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SUMMARY

Cranes are often the most conspicuous machines on a construction site. This

is due to their large size, in addition to the important role they have in transporting

heavy payloads vertically and horizontally.

There are two major families of construction cranes: tower cranes and mobile

cranes. Mobile cranes that are mounted on tracks are a subgroup referred to as

“crawler cranes”. Crawler cranes are widely used on construction sites, and are a

backbone of the United States construction industry, thus a detailed study of these

cranes’ behavior is essential.

This research studies the tip-over stability of crawler cranes in heavy-lifting appli-

cations. Two major applications are discussed: crawler cranes using movable coun-

terweights and crawler cranes in tandem lifting.

1. Crawler cranes with movable counterweights

Crawler cranes introduce the advantage of mobility and versatility on the construc-

tion site, which provides faster and more accurate positioning of payloads. However,

the massive size and weight of these machines create a large tip-over hazard. A small

force with a large moment arm can create a huge moment that can cause the crane

to tip-over. Crane counterweights provide balancing forces so that the crane does not

tip over as it picks up and moves heavy payloads.

To increase the stability of the crawler crane and help support a heavier payload,

a larger counterweight may seem like a straight-forward solution, however there are

important trade-offs to consider. Larger counterweights are more difficult to trans-

port from one location to another, and they require ground preparation to properly

support the large compressive load that these counterweights cause. Also, a larger
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counterweight results in a slower, and more difficult to move crawler crane, thus com-

promising the mobility advantage of the crawler crane. Therefore, the concept of a

movable counterweight has been introduced as a solution to these problems.

Movable counterweights provide several advantages in terms of reducing the total

machine weight, increasing mobility, and improving ease of use. However, introducing

a movable counterweight complicates the design and control of the crane. Further-

more, the difficulty of performing the static and dynamic analyses of the crawler crane

is increased.

This research provides a detailed static and pseudo-dynamic analyses to calculate

the limits of the counterweight position to ensure stability and prevent tip-overs for

various crane parameters and configurations. Additionally, a guideline is given to

crane operators to prevent accidents, and define safety regions of operation.

First, the crane is considered to be stationary, and the effect of different parameters

on the counterweight’s position is examined. Then, the effect of different motion

scenarios is studied, and a comprehensive stability analysis is performed, taking into

consideration the payload swing induced by different motions.

All the results presented in this research provide general guidelines for crane op-

erators, so that they can make reasonable decisions regarding the placement of the

movable counterweight during operation. These guidelines help prevent tip-over ac-

cidents, and improve the operation for crawler cranes in general.

2. Crawler Cranes in Tandem Lifting

One common problem in crane lifting operations is the need to transport a bulky or

irregular-shaped payload. In such case, it may be necessary to handle these items by

tandem lifting with two cranes. The complexity of such a configuration is discussed,

and a static tip-over analysis of the two cranes in tandem lifting operation is studied.

These cranes have a large tendency to tip-over creating bigger catastrophes, since

the tipping of one crane causes the other crane to tip as well. Also, it is often difficult
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to synchronize the behavior of the two cranes because they are operated with two

different operators, who can have difficulties perceiving what the other crane is doing.

Thus it is important to provide a set of guidelines that can simplify the procedure

and minimize accidents. This challenge is what the final chapter of this thesis focuses

on.

The prediction model and the results in this thesis provide a significant tool for

practical application of tip-over stability analysis for crawler cranes with heavy lifting

applications, whether a movable counterweight is used, or tandem lifting. Experimen-

tal results are provided to verify some of the key theoretical results.
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CHAPTER I

INTRODUCTION

Modern building construction projects are highly mechanized and becoming more so

everyday. On construction sites, production equipment is being replaced by trans-

portation equipment, because structural elements are being prefabricated off-site and

then installed or assembled on site. Material handling and lifting equipment now

dominate building construction sites more than ever before, and they constitute a

critical element in achieving high productivity [31].

The typical building construction site will include several or all of the following

equipment: cranes, material handlers, concrete pumps, hoists and lifts, and forming

systems. However, cranes are the most conspicuous machines on site, not only because

of their size, but also due to the important role they have in transporting materials

and elements vertically and horizontally [31].

1.1 Construction Crane Types

There are two major families of construction cranes: tower cranes and mobile cranes.

Examples of these two families are shown in Figure 1. The term “mobile cranes” can

be used to refer to truck-mounted mobile cranes only, while track-mounted mobile

cranes are a subgroup referred to as “crawler cranes” [31].

Traditionally, the number of mobile cranes used on construction sites in the United

States has been far greater than the number of tower cranes. They are by and large

the backbone of the United States construction industry, and will be the focus of this

thesis. However, it should be mentioned that tower cranes, the icon of construction

in Europe and the Far East are also in wide spread use at United States building sites

[31].
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(a) Mobile Crane [21] (b) Tower Crane [35]

Figure 1: Construction Crane Types.

1.1.1 Mobile Cranes

A mobile crane is a self-propelled mobile machine, capable of moving freely about

the job site, and in most cases from one job site to another. The span of machine

size ranges from mini machines fitting in the back of a small truck to huge models

used in shipyards, wind farms, construction sites, ports, and other manufacturing

facilities. The type of mobile cranes included in this research is the track-mounted

mobile crane, also known as “crawler cranes” [31].

A crawler crane is composed of several parts, as illustrated in Figure 2. The base

of the machine has the crawling tracks and the propulsion system. On top of the

track, are the engine, control area, and the operator cab. The lifting cables run up

through the end of the boom and hang downward to the hook. Objects to be lifted
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Figure 2: Crawler Crane Parts [32].

are attached to the hook. Sometimes the crane boom has an extension that sticks out

at an angle from the boom. This “jib” extension allows the crane to move objects

further away from its center and to higher heights. Finally, the counterweight, which

can weigh hundreds of tons, allows the crane to lift very heavy loads. Crawler cranes

can lift thousands of tons depending on their components and configuration [38].

1.1.2 Advantages and Disadvantages of Mobile Cranes

There are many reasons that make crawler cranes popular and widely used. These

cranes are maneuverable and versatile while on the job site. Due to the stability of
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their steel track design, they can lift heavier loads than those of rubber tire-equipped

models with similar attachments. Finally, crawler cranes can travel while carrying a

load, provided that the crane is operating on firm level ground to within 1% gradient,

which is about a slope of 0.6o [39]. This is a highly recommended common practice in

crane operations. Also, crawler cranes sometimes have booms that can reach several

hundred feet in the air, which makes them perfect for large construction sites [38, 9].

On the other hand, crawler cranes cannot be transported from one construction

site to another without additional equipment. Usually, they need to be dismantled

into pieces and transported by trucks, rails, or other vehicles. This increases the cost

of using a crawler crane as compared to other types of mobile cranes [38, 9].

Also, the massive size and weight of these cranes create a larger tip-over hazard.

Given the massive height of such cranes, a small force with a large moment arm can

create a huge moment that can cause the crane to tip over. Therefore, as the crane

gets taller the counterweight generally needs to be larger. Massive counterweights

need special ground preparation to properly support the large compressive loads that

they generate [38, 9].

To better understand the danger of forces and moments that cause tip-overs,

one of the recent crane tip-over accidents is discussed. This accident happened in

Manhattan, New York City on February 5th, 2016. One person was killed and three

were injured. The crane was being secured when it tipped over, letting the extremely

long boom fall along Worth Street in Tribeca, a roadway that is normally swarming

with people during the morning rush hours. Luckily, injuries were lessened because

construction workers were guiding people away from the street when the collapse

happened [3]. Figures 3 and 4 show the dramatic tip-over, and the huge fall zone of

the boom. This is an example of how severe tip-over accidents are and emphasizes

the need to study their causes.
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Figure 3: Scene of crane collapse at 40 Worth St & W Bdwy in Manhattan [3].

Figure 4: Boom Damage of the Collapsed Crane in Manhattan [3].
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Nevertheless, modern industrialization and construction is driving the need for

heavy cargo, and this includes components used in renewable and sustainable energy

developments, such as wind turbines. Wind turbine components provide an excellent

example of challenging crane lifts due to their considerable mass. The machinery

housings, called nacelles, are very heavy, while the rotor blades are extremely bulky

and awkward to manipulate [7].

Consequently, moving heavy or over-sized loads is posing new challenges for the

crane industry. It is not only the demand for more powerful cranes that is growing.

There is a growing need for alternative methods of lifting. When payloads are heavy,

mobile cranes with movable counterweights are a convenient alternative. Given the

problems posed by large and awkward shapes, it may be necessary to handle some

items by tandem lifting with two cranes [7].

As a result, it is evident that improving lifting capacity will require more safety

features to prevent tipping over and guarantee larger stable workspaces [38, 9].

1.2 Crane Accidents

The construction industry in the US has a high injury and fatality rate when compared

with other industries [22]. The reason is that this industry involves complex and

dynamic work environments that present hazards to workers on a daily or even hourly

basis.

Though there are a number of factors that cause this high rate of accidents in

the construction industry, many injuries and fatalities can be attributed to the heavy

machinery. Cranes, with their numerous types and configurations are a critical com-

ponent of most construction projects, and are the reason behind one-third of all

construction and maintenance fatalities and injuries resulting in permanent disability

[22].

Nevertheless, the volume of crane accidents can only be estimated because the
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Table 1: Crane Accident Statistics (2011- June, 2015) [4].

Year Accidents Deaths
2011 106 93
2012 235 99
2013 193 61
2014 215 78
2015 103 38

Average 189.3 82

definition of accident is not universal. That is, some businesses may report only

events resulting in injuries or deaths, while others report only accidents resulting

from certain causes.

On the website CraneAccidents.com [4], a large number of crane accidents are

voluntarily archived each year. Table 1 shows the number of accidents reported on

this website in each of the past five years, as far as the end of June, 2015. It also

shows the number of fatalities in each year.

It should be mentioned however, that a major crane accident occured on Septem-

ber 11th, 2015 in Mecca, Saudi Arabia. This accident took place in Mecca’s Grand

Mosque, which was crowded with people a few days before Hajj season, thus causing

107 deaths on its own.

In order to study the causes of these accidents, it is essential to first examine the

reasons why cranes fail.

1.2.1 Modes of Crane Failure

Cranes fail, sometimes catastrophically, in a number of different ways. One generally

accepted list of 13 failure modes was presented by David MacCollum in 1980 and

then in his book in 1993 [17, 18]. These modes are:
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1. Overloading: Combination of boom length, angle, and lifted load that exceeds

the rated capacity and safety margin of a crane and results in a crane upset.

2. Side Pull: Lateral boom loading encountered when a load is turned or lifted

can buckle the boom.

3. Outrigger Failure: Outriggers fail to keep crane stabilized, or are never de-

ployed to begin with.

4. Hoist Limitations: Hoist line parts while being reeled in or suspending a load.

5. Two-Blocking: Load is lifted too high and the hook block strikes the boom

tip.

6. Killer Hooks: Worn hook fails and drops a load unexpectedly.

7. Boom Buckling: Boom deformation due to suddenly applied strains (i.e.

abrupt release of load, raising the boom beyond the safe angle, boom strik-

ing a structure), or compromise during shipping.

8. Upset/Overturn: Due mainly to operator failure to extend outriggers, al-

though also possible while moving a load on unstable/uneven terrain.

9. Unintentional Turntable Turning: Load is lifted without operator locking

cab onto chassis.

10. Oversteer/Crabbing: Can occur in some rough terrain cranes where rear

wheel steering can be engaged accidentally, resulting in an unexpected halving

of the crane’s turning radius.

11. Control Confusion: Can occur due to lack of control standardization among

different crane makes and models, or insufficient distance and illogical placement

of controls.
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12. Access/Egress: Footholds allowing operators to access the cab are frequently

located in areas where hydraulic leaks occur, resulting in slippery footrests and

subsequent falls.

13. Unintentional Power Line Contact: Accidental contact between line and

boom or crane chassis.

Other modes which have been identified include improper assembly/dismantling,

fall of load or lifting tackle, being struck by a moving load, and being struck by the

crane itself [22].

However, my research brings up some other modes that need to be mentioned,

such as payload swinging and payload pulling in tandem lifting which increase the

risk of tipping over, in addition to wind load which can be unpredictable in some

cases. Finally, when mobile cranes travel on the streets, they are subject to traffic

accidents.

1.2.2 Crane Accident Causes between 2011 and 2015

Looking through the reported accidents archived in [4] and mentioned in Table 1,

I was able to make a list of the causes behind these accidents. This list includes

causes for accidents that actually happened in the last five years. These causes do

not include the whole list of MacCollum, which covers broader categories. They are

as follows:

(A) Payload falling on victims or equipment.

(B) Unintentional power line contact and electrocutions.

(C) Improper assembly or dismantling of the crane.

(D) Mechanical failure including buckling.

(E) Overturning or tipping over of the crane.
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(F) Victims struck by moving load or crane parts.

(G) Victims falling from crane.

(H) Other miscellaneous causes including traffic accidents and fires.

Figure 5 demonstrates the percentage of the above cases with respect to the whole

number of accidents in each year from January, 2011 to October, 2015. It is clear

in the charts that the main reason a crane accident occurs is the case of the crane

overturning or tipping over. This is a very wide category that can happen as a

consequence of numerous events. Studying crane tip-overs, their causes, and how to

prevent them is a very important research topic that can contribute to improving

safety at construction sites.

1.3 Tip-Over Stability of Mobile (Crawler) Cranes

Being such huge machines, and having to carry heavy loads from one place to another,

crawler cranes obviously pose a significant stability hazard. If the payload weight is

more than the weight specified in load charts, then it can create a moment decreasing

the stability of the crane in the forward direction. Also, positioning the boom at an

angle that is too low would change the lever arm of the payload and boom weight

forces, thereby creating a tip-over moment in the forward direction. Another inter-

esting case is when the payload suddenly falls off. In such cases, if the counterweight

is too large, then it creates a moment causing the crane to tip over backwards. And

finally, weather sometimes plays a role. Higher wind speeds than those stated in

load charts can lead to catastrophic consequences, similar to the Manhattan tip-over

accident mentioned earlier.

An example of a recent serious crane accident is the one that took place at VT

Halter Marine in Pascagoula, Mississippi. On June 25th, 2014, three crawler cranes

were in tandem lifting trying to move a section of a boat. One of them failed and
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Figure 5: Crane Accident Causes during the Past Five Years [4].

tipped over forwards, which caused the hoists attached to the shared payload to break.

Thus, the second crane suddenly lost its payload and tipped over backwards. This

was a catastrophic incident that led to the death of one person, while four others

were injured. Figure 6 shows a picture taken at the scene [10].

Moreover, when the crane is in motion, things get more complicated. Base accel-

eration and boom motions cause the payload to swing, and these oscillations increase

the payload moment arm and add a centripetal force to the gravity forces. The time-

varying sum of these forces creates a moment that, if not somehow counterbalanced,
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Figure 6: Tandem Lift Accident [4].

will decrease the crane’s stability.

When a crane tips over it can completely destroy itself, cause great damage to the

surrounding environment, and can cost lives of humans operating the crane, working

in the fall zone, or even just passing nearby. Figure 7 shows a crawler crane that has

tipped over. The boom falls a long way from the base of the crane. Therefore, the

potential fall zone around a tall crawler crane is massive.

1.4 Previous Work

There have been several investigations of the tip-over stability of cranes. Neitzel et

al. [22] reviewed available information on crane-related injuries, and gave recommen-

dations for improving crane injury prevention and future crane safety research. Jeng,

Yang, Chieng [8] introduced two indices, a moment-index and a force-index, to quan-

tify the tip-over behavior of mobile cranes. They also examined the bearing capacity

of outriggers. The force-angle stability measure [24, 25], which is easily computed
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Figure 7: Crawler Crane Tip-Over Accident [23].

and is sensitive to changes in the center of mass height, provides an indication of

proximity to tip-over.

The tip-over stability of a mobile crane considering the payload oscillations was

investigated by Rauch et al. in [29]. The comparison between the static stability and

the full-dynamic stability revealed that a simple semi-dynamic analysis provides good

approximations for the tip-over stability properties. A dynamic model for the control

of a flexible mobile crane with a flexible boom was derived by Kiliçaslan [11]. The

goal was to determine safe loads and prevent tipping.

In addition to cranes, several investigations of related machinery have been con-

ducted. A small-scale cherrypicker was constructed to investigate the dynamics and

stability of aerial lifts [19]. Vibration-control techniques were used to improve sys-

tem response. Manning et al. [20] used an input-shaping control method to suppress

double-pendulum oscillations created by a payload with distributed-mass properties.
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Furthermore, tip-over of a mobile manipulator was determined as a function of iner-

tia, gravity, and acceleration [15]. An online fuzzy logic self-motion planner was used

to generate desired motions in real-time.

Korayem et al. [12] derived kinematic and dynamic models of a mobile manipula-

tor. Ghasempoor and Sepehri [6] showed that the amount of impact energy that can

be sustained by a vehicle without tipping-over can be used to compute the tip-over

potential of a vehicle carrying a manipulator. Lee and Yi [14] investigated a fuzzy

logic roll stability control system to prevent the rollover of sport utility vehicles. The

maximum payload path for a specified payload was generated using an optimal control

approach. Zhaofa et al. [41] studied a scheme for stability monitoring of large-scale

hoisting transfer equipment. The hydraulic leg force was measured by a weight sensor

to judge safety for the hoisting equipment. Abo-Shanab and Sepehri [1] developed a

simulation model for studying the tip-over stability of a typical heavy-duty hydraulic

log-loader machine. Their results showed that the flexibility at the manipulator joints

due to the hydraulic compliance improved the machine stability.

1.5 Thesis Overview

In this thesis, the tip-over stability of a crawler crane is analyzed under various

conditions. In Chapter 2, a tip-over prediction model of a crawler crane equipped

with a movable counterweight is presented. The crane is assumed to be stationary,

with a single-pendulum point-mass payload. A method to determine the limits of the

counterweight position that prevent forward and backward tip-overs is explained. A

static stability analysis is then performed to provide insights on the effect of different

parameters on the counterweight position, such as the counterweight mass, the boom

luffing angle, the payload mass, and the presence of a mast or jib.

Chapter 3 introduces a pseudo-dynamic stability analysis that is used to study the

tip-over stability of a crawler crane with a movable counterweight when it performs
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simple motions. The analysis considers the dynamics and payload swing introduced

by motions such as: straight base motion, boom luffing motion, and boom slewing

motion.

A small-scale experimental crane model was built and presented in Chapter 4.

Experiments were performed on this model to support the results obtained in Chapter

2. In Chapter 5, the process of tandem lifting is studied. A static stability analysis

is performed to develop guidelines for operating these cranes safely. The chapter also

provides an introduction to a wide scope of future research in tandem lifting.

Finally, Chapter 6 summarizes the results obtained during this research project,

and suggests some possible future work in the area of tip-over stability in heavy lifting

applications.

1.6 Thesis Contributions

This thesis contributes to the knowledge of crawler cranes’ tip-over stability by:

1. Developing a computational tool that can estimate the safety region in which

a movable counterweight can be placed to prevent forward and backward tip-

overs.

2. Determining the effect of the crane’s parameters on the counterweight position-

ing required to prevent tip-over.

3. Examining the effect of different configurations of the crawler crane on the

counterweight positioning.

4. Extending the developed computational tool to include the effect of acceleration

and payload swing as the crane undergoes simple motions, which can also be

easily expanded to apply to other types of machinery.

5. Studying the static performance of cranes in tandem lifting, and providing some

guidelines that can improve the performance and reduce accidents.
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CHAPTER II

STATIC TIP-OVER STABILITY OF CRAWLER CRANES

WITH MOVABLE COUNTERWEIGHTS

2.1 Overview

Crane counterweights provide balancing forces so that the crane does not tip over as it

picks up and moves heavy payloads. As cranes get taller, their counterweight masses

increase significantly. This makes the crane more expensive, harder to transport,

and more difficult to erect. Massive counterweights also require extensive ground

preparation to properly support the large compressive loads. In order to decrease

the required counterweight, crane manufacturers have been developing cranes with

movable counterweights. Some of the recent patented models are described in [27],

[28], [33], and [40].

The mobile platform of a crane can provide a significant counterweight. However,

the width of the base is often limited by the need to transport the crane on roads.

To increase side-to-side stability, outriggers can be used, however, this eliminates

mobility during lifts. To improve stability in the fore-aft direction of the boom,

additional mass can be added directly on the rotating bed, or mass can be attached

through an auxiliary platform or trailer. Such auxiliary counterweights are shown in

Figure 8.

Movable counterweights provide several advantages in terms of reducing the total

machine weight, increasing mobility, and improving ease of use, when compared with

similar cranes with fixed counterweights. A crane with a movable counterweight has

less total mass because it can move the weight to various locations to change the

moment arm. Given the reduced counterweight mass, the crane is easier to move,
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Figure 8: Counterweights on Rotating Bed and on Trailer, Modified from [34].

both from one job site to another and around any given job site.

Movable counterweights for heavy machinery have been well documented for about

100 years. For example, Figure 9 shows a boom crane patented in 1922. In Figure

9(a) the counterweight is in a retracted position near the center of the crane. While

in Figure 9(b) the counterweight is extended rearward to provide more resistance

to forward tipping. This resistance is needed when the boom is lowered or when a

larger payload is connected to the hook. The counterweight should not be kept in the

rearward position all the time though, because it would cause the crane to tip-over

backwards in certain configurations including the case where the payload suddenly

falls off. This means that the position should be chosen in a way that prevents both

forward and backward tip-overs.

Previous research showed that the design and control of a crane with movable

counterweights is more complex than cranes with fixed counterweights [16]. The
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(a) Counterweight Retracted

(b) Counterweight Extended

Figure 9: Crane with movable counterweight patented by Wigglesworth [37].

counterweight should be moved in coordination with both the configuration of the

crane and the weight of the attached load. In order to achieve this counterbalancing

effect, the crane must be equipped with sensors that measure the boom angle, the

counterweight position, and the payload weight. This sensor information is then used

by a control system that automatically adjusts the counterweight position.

This chapter investigates the tip-over stability of a crawler crane with a movable

counterweight. In order to determine the appropriate position of the counterweight,

the sum of moments method is used.
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The maximum and minimum safe positions of the counterweight are calculated

for a wide range of conditions including:

1. Various boom-mast configurations.

2. Various payload masses and counterweight masses.

3. Various slew angles and boom angles.

The analysis demonstrates that the stability properties are complex functions of

the crane and payload parameters.

2.2 Tip-over Stability Based on Sum of Moments about Pos-
sible Tip-over Axes

Crawler crane structures are complex and subject to multiple forces arising from

inertia, gravity, wind, payload swing, ground undulations, etc. In this chapter, static

tip-over stability is investigated; therefore the moment created by each gravitational

force about a corresponding tip-over axis is calculated. The sum of these moments

about each possible tip-over axis should be less than or equal to zero for the crane to

be stable.

Figure 10 shows the general geometry of the possible tip-over axes of a crawler

crane. The possible tip-over axes run along the toes and heels, as well as the outside

edges of the crawler tracks. Vectors ~a1 and ~a3 represent the forward and backward

tip-over axes respectively, while ~a2 and ~a4 represent the sideways tip-over axes.

Figure 11 illustrates a representative model of a crawler crane with a movable

counterweight. The model is composed of a mobile base, m1, a rotational boom, m2,

a mast, m3, a movable counterweight, m4, and a suspension cable with a payload

mass, m5. The base is modeled as a thin plate and has a center of gravity at the

geometric center of the base. As illustrated in Figure 11(b), the boom arm and mast

can rotate through a slew angle β about a vertical axis located at the geometric
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Figure 10: Top View of the Horizontal Plane Formed by the Possible Tip-over Axes.

center of the crawler. The boom has a length of L2. Its center of mass is located

in the middle of the boom arm. The boom is elevated at an angle φ1 relative to

the horizontal plane. This angle is known as the luffing, or boom, angle. The mast

forms an angle φ2 with the horizontal plane and its length is L3. The position of the

counterweight is measured by a distance, L4, from the slew axis. To calculate the

moment generated by each of the gravitational forces about a certain axis we use:

~Mij = ~aj · (~ri × ~fi) (2.1)

where:

i = 1, ... ,5 and j = 1, ... ,4.

~Mij is the moment generated by the force ~fi about the axis ~aj [Nm].

~fi is the gravitational force acting on body i at its gravitational center [N].

~aj is a unit vector along the jth tip-over axis.

~ri is a position vector pointing from any point on the tip-over axis to any point on

the line of action of the force [m].

The individual moments found using (2.1) are combined to get the total moment
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Figure 11: Schematic Diagram for a Crawler Crane with movable Counterweight
(Mast included).

about each tip-over axis:

~Mj =
5∑

i=1

~Mij =
5∑

i=1

~aj · (~ri × ~fi) (2.2)

Therefore, the moment creating a forward tip-over is:

~Mf = m2g(
L2

2
cos β cosφ1 −

L1

2
) +m5g(L2 cos β cosφ1 −

L1

2
)

−m3g(
L3

2
cos β cosφ2 +

L1

2
)−m1g

L1

2
−m4g(L4 cos β +

L1

2
) (2.3)

If the counterweight is too heavy or placed too far backwards, or even if the
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payload suddenly falls off, then the crane might tip over backwards. The moment

creating the backward tip-over is:

~Mb = −m2g(
L2

2
cos β cosφ1 +

L1

2
)−m5g(L2 cos β cosφ1 +

L1

2
)

+m3g(
L3

2
cos β cosφ2 −

L1

2
)−m1g

L1

2
+m4g(L4 cos β − L1

2
) (2.4)

It should be noted that tip-overs could occur about any of the four axes shown in

Figure 81, depending on the value of the slew angle β, keeping in mind that a forward

tip-over is one that occurs in the direction in which the boom is pointing, while a

backward tip-over is one that occurs in the direction in which the counterweight is

pointing.

To avoid tipping, the load moment acting to overturn the crane should be less

than or equal to the maximum moment of the crane available to resist overturning.

In other words, the moments calculated using (2.3) and (2.4) should be less than or

equal to zero.

Using these conditions, the range of counterweight positions that stabilize the

crane can be calculated.

2.3 Case Study - Terex CC 2800-1

One of the well-known crawler cranes with movable counterweights that is currently

in use is the TEREX CC 2800-1 shown in Figure 12. Based on the datasheet found

in [34], its geometrical and mass parameters are listed in Table 2.

It should be noted that the counterweight used in this crane is divided into two

parts, the first has a fixed mass and is located at a fixed distance from the center of

the crawler. The second is the movable counterweight, whose mass can be varied, as

well as moved away or towards the center of the crane.
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Figure 12: Terex CC 2800-1 Crawler Crane [34].

2.3.1 Effect of Parameters in the Boom-Mast Configuration

When a crawler crane is slewed about the vertical axis, its stability properties change

because the moment arm of each mass element changes, as does the tip-over axis.

In order to isolate the effect of the slew angle, the length of the boom and the mass

of the payload were fixed. The parameters were chosen using the crane’s load chart,

which is shown in Figure 13.

To explain how a load chart is used, first the required configuration should be

determined. For example, in this case study, the boom mast configuration is used.

This configuration is denoted by HSSL S7 for the Terex CC 2800-1. Thus the load

chart corresponding to this configuration is the one shown in Figure 13. The second

step is determining the boom length which is shown in the first row of the chart (84
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Table 2: Parameters of the Terex CC 2800-1 [34].

Parameter Item Numerical Data
w Width of base 8.4 m
h Height of base 2.45 m
L1 Length of base 10.33 m
L2 Length of boom 102 m
L3 Length of mast 30 m
L4F Length of fixed counterweight 7 m
L5 Length of hoist 10 m
m1 Mass of base 125 t
m2 Mass of boom 60 t
m3 Mass of mast 13 t
m4F Mass of fixed counterweight 240 t
m5 Mass of payload 110 t

to 108 m here). The length used in this case study is 102 m, therefore the 4th column

is the one needed.

The second row displays the configuration, the third shows the range of allowed

movable counterweights, and the fourth shows the range of allowed movable counter-

weight positions. Each of the remaining entries represents the rated payload mass

corresponding to various horizontal distances between the slewing axis and the hook

connected to the payload.

The horizontal distances listed in the first column of the chart are directly related

to the boom luffing angle for a fixed boom length. For instance, a boom luffing

angle of 62o requires the horizontal distance between the slewing axis and the hook

connected to the load to be 48 m, thus the value of 50 m is chosen which has a rated

payload mass of 107.3 t. And this is why the payload mass was set to 110 t. It should

be mentioned however, that the maximum load given in a crane’s load chart is 75%

of its theoretical maximum load for the given configuration [2].

Finally, the load chart also contains other information in its header, such as the
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Figure 13: Sample Load Chart for the Terex CC 2800-1 Crawler Crane [34].

mass of the fixed counterweight, the width of the crane base, the allowed wind speed,

etc.

After choosing and setting the crane’s parameters, the slewing angle β and the

counterweight position were changed, while calculating the stability properties. Fig-

ure 14 shows the result for the minimum1 position of the movable counterweight to

1The minimum counterweight position is the position closest to the vertical axis of rotation
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Figure 14: Minimum Counterweight Position to Prevent Forward Tip-over for a Boom
Luffing Angle of 62o and a Payload Mass of 110 t, (m4 is the Movable Counterweight
Mass).

guarantee static stability and prevent forward tip-over, when the mass of the moving

counterweight is 150 t, 200 t and 300 t. Note that β = 0 corresponds to the case

when the boom is pointing directly forward. The figure clearly shows that as the

mass of the counterweight increases, the distance needed to counterbalance the mass

of the payload decreases. However, the most interesting effect is the flower shape that

indicates the crane is most stable when the boom is pointing at a corner of the mobile

base.

If the payload suddenly falls off, then the crane can tip over backwards. Figure 15

shows the maximum possible location of the movable counterweight that will prevent
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Figure 15: Maximum Counterweight Position to Prevent Backward Tip-over for a
Boom Luffing Angle of 62o, (m4 is the Movable Counterweight Mass).

backward tip-over if the payload suddenly drops to zero. The heavier the counter-

weight, the greater the risk of tipping over backwards and the smaller the allowable

rearward position of the counterweight.

If the two previous graphs are combined for a counterweight mass of 200 t, then

the result is the graph shown in Figure 16. This graph shows that the smallest

possible counterweight safe positioning region is represented by the length A, while

the largest possible counterweight region is represented by the region B. This means

that the crane is least stable when the boom is rotated 90o, in the sense that the

counterweight has to be more accurately positioned within the small safety zone.

The luffing angle of the boom is one of the most important stability parameters.
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Figure 16: Backward and Forward Tip-over Limits for a Boom Luffing Angle of 62o,
a Payload Mass of 110 t, and a Movable Counterweight Mass of 200 t.

In fact, it is the primary variable in the load charts that companies provide to char-

acterize their machine’s stability. The luffing angle φ1 was changed to see its effect on

the stable ranges of counterweight positions. The result is shown in Figure 17, which

shows that, for forward tip-over, as the luffing angle increases, the rearward position

of the counterweight needed to counterbalance the mass of the payload decreases.

Also, it is noted that the stability of the crane is very sensitive to a change in the

value of the luffing angle, that is, a change of 15o in the luffing angle requires almost

a 10 m change in the counterweight position. Another interpretation of the data is

that the crane stability increases along with the boom angle. This is a well-known

property that is confirmed by our calculations.

In cases where the payload falls off, or suddenly drops to zero (like when it is set

on the ground or the lift cable breaks) the luffing angle value has an important effect
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Figure 17: The Effect of Changing the Luffing Angle φ1 on the Minimum Coun-
terweight Position to Prevent Forward Tip-over for a Payload mass of 110 t and a
Counterweight Mass of 200 t.

as well regarding backward tip-over. Figure 18 shows the maximum possible location

for the counterweight corresponding to different luffing angle values. The higher the

value of the luffing angle, the larger the risk of tipping over backwards.

The effect of the payload mass was also investigated. One counterweight mass was

used: 200 t, the luffing angle φ1 value was set to 62o again and the payload mass was

varied. Figure 19 shows that the larger the payload is, the further the counterweight

has to be moved backwards. For the special case of the Terex CC 2800-1 considered

here, the maximum allowable payload mass is 110 t, according to the load chart.

When the payload was changed to 210 t the counterweight had to be moved about 25

m rearward. This is physically impossible for this crane, which means that a payload

that heavy, lift at that boom angle, would almost certainly cause a tip-over accident.
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Figure 18: The Effect of Changing the Luffing Angle φ1 on the Maximum Counter-
weight Position to Prevent Backward Tip-over for a Counterweight Mass of 200 t.
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Figure 19: The Effect of Changing the Payload Mass on the Minimum Counter-
weight Position to Prevent Forward Tip-over for a Boom Luffing Angle of 62o and a
Counterweight Mass of 200 t, (m5 is the Payload Mass).
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Figure 20: Minimum Counterweight Position to Prevent Forward Tip-over (No Mast
Configuration) for a Boom Luffing Angle of 62o and a Payload Mass of 110 t, (m4 is
the Movable Counterweight Mass).

2.3.2 Effect of Parameters in the No-Mast Configuration

Some crawler cranes do not have the significant lattice mast that is shown in Figures

11 and 12. Therefore, the mast was removed from the model and the effect of the

slew angle was recalculated. First, the forward tip-over stability was examined and

the result is shown in Figure 20. Compared with Figure 14, the counterweight has to

be moved a little further backwards. This is expected because the mast functions as

a counterweight to counterbalance the payload carried by the crane.

Next, backward tip-over stability was examined in the case of no mast. Figure

21 shows that it is similar to when the mast was attached. This is due to the fact

that the mass of the mast is small compared to mass of both the fixed and movable
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Figure 21: Maximum Counterweight Position to Prevent Backward Tip-over (No Mast
Configuration) for a Boom Luffing Angle of 62o, (m4 is the Movable Counterweight
Mass)..

counterweights, so it does not make a significant difference. However, if the mast had

a larger mass,then removing it will decrease the risk of backward tip-over.

2.3.3 Effect of Parameters when a Jib is Added to the Configuration

A jib is a boom extension that increases its accessibility both vertically and horizon-

tally. When a jib is used, the crane can reach areas that are higher and further away

from its center. However, it increases the complexity of the machine and poses a

higher tip-over risk. In the case of a movable counterweight, a jib introduces another

level of complexity in determining where the counterweight should be positioned.

For these reasons, the previous case study was repeated for the same Terex crane

(CC 2800-1), but this time a jib was added. Figure 22 shows a schematic diagram
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Figure 22: Schematic Diagram for a Crawler Crane with Movable Counterweight
(Mast and Jib included).

of this configuration in both the side and top views. Some crane parameters had to

be changed to suit this configuration, while using the same payload and the same

counterweight masses. These parameters are listed in Table 3.

To study the effect of the slew angle, the lengths of the boom and jib, and the

mass of payload were fixed. The mass of the payload was set to 110 t. The minimum

boom luffing angle taken from the load chart is 65o, and the angle between the jib

and the boom was set to 15o. The slewing angle β and the counterweight position

were changed.
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Table 3: Geometrical Parameters of the Terex CC 2800-1 (Jib Configuration) [34].

Parameter Item Numerical Data
w Width of base 8.4 m
h Height of base 2.45 m
L1 Length of base 10.33 m
L2 Length of boom 96 m
L3 Length of mast 30 m
L4F Length of fixed counterweight 7 m
L5 Length of hoist 50 m
L6 Length of jib 96 m
m1 Mass of base 125 t
m2 Mass of boom 56 t
m3 Mass of mast 13 t
m4F Mass of fixed counterweight 240 t
m5 Mass of payload 110 t
m6 Mass of jib 40 t
φ3 Angle between jib and boom 15o

Figure 23 shows the minimum counterweight positions that guarantee static sta-

bility and prevent forward tip-over, when the mass of the counterweight is 150 t, 200

t, and 300 t. The figure follows the same trend as the case with no jib; however

the values are notably higher. This is due to the fact that the jib creates an addi-

tional weight creating a forward tip-over moment that requires the counterweight to

be moved further backwards to counterbalance its effect. It can also be inferred from

Figure 23 that the mass of the counterweight has to be above 200 t for it to be moved

within the allowable distance of this specific crane model. If a mass less than that is

used, then the payload of 110 t will cause a forward tip-over.

The value of the payload mass was decreased to 65 t and Figure 24 was generated.

In this figure we notice that the minimum counterweight position is close to that

of the no jib case when it is lifting 110 t. This means that the jib considered here

decreases the allowable payload mass by almost 50%, if all other conditions are to be
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Figure 23: Minimum Counterweight Position to Prevent Forward Tip-over (Jib in-
cluded) for a Boom Luffing Angle of 62o and a Payload Mass of 110 t, (m4 is the
Movable Counterweight Mass).
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Figure 24: Minimum Counterweight Position to Prevent Forward Tip-over (Jib in-
cluded) for a Boom Luffing Angle of 62o and a Payload Mass of 65 t, (m4 is the
Movable Counterweight Mass).
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Figure 25: Maximum Counterweight Position to Prevent Backward Tip-over (Jib
included) for a Boom Luffing Angle of 62o, (m4 is the Movable Counterweight Mass).

kept fixed.

If the payload suddenly falls off, then the crane can tip-over backwards. However,

having the jib fixed to the front side of the crane would make that more difficult. This

is demonstrated in Figure 25. This figure implies that the counterweight of 200 t has

to be placed at a distance of approximately 17 m for it to cause backward tip-over.

This is rarely the case, thus the jib can be considered as a protection measure against

rearward tipping. Again in this case, the greater the counterweight, the greater the

risk of tipping over backwards and the smaller the allowable rearward position of the

counterweight.

Figure 26 shows the effect of the luffing angle value on the crane’s tip-over stability

when a jib is used, and while the value of the counterweight mass is 200 t. The

forward tip-over characteristics are the same as the no-jib case, which means that as
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Figure 26: The Effect of Changing the Luffing Angle φ1 on the Minimum Counter-
weight Position to Prevent Forward Tip-over (Jib included) for a Payload Mass of
110 t and a Movable Counterweight Mass of 200 t.

the luffing angle decreases, the counterweight should be moved further backwards to

prevent tipping over. The problem is that stability is affected significantly by changes

in the luffing angle value. A change of 20o requires the counterweight to be moved an

extra 20 m backwards, which is physically impossible. Thus, the operator should be

very precise when changing the luffing angle value as it is the most critical parameter

when it comes to the crane’s stability, especially when a jib is used.

Finally, the effect of the payload mass was investigated. The luffing angle value

was set to 65o, and the value of the counterweight mass was set to 200 t. Figure

27 shows the result for the same payload masses used with the no-jib configuration.

The flower shape appears again; however, the minimum counterweight’s position to

prevent tip-over is much larger in this case. Also, increasing the payload mass above
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Figure 27: The Effect of Increasing the Payload Mass on the Minimum Counterweight
Position (Jib included) for a Boom Luffing Angle of 62o and a Movable Counterweight
Mass of 200 t, (m5 is the Payload Mass).

110 t will cause a forward tip-over for this model.

Figure 28, on the other hand, shows that, in order to keep the minimum counter-

weight’s position within the same range as the no-jib configuration, the payload mass

must be reduced by almost 50%.

In conclusion, using a jib can be beneficial in terms of increasing the access area

of the crane, and preventing, to a certain degree, backward tip-overs; however it

compromises the stability of the crane in the forward direction.
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Figure 28: The Effect of Decreasing the Payload Mass on the Minimum Counterweight
Position (Jib included) for a Boom Luffing Angle of 62o and a Movable Counterweight
Mass of 200 t, (m5 is the Payload Mass).

2.4 Summary

Mobile cranes are very important and useful machines that can be improved by adopt-

ing the principle of movable counterweights. However, their tip-over stability proper-

ties are extremely critical, and they become more complex functions of the machine

configuration and payload mass. Therefore, care must be taken to fully understand

their tip-over stability and develop a control system that can properly position the

counterweight at a suitable location. In this chapter, the suitable position of the

counterweight was calculated for various crane parameters. Table 4 summarizes the

stability trends demonstrated in this chapter.
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Table 4: Summary of Stability Trends.

Parameter
Parameter

Change

Forward

Stability

Backward

Stability

Sideways

Stability

Counter-

weight

Position

Counter-

weight

Mass

increase increase decrease increase decrease

Luffing

Boom

Angle

increase increase decrease increase decrease

Payload

Mass
increase decrease increase increase increase

Mast

Mass
increase decrease increase decrease decrease

Jib Mass increase decrease increase decrease increase
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CHAPTER III

PSEUDO-DYNAMIC TIP-OVER STABILITY OF

CRAWLER CRANES WITH MOVABLE

COUNTERWEIGHTS

3.1 Description of the Approach

Crawler cranes are often moved around the job site. Therefore, it is essential to study

how different motions of the crane affect the tip-over stability in the presence of a

movable counterweight. To achieve this understanding, the static analysis has to be

extended to include dynamic effects. One of the main dynamic effects that needs to

be considered is payload swing.

Figure 29 shows that the payload swings in two different directions; radial swing-

ing expressed by θ1, and tangential swinging expressed by θ2. Because one of the

goals of this research is to develop a simple tool with minimal computational cost to

predict the tip-over stability of crawler cranes, the two swing angles are assumed to

be constant in a Pseudo-Dynamic Stability Analysis. This means that when the sus-

pension cable is deflected by the swinging payload, it remains fixed in the maximum

deflected position.

More assumptions are made to further simplify calculations; the time-dependent

centripetal and gravitational forces derived from the pendulum swing are considered

time-invariant constant forces, in addition to the inertia forces acting on the crane

at its center of mass, which are considered constant as well. Also, payload damping

was ignored (frictionless pivot and no air drag). Thus it is obvious that this pseudo-

dynamic estimation method does not study the full dynamics of the payload swing.

However, it does provide a reasonable upper bound on the dynamic effects induced
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Figure 29: Schematic Diagram of a Crawler Crane with a Movable Counterweight
Showing Payload Swing.

by crane motion.

A comparison between a full dynamic analysis method and the suggested pseudo-

dynamic estimation method was performed twice before in [30] and [5]. The torque

caused by the weight and swing of the payload about the boom angle was calculated

for both radial and tangential swinging directions using both approaches. It turned

out that the error between the two torque values was insignificant for a small range
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of swing angles (θ1 and θ2). Nevertheless, to make the analysis more inclusive, the

magnitude of the maximum swing angle is computed and applied to the model. This

corresponds to the worst case scenario when the payload swing most aggressively

compromises the crane’s tip-over stability.

Finally, it should be noted that the swing deflection reduces the crane’s tip-over

stability because it moves the payload mass outwards. This creates a horizontal

force on the boom tip that acts through the very long moment arm formed by the

boom. As a result, the crane cannot support as much payload as it can in the static

case. Furthermore, the counterweight has to be moved further backwards to prevent

tipping-over when the payload swings out, away from the crane body.

3.2 Straight Base Motion

The simplest motion of a crawler crane is driving the base from one point to another,

along a straight line, under a constant acceleration and a limited maximum speed.

3.2.1 Mathematical Model and Payload Swing Dynamics

To estimate the swing angle resulting from a base-acceleration, a closed-form solution

of the swing angle needs to be derived. A few assumptions are made to derive the

equation of motion of the swinging payload. First of all, the payload is assumed

to be an undamped single pendulum connected to an accelerating pivot point. The

pivot point is located at the external end of the luffing boom, and because the base

acceleration is the only input acting on the crane, then the various parts of the crane

can be regarded as one rigid body, where the acceleration of the pivot point is assumed

to be the same as the acceleration of the crane’s base as it moves from one point to

another. Finally, as the base accelerates, it causes the payload to swing in the radial

direction. Tangential swinging is ignored.

Based on these assumptions, the equation of motion for the swinging payload is:
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θ̈1(t) + ωn
2 sin (θ1(t)) =

−ẍ(t)

L5

cos (θ1(t)) (3.1)

where θ1 is the radial swinging angle, ωn is the natural frequency of the swinging

payload, L5 is the hoist length and x is the position of the pivot point. Assuming the

swing angle is relatively small at all times, then (3.1) can be linearized using a small

angle approximation for θ1 (sin θ1 ≈ θ1 and cos θ1 ≈ 1) as follows:

θ̈1(t) + ωn
2θ1(t) =

−ẍ(t)

L5

(3.2)

Defining ẍ(t) = a(t), (3.2) can be expressed as:

θ̈1(t) + ωn
2θ1(t) =

−a(t)

L5

(3.3)

Taking the Laplace transformation of (3.3) gives:

s2Θ1(s) + ωn
2Θ1(s) =

−A(s)

L5

(3.4)

Rearranging the equation, the transfer function of the system can be expressed as:

G(s) =
Θ(s)

A(s)
=

1

L5(s2 + ωn
2)

(3.5)

The time-optimal command with a limited velocity and acceleration is a bang-

coast-bang command, as shown in Figure 30. It is used as an input to move the

base in a point-to-point motion. The bang-coast-bang command can be described as

an acceleration step command with a magnitude A that consists of four steps; two

positive and two negative.

The bang-coast-bang command creates a trapezoidal velocity profile. In the

Laplace domain, the command can be expressed as:

A(s) =
A

s
(1− e−t2s − e−t3s + e−t4s) (3.6)
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Figure 30: Bang-Coast-Bang Acceleration Command.

where A is is the magnitude of the acceleration input and ti is the corresponding

timing of the ith step in the command.

Now, to find a solution for the payload swing angle, the acceleration expression

in the Laplace domain expressed in (3.6) is substituted into the transfer function

expressed in (3.5). The resulting expression for Θ1(s) is then transformed back into

the time domain by taking the inverse Laplace transformation to get:

θ1(t) =
−A
L5ωn

2

((
1− cosωnt

)
−
(

1− cosωn(t− t2)
)
σ(t− t2)

−
(

1− cosωn(t− t3)
)
σ(t− t3) +

(
1− cosωn(t− t4)

)
σ(t− t4)

) (3.7)

It can be noticed from (3.7) that the maximum swing angle occurs when all four

cosine terms are in phase, and the multiplying step functions σ are all equal to 1

(i.e. the running time is long enough to complete an entire profile of the bang-coast-

bang command). In that case the maximum swing angle can be calculated using the
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t1= 0

t4= 2T

t2= T/2

t3= 3T/2

* Magnitude of each arrow is A. 
* T is the period of oscillation of 
   the payload.

Figure 31: Vector Diagram for the Acceleration Command Resulting in Maximum
Residual Vibrations.

following expression:

θ1max =
4A

g
(3.8)

Figure 31 displays a vector diagram, where each vector represents an impulse that

is convolved with a step command to create the desired bang-coast-bang acceleration.

Based on this vector diagram, the maximum swing angle occurs if tgap, which is the

period of time between the acceleration and deceleration pulses defined as t3 − t2, is

equal to the period of oscillation of the payload, while the duration of each of the two

pulses is equal to half the period of oscillation.

Due to the acceleration and deceleration commands, the crawler crane experiences

inertia forces acting on the crane’s center of mass. These forces significantly influence

the tip-over stability of the crane. The higher the center of mass of the crane is, the

longer the moment arm is, and the bigger the effect of these inertial forces on the

tip-over stability of the crane. The location of the center of mass can be raised by

luffing the boom upwards. The effect of these forces increases with increasing the

boom mass and length, and with moving the counterweight inwards. Therefore, the
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inertia effects must be included to obtain a reliable estimation of the tip-over stability

margin of the crane.

The inertial force effect can be included in the analysis as a force acting on the

center of mass of the crane in the horizontal direction. During the acceleration phase,

the inertia force acts towards the center of mass, in a direction opposite to that of

motion, thus, it contributes positively to the crane’s forward tip-over stability. On

the other hand, the forward tip-over stability is compromised when the crane base is

decelerating. Thus, the prediction model takes into account the inertial effects during

the deceleration of the crane, this will take into account the worst case scenario.

D’Alembert Principle states that if the dynamic behavior of a mass is analyzed in

an accelerated, body-fixed reference frame, then the inertia forces, which are fictitious

forces in general, have to be regarded as real forces acting on the mass. Applying

this concept, Figure 32 shows the free body diagram with the inertia forces acting

horizontally on the crane system during deceleration.

The inertia force acting on the crane center of mass and the braking force Fb acting

on the crawler tracks cancel each other in the horizontal direction. However, they

create a couple that contributes to the tip-over instability. This couple is determined

by multiplying the inertia force by the height of the center of mass above the ground

hCM . Since it is assumed that the crane decelerates at a constant rate, A, the couple

is also assumed to be constant.

3.2.2 Tip-over Stability Analysis of Straight Base Motion

When the base of the crane moves in a straight line under the effect of the bang-

coast-bang acceleration command discussed previously, it induces oscillations of the

payload. Two major factors affect the value of the swinging angle of the payload;

which are the total distance traveled by the crane base, and the width of the two

pulses in the acceleration command.
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Figure 32: Free Body Diagram of Crawler Crane with Inertial Forces during Decel-
eration.

For our case study, the crane parameters used for calculations are the same pa-

rameters listed in Table 2, except for the hoist length L5 which is set to 50 m here.

Also, the maximum rated linear velocity of the crane base according to the data

sheet is 0.6 km/h, so it is assumed that the crane reaches this maximum speed within

1 s to account for the worst case scenario, and this acceleration value is used as the

amplitude of the Bang-Coast-Bang command.

For a hoist length of 50 m, the period of oscillation is 14.18 s. Thus, the Bang-

Coast-Bang command creating the largest swing angle lasts for twice that period.

Changing the width of the acceleration and deceleration pulses, and consequently

changing tgap, results in different amplitudes for the payload’s residual oscillations.

Figure 33 shows the maximum payload swing with respect to tgap. It can be

inferred from the graph that the largest swing angle occurs when tgap is equal to the

period of oscillation of the payload; i.e. the acceleration command complies with the

vector diagram shown in Figure 31, where T = 14.18 s.

The response from the acceleration command creating maximum oscillations is
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Figure 33: Payload Swing Angle in Bang-Coast-Bang Motion vs. Time with Different
Acceleration Durations.

shown in Figure 34. The maximum swing angle in this case is 3.89o, which is the

same value obtained if (3.8) is used, and this is the value to be used in the tip-over

analysis.

Because both the crane base movement and the payload swinging are slow move-

ments, the payload was assumed to be positioned at the maximum swing angle men-

tioned before. Also, the inertial force was added to the gravitational forces and a

forward tip-over stability analysis was performed again using a counterweight mass

of 200 t. The minimum counterweight position to prevent forward tip-over was cal-

culated.

Figure 35 compares the minimum counterweight position to prevent forward tip-

over in both the static and dynamic cases. The boom luffing angle was set to 60o, and

the counterweight mass was set to 200 t. As the crane base starts to move and then

comes to a stop, the acceleration and deceleration pulses create residual swinging,

which causes the payload to extend further from the base and causes the crane to be
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Figure 34: Payload Swing Response to a Bang-Coast-Bang Acceleration Command
vs. Time (Maximum Oscillation).

less stable. The effect of the inertial force is added to that, thus the counterweight

has to be moved further back.

Analyzing Figure 35, it is clear that dynamic effect is bigger when the boom is

directed to the front of the base. The effect is less severe when the boom is directed

sideways, and it is minimum when the boom is directed towards the back. Looking

closely, it is noticed that the inflection point in the dynamic case is shifted. In the

static case, the counterweight is placed at a minimum distance from the center of the

crane when the boom is directed towards the corner of the base, i.e. when the slewing

angle is 39.1o based on the crane’s parameters. However, in the dynamic case the

calculations show that the counterweight should be placed at a minimum distance

from the center of the crane when the slewing angle is 40.4o.

Thus, to ensure that the results include all possibilities, an investigation was made

to determine the potential of the crane tipping forwards about the axis that is always

perpendicular to the direction of motion which is the forward tip-over axis, as a result
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Figure 35: Minimum Counterweight Position to Prevent Forward Tip-Over in the
Static and Dynamic Cases with a Payload of 110 t.

of the inertial forces whose direction is always constant regardless of the slewing angle.

Results show that for a slewing angle of less than 44.1o the minimum counterweight

position calculated and displayed in Figure 35 is larger than or equal to the minimum

counterweight position required to prevent tip-over about the forward axis. While,

when the slewing angle is larger than 44.1o the moment about the forward axis is

never enough to tip the crane over in that direction. This means that the previous

study is conclusive. In general, the overall safe counterweight region considering the

dynamic effects of the payload swing and inertia forces is smaller, as illustrated in

Figure 36.

Another way of representing the data in Figure 36 is by plotting the length of the
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Figure 36: Static and Dynamic Safety Regions for a 200 t Counterweight and Boom
Luffing Angle of 60o.

safety region in both the static and dynamic cases with respect to the slew angle.

This is shown in Figure 37, which confirms that the stability region when the crane

is stationary is bigger than the stability region when the crane is moving. Also,

maximum stability is achieved when the slew angle is around 40o; i.e. when the boom

is pointing towards the corner of the base, while minimum stability is achieved when

the slew angle is 90o; i.e when the boom is pointing sideways.

However, to better understand the curves in Figures 35 and 36, the effect of the

payload swing and the inertial forces was studied independently. Then both cases were

compared to the static and dynamic results obtained before. The effect decomposition

is shown in Figure 38.
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Figure 37: Length of Static and Dynamic Safety Regions for a 200 t Counterweight
and Boom Luffing Angle of 60o.

When the boom is directed to the front of the crane base, the inertial force creates a

moment in the forward tipping direction, thus it compromises the forward stability of

the crane. This requires the counterweight to be moved further backwards. Turning

the boom sideways changes the tip-over axis of the crane to the side; while the

direction of the moment created by the inertial forces remains the same, because the

crane is still moving forward. Thus, because the direction of the moment becomes

perpendicular to the tip-over axis in this case, it will not degrade the crane’s stability,

which explains why the counterweight location here is the same as the static case.

Finally, when the boom is facing the back of the crane, the moment created by inertial

forces will be working in a direction opposite to that of tipping, towards the boom.

This means that it will increase the stability of the crane, which explains why the

counterweight can be moved inwards.
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Figure 38: Minimum Counterweight Position to Prevent Forward Tip-over in the
Static and Dynamic Case with a Payload of 110 t (Independent Effects of Payload
Swing and Inertial Forces).

In all cases, when the payload swings outward it decreases the stability of the

crane in the forward direction. This forces the counterweight to be moved further

backwards regardless of the boom direction, as illustrated in Figure 38. Combining

the two effects discussed above results in the irregular flower shape obtained by the

dynamic analysis that was shown in Figure 35.

Figure 39 illustrates the dynamic tip-over stability for various counterweight masses.

When the mass of the counterweight increases, the distance it has to be moved in the

rearward direction decreases.

The payload mass equivalently has an effect on the dynamic tip-over stability.

As the mass of the payload increases, the counterweight has to be moved further
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Figure 39: Minimum Counterweight Position to Prevent Forward Tip-over in the
Dynamic Case with a Payload of 110 t, (m4 is the Counterweight Mass).

backwards to counterbalance the effect of the heavier payload. This is clearly shown

in Figure 40.

3.2.3 Effect of Hoist Cable Length

For the same bang-coast-bang acceleration command used in the previous calcula-

tions, the length of the hoist cable was varied. Each time, the maximum residual

payload swing angle was recorded. The result is demonstrated in Figure 41, which

shows that the maximum residual payload swing occurs at the length which creates

a period of oscillations equal to tgap.

However, the acceleration command can be more easily controlled than the cable

length, so a suggested solution to minimize oscillations is to apply the input shaping
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Figure 42: Vector Diagram for the Acceleration Command Resulting in Minimum
Residual Vibrations.

to reduce payload swing. If the vectors representing the acceleration command are

placed as shown in Figure 42, then they will sum up to zero, thus reducing the residual

swing to a minimum.

Therefore, if the previously used acceleration command was modified to have a

tgap = 14 s, then the response to that command will be the one shown in Figure

43, where it is obvious that the maximum transient swing angle is about 2o, and

the maximum residual swing angle is very small. This is one solution, but it is not

the only one. However, this shows that controlling the acceleration command while

driving the crane has a direct impact on the amount of payload swing, knowing that

it will always be less than the maximum value discussed before.

Table 5 provides a general guide that helps choose the acceleration command that

will induce minimum vibrations for different hoist lengths.
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Figure 43: Payload Swing Response to a Bang-Coast-Bang Acceleration Command
vs. Time (Minimum Oscillation).

Table 5: Guidelines to Choose the Acceleration Command Generating Minimum

Vibrations for Different Hoist Lengths.

Cable Length(m) t1 (s) t2 (s) t3 (s) t4 (s)

30 0 5.5 11.0 16.5

35 0 6.0 11.9 17.9

40 0 6.4 12.7 19.1

45 0 6.8 13.5 20.3

50 0 7.1 14.2 21.3

55 0 7.5 14.9 22.4

60 0 7.8 15.5 23.3

65 0 8.1 16.2 24.3

70 0 8.4 16.8 25.2

75 0 8.7 17.4 26.1

80 0 9.0 17.9 26.9

85 0 9.3 18.5 27.8

90 0 9.5 19.0 28.5

95 0 9.8 19.6 29.4

100 0 10.1 20.1 30.2
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Figure 44: Payload Swing Response to a Bang-Coast-Bang Acceleration Command
vs. Time (Reduced Oscillation).

Another solution would be to change the time needed for the crane to reach the

maximum velocity. In other words, increase the duration of the two pulses in the

bang-coast-bang command. An example of this approach is using the same total

period of 28 s, with a duration of 10 s for each of the acceleration and deceleration

pulses, and a gap of 8 s. The response for this command is shown in Figure 44, which

clearly indicates that the maximum residual swing angle is reduced by almost half

the maximum value calculated before. This can be considered another measure to

control the swing angle and reduce the severity of its effect.

The stability analysis gets more complicated when the crane is in motion; however

the dominant effects can be identified. Methods to account for the motion effects can

identify reasonable upper bounds on the additional tip-over moments and add their

effects to the static analysis. Parameter values associated with the dynamic effects

obviously affect the overall stability of the crane, thus, these parameters should be

studied and chosen carefully to avoid catastrophies.
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3.3 Boom Luffing Motion

Another important motion for boom crane operation is luffing. Boom luffing motion

is defined as raising or lowering the boom, in order to move the payload horizontally.

This is achieved by rotating the boom about a pivot located at its lower end. When

the boom luffing angle changes, it causes the payload to swing out in the radial

direction.

When the payload swing extends outward, away from the mobile base, the tip-over

moment will increase, and the crane becomes less stable. Therefore, it is important

to take boom-luffing-induced swing angle into consideration when examining tip-over

stability. Such considerations create a more reliable tip-over prediction tool.

3.3.1 Mathematical Model and Payload Swing Dynamics

To isolate the effect of the luffing motion on crane tip-over stability, a stationary crane

with a single luffing input, as shown in Figure 45, is studied. The slew angle is set to

β = 0o, then the analysis is repeated for different slew angles ranging from 0o to 360o

to compare it with the results obtained in Chapter 2. Only the downward motion is

considered, because when the boom is luffed downwards it significantly decreases the

tip-over stability as the results of Chapter 2 indicated. Luffing the boom upwards

will generally make the crane more stable.

It is assumed that the boom rotates with a constant angular velocity φ̇1 = ω. The

position vector from the boom rotation point to the center of mass of the payload is:

~r = (L2cosφ1 + L5sinθ1)~i+ (L2sinφ1 − L5cosθ1)~j (3.9)

By ignoring all inputs other than the boom luffing motion, and assuming that there

is no swinging in the tangential direction (θ2 = 0o), the unconstrained equations of

motion of the payload can be derived using the Euler-Lagrangian:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk (3.10)
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where qk is the generalized coordinate. In our case qk = θ1. L is defined as the

difference between kinetic and potential energies: L = T − V . The kinetic energy of

the payload and the boom T can be expressed by:

T =
1

2
Jφ̇2

1 +
1

2
m5~̇r~̇r

T (3.11)

=
1

2
Jφ̇2

1 +
1

2
m5[(L2φ̇1) + (L5θ̇1)

2 + 2L2L5φ̇1θ̇1cosφ1sinθ1 − 2L2L5φ̇1θ̇1sinφ1cosθ1]

(3.12)

where J is the moment of inertia of the boom about rotation point O.

V is the potential energy of the payload and the boom, which can be expressed

as:

V =
1

2
m2gL2sinφ1 +m5g(L2sinφ1 − L5cosθ1) (3.13)

Substituting (3.12) and (3.13) into (3.10) yields the nonlinear equation of motion:

Q1 = m5L
2
5θ̈1 − (m5L2L5φ̇

2
1sinφ1 −m5gL5)sinθ1

−m5L2L5φ̇
2
1cosφ1cosθ1 +m5L2L5φ̈1cosφ1sinθ1

−m5L2L5φ̈1sinφ1cosθ1

(3.14)
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where Q1 is the generalized force acting on the payload, which in our case is zero.

Because the swing angle is usually small, a small angle approximation is used for

θ1. Thus, (3.14) can be expressed as:

θ̈1 +
g

L5

θ1 −
L2

L5

φ̇1
2

sinφ1θ1 +
L2

L5

φ̈1 cosφ1θ1 =
L2

L5

φ̇1
2

cosφ1 +
L2

L5

φ̈1 sinφ1 (3.15)

This is a linear, homogeneous differential equation with time-varying crane con-

figuration with respect to the boom luffing angle φ1, where L2 is the boom length,

L5 is the suspension cable length, φ̇1 is the boom luffing rotational velocity, and φ̈1

is the the boom luffing rotational acceleration. The angle θ1 is the radial swing angle

of the payload.

The following state variables were defined:

x1 = θ1

x2 = θ̇1

x3 = φ1

x4 = φ̇1

(3.16)

The command used as an input to this system is the rotational boom luffing

acceleration:

u = φ̈1 (3.17)

Based on (3.16) and (3.17), the dynamic system can be described by the following
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equations:

ẋ1 = θ̇1 = x2

ẋ2 = θ̈1 =
L2

L5

x4
2 cosx3 +

L2

L5

u sinx3 −
L2

L5

ux1 cosx3 +
L2

L5

x4
2x1 sinx3 −

g

L5

x1

ẋ3 = φ̇1 = x4

ẋ4 = φ̈1 = u

(3.18)

The time-optimal command with a limited velocity and acceleration is a bang-

coast-bang command (trapezoidal velocity profile), similar to the one described in

Sections 3.2.1. Here, it will be used to luff the boom downwards in a point-to-point

motion by using it as an input command to the system of state equations in (3.18).

Applying a suitable acceleration command, and solving the system of state equa-

tions, the residual vibrations of the payload can be predicted. The maximum value in

each case is recorded, and then used to perform the stability analysis. This effectively

captures the worst case swing-out scenario for a single boom movement.

3.3.2 Tip-over Stability Analysis of Boom Luffing

Figure 46 shows the maximum swing of the payload when the crane boom luffs with

an angular velocity of 0.02 rad1, with respect to the moving distance. The boom was

luffed from an initial boom luffing angle (80o, 70o, and 60o) down to an angle of 30o.

It should be mentioned that the crane parameters used for these calculations are the

same parameters listed in Table 2, except for the hoist length L5 which is set to 30 m

here. The payload’s maximum swing angle generally increases with increasing initial

boom angle.

The maximum payload swing was calculated for three different values of initial

boom angle with respect to different moving distances. All other crane parameters

1This value was estimated from the data sheet of the Terex CC 2800-1
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Figure 46: Payload Swing Angle in Constant Luffing Down Motion vs. Time.

were consistent with the parameters used for the static analysis. Because both the

boom luffing motion and the payload swing are slow movements, the payload was

assumed to be positioned at the maximum swing angle calculated previously, and the

forward tip-over stability analysis was performed again using a counterweight mass

of 200 t.

Figure 47 shows the minimum counterweight position to prevent forward tip-over.

The plot contains similar patterns to those corresponding to the static case where

no swinging was considered. The graph indicates that changing the initial boom

luffing angle has only a moderate effect on stability. This is explained by the fact

that the maximum swing angle induced by various initial boom angles does not vary

substantially, as was shown in Figure 46.

Figure 48 compares the minimum counterweight position to prevent forward tip-

over in both the static and dynamic boom-luffing cases when the initial boom angle

was set to 60◦, and the counterweight mass was set to 200 t. The static analysis
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Figure 47: Minimum Counterweight Position to Prevent Forward Tip-over for a Range
of Initial Boom Luffing Angles with a Payload of 110 t.
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Figure 48: Minimum Counterweight Position to Prevent Forward Tip-over in the
Static and Dynamic Boom-Luffing Cases with a Payload of 110 t.
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underestimates the minimum position needed to prevent a forward tip over. When

the payload swings outward, the crane is less stable, thus the counterweight has to

be moved further back. As a result, the overall safe counterweight region considering

swing dynamics is smaller than that considered in the static case, as illustrated in

Figure 49.

Earlier in Chapter 2, it was mentioned that the boom angle is the most critical

parameter, in terms of its effect on tip-over stability. Figures 48 and 49 serve to

support that earlier statement. First it is noted that, the counterweight position in

the dynamic case, which corresponds to the maximum swing of the payload, and thus

covers for all possibilities of swinging, is almost 5 m greater than that corresponding

to the static case. That is certainly a big difference. This shows that the payload

swing resulting from the boom luffing motion significantly compromises the crane’s

stability.

The minimum safety region of the counterweight position occurs when the slew

angle is 90◦, while the maximum safety region of the counterweight position occurs

when the slew angle is approximately 40◦. This is consistent with all the previous

results concluding that the crane is least stable when the boom is pointing towards

the side. This is also represented by Figure 50, which shows the size of the stability

region in both the static and dynamic cases with respect to the slewing angle.

However, Figure 49 shows that, if the slewing angle was close to 90o, i.e. the

boom is directed towards the side of the crane, then the minimum counterweight po-

sition needed to prevent forward tip-over is greater that the maximum counterweight

position needed to prevent backward tip-over. This means that preventing forward

tip-over will cause backward tip-over and vice versa. Thus, it is advisable in this case

that precautions are taken to prevent the payload from reaching the maximum swing

angle by shaping the input command, or applying different solutions, such as using a

heavier counterweight, or limiting the payload weight to a smaller value.
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Figure 51: Minimum Counterweight Position to Prevent Forward Tip-over in the
Dynamic Case with a Payload of 110 t, (m4 is the Counterweight Mass).

3.3.3 Effect of Counterweight Mass and Payload Mass

The effect of changing the counterweight mass was studied, and the minimum coun-

terweight position was calculated for different counterweight values using a maximum

swing angle. The result is shown in Figure 51 which demonstrates similar trends to

those which occurred in the static case. If the counterweight mass increases, then the

distance it has to be moved in the rearward direction decreases. This figure also shows

that a counterweight of 150 t is not enough to maintain stability in this configuration,

because a counterweight that light has to be moved to a distance of 20 m away from

the base center which cannot be achieved for this crane configuration.

Finally, Figure 52 illustrates the effect of increasing the payload mass on dynamic

stability. It is clear that a 15 t increase in the payload mass requires the counterweight

to be positioned at a distance of about 20 m away from the base center, which is
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Figure 52: Minimum Counterweight Position to Prevent Forward Tip-over in the
Dynamic Case with a Counterweight of 200 t, (m5 is the Payload Mass).

physically impossible for this crane in this configuration. Thus, it can be concluded

that the payload mass is another critical parameter that should be carefully limited

to maintain static, as well as dynamic stability.

3.4 Boom Slewing Motion

Slewing is another one of the essential motions that helps move the payload hori-

zontally. However, it induces inertia forces and payload swings that compromise the

stability of the crane.

To isolate the influence of slewing motion on the payload swing, the crane is

considered to be stationary, except for the boom which slews about the vertical axis

with a constant rotational velocity.

In previous research, a pure rotational motion of a tower crane was investigated
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[13]. Because the boom slewing motion in the condition described above exhibits

analogous dynamics to that of the tower crane, a similar analysis approach is taken

to study the dynamics of the crawler crane. An experiment was performed using a

tower crane to verify the calculation tool.

3.4.1 Mathematical Model and Payload Swing Dynamics

Figure 53 shows the front, side and top views of the crawler crane experiencing slewing

motion. The boom rotates at a constant velocity of ω. This type of motion induces

payload swings in two directions; radial (expressed by θ1) and tangential (expressed

by θ2).

The motion also induces a centrifugal force that acts on the payload, at its center

of mass, denoted by Fc. This force points along the horizontal projection of the boom,

in other words, its direction is perpendicular to the direction of motion, and always

pointing towards the slewing axis of rotation. This means that the direction of this

force changes continuously as the boom rotates.

The magnitude of the centrifugal force on a body of mass m moving at a tangential

speed v along a path with a radius of curvature R is expressed by:

Fc = mac = m
v2

R
(3.19)

where ac is the centripital acceleration.

In terms of the angular velocity ω, (3.19) becomes:

Fc = mRω2 (3.20)

It is noted in (3.20) that the expression for the centrifugal force contains the

square of the rotational velocity, which in the case of the crawler crane is a very small

value, thus the centrifugal force acting on the payload is considered small and can be

ignored for the purpose of this investigation.
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To establish a conservative tip-over prediction that approximates the worst-case

scenario, the maximum residual swinging angles of the payload in both directions

mentioned earlier is taken into consideration.

The goal now is to establish a mathematical model of the system to calculate these

swinging angles, and use them to find the required minimum counterweight position

that prevents forward tip-over.

The payload swing angles are computed using the equations of motion derived in
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[13]. Assuming a point mass payload and ignoring the payload twisting about the

suspension cable, the full dynamic equations of motion describing the swing angles

are:

L5θ̈1 + L5θ̇22 cos θ1 sin θ1 + g sin θ1 cos θ2 = −R̈ cos θ1 +Rṡ2 cos θ1

−Rs̈ sin θ1 sin θ2 − 2Ṙṡ sin θ1 sin θ2 − 2L5ṡθ̇2 cos2 θ1 cos θ2

− L5s̈ sin θ2 + L5ṡ2 sin θ1 cos2 θ2 cos θ1 (3.21)

L5θ̈2 cos θ1 − 2L5θ̇1θ̇2 sin θ1 + g sin θ2 = Rs̈ cos θ2 + 2Ṙṡ cos θ2

+ 2L5ṡθ̇1 cos θ1 cos θ2 + L5s̈ sin θ1 cos θ2 + L5ṡ2 sin θ2 cos θ1 cos θ2 (3.22)

where L5 is the suspension cable length, s is the radial displacement, ṡ is the rota-

tional velocity previously denoted by ω, s̈ is the rotational acceleration, and R is the

horizontal distance between the boom tip and slewing axis. The angles θ1 and θ2

describe the payload swing in the radial and tangential directions with respect to the

boom’s orientation, respectively.

In a pure slewing rotation motion, the boom configuration remains fixed, which

implies that Ṙ = R̈ = 0. Equations( 3.21) and (3.22) were not linearized, because

experimentation showed that the swing angle is not always small enough to make the

linearization assumption valid. The following state variables were defined:

x1 = θ1

x2 = θ̇1

x3 = θ2

x4 = θ̇2

x5 = s

x6 = ṡ

(3.23)
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The command used as an input to this system is the rotational slewing accelera-

tion:

u = s̈ (3.24)

Based on (3.23) and (3.24), the dynamic system can be described by the following

equations:

ẋ1 = θ̇1 = x2

ẋ2 = θ̈1 =
R

L5

x6
2 cosx1 +

R

L5

u sinx1 sinx3 − 2x6x4 cos2 x1 cosx3 − u sinx3

+ x6
2 sinx1 cos2 x3 cosx1 −

g

L5

sinx1 cosx3 − x42 cosx1 sinx1

ẋ3 = θ̇2 = x4

ẋ4 = θ̈2 =
R

L5

u
cosx3
cosx1

+ 2x6x2 cosx1 cosx3 + u cosx3
sinx1
cosx1

+ x6
2 sinx3 cosx1 cosx3 + 2x2x4

sinx1
cosx1

− g

L5

sinx3
cosx1

ẋ5 = ṡ = x6

ẋ6 = s̈ = u

(3.25)

The time-optimal command with a limited velocity and acceleration again is a

bang-coast-bang command, similar to the one described in Sections 3.2.1 and 3.3.1.

Here, it will be used to slew the boom in a point-to-point motion about the axis of

rotation by using it as an input command to the system of state equations described

in (3.25).

Applying a suitable acceleration command, and solving the system of state equa-

tions, the residual vibrations of the payload can be predicted, and thus the maximum

payload swinging angle, whether radially or tangentially, can be calculated and then

used to find the minimum counterweight position that prevents forward tip-over.

3.4.2 Experimental Verification - Tower Crane

Before using the mathematical model derived in the previous section to calculate

counterweight position, it was experimentally verified. As mentioned before, the
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Figure 54: Tower Crane used in Experiments.

dynamics of the crawler crane in slewing motion are analogous to those of a tower

crane. Therefore, an experiment was performed on the tower crane shown in Figure

54.

For a given slewing radius and hoist length, if the crane is actuated by a bang-

coast-bang command that has a constant maximum acceleration, and if the slewing

velocity has a maximum constant value as well, then the only parameter affecting the

swinging angles of the payload is the rotational distance traveled.

The tower crane was driven using a bang-coast-bang command with a varying tgap.

For each trial, tgap was chosen such that the crane slewed through angles ranging from

3o to 90o. For each slew distance, the payload swing was recorded in both the radial

and tangential directions. Examples of radial and tangential swing are shown in

Figures 55 and 56. For each distance, the maximum residual swing angles in the
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Table 6: Parameters of the Tower Crane.

Parameter Item Numerical Data
L5 Hoist Length 0.9 m
R Slewing Radius 0.908 m
mh Mass of the Hook 0.210 kg
mp Mass of the Payload 0.500 kg
ωmax Maximum Slewing Velocity 20o/s
αmax Maximum Slewing Acceleration 27.6o/s2

t Time to Reach Maximum Slewing Velocity 0.728 s

radial and tangential directions were recorded. This set of experiments was repeated

four times, and the average of the maximum swinging angles was taken for each

corresponding moving distance.

Table 6 displays the numerical data corresponding to the tower crane parameters

used in the experiments. These parameters were used in the mathematical model

previously derived and a simulation was carried out to calculate the maximum residual

swing angles in the radial and tangential directions, so that the simulation results can

be compared with the experimental ones. The results are shown in Figures 57 and 58.

In both figures, experimental and simulation results follow a similar trend. However,

there is an obvious lag in the experimental result as the move distance increases.

Several reasons may have led to this discrepancy, such as nonlinearities that are

not taken into account in the mathematical model. Also, the acceleration value

used in the simulation was the average of the acceleration values measured in the

experiments, thus it is slightly different from the actual values. Another reason is

that when the payload travels a longer distance, more disturbances occur during the

longer move. Some errors may be due to inaccuracies related to the payload sensor

(camera). Moreover, the hook displays some high frequency oscillations that are not

taken into consideration in simulation. Finally, the simulation ignores damping, which
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Figure 57: Maximum Radial Swinging Angle of the Payload vs. Slewing Distance
(Experimental and Simulation Results).
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Figure 58: Maximum Tangential Swinging Angle of the Payload vs. Slewing Distance
(Experimental and Simulation Results).
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Figure 59: Experimental and Simulated Radial Swinging Angle of the Payload for a
Moving Distance of 60o.

is present in the experiment due to air resistance and the hook oscillations mentioned

before.

Figure 59 and Figure 60 compare between the experimental and simulated payload

radial and tangential swinging angles respectively, for a moving distance of 60o. Figure

59 shows that the experimental payload swinging is slower than the simulation, which

is expected due to damping and inertial factors that are not included in simulation.

These factors prevent the payload from reaching the expected swing amplitude, which

explains the results displayed in Figure 57.

Similarly, Figure 60 displays similar effects in the tangential swing, in addition to

an initial value of the swing angle, which is considered zero in the simulation.

Based on the discussion above, the experimental results align reasonably well with

the simulation predictions. This indicates that the mathematical model can be used

to predict the payload’s maximum swing angles (θ1 and θ2) under various conditions.
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Figure 60: Experimental and Simulated Tangential Swinging Angle of the Payload
for a Moving Distance of 60o.

Thus, it will be used to calculate the position of the movable counterweight necessary

to avoid tip over in the case of boom slewing motion.

3.4.3 Tip-over Stability Analysis of Boom Slewing

The mathematical model is used to calculate the radial and tangential maximum

residual swing angles of the payload carried by the crawler crane whose parameters

were listed in Table 2. However, because slewing motion is critical, and it is capable

of inducing large swinging angles, especially in the tangential direction, the hoist

length will be extended to 70 m, and the boom luffing angle will be increased to 70o.

Increasing the boom luffing angle to 70o allows the use of a payload with a mass

of 156 t. Based on the data sheet, the maximum slewing velocity of the Terex CC

2800-1 is 0.7 rpm. To approach the worst-case scenario, it is assumed that the crane

accelerates to full slewing speed in 1 s.
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The maximum residual payload swing angles were calculated with respect to vari-

ous move distances. The procedure to calculate the minimum position of the movable

counterweight to counterbalance the effect of swinging and prevent tip-over is:

1. For each moving distance the location of the payload resulting from the maxi-

mum residual and tangential swinging angles is determined.

2. It is assumed that the hoist cable is a rigid body, and the payload is fixed at

that location.

3. The sum of moments is calculated about the corresponding tip-over axis de-

pending on the displacement of the payload. Knowing that the slewing of the

boom in within the range of 0o to 90o, the potential tip-over axes are the front

and side.

4. The calculated sum of moments is used to determine the minimum counter-

weight position in each case.

5. The minimum counterweight position values are plotted with respect to the

moving distances, and the furthest position obtained will be the recommended

position to prevent forward tip-over regardless of the move distance for the given

configuration.

Figure 61 shows the maximum residual swing angles in both the radial and tangen-

tial directions with respect to the move distance. These values are used to determine

the location of the payload at each slewing distance.

For each slewing distance the location of the payload was calculated based on max-

imum swinging angles. Then, the minimum location of the movable counterweight to

prevent tip-over about the front axis was calculated. Results are shown in Figure 62.

The figure displays minimum counterweight positions for three different masses of the

movable counterweight. It should be noted that if the position of the counterweight
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Figure 61: Maximum Swinging Angles of the Payload vs. Slewing Distance.

in the graph is shown as zero, then for that specific slew distance, there is no hazard

of tipping over about the front axis. For example, if the boom is slewed for a distance

that is larger than 600, there is no longer a potential for the crane to tip-over in the

forward direction.

Figure 62 also shows that for a heavier counterweight mass, the minimum coun-

terweight position is less, which is consistent with all the results obtained in this

research.

Similarly, Figure 63 illustrates the minimum counterweight position necessary to

prevent tipping over to the side. Following the previous discussion, the figure shows

that the risk of tipping over sideways begins for slewing distances of more than about

50o. Also, the position of the counterweight has a maximum value at a slewing

distance of 90o, which agrees with the previous results obtained in the static analysis.

These results confirm that this location is very dangerous in terms of tip-over stability.

Here also, the larger the counterweight, the smaller the distance it needs to be moved
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backwards to avoid tipping over.

For a given counterweight mass of 200 t, the minimum counterweight position that

prevents tipping over in each direction is plotted in Figure 64 with respect to slewing

distances. This graph shows that for a slewing distance of 48.3o or less, the crane is

likely to tip-over in the front direction, and the minimum counterweight positions to

prevent that are displayed by the black solid line in Figure 64. On the other hand,

for a slewing distance of 58.8o or more, the crane is in danger of tipping over sideways

only, and the minimum counterweight positions to prevent that are displayed by the

red dashed line in Figure 64.

This leaves an interval of slewing distances (48.3o-58.8o), in which the crane can

tip over in both directions. Thus, in this interval, the larger of the two counterweight

position values that prevent tipping over in either direction should be used.
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In general, the global maximum occurs at a slewing distance of 90o as mentioned

before. Thus, it is recommended that the counterweight is kept at the minimum

position corresponding to that point to ensure a safe operation regardless of the

slewing distance. However, if the crane is expected to slew within a smaller range,

then the local maximum of that specific interval can be used. Other solutions can be

the use of shaped acceleration commands that minimize the oscillations, and therefore

the counterweight does not need to be moved as far.

3.5 Summary

Once a crane starts to move, its stability is degraded by additional forces. This

chapter discussed various motion scenarios, and studied their effects independently.

In each section, the minimum counterweight position to prevent tip-over is calculated

and compared to the static case. Due to the fact that any type of motion induces

payload swing, the counterweight needs to be moved further backwards than the static

case. Future work could expand the scope of these motions, discuss more special and

extreme cases, and even examine different types of motions.
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CHAPTER IV

EXPERIMENTAL VERIFICATION

Figure 65: Experimental Scale Crane Model.

The purpose of this chapter is to provide support and verification for some of the

key results obtained in Chapters 2 and 3. A small-scale crane model was built and

used to achieve these experimental results.
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4.1 Introduction

The experimental setup shown in Figure 65 was constructed using the ME-7003 large

structure set. This set is one part of the PASCO Structures System [26]. It can be

used to build a variety of realistic truss structures. The ME-7003 set has various com-

ponents that can be used to create different models, such as roller coasters, bridges,

tower cranes, skyscrapers, house frames, angle cranes, windmills. The manual pro-

vided with this set presented a crane model. This model was modified to suit our

application.

4.2 Components

This section lists the components used to create the crane model.

4.2.1 Truss Set Members (ME-6993)

The truss set members consist of five types of I-beams and a half round connector,

as shown in Figure 66. The beam lengths are listed in Table 7. Figure 66 also shows

the truss set screw, which is a thumbscrew used for attaching I-beams to connectors

and other components.

Table 7: Truss Members Set [26].

Member Length (cm)
#1 Beam 5.5
#2 Beam 8
#3 Beam 11.5
#4 Beam 17
#5 Beam 24
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4

Flat Structures Members (ME-6987) 

This set contains three types of flat structures: Flat 3 X 4 Beam (19 cm), Flat #4 Beam (17 cm), and Flat 2 X 3 
Beam (12.5 cm). There are sixteen of each type of beam in the set. 

Force Platform Structure (ME-6988A)

The PASCO model ME-7003 Force Platform Structures Bracket includes two brackets and four thumbscrews. The 
adapter bracket is designed to connect members of the PASCO Structures System to a PASCO Force Platform (not 
included). The brackets can also serve as foundation plates for larger structure models. 
(Please see the Force Platform Structures Bracket instruction sheet for more information.)

Truss Set Members (ME-6993)

The Truss Set Members consists of five types of “I-beams” and 
one type of connector. Each set has the following quantities:

When connected at 180° to a connector, two identical beams 
have a combined length equal to one longer beam. For example, 
two #1 beams connected at 180° have the same length as a #3 
beam.

Truss Set Screws (ME-6994)

Each set of Truss Set Screws contains 75 Thumbscrews for attaching I-beams to connectors or load cells.

Cord Lock Spares (ME-6996)

A set of Cord Lock Spares includes 32 Cord Tensioning Clips (Cord Clips) and one roll of yellow braided cord. 
When attaching cords for lateral bracing or for suspension or cable-stayed bridges, Cord Clips are used to assist in 
adjusting the tension in the cords.

The Cord Clip does not come apart. It is best to thread the cord through the clip before the clip is installed on the 
bridge or structure. Prepare to thread the cord by holding the top half of the clip as shown in Figure A so the two 

Item Qty Item Qty

#1 Beam (5.5 cm) 8 #4 Beam (17 cm) 18

#2 Beam (8 cm) 8 #5 Beam (24 cm) 8

#3 Beam (11.5 cm) 18 Half Round Connector 14

#4 Beam

#3 Beam

3 X 4 
Beam

Half Round 

Truss 

3 X 4 
Beam

2 X 3 

Flat #4 
Beam

#1 Beam

#2 Beam
#3 Beam

#4 Beam
#5 Beam

Half Round 
Connector

Screw

#1 #1

#3

#3#3

#5

#2 #2

#4

Figure 66: Truss Set Members (ME-6993) [26].

It should be noted that when connected at 180o to form a straight line, two short

beams have a combined length equal to one longer beam. For example, two #1 beams

connected at 180o to a half round connector have the length of a #3 beam, while two

#2 beams create a #4 beam, and two #3 beams have the length of a #5 beam.

4.2.2 #6 I-Beam Spares (ME-7008)

#6 I-beams are similar to the ones in the truss set members, but they have a length

of 35 cm. Thus they can be used when more length is required.

4.2.3 Flat Structures Members (ME-6987)

This set contains the three types of flat structures shown in Figure 67. These members

are: flat 3X4 beams (19 cm), flat 2X3 beams (12.5 cm), and flat #4 beams which are

all used to support structures created by the regular beams. The right side of Figure

67 shows an example of a rectangular structure created by #3 and #4 beams, that

are connected at the corners using half round connectors. This rectangular structure

is supported by two 3X4 flat beams connecting opposite corners.
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Flat Structures Members (ME-6987) 

This set contains three types of flat structures: Flat 3 X 4 Beam (19 cm), Flat #4 Beam (17 cm), and Flat 2 X 3 
Beam (12.5 cm). There are sixteen of each type of beam in the set. 

Force Platform Structure (ME-6988A)

The PASCO model ME-7003 Force Platform Structures Bracket includes two brackets and four thumbscrews. The 
adapter bracket is designed to connect members of the PASCO Structures System to a PASCO Force Platform (not 
included). The brackets can also serve as foundation plates for larger structure models. 
(Please see the Force Platform Structures Bracket instruction sheet for more information.)

Truss Set Members (ME-6993)

The Truss Set Members consists of five types of “I-beams” and 
one type of connector. Each set has the following quantities:

When connected at 180° to a connector, two identical beams 
have a combined length equal to one longer beam. For example, 
two #1 beams connected at 180° have the same length as a #3 
beam.

Truss Set Screws (ME-6994)

Each set of Truss Set Screws contains 75 Thumbscrews for attaching I-beams to connectors or load cells.

Cord Lock Spares (ME-6996)

A set of Cord Lock Spares includes 32 Cord Tensioning Clips (Cord Clips) and one roll of yellow braided cord. 
When attaching cords for lateral bracing or for suspension or cable-stayed bridges, Cord Clips are used to assist in 
adjusting the tension in the cords.

The Cord Clip does not come apart. It is best to thread the cord through the clip before the clip is installed on the 
bridge or structure. Prepare to thread the cord by holding the top half of the clip as shown in Figure A so the two 

Item Qty Item Qty

#1 Beam (5.5 cm) 8 #4 Beam (17 cm) 18

#2 Beam (8 cm) 8 #5 Beam (24 cm) 8

#3 Beam (11.5 cm) 18 Half Round Connector 14

#4 Beam

#3 Beam

3 X 4 
Beam

Half Round 

Truss 

3 X 4 
Beam

2 X 3 

Flat #4 
Beam

#1 Beam

#2 Beam
#3 Beam

#4 Beam
#5 Beam

Half Round 
Connector

Screw

#1 #1

#3

#3#3

#5

#2 #2

#4

Figure 67: Flat Structures Members (ME-6987) [26].
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halves of the clip will separate, leaving an opening through which the cord is threaded. The cord is inserted into 
the end opposite the pointed end of the clip. The cord should be looped back through the clip as shown in Figure C. 
Then the Cord Clip can be used in the structure, using the attachment screw to tighten the clip shut. To adjust the 
cord tension, loosen the screw and pull on the cord to the desired tension and then tighten the screw. 

Full Round Connectors Spares (ME-6997)

Full Round Connector: The Full Round Connector has eleven slots, 
labeled A through H and X, Y, and Z, for attaching beams. There are 
six Full Round Connectors in the set.

Flat Round Connector: The Flat Connector has eight slots, labeled 
A through E, and X, Y, and Z, for attaching beams. There are six 
Flat Connectors in the set.

PAStrack Slot Connector: The PAStrack Slot Connector is a nut and 
bolt that allows a PAStrack to be connected to a structures model. 
There are six PAStrack Connectors in the set.

Axle Spares (ME-6998A)

The Axle Spares set includes two Axles each of three differ-
ent lengths, twelve Pulleys, twelve O-rings, four Drive 
Wheels, four Tires, 24 Collets, and twelve Spacers.

The illustrations show example uses of axles, pulleys, and 
wheels.

Figure A: Hold half of 
the cord clip so the 
two halves separate

Figure B: Loop the 
cord back through the 

cord clip

Figure C: The cord 
goes around the 

screw hole

Figure D: The cord clip is 
ready to be attached to the 

structure using a screw

Full 
Round

Flat 
Round

PAStrack Slot Connector

Pulley O-ring 

Drive 
wheel

Collet Tire Spacer

Axles

Pulley 

Spacers 

This pulley is free to rotate.

Half 
Round

Axle

Axle attached to a half-round connector

Axle

Half 
Round

Thumbscrew

Drive wheel attached to an axle

Thumbscrew

Figure 68: Full Round Connectors Spares (ME-6997) [26].

4.2.4 Full Round Connectors Spares (ME-6997)

Full round connectors have eleven slots for attaching beams, as shown in Figure 68.

Eight of these slots are located around the perimeter of the circle, while three are

used for connections in a direction perpendicular to that of the circle. Flat round

connectors are similar to the full round connectors; however, they only have the eight

slots around the perimeter of the circle.

Finally, the PAStrack slot connector is a nut and bolt that allows a PAStrack to

be connected to a structures model. It is shown at the bottom of Figure 68.
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Angle Connectors (ME-6999A)

The Angle Connectors set includes 24 Straight Connectors, 24 Angle Con-
nectors, and twelve Sliding Connectors. The Straight Connector can connect 
two beams to make a longer beam. The Angle Connector can allow a beam to 
be connected to a half round connector, full round connector, or flat round 
connector at an angle different than zero, 45, or 90 degrees. The angle con-
nector also allows for a small adjustment of the length of the beam. The Slid-
ing Connector allows one beam to be connected to another beam at any 
position along the length of the second beam..

To use the sliding connector, loosen the thumbscrew and rotate the top “jaw” to the side. Place the beam onto the 
lower part of the connector, rotate the top “jaw” into place, and tighten the thumbscrew. The Structures Set 
includes two Angle Connector sets.

Connector Spares (ME-7002)

Each set of Connector Spares includes fourteen Half Round Connectors.

#6 I-Beam Spares (ME-7008)

The #6 I-Beam is 35 cm long. There are 24 beams per set.

Coaster Track (ME-9814)

The ME-9814 Coaster Track is a section of flex-
ible track that is 9.1 m long. Side rails and cen-
ter rails help to keep a Mini Car on the track.

Use a sharp knife or scissors to cut the track to 
the desired length. 

Use a Track Coupler to connect two sections of 
Coaster Track together.

Slide the Track Coupler into the channel on the underside of each Coaster Track section.

Sliding Connector on a #1 Beam

Straight 

Angle 

Straight Connector

Angle Connector

Side rail

Center 
rails

Track 

Figure 69: Angle Connectors (ME-6999A) [26].

4.2.5 Angle Connectors (ME-6999A)

Angle connectors include the three types of connectors shown in Figure 69. Straight

connectors can connect two beams to make a longer beam. Angle Connectors allow

a beam to be connected to a half round connector, full round connector, or flat

round connector at an angle other than 0o, 45o, or 90o. They also allow for a small

adjustment in the length of the beam. Finally, the sliding connector allows one beam

to be connected to another beam at any position along the length of the second beam.

4.2.6 Axle Spares (ME-6998A)

This set consists of steel axles of three different lengths, in addition to pulleys, O-rings,

drive wheels, tires, collets, and spacers. Figure 70 shows these components.

4.2.7 Cord Lock Spares (ME-6996)

This set includes cord tensioning clips and a roll of yellow braided cord. When

attaching cords for lateral bracing or suspension, cord clips are used to assist in

adjusting the tension in the cords. This is illustrated in Figure 71.
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halves of the clip will separate, leaving an opening through which the cord is threaded. The cord is inserted into 
the end opposite the pointed end of the clip. The cord should be looped back through the clip as shown in Figure C. 
Then the Cord Clip can be used in the structure, using the attachment screw to tighten the clip shut. To adjust the 
cord tension, loosen the screw and pull on the cord to the desired tension and then tighten the screw. 

Full Round Connectors Spares (ME-6997)

Full Round Connector: The Full Round Connector has eleven slots, 
labeled A through H and X, Y, and Z, for attaching beams. There are 
six Full Round Connectors in the set.

Flat Round Connector: The Flat Connector has eight slots, labeled 
A through E, and X, Y, and Z, for attaching beams. There are six 
Flat Connectors in the set.

PAStrack Slot Connector: The PAStrack Slot Connector is a nut and 
bolt that allows a PAStrack to be connected to a structures model. 
There are six PAStrack Connectors in the set.

Axle Spares (ME-6998A)

The Axle Spares set includes two Axles each of three differ-
ent lengths, twelve Pulleys, twelve O-rings, four Drive 
Wheels, four Tires, 24 Collets, and twelve Spacers.

The illustrations show example uses of axles, pulleys, and 
wheels.

Figure A: Hold half of 
the cord clip so the 
two halves separate

Figure B: Loop the 
cord back through the 

cord clip

Figure C: The cord 
goes around the 

screw hole

Figure D: The cord clip is 
ready to be attached to the 

structure using a screw

Full 
Round

Flat 
Round

PAStrack Slot Connector

Pulley O-ring 

Drive 
wheel

Collet Tire Spacer

Axles

Pulley 

Spacers 

This pulley is free to rotate.

Half 
Round

Axle

Axle attached to a half-round connector

Axle

Half 
Round

Thumbscrew

Drive wheel attached to an axle

Thumbscrew

Figure 70: Axle Spares (ME-6998A) [26].
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halves of the clip will separate, leaving an opening through which the cord is threaded. The cord is inserted into 
the end opposite the pointed end of the clip. The cord should be looped back through the clip as shown in Figure C. 
Then the Cord Clip can be used in the structure, using the attachment screw to tighten the clip shut. To adjust the 
cord tension, loosen the screw and pull on the cord to the desired tension and then tighten the screw. 

Full Round Connectors Spares (ME-6997)

Full Round Connector: The Full Round Connector has eleven slots, 
labeled A through H and X, Y, and Z, for attaching beams. There are 
six Full Round Connectors in the set.

Flat Round Connector: The Flat Connector has eight slots, labeled 
A through E, and X, Y, and Z, for attaching beams. There are six 
Flat Connectors in the set.

PAStrack Slot Connector: The PAStrack Slot Connector is a nut and 
bolt that allows a PAStrack to be connected to a structures model. 
There are six PAStrack Connectors in the set.

Axle Spares (ME-6998A)

The Axle Spares set includes two Axles each of three differ-
ent lengths, twelve Pulleys, twelve O-rings, four Drive 
Wheels, four Tires, 24 Collets, and twelve Spacers.

The illustrations show example uses of axles, pulleys, and 
wheels.

Figure A: Hold half of 
the cord clip so the 
two halves separate

Figure B: Loop the 
cord back through the 

cord clip

Figure C: The cord 
goes around the 

screw hole

Figure D: The cord clip is 
ready to be attached to the 

structure using a screw

Full 
Round
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PAStrack Slot Connector

Pulley O-ring 
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wheel

Collet Tire Spacer

Axles

Pulley 

Spacers 

This pulley is free to rotate.

Half 
Round

Axle

Axle attached to a half-round connector

Axle

Half 
Round

Thumbscrew

Drive wheel attached to an axle

Thumbscrew

Figure 71: Cord Lock Spares (ME-6996) [26].

4.3 Crane Model Specifications

The components described in the previous section were used to construct the small-

scale experimental crane model that was shown in Figure 65. The design of this

model was done in stages. First of all, a small base was created to support the boom

and mast. This small base was also connected to an extension on which the movable

counterweights are positioned. This whole setup was mounted on top of a rectangular

base. This allows the crane upper works to slew around the axis located in the middle

of the rectangle.

To facilitate the slewing motion of the upper works on the rectangular lower works,
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Figure 72: Acrylic Plates Specifications (Units are in inches).

two acrylic rectangular plates were connected to the bottom of the upper base and

the top of the rectangular base, respectively. Figure 72 shows a schematic diagram

of these two plates. A screw was fastened in the holes located in the middle of each

of the plates, to make sure that the crane slewing axis remains fixed, and that the

slewing axis is not shifted as the upper works slew on top of the rectangular lower

works.

The acrylic plate connected to the rectangular base has ten holes located on the

perimeter of a quarter circle with a radius of 4 in. The angle between the two lines

connecting the center of the rectangle to the centers of two consecutive holes is 10o.

Therefore, keeping the two middle holes secured by means of a screw, when the other

hole in the transparent rectangular plate attached to the bottom of the upper base

matches any of the ten holes in the other yellow plate, this places the upper part of

the crane at a specific slewing angle between 0o and 90o. This is illustrated in Figure

73.
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Figure 73: Slewing Mechanism in the Experiment.

The crane’s physical parameters are listed in Table 8.

Table 8: Parameters of the Experimental Crane Model.

Parameter Item Numerical Data
w Width of base 24 cm
h Height of base 8 cm
L1 Length of base 35 cm
L2 Length of boom 178 cm
L3 Length of mast 76 cm
L4F Length of fixed counterweight 23 cm
L5 Length of hoist 115 cm
m1 Mass of rectangular base 2.33 kg
m2 Mass of boom and upper base 2.55 kg
m3 Mass of mast 0.51 kg
m4F Mass of fixed counterweight 2 kg
m5 Mass of payload 1 kg
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4.4 Experimental Procedure

Two experiments were performed using the described setup.

4.4.1 Effect of Crawler Crane Slew Angle on Minimum Counterweight
Position Required to Prevent Forward Tip-over

The objective of this experiment is to experimentally construct the graph shown in

Figure 19. This serves to verify that the calculation tool used to determine the suitable

position of the movable counterweight that prevents tip over gives reasonable results.

The same crane configuration was used with two different counterweight masses: 1 kg

and 1.1 kg.

First, the slewing angle was set to 0o, as illustrated in the upper left corner of Fig-

ure 73. The payload of 1 kg was attached to the hoist cable. The fixed counterweights

(1.5 kg) were set in place and the movable counterweights (1 kg) were pushed to the

furthest backward position possible. This position definitely guarantees stability, but

our goal is to find the minimum counterweight position that prevents forward tip

over. Thus, the procedure followed was to slide the movable counterweights towards

the center of the crane gradually, until the crane was on the verge of tipping over. At

this location, the counterweight position was measured and recorded.

Then, a payload of 100 g was added to the original payload and the same procedure

was repeated to find the minimum counterweight position to prevent tip over. Once

the required readings were obtained, the slewing angle was changed to 10o and so on,

until the slewing angle became 90o. Figure 74 and Figure 75 show the crane with a

slewing angle of 30o and 90o, respectively.

In the calculations performed in Chapter 2, the slewing angle was varied between

0o and 360o. Due to the advantage of symmetry in the crane model, it was enough

to record measurements from 0o to 90o and then using that to predict the rest of

the graph for a full 360o revolution, taking into consideration that the slewing axis is

located in the middle of the rectangular base and passes through the bottom end of

93



Figure 74: Experimental Crane Setup - Slew Angle is 30o.

Figure 75: Experimental Crane Setup - Slew Angle is 90o.
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the boom all the time.

4.4.2 Effect of Payload Swing

In Chapter 3, the payload swing induced by three different motions of the crane was

investigated. The larger the payload swing, the further the counterweight needed to

be moved backwards to prevent forward tip-over. The objective of this experiment is

to verify this relationship.

First, the slew angle was fixed at 0o, and the counterweight was pushed backwards

to the furthest position away from the slewing axis. On the experimental setup, this

distance is 23 in. The boom luffing angle was fixed at 66o and the payload mass

was set to 1 kg. The payload was pulled inward toward the slewing axis to create

an initial swing angle of 1o. It was then released and left to swing freely. The crane

was observed. Then, the initial payload swing angle was increased gradually, each

time by 1o, until the swing angle that caused the crane to buck forward and almost

tip-over was reached. This swing angle value was recorded.

This procedure was repeated, and each time the counterweight was moved inward

1 in towards the slewing axis. The corresponding payload swing angles that caused

the crane to almost tip-over were recorded for each position of the counterweight.

4.5 Results

4.5.1 Effect of Crawler Crane Slew Angle on Minimum Counterweight
Position Required to Prevent Forward Tip-over

Figure 76 shows the minimum counterweight position required to prevent forward

tip-over of the small-scale crane model for a range of slewing angles. The payload

mass was set to 1 kg, and the movable counterweight mass was also set to 1 kg. The

boom angle was fixed at 66o.

It is obvious that the experimental data follows the same general trends as those

predicted in Chapter 2 for the full-scale Terex crane. The graph emulates the previous
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Figure 76: Minimum Counterweight Position to Prevent Forward Tip-over [Boom
Luffing Angle of 66o, Payload Mass of 1 kg, and Counterweight Mass of 1 kg].

results by showing that the crane is most stable when the boom is pointing to the

corner of the crane base of support, while it is least stable when the boom is pointing

towards the side.

The large jump in the counterweight position values as the slewing angle is changed

from 30o to 40o can be explained using Figure 73. The figure shows that, there are

areas of the upper base that are not directly supported by the lower base. These areas

get larger with increasing slewing angle, requiring the counterweight to be moved

further back. The large unsupported areas induced bending of the upper works. This

structural deflection affected the results obtained. This also explains the very large

value of the counterweight position when the slew angle was 90o. Therefore, the
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Figure 77: Minimum Counterweight Position to Prevent Forward Tip-over [Boom
Angle of 66o, Payload Mass of 1.1 kg, and Counterweight Mass of 1 kg.

experimental results for slew angles beyond 30o are larger than would be predicted

by theory, the reason is that theory assumes a fairly rigid upper work structure.

Figure 77 shows the minimum counterweight position to prevent forward tip-

over when the payload mass was increased 10% to 1.1 kg. The first observation

is that the counterweight needs to be moved further backwards when the payload

mass increases, a result clearly documented in Chapter 2. The graph displays similar

characteristics as the graph in Figure 76. However, when the slew angle was set to

90o, the maximum possible counterweight position in the experimental setup was not

enough to counterbalance the moment creating forward tip-over. Thus, the crane

could not be stabilized by the counterweight when the boom was directed 90o to the
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Figure 78: Minimum Counterweight Position to Prevent Forward Tip-over for Both
Payload Masses.

side.

To understand the effect of increasing the payload mass on the minimum coun-

terweight position to prevent forward tip-over, the results for both the 1 and 1.1 kg

payload masses were plotted on the same graph for slew angles between 0o and 90o.

Figure 78 clearly shows that increasing the payload mass requires the counterweight

to be moved further backwards.

4.5.2 Effect of Payload Swing

As expected, the closer the counterweight position is to the slewing axis, the smaller

the payload swing angle that causes forward tip-over. This effect is shown in Figure 79.

Another way to interpret the results in this graph is that for a certain counterweight

position, the payload swing needs to be limited to a value less than that shown in
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Figure 79: Maximum Payload Swing Angle to Prevent Forward Tip-over.

the graph. This can be accomplished by applying suitable acceleration profiles that

do not induce significant swing, as discussed in Chapter 3. However, uncontrollable

forces such as wind loads, can induce additional swing. Therefore, the counterweight

needs to be moved backwards by a reasonable safety factor to avoid forward tip-over.

An important verification was provided by this experiment. Figure 79 indicates

that for a counterweight position of 5 in any non-zero payload swing will cause a tip-

over. Referring back to Figure 76, for a slew angle of 0o, the minimum counterweight

position that prevents forward tip-over is almost 5 in. Recall that data was generated

with a non-swinging payload. Once the payload starts to swing, the counterweight

has to be moved further backwards. This agrees with the results obtained in Chapter

3, stating that the dynamic stability region is always smaller than the static stability

region. It also shows that both the static and dynamic experiments converge to the

same results as the swing angle approaches zero.

A gap near 10 in appears in the data shown in Figure 79. This gap occurs because
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there is a half round connector at that position in the experimental setup. Therefore,

the round slotted counterweights cannot be positioned in that location.

4.6 Limitations and Challenges

The components used to create the experimental crane model are not designed to

perform in extreme loading conditions that create large bending forces on the com-

ponents. Therefore, the experiment was limited to relatively light-weight payloads

and counterweights. The effects of the structural limitations that prevented us from

expanding the experiment to include all aspects discussed in Chapters 2 and 3 include:

1. The beams used in the structure have a degree of flexibility that caused them

to bend excessively in certain locations, thus violating the concept of rigidity of

the crane components.

2. The counterweight mass could not be changed significantly, since we were us-

ing 500 g on each side. Smaller adjustable weights were not available, and

adding another two 500 g required the payload to be very large. This created

a large tension force that the whole structure was not able to support without

significant deflection.

3. The experimental boom luffing angle was created by letting the boom lie on

the triangular part of the upper base. The effect of decreasing that angle was

difficult to study, because decreasing the angle created a large bending in the

boom, due to its weight and length which are supported only at one pivot point.

4. When the upper works were slewed, there were some angles at which the corners

of the upper part were not fully supported, thus it caused the structure to bend.

These limitations of the experimental setup restricted the procedure and resulted

in some skewing of the results. Nevertheless, the experiment was conclusive, and it
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proved that our calculation tool is successful in predicting the counterweight position

boundaries that prevent crawler crane tip over.

4.7 Summary

Experimentation is an important element of research, that can validate that the

theory presented is representative of practical applications. In this chapter, an ex-

periment helped verify the calculation tool presented earlier, and provided a deeper

understanding of the concept of a movable counterweight. It also helped demonstrat-

ing the difference a counterweight imposes on the system when it moves relative to

the crane body. And finally, it showed how sensitive the crane’s stability is to slight

changes in the counterweight position, which complies with our previous results that

indicate that the counterweight position to prevent tip over is a complex function of

the crane’s parameters.
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CHAPTER V

CRAWLER CRANES IN TANDEM LIFTING

5.1 Overview

Moving heavy and over-sized loads poses significant challenges. A single crawler crane

may prove deficient for such lifting tasks if the payload exceeds the capacity, or the

payload size and shape make it impossible to secure it to a single crane hook. In view

of these problems, it may be necessary to manipulate such items by tandem lifting

with two cranes [7]. An example tandem lifting operation is shown in Figure 80.

Tandem lifts present greater safety risks than single lifts. One safety risk involves

synchronizing the movement of both cranes. Lateral forces acting on the crane boom

has to be prevented, in addition to overloads, side loads, unequal load sharing, and

overturning moments. Hoisting at unequal speeds, for example, can result in unequal

load distribution. This scenario can lead to an overload on one of the cranes. The

two cranes involved in tandem lifting are operated by two crane drivers; therefore,

synchronizing human operator actions comes into play. It should be noted that even

if the operators perform flawlessly, it is still impossible to synchronize the cranes’

movement perfectly. Therefore, additional safety measures should be utilized [7].

To mitigate hazards, ISO standard 12480-1 suggests that all lateral forces on the

crane boom have to be avoided, the crane movements have to be synchronous, and a

crane is allowed to lift 100% of the load suggested in its load chart, only if all relevant

factors can be monitored. If one or more of the factors cannot be evaluated, then the

load weight must be down-rated by 25% or more, depending on the situation. Thus,

it should be understood that for almost every advantage gained by using tandem

lifting cranes, there is a disadvantage to consider [7].
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Figure 80: Tandem Lifting Cranes [36].

Because perfect synchronization during a tandem lift is not possible, lateral forces

are always present in these lifting scenarios. This chapter investigates the impact

of these forces as they pertain to tip-over stability. More specifically, this chapter

investigates the following:

1. The relationship between boom luffing angle and cable swing angle.

2. The relationship between the payload mass and cable swing angle.

3. The relationship between hoist length and cable swing angle.

4. The relationship between the separation distance and cable swing angle, when

one crane or both of them are moving.

The analysis shows that the stability properties are a complex function of both

the crane and payload parameters.

103



5.2 Tip-over Stability Based on the Sum of Moments About
the Forward Tip-over Axis

In this section, static tip-over stability is investigated; therefore the moment created

by each gravitational force about a corresponding tip-over axis is calculated. In order

to maintain crane stability, the sum of these moments should be less than or equal to

zero.

Figure 81 shows the general geometry of the possible tip-over axes of a crawler

crane. The possible tip-over axes run along the front and rear edges, as well as the

outside edges of the crawler tracks. Vectors ~a1 and ~a3 represent the forward and

backward tip-over axes respectively, while ~a2 and ~a4 represent the sideways tip-over

axes.

�

Figure 81: Top View of the Horizontal Plane Formed by the Possible Tip-over Axes.

Figure 82 illustrates two tandem crawler cranes, where the payload is swinging.

For simplicity and minimum computational cost to predict the tip-over stability of

the two cranes in this case, it is assumed that when the suspension cable is deflected
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Figure 82: Schematic Diagram for Tandem Crawler Cranes (load is swinging)

by the swinging payload, it remains fixed in the maximum deflected position, thus

the static equations apply. Figure 83 illustrates a representative case wherein the

cranes are too far apart, thereby causing the payload to be swung outward from both

cranes. Each case is composed of two crawler cranes, each of them consisting of a

mobile base, m1, a rotational boom, m2, a counterweight, m3, and a suspension cable

with a payload mass, m4 that is shared between both cranes. The base is modeled

as a thin plate and has a center of gravity at the center of the base. The boom has

a length of L2. Its center of mass is located in the middle of the boom. The boom

is elevated at an angle φ relative to the horizontal plane. This angle is known as the

luffing, or boom, angle. The position of the counterweight is measured by a distance,

L3, from the central axis. The payload swinging angle, measured from the vertical

is θ. To calculate the moment generated by each of the gravitational forces about a

given axis we use:
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Figure 83: Schematic Diagram for Tandem Crawler Cranes (load is pulled)

~Mij = ~aj · (~ri × ~fi) (5.1)

where:

i = 1, ... ,5 and j = 1, ... ,4.

~Mij is the moment generated by the force ~fi about the axis ~aj [Nm].

~fi is the gravitational force acting on body i at its gravitational center [N].

~aj is a unit vector along the jth tip-over axis.

~ri is a position vector pointing from any point on the tip-over axis to any point on

the line of action of the force [m].

The individual moments found using (5.1) are combined to get the total moment

about each tip-over axis:

~Mj =
5∑

i=1

~Mij =
5∑

i=1

~aj · (~ri × ~fi) (5.2)

It is important to study the free body diagram of the payload in order to derive
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Figure 84: Free Body Diagram of Payload.

the moment equations correctly. Figure 84 shows the forces acting on the payload in

both the free swinging and outwardly pulling positions. The reactions of these forces

act on Cranes A and B and should be used in the moment equation in addition to

the gravitational forces. Where:

~F1 =
m4

2
g (5.3)

~F2 =
m4

2
g tan θ (5.4)

Therefore, the moment creating a forward tip-over for Crane A when the load is

swinging is:

~MfA = m2g(
L2

2
cosφ− L1

2
)−m1g

L1

2
−m3g(L3 +

L1

2
)

+
m4

2
g(L2 cosφ− L1

2
) +

m4

2
g tan θ(L2 sinφ+ h) (5.5)

And the moment creating a forward tip-over for Crane B when the load is swinging
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is:

~MfB = m2g(
L2

2
cosφ− L1

2
)−m1g

L1

2
−m3g(L3 +

L1

2
)

+
m4

2
g(L2 cosφ+

L1

2
)− m4

2
g tan θ(L2 sinφ+ h) (5.6)

Equations (5.5) and (5.6) assume that the payload is swung outward from crane

A and inward toward crane B. Therefore, if the payload is in the outward pulling

position, then (5.5) holds for both cranes.

5.3 Case Study - Terex CC 2800-1

The tipping-moment equations were examined using the Terex CC 2800-1. Two

identical Terex cranes are assumed to be lifting a shared payload. The configuration

used has no mast and a fixed-position counterweight was used for simplicity.

The parameters of the Terex crane in this configuration are listed in Table 9.

Table 9: Parameters of the Terex CC 2800-1.

Parameter Item Numerical Data
w Width of base 8.4 m
h Height of base 2.45 m
L1 Length of base 10.33 m
L2 Length of boom 102 m
L3 Length of counterweight 7 m
L4 Length of hoist 80 m
m1 Mass of base 125 t
m2 Mass of boom 60 t
m3 Mass of counterweight 160 t
m4 Mass of payload 220 t
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Figure 85: Minimum Boom Angle to Prevent Forward Tip-over vs. Swing Angle for
a Payload Mass of 220 t.

5.3.1 Boom Luffing Angle vs. Swing Angle

Assuming the payload swing angle varies between 0o and 20o, the minimum boom

angle to prevent forward tip-over of both cranes was calculated.

Figure 85 shows that, for Crane A, as the swing angle gets larger, the minimum

boom angle increases almost linearly to counterbalance the effect of the tension forces

acting on the tip of the boom due to the payload swing-out angle. On the other hand,

for Crane B, the value of the minimum boom angle decreases, and is much less than

that of Crane A. This is due to the fact that the horizontal component of the tension

forces act in the opposite direction of forward tip-over.

Note that the maximum allowable boom angle for this crane configuration is 82o

(higher boom angles introduce a danger of backward tip over). This 82o angle is the

required value when the swing-out angle is 8o. This means that a swing angle of more
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Figure 86: Minimum Boom Angle to Prevent Forward Tip-over vs. Swing Angle for
Different Payload Masses for Crane A, (m4 is the Payload Mass).

than 8o will cause Crane A to tip over. Thus, the whole system will collapse.

Another important observation is that the boom angle value is critical for Crane

A, but Crane B is more stable. Thus if both cranes have perfectly matching config-

urations, then observing the boom angle of the crane with the outwardly-swinging

payload would be sufficient to maintain stability. However, if the payload was pulled

between the two cranes, or if it was swinging back and forth, then both cranes will

experience similar tip-over moments.

As the payload mass increases, the minimum boom angle increases. This effect

for Crane A is shown in Figure 86.

It is obvious that as the payload mass increases, the critical value of the swing

angle decreases. This means that less swinging is allowed to maintain stability. It
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Figure 87: Critical Payload Swing Angle vs. Payload Mass for a Boom Angle of 82o.

can also be inferred that increasing the payload mass above the rated mass causes

the system’s stability to become more critically affected by payload swing. This

is demonstrated by Figure 87, which shows how the critical payload swing angle

decreases as the payload mass increases.

5.3.1.1 The Effect of a Triangular-shaped Payload

If a right triangular payload is attached to the two cranes as shown in Figure 88,

then Crane B bears one third of the load while Crane A bears two thirds. Assuming

the payload swings outwards away from both cranes, then the minimum boom luffing

angle necessary to prevent forward tip-over with respect to the payload swing angle

in plotted in Figure 89.

This figure shows that the minimum boom angle required to prevent forward tip-

over of Crane B, which in this case bears one third of the load, is about 8o less than

that of Crane A. Thus, assuming the performance of both cranes is synchronized,

then only considering Crane B will indicate that the critical payload swing angle is
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Figure 88: Schematic Diagram for Tandem Crawler Cranes (Triangular Payload).
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Figure 90: Maximum Payload Mass to Prevent Forward Tip-over vs. Swing Angle
for a Boom Angle of 77o.

20o. However, Figure 89 shows that if the payload swing angle increases above 8o ,

then the minimum boom angle required to prevent forward tip-over of Crane A has

to be increased above 82o, which is physically impossible for this configuration. Such

a swing angle will lead to the destruction of the whole system regardless of the fact

that Crane B was “safe”. This case illustrates the complexity of such systems.

Thus, in some cases like irregular payloads, it is very critical to observe and analyze

the performance of both cranes and closely monitor the crane with more dangerous

conditions in order to avoid tip-overs.

5.3.2 Payload Mass vs. Swing Angle

Assuming the payload is swinging with an angle that varies between 0o and 20o, the

maximum payload mass to prevent forward tip-over of Crane A was calculated. The

boom angle was fixed to 77o. The result is shown in Figure 90.

The data shows that as the swing angle increases, the maximum allowable payload
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Figure 91: Maximum Payload Mass to Prevent Forward Tip-over vs. Swing Angle
for Different Boom Angles.

mass to prevent forward tip-over decreases, which is logically expected. On the other

hand, this parameter does not affect the stability of Crane B in this case. So, again,

Crane A can be sufficient to ensure stability, excluding the case of the payload being

pulled, where both cranes’ parameters are crucial. Noe that half a period later, as

the payload swings, Crane B becomes Crane A and so on.

Figure 91 shows the maximum allowable payload mass that prevents tip-over

with respect to the swing angle, for multiple values of the boom angle. It can be

inferred that, as the boom angle decreases, the allowable payload masses decrease

dramatically. For low values of φ, the graph shows that the payload mass does not

change significantly as the swing angle increases, thus proving that the crane, at

low boom angles, can handle a range of payload swing angles. In other words, for

small boom angles, the payload swing angle is no longer the most critical parameter
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Figure 92: Minimum Boom Angle and Maximum Payload Mass to Prevent Forward
Tip-over vs. Swing Angle.

affecting the crane’s stability, it is rather the boom angle itself. It can also be seen

that a decrease of 5o in the boom angle reduced the allowable payload mass by almost

50%. This indicates again that the boom luffing angle is the most critical parameter

when it comes to the crane’s stability.

The effects of boom angle and payload mass are combined in Figure 92. This

data represents the minimum boom angle and maximum payload mass required to

maintain stability for various payload swing angles. It shows that the larger the

payload mass and the larger the boom angle, the less payload swing is allowed.

5.3.3 Separation Distance vs. Swing Angle

Assuming that one or both cranes move linearly, thereby increasing the separation

distance between them, then for a moving distance of x, the swing-out angle can be
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Figure 93: Minimum Boom Angle to Prevent Forward Tip-over vs. Separation Dis-
tance for a Payload Mass of 220 t.

calculated as follows:

θ = sin−1(
0.5x

L4

) (5.7)

where x is measured relative to the position of the cranes where the swing angles of

the payload were zero.

For small values of the swing-out angle θ, the relationship between x and θ can be

considered linear, thus the relationships discussed before will follow the same trend

with a different range of x values instead of the 0 to 20o swing angle.

Figure 93 shows that the maximum distance one of the cranes can move away

from the other, or the summation of the distances both cranes can move away from

each other, without tipping over is approximately 21 m. This corresponds to a swing

angle of 8o, as shown previously.
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Figure 94: Minimum Boom Angle to Prevent Forward Tip-over vs. Separation Dis-
tance for a Payload Mass of 220 t and Different Hoist Cable Lengths L4.

5.3.4 Effect of Hoist Length

Hoist length L4 is a parameter that does not generally affect the tip-over moment.

This is because the force due to the payload weight is transmitted to the boom tip

through the cable. Using a fixed cable angle, the force will have the same magnitude

and direction regardless of the hoist length. This was established in (5.5) and (5.6); L4

was not part of the equations. However, the hoist cable length affects the relationship

between the swing angle and the separation distance as shown in (5.7), thus changing

the cable length will result in a different allowable separation distance corresponding

to the same swing angle.

Figure 94 illustrates the effect of the hoist cable length on the minimum boom

luffing angle required to prevent forward tip-over with respect to the separation dis-

tance. It is clear in this figure that the critical separation distance is larger when a
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Figure 95: Critical Separation Distance vs. Different Hoist Cable Lengths for a Boom
Angle of 82o.

longer cable length is used. The relationship between the critical separation distance

and the cable length is shown in Figure 95.

In general, it is advisable to keep the payload as close to the ground as possible,

so that if a forward tip-over occurs, the payload would hit the ground quickly and

minimize damage to both cranes.

5.4 Summary

Tandem lifting cranes are useful when it comes to moving heavy and bulky payloads;

however having two cranes connected by a shared payload makes the system more

complicated and subject to greater tip-over hazard. The configuration and motions

of the first crane directly affects the second crane. This complication provides more

factors that can cause tip-over accidents. The analysis shows that the crane and

payload states must be carefully selected and monitored throughout the lift in order
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to avoid tipping over. In fact, the complexity of the tip-over stability conditions make

it apparent that the crane operators cannot reasonably be expected to monitor and

control all of the important parameters. Additional sensors and monitoring devices

should be employed to ensure safe operating conditions throughout the lift.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Preventing tip-over accidents of cranes, is an important factor for protecting the lives

of operators and reducing the risks of damage. At the same time, high productivity

must be maintained for efficient crane operations. One way to achieve these some-

what conflicting requirements, is to develop a monitoring system that can predict the

potential for tip-over and send a warning signal to the operator.

This thesis investigated the tip-over stability of crawler cranes because of their

huge size and their susceptibility to tip-over in catastrophic accidents. The thesis

discussed two lifting alternatives that can be used in case of heavy lifting payloads:

(i) using a movable counterweight, and (ii) tandem lifting. When using a movable

counterweight, this thesis presented a method to anticipate the stability region in

which the movable counterweight should be placed in order to prevent forward and

backward tip-overs. The detailed stability analysis revealed the effects of the crane

parameters and configuration on the general characteristics of the crane’s tip-over

stability when a movable counterweight is utilized.

When crawler cranes move their base and boom while carrying a payload, the

motions greatly enhance the workspace, and thus the productivity. However, these

motions can induce large amounts of payload swing, which compromises the crane’s

tip-over stability. After studying the influence of the crane’s parameters and config-

uration on the static stability, a pseudo-dynamic stability analysis was performed to

investigate the crane’s tip-over stability. The analysis discussed three fundamental

and common crane motions. In each case, the effect of the acceleration commands,
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moving distances, and other crane parameters was studied in order to find the rea-

sonable worst-case scenario inducing the largest payload swing. Then, this maximum

payload swing was introduced to the stability analysis.

An experimental setup was used to support the results obtained in both the static

and pseudo-dynamic tip-over stability analyses. The theoretical approach and the

experimental results showed that the calculation tool provides reliable predictions

that can help guide the lifting operation and prevent tip-over accidents.

The final chapter of this thesis discussed tandem lifting using two cranes. This is

a final resolution when the payload to be lifted is over-sized or has an irregular shape.

This thesis analyzed the static tip-over stability of two identical crawler cranes lifting

a shared payload. The effects of different parameters and configurations of the two

cranes on the static tip-over stability were discussed. Finally, some guidelines were

provided on how to make tandem lifting safer and less susceptible to tip-over accidents.

6.2 Future Work

The results and insights gained in this thesis build a foundation for further work in

the area of crawler crane tip-over stability analysis. There are several directions in

which future investigations can extend the analysis.

First, the current pseudo-dynamic stability analysis presented in this thesis can

be improved to include more motion scenarios than those discussed. Combinations of

these motions can also be introduced. In this thesis, whenever a portion of a crane was

moving, all the other parts were considered stationary. Also, more complex payload

swing can be considered, such as combinations of tangential and radial swinging, large

nonlinear swinging angles, and double-pendulum effects.

Another avenue of research is applying input-shaping methods and trajectory

planning. This can guarantee optimum operation time and minimum payload swing,

and will improve the quality of the lifting operation. If these points were addressed,
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then the pseudo-dynamic stability analysis becomes more accurate and reliable.

In the area of tandem lifting, what is presented in this thesis is a strong foundation

on which further analysis can build upon. First, the analysis presented here only

considers statics, thus it can be further extended to include a fuller pseudo-dynamic

tip-over stability analysis. This analysis can cover different motion scenarios and

acceleration commands. Also, this thesis only covered the analysis related to two

identical cranes with identical parameters. In real applications, this is not usually

the case. When two different cranes are used, the analysis needs to account for their

differences. More than two cranes lifting a common load can also be considered.

In general, wind effects were ignored in the analysis. However, in real applications

it is always present, and can be treated as a force acting on the crane components and

payload. Thus, this analysis can become more thorough by taking into consideration

wind effects.

Finally, follow-on research can consider crawler cranes in tandem lifting with mov-

able counterweights. This will introduce interesting static and dynamic characteris-

tics, that can improve the area of tip-over stability analysis of crawler cranes.
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APPENDIX A

MATLAB SOURCE CODES

Listing A.1: Forward Tip-over Analysis (m4 is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward tip-over, ...

this is done

3 % for three values of moveable counterweight mass

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 102; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 10; % Length of payload hoist [m]

15 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

16 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

17 % Range of allowed locations for counterwieght [m]

18 L4 range = linspace(L4 min,L4 max,500);

19 % Other dimensions

20 w = 8.4; % Width of base [m]

123



21 h = 2.45; % Height of base [m]

22 % Mass parameters

23 m1 = 125; % Mass of Car Body [tons]

24 m2 = 60; % Mass of boom [tons]

25 m3 = 12.5; % Mass of mast [tons]

26 m4i = [150 200 300]; % Different masses of moveable ...

counterweight [tons]

27 m4 fixed = 240; % Mass of fixed counterweight [tons]

28 m5 = 110 ; % Mass of Payload [tons]

29 % Angles

30 p1 = 62*pi/180; % Boom Luffing Angle [rad]

31 B = linspace(0,pi,50); % Slewing Angle [rad]

32

33 %% Calculating minimum location of counterweight to ensure safety

34

35 for k=1:length(m4i) % Loop repeats for each value of m4

36 m4 = m4i(k);

37 for i=1:length(B) % Loop repeats for every slew angle

38 for j = length(L4 range):-1:1 % Loop repeats for every ...

value of L4

39 L4 = L4 range(j);

40 p2 = acos(L4/L3); % Mast angle

41 % Set up coordinate systems for mass centers

42 c1 = [0 0 h/2]'; % Car Body mass center

43 c2 = [L2*cos(p1)*cos(B(i))/2,...

44 L2*cos(p1)*sin(B(i))/2,...

45 (L2*sin(p1)/2)+h]'; % Boom mass center

46 c3 = [-L3*cos(p2)*cos(B(i))/2,...

47 -L3*cos(p2)*sin(B(i))/2,...

48 (L3*sin(p2)/2)+h]'; % Mast mass center

49 c4 = [-L4*cos(B(i)),...

50 -L4*sin(B(i)), h]'; % Moving counterweight mass center
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51 c4 fixed = [-7*cos(B(i)),...

52 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

53 c5 = [L2*cos(p1)*cos(B(i)),...

54 L2*cos(p1)*sin(B(i)),...

55 L2*sin(p1)+h-L5]'; % Payload mass center

56

57 % Forces:

58 G = [0 0 -1]'; % Direction of gravitational force

59 f1 = m1*g*G; % Weight of car body

60 f2 = m2*g*G; % Weight of boom

61 f3 = m3*g*G; % Weight of mast

62 f4 = m4*g*G; % Weight of moveable counterweight

63 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

64 f5 = m5*g*G; % Weight of payload

65

66 % Instantaneous inertial location of the ith ground contact point

67 p01 = [-L1/2 w/2 0]';

68 p02 = [L1/2 w/2 0]';

69 p03 = [L1/2 -w/2 0]';

70 p04 = [-L1/2 -w/2 0]';

71

72 % ith tip-over mode axis

73 a1 = p02-p01;

74 a2 = p03-p02;

75 a3 = p04-p03;

76 a4 = p01-p04;

77

78 % Expressing each ith tip-over mode axis as a unit vector

79 a11 = -a1/norm(a1);

80 a22 = -a2/norm(a2);

81 a33 = a3/norm(a3);

82 a44 = -a4/norm(a4);
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83

84 % Deciding which is the tip-over axis based on the value of the ...

slew angle

85 theta1 = atan((w/2)/(L1/2));

86 theta2 = pi-theta1;

87 %---------------------------------------------------------------------

88 if B(i)<theta1 % Tip over axis is a2

89 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

90 % Vectors pointing from mass centers to the point on a2

91 r1a = c1-pa2;

92 r2a = c2-pa2;

93 r3a = c3-pa2;

94 r4a = c4-pa2;

95 r4a fixed = c4 fixed-pa2;

96 r5a = c5-pa2;

97

98 % Calculating sum of moments about axis a2:

99 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

100 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

101 dot(a22,cross(r4a fixed,f4 fixed))+dot(a22,cross(r5a,f5));

102

103 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

104 L4 long(k,i)=L4;

105 break

106 end

107 end

108 %---------------------------------------------------------------------

109 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a1

110 pa1 = [0 w/2 0]'; % Location of a point on axis a1

111 % Vectors pointing from mass centers to the point on a1

112 r1a = c1-pa1;

113 r2a = c2-pa1;
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114 r3a = c3-pa1;

115 r4a = c4-pa1;

116 r4a fixed = c4 fixed-pa1;

117 r5a = c5-pa1;

118

119 % Calculating sum of moments about axis a1:

120 M1(i) = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

121 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

122 dot(a11,cross(r4a fixed,f4 fixed))+dot(a11,cross(r5a,f5));

123

124 if M1(i)>0 % Loop chooses value of L4 to prevent tip-over

125 L4 long(k,i)=L4;

126 break

127 end

128 end

129 %---------------------------------------------------------------------

130 if B(i)>theta2 % Tip over axis is a4

131 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

132 % Vectors pointing from mass centers to the point on a4

133 r1a = c1-pa4;

134 r2a = c2-pa4;

135 r3a = c3-pa4;

136 r4a = c4-pa4;

137 r4a fixed = c4 fixed-pa4;

138 r5a = c5-pa4;

139

140

141 % Calculating sum of moments about axis a4:

142 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

143 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

144 dot(a44,cross(r4a fixed,f4 fixed))+dot(a44,cross(r5a,f5));

145
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146 if M4(i)>0

147 L4 long(k,i)=L4;

148 break

149 end

150 end

151 end

152 end

153 end

154

155 %% Plotting

156 figure

157 for k = 1:length(m4i)

158 x = [B,B];

159 y = [L4 long(k,:),-fliplr(L4 long(k,:))];

160 polar(x,y)

161 xlabel('Slew Angle \beta [deg]')

162 ylabel('Counterweight Position [m]')

163 legend('m 4 = 150 t','m 4 = 200 t','m 4 = 300 t')

164 hold on

165 end

Listing A.2: Backward Tip-over Analysis (m4 is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent backward tip-over, ...

this is done

3 % for three values of moveable counterweight mass

4

5 clear

6

7 %% Defining all parameters
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8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 102; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 10; % Length of payload hoist [m]

15 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

16 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

17 % Range of allowed locations for counterwieght [m]

18 L4 range = linspace(L4 min,L4 max,500);

19 % Other dimensions

20 w = 8.4; % Width of base [m]

21 h = 2.45; % Height of base [m]

22 % Mass parameters

23 m1 = 125; % Mass of Car Body [tons]

24 m2 = 60; % Mass of boom [tons]

25 m3 = 0;%12.5; % Mass of mast [tons]

26 m4i = [150 200 300]; % Different masses of moveable ...

counterweight [tons]

27 m4 fixed = 240; % Mass of fixed counterweight [tons]

28 m5 = 0 ; % Mass of Payload [tons]

29 % Angles

30 p1 = 62*pi/180; % Boom Luffing Angle [rad]

31 B = linspace(0,pi,50); % Slewing Angle [rad]

32

33 %% Calculating maximum location for counterweight to ensure safety

34

35 for k=1:length(m4i) % Loop repeats for each value of m4

36 m4 = m4i(k);
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37 for i=1:length(B) % Loop repeats for every slew angle

38 for j = 1:length(L4 range) % Loop repeats for every value ...

of L4

39 L4 = L4 range(j);

40 p2 = acos(L4/L3); % Mast angle

41 %Set up coordinate systems for mass centers

42 c1 = [0 0 h/2]'; % Car Body mass center

43 c2 = [L2*cos(p1)*cos(B(i))/2,...

44 L2*cos(p1)*sin(B(i))/2,...

45 (L2*sin(p1)/2)+h]'; % Boom mass center

46 c3 = [-L3*cos(p2)*cos(B(i))/2,...

47 -L3*cos(p2)*sin(B(i))/2,...

48 (L3*sin(p2)/2)+h]'; % Mast mass center

49 c4 = [-L4*cos(B(i)),...

50 -L4*sin(B(i)), h]'; % Moving counterweight mass center

51 c4 fixed = [-7*cos(B(i)),...

52 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

53 c5 = [L2*cos(p1)*cos(B(i)),...

54 L2*cos(p1)*sin(B(i)),...

55 L2*sin(p1)+h-L5]'; % Payload mass center

56

57 % Forces:

58 G = [0 0 -1]'; % Direction of gravitational force

59 f1 = m1*g*G; % Weight of car body

60 f2 = m2*g*G; % Weight of boom

61 f3 = m3*g*G; % Weight of mast

62 f4 = m4*g*G; % Weight of moveable counterweight

63 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

64 f5 = m5*g*G; % Weight of payload

65

66 % Instantaneous inertial location of the ith ground contact point

67 p01 = [-L1/2 w/2 0]';
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68 p02 = [L1/2 w/2 0]';

69 p03 = [L1/2 -w/2 0]';

70 p04 = [-L1/2 -w/2 0]';

71

72 % ith tip-over mode axis

73 a1 = p02-p01;

74 a2 = p03-p02;

75 a3 = p04-p03;

76 a4 = p01-p04;

77

78 % Expressing each ith tip-over mode axis as a unit vector

79 a11 = -a1/norm(a1);

80 a22 = -a2/norm(a2);

81 a33 = -a3/norm(a3);

82 a44 = -a4/norm(a4);

83

84 % Deciding which is the tip-over axis based on the value of the ...

slew angle

85 theta1 = atan((w/2)/(L1/2));

86 theta2 = pi-theta1;

87 %---------------------------------------------------------------------

88 if B(i)<theta1 % Tip over axis is a4

89 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

90 % Vectors pointing from mass centers to the point on a4

91 r1a = c1-pa4;

92 r2a = c2-pa4;

93 r3a = c3-pa4;

94 r4a = c4-pa4;

95 r4a fixed = c4 fixed-pa4;

96 r5a = c5-pa4;

97

98 % Calculating sum of moments about axis a4:
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99 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

100 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

101 dot(a44,cross(r4a fixed,f4 fixed))+dot(a44,cross(r5a,f5));

102

103 if M4(i)>0 % Loop chooses value of L4 to prevent tip-over

104 L4 short(k,i)=L4;

105 break

106 end

107 end

108 %---------------------------------------------------------------------

109 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a3

110 pa3 = [0 -w/2 0]'; % Location of a point on axis a3

111 % Vectors pointing from mass centers to the point on a3

112 r1a = c1-pa3;

113 r2a = c2-pa3;

114 r3a = c3-pa3;

115 r4a = c4-pa3;

116 r4a fixed = c4 fixed-pa3;

117 r5a = c5-pa3;

118

119 % Calculating sum of moments about axis a3:

120 M3(i) = dot(a33,cross(r1a,f1))+dot(a33,cross(r2a,f2))+...

121 dot(a33,cross(r3a,f3))+dot(a33,cross(r4a,f4))+...

122 dot(a33,cross(r4a fixed,f4 fixed))+dot(a33,cross(r5a,f5));

123

124 if M3(i)>0 % Loop chooses value of L4 to prevent tip-over

125 L4 short(k,i)=L4;

126 break

127 end

128 end

129 %---------------------------------------------------------------------

130 if B(i)>theta2 % Tip over axis is a2
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131 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

132 % Vectors pointing from mass centers to the point on a2

133 r1a = c1-pa2;

134 r2a = c2-pa2;

135 r3a = c3-pa2;

136 r4a = c4-pa2;

137 r4a fixed = c4 fixed-pa2;

138 r5a = c5-pa2;

139

140 % Caculating sum of moments about axis a2:

141 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

142 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

143 dot(a22,cross(r4a fixed,f4 fixed))+dot(a22,cross(r5a,f5));

144

145 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

146 L4 short(k,i)=L4;

147 break

148 end

149 end

150 end

151 end

152 end

153

154 %% Plotting

155 figure

156 for k = 1:length(m4i)

157 x = [B,B];

158 y = [L4 short(k,:),-fliplr(L4 short(k,:))];

159 polar(x,y)

160 xlabel('Slew Angle \beta [deg]')

161 ylabel('Counterweight Position [m]')

162 legend('m 4 = 150 t','m 4 = 200 t','m 4 = 300 t')
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163 hold on

164 end

Listing A.3: Forward and Backward Tip-Over Limits

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward and backward ...

tip-overs

3

4 clear

5

6 %% Defining all parameters

7 g=9.8; % Gravitational acceleration [m/sˆ2]

8 % Defining Lengths of different components

9 L1 = 10.33; % Length of Base Body [m]

10 L2 = 102; % Length of boom [m]

11 L3 = 30; % Length of mast [m]

12 L4 fixed = 7; % Position of fixed counterweight [m]

13 L5 = 10; % Length of payload hoist [m]

14 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

15 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

16 % Range of allowed locations for counterwieght [m]

17 L4 range = linspace(L4 min,L4 max,500);

18 % Other dimensions

19 w = 8.4; % Width of base [m]

20 h = 2.45; % Height of base [m]

21 % Mass parameters

22 m1 = 125; % Mass of Car Body [tons]

23 m2 = 60; % Mass of boom [tons]
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24 m3 = 12.5; % Mass of mast [tons]

25 m4 = 200; % Masses of moveable counterweight [tons]

26 m4 fixed = 240; % Mass of fixed counterweight [tons]

27 m5 = 110 ; % Mass of Payload [tons]

28 % Angles

29 p1 = 62*pi/180; % Boom Luffing Angle [rad]

30 B = linspace(0,pi,50); % Slewing Angle [rad]

31

32 %% Calculating minimum location of counterweight to ensure safety

33

34

35 for i=1:length(B) % Loop repeats for every slew angle

36 for j = length(L4 range):-1:1 % Loop repeats for every ...

value of L4

37 L4 = L4 range(j);

38 p2 = acos(L4/L3); % Mast angle

39 % Set up coordinate systems for mass centers

40 c1 = [0 0 h/2]'; % Car Body mass center

41 c2 = [L2*cos(p1)*cos(B(i))/2,...

42 L2*cos(p1)*sin(B(i))/2,...

43 (L2*sin(p1)/2)+h]'; % Boom mass center

44 c3 = [-L3*cos(p2)*cos(B(i))/2,...

45 -L3*cos(p2)*sin(B(i))/2,...

46 (L3*sin(p2)/2)+h]'; % Mast mass center

47 c4 = [-L4*cos(B(i)),...

48 -L4*sin(B(i)), h]'; % Moving counterweight mass center

49 c4 fixed = [-7*cos(B(i)),...

50 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

51 c5 = [L2*cos(p1)*cos(B(i)),...

52 L2*cos(p1)*sin(B(i)),...

53 L2*sin(p1)+h-L5]'; % Payload mass center

54
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55 % Forces:

56 G = [0 0 -1]'; % Direction of gravitational force

57 f1 = m1*g*G; % Weight of car body

58 f2 = m2*g*G; % Weight of boom

59 f3 = m3*g*G; % Weight of mast

60 f4 = m4*g*G; % Weight of moveable counterweight

61 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

62 f5 = m5*g*G; % Weight of payload

63

64 % Instantaneous inertial location of the ith ground contact point

65 p01 = [-L1/2 w/2 0]';

66 p02 = [L1/2 w/2 0]';

67 p03 = [L1/2 -w/2 0]';

68 p04 = [-L1/2 -w/2 0]';

69

70 % ith tip-over mode axis

71 a1 = p02-p01;

72 a2 = p03-p02;

73 a3 = p04-p03;

74 a4 = p01-p04;

75

76 % Expressing each ith tip-over mode axis as a unit vector

77 a11 = -a1/norm(a1);

78 a22 = -a2/norm(a2);

79 a33 = a3/norm(a3);

80 a44 = -a4/norm(a4);

81

82 % Deciding which is the tip-over axis based on the value of the ...

slew angle

83 theta1 = atan((w/2)/(L1/2));

84 theta2 = pi-theta1;

85 %---------------------------------------------------------------------
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86 if B(i)<theta1 % Tip over axis is a2

87 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

88 % Vectors pointing from mass centers to the point on a2

89 r1a = c1-pa2;

90 r2a = c2-pa2;

91 r3a = c3-pa2;

92 r4a = c4-pa2;

93 r4a fixed = c4 fixed-pa2;

94 r5a = c5-pa2;

95

96 % Calculating sum of moments about axis a2:

97 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

98 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

99 dot(a22,cross(r4a fixed,f4 fixed))+dot(a22,cross(r5a,f5));

100

101 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

102 L4 long(i)=L4;

103 break

104 end

105 end

106 %---------------------------------------------------------------------

107 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a1

108 pa1 = [0 w/2 0]'; % Location of a point on axis a1

109 % Vectors pointing from mass centers to the point on a1

110 r1a = c1-pa1;

111 r2a = c2-pa1;

112 r3a = c3-pa1;

113 r4a = c4-pa1;

114 r4a fixed = c4 fixed-pa1;

115 r5a = c5-pa1;

116

117 % Calculating sum of moments about axis a1:
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118 M1(i) = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

119 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

120 dot(a11,cross(r4a fixed,f4 fixed))+dot(a11,cross(r5a,f5));

121

122 if M1(i)>0 % Loop chooses value of L4 to prevent tip-over

123 L4 long(i)=L4;

124 break

125 end

126 end

127 %---------------------------------------------------------------------

128 if B(i)>theta2 % Tip over axis is a4

129 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

130 % Vectors pointing from mass centers to the point on a4

131 r1a = c1-pa4;

132 r2a = c2-pa4;

133 r3a = c3-pa4;

134 r4a = c4-pa4;

135 r4a fixed = c4 fixed-pa4;

136 r5a = c5-pa4;

137

138 % Calculating sum of moments about axis a4:

139 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

140 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

141 dot(a44,cross(r4a fixed,f4 fixed))+dot(a44,cross(r5a,f5));

142

143 if M4(i)>0

144 L4 long(i)=L4;

145 break

146 end

147 end

148 end

149 end
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150

151 %% Calculating maximum location for counterweight to ensure safety

152

153 m5 = 0; % Assuming Payload fell off

154 for i=1:length(B) % Loop repeats for every slew angle

155 for j = 1:length(L4 range) % Loop repeats for every value ...

of L4

156 L4 = L4 range(j);

157 p2 = acos(L4/L3); % Mast angle

158 %Set up coordinate systems for mass centers

159 c1 = [0 0 h/2]'; % Car Body mass center

160 c2 = [L2*cos(p1)*cos(B(i))/2,...

161 L2*cos(p1)*sin(B(i))/2,...

162 (L2*sin(p1)/2)+h]'; % Boom mass center

163 c3 = [-L3*cos(p2)*cos(B(i))/2,...

164 -L3*cos(p2)*sin(B(i))/2,...

165 (L3*sin(p2)/2)+h]'; % Mast mass center

166 c4 = [-L4*cos(B(i)),...

167 -L4*sin(B(i)), h]'; % Moving counterweight mass center

168 c4 fixed = [-7*cos(B(i)),...

169 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

170 c5 = [L2*cos(p1)*cos(B(i)),...

171 L2*cos(p1)*sin(B(i)),...

172 L2*sin(p1)+h-L5]'; % Payload mass center

173

174 % Forces:

175 G = [0 0 -1]'; % Direction of gravitational force

176 f1 = m1*g*G; % Weight of car body

177 f2 = m2*g*G; % Weight of boom

178 f3 = m3*g*G; % Weight of mast

179 f4 = m4*g*G; % Weight of moveable counterweight

180 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight
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181 f5 = m5*g*G; % Weight of payload

182

183 % Instantaneous inertial location of the ith ground contact point

184 p01 = [-L1/2 w/2 0]';

185 p02 = [L1/2 w/2 0]';

186 p03 = [L1/2 -w/2 0]';

187 p04 = [-L1/2 -w/2 0]';

188

189 % ith tip-over mode axis

190 a1 = p02-p01;

191 a2 = p03-p02;

192 a3 = p04-p03;

193 a4 = p01-p04;

194

195 % Expressing each ith tip-over mode axis as a unit vector

196 a11 = -a1/norm(a1);

197 a22 = -a2/norm(a2);

198 a33 = -a3/norm(a3);

199 a44 = -a4/norm(a4);

200

201 % Deciding which is the tip-over axis based on the value of the ...

slew angle

202 theta1 = atan((w/2)/(L1/2));

203 theta2 = pi-theta1;

204 %---------------------------------------------------------------------

205 if B(i)<theta1 % Tip over axis is a4

206 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

207 % Vectors pointing from mass centers to the point on a4

208 r1a = c1-pa4;

209 r2a = c2-pa4;

210 r3a = c3-pa4;

211 r4a = c4-pa4;
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212 r4a fixed = c4 fixed-pa4;

213 r5a = c5-pa4;

214

215 % Calculating sum of moments about axis a4:

216 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

217 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

218 dot(a44,cross(r4a fixed,f4 fixed))+dot(a44,cross(r5a,f5));

219

220 if M4(i)>0 % Loop chooses value of L4 to prevent tip-over

221 L4 short(i)=L4;

222 break

223 end

224 end

225 %---------------------------------------------------------------------

226 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a3

227 pa3 = [0 -w/2 0]'; % Location of a point on axis a3

228 % Vectors pointing from mass centers to the point on a3

229 r1a = c1-pa3;

230 r2a = c2-pa3;

231 r3a = c3-pa3;

232 r4a = c4-pa3;

233 r4a fixed = c4 fixed-pa3;

234 r5a = c5-pa3;

235

236 % Calculating sum of moments about axis a3:

237 M3(i) = dot(a33,cross(r1a,f1))+dot(a33,cross(r2a,f2))+...

238 dot(a33,cross(r3a,f3))+dot(a33,cross(r4a,f4))+...

239 dot(a33,cross(r4a fixed,f4 fixed))+dot(a33,cross(r5a,f5));

240

241 if M3(i)>0 % Loop chooses value of L4 to prevent tip-over

242 L4 short(i)=L4;

243 break
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244 end

245 end

246 %---------------------------------------------------------------------

247 if B(i)>theta2 % Tip over axis is a2

248 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

249 % Vectors pointing from mass centers to the point on a2

250 r1a = c1-pa2;

251 r2a = c2-pa2;

252 r3a = c3-pa2;

253 r4a = c4-pa2;

254 r4a fixed = c4 fixed-pa2;

255 r5a = c5-pa2;

256

257 % Caculating sum of moments about axis a2:

258 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

259 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

260 dot(a22,cross(r4a fixed,f4 fixed))+dot(a22,cross(r5a,f5));

261

262 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

263 L4 short(i)=L4;

264 break

265 end

266 end

267 end

268 end

269

270 %% Plotting

271 figure

272

273 x = [B,B];

274 yb = [L4 short(:);-fliplr(L4 short(:))]';

275 yf = [L4 long(:);-fliplr(L4 long(:))]';
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276 polar(x,yb)

277 hold on

278 polar(x,yf)

279 xlabel('Slew Angle \beta [deg]')

280 ylabel('Counterweight Position [m]')

281 legend('Maximum','Minimum')

Listing A.4: Forward Tip-over Analysis (m5 is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward tip-over, ...

this is done

3 % for three values of payload mass

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 102; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 10; % Length of payload hoist [m]

15 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

16 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

17 % Range of allowed locations for counterwieght [m]

18 L4 range = linspace(L4 min,L4 max,500);

19 % Other dimensions
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20 w = 8.4; % Width of base [m]

21 h = 2.45; % Height of base [m]

22 % Mass parameters

23 m1 = 125; % Mass of Car Body [tons]

24 m2 = 60; % Mass of boom [tons]

25 m3 = 12.5; % Mass of mast [tons]

26 m5i = [110 160 210]; % Different masses of payloads [tons]

27 m4 fixed = 240; % Mass of fixed counterweight [tons]

28 m4 = 200 ; % Mass of moveable counterweight [tons]

29 % Angles

30 p1 = 62*pi/180; % Boom Luffing Angle [rad]

31 B = linspace(0,pi,50); % Slewing Angle [rad]

32

33 %% Calculating minimum location of counterweight to ensure safety

34

35 for k=1:length(m5i) % Loop repeats for each value of m5

36 m5 = m5i(k);

37 for i=1:length(B) % Loop repeats for every slew angle

38 for j = length(L4 range):-1:1 % Loop repeats for every ...

value of L4

39 L4 = L4 range(j);

40 p2 = acos(L4/L3); % Mast angle

41 % Set up coordinate systems for mass centers

42 c1 = [0 0 h/2]'; % Car Body mass center

43 c2 = [L2*cos(p1)*cos(B(i))/2,...

44 L2*cos(p1)*sin(B(i))/2,...

45 (L2*sin(p1)/2)+h]'; % Boom mass center

46 c3 = [-L3*cos(p2)*cos(B(i))/2,...

47 -L3*cos(p2)*sin(B(i))/2,...

48 (L3*sin(p2)/2)+h]'; % Mast mass center

49 c4 = [-L4*cos(B(i)),...

50 -L4*sin(B(i)), h]'; % Moving counterweight mass center
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51 c4 fixed = [-7*cos(B(i)),...

52 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

53 c5 = [L2*cos(p1)*cos(B(i)),...

54 L2*cos(p1)*sin(B(i)),...

55 L2*sin(p1)+h-L5]'; % Payload mass center

56

57 % Forces:

58 G = [0 0 -1]'; % Direction of gravitational force

59 f1 = m1*g*G; % Weight of car body

60 f2 = m2*g*G; % Weight of boom

61 f3 = m3*g*G; % Weight of mast

62 f4 = m4*g*G; % Weight of moveable counterweight

63 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

64 f5 = m5*g*G; % Weight of payload

65

66 % Instantaneous inertial location of the ith ground contact point

67 p01 = [-L1/2 w/2 0]';

68 p02 = [L1/2 w/2 0]';

69 p03 = [L1/2 -w/2 0]';

70 p04 = [-L1/2 -w/2 0]';

71

72 % ith tip-over mode axis

73 a1 = p02-p01;

74 a2 = p03-p02;

75 a3 = p04-p03;

76 a4 = p01-p04;

77

78 % Expressing each ith tip-over mode axis as a unit vector

79 a11 = -a1/norm(a1);

80 a22 = -a2/norm(a2);

81 a33 = a3/norm(a3);

82 a44 = -a4/norm(a4);
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83

84 % Deciding which is the tip-over axis based on the value of the ...

slew angle

85 theta1 = atan((w/2)/(L1/2));

86 theta2 = pi-theta1;

87 %---------------------------------------------------------------------

88 if B(i)<theta1 % Tip over axis is a2

89 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

90 % Vectors pointing from mass centers to the point on a2

91 r1a = c1-pa2;

92 r2a = c2-pa2;

93 r3a = c3-pa2;

94 r4a = c4-pa2;

95 r4a fixed = c4 fixed-pa2;

96 r5a = c5-pa2;

97

98 % Calculating sum of moments about axis a2:

99 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

100 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

101 dot(a22,cross(r4a fixed,f4 fixed))+dot(a22,cross(r5a,f5));

102

103 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

104 L4 long(k,i)=L4;

105 break

106 end

107 end

108 %---------------------------------------------------------------------

109 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a1

110 pa1 = [0 w/2 0]'; % Location of a point on axis a1

111 % Vectors pointing from mass centers to the point on a1

112 r1a = c1-pa1;

113 r2a = c2-pa1;
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114 r3a = c3-pa1;

115 r4a = c4-pa1;

116 r4a fixed = c4 fixed-pa1;

117 r5a = c5-pa1;

118

119 % Calculating sum of moments about axis a1:

120 M1(i) = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

121 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

122 dot(a11,cross(r4a fixed,f4 fixed))+dot(a11,cross(r5a,f5));

123

124 if M1(i)>0 % Loop chooses value of L4 to prevent tip-over

125 L4 long(k,i)=L4;

126 break

127 end

128 end

129 %---------------------------------------------------------------------

130 if B(i)>theta2 % Tip over axis is a4

131 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

132 % Vectors pointing from mass centers to the point on a4

133 r1a = c1-pa4;

134 r2a = c2-pa4;

135 r3a = c3-pa4;

136 r4a = c4-pa4;

137 r4a fixed = c4 fixed-pa4;

138 r5a = c5-pa4;

139

140 % Calculating sum of moments about axis a4:

141 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

142 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

143 dot(a44,cross(r4a fixed,f4 fixed))+dot(a44,cross(r5a,f5));

144

145 if M4(i)>0
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146 L4 long(k,i)=L4;

147 break

148 end

149 end

150 end

151 end

152 end

153

154 %% Plotting

155 figure

156 for k = length(m5i):-1:1

157 x = [B,B];

158 y = [L4 long(k,:),-fliplr(L4 long(k,:))];

159 polar(x,y)

160 xlabel('Slew Angle \beta [deg]')

161 ylabel('Counterweight Position [m]')

162 legend('m 5 = 210 t','m 5 = 160 t','m 5 = 110 t')

163 hold on

164 end

Listing A.5: Forward Tip-over Analysis (φ1 is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward tip-over, ...

this is done

3 % for three values of luffing angle

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]
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9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 102; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 10; % Length of payload hoist [m]

15 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

16 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

17 % Range of allowed locations for counterwieght [m]

18 L4 range = linspace(L4 min,L4 max,500);

19 % Other dimensions

20 w = 8.4; % Width of base [m]

21 h = 2.45; % Height of base [m]

22 % Mass parameters

23 m1 = 125; % Mass of Car Body [tons]

24 m2 = 60; % Mass of boom [tons]

25 m3 = 12.5; % Mass of mast [tons]

26 m4 = 200; % Mass of moveable counterweight [tons]

27 m4 fixed = 240; % Mass of fixed counterweight [tons]

28 m5 = 110 ; % Mass of Payload [tons]

29 % Angles

30 p1i = [30 45 60]*pi/180; % Different values of boom luffing ...

angles [rad]

31 B = linspace(0,pi,50); % Slewing Angle [rad]

32

33 %% Calculating minimum location of counterweight to ensure safety

34

35 for k=1:length(p1i) % Loop repeats for each value of p1

36 p1 = p1i(k);

37 for i=1:length(B) % Loop repeats for every slew angle
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38 for j = length(L4 range):-1:1 % Loop repeats for every ...

value of L4

39 L4 = L4 range(j);

40 p2 = acos(L4/L3); % Mast angle

41 % Set up coordinate systems for mass centers

42 c1 = [0 0 h/2]'; % Car Body mass center

43 c2 = [L2*cos(p1)*cos(B(i))/2,...

44 L2*cos(p1)*sin(B(i))/2,...

45 (L2*sin(p1)/2)+h]'; % Boom mass center

46 c3 = [-L3*cos(p2)*cos(B(i))/2,...

47 -L3*cos(p2)*sin(B(i))/2,...

48 (L3*sin(p2)/2)+h]'; % Mast mass center

49 c4 = [-L4*cos(B(i)),...

50 -L4*sin(B(i)), h]'; % Moving counterweight mass center

51 c4 fixed = [-7*cos(B(i)),...

52 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

53 c5 = [L2*cos(p1)*cos(B(i)),...

54 L2*cos(p1)*sin(B(i)),...

55 L2*sin(p1)+h-L5]'; % Payload mass center

56

57 % Forces:

58 G = [0 0 -1]'; % Direction of gravitational force

59 f1 = m1*g*G; % Weight of car body

60 f2 = m2*g*G; % Weight of boom

61 f3 = m3*g*G; % Weight of mast

62 f4 = m4*g*G; % Weight of moveable counterweight

63 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

64 f5 = m5*g*G; % Weight of payload

65

66 % Instantaneous inertial location of the ith ground contact point

67 p01 = [-L1/2 w/2 0]';

68 p02 = [L1/2 w/2 0]';
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69 p03 = [L1/2 -w/2 0]';

70 p04 = [-L1/2 -w/2 0]';

71

72 % ith tip-over mode axis

73 a1 = p02-p01;

74 a2 = p03-p02;

75 a3 = p04-p03;

76 a4 = p01-p04;

77

78 % Expressing each ith tip-over mode axis as a unit vector

79 a11 = -a1/norm(a1);

80 a22 = -a2/norm(a2);

81 a33 = a3/norm(a3);

82 a44 = -a4/norm(a4);

83

84 % Deciding which is the tip-over axis based on the value of the ...

slew angle

85 theta1 = atan((w/2)/(L1/2));

86 theta2 = pi-theta1;

87 %---------------------------------------------------------------------

88 if B(i)<theta1 % Tip over axis is a2

89 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

90 % Vectors pointing from mass centers to the point on a2

91 r1a = c1-pa2;

92 r2a = c2-pa2;

93 r3a = c3-pa2;

94 r4a = c4-pa2;

95 r4a fixed = c4 fixed-pa2;

96 r5a = c5-pa2;

97

98 % Calculating sum of moments about axis a2:

99 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...
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100 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

101 dot(a22,cross(r4a fixed,f4 fixed))+dot(a22,cross(r5a,f5));

102

103 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

104 L4 long(k,i)=L4;

105 break

106 end

107 end

108 %---------------------------------------------------------------------

109 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a1

110 pa1 = [0 w/2 0]'; % Location of a point on axis a1

111 % Vectors pointing from mass centers to the point on a1

112 r1a = c1-pa1;

113 r2a = c2-pa1;

114 r3a = c3-pa1;

115 r4a = c4-pa1;

116 r4a fixed = c4 fixed-pa1;

117 r5a = c5-pa1;

118

119 % Calculating sum of moments about axis a1:

120 M1(i) = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

121 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

122 dot(a11,cross(r4a fixed,f4 fixed))+dot(a11,cross(r5a,f5));

123

124 if M1(i)>0 % Loop chooses value of L4 to prevent tip-over

125 L4 long(k,i)=L4;

126 break

127 end

128 end

129 %---------------------------------------------------------------------

130 if B(i)>theta2 % Tip over axis is a4

131 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4
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132 % Vectors pointing from mass centers to the point on a4

133 r1a = c1-pa4;

134 r2a = c2-pa4;

135 r3a = c3-pa4;

136 r4a = c4-pa4;

137 r4a fixed = c4 fixed-pa4;

138 r5a = c5-pa4;

139

140 % Calculating sum of moments about axis a4:

141 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

142 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

143 dot(a44,cross(r4a fixed,f4 fixed))+dot(a44,cross(r5a,f5));

144

145 if M4(i)>0

146 L4 long(k,i)=L4;

147 break

148 end

149 end

150 end

151 end

152 end

153

154 %% Plotting

155 figure

156 for k = 1:length(p1i)

157 x = [B,B];

158 y = [L4 long(k,:),-fliplr(L4 long(k,:))];

159 polar(x,y)

160 xlabel('Slew Angle \beta [deg]')

161 ylabel('Counterweight Position [m]')

162 legend('\phi 1 = 30','\phi 1 = 45','\phi 1 = 60')

163 hold on
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164 end

Listing A.6: Backward Tip-over Analysis (φ1 is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent backward tip-over, ...

this is done

3 % for three values of luffing angle

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 102; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 10; % Length of payload hoist [m]

15 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

16 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

17 % Range of allowed locations for counterwieght [m]

18 L4 range = linspace(L4 min,L4 max,500);

19 % Other dimensions

20 w = 8.4; % Width of base [m]

21 h = 2.45; % Height of base [m]

22 % Mass parameters

23 m1 = 125; % Mass of Car Body [tons]

24 m2 = 60; % Mass of boom [tons]
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25 m3 = 12.5; % Mass of mast [tons]

26 m4 = 200; % Mass of moveable counterweight [tons]

27 m4 fixed = 240; % Mass of fixed counterweight [tons]

28 m5 = 0; % Mass of Payload [tons]

29 % Angles

30 p1i = [30 45 60]*pi/180; % Different values of boom luffing ...

angles [rad]

31 B = linspace(0,pi,50); % Slewing Angle [rad]

32

33 %% Calculating maximum location for counterweight to ensure safety

34

35 for k=1:length(p1i) % Loop repeats for each value of p1

36 p1 = p1i(k);

37 for i=1:length(B) % Loop repeats for every slew angle

38 for j = 1:length(L4 range) % Loop repeats for every value ...

of L4

39 L4 = L4 range(j);

40 p2 = acos(L4/L3); % Mast angle

41 %Set up coordinate systems for mass centers

42 c1 = [0 0 h/2]'; % Car Body mass center

43 c2 = [L2*cos(p1)*cos(B(i))/2,...

44 L2*cos(p1)*sin(B(i))/2,...

45 (L2*sin(p1)/2)+h]'; % Boom mass center

46 c3 = [-L3*cos(p2)*cos(B(i))/2,...

47 -L3*cos(p2)*sin(B(i))/2,...

48 (L3*sin(p2)/2)+h]'; % Mast mass center

49 c4 = [-L4*cos(B(i)),...

50 -L4*sin(B(i)), h]'; % Moving counterweight mass center

51 c4 fixed = [-7*cos(B(i)),...

52 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

53 c5 = [L2*cos(p1)*cos(B(i)),...

54 L2*cos(p1)*sin(B(i)),...
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55 L2*sin(p1)+h-L5]'; % Payload mass center

56

57 % Forces:

58 G = [0 0 -1]'; % Direction of gravitational force

59 f1 = m1*g*G; % Weight of car body

60 f2 = m2*g*G; % Weight of boom

61 f3 = m3*g*G; % Weight of mast

62 f4 = m4*g*G; % Weight of moveable counterweight

63 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

64 f5 = m5*g*G; % Weight of payload

65

66 % Instantaneous inertial location of the ith ground contact point

67 p01 = [-L1/2 w/2 0]';

68 p02 = [L1/2 w/2 0]';

69 p03 = [L1/2 -w/2 0]';

70 p04 = [-L1/2 -w/2 0]';

71

72 % ith tip-over mode axis

73 a1 = p02-p01;

74 a2 = p03-p02;

75 a3 = p04-p03;

76 a4 = p01-p04;

77

78 % Expressing each ith tip-over mode axis as a unit vector

79 a11 = -a1/norm(a1);

80 a22 = -a2/norm(a2);

81 a33 = -a3/norm(a3);

82 a44 = -a4/norm(a4);

83

84 % Deciding which is the tip-over axis based on the value of the ...

slew angle

85 theta1 = atan((w/2)/(L1/2));
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86 theta2 = pi-theta1;

87 %---------------------------------------------------------------------

88 if B(i)<theta1 % Tip over axis is a4

89 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

90 % Vectors pointing from mass centers to the point on a4

91 r1a = c1-pa4;

92 r2a = c2-pa4;

93 r3a = c3-pa4;

94 r4a = c4-pa4;

95 r4a fixed = c4 fixed-pa4;

96 r5a = c5-pa4;

97

98 % Calculating sum of moments about axis a4:

99 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

100 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

101 dot(a44,cross(r4a fixed,f4 fixed))+dot(a44,cross(r5a,f5));

102

103 if M4(i)>0 % Loop chooses value of L4 to prevent tip-over

104 L4 short(k,i)=L4;

105 break

106 end

107 end

108 %---------------------------------------------------------------------

109 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a3

110 pa3 = [0 -w/2 0]'; % Location of a point on axis a3

111 % Vectors pointing from mass centers to the point on a3

112 r1a = c1-pa3;

113 r2a = c2-pa3;

114 r3a = c3-pa3;

115 r4a = c4-pa3;

116 r4a fixed = c4 fixed-pa3;

117 r5a = c5-pa3;
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118

119 % Calculating sum of moments about axis a3:

120 M3(i) = dot(a33,cross(r1a,f1))+dot(a33,cross(r2a,f2))+...

121 dot(a33,cross(r3a,f3))+dot(a33,cross(r4a,f4))+...

122 dot(a33,cross(r4a fixed,f4 fixed))+dot(a33,cross(r5a,f5));

123

124 if M3(i)>0 % Loop chooses value of L4 to prevent tip-over

125 L4 short(k,i)=L4;

126 break

127 end

128 end

129 %---------------------------------------------------------------------

130 if B(i)>theta2 % Tip over axis is a2

131 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

132 % Vectors pointing from mass centers to the point on a2

133 r1a = c1-pa2;

134 r2a = c2-pa2;

135 r3a = c3-pa2;

136 r4a = c4-pa2;

137 r4a fixed = c4 fixed-pa2;

138 r5a = c5-pa2;

139

140 % Caculating sum of moments about axis a2:

141 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

142 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

143 dot(a22,cross(r4a fixed,f4 fixed))+dot(a22,cross(r5a,f5));

144

145 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

146 L4 short(k,i)=L4;

147 break

148 end

149 end
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150 end

151 end

152 end

153

154 %% Plotting

155 figure

156 for k = 1:length(p1i)

157 x = [B,B];

158 y = [L4 short(k,:),-fliplr(L4 short(k,:))];

159 polar(x,y)

160 xlabel('Slew Angle \beta [deg]')

161 ylabel('Counterweight Position [m]')

162 legend('\phi 1 = 30','\phi 1 = 45','\phi 1 = 60')

163 hold on

164 end

Listing A.7: Forward Tip-over Analysis for the jib configuration (m4 is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward tip-over, ...

this is done

3 % for three values of moveable counterweight mass (jib configuration)

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 96; % Length of boom [m]

12 L3 = 30; % Length of mast [m]
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13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 50; % Length of payload hoist [m]

15 L6 = 96; % Length of jib [m]

16 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

17 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

18 % Range of allowed locations for counterwieght [m]

19 L4 range = linspace(L4 min,L4 max,500);

20 % Other dimensions

21 w = 8.4; % Width of base [m]

22 h = 2.45; % Height of base [m]

23 % Mass parameters

24 m1 = 125; % Mass of Car Body [tons]

25 m2 = 56; % Mass of boom [tons]

26 m3 = 12.5; % Mass of mast [tons]

27 m4i = [150 200 300]; % Different masses of moveable ...

counterweight [tons]

28 m4 fixed = 240; % Mass of fixed counterweight [tons]

29 m5 = 65; % Mass of Payload [tons]

30 m6 = 40; % Mass of jib [tons]

31 % Angles

32 p1 = 65*pi/180; % Boom Luffing Angle [rad]

33 p3 = p1-15*pi/180; % Jib angle wrt x-axis [rad]

34 B = linspace(0,pi,50); % Slewing Angle [rad]

35

36 %% Calculating minimum location of counterweight to ensure safety

37

38 for k=1:length(m4i) % Loop repeats for each value of m4

39 m4 = m4i(k);

40 for i=1:length(B) % Loop repeats for every slew angle
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41 for j = length(L4 range):-1:1 % Loop repeats for every ...

value of L4

42 L4 = L4 range(j);

43 p2 = acos(L4/L3); % Mast angle

44 % Set up coordinate systems for mass centers

45 c1 = [0 0 h/2]'; % Car Body mass center

46 c2 = [L2*cos(p1)*cos(B(i))/2,...

47 L2*cos(p1)*sin(B(i))/2,...

48 (L2*sin(p1)/2)+h]'; % Boom mass center

49 c3 = [-L3*cos(p2)*cos(B(i))/2,...

50 -L3*cos(p2)*sin(B(i))/2,...

51 (L3*sin(p2)/2)+h]'; % Mast mass center

52 c4 = [-L4*cos(B(i)),...

53 -L4*sin(B(i)), h]'; % Moving counterweight mass center

54 c4 fixed = [-7*cos(B(i)),...

55 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

56 c5 = [L2*cos(p1)*cos(B(i)),...

57 L2*cos(p1)*sin(B(i)),...

58 L2*sin(p1)+h-L5]'; % Payload mass center

59 c6 = [(L2*cos(p1)+0.5*L6*cos(p3))*cos(B(i)),...

60 (L2*cos(p1)+.5*L6*cos(p3))*sin(B(i)),...

61 L2*sin(p1)+.5*L6*sin(p3)+h]'; % Jib mass center

62

63 % Forces:

64 G = [0 0 -1]'; % Direction of gravitational force

65 f1 = m1*g*G; % Weight of car body

66 f2 = m2*g*G; % Weight of boom

67 f3 = m3*g*G; % Weight of mast

68 f4 = m4*g*G; % Weight of moveable counterweight

69 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

70 f5 = m5*g*G; % Weight of payload

71 f6 = m6*g*G; % Weight of jib
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72

73 % Instantaneous inertial location of the ith ground contact point

74 p01 = [-L1/2 w/2 0]';

75 p02 = [L1/2 w/2 0]';

76 p03 = [L1/2 -w/2 0]';

77 p04 = [-L1/2 -w/2 0]';

78

79 % ith tip-over mode axis

80 a1 = p02-p01;

81 a2 = p03-p02;

82 a3 = p04-p03;

83 a4 = p01-p04;

84

85 % Expressing each ith tip-over mode axis as a unit vector

86 a11 = -a1/norm(a1);

87 a22 = -a2/norm(a2);

88 a33 = a3/norm(a3);

89 a44 = -a4/norm(a4);

90

91 % Deciding which is the tip-over axis based on the value of the ...

slew angle

92 theta1 = atan((w/2)/(L1/2));

93 theta2 = pi-theta1;

94 %---------------------------------------------------------------------

95 if B(i)<theta1 % Tip over axis is a2

96 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

97 % Vectors pointing from mass centers to the point on a2

98 r1a = c1-pa2;

99 r2a = c2-pa2;

100 r3a = c3-pa2;

101 r4a = c4-pa2;

102 r4a fixed = c4 fixed-pa2;
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103 r5a = c5-pa2;

104 r6a = c6-pa2;

105

106 % Calculating sum of moments about axis a2:

107 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

108 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

109 dot(a22,cross(r4a fixed,f4 fixed))+...

110 dot(a22,cross(r5a,f5))+dot(a22,cross(r6a,f6));

111

112 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

113 L4 long(k,i)=L4;

114 break

115 end

116 end

117 %---------------------------------------------------------------------

118 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a1

119 pa1 = [0 w/2 0]'; % Location of a point on axis a1

120 % Vectors pointing from mass centers to the point on a1

121 r1a = c1-pa1;

122 r2a = c2-pa1;

123 r3a = c3-pa1;

124 r4a = c4-pa1;

125 r4a fixed = c4 fixed-pa1;

126 r5a = c5-pa1;

127 r6a = c6-pa1;

128

129 % Calculating sum of moments about axis a1:

130 M1(i) = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

131 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

132 dot(a11,cross(r4a fixed,f4 fixed))+...

133 dot(a11,cross(r5a,f5))+dot(a11,cross(r6a,f6));

134
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135 if M1(i)>0 % Loop chooses value of L4 to prevent tip-over

136 L4 long(k,i)=L4;

137 break

138 end

139 end

140 %---------------------------------------------------------------------

141 if B(i)>theta2 % Tip over axis is a4

142 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

143 % Vectors pointing from mass centers to the point on a4

144 r1a = c1-pa4;

145 r2a = c2-pa4;

146 r3a = c3-pa4;

147 r4a = c4-pa4;

148 r4a fixed = c4 fixed-pa4;

149 r5a = c5-pa4;

150 r6a = c6-pa4;

151

152 % Calculating sum of moments about axis a4:

153 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

154 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

155 dot(a44,cross(r4a fixed,f4 fixed))+...

156 dot(a44,cross(r5a,f5))+dot(a44,cross(r6a,f6));

157

158 if M4(i)>0

159 L4 long(k,i)=L4;

160 break

161 end

162 end

163 end

164 end

165 end

166
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167 %% Plotting

168 figure

169 for k = 1:length(m4i)

170 x = [B,B];

171 y = [L4 long(k,:),-fliplr(L4 long(k,:))];

172 polar(x,y)

173 xlabel('Slew Angle \beta [deg]')

174 ylabel('Counterweight Position [m]')

175 legend('m 4 = 150 t','m 4 = 200 t','m 4 = 300 t')

176 hold on

177 end

Listing A.8: Backward Tip-over Analysis for the jib configuration (m4 is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent backward tip-over, ...

this is done

3 % for three values of moveable counterweight mass (jib configuration)

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 96; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 50; % Length of payload hoist [m]

15 L6 = 96; % Length of jib [m]
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16 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

17 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

18 % Range of allowed locations for counterwieght [m]

19 L4 range = linspace(L4 min,L4 max,500);

20 % Other dimensions

21 w = 8.4; % Width of base [m]

22 h = 2.45; % Height of base [m]

23 % Mass parameters

24 m1 = 125; % Mass of Car Body [tons]

25 m2 = 56; % Mass of boom [tons]

26 m3 = 12.5; % Mass of mast [tons]

27 m4i = [150 200 300]; % Different masses of moveable ...

counterweight [tons]

28 m4 fixed = 240; % Mass of fixed counterweight [tons]

29 m5 = 0 ; % Mass of Payload [tons]

30 m6 = 40; % Mass of jib [tons]

31 % Angles

32 p1 = 65*pi/180; % Boom Luffing Angle [rad]

33 p3 = p1-15*pi/180; % Jib angle wrt x-axis [rad]

34 B = linspace(0,pi,50); % Slewing Angle [rad]

35

36 %% Calculating maximum location for counterweight to ensure safety

37

38 for k=1:length(m4i) % Loop repeats for each value of m4

39 m4 = m4i(k);

40 for i=1:length(B) % Loop repeats for every slew angle

41 for j = 1:length(L4 range) % Loop repeats for every value ...

of L4

42 L4 = L4 range(j);

43 p2 = acos(L4/L3); % Mast angle
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44 %Set up coordinate systems for mass centers

45 c1 = [0 0 h/2]'; % Car Body mass center

46 c2 = [L2*cos(p1)*cos(B(i))/2,...

47 L2*cos(p1)*sin(B(i))/2,...

48 (L2*sin(p1)/2)+h]'; % Boom mass center

49 c3 = [-L3*cos(p2)*cos(B(i))/2,...

50 -L3*cos(p2)*sin(B(i))/2,...

51 (L3*sin(p2)/2)+h]'; % Mast mass center

52 c4 = [-L4*cos(B(i)),...

53 -L4*sin(B(i)), h]'; % Moving counterweight mass center

54 c4 fixed = [-7*cos(B(i)),...

55 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

56 c5 = [L2*cos(p1)*cos(B(i)),...

57 L2*cos(p1)*sin(B(i)),...

58 L2*sin(p1)+h-L5]'; % Payload mass center

59 c6 = [(L2*cos(p1)+0.5*L6*cos(p3))*cos(B(i)),...

60 (L2*cos(p1)+.5*L6*cos(p3))*sin(B(i)),...

61 L2*sin(p1)+.5*L6*sin(p3)+h]'; % Jib mass center

62

63 % Forces:

64 G = [0 0 -1]'; % Direction of gravitational force

65 f1 = m1*g*G; % Weight of car body

66 f2 = m2*g*G; % Weight of boom

67 f3 = m3*g*G; % Weight of mast

68 f4 = m4*g*G; % Weight of moveable counterweight

69 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

70 f5 = m5*g*G; % Weight of payload

71 f6 = m6*g*G; % Weight of jib

72

73 % Instantaneous inertial location of the ith ground contact point

74 p01 = [-L1/2 w/2 0]';

75 p02 = [L1/2 w/2 0]';
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76 p03 = [L1/2 -w/2 0]';

77 p04 = [-L1/2 -w/2 0]';

78

79 % ith tip-over mode axis

80 a1 = p02-p01;

81 a2 = p03-p02;

82 a3 = p04-p03;

83 a4 = p01-p04;

84

85 % Expressing each ith tip-over mode axis as a unit vector

86 a11 = -a1/norm(a1);

87 a22 = -a2/norm(a2);

88 a33 = -a3/norm(a3);

89 a44 = -a4/norm(a4);

90

91 % Deciding which is the tip-over axis based on the value of the ...

slew angle

92 theta1 = atan((w/2)/(L1/2));

93 theta2 = pi-theta1;

94 %---------------------------------------------------------------------

95 if B(i)<theta1 % Tip over axis is a4

96 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

97 % Vectors pointing from mass centers to the point on a4

98 r1a = c1-pa4;

99 r2a = c2-pa4;

100 r3a = c3-pa4;

101 r4a = c4-pa4;

102 r4a fixed = c4 fixed-pa4;

103 r5a = c5-pa4;

104 r6a = c6-pa4;

105

106 % Calculating sum of moments about axis a4:
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107 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

108 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

109 dot(a44,cross(r4a fixed,f4 fixed))+...

110 dot(a44,cross(r5a,f5))+dot(a44,cross(r6a,f6));

111

112 if M4(i)>0 % Loop chooses value of L4 to prevent tip-over

113 L4 short(k,i)=L4;

114 break

115 end

116 end

117 %---------------------------------------------------------------------

118 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a3

119 pa3 = [0 -w/2 0]'; % Location of a point on axis a3

120 % Vectors pointing from mass centers to the point on a3

121 r1a = c1-pa3;

122 r2a = c2-pa3;

123 r3a = c3-pa3;

124 r4a = c4-pa3;

125 r4a fixed = c4 fixed-pa3;

126 r5a = c5-pa3;

127 r6a = c6-pa3;

128

129 % Calculating sum of moments about axis a3:

130 M3(i) = dot(a33,cross(r1a,f1))+dot(a33,cross(r2a,f2))+...

131 dot(a33,cross(r3a,f3))+dot(a33,cross(r4a,f4))+...

132 dot(a33,cross(r4a fixed,f4 fixed))+...

133 dot(a33,cross(r5a,f5))+dot(a33,cross(r6a,f6));

134

135 if M3(i)>0 % Loop chooses value of L4 to prevent tip-over

136 L4 short(k,i)=L4;

137 break

138 end
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139 end

140 %---------------------------------------------------------------------

141 if B(i)>theta2 % Tip over axis is a2

142 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

143 % Vectors pointing from mass centers to the point on a2

144 r1a = c1-pa2;

145 r2a = c2-pa2;

146 r3a = c3-pa2;

147 r4a = c4-pa2;

148 r4a fixed = c4 fixed-pa2;

149 r5a = c5-pa2;

150 r6a = c6-pa2;

151

152 % Caculating sum of moments about axis a2:

153 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

154 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

155 dot(a22,cross(r4a fixed,f4 fixed))+...

156 dot(a22,cross(r5a,f5))+dot(a22,cross(r6a,f6));

157

158 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

159 L4 short(k,i)=L4;

160 break

161 end

162 end

163 end

164 end

165 end

166

167 %% Plotting

168 figure

169 for k = 1:length(m4i)

170 x = [B,B];

170



171 y = [L4 short(k,:),-fliplr(L4 short(k,:))];

172 polar(x,y)

173 xlabel('Slew Angle \beta [deg]')

174 ylabel('Counterweight Position [m]')

175 legend('m 4 = 150 t','m 4 = 200 t','m 4 = 300 t')

176 hold on

177 end

Listing A.9: Forward Tip-over Analysis for the jib configuration (φ1 is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward tip-over, ...

this is done

3 % for three values of luffing angle (jib configuration)

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 96; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 50; % Length of payload hoist [m]

15 L6 = 96; % Length of jib [m]

16 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

17 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

18 % Range of allowed locations for counterwieght [m]
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19 L4 range = linspace(L4 min,L4 max,500);

20 % Other dimensions

21 w = 8.4; % Width of base [m]

22 h = 2.45; % Height of base [m]

23 % Mass parameters

24 m1 = 125; % Mass of Car Body [tons]

25 m2 = 56; % Mass of boom [tons]

26 m3 = 12.5; % Mass of mast [tons]

27 m4 = 200; % Mass of moveable counterweight [tons]

28 m4 fixed = 240; % Mass of fixed counterweight [tons]

29 m5 = 110 ; % Mass of Payload [tons]

30 m6 = 40; % Mass of jib [tons]

31 % Angles

32 p1i = [30 45 65]*pi/180;% Different values of boom Luffing Angle ...

[rad]

33 p3i = p1i-15*pi/180; % Jib angle wrt x-axis [rad]

34 B = linspace(0,pi,50); % Slewing Angle [rad]

35

36 %% Calculating minimum location of counterweight to ensure safety

37

38 for k=1:length(p1i) % Loop repeats for each value of m4

39 p1 = p1i(k);

40 p3 = p3i(k);

41 for i=1:length(B) % Loop repeats for every slew angle

42 for j = length(L4 range):-1:1 % Loop repeats for every ...

value of L4

43 L4 = L4 range(j);

44 p2 = acos(L4/L3); % Mast angle

45 % Set up coordinate systems for mass centers

46 c1 = [0 0 h/2]'; % Car Body mass center

47 c2 = [L2*cos(p1)*cos(B(i))/2,...

48 L2*cos(p1)*sin(B(i))/2,...
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49 (L2*sin(p1)/2)+h]'; % Boom mass center

50 c3 = [-L3*cos(p2)*cos(B(i))/2,...

51 -L3*cos(p2)*sin(B(i))/2,...

52 (L3*sin(p2)/2)+h]'; % Mast mass center

53 c4 = [-L4*cos(B(i)),...

54 -L4*sin(B(i)), h]'; % Moving counterweight mass center

55 c4 fixed = [-7*cos(B(i)),...

56 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

57 c5 = [L2*cos(p1)*cos(B(i)),...

58 L2*cos(p1)*sin(B(i)),...

59 L2*sin(p1)+h-L5]'; % Payload mass center

60 c6 = [(L2*cos(p1)+0.5*L6*cos(p3))*cos(B(i)),...

61 (L2*cos(p1)+.5*L6*cos(p3))*sin(B(i)),...

62 L2*sin(p1)+.5*L6*sin(p3)+h]'; % Jib mass center

63

64 % Forces:

65 G = [0 0 -1]'; % Direction of gravitational force

66 f1 = m1*g*G; % Weight of car body

67 f2 = m2*g*G; % Weight of boom

68 f3 = m3*g*G; % Weight of mast

69 f4 = m4*g*G; % Weight of moveable counterweight

70 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

71 f5 = m5*g*G; % Weight of payload

72 f6 = m6*g*G; % Weight of jib

73

74 % Instantaneous inertial location of the ith ground contact point

75 p01 = [-L1/2 w/2 0]';

76 p02 = [L1/2 w/2 0]';

77 p03 = [L1/2 -w/2 0]';

78 p04 = [-L1/2 -w/2 0]';

79

80 % ith tip-over mode axis
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81 a1 = p02-p01;

82 a2 = p03-p02;

83 a3 = p04-p03;

84 a4 = p01-p04;

85

86 % Expressing each ith tip-over mode axis as a unit vector

87 a11 = -a1/norm(a1);

88 a22 = -a2/norm(a2);

89 a33 = a3/norm(a3);

90 a44 = -a4/norm(a4);

91

92 % Deciding which is the tip-over axis based on the value of the ...

slew angle

93 theta1 = atan((w/2)/(L1/2));

94 theta2 = pi-theta1;

95 %---------------------------------------------------------------------

96 if B(i)<theta1 % Tip over axis is a2

97 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

98 % Vectors pointing from mass centers to the point on a2

99 r1a = c1-pa2;

100 r2a = c2-pa2;

101 r3a = c3-pa2;

102 r4a = c4-pa2;

103 r4a fixed = c4 fixed-pa2;

104 r5a = c5-pa2;

105 r6a = c6-pa2;

106

107 % Calculating sum of moments about axis a2:

108 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

109 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

110 dot(a22,cross(r4a fixed,f4 fixed))+...

111 dot(a22,cross(r5a,f5))+dot(a22,cross(r6a,f6));
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112

113 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

114 L4 long(k,i)=L4;

115 break

116 end

117 end

118 %---------------------------------------------------------------------

119 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a1

120 pa1 = [0 w/2 0]'; % Location of a point on axis a1

121 % Vectors pointing from mass centers to the point on a1

122 r1a = c1-pa1;

123 r2a = c2-pa1;

124 r3a = c3-pa1;

125 r4a = c4-pa1;

126 r4a fixed = c4 fixed-pa1;

127 r5a = c5-pa1;

128 r6a = c6-pa1;

129

130 % Calculating sum of moments about axis a1:

131 M1(i) = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

132 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

133 dot(a11,cross(r4a fixed,f4 fixed))+...

134 dot(a11,cross(r5a,f5))+dot(a11,cross(r6a,f6));

135

136 if M1(i)>0 % Loop chooses value of L4 to prevent tip-over

137 L4 long(k,i)=L4;

138 break

139 end

140 end

141 %---------------------------------------------------------------------

142 if B(i)>theta2 % Tip over axis is a4

143 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4
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144 % Vectors pointing from mass centers to the point on a4

145 r1a = c1-pa4;

146 r2a = c2-pa4;

147 r3a = c3-pa4;

148 r4a = c4-pa4;

149 r4a fixed = c4 fixed-pa4;

150 r5a = c5-pa4;

151 r6a = c6-pa4;

152

153 % Calculating sum of moments about axis a4:

154 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

155 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

156 dot(a44,cross(r4a fixed,f4 fixed))+...

157 dot(a44,cross(r5a,f5))+dot(a44,cross(r6a,f6));

158

159 if M4(i)>0

160 L4 long(k,i)=L4;

161 break

162 end

163 end

164 end

165 end

166 end

167

168 %% Plotting

169 figure

170 for k = 1:length(p1i)

171 x = [B,B];

172 y = [L4 long(k,:),-fliplr(L4 long(k,:))];

173 polar(x,y)

174 xlabel('Slew Angle \beta [deg]')

175 ylabel('Counterweight Position [m]')
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176 legend('\phi 1 = 30','\phi 1 = 45','\phi 1 = 65')

177 hold on

178 end

Listing A.10: Forward Tip-over Analysis for the jib configuration (m5 is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward tip-over, ...

this is done

3 % for three values of payload mass (jib configuration)

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 96; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 50; % Length of payload hoist [m]

15 L6 = 96; % Length of jib [m]

16 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

17 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

18 % Range of allowed locations for counterwieght [m]

19 L4 range = linspace(L4 min,L4 max,500);

20 % Other dimensions

21 w = 8.4; % Width of base [m]

22 h = 2.45; % Height of base [m]
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23 % Mass parameters

24 m1 = 125; % Mass of Car Body [tons]

25 m2 = 56; % Mass of boom [tons]

26 m3 = 12.5; % Mass of mast [tons]

27 m4 = 200; % Mass of moveable counterweight [tons]

28 m4 fixed = 240; % Mass of fixed counterweight [tons]

29 m5i = [60 85 110]; % Different Masses of Payload [tons]

30 m6 = 40; % Mass of jib [tons]

31 % Angles

32 p1 = 65*pi/180; % Boom Luffing Angle [rad]

33 p3 = p1-15*pi/180; % Jib angle wrt x-axis [rad]

34 B = linspace(0,pi,50); % Slewing Angle [rad]

35

36 %% Calculating minimum location of counterweight to ensure safety

37

38 for k=1:length(m5i) % Loop repeats for each value of m4

39 m5 = m5i(k);

40 for i=1:length(B) % Loop repeats for every slew angle

41 for j = length(L4 range):-1:1 % Loop repeats for every ...

value of L4

42 L4 = L4 range(j);

43 p2 = acos(L4/L3); % Mast angle

44 % Set up coordinate systems for mass centers

45 c1 = [0 0 h/2]'; % Car Body mass center

46 c2 = [L2*cos(p1)*cos(B(i))/2,...

47 L2*cos(p1)*sin(B(i))/2,...

48 (L2*sin(p1)/2)+h]'; % Boom mass center

49 c3 = [-L3*cos(p2)*cos(B(i))/2,...

50 -L3*cos(p2)*sin(B(i))/2,...

51 (L3*sin(p2)/2)+h]'; % Mast mass center

52 c4 = [-L4*cos(B(i)),...

53 -L4*sin(B(i)), h]'; % Moving counterweight mass center
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54 c4 fixed = [-7*cos(B(i)),...

55 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

56 c5 = [L2*cos(p1)*cos(B(i)),...

57 L2*cos(p1)*sin(B(i)),...

58 L2*sin(p1)+h-L5]'; % Payload mass center

59 c6 = [(L2*cos(p1)+0.5*L6*cos(p3))*cos(B(i)),...

60 (L2*cos(p1)+.5*L6*cos(p3))*sin(B(i)),...

61 L2*sin(p1)+.5*L6*sin(p3)+h]'; % Jib mass center

62

63 % Forces:

64 G = [0 0 -1]'; % Direction of gravitational force

65 f1 = m1*g*G; % Weight of car body

66 f2 = m2*g*G; % Weight of boom

67 f3 = m3*g*G; % Weight of mast

68 f4 = m4*g*G; % Weight of moveable counterweight

69 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

70 f5 = m5*g*G; % Weight of payload

71 f6 = m6*g*G; % Weight of jib

72

73 % Instantaneous inertial location of the ith ground contact point

74 p01 = [-L1/2 w/2 0]';

75 p02 = [L1/2 w/2 0]';

76 p03 = [L1/2 -w/2 0]';

77 p04 = [-L1/2 -w/2 0]';

78

79 % ith tip-over mode axis

80 a1 = p02-p01;

81 a2 = p03-p02;

82 a3 = p04-p03;

83 a4 = p01-p04;

84

85 % Expressing each ith tip-over mode axis as a unit vector
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86 a11 = -a1/norm(a1);

87 a22 = -a2/norm(a2);

88 a33 = a3/norm(a3);

89 a44 = -a4/norm(a4);

90

91 % Deciding which is the tip-over axis based on the value of the ...

slew angle

92 theta1 = atan((w/2)/(L1/2));

93 theta2 = pi-theta1;

94 %---------------------------------------------------------------------

95 if B(i)<theta1 % Tip over axis is a2

96 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

97 % Vectors pointing from mass centers to the point on a2

98 r1a = c1-pa2;

99 r2a = c2-pa2;

100 r3a = c3-pa2;

101 r4a = c4-pa2;

102 r4a fixed = c4 fixed-pa2;

103 r5a = c5-pa2;

104 r6a = c6-pa2;

105

106 % Calculating sum of moments about axis a2:

107 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

108 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

109 dot(a22,cross(r4a fixed,f4 fixed))+...

110 dot(a22,cross(r5a,f5))+dot(a22,cross(r6a,f6));

111

112 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

113 L4 long(k,i)=L4;

114 break

115 end

116 end
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117 %---------------------------------------------------------------------

118 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a1

119 pa1 = [0 w/2 0]'; % Location of a point on axis a1

120 % Vectors pointing from mass centers to the point on a1

121 r1a = c1-pa1;

122 r2a = c2-pa1;

123 r3a = c3-pa1;

124 r4a = c4-pa1;

125 r4a fixed = c4 fixed-pa1;

126 r5a = c5-pa1;

127 r6a = c6-pa1;

128

129 % Calculating sum of moments about axis a1:

130 M1(i) = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

131 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

132 dot(a11,cross(r4a fixed,f4 fixed))+...

133 dot(a11,cross(r5a,f5))+dot(a11,cross(r6a,f6));

134

135 if M1(i)>0 % Loop chooses value of L4 to prevent tip-over

136 L4 long(k,i)=L4;

137 break

138 end

139 end

140 %---------------------------------------------------------------------

141 if B(i)>theta2 % Tip over axis is a4

142 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

143 % Vectors pointing from mass centers to the point on a4

144 r1a = c1-pa4;

145 r2a = c2-pa4;

146 r3a = c3-pa4;

147 r4a = c4-pa4;

148 r4a fixed = c4 fixed-pa4;
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149 r5a = c5-pa4;

150 r6a = c6-pa4;

151

152 % Calculating sum of moments about axis a4:

153 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

154 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

155 dot(a44,cross(r4a fixed,f4 fixed))+...

156 dot(a44,cross(r5a,f5))+dot(a44,cross(r6a,f6));

157

158 if M4(i)>0

159 L4 long(k,i)=L4;

160 break

161 end

162 end

163 end

164 end

165 end

166

167 %% Plotting

168 figure

169 for k = length(m5i):-1:1

170 x = [B,B];

171 y = [L4 long(k,:),-fliplr(L4 long(k,:))];

172 polar(x,y)

173 xlabel('Slew Angle \beta [deg]')

174 ylabel('Counterweight Position [m]')

175 legend('m 5 = 110 t','m 5 = 85 t','m 5 = 60 t')

176 hold on

177 end
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Listing A.11: Simulation of Payload Swing Angle Resulting from Straight Base Mo-

tion

1 % This code plots the swing angle of the payload vs. time for ...

different

2 % base acceleration values, it also calculates the maximum swing ...

angle in

3 % each case

4

5 clear

6 g = 9.81; % Gravitational Acceleration [m/sˆ2]

7 t = [0:0.1:80]; % Simulation time [s]

8 v max = 0.6 * 1000/3600; % Maximum Velocity of the crane [m/s]

9 t2 = 7; % Time needed to accelerate to full ...

speed [s]

10 A = v max/1; % Maximum Acceleration [m/sˆ2]

11 L5 = 50; % Hoist Length [m]

12 wn = sqrt(g/L5); % Natural frequency of payload [rad/s]

13 t3 = 21; % Time to apply decceleration [s]

14 t4 = 28; % Time when crane stops [s]

15 a = A*(heaviside(t)-heaviside(t-t2)-heaviside(t-t3)+heaviside(t-t4));

16

17 theta1 = -(A/(L5*wnˆ2))*((1-cos(wn*t))-((1-cos(wn*(t-t2)))...

18 .*heaviside(t-t2))-((1-cos(wn*(t-t3))).*heaviside(t-t3))+...

19 ((1-cos(wn*(t-t4))).*heaviside(t-t4)));

20

21 theta1=theta1'*180/pi;

22

23 t=t';

24 a=a';

25 max(theta1)

26

27 figure(1)
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28 plot(t,theta1)

29 xlabel('Time (s)')

30 ylabel('Payload Swing Angle (deg)')

31 figure(2)

32 plot(t,a)

33 xlabel('Time (s)')

34 ylabel('Acceleration Command (m/sˆ2)')

Listing A.12: Forward Tip-over Analysis for the Case of Straight Base Motion (m4 is

the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward tip-over, ...

this is done

3 % for three values of moveable counterweight mass (Straight Base ...

Motion)

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 102; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 20; % Length of payload hoist [m]

15 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

16 L4 max = 100; % Maximum position of moveable ...

counterweight [m]
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17 % Range of allowed locations for counterwieght [m]

18 L4 range = linspace(L4 min,L4 max,500);

19 % Other dimensions

20 w = 8.4; % Width of base [m]

21 h = 2.45; % Height of base [m]

22 % Mass parameters

23 m1 = 125; % Mass of Car Body [tons]

24 m2 = 60; % Mass of boom [tons]

25 m3 = 12.5; % Mass of mast [tons]

26 m4i = [150 200 300]; % Different masses of moveable ...

counterweight [tons]

27 m4 fixed = 240; % Mass of fixed counterweight [tons]

28 m5 = 110 ; % Mass of Payload [tons]

29 % Angles

30 p1 = 62*pi/180; % Boom Luffing Angle [rad]

31 B = linspace(0,pi,50); % Slewing Angle [rad]

32 q = 3.89*pi/180; % Maximum Payload Swing Angle [rad]

33 %% Calculating minimum location of counterweight to ensure safety

34

35 for k=1:length(m4i) % Loop repeats for each value of m4

36 m4 = m4i(k);

37 for i=1:length(B) % Loop repeats for every slew angle

38 for j = length(L4 range):-1:1 % Loop repeats for every ...

value of L4

39 L4 = L4 range(j);

40 p2 = acos(L4/L3); % Mast angle

41 % Set up coordinate systems for mass centers

42 c1 = [0 0 h/2]'; % Car Body mass center

43 c2 = [L2*cos(p1)*cos(B(i))/2,...

44 L2*cos(p1)*sin(B(i))/2,...

45 (L2*sin(p1)/2)+h]'; % Boom mass center

46 c3 = [-L3*cos(p2)*cos(B(i))/2,...
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47 -L3*cos(p2)*sin(B(i))/2,...

48 (L3*sin(p2)/2)+h]'; % Mast mass center

49 c4 = [-L4*cos(B(i)),...

50 -L4*sin(B(i)), h]'; % Moving counterweight mass center

51 c4 fixed = [-7*cos(B(i)),...

52 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

53 c5 = [(L2*cos(p1)+L5*sin(q))*cos(B(i)),...

54 (L2*cos(p1)+L5*sin(q))*sin(B(i)),...

55 L2*sin(p1)+h-L5*cos(q)]' ; % Payload mass center

56

57

58 Pc = (c1*m1+c2*m2+c3*m3+c4*m4+c4 fixed*m4 fixed+c5*m5)/...

59 (m1+m2+m3+m4 fixed+m4+m5);

60

61

62 % Forces:

63 G = [0 0 -1]'; % Direction of gravitational force

64 f1 = m1*g*G; % Weight of car body

65 f2 = m2*g*G; % Weight of boom

66 f3 = m3*g*G; % Weight of mast

67 f4 = m4*g*G; % Weight of moveable counterweight

68 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

69 f5 = m5*g*G; % Weight of payload

70 fi = 0.167*(m1+m2+m3+m4 fixed+m4+m5)*[1 0 0]'; % Inertial Force

71 % Instantaneous inertial location of the ith ground contact point

72 p01 = [-L1/2 w/2 0]';

73 p02 = [L1/2 w/2 0]';

74 p03 = [L1/2 -w/2 0]';

75 p04 = [-L1/2 -w/2 0]';

76

77 % ith tip-over mode axis

78 a1 = p02-p01;
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79 a2 = p03-p02;

80 a3 = p04-p03;

81 a4 = p01-p04;

82

83 % Expressing each ith tip-over mode axis as a unit vector

84 a11 = -a1/norm(a1);

85 a22 = -a2/norm(a2);

86 a33 = a3/norm(a3);

87 a44 = -a4/norm(a4);

88

89 % Deciding which is the tip-over axis based on the value of the ...

slew angle

90 theta1 = atan((w/2)/(L1/2));

91 theta2 = pi-theta1;

92 %---------------------------------------------------------------------

93 if B(i)<theta1 % Tip over axis is a2

94 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

95 % Vectors pointing from mass centers to the point on a2

96 r1a = c1-pa2;

97 r2a = c2-pa2;

98 r3a = c3-pa2;

99 r4a = c4-pa2;

100 r4a fixed = c4 fixed-pa2;

101 r5a = c5-pa2;

102 ria = Pc-pa2;

103

104 % Calculating sum of moments about axis a2:

105 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

106 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

107 dot(a22,cross(r4a fixed,f4 fixed))+...

108 dot(a22,cross(r5a,f5))+dot(a22,cross(ria,fi));

109
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110 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

111 L4 long(k,i)=L4;

112 break

113 end

114 end

115 %---------------------------------------------------------------------

116 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a1

117 pa1 = [0 w/2 0]'; % Location of a point on axis a1

118 % Vectors pointing from mass centers to the point on a1

119 r1a = c1-pa1;

120 r2a = c2-pa1;

121 r3a = c3-pa1;

122 r4a = c4-pa1;

123 r4a fixed = c4 fixed-pa1;

124 r5a = c5-pa1;

125 ria = Pc -pa1;

126

127 % Calculating sum of moments about axis a1:

128 M1(i) = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

129 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

130 dot(a11,cross(r4a fixed,f4 fixed))+...

131 dot(a11,cross(r5a,f5))+dot(a11,cross(ria,fi));

132

133 if M1(i)>0 % Loop chooses value of L4 to prevent tip-over

134 L4 long(k,i)=L4;

135 break

136 end

137 end

138 %---------------------------------------------------------------------

139 if B(i)>theta2 % Tip over axis is a4

140 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

141 % Vectors pointing from mass centers to the point on a4
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142 r1a = c1-pa4;

143 r2a = c2-pa4;

144 r3a = c3-pa4;

145 r4a = c4-pa4;

146 r4a fixed = c4 fixed-pa4;

147 r5a = c5-pa4;

148 ria = Pc-pa4;

149

150 % Calculating sum of moments about axis a4:

151 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

152 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

153 dot(a44,cross(r4a fixed,f4 fixed))+...

154 dot(a44,cross(r5a,f5))+dot(a44,cross(ria,fi));

155

156 if M4(i)>0

157 L4 long(k,i)=L4;

158 break

159 end

160 end

161 end

162 end

163 end

164

165 %% Plotting

166 figure

167 for k = 1:length(m4i)

168 x = [B,B];

169 y = [L4 long(k,:),-fliplr(L4 long(k,:))];

170 polar(x,y)

171 xlabel('Slew Angle \beta [deg]')

172 ylabel('Counterweight Position [m]')

173 legend('m 4 = 150 t','m 4 = 200 t','m 4 = 300 t')
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174 hold on

175 end

Listing A.13: Simulation of Payload Swing Angle Resulting from Boom Luffing Mo-

tion

1 % This code is used to calculate the radial swinging angle of the

2 % payload carried by a crawler crane for boom luffing motion

3

4 clear

5 L2 = 102; % Boom Length [m]

6 L5 = 30; % Hoist Length [m]

7 L = L2/L5;

8 g = 9.81; % Gravitational Acceleration ...

[m/sˆ2]

9 t gap = .75; % Time between the 2 Acc. ...

Pulses [s]

10 tp = 1; % Acceleration Pulse Duration [s]

11 t tot = t gap+(2*tp); % Total Command Time [s]

12 A = -0.02; % Luffing Acc. Amplitude [rad/sˆ2]

13 t = [0:0.1:50]; % Simulation Time Interval [s]

14 %---------------------------------------------------------------------

15 % Solving the system of coupled differential equations

16 for i = 1:length(t)

17 if t(i)≤tp

18 u(i)=A;

19 couplode = @(t,x) [x(2);...

20 ((L*(x(4)ˆ2)*cos(x(3)))+(L*u(i)*sin(x(3)))...

21 -(L*u(i)*x(1)*cos(x(3)))+(L*x(1)*(x(4)ˆ2)*sin(x(3)))...

22 -(g*x(1)/L5));...

23 x(4); ...

24 u(i)];
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25 [t1,y1] = ode45(couplode, [0 tp],...

26 [10ˆ-8,10ˆ-8,(80*pi/180),10ˆ-8]);

27

28 elseif t(i)>tp & t(i)≤tp+t gap

29 u(i) = 0;

30 couplode = @(t,x) [x(2);...

31 ((L*(x(4)ˆ2)*cos(x(3)))+(L*u(i)*sin(x(3)))...

32 -(L*u(i)*x(1)*cos(x(3)))+(L*x(1)*(x(4)ˆ2)*sin(x(3)))...

33 -(g*x(1)/L5));...

34 x(4); ...

35 u(i)];

36 [t2,y2] = ode45(couplode, [tp tp+t gap], ...

37 [y1(end,1),y1(end,2),y1(end,3),y1(end,4)]);

38

39 elseif t(i)>tp+t gap & t(i)≤t tot

40 u(i) = -A;

41 couplode = @(t,x) [x(2);...

42 ((L*(x(4)ˆ2)*cos(x(3)))+(L*u(i)*sin(x(3)))...

43 -(L*u(i)*x(1)*cos(x(3)))+(L*x(1)*(x(4)ˆ2)*sin(x(3)))...

44 -(g*x(1)/L5));...

45 x(4); ...

46 u(i)];

47 [t3,y3] = ode45(couplode, [tp+t gap t tot],...

48 [y2(end,1),y2(end,2),y2(end,3),y2(end,4)]);

49

50 elseif t(i)>t tot

51 u(i) = 0;

52 couplode = @(t,x) [x(2);...

53 ((L*(x(4)ˆ2)*cos(x(3)))+(L*u(i)*sin(x(3)))...

54 -(L*u(i)*x(1)*cos(x(3)))+(L*x(1)*(x(4)ˆ2)*sin(x(3)))...

55 -(g*x(1)/L5));...

56 x(4); ...
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57 u(i)];

58 [t4,y4] = ode45(couplode, [t tot 50], ...

59 [y3(end,1),y3(end,2),y3(end,3),y3(end,4)]);

60 end

61 end

62

63 tx = [t1;t2;t3;t4];

64 y = [y1;y2;y3;y4];

65 y = y*180/pi;

66

67 displacement = min(y(:,3))

68 y residual = y(find(tx==t tot)+1:end,:);

69 max resid radial = max(y residual(:,1))

70

71

72 % figure(1)

73 % plot(tx,y(:,1))

74 % xlabel('Time (s)')

75 % ylabel('Radial Residual Swinging Angle (deg)')

Listing A.14: Forward Tip-over Analysis for the Case of Boom Luffing Motion (m4 is

the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward tip-over, ...

this is done

3 % for three values of moveable counterweight mass (Boom Luffing ...

Motion)

4

5 clear

6
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7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 102; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 50; % Length of payload hoist [m]

15 L4 min = 0; % Minimum position of moveable ...

counterweight [m]

16 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

17 % Range of allowed locations for counterwieght [m]

18 L4 range = linspace(L4 min,L4 max,500);

19 % Other dimensions

20 w = 8.4; % Width of base [m]

21 h = 2.45; % Height of base [m]

22 % Mass parameters

23 m1 = 125; % Mass of Car Body [tons]

24 m2 = 60; % Mass of boom [tons]

25 m3 = 12.5; % Mass of mast [tons]

26 m4i = [150 200 300]; % Different masses of moveable ...

counterweight [tons]

27 m4 fixed = 240; % Mass of fixed counterweight [tons]

28 m5 = 125 ; % 110, 125, 140, Mass of Payload [tons]

29 % Angles

30 p1 = 62*pi/180; % Boom Luffing Angle [rad]

31 B = linspace(0,pi,50); % Slewing Angle [rad]

32 q = 11.27*pi/180; % Swing angle [rad]

33

34 %% Calculating minimum location of counterweight to ensure safety

35
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36 for k=1:length(m4i) % Loop repeats for each value of m4

37 m4 = m4i(k);

38 for i=1:length(B) % Loop repeats for every slew angle

39 for j = length(L4 range):-1:1 % Loop repeats for every ...

value of L4

40 L4 = L4 range(j);

41 p2 = acos(L4/L3); % Mast angle

42 % Set up coordinate systems for mass centers

43 c1 = [0 0 h/2]'; % Car Body mass center

44 c2 = [L2*cos(p1)*cos(B(i))/2,...

45 L2*cos(p1)*sin(B(i))/2,...

46 (L2*sin(p1)/2)+h]'; % Boom mass center

47 c3 = [-L3*cos(p2)*cos(B(i))/2,...

48 -L3*cos(p2)*sin(B(i))/2,...

49 (L3*sin(p2)/2)+h]'; % Mast mass center

50 c4 = [-L4*cos(B(i)),...

51 -L4*sin(B(i)), h]'; % Moving counterweight mass center

52 c4 fixed = [-7*cos(B(i)),...

53 -7*sin(B(i)), 3]'; % Fixed counterweight mass center

54 c5 = [(L2*cos(p1)+L5*sin(q))*cos(B(i)),...

55 (L2*cos(p1)+L5*sin(q))*sin(B(i)),...

56 L2*sin(p1)+h-L5*cos(q)]' ; % Payload mass center

57

58 % Forces:

59 G = [0 0 -1]'; % Direction of gravitational force

60 f1 = m1*g*G; % Weight of car body

61 f2 = m2*g*G; % Weight of boom

62 f3 = m3*g*G; % Weight of mast

63 f4 = m4*g*G; % Weight of moveable counterweight

64 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

65 f5 = m5*g*G; % Weight of payload

66
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67 % Instantaneous inertial location of the ith ground contact point

68 p01 = [-L1/2 w/2 0]';

69 p02 = [L1/2 w/2 0]';

70 p03 = [L1/2 -w/2 0]';

71 p04 = [-L1/2 -w/2 0]';

72

73 % ith tip-over mode axis

74 a1 = p02-p01;

75 a2 = p03-p02;

76 a3 = p04-p03;

77 a4 = p01-p04;

78

79 % Expressing each ith tip-over mode axis as a unit vector

80 a11 = -a1/norm(a1);

81 a22 = -a2/norm(a2);

82 a33 = a3/norm(a3);

83 a44 = -a4/norm(a4);

84

85 % Deciding which is the tip-over axis based on the value of the ...

slew angle

86 theta1 = atan((w/2)/(L1/2));

87 theta2 = pi-theta1;

88 %---------------------------------------------------------------------

89 if B(i)<theta1 % Tip over axis is a2

90 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

91 % Vectors pointing from mass centers to the point on a2

92 r1a = c1-pa2;

93 r2a = c2-pa2;

94 r3a = c3-pa2;

95 r4a = c4-pa2;

96 r4a fixed = c4 fixed-pa2;

97 r5a = c5-pa2;
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98

99 % Calculating sum of moments about axis a2:

100 M2(i) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

101 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

102 dot(a22,cross(r4a fixed,f4 fixed))+dot(a22,cross(r5a,f5));

103

104 if M2(i)>0 % Loop chooses value of L4 to prevent tip-over

105 L4 long(k,i)=L4;

106 break

107 end

108 end

109 %---------------------------------------------------------------------

110 if B(i)≥theta1 && B(i)≤theta2 % Tip over axis is a1

111 pa1 = [0 w/2 0]'; % Location of a point on axis a1

112 % Vectors pointing from mass centers to the point on a1

113 r1a = c1-pa1;

114 r2a = c2-pa1;

115 r3a = c3-pa1;

116 r4a = c4-pa1;

117 r4a fixed = c4 fixed-pa1;

118 r5a = c5-pa1;

119

120 % Calculating sum of moments about axis a1:

121 M1(i) = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

122 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

123 dot(a11,cross(r4a fixed,f4 fixed))+dot(a11,cross(r5a,f5));

124

125 if M1(i)>0 % Loop chooses value of L4 to prevent tip-over

126 L4 long(k,i)=L4;

127 break

128 end

129 end
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130 %---------------------------------------------------------------------

131 if B(i)>theta2 % Tip over axis is a4

132 pa4 = [-L1/2 0 0]'; % Location of a point on axis a4

133 % Vectors pointing from mass centers to the point on a4

134 r1a = c1-pa4;

135 r2a = c2-pa4;

136 r3a = c3-pa4;

137 r4a = c4-pa4;

138 r4a fixed = c4 fixed-pa4;

139 r5a = c5-pa4;

140

141 % Calculating sum of moments about axis a4:

142 M4(i) = dot(a44,cross(r1a,f1))+dot(a44,cross(r2a,f2))+...

143 dot(a44,cross(r3a,f3))+dot(a44,cross(r4a,f4))+...

144 dot(a44,cross(r4a fixed,f4 fixed))+dot(a44,cross(r5a,f5));

145

146 if M4(i)>0

147 L4 long(k,i)=L4;

148 break

149 end

150 end

151 end

152 end

153 end

154

155 %% Plotting

156 figure

157 for k = 1:length(m4i)

158 x = [B,B];

159 y = [L4 long(k,:),-fliplr(L4 long(k,:))];

160 polar(x,y)

161 xlabel('Slew Angle \beta [deg]')
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162 ylabel('Counterweight Position [m]')

163 legend('m 4 = 150 t','m 4 = 200 t','m 4 = 300 t')

164 hold on

165 end

Listing A.15: Simulation of Payload Swing Angle Resulting from Slewing Motion of

the Tower Crane

1 % This code is used to simulate the behavior of the tower crane, to

2 % compare it with the results obtained in the experiment.

3

4 clear

5 R = .908; % Radius of Slewing [m]

6 L5 = .902; % Hoist Length [m]

7 g = 9.81; % Gravitational Acceleration [m/sˆ2]

8 t gap = 2.272; % Time between the 2 Acc. Pulses [s]

9 tp = .728; % Acceleration Pulse Duration [s]

10 t tot = t gap+(2*tp); % Total Command Time [s]

11 A = 0.482; % Slewing Acc. Amplitude [rad/sˆ2]

12 t = [0:0.01:15]; % Simulation Time Interval [s]

13 %---------------------------------------------------------------------

14 % Solving the system of coupled differential equations

15 for i = 1:length(t)

16 if t(i)≤tp

17 u(i)=A;

18 couplode = @(t,x) [x(2);...

19 (((R/L5)*cos(x(1))*x(6)ˆ2)...

20 +((R/L5)*u(i)*sin(x(1))*sin(x(3)))...

21 -(2*x(4)*x(6)*(cos(x(1))ˆ2)*cos(x(3)))...

22 -(u(i)*sin(x(3)))+(sin(x(1))...

23 *(cos(x(3))ˆ2)*cos(x(1))*x(6)ˆ2)...

24 -((g/L5)*sin(x(1))*cos(x(3)))-...
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25 (cos(x(1))*sin(x(1))*x(4)ˆ2));...

26 x(4); ...

27 (((R/L5)*u(i)*cos(x(3))/cos(x(1)))...

28 +(2*x(6)*x(2)*cos(x(1))*cos(x(3)))...

29 +(u(i)*sin(x(1))*cos(x(3))/cos(x(1)))...

30 +(sin(x(3))*cos(x(1))*cos(x(3))*x(6)ˆ2)...

31 +(2*sin(x(1))*x(2)*x(4)/cos(x(1)))...

32 -((g/L5)*sin(x(3))/cos(x(1))));...

33 x(6);...

34 u(i)];

35 [t1,y1] = ode45(couplode, [0 tp], [1;1;1;1;1;1]*10ˆ-8);

36

37 elseif t(i)>tp & t(i)≤tp+t gap

38 u(i) = 0;

39 couplode = @(t,x) [x(2);...

40 (((R/L5)*cos(x(1))*x(6)ˆ2)...

41 +((R/L5)*u(i)*sin(x(1))*sin(x(3)))...

42 -(2*x(4)*x(6)*(cos(x(1))ˆ2)*cos(x(3)))...

43 -(u(i)*sin(x(3)))+(sin(x(1))...

44 *(cos(x(3))ˆ2)*cos(x(1))*x(6)ˆ2)...

45 -((g/L5)*sin(x(1))*cos(x(3)))-...

46 (cos(x(1))*sin(x(1))*x(4)ˆ2));...

47 x(4); ...

48 (((R/L5)*u(i)*cos(x(3))/cos(x(1)))...

49 +(2*x(6)*x(2)*cos(x(1))*cos(x(3)))...

50 +(u(i)*sin(x(1))*cos(x(3))/cos(x(1)))...

51 +(sin(x(3))*cos(x(1))*cos(x(3))*x(6)ˆ2)...

52 +(2*sin(x(1))*x(2)*x(4)/cos(x(1)))...

53 -((g/L5)*sin(x(3))/cos(x(1))));...

54 x(6);...

55 u(i)];

56 [t2,y2] = ode45(couplode, [tp tp+t gap], ...
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57 [y1(end,1),y1(end,2),y1(end,3),y1(end,4),...

58 y1(end,5),y1(end,6)]);

59

60 elseif t(i)>tp+t gap & t(i)≤t tot

61 u(i) = -A;

62 couplode = @(t,x) [x(2);...

63 (((R/L5)*cos(x(1))*x(6)ˆ2)...

64 +((R/L5)*u(i)*sin(x(1))*sin(x(3)))...

65 -(2*x(4)*x(6)*(cos(x(1))ˆ2)*cos(x(3)))...

66 -(u(i)*sin(x(3)))+(sin(x(1))...

67 *(cos(x(3))ˆ2)*cos(x(1))*x(6)ˆ2)...

68 -((g/L5)*sin(x(1))*cos(x(3)))-...

69 (cos(x(1))*sin(x(1))*x(4)ˆ2));...

70 x(4); ...

71 (((R/L5)*u(i)*cos(x(3))/cos(x(1)))...

72 +(2*x(6)*x(2)*cos(x(1))*cos(x(3)))...

73 +(u(i)*sin(x(1))*cos(x(3))/cos(x(1)))...

74 +(sin(x(3))*cos(x(1))*cos(x(3))*x(6)ˆ2)...

75 +(2*sin(x(1))*x(2)*x(4)/cos(x(1)))...

76 -((g/L5)*sin(x(3))/cos(x(1))));...

77 x(6);...

78 u(i)];

79 [t3,y3] = ode45(couplode, [tp+t gap t tot],...

80 [y2(end,1),y2(end,2),y2(end,3),y2(end,4),...

81 y2(end,5),y2(end,6)]);

82

83 elseif t(i)>t tot

84 u(i) = 0;

85 couplode = @(t,x) [x(2);...

86 (((R/L5)*cos(x(1))*x(6)ˆ2)...

87 +((R/L5)*u(i)*sin(x(1))*sin(x(3)))...

88 -(2*x(4)*x(6)*(cos(x(1))ˆ2)*cos(x(3)))...
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89 -(u(i)*sin(x(3)))+(sin(x(1))...

90 *(cos(x(3))ˆ2)*cos(x(1))*x(6)ˆ2)...

91 -((g/L5)*sin(x(1))*cos(x(3)))-...

92 (cos(x(1))*sin(x(1))*x(4)ˆ2));...

93 x(4); ...

94 (((R/L5)*u(i)*cos(x(3))/cos(x(1)))...

95 +(2*x(6)*x(2)*cos(x(1))*cos(x(3)))...

96 +(u(i)*sin(x(1))*cos(x(3))/cos(x(1)))...

97 +(sin(x(3))*cos(x(1))*cos(x(3))*x(6)ˆ2)...

98 +(2*sin(x(1))*x(2)*x(4)/cos(x(1)))...

99 -((g/L5)*sin(x(3))/cos(x(1))));...

100 x(6);...

101 u(i)];

102 [t4,y4] = ode45(couplode, [t tot 15], ...

103 [y3(end,1),y3(end,2),y3(end,3),y3(end,4),...

104 y3(end,5),y3(end,6)]);

105 end

106 end

107

108 tx = [t1;t2;t3;t4];

109 y = [y1;y2;y3;y4];

110 y = y*180/pi;

111

112 displacement = max(y(:,5))

113 y residual = y(find(tx==t tot)+1:end,:);

114 max resid radial = max(y residual(:,1))

115 max resid tangential = max(y residual(:,3))

116

117 figure(1)

118 plot(tx,y(:,1))

119 xlabel('Time (s)')

120 ylabel('Radial Residual Swinging Angle (deg)')
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121

122 figure(2)

123 plot(tx,y(:,3))

124 xlabel('Time (s)')

125 ylabel('Tangential Residual Swinging Angle (deg)')

Listing A.16: Simulation of Payload Swing Angle Resulting from Boom Slewing Mo-

tion

1 % This code is used to calculate the radial and tangential swinging

2 % angles of the payload carried by a crawler crane for boom slewing

3

4 clear

5 R = 102*cos(70*pi/180); % Radius of Slewing [m]

6 L5 = 70; % Hoist Length [m]

7 g = 9.81; % Gravitational Acceleration ...

[m/sˆ2]

8 t gap = 20.5; % Time between the 2 Acc. ...

Pulses [s]

9 t tot = t gap+2; % Total Command Time [s]

10 tp = 1; % Acceleration Pulse Duration [s]

11 t tot = t gap+(2*tp); % Total Command Time [s]

12 A = 0.0733; % Slewing Acc. Amplitude [rad/sˆ2]

13 t = [0:0.1:150]; % Simulation Time Interval [s]

14 %---------------------------------------------------------------------

15 % Solving the system of coupled differential equations

16 for i = 1:length(t)

17 if t(i)≤tp

18 u(i)=A;

19 couplode = @(t,x) [x(2);...

20 (((R/L5)*cos(x(1))*x(6)ˆ2)...

21 +((R/L5)*u(i)*sin(x(1))*sin(x(3)))...
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22 -(2*x(4)*x(6)*(cos(x(1))ˆ2)*cos(x(3)))...

23 -(u(i)*sin(x(3)))+(sin(x(1))...

24 *(cos(x(3))ˆ2)*cos(x(1))*x(6)ˆ2)...

25 -((g/L5)*sin(x(1))*cos(x(3)))-...

26 (cos(x(1))*sin(x(1))*x(4)ˆ2));...

27 x(4); ...

28 (((R/L5)*u(i)*cos(x(3))/cos(x(1)))...

29 +(2*x(6)*x(2)*cos(x(1))*cos(x(3)))...

30 +(u(i)*sin(x(1))*cos(x(3))/cos(x(1)))...

31 +(sin(x(3))*cos(x(1))*cos(x(3))*x(6)ˆ2)...

32 +(2*sin(x(1))*x(2)*x(4)/cos(x(1)))...

33 -((g/L5)*sin(x(3))/cos(x(1))));...

34 x(6);...

35 u(i)];

36 [t1,y1] = ode45(couplode, [0 tp], [1;1;1;1;1;1]*10ˆ-8);

37

38 elseif t(i)>tp & t(i)≤tp+t gap

39 u(i) = 0;

40 couplode = @(t,x) [x(2);...

41 (((R/L5)*cos(x(1))*x(6)ˆ2)...

42 +((R/L5)*u(i)*sin(x(1))*sin(x(3)))...

43 -(2*x(4)*x(6)*(cos(x(1))ˆ2)*cos(x(3)))...

44 -(u(i)*sin(x(3)))+(sin(x(1))...

45 *(cos(x(3))ˆ2)*cos(x(1))*x(6)ˆ2)...

46 -((g/L5)*sin(x(1))*cos(x(3)))-...

47 (cos(x(1))*sin(x(1))*x(4)ˆ2));...

48 x(4); ...

49 (((R/L5)*u(i)*cos(x(3))/cos(x(1)))...

50 +(2*x(6)*x(2)*cos(x(1))*cos(x(3)))...

51 +(u(i)*sin(x(1))*cos(x(3))/cos(x(1)))...

52 +(sin(x(3))*cos(x(1))*cos(x(3))*x(6)ˆ2)...

53 +(2*sin(x(1))*x(2)*x(4)/cos(x(1)))...
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54 -((g/L5)*sin(x(3))/cos(x(1))));...

55 x(6);...

56 u(i)];

57 [t2,y2] = ode45(couplode, [tp tp+t gap], ...

58 [y1(end,1),y1(end,2),y1(end,3),y1(end,4),...

59 y1(end,5),y1(end,6)]);

60

61 elseif t(i)>tp+t gap & t(i)≤t tot

62 u(i) = -A;

63 couplode = @(t,x) [x(2);...

64 (((R/L5)*cos(x(1))*x(6)ˆ2)...

65 +((R/L5)*u(i)*sin(x(1))*sin(x(3)))...

66 -(2*x(4)*x(6)*(cos(x(1))ˆ2)*cos(x(3)))...

67 -(u(i)*sin(x(3)))+(sin(x(1))...

68 *(cos(x(3))ˆ2)*cos(x(1))*x(6)ˆ2)...

69 -((g/L5)*sin(x(1))*cos(x(3)))-...

70 (cos(x(1))*sin(x(1))*x(4)ˆ2));...

71 x(4); ...

72 (((R/L5)*u(i)*cos(x(3))/cos(x(1)))...

73 +(2*x(6)*x(2)*cos(x(1))*cos(x(3)))...

74 +(u(i)*sin(x(1))*cos(x(3))/cos(x(1)))...

75 +(sin(x(3))*cos(x(1))*cos(x(3))*x(6)ˆ2)...

76 +(2*sin(x(1))*x(2)*x(4)/cos(x(1)))...

77 -((g/L5)*sin(x(3))/cos(x(1))));...

78 x(6);...

79 u(i)];

80 [t3,y3] = ode45(couplode, [tp+t gap t tot],...

81 [y2(end,1),y2(end,2),y2(end,3),y2(end,4),...

82 y2(end,5),y2(end,6)]);

83

84 elseif t(i)>t tot

85 u(i) = 0;
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86 couplode = @(t,x) [x(2);...

87 (((R/L5)*cos(x(1))*x(6)ˆ2)...

88 +((R/L5)*u(i)*sin(x(1))*sin(x(3)))...

89 -(2*x(4)*x(6)*(cos(x(1))ˆ2)*cos(x(3)))...

90 -(u(i)*sin(x(3)))+(sin(x(1))...

91 *(cos(x(3))ˆ2)*cos(x(1))*x(6)ˆ2)...

92 -((g/L5)*sin(x(1))*cos(x(3)))-...

93 (cos(x(1))*sin(x(1))*x(4)ˆ2));...

94 x(4); ...

95 (((R/L5)*u(i)*cos(x(3))/cos(x(1)))...

96 +(2*x(6)*x(2)*cos(x(1))*cos(x(3)))...

97 +(u(i)*sin(x(1))*cos(x(3))/cos(x(1)))...

98 +(sin(x(3))*cos(x(1))*cos(x(3))*x(6)ˆ2)...

99 +(2*sin(x(1))*x(2)*x(4)/cos(x(1)))...

100 -((g/L5)*sin(x(3))/cos(x(1))));...

101 x(6);...

102 u(i)];

103 [t4,y4] = ode45(couplode, [t tot 150], ...

104 [y3(end,1),y3(end,2),y3(end,3),y3(end,4),...

105 y3(end,5),y3(end,6)]);

106 end

107 end

108

109 tx = [t1;t2;t3;t4];

110 y = [y1;y2;y3;y4];

111 y = y*180/pi;

112

113 displacement = max(y(:,5))

114 y residual = y(find(tx==t tot)+1:end,:);

115 max resid radial = max(y residual(:,1))

116 max resid tangential = max(y residual(:,3))

117
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118 figure(1)

119 plot(tx,y(:,1))

120 xlabel('Time (s)')

121 ylabel('Radial Residual Swinging Angle (deg)')

122

123 figure(2)

124 plot(tx,y(:,3))

125 xlabel('Time (s)')

126 ylabel('Tangential Residual Swinging Angle (deg)')

Listing A.17: Forward Tip-over Analysis for the Case of Boom Slewing Motion (m4

is the variable)

1 % This code calculates the counterweight displacement with ...

respect to

2 % different slew angles in order to prevent forward tip-over, ...

this is done

3 % for three values of moveable counterweight mass (Boom Luffing ...

Motion)

4

5 clear

6

7 %% Defining all parameters

8 g=9.8; % Gravitational acceleration [m/sˆ2]

9 % Defining Lengths of different components

10 L1 = 10.33; % Length of Base Body [m]

11 L2 = 102; % Length of boom [m]

12 L3 = 30; % Length of mast [m]

13 L4 fixed = 7; % Position of fixed counterweight [m]

14 L5 = 70; % Length of payload hoist [m]

15 L4 min = 0; % Minimum position of moveable ...

counterweight [m]
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16 L4 max = 100; % Maximum position of moveable ...

counterweight [m]

17 % Range of allowed locations for counterwieght [m]

18 L4 range = linspace(L4 min,L4 max,500);

19 % Other dimensions

20 w = 8.4; % Width of base [m]

21 h = 2.45; % Height of base [m]

22 % Mass parameters

23 m1 = 125; % Mass of Car Body [tons]

24 m2 = 60; % Mass of boom [tons]

25 m3 = 12.5; % Mass of mast [tons]

26 m4i = [150, 200, 300]; % Different masses of moveable ...

counterweight [tons]

27 m4 fixed = 240; % Mass of fixed counterweight [tons]

28 m5 = 156 ; % 110, 125, 140, Mass of Payload [tons]

29 % Angles

30 p1 = 70*pi/180; % Boom Luffing Angle [rad]

31 B = [6.30 8.4 10.5 12.6 14.7...

32 16.8 18.9 20.99 23.1 25.2 ...

33 27.3 29.4 31.5 33.6 35.7 ...

34 37.8 39.9 42 44.1 46.2 ...

35 48.3 50.4 52.5 54.6 56.7 ...

36 58.8 60.9 63 65.1 67.2 ...

37 69.3 71.4 73.5 75.6 77.7 ...

38 79.8 81.9 84 86.1 88.2]*pi/180; % Slewing Angle [rad]

39 q1i = [.17 .3 .47 .66 .89 ...

40 1.13 1.41 1.7 2 2.31 ...

41 2.64 2.97 3.3 3.63 3.95 ...

42 4.26 4.55 4.83 5.08 5.3 ...

43 5.48 5.58 5.67 5.77 5.83 ...

44 5.88 5.97 6.03 6.03 5.94 ...

45 5.77 5.54 5.3 5.12 4.97 ...
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46 4.86 4.74 4.67 4.64 4.66]*pi/180; % Radial Swing angle [rad]

47 q2i = [3.06 4.04 4.97 5.86 6.69 ...

48 7.45 8.14 8.78 9.32 9.8 ...

49 10.18 10.47 10.67 10.83 10.86...

50 10.76 10.65 10.41 10.06 9.64...

51 9.18 8.64 8.02 7.36 6.66 ...

52 5.96 5.43 4.94 4.53 4.22 ...

53 4.01 3.92 3.93 4.12 4.33 ...

54 4.51 4.63 4.66 4.65 4.64]*pi/180; % Tangential Swing ...

angle [rad]

55

56 %% Calculating minimum location of counterweight to ensure safety

57

58 for k=1:length(m4i) % Loop repeats for each value of m4

59 m4 = m4i(k);

60 for i=1:length(B) % Loop repeats for every slew angle

61 q1 = q1i(i);

62 q2 = q2i(i);

63 syms L4

64 p2 = acos(L4/L3); % Mast angle

65 % Set up coordinate systems for mass centers

66 c1 = [0 0 h/2]'; % Car Body mass center

67 c2 = [L2*cos(p1)*cos(B(i))/2,...

68 L2*cos(p1)*sin(B(i))/2,...

69 (L2*sin(p1)/2)+h]'; % Boom mass center

70 c3 = [-L3*cos(p2)*cos(B(i))/2,...

71 -L3*cos(p2)*sin(B(i))/2,...

72 (L3*sin(p2)/2)+h]'; % Mast mass center

73 c4 = [-L4*cos(B(i)),...

74 -L4*sin(B(i)), h]'; % Moving counterweight mass center

75 c4 fixed = [-7*cos(B(i)),...

76 -7*sin(B(i)), 3]'; % Fixed counterweight mass center
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77 c5 = [(L2*cos(p1)+L5*sin(q1))*cos(B(i))+L5*sin(q2)*sin(B(i)),...

78 (L2*cos(p1)+L5*sin(q1))*sin(B(i))-L5*sin(q2)*cos(B(i)),...

79 L2*sin(p1)+h-L5*sqrt(1-(sin(q1))ˆ2-(sin(q2))ˆ2)]' ;

80 % Payload mass center

81

82 % Forces:

83 G = [0 0 -1]'; % Direction of gravitational force

84 f1 = m1*g*G; % Weight of car body

85 f2 = m2*g*G; % Weight of boom

86 f3 = m3*g*G; % Weight of mast

87 f4 = m4*g*G; % Weight of moveable counterweight

88 f4 fixed = m4 fixed*g*G; % Weight of fixed counterweight

89 f5 = m5*g*G; % Weight of payload

90

91 % Instantaneous inertial location of the ith ground contact point

92 p01 = [-L1/2 w/2 0]';

93 p02 = [L1/2 w/2 0]';

94 p03 = [L1/2 -w/2 0]';

95 p04 = [-L1/2 -w/2 0]';

96

97 % ith tip-over mode axis

98 a1 = p02-p01;

99 a2 = p03-p02;

100 a3 = p04-p03;

101 a4 = p01-p04;

102

103 % Expressing each ith tip-over mode axis as a unit vector

104 a11 = -a1/norm(a1);

105 a22 = -a2/norm(a2);

106 a33 = a3/norm(a3);

107 a44 = -a4/norm(a4);

108
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109 % Deciding which is the tip-over axis based on the value of the ...

slew angle

110 theta1 = atan((w/2)/(L1/2));

111 theta2 = pi-theta1;

112 %---------------------------------------------------------------------

113 pa2 = [L1/2 0 0]'; % Location of a point on axis a2

114 % Vectors pointing from mass centers to the point on a2

115 r1a = c1-pa2;

116 r2a = c2-pa2;

117 r3a = c3-pa2;

118 r4a = c4-pa2;

119 r4a fixed = c4 fixed-pa2;

120 r5a = c5-pa2;

121

122 % Calculating sum of moments about axis a2:

123 equ = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

124 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))+...

125 dot(a22,cross(r4a fixed,f4 fixed))+...

126 dot(a22,cross(r5a,f5))==0;

127 L4 long = solve(equ,L4);

128 L4 long1(k,i) = double(vpa(L4 long));

129 if L4 long1(k,i)<0

130 L4 long1(k,i) = 0;

131 end

132 %---------------------------------------------------------------------

133 pa1 = [0 w/2 0]'; % Location of a point on axis a1

134 % Vectors pointing from mass centers to the point on a1

135 r1a = c1-pa1;

136 r2a = c2-pa1;

137 r3a = c3-pa1;

138 r4a = c4-pa1;

139 r4a fixed = c4 fixed-pa1;
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140 r5a = c5-pa1;

141

142 % Calculating sum of moments about axis a1:

143 equ = dot(a11,cross(r1a,f1))+dot(a11,cross(r2a,f2))+...

144 dot(a11,cross(r3a,f3))+dot(a11,cross(r4a,f4))+...

145 dot(a11,cross(r4a fixed,f4 fixed))+...

146 dot(a11,cross(r5a,f5))==0;

147 L4 long = solve(equ,L4);

148 L4 long2(k,i) = double(vpa(L4 long));

149 if L4 long2(k,i)<0

150 L4 long2(k,i) = 0;

151 end

152 %---------------------------------------------------------------------

153 end

154 end

155

156 %% Plotting

157 figure

158 for k = 1:length(m4i)

159 x = [B*180/pi];

160 y1 = [L4 long1(k,:)];

161 y2 = [L4 long2(k,:)];

162 plot(x,y1,x,y2)

163 xlabel('Slew Displacement [deg]')

164 ylabel('Counterweight Position [m]')

165 legend('m 4 = 150 t','m 4 = 200 t','m 4 = 300 t')

166 hold on

167 end

Listing A.18: Forward Tip-over Analysis for the Case of Tandem Cranes (φ1 is the

variable)
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1 % This code calculates the boom luffing angle and swinging angle ...

limits

2 % for two tandem cranes to prevent forward tipping-over

3

4 clear

5

6 %% Defining all parameters

7 g=9.8; % Gravitational acceleration [m/sˆ2]

8 % Defining Lengths of different components

9 L1 = 10.33; % Length of Base Body [m]

10 L2 = 102; % Length of boom [m]

11 L3 = 7; % Position of counterweight [m]

12 L4 = 80; % Length of payload hoist [m]

13 % Other dimensions

14 w = 8.4; % Width of base [m]

15 h = 2.45; % Height of base [m]

16 % Mass parameters

17 m1 = 125; % Mass of Car Body [tons]

18 m2 = 60; % Mass of boom [tons]

19 m3 = 160; % Mass of counterweight [tons]

20 m4 range = [120 170 220 270 320] ; % Mass of Payload [tons]

21 % Defining range of swinging angles [rad]

22 t range = [0:20]*pi/180;

23 x = [0:35];

24 syms p1

25

26 %% Calculating minimum luffing angle to ensure safety of crane A

27

28 for u = 1:length(m4 range)

29 m4 = m4 range(u);

30

31 %This loop repeats for all values of swing angle
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32 for k = 1:length(t range)

33 %t = 0.5*x(k)/L4;

34 t = t range(k);

35

36 % Set up coordinate systems for mass centers

37 c1 = [0 0 h/2]'; % Car Body mass center

38 c2 = [L2*cos(p1)/2,0,...

39 (L2*sin(p1)/2)+h]'; % Boom mass center

40 c3 = [-7,0,3]'; % Counterweight mass center

41 c4 = [L2*cos(p1),0,...

42 L2*sin(p1)+h]'; % Payload mass center

43

44 % Forces:

45 G = [0 0 -1]'; % Direction of gravitational ...

force

46 f1 = m1*g*G; % Weight of car body

47 f2 = m2*g*G; % Weight of boom

48 f3 = m3*g*G; % Weight of counterweight

49 D = [sin(t) 0 -cos(t)]'; % Direction of tension in ...

the chord

50 f4 = (.5*m4*g/cos(t))*D; % Tension in the chord

51

52 % Instantaneous inertial location of the ith ground contact point

53 p01 = [-L1/2 w/2 0]';

54 p02 = [L1/2 w/2 0]';

55 p03 = [L1/2 -w/2 0]';

56 p04 = [-L1/2 -w/2 0]';

57

58 % ith tip-over mode axis

59 a1 = p02-p01;

60 a2 = p03-p02;

61 a3 = p04-p03;
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62 a4 = p01-p04;

63

64 % Expressing each ith tip-over mode axis as a unit vector

65 a11 = -a1/norm(a1);

66 a22 = -a2/norm(a2);

67 a33 = -a3/norm(a3);

68 a44 = -a4/norm(a4);

69

70 % Tip over axis is a2

71 pa2 = [L1/2 0 0]'; % Location of a point on axis a4

72

73 % Vectors pointing from mass centers to the point on a2

74 r1a = c1-pa2;

75 r2a = c2-pa2;

76 r3a = c3-pa2;

77 r4a = c4-pa2;

78

79 % Calculating sum of moments about axis a2:

80 Ma(k) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

81 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))==0;

82 p1sol(:,k)=double(vpa(solve(Ma(k),p1)));

83

84 if p1sol(1,k)>0

85 p1fina(u,k)=p1sol(1,k);

86 else

87 p1fina(u,k)=p1sol(2,k);

88 end

89

90 p1fina = real(p1fina);

91 end

92 end

93
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94 for j=1:length(t range)

95 p1 max(j)=82;

96 p1 min(j)=43.5;

97 end

98

99 %% Calculating minimum luffing angle to ensure safety of crane B

100

101 for u=1:length(m4 range)

102 m4=m4 range(u);

103

104 %This loop repeats for all values of swing angle

105 for k = 1:length(t range)

106 %t = 0.5*x(k)/L4;

107 t = t range(k);

108

109 % Set up coordinate systems for mass centers

110 c1 = [0 0 h/2]'; % Car Body mass center

111 c2 = [L2*cos(p1)/2,0,...

112 (L2*sin(p1)/2)+h]'; % Boom mass center

113 c3 = [-7,0,3]'; % Counterweight mass center

114 c4 = [L2*cos(p1),0,...

115 L2*sin(p1)+h]'; % Payload mass center

116

117 % Forces:

118 G = [0 0 -1]'; % Direction of gravitational ...

force

119 f1 = m1*g*G; % Weight of car body

120 f2 = m2*g*G; % Weight of boom

121 f3 = m3*g*G; % Weight of counterweight

122 D = [-sin(t) 0 -cos(t)]'; % Direction of tension in ...

the chord

123 f4 = (.5*m4*g/cos(t))*D; % Tension in the chord
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124

125 % Instantaneous inertial location of the ith ground contact point

126 p01 = [-L1/2 w/2 0]';

127 p02 = [L1/2 w/2 0]';

128 p03 = [L1/2 -w/2 0]';

129 p04 = [-L1/2 -w/2 0]';

130

131 % ith tip-over mode axis

132 a1 = p02-p01;

133 a2 = p03-p02;

134 a3 = p04-p03;

135 a4 = p01-p04;

136

137 % Expressing each ith tip-over mode axis as a unit vector

138 a11 = -a1/norm(a1);

139 a22 = -a2/norm(a2);

140 a33 = -a3/norm(a3);

141 a44 = -a4/norm(a4);

142

143 % Tip over axis is a2

144 pa2 = [L1/2 0 0]'; % Location of a point on axis a4

145

146 % Vectors pointing from mass centers to the point on a2

147 r1a = c1-pa2;

148 r2a = c2-pa2;

149 r3a = c3-pa2;

150 r4a = c4-pa2;

151

152 % Calculating sum of moments about axis a2:

153 Mb(k) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

154 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))==0;

155 p1sol(:,k)=double(vpa(solve(Mb(k),p1)));
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156

157 if p1sol(1,k)>0

158 p1finb(u,k)=p1sol(1,k);

159 else

160 p1finb(u,k)=p1sol(2,k);

161 end

162

163 p1finb = real(p1finb);

164 end

165 end

166

167 p1fina=p1fina'*180/pi;

168 p1finb=p1finb'*180/pi;

169

170 figure

171 plot(t range*180/pi,p1fina,t range*180/pi,p1finb,...

172 t range*180/pi,p1 max)

173 xlabel('Swing Angle \theta (deg)')

174 ylabel('Boom Luffing Angle \phi 1 (deg)')

175 legend('\phi 1 of Crane A','\phi 1 of Crane B','Maximum \phi 1')

Listing A.19: Forward Tip-over Analysis for the Case of Tandem Cranes (m4 is the

variable)

1 % This code calculates the boom luffing angle and swinging angle ...

limits

2 % for two tandem cranes to prevent forward tipping-over

3

4 clear

5

6 %% Defining all parameters

7
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8 g=9.8; % Gravitational acceleration [m/sˆ2]

9

10 % Defining Lengths of different components

11 L1 = 10.33; % Length of Base Body [m]

12 L2 = 102; % Length of boom [m]

13 L3 = 7; % Position of counterweight [m]

14 L4 = 80; % Length of payload hoist [m]

15

16 % Other dimensions

17 w = 8.4; % Width of base [m]

18 h = 2.45; % Height of base [m]

19

20 % Mass parameters

21 m1 = 125; % Mass of Car Body [tons]

22 m2 = 60; % Mass of boom [tons]

23 m3 = 160; % Mass of counterweight [tons]

24 syms m4

25

26 % Defining range of swinging angles [rad]

27 t range = [0:20]*pi/180;

28 p1 range = [57 62 67 72 77]*pi/180;

29

30 %% Calculating minimum luffing angle to ensure safety of crane A

31 for u = 1:length(p1 range)

32

33 p1 = p1 range(u);

34

35 %This loop repeats for all values of swing angle

36 for k = 1:length(t range)

37 t = t range(k);

38

39 % Set up coordinate systems for mass centers
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40 c1 = [0 0 h/2]'; % Car Body mass center

41 c2 = [L2*cos(p1)/2,0,...

42 (L2*sin(p1)/2)+h]'; % Boom mass center

43 c3 = [-7,0,3]'; % Counterweight mass center

44 c4 = [L2*cos(p1),0,...

45 (L2*sin(p1))+h]'; % Payload mass center

46

47 % Forces:

48 G = [0 0 -1]'; % Direction of gravitational ...

force

49 f1 = m1*g*G; % Weight of car body

50 f2 = m2*g*G; % Weight of boom

51 f3 = m3*g*G; % Weight of counterweight

52 D = [sin(t) 0 -cos(t)]'; % Direction of tension in ...

the chord

53 f4 = (.5*m4*g/cos(t))*D; % Tension in the chord

54

55 % Instantaneous inertial location of the ith ground contact point

56 p01 = [-L1/2 w/2 0]';

57 p02 = [L1/2 w/2 0]';

58 p03 = [L1/2 -w/2 0]';

59 p04 = [-L1/2 -w/2 0]';

60

61 % ith tip-over mode axis

62 a1 = p02-p01;

63 a2 = p03-p02;

64 a3 = p04-p03;

65 a4 = p01-p04;

66

67 % Expressing each ith tip-over mode axis as a unit vector

68 a11 = -a1/norm(a1);

69 a22 = -a2/norm(a2);
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70 a33 = -a3/norm(a3);

71 a44 = -a4/norm(a4);

72

73 % Tip over axis is a2

74 pa2 = [L1/2 0 0]'; % Location of a point on axis a4

75

76 % Vectors pointing from mass centers to the point on a2

77 r1a = c1-pa2;

78 r2a = c2-pa2;

79 r3a = c3-pa2;

80 r4a = c4-pa2;

81

82 % Calculating sum of moments about axis a2:

83 Ma(k) = dot(a22,cross(r1a,f1))+dot(a22,cross(r2a,f2))+...

84 dot(a22,cross(r3a,f3))+dot(a22,cross(r4a,f4))==0;

85 m4sola(u,k)=double(vpa(solve(Ma(k),m4)));

86

87 end

88 end

89

90 m4sola=m4sola';

91

92 t range=t range'*180/pi;

93 plot(t range,m4sola)

94 xlabel('Swing Angle \theta (deg)')

95 ylabel('Payload Mass (tons)')
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