers at a given stiffness bound,

and provided with an arbitrarily high bound, achieve the best accuracy possible with

MPC at the lowest necessary impedance without any a-priori knowledge of what that

impedance will be.
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5. Extensions to the MPC architecture that provide theory-backed stability and feasi-

bility guarantees while preserving compliance constraints.

6. Predictive control for a multi-DoF system consisting of a planar robotic arm, demon-

strating that the benefits observed in the single-DoF case extend to the planar case,

including compliant behavior, enforceable stiffness, and backdriveable joints for safe

interaction.

Through an extensive literature review, it was shown that compliant tracking is a com-

mon aim among systems that aim to imitate natural motion, or that are operated on or

around humans. Pneumatic actuators are well-suited for these applications: tracking band-

widths are generally low, up to 2-5 Hz, and inherent compliance is desirable. Additionally,

in applications such as the Compact Rescue Robot, the inspiration for this work, a versatile

actuator is necessitated that will be able to switch easily between compliant tracking in

free space, and high-force control for walking and lifting tasks. The literature review also

helped to establish quantitative performance goals by surveying related research, and estab-

lished a precedent for a constrained optimal control approach via the safe brachistochrone

problem: like the time-optimal variant, the goal of compliant tracking is to maintain safety

while moving accurately; therefore, compliance should be asserted as a bound on a position-

error-minimization problem.

To better establish baseline performance, several performance tests were designed to

related qualitative control goals to quantitative design specifications. These tests were

applied to a set of four benchmark controllers selected to span the accuracy-compliance

trade-off in simulation and hardware to more accurately characterize the state-of-the-art on

the trade-offs of accuracy, compliance, bandwidth, and response to unexpected disturbance.

Tests were run on hardware and on a high-fidelity actuator model, developed in Simulink

and validated against the single DoF hardware platform. Results showed that while all

controllers are inevitably subject to a trade-off of compliance and accuracy (and bandwidth),

there are clear asymptotes at for which tracking performance does not significantly improve.

Two MPC controllers were developed for the single DoF application – version 1 used an
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impedance constraint, while version 2 used an admittance constraint. The controllers were

compared to benchmark performance and shown to both match the accuracy-stiffness trade-

off observed among benchmarks, and achieve tracking comparable to the best benchmark

result at a given stiffness constraint. Furthermore, even at peak performance, the impedance

observed by constrained MPC-controlled systems reached a steady-state value equivalent

to the minimum impedance shown by the benchmark analysis to provide the best accuracy,

without any a-priori knowledge of this value. By contrast, an impedance controller design

to exceed this target impedance would obtain the same tracking, but with significantly less

compliance.

In addition to the basic MPC formulation, a version using a dual-mode prediction formu-

lation was designed that offered theory-backed stability and feasibility guarantees. However,

tests in simulation and hardware showed that the addition of the terminal cost and con-

straint required for dual mode satisfaction provided little benefit to this system; instead, it

simply increased computational load without significantly improving results. Furthermore,

using the simulation model, extensive parameter variation showed the basic MPC to already

be stable for a variety of reference and disturbance possibilities, due to stable low-level dy-

namics, constraints that ensured feasible reference inputs, and a sufficiently long prediction

horizon. While many of these results are particular to this system, they do verify that a

dual-mode prediction approach can be effectively used in accordance with compliance con-

straints, as long as other state/input constraints don’t conflict. Furthermore, the process

may be avoided through careful selection of key parameters such as the horizon length, or by

ensuring that the low-level dynamics are stable and merely ensuring appropriate constraints

for feasibility.

The MPC approach was also used to help identify limiting bounds in controller per-

formance for compliant control. While the impedance and admittance constraint methods

provided similar results in hardware, the admittance constraint marginally reduced the mini-

mum compliance required for a given accuracy in simulation, suggesting that the benchmark
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controllers hadn’t fully approached the capabilities of model-based feedback control. Addi-

tionally, using friction compensation, both MPCs were able to significantly improve track-

ing, even at low compliance metrics, with negligible effects on measured system impedance,

demonstrating that friction remains a large obstacle in pneumatic control.

In addition to the additive friction compensation method used in the thesis, a novel pre-

dictive friction compensation method was introduced that sequenced a predictive estimator

and controller so that the system could better prepare for sudden disturbances, such as

stiction. The approach was shown to improve friction compensation for slow systems, both

analytically and in simulation. Unfortunately, its value didn’t extend to compliant con-

trol, presumably either due to conflicts with compliance constraints, or because a system

already operating at optimal or near-optimal performance can’t change behavior within the

framework of MPC.

Finally, the results observed on the 1-DoF application were extended to a 2-DoF planar

robotic arm. It was shown that, the MPC approach translated to a implementation on

a multi-DoF system by using individual predictive controllers at each joint. Mappings

were used in lieu of linearization where possible, and the controller proved to be effective

despite significant assumptions, including use of a linear time-invariant model and no specific

consideration for disturbances caused by other actuators. In fact, with maximum impedance

limits, tracking errors under 2 mm were observed, comparable to the best single DoF RMSE,

which was on the order of 1-2 mm. Additionally, the system was backdriveable without

incurring significant force, stayed well under the 50 N interaction upper bound suggested in

the literature review, and preserved stiffness constraints applied to the controller, though

they were generally deemed unnecessary: the default observed impedance using MPC was

already minimal, and ensured the desired target behavior of safe, compliant, and accurate

tracking.

7.2 Applications & Limitations

While the predictive controller is better formulated to achieve low-error, low stiff-

ness control than many state-of-the-art benchmarks, its main asset is the ability to treat
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impedance as an inequality constraint rather than a target (observed via force interaction).

This result is clearly illustrated in Figure 50 and detailed in section 5.5. In applications such

as orthoses and cooperative robots, in which humans and machines are in close proximity,

the safety of their interaction is ensured by bounds on interaction forces, which are directly

related to contact impedances. The MPC enables a designer to determine what that crit-

ical level is and use the predictive controller to ensure compliant control that is accurate

without violating the safety bound. The format is in keeping with safety standards, which

are frequently given as upper bounds on force or velocity [1,41]. Other applications include

robots for pick-and-place manufacturing, or space and exploration machines, which require

manipulators that can freely extend and contact the environment without risking harm or

damage, i.e. machines that are subject to some impedance bound to guarantee mechanical

robustness.

Of course, there are clear limitations to the application of compliant MPC. First, the

system model must be well-defined and any loads must be easily sensed or negligible with

respect to inherent machine dynamics and actuation forces. More importantly, while compli-

ant control effectively limits output impedance, it is also an inherently compliant controller

– meaning that it is ineffective for applications that require significant un-modeled force,

e.g. for walking or lifting heavy loads. For example, in the true case of a rescue robot that

both roams about and interacts with endangered victims, the compliance-constrained MPC

would only be used during interaction, and instead would be replaced by more suitable

controllers in the walking case, which requires sufficiently stiff outputs.

The scope of this work has been limited to pneumatic actuators and sets of single DoF

applications, but the resultant predictive controller and constraints for compliant tracking

are not limited to these sample cases. In fact, pneumatic systems are likely a particularly

challenging application: pneumatic systems introduce nonlinear force dynamics that are

inherently coupled to other system states, which makes any constraints that relate force

to other states difficult to enforce. Instead, the application of compliance and impedance

constraints to systems with inherent compliance should be more straightforward in actuators

and systems that are with force dynamics that are better behaved. This presents a clear
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direction for future research.

7.3 Recommendations for Future Work

There are two clear paths for future work: first, the predictive controller capability

could be improved for the pneumatic application, and second, as discussed in section 7.2,

the breadth of MPC for compliant tracking could be explored by applying the controller &

constraints to ‘nicer’ systems.

The application to pneumatic systems could be improved through better friction com-

pensation and direct stiffness control via access to pressure states, while the overall pre-

dictive compensation scheme would benefit from improved solvers, multi-DoF realizations

that are better suited to the strengths of predictive control, and expansion to actuators

with more well-behaved internal dynamics.

7.3.1 Improvements to MPC for Pneumatic Applications

While predictive compensation was shown in section 5.4.1.3 to greatly improve friction

compensation for slow systems (and especially pneumatic actuators) and produce tracking

errors on the order of 1 mm, these results did not translate to compliant control. A likely

reason is that the effects of the predictive compensator were only translated in the distur-

bance term, and that the added friction compensation effectively conflicted with impedance

constraints. One proposed solution would be to attempt to offset the friction needs in the

impedance constraint. Since the impedance and admittance constraints are frequently ap-

plied as a function of force, the estimated friction force over the prediction horizon could

be added to the force incurred by the impedance relation, or otherwise combined with the

impedance constraint. Since friction compensation is inherently canceled by system friction,

the capability would have negligible effect on the output impedance. Of course, in contact

situations, this approach would simply increase the force limit, necessitating some kind of

disturbance observer.

Additionally, while MPC with compliance constraints was shown to be effective on
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pneumatic actuators, the challenge of nonlinear force dynamics was countered by control-

ling stiffness dynamics indirectly, via closed loop force control, rather than directly, using

chamber pressure relations. This could be improved using a linear model that enabled di-

rect access to the pressure states. While it is easy to linearize pneumatic dynamics based

on the equations, most past researchers have avoided this approach and instead used either

an inner force control loop or an aggressive position control method, such as sliding mode

control. However, a model-based approach to full state-feedback pneumatic position control

suggests that the inner loop may be unnecessary if appropriate modeling assumptions are

made and the system is well-conditioned.

In section 3.4.3, it was shown that the mass flow dynamics could be easily modeled as a

function of the chamber pressure and the input orifice area. Furthermore, this relationship is

easily modeled with a polynomial surface defined by equation equation (19). The complete

dynamics are then presented compactly as

d

dt



x1

x2

Pa

Pb


=



x2

PaAa−PbAb
m

(PaAax2 + ṁ(A(u), Pa)RT ) 1
x1Aa

(PbAbx2 + ṁ(A(u), Pb)RT ) 1
(L−x1)Aa


(112)

where mass flow is approximated by local linear functions ṁ(A(u), Pa,b) = K1A(u)+K2Pa,b.

K1 and K2 are constants that are easily obtained from equation (19).

While friction force is generally either omitted or found using a Stribeck-curve, it is also

possible to approximate it, e.g. with a viscous friction model, Ffrict = bx2. A linearization

can then be found by determining the Jacobian, J (using a Taylor Series approach):

∆Ẋ = J∆X or Ẋ = J (X −X|t=T0) + Ẋ|t=T0 where J =

0 1 0 0 0

0 −b Aa/M −Ab/M 0

Aa Pa x2−RT ṁa(Aeq ,Pa)

Aa (L+dsa+x1)2
− Pa
L+dsa+x1

− Aa x2−RT Φ2a
Aa (L+dsa+x1) 0 RT Φ3a

Aa (L+dsa+x1)

Ab Pb x2+RT ṁb(Aeq ,Pb)

Ab (L+dsb−x1)2
Pb

L+dsb−x1 0 Ab x2+RT Φ2b
Ab (L+dsb−x1) − RT Φ3b

Ab (L+dsb−x1)


(113)
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The functions Φ2a, Φ2b, Φ3a, and Φ3b result from the mass flow derivative, and are functions

of chamber pressure and input. They are detailed in the appendix in section C.1.
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Figure 63: Pneumatic actuator position tracking using a model predictive controller
equipped with a constant linearization of the full state dynamics. Top: direct lineariza-
tion. Bottom: non-dimensionalized and scaled linearization.

However, this matrix is prone to singularities and poor conditioning. To avoid issues

with condition number, a non-dimensionalization, detailed in the appendix in section C.1.1,

may be used to define an appropriate change-of-variable. Results show that this non-

dimensionalization is key, reducing condition numbers from values as high as 1015 to 300.

Indeed, Figure 63 shows how a simulation of a model predictive controller (with simple

force constraints – not impedance constraints) was markedly improved by using the well-

conditioned linearization.

These good results suggest that a time-varying full-state model might be effective in

MPC for compliant tracking. In both LTI and LTV cases, the full linearization would

hopefully help relate compliance directly to the pressure states to more significantly improve

the capability of the constrained compliant controller.
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7.3.2 Changes to MPC Implementation, Formulation, and Scope

One of the clearest limitations on the MPC formulation is the choice of solver. CVXgen,

while effective, imposes some rather severe limitations on the compliant control problem. If

the optimization problem could instead be parsed for a nonlinear system, or with constraints

that directly addressed impedance, the MPC could become much more powerful. With

state-of-the-art solvers, CVXgen is an ideal choice for real-time implementation, and the

most appropriate alternative would be an explicit MPC that computes solutions off-line and

uses a lookup table to implement them in real-time.

Beyond solver limits, the particular problem formulation may be better defined for

predictive control, especially when applied to a system with multiple degrees of freedom.

In chapter 6, a planar robot was controlled using MPCs on each joint. The controllers used

constant, simplified actuator models, but still recorded good performance. This approach

could be improved upon in two ways: first, a higher-fidelity model with consideration of

disturbances (as detailed in equation (105)) might be used to better relay system dynamics

to the model-based controller, and second, the MPC could instead be used as a high-level

controller, e.g. as a trajectory generation tool, subject to compliance constraints. The latter

approach would be especially appropriate since MPC is excellent at enforcing constraints

and solving for optimal trajectories, but the challenge of exact, actuator level tracking is

better enforced by a low-level controller. This also reduces the stability problem to one of

ensured feasibility.

Finally, it would be interesting to apply MPC for compliant tracking to systems that

are better behaved than the single-valve/single-cylinder pneumatic actuator. Within the

realm of pneumatic applications, a multi-input, multi-output (MIMO) system, such as a

two-valve/single cylinder approach would allow simultaneous force and stiffness control [76],

making it a type of variable stiffness actuator (VSA). Then the predictive controller could

be used to more directly modulate the stiffness bounds without being heavily affected by the

inherent coupling between actuator stiffness and piston position. Similarly, the predictive

controller could be applied to other VSAs with simpler, more linear force dynamics, or to

other actuators with better force dynamics, such as Series Elastic Actuators (SEAs).
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The implementation of MPC with constraints on compliance is an effective strategy for

creating control schemes that possess intrinsic safety, given an appropriate upper bound.

The approach works well with pneumatic systems, and even improves the capability for gen-

eral accurate, compliant control relative to common benchmark controllers. The controller

has clear value to applications where machines may interact with humans and intrinsic

safety is desired, or where a robot may move about an unknown environment and should be

able to experience unexpected contact robustly and without damage. With further study,

the approach could more directly affect system stiffness, and could applied to a broader set

of compliant systems.
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APPENDIX A

DATA COLLECTION & ANALYSIS

In chapters 4 and 5, the performance of a single degree of freedom platform was explored

using numerous quantitative metrics. This section details the data collection process: meth-

ods and codes for non-obvious metrics, and an overview of the data collected.

The goal of the analysis was to represent individual controller performance via a concise

set of metrics, so that over sufficient parameter variation, performance trends would be

evident. Therefore, metrics included root-mean-square position and velocity tracking error,

interaction force, response characteristics (overshoot, settling time, steady-state error), and

frequency domain quantities, like closed loop bandwidth and system impedance.

The following sections detail the process as necessary. First, in section A.1, the spectral

analysis approach is discussed. Next, specific codes for frequency-domain methods, data-

fitting, and data-finding are detailed in section A.2. Section A.3 provides an overview

of the hardware configuration connected to each platform (the platforms themselves are

discussed in chapter 3), and possible concerns and differences. Finally, section A.4 provides

a comprehensive overview of the observed data from simulation and hardware.

A.1 Spectral Analysis

In both hardware and simulation, it is necessary to use spectral analysis to examine the

behavior of the system in the frequency domain. Fortunately, the available MATLAB tools

are fairly powerful, provided results can be averaged– a straightforward process as long as

the experiments are all performed with the same sampling frequency, Ts = 1/dt (or dts in

the simulation case).

In general, spectral analysis looks at spectral density – the amount of power contained

in a signal at a given frequency. A good high-level overview at http://www.mathworks.

com/help/signal/ug/spectral-analysis.html that talks about the general process and
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value of various spectral analysis techniques.

The primary aim of the spectral analysis performed so far has been to find transfer

functions for systems or subsystems. The transfer function is a frequency-domain represen-

tation of a system given and input, x, and an output, y. From the magnitude and phase

plots, the goal is often to characterize system behavior, or to compare it between hardware

and simulation, against an analytical estimate, or to make quantitative observations, such

as the bandwidth.

The subsequent overview goes through the basic steps for obtaining a transfer func-

tion. Next, and overview of comparable MATLAB functions is given, as well as necessary

procedures to improve their utility (primarily averaging).

A.1.1 Method for Obtaining a Transfer Function

The transfer function is actually the quotient of the cross power spectral density of x

and y, Pyx, and the power spectral density of x, Pxx. Mathematically, the power spectral

density is the discrete Fourier transform of the auto-correlation (i.e., it shows the frequency

distribution of the expected power content in the signal). Similarly, the cross power spectral

density is the DFT of the cross-correlation, so it measures the power shared by two signals

at each frequency.

To find the transfer function, it is first necessary to remove the DC offset from the

time-series data, which is done by subtracting the mean:

x(t) = xactual(t)−mean(xactual(t)) (114)

Next, time series data is prepared for the DFT using windowing functions. More ad-

vanced algorithms, such as the Welch algorithm used by several MATLAB commands, break

down the time content into multiple overlapping segments and apply windowing functions

to each of them. While there are numerous windowing functions, they generally weight the

content of the signal to improve accuracy of the DFT; for example, they typically provide

more weight to the points in the center of the window to avoid the false recognition of jump

discontinuities (the window is intended to discover periodic behavior, so if the values at the
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start and end are different, it would suggest a step, which has infinite frequency content).

Common examples include Hanning and Hamming windows.

Subsequently, the DFT is applied and scaled by the length:

X(jω) = fft(x(t))/N (115)

where N is the number of points in X(t).

Next, the power spectral density (PSD) and cross power spectral density (CPSD) are

found. This is done by multiplying the signal by its complex conjugate at each frequency

value (which results in the squared magnitude of the complex value at that frequency). For

each frequency:

Pxx(jω) = X(jω)X∗(jω) (116)

Pyx(jω) = Y (jω)X∗(jω) (117)

where the asterisk indicates a complex conjugate. Note that these calculations are performed

at each frequency value (so if X(jω) has 1000 data points, then Pxx(jω) will also have 1000

data points).

At this point, the transfer function is found to be the ratio defined above:

Hxy(f) =
Pxy(f)

Pxx(f)
(118)

If multiple experiments were performed, and the goal is just to find the transfer function,

the the transfer function can be found as the sum of PSD and CPSD values at each frequency,

i.e.

Gxx(f) = ΣNTests
0 Pxx,N (119)

Gyx(f) = ΣNTests
0 Pyx,N (120)

Hxy(f) =
Gxy(f)

Gxx(f)
(121)

Of course, Gxx is not equal to Pxx. An alternative strategy is to average results at the

end, once the transfer function is found, using the coherence as a weight.
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The magnitude squared coherence of x with respect to u is a function with decimal

values in the range (0,1) at each frequency that indicate how well x corresponds to y at

that frequency. It is found using

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
(122)

It is possible to further refine the data, e.g., through the use of averaging, which helps

to smooth out and reduce the size of data.

A.1.2 Using the MATLAB tools for effective spectral analysis

While the basic approach provided in section A.1.1 is straightforward and largely ac-

ceptable for simulation, it isn’t especially robust and benefits from advanced methods.

Fortunately, MATLAB has a host of predefined functions and settings intended to improve

results.

Most of the MATLAB tools use Welch’s averaged periodogram method to find the

PSD and CPSD, which essentially improves accuracy by splitting the signal into a number

overlapping windowed segments and then averaging them to get the PSD estimate. It is

possible to define windowing and overlap settings, though in general, the default parameters

are sufficient.

The two primary tools for transfer function analysis are tfestimate() and mscohere().

The transfer function estimate function [txy, F] = tfestimate() provides the compex-

valued transfer function given an input x(t) and an output y(t), at nfft frequencies from

zero to Fs/2. Fs is the sampling frequency, and nfft is either specified by the user, or in

the default case, found as the maximum of 256 or the next power of 2 greater than each

section of x(t) or y(t). A standard input for tfestimate() looks like

>> [txy, F] = tfestimate(x, y,[],[],[],1/dt)

or

>> [txy, F] = tfestimate(x, y,[],[],nfft,1/dt)

if the number of points needs to be specified. The magnitude squared coherence takes the

same inputs, so a corresponding coherence signal could be found using

>> [txy, F] = mscohere(x, y,[],[],nfft,1/dt).
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Other useful tools include functions for the Power Spectral Density, pwelch(), and

cross-power spectral density, cpsd(), both of which use Welch’s method. pwelch() has one

less input than the other signals, since it depends only on one signal.

One challenge with using MATLAB tools is that they only provide results for each

experiment separately. However, results of multiple tests can easily be combined as long as

the frequencies correspond; that is, nfft and Fs must match, so that the frequency range,

F, is the same for all the experiments. Then the results can be averaged to find a better

estimate. To get the best results, a weighted average should be used to ensure that better

values are given more confidence and achieve better results with less, well-selected data.

This can be achieved by using the coherence value as a weight and performing a weighted

average:

>> weight = cxy.^2;

>> txy avg = sum(weight.*txy,2)./sum(weight,2);

>> cxy avg = sum(weight.*cxy,2)./sum(weight,2);

The scripts in this thesis made use of these functions for detail analysis.

A.2 MATLAB Codes for Data Analysis

This section includes three non-intuitive codes. Plot AvgFreqResp() is used to ob-

tain the bandwidth transfer function, and Get Bandwidth() is subsequently applied to the

transfer function to extract distinct bandwidth values by finding the +/- 3 dB crossover

point. Additionally, Plot FRF FitVariable() is used on impedance data to fit a mass-

spring damper model to frequency response tests. To obtain the best fit, the function uses

and and index that falls inside a range of possible upper frequency bounds.

A.2.1 Plot AvgFreqResp.m

function [PlotData, AvgFreqData] = Plot AvgFreqResp(RunData, RunDetails,...

Time Preferences, InputFieldName, OutputFieldName, FRF Title, ...

FieldPrefix, PlotData In)

%This file gets the frequency response data from
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%RunData.OutputFieldName/RunData.InputFieldName. It averages over all the

%inputs.

%Get Data in and out

define DataIn = ['dataIn = RunData(kk).' InputFieldName ';'];

define DataOut = ['dataOut = RunData(kk).' OutputFieldName ';'];

%%%%%%%%%%%%%%% Get Key Data from the Given Inputs %%%%%%%%%%%%%%%%%%%%%%%%

%Get start and end times

t start = Time Preferences(1);

if length(Time Preferences) > 1

t end = Time Preferences(2);

else

t end = length(RunData(1).positions);

end

%Other initializations

dts = RunDetails(1).CV.dts;

PlotData = PlotData In;

%%%%%% Get transfer function and coherence estimate from each trial %%%%%%%

for kk = 1:length(RunData)

%Get Data in and out

eval(define DataIn); eval(define DataOut);

[txy all(:,kk), F all] = tfestimate(dataIn, dataOut,[],[],[],1/dts);

[cxy all(:,kk), Fc all] = mscohere(dataIn, dataOut,[],[],[],1/dts);

%Add a weighting function that is one at sampled frequencies

%and zero otherwise

F cutoff(kk) = RunDetails(kk).CV.FreqF;

i cutoff = find(F all > F cutoff(kk),1);

F all excitation(:,kk) = 0*F all;

F all excitation(1:(i cutoff - 1),kk) = 1;

end
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%%%%%%%%%%%%%%% Average results & get rid of useless data %%%%%%%%%%%%%%%%%

weight = (cxy all.ˆ2).*F all excitation;

txy all avg = sum(weight.*txy all,2)./sum(weight,2);

cxy all avg = sum(weight.*cxy all,2)./sum(weight,2);

%%%%%%%%%%%%%%% Put Results in nice form %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Convert to magnitude and phase

txy select mag = mag2db(abs(txy all avg));

txy select phase = 180/pi*(angle(txy all avg));

%%%%%%%%%%%%%%% Plot Results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

RunIndex1 = num2str(RunDetails(1).ST.Run Number);

ControlType = RunDetails(1).ST.Position Controller;

if length(RunData) > 1

RunIndex2 = num2str(RunDetails(length(RunData)).ST.Run Number);

TitleText = ['R' RunIndex1 ' - R' RunIndex2 ': ' ControlType ...

' Control. ' FRF Title ' Frequency Response: Magnitude'];

else

TitleText = ['R' RunIndex1 ': ' ControlType ' Control. ' FRF Title ...

' Frequency Response: Magnitude'];

end

%Plot results with fit

fH = figure('Position',[350 50 1200 900]);

ax(1) = subplot(3,1,1);

semilogx(F all, txy select mag,'g.');

hold on;

title(TitleText)

xlabel('Frequency [Hz]')

ylabel('Magnitude [dB]');

xlim([.1, max(F cutoff)]);

grid on

ax(2) = subplot(3,1,2);
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semilogx(F all, txy select phase,'g.');

hold on;

title([FRF Title ' Frequency Response: Phase'])

xlabel('Frequency [Hz]')

ylabel('Phase [deg]');

grid on

ax(3) = subplot(3,1,3);

semilogx(Fc all, cxy all avg,'g.');

xlabel('Frequency [Hz]')

title('Coherence');

linkaxes(ax,'x');

%%%%%%%%%%%%%%% Save Outputs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

eval lead str = ['PlotData(Run Index).' FieldPrefix '.'];

%Figure Handle

eval struct(1).eval str = [eval lead str 'FigHandle = fH;'];

%Indivual run data

eval struct(2).eval str = [eval lead str 'txy run = txy all(:,kk);'];

eval struct(3).eval str = [eval lead str 'cxy run = cxy all(:,kk);'];

%Averaged run data

eval struct(4).eval str = [eval lead str 'txy avg = txy all avg;'];

eval struct(5).eval str = [eval lead str 'cxy avg = cxy all avg;'];

%Frequency

eval struct(6).eval str = [eval lead str 'F all = F all;'];

for kk = 1:length(RunData)

Run Index = RunDetails(kk).ST.Run Number;

for jj = 1:length(eval struct)
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eval(eval struct(jj).eval str);

end

end

% To plot comparison data, since the PlotData output can be overwritten

% with other averages, it's necessary to output just the core frequency

% response data, and a run number to relate it to the run details

AvgFreqData.F all = F all;

AvgFreqData.txy avg = txy all avg;

AvgFreqData.cxy avg = cxy all avg;

AvgFreqData.Run Index = RunDetails(1).ST.Run Number;

%The Run Index only really holds if all the runs being averaged are

%the same general controller

AvgFreqData.FRF Title = FRF Title;

AvgFreqData.F cutoff = max(F cutoff); %The biggest of all the sampled runs.

end

A.2.2 Get Bandwidth.m

%% Function to get a number for bandwidth.

% Runs under assumption that output transfer function has been found.

% For that, use Plot AvgFreqResp. For example, in

% MultiRun Bandwidth Fast MPC JPL.m, the function is called using

% PlotData = Plot AvgFreqResp(RunData, RunDetails, 1, 'ref x', ...

% 'positions(:,1)', 'CL Bandwidth', 'Bandwidth', PlotData);

% It can then be followed up by this function.

%Note that the input likely has to specify the first entry (PlotData(1)),

%since Bandwidth is local to the index when there are several indices.

function [PlotData] = Get Bandwidth(PlotData)
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txy mag = abs(PlotData.Bandwidth.txy avg);

txy phase = 180/pi*(angle(PlotData.Bandwidth.txy avg));

%Don't have a phase condition. But we could do that.

F all = PlotData.Bandwidth.F all;

idx 1 = find(txy mag > db2mag(3), 1);

idx 2 = find(txy mag < db2mag(-3), 1);

%Deal with cases where bounds are not crossed

if (isempty(idx 1) == 1), idx 1 = inf; end;

if (isempty(idx 2) == 1), idx 2 = inf; end;

BW idx = min(min(idx 1, idx 2), length(F all));

%If they're both infinite, we use the max frequency reached

PlotData.Bandwidth.BW idx = BW idx;

PlotData.Bandwidth.BW Freq = F all(BW idx);

end

A.2.3 Plot FRF FitVariable.m

function [Plot Data] = Plot FRF FitVariable(RunData, RunDetails, ...

Time Preferences, Frange, Plot Data In)

%this file gets the impedance transfer function from an averaged set of

%runs and then plots it against the expected values.

%%%%%%%%%%%%%%% Get Key Data from the Given Inputs %%%%%%%%%%%%%%%%%%%%%%%%

%Get start and end times

t start = Time Preferences(1);

if length(Time Preferences) > 1

t end = Time Preferences(2);

else
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t end = length(RunData(1).positions);

end

%Expected Curve parameters

if (strncmp(RunDetails(1).ST.Position Controller, 'IMPEDANCE', 5) == 1)

k exp = RunDetails(1).CV.Z k;

b exp = RunDetails(1).CV.Z b;

m exp = RunDetails(1).CV.Z m;

else

k exp = RunDetails(1).CV.K Des;

b exp = RunDetails(1).CV.Z Des;

m exp = RunDetails(1).CV.M Des;

end

if m exp == 0

wn exp = sqrt(k exp/3);

z exp = b exp/(2*3*wn exp);

else

wn exp = sqrt(k exp/m exp);

z exp = b exp/(2*m exp*wn exp);

end

%Other initializations

dts = RunDetails(1).CV.dts;

Plot Data = Plot Data In;

%%%%%% Get transfer function and coherence estimate from each trial %%%%%%%

for kk = 1:length(RunData)

%Get Data in and out

dataIn = RunData(kk).positions(t start:t end,1) ...

- RunDetails(kk).CV.Reference Bias;

dataOut = RunData(kk).F Feel(t start:t end);

[txy all(:,kk), F all] = tfestimate(dataIn, dataOut,[],[],[],1/dts);

[cxy all(:,kk), Fc all] = mscohere(dataIn, dataOut,[],[],[],1/dts);
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%Add weighting function that's 1 at sampled frequencies and 0 otherwise

F cutoff(kk) = RunDetails(kk).CV.FreqF;

i cutoff = find(F all > F cutoff(kk),1);

F all excitation(:,kk) = 0*F all;

F all excitation(1:(i cutoff - 1),kk) = 1;

end

%%%%%%%%%%%%%%% Average results & get rid of useless data %%%%%%%%%%%%%%%%%

weight = (cxy all.ˆ2).*F all excitation; %cxyˆ2 works better than cxy

txy all avg = sum(weight.*txy all,2)./sum(weight,2);

cxy all avg = sum(weight.*cxy all,2)./sum(weight,2);

%%%%%%%%%%%%%%% For Impedance Plots: Fit Curve to Results %%%%%%%%%%%%%%%%%

% Define a curve and include some pre-processing to get rid of problem

% cases like zero and NaN values.

f2ndorder = @(w,k eq,wn,z)(20*log10(((1-(w/wn).ˆ2).ˆ2 ...

+ 4*zˆ2*(w/wn).ˆ2).ˆ(1/2).*k eq));

ft=fittype('20*log10(ksˆ2.*((1-(x/wn).ˆ2).ˆ2 + 4*zˆ2*(x/wn).ˆ2).ˆ(1/2))');

%INSTEAD OF USING FULL FREQUENCY RANGE, ADJUST

best rmse = inf; %initialize

for MaxRange = Frange(1):0.1:Frange(2)

F start idx = find(F all > 0.5, 1);

F end idx = find(F all > MaxRange,1);

F fit = F all(F start idx:F end idx);

txy fit = txy all avg(F start idx:F end idx);

nonzero idx = all((abs(txy fit)),2);

nonNaN idx = ~isnan(mag2db(abs(txy fit)));

idxValid = logical(nonzero idx.*nonNaN idx);

%Turn warning off for this

warning('off','curvefit:fit:noStartPoint')

[fit iteration, gof] = fit(2*pi*F fit(idxValid), ...

mag2db(abs(txy fit(idxValid))), ft, 'Lower', [0 0 0], ...
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'StartPoint', [sqrt(k exp) wn exp z exp]);

warning('off','curvefit:fit:noStartPoint')

%Use the goodness of fit stat to pick the range (within the acceptable

%range) that works best

if gof.rmse < best rmse

best rmse = gof.rmse;

fit results = fit iteration;

best fit maxF = MaxRange;

best fit idx = F end idx-(F start idx-1);

end

end

%Now get the solutions from that

fit solns=coeffvalues(fit results);

%Define curves

k fit = fit solns(1)ˆ2; wn fit=abs(fit solns(2)); z fit=abs(fit solns(3));

y fit = f2ndorder(2*pi*F fit, k fit, wn fit, z fit);

y exp = f2ndorder(2*pi*F fit, k exp, wn exp, z exp);

%%%%%%%%%%%%%%% Put Results in nice form %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Convert to magnitude and phase

txy select mag = mag2db(abs(txy all avg));

txy select phase = 180/pi*(angle(txy all avg));

%%%%%%%%%%%%%%% Plot Results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

m fit = k fit/wn fitˆ2; b fit = 2*z fit*wn fit*m fit;

TitleText = ['Impedance F {feel}/X {err}. Z {fit} = ' ...

num2str(m fit,'%.2f') 'sˆ2 + ' num2str(b fit,'%.2f') 's + ' ...

num2str(k fit,'%.2f'), '. Fitted over freq. range [' ...

num2str(F fit(1),'%.2f') ' ' num2str(best fit maxF) '] Hz'];

TitleText2 = ['Expected Z {exp} = ' num2str(m exp, '%.2f') 'sˆ2 + ' ...

num2str(b exp,'%.2f') 's + ' num2str(k exp,'%.2f')];
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%Plot results with fit

fH = figure('Position',[250 50 1100 900]);

ax(1) = subplot(3,1,1);

semilogx(F all, txy select mag,'g.');

hold on;

semilogx(F fit, (y fit),'k:');

semilogx(best fit maxF, y fit(best fit idx),'k.');

semilogx(F fit, (y exp),'b--');

l=legend('Actual', 'Fit', 'Freq. Range of Fit', ...

'Expected Impedance');

set(l,'Position',[.23 .03 .15 .05]);

title(TitleText)

xlabel('Frequency [Hz]')

ylabel('Magnitude [dB]');

xlim([F all(1), max(F cutoff)]);

grid on

ax(2) = subplot(3,1,2);

semilogx(F all, txy select phase,'g.');

hold on;

title(TitleText2)

xlabel('Frequency [Hz]')

ylabel('Phase [deg]');

grid on

ax(3) = subplot(3,1,3);

semilogx(Fc all, cxy all avg,'g.');

xlabel('Frequency [Hz]')

title('Coherence');

linkaxes(ax,'x');

%%%%%%%%%%%%%%% Save Outputs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

RN1 = RunDetails(1).ST.Run Number;

Plot Data(RN1).Impedance.VarFit = [m fit b fit k fit];
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Plot Data(RN1).Impedance.VarRangeLimit Acceptable = [Frange(1) Frange(2)];

Plot DataRN1).Impedance.VarRangeLimit Final = best fit maxF;

Plot Data(RN1).Impedance.ShortRangeIndex = [F start idx F end idx];

end

A.3 Hardware Deployment for Control

The basic hardware configuration has two key parts: a host and a target. The host

runs MATLAB/Simulink and lets the user interface with the file during run-time, while the

target runs xPC Target/Real-Time Workshop and executes the actual control code. The

two are connected via a network; when the PC104 was used, a local network routed through

a switch was used, while with the laptop & Quanser Q8 board configuration, a crossover

cable was used to directly connect the two devices.

A.4 Overview of Data Collected

The analysis consisted of four tests, detailed in chapter 4:

1. Slow Sine Test: Produced RMS error as a function of the tuning parameter.

2. System Impedance: Produced a transfer function representation of the impedance.

A fitting function was used to extrapolate stiffness and damping characteristics, again

as a function of the tuning parameter.

3. Force Disturbance/Release: Produced an interaction force, a maximum distur-

bance perturbation, and post-release response characteristics. The hardware setup

wasn’t able to be configured to really support this test (because the shaker couldn’t

be disconnected, it inherently more than doubled the mass and added an inherent

damping to the post-release behavior).

4. Closed Loop Bandwidth Test: Produced bandwidth (the +/- 3 dB cutoff value,

in Hertz), as a function of the tuning parameter.

For each test, simulation and hardware variations were carried out on 12 controllers: the
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four benchmark controllers, the four MPC variations (v1 and v2, with and without friction

compensation), and the four MPC variations with dual mode stability guarantees.

Simulations were used to explore the space of parameter variations, but only a subset

of those were really comparable to hardware (based on run parameter settings). In the

figures below, simulation results are indicated by dots, and hardware results are depicted

by Xs. The bold (dark) dots represent simulations that are comparable to hardware, while

the pastel-colored dots display the performance other parameter variations. In a few cases

with the dual mode controllers, it was impossible to obtain the desired data in a reasonable

amount of time due to CPU overload issues; in those cases, hardware tests were either

limited or entirely excluded (indicated by a lack of corresponding X’s in the figures below).

A.4.1 Slow Sine Tracking

The RMS error as a function of tuning parameters is depicted in Figures 65 - 66.

A.4.2 Impedance Fit

In the impedance fit, there was a discrepancy between the ideal version of the test in

hardware and simulation. Ideally, the shaker would be subjected to very good position

control, a position sweep would be provided, and the impedance would be obtained by

measuring the matching interaction force measurement. Pneumatic nonlinearities are more

prevalent at extreme positions (the differential pressures are inversely proportional to ac-

tuator chamber volume), so a set position is a meaningful parameter to vary. However, in

practice, controlling a shaker to track perfectly in the presence of a large disturbance is

a fairly difficult problem; instead, a voltage chirp may be provided to the shaker, which

converts it to a force disturbance.

This approach is difficult to replicate in simulation, for several reasons. First, the

shaker must be initially off, so that when the position controller is initialized, the shaker

is not exerting forces on it (if the shaker and actuator are initially opposed, the stinger

connecting the two may buckle, and the experiment must be aborted). Therefore, the

shaker has to be turned on manually inside a set time-frame. Since the shaker’s dynamics

are only approximately known, the conversion of voltage to force, and the timing, are nearly
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Figure 64: Benchmarks: tuning parameter vs. slow sine RMSE.
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Figure 65: MPC: tuning parameter vs. slow sine RMSE.
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Figure 66: Dual mode MPC: tuning parameter vs. slow sine RMSE.

impossible to match in simulation.

Instead, the tests in simulation were primarily conducted using the position chirp, which

is easily automated and straightforward to control, since the shaker is modeled as a per-

fect force source, and there are no limits on the gains of the corresponding PD controller.

Additionally, however, a test similar to that tried in hardware was run: by assessing hard-

ware measurements, a force disturbance was provided with bias and amplitudes that closely

matched those observed in hardware. With this approach, it was possible to verify that the

two methods do, in fact, produce very similar results.

In Figures 67 - 69, the bold circles depict simulations using the method matching the

hardware tests (impedance obtained from a force chirp and measured position response),

while the bold triangles illustrate the performance of the idealized test – impedance based

on position chirp and measured interaction force.
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Figure 67: Benchmarks: tuning parameter vs. observed stiffness fit.
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Figure 68: MPC: tuning parameter vs. observed stiffness fit.
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Figure 69: Dual mode MPC: tuning parameter vs. observed stiffness fit.
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A.4.3 Force Perturbation/Release

Figures 70 - 72 illustrate the interaction force for a position-controlled disturbance to the

actuator’s intended position setpoint, applied by the shaker. In Figure 67, it is evident that

the hardware results for SMC are much lower than the simulated ones. This was actually

caused by a hardware limitation: even with the current limit at its maximum value, the

shaker was unable to supply a sufficiently strong force to perturb the system by the desired

amount of 0.01 inches for λ > 10. As a result, the forces are simply at their maximum

possible value with the hardware setup.

In simulation, this is achieved by representing the shaker as a perfect force source and

using an idealized PD controller to close the loop on position. As long as the shaker is

significantly stronger than the actuator, this is a sufficient representation. In practice,

a frequency response analysis was conducted to perform a system identification analysis

on the electromagnetic shaker attached to an unpressurized cylinder. A Laser Doppler

Vibrometer (LDV) was used to measure position, resulting in a system with a transfer

function of X/V = K/(s2 + 43s), where X is shaker position, V is the voltage input to the

amplifier, and K is dependent on the shaker amplifier scaling, and the denominator zero is

due to damping of the unpressurized cylinder dynamics, verifying that the shaker itself –

a linear motor – is a near-ideal force source. A discrete PD controller, designed for a fast

response time and zero steady-state error, was used to control the shaker, though realistic

input voltage limits and cylinder dynamics led to reduced tracking performance compared

to simulation.

A.4.4 Closed Loop Bandwidth

The bandwidth as a function of tuning parameter is detailed in Figures 73 - 75.
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Figure 70: Benchmarks: tuning parameter vs. interaction force.
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Figure 71: MPC: tuning parameter vs. interaction force.
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Figure 72: Dual mode MPC: tuning parameter vs. interaction force.
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Figure 73: Dual mode MPC: tuning parameter vs. position tracking bandwidth.

149



0 2000 4000 6000 8000
0

0.5

1

1.5

2

2.5

3

3.5
MPC v1

Tuning Parameter, Kmax
B

an
dw

id
th

 (
H

z)
0 2000 4000 6000 8000

0

1

2

3

4

5
MPC v2

Tuning Parameter, Kmax

B
an

dw
id

th
 (

H
z)

0 2000 4000 6000 8000
0

1

2

3

4

5
MPC v1 (+ Frict Comp)

Tuning Parameter, Kmax

B
an

dw
id

th
 (

H
z)

0 2000 4000 6000 8000
0

1

2

3

4

5

6
MPC v2 (+ Frict Comp)

Tuning Parameter, Kmax

B
an

dw
id

th
 (

H
z)

Figure 74: Dual mode MPC: tuning parameter vs. position tracking bandwidth.

Figure 75: Dual mode MPC: tuning parameter vs. position tracking bandwidth.
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A.4.5 Combination Plot Construction

The data in the previous sections was used to make combination plots. For example, if a

plot is being designed to compare stiffness and bandwidth for a particular controller, it is first

necessary to run simulations and hardware tests that determine these metrics individually.

Figure 76 shows how, for a PID controller, stiffness and bandwidth are first assembled

as functions of a dominant tuning parameter, Kp. The grey dots are all simulation, the

black dots are simulation values with tuning parameters that match those of the hardware

assessment, and the hardware checks are shown as X’s.

Figure 76: Example metrics for use in combination plots. Left: stiffness as a function Kp.
Right: bandwidth as a function of Kp.

A combination plot is generated using parametric plotting and combining the two results,

as seen in Figure 77. Typically, within the thesis, the data is then limited only to values

that meet some normalized velocity error criterion, as discussed in section 4.3.2.

This style of plotting has a few noteworthy characteristics. First, because data is selected

by metric using the dominant tuning parameter as an input, it follows clear trends in the

individual plots, but those trends are not always as evident in the combination plot. Instead,

results may be more scattered. It would be possible to conduct more extensive simulations

to see the exact distribution of possible controller capabilities, but such a survey would

require considerable further time and resources. Similarly, the hardware check locations were

selected to be consistent, and don’t necessarily correspond to exact simulation positions, as

seen on the right in Figure 77. As a result, in the combination plot, there are X’s that are

not near any discernible simulation result. Again, this issue could be reduced using more
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Figure 77: Example metrics for use in combination plots. Left: stiffness as a function Kp.
Right: bandwidth as a function of Kp.

thorough hardware or simulation validation (more parameter variations), but that would

require more time and resources. In either case, it is important to emphasize that the goal

of the hardware verification is to identify and verify trends, which can clearly be done from

the individual and combination plots.
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APPENDIX B

MPC IMPLEMENTATION

B.1 Input Constraints

To obtain heuristics on achievable maximum and minim values for ∆u, a model-based

approach was used. First, a feedback-linearization approach (as discussed in section 4.2.2)

was assumed for force control, as it explicitly formulated force and input dynamics in terms

of valve inputs. In practice, a PID controller was shown to be slightly more capable and

was used in stead, but that simply makes these constraints a conservative estimate of the

overall capability.

ẋ1

ẋ2

Ḟ

u̇


=
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0 1 0 0

0 0 1
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(
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(123)

Using a simple approximation of the matrix exponential, eAdt = I + Adt, the discretized

system can be defined as
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Then limits on uk+1 can easily be found from the discretization:

uk+1 = β0Fk∆t+ (1− β0∆t)uk

−
(
PaAa
xa

+
PbAb
L− xa

)
∆tx2,k +

(
RT

xa
cd,aψa +

RT

L− xa
cd,bψb

)
ga,k∆t

(125)

It is evident that the constraining values depend only on ga,max and ga,min, and since the

coefficient on orifice area (defined as A3 below) is always positive,

[uk+1]max = A1Fk +A2 +A3ga,max +A4uk

[uk+1]min = A1Fk +A2 +A3ga,min +A4uk

A1 = (1− β0∆t)

A2 = −
(
Pa,k=0Aa
xa,k=0

+
Pb,k=0Ab
L− xa,k=0

)
∆tx2,k=0

A3 =

(
RT

xa,k=0
cd,a,k=0ψa,k=0 +

RT

L− xa,k=0
cd,b,k=0ψb,k=0

)
∆t

A4 = β0∆t

(126)

The valve is characterized by a 125 Hz critical frequency, which – from the data sheet [34]

– refers to “the 3 dB frequency at the maximum movement stroke of the piston spool”, which

is similar to a cutoff frequency for the system bandwidth. This frequency can be used to

impose rate limits on valve orifice area, g. If the valve can move its entire stroke at 125 Hz,

then it can be estimate that the orifice area range, gspan = gmax − gmin, can be covered in

at most 1/125 = 0.008 s. Conservatively, then, the maximum amount that the orifice area

can change by in a time step is ∆gmax = dt
.008gspan.

Updated limits on umax and umin at each time step were found that includes effects

from both the absolute extremes of g, and the rate limits:

gmax = min(g +
dt

.008
gspan, 1.05 x 10−5) (127)

gmin = max(g − dt

.008
gspan,−1.05 x 10−5) (128)

For the feedback linearization case, these hover around ∆u = 6 - 10 N, which – as noted

earlier – is slightly more conservative for the force PID controller. Thus, a value of

||∆u||max = 10 was used in practice.
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B.2 MATLAB Script to Find Terminal Constraint Horizons

%% Script to get terminal weight and constraint matrices

clear all; clc;

x0 = [0.05 1 100 1000 10 100]';

dt = 0.01;

m = 3; wf = 2*pi*45; zf = 0.5;

Ac = [0 1 0 0 0; 0 0 1/m 0 0; 0 0 0 1 0; 0 0 -wfˆ2 -2*zf*wf wfˆ2; ...

0 0 0 0 0];

%Augment to include udot as input and xI and u as states:

%[pos vel f1 f2 xI u udot]

Ac = [0 1 0 0 0 0 0; 0 0 1/m 0 0 0 0; 0 0 0 1 0 0 0; ...

0 0 -wfˆ2 -2*zf*wf 0 wfˆ2 0; 1 0 0 0 0 0 0; ...

0 0 0 0 0 0 1; 0 0 0 0 0 0 0];

%Discretize

G1 = expm(Ac*dt);

%Rearrange again into form used in solver

SysModel.G = G1(1:6,1:6);

SysModel.H = G1(1:6,7);

SysModel.C = [1 0 0 0 0 0];

SysModel.D = 0;

SysModel.dt = dt;

SysCost.Q = diag([100 0 0 0 1 0]);

SysCost.R = 0;

%% Check for Positive Definiteness

SysVer.obsv = (obsv(SysModel.G, SysCost.Qˆ(1/2)));

if rank(SysVer.obsv) == size(SysVer.obsv,2)

disp('(A,Qˆ{1/2} is an observable pair so J is positive definite!')

else
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disp('J is NOT positive definite');

end

%% Calculate Terminal Cost and infinite horizon gain matrix

[SysCost.Qbar,L,SysCost.Kbar,info] = dare(SysModel.G, SysModel.H , ...

SysCost.Q, SysCost.R,'report');

%% Calculate Terminal Input Constraints

clearvars -except SysModel SysCost x0;

%In this case, input is really dU

Nmax = 10; %Total number of points to check

umax = 10; umin = -umax; nc = 2;

[s, params, w] = pred parameters(SysModel, SysCost, umax, nc);

K = -SysCost.Kbar;

Phi = SysModel.G + SysModel.H*K;

%Populate b0 and Bx matrices up to some fixed point

Bx = zeros(Nmax*params.nu, params.nx);

b0 = zeros(Nmax*params.nu, params.nu);

for i = 1:Nmax

Bx((i-1)*params.nu+1:i*params.nu,:) = K*Phiˆ(i-1);

b0 max((i-1)*params.nu+1:i*params.nu) = umax;

b0 min((i-1)*params.nu+1:i*params.nu) = umin;

end

%Solve linear programs to see how much constraint checking is really nec.

options = optimset('display','off'); zbnd = x0;

fval = 1e3; i = 1;

while i < Nmax && abs(fval) > umax

fT = K*Phiˆ(i); %One step ahead

Bx mat = Bx(1:i*params.nu,:);

b0 max vec = b0 max(1:i*params.nu);
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b0 min vec = b0 min(1:i*params.nu);

[x, fval] = linprog(-fT, [Bx mat; -Bx mat], ...

[b0 max vec; -b0 min vec],[],[],-zbnd, zbnd, [], options);

disp(['Case for i = ' num2str(i) ': ' num2str(x') ...

' and fval = ' num2str(fval)]);

i = i + 1;

end

i = i-1; %Get rid of that last addition.

%Return verdict

if abs(fval) < umax

disp(['Constraint checking horizon set at Nc = ' num2str(i-1)]);

else

disp(['Need a longer constraint checking horizon. Nc = ' ...

num2str(i-1) ' is insufficient.']);

disp(['Present umax = ' num2str(abs(fval))]);

end

%% Calculate Terminal State Constraint: v1 States

clearvars -except SysModel SysCost x0 params; disp(' ');

Nmax = 10; %Total number of points to check

xmax = [.044 1e10 100 1e10 1e10 10]'; xmin = -xmax; xmin(1) = 0;

x select(1,:) = [0 0 1 0 0 0]; state select(1).Name = 'Force';%Force

x select(2,:) = [0 0 0 0 0 1]; state select(2).Name = 'Ref Rate';%Ref Rate

x select(3,:) = [1 0 0 0 0 0]; state select(3).Name = 'Position';%Ref Rate

K = -SysCost.Kbar;

Phi = SysModel.G + SysModel.H*K;

params.ncx = size(x select,1);

%Populate b0 and Bx matrices up to some fixed point

Bx x = zeros(Nmax*params.ncx, params.nx);

b0 x max = zeros(Nmax*params.ncx, 1);

b0 x min = zeros(Nmax*params.ncx, 1);
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for i = 1:Nmax

Bx x((i-1)*params.ncx+1:i*params.ncx,:) = x select*Phiˆ(i-1);

b0 x max((i-1)*params.ncx+1:i*params.ncx) = x select*xmax;

b0 x min((i-1)*params.ncx+1:i*params.ncx) = x select*xmin;

end

%Solve linear programs to see how much constraint checking is really nec.

options = optimset('display','off'); zbnd = x0;

fval v1 = 1e3*ones(params.ncx,1); i = 1;

while i < Nmax && sum(abs(fval v1) > x select*xmax)

fT = Phiˆ(i); %Just need to select the correct states

Bx mat = Bx x(1:i*params.ncx,:);

b0 max vec = b0 x max(1:i*params.ncx);

b0 min vec = b0 x min(1:i*params.ncx);

for j = 1:size(x select,1)

[x, fval v1(j)] = linprog(-x select(j,:)*fT, ...

[Bx mat; -Bx mat], [b0 max vec; -b0 min vec],...

[],[],-zbnd, zbnd, [], options);

disp([state select(j).Name ': Case for i = ' num2str(i) ': ' ...

num2str(x') ' and fval = ' num2str(fval v1')]);

end

i = i + 1;

end

i = i-1; %Get rid of that last addition.

%Return verdict

if abs(fval v1) < x select*xmax

disp(['V1 X: Constraint checking horizon set at Nc = ' num2str(i-1)]);

else

disp(['V1 X: Need a longer constraint checking horizon. Nc = ' ...

num2str(i-1) ' is insufficient.']);

disp(['Present xmax = ' num2str(abs(fval v1'))]);

end

%% Calculate Terminal State Constraint: v2 States
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clearvars -except SysModel SysCost x0 params; disp(' ');

K = -SysCost.Kbar;

Zk = 2000; Zb = 100;

Nmax = 10; %Total number of points to check

xmax = [.044 1e10 100 1e10 1e10 10]'; xmin = -xmax; xmin(1) = 0;

x select(1,:) = [Zk Zb -Zk 0 0 0] - K; state select(1).Name = 'Force';

x select(2,:) = [0 0 0 0 0 1]; state select(2).Name = 'Ref Rate';

x select(3,:) = [1 0 0 0 0 0]; state select(3).Name = 'Position';

K = -SysCost.Kbar;

Phi = SysModel.G + SysModel.H*K;

params.ncx = size(x select,1);

%Populate b0 and Bx matrices up to some fixed point

Bx x = zeros(Nmax*params.ncx, params.nx);

b0 x max = zeros(Nmax*params.ncx, 1);

b0 x min = zeros(Nmax*params.ncx, 1);

for i = 1:Nmax

Bx x((i-1)*params.ncx+1:i*params.ncx,:) = x select*Phiˆ(i-1);

b0 x max((i-1)*params.ncx+1:i*params.ncx) = x select*xmax;

b0 x min((i-1)*params.ncx+1:i*params.ncx) = x select*xmin;

end

%Solve linear programs to see how much constraint checking is really nec.

options = optimset('display','off'); zbnd = x0;

fval v1 = 1e3*ones(params.ncx,1); i = 1;

while i < Nmax && sum(abs(fval v1) > x select*xmax)

fT = Phiˆ(i); %Just need to select the correct states

Bx mat = Bx x(1:i*params.ncx,:);

b0 max vec = b0 x max(1:i*params.ncx);

b0 min vec = b0 x min(1:i*params.ncx);

for j = 1:size(x select,1)

[x, fval v1(j)] = linprog(-x select(j,:)*fT, [Bx mat; -Bx mat], ...
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[b0 max vec; -b0 min vec],[],[],-zbnd, zbnd, [], options);

disp([state select(j).Name ': Case for i = ' num2str(i) ': ' ...

num2str(x') ' and fval = ' num2str(fval v1')]);

end

i = i + 1;

end

i = i-1; %Get rid of that last addition.

%Return verdict

if abs(fval v1) < x select*xmax

disp(['V2 X: Constraint checking horizon set at Nc = ' num2str(i-1)]);

else

disp(['V2 X: Need a longer constraint checking horizon. Nc = ' ...

num2str(i-1) ' is insufficient.']);

disp(['Present xmax = ' num2str(abs(fval v1'))]);

end

B.3 MPC Implementation – Target Hardware & CPU Overload Concerns

One limiting concern was the issue of CPU overloads, which may happen seemingly at

random. The effect is that, after starting a trial at a seemingly well-selected sample time, the

target will crash and return a CPU overload error, displaying the associated Task Execution

Time (TeT) that caused the crash. Typically, acceptable TeTs average 1/3 - 1/2 the sample

time (since periodic spikes are anticipated). A crash and CPU overload occurs when the

TeT jumps unexpectedly. For example, if a block is written that has an acceptable range

of inputs that produce numeric outputs, but it is suddenly given an input that produces a

NaN (Not-a-Number) output, the subsequent effect can be significant enough to cause a TeT

spike and crash the program. However, these kinds of issues are detectable & reproducible.

Other sources include hardware latencies and target features, such as power management,

which must be altered in the BIOS.

In the case with the dual-mode controller and CVXgen, the dual-mode implementation

caused CPU overloads at changing and seemingly random times during execution. The

overloads were never observed with the simpler problem, so it is presumed that they would
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result from the more constrained optimization. Changes to the memory usage (outputs

saved, data logged, etc.) were tried, but were unsuccessful at mitigating these limitations.

Instead, the main limitation is likely the hardware, which was limited to 2 GB of memory and

2 Ghz, as well as the older A/D and D/A boards, which have been in use for several years.

Due to time constraints, this hypothesis could not be more thoroughly tested. However,

a user encountering similar issues might refer to Mathworks’s support communities (e.g.,

1, 2) and official documentation, which includes strategies for detection and work-arounds

(such as continuing to run after a CPU overload), which might prove to be more revealing.
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APPENDIX C

1-DOF MODELING & LINEARIZATION

This section covers modeling of the pneumatic actuator in greater detail than is covered

in the main portion of the thesis.

C.1 Linearized Model Using Polynomial Mass Flow

This approach uses the polynomial approximation of mass flow introduced in section

3.4.3. An especially nice result occurs when the input is treated as Aeq, using the assumption

that Aeq,a = −Aeq,b, using polynomial models of ṁ = f(P(a,b), Aeq) for mass flow. This

system is summarized as:

d

dt



x1

x2

Pa

Pb


=



x2

(PaAa−PbAb)−Ffrict

M

ṁaRT−PaAax2
Va

ṁbRT−PbAbx2
Vb


(129)

The volume terms in the denominator are clearly functions of position, x1, but depend on

the origin. Assuming the position is measured from the center position, the volume terms

are written as:

Va = L+ dsa + x1 and Vb = L+ dsb − x1 (130)

where ds(a,b) is the dead space in the ends of the chamber, and L is the stroke length.

Further, mass flow is defined using equation (19), such that

ṁa(Aeq, Pa) = ṁ(Aeq, Pa) and ṁb(Aeq, Pb) = ṁ(−Aeq, Pb) (131)

Finally, while friction force is generally either omitted or found using a Streibeck curve, it is

possible to approximate it, e.g. with a viscous friction model, Ffrict = bx2. A linearization

can then be found by determining the Jacobian (using a Taylor Series approach):

∆Ẋ = J∆X or Ẋ = J (X −X|t=T0) + Ẋ|t=T0 (132)
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J is the Jacobian, which is found to be:

J =

0 1 0 0 0

0 −b Aa
M −Ab

M 0

Aa Pa x2−RT ṁa(Aeq ,Pa)

Aa (L+dsa+x1)2
− Pa
L+dsa+x1

− Aa x2−RT Φ2a
Aa (L+dsa+x1) 0 RT Φ3a

Aa (L+dsa+x1)

Ab Pb x2+RT ṁb(Aeq ,Pb)

Ab (L+dsb−x1)2
Pb

L+dsb−x1 0 Ab x2+RT Φ2b
Ab (L+dsb−x1) − RT Φ3b

Ab (L+dsb−x1)


(133)

Alternatively, the Jacobian can be found via symbolic differentiation (in MATLAB), which

produces this similar-looking matrix:

J =



0 1 0 0 0

0 −b Aa
M −Ab

M 0

Aa Pa x2−RT Φ1a

Aa (L+dsa+x1)2
− Pa
L+dsa+x1

− Aa x2−RT Φ2a
Aa (L+dsa+x1) 0 RT Φ3a

Aa (L+dsa+x1)

Ab Pb x2+RT Φ1b

Ab (L+dsb−x1)2
Pb

L+dsb−x1 0 Ab x2+RT Φ2b
Ab (L+dsb−x1) − RT Φ3b

Ab (L+dsb−x1)


(134)

where

Φ1a = p41Aeq
4 Pa + p40Aeq

4 + p32Aeq
3 Pa

2 + p31Aeq
3 Pa + p30Aeq

3

+ p23Aeq
2 Pa

3 + p22Aeq
2 Pa

2 + p21Aeq
2 Pa + p20Aeq

2

+ p14Aeq Pa
4 + p13Aeq Pa

3 + p12Aeq Pa
2 + p11Aeq Pa + p10Aeq

+ p05 Pa
5 + p04 Pa

4 + p03 Pa
3 + p02 Pa

2 + p01 Pa + p00 (135)

Φ2a = p41Aeq
4 + 2 p32Aeq

3 Pa + p31Aeq
3

+ 3 p23Aeq
2 Pa

2 + 2 p22Aeq
2 Pa + p21Aeq

2

+ 4 p14Aeq Pa
3 + 3 p13Aeq Pa

2 + 2 p12Aeq Pa + p11Aeq

+ 5 p05 Pa
4 + 4 p04 Pa

3 + 3 p03 Pa
2 + 2 p02 Pa + p01 (136)
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Φ3a = 4 p41Aeq
3 Pa + 4 p40Aeq

3 + 3 p32Aeq
2 Pa

2 + 3 p31Aeq
2 Pa + 3 p30Aeq

2

+ 2 p23Aeq Pa
3 + 2 p22Aeq Pa

2 + 2 p21Aeq Pa + 2 p20Aeq

+ p14 Pa
4 + p13 Pa

3 + p12 Pa
2 + p11 Pa + p10 (137)

Φ1b = p41Aeq
4 Pb + p40Aeq

4 − 1 p32Aeq
3 Pb

2 − 1 p31Aeq
3 Pb − 1 p30Aeq

3

+ p23Aeq
2 Pb

3 + p22Aeq
2 Pb

2 + p21Aeq
2 Pb + p20Aeq

2

− 1 p14Aeq Pb
4 − 1 p13Aeq Pb

3 − 1 p12Aeq Pb
2 − 1 p11Aeq Pb − 1 p10Aeq

+ p05 Pb
5 + p04 Pb

4 + p03 Pb
3 + p02 Pb

2 + p01 Pb + p00 (138)

Φ2b = p41Aeq
4 − 2 p32Aeq

3 Pb − 1 p31Aeq
3

+ 3 p23Aeq
2 Pb

2 + 2 p22Aeq
2 Pb + p21Aeq

2

− 4 p14Aeq Pb
3 − 3 p13Aeq Pb

2 − 2 p12Aeq Pb − 1 p11Aeq

+ 5 p05 Pb
4 + 4 p04 Pb

3 + 3 p03 Pb
2 + 2 p02 Pb + p01 (139)

Φ3b = − 4 p41Aeq
3 Pb − 4 p40Aeq

3 + 3 p32Aeq
2 Pb

2 + 3 p31Aeq
2 Pb + 3 p30Aeq

2

− 2 p23Aeq Pb
3 − 2 p22Aeq Pb

2 − 2 p21Aeq Pb − 2 p20Aeq

+ p14 Pb
4 + p13 Pb

3 + p12 Pb
2 + p11 Pb + p10 (140)

C.1.1 Non-Dimensionalization & Scaling

The Jacobian derived using Taylor Series methods is general, but tends to lead to poorly

conditioned numerical matrices, due largely to differences in units. Of course, a scaling could

be applied, but given the number of interacting variables, the scaling will vary depending

on the equilibrium point.

Instead, a non-dimensionalization is used to remove units from consideration and reduce

the number of scaling factors to a minimal quantity. A simple scaling can then be used to

obtain linearized models that are numerically sound.

To non-dimensionalize the equations associated with the equation ~̇x = J0~x, with J0

defined as above, each state and time must be replaced by a non-dimensional state, enforced

by scaling factors φ, α, β, εa, εb, and ω: t = φt̃, x1 = αx̃1, x2 = βx̃2, P̃a = εaPa, P̃b = εbPb,

and ũ = ωu, where the non-dimensionalized state is indicated by the tilde. Since the scaling
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is initially set to affect space and time, the derivatives are of course affected as well, e.g.,

d
dt(x1) = d

dφt̃
(αx1) = α

φ
d
dt̃
x̃1, such that:

d

dt̃



x̃1

x̃2

P̃a

P̃b

ũ


=



φ/α 0 0 0

0 φ/β 0 0

0 0 φ/εa 0

0 0 0 φ/εb


J0



αx̃1

βx̃2

εaP̃a

εbP̃b

ωũ


(141)

The scaling parameters are then chosen to result in non-dimensionalized states. In the

absence of any desired time scaling, φ = 1. It is clear from equation (133) that the terms

pre-multiplying pressure are the most complex and are generally scaled by chamber length

(or volume, by extension). Therefore, a logical step is to choose εa and εb to normalize one

of the pressure terms, so we set J3,1 = 1 and J4,1 = 1:

εa =
αφ (Aa Pa,0 x2,0 −RTair ṁa,0)

Aa (L0 + dsa + x1,0)2 (142)

εb =
αφ (Ab Pb,0 x2,0 +RTair ṁb,0)

Ab (L0 + dsb − x1,0)2 (143)

Then β and ω may be selected as well:

β =

(
κP0

L0

)
Norm

εb (144)

ω = AbL0/(RTairΦ3a)εb/φ; (145)

where P0 is chosen to be the average pressure, and L0 is the stroke, κ is a scaling term that

can be used to better condition the matrix. α is cancelled out, and in the absence of time

scaling, φ = 1, resulting in a non-dimensionalized Jacobian.

A convenient, broadly effective choice for κ is the value that minimizes the difference in

orders of magnitude between terms that are products and quotients of the scaling κ.

In principle, this is just a change-of-variable or diagonal scaling, and the latter can be

performed a number of ways (e.g., in MATLAB, using balance()). However, the non-

dimensionalization and scaling is an approach that is physically meaningful and that sim-

plifies the scaling to a single factor κ. The term can be chosen to minimize the difference
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in orders of magnitude between terms that are products and quotients of the scaling term

– a method that is fairly effective. So if the smallest term that is a product of κ has

magnitude a1 and the largest term divided by kappa has magnitude a2, then the scaling

term should be chosen to be κ =
√
a2/a1 or a close integer value, if nicer constants are

desired. Since the majority of remaining terms are scaled by κ, this approach is effective at

creating well-conditioned linearized matrices that retain physical meaning without requir-

ing broadly different scalings for any unique equilibrium state. A sweep of variable ranges

in MATLAB demonstrated that using a range of possible variables showed that the non-

dimensionalized system with the κ scaling based on bringing orders of magnitude together

consistently reduced the condition number by several orders of magnitude, as desired.
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APPENDIX D

CRR TWO LINK KINEMATICS & DYNAMICS

The details of the kinematics and dynamics derivation are reviewed here. The actual

calculation was produced using a MATLAB script, provided in section D.3.1.

The model was derived using an analytical mechanics approach. It was also designed in

Simulink to determine simulated results.

Figure 78: 2 DoF system overview.

Figure 78 shows the basic system layout and labeling scheme. There are seven bodies

and five body-fixed reference frames. The bodies are numbered, with each actuator split

into two parts: part (a), the cylinder, and part (b), the piston. Since the pneumatic actuator

cylinders and pistons operate along a common axis, they share a reference frame.

Angles are denominated with Greek letters: θ is used to refer to coordinates, and cor-

responds to the link rotations, and φ represents the rotation of the pneumatic actuator.
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These angles are listed in the form θij , referring to the angle from frame i to frame j. For

angles used in derivations: α is used in derivations to refer to variable angles, and γ refers to

constant angles with known values. Angles in derivations are specific to the local geometry

and include a corresponding subscript.

Points are labeled with capital letters, and distances are specified with lIJ , referring to

the length from point I to point J . For clarity, since the distances lPQ and lST vary, they

are instead referred to by the variable distances d1 and d2. There are three forces, F1, F2,

and F3, which act at points Q, T , and V .

D.1 Coordinate Geometry

Two coordinate schemes could be applied. Either q1 = θ13 and q2 = θ35, or q1 = d1 and

q2 = d2. Either way, it is necessary to determine the geometrical relations that connect the

two.

� φ12 and θ13 can be written as functions of d1: The law of cosines can be used

to relate these two variables. First, a triangle is drawn connecting the points P , A,

and R, such that lPR = d1 + lQR. Then the angle αA can be found using the law of

cosines:

αA = cos−1

(
l2PA + l2AR − l2PR

2lPAlAR

)
(146)

Finally, θA just the result of a difference:

θ13 = π − (γA1 + γA2)− αA

= π − (γA1 + γA2)− cos−1

(
l2PA + l2AR − (lQR + d1)2

2lPAlAR

)
(147)

where the γA1 and γA2 are known constants.

Similarly, φ12 is found using the Law of Cosines to solve for αP , and recognizing that
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Figure 79: Geometric view to relate θ13 and d1.

αP = φ12 + γA1:

φ12 = αP − γA1

= cos−1

(
l2PA + l2PR − l2AR

2lPAlPR

)
− γA1

= cos−1

(
l2PA + (d1 + lQR)2 − l2AR

2lPA(d1 + lQR)

)
− γA1 (148)

� d1 and φ12 from θ13:

αA = π − θ13 − (γA1 + γA2) (149)
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and

d1 =
√
l2PA + l2AR − 2lPAlAR cosαA − lQR

=
√
l2PA + l2AR + 2lPAlAR cos (θ13 + (γA1 + γA2))− lQR (150)

Note that cos(π + x) = − cos(x) and cos−y = cosx, so I’ve made that arbitrary

conversion throughout my cosine simplifications. To get φP as a function of θ13, lPR

will be substituted into equation (148), using the form seen in equation (150):

φ12 = cos−1

 l2PA +
(√

l2PA + l2AR − 2lPAlAR cosαA

)2

− l2AR

2lPA

√
l2PA + l2AR − 2lPAlAR cosαA

− γA1

= cos−1

 2l2PA + 2lPAlAR cos (θ13 + (γA1 + γA2))

2lPA

√
l2PA + l2AR + 2lPAlAR cos (θ13 + (γA1 + γA2))

− γA1

= cos−1

 lPA + lAR cos (θ13 + (γA1 + γA2))√
l2PA + l2AR + 2lPAlAR cos (θ13 + (γA1 + γA2))

− γA1 (151)

Figure 80: Geometric view of the middle link, relating θ35 and d2.

� θ35 and φ34 from d2: These relations are found in a similar manner to θA and d1. A

triangle is drawn connecting the points S, B, and U , with lSU = d2 + lTU . Then the
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angle αB can be found using the law of cosines:

αB = cos−1

(
l2SB + l2BU − l2SU

2lSBlBU

)
(152)

Finally, θ35 is found using a difference calculation. The format differs slightly from

equation (147) because of the sign convention used for θ13.

θ35 = −(π − γB)− αB

= −π + γB + cos−1

(
l2SB + l2BU − l2SU

2lSBlBU

)
= −π + γB + cos−1

(
l2SB + l2BU − (d2 + lTU )2

2lSBlBU

)
(153)

where γB is a known constant angle.

φ34 is also found using the Law of Cosines, via the relationship φ34 + αS = γB:

φ34 = γB − αS = γB − cos−1

(
l2SB + l2SU − l2BU

2lSBlSU

)
= γB − cos−1

(
l2SB + (d2 + lTU )2 − l2BU

2lSB(d2 + lTU )

)
(154)

� d2 and φ34 from θ35:

αB = π + θ35 − γB (155)

and

d2 =
√
l2SB + l2BU − 2lSBlBU cosαB − lTU

=
√
l2SB + l2BU + 2lSBlBU cos (θ35 − γB)− lTU (156)

φ34 is found by substituting lA′Q from (156) into equation (154):

φ34 = γB − cos−1

(
l2SB + (lSU )2 − l2BU

2lSBlSU

)

= γB − cos−1

 l2SB + l2SB + l2BU + 2lSBlBU cos (θ35 − γB)− l2BU
2lSB

√
l2SB + l2BU + 2lSBlBU cos (θ35 − γB)


= γB − cos−1

 lSB + lBU cos (θ35 − γB)√
l2SB + l2BU + lSBlBU cos (θ35 − γB)

 (157)
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Equations (158) to (165) summarize critical coordinate geometry relations.

θ13 = π − (γA1 + γA2)− cos−1

(
l2PA + l2AR − (lQR + d1)2

2lPAlAR

)
(158)

θ35 = −π + γB + cos−1

(
l2SB + l2BU − (d2 + lTU )2

2lSBlBU

)
(159)

d1 =
√
l2PA + l2AR + 2lPAlAR cos (θ13 + (γA1 + γA2))− lQR (160)

d2 =
√
l2SB + l2BU + 2lSBlBU cos (θ35 − γB)− lTU (161)

φ12 = cos−1

(
l2PA + (d1 + lQR)2 − l2AR

2lPA(d1 + lQR)

)
− γA1 (162)

φ12 = cos−1

 lPA + lAR cos (θ13 + (γA1 + γA2))√
l2PA + l2AR + 2lPAlAR cos (θ13 + (γA1 + γA2))

− γA1 (163)

φ34 = γB − cos−1

(
l2SB + (d2 + lTU )2 − l2BU

2lSB(d2 + lTU )

)
(164)

φ34 = γB − cos−1

 lSB + lBU cos (θ35 − γB)√
l2SB + l2BU + lSBlBU cos (θ35 − γB)

 (165)

From these, velocity relationships are obtained by differentiating with respect to time (done

in MATLAB).

θ̇13 = −
ḋ1 (lQR + d1)

lAR lPA

√
1−

(
lAR

2−(lQR+d1)
2
+lPA

2
)2

4 lAR
2 lPA

2

(166)

θ̇35 =
ḋ2 (lTU + d2)

lBU lSB

√
1− (lBU

2−(lTU+d2)2+lSB
2)

2

4 lBU
2 lSB

2

(167)

ḋ1 = − lAR lPA θ̇13 sin(γA1 + γA2 + θ13)√
lAR

2 + 2 cos(γA1 + γA2 + θ13) lAR lPA + lPA
2

(168)

ḋ2 = − lBU lSB θ̇35 sin(θ35 − γB)√
lBU

2 + 2 cos(θ35 − γB) lBU lSB + lSB
2

(169)

(170)
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φ̇12 = −

ḋ1
lPA
−

ḋ1
(
(lQR+d1)

2−lAR
2+lPA

2
)

2 lPA (lQR+d1)
2√

1−
(
(lQR+d1)

2−lAR
2+lPA

2
)2

4 lPA
2 (lQR+d1)

2

(171)

φ̇12 =
θ̇13 sin(Γsum) lAR

3 + lPA θ̇13 cos(Γsum) sin(Γsum) lAR
2√

− lAR
2 cos(Γsum)2−lAR

2

lAR
2+2 cos(Γsum) lAR lPA+lPA

2

(
lAR

2 + 2 cos(Γsum) lAR lPA + lPA
2
) 3

2

where Γsum = γA1 + γA2 + θ13 (172)

φ̇34 =

ḋ2
lSB
− ḋ2 ((lTU+d2)2−lBU

2+lSB
2)

2 lSB (lTU+d2)2√
1− ((lTU+d2)2−lBU

2+lSB
2)

2

4 lSB
2 (lTU+d2)2

(173)

φ̇34 = − θ̇35 sin(θ35 − γB) lBU
3 + lSB θ̇35 cos(θ35 − γB) sin(θ35 − γB) lBU

2√
lBU

2−lBU
2 cos(θ35−γB)2

lBU
2+2 cos(θ35−γB) lBU lSB+lSB

2

(
lBU

2 + 2 cos(θ35 − γB) lBU lSB + lSB
2
) 3

2

(174)

D.2 Body Properties

Mass and inertial properties of the moving components were determined using Solid-

Works:

m1 = 0.8570 kg m2a = 0.3250 kg m2b = 0.0822 kg

m3 = 0.6780 kg m4a = 0.3250 kg m4b = 0.0987 kg

m5 = 0.2415 kg

(175)

Since the two degree of freedom system is planar, only the Izz inertial terms are necessary:

(I2a)P = 2.6 · 10−3 kg m2 (I2b)Q = 2.7 · 10−4 kg m2

(I3)G3 = 2.0 · 10−3 kg m2

(I4a)G4a = 5.3 · 10−3 kg m2 (I4b)Q = 3.3 · 10−4 kg m2

(I5)G5 = 2.7 · 10−3 kg m2

(176)

D.3 Lagrange’s Method

Since there are a number of connecting points and some complicated geometry, and

since reaction forces are not of interested, an analytical mechanics approach will be used

to obtain the equations of motion. These will be found using the generalized coordinates
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suggested above, by solving Lagrange’s equation:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Q

(a)
j +

J∑
i=1

aijλi j = 1, 2, ...N (177)

where L = T − V is the Lagrangian. For the two-DoF arm, there are no constraints

(geometric constraints are inherently enforced), so aij = 0 ∀j and the remaining quantities

are as follows:

� Kinetic Energy terms, T: There are 7 kinetic energy terms, corresponding to the

seven moving bodies (2 cylinders, 2 pistons, two links, and the end-point mass):

T2a =
1

2
(I2a)Pω

2
2 (178)

T2b =
1

2
(I2b)G2b

ω2
2 +

1

2
m2bv

2
G2b

(179)

T3 =
1

2
(I3)G3ω

2
3 +

1

2
m3v

2
G3

(180)

T4a =
1

2
(I4a)G4aω

2
4 +

1

2
m4av

2
G4a

(181)

T4b =
1

2
(I4b)G4b

ω2
4 +

1

2
m4bv

2
G4b

(182)

T5 =
1

2
(I5)G5ω

2
5 +

1

2
m5v

2
G5

(183)

with angular velocities

~ω2 = φ̇12k̂ (184)

~ω3 = θ̇13k̂ (185)

~ω4 = (θ̇13 + φ̇34)k̂ (186)

~ω5 = (θ̇13 + θ̇35)k̂ (187)
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and velocities:

~vG2b
= ~vQ = ω2 × ~rPG2b

+ ~vrel = φ̇12k̂ × d1î2 + ḋ1î2 = ḋ1î2 + d1φ̇12ĵ2 (188)

~vA = 0 (189)

~vG3 = ~vA + ~ω3 × ~rAG3

= θ̇13k̂ ×
(

(lAG3)x3 î3 + (lAG3)y3 ĵ3

)
= −(lAG3)y3 θ̇13î3 + (lAG3)x3 θ̇13ĵ3 (190)

~vS = ~vA + ~ω3 × ~rAS

= θ̇13k̂ × ((lAS)x3 î3 + (lAS)y3 ĵ3)

= −(lAS)y3 θ̇13î3 + (lAS)x3 θ̇13ĵ3 (191)

~vG4a = ~vS + ~ω4 × ~rSG4a

= −(lAS)y3 θ̇13(cosφ34î4 − sinφ34ĵ4) + (lAS)x3 θ̇13(− sinφ34î4 + cosφ34ĵ4)

+ (θ̇13 + φ̇34)k̂ × lSG4a î4

=
(
−(lAS)y3 θ̇13 cosφ34 + (lAS)x3 θ̇13 sinφ34

)
î4

+
(

(lAS)y3 θ̇13 sinφ34 + (lAS)x3 θ̇13 cosφ34 + lSG4a(θ̇13 + φ̇34)
)
ĵ4 (192)

~vG4b
= ~vT = ~vS + ~ω4 × ~rSG4b

+ ~vrel

= ~vS + (θ̇13 + φ̇34)k̂ × d2î4 + ḋ2î4

= ~vS + ḋ2î4 + d2(θ̇13 + φ̇34)ĵ4

=
(
−(lAS)y3 θ̇13 cosφ34 + (lAS)x3 θ̇13 sinφ34 + ḋ2

)
î4

+
(

(lAS)y3 θ̇13 sinφ34 + (lAS)x3 θ̇13 cosφ34 + d2(θ̇13 + φ̇34)
)
ĵ4 (193)

~vB = ~vA + ~ω3 × ~rAB = θ̇13k̂ × lAB î3 = lAB θ̇13ĵ3 (194)

~vG5 = ~vB + ~ω5 × ~rBG5

= lAB θ̇13ĵ3 + (θ̇13 + θ̇35)k̂ ×
(

(lBG5)x5î5 + (lBG5)y5ĵ5

)
= lAB θ̇13(sin θ35î5 + cos θ35ĵ5)− (lBG5)y5(θ̇13 + θ̇35)̂i5 + (lBG5)x5(θ̇13 + θ̇35)ĵ5

=
(
lAB θ̇13 sin θ35 − (lBG5)y5(θ̇13 + θ̇35)

)
î5

+
(
lAB θ̇13 cos θ35 + (lBG5)x5(θ̇13 + θ̇35)

)
ĵ5 (195)
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Additionally, the velocity of the foot (end effector), vC is found so that it can be used

to determine generalized forces if a force in some arbitrary direction, observed in the

inertial frame, is applied to the end effector.

vC = lAB θ̇13ĵ3 − (lBC)y5(θ̇13 + θ̇35)̂i5 + (lBC)x5(θ̇13 + θ̇35)ĵ5

= lAB θ̇13

(
− sin(θ01 + θ13)̂i0 + cos(θ01 + θ13)ĵ0

)
− (lBC)y5(θ̇13 + θ̇35)

(
cos(θ01 + θ13 + θ35)̂i0 + sin(θ01 + θ13 + θ35)ĵ0

)
+ (lBC)x5(θ̇13 + θ̇35)

(
− sin(θ01 + θ13 + θ35)̂i0 + cos(θ01 + θ13 + θ35)ĵ0

)
= −

(
lAB θ̇13 sin(θ01 + θ13) + (lBC)y5(θ̇13 + θ̇35) cos(θ01 + θ13 + θ35)

+ (lBC)x5(θ̇13 + θ̇35) sin(θ01 + θ13 + θ35)
)
î0

+
(
lAB θ̇13 cos(θ01 + θ13)− (lBC)y5(θ̇13 + θ̇35) sin(θ01 + θ13 + θ35)

+ (lBC)x5(θ̇13 + θ̇35) cos(θ01 + θ13 + θ35)
)
ĵ0 (196)

� Potential Energy terms, V: There are no springs, so potential energy terms only

come from gravity. Note that the true robot is constrained to a lower bound for θ13

of approximately 20◦, but that will be ignored. Further, since the heights of m2a and

m2b don’t change significantly, and since most of the load is carried by point P , the

effects of gravity on those two bodies will be assumed negligible. While φ34 doesn’t

contribute nearly as significantly as θ13 to the gravitational potential of m4a and m4b,

so those terms will be left out as well.

The gravitational terms are identified in the following equation. The height of point

A is used as the datum, since point A is fixed. The subscripts of the angle notation

indicate start and end frame, e.g. θ03 = θ01 + θ13 = −θ30 and indicates the angle that

Frame 0 must be rotated by to get to frame 3 (so to view coordinates defined in frame

3 in frame 0 notation, they must be rotated by θ30 = −θ03. Further, frames 2 and 4
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require the inclusion of φ terms, e.g. θ02 = θ01 + φ12.

V2a = m2ag
(
~rPG2a · ĵ0

)
= m2ag

(
lPG2a î2 · ĵ0

)
= m2aglPG2a

(
cos(θ20)̂i0 − sin(θ20)ĵ0

)
· ĵ0

= m2aglPG2a sin(θ02) (197)

V4b = m2bg
(
~rPG2b

· ĵ0
)

= m2bg
(
lPG2b

î2 · ĵ0
)

= m2bglPG2b

(
cos(θ20)̂i0 − sin(θ20)ĵ0

)
· ĵ0

= m2bglPG2b
sin(θ02) (198)

V4a = m4ag
(
~rAG4a · ĵ0

)
= m4ag

(
lASx î3 + lASy ĵ3 + lSG4a î4

)
· ĵ0

= m4ag
(
lASx(cos(θ30)̂i0 − sin(θ30)ĵ0) + lASy(sin(θ30)̂i0 + cos(θ30)ĵ0)

+ lSG4a(cos(θ40)̂i0 − sin(θ40)ĵ0)
)
· ĵ0

= m4ag
(
lASx sin(θ03) + lASy cos(θ03) + lSG4a sin(θ04)

)
(199)

V4b = m4bg
(
~rAG4b

· ĵ0
)

= m4bg
(
lASx sin(θ03) + lASy cos(θ03) + d2 sin(θ04)

)
(200)
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V3 = m3g
(
~rAG3 · ĵ0

)
= m3g

(
(lAG3)xî3 + (lAG3)y ĵ3

)
· ĵ0

= m3g
(

(lAG3)x(cos(θ30)̂i0 − sin(θ30)ĵ0) + (lAG3)y(sin(θ30)̂i0 + cos(θ30)ĵ0)
)
· ĵ0

= m3g ((lAG3)x sin(θ03) + (lAG3)y cos(θ03)) (201)

V5 = m5g
(
~rAG5 · ĵ0

)
= m5g

(
lAB î3 + (lBG5)xî5 + (lBG5)y ĵ5

)
· ĵ0

= m5g
(
lAB(cos(θ30)̂i0 − sin(θ30)ĵ0)

+ (lBG5)x(cos(θ50)̂i0 − sin(θ50)ĵ0) + (lBG5)y(sin(θ50)̂i0 + cos(θ50)ĵ0)
)
· ĵ0

= m5g [−lAB sin(−θ03) − (lBG5)x sin(−θ05) + (lBG5)y cos(−θ05)]

= m5g [lAB sin(θ03) + (lBG5)x sin(θ05) + (lBG5)y cos(θ05)] (202)

� Generalized Forces, Q: To get generalized forces, it is necessary to calculate the

virtual work performed by those forces, which requires finding virtual displacements

at the point of action. These can be found using vG2b
= vQ, vG4b

= vT , and vGC
.

The virtual displacements may be found by replacing velocity variables with virtual δ

terms. This was done in MATLAB. Generalized forces were found by first finding the

virtual work – the dot product of virtual displacements with the corresponding force

vector at its point of action – and then finding the coefficients of each generalized

coordinate (so Qi corresponds to the coefficient of δqi that results from the virtual

work δW ).

D.3.1 MATLAB derivation

%% Overview

% This script computes the equations of motion using Lagrangian Dynamics

% Methods for time derivatives:

% (a) construct expressions with time-free variables

178



% (b) Substitute Time Dependent Variables

% (c) Differentiate

% (d) Substitute Time Free Variables

% (e) Move to next step

%General rule: At the start and end of each section, everything should be

%written in time-free variables

%% Prepare workspace

clear all;

close all;

clc;

%% Define variables

%Note that lowercase 'p' is used to denote 'prime'

disp('Defining Variables');

% Time

syms t real

% Constants

syms gamma A1 gamma A2 gamma B theta 01 real

syms l PA l AR l QR real

syms l AS l AB l SB l BU l ST l TU real

syms l BV l BC real

syms l AG3 l BG5

syms l AG3x l AG3y l BG5x l BG5y l BCx l BCy l ASx l ASy real

syms l PG2a l SG4a real

syms I0 1 I0 2a IG 2b IG 3 IG 4a IG 4b IG 5 real

syms m 1 m 2a m 2b m 3 m 4a m 4b m 5 real

% Forces

syms g F 1 F 2 F 3 x F 3 y real

%Virtual work and related variables
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syms DEL d 1 DEL d 2 DEL theta 13 DEL theta 35 real

syms DEL W d Q 1 d Q 2 d real

syms DEL W th Q 1 th Q 2 th real

%Just the symbols

syms theta 01

syms theta 13 theta 13 DOT th 13 DDOT

syms theta 35 theta 35 DOT th 35 DDOT

syms d 1 d 1 DOT d 1 DDOT

syms d 2 d 2 DOT d 2 DDOT

%No phi symbols -- these are just working variables

%Time dependent functions

syms theta 13 t(t) theta 13 DOT t(t) th 13 DDOT t(t)

syms theta 35 t(t) theta 35 DOT t(t) th 35 DDOT t(t)

syms d 1 t(t) d 1 DOT t(t) d 1 DDOT t(t)

syms d 2 t(t) d 2 DOT t(t) d 2 DDOT t(t)

%Single Derivative expressions

dt13dt = diff(theta 13 t(t),t); dt13DOTdt = diff(theta 13 DOT t(t),t);

dt35dt = diff(theta 35 t(t),t); dt35DOTdt = diff(theta 35 DOT t(t),t);

dd1dt = diff(d 1 t(t), t); dd1DOTdt = diff(d 1 DOT t(t),t);

dd2dt = diff(d 2 t(t), t); dd2DOTdt = diff(d 2 DOT t(t),t);

% dp12dt = diff(phi 12, t);

% dp34dt = diff(phi 34, t);

%Double Derivative expressions. These shouldn't exist if we always convert

%back after each segment (we only take one derivative at a time).

% d dt13dt = diff(dt13dt,t);

% d dt35dt = diff(dt35dt,t);

% d dd1dt = diff(dd1dt,t);

% d dd2dt = diff(dd2dt,t);

%For converting to time-dependent form:

before ddt noT vars = [theta 13 theta 13 DOT th 13 DDOT ...
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theta 35 theta 35 DOT th 35 DDOT...

d 1 d 1 DOT d 1 DDOT...

d 2 d 2 DOT d 2 DDOT];

before ddt T vars = [theta 13 t theta 13 DOT t th 13 DDOT t ...

theta 35 t theta 35 DOT t th 35 DDOT t...

d 1 t d 1 DOT t d 1 DDOT t...

d 2 t d 2 DOT t d 2 DDOT t];

%For converting to time-independent form

after ddt T vars = [theta 13 t theta 13 DOT t dt13dt dt13DOTdt ...

theta 35 t theta 35 DOT t dt35dt dt35DOTdt...

d 1 t d 1 DOT t dd1dt dd1DOTdt ...

d 2 t d 2 DOT t dd2dt dd2DOTdt];

after ddt noT vars = [theta 13 theta 13 DOT theta 13 DOT th 13 DDOT...

theta 35 theta 35 DOT theta 35 DOT th 35 DDOT...

d 1 d 1 DOT d 1 DOT d 1 DDOT...

d 2 d 2 DOT d 2 DOT d 2 DDOT];

%Angle Expressions

theta 03 = theta 01 + theta 13;

theta 05 = theta 01 + theta 13 + theta 35;

%% Define working Position variables

% These are the relationships needed to derive dynamics with just one set

% of generalized coordinates when things are often written as functions of

% each other.

disp('Defining theta/d/phi equivalences..');

%' fd' indictates function of d1, d1;

%' fth' indicates function of 'theta A', 'theta B'

theta 13 fd = pi - (gamma A1 + gamma A2) - acos((l PAˆ2 ...

+ l ARˆ2 - (d 1 + l QR)ˆ2)/(2*l PA*l AR));

theta 35 fd = -pi + gamma B + acos((l SBˆ2 + l BUˆ2 ...

- (d 2 + l TU)ˆ2)/(2*l SB*l BU));
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d 1 fth = sqrt(l PAˆ2 + l ARˆ2 + 2*l PA*l AR*cos(theta 13 ...

+ (gamma A1 + gamma A2))) - l QR;

d 2 fth = sqrt(l SBˆ2 + l BUˆ2 + 2*l SB*l BU*cos(theta 35 ...

- gamma B)) - l TU;

phi 12 fd = acos((l PAˆ2 + (d 1 + l QR)ˆ2 - l ARˆ2)/(2*l PA*(d 1 ...

+ l QR))) - gamma A1;

phi 12 fth = acos((l PA + l AR*cos(theta 13 + (gamma A1 ...

+ gamma A2)))/sqrt(l PAˆ2 + l ARˆ2 + 2*l PA*l AR*cos(theta 13 ...

+ (gamma A1 + gamma A2))));

phi 34 fd = gamma B - acos((l SBˆ2 + (d 2 + l TU)ˆ2 ...

- l BUˆ2)/(2*l SB*(d 2 + l TU)));

phi 34 fth = gamma B - acos((l SB + l BU*cos(theta 35 ...

- gamma B))/sqrt(l SBˆ2 + l BUˆ2 ...

+ 2*l SB*l BU*cos(theta 35 - gamma B)));

%% Find working Velocity variables

% Velocity equivalences are also convenient to have

disp('Defining theta-dot/phi-dot/d-dot equivalences..');

%For converting to time-independent form

% RECALL:

% Methods for time derivatives:

% (a) construct expressions with time-free variables

% (b) Substitute Time Dependent Variables

% (c) Differentiate

% (d) Substitute Time Free Variables

% (e) Move to next step

% (b) Substitute Time Dependent Variables

theta 13 fd t = subs(theta 13 fd, before ddt noT vars, before ddt T vars);

theta 35 fd t = subs(theta 35 fd, before ddt noT vars, before ddt T vars);
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d 1 fth t = subs(d 1 fth, before ddt noT vars, before ddt T vars);

d 2 fth t = subs(d 2 fth, before ddt noT vars, before ddt T vars);

phi 12 fd t = subs(phi 12 fd, before ddt noT vars, before ddt T vars);

phi 12 fth t = subs(phi 12 fth, before ddt noT vars, before ddt T vars);

phi 34 fd t = subs(phi 34 fd, before ddt noT vars, before ddt T vars);

phi 34 fth t = subs(phi 34 fth, before ddt noT vars, before ddt T vars);

% (c) Differentiate

theta 13 DOT fd t = diff(theta 13 fd t, t);

theta 35 DOT fd t = diff(theta 35 fd t, t);

d 1 DOT fth t = diff(d 1 fth t, t);

d 2 DOT fth t = diff(d 2 fth t, t);

phi 12 DOT fd t = diff(phi 12 fd t, t);

phi 12 DOT fth t = diff(phi 12 fth t, t);

phi 34 DOT fd t = diff(phi 34 fd t, t);

phi 34 DOT fth t = diff(phi 34 fth t, t);

% (d) Substitute Time Free Variables

theta 13 DOT fd = subs(theta 13 DOT fd t, after ddt T vars, ...

after ddt noT vars);

theta 35 DOT fd = subs(theta 35 DOT fd t, after ddt T vars, ...

after ddt noT vars);

d 1 DOT fth = subs(d 1 DOT fth t, after ddt T vars, after ddt noT vars);

d 2 DOT fth = subs(d 2 DOT fth t, after ddt T vars, after ddt noT vars);

phi 12 DOT fd = subs(phi 12 DOT fd t, after ddt T vars, ...

after ddt noT vars);

phi 12 DOT fth = subs(phi 12 DOT fth t, after ddt T vars, ...

after ddt noT vars);
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phi 34 DOT fd = subs(phi 34 DOT fd t, after ddt T vars, ...

after ddt noT vars);

phi 34 DOT fth = subs(phi 34 DOT fth t, after ddt T vars, ...

after ddt noT vars);

%% Write out velocity terms and take derivatives

disp('Defining key velocity terms...');

v Q d = [d 1 DOT, d 1*phi 12 DOT fd];

v T d = [-l ASy*theta 13 DOT fd*cos(phi 34 fd) ...

+ l ASx*theta 13 DOT fd*sin(phi 34 fd) + d 2 DOT, ...

l ASy*theta 13 DOT fd*sin(phi 34 fd) ...

+ l ASx*theta 13 DOT fd*cos(phi 34 fd) ...

+ d 2*(theta 13 DOT fd + phi 34 DOT fd)];

v C d = [-(l AB*theta 13 DOT fd*sin(theta 01 + theta 13 fd) ...

+ l BCy*(theta 13 DOT fd + theta 35 DOT fd)*cos(theta 01 ...

+ theta 13 fd + theta 35 fd) ...

+ l BCx*(theta 13 DOT fd + theta 35 DOT fd)*sin(theta 01 ...

+ theta 13 fd + theta 35 fd)), ...

l AB*theta 13 DOT fd*cos(theta 01 + theta 13 fd) ...

- l BCy*(theta 13 DOT fd + theta 35 DOT fd)*sin(theta 01 ...

+ theta 13 fd + theta 35 fd) + l BCx*(theta 13 DOT fd ...

+ theta 35 DOT fd)*cos(theta 01 + theta 13 fd + theta 35 fd)];

v Q th = [d 1 DOT fth d 1 fth*phi 12 DOT fth];

v T th = [-l ASy*theta 13 DOT*cos(phi 34 fth) ...

+ l ASx*theta 13 DOT*sin(phi 34 fth) + d 2 DOT fth ...

l ASy*theta 13 DOT*sin(phi 34 fth) ...

+ l ASx*theta 13 DOT*cos(phi 34 fth) + d 2 fth*(theta 13 DOT ...

+ phi 34 DOT fth)];

v C th = [-(l AB*theta 13 DOT*sin(theta 01 + theta 13) ...

+ l BCy*(theta 13 DOT + theta 35 DOT)*cos(theta 01 ...

+ theta 13 + theta 35) + l BCx*(theta 13 DOT ...

+ theta 35 DOT)*sin(theta 01 + theta 13 + theta 35)) ...
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l AB*theta 13 DOT*cos(theta 01 + theta 13) ...

- l BCy*(theta 13 DOT + theta 35 DOT)*sin(theta 01 ...

+ theta 13 + theta 35) + l BCx*(theta 13 DOT ...

+ theta 35 DOT)*cos(theta 01 + theta 13 + theta 35)];

%% Find virtual displacements

disp('Defining virtual displacements from velocity equations...');

%Keep matrix format intact for later construction of gen. forces

dr Q d mat = subs(v Q d, [d 1 DOT d 2 DOT], [DEL d 1 DEL d 2]);

dr T d mat = subs(v T d, [d 1 DOT d 2 DOT], [DEL d 1 DEL d 2]);

dr C d mat = subs(v C d, [d 1 DOT d 2 DOT], [DEL d 1 DEL d 2]);

dr Q th mat = subs(v Q th, [theta 13 DOT theta 35 DOT], ...

[DEL theta 13 DEL theta 35]);

dr T th mat = subs(v T th, [theta 13 DOT theta 35 DOT], ...

[DEL theta 13 DEL theta 35]);

dr C th mat = subs(v C th, [theta 13 DOT theta 35 DOT], ...

[DEL theta 13 DEL theta 35]);

%% Create Virtual Work and Get General Forces

disp('Extracting generalized forces from virtual work...');

DEL W d = dr Q d mat*[F 1; 0] + dr T d mat*[F 2; 0] ...

+ dr C d mat*[F 3 x; F 3 y];

DEL W th = dr Q th mat*[F 1; 0] + dr T th mat*[F 2; 0] ...

+ dr C th mat*[F 3 x; F 3 y];

[coeffs d, operators d] = coeffs(DEL W d, [DEL d 1 DEL d 2]);

Q 1 d = coeffs d(1);

Q 2 d = coeffs d(2);

[coeffs th, operators th] = coeffs(DEL W th, [DEL theta 13 DEL theta 35]);

Q 1 th = coeffs th(1);

Q 2 th = coeffs th(2);
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Q sum d = Q 1 d + Q 2 d;

Q sum th = Q 1 th + Q 2 th;

%% Add kinetic energy terms

disp('Defining velocity terms (T)...');

%I could sub (e.g., v G2b = v Q, but this seems more straightforward)

%In terms of d

v G2b d = [d 1 DOT, ...

d 1*phi 12 DOT fd];

v A d = [0 0];

v G3 d = [-l AG3y*theta 13 DOT fd, ...

l AG3x*theta 13 DOT fd];

v S d = [-l ASy*theta 13 DOT fd, ...

l ASx*theta 13 DOT fd];

v G4a d = [-l ASy*theta 13 DOT fd*cos(phi 34 fd) ...

+ l ASx*theta 13 DOT fd*sin(phi 34 fd), ...

l ASy*theta 13 DOT fd*sin(phi 34 fd) ...

+ l ASx*theta 13 DOT fd*cos(phi 34 fd) ...

+ l SG4a*(theta 13 DOT fd + phi 34 DOT fd)];

v G4b d = [-l ASy*theta 13 DOT fd*cos(phi 34 fd) ...

+ l ASx*theta 13 DOT fd*sin(phi 34 fd) + d 2 DOT ...

l ASy*theta 13 DOT fd*sin(phi 34 fd) ...

+ l ASx*theta 13 DOT fd*cos(phi 34 fd) ...

+ d 2*(theta 13 DOT fd + phi 34 DOT fd)];

v B d = [0, ...

l AB*theta 13 DOT fd];

v G5 d = [(l AB*theta 13 DOT fd*sin(theta 35 fd) ...

- l BG5y*(theta 13 DOT fd + theta 35 DOT fd)), ...

l AB*theta 13 DOT fd*cos(theta 35 fd) + l BG5x*(theta 13 DOT fd ...

+ theta 35 DOT fd)];

%In terms of theta

v G2b th = [d 1 DOT fth ...

d 1 fth*phi 12 DOT fth];
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v A th = [0 0];

v G3 th = [0, ...

l AG3*theta 13 DOT];

v S th = [-l ASy*theta 13 DOT, ...

l ASx*theta 13 DOT];

v G4a th = [-l ASy*theta 13 DOT*cos(phi 34 fth) ...

+ l ASx*theta 13 DOT*sin(phi 34 fth), ...

l ASy*theta 13 DOT*sin(phi 34 fth) ...

+ l ASx*theta 13 DOT*cos(phi 34 fth) ...

+ l SG4a*(theta 13 DOT + phi 34 DOT fth)];

v G4b th = [-l ASy*theta 13 DOT*cos(phi 34 fth) ...

+ l ASx*theta 13 DOT*sin(phi 34 fth) + d 2 DOT fth ...

l ASy*theta 13 DOT*sin(phi 34 fth) ...

+ l ASx*theta 13 DOT*cos(phi 34 fth) ...

+ d 2 fth*(theta 13 DOT + phi 34 DOT fth)];

v B th = [0, ...

l AB*theta 13 DOT];

v G5 th = [(l AB*theta 13 DOT*sin(theta 35) ...

- l BG5y*(theta 13 DOT + theta 35 DOT)), ...

l AB*theta 13 DOT*cos(theta 35)+ l BG5x*(theta 13 DOT + theta 35 DOT)];

omega d(2) = phi 12 DOT fd;

omega d(3) = theta 13 DOT fd;

omega d(4) = theta 13 DOT fd + phi 34 DOT fd;

omega d(5) = theta 13 DOT fd + theta 35 DOT fd;

omega th(2) = phi 12 DOT fth;

omega th(3) = theta 13 DOT;

omega th(4) = theta 13 DOT + phi 34 DOT fth;

omega th(5) = theta 13 DOT + theta 35 DOT;

% Since dot product commands lead to issues with the conj() operator, the

% 'real' declaration wasn't working, I just wrote out the dot product.

% Previously I thought I couldn't select by entry, so I would post-multiply

% by a 2 x 1 selection vector (but I think that that's unnecessary).
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v2 d(2,2) = v G2b d(1)ˆ2 + v G2b d(2)ˆ2;

v2 d(3,1) = v G3 d(1)ˆ2 + v G3 d(2)ˆ2;

v2 d(4,1) = v G4a d(1)ˆ2 + v G4a d(2)ˆ2;

v2 d(4,2) = v G4b d(1)ˆ2 + v G4b d(2)ˆ2;

v2 d(5,1) = v G5 d(1)ˆ2 + v G5 d(2)ˆ2;

v2 th(2,2) = v G2b th(1)ˆ2 + v G2b th(2)ˆ2;

v2 th(3,1) = v G3 th(1)ˆ2 + v G3 th(2)ˆ2;

v2 th(4,1) = v G4a th(1)ˆ2 + v G4a th(2)ˆ2;

v2 th(4,2) = v G4b th(1)ˆ2 + v G4b th(2)ˆ2;

v2 th(5,1) = v G5 th(1)ˆ2 + v G5 th(2)ˆ2;

%% Compute Lagrange's equation

disp('Defining kinetic energy terms (T) & potential energy terms (V)...');

%Do this systematically, using matrices that correspond to body ID

I sym mat = [I0 1 0; ...

I0 2a IG 2b; ...

IG 3 0;...

IG 4a IG 4b; ...

IG 5 0];

m sym mat = [m 1 0; ...

m 2a m 2b; ...

m 3 0;...

m 4a m 4b; ...

m 5 0];

%Kinetic Energy Terms

T i = 2; T j = 1;

T d(T i,T j) = 1/2*I sym mat(T i,T j)*omega d(T i)ˆ2;

T th(T i,T j) = 1/2*I sym mat(T i,T j)*omega th(T i)ˆ2;

T i = 2; T j = 2;

T d(T i,T j) = 1/2*I sym mat(T i,T j)*omega d(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 d(T i, T j);
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T th(T i,T j) = 1/2*I sym mat(T i,T j)*omega th(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 th(T i, T j);

T i = 3; T j = 1;

T d(T i,T j) = 1/2*I sym mat(T i,T j)*omega d(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 d(T i, T j);

T th(T i,T j) = 1/2*I sym mat(T i,T j)*omega th(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 th(T i, T j);

T i = 4; T j = 1;

T d(T i,T j) = 1/2*I sym mat(T i,T j)*omega d(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 d(T i, T j);

T th(T i,T j) = 1/2*I sym mat(T i,T j)*omega th(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 th(T i, T j);

T i = 4; T j = 2;

T d(T i,T j) = 1/2*I sym mat(T i,T j)*omega d(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 d(T i, T j);

T th(T i,T j) = 1/2*I sym mat(T i,T j)*omega th(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 th(T i, T j);

T i = 5; T j = 1;

T d(T i,T j) = 1/2*I sym mat(T i,T j)*omega d(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 d(T i, T j);

T th(T i,T j) = 1/2*I sym mat(T i,T j)*omega th(T i)ˆ2 ...

+ 1/2*m sym mat(T i,T j)*v2 th(T i, T j);

T sum d = sum(sum(T d));

T sum th = sum(sum(T th));

%Potential Energy Terms

V th(2,1) = m sym mat(2,1)*g...

*(l PG2a*sin(theta 01 + phi 12 fth));

V th(2,2) = m sym mat(2,2)*g...

*(d 1 fth*sin(theta 01 + phi 12 fth));

V th(3,1) = m sym mat(3,1)*g...

*(l AG3x*sin(theta 01 + theta 13) + l AG3y*cos(theta 01 + theta 13));

V th(4,1) = m sym mat(4,1)*g...

*(l ASx*sin(theta 01 + theta 13) + l ASy*cos(theta 01 + theta 13) ...
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+ l SG4a*sin(theta 01 + theta 13 + phi 34 fth));

V th(4,2) = m sym mat(4,2)*g...

*(l ASx*sin(theta 01 + theta 13) + l ASy*cos(theta 01 + theta 13) ...

+ d 2 fth*sin(theta 01 + theta 13 + phi 34 fth));

V th(5,1) = m sym mat(5,1)*g...

*(l AB*sin(theta 01 + theta 13) + l BG5x*sin(theta 01 + theta 13 ...

+ theta 35) + l BG5y*cos(theta 01 + theta 13 + theta 35));

V d(2,1) = subs(V th(2,1), [theta 13 theta 35], [theta 13 fd theta 35 fd]);

V d(2,2) = subs(V th(2,2), [theta 13 theta 35], [theta 13 fd theta 35 fd]);

V d(3,1) = subs(V th(3,1), [theta 13 theta 35], [theta 13 fd theta 35 fd]);

V d(4,1) = subs(V th(4,1), [theta 13 theta 35], [theta 13 fd theta 35 fd]);

V d(4,2) = subs(V th(4,2), [theta 13 theta 35], [theta 13 fd theta 35 fd]);

V d(5,1) = subs(V th(5,1), [theta 13 theta 35], [theta 13 fd theta 35 fd]);

V sum d = sum(sum(V d));

V sum th = sum(sum(V th));

% Assemble Lagrangian

L d = T sum d - V sum d;

L th = T sum th - V sum th;

%% Find State Derivatives

disp('Finding dL/dq and dL/dqDOT...');

%Position State Derivatives

dL th dt13 = diff(L th, theta 13);

dL th dt35 = diff(L th, theta 35);

dL d dd1 = diff(L d, d 1);

dL d dd2 = diff(L d, d 2);

%Velocity State Derivatives

dL th dt13DOT = diff(L th, theta 13 DOT);

dL th dt35DOT = diff(L th, theta 35 DOT);

dL d dd1DOT = diff(L d, d 1 DOT);
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dL d dd2DOT = diff(L d, d 2 DOT);

%% Find Time Derivatives

disp('Finding d(dL/dqDOT)/dt...');

%For converting to time-independent form

% RECALL:

% Methods for time derivatives:

% (a) construct expressions with time-free variables

% (b) Substitute Time Dependent Variables

% (c) Differentiate

% (d) Substitute Time Free Variables

% (e) Move to next step

% (b) Substitute Time Dependent Variables

dL th dt13DOT t = subs(dL th dt13DOT, before ddt noT vars, ...

before ddt T vars);

dL th dt35DOT t = subs(dL th dt35DOT, before ddt noT vars, ...

before ddt T vars);

dL d dd1DOT t = subs(dL d dd1DOT, before ddt noT vars, before ddt T vars);

dL d dd2DOT t = subs(dL d dd2DOT, before ddt noT vars, before ddt T vars);

% (c) Differentiate

d dL th dt13DOT dT t = diff(dL th dt13DOT t, t);

d dL th dt35DOT dT t = diff(dL th dt35DOT t, t);

d dL d dd1DOT dT t = diff(dL d dd1DOT t, t);

d dL d dd2DOT dT t = diff(dL d dd2DOT t, t);

% (d) Substitute Time Free Variables

d dL th dt13DOT dT = subs(d dL th dt13DOT dT t, after ddt T vars, ...

after ddt noT vars);

d dL th dt35DOT dT = subs(d dL th dt35DOT dT t, after ddt T vars, ...

after ddt noT vars);

d dL d dd1DOT dT = subs(d dL d dd1DOT dT t, after ddt T vars, ...

after ddt noT vars);
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d dL d dd2DOT dT = subs(d dL d dd2DOT dT t, after ddt T vars, ...

after ddt noT vars);

%% Analyze Results

disp('Compiling Lagranges Equations...');

%Put together equation

eq 1 lhs d = d dL d dd1DOT dT - dL d dd1;

eq 2 lhs d = d dL d dd2DOT dT - dL d dd2;

eq 1 lhs th = d dL th dt13DOT dT - dL th dt13;

eq 2 lhs th = d dL th dt35DOT dT - dL th dt35;

%Generate expression (just for funsies, I guess)

eq d 1 = eq 1 lhs d == Q 1 d;

eq d 2 = eq 2 lhs d == Q 2 d;

eq th 1 = eq 1 lhs th == Q 1 th;

eq th 2 = eq 2 lhs th == Q 2 th;

%% Produce versions that are easily implemented in Simulink

% Sort into form

% C1*ddotth13 + C2*ddotth35 + C3 = Q1

% and

% D1*ddotth13 + D2*ddotth35 + D3 = Q2

[C th, operators C th] = coeffs(eq 1 lhs th, [th 13 DDOT th 35 DDOT]);

[D th, operators D th] = coeffs(eq 2 lhs th, [th 13 DDOT th 35 DDOT]);

[C d, operators C d] = coeffs(eq 1 lhs d, [d 1 DDOT d 2 DDOT]);

[D d, operators D d] = coeffs(eq 2 lhs d, [d 1 DDOT d 2 DDOT]);

%% Compute linearization

disp('Defining linearized equations...');

C 1 = C th(1); C 2 = C th(2); C 3 = C th(3);

D 1 = D th(1); D 2 = D th(2); D 3 = D th(3);
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inv Amat = [D 2/(C 1*D 2 - C 2*D 1), -C 2/(C 1*D 2 - C 2*D 1); ...

-D 1/(C 1*D 2 - C 2*D 1), C 1/(C 1*D 2 - C 2*D 1)];

Bmat = [Q 1 th - C 3; Q 2 th - D 3];

F nonlin = inv Amat*Bmat;

J = [diff(F nonlin(1), theta 13), diff(F nonlin(1), theta 13 DOT), ...

diff(F nonlin(1), theta 35), diff(F nonlin(1), theta 35 DOT), ...

diff(F nonlin(1), F 1), diff(F nonlin(1), F 2), ...

diff(F nonlin(1), F 3 x), diff(F nonlin(1), F 3 y); ...

diff(F nonlin(2), theta 13), diff(F nonlin(2), theta 13 DOT), ...

diff(F nonlin(2), theta 35), diff(F nonlin(2), theta 35 DOT), ...

diff(F nonlin(2), F 1), diff(F nonlin(2), F 2), ...

diff(F nonlin(2), F 3 x), diff(F nonlin(2), F 3 y)...

];

A = [0 1 0 0; J(1,1:4); 0 0 0 1; J(2,1:4)];

B = [0 0 0 0; J(1,5:8); 0 0 0 0; J(2,5:8)];

% Use the formulation Delta \dot{state} = J Delta state

%% Simplify by pulling out some expressions

f1 fn = (l BUˆ2 + l SBˆ2 + 2*l BU*l SB*cos(gamma B - theta 35));

f2 fn = (l ARˆ2 + l PAˆ2+ 2*l AR*l PA*cos(gamma A1 + gamma A2 + theta 13));

f3 fn = cos(gamma A1 + gamma A2 + theta 13);

f4 fn = sin(gamma A1 + gamma A2 + theta 13);

f5 fn = cos(theta 01 + theta 13 + theta 35);

f6 fn = sin(theta 01 + theta 13 + theta 35);

g1 fn = sin(acos((l SB + l BU*cos(gamma B - theta 35))/f1 fnˆ(1/2)) ...

- theta 01 - theta 13 - gamma B);

g2 fn = sin(theta 01 + acos((l PA + f3 fn*l AR)/f2 fnˆ(1/2)));

g3 fn = (f4 fn*l AR*l PA*(l PA + f3 fn*l AR));

g4 fn = l AR*l PA*(l PA + f3 fn*l AR)ˆ2;

orig vars = [gamma A1 gamma A2 gamma B ...

l PA l AR l QR l AS l AB l SB l TU l BU l BC ...
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l AG3x l AG3y l BG5y l BG5x l BCx l BCy l ASx l ASy ...

l PG2a l SG4a l AG3 l BG5 ...

I0 1 I0 2a IG 2b IG 3 IG 4a IG 4b IG 5 ...

m 1 m 2a m 2b m 3 m 4a m 4b m 5 ...

theta 13 theta 35 theta 13 DOT theta 35 DOT];

syms G1 G2 G3 ...

l1 l2 l3 l4 l5 l6 l7 l8 l9 ...

L1 L2 L3 L4 L5 L6 L7 L8 ...

L9 K1 K2 K3 ...

I1 I2 I3 I4 I5 I6 I7 ...

m1 m2 m3 m4 m5 m6 m7 ...

t1 t2 T1 T2

short vars = [G1 G2 G3 ...

l1 l2 l3 l4 l5 l6 l7 l8 l9 ...

L1 L2 L3 L4 L5 L6 L7 L8 ...

L9 K1 K2 K3 ...

I1 I2 I3 I4 I5 I6 I7 ...

m1 m2 m3 m4 m5 m6 m7 ...

t1 t2 T1 T2];

syms f1 f2 f3 f4 f5 f6 g1 g2 g3 g4

A2 = subs(A, [f5 fn f6 fn g1 fn g2 fn g3 fn g4 fn], [f5 f6 g1 g2 g3 g4]);

B2 = subs(B, [f5 fn f6 fn g1 fn g2 fn g3 fn g4 fn], [f5 f6 g1 g2 g3 g4]);

A2 = subs(A2, [f1 fn f2 fn f3 fn f4 fn], [f1 f2 f3 f4]);

B2 = subs(B2, [f1 fn f2 fn f3 fn f4 fn], [f1 f2 f3 f4]);

A2 = subs(A2, orig vars, short vars);

B2 = subs(B2, orig vars, short vars);

D.4 Comparison Models

In addition to the model above, a simplified version was derived that ignored the impact

of the motion of the cylinders on the inertial terms, and related θ and d terms via a

projection, realized solely in the actuator force terms. This model acted essentially like

a driven double pendulum with nonlinear torque mappings, and served to show that a
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Figure 81: Left: SimMechanics code excerpt. Right: SimMechanics visualization.

simplified model was insufficient – as will be seen shortly, as well as to validate the MATLAB

derivation approach.

Using SimMechanics, a physics simulation was constructed in Simulink. First, the Solid-

Works model of the arm – the same one used earlier to obtain inertia properties – was

exported to SimMechanics First Generation. The blocks that were generated were edited

to include forcing and reorganized.

D.4.1 Simple Approximation

The preceding derivation is thorough but overly complex. A much easier solution is to

represent the system as a double pendulum with representative links masses and inertias,

and treat the forcing as moments. This can then follow a standard derivation. It was

also beneficial to do these by hand to check the MATLAB calculations, since the other

calculations were too large to do by hand.

The angles defined earlier will be used, but body 3 is expanded to include the cylinder/ac-

tuator inertia, such that m3 = 1.09 kg, IG3 = 0.0038 kg ·m2, and (I3)A = 0.0129 kg ·m2.

From equation (201):

V3 = m3g
(
~rAG3 · ĵ0

)
= m3g

(
(lAG3)xî3 + (lAG3)y ĵ3

)
· ĵ0

= m3g ((lAG3)x sin(θ03) + (lAG3)y cos(θ03)) (203)

V5 = m5g
(
~rAG5 · ĵ0

)
= m5g

(
lAB î3 + (lBG5)xî5 + (lBG5)y ĵ5

)
· ĵ0

= m5g [lAB sin(θ03) + (lBG5)x sin(θ05) + (lBG5)y cos(θ05)] (204)
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Key velocity terms are similarly sourced from equations (184) and (188):

~ω3 = θ̇13k̂ (205)

~ω5 = (θ̇13 + θ̇35)k̂ (206)

~vG5 = ~vB + ~ω5 × ~rBG5

= lAB θ̇13ĵ3 + (θ̇13 + θ̇35)k̂ ×
(

(lBG5)x5î5 + (lBG5)y5ĵ5

)
= lAB θ̇13(sin θ35î5 + cos θ35ĵ5)− (lBG5)y5(θ̇13 + θ̇35)̂i5 + (lBG5)x5(θ̇13 + θ̇35)ĵ5

=
(
lAB θ̇13 sin θ35 − (lBG5)y5(θ̇13 + θ̇35)

)
î5

+
(
lAB θ̇13 cos θ35 + (lBG5)x5(θ̇13 + θ̇35)

)
ĵ5 (207)

~vC = −
(
lAB θ̇13 sin(θ03) + (lBC)y5(θ̇13 + θ̇35) cos(θ05) + (lBC)x5(θ̇13 + θ̇35) sin(θ05)

)
î0

+
(
lAB θ̇13 cos(θ03)− (lBC)y5(θ̇13 + θ̇35) sin(θ05) + (lBC)x5(θ̇13 + θ̇35) cos(θ05)

)
ĵ0

(208)

There are just two kinetic energy components:

T =
1

2
(I3)Aω

2
3 +

1

2
IG5ω

2
5 +

1

2
m5v

2
G5

=
1

2
(I3)Aθ̇

2
13 +

1

2
IG5

(
θ̇13 + θ̇35

)2

+
1

2
m5

(
θ̇13 lAB sin(θ35)− (lBG5)y

(
θ̇13 + θ̇35

))2

+
1

2
m5

(
(lBG5)x

(
θ̇13 + θ̇35

)
+ θ̇13 lAB cos(θ35)

)2
(209)

Finally, virtual work is used to define generalized forces:

δW = Γ1δω3 + Γ2δω5 + F3δrAC

= Γ1δθ13 + Γ2(δθ13 + δθ35) + F3δrAC (210)

So in the absence of F3, Q1 = Γ1 + Γ2 and Q2 = Γ2. Then the Lagrangian is defined as

L = T − V and Lagrange’s equations incur

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi (211)
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. Assembling the components, the Lagrangian is found to be

L = T − V

=
1

2
(I3)Aθ̇

2
13 +

1

2
IG5

(
θ̇13 + θ̇35

)2
+

+
1

2
m5

(
θ̇13 lAB sin(θ35)− (lBG5)y

(
θ̇13 + θ̇35

))2

+
1

2
m5

(
θ̇13 lAB cos(θ35) + (lBG5)x

(
θ̇13 + θ̇35

))2

−
(
m3g ((lAG3)x sin(θ03) + (lAG3)y cos(θ03))

+m5g [lAB sin(θ03) + (lBG5)x sin(θ05) + (lBG5)y cos(θ05)]
)

(212)

It has state velocity derivatives

∂L

∂θ̇13

=

(
(I3)Aθ̇13 + IG5

(
θ̇13 + θ̇35

)
+m5

(
θ̇13 lAB sin(θ35)− (lBG5)y

(
θ̇13 + θ̇35

))
(lAB sin(θ35)− (lBG5)y)

+m5

(
θ̇13 lAB cos(θ35) + (lBG5)x

(
θ̇13 + θ̇35

))
(lAB cos(θ35) + (lBG5)x)

)
(213)

= (I3)Aθ̇13 + IG5

(
θ̇13 + θ̇35

)
+m5θ̇13 l

2
AB sin2(θ35)−m5θ̇13 lAB sin(θ35) (lBG5)y

−m5(lBG5)y

(
θ̇13 + θ̇35

)
lAB sin(θ35) +m5(lBG5)2

y

(
θ̇13 + θ̇35

)
+m5θ̇13 l

2
AB cos2(θ35) +m5θ̇13 lAB cos(θ35) (lBG5)x

+m5(lBG5)x

(
θ̇13 + θ̇35

)
lAB cos(θ35) +m5(lBG5)2

x

(
θ̇13 + θ̇35

)
(214)

= ((I3)A +m5 l
2
AB)θ̇13

+
(
IG5 +m5(lBG5)2

y +m5(lBG5)2
x

) (
θ̇13 + θ̇35

)
− (m5(lBG5)y lAB sin(θ35)−m5(lBG5)x lAB cos(θ35))

(
θ̇13 + θ̇35

)
+m5 lAB θ̇13 ((lBG5)x cos(θ35)− (lBG5)y sin(θ35)) (215)
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∂L

∂θ̇35

=

(
IG5

(
θ̇13 + θ̇35

)
−m5(lBG5)y

(
θ̇13 lAB sin(θ35)− (lBG5)y

(
θ̇13 + θ̇35

))
+m5(lBG5)x

(
θ̇13 lAB cos(θ35) + (lBG5)x

(
θ̇13 + θ̇35

)))

=
(
IG5 +m5(lBG5)2

y +m5(lBG5)2
x

) (
θ̇13 + θ̇35

)
+m5 lAB θ̇13 ((lBG5)x cos(θ35)− (lBG5)y sin(θ35)) (216)

Position state derivatives:

∂L

∂θ13
= −

(
m3g ((lAG3)x cos(θ03)− (lAG3)y sin(θ03))

+m5g [lAB cos(θ03) + (lBG5)x cos(θ05)− (lBG5)y sin(θ05)]
)

= − (m5glAB +m3g(lAG3)x) cos(θ03) +m3g(lAG3)y sin(θ03)

−m5g(lBG5)x cos(θ05) +m5g(lBG5)y sin(θ05) (217)

∂L

∂θ35
= m5

(
θ̇13 lAB sin(θ35)− (lBG5)y

(
θ̇13 + θ̇35

))
lAB θ̇13 cos(θ35)

−m5

(
θ̇13 lAB cos(θ35) + (lBG5)x

(
θ̇13 + θ̇35

))
lAB θ̇13 sin(θ35)

−m5g ((lBG5)x cos(θ05)− (lBG5)y sin(θ05))

= −m5lAB θ̇13 ((lBG5)y cos(θ35) + (lBG5)x sin(θ35))
(
θ̇13 + θ̇35

)
+m5g(lBG5)y sin(θ05)−m5g(lBG5)x cos(θ05) (218)

and time derivatives.

d

dt

(
∂L

∂θ̇13

)
= ((I3)A +m5 l

2
AB)θ̈13

+
(
IG5 +m5(lBG5)2

y +m5(lBG5)2
x

) (
θ̈13 + θ̈35

)
− (m5(lBG5)y lAB cos(θ35) +m5(lBG5)x lAB sin(θ35))

(
θ̇13θ̇35 + θ̇2

35

)
− (m5(lBG5)y lAB sin(θ35)−m5(lBG5)x lAB cos(θ35))

(
θ̈13 + θ̈35

)
+m5 lAB θ̈13 ((lBG5)x cos(θ35)− (lBG5)y sin(θ35))

+m5 lAB θ̇13θ̇35 (−(lBG5)x sin(θ35)− (lBG5)y cos(θ35)) (219)
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d

dt

(
∂L

∂θ̇35

)
=
(
IG5 +m5(lBG5)2

y +m5(lBG5)2
x

) (
θ̈13 + θ̈35

)
+m5 lAB θ̈13 ((lBG5)x cos(θ35)− (lBG5)y sin(θ35))

−m5 lAB θ̇13θ̇35 ((lBG5)x sin(θ35) + (lBG5)y cos(θ35)) (220)

Finally, the equations can be assembled and solved for θ̈13 and θ̈35:

(I3)A + IG5 +m5

(
((lBG5)x + lAB cos(θ35))2 +

(
(lBG5)y − lAB sin(θ35)

)2
)
θ̈35

+IG5 +m5

(
(lBG5)x ((lBG5)x + lAB cos(θ35)) + (lBG5)y

(
(lBG5)y − lAB sin(θ35)

))
θ̈13

+m3g
(

(lAG3)x cos(θ01 + θ13)− (lAG3)y sin(θ01 + θ13)
)

−
(
m5

(
lAB θ̇35 sin(θ35)

(
(lBG5)x

(
θ̇13 + θ̇35

)
+ lAB θ̇13 cos(θ35)

)
+lAB θ̇35 cos(θ35)

(
(lBG5)y

(
θ̇13 + θ̇35

)
− lAB θ̇13 sin(θ35)

)
+lAB θ̇13 θ̇35 sin(θ35) ((lBG5)x + lAB cos(θ35))

+lAB θ̇13 θ̇35 cos(θ35)
(

(lBG5)y − lAB sin(θ35)
)))

+m5g
(
lAB cos(θ01 + θ13) + (lBG5)x cos(θ01 + θ13 + θ35)− (lBG5)y sin(θ01 + θ13 + θ35)

)
= Γ1 + Γ2

(221)

IG5 +m5

(
(lBG5)x ((lBG5)x + lAB cos(θ35)) + (lBG5)y

(
(lBG5)y − lAB sin(θ35)

))
θ̈13

+IG5 +m5

(
(lBG5)x

2 + (lBG5)y
2
)
θ̈35

+
(
m5

(
lAB θ̇13 sin(θ35)

(
(lBG5)x

(
θ̇13 + θ̇35

)
+ lAB θ̇13 cos(θ35)

)
+lAB θ̇13 cos(θ35)

(
(lBG5)y

(
θ̇13 + θ̇35

)
− lAB θ̇13 sin(θ35)

)))
−
(
m5

(
lAB (lBG5)x θ̇13 θ̇35 sin(θ35) + lAB (lBG5)y θ̇13 θ̇35 cos(θ35)

))
+m5g

(
(lBG5)x cos(θ01 + θ13 + θ35)− (lBG5)y sin(θ01 + θ13 + θ35)

)
= Γ2

(222)

For practical use, we need to solve for the accelerations. This can be done by grouping

the above equations into terms: C1θ̈13 + C2θ̈35 + C3 = Q1, and D1θ̈13 +D2θ̈35 +D3 = Q2.
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Written in matrix form:  C1 C2

D1 D2


 θ̈13

θ̈35

 =

 Q1 − C3

Q2 − C3

 (223)

These can then be solved: θ̈13

θ̈35

 =

 C1 C2

D1 D2


−1  Q1 − C3

Q2 − C3


 θ̈13

θ̈35

 =

 D2
C1D2−C2D1

− C2
C1D2−C2D1

− D1
C1D2−C2D1

C1
C1D2−C2D1


 Q1 − C3

Q2 − C3

 (224)

D.4.2 Inertial model in Simulink

Using SimMechanics, a physics simulation was constructed in Simulink. First, the Solid-

Works model of the arm – the same one used earlier to obtain inertia properties – was

exported to SimMechanics First Generation. The blocks that were generated were edited

to include forcing and reorganized.

D.4.3 Model Performance

Time-series comparison and spectral analysis were used to compare the performance of

the two analytically derived sets of equations of motion and the SimMechanics model.

For the most direct comparison, PID controllers were applied to each model to force a

setpoint. Feedforward chirp excitations were added to the control input to act as a force

disturbance. The resultant plots could be used to compare performance of models within

the desired operating range.

First, each joint was individually excited while the other was held constant using the

controller. Figures 82 and 83 show the response of θ13 and θ35 to excitation of θ13, while

Figures 84 and 85 do the same for an excitation to θ35.

Next, both angles are forced at the same time. Figures 86 and 87 show the individual

responses of each joint to their own excitation, while Figure 88 demonstrates the response

of each angle to the excitation of the opposite joint.
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Figure 82: Position and frequency response of θ13 when θ13 is given a 20 N force chirp
excitation.

Figure 83: Position and frequency response of θ35 when θ13 is given a 20 N force chirp
excitation.

These figures appear to show overall good correspondence between analytical and Sim-

scape models. Of course, correspondence in the appropriate domains isn’t perfect. Figures

89 and 90 demonstrate model correspondence in time for each joint when the other is held

fixed (with a weld joint in Simscape, and by setting acceleration to zero in the analytical

models). These figures use gravity in lieu of a controller to force the position to remain

inside the operating range. While joint θ35 matched almost perfectly, joint θ13 differs at

the extremities. It is also possible to observe a slight phase delay that begins to grow.

Since all the geometric quantities were based on trigonometric laws that are valid in this

operating range, and as all the inertial and geometric parameters were checked multiple
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Figure 84: Position and frequency response of θ13 when θ35 is given a 60 N force chirp
excitation.

Figure 85: Position and frequency response of θ35 when θ13 is given a 60 N force chirp
excitation.

times, it is assumed that this is the result of some unknown difference between Lagrangian

and SimMechanics dynamics derivations.

From these tests, it appears that the geometric constraints incurred by the cylinder/pis-

ton action do have a significant effect on model dynamics: while behavior can be captured by

simply altering the inertias of a forced double pendulum, magnitudes match better when the

detail geometry is included in the derivation of the dynamics. However, for use in control,

especially predictive control over a short time horizon, or control with built-in robustness

to model error, the simplified model appears sufficient.
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Figure 86: Position and frequency response of θ13 to a 60 N force chirp excitation when
both angles are excited.

Figure 87: Position and frequency response of θ35 to a 20 N force chirp excitation when
both angles are excited.

Figure 88: Frequency response of θ13 and θ35 to excitation of the other joint when both
are excited at the same time.
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Figure 89: Frequency response of θ35 to light sinusoidal forcing (enough to move the arm,
but not enough to exceed a realistic operating range).

Figure 90: Frequency response of θ13 to light sinusoidal forcing (enough to move the arm,
but not enough to exceed a realistic operating range). The model has been rotated so that
gravity can be used to keep it inside a realistic operating range.
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