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SUMMARY

The purpose of this thesis is to improve predictions of irradiation harden-

ing in metals with a focus on coarse-graining via meso-scale simulations. Increasing

hardness and decreasing in ductility in nuclear reactor pressure vessel steel is the

limiting factor of nuclear reactor life, and accurately predicting reactor life is of the

utmost importance for the safe operation of nuclear facilities. This is an inherently

multi-scale problem with primary damage occurring at the atomic scale and its effects

propagating across ten orders of magnitude in length and time scale to changes in

macroscopic material properties, which must be reflected in its methods of predic-

tion. To achieve this goal, this thesis develops two novel approaches to simulate the

motion of dislocations in irradiated α-iron. First, a dislocation dynamics simulation

coarse-graining insight from atomistic dislocation-defect simulations is used to guide

the selection of proposed constitutive models. Several studies investigating the effect

of size distribution show that the mean defect size can be used with the selected

models to predict material hardening without a complex treatment for the defect size

distribution. The hardening effect of the commonly observed defect types are found

independently and a superposition principle is proposed for materials with both de-

fect types. Second, a link to transition state theory and thermally activated reactions

is established using a new method augmenting a discrete dislocation dynamics sim-

ulations with the nudged elastic band method to characterise the minimum energy

pathways of dislocation reactions. This development enables calculations of activa-

tion energy for dislocation events using a continuum method as well as the numerical

calculations of dislocation attempt frequency. The thesis concludes with an extension

to the analysis of coarse-graining unit events to large scale dislocation-obstacle bypass
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CHAPTER I

INTRODUCTION

Mastering atomic energy is one of the greatest accomplishments of mankind. Har-

nessing such power for peaceful applications provides the most environmentally sus-

tainable, large-scale source of electricity to date in the form of nuclear fission power

reactors, and developments regarding nuclear fusion show potential to further revolu-

tionize energy production. Fission-based nuclear power provides an ideal pathway to

transition from highly-polluting hydrocarbon based energy sources to future fusion

energy. Such stable sources of electricity are necessary to augment far more volatile

sustainable energy sources such as solar and wind energy. The near-term future of

nuclear energy is clear and certain, with 440 reactors currently operating and 66 reac-

tors under construction [2]. However, nuclear fission power reactors also present one

of the most extreme environments for structural materials. With internal conditions

characterised by high temperature (300◦C), high internal pressure (≈ 17 MPa) [158],

complex water chemistry, and irradiation, the exceptional demands on structural ma-

terials in nuclear reactors are clear. The design objectives of the pressure vessel are

equally exigent: operational lifetimes are expected to be on the order of 50 years and

the pressure vessel must contain all nuclear material in the event of an accident. Even

further, these two requirements are intrinsically linked; the operational lifetime of a

nuclear reactor is tied directly to the degradation of mechanical properties caused

by irradiation. When the pressure vessel is no longer guaranteed to remain intact in

extenuating circumstances, the reactor must be decommissioned.

Irradiation has long been known to cause hardening and embrittlement in metals

[40, 157]. Embrittlement poses a critical threat to reactor pressure vessels, and is
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currently a limiting factor for reactor life [74]. In the event of a power excursion

and steam explosion, the pressure vessel must deform to absorb energy rather than

fracture and release radioactive material. Therefore, ductility and toughness are

key properties governing the lifetime of the reactor pressure vessel. First generation

nuclear reactors are now approaching their design lifetimes and because of their high

capital cost, lifetime extension is of significant interest. Accurately predicting material

properties and mechanical behaviour of an irradiated structure is an essential part

of this process, as well as for the design of future nuclear facilities. This concept is

the central theme of this thesis: starting from a bottom-up approach at the at scale

approaching the atomic level for dislocation-defect interaction and moving to higher

length and time scales to predict properties for engineering materials.

Nuclear energy can be harnessed to produce electricity by capturing the ther-

mal energy produced during nuclear decay reactions, most often done using water

as the principle coolant. The heat energy is used to produce steam, which is fed

through turbines to produce mechanical followed by electrical energy. An archetypi-

cal modern power reactor is a pressurized water reactor (PWR), which contains two

independent water circuits. The nuclear core is fully immersed in water maintained

at high pressure (≈ 17 MPa) to prevent boiling and increase thermal efficiency. This

water is circulated through a heat exchanger with a second loop of water under lower

pressure, which is then boiled and the steam circulated through a turbine. Such a

configuration compartmentalizes irradiated materials to a limited physical area. The

principle nuclear reaction in light-water PWRs relies on uranium fission reactions.

When a uranium-235 atom captures a neutron, it most often results in fission and

produces an average of 2.4 neutrons and 200 MeV of energy [110]. The probability

that a ballistic neutron interacts with a U235 nucleus is dependent on the interaction

cross-section for neutron capture, which itself is dependent on neutron velocity. The

interaction probability has a complex dependence on neutron energy and increases
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significantly at thermal neutron energies (on the order of 3
2
kBT , where kB is the

Boltzmann constant and T is the absolute temperature.). Thus, the balance between

neutron energy and degree of uranium enrichment play a significant role on the na-

ture of the nuclear reaction. PWRs use uranium that has been enriched from its

natural concentration of 0.72% to 3-5% [106] with a light water coolant/moderator

(typical water), whereas another design of reactor (CANDU type) uses a heavy water

coolant/moderator (D2O) to slow neutrons [98] enabling this reactor type to use nat-

ural uranium as the fuel. Reactors designed to operate with neutron energy greatly

higher than the thermal range are referred to as “fast” reactors. The next genera-

tion of nuclear reactors favour fast reactors more heavily than the current generation

because of more favourable nuclear reactions (such as fuel breeding and waste burn-

ing) as well has high thermal efficiency. The neutron energy is a characteristic of

paramount importance for both the nuclear reaction as well as for interactions with

the surrounding structure; the neutron energy spectrum has direct consequences on

the damage caused by neutrons in a structural material and therefore must be taken

into account in irradiation damage predictions.

1.1 Irradiation Damage

1.1.1 Primary Irradiation Damage

When an energetic particle such as a neutron, ion, or electron enters a crystal lattice

and strikes a lattice atom, the lattice atom may be freed and become ballistic itself

if the available energy in the reaction exceeds the threshold energy for displacement.

If this atom is freed, it is known as the primary knock-on atom (PKA) and such

an event occurs when the incident particle has sufficient energy to overcome the

threshold energy to free the atom from its lattice site. The original particle and the

newly freed lattice atoms continue to collide with and free additional lattice atoms

until the particles’ energy falls below the threshold displacement energy.
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While collisions between the incoming particle and lattice atoms can often be

approximated as elastic, ballistic atoms are subject to electronic interactions dissi-

pating a significant amount of energy for even small kinetic energy levels [9]. This

series of collisions and the resulting damage is referred to as a displacement cascade,

because atoms are displaced from their lattice sites producing self-interstitial atom

and vacancy pairs (Frenkel pairs) following a cascade of collisions. For neutrons with

an energy on the order of 1 MeV, PKA energies are on the order of 20 keV and the

process for a single cascade takes place over the course of approximately 20 ps [187].

During an individual cascade, the temperature in the local region of the cascade spikes

and the material can be considered to be liquified during the cascade, but the material

quickly solidifies thereby freezing the defects into the structure. Molecular dynamics

simulations are well adapted to the length and time scales associated to irradiation

damage cascades and have been used to predict cascade formation in numerous ma-

terials [12, 10, 125, 200]. Irradiation damage in materials science is quantified using

displacements per atom (DPA), which is the average number of times every atom in

the lattice has been displaced from its original lattice site. A material with a DPA

of unity then indicates that every atom in the material has been displaced by irra-

diation. A typical PWR pressure vessel can be subjected to 1 DPA, whereas fusion

reactors are expected to experience 50-200 DPA [258] during an operational lifetime.

Following numerous cascades and a period of time for thermally driven diffusion

to occur, the point defects initially created in displacement cascades coalesce to form

larger defect clusters. Predicting how the density and morphology of these defects

evolve as a function of irradiation dose, dose rate, and temperature is beyond the

feasible simulation scales of atomistic calculations, and therefore the data from atom-

istic cascade simulations must be coarse-grained and input into higher scale models.

Coarse-graining can be accomplished by characterising the relevant defect statistics

from displacement cascades and using these as inputs to higher scale models. Two
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principle methods are used to simulate the annealing of cascade damage: object ki-

netic Monte Carlo (OKMC) and mean field rate theory (MFRT). OKMC is named

as such because it tracks individual objects (e.g. interstitial atoms) as a function of

time, and the kinetics are evolved using an Arrhenius type equation and a stochastic

method to predict defect diffusion and agglomeration [53, 20, 204, 129]. MFRT tech-

niques use a series of ordinary differential equations describing defect concentration

evolution [161, 19, 250, 119, 57] to predict deterministically how defects move and

combine to form larger defects. Both of these methods exist to predict the material

damage state following realistic degree of irradiation for predicting material harden-

ing. The defect sizes and densities must be validated against experiments, after which

such simulations can be used to provide inputs to higher scale models at arbitrary

irradiation levels. This input represents the second major step in scale transition for

predicting irradiation hardening.

1.1.2 Irradiated Material State

Irradiation damage is a function of many variables including irradiation type, rate,

and amount, temperature, and material. Representative experimental data is very

challenging to produce for several reasons. Experiments aiming to replicate reactor

conditions are ideally performed using neutron irradiation. However, producing neu-

tron radiation itself is a challenge, and is most often realized using high-flux research

reactors [37] or spallation [121] sources. Such experiments are costly, and render the

sample radioactive, which engenders numerous associated precautions and problems.

Self-ion irradiation [100] resolves concerns with radioactivity but results in different

irradiation damage [253]. Dual-beam experiments or helium implantation experi-

ments create even an even greater disparity from neutron irradiation, because voids

are stabilised and promoted by internal helium pressure [49]. Interstitial helium also

acts stabilise larger SIA clusters [123]. Spatially correlated void/bubble formation
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was also observed under dual beam (Fe, He) irradiation as seen in Figure 1c [28].

The only truly representative samples for a nuclear pressure vessel must be extracted

from the vessel itself. The studies used to inform the simulations in this thesis were

all performed using high-flux research reactors, particularly the works of Eldrup et.

al. [59], and Hernández-Mayoral and Gómez-Briceño [91].

The physical realization of irradiation damage following multiple displacement

cascades and time for anneal create larger defects whose form is material dependent.

For example, in FCC copper, stacking fault tetrahedra, voids, and self-interstitial

atom loops are experimentally observed [69, 196, 44, 59], whereas in BCC α-iron,

spherical voids and self-interstitial atom loops are observed (Figures 1a,1c) [59, 28, 91],

and in HCP zirconium, only void and self-interstitial atom loops are seen as shown

in Figure 1b [39].

The materials of greatest relevance for nuclear applications are α-iron, being the

principle constituent material of reactor pressure vessel steel [158], and zirconium,

because of its low neutron cross section. Zirconium is used as nuclear fuel cladding, so

it is replaced during refuelling and is subject to less demanding in-service mechanical

requirements. On the other hand, the integrity of the steel pressure is paramount to

the safe functioning of the reactor for its entire lifetime. The reactor is constructed

using several monolithic (>100 tons) forged components and large scale in-situ repairs

are effectively impossible. Therefore, this thesis focuses on advancing predictions of

the effect of irradiation on the mechanical properties of α-iron. First, the damage

state unique to this material system must be well established from which one may

consider its impact on mechanical behaviour. Experimental studies and atomistic

calculations have provided insight into the defect types, populations, and formation

mechanisms, which are crucial parameters to ensure that the studies in this thesis are

applicable to a physically relevant system.

Experimental studies on neutron-irradiated α-iron reveal a disparity in the SIA
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(a) SIA loops in α-iron under neutron irradi-
ation [91].

(b) Dislocation loops in Zr under neutron ir-
radiation [39].

(c) Spatially correlated bubble formation in α-iron un-
der dual beam irradiation [28].

Figure 1: Various irradiation defects in different material systems.
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loop/void densities and sizes as seen in Figures 2a, 2b, and 2c. Voids are on the order

of 100 times more numerous than SIA loops but much smaller in size. As shown in

Figure 2c, SIA loop sizes can be well-characterized using transmission electron mi-

croscopy (TEM). However, the vast majority of voids at the given irradiation levels

are below the TEM resolution threshold (≈ 2nm), so Eldrup et. al. applied a tech-

nique known as positron annihilation spectroscopy (PAS). This experimental method

injects positrons into the material, which penetrate up to 100 µm and annihilate with

electrons at a rate proportional to the electron density [58]. The moment of position-

electron annihilation can be precisely measured because it results in the production

of two 0.511 MeV γ-rays and the annihilation rate is proportional to the electron

density [58]. The positron population in a material containing voids will decay less

rapidly, which is reflected in the rate of γ-ray production. This method best suited

to materials subjected to neutron or self-ion irradiation, because any gas atoms (e.g.

helium) trapped in the voids strongly influences the positron lifetime [58]. PAS is

also complementary to TEM, because the positrons are localized to the void wall at

larger void sizes and the lifetime becomes insensitive to void size.

The dislocation character of SIA loops in α-iron is dominated by the sessile 〈001〉

type [130, 152]. At 300◦C under neutron irradiation, 86% of the loops are of 〈001〉

type [91] and the remainder of the loops are of the glissile 1/2 〈111〉 type. Glissile

dislocation loops have a low migration energy [246], and in the case of thin films,

were suspected to rapidly migrate to the free surfaces [130]. In the case of a bulk

materials, these loops may migrate to grain boundaries or other pinning points such

as interstitial alloying atoms. In this work, only 〈001〉 loops are considered.

In addition to the properties of the irradiation source, several material properties

also influence the degree of damage. Beyond the chemical composition and crystal

structure, the internal material geometry can influence the damage state because in-

ternal interfaces can act as defect sinks and catalysts for defect recombination. New
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(a) Void and SIA loop densities as a
function of dose in α-iron under neu-
tron irradiation.

(b) Void sizes as observed using
positron annihilation spectroscopy
in α-iron under neutron irradiation.

(c) SIA loop size distribution follow-
ing neutron irradiation. [91].

Figure 2: Experimentally observed irradiated state in α-iron [59, 91].
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classes of materials leveraging this self-healing phenomenon for high irradiation ap-

plications are under active research for both fission and future fusion reactors. Nano-

structured materials have an inherently high interface area to bulk volume, which

has spurred significant research into these materials. Oxide dispersion strengthened

alloys (ODS steels) [224, 103] contain nanometric (D ≈ 3-5 nm) Y2O3 oxide particles

acting as both defect recombination sites as well as barriers to dislocation motion,

thereby increasing the yield strength of the material. Nano-grained tungsten [223, 75]

is of particular interest for fusion applications given that it has the highest melting

point of any metal, and multilayered metallic laminate (MML) materials have shown

remarkable resistance to irradiation-induced damage in the case of ion irradiation

[136, 48], and greatly improved mechanical properties compared to the constituent

material bulk properties [239, 126]. A DDD study investigating the role of interfa-

cial dislocations on Cu/Nb mechanical properties is performed for this thesis and is

presented as an application of DDD in nano-structured material systems in Chapter

2.

1.2 Motivation and Objectives

Gliding dislocations are the principle carriers of plastic deformation in α-iron; conse-

quently, their motion governs many material properties such as yield point, ductility,

and fracture toughness. Irradiation defects on the nanometer length-scale interact

with gliding dislocations and impede their motion. Such interactions have direct and

profound consequences on the macroscopic material properties, as seen in Figure 3.

At even the lowest doses, 1000 times less than that of a fission reactor at the

end of its lifetime, the yield point increases and ductility decreases by ≈15% and by

0.72 dpa, the change is on the order of 300%. Predicting this dramatic shift in yield

point and ductility for any dose, dose rate, and temperature would be a revolutionary

advance for nuclear structure design and nuclear safety in general.
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Figure 3: Experiments show that yield strength increases and ductility decreases with
increasing irradiation dose in α-iron [59].

The microscopic interactions between irradiation-induced obstacles and gliding

dislocations occur over nanometres and picoseconds, yet directly influence macro-

scopic mechanical properties such as yield point and fracture toughness evolving over

the lifetime of a reactor. Spanning such a gulf of length and time scales requires a

multi-scale approach and advanced coarse-graining techniques. Therefore, the pur-

pose of this dissertation is to develop techniques enabling the prediction of mechanical

properties for materials subject to irradiation damage, starting from the scale of single

defect-dislocation interactions and moving towards creep predictions in bulk α-iron.

Dislocation-defect interactions represent a broad field of study in which irradiation

damage is a small subset. Many models predicting hardening from various types of de-

fects such as dislocation loops, attractive obstacles and non-attracting obstacles have

been published [191, 68, 107, 13]. The validity and predictive capabilities of several

models have been compared with mesoscopic simulations such line tension simulations
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[54], but these simulations lack physical fidelity because of certain assumptions such

as square arrays of defects or infinitesimal defect size [64, 54] in addition to excessive

oversimplification of the physical process in line tension simulations. Discrete dis-

location dynamics (DDD) studies with direct comparison to hardening models have

been very limited in scope with a single application to screw dislocation motion in

an atmosphere of 25nm glissile SIA loops [4]. Even further, comparison to a hard-

ening law with combinations of different defect types has only been considered from

a line tension perspective [54, 46]. Before parameters for these hardening models

can be extracted from experimental results or applied to predict the strength of an

irradiated structural material, the fundamental functional form of the models must

be shown to be predictive across a wide range of defect sizes and densities. In this

thesis, dislocation dynamics simulations are developed and informed using atomistic

calculations of defect strength for SIA loops and voids in α-iron. The most commonly

used hardening models are compared to DDD predictions in order to select the most

accurate models as well as determine their parameters, and the validity of applying

the mean size of a defect distribution to predict hardening is examined for both SIA

loops and voids.

Constitutive laws predicting irradiation-induced hardening from first principles

and hardening calculations performed by traditional dislocation dynamics simula-

tions provide valuable insight into the effect of irradiation on structural metals, but

both omit one crucial phenomenon: thermally activated processes. Thermal lattice

vibrations can impart sufficient energy, in combination with the energy from driving

stresses, that a dislocation can overcome an energy barrier for a characteristic process.

Given that thermally activated processes occur proportionally to the exponential of

the inverse of temperature [159], the temperature dependence for the activation of

such reactions is extremely strong. Using transition state theory and the Arrhenius
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equation, one can predict the rate of such reactions if the activation energy of the reac-

tion is known. Several numerical simulations exploiting this technique have been veri-

fied experimentally [53, 129]. Predicting thermally activated events is therefore highly

dependent on activation energy calculations. First-principles (analytical, DFT) and

atomistic methods have been the only methods employed to rigorously compute ac-

tivation energy barriers for microscopic state transitions such as dislocation-obstacle

bypass. However, significant computational requirements limit simulations to pro-

cesses involving small volumes and therefore restrict the possible range of phenomena

that can be considered. Atomistic simulations have only been performed for a dislo-

cation bypassing single defect in a periodic volume, which represents a square array

of defects. Limiting atomistic simulations to this basic geometry omits any investiga-

tion regarding the effect of nearest-neighbor defect configurations, such as asymmetric

spacing between defects and defects at different positions in the glide direction, that

can be significant for dislocation migration. Even further, most atomstic simulations

only consider a dislocation crossing the center of the defect or a highly limited num-

ber of configurations. Lastly, the activation energy for a dislocation-SIA loop/void

bypass process has never been published. All of these effects and more will be inves-

tigated using a new computational method employing discrete dislocation dynamics

(DDD) to represent the energy landscape of a dislocation interacting with SIA loops

using the continuum theory of defects. When the necessary approximations are valid,

simulations described using continuum formulations are desirable in terms of low com-

putational requirements and a direct connection to constitutive models. With this

method, it is possible to capture the evolution of activation energy for a unit process

as a function of numerous parameters that have never before been investigated. Fur-

thermore, the numerical methods that provide access to activation energy calculations

inherently provide access to the relaxed and activated reaction complexes. Using the

work of Vineyard [234], who extented the Arrhenius equation to N-body reactions
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in solid state physics, the attempt frequency for a process can be derived from the

modal frequencies of the relaxed and activated complexes. Determing the vibrational

characteristics of these two configurations using a Hessian analysis provides direct

access to the attempt frequency as well as the change in entropy for the reaction.

In a bulk material, a dislocation’s motion is impeded by numerous different ob-

stacles distributed in space, and simulating thermally activated motion demands in-

corporating the combined effect of an ensemble defects. Until now, simulations of

dislocation-irradiation defect interactions have been limited to unit processes in con-

fined environments, as atomistic calculations have been the only method capable of

simulating such phenomena. However, these simulations omits the spatial distribution

and correlation of defects arising in a complex heterogeneous microstructure. This

thesis extends activation energy calculations for dislocation-SIA loop interactions us-

ing NEB simulations on large volumes and representative defect microstructures en-

tirely unreachable using atomistic calculations. The calculated dislocation migration

activation energies compared to the Kocks transition state theory model for activation

energy stress dependence [104] and the distribution of expected activation energies is

derived.

1.3 Scope of the Thesis

The present Ph.D. thesis is dedicated to advancing predictions of irradiation hard-

ening for α-iron with an emphasis on coarse-graining and meso-scale material be-

haviour. Existing atomistics data for dislocation-irradiation defect interactions is

coarse-grained to study the influence of ensemble an ensemble of obstacles on macro-

scopic material behaviour and analyze the predictive capabilities of several irradiation

hardening models. The high temperature ranges seen in nuclear reactors motivates

an investigation into the role of thermal activation on material behaviour, first in the

unit case for dislocation-defect interactions followed by an investigation into if it is
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possible to transition the insight gained from the unit case to ensemble behaviour

with the goal of predicting macroscopic thermally activated material behaviour such

as creep. The thesis is organized as follows:

Chapter 1 details the significant numerical developments required to accomplish

the research goals set forth in this thesis. The studies performed herein rely on a

nodal discrete dislocation dynamics (DDD) code developed during the course of this

thesis. A review and analysis of atomistic dislocation-defect interaction simulations

is presented and coarse-grained for use with DDD simulations, and the details of

the integration with the DDD code are discussed. Simulating the reaction rates

of processes sensitive to thermal activation requires a determination of minimum

energy for the processes in question. Several established methods from the domain

of atomistics are presented, and the steps to augment a DDD code with one of these

methods is explained. A method to calculate the vibrational modes of a dislocation

using DDD is also presented.

Chapter 2 aims to calculate hardening in the athermal regime caused by irradiation-

induced defects and to use the results to evaluate the applicability of models developed

to predict such hardening. An atomistically informed DDD simulation is applied to

calculate the increase in yield strength caused by the presence of SIA loops and voids.

Calculations of mechanical strength for various defect types, densities, and sizes are

compared to strength predictions from three relevant hardening models, and a super-

position principle is proposed for materials containing several types of defects. The

validity of a mean size approach to predicting hardening caused by a distribution

of defect sizes, which has been used in experimental determination of hardening law

parameters [114, 21], is also considered.

In Chapter 3, a novel method for calculating the activation energy barriers for

dislocation processes is developed using a DDD simulation is augmented with nudged

elastic band method calculations. Applying a continuum formulation rather than
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atomstic calculations to calculate energy barriers enables far larger simulation volumes

as well as decreased computation times. The novel method is applied to characterise

energy barriers and to produce activation energy maps for a dislocation bypassing

an SIA loop in α-iron. The applicability of the phenomenological Kocks transition

state theory model [104] with regards to dislocation-obstacle activation energy is also

investigated. In addition to activation energy, the attempt frequency for a process

must be determined to predict the rate of a thermally activated process with the

Arrhenius equation. The vibrational behaviour of a dislocation is characterized, from

which one can determine the attempt frequency associated to an activation energy

barrier.

Chapter 4 presents a crucial step in scale transition to move from micro-scale

unit processes to macroscopic material behaviour. Leveraging the developments and

expertise gained in Chapter 3, the methods used to simulate dislocation unit processes

are extended to a dislocation migrating through an ensemble of SIA loops. Large scale

NEB simulations of a glide dislocation passing through an atmosphere of defects are

used to produce probability distributions for activation energy barriers over a range

of defect densities and sizes, which are compared to the distributions obtained using

unit process calculations. The insight gained is used to move towards the development

of a new constitutive equation.

Finally, Chapter 5 summarizes the results and developments accomplished in this

thesis and presents possible future work and perspectives.
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CHAPTER II

NUMERICAL METHODS

The tasks presented for this thesis are made possible with the development of sev-

eral advanced numerical schemes and tools, which enable the simulation of certain

dislocation phenomena at the mesoscale with greater physical fidelity than ever be-

fore. Discrete dislocation dynamics studies have existed for several decades, but the

treatment of dislocations interacting with irradiation defects has been restricted to

a very small number of studies. The concepts and formulations surrounding disloca-

tions described by the continuum theory of defects are reviewed, and the numerical

aspects of DDD are explained. The coarse-graining of atomistics data to produce

an atomistics informed DDD simulation for irradiation defect hardening is detailed.

Finally, two numerical methods used for activation energy calculations are presented

and the possible link with DDD calculations is presented.

2.1 Dislocations

2.1.1 Continuum Theory of Dislocations

In the field of materials science, the term “dislocation” is used to refer to linear

crystallographic defects associated with a displacement discontinuity. The notion

of a dislocation was first introduced by Volterra [235]. The continuum theory of

defects, the set of assumptions under which dislocations were originally formulated

[47], approximates a solid as a continuous elastic medium. A dislocation is defined

by the displacement discontinuity vector, or Burgers vector ~b, and the line tangent

~t and from these two properties, the character of the dislocation is defined. Two

linearly independent dislocation types exist: edge, corresponding to ~b · ~t = 0, and

screw, corresponding to |~b · ~t| = |~b||~t|. Figures 4 and 5 depict these dislocation types
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pictorially.

Figure 4: A perfect crystal (left) and a crystal with an edge dislocation (right) [23].
The edge dislocation tangent is into the page.

Figure 5: A perfect crystal (left) and a crystal with a screw dislocation (right) [23].
The dislocation tangent is along the red line.

Dislocations with a character between these two are also possible, and thus curved

dislocation lines can exist in a material. As alluded to by Figures 4 and 5, dislocations

cannot exist anywhere in a solid, but are restricted to exist in quantized locations

because of the discrete, atomic nature of materials. Dislocation generally move in the

close-packed directions, or the directions with the smallest distance between atoms.

These directions are unique to each crystal type so that FCC, BCC and HCP crystals

have different planes on which dislocations are most likely to glide.

The deformation of the crystal, which is clear in Figures 4 and 5, gives rise to

strain and stress fields in the material. Because the dislocations are defined by the
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displacement discontinuity, the displacement field in the material is known exactly

and from this, the elastic field can be determined. Starting with the elastic small

strain tensor defined as as εij = 1/2(ui,j + uj,i) where ui is the displacement vector,

the stress tensor can be obtained using Hooke’s Law σij = Cijklε
e
kl where σij is the

Cauchy stress tensor and Cijkl is the elastic stiffness tensor. Closed form expressions

are possible for edge and screw dislocations, and for general curved dislocations can

be written as [47, 148, 92, 149]

σij(~x) = Cijkl

∮
L

εijkCpqmnGkp,q(~x− ~x′)bmdx
′
h (1)

where εijk is the Levi-Civita tensor, Gkp,q the first derivative of the static Green’s

function for an elastic medium, and bm the Burgers vectors. In the case of isotropic

elasticity, the Green’s function can be written down exactly:

Gkp(~R) =
1

8πµ

[
δkpR,qq −

1

2(1− ν)
R,kp

]
(2)

where ~R =
∣∣∣~x− ~x′

∣∣∣, δij the Kronecker delta function, µ is the shear modulus, and

ν Poisson’s ration. If one expands the second derivative of the radius vector (or

examines the stress fields for a pure edge/screw dislocation), a complication with this

formulation becomes clear - the strain and stress fields are singular at the dislocation

core (R = 0) and decay as 1/R:

R,ij =

(
δij −

Ri

R

Rj

R

)
1

R
. (3)

As a result, the strain energy U = 1/2
∫
σijεij dV is not defined or requires one

to set an arbitrary cutoff around the dislocation core and at the upper limit of in-

tegration. Such complications arise because of the initial assumptions of continuum

elasticity; defining the displacement jump with a Kronecker delta function creates an

infinitely sharp displacement jump, which is non-physical if one considers the atomic
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construction of a solid. Several attempts have been made to address the non-physical

nature of the solution. The Peierls-Nabarro model of a solid [169, 150] smooths the

jump in Burgers vector using a Lorentzian Burgers vector distribution:

g(x) =
b

π

ζ

r2 + ζ2
, (4)

where ζ is a constant related to the width of the dislocation.

Cai et. al. proposed deriving an isotropic Burgers vector distribution enabling

closed form integration of Equation 1. The authors were successful in this pursuit

and while a closed form expression of the Burgers vector distribution does not exist

owing to a convolution integral without a closed form solution, the distribution is well

characterized by the following expression:

g(x) = b
15

8π

[
1−m

a3
1

[
(r/a1)2 + 1

]7/2 +
m

a3
2

[
(r/a2)2 + 1

]7/2
]
, (5)

where r is the distance to the dislocation axis, a1 = 0.9038a, a2 = 0.5451a, m = 0.6575

and a the dislocation core width parameter. While this differs from the core distri-

bution of Peierls, a close agreement between the two can be reached with the correct

choice of parameters. Therefore, the formulation explicitly includes non-linearities

associated to the dislocation core within the approximations of the continuum theory

of defects. The tremendous advantage of using the Burgers vector distribution in

Equation 5 is that analytic expressions are available for all dislocation force, stress,

and energy calculations for straight dislocation segments. Figures 6 and 7 show the

non-zero stress components for two different configurations with an edge or screw

dislocation. For the stress measured along a line through the dislocation core in Fig-

ure 7, the core width parameter has a clear and strong influence within a few lattice

spacings of the core, but the differences are negligible at 5a from the core. For a line

passing 2a above the core of a screw dislocation as shown in Figure 6, the differences

between the singular and non-singular theory are less emphasized but still significant
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at the positions closest to the core.

The non-singular formulation is undoubtedly a more physically realistic represen-

tation of a dislocation core than a singular solution, it also using a core spreading

function chosen solely to enable close form integration rather than the best repre-

sentation of the physical configuration. However, such assumptions are acceptable

because the dislocation core structure is an ongoing subject of study for α-iron using

density functional theory or other atomistic calculations [230, 120, 231].

Anisotropic elasticity presents significant theoretical and numerical challenges re-

garding dislocation formulations. To obtain the Green’s function for anisotropic elas-

ticity, one must solve the sextic eigenvalue problem as posed by Stroh [205, 206] and

developed further by Ting and Lee [219]. Closed form solutions for the stress field of

dislocation in transverse isotropy exist [38] and some numerically amenable forms for

general anisotropy in a homogeneous medium [166], a composite medium [254], and at

the interface of an anisotropic bimaterial [165]. Here, numerically amenable implies

an expression that can be resolved using classical computing techniques; however,

it does not speak to the computational demands. These formulations often require

inverse fast Fourier transforms and numerical integration resulting in prohibitively

computationally expensive calculations. The entirety of this thesis is performed as-

suming elastic isotropy.

2.1.2 Dislocation Dynamics

The details of dislocation nucleation, glide, and multiplication play a fundamental

role in governing the mechanical properties of many engineering metals such as yield

point and plastic behaviour [41, 67, 92]. The presence of a dislocation in a crystal

contributes to the free energy of the crystal via its elastic fields. Other elastic fields,

whether they are generated by the presence of other dislocations or a macroscopically

applied stress, all interact to change the free energy. The classical mechanics definition
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Figure 6: Comparison of singular and non-singular dislocation theory for a straight
infinite screw dislocation. Here, the stress is measured along a line crossing 2a above
and perpendicular to the dislocation core

22



-40

-20

 0

 20

 40

-10 -5  0  5  10

S
tr

e
s

s
 (

G
P

a
)

Distance from Dislocation Core (a)

Core P. = 0.25a
Core P. = 1.0a
Core P. = 1.5a

Singular Theory

Figure 7: Stress component σxy measured along a line perpendicular to and crossing
through the core of an edge dislocation. The line lies in the glide plane.

of a force ~F arising from a scalar potential, in this case the energy E, can be written

as

~F = −~∇E. (6)

In general, the force will two contributions. The first is known as the Peach-Koehler

force [168] which is caused by interactions of elastic fields:

~FPK =
(
σ ·~b

)
× ~t. (7)

where ~t is equal to the dislocation line length. Alternatively, the unit vector of the

tangent can be used to give the force per unit length for cases where the stress varies

over the length of the segment. Equation 7 will be derived in Section 2.3, which

details the calculation of enthalpy for a dislocated elastic solid.

The second force contribution is caused by chemical contributions that are man-

ifested as osmotic forces. Vacancy content in a material can cause non-conservative
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motion of a dislocation [52], particularly for edge dislocations: a vacancy in the vicin-

ity of an edge dislocation has the possibility to recombine with a lattice site at the

dislocation, in a phenomenon known as dislocation climb. This process can be ac-

counted for with an osmotic force; however, this contribution is often neglected in

dislocation dynamics simulations, and is also negated in this thesis.

Dislocation motion caused by an applied force is often modelled using a mobility

function M :

~v = M
(
~f
)

(8)

where ~v = d~x
dt

. Such a model was proposed based on experimental observations as

well as atomistic simulations. The mobility function M is most often approximated

using an overdamped equation of motions incorporating the viscous drag caused by

dislocation-phonon interactions. If one neglects inertial effects, this equation of mo-

tion can be written as

B~v = ~f (9)

where B is the matrix of drag coefficients. Figure 8 reveals the experimental justifi-

cation for a viscous drag mobility law - a linear relationship between resolved shear

stress and dislocation velocity is observed.

The motion of dislocations in BCC materials, such as α-iron in this thesis, and

particularly for screw dislocations, can be a complex thermally activated motion

driven by kink-jog movement. In the domain of continuum dislocation modelling

such as in the case of DDD, atomistically-informed simulations [31, 143, 242] have

been performed, but a far more common model for this movement is using a screw

mobility 10-100 times less than that of an edge dislocation [79, 4]. This asymmetry

in segment mobility is also entirely neglected in some cases [180, 213].

Dislocations are confined to glide on their slip planes as defined by the normal
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Figure 8: The velocity of dislocation migration is seen to be linearly proportional
to resolved shear stress in high purity aluminum [77]. Such results motivated the
development of an equation of motion as presented in Equation 9.

vector ~n =
~b×~t
|~b×~t|

. As previously mentioned, a screw dislocation is defined by ~b×~t = 0

and therefore no slip plane can be defined. As a result, gliding screw dislocations can

change close-packed planes in a process known as cross-slip. This processes is ther-

mally activated, for which activation energies have been determined using atomistic

calculations [229, 182]. Cross-slipping can be a method for dislocations to bypass

hard obstacles, as the activation energy decreases with the dislocation driving force

so a dislocation may cross-slip around the obstacle to continue gliding. This type of

bypass is one process that enables strain-rate dependence as well as creep behaviour.

As a dislocation glides to accommodate an applied load, atom planes are perma-

nently displaced with respect to one another and therefore give rise to a notion of

strain caused by permanent displacements (rather than recoverable elastic displace-

ments). Such permanent strain is called plastic strain, and the elementary plastic
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shear strain γ is defined by the area shear by the dislocation, i.e.,

γ =
bA

V
, (10)

where b = |~b|, A the area swept by the dislocation, and V the volume of the sheared

crystal. Generalizing Equation 10 to all possible glide planes s with their associated

projections, the expression for the plastic strain tensor εp can be written as:

εp =
1

2

∑
s

bsAis
V

(
bsin

s
j + bsjn

s
i

)
, (11)

where nsi is the normal vector for glide plane s.

2.2 Discrete Dislocation Dynamics

2.2.1 Boundary Value Problem

Before developing a numerical methodology to predict the motion of dislocation ac-

cording to the previously developed theories, one must defined the problem to be

solved, which is the fundamental boundary value problem of continuum mechan-

ics. At every point within a simulation volume V , mechanical equilibrium must be

respected (assuming zero body forces) and satisfy the prescribed displacement and

traction boundary conditions:

σij,j = 0 (12)

σij = Cijklεkl (13)

ui = u∗i on ∂1R (14)

σijnj = t∗i on ∂2R (15)
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where σij is the Cauchy stress tensory, Cijkl is the stiffness tensor, εkl is the elastic

small strain tensor,ui is the displacement vector, ni is the normal vector on ∂2R, the

displacement boundary condition u∗i is applied on the portion ∂1R of the boundary,

and the traction boundary condition t∗i is applied on the portion ∂2R of the bound-

ary. The most widely adopted method of solution to this boundary value problem is

that proposed by Van der Giessen and Needleman [225]. Their approach considers

the medium as elastic everywhere outside the dislocation cores and in doing so, it is

possible to apply linear superposition and to decompose the system into the internal

contributions from dislocation and the externally applied loading. Consequently, the

two problems are as follows: one in which the dislocations exist in an unbounded elas-

tic medium, and one in which the boundary conditions ui and t∗i have been modified

to account for the influence from the dislocation fields. Doing so enables the stress in

the material to be defined in terms of two contributions: the internally generated dis-

location stress fields, and the stresses arising from the externally imposed boundary

conditions:

σij = σint
ij + σext

ij (16)

The application of σext
ij ensures that equilibrium and the boundary conditions (Equa-

tions 12,14, and 15) are respected. As previously mentioned in section 2.1.1, the

stress field for a dislocation as given by Equation 1, i.e.,

σij(~x) = Cijkl

∮
L

εijkCpqmnGkp,q(~x− ~x′)bmdx
′
h, (1 repeated)

is general; however, a numerically amenable and computationally efficient form of the

Green’s function Gij exists only for isotropic elasticity in an infinite medium without

external loading. By carefully choosing a Burgers vector spreading function, Cai et.

al. [30] achieved a closed form solution for a non-singular dislocation stress field in an

infinite medium. More importantly for DDD, the nodal forces for straight dislocation
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segments is available in closed form, which avoids the highly costly calculation of

the stress contribution from every dislocation segment at numerous points along each

dislocation segment in order to perform numerical integration.

The external stress field contribution σext
ij often arises as a method by which to

extend the utility of DDD simulations from an unloaded infinite medium to include

applied loads as well as finite simulation volumes and internal surfaces [233, 63, 245].

This external contribution is also important in simulations of bulk crystals using pe-

riodic boundary conditions (PBC). When simple displacement boundary conditions

are applied, the external stress is given using a direct mean-field method because

this loading type results in a uniform stress everywhere in the volume. The uni-

form applied stress/strain is given directly from Hooke’s Law (Equation 13). Such

simplifications are only true for a simulation volume far from the boundaries in a

bulk material, and therefore PBC are required. In DDD, periodicity requires not

only ensuring periodicity of the dislocations but their elastic fields as well. From a

numerical standpoint, this is accomplished by creating 26 repetitions of the cuboid

simulation volume around the principle volume. The elastic fields from these repeated

volumes are included in the external stress contribution σext
ij . Solving the boundary

volume with complex boundary conditions such as a finite simulation volume or a

simulation containing multiple materials require solving the boundary value problem

directly using finite element method (FEM) [199] or other techniques such as Fourier

transforms.

2.2.2 Dislocation Motion

With the dislocation static and dynamics formulations established in Sections 2.1.1

and 2.1.2, the boundary value problem fully defined and the stress state fully deter-

mined in section 2.2.1, the problem of simulation dislocation dynamics is established

from the theoretical standpoint. First, the system must be represented in a numerical
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form. At the most basic level, dislocations can be represented either continuously or

discretely, both of which have seen success. Discretized dislocations are the favoured

implementation in the literature. The simplest form of discretization is using pure

edge and pure screw dislocation segments to represent a smooth line [233, 34]. The

simplicity of the implementation results in a lower burden in creating the simulations

and well as low computational complexity, but have been shown to be insufficient

when complex junction morphologies are possible [51]. Some studies adopted more

possible geometries (such as 45◦ segments) but nevertheless a finite number. A sig-

nificantly improved discretization with regards to physical fidelity is possible using

a nodal discretization. Using this method, a series of nodes are distributed along a

dislocation segment and a shape function is used to interpolate the dislocation line

between these points [71, 29]. Continuous representations including level set methods

[247, 179, 36, 237] and phase field methods [241, 186, 97] can represent dislocation

as smooth curves, but a high cost: a complex and costly calculation is necessary

to represent the dislocation lines, and junction formation cannot be treated explic-

itly. Consequently, small time-steps are required to allow elastic interactions to form

junctions.

In this thesis, a nodal based scheme with nodes connected by straight line segments

of continuously varying dislocation character is used for all simulations. A dislocation

node can have one (fixed point), two (point on line) or more connections (junctions).

Figure 9 shows a pictorial representation of three dislocations discretized using the

nodal method, where nodes 1, 2 and 3 are junction nodes.

Using this implementation, it is the dislocation nodes rather than the dislocation

segments that are propagated, and the dislocation lines are generated according to

their assigned nodal connectivity. As a result, the dislocation dynamics equations of

motion are solved in terms of nodal quantities. The total nodal force can be written

as
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Figure 9: Nodal representation of a dislocation. The blue dislocation is interactin
with the green dislocation, which is of a Burgers vector results in a pinned node at
node 1. The purple dislocation has a Burgers vector that can form a junction with
the blue dislocation, as highlighted between nodes 2 and 3.

~Fi =
∑
j

~fij (17)

where ~Fi is the force vector on node i, and ~fij is the force contribution on node i from

the connected segment terminating at node j. The force contribution ~fij is written

as

~fij =

∫ ~xj

~xi

Ni(~x)~f(~x)|d~x|, (18)

where Ni(~x) is the shape function associated with node i. As previously mentioned,

closed form expressions exist for the force on the end nodes caused by dislocation-

dislocation interactions of straight dislocation segments using a non-singular formu-

lation [30], and for a straight segment, the nodal force can be expanded as

~fij = ~f int
ij +

1

2
Lij

([
σ ·~bij

]
× ~tij

)
(19)

Equation 19 is found using linear shape functions in Equation 18 and carrying out the

integration over a line with length |~xi − ~xj|. In general, the dislocation nodal force
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calculations are by far the most numerically demanding step in DDD simulations

and are the bottleneck for computational performance. Because every dislocation

segment interacts with every other dislocation segment, this problem is O(N2
seg) and

the calculation for a single interaction requires on the order of 1500 function calls

[8]. Approximations and optimizations are thus a necessity to achieve a meaningful

amount of accumulated strain or dislocation density in a DDD simulation. The elastic

fields of a dislocation decay as 1/R where R is the separation distance between the

dislocation and the field point. This slow decay means that one cannont simply negate

interactions at large distances; however, two approximation methods proposed in the

literature provide signficant acceleration while retaining sufficient accuracy. The first

method, and the method used in the present thesis, is called a box method [233].

This method optimizes long-range dislocation interactions by assuming that the stress

contributions from dislocations far away from a point can be assumed to be constant

over a discrete volume, taken to be a box. This is accomplished by subdividing the

simulation volume into boxes, on the order of 10-20 in each dimension (for a total

of 1000-8000) but the exact number of which depends on the dislocation segment

density. For a dislocation segment, the direct (exact) stress field computations are

performed for other segments within the same box or the neighboring 26 boxes. For

segments outside these 27 boxes, the stress is calculated at the center of the box

containing the dislocation segment, and is assumed to be constant in that region.

Figure 10 depicts the box method in a simple 2D case. For dislocation segments con-

tained within the red box, elastic interactions are directly calculated for all segments

within the blue box. For the segments outside the blue box, their average stress fields

are computed at the center of the red box, and this value of stress is used to calculate

the Peach-Koehler force on the segments inside the red box.

The stress contribution from the dislocation segments beyond the neighbouring
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Figure 10: 2D pictorial representation of the box method optimization for long-range
dislocation-dislocation interactions.

boxes is called the “box stress.” Because this interaction necessarily occurs over rel-

atively large separation distances, the box stress will vary less quickly in time than

the direct contributions; consequently, the box stress can be calculated over a longer

time interval than a single time-step. For instance, the box stress may be recalcu-

lated every 10 steps, resulting in an even greater degree of numerical optimization.

The second long-range interaction optimization method is the Fast Multipole Method

[238, 117, 5]. This method is effectively a Taylor expansion of the derivatives of the

radius vector R,ij that appear in the expression of the Green’s function. The com-

putational complexity of this method is O(Nfar), albeit with a large prefactor as the

calculations of the multipole expansions involve many calculations. This method was

not used during the course of this thesis.

Next, the drag matrix Bi must be obtained. The drag coefficients for edge and

screw dislocations are inputs to the DDD simulation, and are a parameter extracted

from from experimental [77, 99, 33] or atomistic [61, 35, 73] studies. With the edge
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and screw mobilities defined, one obtains the mobility tension B(θij) by integrating

over the segment length. Drag coefficients are expressed in terms of the screw drag

and edge drag, and are interpolated using the following expression:

B(θij) =
(
Be
ij sin2θij +Bs

ij cos2θij)
)

I (20)

where θij is the angle made by the segment connected to nodes i and j with respect

to a screw dislocation. The final equation of motion for a dislocation (Equation 9)

can be written as

~Fi =
∑
i 6=j

Lij
6

B(θij)
(

2~Vi + ~Vj

)
(21)

Equation 21 is therefore an 3N×3N system of linear equations, whereN is the number

of dislocation segments on one dislocation, and can be solved by using standard linear

algebra methods. However, such operations are very costly and N can reach large

numbers because many dislocations can connect by forming junctions to create a

single dense network. An approximation which alleviates this computational burden

is the local velocity method. Assuming that the discretization of the dislocation

network well-represents the dislocations, the velocities of neighbouring node j should

not vary greatly and for the purposes of the drag calculation, can be approximated

as identical, i.e., ~Vi ≈ ~Vj and non-neighbouring nodes k can be assumed to have

negligible influence, i.e., ~Vk ≈ 0. As a result, Equation 21 (originally 3N × 3N)

becomes decoupled, resulting in a system of N 3× 3 equations:

~Fi ≈

[∑
j

Lij
2

B(θij) +
∑
k

Lij
3

B(θik)

]
~Vi (22)

resulting in a noteworthy reduction in computational cost, and an observed decrease

in numerical instabilities such as nodal velocity vibrations.

With the nodal velocities established, the nodal positions ~xti can be updated to
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find ~x t+∆t
i (where ∆t is the time step for the simulation). Numerous well-established

different numerical integration methods are applicable for this problem, but one must

take care in selecting which method to avoid undue computational burden. Backwards

Euler integration is a simple, A-stable method of integration:

~x t+∆t
i = ~x ti + ~Vi

(
~x t+∆t
i

)
∆t. (23)

However, the implicit nature of Equation 23 requires multiple force calculations and

as previously mentioned, a single force calculation is already the most intensive calcu-

lation by a wide margin. The force calculation is so intensive (and even further scales

as O(n2) where n is the number of segments) that the increase in simulation time

step afforded by the nature of Equation 23 often is not sufficient to achieve a faster

computation than by simply reducing the time-step ∆t and using explicit Forward

Euler integration:

~x t+∆t
i = ~x ti + ~Vi

(
~x ti
)

∆t. (24)

After the dislocation node positions have been updated, the discretization is ver-

ified to ensure that dislocation nodes are well spaced. As a dislocation glides under

an applied stress and bows out between obstacles, such as other dislocations or point

defects in the lattice, the line length changes and the discretization must evolve to

maintain a realistic dislocation morphology. Long dislocation segments are undesir-

able as they tend to oversimplify the dislocation shape and fail to capture fine scale

phenomena, whereas short dislocation segments tend to be numerically unstable and

can cause artifical numerical oscillations. Where short dislocation segments are re-

quired (for fine scale phenomena), accordingly small time-steps are crucial to avoid

numerical instability. Therefore, the dislocations are re-discretized (remeshed) at the

end of every time step. Two methods of remeshing are used in this thesis: a segment
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based method, and a spline based method. The segment based method is a sim-

ple length criteria: if a segment is over a threshold length, the segment is split into

two equal length segments, and if a segment is too short, its terminating nodes are

merged into a single node. Depending on the threshold values for bisection/merging,

this method tends to maintain an approximately equal segment length across all dis-

location segments but has the drawback that the simulation is sensitive to the chosen

threshold value. In the simulations performed here, the criteria to merge nodes is

1/4 the bisection length. An asymmetric criterion is essential to avoid numerical

artefacts. When a dislocation node is added, the change in dislocation shape may

result in a net decrease in dislocation length following relaxation, and if the criteria

to split/merge is symmetric, the new node will be merged. This new configuration

bows out once again, creating an artificial oscillation that accumulates plastic strain,

and thus causes erroneous simulations. The value of the bisection length must also

be user-specified depending on the nature and the length-scales of the calculation

to be performed. The second method is based on cubic spline interpolations. Each

dislocation line is interpolated using cubic splines, and the nodes are repositioned

along cubic spline to guarantee equal segment lengths. If the density of nodes is too

low or too high along the line, the nodes can be added or removed (and a similar

asymmetric criteria is essential to avoid numerical issues). Both of these methods are

used in this thesis: the segment method is used for all standard DDD calculations,

and the spline method is used for DDD-NEB calculations (detailed in section 2.7.2).

In a general DDD simulation, junction formations such as zipping, unzipping

and annihilation are considered using a deterministic power dissipation formulation

(Equation 25). The short-range numerical treatment is detailed in Figure 11. New

dislocation nodes are created to avoid dislocation passing through each other when

performing simulations with large time-steps.

After a junction has formed as shown in Figure 11, the dislocation configuration may
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Figure 11: Pictorial representation of the junction formation. When two segments
are below a threshold distance dcrit defined by the segment speed, a node is inserted
where the glide planes intersect. As other points on the dislocation segment approach
to decrease their separation distance below dcrit, additional nodes are added and the
junction zips. [23]

change in such a way that the junction shrinks. The power dissipation of two nodes

j and k is compared to the power dissipation of a single node i with connections to

four other dislocation nodes. The configuration inducing the maximum dissipation is

selected by the simulation for the following step:

max
jk

(
P diss
jk

)
= max

jk

(
~Fj · ~Vj + ~Fk · ~Vk

)
(25)

where ~Fj is the nodal force at j, ~Bj is the nodal velocity at j, and P diss
jk is the power

dissipation induced by configuration jk.

In this thesis, the dislocation dynamics simulations are highly targeted to certain

phenomena, and solely elastic interactions are responsible for junction formation. Dis-

location annihilations must be treated numerically because when two gliding disloca-

tion segments of opposite Burgers vector or line direction intersect, the dislocations

annihilate to return the crystal to a perfect lattice (locally) and the numerical mor-

phology must change significantly to reflect the changes. Annihilations are checked

by examining segments separated by a threshold distance defined by the user as well

as the maximum nodal velocity times the time-step (to avoid missing any crossing

events). The dislocation segments will intersect, creating a node with four connec-

tions. When a second four connection node is formed the segment between them has
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a Burgers vector of zero magnitude and is removed from the system.

Dislocation dynamics simulations are a cycle, starting with the discretization of

continuous dislocation lines. Next, the force on each dislocation node is calculated

using close form internal contributions and as well as calculating the contribution

from an external stress term representing the material boundary conditions. An

overdamped equation of motion is applied to determine nodal velocities, which are

then updated using simple numerical integration. Finally, junction formation is con-

sidered, and the discretization verified. This process is repeated thousands to millions

of times for a typical DDD simulation.

Greater details regarding the numerical developments for the simulations used

herein can be found in the thesis of Nicolas Bertin [23].

2.2.3 Fundamental Applications

Before the classical DDD simulations are augmented to enable simulations of more

complex microstructure associated to irradiated materials, two classical cases are

explored to highlight the capabilities of the simulations and to elucidate the roles of

input parameters on the material behaviour.

2.2.3.1 Frank Read Source Activation

The stress required to cause dislocation propagation for a dislocation segment pinned

between two fixed points is an archetypical example in the domain of dislocation dy-

namics, and was proposed by Frank and Read [66] as a mechanism by which disloca-

tion and plastic deformation can occur. Such a configuration is denoted a Frank-Read

source (FRS). Figure 12 shows an FRS under an applied stress that is sufficient to

activate the source. This geometry, with a varying radius of curvature at a minimum

near the pinned points, is characteristic for an FRS. Dislocation multiplication is pos-

sible because the two arms of the dislocation below the pinned points with propagate

towards each other, resulting in a large, growing dislocation loop. The remnants the
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annihilated segments reform a straight dislocation between the pinned points, and

the process repeats.

Figure 12: A Frank-Read dislocation source (red) activating under an applied stress.
The blue lines represent the periodic simulation boundaries.

The stress to activate an FRS can be derived using line tension approximations to be

proportional to µb/L where µ is the shear modulus, b the magnitude of the Burgers

vector, and L the distance between the pinning points. This value is plotted with the

calculated values of activation stress for an edge dislocation in Figure 13.

The stress to activate the FRS is weakly dependent on the discretization. As long as

a sufficient number of segments to accurately represent the dislocation geometry are

used, the adaptive discretization algorithm ensures a satisfactory description of the

dislocation.

Figure 14 reveals the activation stress dependence on core width parameter for an FRS

with a length of 500a and a discretization of 100a. In contrast to the discretization,

the core width parameter plays a fundamental role on the activation stress for an

FRS as noted by the authors of this formulation [30]. The self-energy of a dislocation
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Figure 13: Stress to activation a Frank-Read source as a function of dislocation
segment discretization and FRS length.

increases with decreasing core width. Therefore, a larger stress is required to bow

out a dislocation with a more confined core, and this is evident in Figure 14. This

parameter is necessarily an input to a DDD simulation from either experimental or

atomistic simulations. In conclusion, the adaptive meshing algorithm ensures that the

dislocation is described well regardless of changes in morphology if the user selects

an appropriate discretization for the length scale of the problem at hand.

2.2.3.2 Dislocation Loop Stabilising Stress

As a second example, a specific dislocation configuration is chose to enable direct com-

parison with atomistic calculations: the stress required to equilibrate a 1/2(111)[1̄01

prismatic dislocation loop in aluminum. The goal is to calculate the required stress

using strictly axial stress components to equilibrate the dislocation loop. In the ab-

sence of applied stress, the loop will collapse and self-annihilate (disappear). Using

a crystal oriented with the x,y, and z axes along the [100], [010], and [001] directions
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Figure 14: A Frank-Read dislocation source (red) activating under an applied stress.
The blue lines represent the periodic simulation boundaries.

respectively, it can be shown by analysing the Schmid factors of each axial stress on

this plane and along the Burgers vector direction that one must apply σxx = −σzz

and σyy = 0. The configuration in DDD is shown in Figure 15.

With the geometry and stress state fully defined, the remaining parameters in the

DDD study are the average segment discretization length and the core size parameter.

To elucidate the impact of these parameters, the radial force on the dislocation nodes

is compared for a range of applied stresses, and the equilibrating stress is found

between the stress levels with opposite radial force.

With the goal of reproducing the equibrating stresses from atomistic calculations,

which are describe with the following correlation: σeqm = 3322.9 MPa (R(nm))−0.811

[201]. A core parameter of 0.4a is taken (matching the stress level found in atomistics

for a loop R = 5.67nm), and the equilibrating stresses are calculated for a range of

stresses as shown in Figure 16.
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Figure 15: Dislocation loop configuration taken to compare with atomistic calcula-
tions. Periodic boundary conditions are applied to the volume.

Despite the fact that pure dislocation in aluminum split into two partial dislocations

and a stacking fault, a good match is possible over a range of loop size with a maximum

relative error of 3.5%. This comparison is valuable to both validate the accuracy of

continuum formulations as well as provide input parameters such as the core size.

2.3 Dislocation Energy

The total potential energy of an elastic crystal containing dislocations can be derived

using a methodology following that of Bowers [27] starting with the classical definition

of the potential energy E of a crystal with the volume R with a zero traction boundary

condition on ∂1R and a zero displacement boundary condition on ∂2R and with an

isothermal assumption, the enthalpy can be written as
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H =

∫
R

1

2
σijεijdV −

∫
∂1R

tiuidA, (26)

where σij is the stress tensor, εij the elastic strain tensor, ti the traction vector

σ∗ijnj = ti and ui the displacement field. Expanding the stress and strain into the

dislocation (D) and applied (∗) components and using the major symmetry in Cijkl

to simplify the expression.

H =

∫
R

1

2

(
σDij + σ∗ij

) (
εDij + ε∗ij

)
dV −

∫
∂1R

ti
(
uDi + u∗i

)
dA. (27)

The strain arising from the presence of the dislocation is expanded using the major

symmetry in Cijkl to simplify the expression:

E =

∫
R

(
1

2
σDij

∂uDi
∂xj

+ σ∗ij
∂uDi
∂xj

+
1

2
σ∗ijε

∗
ij

)
dV −

∫
∂1R

ti
(
uDi + u∗i

)
dA. (28)

Using equilibrium (σij,j = 0) and integrating by parts each term containing
∂uDi
∂xj

:

∫
R

1

2
σDij

∂uDi
∂xj

dV =

∫
R

1

2

∂(σDiju
D
i )

∂xj
dV =

∫
S

1

2
σDiju

D
i mjdA. (29)
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where mj is the normal to the surface swept by the dislocation. The surface is

partitioned into three regions: the area swept above and below the dislocation S+

and S−, and the region at which the displacement boundary condition is applied ∂2R:

∫
S

1

2
σDiju

D
i mjdA =

∫
S+

1

2
σDiju

D+
i (−mj)dA+

∫
S−

1

2
σDiju

D−
i (mj)dA+

∫
∂2R

1

2
σDiju

D
i njdA.

(30)

The displacement caused by dislocations uDi is zero on ∂2R, and therefore the final

term is zero. The discontinuity in the displacement field across S is u−i −u+
i = bi (the

Burgers vector)

∫
R

1

2
σDij

∂uDi
∂xj

dV =

∫
S

1

2
σDij bimjdA. (31)

A similar method was applied to the term containing σ∗ij
∂uDi
∂xj

∫
R

σ∗ij
∂uDi
∂xj

dV =

∫
R

∂(σ∗iju
D
i )

∂xj
dV =

∫
S

σ∗iju
D
i mjdA+

∫
∂1R

σ∗iju
D
i nj (32)

On ∂1R where the traction boundary condition is applied, σ∗ijnj = ti and on ∂2R, uDi

is zero. Therefore, the potential energy of the crystal is given as

H =

∫
S

1

2
σDij bimjdA+

∫
S

1

2
σ∗ijbimjdA+

∫
S

1

2
σ∗ijε

∗
ijdA−

∫
∂2R

tiu
∗
i dA. (33)

The decrease in potential due to dislocation motion can be calculated by considering a

small change in the area swept by the dislocation δa(s) while moving in the direction

n(s).

δH = −
∫
δC

εkjl
(
σDij + σ∗ij

)
biτlnkδa(s)ds. (34)

where τl is the tangent to the dislocation line. It is clear that Equation 34 is simply

the action of the Peach-Koehler force integrated over the distance traversed by the

dislocation where the Peach-Kohler force is written as
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F PK
i = εijk

(
σDjm + σ∗jm

)
bmτk. (35)

The energy calculation can be simplified considering that only the difference in energy

values is of interest, i.e.,

∆H2−1 =

∫
S

1

2
σDij bimjdA

∣∣∣∣
2

−
∫
S

1

2
σDij bimjdA

∣∣∣∣
1

−
∫
δC

εkjlσ
∗
ijbiτlnkδa(s)ds. (36)

An identical result could also be derived starting from an approach inspired by micro-

continuum constitutive modelling philosophies [83, 65]. The enthalpy of the systems

can be written as the sum of three contributions associated with that of macroscale,

microscale and interaction between the scales. Considering the microscopic displace-

ment as biδ(x− x′) and using the divergence theorem to write the external displace-

ment in terms of stress and strain, Equation 36 is found.

2.4 Application to Confined Microstructures

Material systems with confined internal geometries arise in many metallic systems

including nanocrystalline materials, nanolaminates, and irradiated materials. As the

carriers of plastic deformation, the geometric confinement of dislocation glide plays a

particularly important role on the yield point and plastic behaviour of these systems.

From a simplistic line-tension perspective, the stress to activate a Frank-Read source

(a finite dislocation segment pinned at its ends) is written as

σact. =
µb

L
(37)

An inverse dependence on dislocation segment length is immediately clear, which

motivates a deeper investigation into the true hardening effect of constrained slip.

Before moving to the case of irradiated materials, an example highlighting the

effects of confined dislocation glide as well as many of the concepts regarding the

capabilities of discrete dislocation dynamics simulations is presented here.
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2.4.1 Multi-layered Metallic Laminates

Multi-layered metallic laminate (MML) materials are composed of layers of alternat-

ing metals deposited in a lamellar structure. Due to the high ratio of interfaces to

bulk volume their mechanical behaviour is strongly influenced by interfacial geom-

etry and coherency. Experiments on electrochemically deposited Cu/Ni (coherent

interface) with Cu layer thickness ranging from 0.9 nm to 20 nm [135, 211] and on

PVD Cu/Nb (incoherent interface) [126], among numerous other experiments, have

revealed exceptional yield strengths approaching theoretical limits. Other properties

such as ductility, fatigue performance, and radiation resistance are also maintained

or improved in Cu/Nb MMLs in comparison to bulk properties [126, 240, 136].

The mechanical behaviour of MMLs depends on the individual microstructure of

the layer, such as crystal structure, elastic properties, and thickness, as well as on the

properties of the heterophase interface. The latter is a direct function of the orienta-

tional relationship between the layers, the consequence of which is the formation of

an intricate network of misfit dislocations [17]. Molecular dynamics simulations have

shown that the Cu/Nb interface in the {111}Cu ‖ {110}Nb Kurdjumov-Sachs (KS)

orientation, commonly seen in PVD prepared Cu/Nb MMLs, can act as both a dis-

location source [256] and sink [93, 239]. Wang et al. (2009) [239] also found that the

PVD Cu/Nb interface can be sheared by dislocations, generating an attractive force

on dislocations and spreading the core. In contrast, while the {112}Cu ‖ {112}Nb KS

Cu/Nb interface generated during accumulated rolled bonding (ARB) [115] may also

absorb dislocations, the interfacial shear strength has been found to be significantly

higher than for the PVD interface Cu/Nb [25].

The yielding and plasticity of MMLs, and thus their mechanical performance, can

be studied in simple cases with analytical models, and in more complex cases, with

discrete dislocation dynamics (DDD). Existing models of the mechanical behaviour

of MMLs focus primarily on the prediction of the yield point [138, 137]. As a first
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approximation, one can apply the Hall-Petch relation using layer thickness as a mean

grain diameter. However, this relation predicts a yield point assuming yielding is

governed by dislocation pileup at grain boundaries. In thin films and multilayers, the

confined nature of dislocation motion results in a behaviour governed not by disloca-

tion pile-up but by single dislocation interactions. Nix [153] showed that the very high

strengths and high strain hardening rates of thin metal films can be accounted for by

confinement effects on the motion of dislocations, and TEM experiments [119] have

confirmed that dislocations propagating in 30 nm thick layers are confined within their

layers. Misra et al. [138, 137] developed the Confined Layer Slip (CLS) model predict-

ing the microscopic yield point (stress to propagate dislocations) of MMLs. However,

studying the more complex mechanisms leading to macroscopic yielding and plastic

behaviour requires DDD simulations. To date, DDD simulations in MMLs have been

limited to microscopic phenomena such as single dislocation interaction and interface

penetration [3, 255]. Studies on thin films with or without substrates also have rel-

evance to MML simulations as dislocations are forced to glide subject to geometric

constraint without interface penetration [80, 81]. In addition to discrete dislocation

dynamics, several other modelling techniques have been used to analyze plasticity in

Cu/Nb MMLs. Atomistic simulations have been used to directly simulate Cu/Nb

interface structure to investigate its behaviour under mechanical loading. For ex-

ample, Zhang et al. [256] determined that dislocation nucleation from the interface

relies on interface geometry as well as Schmid factor. In another atomistics study

[82], the role of the Cu/Nb interface under spallation was investigated, and it was

found that the typically observed high strength of Cu/Nb did not appear because

of bulk void nucleation at the interface. At the continuum scale, crystal plasticity

finite element simulations have been used to study the deformation mechanisms of

Cu/Nb MMLs. In Mayeur et al. [131], the deformation texture following rolling

deviated from those of pure Cu and pure Nb and the kinematic constraint imposed
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by the interface was not seen to influence crystal stability. Jia et al. [101] studied

shear-banding behaviour in a Cu/Nb bicrystal subject to compression, and predicted

that stress concentrations at the interface trigger shear bands which could propagate

through heterophase interfaces.

While the role of layer thickness on material strength has been the focus of sev-

eral studies [137], key questions remain before one can understand the relationship

between MML microstructure and mechanical response. Macroscopic properties such

as plastic response, plastic anisotropy and the microscopic phenomena influencing

these properties have yet to be investigated. The present work aims at independently

quantifying the effect of (1) the ability of heterophase interfaces to act as disloca-

tion sinks, and (2) elastic stiffness mismatch on both mechanical response and plastic

anisotropy in Cu/Nb MMLs. Two models of the Cu/Nb incoherent interface, shear-

able and hard, are implemented and their influence on material response is quantified.

Finally, the implications of elastic constant mismatch and plastic anisotropy effects on

material strength and plastic behaviour are investigated by comparing the mechanical

responses of multilayered Cu/Cu, Nb/Nb, and Cu/Nb.

A finite element method (FEM) is used to solve the mechanical equilibrium bound-

ary value problem, which incorporates the plastic strain generated by dislocation mo-

tion through an elasto-viscoplastic constitutive model. Additionally, modifications

are required to represent the interfaces between the layers. Dislocations in different

layers may experience a stress due to elastic interactions with dislocations in other

layers as well as image stresses from the presence of internal surfaces. The bound-

ary conditions associated with an ideal interface are continuous displacement and

traction. The FEM automatically enforces displacement continuity, but traction con-

tinuity requires the calculation of additional nodal forces. Traction on the interface

due to dislocations in neighbouring layers is integrated on each element face to obtain

nodal forces. For Cu/Nb laminates, this correction is in fact very small because of
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their similar Young’s and shear moduli (E =120/105, µ =45/38 GPa respectively).

This is clear from the closed form expression of the stress field components of a screw

dislocation at a distance a away from the interface in an infinite bimaterial ??:

σxz(1) =
−µ1yb

2π
[
(x− a)2 + y2

] − γµ1yb

2π
[
(x+ a)2 + y2

] (38)

σxz(2) = − βµ2yb

2π
[
(x− a)2 + y2

] (39)

γ =
µ2 − µ1

µ2 + µ1

(40)

β =
2µ1

µ1 + µ2

(41)

where a subscript 1 represents the material containing the dislocation, subscript 2

represents the half-space perfectly bonded to the material containing the dislocation,

and a is the distance separating the dislocation core from the interface. The terms γ

and β that correct for the presence of the interface are 0.0667 and 1.0667 respectively.

Consequently, the image force corrections for this material system are negligible.

Nevertheless, the coupling to a finite element analysis is necessary to account for the

different macroscopic stress states in the layers arising from the mismatch and elastic

properties. With different shear moduli as well as glide plane orientations (copper

has an FCC structure whereas niobium has a BCC structure), dislocation glide will

be favoured in one of the material systems until dislocation-dislocation interactions

cause sufficient hardening to activate glide in the other system.

Longitudinal and transverse strains (with respect to the interface plane) are ap-

plied to a dislocation dynamics simulation sample of four layers measuring 2.7µm

×2.7µm ×300nm per layer with periodic boundaries enforced in the plane of the in-

terface as shown in Figure 17. Both loading directions are examined here for two
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(L)

(T)

(a)

(b)

Figure 17: (a) Initial Frank-Read dislocation source configuration in a four layer
Cu/Nb MML and (b) the dislocation configuration after 0.5 % strain applied. Inter-
facial dislocation dipoles deposited by the threading dislocations are clearly visible.

reasons. First, the layered nature of the Cu/Nb MML is inherently transversely

isotropic, and the material responses along each axis of symmetry are of interest.

Second, these loading directions are those commonly tested in experiments [26]. In
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the FEM code, 15 × 15 × 5 elements are used per layer. A strain rate of 103 s−1 is

used in all simulations. Dislocations have been experimentally observed to be confined

within their layers in a Cu/Nb MML with 30 nm layer thickness [119]. Therefore, the

dislocations here are confined within their 300 nm thick layers. Elastic isotropy is also

assumed, and the crystal structure is rotated to the KS orientation in the {111}Cu

habit plane.

The confining geometry of MMLs causes layer thickness to govern initial yield

unless the longest initial dislocation length is less than the layer thickness (under

the same resolved shear stress). A set of Frank-Read sources with random lengths,

positions, glide planes and Burgers vectors are generated such that the desired dis-

location density of ρ = 1012 m−2 (≈ 10 dislocations per layer) is reached. Such a

starting configuration is typical in discrete dislocation dynamics studies [255].

2.4.2 Interfacial Behaviour Models

When a dislocation impinges on a heterophase interface, the core structure may alter

as it interacts with the interface. While molecular dynamics simulations have revealed

core spreading (as previously mentioned), the practical implications on dislocations

within the framework of the continuum theory of defects are not immediately clear.

Lacking any experimental evidence regarding the structure of deposited interfacial

dislocations, limiting cases are chosen here such that the true material behaviour

must lie between the calculated bounds. Therefore, the mechanical response of a

Cu/Nb MML is simulated using two interface models: the first is a hard interface

that does not accommodate any deformation and preserves the core structure of con-

tacting dislocations, and the second is a shearable interface that entirely absorbs and

spreads contacting dislocation cores. A hard interface maintains the core structure of

dislocations touching the interface such that stress contributions from the laid-down
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interfacial dislocations are those of perfect dislocations. While a truly shearable in-

terface would accommodate deformation associated to the Burgers vector component

parallel to the interface, contributions from the normal component are also removed

representing an absolute lower bound on strength for interfacial behaviour. This

case will be referred to as “shearable.” These two systems represent the highest and

lowest possible interface strengths and thus provide the range of a real material’s be-

haviour. A third system in which all dislocation-dislocation interactions, both short

range and elastic, are removed quantifies the material response solely due to geometric

constraint.

The hard interface model is more likely to apply to MMLs in which the interface

structure is more compact, such as the ARB Cu/Nb interface, and in which the

resistance to dislocation transmission, which, in atomistic calculations, has been seen

to be low [256]. The shearable interface, on the other hand, is more likely to apply

to MMLs with incoherent interface structures and high dislocation slip barriers, such

as the PVD Cu/Nb interfaces. The effect of the interface type on the mechanical

behaviour of the MMLs is shown in Figure 18.

Interface behaviour with respect to contacting dislocation core structure clearly

and strongly influences the yield point and plastic response. Preserving the full dis-

location core structure (hard interface) results in the highest yield point (point 3

in Figure 18), approximately 60% higher than all other considered cases, and the

strongest hardening. Removing the stress fields of interface dislocations, as in the

case of the shearable interface, produces a defined yield point followed by approxi-

mately linear hardening. The assumption of no dislocation transmission at this layer

thickness can be seen to be valid because the yield stress is significantly lower than

the critical stress required for transmission, which is greater than 1.5 GPa for the

ARB Cu/Nb interface [25].

Initial microscopic yield (first dislocation propagation) occurs simultaneously in
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all cases (hard, shearable, no interaction) as shown at point (1.) in Figure 18. This

is expected because the initial dislocation configurations are random and no interface

dislocations are present initially. The first gliding dislocations propagate unhindered

until they interact with other dislocations crossing their paths, thus impeding their

motion. As further strain is applied, other dislocations begin to propagate and the

two systems begin to differ significantly in material response. In MMLs with hard

interfaces, the gliding dislocations must deform to pass between the interfacial dis-

location obstacles that have been laid down by other gliding dislocations, as seen in
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Figure 17b), which can cause significant hardening as shown by Nix [153]. The inter-

face dislocation density continues to increase to the extent that the plastic response

is nearly linear with a hardening coefficient close to the Young’s modulus.

When the stress fields from the interfacial dislocations are removed, the threading

dislocations are not forced to squeeze through them and can propagate until they

encounter an obstacle. The material response directly reflects this: it is much easier

for dislocations to propagate in general, and as a result, there is a well-defined yield

point at point (2.) with a lower hardening rate than the previous case. However,

hardening from dislocation-dislocation interaction is not negligible, as can be seen

from the third system in which all dislocation interactions are disregarded. A perfectly

plastic response is recovered after all layers have yielded. At 0.5% strain, dislocation

hardening results in an approximately 50% increase in strength. In all cases the

material response is highly influenced by dislocations within the layers, highlighting

the profound effect of the initial dislocation configuration because they can pin or

form junctions with other dislocations causing hardening.

In this example of a simulation of confined dislocation motion using DDD, the con-

tributions from confinement, dislocation-dislocation and dislocation-interface interac-

tions have been analysed and deconvoluted. Simple dislocation confinement has been

shown to result in a macroscopic yield-point, followed by perfectly plastic behaviour.

The added effect of dislocation-dislocation interactions within the layers results in an

increase in yield-point as well as hardening. Finally, the effect of dislocation-interface

interactions were studied by considering two limiting interface models: shearable (in-

terfacial dislocation stress fields removed) and hard (stress fields remain). The hard

interfaces, which include the dislocation-interface interactions, produced a yield point

60% greater than the yield point of the shearable case, which is followed by harden-

ing. In this instance, the layer thickness is not the sole factor in determining MML

strength, and that the ability of the interfaces to maintain the structure of interfacial
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dislocations play a strong role in governing the material response of MMLs and can

lead to dramatic increases in the strength of the material.

An important notion from these conclusions is that the nature of the interaction

between a gliding dislocation and the constraining object is a critical factor on the

mechanical properties in addition to the effect of confinement itself. Whereas in this

instance, two limiting cases are adopted for interfacial behaviour, irradiation defect

strength has been studied from the atomistic perspective and will be used to inform

the DDD simulations used here. Dislocation discretization is particularly important

in such fine-scale geometries as dislocation curvature is expected to be very high and

the average dislocation segment length must reflect this. Once the user has selected

an appropriate length-scale, the adaptive remeshing algorithm serves to maintain an

accurate spatial description of the dislocation network.

2.5 Athermal Dislocation-Irradiation Defect Interactions

The first step towards predicting how irradiation damage causes hardening is the

characterization of unit dislocation-obstacle interactions. Atomistic simulations are

well suited to the length-scales associated to these processes as they include all in-

herent complexities in a material which may not be computationally feasible at the

mesoscopic scale, such as free surfaces, elastic anisotropy, and the prediction of dislo-

cation reactions. Some phenomena must necessarily be examined from atomic scale

calculations; for example, in the case of voids, small voids are non-spherical due to the

crystal lattice structure, and therefore the forces on dislocations caused by complex

interactions with the atomic, discretized free surface are incorporated in atomistic

simulations. However, such calculations are not without significant drawbacks, which

are discussed at greater length in Chapter 4.

The interactions between pure edge and pure screw dislocations with SIA loops of
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(a) Edge dislocation interacting with a [100]
SIA loop in α-iron. [215]

(b) Edge dislocation interacting with a void
in α-iron. [163]

Figure 19: Molecular dynamics simulations of a dislocation interacting with an irra-
diation induced obstacle.

character 〈100〉 and 1/2〈111〉 with different relative orientations between the glide dis-

location and SIA loops ([128, 156, 11, 122, 217, 212]), and with voids ([85, 163, 218])

have been investigated to some degree. Atomistic calculations show that the obstacle

strength of SIA loops is highly dependent on the relative orientations during the in-

teraction, and have characterized the strength of voids for a range of sizes. However,

studies relying on atomistic calculations are highly limited in their scope of investi-

gation because only unit processes can be simulated and only under shock loading

(ε̇ ≥ 106) in dynamic simulations. The statistics one can extract from atomistic

simulations have limited intrinsic value when considering the influence of irradiation

defects on the macroscopic material response: computational demands limit atom-

istic simulations to rectangular arrays of defects, and a limited number of defect sizes

and interaction geometries, which result in strength values which are not represen-

tative of a physical material. Mechanical strength cannot be directly derived from

atomistic obstacle strength calculations because the calculated values are valid only

for the simulated defect size, density and distribution. Moving towards macroscale
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properties of engineering materials requires coarse graining, which is possible using

mesoscale simulations such as DDD.

Dislocation dynamics studies on irradiation hardening are most often limited

to dislocations interacting with defects composed of dislocations such as SIA loops

[188, 95, 155, 4] or stacking fault tetrahedra [127], the details of which are discussed

further in Chapter 3. Representing defects such as voids in dislocation dynamics

simulations pose a much greater challenge from the standpoint of physics as well as

implementation and computational burden. With the goal of multi-scale modelling

irradiation damage to obtain macroscopic measures of irradiation hardening, atom-

istic simulations can inform higher scale models such as DDD as described in the

following sections.

2.5.1 Void Implementation

Irradiation induced voids influence dislocation motion via two different mechanisms:

elastic and core interaction. Elastic interactions between voids and dislocations exist

because the traction vector must be zero at the void surface, giving rise to image

forces acting on the dislocation. As a void tends to small sizes (<20 vacancies),

the shape deviates significantly from the typical spherical approximation and surface

tension effects begin to influence the stress field as well. However, in any case, the

strength of interaction decreases as 1/r3 and at a distance equal to the void radius

R from the void surface, the change in stress with respect to an infinite medium

is ≈ 10%. Given that the voids considered in this body of work are at most 5nm

in diameter, the range of interaction is highly limited and therefore explicit elastic

interactions with voids are neglected. However, dislocation core reactions are treated

directly. When a dislocation core contacts a void, the dislocation terminates on the

surface, and begins to bow around the void as applied stress increases. If a void acts

as an impenetrable defect, a dislocation would have to bow completely around the
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defect and self-annihilate in order to break free from the void. However, molecular

statics simulations (Figure 22 [14]) show that this is not the case - a dislocation may

break free from a void before it has bowed completely around it. Two main methods

have been developed to model obstacle dislocation breakaway behaviour: a breakaway

angle criterion ([64],[54],[228]) and a Gibbs free energy based formulation [213]. Each

of these models has its respective advantages and disadvantages. Breakaway angle

formulations, which have been favoured in line tension simulations, are simple to

implement and qualitatively reproduce the behaviour observed in molecular statics.

In the aforementioned studies, breakaway angles were directly specified rather than

extracted from atomic scale simulations, which precludes direct comparison with a

realistic material or experiment. The Gibbs free energy formulation has the potential

to capture thermally activated spontaneous breakaway as well as deterministic stress

based breakaway (0K behaviour), but requires significant atomistic scale simulations

over a range of defect types, sizes, temperatures and stresses.

Here, an atomistics informed breakaway angle criterion incorporating void size

dependence is used to model core interactions between dislocations and voids. Angle

breakaway criteria have only been used in line tension simulations, from which the

justification of a breakaway angle is clear. Assuming a line tension Γ = µb2/2, Burgers

vector magnitude b, and shear modulus µ, a dislocation as shown in Figure 20 exerts

a force of

Fvoid = 2Γcos(θ/2) (42)

and it is assumed that the strength of the defect can be characterised by the maximum

resistive force of the defect.

The included angle θ can be written in terms of the applied shear stress on the plane τ

and inter-defect spacing L because F = τbL (a simplified version of the Peach-Koehler

force for line tension simulations), i.e.,
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Figure 20: Dislocation-void interaction configuration for an angle based criterion for
dislocation breakaway.

θ = 2 acos

(
τbL

2Γ

)
= 2 acos

(
τL

µb

)
. (43)

The validity of Equation 43 for dislocations has never been verified, and is explicitly

shown here to be valid. A single edge dislocation is placed in periodic simulation vol-

ume such that its end points are separated by 2.87 nm (10 a). An applied stress with

a Schmidt factor of unity on the glide place is applied and the dislocation dynamics

simulation is performed until equilibrium was reached. The resulting bowing angles

and a fit of the data is shown in Figure 21.

The surface fit to the data in Figure 21 is identical to Equation 43 with the line tension

left as a parameter. The behaviour of a dislocation described using the continuum

theory of defects therefore has the same functional form as under line tension approx-

imations; however, this fit omits one crucial behaviour observed while conducting the

simulations. When the dislocation is significantly bowed, i.e. θ is on the order of

π
4
, the elastic interaction between the nearly-touching dislocation segments becomes

sufficiently strong to pull the bowed segments together and spontaneously overcome

the defect. This behaviour cannot be reproduced using line tension simulations and

represents an important limit to a breakaway angle criterion. The exact value of the
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Figure 21: Bowing angle of a dislocation as a function of applied stress and obstacle
spacing.

critical angle is also a function of defect size and nature, and thus must be determined

on a case-by-case basis.

To determine the breakaway angles to be used to represent dislocation-void in-

teractions, void strength data from the literature was adopted. In [14], the stress to

cause dislocation breakaway is given for several defect sizes as shown in Figure 22.

The dislocation configuration shown in Figure 22 was produced using atomstic calcu-

lations and therefore inherently incorporates anisotropic elasticity and the effects on

the complex core structure and motion of screw dislocations in BCC α-iron. One can-

not reasonably expect to match both the physical configuration and breaking strength

found using atomistics with DDD calculations of dislocation-void interactions. The

strength of the defect is the most important consideration when the goal is to de-

termine the change in material strength as a result of the presence of voids, and
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Figure 22: Void and precipitate strength for various obstacle sizes as calculated using
molecular statics. [14]

therefore is the information that is used to coarse-grain the atomistic simulations to

the mesoscopic scale. An identical void configuration was reproduced in the disloca-

tion dynamics simulations, and a shear stress was applied along the glide dislocation

Burgers vector direction. The stress was gradually increased during which the in-

cluded angle between the dislocation arms was measured, and is displayed in Figure

23. To interpolate between void sizes, a cubic polynomial was fit using all data points

with the additional condition that void strength must go to zero as size goes to zero.

Figure 23 also shows several notable phenomena. In a line tension simulation,

which consider obstacles as points and neglect elastic dislocation self-interaction, each

line would be identical. As one can see in a full dislocation dynamics simulation with

finite defect sizes, the addition of these two effects resulted in a notably different re-

sponse. A size dependence was in fact only possible with dislocation self-interaction

- the effect is clearly stronger at smaller defect sizes, because the distance between

the bowing dislocation arms was smaller and therefore the stress field (proportional
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Figure 23: Dislocation bowing angle as a function of void diameter and applied shear
stress. Black asterisks denote the angle extracted for the MD specified breaking
strength.

to 1/r) was stronger. The line for each void size terminated when the configura-

tion became unstable and the dislocation self-annihilated, which corresponds to the

behaviour of spontaneous bypass as described with Figure 21.

Modelling void strength in this manner is analogous treating the interaction as

a dislocation-particle interaction with a non-attractive particle, whereas the true

dislocation-void interaction is attractive. Using line tension models, Arzt et al. [7]

showed that dominating process for dislocation bypass of an attracting obstacle is

governed by the obstacle-dislocation attraction after the dislocation has passed the

obstacle. The void model used here assumes that the attraction at detachment is in-

herently included in the atomistics void strength calculation used to generate the void

strength model. For thermally activated bypass, the attractive interaction becomes

crucial in determining if bypass is possible [6] and therefore the current void strength

model would require further refinements to be valid in the thermally activated case.

The discrete nature of the lattice creates non-negligible distortion of the spherical

void shape as expected from continuum mechanics, and at an even smaller scale,
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the interaction between a dislocation and very small vacancy clusters (which occur

commonly in irradiated α iron as seen in Figure 2b) is unknown. A very recent

molecular statics study on voids as small as 2.5nm [50] show that at this length scale,

voids strength decreases faster than predicted using the BKS model; however, only a

single defect spacing was used, and a far more comprehensive study is necessary to

drawn any firm conclusions. It is possible that edge dislocations may absorb vacancies

resulting in dislocation climb and that these small defects with only several vacancies

may have no effect on the dislocation motion (i.e. zero obstacle strength).

Another factor influencing the strength of a dislocation-void reaction is the posi-

tion at which the glide plane intersects the void relative to the void center. A coupled

FEM-dislocation statics study examined the force on a dislocation as a function of

glide plane offset from the void center with comparison to atomistic calculations [85].

The atomistic calculations showed that the stress to propagate an edge dislocation

past a void decreased as the effective radius on the glide plane decreased. However, at

the void edge, the stress to bypass had decreased by only 20% relative to bypassing

at the void center, and non-zero stresses were found at 1.5R away from the void.

Without mapping over defect size, offset, and density, piecing together atomistics

data from independent studies with different boundary conditions, potentials, and

other simulation parameters would likely introduce far greater errors than simply by

adopting the approximations used herein. Therefore, the approximations adopted

by implementing a void strength law based on the atomistics data in Figure 23 are

reasonable within the framework of this thesis.

2.5.2 SIA Loop Implementation

Irradiation induced self-interstitial atom loops have been observed in α-iron as 1/2〈111〉

glissile loops [259], and 〈100〉 sessile loops [91]. Experiments indicate that α-iron SIA

loop populations tend to be dominated by 1/2〈111〉 loops at lower temperatures with

62



〈100〉 loops occupying 90% of the population at 573K (300◦C), though experimental

data is limited. Recent simulations [251] have also shown that 1/2〈111〉 loops can

combine to produce a 〈100〉 loop. In this thesis, only 〈100〉 loops are considered, be-

cause they are far more populous than 1/2〈111〉 loops, and 1/2〈111〉 loops are highly

mobile and therefore cannot be characterised with single dislocation simulations.

Figure 24: Stress required for stress-activated bypass of a 〈001〉 SIA loop as deter-
mined using molecular dynamics simulations.[217]

Each loop is represented using four straight edge segments in a square configura-

tion [212]. Molecular dynamics simulations of edge dislocation interacting with SIA

loops reveal complex behaviour such as loop absorption [217], which may explain ex-

perimentally observed channel clearing [259]. The obstacle strength of an SIA loops

has also been shown to vary significantly depending on the relative loop-dislocation

orientation [217]. An attempt to reproduce one of these complex reactions using

atomistics-informed DDD was only able to achieve similar behaviour using a fitting

parameter for certain dislocation parameters [194]. For the analysis of athermal ir-

radiation hardening in this thesis, it is the ensemble response which is desired rather
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than reproducing each individual interaction. Consequently, an ensemble of loops of

all possible Burgers vectors and with a mean spacing equal to the configuration in

[217] is taken and the flow stress calculated. Considering only elastic interactions

between the glide dislocation and SIA loops, the stress to propagate a dislocation

as calculated by dislocation dynamics is found to be the mean stress of the differ-

ent 〈001〉 configurations in atomic scale simulations as shown in Figure 24 and is

therefore adopted as the method of interaction for athermal hardening calculations.

This behaviour model is a first order approximation to the highly complex, atomic

scale nature of dislocation-SIA loop interactions. While atomistic simulations can

provide some insight, studies have observed dependence on temperature, stress, loop

size and orientation, and incoming dislocation character [128],[122], [156]. A much

greater study into these reactions, particularly at loop ranging in size from 0.5-5 nm

are necessary to develop a more physically accurate model of interaction.

2.6 Thermal Activation of Dislocation Motion

2.6.1 Transition State Theory

The developments leading to the field of transition state theory began from the work

of van’t Hoff [226], who expressed chemical equilibrium constants in the form

(
∂lnK

∂T

)
P

=
∆E

RT 2
, (44)

where K is the equilibrium reaction constant, ∆E the internal energy change, P the

pressure, R the universal gas constant, and T the absolute temperature. Because K

is the ratio of the forward and backwards reaction rates k1 and k−1, one can also write

the following:

(
∂ln k

∂T

)
P

=
∆E

RT 2
, (45)

This work was inspired by the developments of Maxwell’s law, which implies that
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the fraction of molecues with an energy greater than E is given by exp
(−E
RT

)
, as

well as the work of Pfaundler [172], who first posulated that only molecules with

an energy greater than E could participate the chemical reaction [112]. Arrhenius

then postulated that the equilibrium that is being predicted must be that which is

established between the normal and activated states in the reaction process. He then

followed that it is exactly this equilibrium that is predicted by van’t Hoff’s equation

[112].

The notion of a rate being governed by a pathway passing through a saddle point

on a potential energy surface was first introduced by Pelzer and Wigner [170] before

being generalized to transition state theory with the work of Eyring et. al. [60]. The

basic components of transition state theory are as follows:

1. Reaction rates can be calculated by characterising the saddle point of the po-

tential energy surface. The details of the pathway between the minima and the

saddle point are irrelevant to the reaction rate.

2. The initial reactants are in equlibrium with the activated complexes (as stated

by Arrhenius). Such is to say that the reaction rate is independent of the

concentration of products or the state following the saddle point.

3. The motion of the system at the saddle point may be considered as pure trans-

lational motion described using kinetic theory.

Vineyard extended transition state theory to solid state problems by consider-

ing the rate of many-body interactions [234]. For a crystal containing N/3 atoms

and N degrees of freedom, the potential energy for the entire crystal is denoted by

Φ(y1, y2, ..., yN). Minima of Φ are found at A and B with the saddle point between

them at P in the N dimensional hyperspace, as shown in Figure 25. S is a hypersur-

face passes through P and is normal to all contours everywhere else. Therefore, any

point moving from A to B with non-zero velocity at S will transition to B.
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Figure 25: The energy contours for an N dimensional space with solid contours of
constant potential energy and dash lines, constraining hyperplanes. [234]

The average jump rate of from A to B is determined by the number of points QA to

the left of S, and the rate I at which points cross S:

Γ =
1

τ
=

I

QA

(46)

The first principle assumption in this work is to adopt the principle that for clas-

sical systems in equilibrium, the probability distribution of position and velocity in

configurational space can be written as

ρ = ρ0exp(−Φ/kBT ) (47)

where ρ0 is a normalizing factor. The number of points to the left of S is then

QA = ρ0

∫
A

exp(−Φ/kBT )dv (48)

where the integration occurs over the configurational space left of S. Quantifying the

number of points crossing from left to right I begins with the probability density at

any point Y in S having a hyper-velocity V = ẏ1... ˙yN within range dV = ˙dy1... ˙dyN
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ρ(Y,V)dV = ρ1 exp(−Φ/kBT ) exp(−V 2/2kBT ) dy1...dyN (49)

where ρ1 = ρ0(2πkBT )−N/2. The total current of phase points crossing an element

dS = dS1...dSN of S is found by integrating over all possible velocities:

dI = dS ·
∫

Vρ(Y,V)dV (50)

To ensure that dS ·
∫

V > 0, the axes are rotated such that one direction is parallel

to dS at Y

dI = ρ0(2πkBT )−N/2exp(−Φ(Y )/kBT )dS1

∫ ∞
0

ẏ1exp(−y2
1/2kBT )dẏ1

N∏
j=2

∫ ∞
−∞

exp−y2
j/2kBTdẏj

= ρ0

√
kBT/2π exp(−Φ(Y )/kBT )dS1

(51)

where thanks to the rotation, dS = dS = dS1. Integrating dI over S is the final step

to obtain the rate of points crossing S from left to right:

I = ρ0

√
kBT/2π

∫
S

exp(−Φ(Y )/kBT )dS (52)

Substituting Equations 48 and 52 into Equation 46 yields the rate of crossing for an

arbitrary system between two minima:

Γ =

√
kT

2π

∫
S
e−Φ/kTdS∫

A
e−Φ/kTdv

. (53)

Expanding the energy Φ at point A to second order yields Φ ∼= Φ(A)+
∑N

j=1
1
2
(2πvj)

2q2
j

and Φ ∼= Φ(P ) +
∑N

j=1
1
2
(2πvj)

2q′2j .

Γ =

(∏N
j=1 νj∏N−1
j=1 ν ′j

)
e−[Φ(P )−Φ(A)]/kT (54)
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νa =

∏N
j=1 νj∏N−1
j=1 ν ′j

(55)

∆S =

∏N−1
j=1 ν0

j∏N−1
j=1 ν ′j

(56)

Therefore, the effective attempt frequency is given by the ratio of the product of

the normal frequencies of the initial (relaxed) configuration and the saddle point

(activated) configuration. Finally, the Arrhenius equation can be rewritten in terms

of the fundamental frequency ν1, the change in entropy and the change in enthalpy

for the process:

k = νae
−∆G/kBT = ν1e

∆S/kBe−∆H/kBT . (57)

The problem is therefore determining ν1, ∆S, and ∆H so that the reaction rate (or

mean waiting time) can be used to simulate the time evolution of thermally activated

processes.

2.6.2 Thermally Activated Dislocation Glide

2.6.2.1 Activation Energy

Thermally driven material behaviour such as creep deformation or strain rate sensi-

tivity has long been described using a modified Arrhenius equation, motivated from

a experimental observations:

ε̇ = B0 exp

(
−∆G

kBT

)
(58)

where B0 is a frequency factor incorporating the average plastic strain increment with

each thermally activated event (assumed to be constant). With greater theoretical

developments in the continuum theory of defects came several attempts to determine

the parameters of the Arrhenius equation, in particular for the activation energy ∆G
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and its contributing terms, in closed form. The change in Gibbs free energy is defined

as

∆G = ∆U − τ∆V − T∆S (59)

where ∆U is the change in internal energy, and ∆V is defined by the τ∆V as the

total work done by the externally applied stress τ (and is not related to physical

volume change of the system). Experimental measures of activation energy for creep

are found from the temperature dependence of the creep strain rate, found using [94]

and Equation 58

Qc = kbT
2

(
δlnε̇

∂T

)
τ

= ∆H − T
(
∂∆H

∂T

)
τ

+ T 2

(
∂∆S

∂T

)
τ

(60)

A correct application of Equation 60 requires a careful examination of the Second

Law of Thermodynamics. A crystal in its ground state described by T , S, and V

will not necessarily be the lowest possible free energy state of the crystal due to an

internal defect structure, but will correspond to the lowest free energy for the specific

configuration.

Gibbs then examined the specific contributions to the activation energy for dislo-

cation movement. The plastic strain rate in a simplified two dimensional case can be

written as

ε̇ = ρbv (61)

where ρ is the dislocation density, b the magnitude of the Burgers vector, and the glide

velocity v is determined by the rate of unpinning from local obstacles for thermally

activated dislocation glide. Gibbs acknowledged the complexity arising from the

distribution of segment lengths between pinning points, but treated the simpler case
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with equal connected lengths in closed form. A key notion of the analysis is that the

free energy is considered for the entire defective crystal rather than the local region

around the pinned dislocation segment. The reasons are twofold:

• It is the entire crystal that adopts a minimum free energy configuration, not

the local region.

• The concepts of thermodynamics are only applicable to a large ensemble of

atoms.

Gibbs formalized a problem consisting of a finite dislocation segment of length 2l,

Burgers vector b pinned at its ends and at its midpoint by local obstacles. A “long-

range” stress τµ < τ acts in a direction opposite to the applied stress τ . Assuming

the glide dislocation remains straight, at a position x, the Helmholtz free energy

(incorporating contributions from the internal stress τµ) F = U − TS will vary as a

function of x. As the dislocation moves, the an applied stress performs work τ lbx,

resulting in a change in Gibbs free energy of ∆G = ∆F − τblx for a thermally

activated event. Gibbs was mistaken in this derivation if one considers the derivation

of the attempt frequency by Vineyard, detailed in the above section. The entropic

contributions arise as a result of the ratio of states between the normal and activated

complexes, and are not inherently included in the free energy, which Gibbs makes

note of in reference to the work of Vineyard [234] and Granato et.al. [78]. In this

thesis, Gibbs’ analysis of Helmholtz free energy and Gibbs free energy are referred

to as the internal energy and the enthalpy. The analysis of Gibbs does addresses

many complex points for the first time, including the notion of activation volume

for a dislocation process. The Gibbs free energy barrier to be overcome as shown in

Figure 26 is written as ∆G = ∆F − τbld. The activation volume is defined as

∆V = −
(
∂∆G

∂τ

) ∣∣∣∣
T

(62)
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which one can immediately recognize as the quantity lbd for this scenario. This is

a thermodynamic quantity rather than a change in volume for this specific process,

as dislocation motion changes the crystal shape without changing its volume (to first

order).

E
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y

Reaction Coordinate

Potential Energy
Work done by dislocation

Enthalpy

-τlbx

Act. E.

Figure 26: The free energy evolution as a function of distance for the configuration
described by Gibbs.

Gibbs also discussed the concept of rigid and deformable energy profiles with regards

to Figure 26, recognizing that for deformation occurring during thermal activation,

there is no unique ∆G vs. x curve than can be written down, but an high dimensional

hypersurface encompassing all possible bypass events. In the case that one can deter-

mine the minimum energy pathway (MEP) for a reaction, a similar one-dimensional

∆G vs. x diagram can be written down.

While the analysis of Gibbs cannot be applied to calculate physically realistic

activation energies for thermally activated dislocation glide because of its assumption

of a rigid dislocation segment pinned by a specific geometry, the insight gained is
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valuable with regards to better understanding thermally driven dislocation processes.

First, the notion that the entire crystal must be the subject of the energetic analysis

is key. Second, the work done by the dislocation gliding under the influence of an

externally applied stress strongly influences the activation energy barrier for bypass.

Finally, the activation volume for a dislocation processes is not a volume of visually

identifiable atoms, but a thermodynamic measure of the stress sensitivity of the Gibbs

free energy.

2.6.2.2 Attempt Frequency

The Arrhenius equation was generalized to many-body processes in the work of Vine-

yard [234] in order to extend it to solid state processes. By considering the ratio

of configurational partition functions for the normal and activated states for an M -

dimensional system and assuming each degree of freedom can be approximated a

harmonic oscillator, the rate of phase points crossing the saddle point can be written

as

k = νae
−∆G/kBT = ν1e

∆S/kBe−∆H/kBT (57)

where

νa = ν1

M∏
i=2

(νi/ν
′
i), (63)

ν1 is the fundamental attempt frequency, νi is the frequency of the ith mode of the

normal state, and ν ′i is the frequency of the ith mode of the activated state. The factor∏M
i=2(νi/ν

′
i) is called the entropic factor as it explicitly accounts for the entropy change

during the process.

In the context of dislocation-obstacle bypass processes, Equation 63 can be applied

if the normal modes of the dislocation configuration in the relaxed and activated

configurations can be described, either in closed form or numerically. The first study,
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and principle work to this day, was performed using a line-tension dislocation model

such that closed form expressions are attainable. Granato et. al. [78] described a

dislocation line using the following partial differential equation:

µy′′ + ρ(x)F (y) + bσ = µÿ/c2 (64)

where y is the displacement of the dislocation at x, µ is the line tension, b is the

Burgers vector magnitude, σ is the applied stress, ρ(x) the pinning point density, the

mass per unit length is assumed to be µ/c2 and c is the speed of sound in an isotropic

medium. At equilibrium but allowing for small perturbations, z(x) must satisfy

y(x) = Y (x) + z(x)cos(ωt), (65)

where Y (x) is the mean equilibrium configuration, ω is an eigenfrequency of the

system and z(x) represents the small oscillations about the mean configuration. With

this substitution and assumption of equilibrium, Equation 64 becomes an ordinary

differential equation:

z′′ + (ω2/c2 − [ρ(x)/µ] f)z = 0 (66)

where f = −(dF/dy0)y0=Y0 and the fixed boundary conditions z(−l, t) = z(l, t) =

0. Granato et. al. [78] considered a point defect ρ(x) = δ(x) and continuously

distributed ρ constant. Focussing on the case of a single point defect, the perturbation

of the dislocation z(x) is described by

z = A sin ((ω/c)(l + x)) for− l < x < 0, (67)

z = ±A sin ((ω/c)(l − x)) for 0 < x < l. (68)

The two solutions are joined with the added conditions
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lim
ε→0

z(−ε, t) = z(ε, t) (69)

lim
ε→0

z′(−ε, t)− z′(ε, t) = z0f/µ (70)

For even modes z(0) = 0 and are therefore unaffected by the pinning point and with

θi = ωil/c, the frequencies for even modes is given by θ2r = rπ. For arbitrary f , the

odd frequencies must obey the equation

tanθ = −(2µ/fl)θ, (71)

which provides the values for θ2r−1. Assuming that for the pinned state f = γ and

f = γ′ = −sγ at the saddle point with s, γ > 0. Using these two expressions with

Equation 63, one can provides estimates of attempt frequency for several strength

bounds. For large f , tanθ � 1, θ2r−1 approaches θ′2r+1, resulting in all θ′ being

cancelled in so that Equation 63 the attempt frequency is governed by θN−1 ≈ Nπ/2

and νeff is on the order of the Debye frequency. A more complex analysis is required

for the minimum value of γ resulting in a saddle point (detailed in [78]), with the final

value for the attempt frequency being νeff = 3.2ν0 with an associated entropic factor

of 1.8. Their work remains at the forefront of dislocation vibration characterization,

yet relies on line tension approximations in which dislocations are modelled as a line

with an associated energy per unit length. Dislocations have complex elastic self-

interactions which cannot be captured by a line tension model, and therefore further

investigation is required to determine if line tension approximations are appropriate

within the context of this phenomenon. In this chapter, the effect of approximations

are explicitly investigated within the context of dislocation vibrations by comparing

to calculations without such approximations.
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2.7 Minimum Energy Pathway Finding Methods

The most direct access to the minimum energy pathway is by assuming a harmonic

potential and calculating the Hessian matrix (matrix of second derivatives for each

degree of freedom) [178] about the minimum in question. The system state is ad-

vanced in the direction of the minimum eigenvalue of the Hessian, which will trace

the minimum energy pathway. However, the size of the Hessian is N × N where N

is the number of degrees of freedom, which is three times the number of atoms in

the case of an atomistic calculation. This brute force method is too computation-

ally expensive to be of practical use, particularly with atomistic methods because

the Hessian matrix becomes unmanageably large at even small simulation volumes.

Consequently, several efficient saddle point energy calculation methods have been

developed to enable activation energy calculations.

Two commonly used classes of MEP finding methods exist: those where the fi-

nal state following the reaction is known, and those where it is not. The first class

are well adapted to calculating the activation energy for a single targeted process,

such as a chemical process, or a specific change in morphology in a material system

(e.g. diffusion, clustering). These methods are often referred to as “chain-of-state”

methods as they used a series of system duplicates (called images) to evolve a path-

way linking the initial and final states to the minimum energy pathway. Numerous

numerical techniques proposing different methods of evolving the images exist in the

literature, including string methods [243, 171] and the nudged elastic band method

[102]. String methods determine the MEP by assuming a pathway described by con-

tinuous interpolation functions such as cubic splines, creating a new series of images

at each step in the convergence, evolving the image positions according to the force

on the images normal to the interpolation function tangents, and then updating the

interpolations to reflect the new positions. The nudged elastic band method differs by

describing the pathway with a fixed number of images that are created at the start of
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the simulation and maintained throughout the convergence to the MEP. The tangent

to the pathway is calculated using a discrete difference method, and a spring force

acts parallel to the image to keep the images sufficiently spaced along the pathway.

Chain-of-states method have been used to calculate activation energies for processes

such as dislocation mobility [174], dislocation cross slip [182], and screw dislocation

kink-pairs [244]. In contrast, the second class of methods, in which the final state is

unknown, can be used to find all possible reactions for a phenomenon. These include

the activation relaxation technique [147] and the dimer method [88]. Each method

starts with a small random perturbation from the initial equilibrium. The activation

relaxation technique inverts the component of the force along the direction between

the current position and the local minimum and drives the system according to this

modified force. From the saddle point, the system is relaxed using the physical force.

The dimer method creates a pair of system duplicates that are used to evaluate the

curvature of the energy surface to drive the system to the saddle point. These methods

such as helium migration near an edge dislocation [87] and possible transition states

of point defects in α-iron [70]. Each class of methods has strengths and weaknesses,

and must be selected according to the problem at hand. These MEP finding meth-

ods allow atomistic methods to calculate activation energies for reactions; however,

the limited simulation volume, dependence on selected interatomic potential, and

further challenges associated with atomistic simulation techniques motivate further

development of these techniques, particularly with regards to continuum methods.

In this chapter, the implementation and numerical methods of the dimer and

NEB methods are analyzed in greater detail for their applicability regarding their

augmentation to a DDD code to calculate the minimum energy pathway for disloca-

tion processes.
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2.7.1 Dimer Method

The dimer method [88] is a numerical method used to find saddle points on energy

surfaces without inverting the Hessian matrix. The method has been used in mate-

rials science for applications such as improving activation energy mapping of crack

tip dislocation nucleation citeZhu2004 and investigating the structure of irradiation

induced defects in MgO [222]. While developed with the goal of accelerating atom-

istic simulations, the dimer method formulation can be applied to discrete dislocation

dynamics systems. First, classical dislocation dynamics is used to relax the disloca-

tion to what will become the initial dimer position. Then, the dimer is created by

splitting the relaxed configuration by a small distance ∆R (eg. 0.01a in atomistics)

along a random direction N̂.

R1 = R + ∆RN̂ (72)

R2 = R−∆RN̂ (73)

The vectors here are of size 3N where 3N is the number of degrees of freedom in the

system (here, N dislocation nodes result in 3N degrees of freedom). Using a finite

difference formula for the curvature of the potential surface C,

C =
(F1 + F2) · N̂

2∆R
(74)

and the energy at the midpoint of the dimer can be written as

E0 =
E

2
+

∆R

4
(F1 + F2) · N̂ (75)

and the force on the dimer is simply the average of dimer image forces:

FR = (F1 + F2)/2 (76)
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(a) (b)

Figure 27: Definitions for dimer rotation and translation variables. [88]

The dimer is rotated once after each displacement towards the minimum energy

configuration, which is possible using a conjugate gradient method [88] incorporating a

Newton method approximation. The dimer is rotated in the direction of the rotational

force F⊥ = F⊥1 + F⊥2 , where F⊥i = Fi − (Fi · N̂)N̂. The unit vector in the direction

of F⊥ is defined as Θ.

First, image 1 is rotate by some angle of rotation dθ:

R∗1 = R + (N̂cos dθ + Θ̂sin dθ)∆R (77)

Next, the new N∗ is calculated, and then the second image is repositioned at R∗2 using

eqn. 73. Next, the forces F∗1, F∗2, and F∗ = F∗1 − F∗2 are recalculated. The scalar

rotation force is defined as F = F⊥ · Θ̂/∆R, and the derivative of the scalar rotation

force is defined as (using a finite difference method):

F ′ =
dF

dθ
≈

∣∣∣∣∣F∗ · Θ̂∗ − F · Θ̂
dθ

∣∣∣∣∣
θ=dθ/2

(78)

The estimate of the rotation is obtained using a Taylor expansion of the potential

surface to obtain the desired rotation angle:
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∆θ = −1

2
arctan

(
2F0

F ′0

)
. (79)

With the new rotation, the updated image position

R∗∗1 = R + (N̂cos ∆θ + Θ̂sin ∆θ)∆R (80)

is used to find an updated position R∗∗1 . dimer orientation N̂∗∗, and dimer rota-

tion direction Θ̂∗∗. Next, a conjugate gradient method is used to obtain a faster

convergence:

G⊥i = F⊥i + γi
∣∣G⊥i−1

∣∣ Θ̂∗∗i−1 (81)

γi =
(F⊥i + F⊥i−1)

F⊥i · F⊥i
(82)

The process is iterated until G⊥i = 0.

The dimer translation is straightforward in comparison to the rotation. A modified

force F† = FR − 2F||. The position is updated according to the desired method such

as Verlet integration, with a modification to leave convex regions rapidly:

F† =

 −F|| if C > 0

FR − 2F|| if C < 0
(83)

The dimer method was implemented and tested with the DDD code developed

for this thesis. In performing basic simulations to examine the efficacy of the dimer

method for dislocation based processes, it became apparent that while the method is

an effective method for both determining the possible saddle points for a reaction as

well as the activation energy for each associated transition, the method is ill-suited

to the desired applications in this thesis.

Without some additional constraint, the dislocation line can deform in a kink as

shown in Figure 28, thereby creating an energy barrier to a process which is effectively
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Figure 28: Using a random perturbation vector may lead to non-physical phenomena
such as a dislocation forming a kink as shown here. The nodes that have deviated
out of the dislocation line create an energy barrier, and the segments forming acute
angles with the dislocation line will rotate to self-annihilate with the dislocation. A
large number of such meaningless saddle points will be found, and therefore greater
constraint is necessary to apply the dimer method to with this technique.

non-physical. It is possible that by picking a non-random perturbation vector N̂

one could target a certain reaction; however, another method to characterise energy

methods was selected for this thesis as detailed in the following section.

2.7.2 Nudged Elastic Band Method

The nudged elastic band (NEB) method [102] is a generalized numerical method

that seeks the minimum energy pathway following steepest descent between tran-

sition states [193].The NEB method used in this thesis closely follows the original

method detailed in [102], and applying the formulation to a system described using

the continuum theory of defects rather than an atomistic calculation simply requires

changing the computation required for certain vectors. A typical NEB calculation

begins with two known local minima between which the minimum energy pathway is

desired. Such is the strength and the weakness of this method: whereas the dimer

method can find all barriers to escape from a minimum energy state, the NEB method

will only find the activation energy for a single, minimum pathway. Therefore the

NEB is better suited to studies targeting a single process, whereas the dimer method

provides a more global perspective of possible reactions.

An NEB calculation begins with the definition of a set of images, which are du-

plicates of the system. After convergence to the MEP, the images will represent the

different steps through which the system passes as the reaction occurs. Images are
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typically initialized as a linear interpolation between the initial and final state. Each

image is described using a vector Ri that contains the degrees of freedom. The mini-

mum energy pathway is found by evolving the entire system of images simultaneously

according to a modified force. The tangent between these images is an imporant

parameter in the evolution of the system, which will become clear in the formulation.

Applying a straightforward centered difference scheme gives the following:

τ i =
Ri −Ri−1

|Ri −Ri−1|
+

Ri+1 −Ri

|Ri+1 −Ri|
(84)

This formulation is effective in some cases, but can lead to kinking in the path formed

by the images when the force parallel to the path is large. Kinks result in an inaccurate

characterization of the MEP, or possibly numerical instability during the convergence

calculation. In the implementation used for this thesis, an improved tangent method

based on the energy of the relative images is used as defined in [89]. The tangent

modified in such a way to smooth the transition between images at minima and

maxima. This tangent scheme is often referred to as the “upwind” scheme, because

the tangent vector is taken from a lower energy image to a higher energy image. First,

the simplest cases are treated is defined as:

τ+
i = Ri+1 −Ri (85)

τ−i = Ri −Ri−1 (86)

τ i =

τ+
i if Vi+1 > Vi > Vi−1

τ−i if Vi+1 < Vi < Vi−1

(87)

Equations 85, 86, and 87 are used when image i is not an extrema. In the case that

i is an extrema, the tangent is described using the following equations:
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τ i =

τ+
i ∆V max

i + τ−i ∆V min
i if Vi+1 > Vi−1

τ+
i ∆V min

i + τ−i ∆V max
i if Vi+1 < Vi−1

(88)

∆V max
i = max (|Vi+1 − Vi| , |Vi − Vi−1|) (89)

∆V min
i = min (|Vi+1 − Vi| , |Vi − Vi−1|) (90)

Using the improved tangent scheme with a DDD-NEB calculation showed good nu-

merical stability with no observed kinking along the MEP.

The total force depends explicitly on the tangent between images, which for each

image is written as [102]:

Fi = Fs
i |‖ + FR

i |⊥. (91)

where Fi is the force vector, F s
i |‖ is the component of the so-called “spring force”

parellel to the tangent vector, and FR
i |⊥ is the component of the real force (as defined

by the physical problem) that is normal to the tangent vector. The true force is

written as

FR
i = −∇V (Ri) = FPK

i , (92)

Equation 92 is exact; however, obtaining FPK
i in analytically is only possible for

specific dislocation configurations or by using the closed form non-singular solutions

of Cai et. al [30]. The component normal to the tangent is extracted using a typical

projection as follows:

FR
i |⊥ = FPK(Ri)− FPK(Ri) · τ̂ i (93)

where τ̂i is the unit tangent to the energy surface. Along with the improved tangent,

the authors in [89] also introduced the following formulation for the spring force:
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Fs
i |‖ = k [|Ri+1 −Ri| − |Ri −Ri−1|] τ̂ i. (94)

From Equation 94, one can see that the spring force acts to keep the mean of the

image separation vectors equal along the MEP tangent. With the forces fully defined,

the system of iamges can be evolved to the MEP using a Verlet integration method,

i.e.,

Rt+∆t
i = 2Rt

i −Rt−∆t
i + F(Rt

i)∆t
2, (95)

The system does not evolve in time but rather is a convergence to the minimum

energy pathway, and thus the time-step parameter ∆t is set to the largest value to

perform the relaxation in the minimum number of steps while retaining numerical

stability. The convergence can be accelerated by using a Velocity Verlet integration

[102]:

Rt+∆t
i = Rt

i + Vt
i∆t+ 1/2F (Rt

i)∆t
2 (96)

Vt+∆t
i =

(Vt
i · F(Rt

i)) F(Rt
i) if V t

i · F (Rt
i) > 0

0 otherwise
(97)

The velocity component in Equation 97 increases the rate of convergence by increasing

the velocity until the dot product of the velocity and force is negative, or in physical

terms, when the force is driving the system in a direction opposite to its motion.

Figure 29 provides a visual representation of an NEB calculation in a simple case

using a 2D potential. The images are first initalized as a straight connecting the first

and the last states, which are fixed. The force on each node is calculated according

to Equations 92,93 and 94 and the image configurations are advanced according the

Verlet method in Equations 96 and 97. This process is repeated until convergence is

achieved, which can be defined using a variety of conditions. One often-used criteria
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Figure 29: The MEP for a 2D potential as found using the nudged elastic band
method (dashed line) and analytically (solid grey). Each image is denoted with a
solid black circle. [89]

for atomistic simulations is a force threshold [89]: the simulations is deemed to have

converged when the normal component of the real force is below a defined value.

The NEB method is formulated in a general way such that if one can defined a

degree of freedom vector R for the system and calculate the physical force FR, then

the method can be applied. Using the NEB method also requires some knowledge

of the initial and final states of the system to calculate the activation energy for

a specific barrier. These requirements are naturally fulfilled by discrete dislocation

dynamics simulations, in particular for the processes examined in this thesis. The

system is already discretized into dislocation nodes, so the degree of freedom vector R

can be readily generated as a 3N length vector, where N is the number of dislocation

nodes in the system. The physical force is known in closed form as the Peach-Koehler

force (Equation 7) using a non-singular formulation, unlike in atomistic simulations
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where Equation 92 must be applied in a discretized form. These two simple properties

result in dramatically faster simulations, and the capability to simulate volumes far

beyond the reach of atomistic simulations. The NEB calculations in this thesis are

performed uniquely to calculate the bypass energies for a dislocation bypassing a

sessile, undeformable self-interstital atom loop and the following details are elaborated

in the context of this particular process.

The procedure to calculate an activation energy using the DDD-NEB method

begins with a traditional DDD simulation. With the desired applied stress and inter-

action geometry initialized, the DDD simulation runs until equilibrium is established

using a criteria on the velocity of all dislocation nodes. If a certain amount of plastic

strain is accumulated, the value of which is chosen such that the glide dislocation has

necessarily bypassed all obstacles, the simulation is terminated and a zero activation

energy is recorded. If the simulation reaches equilibrium, this configuration serves as

the first image in the NEB calculation. The final image is an assumed state: once

the glide dislocation has bypassed all obstacles and is beyond range of elastic interac-

tions with any dislocation segments except for those of the glide dislocation, the glide

dislocation is assumed to return to a straight dislocation because of self-interaction

acting to minimize the energy of the system. The intermediary images are generated

using linear interpolation.

Figures 30 and 31 depict the evolution of image positions during an NEB relax-

ation, and the energy profiles corresponding to each of these steps.

The physical force and spring force are calculated according to Equations 92, 93

and 94 using the Peach-Koehler force as the real force. For the spring force, values

of k ranging over several orders of magnitude were tested and the activation energy

values were seen to be independent of k as shown in the energy profiles in Figure 32.

If the tangent calculation is exact, the NEB calculation is independent spring force;

however, the tangent is calculated using a discrete difference approach and therefore
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(a) Step 1. The first three images are used to depict the tangent
calculation. The tangent at the green image relies only on the neigh-
bouring orange images.

(b) Step 2.

(c) Step 3.

(d) Step 4.

Figure 30: NEB configuration at varying stages of relaxation.
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Figure 31: The activation energy profile converges towards the minimum energy path-
way for a 1/2 [111] (11̄0) glide dislocation bypassing a [001] self-interstitial atom loop
under an applied shear stress on the glide plane of 10 MPa. The profiles correspond
to the plots in Figure 30.

independence of this factor must be explicitly verified.

A large number of images are used with this method compared to atomistic sim-

ulations. Whereas atomistic simulations often use 5-20 images [90], the NEB calcu-

lations performed for this thesis used 40-200 images, depending on the number of

defects present. Such a large number of images enables a high resolution character-

ization of the energy landscape. The large number of images allows one to obtain a

smooth activation energy map without curve fitting or cubic interpolation, and with

the low computational requirements, there are no associated drawbacks to having a

large number of images.

In contrast to intrinsically discretized atomistic NEB simulations, the discretiza-

tion of continuous dislocation lines must be specified. A range of discretization lengths

were tested to ensure convergence, detailed in Chapter 4. As described previously,
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Figure 32: The activation energy is observed to be independent of spring constant. A
weaker spring combined with small errors in the tangent result in the images shifting
near the loop, causing a different profile as a function of reaction coordinate. However,
accuracy is maintained in every case.

the dislocation line is re-discretized at every step during a typical dislocation dynam-

ics simulation and dislocation nodes are moved, added, or removed as a function of

spacing along the dislocation line to maintain numerical stability and a physically

realistic configuration. However, in an NEB calculation involving discretized dislo-

cations, maintaining the number of degrees of freedom constant and equal across

all images is highly desirable to avoid interpolations between degrees of freedom of

different images. Further, the tangent equation depends directly on the position of

the nodes in the neighbouring images and consequently the nodes cannot be moved

significantly. Figure 33 shows an example case where a remeshing method is essential.
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(a) Initial NEB image configuration created from relaxed
DDD configuration and assumed final state of a straight
dislocation line beyond the SIA loop.

(b) Without remeshing, numerical artifacts are observed be-
cause of insufficient distance between nodes. The line be-
comes kinked and diverges from the MEP.

Figure 33
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(c) With a cubic remeshing method, the dislocation line
keeps a more realistic shape and numerical artifacts are not
observed. This figure is of the same simulation time-step as
Figure 33b.

Figure 33: A cubic interpolation re-discretization method maintains tangent continu-
ity and ensures a good description of the dislocation line. These images are extracts
from a large periodic simulation volume, and the boundaries are not shown.

Within these limitations, a re-meshing method was developed that maintains nu-

merical stability as shown in Figure 33c. The dislocation line was recreated using a

cubic spline interpolation through all dislocation points, and the dislocation nodes

were repositioned along this line relative to a point fixed on the simulation bound-

ary volume to maintain constant spacing. No points were added or removed. As a

result, the point positions did not vary significantly between steps and therefore the

re-meshing did not perturb the tangent calculation, while preventing the introduction

of numerical artifacts such as kinking into the dislocation line shape.

In practice, the NEB method can be coupled to an existing dislocation dynam-

ics implementation without an onerous numerical implementation. The DDD code

naturally calculates the true force in Equation 91. Once the starting and ending
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configurations are chosen, the images are created by making complete duplicates of

the initial configuration and repositioning the glide dislocation to an interpolated

position. Each image is evolved similarly to a dislocation dynamics simulation, ex-

cept that the dislocation force is the NEB force in Equation 91. The vector Ri in

Equations (91-94) is simply a 3N length vector containing the coordinates of each

moving dislocation node. The numerical procedure to converge to the MEP is nearly

identical to simulating the time evolution of several DDD simulations simultaneously

- each image influences its neighbours via the tangent and spring force, but otherwise

evolves independently. Consequently, the method can be readily parallelised with

little communication overhead.

2.8 Summary

The numerical foundations upon which the studies in this thesis are performed rely

on the description of dislocations within the framework of the continuum theory of

defects. For an isotropic, infinite material, a non-singular solution exists [30] which

greatly accelerates calculation times and also improves physical fidelity. With the

theory underpinning the elastic fields, interactions and motion of dislocations estab-

lished, a significant numerical framework is required to ensure realistic discretization

and boundary conditions with a strong focus on computational efficiency. A brief

study of dislocation motion in a Cu/Nb laminate material highlights the need to con-

sider both geometric constrains to dislocation motion as well as the local interactions

when predicting mechanical properties. In such confined geometries, the discretiza-

tion is particularly important and a carefully chosen adaptative re-discretization tech-

nique is necessary to maintain physical fidelity. Atomistics-informed behaviour for

dislocations intersecting SIA loops and voids is implented to enable athermal irradi-

ation hardening calculations in α-iron. Moving beyond the athermal regime requires

a more complex analysis including the calculation of activation energies. The dimer
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and nudged elastic band methods are considered, and the nudged elastic band method

is selected to perform activation energy calculations for dislocation-SIA loop bypass

processes.
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CHAPTER III

ATHERMAL IRRADIATION HARDENING

Constitutive models for irradiation hardening in metals such as dispersed barrier hard-

ening [191], Friedel Kroupa Hirsch [107], and Bacon Kocks Scattergood [13] models

have been proposed and applied in experimental studies, but the limits of their appli-

cability has never been investigated for varying defect types, sizes, and densities. In

this chapter, dislocation dynamics calculations of irradiation induced obstacle hard-

ening in the athermal case are compared to these models for voids, self-interstitial

atom (SIA) loops, and a combination of the two types. The Bacon Kocks Scatter-

good model is found to accurately predict hardening due to voids, whereas the Friedel

Kroupa Hirsch is superior for SIA loops. For both loops and voids, the hardening

from a normal distribution of defects is compared to that from the mean size, and is

shown to have no statistically significant dependence on the distribution. A mean size

approach is also shown to be valid for an asymmetric distribution of voids. A non-

linear superposition principle is shown to predict the hardening from the simultaneous

presence of voids and self-interstitial atom loops.

3.1 Introduction

Predicting the mechanical behaviour of an irradiated material in the athermal regime

is a key component in nuclear reactor pressure vessel lifetime estimation. Thermally

activated events can be characterized by a mean waiting time (inverse of reaction

rate) and therefore require a finite amount of time to occur for a specific set of

loading conditions. Under shock loading, such as an external impact or internal spike

in pressure, the material behaviour of nuclear pressure vessel will be strictly athermal

as the loading occurs too quickly to allow for thermally processes to play a role. The
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nature of the reaction between dislocations and irradiation induced cascade damage

strongly influences the mechanical response of the material, because lattice defects act

as obstacles to dislocation motion. The atomic scale interaction between a dislocation

core and an irradiation induced defect strongly influences dislocation motion, as the

strength of this interaction, along with longer range elastic interactions, will have a

significant impact on the yield strength of the material. However, this interaction is

also highly complex and must be investigated using molecular statics and dynamics

simulations.

As the steel reactor pressure vessel is typically of the highest concern regarding

irradiation hardening, the majority of atomic scale studies focus on interactions be-

tween dislocations and irradiation induced defects in α-iron [128, 156, 11, 122, 217,

212, 85, 163, 218]. From an experimental perspective, SIA loops have been observed

with a large range of diameters from the TEM resolution threshold (≈ 2 nm) to 25nm

or larger at densities on the order of 1022 m−3 [91], whereas voids typically exist with

diameters of 0.5-10 nm at densities of 1024 m−3 ([59, 259, 91]). These values were

observed for fast neutron irradiated α-iron, and are strongly dependent on irradiation

dose and dose rate. The interactions between pure edge and pure screw dislocations

with SIA loops of character 〈100〉 and 1/2〈111〉 with different relative orientations

between the glide dislocation and SIA loops ([128, 156, 11, 122, 217, 212]), and with

voids ([85, 163, 218]) have been investigated to some degree. Atomistic calculations

show that the obstacle strength of SIA loops is highly dependent on the relative ori-

entations during the interaction, and have found the strength of voids over a range

of sizes. However, further investigations are required to fully understand dislocation-

irradiation defect interactions. In particular, dislocation interactions with very small

(<1 nm) defects need much greater attention. Defect composed of a few vacanies or

interstitial atoms cannot be assumed to behave according to continuum approxima-

tions, i.e. as a spherical void or self-interstitial atom loop. Given that a high density
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(1024 m−3) of voids are observed at irradiation levels seen by fission power reactors,

very small defects may govern dislocation motion in a material. Conversely, if small

defects can simply be absorbed by an edge dislocation (causing dislocation climb),

these defects may play no role whatsoever. Only atomistics simulations are able to

capture such behaviour, and provide valuable insight that can be coarse-grained to

higher scale simulations and models, such as DDD.

Characterizing dislocation-irradiation defect interactions is the first step towards

predicting the mechanical response of an irradiated material. Before this information

can be used, a scale transition to a macroscopic constitutive equation is necessary

to account for the effect of an ensemble of defects in a bulk material, which can be

performed using discrete dislocation dynamics simulations. Computational line ten-

sion simulations have been used extensively to investigate obstacle hardening under

several regimes [64, 108, 54, 228, 46]. Line tension simulations treat a dislocation as

a line defect with an associated energy per unit length corresponding to its strain

energy; however, the elastic interactions between different parts of the dislocation

line and the differences between edge and screw dislocations are omitted. In simula-

tions considering obstacles, dislocation breakaway occurs when the included angle φ

between bowing dislocation arms descends past a specified threshold angle φc. While

simpler in implementation and lower in computational requirements than dislocation

dynamics simulations, line tension simulations are highly simplified by omitting ef-

fects such as thermal activation, dislocation self-interaction, and variable line tension

as well as the consideration of defects as having infinitesimal size. Despite their sim-

plicity, line tension simulations can serve as a starting point from which basic trends

can be extracted before continuing to more representative simulations. Foreman [64]

calculated single dislocation hardening due to a square lattice and random spatial

distribution of a single defect type (strength), and showed that for weak point defects
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(φc > 140◦), the yield strength can be predicted exactly using Friedel’s approxima-

tions for obstacle spacing on a dislocation. Modern studies have provided insight

into more complex and realistic cases using line tension simulations. Kulkarni [108]

investigated precipitate hardening using a distribution of particle sizes and a break-

away angle dependent on particle size. Hardening due to the particles with a size

distribution was compared to the hardening resulting from all particles having the

distribution mean size, and showed that for the chosen size distribution a mean radius

approach systematically overestimates the change in yield strength. The yield point

difference between the mean radius and full distribution approaches decreases with

increasing particle size (increasing obstacle strength) which was attributable to asym-

metry in the size distribution. Dong [54] simulated dislocation-obstacle interaction

with two obstacle types present simultaneously: a square lattice of strong obstacles,

and a random distribution of weak obstacles. For varying strong obstacle strengths,

the authors compared the calculated hardening to an commonly used superposition

principle [111]:

τnT = τn1 + τn2 (98)

where τnT is the increase in yield strength due to obstacles 1 and 2, τn1 the hardening

due to obstacles of type 1, τn2 the hardening due to obstacles of type 2, and n is some

constant and found that the coefficient varies continuously depending on the defect

strengths and, in the case that both obstacles are weak, n=2 is seen to be exact.

Vaucorbeil proposed a superposition principle for simulations containing three differ-

ent obstacle types of different strengths [228], and also showed that clustering/spatial

correlation of defects has a strong effect on hardening [46].

Dislocation dynamics simulations have also been used to a limited extent in the

analysis of irradiation hardening. Scattergood and Bacon [188] studied the strength-

ening effect of void hardening by modelling voids using the solution for a dislocation
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terminating on a free surface in a half-space. The authors found voids to act as

strong dislocation obstacles approaching the limit of impenetrable obstacles. Huang

et al. [95] studied Frank Read source activation in an atmosphere of out of plane SIA

loops and showed that the stress to unlock the dislocation from the atmosphere de-

creases by up to a factor of two compared to earlier estimates due to rigid dislocation

assumptions in the models. Highly fine-scale dislocation structure was investigated

by Nogaret et. al. [155], who theorized that helical twists in glide dislocations are

instrumental in the formation of clear bands. Arsenlis et al. [4] investigated localized

deformation (channel clearing) in irradiated materials by simulating infinite screw

dislocation motion in α-iron moving in an atmosphere of 25nm 1/2〈111〉 SIA loops

and found that channel size and initiation depends on loop coalescence initiated by

the elastic fields of moving dislocations. The interaction between an ensemble of SIA

loops of both glissile and sessile types in thin α-iron films have been studied using

DDD with a spectral method representation of free surfaces in order to reproduce

the mechanical loading and boundary conditions experienced by the material during

in-site TEM experiments as well as elucidate the relative influence of different forces

on SIA loop motion[62]. Particle induced hardening has also been the subject of

extensive DDD investigation, which can potentially be used analogously with radi-

ation induced defects with certain approximations. Mohles et. al. [141] simulated

the glide of an infinite dislocation through a medium containing incoherent spherical

particles and showed that a refined BKS model [151] including particle properties can

accurately predict. These results were extended successfully predict hardening caused

by shearable or coherent particles [140] as well as hardening caused by particle dis-

tributions over a range of spatial correlation [139]. More recently, three dimensional

DDD simulation including multiple interacting dislocation and impenetrable particles

were used to study the Bauschinger effect in dispersed-particle strengthened materi-

als [180] and superposition models incorporating dislocation friction and dislocation
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forest hardening [181].

Material properties at length scale relevant to irradiated materials in engineering

applications can be predicted using higher scale methods such as constitutive mod-

elling. Such models exist principally on two different scales: the dislocation scale,

which will be the focus of the current chapter, and crystal plasticity. Crystal plas-

ticity is a widely-accepted and highly used modelling methodology linking material

response to dislocation motion using a relatively high number of internal state vari-

ables to describe the kinetics of dislocation glide [189, 210]. With these methods,

one can model the evolution of the material state in a polycrystalline materials using

techniques such as the finite element method. Dislocation dynamics simulations play

a fundamental role in ensuring that these models accurately describe the physics gov-

erning dislocation motion and interactions. Latent hardening, the hardening observed

on one slip system due to dislocation interaction with other slip systems, is described

using a matrix of coefficients describing the strength of interactions between all glide

systems for a specific crystal structure. These coefficients have been characterised

using dislocation dynamics simulations of these specific interactions for the common

lattice structures in metals (FCC, BCC, HCP) [124, 180, 22]. Crystals plasticity

models have been further extended to include irradiation damage [167, 18, 118, 248].

Analogously to latent hardening between dislocations, dislocation-defect interactions

can be incorporated using a model describing this specific interaction. However, this

local interaction model must first be validated and the hardening coefficients de-

termined. This finer scale model is the focus of this chapter, which begins with a

derivation of the most commonly used dislocation-defect hardening models.

3.1.1 Hardening Models

Given that all classical models for irradiation hardening rely on a line tension model

of dislocations, a brief introduction is detailed here. The basis of a line tension model
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is that a dislocation has an associated energy per unit length that can be derived as

follows. For a screw dislocation, the displacement field is defined as uz = bθ
2π

where b

is the magnitude of the Burgers vector. Assuming small strain, elastic isotropy, and

using cylindrical coordinates, the elastic strain tensor is zero everywhere except

εθz = εzθ =
1

2r

d

dθ
(uz) =

b

4πr
. (99)

Applying Hooke’s law in shear, the stress field is obtained:

σθz = σzθ =
µb

2πr
(100)

Line tension Γ is taken as the associated elastic energy per unit length, defined as

Γ =

∫ R

rc

U eldΩ =

∫ R

rc

σijεijdΩ (101)

Substituting in εij and σij as found in equations 99 and 100, line tension can be

written as

Γ =

∫ R

rc

µb

8π2r2
dΩ =

∫ R

rc

µb

8π2r2
2πrdr =

µb2

4π
ln

(
R

rc

)
(102)

where R is the size of the crystal, and rc is the core radius. Typically rc is taken as

one Burgers vector length, and R is somewhat arbitrary. Given this arbitrary nature,

the line tension can be written as

Γ = αµb2 (103)

No core energy is included explicitly in this formulation, and is thus taken into account

through the parameter α. Taking α = 1 and equating line tension to applied force,

one recovers the classical expression for dislocation source activation:

τ =
µb

L
(104)
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Importantly, the dislocation does not interact with itself, that is to say the stress field

associated with the dislocation does not influence the dislocation itself.

The first proposed model of irradiation hardening was proposed by Seeger. If N

obstacles with equal radius R are distributed uniformly in space, then the areal density

of obstacles can be written as Nd, and the mean distance between them as 1/
√
Nd.

If line tension is assumed to be Γ = µb2, balance of forces between Peach-Kohler force

and line tension (assuming a parameter α) can be written as:

τ = αµb
√
Nd (105)

This model assumes that every defect intersecting the glide plane interacts with the

glide dislocation with the same strength, which defies physical intuition. One would

naturally assume that the defect size or interaction geometry must be a factor influ-

encing the strength of the dislocation-defect interaction, which is discussed in greater

detail in the coming sections.

The first numerical dislocation dynamics study on irradiation hardening was un-

dertaken by Foreman and Makin (1966) [64]. Using a line tension model with

Γ = µb/2, the authors calculated the flow stress for a single dislocation. From a

basic sum of forces in the direction of dislocation propagation while pinned to a

defect,

F = 2Γcos

(
φ

2

)
(106)

Combining this the Peach-Kohler force over the dislocation segment between obsta-

cles, the stress to propagate a dislocation past a uniformly spaced array can be written

as

τ =
µb

L
cos(φ/2) (107)

The equilibrium radius of curvature in this case is given as
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R =
Γ

τb
(108)

To compare to theoretical predictions of hardening, the authors substituted an ex-

pression from Friedel (1963) [68] for the mean spacing of defects on a dislocation.

The derivation for this mean spacing expression is as follows.

Figure 34: Dislocation bowing between non-attracting obstacles. [68]

First, three approximate quantities must be derived using Figure 34. First, Friedel

states that each time a dislocation overcomes an obstacle, it sweeps out an area

AB′CB ≈ l2. This can related to the quanities D and h by

Dh ≈ l2 (109)

Next, the approximation

D2 ≈ 2ρh (110)

which can be shown by expressing each of these quantities in terms of its geometric

formula approximating each segment as an arc of a circle:
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D = 2ρsin(θ/2) (111)

h = 2ρ′(1− cos(θ/2)) (112)

where ρ is the radius of AB or CD, and ρ′ is the radius of AB′C, and it can be shown

that ρ′ = 2ρ. Rewriting equation (110) using (111) and (112):

4ρ2sin2(θ/2) = 4ρ2(1− cos(θ/2)) (113)

sin2(θ/2) = (1− cos(θ/2)) (114)

Taylor expanding both sides:

1− 1

4
(x−π)2 +

1

48
(x−π)4 +O((x−π)6) = 1+

1

2
x−π− 1

48
(x−π)3 +O((x−π)5) (115)

Clearly, the approximation is only accurate in the constant term, which is rather

poor. Combining equations (108), (109) and (110):

l2

h
≈
√

2ρh (116)

D ≈ l2

h
≈
√

2Γh

τb
≈

√
2Γ l2

D

τb
(117)

D ≈
(

2Γl2

τb

) 1
3

(118)

For a square lattice, the mean spacing between nearest neighbor defects is L2 =

1/N where N is the number density of defects. Substituting in equation (101):

D ≈
(
µb

τN

) 1
3

(119)
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Finally, this expression can be substituted into 106 as L to obtain the Friedel estimate

of critical shear stress for a square array of defects:

τ =
µb(

µbL2

τ

) 1
3

cos(φ/2) (120)

τ =
µb

L
cos(φ/2)

3
2 (121)

In the work of Kroupa and Hirsch [107], the authors studied the elastic interactions

between a straight edge dislocation migrating past a circular prismatic dislocation

loop in an FCC material. The authors calculated the interaction energy between loops

on {111} planes with 1
2
[110] Burgers vectors and pure screw dislocations with 1

2
[110]

Burgers vectors moving on {111} planes. Considering 14 different relative orientations

and averaging over all relative positions in which the maximum possible interaction

occurs, the maximum interaction energy Emax and the maximum interaction force

Pmax were found as

Emax ≈
µb0b1R

4
(122)

Pmax ≈
µb0b1

4
(123)

where b0 and b1 are the Burgers vectors of the loop and glide dislocation, respectively.

Given the 1/r2 nature of the force outside the loop and the constant nature inside, the

authors only consider the contributions from loops with a center within R of the glide

plane. The average force from these loops is approximated as 1
2
Pmax. The separation

distance of loops on the dislocation is given using the work of Friedel [68] and Mott

[145]. First, Mott derived the average spacial coordinates of a dislocation locked at

impurity atoms.
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Figure 35: Dislocation locked at impurity atoms. [145]

First, a locking potential due to impurity atoms of V0 and a uniform distribution

was assumed. If N atoms
m3 are distributed, and there are Naatoms

m2 per unit area, then

number of impurities in a region < x is thus Naxatoms
m

. The mean separation of these

atoms is therefore y = 1/Nax m
atom

. The resulting energy per unit is then −V0/y, or

−V0Nax. The increase in line length compared to a straight line can be written as

(assuming straight segments):

∆L = 2(
√
x2 + y2 − y) (124)

and the relative change in energy per unit length can be written as

∆
2Γ

y
(
√
x2 + y2 − y) ≈ Γx2

y2
, (125)

where the approximation is obtained by Taylor expansion in x of order O(x4). Sub-

stituting the expression for y = 1/Nax, the change in energy can be written as

Γx2

y2
= ΓN2a2x4. (126)

To find the configuration of energy, the total change in energy (combining the decrease

due to solute atoms and the increase due to line tension) to be minimized is given by

∆E = Na(−V0x+NaΓx4), (127)

which results in a minimum at

x =

(
V0

4ΓNa

) 1
3

,
1

y
= Na

(
V0

4ΓNa

) 1
3

(128)
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Figure 36: Dislocation pinned at attractive obstacles. [68]

Friedel then took Mott’s final result in equation (128), and applied it to the config-

uration in Figure (36). Here, Friedel approximates l, the distance between obstacles

on the line, as

Dx ≈ l2 (129)

which differs from the true expression by a factor of two. Solving for D and substi-

tuting in Na = 1/l2 in Mott’s expression for x, one obtains:

D ≈ l2

x
=

(
4Γl4

∆U

) 1
3

. (130)

Friedel’s equation (39) in [68] differs by a factor of 21/3:

D ≈ l2

x
≈
(

2Γl4

∆U

) 1
3

. (131)

However, Kroupa-Hirsch apply the Mott version (eqn. 130) and thus this factor of

21/3 error is not present. With equation (133), we can return to the derivation of the

Kroupa-Hirsch irradiation hardening equation. Substituting the energy as Eavg =

Emax/2 from equation 122 and Γ = µb2/2, the mean distance between obstacles on

the dislocation line can be rewritten as
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D ≈ l

(
4Γl

∆U

) 1
3

= l

(
4l

R

) 1
3

(132)

The average distance between loops in the plate region under consideration can be

written as 1/
√

2Rn.

D ≈ l

(
4l

R

) 1
3

=
1√
2Rn

(
4 1√

2Rn

R

) 1
3

=
1

Rn
2
3

(133)

The force to propagate a dislocation must overcome the force of these loops. The

average force from loops is assumed to be 1
2
Pmax where Pmax is given in equation

(123), and the Peach-Kohler force must overcome this force, resulting in the following

criteria:

∆τ =
µb0Rn

2
3

8
(134)

The Bacon Kocks Scattergood (BKS) model [13] (eqn. 135) advances dislocation-

obstacle hardening models considerably by foregoing a line tension approximation

and directly including dislocation self-interaction as well as explicitly including the

finite size of defects in its formulation. The authors directly calculated, in closed

form, the stress required to propagate a dislocation past a collinear infinite array

of impenetrable spherical obstacles. Using the insight gained from this model, the

authors incorporated the essential features into a line tension model for a random

spatial distribution of obstacles, which is presented in equation 135. For a dislocation

with a Burgers vector magnitude b, obstacle strength α, number density N , obstacle

spacing L = 1/
√
ND and effective obstacle diameter D′ = DL

D+L
, the BKS model

predicts the change in yield stress as

τ c
BKS =

µb

2πL

[
ln

(
L

b

)]− 1
2
[
ln

(
D′

b

)
+ 0.7

] 3
2

. (135)

The classical value of Orowan bowing is ∝ µb/L (where L is the mean spacing between
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obstacles), which is the foundation of equation 135 with the addition of several factors.

A factor of ln(L/b)
2π

accounts for interactions over one bowing loop, and a factor of(
ln(D′/b)
ln(L/b)

)3/2

accounts for mutual loop interactions and the randomness of the obstacle

array [13].

Each of these models aiming to predict hardening in metals due to irradiation make

significant assumptions regarding the type, distribution or interaction behaviour of

defects. The Seeger model assumes a single type and size of uniformly distributed

obstacles with an associated parameter α, representing its strength relative to an

impenetrable obstacle. The Kroupa-Hirsch model attempts a much high level of

complexity by considering the elastic interaction between dislocation loops and a

glide dislocation. In doing so, however, the authors also only capture a small portion

of the true interaction, and the law is only valid for interactions between dislocations

and SIA loops. First, the approximation of interaction energy and force on the glide

dislocation were calculated for 14 unspecified orientations in FCC metals on a pure

screw dislocation. Interactions were assumed to only ever be elastic, even if the loop

intersected the glide path of the dislocation. Furthermore, the calculation of these

quantities only considered contributions from loops within a distance R (radius of

dislocation loops) of the glide plane, and yet DD studies have shown that loops outside

this region can significantly influence motion [95]. Furthermore, the assumptions

made by Friedel to obtain equation (133) are quite extreme, and are only valid for

breakaway angles very close to π. Friedel found this approximation starting from an

analysis by Mott [145], which also makes significant assumptions on the form of the

potential energy locking the dislocation, and the distribution of defects.

Obstacle hardening models have also been the subject of experimental investi-

gation. The superposition in Eqn. 98 was applied with a BKS model modified for

particle distribution, and found an exponent n =1.8 (eqn. 98) for solid solution and

dispersed oxide hardening in a Cu-Au alloy [111]. In a more complex case with a

107



greater number of obstacle types, Bergner et. al. [21] examined the capabilities of

the DBH and BKS models in combination with several superposition principles in an

Fe-Cr model alloy. The hardening parameter α was calculated for α′ phase particles,

dislocation loops, and NiSiPCr-rich clusters in an Fe-Cr model alloy. Three parame-

ters were fit to four data points using linear regression, and regardless of the chosen

hardening model and superposition principle, a good fit to the data was possible.

This is unsurprising given the low degree of overdetermination, and requires further

experimental data to reveal if the proposed models and hardening parameters are

predictive.

In this thesis, a multi-scale modelling approach is adopted to scrutinize and to

quantify the uncertainty regarding the predictive capabilities of the proposed obsta-

cle hardening models for irradiation induced defects. Discrete dislocation dynamics

simulations are informed using atomistic calculations, which can then be used to in-

form constitutive models. First, the hardening due to a single defect size and type

is studied for voids and SIA loops over a range of densities. The change in yield

strength from each obstacle hardening model is compared to the calculated hard-

ening using dislocation dynamics simulations, and the capabilities of each model is

analyzed. Then, the hardening caused by a distribution of defect sizes for a single

defect type is studied, and the validity of a mean defect size approach is considered

for SIA loops and voids. In a culmination of the preceding studies, the material be-

haviour is simulated for most physically realistic case of a material containing both

SIA loops and voids and a superposition principle using single defect hardening data

to predict simultaneous hardening is proposed.

3.2 Investigation of Single Dislocation Irradiation Harden-
ing

Using the DDD code development and atomistics-informed defect strength law devel-

oped in Chapter 2, a series of DDD simulations and the following analysis is detailed in
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this section. The mechanical behaviour of irradiated α-iron following yielding is gov-

erned by dislocation interactions with voids, SIA loops, as well as other dislocations.

The hardening coefficients in α-iron have been calculated using dislocation dynamics

[180] and thus the goal of this thesis is to determine the individual hardening con-

tributions of voids and SIA loops so that one can predict the strength of a material

simply from the defect content, regardless of the relative populations of defects. To

achieve this goal, single dislocation are ideal as they target a single phenomena while

minimizing computation time.

3.2.1 Method

The details of the implementation that are unique to this chapter are as follows.

Whereas dislocation-SIA loop interactions are treated using elastic interactions that

are typical calculations for the DDD code, the void implementation requires an ad-

ditional numerical framework to support the dislocation-void interaction as detailed

in Chapter 2. Voids are represented numerically using the center of the void and its

radius. Following the dynamics portion of the code, in which the nodal forces are

calculated, the velocities found using an overdamped equation of motion, and the

integration of the velocity to update the nodal positions, a new algorithm is used to

find void intersections.

For each dislocation segment, the void radii of all voids in the vicinity of the

segment are projected onto the glide plane. The minimum distance between the

projected void center and the dislocation is calculated. An interaction occurs if and

only if:

• The separation distance is below a critical distance threshold defined by the

velocity of the dislocation segment and the simulation time step.

• The dislocation segment motion must be such that it is moving to intersect the

void, i.e. ~v ·~r > 0 where ~v is the segment velocity and ~r is the separation vector
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from the segment to the void center.

To optimize the search for voids, the simulation volume is subdivided into boxes

and each box has an associated list containing the information regarding every void

within it. The minimum box side length is prescribed to at least the average dis-

location length (also prescribed at the start of the simulation). To search for void

intersections with a specific dislocation segment, the box containing the dislocation

segment center is searched as well as the 26 surrounding boxes. The condition on

box size guarantees that no voids are erroneously ignored due to the optimization

method. Each void is uniquely identified by its box, and an assigned number.

Dislocation unpinning is performed according to the atomistics informed void

strength model, which calculates a breakaway angle as a function of void size. At

each step, a subroutine scans over every dislocation node. The numerical structure of

a dislocation node is such that it includes whether it is pinned on a void, the radius of

the void projected on the glide plane, and the box containing the void. All dislocation

nodes connected to voids are tabulated, and the list of nodes is sorted by box, then

void number. Two pinned node are expected for each void to which a dislocation node

is pinned, which acts as a method of error checking. Each pair of dislocation nodes

pinned to the same void are used to calculate the bowing angle. The velocities of the

nearest-neighbour points of the pinned dislocation nodes is also evaluated to ensure

that the dislocation is moving in the same direction as the bowing angle. When the

angle and velocity criteria are satisfied, the two pinned dislocation nodes are merged,

placed at the average position of their nearest neighbors, and all defect information

is removed from the new pinned node’s numerical structure.

Depending on the parameters of the simulation (specified in each subsection), a

number of voids and/or SIA loops are placed in the simulation volume. Voids are

either placed on the glide plane or randomly distributed in a plate centered on the

glide plane. The plate thickness is governed by the largest void size to avoid placing
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an excessive number of voids that will never interact with the dislocation. Omitting

voids that are far away the glide plane serves to accelerate simulations while having

no influence on the calculated mechanical strength (under the dislocation-void model

used in this thesis).

The studies detailed in the following sections of this chapter are performed under

strain controlled conditions. A single infinite edge dislocation is placed in the volume

at zero stress, and the strain is incremented. The dislocation glides until it reaches an

equilibrium configuration in contact with defects. The material behaviour is elastic

until the applied stress is sufficient to break the dislocation free, as shown in Figure

37.

Figure 37: Single dislocation migrating under an applied shear stress through a field
of voids. Individual voids are not visualized to avoid cluttering, as they are ¡0.1%
of the simulation volume width and number in the thousands. The blue vertical
lines represent the periodic boundaries of the simulation of the volume, and the void
positions are denoted with black dots (the dot size does not represent void size).

Following initial yielding, the material exhibits an approximately perfectly-plastic

behaviour as shown in Figure 38, as one would anticipate with a single dislocation (and

therefore no increase in dislocation density following yielding). For each hardening

value that is presented here, five simulations are performed and the average stress

following yielding is used to define the change in hardness.
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Figure 38: Example stress/strain curves for five areal densities of R=2.87nm voids
with five repetitions of each configuration.

Zero friction stress is used, so that the dislocation glides under any non-zero applied

shear stress (resolved in the correct direction). The increasing in hardening is thus

exactly the average stress after yielding.

3.2.2 Void Hardening

Line tensions simulations have been widely used to study generic obstacle hardening.

However, these simulations consider defects as infinitesimal points causing dislocation

pinning, and omit important phenomena such as dislocation elastic self-interaction.

Dislocation dynamics simulations are used here to calculate the increase in yield

point due to a range of sizes and densities of voids, which are then compared to the

predictions of the applicable irradiation hardening models. The four cases examined

here are depicted in Figure 39 and are named (for clarity) as following:
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A B

C D

Figure 39: The four cases of size and space distributions examined here.

• Case A: Single size of voids centered on glide plane.

• Case B: Distribution of void sizes centered on glide plane.

• Case C: Single size of voids distributed in space.

• Case D: Size distribution of voids distributed in space.

This investigation is accomplished in two stages: first, a Case A configuration is

used so that the glide dislocation encounters only one effective size of obstacle and

thereby enabling direct comparison with the DBH and BKS models. Next, a Case B

configuration is used to investigate the validity of a mean size approach. A mean size

approach is defined as using the mean defect size in a given hardening model rather

than treating the whole distribution directly. Given that in reality voids exist in a

distribution of sizes, the ability to apply a mean size approach to predict hardening

would greatly simplify the analysis. The hardening due to Case B is calculated for a

constant mean and several standard deviations, and compared to the hardening due
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Case A scenario using the mean size. In Case C, a dislocation encounters voids of

different effective sizes: voids intersecting but not centered on the glide plane have a

reduced radius on the glide plane of the dislocation.

3.2.2.1 Equal Sized Voids Centered on Glide Plane

A single dislocation gliding in a random distribution of defects is studied using voids

centered on the glide plane (Case A), replicating the assumed configuration in which

the DBH and BKS models were derived. The stress to propagate an infinite edge

dislocation through an atmosphere of voids is calculated and analyzed using the DBH

and BKS models as shown in Figures 40 and 41. Hardening is plotted against the

functional form of each law, such that if the laws are predictive, all data points would

lie on a line defined by τ c
DDD = ατ c

Model. A range of void diameters between 0.57

nm and 4.59 nm, and a range of densities of resulting in a range of mean free paths

over [126 − 274]b are considered. For these hardening models to serve in practical

applications, the hardening parameter must be a material property and independent

of irradiation dose. Otherwise, the functional form is fundamentally incorrect.
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Figure 40: DBH hardening model.
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Figure 41: BKS hardening model.

From Figure 40, it was immediately clear that under these conditions, the DBH

model cannot accurately predict hardening. For each void size, the DBH model could

fit the calculated values; however, a single value of α cannot be used for all sizes. The

reason for this is clear from the derivation of the model: line tension approximations

aside, the model assumes that any defect in the thin plate region of thickness d

interacts with equal strength with the dislocation. Given that void strength had an

explicit size dependence, this was not the case here. The DBH model is markedly

improved by adopting a size dependent strength as seen in Figure 42. For each size in

Figure 40, a proportional fit with a coefficient α(d) was obtained, and each of these

values is plotted in Figure 42a as a function of defect size. The measured values of α

were also compared to the assigned defect strengths (given that α is often supposed as

a defect strength) but the functional relationship was unclear. The points are tightly

clustered around the 1:1 proportional line, showing that for a single defect strength,

the DBH model accurately predicted hardening. This indicates that the DBH model

could possibly be applicable for materials containing voids if a size dependent strength
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Figure 42: The DBH model can be refined using a size dependent α, which dramati-
cally improves the fit (Case A).

formulation can be determined.

The shortfalls of the original DBH model were largely remedied in the BKS model.

The functional dependence on defect size is clearly important as the BKS model

provides a much better overall fit for hardening caused by a single size of voids.

In this case, a single value of α=1.003 provides a reasonable estimate of hardening

over a range of void sizes and densities. Given that the strength of the smallest

and largest void sizes were an extrapolation of atomistics data, the fit improved

dramatically if the largest and smallest void sizes are omitted. If the BKS model was

truly predictive here, it would suggest that the atomistic derived strength law adopted

here underestimated small defect strength and that further atomistic simulations are

required for very small (≈0.5nm) defects. In conclusion, the BKS model is shown

here to predict void hardening over a range of defect sizes and densities for a single

value of α, and it is therefore applicable for irradiation hardening predictions in the

athermal case shown here.

3.2.2.2 Size and spatial distribution of voids.

Experimental studies [114, 21] have used mean defect size as an input to harden-

ing models such as DBH and BKS; however, the validity of such an approach has
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never been shown. Any significant change in hardening as a function of distribution

standard deviation would invalidate such an approach for a symmetric distribution

of defects. Several studies ([108, 54, 46]) have investigated hardening caused by ob-

stacles with a distribution of different strengths from a modelling perspective using

line tension simulations. Dong and Vaucorbeil ([54, 46]) focussed on determining a

combination law using a modified DBH model, whereas Kulkarni [108] investigated

the hardening due to a given distribution of defects and compared it to the hardening

due to the same number of defects with a size equal to the mean defect size. These

studies have the same limitations cited in the previous section - line tension simula-

tions neglect defect size effects arising from elastic interactions, which are significant

and non-linear. However, the notion of comparing calculated hardening from a defect

strength distribution with the mean strength is highly relevant to both modelling and

experimental studies. If a mean size approach predicts hardening correctly, one can

straightforwardly extract α values from experiments without treating complex defect

size distributions, and from a modelling perspective, the hardening can be calculated

directly from the defect state of the material rather than using a dislocation dynamics

simulation.

Introducing a distribution of defect sizes also introduces many additional param-

eters such as distribution type, mean, and variance. Void sizes must also lie within

the size range as simulated by atomistics resulting in the truncation of continuous

distributions. Understanding the role of each parameter on the change of material

behaviour becomes increasingly challenging with such a high number of degrees of

freedom. Therefore, a single specific case was considered here: hardening due to a

normal size distribution of voids (Case B). The distribution mean was held constant

while the size standard deviation was increased. This case reveals the relative in-

fluence of small and large defects compared to the mean. If an increased standard

deviation increases/decreases the relative strength, one can infer that presence of
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larger/smaller defects are more influential on material strength. Here, a mean size

of 2.30nm and a standard deviation s ranging on [0.3-1.5]nm was used. The relative

change in strength ∆τ c and corresponding error bars were calculated as follows:

∆τ c =
τ cDist − τ cMean

τ cMean

=
τ cDist

τ cMean

− 1±

√(
δτ cDist

τ cDist

)2

+

(
δτ cMean

τ cMean

)2

. (136)

where τ cDist/Mean is the average of five simulations, and δτ cDist/Mean is the corresponding

standard deviation.
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Figure 43: Hardening caused by a Gaussian distribution of void sizes relative to the
hardening for the mean size. Bars are coloured by defect density.

Several trends between hardening and distribution width can be observed in Figure

43. First, ∆τc largely decreased as a function of size standard deviation. However,

most points lay within one standard deviation of the mean defect size hardening.

Second, the relative difference in hardening compared to a mean size approach showed

that the change is typically on the order of a few percent, and almost all cases lay
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within one standard deviation of zero strength difference. In cases where the void

distribution in a material can be approximated as Gaussian, the material hardening

caused by the distribution can be approximated using the mean size and therefore,

the mean size approach typical to experimental studies was shown to be valid here.

3.2.2.3 Effective versus distribution mean size.

To validate and to extend the prior result beyond a symmetric distribution, one

further case is studied: the hardening caused by a single size of voids distributed

in 3D space (Case C). This case also evokes the notion of effective defect size. An

arbitrary size and spatial distribution of defects can be described using the radii of

the defects. However, given that voids intersecting but not centered on the glide plane

would have a reduced radius on the glide plane of the dislocation, the effective mean

defect radii encountered by the dislocation could differ from this significantly. One

can analytically describe the effective size distribution using a function of random

variables. The void radius as seen by the glide dislocation Reff can be written as

Reff = R
√

1−X2 (137)

For a function f of a single random variable x and Y = g(X), the probability

density can be written as

fY (x) = fX(g−1(x))

∣∣∣∣dg−1(x)

x

∣∣∣∣ (138)

Here, the distribution of the random variable x is simply

fX(x) =


1
R

0 ≤ x ≤ R

0 otherwise

Therefore fY (x) can be written as
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fY (x) =
1

R

∣∣∣∣ −x√
R2 − x2

∣∣∣∣ , (139)

where R is the void radius, and X is a uniformly distributed random variable on the

interval [0, 1]. The probability distribution function of Reff can be straightforwardly

calculated as

fR(x) =
1

R

x√
1− x2

, (140)

which is plotted in the inset of Figure 44 and is clearly asymmetric about the mean

size (vertical dashed line).
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Figure 44: Hardening caused by a single size of voids distributed randomly in space
(Case C) plotted against the BKS model using effective D′ and L. Inset shows void
radius (normalized to R) as seen by glide dislocation. Mean size denoted with blue
dashed vertical line.

The hardening is predicted using the BKS model with the previously calculated
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value of α=1.003 and effective mean void size and plotted against the calculated values

of hardening using dislocation dynamics. An effective mean size analysis influences

the degree of hardening predicted using the BKS model through both effective length

Leff = 1/
√
NDeff and effective diameter D′eff =

DeffLeff

Deff+Leff
. Figure 44 strongly sug-

gests that over a wide range of void sizes and densities, a full defect size distribution

analysis can be captured using an effective mean size approach not only for a sym-

metric distribution, but for asymmetric distributions as well. Furthermore, it shows

that an effective mean radius approach must be used to accurately predict hardening.

While this result differs from that of Kulkarni, it is also not contradictory because the

details of the size distribution are fundamentally different. In this work, the mean

size was held constant, whereas in Kulkarni’s work, the mean was also varied and

the distribution became increasingly biased to large obstacles with increasing mean

size. The results obtained here simply represent a different material state and show

that for the distributions of defects studied here, a mean size approach was in fact

applicable.

In addition to the hardening calculations performed for the previous distributions

of defects, the statistics pertaining to other distributions were also of interest from a

qualitative standpoint. The configuration used to produce Figure 43 featured defects

centered on the glide plane (Case B), so that the true size distribution and the effective

size distribution were the same. However, when the voids were randomly distributed

in space (Case C and D), two additional factors influenced the size distribution. First,

the probability that a void intersected the glide plane was a function of defect size.

Second, if a defect was assumed to intersect the glide plane, the glide plane was

assumed to intersect the void at a position uniformly distributed on [−R,R] away

from the center. The distribution of defect radii on the glide plane can be described

using a function of random variables; however, even with simple distributions, a closed

form expression is often impossible. Therefore, three distributions were numerically
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Figure 45: The size distribution PDF of voids (blue) and effective radii on the glide
plane (red) for uniform (a), lognormal (b), and normal (c) distributions.

computed after validation using a closed form expression for a single size of voids.

It is clear from Figure 45 that the trends in effective radii are markedly different

depending on the governing size distribution. In the uniform case, the distribution

is nearly symmetric resulting in almost no difference between the effective mean ra-

dius and distribution mean radius. A lognormal distribution, however, results in an

increased effective mean because the probability that a small defect intersects the

glide plane was low, and the extended tail of the distribution increased the average

effective size. A normal distribution results in a decreased effective mean size particu-

larly in the example case where the distribution was confined. The purpose of Figure

45 is not to provide a definitive investigation into the effective defect radii on the
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glide plane, but to highlight the need to analyze each experimentally obtained size

distribution and calculate the effective mean radius rather than the observed mean

radius. Such an analysis is applicable not only for voids, but for all obstacles that

can be approximated as spherical, such as inclusions or oxides. Topuz et. al. [220]

acknowledge the added complexity due to the notion of effective defect size, particu-

larly as their study was limited to two-dimensional dislocation dynamics and required

an initial coarse-graining of dislocation defect interactions before ever performing dy-

namics studies. Further atomistic scale studies are required before using the effective

radius distribution, because it is unclear if a dislocation intersecting an obstacle with

radius R1 off-center with an effective radius R′ < R1 is equivalent to a dislocation

intersecting an obstacle through its center with radius (and therefore effective radius)

R2 = R′. Hafez et al [85] used atomistic scale simulations of an edge dislocation

intersecting a void at varying off-center positions, which revealed decreasing strength

with decreasing effective radius but a much more comprehensive study is required to

draw any conclusions.

3.2.3 SIA Loop Hardening

Dislocation loop hardening has been the subject of some investigation using dislo-

cation dynamics, typically to study purely elastic interactions or to reproduce ex-

perimentally observed dislocation channel clearing. Here, the macroscopic changes

in mechanical response are of interest, specifically within the framework of proposed

hardening models such as the DBH, FKH and BKS models. These models have seen

some usage in DDD literature such as in [4] where a value of α for a modified DBH

model was calculated for varying densities of 25nm 1/2〈111〉 loops. However, the

validity of such a law over a range of both SIA loop sizes and densities has never been

shown. Here, the DBH, FKH, and BKS models are compared against the hardening

as predicted by dislocation dynamics over a range of both SIA loop sizes and densities.
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A case by case analysis as performed for void hardening is not required here because

of the extended nature of dislocation-SIA loop interaction. Whereas voids away from

the glide plane did not influence dislocation motion, the stress field of an SIA loop in-

fluenced the dislocation and could not simply be placed on the glide plane. Therefore,

SIA loops are uniformly distributed in space for the studies performed here.

3.2.3.1 Equal Sized SIA Loops

The hardening caused by the presence of SIA loops is analyzed by calculating the

flow stress of a single dislocation in an atmosphere of 〈100〉 dislocation loops. While

the elastic stress field of an SIA loop is short range (∝ 1/r3), the influence of both in

plane and out of plane loops must be considered. A plate of thickness 20R centered

on the glide plane was populated with SIA loops of a single size and a Burgers vector

chosen randomly from the permissible SIA loop Burgers vectors. The hardening τ c

was plotted against the functional form of the DBH, FKH, and BKS models as shown

in Figure 46. Although the BKS model was formulated for impenetrable spherical

defects without an elastic stress field, the model was nevertheless included for the

sake of comparison.

Each model was fit with a proportional line τ c
DDD = ατ c

Model, and while a general

proportional trend exists in each case, it is unclear if any of the models are truly pre-

dictive here. It is therefore difficult to infer which model is more physically realistic

than the others, or if any truly capture the behaviour of the dislocation-SIA loop in-

teraction. However, for the purposes of predicting irradiation hardening, the constant

of proportionality α and its associated R2 correlation for the fit were extracted and

are shown in table 1. Qualitatively, the DBH model has a wide scatter but a size-

dependent obstacle strength α could significantly improve the fit. The FKH model

is the most tightly grouped, and any significant deviations occur at the maximum

and minimum sizes. While the BKS model does correlate with the data, it is more
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(a) DBH hardening model.
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(b) FKH hardening model.
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(c) BKS hardening model.

Figure 46: Hardening caused by a random array of equal size SIA loops.
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Model α R2

DBH 0.435 0.776
FKH 25.12 0.864
BKS 1.209 0.807

Table 1: Size dependence of α: fit parameters of for each model.

spread than in the FKH case. In quantitative terms, the FKH model provided the

most accurate proportional fit as determined by the R-squared value. As a result, for

irradiated materials containing SIA loops, the FKH model is shown here to provide

the best estimation of material hardening.

3.2.3.2 Size Distribution of SIA Loops

As in the case of voids, studying the hardening effect of a size distribution of SIA loops

presents a large number of variables, so the specific case of a normal distribution with

a constant mean size of 4.592nm and a range of standard deviations s on [0.5-2.5]nm

is used, which models an irradiation of 0.051 DPA well [91]. A single edge dislocation

is propagated through the defects, the hardening is determined and the results are

shown in Figure 47.

It is immediately clear that the distribution width has no discernible effect on

hardening. In nearly every case, zero strength change is within one measurement

standard deviation. Such an outcome cannot be reasoned intuitively from the simi-

lar void strengthening case, because the mechanisms of defect-dislocation interaction

differ greatly. Voids are placed with their centers on the glide plane, ensuring a Gaus-

sian distribution of sizes and not the effective distribution as shown in Figure 45c.

In contrast, SIA loops are distributed over a plate of thickness 20R. An effective size

distribution on the plane is also difficult to define for SIA loops because of the ex-

tended nature of their associated stress fields - out-of-plane loops influence dislocation

motion via their stress field. In conclusion, the mean size of SIA loops can be used to

predict the hardening in a material containing a size distribution of loops using the
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FKH approach.

3.2.4 Multiple Defect Types

The previous studies in this work provide insight into the hardening caused by SIA

loops and voids, and the applicability of different hardening models under several

different regimes for a single defect type. In an irradiated material, SIA loops and

voids exist simultaneously and their combined effect has never before been studied

with dislocation dynamics with regards to hardening models, and only once with

regards to mechanical response [213]. As in the investigation of the influence of a

size distribution of defects on hardening, the number of variables when considering

multiple defect types of multiple sizes quickly becomes overwhelming. Therefore, one
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specific case yielding the greatest insight for a limited number of simulations is chosen.

A range of sizes of void and SIA loops were used investigate possible superposition

principles. In α-iron irradiated by fast neutrons, the sizes and densities of SIA loops

and voids have been experimentally observed to differ significantly, with void number

density typically an order of 102 − 103 times greater than SIA loop number density

[59]. This material state is modelled using densities as found in experiment (≈ 1022

m−3 for SIA loops, ≈ 1024 m−3 for voids) [59] and a mean size approach, which

provides insight into the simultaneous applicability of the FKH and BKS hardening

models on a realistic irradiation state.

A simultaneous combination of a single size of voids centered on the glide plane

and a single size of SIA loops distributed in a plate of thickness 20R are used to

investigate hardening with the presence of multiple defect types. As a result, the

defect density varies accordingly with the size. The method of superposition was

taken to be the same as equation 98. The hardening contributions from voids and

SIA loops are calculated individually using the BKS and FKH models and the values

of α calculated in this work. Then, the exponent n in equation 98 is taken as a fitting

parameter. A value of α must be independent of defect sizes and densities to be

predictive and useful in practice.

Figure 48 shows the material hardening from the presence of both voids and SIA

loops over a range of sizes and densities. The best fit of equation 98 in terms of

least squares is accomplished with an exponent of n=2.22. Using this exponent, a

superposition of the BKS model and the FKH model provides an excellent fit to the

calculated hardening results. Therefore, in a material containing void and SIA loops

such as irradiated α−iron, a superposition principle can be applied to combine the

independent defect hardening contributions to predict a real yield strength.
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Figure 48: Hardening caused by a combination of SIA loops and voids (radii given
in legend). A best fit superposition principle is shown using a superposition of FKH
(loops) and BKS (voids) using the previously calculated values of α and a principle
of the form of equation 98 and n=2.22.

3.3 Conclusion

This portion of the thesis represents an important advancement in coarse-graining

techniques from two different perspectives. First, the complexities of atomistics scale

dislocation-void interactions are reduced to a breakaway angle criteria using a DDD

simulation to measure the angles at which dislocation breakaway occurs for the same

configuration as in the atomistics calculation. The interactions between SIA loops

and dislocation are seen to be accurately reproduced (in the mean response) through

elastic interactions, already accounted for in DDD simulations, and therefore do not

require additional rules for their inclusion. Second, these DDD simulations enable

one to gain insight into the accuracy and predictive capabilities of macroscopic scale
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models. For the first time, the predictive capabilities of the DBH, FKH, and BKS

models are analyzed for voids, SIA loops and a combination of both defect types

using this atomistics informed dislocation dynamics simulation. For a single defect

size, the BKS and FKH models are shown to accurately predict hardening for voids

and SIA loops, respectively. If a size dependent defect strength parameter is allowed

for, the DBH model is also valid for hardening predictions. A mean size approach, in

which hardening is calculated assuming all defects have the mean size of a distribution

rather than treating the full distribution, is shown to well-predict hardening for both

void and SIA loops using a normal size distribution of defects. Even further, a mean

size approach also accurately predicts hardening for an asymmetric size distribution

of defects, strongly indicating that not only does a mean size approach capture the

hardening caused by a full distribution but that an effective mean size analysis is

necessary as well. The effective defect size distribution versus physical defect size

distribution was shown for several common distributions, which reveals that the mean

effective size can potentially increase, decrease or remain unchanged compared to the

distribution mean. Finally, a previously proposed superposition principle is shown to

be valid in predicting the hardening due to the simultaneous presence of SIA loops

and voids over a range of defect sizes and densities. These simulations provide insight

into the individual contributions to hardening from each species as well as into the

synergistic effect between different defect types and sizes. Predicting the mechanical

properties of materials demands a full 3D dislocation dynamics simulations because

dislocation-dislocation interactions act as yet another hardening contribution and

must be considered in conjunction with irradiation obstacle hardening to develop an

extended superposition principle validated in 3D.
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CHAPTER IV

THERMALLY ACTIVATED DISLOCATION MOTION

Obstacles such as precipitates or irradiation-induced defects impede dislocation mo-

tion and directly influence macroscopic mechanical properties such as yield point and

ductility. Dislocation-defect interactions involve atomic scale interactions as well as

long range elastic interactions, therefore constituting a complex multi-scale modelling

problem. Thermally assisted dislocation bypass of obstacles occurs when lattice vi-

brations contribute sufficient energy in combination with the energy from driving

stresses that the dislocation can overcome the energy barrier. Characterization of

the thermally activated barrier combined with harmonic transition state theory is

a cornerstone of coarse-graining, facilitating scale transition with a simple Arrhe-

nius type expression. Accurate activation energy calculations based on the NEB

method are typically performed with calculations and reaction pathways identified

using atomistic simulations, but these become infeasible with increasing complexity

of state transition processes and increasing activation volumes of the phenomena in

question. In this chapter, the NEB method is generalized to coarse-grain continuum

representations of evolving microstructure states beyond the discrete particle descrip-

tions of first principles and atomistics. The novel method proposed in Chapter 2 using

continuum discrete dislocation dynamics is analyzed with regards to applications in

coarse-graining and scale transition of unit dislocation-SIA loop bypass activation

energies, and direct comparison with atomistic calculations provides insight into the

physical fidelity of this continuum method with respect to widely accepted atomistic

methods.
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4.1 Overview

Thermally activated phenomena underlie numerous processes of material microstruc-

ture evolution such as diffusion, defect clustering, and dislocation migration. Energy

provided by thermal fluctuations can assist the applied stress in driving a system to

overcome energy barriers for each characteristic process, with the wait time for ther-

mally activated barrier bypass defining the rate limiting step for evolution. The rate

of these processes is experimentally observed [159] to exhibit an inverse exponential

dependence on 1/T, where T is absolute temperature. Accordingly, rates of relevant

evolution processes can vary by orders of magnitude. Transition state theory focuses

on the minimum energy pathway (MEP) between two adjacent states for such pro-

cesses and assumes that the rate of a reaction is controlled by the saddle point energy

between two the states on the associated potential energy surface. This technique is a

fundamental component of time-scale extension because the rate of barrier bypass in-

forms longer time scale relations using Eq. (57), and simulation techniques exploiting

this method have been experimentally validated for numerous physical phenomena

[53, 129]. In addition, activation energy calculations are valuable in spatially coarse

graining by encapsulating details of the size and spatial distribution of obstacles.

Energy methods have also been successfully applied in analytical studies such as

Orowan looping of dislocations past obstacles. For more complex cases, molecular

dynamics simulations are often used to calculate activation energies as they are well-

suited to address the length scales involved in atomic scale structure rearrangement

processes with limited volumes, such as dislocation bypass of nm-scale obstacles, or

point defect migration. First principles (e.g., DFT) and molecular statics/dynamics

simulations have been the only methods employed to rigorously compute activation

energy barriers for such microscopic state transitions. Their computational complex-

ity (high degrees of freedom) has motivated the development of several efficient saddle

point energy calculation methods. The dimer method [88] (as detailed in Chapter 2)
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uses a pair of images of the system, slightly offset in space, to drive the system to-

wards a saddle point according to the local curvature of the system. The activation

relaxation technique [147] first perturbs a degree of freedom in the system, from which

the system is driven up the potential energy surface towards the saddle point. From

the saddle point, the system is relaxed to find the final configuration of the system.

Another commonly used technique is the nudged elastic band (NEB) method [102]

(also detailed in Chapter 2), which determines the minimum energy pathway between

two known local energy minima. A series of system images are created (typically lin-

ear interpolations between the initial and final states), which are relaxed under the

combination of a physical force and a fictitious spring force. In combination with

atomistic simulations, these methods have been used to investigate numerous phe-

nomena such as point defect formation and migration as well as dislocation migration

and cross-slip [15, 76, 182].

Although atomistic methods provide valuable insight into atomic-scale processes,

significant computational requirements limit simulations to processes involving small

activation volumes and therefore restrict the possible range of phenomena that can be

considered. Furthermore, spatial and temporal coarse-graining atomistic simulation

methods that link directly to constitutive models have yet to be firmly established.

Recent studies have demonstrated success in several cases such as dislocation nu-

cleation at boundaries [32] and shear-coupled grain boundary migration [177], but

the use of NEB based on atomistic simulations to inform continuum descriptions of

thermally activated processes has been primarily limited to unit processes with acti-

vation volumes comprising of up to tens of atoms. A mesocale continuum phase field

modelling approach combined with NEB was used to find the critical nucleus configu-

ration and activation energy in a cubic to tetragonal transformation using a free-end

NEB method [192]. However, larger scale cooperative processes of microstructure

rearrangement characteristic of dislocation-obstacle interactions that have both short
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and long range character have eluded treatment via such methods.

For dislocation-obstacle interactions, this problem can rendered computationally

tractable by employing discrete dislocation dynamics (DDD) to represent the energy

landscape based on the continuum elastic theory of defects. When the necessary ap-

proximations are valid, simulations described using a continuum theory are desirable

in terms of low computational requirements and offer a more direct connection to con-

stitutive models. With such significant reductions in computation time, it is possible

to compute the MEP and saddle point energies for transition not only for a single

reaction, but for more complex many-body dislocation-obstacle field interactions to

map a more comprehensive energy landscape for obstacle interactions; this poten-

tially represents a significant advancement in coarse-graining techniques to achieve

what one of the authors had referred to as activation volume averaging of collective

evolving microstructure events [132, 133] as an alternative to classical homogeniza-

tion approaches for effective properties of stationary (non-evolving) microstructures

in micromechanics. This chapter demonstrates the capabilities of a novel DDD-NEB

method to investigate the size and stress dependence of dislocation bypass activa-

tion energy with self-interstial atom (SIA) loops induced by irradiation for activation

volumes comprised of several hundreds of atoms. Results are used to inform a consti-

tutive transition state theory model [104] as well as to create a complete activation

energy map for different interaction geometries.

4.2 Perspectives on Coarse-Graining via Activation Ener-
gies

Higher order complexities in the dislocation morphology which may be captured by

atomistic simulations are inherently omitted using the continuum theory of defects.

Such phenomena include highly localized core deformations and structures formed
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when dislocation cores are overlapped. However, atomistic simulations are not with-

out significant drawbacks, particularly in relation to inter-atomic potentials and sim-

ulation boundary conditions. Hafez et al. [84] showed that the critical stress to cause

a dislocation to bypass a void in α-iron can varies significantly between three poten-

tials with differences, in some cases by over 50%. High computational demands of

atomistic calculations limit simulations to highly confined spatial volumes and as a

result the choice of boundary conditions have profound consequences. Fixed bound-

ary conditions have been established to cause spurious results [208] and fully periodic

boundary conditions require closed dislocation loops and propagate the long-range

elastic fields characteristic to dislocations. Comparison of continuum methods to

atomistic simulations would not necessarily provide a quantification of the accuracy

of the proposed method because of the aforementioned challenges of atomistic sim-

ulations. Such effects may have a greater impact on activation energy barriers than

the approximations associated to the continuum description of defects used here.

The influence of dislocation core width (and thus core energy) on activation energy

barriers is detailed after the method and primary studies are presented. Any possible

omission of physical effects otherwise captured in atomistic simulations is tempered

by the fact that the simulations detailed in this thesis are far beyond feasible com-

putation times for atomistic simulations. The minimum simulation volume in this

chapter contains 25× 109 atoms - three orders of magnitude greater than any atom-

istic simulation to date. The proposed method provides direct and computationally

efficient access to activation energies for mesoscopic dislocation processes and such

processes inherently require a mesoscopic simulation method such as DDD.

4.3 Prismatic Loop Bypass

Irradiation induced voids and prismatic self-interstitial atom (SIA) loops are signifi-

cant obstacles that contribute to irradiation hardening in bcc alloys and, to a lesser
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extent, in fcc alloys [59, 91]. Accounting for thermally activated bypass of obstacles

requires characterizing the activation energies associated with the dislocation-obstacle

bypass events.

Here, all calculations are performed for α-iron under the assumption of elastic

isotropy. The linear elastic material constants are taken as E=211GPa, µ=82GPa,

and ν=0.29. Dislocation mobilities do not influence the simulations as the simulations

are performed at equilibrium. The interaction configuration for all simulations is a

pure edge 1/2 [111] (11̄0) dislocation impinging on an obstacle under a shear stress

oriented such that the resolved shear stress on the system of the glide dislocation is

equal to the applied shear stress. A dislocation core width parameter of 1a is used.

The obstacle considered here is a 〈001〉 prismatic dislocation loop, as observed in

irradiated α-iron at 300◦C [91], which has been shown with atomistic simulations to

have a square geometry [217]. Periodic boundary conditions are applied so that the

glide dislocation is infinite in extent, and the simulation represents a periodic linear

array of SIA loops. The starting configurations for the NEB calculation are created by

relaxing a configuration using dislocation dynamics and the final state is assumed as

the glide dislocation returning to a straight configuration at a large distance beyond

the obstacle. The size of dislocation loops is small relative to the overall simulation

volume (< 10% of the simulation volume width) such that the curvature due to

Orowan bowing is approximately constant between loop sizes. Dislocation climb is

not permitted in this study, as discussed in Chapter 2.

In contrast to intrinsically discretized atomistic NEB simulations, the discretiza-

tion of continuous dislocation lines must be specified. Several methods are commonly

used; for example, an edge-screw discretization approximates a smooth line as a se-

ries of straight segments of pure edge or pure screw dislocation character, or a nodal

discretization interpolating a series of points (nodes) along the line with a chosen

function. Here, a nodal method using linear interpolation (of continuously varying
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dislocation character) is used. A range of discretization lengths are tested to ensure

convergence. During a typical dislocation dynamics simulation, the dislocation line

is re-discretized at every step and dislocation nodes are moved, added, or removed

as a function of spacing along the dislocation line to maintain numerical stability

and a physically realistic configuration. However, in an NEB calculation involving

discretized dislocations, maintaining the number of degrees of freedom constant and

equal across all images is highly desirable to avoid interpolations between degrees

of freedom of different images. Further, the tangent equation depends directly on

the position of the nodes in the neighbouring images and consequently the nodes

cannot be moved significantly. Within these limitations, a re-meshing method is de-

veloped that maintains numerical stability. The dislocation line is recreated using a

cubic spline interpolation through all dislocation points, and the dislocation nodes

are repositioned along this line relative to a point fixed on the simulation boundary

volume to maintain constant spacing. No points are added or removed. As a re-

sult, the point positions did not vary significantly between steps and therefore the

re-meshing did not perturb the tangent calculation, while preventing the introduction

of numerical artifacts such as kinking into the dislocation line shape.

Activation energy dependence on dislocation discretization is shown in Figure

49. The activation energy barrier is seen to be relatively insensitive to dislocation

discretization. The maximum normalized segment length used here is 0.8.

The limitations of this study concern the capabilities of DDD with regard to the

complex motion of dislocations in BCC α-iron. Screw dislocation migration occurs

via a kink-jog mechanism, often approximated in DDD simulations with a much lower

screw dislocation mobility [154] as an approximation of the complex screw dislocation

motion in BCC materials [55]. Other effects such as temperature dependent lattice

friction or friction stresses caused by impurities are also not considered here.

Molecular dynamics simulations have studied dislocation-SIA loop stress-driven
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Figure 49: Effect of dislocation discretization on activation energy barrier. The per-
cent change in activation energy relative to the lowest discretization is plotted against
the average dislocation segment length normalized to the SIA loop side length.

bypassing for a select number of loop sizes, interaction geometries, and applied loads

[217, 128, 156, 11, 122, 212]. A functional form of dislocation-SIA loop bypass activa-

tion energy has been calculated in one case [213] for dislocations crossing the center of

1/2 〈1̄11̄〉 glissile dislocation loops and voids. Atomistic calculations [217] have been

performed for stress activated bypass of a 1/2 [111] (11̄0) glide dislocation moving

past a 〈001〉 self-interstitial prismatic dislocation loop over all possible Burgers vec-

tors and a selection of interaction geometries. During this process, the loop is often

absorbed, highly deformed, or altered in Burgers vector. Predicting such processes

requires either atomistic simulations or dislocation dynamics-based simulations with

additional atomistically-informed rules for dislocation migration and loop reconstruc-

tion. Dislocation dynamics simulations of this processes have also been performed

[194] and reproduce the stress for bypass in [217] within 18%. The authors used a

molecular-dynamics informed dislocation mobility, but were required to use a trial-

and-error simulations to find a different value of mobility to reproduce the reactions

seen in [217]. The SIA loop deformation in these MD works is stress driven (and
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therefore overdriven, potentially far from equilibrium), and would not necessarily be

observed for thermally activated bypass. Here, the SIA loop structure is assumed to

be preserved throughout the reaction, and the configuration studied in this chapter

corresponds to the SIA loop Burgers vector in [217] where the SIA loop structure was

deformed the least to enable the most direct comparison.

4.3.1 Elementary Case

The following sections rely on variations of the simulation case presented here. NEB

calculations are typically performed between two known states which represent energy

minima; however, as previously stated, the NEB method effectively finds the mini-

mum energy pathway which represents the steepest descent [193] between two given

states regardless of their energy relative to each other or the surrounding phase space.

Simulating dislocation-SIA loop bypass using periodic atomistic calculations repre-

sents an infinite dislocation moving through a rectangular array of defects. Hence, the

dislocation and obstacle densities are typically quite high, as are interaction stresses.

While periodic boundary conditions are also used here, the volume is arbitrarily long

in the glide direction with no increase in computational cost and thus representing a

periodic linear array of obstacles in the slip plane is possible. The spacing of obsta-

cles can also be made as large as desired in the present case. A periodic rectangular

array of obstacles can also be simulated by performing the NEB calculation with two

or more SIA loops arranged along the dislocation line in the direction of dislocation

migration. From a physical perspective, simulating a periodic linear array provides

a more accurate representation for the unit process of a single obstacle bypass event.

In addition to the fundamental difference in the physical phenomena simulated us-

ing one or more loops, there are significant computational drawbacks associated with

using two or more loops.

The simulations are performed with a single glide dislocation subject to a given
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applied stress and relaxed to an equilibrium position using dislocation dynamics,

serving as the initial NEB image position. The final image, the leftmost dislocation

line in Figures 50 and 51, is a straight dislocation far from the loop for a single

SIA loop, and is a duplicate of the first image for the two loop setup. Images are

interpolated between the initial position and chosen final position, as shown in Figures

50a and 51a. The images are then evolved according to the force in Equation 91 until

equilibrium is reached (Figures 50b and 51b).

The energy of each image is calculated as described in the Chapter 2 and is plotted

in Figures 50c and 51c. The high number of images results in a smooth and well-

sampled characterisation of the bypass process. The activation energy is defined as

the largest energy difference considering all minima and the maxima after the given

minima.

The differences between using a periodic linear or rectangular array of SIA loop

obstacles are clear from Figures 50c and 51c. For zero applied stress, the second

loop decreases the activation energy by from 91.5 eV to 87.2 eV, while increasing

computation time. The difference could be reduced further with a greater separation

distance and more images, but this would only increase computation time further by

requiring more images to maintain the density of images. With an applied stress of 5

MPa, the difference is smaller with bypass activation energies of 60.8 eV (one loop)

to 60.2 eV (two loops). In the following sections, a single SIA loop configuration is

used resulting in faster computations as well as a process more representative of the

unit bypass process.

4.3.2 Loop Size Effects

In this section, the dependence of bypass activation energy on SIA loop size is studied

over a range of applied shear stresses, and from zero applied stress to the yield stress.

A single square [001] SIA loop is used in a configuration identical to that in Figure
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(a) NEB images before relaxation. (b) NEB images after relaxation.
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(c) Reaction energy profile.

Figure 50: NEB energy calculation for a 1/2 [111] (11̄0) glide dislocation bypassing a
[001] loop in a periodic linear array with a side length of 15.3nm under an applied
stresses of 0 and 5 MPa. Planes of glide dislocation (red) and SIA loop (blue) are
shaded accordingly.
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(a) NEB images before relaxation. (b) NEB images after relaxation.

 5960

 5980

 6000

 6020

 6040

 6060

 6080

 6100

 6120

 6140

 6160

 0  0.2  0.4  0.6  0.8  1

E
n

th
a
lp

y
 (

e
V

)

Reaction Coordinate

0 MPa
5 MPa

(c) Reaction energy profile.

Figure 51: NEB energy calculation for a 1/2 [111] (11̄0) glide dislocation bypassing
a [001] loop in a periodic rectangular array with a side length of 15.3nm under an
applied stresses of 0 and 5 MPa. Planes of glide dislocation (red) and SIA loop (blue)
are shaded accordingly.
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50, and the activation energies are presented in Figure 52.
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Figure 52: Activation energy for a 1/2 [111] (11̄0) edge dislocation bypassing a [001]
SIA loop with an offset of -0.3R and 172.2nm spacing as a function of size and applied
stress. Each set of points for a given applied stress is fit with a linear equation.

A linear loop size-activation energy dependence is clear from Figure 52, with a de-

creasing slope with increasing stress. With increasing applied stress, a greater amount

of work is performed by the dislocation migration resulting in a decrease in activa-

tion energy. The dependence of activation energy on applied stress is discussed in

the following section. The x-intercept of each line also increases with applied stress,

which represents the maximum loop size that can be bypassed spontaneously (without

thermal activation) at the given stress level.

From a theoretical standpoint, Kroupa and Hirsch [107] developed an expression

for the average maximum interaction energy between an infinite straight edge dislo-

cation and a circular prismatic dislocation loop, i.e.,

Emax ≈ Gb0b1R/4, (141)
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where G is the shear modulus, b0 the prismatic loop Burgers vector, b1 the edge dis-

location Burgers vector, and R the prismatic loop radius. Friedel [68] also estimated

the interaction energy as

Emax ≈ Gb2R/3. (142)

Both of these equations predict a linear relationship between interaction energy and

SIA loop size. Equations 141 and 142 assume a straight glide dislocation but in

the simulations performed here, as the applied stress is increased the curvature of

the dislocation increased; despite the significant deviation from the assumption of a

straight dislocation, the linear fit model remained accurate. Both models, however,

omit the work performed by the stress field acting on the migrating dislocation, and

are therefore only valid in the absence of applied stress.

Equations 141 and 142 are valid for a circular loop, whereas [001] loops are square.

To compare the calculations in this section to these two models, the radius R is

selected that would result in a loop of equal area as a square loop of with length

L. Doing so results in the same number of atoms in the SIA loop. A close fit with

these estimates corroborates the orders of magnitude of the calculations performed

here; however, Equations 141 and 142 are estimates themselves and only serve as an

approximate validation.

4.3.3 Connection with Transition State Theory

Kocks, Argon and Ashby [104] developed a phenomenological viscoplastic flow rule

for thermally activated dislocation bypass of barriers that employed the functional

dependence of activation energy on applied stress, which is written as

∆G = F0

(
1−

(
σ

σ0

)p)q
, (143)

where ∆G is the activation energy, F0 the activation energy at zero stress, σ the
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applied stress, σ0 the yield stress, and the exponents p and q, which are functions of

the shape of the activation energy barriers as well as the physical barrier distribution.

Exponents p and q were found in [104] to be 1
2

and 2 after fitting across many materials.

Equation 143 enables an even higher degree of coarse-graining: the stress dependence,

which is calculated explicitly for Figure 52, could be predicted without calculation if

it can be shown to be valid. For three loop sizes, Equation 143 is fit using a calculated

yield point and zero stress activation energy, and a fitted p and q. The result is shown

in Figure 53.
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Figure 53: Equation 143 with fitted exponents p = 1/q = 2
3

for a 1/2 [11̄1] (011) edge
dislocation bypassing a [001] SIA loop with an offset of -0.3R. SIA loop size given in
legend.

The exponents found here are an exact match to that of the Mott-Nabaro-Seeger

model [146, 72], which models an energy barrier with a sinusoidal form. The expo-

nent differs from that of Kocks, Argon and Ashby, which may attributed to a variety

of factors; Kocks, Argon and Ashby calculated the exponents for various bulk met-

als without irradiation whereas here the exponents are valid for a specific SIA loop

configuration in α-iron. Fitting the exponents phenomenologically relies on an ensem-

ble average of all interactions inside the material, whereas only a single dislocation
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character, Burgers vector, and interaction geometry is simulated for results shown in

Figure 53. The quality of the fit of Equation 143 in Figure 53 is promising but the

same must be repeated for an ensemble of defects before the results can be applied

to higher scale models, following our discussion of activation volume averaging of

thermally assisted processes in the Introduction.

4.3.4 Interaction Geometry

This study is restricted to the interaction between a 1/2 [111] (11̄0) edge dislocation

with [001] SIA loops such the only free parameter with regards to geometry is the

relative offset between the dislocation glide plane and loop center. The offset is

defined as zero when the glide dislocation crosses the center of the loop, and increased

positively with increasing vertical offset of the glide plane. The stress field of an SIA

loop is proportional to r−3, and therefore has a limited interaction volume. Here, the

distance at which the elastic interaction becomes negligible is investigated by varying

the off-axis separation distance. A total of 1058 activation energy data points are

calculated and are plotted in Figure 54 as a contour plot. A minimum applied stress

of 5 MPa is applied such that the dislocation reached an equilibrium position inside

the simulation volume on the desired side of the loop in the case of a repulsive

dislocation-SIA loop interaction.

Several qualitative properties of the activation energy map in Figure 54 are ap-

parent; there are two peaks roughly centered about a zero offset, but the map is

asymmetric and each peak as also asymmetric in its own right. Such asymmetry is

anticipated because of the orientation of the SIA loop and the asymmetry of the edge

dislocation stress field. The activation energy is non-zero for small distances away

from the loop, but is negligible more than two times the loop side length away from

the loop. The ability to map an energy landscape as in Figure 54 is a significant
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Figure 54: Activation energy for a 1/2 [111] (11̄0) edge dislocation bypassing a 4.3nm
[001] SIA loop with a spacing of 172 nm.

advancement given that such a calculation out of reach of atomistics due to compu-

tational resource requirements. From Figure 54, it is immediately clear that a full

activation energy mapping of these defects is necessary because of the complexity of

the energy landscape. A typical atomistic calculation may contain a single point or

at most a single line on the landscape, which is clearly insufficient to describe the

range of interactions seen in Figure 54. With the application of the NEB methods

to DDD continuum calculations, such activation energy maps are now accessible and

feasible to produce.

Considering the phase space covered by Figure 54, several key properties of the

activation energy distribution are of interest. First, 76.9% of the stress/glide plane

offset combinations are spontaneous. For the events with a non-zero activation energy

barrier and assuming a limit of 2.0 eV as the upper threshold for thermal activation,

26.0% events may occur via thermal activation, and 74.0% of events will not. A
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cumulative distribution of activation energies is shown in Figure 55.

The possible influences of continuum inaccuracies regarding the dislocation core

description can be quantified by examining Figure 54. For any glide plane offset∣∣ z
R

∣∣ > 1√
2
, the glide and SIA loop dislocation cores do not intersect and therefore

any fine-scale effects from dislocation core structure and interaction are negligible.

These interaction events account for 45.1% of events less than or equal to 2.0 eV. For∣∣ z
R

∣∣ ≤ 1√
2
, core interaction for the normal and activated states is dependent on the

applied stress and glide plane offset. For −1√
(2)

< z
R
< 0, the nature of the reaction is

such that the dislocation cores are significantly separated (> 5 core widths) normal

and activated states and these events account for a further 36.4% of events with an

activation less than or equal to 2.0 eV. Therefore, a total of 81.5% of events likely to

occur via thermal activation are dominated by long-range elastic interaction and are

robust against any possible omissions in the continuum theory of defects.
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Figure 55: Activation energy cumulative distribution for events with non-zero acti-
vation energy for a 1/2 [111] (11̄0) edge dislocation bypassing a 4.3nm [001] SIA loop
with a spacing of 172 nm.
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4.4 Obstacle Spacing

Dislocation obstacle density has a strong effect on athermal stress activated by-

pass, as dense obstacles force a dislocation to bow with high curvature, incurring

a large penalty of self-energy. For regularly spaced defects, a 1/L dependence on

obstacle spacing L is expected from a simple line-tension estimate of the activation

stress of Orowan bowing. An SIA loop interacts with a glide dislocation in a more

complex manner than a pinning point as assumed in the Orowan estimate, and a

y ∝ −a log(x) + b trend is clear in Figure 56.
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Figure 56: Semi-log plot of effect of obstacle spacing (simulation volume width) on
activation energy for a 1/2 [111] (11̄0) edge dislocation bypassing a 4.3nm [001] SIA
loop with an offset of 0.8R.

The activation energy for bypass as a function of obstacle spacing and applied

stress for a constant loop size and offset is shown in Figure 56. The trend of decreasing

activation energy with increasing stress is explained by two factors: the increased self-

energy of the glide dislocation due to the greater degree of bowing, and the increased

energy dissipated by performing work under a greater applied stress. Consequently,

the stress dependence of the process must be inherently dependent on dislocation
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bowing, therefore factoring into the activation volume.

The role of obstacle spacing on bypass barrier energy is of particular importance re-

garding thermal activation because a single bypass event can cause a cascade of unpin-

ning events. An unpinning event increases the obstacle spacing of the two neighbour-

ing defects on the dislocation line and the energy barriers for some dislocation-SIA

loop interactions, which are otherwise strictly stress-activated, may become feasible

for thermal bypass. Events with a low energy barrier may also occur spontaneously

in this case as well. In Figure 54, 26.0% of the events with non-zero energy are under

2.0 eV. Assuming a doubling of obstacle spacing with an unpinning event results in

an activation barrier decrease by a factor of two, a total of 40.2% events are accessible

via thermal activation.

4.5 Activation Volume

Activation volume, which describes the stress dependence of the activation energy, is

defined rigorously by the relation:

∆V = −
(
∂∆G

∂τ

) ∣∣∣∣
T

. (62 repeated)

The activation volume for a simple dislocation reaction is defined from a statement

of the Gibbs free energy [72], i.e.,

∆G = ∆F − τ∆V, (144)

where τ is the local stress, ∆V the activation volume and ∆F the Helmholtz free

energy. For a straight dislocation, ∆V was expressed as bld [72], where b is the

magnitude of the Burgers vector, l is the dislocation length, and d is the distance

between the equilibrium position and the saddle point [190]. Equation 144 was de-

rived assuming a constant ∆F ; if it is a function of stress, the activation volume must

derived using its definition because the work performed to create the activated state
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must also be taken into account. In general, the physical meaning of the activation

volume is process dependent because of these two contributions. During processes

such as phase transformation, the activation volume corresponds to a physical vol-

ume change of the activated complex [176], whereas for dislocation unit processes,

Gibbs [72] states that “dislocation movement changes the shape of a crystal without

changing its volume, to first order.” Therefore, in this case the activation volume is a

thermodynamic quantity without a unique correspondence to a specific set of visually

identified atoms.

For the reaction plotted in Figure 53, the activation volume calculated according

to Equation 62 is on the order of 500 nm3. For a point of comparison, the size of the

simulation volume is 11.8 × 106 nm3. Computationally expensive simulations often do

not directly investigate stress dependence, but apply Equation 144 using an estimate

of the activation volume. For example, the activation volume of a unit process such as

a dislocation bypassing an array of impenetrable obstacles with spacing λ was assumed

as λb2 [45] and for an edge dislocation bypassing a 1/2 [111] loop, the activation

volume was taken as the length of the junction Burgers vector, approximately the loop

diameter, multiplied by the square of the Burgers vector [213]. These approximations

span orders of magnitude for a similar process and in comparison to the previous

direct calculation of activation volume using Equation 62, are coarse approximations

severely underestimating the activation volume. The activation volume for dislocation

processes is a result of Eq. 62 rather than a simply identified collection of atoms

comprising a physical volume [72]. This is increasingly problematic with increase of

activation volume and the corresponding cooperative large scale atomic restructuring

involved.
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4.6 Prospects and Limitations of DDD-NEB

Augmenting mesoscopic simulations of dislocation migration, such as discrete disloca-

tion dynamics, with an NEB calculation provides a computationally efficient method

to investigate the energy barriers associated with thermally activated dislocation glide

at a representative length scale. Atomistic calculations have been highly favoured for

dislocation-SIA loop interaction simulations in the literature, and thus an analysis

and comparison of these two methods is natural in this context.

4.6.1 Dislocation Core Parameter

The non-singular dislocation formulation of Cai et. al. [30] contains a parameter a

representing the core width in Equation 5. The value of a is an input to DDD sim-

ulations that must be provided from atomistic calculations or experiments. Lacking

a definitive value of the core width, a value of one lattice spacing was taken for the

studies performed herein. The sensitivity of the activation energy values to this pa-

rameter is therefore very important such that one can gauge the necessary accuracy in

estimating this parameter. Activation energy sensitivity to dislocation core spreading

is analyzed by repeating the calculations shown in Figure 52 with core spreading radii

of 0.1a, 0.5a, and 1.5a. Greater core spreading influences the energy landscape by de-

creasing the core energy as well as reducing the self-force and allowing the dislocation

to curve more easily (lower energetic penalty).

As seen in Figure 57, the core width was varied over a range of [0.1-1.5]a, and the

activation energy for the reaction was seen to increase with decreasing core width.

Core width (and thus core energy) has a much stronger influence for bypass processes

with direct core reaction (Fig. 57a) than without (Fig. 57b). Importantly, this effect

scales with the total energy of the reaction such that for low energy barriers which

are accessible in terms of thermal activation, the possible effect is minimized. Even

further, it will be shown that the majority of low energy events are as in Fig. 57b
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(a) Direct dislocation-SIA loop core
interaction.
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Figure 57: Effect of core width parameter on activation energy for a 1/2 [111] (11̄0)
edge dislocation bypassing a [001] SIA loop. A linear fit is provide for a core width
of 1a. The configurations were specifically chosen as one with a high degree of close-
range dislocation-SIA loop core interaction, and one without direct intersection (i.e.
strictly elastic field interactions.)

and have negligible dependence on core energy.

For an edge dislocation in α-iron, the elastic energy per atom plane (assuming

elastic isotropy) is approximately 6 eV and the core energy not captured by con-

tinuum theory is estimated to be on the order of 1 eV [96]. Such an additional

contribution to the dislocation self-energy causes a greater resistance to bowing (and

the associated increase in dislocation line length); however, the influence on the en-

ergy barrier is likely significantly less than the 18.3% difference in dislocation energy.

Figure 57 shows that that the energy barrier dependence on dislocation core width,

and therefore core energy, is weak. Varying the core width from 0.1a to 1.5a decreases

the system energy by 50%, yet changes the energy barrier in the worst case by less

than 20% for large energy barriers and far less for events accessible by thermal activa-

tion. Therefore, the process of a dislocation-SIA loop bypass is dominated by elastic

interactions and relatively insensitive to details of the dislocation core.
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4.6.2 Comparison to Molecular Dynamics

Atomistic studies of dislocation-SIA loop interactions have been heavily favoured the

stress driven regime in past works. A novel atomistics NEB calculation, for which

all calculations and figures are generously provided by Enrique Martinez, provides a

point for a direct comparison with the DDD-NEB method to provide valuable insight

into the physical fidelity of the DDD-NEB method, and even further, whay could

be gained from studying processes of this nature using mesoscopic methods. The

following molecular dynamics and NEB calculations were run to provide such a point

for direct comparison. A sample with a 1/2 [111] (11̄0) edge dislocation and a square

[001] SIA loop of approximately 3.3 nm in side was built with the dislocation glide

plane cutting the SIA loop close to one of its corners (offset of approx. z/R = 0.6.

The sample has free surfaces in the direction normal to the dislocation glide plane.

The width of the simulation volume in the direction of the dislocation line is 28.8 nm

and the number of atoms is 1,287,851. Such a large number of atoms was chosen to

minimize the effect of the image forces on the dislocation. The sample was relaxed

using a conjugate gradient algorithm, with the Ackland 2004 interatomic potential

for Fe [1] using the MD code LAMMPS. The simulation configuration is shown in

Fig. 58c. Subsequently, strain has been applied on the free surfaces in the direction

of the dislocation Burgers vector in the sample at 10K at a strain rate of 107 s−1.

The resulting stress-strain curve is shown in Fig. 59b, along with the evolution of the

energy in the system.

As seen in Figures 58b and 58c, the equilibrium configurations near the yield point

are similar but not identical between MD and DDD and such is to be expected given

the complex nature of dislocation motion at low temperatures in BCC metals. Screw

dislocations dislocations have a non-planar core structure resulting in a significantly

higher Peierls energy than an edge dislocation [207]. A strong difference in dislocation

mobility as a function of temperature and dislocation character results, which can be
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(a) NEB images before relaxation.

(b) NEB images after relaxation.

(c) Configuration found using DDD simula-
tion.

Figure 58: Atomic configuration of an edge dislocation interacting close to a corner of
a [001] self-interstitial atom loop. The green line denotes a 1/2 [111] (11̄0) dislocation
whereas the pink line refers to a [001] dislocation.
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Temperature DDD (MPa) MD (MPa) Percent Diff.
10K 520 566.6 -8.2 %
300K 170 190 [217] -10.2 %

Table 2: Comparison of stress values to cause spontaneous dislocation-SIA loop by-
pass as calculated by DDD and MD.

modelled using the appropriate mobilities in a DDD simulation [154]. The DDD

simulation does, however, capture the essential behaviour in the process and similar

elastic interactions between the two cases are evident.

The first point of comparison between atomistic and DDD calculations is the

stress to cause athermal bypass (yield stress). This represents the point at which

the activation barrier disappears, and is a parameter in the model for activation

energy stress dependence in Section 4.3.3. Using molecular dynamics, the stress

to cause spontaneous loop bypass (yield point) is seen to be 566.6 MPa in Figure

59a. Before a corresponding value can be directly computed using DDD, the nature

of the temperature effects on dislocation motion, which includes non-linearities for

difference dislocation characters, for each must be included. These effects can have

highly complex manifestations on the dislocation morphology as the Peierl’s energy

for edge and screw segments differs significantly [207]. In DDD, a common method

of coarse-graining these effects is through an isotropic friction stress [175] . The data

point calculated here at 10K and an athermal bypass stress calculation at 300K in the

work of Terentyev et.al. [217] act as the points of comparison for DDD. The friction

stresses used in to compare to these points are necessarily inputs from experiments

or atomistic calculation. Here, they are taken as experimental value for flow stress at

10K of 350 MPa [203, 202, 109], and a value of 25 MPa at 300K corresponding to the

observed Peierls’ stress in MD [162]. The dislocation-loop orientation was reproduced

in DDD (with the appropriate simulation dimensions for each comparison) with a low

strain rate applied to find the yield stress. The values and relative differences are

shown in Table 2.
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(a) Stress-strain curve for a edge glide dislocation by-
passing an SIA loop.

(b) Energy-strain curve corresponding to (a).

Figure 59: Figure 2. (a) Stress-strain and (b) energy-strain curves for the process of
the dislocation overcoming a square [001] SIA loop with a side length of 3.3nm. The
vertical line and square point show the configuration picked to calculate the energy
barrier.
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Without any fitting parameters and using a dislocation core parameter equal to 1a as

used elsewhere in this chapter, a close match between the yield points for a specific

reaction involving direct glide dislocation-SIA loop core contact is seen with at most

10% difference in value. Reducing this difference may be possible by changing the

discretization and core parameter with larger simulation volumes and SIA loop sizes,

but for the current configuration the an exact match is not possible.

The second point of comparison is between a value of activation energy calculated

at a stress near the yield point. The atomistic NEB calculation was performed at

constant strain, in contrast to the constant stress DDD-NEB calculations. The reason

for this is because the stress to drive the dislocation is created by displacing atoms

and maintaining a constant average stress would require an iterative procedure to

determine these displacements for each image, consequently greatly increasing the

computational time. In contrast, a constant stress calculation was performed using

DDD-NEB as this is more physically relevant: in a bulk material, the slip of a single

dislocation will have negligible effect on the macroscopic stress state and the activation

energy barrier should be calculated under these conditions. For a constant strain

calculation, the applied stress decreases as the dislocation glides to accommodate the

applied deformation and therefore from a qualitative standpoint, one can expect a

larger activation energy barrier under constant strain because the work done by the

dislocation decreases as the applied stress decreases.

For the NEB calculation, the dislocation configuration at 0.93% strain was chosen

(corresponding to 547.4 MPa) and relaxed using a conjugate gradient algorithm. The

resulting configuration shows the dislocation pinned at the loop (Fig. 58b). From that

energy minimum, the sample was slowly heated up for the system to escape from the

minimum. At a given number of steps the configuration is minimized. We obtained

an intermediate minimum and the final ground state as the dislocation overcomes the

obstacle. An NEB calculation was performed between each of those configurations,
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(a) (b)

Figure 60: The minimum energy paths calculated through NEB between different
configurations escaping from a minimum close to the critical point.

i.e., the initial minimized configuration at the 0.93% strain level and the intermediate

minimum (Fig. 60a) and between the intermediate minimum and the final ground

state (Fig. 60b). The landscape is particularly rough and a large number of images

are required to obtain meaningful activation energy barriers. The first barrier is 0.002

eV, while the second is approximately 0.007 eV. The barrier in both cases was close (in

reaction coordinate space) to the initial configurations, and therefore a large number

of equally spaced images were needed to capture the barrier.

The spatially confined simulation configuration that is necessary in order to be

able to perform an atomistics calculation of bypass activation energy presents several

challenges for the DDD-NEB method. Segment discretization must be taken on the

order of a few lattice spacings, which requires very fine discretization in time to

maintain numerical stability. Particularly severe numerical instability was observed

with dislocation segment length approaching the core size parameter in the non-

singular formulation, which establishes a lower bound on the length scales that one can

access with confidence. Furthermore, the earlier approximations made to apply the

closed form energy calculation enabled with the non-singular formulation are unlikely

to be valid at such high stresses. Specifically, a cross term between the micro and

macro stress states that is on the order of a few percent in the tens of MPa increases

with applied stress to become too significant to neglect at these stress levels. To avoid
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inaccuracies from this approximation, the functional form of the stress dependence

of the activation energy shown previously to be valid for dislocation-SIA loop bypass

is used to estimate the activation energy for bypass at 96.6% of the yield point (as

calculated using in the atomistics). The activation energy at zero applied stress was

calculated using a zero friction stress, modelling a sample under 350 MPa applied

stress and a 350 MPa friction stress. The two instances are not identical, but this

is a minor approximation under these simulation conditions with the vast majority

of dislocation glide in the direction of the applied stress. The value obtained was

238.9 eV resulting in an activation energy of 0.8 eV at 96.6% of the yield point. The

friction stress increases the activation energy in the absence of applied stress by over

200 eV compared to the case in the absence of friction stress. The difference between

the activation energy values in both relative and absolute terms is notable, but it

is important to remember that these are the least favourable simulation conditions

under which one can perform a DDD-NEB calculation. In terms of the total energy

barrier, the DDD-NEB predicts an activation energy barrier 0.3% whereas atomistic

NEB predicts an activation energy barrier of 0.002%. For a smaller activation barrier

such as those calculated in this chapter, such a difference is negligible because both

events would have a mean waiting time for thermal activation lower than a typical

time-step for a dislocation dynamics simulation.

The energy-strain curve in Figure 59b is not equivalent to activation energy for

thermal processes as the system is significantly out of equilibrium; however, the mag-

nitude of the energy values is nevertheless noteworthy in that dislocation-SIA loop

bypass activation energies can easily reach hundreds of eV in the unit case, yet ther-

mally activated bypass is possible following changes in the friction stress, the driving

stress or long range dislocation morphology (e.g. dislocation-obstacle bypass else-

where on the dislocation line). Here, we have selected a configuration very close to

the yield point to perform the NEB calculation because we must find the final state
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for the process. An additional challenge for an atomistics NEB calculation is that

the final state following bypass must be found before performing the calculation; this

was performed by heating the sample until thermally activated bypass occurs and

recording the state following bypass.

Regarding the atomistic NEB calculations, the large number of images with the

large number of atoms makes such simulations computationally expensive. Exploring

the whole phase space in terms of the offset between the dislocation and obstacle,

dislocation length or SIA loop size is infeasible if not impossible. Large energy bar-

riers cannot be probed as the final state cannot be reached via thermal activation,

and the boundary conditions and choice of interatomic potential introduce a degree

of uncertainty, as mentioned in a previous section. Moreover, a statistically represen-

tative minimum energy path for a dislocation to overcome a distribution of obstacles

with defect densities comparable to experiments is far beyond the reach of contempo-

rary MD capabilities. A coarser mesoscopic model is necessary to obtain statistically

meaningful deformation pathways for dislocation motion in the presence of obstacles.

A DDD-NEB approach is therefore a computationally efficient method to obtain good

estimates (if not extremely precise values) of activation energy for thermally activated

reactions involving dislocation rearrangement. The approximations involved with a

continuum dislocation formulation such as isotropy, a simplified core structure, and

dislocation segment discretization are trade-offs between physical fidelity and com-

putational burden. We show here that for a decrease in accuracy (that remains to be

formally and comprehensively quantified), the entire domain of thermally activated

dislocation motion of realistic defect configurations is opened to investigation.

4.7 Attempt Frequency Calculation

The adopted methodology applies transition state theory (TST) to describe complex,

fine-scale processes using the Arrhenius equation. The challenge in applying this
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approach is in its reliance on an accurate characterisation of the activation energy

and attempt frequency for the thermally activated processes - the attempt frequency

for processes involving dislocation rearrangement must be established before one can

apply the Arrhenius equation. Friedel [67] first derived the fundamental frequency

of vibration for a dislocation described using a line tension model (approximating a

dislocation as a string with tension Γ). Granato et. al. [78] developed a significantly

more advanced analysis for attempt frequencies for dislocation-obstacle bypass events,

deriving bounds and estimates for attempt frequency, which were summarized at

the beginning of this section. However, direct numerical calculations using a more

accurate dislocation description have yet to be performed.

This study aims to determine the attempt frequency for a dislocation bypassing a

self-interstitial atom (SIA) loop as described using the continuum theory of defects.

To this end, the study is divided into three sections. First, the fundamental modes of

a finite dislocation segment with pinned ends are characterized and compared to line

tension predictions for the fundamental frequency as well as the functional form of the

spectrum. Next, the attempt frequency for a finite dislocation segment bowed against

an SIA loop is determined and compared to theoretical estimates where possible. A

more realistic configuration of an infinite dislocation bowed against an array of SIA

loops is then considered and the attempt frequency determined. The study concludes

with discussion on the sensitivity the numerical calculation of attempt frequency and

the possible implications on predictions of the reaction rate.

4.7.1 Numerical Approach

As stated previously, the Arrhenius equation was generalized to many-body processes

in the work of Vineyard [234] in order to extend it to solid state processes. By con-

sidering the ratio modes of of configurational partition functions for the normal and

activated states for an M -dimensional system and assuming each degree of freedom
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can be approximated a harmonic oscillator, the rate of phase points crossing the

saddle point can be written as

k = νae
−∆G/kBT = ν1e

∆S/kBe−∆H/kBT (57)

where

νa = ν1

M∏
i=2

(νi/ν
′
i). (63)

and ν1 is the fundamental attempt frequency. The factor
∏M

i=2(νi/ν
′
i) is called the

entropic factor as it explicitly accounts for the entropy change during the process.

Further work in the field of the continuum theory of defects resulted in dislocation

attempt frequency estimates, particularly by Granato et. al. [78] who character-

ized the vibrations of a dislocation pinned to a single defect and continuously pinned

dislocations. Their work remains at the forefront of dislocation vibration character-

ization, yet relies on line tension approximations in which dislocations are modelled

as a line with an associated energy per unit length. Dislocations have complex elastic

self-interactions which cannot be captured using a line tension model, and therefore

further investigation is required to determine if line tension approximations are ap-

propriate within the context of this phenomenon and thus whether or not the close

form calculations in [78] can be applied to estimate the attempt frequency of a more

physically realistic system.

Assuming a harmonic potential and negligible damping for small excursion from

equilibrium, the vibrational characteristics of dislocations can be analysed by con-

structing the Hessian matrix and solving for its eigenvalues and vectors. To calculate

vibrational frequencies, the Hessian must be mass-weighted; Granato et. al. esti-

mated dislocation mass per unit length as µb2

c2
with an assumed line tension of µb2

[78], which is also used here. The effective nodal mass can then be approximated as

the average length of the connected segments multiplied by the mass per unit length.

163



The potential energy of the system with degrees of freedom xi can be written as

a Taylor expansion about the origin as

E(xi) = E(0) +
∂E

∂xi
xi +

1

2

∂2E

∂xi∂xj
xixj + ... (145)

Assuming a harmonic potential, all terms above second order are negligible which

was confirmed to be valid for small dislocation line perturbations. For an equilibrium

configuration, the gradient terms are exactly zero. If the kinetic energy of the system

can be written as

T =
1

2
Miẋi

2, (146)

where mi is the mass for degree of freedom i, then applying the conservation of en-

ergy while assuming that damping is negligible for small excursions from equilibrium

requires that

Miẍi = − ∂2E

∂xi∂xj
xi (147)

The vibration frequencies and modes of the system are then defined by the eigenvalues

and eigenvectors of the Hessian matrix of the system. A Hessian matrix is defined in

general as a matrix of second order partial derivatives of a scalar function. Here, the

scalar function is the energy of the system and can thus be defined as

Hi,j =
∂E

∂xi∂xj
(148)

where E is the system energy, and xi is one of the degrees of freedom of system. For

dislocations described using the continuum theory of defects, the closed form Peach-

Koehler force provides access to the analytic first derivatives of energy with respect

to the dislocation node position resulting high precision with low computational re-

quirements. Such an optimization reduces the number of energy calculations by a
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factor of two, and has the advantage of a closed form first derivative. Using a cen-

tered derivative only two force evaluations are required per entry in the Hessian and

no further approximations beyond derivative discretization are required. To calculate

vibrational frequencies, the Hessian must be mass-weighted:

Hm
i,j =

Hi,j√
MiMj

(149)

Granato et. al. estimated dislocation mass per unit length as µb2

c2
with an assumed

line tension of µb2 [78]. The effective nodal mass can then be approximated as the

average length of the connected segments multiplied by the mass per unit length.

Performing these calculations in conjunction with the DDD-NEB approach pro-

vides a clear path for spatially and temporally coarse-graining dislocation bypass

events. First, a dislocation dynamics simulation is performed to equilibrium, which is

referred to as the normal state. An NEB calculation [102, 89] is performed assuming

a final state of a bowed dislocation segment pinned at its ends for calculations using

a finite dislocation segment or a straight dislocation beyond the obstacle in the case

of an infinite glide dislocation. The NEB method determines the minimum energy

pathway for the transition, and therefore the dislocation configuration at any point

during the reaction including the activated state. The Hessian is calculated using a

curvilinear coordinate system along the dislocation line taking the degrees of freedom

as the directions normal to the dislocation line at the dislocation nodes. Tangential

dislocation node movement corresponds to a change in line discretization and incurs

no energetic penalty so such motion is excluded from the vibration analysis.

4.8 Perfectly Pinned Dislocation Segment

To elucidate the nature of dislocation vibrations, the frequencies and modes of a

pinned finite straight dislocation segment are calculated in the absence of applied

stress. A line tension dislocation is analogous to a vibrating string with fixed end
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conditions with a Debye frequency cut-off (equal to the dislocation length divided

by the Burgers vector magnitude). Consequently, modal frequencies are discretized

and scale linearly with the mode and inversely with the dislocation length. Figures

61 and 62 reveal the differences of this simplified model in comparison to dislocation

oscillations.
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Figure 61: Fundamental frequency length dependence is well fit as f ∝ 1/L.

Figure 61 shows that fundamental frequency of dislocations exhibit a 1/L depen-

dence in agreement with the prediction using a line tension model by Friedel [67].

However, contrary to the linear increase predicted by line tension approximations,

the dislocation vibration frequency spectrum exhibits a power law dependence as

seen in Figure 62a. The exponent of the power law is dislocation length dependent

and converges to an asymptotic value by a length of 2000a as seen in Figures 62a

and 62b. At this length, the frequency spectrum of an edge dislocation with is well

described using a functional form ν(m) = Amn where m is the mode number, and

taking A equal to the fundamental frequency and n =0.867. Pure screw character

dislocation modal frequencies have a spectrum functionally similar to an edge dislo-

cation, as shown in Figure 62a. As such, a screw dislocation could be modelled as an
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edge dislocation using a shorter effective length.

Deviations from a linear mode-frequency relation are likely due to dislocation

self-interaction; elastic self-interactions become significant with a short wavelength,

which line tension models inherently omit. The change in dislocation character in the

perturbed configuration undoubtedly influences the vibrational properties as well.

Figure 62b shows the deviation of the modal frequency from a linear spectrum on

a semi-log axis and reveals the power law nature of a dislocation’s vibrational spec-

trum approaching an asymptotic value with increasing line length. The derivation of

Equation 63 by Vineyard [234] did not require assumptions on the modal frequency

distribution and therefore remains a valid approach by which to analyze the attempt

frequency of dislocation processes. Models applying line tension approximations may

remain relevant as well if the ratio of the frequencies ν and ν ′ accurately represent

the true dislocation behaviour but otherwise do not describe dislocation oscillations

well, particularly at higher order modes.

4.9 Application to SIA-loop bypass

Under nuclear irradiation, high energy particles cause SIA loops and voids to form in

α-iron, which causes a significant increase in yield strength as seen in experimental

[59, 259, 91, 114, 21] and simulation studies [155, 4, 197]. Such defects induce material

hardening by acting as obstacles to dislocation motion, and the fine-scale interactions

between dislocation and defects in the material determine the degree of hardening.

Few studies have examined the activation energies of such processes; atomistic studies

have only examined stress-activated bypass of pure edge/screw dislocation with SIA

loops α-iron [217, 128, 156, 11, 122, 215, 217, 14, 85, 163, 212, 218].

Reaction attempt frequencies used in the Arrhenius equation are often far less

rigorous, resorting to heuristic arguments. Rigorous derivations of this parameter

include that of Granato et. al. [78] elucidated the nature of dislocation vibrations
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Figure 62: Vibrational characteristics of a dislocation perfectly pinned at its ends.
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with a single infinitesimal pinning points using a line tension dislocation model. In

this case, an SIA loop acts as the obstacle, constituting a much more complex obstacle

than an infinitesimal pinning point. First, a bowed dislocation segment pinned to an

SIA loop is studied to facilitate comparison to the work of Granato et. al., followed

by the more physically realistic case of an infinite dislocation pinned to a regular

linear array of SIA loops.

4.9.1 Perfectly Pinned Dislocation Segment Bypass

To best replicated the work of Granato et. al., a single SIA loop is placed at the center

of a finite dislocation segment pinned at its ends and an applied stress is necessary

to create a saddle point for obstacle bypass. The resulting normal and activated

configurations are shown in Figure 63.

Figure 63: Dislocation configuration for a finite dislocation segment (red) in the
normal (lower line) and activated (upper line) states while bypassing an SIA loop
(blue). The loop is viewed on edge so it appears as a line, and is a repulsive obstacle
in this configuration.

In this configuration, the even modes of the normal and activated states are ex-

pected to cancel in Equation 63 and contribute very little to the entropic effect as

the middle of the dislocation is a node for even frequencies. The influence of the odd

modes is more challenging to predict from the results of Granato et. al., because

of the interaction between the defect and the dislocation is not confined to a point

of infinitesimal size. The calculated entropic factors are presented in Figure 64 as a

function of the number of modes included in Equation 63.
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Figure 64: Entropic factor for three dislocation segment lengths bypassing a 20a side
length SIA loop. Included modes refers to M in equation 63.

Figure 64 reveals convergence to an entropic factor is independent of segment length

resulting in an attempt frequency scaling with 1/L. A length-independent entropic

factor case corresponds closely to that of a weak strength obstacle as described by

Granato et. al., who approximated the entropic factor in the limit of weak pinning as

1.78 (denoted as “Weak Obs. Limit” in Figure 64). The factor found here is higher

indicating that an SIA loop is a stronger defect than the limiting case but weaker than

an intermediate strength defects as defined in [78]; however, such bounds are unlikely

to apply to defects with a spatial extent. The mode ratios calculated here reflect

similar tendencies as those predicted for a line tension model. Even modes cancel to

contribute very little to the entropic factor, and the odd modes are dominant.

4.9.2 Infinite Dislocation Bypass

An infinite dislocation bypassing a regular linear array of defects more accurately rep-

resents dislocation glide in an SIA loop atmosphere than the previous configuration,

because the gliding dislocation is pinned between loops rather than rigid pinning

points. However, the applicability of the work of Granato et. al. to this case is
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unclear. The formulation in [78] cannot capture the physical behaviour without ex-

tension to include free end conditions, which requires a reformulation of the solution.

With terms containing both cos(x) and sin(x), all modes are likely to contribute to the

entropic factor. Figure 66 shows a typical configuration for the normal and activated

configurations used to characterize the entropic factor for bypass.

Figure 65: Dislocation configuration for an infinite dislocation (red) in the normal
(lower line) and activated (upper line) states while bypassing an SIA loop (blue). The
loop is viewed on edge so it appears as a line, and is an attractive obstacle in this
configuration.
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Figure 66: Entropic factor for an infinite dislocation bypassing an attractive and
repulsive 20a side length SIA loop for a range of obstacle spacing.

Figure 66 shows the entropic factors for attractive and repulsive interactions for

a range of SIA loop spacings. As in the case of the perfectly pinned dislocation, the
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entropic factors for an infinite dislocation interactions are also independent of obsta-

cle spacing. Attractive defects result in a lower entropic factor on average compared

to repulsive defects, and both are on the order of the pinned segment case. Compar-

ing the entropic factor for a dislocation bypass involved direct core interaction (blue

triangle) and strictly elastic interaction (red square), stronger core interactions act to

increase the entropic factor. Granato et al. [78] predicted increasing entropic factor

with obstacle hardness. Two of the most advanced estimates of dislocation attempt

frequency have no explicit length dependence [78, 104] because of cancellations be-

tween the entropic factor (scaling as L) and the fundamental frequency (scaling as

1/L) for intermediate strength defects. Here, this is not seen to be the case, which can

be explained directly from the frequency spectrum. The only significant deviations

from unity of νi
ν′i

occur at for the first several frequencies, which suggests that the SIA

loops act as weak obstacles as defined by Granato et. al..

4.9.3 Discussion of Numerical Characteristics

Analysing dislocation vibration is challenging from the standpoint of the functional

form of Equation 63 and determining the saddle-point configuration with sufficient

precision. When ν and ν ′ are computed numerically, any error in the calculation

results in the rapid accumulation and amplification of error when computing the en-

tropic factor; such is clear in Figure 64, which presents the individual and cumulative

modal contribution for a Frank Read source bypass event.

It is clear from Figure 64 that only the first several modes are truly contributing

to the entropic factor, yet its value continues to increase significantly at high order

frequencies. One may expect small numerical fluctuations to average to zero, which

is often not the case. A bias arises due to the unequal dislocation lengths of the

normal and activated states: the activated state has a shorter total line length in

every configuration used here, resulting in lower frequencies for the same modes. The
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SIA loop often acts as a double pinning point thereby resulting in one very short

dislocation segment, and a correspondingly shorter main segment. For low obstacle

spacing this effect is particularly problematic, and convergence of Equation 63 is not

reached with the modes captured in the analysis.

Equation 63 is also particularly sensitive to uncertainty in the modal frequency

calculations because of the large number of terms involved. The total relative error

for the attempt frequency can be written as
√

2N(Re) where N is the number of

included modes (approx. 40) and Re is the relative error per mode. It is clear that

minor uncertainty of each modal frequency results in significant total uncertainty in

the entropic factor.

As a result, precisely characterizing the saddle point is essential in predicting the

attempt frequency of the process, once again due to the sensitivity of Equation 63.

Very fine discretization on the order of several atoms is required to describe the saddle

point, particularly in portions of the glide dislocation in close proximity to the SIA

loop. Consequently, directly calculating the attempt frequency for a unit or ensemble

dislocation process is impractical in general, and existing approximations provide

sufficient characterisations of attempt frequency. The entropic factors calculated here

provide valuable insight into attempt frequency predictions: the factor is independent

of length, and on the order of 5 for a range of typical defect spacings. The attempt

frequency is then on the order of 1010-1011 Hz, which is significantly less than the

Debye frequency on the order of 1013 Hz.

Figure 67 shows reaction rates for several applied stresses and SIA loop spacings,

revealing that order of magnitude accuracy is sufficient accuracy for attempt frequency

characterization because of the exponential dependence of reaction rate on activation

energy. Increasing the dislocation length from 500a to 600a decreases the attempt

frequency by 16.7%, but the reaction rate increases by several orders of magnitude

because of the change in activation energy.
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Figure 67: Reaction rates for an attractive defect (red squares in Figure 66).

Applying an error propagation analysis to the Arrhenius reveals the sensitivity to

error in the attempt frequency and activation energy. Using Ea = 2 eV, ν = 1011 Hz,

and T = 600 K, the total reaction rate relative error can be written as

δk

k
=

√(
δν

ν

)2

+ 1496.4

(
δEa
Ea

)2

. (150)

Any inaccuracy in the attempt frequency characterisation is drowned out by any

minute inaccuracy in the activation energy, which is ≈ 40 times more influential for

these parameters. The attempt frequency accuracy bounds found here, which are

more precise than one order of magnitude, are sufficient when an error of 0.5% in

activation energy causes a perturbation in the reaction rate of the same size.

4.10 Conclusion

Localized dislocation-obstacle interactions strongly influence the macroscopic proper-

ties of numerous material systems. Thermal lattice vibrations can provide sufficient

174



energy for bypass reactions to occur spontaneously and the rates of such reactions

can be predicted from the magnitude of the activation energy barrier to be over-

come and rate at which the system attempts the process. For the first time, the NEB

method is applied to a continuum based discrete dislocation formulation to determine

activation energies for dislocation bypass of obstacles, which paves the way for a signif-

icant advancement in coarse-graining techniques. The low computational demands of

continuum calculations enable far broader and more detailed energetic mapping than

possible with atomistic calculations, which is applied here to the interactions between

an edge dislocation and a [001] SIA loop. A constitutive state transition theory model

for thermally activated barrier bypass developed by Kocks, Argon and Ashby [104]

is then applied to single dislocation-obstacle activation energies based on DDD sim-

ulations. This studies in this chapter reveal that this phenomenological model can

correlate activation energy stress dependence using the Mott-Nabaro-Seeger model

exponents, but with different exponents than found experimentally, which implies

that more representative, larger scale energetic calculations are necessary to com-

pare with the experimental results. An activation energy map characterizing bypass

energy as a function applied stress and interaction geometry is created, revealing a

complex energy landscape for the reaction. The feasibility of thermal activation is

analyzed and it is shown a significant fraction of interaction events with non-zero ac-

tivation energy can occur via thermal activation, and a study examining the effect of

obstacle spacing on activation energy revealed complex stress dependence, motivating

a discussion on the physical meaning of activation volume for dislocation-mediated

processes.

The work in this chapter also develops more advanced predictions of attempt

frequency for dislocation-obstacle bypass events, one of the two necessary factors

that allow higher scale constitutive models such as in [236] to predict the rate of

thermally activation dislocation migration. In doing so, the present chapter shows
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that:

• The fundamental frequency of a dislocation is scales with 1/L as predicted from

line tension modes.

• Higher modes do not scale linearly but with a power law, contrary to line tension

predictions.

• The entropic factor for SIA loop bypass is independent of dislocation length,

resulting in an attempt frequency scaling with 1/L.

With activation energy calculations made possible using first principles or contin-

uum methods, and the characterization of dislocation attempt frequencies presented

here, a direct path to predicting the thermal activation of unit dislocation processes

is clear. The reaction attempt frequencies directly calculated in this thesis show that

one can adopt an entropic factor independent of obstacle spacing and therefore an

attempt frequency on the order of the fundamental frequency, which is sufficiently

accurate for scale transition of unit dislocation processes via the Arrhenius equation.
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CHAPTER V

REDUCED ORDER MODELLING

The developments of this thesis have enabled a dislocation dynamics simulation to

predict hardening caused by dislocation-irradiation defect interactions in the ather-

mal case. Incorporating the role of thermal energy on these interactions is possible

with a framework provided by transition state theory (TST) enabling direct access to

thermally activated reaction rates, including rates of dislocation-obstacle bypass pro-

cesses as shown in the previous chapter. Unit dislocation-defect reaction processes

may be within reach of atomistic calculations, but the scale transition of informa-

tion from the nano-scale to representative volumes is unclear. Moving beyond unit

dislocation-defect reactions to an environment containing a large number of defects

requires coarse-graining the activation energy barriers of each obstacle into an effec-

tive energy barrier that accurately represents the large scale collective process. This

chapter investigates the relationship between unit dislocation-defect bypass processes

and the distribution of activation energy barriers calculated for ensemble bypass pro-

cesses. A significant difference between these cases observed, which is attributed

to the inherent cooperative nature of dislocation bypass processes. In addition to

the dislocation-defect interaction, the morphology of the dislocation segments pinned

to the defects play an important role on the activation energies for bypass. A phe-

nomenological model for activation energy stress dependence is shown to well-describe

the mean of a distribution of activation energies, and a probabilistic activation energy

model incorporating the stress distribution in a material is presented.
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5.1 Introduction

The activation energy for macroscopic dislocation migration has been studied from

the perspective of line tension simulations. Such simulations approximate disloca-

tions as a line with an associated energy per unit length resulting in a tension Γ.

This simplified dislocation model omits important phenomena such as dislocation

self interaction, and the representation of defects is limited to infinitesimal pinning

points. In the works of Xu and Picu [252, 173], the authors consider that the acti-

vation energy was a function of the bowing angle θ of a dislocation segment pinned

by an obstacle, which is a measure that inherently captures the effect of stress and

obstacle spacing on the force of the dislocation on the defect; however, it has been

shown that for the activation energy for bypass of a 〈001〉 self-interstitial atom (SIA)

loop [198], the applied stress and obstacle spacing have dramatically different effects

and functional forms than for the force on the defect. Xu and Picu [252] also show

that rate sensitivity and bypass kinetics for a distributed random field of obstacles is

governed by correlated motion of dislocations rather than the unit processes. There-

fore, a more complex analysis using dislocations is necessary to gain insight into

coarse-graining unit process activation energies to representative environments. It

is important to note the distinction between athermal hardening calculations using

atomistics-informed defect strength and ensemble thermally activated bypass activa-

tion energy calculations using unit bypass energies. In the athermal (stress driven,

deterministic) case, a dislocation overcomes an obstacle impeding its motion when a

certain force on the dislocation is exceeded. This force can correspond to the force

necessary to shear the defect or to break away from the elastic interaction and, most

importantly, only depends on highly localized interactions between the gliding dis-

location and the defect. As a result, an angle-based breakaway criteria is justified.

The case of thermally activated bypass is far more complex because an unpinning

event can involve changes in dislocation morphology far away from the defect that
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also alters the Gibbs free energy of the system. The energy of the entire crystal is

minimized [72] and thus coarse-graining defect activation energy is therefore far more

complex than defect strength because as the dislocation interacts with multiple de-

fects, it engenders a cooperative process that does not correspond to the unit bypass

activation energies.

The high computational cost of atomistic simulations has limited studies to sim-

ulations of a dislocation interacting with a single obstacle, often at a single stress

level and interaction geometry. These studies provide valuable insight into the com-

plex, atomic scale interactions between the dislocation and obstacle; however, such

information must be coarse-grained to higher scale simulations in order to simulate re-

alistic materials, rather than idealized configurations. Describing the system using the

continuum theory of defects with a discrete dislocation dynamics (DDD) simulation

significantly reduces the degrees of freedom of the system and simplifies simulation

boundary conditions compared to atomistic calculations. With the added advantage

of significantly reduced computational requirements, DDD simulations can determine

the minimum energy pathway for both unit and ensemble bypass processes using the

nudged elastic band method [102] at the expense of a reduction in accuracy at the

atomic scale where the continuum formulation of dislocations is no longer valid. Even

if details of dislocation core interactions with obstacles are approximately described,

the ability to compare and normalize activation energies for unit processes with col-

lective bypass of randomly distributed obstacles from such a DDD approach is of high

potential utility.

The principal goal of this chapter is to investigate the possibility of coarse-graining

unit dislocation-defect bypass activation energies to more realistic obstacle configura-

tions. Dislocation migration through a field of defects inherently captures the effects

of varying obstacle spacing and interaction geometry on effective activation energy,

but the influence of these parameters on activation energy distributions has never
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before been studied. In this work, such activation energy distributions are directly

calculated with DDD-NEB and are compared to the activation energies calculated

using unit bypass simulations for the same defects and planar defect spacing. In Sec-

tion 5.3, these distributions are compared for two configurations to examine if unit

bypass events can accurately describe material behaviour for application in higher

scale models. In Section 5.4, the functional form of the activation energy distribution

is analyzed and the evolution of effective activation activation energy as a function of

applied stress is compared to the Kocks transition state theory model. In Section 5.5,

a probabilistic description for thermally activated dislocation migration is developed

by considering the joint probability distribution of activation energy and stress in the

material. In the final section, the plastic strain increment distribution is investigated

as a function of applied stress and the distribution mean is compared to conventional

predictions assuming a square lattice.

Any discrepancies in the non-singular core description compared to atomistic sim-

ulations are rendered largely irrelevant for the purposes of this study, because it is

the relative statistics between the unit and ensemble bypass processes from DDD

that are of interest rather than accuracy of the numerical value of the unit bypass

activation energy. Whether the local dislocation-SIA loop bypass event is realistically

described or not, it is described identically between these two scenarios and therefore

any differences arise are strictly those associated to the distributions of the obstacles

in space and in energy barrier.

5.2 Method

The numerical method underpinning the DDD-NEB simulations in this chapter is

identical to that in Chapter 4. The only fundamental differences are that the simu-

lation volume is significantly larger and multiple SIA loops are present. This simple
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act of increasing the number of SIA loops does, however, have important implica-

tions regarding the numerical stability of the simulations that do not exist for unit

dislocation-defect interactions. The difficulties with numerical stability arise because

of how the images interact, and the nature of the dislocation-loop interaction. Re-

calling the definitions of the NEB force and tangent:

Fi = Fs
i |‖ + FR

i |⊥. (91 repeated)

τ+
i = Ri+1 −Ri (85 repeated)

τ−i = Ri −Ri−1 (86 repeated)

τ i =

τ+
i if Vi+1 > Vi > Vi−1

τ−i if Vi+1 < Vi < Vi−1

(87 repeated)

Fs
i |‖ = k [|Ri+1 −Ri| − |Ri −Ri−1|] τ̂ i. (94 repeated)

The tangent plays an important role for the spring force as seen in Equation 94 because

it determines how the real and spring forces are projected to drive the system into the

MEP. Any inaccuracy in the approximation of the tangent to the energy hypersurface

results the real force driving the image along the reaction pathway. Movement of

dislocation nodes directly influences the spring force because the magnitude of the

spring force is a function of the norm of the difference of the degree of freedom

vectors. As a result, the spring force on each node is changed by otherwise confined

changes in dislocation morphology, such as deformations near an SIA loop. Numerical

instability was observed for glide dislocations interacting with many loops for this

reason - inaccuracy in the tangent caused images to be driven in the glide direction

for one or more loops, causing a change in spring force everywhere along the line. For
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the purposes of this study, a large number of simulation repetitions with a restricted

simulation volume with six SIA loops. The width results in a realistic loop density

and the dislocation is often interacting with several SIA loops simultaneous, but

remains more numerically stable than simulations with very large volumes and a glide

dislocation interacting with with tens of loops simultaneously. Figure 68 depicts a

typical configuration used to produce activation energy distributions in this chapter.

Figure 68: Converged dislocation image configuration for a glide dislocation bypassing
an ensemble of SIA loops.

5.3 Activation Energy Distribution

5.3.1 Geometric Considerations

Atomistic simulations are favoured for studying dislocation-obstacle interactions. Stress-

driven dislocation bypass reactions have been studied extensively with these tech-

niques for obstacles composed of dislocation segments such as stacking fault tetrahe-

dra [185, 164, 184, 127] and self-interstitial atom loops [156, 217, 14, 212, 194] and well

as voids [215, 85, 163, 218, 50, 249] and precipitates [105, 86, 214, 216, 209]. These

simulations reveal details of nano-scale dislocation reactions and obstacle deformation

caused by the dislocation but extending the results to predict material properties is

challenging. The studies that investigate only the the effect of stress aim to deter-

mine the critical stress for bypass, and only a single study has reported the system
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(a) Dislocation bowing against a regular linear array of SIA loops.

(b) Dislocation bowing against SIA loops with a random spatial distribution.

Figure 69: Many interaction geometries result in energies far beyond the range of
thermal activation, a significant number to exist.

energy evolution during the bypass process [142]. The effect of interaction geometry,

dislocation character, or interactions with more than a single defect have seen little

investigation.

A major barrier to scale transition of unit bypass activation energy results to

consider realistic distributions of obstacles is the dramatic departure in geometry

from a square planar array. Figures 69a and 69b illustrate the different possible

geometric factors influencing the activation energy barriers for two configurations

with an identical defect density.

The linear (or square) regular array in Figure 69a represents the configuration that

is accessible using atomistic calculations with periodic boundary conditions or when

performing a unit process calculation with DDD-NEB. It is clear from Figure 69b that

a dislocation passing through a non-uniform distribution of defects is a cooperative

process in which many statistics influence the individual activation energy barriers.

Moreover, the effective activation energy barrier, related to the strongest obstacle

configuration, can differ substantially from the uniform case. The obstacle spacing
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normal to glide (X1,X2,X3) and parallel to glide (Y1,Y2,Y3,Y4) will change activation

barriers in addition to the center-to-center loop spacings (L1,L2,L3). Moreover, it is

clear that a single defect does not entirely characterize the bypass process but that

the neighbouring defects also play a fundamental role, the degree of which remains

to be determined. Another nuance is that the dislocation configuration at the critical

point for a regular linear array of obstacles is relatively independent of applied stress.

The glide dislocation will bypass an obstacle via Orowan bowing before it can contact

another obstacle. In the case of randomly distributed obstacles, however, increasing

the stress driving the dislocation may cause the dislocation to bow into additional

obstacles. As a result, new barriers are introduced and the statistics characterising the

lengths of dislocation segments are changed. The effect of defect density is therefore

likely a nonlinear function of applied stress. In comparison to a more realistic (but

nevertheless simplified) configuration in Figure 69b, the activation energies obtained

from a linear array are evidently insufficient to describe the process, which will be

shown quantitatively in the following sections.

A tempting means to coarse-grain unit bypass activation energy is to characterize

the unit process activation energies over a range of variables, such as applied stress

and inter-obstacle spacing to nearest neighbors (parallel and normal to the glide

direction). This direct approach falls short as the synergistic effects results in complex

dependencies. To highlight these challenges, the simplified case of a linear array of

loops is taken, as shown in Figure 70. In this configuration, two loops are evenly

spaced to create a regular linear array when periodic boundary conditions are applied.

Next, one of the loops is displaced in the glide direction by up to 15% of the inter-

obstacle spacing (i.e. x/L = 0.15). The minimum energy pathway and activation

energy are calculated as a function of x/L to reveal the complex evolution of activation

energy for subtle changes in the defect geometry.

A small offset of every second loop (or an arbitrary obstacle) in the glide direction
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Figure 70: Dislocation bypass process of two 〈001〉 SIA loops slightly offset in the
glide direction (7.5% of the loop spacing).
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Figure 71: The activation energy for a regular array with a small offset x/L in the
glide direction results in a dramatic change in activation energy.

results in two separate bypass events as seen in Figure 70 and confirmed by the

minimum energy pathways for several values of x/L shown in Figure 71b.

Displacing the second loop in the glide direction 5% of the loop spacing reduces the

activation energy from 6.37 eV to 1.63 eV. Increasing the displacement in the glide

direction has negligible effect, as the process has already transformed to two separate

bypass events, which is clear from Figure 71a. Furthermore, this process is dependent

on the magnitude of the activation energy barrier, the applied stress, and the obstacle
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spacing. This simple, symmetric configuration reveals significant challenges to coarse-

graining unit bypass activation energies, and is greatly complicated if one considers

asymmetric loop spacing and obstacles of different activation energies. To access the

distributions in activation energy arising from the interplay between these numerous

variables that solicit non-linearity, simulations with a non-uniform defect population

are necessary.

5.3.2 Ensemble Bypass - Multiple Defect Activation Energies

Direct comparison of the energy distributions obtained for all possible unit bypass

reactions with an ensemble of defects with the same possible interactions at the same

planar density is a direct and explicit method to reveal the possibility of coarse-

graining using the effective energy as a function of defect spacing. In principle,

atomistic calculations are capable of performing such simulations; however, the com-

putational requirements put such large simulations far beyond reach of feasible com-

putation times. The volumes required for the studies in this work constitute on the

order of billions of atoms, and simulating dislocation motion at these length scales is

only currently possible with mesoscale methods such as discrete dislocation dynam-

ics. To elucidate the effect of distributing defects in space and creating a cooperative

bypass reaction for the dislocation, three series of calculations are performed at a

constant stress level and mean defect spacing:

• Unit bypass energy of an SIA loop as a function of interaction geometry.

• Minimum energy pathway through an ensemble of SIA loops as obstacles ran-

domly distributed in space.

• Minimum energy pathway through an ensemble of SIA loops with a single in-

teraction geometry.
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A two dimensional representation of the gliding edge dislocation and SIA loop

configuration are shown in Figure 72.

The DDD-NEB method enables a direct comparison of activation energies for unit

and ensemble bypass events calculated with the same methodology to reveal the effect

of the collective process created by a dislocation in contact with multiple obstacles.

First, the activation energy for unit bypass is calculated for a single SIA loop

with a linear spacing of 117 nm as a function of interaction geometry (z/L) (i.e., the

relative position of the glide plane with respect to the loop center) and an applied

shear stress of 10 MPa as shown in Figure 73a. The calculated activation energies are

shown in Figure 73. The activation energies are calculated with a fine discretization in

offset, then interpolated with cubic splines. Ten points equally space points are taken

for each per interval interpolated using the cubic spline, which are enumerated to

create a probability distribution of activation energies. From the distribution shown

in Figure 73b, 8.75% of events are found to be less than or equal to 2 eV.

A simple approach to coarse-graining such unit process activation energies would

be done by using these energies directly for an ensemble of defects with the same

mean spacing. However, the observed activation energy dependence on SIA loop

spacing in a linear array is logarithmic [198] and the relative position in the glide

plane also plays a significant role on the activation energy barrier for glide. A volume

containing six SIA loops with a mean separation distance equal to the linear spacing

of the previous calculation, 117 nm, and with all other parameters identical was

taken and the activation energy barriers for glide were calculated for 800 simulation

repetitions.

The activation energy probability distribution for an ensemble of loops has fewer

defined features than the distribution for unit bypass. The variation in the connected

segment lengths and relative defect geometry acts to spread the two well-defined

peaks seen for the unit bypass process. Furthermore, the mean activation energy is
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(a) Configuration for unit bypass as a function of interaction geom-
etry (z/L, where L is the loop side length) used in Figure 73.

(b) Configuration for ensemble bypass to compare to the distribution
obtained from Figure 72a.

(c) Configuration for ensemble bypass to compare to a single activa-
tion energy value for the same interaction geometry in Figure 72a.

Figure 72: Pictorial representation of the simulation configurations used to investigate
the possibility of coarse-graining unit SIA loop bypass events. The dislocation tangent
is into the page and the volume is not periodic.
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Figure 73: The activation energy distribution for the unit process as a function of
normalized glide plane offset reveals many events with high activation energy by also
a non-negligible fraction which are accessible with thermal activation.
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Figure 74: Probability distribution of activation energy for a edge dislocation bypass-
ing a obstacles with a distribution of energies, compared to the probability distribu-
tion in Figure 73b.

43.4% lower for an ensemble of defects (6.56 eV vs. 11.6 eV). It is clear that the

highly localized interaction between the defect and the dislocation does not entirely

characterise the energetics of the process. The change in morphology of the extended

dislocation segments neighbouring the bypassed defect induces important changes in

the activation energy that cannot be captured in unit bypass simulations.

5.3.3 Ensemble Bypass - Single Defect Activation Energies

To investigate the effect of the extended cooperative bypass process in more detail,

a simpler configuration depicted in Figure 72c is taken to remove the distribution of

unit bypass activation energies and to isolate the influence of the random defect mor-

phology on coarse-graining unit processes. Using a single loop offset, the activation

energy for the unit bypass process is calculated (11.6 eV). Next, 400 simulations with

six loops at the same offset are performed, and the probability distribution of the

resulting activation energies is plotted in Figure 74.
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Figure 75: Probability distribution of activation energy for a dislocation migration in
a distribution of defects with equal unit bypass energy.The mean activation energy
for the distribution is shown with the vertical black line, the unit bypass activation
energy (of the same defect density) is shown with the vertical red line, and the unit
bypass activation energy using the density predicted using Friedel’s approximation
(Equation 151) is shown with the vertical blue line.

The vertical red line in Figure 75 denotes the activation energy for a single SIA

loop with the same interaction geometry and a linear spacing equal to the mean free

path of the distribution of SIA loops. As is clear from the figure, the vast majority

(>90%) of the energy barriers fall below the unit activation energy (11.6 eV) and

thus in this simplified configuration with defects having identical isolated activation

energy barriers, the activation energy distribution for an ensemble of defects differs

dramatically. Moreover, it is clear from the value of unit activation energy that

thermal activation will never occur, yet in the ensemble case, a significant number

(24%) of events have ≤2 eV. Such a dramatic shift is impossible to elucidate from

unit bypass simulations using the mean defect spacing.

The mean defect spacing does not sufficiently describe the defect configuration to

provide sufficient accuracy during the scale transition. Instead of the mean spacing
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between defects with respect to their distribution in space, the mean spacing of defects

on the dislocation line may be the more relevant parameter to coarse-grain unit

bypass processes. Friedel [68] developed an approximation for inter-obstacle spacing of

defects on a dislocation line pinned in a distribution of randomly distributed obstacles:

D ≈
(

2τ l2

σab

)1/3

, (151)

where D is the defect spacing on the dislocation line, τ is the line tension, l2 the

average area swept by the dislocation as it moves from its initial to final pinned

positions, and σa the applied stress. To apply Equation 151, l2 is assumed to be

equal to the square of the mean SIA loop spacing (1172 nm2). Applying Equation

151 and assuming a value of line tension as τ = µb2/2 results in a defect spacing on

the dislocation line of D = 303 nm, an increase of nearly a factor of three.

As seen in Figure 75, predicting the mean activation energy using the defect spac-

ing on the dislocation line predicted using Equation 151 significantly underestimates

the mean energy. The line tension in Equation 151 can be take as a parameter

to match the mean of the distribution; however, such a value is not general and is

not necessarily valid for other applied stresses or densities given that a line tension

model of a dislocation is highly simplified. A parameter related to the defect mean

free path simply does not describe the necessary depth of the physics to characterise

the coarse-grained activation energy distribution for dislocation glide, even when the

inter-obstacle spacing of randomly distributed obstacles on a dislocation line is taken

into account. Full scale calculations with a distribution of defects are necessary to cap-

ture the numerous factors influencing the activation energy distribution. This implies

that thermally activated dislocation migration is highly dependent on the dislocation

segments between obstacles in addition to the fine scale dislocation-obstacle interac-

tion. The coarse-graining process can only begin when all the principal components

of the process are captured, which requires ensemble bypass simulations.
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5.4 Distribution Homogenization and Stress Dependence

Determining how an activation barrier depends on applied stress is critical for predict-

ing thermally activated processes. If the activation energy for a process is sensitive

to changes in stress for small normalized stresses σ/σ0, thermally activated disloca-

tion glide may play a fundamental role on material behaviour, whereas if thermal

activation only changes dramatically with large σ/σ0, then thermal activation only

occurs near yielding and may not play a significant role in engineering applications of

the material. To describe this activation energy dependence on stress, Kocks, Argon

and Ashby [104] proposed a phenomenological model relating the activation energy

at various stresses to the zero stress activation energy:

∆G = F0

(
1−

(
σ

σ0

)p)q
(152)

where F0 is the activation energy in the absence of applied stress, σ the applied stress,

σ0 the yield stress, and p and q are parameters to be determined. Equation 152

has also been analyzed from the theoretical perspective with the Mott-Nabaro-Seeger

model and it was shown that for energy barriers with a sinusoidal form, the exponents

are p = 1/q = 2/3. A DDD-NEB analysis of the unit dislocation-SIA loop bypass

process showed that these exponents describe the stress dependence for the unit

dislocation-SIA loop bypass process [198]. However, as shown in the previous section,

the transition between unit bypass process and SIA loop ensemble activation energy

distributions is highly non-trivial. The applicability of Equation 152 is investigated

here using the expectation value of the activation energy for ∆G and F0.

To create Figure 76, one must determine the average yield strength σ0 and zero

stress activation energy distribution. The mean yield stress σ0 is found using a series

of traditional DDD simulations using the same defect parameters as the DDD-NEB

study. The value for F0 is calculated using the same method as for any other stress

value using 400 simulation repetitions to create an activation energy distribution

193



 0

 5

 10

 15

 20

 0  2  4  6  8  10

M
e

a
n

 A
c

ti
v

a
ti

o
n

 E
n

e
rg

y
 (

e
V

)

Applied Stress (MPa)

Avg. Activation Energy
Calculated Parameters

Best Fit

Figure 76: Using calculated values of F0 = 19.2 eV and σ0 = 28.4 MPa, Equation
152 overestimates the activation energy. The data can be well fit using a lower value
of F0 =17.6 eV.

Model Calculated Fit
F0 (eV) 19.2 17.6
σ0 (MPa) 28.4 28.4

Table 3: Parameters for each line appearing in Figure 76. The stress to spontaneously
bypass σ0 is provided by DDD calculations for both the “Calculated” and “Fit” cases.

from which the mean activation energy is calculated. The activation energy in the

absence of applied stress is independent of obstacle spacing, but with an ensemble of

obstacles, it is possible that multiple obstacles are aligned such that the dislocation

must overcome them simultaneously, which would result in an activation barrier that

cannot be produced in the unit case.

Figure 76 shows that using calculated values of F0 and σ0, the Kocks TST model

slightly overestimates the activation energy with the greatest deviation in the absence

of applied stress and monotonically decreasing to the same solution at the yield stress.

If one allows the zero-stress activation energy to be a parameter, a good fit can be

achieved, and this discrepancy raises questions on the meaning of the activation in
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the absence of applied stress for a distribution of defects.

In the case of a single obstacle of fixed size and interaction geometry, i.e. unit

bypass, the inter-obstacle spacing is the only parameter affecting zero-stress activa-

tion energy. If a second loop is introduced, the relative spacing normal to the glide

direction (along the dislocation line) between each loop becomes a parameter. Figure

77 shows a simple example with two identical loops aligned in the glide direction.

In the absence of applied stress, the activation energy for bypass is independent of

asymmetry in the inter-obstacle spacing. With an applied stress the bypass reaction

is markedly different: asymmetry in the loop spacing reduced the activation from a

regular linear array and while the evolution of activation energy is not as dramatic as

in the configuration of Figure 70, the activation energy can nevertheless be reduced

by 50% or more depending on the configuration. In the case of unit bypass, a single

parameter F0 can capture all the parameters determining the activation energy of

the reaction, whereas the higher dimensionality with multiple loops and their relative

geometry can greatly influence the stress evolution of the reaction activation energy

in ways that are impossible to elucidate in the absence of applied stress.

The zero-stress activation energy is therefore better left as a fitting parameter

than as a calculated value for a dislocation bypassing an ensemble of defects. This

finding reinforces the notion that the morphology of the dislocation segments are

instrumental in calculating the activation energy barrier in addition to the dislocation-

obstacle reaction. Coarse-graining must thus inherently include the effect of high

order dislocation morphology effects. The exponents for the Kocks TST model found

for a unit bypass process in [198] are, however, seen to accurately describe the stress

evolution for an ensemble of the same type of defect if the F0 is left as a parameter.

The probability distributions for the activation energy barriers seen by a disloca-

tion migrating through a distribution of SIA loops are shown at two stress levels in

Figure 78.
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(a) Diagram of simulation configuration for Figure 77b. The vertical lines represent
periodic boundaries, so that the loop spacing is L(1 + x) and L(1− x).
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Figure 77: The activation energy for a regular array as a function of normalized
loop offset x/L normal to the glide direction is significantly altered with increasing
normalized loop offset, highlighting the shortfalls of a characterisation via mean loop
spacing.
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Figure 78: Probability distributions of activation energy at two levels of stress. Each
stress level is well described using an exponential distribution. At 6 MPa, the mean
is 9.0 eV and at 10 MPa, the mean is 6.3 eV

The statistics of the data reveal a distribution well-described by an exponential prob-

ability distribution, i.e.,

P (x) = λe−λx, (153)

where λ−1 is the expectation value of activation energy. This fit is purely phenomeno-

logical, and is not necessarily valid in the case of other defects or densities. Obtaining

a closed-form functional form is particularly valuable for the coarse-graining process.

A distribution well-described in this manner can be directly integrated into consti-

tutive equations in closed form. The stress dependence of the expectation value of

energy λ−1 can be expressed in closed form using the Kocks TST model and the fitted

parameters found in this work, and therefore distribution of energies is fully charac-

terized with the mean energy as the only parameter. This closed form representation

is a significant step forwards in coarse-graining, as the functional form can be easily

transitioned to higher scales and combined with other relevant distributions, such as

197



the distribution of stress in the material. While the values F0 and σ0 are parameters

from simulation or experimental studies, the activation energy distribution can be

written in closed form as a function of stress.

5.5 Effective Activation Energy

The rate of thermally activated dislocation glide, which is manifested as creep at the

macroscopic scale, depends not only on the distribution of activation energies but

the stress distribution as well. The mean activation energy for glide of the chosen

configuration decreases from 10.4 eV to 6.56 eV with a change from 4 MPa to 10 MPa,

and therefore barriers can rapidly enter the domain of thermal activation as a result

of evolving stress fields in the material. Furthermore, the stress state in a material

is not equal to the macroscopic applied stress but is rather a distribution with a

mean equal to the applied stress, because other defects such as dislocations, grain

boundaries, and lattice defects act to broaden the stress distribution. Therefore, even

obstacles with very high activation energy barriers for bypass may be overcome with

the evolution of the dislocation morphology elsewhere in the material. Combining

these two distributions allows one to generate a comprehensive prediction of the

activation energy barriers in a material, which can be directly implemented in a

constitutive equation such as in [236].

With a fixed defect density and defect type, the activation energy distribution is

itself a function of only a single random variable, the local stress. The probability

distribution for the shear stress distribution caused by a relaxed configuration of edge

dislocation dipoles has been derived analytically in [43]. The distribution is sharply

peaked and decays as τ−3, but cannot be written is closed form without containing

an integral. For the sake of demonstration, a Gaussian stress distribution with a

variable mean µ and a fixed standard deviation of s = 10 MPa is assumed here. The

resulting probabilistic description of the activation energy is written as a function of
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two random variables that are described with a Gaussian and exponential probability

distributions:

G(x) = F0

(
1−

(
σ(x)

σ0

)(2/3)
)(3/2)

(152 repeated)

where the stress σ(x) defined as a normal distribution with variate X. The value

of G(x) is used as the expectation value of activation energy λ−1 to generate an ex-

ponentially distributed random number, which is the activation energy barrier. One

condition is added from physical reasoning that the activation energy is zero when the

applied stress is greater than the yield stress. This model could be further advanced

by considering a distribution of F0 and σ0, which are likely to be correlated given

that a defect simply requires a certain amount of energy to be bypassed, thermally

or otherwise, and a higher deterministic bypass stress then necessarily means that

a defect has a higher activation energy for bypass. The resulting distribution cor-

responding to EA is calculated numerically using 106 samples and is presented as a

cumulative distribution function in Figure 79. The accompanying probability distri-

bution is highly biased to small activation energy values and decays rapidly, faster

than an exponential probability distribution.

For an expectation value of the zero stress energy barrier of 30 eV and a yield stress of

30 MPa, 10.8% of depinning events have an activation energy ≤ 2 eV which increases

to 24.3% at a stress level equal to half of the yield stress. Despite a zero stress energy

expectation value that is above the level of thermal activation, the distributions of

stress and activation energy enable a significant percentage of dislocation-obstacle

bypass reactions to occur via thermal activation.

Even further, this analysis is simplified in that it does not include the local time-

varying nature of the internal stress field. As dislocations bypass obstacles via thermal

activation, their resulting displacement induces a dramatic shift in the local stress

fields. The restructuring of the dislocation network in the material changes the stress
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Figure 79: Cumulative distributions of activation energy at varying levels of stress
for F0 = 30 eV and σ0 = 30 MPa.

field on the other defects and as a result, some bypass events having high activation

energies initially may become possible with energy provided from thermal lattice

vibrations. This mechanism allows for thermally activated dislocation motion in the

presence of obstacles having high activation energies.

5.6 Conclusion

Transition state theory and the Arrhenius equation provide a methodology to coarse-

grain general thermally activation reactions including dislocation-obstacle bypass

events enabling scale transition across orders of magnitude of length and time. The

necessary parameters to apply this method for unit processes are accessible using

atomistic calculations and DDD-NEB; however, coarse-graining this information to

predict an effective activation energy for dislocation migration in a realistic defect

environment is highly complex. Geometric factors of the dislocation segments pinned

to the nearest-neighbour obstacles have a strong influence on the activation energy,
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which creates a high-dimensional dependency on numerous factors including the indi-

vidual defects, their geometric configuration, and the applied stress. Calculating the

activation energy for a unit process and directly applying this value to a configuration

with the same the mean defect spacing overestimates the activation energy for the

process in every case investigated. The activation energy distributions found here are

seen to be well-described using an exponential probability distribution requiring only

the distribution mean as a parameter. The Kocks TST model is shown to accurately

describe the mean activation energy evolution using a fitting parameter. These two

parametrizations, in combination with an assumed distribution of stress, are used

to create a cumulative probability distribution of activation energy, revealing that

thermally activated bypass can be significant even with large activation energies.

Earlier theoretical works on thermally activated dislocation glide, notably that

of Gibbs [72], emphasize the importance of correctly selecting the thermodynamic

system as that of the entire crystal, because “it is the entire crystal and not simply a

local region which adopts the minimum free energy configuration consistent with any

imposed structure.” Consequently, characterising the minimum energy pathway for

unit dislocation-obstacle bypass events has limited value with respect to predicting

macroscopic thermally activated behaviour. The relative “strength” of defects can

be elucidated from such limited bypass events, but insight into macroscopic material

behaviour is not possible. Meso-scale simulation methods such as the one proposed

in this thesis are thus essential to simulate thermally activated dislocation motion to

serve as an input to higher scale models, particularly with the current computational

limitations on atomistic simulations.
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CHAPTER VI

CONCLUSION

This thesis is dedicated to advancing the forefront of irradiation hardening predictions

using discrete dislocation dynamics simulations to simulate more realistic dislocation-

defect interactions at the mesoscopic level than ever before, in both the thermal and

athermal regimes. Nuclear pressure vessel ductility is the paramount concern for

reaction lifetime extension programmes and new reactor design lifetime estimates,

and yet this subject area has been the subject of relatively little study until recently

as reactors approach their design lifetimes. At the atomic scale, atomistic calcula-

tions are a common method to determine the necessary stress to cause a dislocation

to bypass an obstacle, but such calculations are restricted to a limited parameter

set, periodic boundary conditions with highly confined volumes, and shock loading

(ε̇ > 106). Deriving estimates of macroscopic material strength from such unrepresen-

tative simulations is impossible without significant coarse-graining efforts. Mesoscopic

simulations such as dislocation dynamics simulations are ideally suited for this role

because they can capture the influence of an ensemble of defects on dislocation mo-

tion. Before the work performed in the present thesis, the most advanced simulations

of dislocation-defect interactions (for obstacles not composed of dislocation segments,

such as voids or precipitates) were limited to line tension simulations. Modelling a

dislocation as a simple line under tension may provide insight into certain trends but

the oversimplified model is incapable of providing useful parameters to higher scale

models with the goal of predicting material properties for physical applications. The

DDD simulations in this thesis show that that the Bacon Kocks Scattergood model

and the Friedel Kroupa Hirsch model for hardening accurately predict the increase
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in yield strength for a single dislocation migrating through a random array of voids

and SIA loops respectively (using an atomistics-informed breakaway strength). A

mean-size approach is validated for defects with a Gaussian size distribution, and

a superposition principle to calculate the hardening from both voids and SIA loops

simultaneously is presented.

The analysis of athermal irradiation hardening in the present thesis could be fur-

ther refined and advanced with a more thorough mapping of dislocation-void break-

away strengths from atomistic calculations. The role of parameters such as interaction

geometry, dislocation character, and the effect of defect spacing for random arrays

have only been investigated briefly, and a full parametric mapping would undoubtedly

provide a more accurate representation of the defects in DDD simulations. For defects

composed of dislocations such as SFT or SIA loops, DDD simulations are capable of

reproducing complex phenomena observed in atomistics [127, 194] but reproducing a

single reaction is often the focus of an entire study. Including such complex reactions

may be unnecessary if the most important details of the reaction can be coarse-grained

using the same technique as for other defects, i.e. extract the defect strength with

an additional possibility of altering the defect strength following dislocation bypass

events to reproduce the effect of dislocation loop rearrangement or defect shearing.

Thermal lattice vibrations are a key driving force to enable non-spontaneous reac-

tions to occur, including dislocation unpinning from obstacles. Drawing on numerous

independent developments in the field of transition state theory, this thesis develops

new methods to improve the prediction of thermally assisted dislocation migration

that are able to calculate activation energies and attempt frequencies for dislocation

configurations described using the continuum theory of defects. The most advanced

estimate to date for the attempt frequency of dislocation-obstacle bypass relies on

line tension approximations, and while this allows for closed form solutions, the dis-

location line tension model is overly simple. In this thesis, it is shown that applying
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a vibration analysis to a complete description of dislocations using continuum theory

reveals that the fundamental frequency scales as 1/L as in the case of line tension,

but the modal frequencies scale with a power law rather than linearly. Estimates of

the entropic factor (which is multiplied to the fundamental frequency to obtain the

attempt frequency) for a dislocation bypassing an SIA loop revealed an entropic fac-

tor independent of length, with accuracy better than one order of magnitude. Given

that the reaction rate predicted by the Arrhenius equation is much more sensitive to

activation energy, such accuracy is acceptable for these applications.

Applying the NEB method to dislocations described using the continuum theory

of defects provides a new method to calculate activation energies for dislocation mi-

gration processes. Atomistic calculations are ill-suited to such configurations because

of their dependence on chosen atomistic potential, restriction to highly confined simu-

lation volumes (resulting in large image forces from the boundaries), and prohibitively

high computational costs. Applying the DDD-NEB method to a unit dislocation-SIA

loop bypass reaction reveals a complex energy landscape as a function of interaction

geometry, a stress dependence well-described by the Kocks TST model, and a loga-

rithmic dependence on SIA loop spacing. The methodology to transition this knowl-

edge to more representative defect configurations of a dislocation gliding through a

representative numbers of SIA loops has never been delineated. Whereas the stress

necessary to cause a dislocation to bypass a defect can be effectively encapsulated by

a breakaway angle for athermal irradiation hardening calculations, the activation en-

ergy for bypass is influenced by changes in dislocation morphology far away from the

defect and cannot be captured with a similar method. Simulations of a dislocation

bypassing SIA loops distributed randomly in space show that the activation energy

distribution for an ensemble of loops is not well-described by unit simulations with

the same mean defect spacing with unit process simulations systematically overesti-

mate the mean activation energy. However, the calculated distributions are given by
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an exponential probability distribution that allow the distribution to be characterized

by a single parameter, its mean value.

As the DDD-NEB approach is a novel method, there are many possibilities to

expand upon and develop the approach more deeply. From the standpoint of numer-

ical methods, other formulations beyond the NEB for determining minimum energy

pathways have been proposed including various string methods [171, 183]. The sim-

plified string method uses an interpolation function to parametrize the path between

images. A series of evenly distributed images are created at each iteration, evolved

according to the force acting normal to the tangent, and used to update the interpo-

lation function. The images are created at each step such that they are always evenly

spaced in energy space, and the tangent calculation does not involve finite difference

calculations. A simplified string method is possibly a more numerically stable method

to calculate the MEP to apply to DDD calculations for several reasons. Instability

arises due to the 1/r elastic fields of dislocations - even in the nonsingular case, the

stresses are intense at the dislocation core (on the order of 109 Pa or greater). Any

error in the tangent results in a strong force on the dislocation driving the dislocation

along the tangent. Consequently, the spring force must be sufficient to counteract this

force. Replacing the spring force with re-interpolation may alleviate such numerical

issues if the interpolation can accurately describe the energy surface. From a physical

standpoint, NEB calculations for dislocation reactions involving junction formation

or SIA loop deformation can be simulated with a DDD-NEB calculation with added

complexities in the numerical implementation and assuming one can determine the

final deformed state (as the NEB requires knowledge of the final state). Moving

beyond obstacles composed of dislocations is possible with a more complex DDD for-

mulation and implementation. Using the discrete-continuous method [116, 227] with

an FFT method [24], anisotropic dislocation dynamics simulations in inhomogeneous

materials are possible, which can be readily coupled to an MEP finding method.
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The research performed in this thesis has produced new numerical methods and

tools providing insight into irradiation hardening and thermally activated processes,

and revealing complexities that have never before been considered. Continued ad-

vancements in simulating dislocation-obstacle interactions at the atomic and meso-

scales are vital to improve predictions of irradiation, precipitation, and work hard-

ening in engineering materials and to design new materials from the bottom up to

better suit their applications.
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[22] Bertin, N., Tomé, C., Beyerlein, I., Barnett, M., and Capolungo, L.,
“On the strength of dislocation interactions and their effect on latent hardening

208



in pure magnesium,” International Journal of Plasticity, vol. 62, pp. 72–92,
2014.

[23] Bertin, N., On the Role of Lattice Defect Interactions on Strain Hardening:
A Study from Discrete Dislocation Dynamics to Crystal Plasticity Modelling.
PhD thesis, Georgia Institute of Technology, 2015.

[24] Bertin, N., Upadhyay, M., Pradalier, C., and Capolungo, L., “A fft-
based formulation for efficient mechanical fields computation in isotropic and
anisotropic periodic discrete dislocation dynamics,” Modelling and Simulation
in Materials Science and Engineering, vol. 23, no. 6, p. 065009, 2015.

[25] Beyerlein, I., Mara, N., Wang, J., Carpenter, J., Zheng, S., Han,
W., Zhang, R., Kang, K., Nizolek, T., and Pollock, T. JOM, vol. 64,
p. 1192, 2012.

[26] Beyerlein, I. J., Mara, N. A., Carpenter, J. S., Nizolek, T., Mook,
W. M., Wynn, T. A., McCabe, R. J., Mayeur, J. R., Kang, K., Zheng,
S., Wang, J., and Pollock, T. M., “Interface-driven microstructure de-
velopment and ultra high strength of bulk nanostructured Cu-Nb multilayers
fabricated by severe plastic deformation,” JOURNAL OF MATERIALS RE-
SEARCH, vol. 28, no. 13, SI, pp. 1799–1812, 2013.

[27] Bower, A. F., Applied mechanics of solids. CRC press, 2009.

[28] Brimbal, D., Décamps, B., Barbu, A., Meslin, E., and Henry, J.,
“Dual-beam irradiation of α-iron: Heterogeneous bubble formation on disloca-
tion loops,” Journal of Nuclear Materials, vol. 418, no. 1, pp. 313–315, 2011.

[29] Bulatov, V., Cai, W., Fier, J., Hiratani, M., Hommes, G., Pierce,
T., Tang, M., Rhee, M., Yates, K., and Arsenlis, T., “Scalable line
dynamics in paradis,” in Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, p. 19, IEEE Computer Society, 2004.

[30] Cai, W., Arsenlis, A., Weinberger, C. R., and Bulatov, V. V., “A
non-singular continuum theory of dislocations,” Journal of the Mechanics and
Physics of Solids, vol. 54, no. 3, pp. 561–587, 2006.

[31] Cai, W. and Bulatov, V. V., “Mobility laws in dislocation dynamics simu-
lations,” Materials Science and Engineering: A, vol. 387, pp. 277–281, 2004.

[32] Capolungo, L., Spearot, D., Cherkaoui, M., McDowell, D., Qu, J.,
and Jacob, K., “Dislocation nucleation from bicrystal interfaces and grain
boundary ledges: relationship to nanocrystalline deformation,” Journal of the
Mechanics and Physics of Solids, vol. 55, no. 11, pp. 2300–2327, 2007.

[33] Castany, P., Pettinari-Sturmel, F., Crestou, J., Douin, J., and Cou-
jou, A., “Experimental study of dislocation mobility in a ti-6al-4v alloy,” Acta
Materialia, vol. 55, no. 18, pp. 6284–6291, 2007.

209



[34] Chang, H.-J., Segurado, J., and LLorca, J., “Three-dimensional dislo-
cation dynamics analysis of size effects on void growth,” Scripta Materialia,
vol. 95, pp. 11–14, 2015.

[35] Chang, J., Cai, W., Bulatov, V. V., and Yip, S., “Dislocation motion
in bcc metals by molecular dynamics,” Materials Science and Engineering: A,
vol. 309, pp. 160–163, 2001.

[36] Chen, Z., Chu, K. T., Srolovitz, D. J., Rickman, J. M., and Haataja,
M. P., “Dislocation climb strengthening in systems with immobile obstacles:
Three-dimensional level-set simulation study,” Physical Review B, vol. 81, no. 5,
p. 054104, 2010.

[37] Cheverton, R. and Sims, T., “Hfir core nuclear design.,” tech. rep., Oak
Ridge National Lab., Tenn., 1971.

[38] Chou, T.-W. and Pan, Y.-C., “Elastic energies of disclinations in hexagonal
crystals,” Journal of Applied Physics, vol. 44, no. 1, pp. 63–65, 1973.

[39] Cockeram, B. V., Smith, R. W., Leonard, K. J., Byun, T. S., and
Snead, L. L., “Development of microstructure and irradiation hardening of
zircaloy during low dose neutron irradiation at nominally 358 c,” Journal of
Nuclear Materials, vol. 418, no. 1, pp. 46–61, 2011.

[40] Cottrell, A., “Effects of neutron irradiation on metals and alloys,” Metal-
lurgical Reviews, vol. 1, no. 1, pp. 479–522, 1956.

[41] Cottrell, A. H., “Theory of dislocations,” Progress in Metal Physics, vol. 4,
pp. 205–264, 1953.

[42] Cottrell, A. H. and Bilby, B., “Dislocation theory of yielding and strain
ageing of iron,” Proceedings of the Physical Society. Section A, vol. 62, no. 1,
p. 49, 1949.

[43] Csikor, F. F. and Groma, I., “Probability distribution of internal stress in
relaxed dislocation systems,” Physical Review B, vol. 70, pp. 064106–064106,
2004.

[44] Daulton, T., Kirk, M., and Rehn, L., “In-situ transmission electron mi-
croscopy study of ion-irradiated copper: temperature dependence of defect yield
and cascade collapse,” Philosophical Magazine A, vol. 80, no. 4, pp. 809–842,
2000.

[45] De Hosson, J. T. M., in’t Veld, A. H., Tamler, H., and Kanert, O.,
“Dislocation dynamics in al-li alloys. mean jump distance and activation length
of moving dislocations,” Acta Metallurgica, vol. 32, no. 8, pp. 1205–1215, 1984.

210



[46] de Vaucorbeil, A., Poole, W., and Sinclair, C., “The superposition
of strengthening contributions in engineering alloys,” Materials science & en-
gineering. A, Structural materials: properties, microstructure and processing,
vol. 582, pp. 147–154, 2013.

[47] de Wit’, R., “The continuum theory of stationary dislocations,” Solid State
Physics, vol. 10, pp. 249–292, 1960.

[48] Demkowicz, M., Hoagland, R., and Hirth, J., “Interface structure and ra-
diation damage resistance in cu-nb multilayer nanocomposites,” Physical review
letters, vol. 100, no. 13, p. 136102, 2008.

[49] Deo, C. S., Okuniewski, M. A., Srivilliputhur, S. G., Maloy, S. A.,
Baskes, M. I., James, M. R., and Stubbins, J. F., “Helium bubble nucle-
ation in bcc iron studied by kinetic monte carlo simulations,” Journal of nuclear
materials, vol. 361, no. 2, pp. 141–148, 2007.

[50] Dérès, J., Proville, L., and Marinica, M.-C., “Dislocation depinning
from nano-sized irradiation defects in a bcc iron model,” Acta Materialia,
vol. 99, pp. 99–105, 2015.

[51] Devincre, B., Kubin, L., Lemarchand, C., and Madec, R., “Mesoscopic
simulations of plastic deformation,” Materials Science and Engineering: A,
vol. 309, pp. 211–219, 2001.

[52] deWit, R., “Thermodynamic force on a dislocation,” Journal of Applied
Physics, vol. 39, pp. 137–141, 1968.

[53] Domain, C., Becquart, C., and Malerba, L., “Simulation of radiation
damage in fe alloys: an object kinetic monte carlo approach,” Journal of Nuclear
Materials, vol. 335, no. 1, pp. 121–145, 2004.

[54] Dong, Y., Nogaret, T., and Curtin, W., “Scaling of dislocation strength-
ening by multiple obstacle types,” Metallurgical and Materials Transactions A,
vol. 41, no. 8, pp. 1954–1960, 2010.

[55] Duesbery, M., “On kinked screw dislocations in the bcc latticei. the structure
and peierls stress of isolated kinks,” Acta Metallurgica, vol. 31, no. 10, pp. 1747–
1758, 1983.

[56] Dunn, A. and Capolungo, L., “Simulating radiation damage accumulation
in α-fe: A spatially resolved stochastic cluster dynamics approach,” Computa-
tional Materials Science, vol. 102, pp. 314–326, 2015.

[57] Dunn, A., McPhie, M., Capolungo, L., Martinez, E., and Cherkaoui,
M., “A rate theory study of helium bubble formation and retention in cu-nb
nanocomposites,” Journal of Nuclear Materials, vol. 435, no. 1, pp. 141–152,
2013.

211



[58] Eldrup, M. and Singh, B., “Studies of defects and defect agglomerates
by positron annihilation spectroscopy,” Journal of nuclear materials, vol. 251,
pp. 132–138, 1997.

[59] Eldrup, M., Singh, B., Zinkle, S., Byun, T., and Farrell, K., “Dose de-
pendence of defect accumulation in neutron irradiated copper and iron,” Journal
of nuclear materials, vol. 307, pp. 912–917, 2002.

[60] Eyring, H., Gershinowitz, H., and Sun, C. E., “The absolute rate of
homogeneous atomic reactions,” The Journal of Chemical Physics, vol. 3, no. 12,
pp. 786–796, 1935.

[61] Farkas, D., Schon, C., De Lima, M., and Goldenstein, H., “Embedded
atom computer simulation of lattice distortion and dislocation core structure
and mobility in fe-cr alloys,” Acta materialia, vol. 44, no. 1, pp. 409–419, 1996.

[62] Ferroni, F., Tarleton, E., and Fitzgerald, S., “Dislocation dynamics
modelling of radiation damage in thin films,” Modelling and Simulation in Ma-
terials Science and Engineering, vol. 22, no. 4, p. 045009, 2014.

[63] Fivel, M. and Canova, G., “Developing rigorous boundary conditions to
simulations of discrete dislocation dynamics,” Modelling and Simulation in Ma-
terials Science and Engineering, vol. 7, no. 5, p. 753, 1999.

[64] Foreman, A. and Makin, M., “Dislocation movement through random arrays
of obstacles,” Phil. Mag., vol. 14, no. 131, pp. 911 – 924, 1966.

[65] Forest, S., “Micromorphic approach for gradient elasticity, viscoplasticity,
and damage,” Journal of Engineering Mechanics, vol. 135, no. 3, pp. 117–131,
2009.

[66] Frank, F. and Read Jr, W., “Multiplication processes for slow moving
dislocations,” Physical Review, vol. 79, no. 4, p. 722, 1950.

[67] Friedel, J., “Dislocations, 1964,” Oxford, vol. 70, pp. 15–24.

[68] Friedel, J., “Dislocation movement through random arrays of obstacles,”
Electron Microsc. and Strength of Crystals, pp. 605 – 651, 1963.

[69] Fukui, M., Sakamoto, R., Araki, K., Fujiwara, T., Muroga, T., and
Yoshida, N., “In situ observation of low energy hydrogen ion irradiation dam-
age in copper,” Journal of nuclear materials, vol. 220, pp. 810–814, 1995.

[70] Gao, F., Henkelman, G., Weber, W. J., Corrales, L. R., and Jónsson,
H., “Finding possible transition states of defects in silicon-carbide and alpha-
iron using the dimer method,” Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms, vol. 202,
pp. 1–7, 2003.

212



[71] Ghoniem, N., M, Tong, S.-H., and Sun, L., “Parametric dislocation dynam-
ics: a thermodynamics-based approach to investigations of mesoscopic plastic
deformation,” Physical Review B, vol. 61, no. 2, p. 913, 2000.

[72] Gibbs, G., “Thermodynamic analysis of dislocation glide controlled by dis-
persed local obstacles,” Materials Science and Engineering, vol. 4, no. 6,
pp. 313–328, 1969.

[73] Gilbert, M., Queyreau, S., and Marian, J., “Stress and temperature de-
pendence of screw dislocation mobility in α-fe by molecular dynamics,” Physical
Review B, vol. 84, no. 17, p. 174103, 2011.

[74] Gold, R. and McElroy, W., “The light water reactor pressure vessel surveil-
lance dosimetry improvement program (lwr-pv-sdip): Past accomplishments,
recent developments, and future directions,” in Proc. 6th ASTM-EURATOM
Symposium on Reactor Dosimetry, Jackson Hole, WY, pp. 44–61, 1989.

[75] Gordillo, N., Panizo-Laiz, M., Tejado, E., Fernandez-Martinez, I.,
Rivera, A., Pastor, J., de Castro, C. G., del Rio, J., Perlado, J.,
and Gonzalez-Arrabal, R., “Morphological and microstructural character-
ization of nanostructured pure α-phase w coatings on a wide thickness range,”
Applied Surface Science, vol. 316, pp. 1–8, 2014.

[76] Gordon, P., Neeraj, T., and Mendelev, M., “Screw dislocation mobility
in bcc metals: A refined potential description for α-fe,” Philosophical Magazine,
vol. 91, no. 30, pp. 3931–3945, 2011.

[77] Gorman, J. A., The mobility of dislocations in high purity aluminum. PhD
thesis, California Institute of Technology, 1968.
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